Science.gov

Sample records for gaba loss dopamine

  1. Protection of malonate-induced GABA but not dopamine loss by GABA transporter blockade in rat striatum.

    PubMed

    Zeevalk, Gail D; Manzino, Lawrence; Sonsalla, Patricia K

    2002-07-01

    Previous work has shown that overstimulation of GABA(A) receptors can potentiate neuronal cell damage during excitotoxic or metabolic stress in vitro and that GABA(A) antagonists or GABA transport blockers are neuroprotective under these situations. Malonate, a reversible succinate dehydrogenase/mitochondrial complex II inhibitor, is frequently used in animals to model cell loss in neurodegenerative diseases such as Parkinson's and Huntington's diseases. To determine if GABA transporter blockade during mitochondrial impairment can protect neurons in vivo as compared with in vitro studies, rats received a stereotaxic infusion of malonate (2 micromol) into the left striatum to induce a metabolic stress. The nonsubstrate GABA transport blocker, NO711 (20 nmol) was infused in some rats 30 min before and 3 h following malonate infusion. After 1 week, dopamine and GABA levels in the striata were measured. Malonate caused a significant loss of striatal dopamine and GABA. Blockade of the GABA transporter significantly attenuated GABA, but not dopamine loss. In contrast with several in vitro reports, GABA(A) receptors were not a downstream mediator of protection by NO711. Intrastriatal infusion of malonate (2 micromol) plus or minus the GABA(A) receptor agonist muscimol (1 micromol), the GABA(A) Cl- binding site antagonist picrotoxin (50 nmol) or the GABA(B) receptor antagonist saclofen (33 nmol) did not modify loss of striatal dopamine or GABA when examined 1 week following infusion. These data show that GABA transporter blockade during mitochondrial impairment in the striatum provides protection to GABAergic neurons. GABA transporter blockade, which is currently a pharmacological strategy for the treatment of epilepsy, may thus also be beneficial in the treatment of acute and chronic conditions involving energy inhibition such as stroke/ischemia or Huntington's disease. These findings also point to fundamental differences between immature and adult neurons in the

  2. Enhanced GABA Transmission Drives Bradykinesia Following Loss of Dopamine D2 Receptor Signaling.

    PubMed

    Lemos, Julia C; Friend, Danielle M; Kaplan, Alanna R; Shin, Jung Hoon; Rubinstein, Marcelo; Kravitz, Alexxai V; Alvarez, Veronica A

    2016-05-18

    Bradykinesia is a prominent phenotype of Parkinson's disease, depression, and other neurological conditions. Disruption of dopamine (DA) transmission plays an important role, but progress in understanding the exact mechanisms driving slowness of movement has been impeded due to the heterogeneity of DA receptor distribution on multiple cell types within the striatum. Here we show that selective deletion of DA D2 receptors (D2Rs) from indirect-pathway medium spiny neurons (iMSNs) is sufficient to impair locomotor activity, phenocopying DA depletion models of Parkinson's disease, despite this mouse model having intact DA transmission. There was a robust enhancement of GABAergic transmission and a reduction of in vivo firing in striatal and pallidal neurons. Mimicking D2R signaling in iMSNs with Gi-DREADDs restored the level of tonic GABAergic transmission and rescued the motor deficit. These findings indicate that DA, through D2R activation in iMSNs, regulates motor output by constraining the strength of GABAergic transmission.

  3. Glutamate and GABA modulate dopamine in the pedunculopontine tegmental nucleus.

    PubMed

    Steiniger, Björn; Kretschmer, Beate D

    2003-04-01

    The pedunculopontine tegmental nucleus (PPTg) has an important anatomical position connecting basal ganglia and limbic systems with motor execution structures in the pons and spinal cord. It receives glutamatergic and GABAergic input and has additional reciprocal connections with mesencephalic dopaminergic neurons, suggesting that the PPTg plays a key role in frontostriatal information processing. In vivo microdialysis in freely moving rats, in combination with behavioral analysis, was used in this study to investigate whether the dopaminergic input can be modulated at the level of the PPTg via N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) or GABA(B) receptors. Stimulation of the GABA(B) receptor decreased dopamine release in the PPTg while that of the AMPA and NMDA receptors increased it. A time-related comparison of the effects of NMDA (0.75 and 1 mM) and AMPA (50 and 25 microM) revealed a more long-lasting effect after AMPA stimulation than after NMDA. However, only the infusion of the GABA(B) receptor agonist baclofen (100 and 200 microM) stimulated stereotyped behavior (e.g. sniffing, digging or head movements) and contralateral circling. This study clearly demonstrates that GABAergic as well as glutamatergic terminals in the PPTg are critically involved in the modulation of the dopamine system. Moreover, a decrease in PPTg dopamine via GABA(B) receptor stimulation seems to be behaviorally relevant.

  4. Endogenous dopamine increases extracellular concentrations of glutamate and GABA in striatum of the freely moving rat: involvement of D1 and D2 dopamine receptors.

    PubMed

    Expósito, I; Del Arco, A; Segovia, G; Mora, F

    1999-07-01

    Interactions between endogenous dopamine, glutamate, GABA, and taurine were investigated in striatum of the freely moving rat by using microdialysis. Intrastriatal infusions of the selective dopamine uptake inhibitor nomifensine (NMF) were used to increase the endogenous extracellular dopamine. NMF produced a dose-related increase in extracellular dopamine and also increased extracellular concentrations of glutamate, GABA, and taurine. Extracellular increases of dopamine were significantly correlated with extracellular increases of glutamate and GABA, but not taurine. To investigate whether the increased extracellular dopamine produced by NMF was responsible for the concomitant increase of glutamate and GABA, D1, and D2 receptor antagonists were used. Dopamine receptor antagonists D1 (SCH23390) and D2 (sulpiride) significantly attenuated the increases of glutamate and GABA produced by NMF. These data suggest that endogenous dopamine, through both D1 and D2 dopamine receptors, plays a role in releasing glutamate and GABA in striatum of the freely moving rat.

  5. Release of taurine, GABA and dopamine from rat striatal slices: mutual interactions and developmental aspects.

    PubMed

    Kontro, P; Oja, S S

    1988-01-01

    The spontaneous and potassium-stimulated release of preloaded taurine and GABA from striatal slices of adult and 7-day-old rats were studied using a superfusion system. Particular attention was paid to mutual interactions of taurine and GABA with dopamine in the release processes. Potassium stimulation (50 mM) enhanced taurine release more in the immature than in the adult striatum, whereas the response was the opposite with GABA release. Spontaneous taurine efflux was increased by dopamine and apomorphine, whereas stimulated release was suppressed by these agents in both age groups. This dopamine effect was partially antagonized by haloperidol, suggesting that dopaminergic systems were able to modify taurine release, possibly via dopaminergic receptors. Dopamine and apomorphine had similar but more inconsistent effects on striatal GABA release, which were not, however, mediated through conventional dopamine receptors. Stimulation with 25 mM K+ caused an 11-fold increase in striatal dopamine release: this effect was potentiated by taurine, while the actions of GABA on dopamine release were variable.

  6. Loss of cortical GABA terminals in Unverricht-Lundborg disease.

    PubMed

    Buzzi, Andrea; Chikhladze, Maia; Falcicchia, Chiara; Paradiso, Beatrice; Lanza, Giovanni; Soukupova, Marie; Marti, Matteo; Morari, Michele; Franceschetti, Silvana; Simonato, Michele

    2012-08-01

    Unverricht-Lundborg disease (ULD) is the most common progressive myoclonic epilepsy. Its etiology has been identified in a defect of a protease inhibitor, cystatin B (CSTB), but the mechanism(s) by which this defect translates in the clinical manifestations of the disease are still obscure. We tested the hypothesis that ULD is accompanied by a loss of cortical GABA inhibition in a murine model (the CSTB knockout mouse) and in a human case. Cortical GABA signaling has been investigated measuring VGAT immunohistochemistry (a histological marker of the density of GABA terminals), GABA release from synaptosomes and paired-pulse stimulation. In CSTB knockout mice, a progressive decrease in neocortex thickness was found, associated with a prevalent loss of GABA interneurons. A marked reduction in VGAT labeling was found in the cortex of both CSTB knockout mice and an ULD patient. This implicates a reduction in GABA synaptic transmission, which was confirmed in the mouse model as reduction in GABA release from isolated nerve terminals and as loss of electrophysiologically measured GABA inhibition. The alterations in VGAT immunolabeling progressed in time, paralleling the worsening of myoclonus. These results provide direct evidence that loss of cortical GABA input occurs in a relevant animal model and in a case of human ULD, leading to a condition of latent hyperexcitability that favors myoclonus and seizures. These findings contribute to the understanding of the pathogenic mechanism of ULD and of the neurobiological basis of the effect of currently employed drugs.

  7. Dopamine-dependent hyperactivity in the rat following manipulation of GABA mechanisms in the region of the nucleus accumbens.

    PubMed

    Pycock, C J; Horton, R W

    1979-01-01

    The effect of manipulation of GABA mechanisms in the region of the nucleus accumbens on dopamine-dependent locomotor hyperactivity in the rat has been studied. Two models of hyperactivity were used: (1) the injection of dopamine into the region of the nucleus accumbens in nialamide-pretreated animals and (2) the systemic administration of d-amphetamine. Both GABA and the GABA agonist 3-aminopropane sulphonic acid (3-APS) depressed hyperactivity in a dose-related manner. High concentrations of GABA (greater than 100 micrograms) were required to produce a significant effect and the response was short-lived possibly reflecting the efficient GABA inactivating mechanisms. 3-APS proved to be approximately 10 times more potent as compared to GABA in the dopamine-accumbens hyperactivity model. Conversely GABA receptor antagonism with low doses of either picrotoxin or bicuculline enhanced the mild locomotor response induced by a low dose of dopamine injected into the nucleus accumbens. However such results were difficult to evaluate fairly as higher doses of the GABA antagonists resulted in varying degrees of generalized seizures. Blockade of GABA uptake systems with cis-1, 3-aminocyclohexane carboxylic acid (ACHC), nipecotic acid or beta-alanine within the region of the nucleus accumbens produced dose-related depression of dopamine-dependent hyperactivity in both models. GABA uptake blockade (nipecotic acid) significantly enhanced the GABA-mediated depression of hyperactivity induced by bilateral injection of dopamine into the nucleus accumbens. The results demonstrate an inhibitory action of GABA and drugs facilitating GABA-ergic transmission on dopamine-dependent hyperactivity in the rat. Although open to criticisms of not being able to distinguish between true GABA effects and the results of non-specific neuronal depression the hyperactivity model underlines the potency of the GABA uptake blocking compounds and their possible potential for future clinical use.

  8. Rod vision is controlled by dopamine-dependent sensitization of rod bipolar cells by GABA.

    PubMed

    Herrmann, Rolf; Heflin, Stephanie J; Hammond, Timothy; Lee, Bowa; Wang, Jing; Gainetdinov, Raul R; Caron, Marc G; Eggers, Erika D; Frishman, Laura J; McCall, Maureen A; Arshavsky, Vadim Y

    2011-10-06

    Dark and light adaptation of retinal neurons allow our vision to operate over an enormous light intensity range. Here we report a mechanism that controls the light sensitivity and operational range of rod-driven bipolar cells that mediate dim-light vision. Our data indicate that the light responses of these cells are enhanced by sustained chloride currents via GABA(C) receptor channels. This sensitizing GABAergic input is controlled by dopamine D1 receptors, with horizontal cells serving as a plausible source of GABA release. Our findings expand the role of dopamine in vision from its well-established function of suppressing rod-driven signals in bright light to enhancing the same signals under dim illumination. They further reveal a role for GABA in sensitizing the circuitry for dim-light vision, thereby complementing GABA's traditional role in providing dynamic feedforward and feedback inhibition in the retina.

  9. Midbrain dopamine neurons sustain inhibitory transmission using plasma membrane uptake of GABA, not synthesis

    PubMed Central

    Tritsch, Nicolas X; Oh, Won-Jong; Gu, Chenghua; Sabatini, Bernardo L

    2014-01-01

    Synaptic transmission between midbrain dopamine neurons and target neurons in the striatum is essential for the selection and reinforcement of movements. Recent evidence indicates that nigrostriatal dopamine neurons inhibit striatal projection neurons by releasing a neurotransmitter that activates GABAA receptors. Here, we demonstrate that this phenomenon extends to mesolimbic afferents, and confirm that the released neurotransmitter is GABA. However, the GABA synthetic enzymes GAD65 and GAD67 are not detected in midbrain dopamine neurons. Instead, these cells express the membrane GABA transporters mGAT1 (Slc6a1) and mGAT4 (Slc6a11) and inhibition of these transporters prevents GABA co-release. These findings therefore indicate that GABA co-release is a general feature of midbrain dopaminergic neurons that relies on GABA uptake from the extracellular milieu as opposed to de novo synthesis. This atypical mechanism may confer dopaminergic neurons the flexibility to differentially control GABAergic transmission in a target-dependent manner across their extensive axonal arbors. DOI: http://dx.doi.org/10.7554/eLife.01936.001 PMID:24843012

  10. Interactions between dopamine and GABA in the control of ambulatory activity.

    PubMed

    Agmo, A; Belzung, C; Giordano, M

    1996-01-01

    Ambulatory activity of male rats was quantified in an open field. The subjects were treated with DL-amphetamine and amfonelic acid alone or combined with the GABA transaminase inhibitors gamma-acetylen GABA (GAG) and sodium valproate as well as with the GABAA agonist THIP and the GABAB agonist baclofen. Subeffective doses of the GABAergic drugs did not modify the effects of moderate doses of the dopaminergic stimulants whereas effective doses continued to reduce ambulatory activity just as in the absence of dopaminergic activation. When DL-amphetamine or amfonelic acid were administered in doses that strongly enhanced ambulatory activity, doses of the GABAergic drugs that were inhibitory in the absence of dopaminergic stimulation were no longer effective. The mixed D1/D2 dopamine antagonist pimozide, the D1 antagonist SCH 23390 and the D2 antagonist sulpiride were then combined with subeffective doses of the GABA agonists. GAG, sodium valproate and baclofen were potentiated by pimozide and SCH 23390 but not by sulpiride. THIP was ineffective. These data show that GABAergic drugs had a reduced effect after stimulation of dopaminergic neurotransmission. On the other hand, when dopamine D1 receptors were blocked, nonselective GABA agonists and the GABAB agonist baclofen were potentiated. This was not the case for the GABAA agonist THIP, suggesting that the GABAA receptor is of slight importance for the interactions between GABA and dopamine in the control of ambulatory activity. No potentiation of GABAergic agonists was obtained after treatment with a dopamine D2 antagonist.

  11. Trans-synaptic (GABA-dopamine) modulation of cocaine induced dopamine release: A potential therapeutic strategy for cocaine abuse

    SciTech Connect

    Dewey, S.L.; Straughter-Moore, R.; Chen, R.

    1995-05-01

    We recently developed a new experimental strategy for measuring interactions between functionally-linked neurotransmitter systems in the primate and human brain with PET. As part of this research, we demonstrated that increases in endogenous GABA concentrations significantly reduced striatal dopamine concentrations in the primate brain. We report here the application of the neurotransmitter interaction paradigm with PET and with microdialysis to the investigation of a novel therapeutic strategy for treating cocaine abuse based on the ability of GABA to inhibit cocaine induced increases in striatal dopamine. Using gamma-vinyl GABA (GVG, a suicide inhibitor of GABA transaminase), we performed a series of PET studies where animals received a baseline PET scan with labeled raclopride injection, animals received cocaine (2.0 mg/kg). Normally, a cocaine challenge significantly reduces the striatal binding of {sup 11}C-raclopride. However, in animals pretreated with GVG, {sup 11}C-raclopride binding was less affected by a cocaine challenge compared to control studies. Furthermore, microdialysis studies in freely moving rats demonstrate that GVG (300 mg/kg) significantly inhibited cocaine-induced increases in extracellular dopamine release. GVG also attenuated cocaine-induced increases in locomotor activity. However, at a dose of 100 mg/kg, GVG had no effect. Similar findings were obtained with alcohol. Alcohol pretreatment dose dependantly (1-4 g/kg) inhibited cocaine-induced increases in extracellular dopamine concentrations in freely moving rats. Taken together, these studies suggest that therapeutic strategies targeted at increasing central GABA concentrations may be beneficial for the treatment of cocaine abuse.

  12. Locally infused taurine, GABA and homotaurine alter differently the striatal extracellular concentrations of dopamine and its metabolites in rats.

    PubMed

    Ruotsalainen, M; Majasaari, M; Salimäki, J; Ahtee, L

    1998-01-01

    We studied in vivo the effects of locally infused taurine (50, 150, and 450 mM) on the striatal dopamine and its metabolites in comparison with those of GABA and homotaurine, a GABAA receptor agonist, in freely moving rats. The extracellular dopamine concentration was elevated maximally 2.5-, 2- and 4-fold by taurine, GABA and homotaurine, respectively. At 150 mM concentration, at which the maximum effects occurred, homotaurine increased the extracellular dopamine more than taurine or GABA. When taurine and GABA were infused simultaneously with tetrodotoxin the output of dopamine did not differ from that in the presence of tetrodotoxin alone. In comparison, tetrodotoxin did not inhibit the increase in extracellular dopamine caused by homotaurine. Furthermore, omission of calcium from the perfusion fluid inhibited the increase of extracellular dopamine caused by GABA. However, it did not block the increase of dopamine caused by taurine or homotaurine. The present study suggests that the effects of intrastriatal taurine, GABA and homotaurine on the striatal extracellular dopamine differ. Thus, these amino acids seem to affect the striatal dopaminergic neurons via more than one mechanism.

  13. Dopamine receptor antagonist blocks the release of glycine, GABA, and taurine produced by amphetamine.

    PubMed

    Porras, A; Mora, F

    1993-01-01

    The effects of systemic injections of amphetamine sulfate on the extracellular levels of glycine, GABA, and taurine in the neostriatum of awake rats were studied using a push-pull perfusion system. Amphetamine produced a dose-related increase in glycine levels. Amphetamine also produced an enhancement on GABA and taurine levels, although these increases did not follow a dose-related curve. The percentage increase of amino acids produced by the highest dose of amphetamine (5 mg/kg) at the peak effect was: GLY 235.9%; GABA 218%, and TAU 177%. All these effects were blocked by the D1-D2 dopamine receptor antagonist, haloperidol. It is suggested that dopamine, released by amphetamine, induces the release of inhibitory amino acid neurotransmitters in the neostriatum. These results are consistent with the hypothesis of dopamine playing a role of an amplifier of the activity of different neurochemical circuits. The results are also in accord with the idea that dopamine could mediate the neurotoxic effects produced by amphetamines through an interplay between excitatory and inhibitory amino acids.

  14. Uptake of taurine, GABA, 5-HT, and dopamine by blood platelets in progressive myoclonus epilepsy.

    PubMed

    Airaksinen, E M

    1979-10-01

    The uptakes of four neurotransmitters (taurine, GABA, 5-HT, and dopamine) by blood platelets from patients with degenerative-type progressive myoclonus epilepsy (PME) and from controls were studied using different incubation times and different concentrations. Only the uptakes of taurine differed significantly between patients and controls: patients' uptakes were 70% to 80% of control values at 10, 30, 60, and 120 min of incubation time. Km values were approximately the same, but Vmax values in PME patients were lower, showing quantitative but not qualitative differences in taurine uptake by platelets in PME. These results suggest that a defect or an inhibitory mechanism of some factor needed in the transport or binding of taurine (but not of GABA, 5-HT, and dopamine) is present in PME.

  15. How Imaging Glutamate, GABA, and Dopamine Can Inform the Clinical Treatment of Alcohol Dependence and Withdrawal

    PubMed Central

    Hillmer, Ansel T.; Mason, Graeme F.; Fucito, Lisa M.; O’Malley, Stephanie S.; Cosgrove, Kelly P.

    2015-01-01

    Neuroimaging studies have dramatically advanced our understanding of the neurochemical basis of alcohol dependence, a major public health issue. In this paper we review the research generated from neurochemical-specific imaging modalities including magnetic resonance spectrometry (MRS), positron emission tomography (PET), and single photon emission computed tomography (SPECT) in studies of alcohol dependence and withdrawal. We focus on studies interrogating γ-aminobutryic acid (GABA), glutamate, and dopamine, as these are prominent neurotransmitter systems implicated in alcohol dependence. Highlighted findings include diminished dopaminergic functioning and modulation of the GABA system by tobacco smoking during alcohol withdrawal. Then, we consider how these findings impact the clinical treatment of alcohol dependence and discuss directions for future experiments to address existing gaps in the literature, e.g., sex differences and smoking comorbidity. These and other considerations provide opportunities to build upon the current neurochemistry imaging literature of alcohol dependence and withdrawal, which may usher in improved therapeutic and relapse prevention strategies. PMID:26510169

  16. GABA, glutamate, dopamine and serotonin transporters expression on forgetting.

    PubMed

    Tellez, Ruth; Gómez-Viquez, Leticia; Liy-Salmeron, Gustavo; Meneses, Alfredo

    2012-07-01

    Notwithstanding several neurotransmission systems are frequently related to memory formation; forgetting process and neurotransmission systems or their transporters; the role of γ-aminobutyric acid (GAT1), glutamate (EACC1), dopamine (DAT) and serotonin (SERT) is poorly understood. Hence, in this paper western-blot analysis was used to evaluate expression of GAT1, EAAC1, DAT and SERT during forgetting in trained and untrained rats treated with the selective serotonin transporter inhibitor fluoxetine, the amnesic drug d-methamphetamine (METH) and fluoxetine plus METH. Transporters expression was determined in the hippocampus (HIP), prefrontal cortex (PFC) and striatum (STR). Results indicated that forgetting of Pavlovian/instrumental autoshaping was associated to up-regulation of GAT1 (PFC and HIP) and DAT (PFC) while SERT (HIP) was down-regulated; no-changes were observed in striatum. Methamphetamine administration did not affect forgetting at 216 h post-training but up-regulated hippocampal DAT and EACC, prefrontal cortex DAT and striatal GAT1 or EACC1. Fluoxetine alone prevented forgetting, which was associated to striatal GAT1 and hippocampal DAT up-regulation, but prefrontal cortex GAT1 down-regulation. Fluoxetine plus METH administration was also able to prevent forgetting, which was associated to hippocampal DAT, prefrontal cortex SERT and striatal GAT1, DAT or SERT up-regulation, but prefrontal cortex GAT1 down-regulation. Together these data show that forgetting provokes primarily hippocampal and prefrontal cortex transporters changes; forgetting represent a behavioral process hardly modifiable and its prevention could causes different transporters expression patterns.

  17. Relative vulnerability of dopamine and GABA neurons in mesencephalic culture to inhibition of succinate dehydrogenase by malonate and 3-nitropropionic acid and protection by NMDA receptor blockade.

    PubMed

    Zeevalk, G D; Derr-Yellin, E; Nicklas, W J

    1995-12-01

    The effects of different severities of metabolic stress on dopamine (DA) and gamma-aminobutyric acid (GABA) cell loss were examined in rat mesencephalic culture. Partial metabolic inhibition was induced in 12-day-old cultures by a 24-hr treatment with various concentrations of 3-nitropropionic acid(3-NPA, 0.1-0.5 mM) or malonate (10-50 mM), irreversible and reversible inhibitors of the Krebs cycle enzyme, succinate dehydrogenase. Cell damage to the DA and GABA populations was assessed after a 48-hr recovery period by simultaneous measurement of high affinity uptake for 3H-DA and 14C-GABA. 3-NPA or malonate caused a dose-dependent loss of DA uptake (EC50 0.21 or 42 mM, respectively). 3-NPA treatment was equally detrimental to the GABA population, whereas malonate exposure did not cause any significant loss of GABA uptake. The presence of the NMDA antagonist, MK-801 (1 microM), during 24 hr of 3-NPA or malonate treatment fully protected against DA and GABA loss with 50 mM malonate or 0.25 mM 3-NPA and partially protected versus 0.5 mM 3-NPA. To determine the degree of metabolic stress imposed by 3-NPA and malonate, 12-day-old cultures were treated with 0.5 mM 3-NPA or 50 mM malonate for 3 hr and the rate of lactate formation was measured. lactate was increased nearly 2-fold at 3 hr of treatment with 3-NPA, but was not significantly elevated above basal with malonate treatment. SDH activity was decreased by 48 or 58% after 3 hr of treatment with 0.25 and 0.5 mM 3-NPA, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Target-specific suppression of GABA release from parvalbumin interneurons in the basolateral amygdala by dopamine.

    PubMed

    Chu, Hong-Yuan; Ito, Wataru; Li, Jiayang; Morozov, Alexei

    2012-10-17

    Dopamine (DA) in the basolateral amygdala (BLA) promotes fear learning by disinhibiting principal neurons (PNs) and enabling synaptic plasticity in their sensory inputs. While BLA interneurons (INs) are heterogeneous, it is unclear which interneuron subtypes decrease GABAergic input to PNs in the presence of DA. Here, using cell type-selective photostimulation by channelrhodopsin 2 in BLA slices from mouse brain, we examined the role of parvalbumin-positive INs (PV-INs), the major interneuronal subpopulation in BLA, in the disinhibitory effect of DA. We found that DA selectively suppressed GABAergic transmission from PV-INs to PNs by acting on presynaptic D(2) receptors, and this effect was mimicked by Rp-cAMP, an inhibitor of cAMP-dependent signaling. In contrast, DA did not alter GABA release from PV-INs to INs. Furthermore, neither suppressing cAMP-dependent signaling by Rp-cAMP nor enhancing it by forskolin altered GABA release from PV-INs to BLA INs. Overall, DA disinhibits BLA, at least in part, by suppressing GABA release from PV-INs in the target cell-specific manner that results from differential control of this release by cAMP-dependent signaling.

  19. Effects of taurine, homotaurine and GABA on hypothalamic and striatal dopamine metabolism.

    PubMed

    Panula-Lehto, E; Mäkinen, M; Ahtee, L

    1992-07-01

    To elucidate the effects of taurine on hypothalamic and striatal dopaminergic neurotransmission we compared its effects to those of gamma-aminobutyric acid (GABA) and homotaurine (a GABAA-receptor agonist) on hypothalamic and striatal concentrations of dopamine (DA) and its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and, in the case of striatum, 3-methoxytyramine (3-MT) in rats. In addition, hypothalamic and striatal 5-hydroxytryptamine (5-HT) und 5-hydroxyindoleacetic acid, hypothalamic noradrenaline (NA) and 3-methoxy-4-hydroxyphenylglycol sulfate, and pituitary DA concentrations were also measured. The amino acids were injected into the lateral brain ventricles of conscious male rats in doses of 10 and 36 mumol/rat, and rat were sacrificed 15 and 60 min later, respectively. Homotaurine (by 11%) but not the other two amino acids elevated striatal DA, whereas hypothalamic DA was increased by both taurine (36%) and homotaurine (31%). All three amino acids at 36 mumol elevated striatal DOPAC, homotaurine (51%) more than taurine (31%) or GABA (30%), and hypothalamic DOPAC, both taurine (102%) and homotaurine (82%) clearly more than GABA (34%). Neither striatal nor hypothalamic HVA was altered by any of the amino acids. At 10 mumol the amino acids decreased striatal 3-MT by about 40%. At 36 mumol taurine and homotaurine reduced 3-MT by about 70%, whereas increasing the dose of GABA did not further reduce 3-MT. Both taurine and homotaurine at 36 mumol decreased hypothalamic NA content. Neither hypothalamic nor striatal 5-HT metabolism was altered. In the neurointermediate lobe of the pituitary gland taurine at 10 mumol but not at 36 mumol slightly (20%) increased DA.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. [Modulating effect of dopamine on amplitude of GABA-produced chemocontrolled currents in multipolar spinal cord neurons of ammocaete].

    PubMed

    Bukinich, A A

    2010-01-01

    By using the patch-clamp method in the whole cell configuration, modulating effect of dopamine on GABA-activated currents has been studied on isolated multipolar spinal cord neurons of the ammocaete (larva of the lamprey Lampetra planeri). At application of dopamine (5 microM), there was observed in some cases a decrease of the GABA-activated current, on average, by 33.3 +/- 8.7 (n = 8, p < 0.01), in other cases--an increase of the amplitude, on average, by 37.3 +/- 11.8% (n = 5, p < 0.01). Concentration of GABA amounted to 2 mM. Study of action of agonists of D1- and D2-receptors on amplitude of che-mocontrolled currents has shown that agonist of D1-receptors (+)-SKF-38393 (5 microM) decreases the GABA-activated current amplitude, on average, by 63.1 +/- 11.7% (n = 8, p < 0.01); the agonist of D2-receptors (-)-quinpirole (5 microM) produces in various cells the dopamine-like effects: an increase of the GABA-activated current amplitude, on average, by 61.0 +/- 13.8% (n = 8, p < 0.01) and a decrease of amplitude, on average, by 55.7 +/- 2.0 % (n = 6, p < 0.01). It has been shown that antagonist of D2-receptors sulpiride (5 microM) does not block effects produced by dopamine. The dopamine effects were partially blocked by antagonist of D1-receptors (+)-SCH-23390 (5 microM): a decrease of the GABA-activated amplitude current amounted, on average, to 11.7 +/- 1.8 % (n = 7, p < 0.01), while an increase of amplitude--8.3 +/- 2.0 % (n = 5,p < 0.01). At the same time, effects of agonist of D1-receptors quinpirole (5 microM) were partially blocked by antagonist of D1-receptors (+)-SCH-23390: a decrease of the GABA-activated current amplitude amounted, on average, to 9.2 +/- 3.4 % (n = 6, p < 0.01) and an increase of amplitude--6.3 +/- 1.8 % (n = 10, p < 0.01). The obtained data indicate differences of mechanisms of the receptor-mediated effect of agonists of dopamine receptors on GABA-activated and potential-activated currents of multipolar neurons of the ammocaete spinal

  1. Loss of UBE3A from TH-expressing neurons suppresses GABA co-release and enhances VTA-NAc optical self-stimulation

    PubMed Central

    Berrios, Janet; Stamatakis, Alice M.; Kantak, Pranish A.; McElligott, Zoe A.; Judson, Matthew C.; Aita, Megumi; Rougie, Marie; Stuber, Garret D.; Philpot, Benjamin D.

    2016-01-01

    Motivated reward-seeking behaviours are governed by dopaminergic ventral tegmental area projections to the nucleus accumbens. In addition to dopamine, these mesoaccumbal terminals co-release other neurotransmitters including glutamate and GABA, whose roles in regulating motivated behaviours are currently being investigated. Here we demonstrate that loss of the E3-ubiquitin ligase, UBE3A, from tyrosine hydroxylase-expressing neurons impairs mesoaccumbal, non-canonical GABA co-release and enhances reward-seeking behaviour measured by optical self-stimulation. PMID:26869263

  2. Gamma-vinyl GABA inhibits methamphetamine, heroin, or ethanol-induced increases in nucleus accumbens dopamine.

    PubMed

    Gerasimov, M R; Ashby, C R; Gardner, E L; Mills, M J; Brodie, J D; Dewey, S L

    1999-10-01

    We examined the acute effect of the irreversible GABA-transaminase inhibitor, gamma-vinyl GABA (GVG, Sabril((R)), Vigabatrin((R))) on increases in nucleus accumbens (NAc) dopamine (DA) following acute administration of methamphetamine, heroin, or ethanol. Methamphetamine (2.5 mg/kg) produced a dose-dependent increase (2, 700%) in NAc DA. GVG preadministration (300 or 600 mg/kg), however, inhibited this response by approximately 39 and 61%, respectively. The lower dose of methamphetamine (1.25 mg/kg), increased DA by 1, 700%. This response was inhibited to a similar extent (44%) regardless of the GVG dose preadministered (300 or 600 mg/kg). In addition, heroin-induced increases in NAc DA (0.5 mg/kg, 170%) were inhibited or completely abolished by GVG (150 or 300 mg/kg, 65 and 100%, respectively). Finally, at half the dose necessary for heroin, GVG (150 mg/kg) also completely abolished ethanol-induced increases in NAc DA following a 0.25 g/kg challenge dose (140%). Taken with our previous findings using nicotine or cocaine as the challenge drug, these results indicate that GVG attenuates increases in NAc DA by a mechanism common to many drugs of abuse. However, it appears unlikely that an acute dose of GVG can completely inhibit increases in NAc DA following challenges with a drug whose mechanism of action is mediated primarily through the DA reuptake site.

  3. Biochemical effects of baclofen (beta-parachlorophenyl-GABA) on the dopamine and the noradrenaline in the rat brain.

    PubMed

    Andén, N E; Wachtel, H

    1977-02-01

    Baclofen (beta-parachlorophenyl-GABA) caused an increase in the concentration of dopamine in the rat brain with a maximum of about 170% of the control value after 1 hr and after doses of 50 mg/kg or more intraperitoneally. The alpha-methyltyrosine-induced disappearance of dopamine was inhibited to about the same extent in the corpus striatum and in the limbic system by baclofen. The accumulation of DOPA following decarboxylase inhibition was stimulated more in the corpus striatum than in the limbic system by baclofen, thus accounting for the fact that the concentration of dopamine was elevated about three times as much in the corpus striatum as in the limbic system. Amphetamine almost completely inhibited the rise in dopamine produced by baclofen. Baclofen did not cause any consistent changes in the concentration, the synthesis and the utilization of noradrenaline. These effects of baclofen are similar to those described following gammahydroxybutyric acid or axotomy. Hence, baclofen might also interrupt the nerve impulse flow in central dopamine neurones, perhaps by stimulating a central GABA mechanism.

  4. Neuropeptide co-release with GABA may explain functional non-monotonic uncertainty responses in dopamine neurons.

    PubMed

    Tan, Can Ozan; Bullock, Daniel

    2008-01-17

    Co-release of the inhibitory neurotransmitter GABA and the neuropeptide substance-P (SP) from single axons is a conspicuous feature of the basal ganglia, yet its computational role, if any, has not been resolved. In a new learning model, co-release of GABA and SP from axons of striatal projection neurons emerges as a highly efficient way to compute the uncertainty responses that are exhibited by dopamine (DA) neurons when animals adapt to probabilistic contingencies between rewards and the stimuli that predict their delivery. Such uncertainty-related dopamine release appears to be an adaptive phenotype, because it promotes behavioral switching at opportune times. Understanding the computational linkages between SP and DA in the basal ganglia is important, because Huntington's disease is characterized by massive SP depletion, whereas Parkinson's disease is characterized by massive DA depletion.

  5. ALPHA-1 ADRENORECEPTORS MODULATE GABA RELEASE ONTO VENTRAL TEGMENTAL AREA DOPAMINE NEURONS

    PubMed Central

    Velásquez-Martínez, M.C.; Vázquez-Torres, R.; Rojas, L.V.; Sanabria, P.; Jiménez-Rivera, C.A.

    2014-01-01

    The ventral tegmental area (VTA) plays an important role in reward and motivational processes involved in drug addiction. Previous studies have shown that alpha1-adrenoreceptors (α1-AR) are primarily found presynaptically at this area. We hypothesized that GABA released onto VTA-dopamine (DA) cells is modulated by presynaptic α1-AR. Recordings were obtained from putative VTA-DA cells of male Sprague-Dawley rats (28–50 days postnatal) using whole-cell voltage clamp technique. Phenylephrine (10µM; α1-AR agonist) decreased the amplitude of GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs) evoked by electrical stimulation of afferent fibers (n=7; p<0.05). Prazosin (1µM, α1-AR antagonist), blocked this effect. Paired-pulse ratios were increased by phenylephrine application (n=13; p<0.05) indicating a presynaptic site of action. Spontaneous IPSCs frequency but not amplitude, were decreased in the presence of phenylephrine (n=7; p<0.05). However, frequency or amplitude of miniature IPSCs were not changed (n=9; p>0.05). Phenylephrine in low Ca2+ (1mM) medium decreased IPSC amplitude (n=7; p<0.05). Chelerythrine (a protein kinase C inhibitor) blocked the α1-AR action on IPSC amplitude (n=6; p<0.05). Phenylephrine failed to decrease IPSCs amplitude in the presence of paxilline, a BK channel blocker (n=7; p<0.05). Taken together, these results demonstrate that α1-ARs at presynaptic terminals can modulate GABA release onto VTA-DA cells. Drug-induced changes in α1-AR could contribute to the modifications occurring in the VTA during the addiction process. PMID:25261018

  6. Accumbal and pallidal dopamine, glutamate and GABA overflow during cocaine self-administration and its extinction in rats.

    PubMed

    Wydra, Karolina; Golembiowska, Krystyna; Zaniewska, Magdalena; Kamińska, Katarzyna; Ferraro, Luca; Fuxe, Kjell; Filip, Małgorzata

    2013-03-01

    We investigated the changes in dopamine (DA), glutamate and γ-aminobutyric acid (GABA) during cocaine self-administration in rats implanted with guide cannulae into the nucleus accumbens and ventral pallidum. After stabilized cocaine self-administration, separate groups of rats underwent extinction (10 days) procedure in which cocaine infusion was replaced by saline injections. With using a 'yoked' procedure, the effects of cocaine or its withdrawal on the level of neurotransmitters were evaluated by dual-probe microdialysis. Repeated cocaine administration reduced basal glutamate levels in the nucleus accumbens and ventral pallidum, whereas it did not affect basal accumbal DA levels. Only rats that self-administered cocaine had increased basal GABA overflow in both examined brain structures. Active or passive cocaine administration elevated extracellular accumbal DA, however, the extent of cocaine-evoked DA level was significantly higher in rats that self-administered cocaine while both groups of animals showed also an attenuation of GABA level in the nucleus accumbens. On day 10 of extinction training, rats previously given cocaine revealed decreases in the basal accumbal concentration of glutamate while the basal GABA levels were significantly enhanced as compared with baseline of saline-yoked controls. Potassium depolarization delayed the reduction of the accumbal and pallidal extracellular glutamate levels in the active and passive cocaine groups. The present data indicate that changes in DA and GABA neurotransmission during maintenance phase mirror the motivational aspects of cocaine intake. Depending on acute (24 hours) or late (10 days) cocaine withdrawal, different neurotransmitter systems (i.e. glutamate or GABA) seem to be involved.

  7. GABA, glutamate, dopamine and serotonin transporters expression on memory formation and amnesia.

    PubMed

    Tellez, Ruth; Gómez-Víquez, Leticia; Meneses, Alfredo

    2012-02-01

    Notwithstanding several neurotransmission systems are frequently related to memory formation, amnesia and/or therapeutic targets for memory alterations, the role of transporters γ-aminobutyric acid (GABA, GAT1), glutamate (neuronal glutamate transporter excitatory amino acid carrier; EACC1), dopamine (DAT) and serotonin (SERT) is poorly understood. Hence, in this paper Western-blot analysis was used to evaluate expression changes on them during memory formation in trained and untrained rats treated with the selective serotonin transporter inhibitor fluoxetine, the amnesic drug d-methamphetamine (METH) and fluoxetine plus METH. Transporters expression was evaluated in the hippocampus, prefrontal cortex and striatum. Data indicated that in addition of memory performance other behavioral parameters (e.g., explorative behavior, food-intake, etc.) that memory formation was recorded. Thus, memory formation in a Pavlovian/instrumental autoshaping was associated to up-regulation of prefrontal cortex GAT1 and EAAC1, striatal SERT, DAT and EACC1; while, hippocampal EACC1, GAT1 and SERT were down-regulated. METH impaired short (STM) and long-term memory (LTM), at 24 or 48h. The METH-induced amnesia down-regulated SERT, DAT, EACC1 and GAT1 in hippocampus and the GAT1 in striatum; no-changes were observed in prefrontal cortex. Post-training administration of fluoxetine improved LTM (48h), which was associated to DAT, GAT1 (prefrontal cortex) up-regulation, but GAT1 (striatum) and SERT (hippocampus) down-regulation. Fluoxetine plus METH administration was able to prevent amnesia, which was associated to DAT, EACC1 and GAT1 (prefrontal cortex), SERT and DAT (hippocampus) and EACC1 or DAT (striatal) up-regulation. Together these data show that memory formation, amnesia and anti-amnesic effects are associated to specific patters of transporters expression.

  8. Concentration-dependent activation of dopamine receptors differentially modulates GABA release onto orexin neurons

    PubMed Central

    Linehan, Victoria; Trask, Robert B.; Briggs, Chantalle; Rowe, Todd M.; Hirasawa, Michiru

    2017-01-01

    Dopamine (DA) and orexin neurons play important roles in reward and food intake. There are anatomical and functional connections between these two cell groups, where orexin peptides stimulate DA neurons in the ventral tegmental area and DA inhibits orexin neurons in the hypothalamus. However, the cellular mechanisms underlying DA action on orexin neurons remain incompletely understood. Therefore, the effect of DA on inhibitory transmission to orexin neurons was investigated in rat brain slices using whole cell patch clamp technique. We found that DA modulated the frequency of spontaneous and miniature IPSCs (mIPSCs) in a concentration dependent, bidirectional manner. Low (1 μM) and high concentrations (100 μM) of DA decreased and increased IPSC frequency, respectively. These effects did not accompany a change in mIPSC amplitude and persisted in the presence of G protein signaling inhibitor GDPβS in the pipette, suggesting that DA acts presynaptically. The decrease in mIPSC frequency was mediated by D2 receptors, whereas the increase required co-activation of D1 and D2 receptors and subsequent activation of phospholipase C. In summary, our results suggest that DA has complex effects on GABAergic transmission to orexin neurons, involving cooperation of multiple receptor subtypes. The direction of dopaminergic influence on orexin neurons is dependent on the level of DA in the hypothalamus. At low levels DA disinhibits orexin neurons whereas at high levels it facilitates GABA release, which may act as negative feedback to curb the excitatory orexinergic output to DA neurons. These mechanisms may have implications for consummatory and motivated behaviours. PMID:26036709

  9. Concentration-dependent activation of dopamine receptors differentially modulates GABA release onto orexin neurons.

    PubMed

    Linehan, Victoria; Trask, Robert B; Briggs, Chantalle; Rowe, Todd M; Hirasawa, Michiru

    2015-08-01

    Dopamine (DA) and orexin neurons play important roles in reward and food intake. There are anatomical and functional connections between these two cell groups: orexin peptides stimulate DA neurons in the ventral tegmental area and DA inhibits orexin neurons in the hypothalamus. However, the cellular mechanisms underlying the action of DA on orexin neurons remain incompletely understood. Therefore, the effect of DA on inhibitory transmission to orexin neurons was investigated in rat brain slices using the whole-cell patch-clamp technique. We found that DA modulated the frequency of spontaneous and miniature IPSCs (mIPSCs) in a concentration-dependent bidirectional manner. Low (1 μM) and high (100 μM) concentrations of DA decreased and increased IPSC frequency, respectively. These effects did not accompany a change in mIPSC amplitude and persisted in the presence of G-protein signaling inhibitor GDPβS in the pipette, suggesting that DA acts presynaptically. The decrease in mIPSC frequency was mediated by D2 receptors whereas the increase required co-activation of D1 and D2 receptors and subsequent activation of phospholipase C. In summary, our results suggest that DA has complex effects on GABAergic transmission to orexin neurons, involving cooperation of multiple receptor subtypes. The direction of dopaminergic influence on orexin neurons is dependent on the level of DA in the hypothalamus. At low levels DA disinhibits orexin neurons whereas at high levels it facilitates GABA release, which may act as negative feedback to curb the excitatory orexinergic output to DA neurons. These mechanisms may have implications for consummatory and motivated behaviours.

  10. Effects of intranigral injection of taurine and GABA on striatal dopamine release monitored voltammetrically in the unanaesthetized rat.

    PubMed

    O'Neill, R D

    1986-09-10

    Linear sweep voltammetry with carbon-paste electrodes was used to detect changes in the extracellular concentration of homovanillic acid (HVA) in the striatum of unanaesthetized rats; under the present experimental conditions, changes in the HVA signal were used as an index of striatal dopamine release. The effects of unilateral intranigral infusion of saline, sucrose, taurine, GABA and the putative taurine-receptor antagonist, 6-aminomethyl-3-methyl-4H-1,2,4-benzothiadiazine-1,1-dioxide (TAG), on the HVA signal were monitored in the striatum on the two sides of the brain. Both taurine and GABA caused an increase in the extracellular concentration of HVA which was significantly greater in the striatum on the side of the injection compared with the contralateral side. The effect of TAG varied between animals. The results are discussed in terms of the role of taurine as a possible neuromodulator in the substantia nigra and in the light of the suggestion that different pathways are involved in taurine- and GABA-induced contraversive circling.

  11. Ventral tegmental area dopamine and GABA neurons: Physiological properties and expression of mRNA for endocannabinoid biosynthetic elements.

    PubMed

    Merrill, Collin B; Friend, Lindsey N; Newton, Scott T; Hopkins, Zachary H; Edwards, Jeffrey G

    2015-11-10

    The ventral tegmental area (VTA) is involved in adaptive reward and motivation processing and is composed of dopamine (DA) and GABA neurons. Defining the elements regulating activity and synaptic plasticity of these cells is critical to understanding mechanisms of reward and addiction. While endocannabinoids (eCBs) that potentially contribute to addiction are known to be involved in synaptic plasticity mechanisms in the VTA, where they are produced is poorly understood. In this study, DA and GABAergic cells were identified using electrophysiology, cellular markers, and a transgenic mouse model that specifically labels GABA cells. Using single-cell RT-qPCR and immunohistochemistry, we investigated mRNA and proteins involved in eCB signaling such as diacylglycerol lipase α, N-acyl-phosphatidylethanolamine-specific phospholipase D, and 12-lipoxygenase, as well as type I metabotropic glutamate receptors (mGluRs). Our results demonstrate the first molecular evidence of colocalization of eCB biosynthetic enzyme and type I mGluR mRNA in VTA neurons. Further, these data reveal higher expression of mGluR1 in DA neurons, suggesting potential differences in eCB synthesis between DA and GABA neurons. These data collectively suggest that VTA GABAergic and DAergic cells have the potential to produce various eCBs implicated in altering neuronal activity or plasticity in adaptive motivational reward or addiction.

  12. D4 and D1 dopamine receptors modulate [3H] GABA release in the substantia nigra pars reticulata of the rat.

    PubMed

    Acosta-García, Jacqueline; Hernández-Chan, Nancy; Paz-Bermúdez, Francisco; Sierra, Arturo; Erlij, David; Aceves, Jorge; Florán, Benjamín

    2009-12-01

    Neurons of the globus pallidus express dopamine D4 receptors that can modulate transmitter release by their axon terminals. Indeed, GABA release from pallidal terminals in the subthalamic nucleus and in the reticular nucleus of the thalamus is inhibited by activation of D4 receptors. Here we investigated whether GABA release by pallidal projections to the substantia nigra reticulate (SNr) is also modulated by D4 receptors. Dopamine-stimulated depolarization-induced GABA release in slices of the SNr; however, after selective blockade of D1 receptors, dopamine inhibited release. The selective D4 agonist PD 168,077 (IC(50) = 5.30 nM) mimicked the inhibition of release while the selective D4 antagonist L-745,870 blocked the inhibition. To identify the source of D1 and D4 modulated terminals, we unilaterally injected kainic acid in either the GP or the striatum. After lesions of the pallidum, the D4 induced inhibition of release was blocked while the D1 induced stimulation was still significant. Lesions of the striatum had the converse effects. We conclude that release of dopamine in the SNr enhances GABA release mainly through activation of D1 receptors in striatonigral projections and inhibits release mainly through activation of D4 receptors in pallidonigral projections. Because deficient D4 receptor signaling in globus pallidus terminals will lead to disinhibition of impulse traffic through the thalamus we speculate that the D4 abnormalities observed in ADHD patients may be important in the generation of the syndrome.

  13. Molecular and functional differences in voltage-activated sodium currents between GABA projection neurons and dopamine neurons in the substantia nigra.

    PubMed

    Ding, Shengyuan; Wei, Wei; Zhou, Fu-Ming

    2011-12-01

    GABA projection neurons (GABA neurons) in the substantia nigra pars reticulata (SNr) and dopamine projection neurons (DA neurons) in substantia nigra pars compacta (SNc) have strikingly different firing properties. SNc DA neurons fire low-frequency, long-duration spikes, whereas SNr GABA neurons fire high-frequency, short-duration spikes. Since voltage-activated sodium (Na(V)) channels are critical to spike generation, the different firing properties raise the possibility that, compared with DA neurons, Na(V) channels in SNr GABA neurons have higher density, faster kinetics, and less cumulative inactivation. Our quantitative RT-PCR analysis on immunohistochemically identified nigral neurons indicated that mRNAs for pore-forming Na(V)1.1 and Na(V)1.6 subunits and regulatory Na(V)β1 and Na(v)β4 subunits are more abundant in SNr GABA neurons than SNc DA neurons. These α-subunits and β-subunits are key subunits for forming Na(V) channels conducting the transient Na(V) current (I(NaT)), persistent Na current (I(NaP)), and resurgent Na current (I(NaR)). Nucleated patch-clamp recordings showed that I(NaT) had a higher density, a steeper voltage-dependent activation, and a faster deactivation in SNr GABA neurons than in SNc DA neurons. I(NaT) also recovered more quickly from inactivation and had less cumulative inactivation in SNr GABA neurons than in SNc DA neurons. Furthermore, compared with nigral DA neurons, SNr GABA neurons had a larger I(NaR) and I(NaP). Blockade of I(NaP) induced a larger hyperpolarization in SNr GABA neurons than in SNc DA neurons. Taken together, these results indicate that Na(V) channels expressed in fast-spiking SNr GABA neurons and slow-spiking SNc DA neurons are tailored to support their different spiking capabilities.

  14. Attenuating GABA(A) receptor signaling in dopamine neurons selectively enhances reward learning and alters risk preference in mice.

    PubMed

    Parker, Jones G; Wanat, Matthew J; Soden, Marta E; Ahmad, Kinza; Zweifel, Larry S; Bamford, Nigel S; Palmiter, Richard D

    2011-11-23

    Phasic dopamine (DA) transmission encodes the value of reward-predictive stimuli and influences both learning and decision-making. Altered DA signaling is associated with psychiatric conditions characterized by risky choices such as pathological gambling. These observations highlight the importance of understanding how DA neuron activity is modulated. While excitatory drive onto DA neurons is critical for generating phasic DA responses, emerging evidence suggests that inhibitory signaling also modulates these responses. To address the functional importance of inhibitory signaling in DA neurons, we generated mice lacking the β3 subunit of the GABA(A) receptor specifically in DA neurons (β3-KO mice) and examined their behavior in tasks that assessed appetitive learning, aversive learning, and risk preference. DA neurons in midbrain slices from β3-KO mice exhibited attenuated GABA-evoked IPSCs. Furthermore, electrical stimulation of excitatory afferents to DA neurons elicited more DA release in the nucleus accumbens of β3-KO mice as measured by fast-scan cyclic voltammetry. β3-KO mice were more active than controls when given morphine, which correlated with potential compensatory upregulation of GABAergic tone onto DA neurons. β3-KO mice learned faster in two food-reinforced learning paradigms, but extinguished their learned behavior normally. Enhanced learning was specific for appetitive tasks, as aversive learning was unaffected in β3-KO mice. Finally, we found that β3-KO mice had enhanced risk preference in a probabilistic selection task that required mice to choose between a small certain reward and a larger uncertain reward. Collectively, these findings identify a selective role for GABA(A) signaling in DA neurons in appetitive learning and decision-making.

  15. Changes in mediobasal hypothalamic dopamine and GABA release: a possible mechanism underlying taurine-induced prolactin secretion.

    PubMed

    Arias, P; Jarry, H; Convertini, V; Ginzburg, M; Wuttke, W; Moguilevsky, J

    1998-01-01

    Taurine (Tau), a putative inhibitory amino acid neurotransmitter, has been shown to stimulate prolactin (PRL) release. Using ovariectomized, estrogen-replaced adult rats we investigated initially the effect of this amino acid, injected by different routes, on PRL secretion in vivo. Tau (100-500 mg/kg) had no effect on PRL release when given i.p.; 15 min after i.c.v. injection of Tau (3 mumoles), a significant increase in serum PRL levels was observed (78 +/- 9 ng/ml over basal levels, p < 0.01 vs. controls). In vitro (cultured anterior pituitary cells) PRL release was not affected by a 5 h incubation with Tau (10(-3)-10(-8) M). Basal dopamine (DA) or gamma-aminobutyric acid (GABA) output from superfused mediobasal hypothalamic fragments (MBH) was not affected by Tau (10(-3) M or 10(-5) M). However, during stimulation with KCl (50 mM), Tau (10(-3) M) significantly lowered DA release, and increased GABA output. It is concluded that Tau acts at a central level to increase PRL secretion, most probably by modulating the hypothalamic release of neurotransmitters controlling lactotroph function.

  16. Endogenous glutamate increases extracellular concentrations of dopamine, GABA, and taurine through NMDA and AMPA/kainate receptors in striatum of the freely moving rat: a microdialysis study.

    PubMed

    Segovia, G; Del Arco, A; Mora, F

    1997-10-01

    Interactions between glutamate (Glu), dopamine (DA), GABA, and taurine (Tau) were investigated in striatum of the freely moving rat by using microdialysis. Intrastriatal infusions of the selective Glu uptake inhibitor L-trans-pyrrolidine-3,4-dicarboxylic acid (PDC) were used to increase the endogenous extracellular [Glu]. Correlations between extracellular [Glu] and extracellular [DA], [GABA], and [Tau], and the effects of a selective blockade of ionotropic Glu receptors, were studied. PDC (1, 2, and 4 mM) produced a dose-related increase in extracellular [Glu]. At the highest dose of PDC, [Glu] increased from 1.55 +/- 0.35 to 6.11 +/- 0.88 microM. PDC also increased extracellular [DA], [GABA], and [Tau]. The increasing [Glu] was correlated significantly with increasing [DA], [GABA], and [Tau]. PDC also decreased extracellular concentrations of DA metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and 4-hydroxy-3-methoxyphenylacetic acid (HVA). Perfusion with the NMDA-receptor antagonist 3-[(R)-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid (1 mM) or the AMPA/kainate-receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX) (1 mM) attenuated the increases produced by PDC (4 mM) on [DA], [GABA], and [Tau], and decreases in [DOPAC] and [HVA]. DNQX also attenuated the increases in [Glu] induced by PDC. These data show that endogenous Glu plays a role in modulating the extracellular concentrations of DA, GABA, and Tau in striatum of the freely moving rat.

  17. Effects of ethanol on the accumbal output of dopamine, GABA and glutamate in alcohol-tolerant and alcohol-nontolerant rats.

    PubMed

    Piepponen, T Petteri; Kiianmaa, Kalervo; Ahtee, Liisa

    2002-12-01

    Effects of ethanol on the accumbal extracellular concentrations of dopamine, as well as of the amino acid transmitters gamma-amino butyric acid (GABA), glutamate and taurine, were studied in the alcohol-insensitive (alcohol-tolerant, AT) and alcohol-sensitive (alcohol-nontolerant, ANT) rats selected for low and high sensitivity to ethanol-induced motor impairment. Ethanol (2 or 3 g/kg ip) enhanced the output of dopamine and its metabolites in freely moving rats of both lines as measured by in vivo microdialysis. The effect of ethanol on the metabolites of dopamine tended to be stronger in the ANT rats. The smaller dose of ethanol decreased the output of GABA only in the AT rats, whereas the larger dose of ethanol decreased the output of GABA in rats of both lines to a similar degree. Ethanol at the dose of 2 g/kg slightly, but statistically, significantly decreased the output of glutamate in rats of both lines, but the larger dose of ethanol decreased the output of glutamate only in the AT rats. Ethanol at the dose of 2 g/kg induced a small transient increase in the output of taurine within 2 h after its administration in rats of both lines, but the larger dose of ethanol was without significant effect. These results confirm the previous findings that ethanol suppresses the release of GABA more in the AT than ANT rats. Thus, among the neurotransmitter systems we studied, the effects of ethanol might be the most relevant on GABAergic transmission regarding the sensitivity towards ethanol. However, our findings suggest that glutamate is also involved in this respect.

  18. Mechanisms compensating for dopamine loss in early Parkinson disease.

    PubMed

    Brotchie, Jonathan; Fitzer-Attas, Cheryl

    2009-02-17

    Parkinson disease (PD) is a disorder with a substantive period before the emergence of motor symptoms, during which significant dopaminergic neuronal loss is counterbalanced by endogenous compensatory mechanisms. Many potential compensatory mechanisms have now been proposed; these are both dopaminergic, focused on enhancing effects or exposure to existing dopamine, and nondopaminergic, being focused on reducing activity of the indirect striatal output pathway. Compensatory mechanisms can potentially postpone and reduce the severity of parkinsonian symptoms, and contribute to the benefit provided by a symptomatic therapy, thus offering targets for novel therapeutics. However, enhancement of certain compensatory mechanisms may produce problems when subsequent therapies are initiated, e.g., the development of motor complications with levodopa. Supporting endogenous compensatory mechanisms, to delay or reverse apparent disease progression, is a novel and attractive "disease-modifying" approach to PD. Such actions may contribute to the apparent disease-modifying benefit of initiating early treatment with levodopa or rasagiline, as suggested by the ELLDOPA and TEMPO studies.

  19. Dopamine/Tyrosine Hydroxylase Neurons of the Hypothalamic Arcuate Nucleus Release GABA, Communicate with Dopaminergic and Other Arcuate Neurons, and Respond to Dynorphin, Met-Enkephalin, and Oxytocin

    PubMed Central

    Zhang, Xiaobing

    2015-01-01

    We employ transgenic mice with selective expression of tdTomato or cre recombinase together with optogenetics to investigate whether hypothalamic arcuate (ARC) dopamine/tyrosine hydroxylase (TH) neurons interact with other ARC neurons, how they respond to hypothalamic neuropeptides, and to test whether these cells constitute a single homogeneous population. Immunostaining with dopamine and TH antisera was used to corroborate targeted transgene expression. Using whole-cell recording on a large number of neurons (n = 483), two types of neurons with different electrophysiological properties were identified in the dorsomedial ARC where 94% of TH neurons contained immunoreactive dopamine: bursting and nonbursting neurons. In contrast to rat, the regular oscillations of mouse bursting neurons depend on a mechanism involving both T-type calcium and A-type potassium channel activation, but are independent of gap junction coupling. Optogenetic stimulation using cre recombinase-dependent ChIEF-AAV-DJ expressed in ARC TH neurons evoked postsynaptic GABA currents in the majority of neighboring dopamine and nondopamine neurons, suggesting for the first time substantial synaptic projections from ARC TH cells to other ARC neurons. Numerous met-enkephalin (mENK) and dynorphin-immunoreactive boutons appeared to contact ARC TH neurons. mENK inhibited both types of TH neuron through G-protein coupled inwardly rectifying potassium currents mediated by δ and μ opioid receptors. Dynorphin-A inhibited both bursting and nonbursting TH neurons by activating κ receptors. Oxytocin excited both bursting and nonbursting neurons. These results reveal a complexity of TH neurons that communicate extensively with neurons within the ARC. SIGNIFICANCE STATEMENT Here, we show that the great majority of mouse hypothalamic arcuate nucleus (ARC) neurons that synthesize TH in the dorsomedial ARC also contain immunoreactive dopamine, and show either bursting or nonbursting electrical activity. Unlike

  20. A neuron-glia interaction involving GABA Transaminase contributes to sleep loss in sleepless mutants

    PubMed Central

    Chen, Wen-Feng; Maguire, Sarah; Sowcik, Mallory; Luo, Wenyu; Koh, Kyunghee; Sehgal, Amita

    2014-01-01

    Sleep is an essential process and yet mechanisms underlying it are not well understood. Loss of the Drosophila quiver/sleepless (qvr/sss) gene increases neuronal excitability and diminishes daily sleep, providing an excellent model for exploring the underpinnings of sleep regulation. Here, we used a proteomic approach to identify proteins altered in sss brains. We report that loss of sleepless post-transcriptionally elevates the CG7433 protein, a mitochondrial γ-aminobutyric acid transaminase (GABAT), and reduces GABA in fly brains. Loss of GABAT increases daily sleep and improves sleep consolidation, indicating that GABAT promotes wakefulness. Importantly, disruption of the GABAT gene completely suppresses the sleep phenotype of sss mutants, demonstrating that GABAT is required for loss of sleep in sss mutants. While SSS acts in distinct populations of neurons, GABAT acts in glia to reduce sleep in sss flies. Our results identify a novel mechanism of interaction between neurons and glia that is important for the regulation of sleep. PMID:24637426

  1. Increased expression of the dopamine transporter leads to loss of dopamine neurons, oxidative stress and l-DOPA reversible motor deficits.

    PubMed

    Masoud, S T; Vecchio, L M; Bergeron, Y; Hossain, M M; Nguyen, L T; Bermejo, M K; Kile, B; Sotnikova, T D; Siesser, W B; Gainetdinov, R R; Wightman, R M; Caron, M G; Richardson, J R; Miller, G W; Ramsey, A J; Cyr, M; Salahpour, A

    2015-02-01

    The dopamine transporter is a key protein responsible for regulating dopamine homeostasis. Its function is to transport dopamine from the extracellular space into the presynaptic neuron. Studies have suggested that accumulation of dopamine in the cytosol can trigger oxidative stress and neurotoxicity. Previously, ectopic expression of the dopamine transporter was shown to cause damage in non-dopaminergic neurons due to their inability to handle cytosolic dopamine. However, it is unknown whether increasing dopamine transporter activity will be detrimental to dopamine neurons that are inherently capable of storing and degrading dopamine. To address this issue, we characterized transgenic mice that over-express the dopamine transporter selectively in dopamine neurons. We report that dopamine transporter over-expressing (DAT-tg) mice display spontaneous loss of midbrain dopamine neurons that is accompanied by increases in oxidative stress markers, 5-S-cysteinyl-dopamine and 5-S-cysteinyl-DOPAC. In addition, metabolite-to-dopamine ratios are increased and VMAT2 protein expression is decreased in the striatum of these animals. Furthermore, DAT-tg mice also show fine motor deficits on challenging beam traversal that are reversed with l-DOPA treatment. Collectively, our findings demonstrate that even in neurons that routinely handle dopamine, increased uptake of this neurotransmitter through the dopamine transporter results in oxidative damage, neuronal loss and l-DOPA reversible motor deficits. In addition, DAT over-expressing animals are highly sensitive to MPTP-induced neurotoxicity. The effects of increased dopamine uptake in these transgenic mice could shed light on the unique vulnerability of dopamine neurons in Parkinson's disease.

  2. Increased expression of the dopamine transporter leads to loss of dopamine neurons, oxidative stress and L-DOPA reversible motor deficits

    PubMed Central

    Masoud, ST; Vecchio, LM; Bergeron, Y; Hossain, MM; Nguyen, LT; Bermejo, MK; Kile, B; Sotnikova, TD; Siesser, WB; Gainetdinov, RR; Wightman, RM; Caron, MG; Richardson, JR; Miller, GW; Ramsey, AJ; Cyr, M; Salahpour, A

    2015-01-01

    The dopamine transporter is a key protein responsible for regulating dopamine homeostasis. Its function is to transport dopamine from the extracellular space into the presynaptic neuron. Studies have suggested that accumulation of dopamine in the cytosol can trigger oxidative stress and neurotoxicity. Previously, ectopic expression of the dopamine transporter was shown to cause damage in non-dopaminergic neurons due to their inability to handle cytosolic dopamine. However, it is unknown whether increasing dopamine transporter activity will be detrimental to dopamine neurons that are inherently capable of storing and degrading dopamine. To address this issue, we characterized transgenic mice that over-express the dopamine transporter selectively in dopamine neurons. We report that dopamine transporter over-expressing (DAT-tg) mice display spontaneous loss of midbrain dopamine neurons that is accompanied by increases in oxidative stress markers, 5-S-cysteinyl-dopamine and 5-S-cysteinyl-DOPAC. In addition, metabolite-to-dopamine ratios are increased and VMAT2 protein expression is decreased in the striatum of these animals. Furthermore, DAT-tg mice also show fine motor deficits on challenging beam traversal that are reversed with L-DOPA treatment. Collectively, our findings demonstrate that even in neurons that routinely handle dopamine, increased uptake of this neurotransmitter through the dopamine transporter results in oxidative damage, neuronal loss and LDOPA reversible motor deficits. In addition, DAT over-expressing animals are highly sensitive to MPTP-induced neurotoxicity. The effects of increased dopamine uptake in these transgenic mice could shed light on the unique vulnerability of dopamine neurons in Parkinson’s disease. PMID:25447236

  3. In vivo vulnerability of dopamine neurons to inhibition of energy metabolism.

    PubMed

    Zeevalk, G D; Manzino, L; Hoppe, J; Sonsalla, P

    1997-02-12

    In vitro studies indicate that mesencephalic dopamine neurons are more vulnerable than other neurons to impairment of energy metabolism. Such findings may have bearing on the loss of dopamine neurons in Parkinson's disease, in which mitochondrial deficiencies have been identified, but would only be relevant if the selective vulnerability were maintained in vivo. To examine this, rats were stereotaxically administered various concentrations of the succinate dehydrogenase inhibitor, malonate (0.25-4 mumol), either into the left substantia nigra or striatum. One week following injection, dopamine and gamma-aminobutyric acid (GABA) levels in the mesencephalon and striatum were measured. Intranigral injection of malonate caused nigral dopamine and GABA to be comparably reduced at all doses tested. The 50% dose level for malonate vs. dopamine and GABA loss was 0.39 and 0.42 mumol, respectively. Tyrosine hydroxylase immunocytochemistry of the midbrains of rats which received an intranigral injection of malonate showed normal staining with 0.25 mumol malonate, but almost complete loss of tyrosine hydroxylase positive nigral pars compacta cells with 1 mumol malonate. Intrastriatal injection of malonate produced a loss of both tyrosine hydroxylase activity and dopamine. In contrast to what was seen in substantia nigra, there was a greater loss of dopamine than GABA in striatal regions nearest the injection site. In striatal regions most distal to the injection site, and which received the lowest concentration of malonate due to diffusion, dopamine levels were significantly reduced with all doses of malonate (0.5-4 mumol), whereas GABA levels were unaffected. Intrastriatal coinfusion of succinate along with malonate completely prevented the loss of dopamine and GABA indicating that succinate dehydrogenase inhibition was the cause of toxicity. These findings indicate that dopamine terminals in the striatum of adult rats are selectively more vulnerable than are the GABA neurons

  4. L-DOPA Reverses the Increased Free Amino Acids Tissue Levels Induced by Dopamine Depletion and Rises GABA and Tyrosine in the Striatum.

    PubMed

    Solís, Oscar; García-Sanz, Patricia; Herranz, Antonio S; Asensio, María-José; Moratalla, Rosario

    2016-07-01

    Perturbations in the cerebral levels of various amino acids are associated with neurological disorders, and previous studies have suggested that such alterations have a role in the motor and non-motor symptoms of Parkinson's disease. However, the direct effects of chronic L-DOPA treatment, that produces dyskinesia, on neural tissue amino acid concentrations have not been explored in detail. To evaluate whether striatal amino acid concentrations are altered in peak dose dyskinesia, 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian mice were treated chronically with L-DOPA and tissue amino acid concentrations were assessed by HPLC analysis. These experiments revealed that neither 6-OHDA nor L-DOPA treatment are able to alter glutamate in the striatum. However, glutamine increases after 6-OHDA and returns back to normal levels with L-DOPA treatment, suggesting increased striatal glutamatergic transmission with lack of dopamine. In addition, glycine and taurine levels are increased following dopamine denervation and restored to normal levels by L-DOPA. Interestingly, dyskinetic animals showed increased levels of GABA and tyrosine, while aspartate striatal tissue levels are not altered. Overall, our results indicate that chronic L-DOPA treatment, besides normalizing the altered levels of some amino acids after 6-OHDA, robustly increases striatal GABA and tyrosine levels which may in turn contribute to the development of L-DOPA-induced dyskinesia.

  5. Neuroprotection by estradiol: a role of aromatase against spine synapse loss after blockade of GABA(A) receptors.

    PubMed

    Zhou, Lepu; Lehan, Nadine; Wehrenberg, Uwe; Disteldorf, Erik; von Lossow, Richard; Mares, Ute; Jarry, Hubertus; Rune, Gabriele M

    2007-01-01

    Estrogen has been suggested to be pro-epileptic by reducing GABA synthesis, resulting in increased spine density and a decreased threshold for seizures in the hippocampus, which, once they occur, are characterized by a dramatic spine loss in the affected brain areas. As considerable amounts of estradiol are synthesized in the hippocampus, in this study we focused on aromatase, the rate-limiting enzyme in estrogen synthesis in order to examine the role of locally synthesized estrogens in epilepsy. To this end, we first examined the effects of letrozole, a potent aromatase inhibitor, on GABA metabolism in single interneurons of hippocampal dispersion cultures. Letrozole downregulated estradiol release into the medium, as well as glutamate decarboxylase (GAD) expression and GABA synthesis, and decreased the number of GAD positive cells in the cultures. Next, we counted spine synapses and measured estradiol release of hippocampal slice cultures, in which GABA(A) receptors had been blocked by bicuculline, in order to mimic epileptic activity. Treatment of slice cultures with bicuculline resulted in a dramatic decrease in the number of spine synapses and in a significant suppression of estrogen synthesis. The decrease in synapse number in response to bicuculline was restored by combined application of estradiol and bicuculline. Surprisingly, estradiol alone had no effect on either spine synapse number or on GAD expression and GABA synthesis. "Rescue" of synapse number in "epileptic slices" by estradiol and maintenance of GABA metabolism by hippocampus-derived estradiol points to a neuroprotective role of aromatase in epilepsy. Re-filling of estradiol stores after their depletion due to overexcitation may therefore add to therapeutical strategies in epilepsy.

  6. Loss of functional GABA(A) receptors in the Alzheimer diseased brain.

    PubMed

    Limon, Agenor; Reyes-Ruiz, Jorge Mauricio; Miledi, Ricardo

    2012-06-19

    The cholinergic and glutamatergic neurotransmission systems are known to be severely disrupted in Alzheimer's disease (AD). GABAergic neurotransmission, in contrast, is generally thought to be well preserved. Evidence from animal models and human postmortem tissue suggest GABAergic remodeling in the AD brain. Nevertheless, there is no information on changes, if any, in the electrophysiological properties of human native GABA receptors as a consequence of AD. To gain such information, we have microtransplanted cell membranes, isolated from temporal cortices of control and AD brains, into Xenopus oocytes, and recorded the electrophysiological activity of the transplanted GABA receptors. We found an age-dependent reduction of GABA currents in the AD brain. This reduction was larger when the AD membranes were obtained from younger subjects. We also found that GABA currents from AD brains have a faster rate of desensitization than those from non-AD brains. Furthermore, GABA receptors from AD brains were slightly, but significantly, less sensitive to GABA than receptors from non-AD brains. The reduction of GABA currents in AD was associated with reductions of mRNA and protein of the principal GABA receptor subunits normally present in the temporal cortex. Pairwise analysis of the transcripts within control and AD groups and analyses of the proportion of GABA receptor subunits revealed down-regulation of α1 and γ2 subunits in AD. In contrast, the proportions of α2, β1, and γ1 transcripts were up-regulated in the AD brains. Our data support a functional remodeling of GABAergic neurotransmission in the human AD brain.

  7. Cortical regulation of dopamine depletion-induced dendritic spine loss in striatal medium spiny neurons.

    PubMed

    Neely, M D; Schmidt, D E; Deutch, A Y

    2007-10-26

    The proximate cause of Parkinson's disease is striatal dopamine depletion. Although no overt toxicity to striatal neurons has been reported in Parkinson's disease, one of the consequences of striatal dopamine loss is a decrease in the number of dendritic spines on striatal medium spiny neurons (MSNs). Dendrites of these neurons receive cortical glutamatergic inputs onto the dendritic spine head and dopaminergic inputs from the substantia nigra onto the spine neck. This synaptic arrangement suggests that dopamine gates corticostriatal glutamatergic drive onto spines. Using triple organotypic slice cultures composed of ventral mesencephalon, striatum, and cortex of the neonatal rat, we examined the role of the cortex in dopamine depletion-induced dendritic spine loss in MSNs. The striatal dopamine innervation was lesioned by treatment of the cultures with the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium (MPP+) or by removing the mesencephalon. Both MPP+ and mesencephalic ablation decreased MSN dendritic spine density. Analysis of spine morphology revealed that thin spines were preferentially lost after dopamine depletion. Removal of the cortex completely prevented dopamine depletion-induced spine loss. These data indicate that the dendritic remodeling of MSNs seen in parkinsonism occurs secondary to increases in corticostriatal glutamatergic drive, and suggest that modulation of cortical activity may be a useful therapeutic strategy in Parkinson's disease.

  8. Plasmalogen Augmentation Reverses Striatal Dopamine Loss in MPTP Mice

    PubMed Central

    Miville-Godbout, Edith; Bourque, Mélanie; Morissette, Marc; Al-Sweidi, Sara; Smith, Tara; Mochizuki, Asuka; Senanayake, Vijitha; Jayasinghe, Dushmanthi; Wang, Li; Goodenowe, Dayan; Di Paolo, Thérèse

    2016-01-01

    Plasmalogens are a class of glycerophospholipids shown to play critical roles in membrane structure and function. Decreased plasmalogens are reported in the brain and blood of Parkinson’s disease (PD) patients. The present study investigated the hypothesis that augmenting plasmalogens could protect striatal dopamine neurons that degenerate in response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment in mice, a PD model. First, in a pre-treatment experiment male mice were treated for 10 days with the docosahexaenoic acid (DHA)-plasmalogen precursor PPI-1011 (10, 50 and 200 mg/kg). On day 5 mice received MPTP and were killed on day 11. Next, in a post-treatment study, male mice were treated with MPTP and then received daily for 5 days PPI-1011 (5, 10 and 50 mg/kg). MPTP treatment reduced serum plasmalogen levels, striatal contents of dopamine (DA) and its metabolites, serotonin, DA transporter (DAT) and vesicular monoamine transporter 2 (VMAT2). Pre-treatment with PPI-1011 (10 and 50 mg/kg) prevented all MPTP-induced effects. Positive correlations were measured between striatal DA contents and serum plasmalogen levels as well as striatal DAT and VMAT2 specific binding. Post-treatment with PPI-1011 prevented all MPTP-induced effects at 50 mg/kg but not at lower doses. Positive correlations were measured between striatal DA contents and serum plasmalogen levels as well as striatal DAT and VMAT2 specific binding in the post-treatment experiment. PPI-1011 treatment (10 days at 5, 10 and 50 mg/kg) of intact mice left unchanged striatal biogenic amine contents. These data demonstrate that treatment with a plasmalogen precursor is capable of protecting striatal dopamine markers in an animal model of PD. PMID:26959819

  9. Aberrant reward processing in Parkinson's disease is associated with dopamine cell loss.

    PubMed

    Aarts, Esther; Helmich, Rick C; Janssen, Marcel J R; Oyen, Wim J G; Bloem, Bastiaan R; Cools, Roshan

    2012-02-15

    Dopamine has been implicated in reward-related impulsivity, but the exact relationship between dopamine, reward and impulsivity in humans remains unknown. We address this question in Parkinson's disease (PD), which is characterized by severe dopamine depletion. PD is associated primarily with motor and cognitive inflexibility, but can also be accompanied by reward-related impulsivity. This paradoxical symptom of PD has often been attributed to dopaminergic overstimulation by antiparkinson medication, which is necessary to relieve the motor and cognitive inflexibility. However, factors other than medication may also contribute to aberrant impact of reward. Here we assess whether cognitive inflexibility and aberrant reward impact in PD are two sides of the same coin, namely dopamine cell loss. To measure dopamine cell loss, we employed (123)I-FP-CIT Single Photon Emission Computed Tomography (SPECT) in 32 PD patients (10 never-medicated patients and 22 patients after withdrawal of all medication for >12h) and related the values to behavior on a rewarded task-switching paradigm. Dopamine cell loss was associated not only with cognitive inflexibility (under low reward), but also with aberrant impact of reward. These effects could not be attributed to medication use. Relative to controls (n=26), aberrant reward processing in PD was particularly expressed as reduced capacity to maintain (i.e., repeat) the current task-set under high reward. Our findings demonstrate that factors intrinsically related to PD may underlie the paradoxical symptoms of inflexibility and reward-related impulsivity in PD. The present results concur with observations that low baseline dopamine states predispose to drug and other addictions.

  10. Dopamine depletion of the prefrontal cortex induces dendritic spine loss: reversal by atypical antipsychotic drug treatment.

    PubMed

    Wang, Hui-Dong; Deutch, Ariel Y

    2008-05-01

    Dystrophic changes in dendrites of cortical neurons are present in several neuro-psychiatric disorders, including schizophrenia. The mechanisms that account for dendritic changes in the prefrontal cortex (PFC) in schizophrenia are unclear. Cognitive deficits in schizophrenia have been linked to compromised cortical dopamine function, and the density of the PFC dopamine innervation is decreased in schizophrenia. We determined if 6-hydroxydopamine lesions of the ventral tegmental area that disrupt the PFC dopamine innervation cause dystrophic changes in cortical neurons. Three weeks post-operatively we observed a marked decrease in basal dendritic length and spine density of layer V pyramidal cells in the prelimbic cortex; no change was seen in neurons of the motor cortex. We then examined rats in which the PFC dopamine innervation was lesioned and 3 weeks later were started on chronic treatment with an atypical (olanzapine) or typical (haloperidol) antipsychotic drug. Olanzapine but not haloperidol reversed lesion-induced changes in PFC pyramidal cell dendrites. These data suggest that dopamine regulates dendritic structure in PFC neurons. Moreover, the findings are consistent with a decrease in cortical dopaminergic tone contributing to the pathological changes in the cortex of schizophrenia, and suggest that the progressive cortical loss in schizophrenia may be slowed or reversed by treatment with atypical antipsychotic drugs.

  11. [The pharmacological differences between kynurenine- and korazol-induced seizures (the participation of GABA-B receptors and dopamine)].

    PubMed

    Lapin, I P

    1998-01-01

    In experiments of male SHR (nonbred) and C57B1/6 mice [correction of rats] bicucullin intensified corasole-induced convulsions but had no effect on kynurenine convulsions, removed the anticonvulsive effect of phenibut against kynurenine and did not affect the anticonvulsive effect of diazepam against corasole. Phenibut and baclofen reduced the anticonvulsive effect of diazepam against corasole and caffeine. Haloperidol increased kynurenine-induced convulsions and had no effect on those caused by corasole. Dopamine removed the effect of haloperidol. Haloperidol and 6-oxydopamine weakened the sedative effect of phenibut. Blockade of GAMAB-receptors and weakening of dopaminergic activity are important in the mechanisms of kynurenine convulsions, and blockage of GABAA-receptors unrelated to it is important in the mechanisms of corasole convulsions. A functional antagonism in anticonvulsive activity may exist between these receptors. Bicucullin may probably have an effect both on GABAA- and GABAB-receptors.

  12. Striatal Serotonin 2C receptors decrease nigrostriatal dopamine release by increasing GABA-A receptor tone in the substantia nigra

    PubMed Central

    Burke, M.V.; Nocjar, C.; Sonneborn, A.J.; McCreary, A.C.

    2017-01-01

    Drugs acting at the serotonin-2C (5-HT2C) receptor subtype have shown promise as therapeutics in multiple syndromes including obesity, depression, and Parkinson’s disease. While it is established that 5-HT2C receptor stimulation inhibits DA release, the neural circuits and the localization of the relevant 5-HT2C receptors remain unknown. The present study used dual-probe in vivo microdialysis to investigate the relative contributions of 5-HT2C receptors localized in the rat substantia nigra (SN) and caudate-putamen (CP) in the control of nigrostriatal DA release. Systemic administration (3.0 mg/kg) of the 5-HT2C receptor selective agonist Ro 60-0175 [(α S )-6-Chloro-5-fluoro-α-methyl-1 H-indole-1-ethanamine fumarate] decreased, whereas intrastriatal infusions of the selective 5-HT2C antagonist SB 242084 [6-Chloro-2,3-dihydro-5-methyl-N-[6-[(2-methyl-3-pyridinyl)oxy]-3-pyridinyl]-1 H-indole-1-carboxyamide; 1.0 µM] increased, basal DA in the CP. Depending on the site within the SN pars reticulata (SNpr), infusions of SB 242084 had more modest but significant effects. Moreover, infusions of the GABA-A receptor agonist muscimol (10 µM) into the SNpr completely reversed the increases in striatal DA release produced by intrastriatal infusions of SB 242084. These findings suggest a role for 5-HT2C receptors regulating striatal DA release that is highly localized. 5-HT2C receptors localized in the striatum may represent a primary site of action that is mediated by actions on GABAergic activity in the SN. PMID:25073477

  13. Loss of dopamine D2 receptors increases parvalbumin-positive interneurons in the anterior cingulate cortex.

    PubMed

    Graham, Devon L; Durai, Heather H; Garden, Jamie D; Cohen, Evan L; Echevarria, Franklin D; Stanwood, Gregg D

    2015-02-18

    Disruption to dopamine homeostasis during brain development has been implicated in a variety of neuropsychiatric disorders, including depression and schizophrenia. Inappropriate expression or activity of GABAergic interneurons are common features of many of these disorders. We discovered a persistent upregulation of GAD67+ and parvalbumin+ neurons within the anterior cingulate cortex of dopamine D2 receptor knockout mice, while other GABAergic interneuron markers were unaffected. Interneuron distribution and number were not altered in the striatum or in the dopamine-poor somatosensory cortex. The changes were already present by postnatal day 14, indicating a developmental etiology. D2eGFP BAC transgenic mice demonstrated the presence of D2 receptor expression within a subset of parvalbumin-expressing cortical interneurons, suggesting the possibility of a direct cellular mechanism through which D2 receptor stimulation regulates interneuron differentiation or survival. D2 receptor knockout mice also exhibited decreased depressive-like behavior compared with wild-type controls in the tail suspension test. These data indicate that dopamine signaling modulates interneuron number and emotional behavior and that developmental D2 receptor loss or blockade could reveal a potential mechanism for the prodromal basis of neuropsychiatric disorders.

  14. Loss of Dopamine D2 Receptors Increases Parvalbumin-Positive Interneurons in the Anterior Cingulate Cortex

    PubMed Central

    2015-01-01

    Disruption to dopamine homeostasis during brain development has been implicated in a variety of neuropsychiatric disorders, including depression and schizophrenia. Inappropriate expression or activity of GABAergic interneurons are common features of many of these disorders. We discovered a persistent upregulation of GAD67+ and parvalbumin+ neurons within the anterior cingulate cortex of dopamine D2 receptor knockout mice, while other GABAergic interneuron markers were unaffected. Interneuron distribution and number were not altered in the striatum or in the dopamine-poor somatosensory cortex. The changes were already present by postnatal day 14, indicating a developmental etiology. D2eGFP BAC transgenic mice demonstrated the presence of D2 receptor expression within a subset of parvalbumin-expressing cortical interneurons, suggesting the possibility of a direct cellular mechanism through which D2 receptor stimulation regulates interneuron differentiation or survival. D2 receptor knockout mice also exhibited decreased depressive-like behavior compared with wild-type controls in the tail suspension test. These data indicate that dopamine signaling modulates interneuron number and emotional behavior and that developmental D2 receptor loss or blockade could reveal a potential mechanism for the prodromal basis of neuropsychiatric disorders. PMID:25393953

  15. Role of dopamine and GABA in the control of motor activity elicited from the rat nucleus accumbens.

    PubMed

    Wong, L S; Eshel, G; Dreher, J; Ong, J; Jackson, D M

    1991-04-01

    The application of 1.2 and 12.0 micrograms/side of the GABAA receptor agonist 3-aminopropane sulphonic acid bilaterally into the nucleus accumbens (Acb) of rats nonsignificantly depressed locomotor activity as assessed in automated Animex activity cages, while the highest dose (60 micrograms/side) significantly stimulated activity. The GABAA receptor antagonists picrotoxinin (0.0625 and 0.125 micrograms/saide) and bicuculline (0.895 micrograms/side) produced forward locomotion around the cage accompanied by a number of other behaviours. The GABAB agonist baclofen (0.023 and 0.092 micrograms/side) induced a short-lasting (18 min) locomotor depression. None of the GABAB antagonists tested (2-hydroxysaclofen 2.6 micrograms/side, two novel beta-(benzo[b]furan) analogues of baclofen 9G or 9H each 6.8 micrograms/side, 4-aminobutylphosphonic acid 1.32 micrograms/side and phaclofen 0.535 and 2 micrograms/side) significantly affected locomotor activity. In rats pretreated with reserpine and alpha-methyl-p-tyrosine, picrotoxinin (0.0625 and 0.125 micrograms/side) did not significantly alter locomotor activity. Furthermore, when picrotoxinin (0.0625 micrograms/side) was combined with either the selective dopamine (DA) D1 agonist SKF38393 or the selective D2 agonist quinpirole, no significant alteration in locomotor function occurred. When SKF38393 and quinpirole were coadministered, significant stimulation occurred which was further enhanced by the addition of picrotoxinin. It is concluded that GABAA receptors, together with D1 and D2 receptors, play a major role in modulating the control of motor function by the Acb of rats.

  16. Serotonin and Dopamine Play Complementary Roles in Gambling to Recover Losses

    PubMed Central

    Campbell-Meiklejohn, Daniel; Wakeley, Judi; Herbert, Vanessa; Cook, Jennifer; Scollo, Paolo; Ray, Manaan Kar; Selvaraj, Sudhakar; Passingham, Richard E; Cowen, Phillip; Rogers, Robert D

    2011-01-01

    Continued gambling to recover losses—‘loss chasing'—is a prominent feature of social and pathological gambling. However, little is known about the neuromodulators that influence this behavior. In three separate experiments, we investigated the role of serotonin activity, D2/D3 receptor activity, and beta-adrenoceptor activity on the loss chasing of age and IQ-matched healthy adults randomized to treatment or an appropriate control/placebo. In Experiment 1, participants consumed amino-acid drinks that did or did not contain the serotonin precursor, tryptophan. In Experiment 2, participants received a single 176 μg dose of the D2/D3 receptor agonist, pramipexole, or placebo. In Experiment 3, participants received a single 80 mg dose of the beta-adrenoceptor blocker, propranolol, or placebo. Following treatment, participants completed a computerized loss-chasing game. Mood and heart rate were measured at baseline and following treatment. Tryptophan depletion significantly reduced the number of decisions made to chase losses, and the number of consecutive decisions to chase, in the absence of marked changes in mood. By contrast, pramipexole significantly increased the value of losses chased and diminished the value of losses surrendered. Propranolol markedly reduced heart rate, but produced no significant changes in loss-chasing behavior. Loss chasing can be thought of as an aversively motivated escape behavior controlled, in part, by the marginal value of continued gambling relative to the value of already accumulated losses. Serotonin and dopamine appear to play dissociable roles in the tendency of individuals to gamble to recover, or to seek to ‘escape' from, previous losses. Serotonergic activity seems to promote the availability of loss chasing as a behavioral option, whereas D2/D3 receptor activity produces complex changes in the value of losses judged worth chasing. Sympathetic arousal, at least as mediated by beta-adrenoceptors, does not play a

  17. Altered gamma oscillations during pregnancy through loss of δ subunit-containing GABA(A) receptors on parvalbumin interneurons.

    PubMed

    Ferando, Isabella; Mody, Istvan

    2013-01-01

    Gamma (γ) oscillations (30-120 Hz), an emergent property of neuronal networks, correlate with memory, cognition and encoding. In the hippocampal CA3 region, locally generated γ oscillations emerge through feedback between inhibitory parvalbumin-positive basket cells (PV+BCs) and the principal (pyramidal) cells. PV+BCs express δ-subunit-containing GABA(A)Rs (δ-GABA(A)Rs) and NMDA receptors (NMDA-Rs) that balance the frequency of γ oscillations. Neuroactive steroids (NS), such as the progesterone-derived (3α,5α)-3-hydroxy-pregnan-20-one (allopregnanolone; ALLO), modulate the expression of δ-GABA(A)Rs and the tonic conductance they mediate. Pregnancy produces large increases in ALLO and brain-region-specific homeostatic changes in δ-GABA(A)Rs expression. Here we show that in CA3, where most PV+ interneurons (INs) express δ-GABA(A)Rs, expression of δ-GABA(A)Rs on INs diminishes during pregnancy, but reverts to control levels within 48 h postpartum. These anatomical findings were corroborated by a pregnancy-related increase in the frequency of kainate-induced CA3 γ oscillations in vitro that could be countered by the NMDA-R antagonists D-AP5 and PPDA. Mimicking the typical hormonal conditions during pregnancy by supplementing 100 nM ALLO lowered the γ frequencies to levels found in virgin or postpartum mice. Our findings show that states of altered NS levels (e.g., pregnancy) may provoke perturbations in γ oscillatory activity through direct effects on the GABAergic system, and underscore the importance of δ-GABA(A)Rs homeostatic plasticity in maintaining constant network output despite large hormonal changes. Inaccurate coupling of NS levels to δ-GABA(A)R expression may facilitate abnormal neurological and psychiatric conditions such as epilepsy, post-partum depression, and post-partum psychosis, thus providing insights into potential new treatments.

  18. Early loss of interneurons and delayed subunit-specific changes in GABA(A)-receptor expression in a mouse model of mesial temporal lobe epilepsy.

    PubMed

    Bouilleret, V; Loup, F; Kiener, T; Marescaux, C; Fritschy, J M

    2000-01-01

    Unilateral injection of kainic acid (KA) into the dorsal hippocampus of adult mice induces spontaneous recurrent partial seizures and replicates histopathological changes observed in human mesial temporal lobe epilepsy (MTLE) (Bouilleret V et al., Neuroscience 1999; 89:717-729). Alterations in pre- and postsynaptic components of GABAergic neurotransmission were investigated immunohistochemically at different time points (1-120 days) in this mouse model of MTLE. Markers of GABAergic interneurons (parvalbumin, calbindin-D28k, and calretinin), the type-1 GABA transporter (GAT1), and major GABA(A)-receptor subunits expressed in the hippocampal formation were analyzed. Acutely, KA injection produced a profound loss of hilar cells but only limited damage to CA1 and CA3 pyramidal cells. In addition, parvalbumin and calbindin-D28k staining of interneurons disappeared irreversibly in CA1 and dentate gyrus (DG), whereas calretinin staining was spared. The prominent GABA(A)-receptor alpha1 subunit staining of interneurons also disappeared after KA treatment, suggesting acute degeneration of these cells. Likewise, GAT1 immunoreactivity revealed degenerating terminals at 24 h post-KA in CA1 and DC and subsided almost completely thereafter. Loss of CA1 and, to a lesser extent, CA3 neurons became evident at 7-15 days post-KA. It was more accentuated after 1 month, accompanied by a corresponding reduction of GABA(A)-receptor staining. In contrast, DC granule cells were markedly enlarged and dispersed in the molecular layer and exhibited a prominent increase in GABA(A)-receptor subunit staining. After 4 months, the dorsal CA1 area was lost almost entirely, CA3 was reduced, and the DG represented most of the remaining dorsal hippocampal formation. No significant morphological alterations were detected contralaterally. These results suggest that loss of hilar cells and GABAergic neurons contributes to epileptogenesis in this model of MTLE. In contrast, long-term degeneration of

  19. Adult Conditional Knockout of PGC-1α Leads to Loss of Dopamine Neurons

    PubMed Central

    Jiang, Haisong; Zhang, Shuran; Karuppagounder, Senthilkumar; Xu, Jinchong; Pletnikova, Olga; Troncoso, Juan C.; Pirooznia, Shelia; Andrabi, Shaida A.

    2016-01-01

    Parkinson’s disease (PD) is a chronic progressive neurodegenerative disorder. Recent studies have implicated a role for peroxisome proliferator-activated receptor γ coactivator protein-1α (PGC-1α) in PD and in animal or cellular models of PD. The role of PGC-1α in the function and survival of substantia nigra pars compacta (SNpc) dopamine neurons is not clear. Here we find that there are four different PGC-1α isoforms expressed in SH-SY5Y cells, and these four isoforms are expressed across subregions of mouse brain. Adult conditional PGC-1α knock-out mice show a significant loss of dopaminergic neurons that is accompanied by a reduction of dopamine in the striatum. In human PD postmortem tissue from the SNpc, there is a reduction of PGC-1α isoforms and mitochondria markers. Our findings suggest that all four isoforms of PGC-1α are required for the proper expression of mitochondrial proteins in SNpc DA neurons and that PGC-1α is essential for SNpc DA neuronal survival, possibly through the maintenance of mitochondrial function. PMID:27622213

  20. Living without DAT: Loss and compensation of the dopamine transporter gene in sauropsids (birds and reptiles)

    PubMed Central

    Lovell, P. V.; Kasimi, B.; Carleton, J.; Velho, T. A.; Mello, C. V.

    2015-01-01

    The dopamine transporter (DAT) is a major regulator of synaptic dopamine (DA) availability. It plays key roles in motor control and motor learning, memory formation, and reward-seeking behavior, is a major target of cocaine and methamphetamines, and has been assumed to be conserved among vertebrates. We have found, however, that birds, crocodiles, and lizards lack the DAT gene. We also found that the unprecedented loss of this important gene is compensated for by the expression of the noradrenaline transporter (NAT) gene, and not the serotonin transporter genes, in dopaminergic cells, which explains the peculiar pharmacology of the DA reuptake activity previously noted in bird striatum. This unexpected pattern contrasts with that of ancestral vertebrates (e.g. fish) and mammals, where the NAT gene is selectively expressed in noradrenergic cells. DA circuits in birds/reptiles and mammals thus operate with an analogous reuptake mechanism exerted by different genes, bringing new insights into gene expression regulation in dopaminergic cells and the evolution of a key molecular player in reward and addiction pathways. PMID:26364979

  1. [GABA-ergic system in defense against excitatory kynurenines].

    PubMed

    Lapin, I P

    1997-01-01

    Protection against the excitatory action of L-kynurenine and quinolinic acid in mice is related to the activation of GABA-B and dopamine receptors of the brain and to much lesser degree to the activation of GABA-A receptors. It is hardly believable that the anticonvulsant effect of phenibut (beta-phenyl-GABA), baclofen (CL-phenibut), sodium hydroxybutyrate and taurine against seizures induced by these two kynurenines is determined by alterations in metabolism of GABA.

  2. Loss of NMDA receptors in dopamine neurons leads to the development of affective disorder-like symptoms in mice

    PubMed Central

    Jastrzębska, Kamila; Walczak, Magdalena; Cieślak, Przemysław Eligiusz; Szumiec, Łukasz; Turbasa, Mateusz; Engblom, David; Błasiak, Tomasz; Parkitna, Jan Rodriguez

    2016-01-01

    The role of changes in dopamine neuronal activity during the development of symptoms in affective disorders remains controversial. Here, we show that inactivation of NMDA receptors on dopaminergic neurons in adult mice led to the development of affective disorder-like symptoms. The loss of NMDA receptors altered activity and caused complete NMDA-insensitivity in dopamine-like neurons. Mutant mice exhibited increased immobility in the forced swim test and a decrease in social interactions. Mutation also led to reduced saccharin intake, however the preference of sweet taste was not significantly decreased. Additionally, we found that while mutant mice were slower to learn instrumental tasks, they were able to reach the same performance levels, had normal sensitivity to feedback and showed similar motivation to exert effort as control animals. Taken together these results show that inducing the loss of NMDA receptor-dependent activity in dopamine neurons is associated with development of affective disorder-like symptoms. PMID:27853270

  3. Loss of dopamine transporters in methamphetamine abusers recovers with protracted abstinence.

    PubMed

    Volkow, N D; Chang, L; Wang, G J; Fowler, J S; Franceschi, D; Sedler, M; Gatley, S J; Miller, E; Hitzemann, R; Ding, Y S; Logan, J

    2001-12-01

    Methamphetamine is a popular drug of abuse that is neurotoxic to dopamine (DA) terminals when administered to laboratory animals. Studies in methamphetamine abusers have also documented significant loss of DA transporters (used as markers of the DA terminal) that are associated with slower motor function and decreased memory. The extent to which the loss of DA transporters predisposes methamphetamine abusers to neurodegenerative disorders such as Parkinsonism is unclear and may depend in part on the degree of recovery. Here we assessed the effects of protracted abstinence on the loss of DA transporters in striatum, in methamphetamine abusers using positron emission tomography and [(11)C]d-threo-methylphenidate (DA transporter radioligand). Brain DA transporters in five methamphetamine abusers evaluated during short abstinence (<6 months) and then retested during protracted abstinence (12-17 months) showed significant increases with protracted abstinence (caudate, +19%; putamen, +16%). Although performance in some of the tests for which we observed an association with DA transporters showed some improvement, this effect was not significant. The DA transporter increases with abstinence could indicate that methamphetamine-induced DA transporter loss reflects temporary adaptive changes (i.e., downregulation), that the loss reflects DA terminal damage but that terminals can recover, or that remaining viable terminals increase synaptic arborization. Because neuropsychological tests did not improve to the same extent, this suggests that the increase of the DA transporters was not sufficient for complete function recovery. These findings have treatment implications because they suggest that protracted abstinence may reverse some of methamphetamine-induced alterations in brain DA terminals.

  4. Reversal by [D-Ala2,D-Leu5]enkephalin of the dopamine transporter loss caused by methamphetamine.

    PubMed

    Tsao, L I; Cadet, J L; Su, T P

    1999-05-21

    A single administration of 40 mg/kg (i.p.) of methamphetamine caused a loss of dopamine transporter in the striatum of albino Swiss (CD-1) mouse for at least 3 weeks. The administration of a single dose of [D-Ala2,D-Leu5]enkephalin (DADLE) (18 mg/kg, i.p.), given at day 14 after the administration of methamphetamine, caused a significant, transient restoration of dopamine transporter level in the striatum. These results suggest that delta-opioid peptide DADLE is able to reverse the neuronal damage caused by methamphetamine.

  5. Loss of Mitochondrial Fission Depletes Axonal Mitochondria in Midbrain Dopamine Neurons

    PubMed Central

    Berthet, Amandine; Margolis, Elyssa B.; Zhang, Jue; Hsieh, Ivy; Zhang, Jiasheng; Hnasko, Thomas S.; Ahmad, Jawad; Edwards, Robert H.; Sesaki, Hiromi; Huang, Eric J.

    2014-01-01

    Disruptions in mitochondrial dynamics may contribute to the selective degeneration of dopamine (DA) neurons in Parkinson's disease (PD). However, little is known about the normal functions of mitochondrial dynamics in these neurons, especially in axons where degeneration begins, and this makes it difficult to understand the disease process. To study one aspect of mitochondrial dynamics—mitochondrial fission—in mouse DA neurons, we deleted the central fission protein dynamin-related protein 1 (Drp1). Drp1 loss rapidly eliminates the DA terminals in the caudate–putamen and causes cell bodies in the midbrain to degenerate and lose α-synuclein. Without Drp1, mitochondrial mass dramatically decreases, especially in axons, where the mitochondrial movement becomes uncoordinated. However, in the ventral tegmental area (VTA), a subset of midbrain DA neurons characterized by small hyperpolarization-activated cation currents (Ih) is spared, despite near complete loss of their axonal mitochondria. Drp1 is thus critical for targeting mitochondria to the nerve terminal, and a disruption in mitochondrial fission can contribute to the preferential death of nigrostriatal DA neurons. PMID:25339743

  6. Loss of mitochondrial fission depletes axonal mitochondria in midbrain dopamine neurons.

    PubMed

    Berthet, Amandine; Margolis, Elyssa B; Zhang, Jue; Hsieh, Ivy; Zhang, Jiasheng; Hnasko, Thomas S; Ahmad, Jawad; Edwards, Robert H; Sesaki, Hiromi; Huang, Eric J; Nakamura, Ken

    2014-10-22

    Disruptions in mitochondrial dynamics may contribute to the selective degeneration of dopamine (DA) neurons in Parkinson's disease (PD). However, little is known about the normal functions of mitochondrial dynamics in these neurons, especially in axons where degeneration begins, and this makes it difficult to understand the disease process. To study one aspect of mitochondrial dynamics-mitochondrial fission-in mouse DA neurons, we deleted the central fission protein dynamin-related protein 1 (Drp1). Drp1 loss rapidly eliminates the DA terminals in the caudate-putamen and causes cell bodies in the midbrain to degenerate and lose α-synuclein. Without Drp1, mitochondrial mass dramatically decreases, especially in axons, where the mitochondrial movement becomes uncoordinated. However, in the ventral tegmental area (VTA), a subset of midbrain DA neurons characterized by small hyperpolarization-activated cation currents (Ih) is spared, despite near complete loss of their axonal mitochondria. Drp1 is thus critical for targeting mitochondria to the nerve terminal, and a disruption in mitochondrial fission can contribute to the preferential death of nigrostriatal DA neurons.

  7. Levels of glutamate, aspartate, GABA, and taurine in different regions of the cerebellum after x-irradiation-induced neuronal loss

    SciTech Connect

    Rea, M.A.; McBride, W.J.; Rohde, B.H.

    1981-01-01

    The levels of glutamate (Glu), aspartate (Asp), gamma-amino-n-butyric acid (GABA), and taurine (Tau) were determined in the cortex, molecular layer, and deep nuclei of cerebella of adult rats exposed to X-irradiation at 12-15 days following birth (to prevent the acquisition of late-forming granule cells; 12-15x group) and 8-15 days following birth (to prevent the acquisition of granule and stellate cells; 8-15x group). Also, the levels of the four amino acids were measured in the crude synaptosomal fraction (P2) isolated from the whole cerebella of the control, 12-15x, and 8-15x groups. The level of Glu was significantly decreased by (1) 6-20% in the cerebellar cortex; (2) 15-20% in the molecular layer; and (3) 25-50% in the P2 fraction of the X-irradiated groups relative to control values. The content of Glu in the deep nuclei was not changed by X-irradiation treatment. Regional levels of Asp were unchanged by X-irradiation, while its level in P2 decreased by 15-30% after treatment. The levels of GABA and Tau in the molecular layer, deep nuclei, or P2 were not changed in the experimental groups. However, there was a 15% increase in the levels of GABA and Tau in the cerebellar cortex of the 8-15x group relative to control values. The data support the proposed role of glutamate as the excitatory transmitter released from the cerebellar granule cells but are inconclusive regarding a transmitter role for either Tau or GABA from cerebellar stellate cells.

  8. Levels of glutamate, aspartate, GABA, and taurine in different regions of the cerebellum after x-irradiation-induced neuronal loss

    SciTech Connect

    Rea, M.A.; McBride, W.J.; Rohde, B.H.

    1981-01-01

    The levels of glutamate (Glu), aspartate (Asp), gamma-amino-n-butyric acid (GABA), and taurine (Tau) were determined in the cortex, molecular layer, and deep nuclei of cerebella of adult rats exposed to x-irradiation at 12 to 15 days following birth (to prevent the acquisition of late-forming granule cells; 12 to 15x group) and 8 to 15 days following birth (to prevent the acquisition of granule and stellate cells; 8 to 15x group). Also, the levels of the four amino acids were measured in the crude synaptosomal fraction (P2) isolated from the whole cerebella of the control, 12 to 15x, and 8 to 15x groups. The level of Glu was significantly decreased by (1) 6 to 20% in the cerebellar cortex; (2) 15 to 20% in the molecular layer; and (3) 25 to 50% in the P2 fraction of the x-irradiated groups relative to control values. The content of Glu in the deep nuclei was not changed by x-irradiation treatment. Regional levels of Asp were unchanged by x-irradiation, while its level in P2 decreased by 15 to 30% after treatment. The levels of GABA and Tau in the molecular layer, deep nuclei, or P2 were not changed in the experimental groups. However, there was a 15% increase in the levels of GABA and Tau in the cerebellar cortex of the 8 to 15x group relative to control values. The data support the proposed role of glutamate as the excitatory transmitter released from the cerebellar granule cells but are inconclusive regarding a transmitter role for either Tau or GBA from cerebellar stellate cells.

  9. Dopamine is differentially involved in the locomotor hyperactivity produced by manipulations of opioid, GABA and glutamate receptors in the median raphe nucleus.

    PubMed

    Shim, Insop; Stratford, Thomas R; Wirtshafter, David

    2014-03-15

    The median raphe nucleus (MR) has been shown to exert a powerful influence on behavioral arousal and marked locomotor hyperactivity can be produced by intra-MR injections of a variety of drugs including GABAA and GABAB agonists, excitatory amino acid antagonists, and μ- and δ-opioid agonists. Other studies have indicated that the MR exerts an inhibitory influence on ascending dopamine systems, suggesting that MR induced alterations in activity may be mediated through changes in dopaminergic transmission. In the present study, we explored this possibility by examining whether systemic administration of the preferential D2 dopamine antagonist haloperidol is able to antagonize the hyperactivity produced by intra-MR injections of various drugs. We found that haloperidol completely blocked the locomotor response to intra-MR injections of the μ-opioid receptor agonist DAMGO and the δ-opioid receptor agonist DPDPE. In marked contrast, at doses which abolished the locomotor response to systemic amphetamine, haloperidol had no effect on the hyperactivity induced by intra-MR injections of GABAA agonist muscimol, the GABAB agonist baclofen, or the kainate/quisqualate antagonist pBB-PZDA, even though it suppressed baseline activity in these same animals. These results indicate that there must be at least two mechanisms capable of influencing behavioral arousal within the MR region, one of which is dependent on D2 dopamine receptors and the other is not.

  10. Loss of Mecp2 in substantia nigra dopamine neurons compromises the nigrostriatal pathway

    PubMed Central

    Gantz, Stephanie C.; Ford, Christopher P.; Neve, Kim A.; Williams, John T.

    2011-01-01

    Mutations in the methyl-CpG-binding-protein 2 (MeCP2) result in Rett Syndrome (RTT), an X-linked disorder that disrupts neurodevelopment. Girls with RTT exhibit motor deficits similar to Parkinson’s disease, suggesting defects in the nigrostriatal pathway. This study examined age-dependent changes in dopamine neurons of the substantia nigra (SN) from wild type, pre-symptomatic, and symptomatic Mecp2+/− mice. Mecp2+ neurons in the SN in Mecp2+/− mice were indistinguishable in morphology, resting conductance, and dopamine current density from neurons in wild type mice. However, the capacitance, total dendritic length, and resting conductance of Mecp2− neurons were less than that of Mecp2+ neurons as early as four weeks after birth, prior to overt symptoms. These differences were maintained throughout life. In symptomatic Mecp2+/− mice, the current induced by activation of D2 dopamine autoreceptors was significantly less in Mecp2− neurons than Mecp2+ neurons, although D2 receptor density was unaltered in Mecp2+/− mice. Electrochemical measurements revealed that significantly less dopamine was released after stimulation of striatum in adult Mecp2+/− mice compared to wild type. The decrease in size and function of Mecp2− neurons observed in adult Mecp2+/− mice was recapitulated in dopamine neurons from symptomatic Mecp2−/y males. These results show that mutation in Mecp2 results in cell-autonomous defects in the SN early in life and throughout adulthood. Ultimately, dysfunction in terminal dopamine release and D2 autoreceptor dependent currents in dopamine neurons from symptomatic females support the idea that decreased dopamine transmission due to heterogeneous Mecp2 expression contributes to the Parkinsonian features of RTT in Mecp2+/− mice. PMID:21880923

  11. Loss of dopamine disrupts circadian rhythms in a mouse model of Parkinson's disease.

    PubMed

    Fifel, Karim; Cooper, Howard M

    2014-11-01

    Although a wide range of physiological functions regulated by dopamine (DA) display circadian variations, the role of DA in the generation and/or modulation of these rhythms is unknown. In Parkinson's disease (PD) patients, in addition to the classical motor symptoms, disturbances of the pattern of daily rest/wake cycles are common non-motor symptoms. We investigated daily and circadian rhythms of rest/activity behaviors in a transgenic MitoPark mouse model with selective inactivation of mitochondrial transcription factor A (Tfam) resulting in a slow and progressive degeneration of DA neurons in midbrain structures. Correlated with this, MitoPark mice show a gradual reduction in locomotor activity beginning at about 20weeks of age. In a light-dark cycle, MitoPark mice exhibit a daily pattern of rest/activity rhythms that shows an age-dependent decline in both the amplitude and the stability of the rhythm, coupled with an increased fragmentation of day/night activities. When the circadian system is challenged by exposure to constant darkness or constant light conditions, control littermates retain a robust free-running circadian locomotor rhythm, whereas in MitoPark mice, locomotor rhythms are severely disturbed or completely abolished. Re-exposure to a light/dark cycle completely restores daily locomotor rhythms. MitoPark mice and control littermates express similar masking behaviors under a 1h light/1h dark regime, suggesting that the maintenance of a daily pattern of rest/activity in arrhythmic MitoPark mice can be attributed to the acute inhibitory and stimulatory effects of light and darkness. These results imply that, in addition to the classical motor abnormalities observed in PD, the loss of the midbrain DA neurons leads to impairments of the circadian control of rest/activity rhythms.

  12. Absence of age-related dopamine transporter loss in current cocaine abusers

    SciTech Connect

    Wang, G.J.; Volkow, N.D.; Fischman, M.

    1997-05-01

    The brain dopamine (DA) system appears to play a crucial role in the reinforcing properties of cocaine. Using PET we had previously shown significant decreases in DA D2 receptors but no changes in DA transporters (DAT) in detoxified cocaine abusers (>1 month after last cocaine use). This study evaluates DAT availability in current cocaine abusers (15 male and 5 female; age = 36.2{+-}5.3 years old) using PET and [C-11]cocaine, as a DAT ligand, and compares it to that in 18 male and 2 female age matched normal controls. Cocaine abusers had a history of abusing 4.2{+-}2.8 gm /week of cocaine for an average of 11.0{+-}4.9 years and their last use of cocaine was 5.4{+-}8 days prior to PET study. DAT availability was obtained using the ratio of the distribution volume in the region of interest (caudate, pulamen) to that in cerebellum which is a function of Bmax./Kd.+1. DAT availability in cocaine abusers did not differ to that in normals (N) (C= 1.78{+-}0.14, N= 1.77{+-}0.13). In addition, there were no differences between the groups in the distribution volume or the Kl (plasma to brain transfer constant) measures for [C-11]cocaine. However, in the normals but not in the abusers striatal DAT availability decreased with age (C: r = -0.07, p = 0.76; N: r = -0.55, p < 0.01). Though this study fails to show group differences in DAT availability between normals and current cocaine abusers it indicates a blunting of the age-related decline in DAT availability in the cocaine abusers. Future studies in older cocaine abusers at different time after detoxification arc required in order to assess if cocaine slows the loss of DAT with age or whether these changes reflect compensation to increased DAT blockade and recover with detoxification.

  13. Cortical regulation of striatal medium spiny neuron dendritic remodeling in parkinsonism: modulation of glutamate release reverses dopamine depletion-induced dendritic spine loss.

    PubMed

    Garcia, Bonnie G; Neely, M Diana; Deutch, Ariel Y

    2010-10-01

    Striatal medium spiny neurons (MSNs) receive glutamatergic afferents from the cerebral cortex and dopaminergic inputs from the substantia nigra (SN). Striatal dopamine loss decreases the number of MSN dendritic spines. This loss of spines has been suggested to reflect the removal of tonic dopamine inhibitory control over corticostriatal glutamatergic drive, with increased glutamate release culminating in MSN spine loss. We tested this hypothesis in two ways. We first determined in vivo if decortication reverses or prevents dopamine depletion-induced spine loss by placing motor cortex lesions 4 weeks after, or at the time of, 6-hydroxydopamine lesions of the SN. Animals were sacrificed 4 weeks after cortical lesions. Motor cortex lesions significantly reversed the loss of MSN spines elicited by dopamine denervation; a similar effect was observed in the prevention experiment. We then determined if modulating glutamate release in organotypic cocultures prevented spine loss. Treatment of the cultures with the mGluR2/3 agonist LY379268 to suppress corticostriatal glutamate release completely blocked spine loss in dopamine-denervated cultures. These studies provide the first evidence to show that MSN spine loss associated with parkinsonism can be reversed and point to suppression of corticostriatal glutamate release as a means of slowing progression in Parkinson's disease.

  14. Relationships among rat ultrasonic vocalizations, behavioral measures of striatal dopamine loss, and striatal tyrosine hydroxylase immunoreactivity at acute and chronic time points following unilateral 6-hydroxydopamine-induced dopamine depletion.

    PubMed

    Grant, Laura M; Barnett, David G; Doll, Emerald J; Leverson, Glen; Ciucci, Michelle

    2015-09-15

    Voice deficits in Parkinson disease (PD) emerge early in the disease process, but do not improve with standard treatments targeting dopamine. Experimental work in the rat shows that severe and chronic unilateral nigrostriatal dopamine depletion with 6-OHDA results in decreased intensity, bandwidth, and complexity of ultrasonic vocalizations. However, it is unclear if mild/acute dopamine depletion, paralleling earlier stages of PD, results in vocalization deficits, or to what degree vocalization parameters are correlated with other dopamine-dependent indicators of lesion severity or percent of tyrosine hydroxylase (%TH) loss. Here, we assayed ultrasonic vocalizations, forelimb asymmetry, and apomorphine rotations in rats with a range of unilateral dopamine loss resulting from 6-OHDA or vehicle control infusions to the medial forebrain bundle at acute (72 h) and chronic (4 weeks) time points post-infusion. The %TH loss was evaluated at 4 weeks. At 72 h, forelimb asymmetry and %TH loss were significantly correlated, while at 4 weeks, all measures of lesion severity were significantly correlated with each other. Call complexity was significantly correlated with all measures of lesion severity at 72 h but only with %TH loss at 4 weeks. Bandwidth was correlated with forelimb asymmetry at both time points. Duration was significantly correlated with all dopamine depletion measures at 4 weeks. Notably, not all parameters were affected universally or equally across time. These results suggest that vocalization deficits may be a sensitive index of acute and mild catecholamine loss and further underscores the need to characterize the neural mechanisms underlying vocal deficits in PD.

  15. Genetic reduction of mitochondrial complex I function does not lead to loss of dopamine neurons in vivo.

    PubMed

    Kim, Hyung-Wook; Choi, Won-Seok; Sorscher, Noah; Park, Hyung Joon; Tronche, François; Palmiter, Richard D; Xia, Zhengui

    2015-09-01

    Inhibition of mitochondrial complex I activity is hypothesized to be one of the major mechanisms responsible for dopaminergic neuron death in Parkinson's disease. However, loss of complex I activity by systemic deletion of the Ndufs4 gene, one of the subunits comprising complex I, does not cause dopaminergic neuron death in culture. Here, we generated mice with conditional Ndufs4 knockout in dopaminergic neurons (Ndufs4 conditional knockout mice [cKO]) to examine the effect of complex I inhibition on dopaminergic neuron function and survival during aging and on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment in vivo. Ndufs4 cKO mice did not show enhanced dopaminergic neuron loss in the substantia nigra pars compacta or dopamine-dependent motor deficits over the 24-month life span. These mice were just as susceptible to MPTP as control mice. However, compared with control mice, Ndufs4 cKO mice exhibited an age-dependent reduction of dopamine in the striatum and increased α-synuclein phosphorylation in dopaminergic neurons of the substantia nigra pars compacta. We also used an inducible Ndufs4 knockout mouse strain (Ndufs4 inducible knockout) in which Ndufs4 is conditionally deleted in all cells in adult to examine the effect of adult onset, complex I inhibition on MPTP sensitivity of dopaminergic neurons. The Ndufs4 inducible knockout mice exhibited similar sensitivity to MPTP as control littermates. These data suggest that mitochondrial complex I inhibition in dopaminergic neurons does contribute to dopamine loss and the development of α-synuclein pathology. However, it is not sufficient to cause cell-autonomous dopaminergic neuron death during the normal life span of mice. Furthermore, mitochondrial complex I inhibition does not underlie MPTP toxicity in vivo in either cell autonomous or nonautonomous manner. These results provide strong evidence that inhibition of mitochondrial complex I activity is not sufficient to cause dopaminergic neuron

  16. GABA receptor agonists: pharmacological spectrum and therapeutic actions.

    PubMed

    Bartholini, G

    1985-01-01

    From the data discussed in this review it appears that GABA receptor agonists exhibit a variety of actions in the central nervous system, some of which are therapeutically useful (Table V). GABA receptor agonists, by changing the firing rate of the corresponding neurons accelerate noradrenaline turnover without changes in postsynaptic receptor density and diminish serotonin liberation with an up-regulation of 5HT2 receptors. These effects differ from those of tricyclic antidepressants which primarily block monoamine re-uptake and cause down-regulation of beta-adrenergic and 5HT2 receptors. The GABA receptor agonist progabide has been shown to exert an antidepressant action which is indistinguishable from that of imipramine in patients with major affective disorders. The fact that: (a) GABA receptor agonists and tricyclic antidepressants affect noradrenergic and serotonergic transmission differently; and (b) tricyclic antidepressants alter GABA-related parameters challenges the classical monoamine hypothesis of depression and suggests that GABA-mediated mechanisms play a role in mood disorders. Decreases in cellular excitability produced by GABAergic stimulation leads to control of seizures in practically all animal models of epilepsy. GABA receptor agonists have a wide spectrum as they antagonize not only seizures which are dependent on decreased GABA synaptic activity but also convulsant states which are apparently independent of alterations in GABA-mediated events. These results in animals are confirmed in a wide range of human epileptic syndromes. GABA receptor agonists decrease dopamine turnover in the basal ganglia and antagonize neuroleptic-induced increase in dopamine release. On repeated treatment, progabide prevents or reverses the neuroleptic-induced up-regulation of dopamine receptors in the rat striatum and antagonizes the concomitant supersensitivity to dopaminomimetics. Behaviorally, GABA receptor agonists diminish the stereotypies induced by

  17. Sequential Loss of LC Noradrenergic and Dopaminergic Neurons Results in a Correlation of Dopaminergic Neuronal Number to Striatal Dopamine Concentration

    PubMed Central

    Szot, Patricia; Franklin, Allyn; Sikkema, Carl; Wilkinson, Charles W.; Raskind, Murray A.

    2012-01-01

    Noradrenergic neurons in the locus coeruleus (LC) are significantly reduced in Parkinson’s disease (PD) and the LC exhibits neuropathological changes early in the disease process. It has been suggested that a loss of LC neurons can enhance the susceptibility of dopaminergic neurons to damage. To determine if LC noradrenergic innervation protects dopaminergic neurons from damage, the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was administered to adult male C57Bl/6 mice 3 days after bilateral LC administration of 6-hydroxydopamine (6OHDA), a time when there is a significant reduction in LC neuronal number and innervation to forebrain regions. To assess if LC loss can affect dopaminergic loss four groups of animals were studied: control, 6OHDA, MPTP, and 6OHDA + MPTP; animals sacrificed 3 weeks after MPTP administration. The number of dopaminergic neurons in the substantia nigra (SN) and ventral tegmental area (VTA), and noradrenergic neurons in the LC were determined. Catecholamine levels in striatum were measured by high-pressure liquid chromatography. The loss of LC neurons did not affect the number of dopaminergic neurons in the SN and VTA compared to control; however, LC 6OHDA significantly reduced striatal dopamine (DA; 29% reduced) but not norepinephrine (NE) concentration. MPTP significantly reduced SN and VTA neuronal number and DA concentration in the striatum compared to control; however, there was not a correlation of striatal DA concentration with SN or VTA neuronal number. Administration of 6OHDA prior to MPTP did not enhance MPTP-induced damage despite an effect of LC loss on striatal DA concentration. However, the loss of LC neurons before MPTP resulted now in a correlation between SN and VTA neuronal number to striatal DA concentration. These results demonstrate that the loss of either LC or DA neurons can affect the function of each others systems, indicating the importance of both the noradrenergic and

  18. Conditional deletion of Ndufs4 in dopaminergic neurons promotes Parkinson’s disease-like non-motor symptoms without loss of dopamine neurons

    PubMed Central

    Choi, Won-Seok; Kim, Hyung-Wook; Tronche, François; Palmiter, Richard D.; Storm, Daniel R.; Xia, Zhengui

    2017-01-01

    Reduction of mitochondrial complex I activity is one of the major hypotheses for dopaminergic neuron death in Parkinson’s disease. However, reduction of complex I activity in all cells or selectively in dopaminergic neurons via conditional deletion of the Ndufs4 gene, a subunit of the mitochondrial complex I, does not cause dopaminergic neuron death or motor impairment. Here, we investigated the effect of reduced complex I activity on non-motor symptoms associated with Parkinson’s disease using conditional knockout (cKO) mice in which Ndufs4 was selectively deleted in dopaminergic neurons (Ndufs4 cKO). This conditional deletion of Ndufs4, which reduces complex I activity in dopamine neurons, did not cause a significant loss of dopaminergic neurons in substantia nigra pars compacta (SNpc), and there was no loss of dopaminergic neurites in striatum or amygdala. However, Ndufs4 cKO mice had a reduced amount of dopamine in the brain compared to control mice. Furthermore, even though motor behavior were not affected, Ndufs4 cKO mice showed non-motor symptoms experienced by many Parkinson’s disease patients including impaired cognitive function and increased anxiety-like behavior. These data suggest that mitochondrial complex I dysfunction in dopaminergic neurons promotes non-motor symptoms of Parkinson’s disease and reduces dopamine content in the absence of dopamine neuron loss. PMID:28327638

  19. Suppression of γ-aminobutyric acid (GABA) transaminases induces prominent GABA accumulation, dwarfism and infertility in the tomato (Solanum lycopersicum L.).

    PubMed

    Koike, Satoshi; Matsukura, Chiaki; Takayama, Mariko; Asamizu, Erika; Ezura, Hiroshi

    2013-05-01

    Tomatoes accumulate γ-aminobutyric acid (GABA) at high levels in the immature fruits. GABA is rapidly converted to succinate during fruit ripening through the activities of GABA transaminase (GABA-T) and succinate semialdehyde dehydrogenase (SSADH). Although three genes encoding GABA-T and both pyruvate- and α-ketoglutarate-dependent GABA-T activities have been detected in tomato fruits, the mechanism underlying the GABA-T-mediated conversion of GABA has not been fully understood. In this work, we conducted loss-of-function analyses utilizing RNA interference (RNAi) transgenic plants with suppressed pyruvate- and glyoxylate-dependent GABA-T gene expression to clarify which GABA-T isoforms are essential for its function. The RNAi plants with suppressed SlGABA-T gene expression, particularly SlGABA-T1, showed severe dwarfism and infertility. SlGABA-T1 expression was inversely associated with GABA levels in the fruit at the red ripe stage. The GABA contents in 35S::SlGABA-T1(RNAi) lines were 1.3-2.0 times and 6.8-9.2 times higher in mature green and red ripe fruits, respectively, than the contents in wild-type fruits. In addition, SlGABA-T1 expression was strongly suppressed in the GABA-accumulating lines. These results indicate that pyruvate- and glyoxylate-dependent GABA-T is the essential isoform for GABA metabolism in tomato plants and that GABA-T1 primarily contributes to GABA reduction in the ripening fruits.

  20. Loss of D2 dopamine receptor function modulates cocaine-induced glutamatergic synaptic potentiation in the ventral tegmental area.

    PubMed

    Madhavan, Anuradha; Argilli, Emanuela; Bonci, Antonello; Whistler, Jennifer L

    2013-07-24

    Potentiation of glutamate responses is a critical synaptic response to cocaine exposure in ventral tegmental area (VTA) neurons. However, the mechanism by which cocaine exposure promotes potentiation of NMDA receptors (NMDARs) and subsequently AMPA receptors (AMPARs) is not fully understood. In this study we demonstrate that repeated cocaine treatment causes loss of D2 dopamine receptor functional responses via interaction with lysosome-targeting G-protein-associated sorting protein1 (GASP1). We also show that the absence of D2 downregulation in GASP1-KO mice prevents cocaine-induced potentiation of NMDAR currents, elevation of the AMPA/NMDA ratio, and redistribution of NMDAR and AMPAR subunits to the membrane. As a pharmacological parallel, coadministration of the high-affinity D2 agonist, aripiprazole, reduces not only functional downregulation of D2s in response to cocaine but also potentiation of NMDAR and AMPAR responses in wild-type mice. Together these data suggest that functional loss of D2 receptors is a critical mechanism mediating cocaine-induced glutamate plasticity in VTA neurons.

  1. Striatal dopamine D2/3 receptor availability increases after long-term bariatric surgery-induced weight loss.

    PubMed

    van der Zwaal, Esther M; de Weijer, Barbara A; van de Giessen, Elsmarieke M; Janssen, Ignace; Berends, Frits J; van de Laar, Arnold; Ackermans, Mariette T; Fliers, Eric; la Fleur, Susanne E; Booij, Jan; Serlie, Mireille J

    2016-07-01

    In several studies reduced striatal dopamine D2/3 receptor (D2/3R) availability was reported in obese subjects compared to lean controls. Whether this is a reversible phenomenon remained uncertain. We previously determined the short-term effect of Roux-en-Y gastric bypass surgery (RYGB) on striatal D2/3R availability (using [(123)I]IBZM SPECT) in 20 morbidly obese women. Striatal D2/3R availability was lower compared to controls at baseline, and remained unaltered after 6 weeks, despite significant weight loss. To determine whether long-term bariatric surgery-induced weight loss normalizes striatal D2/3R binding, we repeated striatal D2/3R binding measurements at least 2 years after RYGB in 14 subjects of the original cohort. In addition, we assessed long-term changes in body composition, eating behavior and fasting plasma levels of leptin, ghrelin, insulin and glucose. Mean body mass index declined from 46±7kg/m(2) to 32±6kg/m(2), which was accompanied by a significant increase in striatal D2/3R availability (p=0.031). Striatal D2/3R availability remained significantly reduced compared to the age-matched controls (BMI 22±2kg/m(2); p=0.01). Changes in striatal D2/3R availability did not correlate with changes in body weight/fat, insulin sensitivity, ghrelin or leptin levels. Scores on eating behavior questionnaires improved and changes in the General Food Craving Questionnaire-State showed a borderline significant correlation with changes in striatal D2/3R availability. These findings show that striatal D2/3R availability increases after long-term bariatric-surgery induced weight loss, suggesting that reduced D2/3R availability in obesity is a reversible phenomenon.

  2. Attenuation of malonate toxicity in primary mesencephalic cultures using the GABA transport blocker, NO-711.

    PubMed

    Stokes, A H; Bernard, L P; Nicklas, W J; Zeevalk, G D

    2001-04-01

    Cultured rat mesencephalic neurons were used to assess the effects of gamma-aminobutyric acid (GABA) transport blockers on toxicity caused by malonate, a reversible, competitive inhibitor of succinate dehydrogenase. Previous studies utilizing an ex vivo chick retinal preparation have shown that GABA release and cell swelling are early consequences of acute energy impairment and that GABA transport blockers attenuate this toxicity. The present results demonstrate that the nonsubstrate GABA transport blocker, NO-711 (1 nM-1 microM), dose-dependently protected cultured mesencephalic dopamine (DA) and GABA neurons from malonate-induced toxicity. Similar protection was demonstrated with nipecotic acid (1 mM) and SKF89976A (100 nM), substrate and nonsubstrate GABA transport blockers, respectively. These compounds by themselves produced no signs of toxicity, although nipecotic acid caused a long-term decrease in GABA uptake not associated with toxicity. Compounds which decrease intracellular reactive oxygen species (ROS) are protective in this model, but NO-711 did not prevent the rise in intracellular ROS induced by malonate, indicating its protective effects were downstream of ROS production. Supplementation of malonate treated cultures with the GABA(A) agonist, muscimol (10 microM), increased the toxicity toward the DA and GABA neuron populations. Antagonists at the GABA(A) and glycine receptors provided partial protection to both the GABA and DA neurons. These findings suggest that the GABA transporter, GABA(A), and/or glycine channels contribute to cell damage associated with energy impairment in this model.

  3. Brain dopamine and amino acid concentrations in Lurcher mutant mice.

    PubMed

    Reader, T A; Strazielle, C; Botez, M I; Lalonde, R

    1998-03-15

    Lurcher mutant mice are characterized by massive degeneration of the cerebellum, including Purkinje cells and granule cells, as well as for the loss of neurons from the inferior olive. Concentrations of dopamine and two of its metabolites and of several amino acid neurotransmitters were determined in the cerebellum and in other brain regions of these mutants. By comparison to wild-type mice of the same background strain, glutamate and taurine concentrations were reduced in the Lurcher cerebellum. No decrease was found for aspartate, gamma-aminobutyric acid (GABA), glycine, as well as dopamine and its metabolites. Moreover, no neurochemical alterations occurred in the brain stem, thalamus, or neostriatum of Lurcher mutants. A selective reduction of glutamate concentration was found in the hippocampus, while all amino acids measured were decreased in the entorhinal-piriform areas. These results indicate region-selective reductions of neurotransmitter concentrations in a mouse mutant with a defined cerebellar cortical pathology.

  4. Early-life lead exposure recapitulates the selective loss of parvalbumin-positive GABAergic interneurons and subcortical dopamine system hyperactivity present in schizophrenia.

    PubMed

    Stansfield, K H; Ruby, K N; Soares, B D; McGlothan, J L; Liu, X; Guilarte, T R

    2015-03-10

    Environmental factors have been associated with psychiatric disorders and recent epidemiological studies suggest an association between prenatal lead (Pb(2+)) exposure and schizophrenia (SZ). Pb(2+) is a potent antagonist of the N-methyl-D-aspartate receptor (NMDAR) and converging evidence indicates that NMDAR hypofunction has a key role in the pathophysiology of SZ. The glutamatergic hypothesis of SZ posits that NMDAR hypofunction results in the loss of parvalbumin (PV)-positive GABAergic interneurons (PVGI) in the brain. Loss of PVGI inhibitory control to pyramidal cells alters the excitatory drive to midbrain dopamine neurons increasing subcortical dopaminergic activity. We hypothesized that if Pb(2+) exposure in early life is an environmental risk factor for SZ, it should recapitulate the loss of PVGI and reproduce subcortical dopaminergic hyperactivity. We report that on postnatal day 50 (PN50), adolescence rats chronically exposed to Pb(2+) from gestation through adolescence exhibit loss of PVGI in SZ-relevant brain regions. PV and glutamic acid decarboxylase 67 kDa (GAD67) protein were significantly decreased in Pb(2+) exposed rats with no apparent change in calretinin or calbindin protein levels suggesting a selective effect on the PV phenotype of GABAergic interneurons. We also show that Pb(2+) animals exhibit a heightened locomotor response to cocaine and express significantly higher levels of dopamine metabolites and D2-dopamine receptors relative to controls indicative of subcortical dopaminergic hyperactivity. Our results show that developmental Pb(2+) exposure reproduces specific neuropathology and functional dopamine system changes present in SZ. We propose that exposure to environmental toxins that produce NMDAR hypofunction during critical periods of brain development may contribute significantly to the etiology of mental disorders.

  5. Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer's disease.

    PubMed

    Nobili, Annalisa; Latagliata, Emanuele Claudio; Viscomi, Maria Teresa; Cavallucci, Virve; Cutuli, Debora; Giacovazzo, Giacomo; Krashia, Paraskevi; Rizzo, Francesca Romana; Marino, Ramona; Federici, Mauro; De Bartolo, Paola; Aversa, Daniela; Dell'Acqua, Maria Concetta; Cordella, Alberto; Sancandi, Marco; Keller, Flavio; Petrosini, Laura; Puglisi-Allegra, Stefano; Mercuri, Nicola Biagio; Coccurello, Roberto; Berretta, Nicola; D'Amelio, Marcello

    2017-04-03

    Alterations of the dopaminergic (DAergic) system are frequently reported in Alzheimer's disease (AD) patients and are commonly linked to cognitive and non-cognitive symptoms. However, the cause of DAergic system dysfunction in AD remains to be elucidated. We investigated alterations of the midbrain DAergic system in the Tg2576 mouse model of AD, overexpressing a mutated human amyloid precursor protein (APPswe). Here, we found an age-dependent DAergic neuron loss in the ventral tegmental area (VTA) at pre-plaque stages, although substantia nigra pars compacta (SNpc) DAergic neurons were intact. The selective VTA DAergic neuron degeneration results in lower DA outflow in the hippocampus and nucleus accumbens (NAc) shell. The progression of DAergic cell death correlates with impairments in CA1 synaptic plasticity, memory performance and food reward processing. We conclude that in this mouse model of AD, degeneration of VTA DAergic neurons at pre-plaque stages contributes to memory deficits and dysfunction of reward processing.

  6. Cholesterol contributes to dopamine-neuronal loss in MPTP mouse model of Parkinson’s disease: Involvement of mitochondrial dysfunctions and oxidative stress

    PubMed Central

    Kumar, Sanjeev; Giri, Anirudha; Sandhir, Rajat

    2017-01-01

    Hypercholesterolemia is a known contributor to the pathogenesis of Alzheimer’s disease while its role in the occurrence of Parkinson’s disease (PD) is only conjecture and far from conclusive. Altered antioxidant homeostasis and mitochondrial functions are the key mechanisms in loss of dopaminergic neurons in the substantia nigra (SN) region of the midbrain in PD. Hypercholesterolemia is reported to cause oxidative stress and mitochondrial dysfunctions in the cortex and hippocampus regions of the brain in rodents. However, the impact of hypercholesterolemia on the midbrain dopaminergic neurons in animal models of PD remains elusive. We tested the hypothesis that hypercholesterolemia in MPTP model of PD would potentiate dopaminergic neuron loss in SN by disrupting mitochondrial functions and antioxidant homeostasis. It is evident from the present study that hypercholesterolemia in naïve animals caused dopamine neuronal loss in SN with subsequent reduction in striatal dopamine levels producing motor impairment. Moreover, in the MPTP model of PD, hypercholesterolemia exacerbated MPTP-induced reduction of striatal dopamine as well as dopaminergic neurons in SN with motor behavioral depreciation. Activity of mitochondrial complexes, mainly complex-I and III, was impaired severely in the nigrostriatal pathway of hypercholesterolemic animals treated with MPTP. Hypercholesterolemia caused oxidative stress in the nigrostriatal pathway with increased generation of hydroxyl radicals and enhanced activity of antioxidant enzymes, which were further aggravated in the hypercholesterolemic mice with Parkinsonism. In conclusion, our findings provide evidence of increased vulnerability of the midbrain dopaminergic neurons in PD with hypercholesterolemia. PMID:28170429

  7. Interaction between phencyclidine (PCP) and GABA-ergic drugs: clinical implications.

    PubMed

    Menon, M K; Clark, W G; Vivonia, C

    1980-01-01

    Pretreatment (IP) of mice with (-) baclofen, muscimol, 4,5,6,7-tetrahydroisoxazolo (S,4-c) pyridin-3-ol hydrate (THIP), aminooxyacetic acid (AOAA) or gamma-acetylenic GABA caused a dose-dependent inhibition of thelocomotor stimulant effect of phencyclidine (PCP, 8 mg/kg). Although (-) baclofen was found to be the most effective PCP antagonist, its (+) isomer was inactive. The maximum blocking effect of AOAA was seen in animals treated 3 and 6 hr earlier. Except for gamma-acetylenic GABA, none of these drugs significantly blocked the locomotor stimulant effect of d-amphetamine (3 mg/kg, IP). Diazepam reduced d-amphetamine response, but failed to influence PCP-induced stimulation. The locomotor stimulant effect of PCP, unlike that of d-amphetamine, may be the result of a specific GABA antagonistic effect at certain dopamine-rich areas of the brain. It seems that (-) baclofen may prove to be useful in the management of PCP intoxication. Administration of higher doses of PCP (20 and 50 mg/kg) in mice pretreated with (-) baclofen resulted in the development of surgical anesthesia manifested as the loss of a) righting reflex, b) pain sensation and c) corneal reflex. The duration of the general anesthetic response was found to be a function of the doses of both (-) baclofen and PCP. The possible use of (-) baclofen as an adjuvant to general anesthetic is discussed.

  8. The supramammillary nucleus mediates primary reinforcement via GABA(A) receptors.

    PubMed

    Ikemoto, Satoshi

    2005-06-01

    The supramammillary nucleus (SUM), a dorsal layer of the mammillary body, has recently been implicated in positive reinforcement. The present study examined whether GABA(A) receptors in the SUM or adjacent regions are involved in primary reinforcement using intracranial self-administration procedures. Rats learned quickly to lever-press for infusions of the GABA(A) antagonist picrotoxin into the SUM. Although picrotoxin was also self-administered into the posterior hypothalamic nuclei and anterior ventral tegmental area, these regions were less responsive to lower doses of picrotoxin than the SUM. The finding that rats learned to respond selectively on the lever triggering drug infusions is consistent with picrotoxin's reinforcing effect. Coadministration of the GABA(A) agonist muscimol disrupted picrotoxin self-administration, and another GABA(A) antagonist, bicuculline, was also self-administered into the SUM; thus, the reinforcing effect of picrotoxin is mediated by GABA(A) receptors. Since rats did not self-administer the GABA(B) antagonist 2-hydroxysaclofen into the SUM, the role of GABA(B) receptors may be distinct from that of GABA(A) receptors. Pretreatment with the dopamine receptor antagonist SCH 23390 (0.05 mg/kg, i.p.) extinguished picrotoxin self-administration into the SUM, suggesting that the reinforcing effects of GABA(A) receptor blockade depend on normal dopamine transmission. In conclusion, the blockade of GABA(A) receptors in the SUM is reinforcing, and the brain 'reward' circuitry appears to be tonically inhibited via supramammillary GABA(A) receptors and more extensive than the meso-limbic dopamine system.

  9. Activin A Inhibits MPTP and LPS-Induced Increases in Inflammatory Cell Populations and Loss of Dopamine Neurons in the Mouse Midbrain In Vivo

    PubMed Central

    Stayte, Sandy; Rentsch, Peggy; Tröscher, Anna R.; Bamberger, Maximilian; Li, Kong M.; Vissel, Bryce

    2017-01-01

    Parkinson’s disease is a chronic neurodegenerative disease characterized by a significant loss of dopaminergic neurons within the substantia nigra pars compacta region and a subsequent loss of dopamine within the striatum. A promising avenue of research has been the administration of growth factors to promote the survival of remaining midbrain neurons, although the mechanism by which they provide neuroprotection is not understood. Activin A, a member of the transforming growth factor β superfamily, has been shown to be a potent anti-inflammatory following acute brain injury and has been demonstrated to play a role in the neuroprotection of midbrain neurons against MPP+-induced degeneration in vitro. We hypothesized that activin A may offer similar anti-inflammatory and neuroprotective effects in in vivo mouse models of Parkinson’s disease. We found that activin A significantly attenuated the inflammatory response induced by both MPTP and intranigral administration of lipopolysaccharide in C57BL/6 mice. We found that administration of activin A promoted survival of dopaminergic and total neuron populations in the pars compacta region both 8 days and 8 weeks after MPTP-induced degeneration. Surprisingly, no corresponding protection of striatal dopamine levels was found. Furthermore, activin A failed to protect against loss of striatal dopamine transporter expression in the striatum, suggesting the neuroprotective action of activin A may be localized to the substantia nigra. Together, these results provide the first evidence that activin A exerts potent neuroprotection and anti-inflammatory effects in the MPTP and lipopolysaccharide mouse models of Parkinson’s disease. PMID:28121982

  10. Dopamine synapse is a neuroligin-2-mediated contact between dopaminergic presynaptic and GABAergic postsynaptic structures.

    PubMed

    Uchigashima, Motokazu; Ohtsuka, Toshihisa; Kobayashi, Kazuto; Watanabe, Masahiko

    2016-04-12

    Midbrain dopamine neurons project densely to the striatum and form so-called dopamine synapses on medium spiny neurons (MSNs), principal neurons in the striatum. Because dopamine receptors are widely expressed away from dopamine synapses, it remains unclear how dopamine synapses are involved in dopaminergic transmission. Here we demonstrate that dopamine synapses are contacts formed between dopaminergic presynaptic and GABAergic postsynaptic structures. The presynaptic structure expressed tyrosine hydroxylase, vesicular monoamine transporter-2, and plasmalemmal dopamine transporter, which are essential for dopamine synthesis, vesicular filling, and recycling, but was below the detection threshold for molecules involving GABA synthesis and vesicular filling or for GABA itself. In contrast, the postsynaptic structure of dopamine synapses expressed GABAergic molecules, including postsynaptic adhesion molecule neuroligin-2, postsynaptic scaffolding molecule gephyrin, and GABAA receptor α1, without any specific clustering of dopamine receptors. Of these, neuroligin-2 promoted presynaptic differentiation in axons of midbrain dopamine neurons and striatal GABAergic neurons in culture. After neuroligin-2 knockdown in the striatum, a significant decrease of dopamine synapses coupled with a reciprocal increase of GABAergic synapses was observed on MSN dendrites. This finding suggests that neuroligin-2 controls striatal synapse formation by giving competitive advantage to heterologous dopamine synapses over conventional GABAergic synapses. Considering that MSN dendrites are preferential targets of dopamine synapses and express high levels of dopamine receptors, dopamine synapse formation may serve to increase the specificity and potency of dopaminergic modulation of striatal outputs by anchoring dopamine release sites to dopamine-sensing targets.

  11. Dysregulation of Corticostriatal Connectivity in Huntington’s Disease: A Role for Dopamine Modulation

    PubMed Central

    Rangel-Barajas, Claudia; Rebec, George V.

    2016-01-01

    Aberrant communication between striatum, the main information processing unit of the basal ganglia, and cerebral cortex plays a critical role in the emergence of Huntington’s disease (HD), a fatal monogenetic condition that typically strikes in the prime of life. Although both striatum and cortex undergo substantial cell loss over the course of HD, corticostriatal circuits become dysfunctional long before neurons die. Understanding the dysfunction is key to developing effective strategies for treating a progressively worsening triad of motor, cognitive, and psychiatric symptoms. Cortical output neurons drive striatal activity through the release of glutamate, an excitatory amino acid. Striatal outputs, in turn, release γ-amino butyric acid (GABA) and exert inhibitory control over downstream basal ganglia targets. Ample evidence from transgenic rodent models points to dysregulation of corticostriatal glutamate transmission along with corresponding changes in striatal GABA release as underlying factors in the HD behavioral phenotype. Another contributor is dysregulation of dopamine (DA), a modulator of both glutamate and GABA transmission. In fact, pharmacological manipulation of DA is the only currently available treatment for HD symptoms. Here, we review data from animal models and human patients to evaluate the role of DA in HD, including DA interactions with glutamate and GABA within the context of dysfunctional corticostriatal circuitry. PMID:27983564

  12. Loss-of-function analyses of the fragile X-related and dopamine receptor genes by RNA interference in the cricket Gryllus bimaculatus.

    PubMed

    Hamada, Aska; Miyawaki, Katsuyuki; Honda-sumi, Eri; Tomioka, Kenji; Mito, Taro; Ohuchi, Hideyo; Noji, Sumihare

    2009-08-01

    In order to explore a possibility that the cricket Gryllus bimaculatus would be a useful model to unveil molecular mechanisms of human diseases, we performed loss-of-function analyses of Gryllus genes homologous to human genes that are responsible for human disorders, fragile X mental retardation 1 (fmr1) and Dopamine receptor (DopR). We cloned cDNAs of their Gryllus homologues, Gb'fmr1, Gb'DopRI, and Gb'DopRII, and analyzed their functions with use of nymphal RNA interference (RNAi). For Gb'fmr1, three major phenotypes were observed: (1) abnormal wing postures, (2) abnormal calling song, and (3) loss of the circadian locomotor rhythm, while for Gb'DopRI, defects of wing posture and morphology were found. These results indicate that the cricket has the potential to become a novel model system to explore human neuronal pathogenic mechanisms and to screen therapeutic drugs by RNAi.

  13. Chronic Treatment with Novel Small Molecule Hsp90 Inhibitors Rescues Striatal Dopamine Levels but Not α-Synuclein-Induced Neuronal Cell Loss

    PubMed Central

    Kibuuka, Laura; Ebrahimi-Fakhari, Darius; Desjardins, Cody A.; Danzer, Karin M.; Danzer, Michael; Fan, Zhanyun; Schwarzschild, Michael A.; Hirst, Warren; McLean, Pamela J.

    2014-01-01

    Hsp90 inhibitors such as geldanamycin potently induce Hsp70 and reduce cytotoxicity due to α-synuclein expression, although their use has been limited due to toxicity, brain permeability, and drug design. We recently described the effects of a novel class of potent, small molecule Hsp90 inhibitors in cells overexpressing α-synuclein. Screening yielded several candidate compounds that significantly reduced α-synuclein oligomer formation and cytotoxicity associated with Hsp70 induction. In this study we examined whether chronic treatment with candidate Hsp90 inhibitors could protect against α-synuclein toxicity in a rat model of parkinsonism. Rats were injected unilaterally in the substantia nigra with AAV8 expressing human α-synuclein and then treated with drug for approximately 8 weeks by oral gavage. Chronic treatment with SNX-0723 or the more potent, SNX-9114 failed to reduce dopaminergic toxicity in the substantia nigra compared to vehicle. However, SNX-9114 significantly increased striatal dopamine content suggesting a positive neuromodulatory effect on striatal terminals. Treatment was generally well tolerated, but higher dose SNX-0723 (6–10 mg/kg) resulted in systemic toxicity, weight loss, and early death. Although still limited by potential toxicity, Hsp90 inhibitors tested herein demonstrate oral efficacy and possible beneficial effects on dopamine production in a vertebrate model of parkinsonism that warrant further study. PMID:24465863

  14. Chronic treatment with novel small molecule Hsp90 inhibitors rescues striatal dopamine levels but not α-synuclein-induced neuronal cell loss.

    PubMed

    McFarland, Nikolaus R; Dimant, Hemi; Kibuuka, Laura; Ebrahimi-Fakhari, Darius; Desjardins, Cody A; Danzer, Karin M; Danzer, Michael; Fan, Zhanyun; Schwarzschild, Michael A; Hirst, Warren; McLean, Pamela J

    2014-01-01

    Hsp90 inhibitors such as geldanamycin potently induce Hsp70 and reduce cytotoxicity due to α-synuclein expression, although their use has been limited due to toxicity, brain permeability, and drug design. We recently described the effects of a novel class of potent, small molecule Hsp90 inhibitors in cells overexpressing α-synuclein. Screening yielded several candidate compounds that significantly reduced α-synuclein oligomer formation and cytotoxicity associated with Hsp70 induction. In this study we examined whether chronic treatment with candidate Hsp90 inhibitors could protect against α-synuclein toxicity in a rat model of parkinsonism. Rats were injected unilaterally in the substantia nigra with AAV8 expressing human α-synuclein and then treated with drug for approximately 8 weeks by oral gavage. Chronic treatment with SNX-0723 or the more potent, SNX-9114 failed to reduce dopaminergic toxicity in the substantia nigra compared to vehicle. However, SNX-9114 significantly increased striatal dopamine content suggesting a positive neuromodulatory effect on striatal terminals. Treatment was generally well tolerated, but higher dose SNX-0723 (6-10 mg/kg) resulted in systemic toxicity, weight loss, and early death. Although still limited by potential toxicity, Hsp90 inhibitors tested herein demonstrate oral efficacy and possible beneficial effects on dopamine production in a vertebrate model of parkinsonism that warrant further study.

  15. Dopamine synapse is a neuroligin-2–mediated contact between dopaminergic presynaptic and GABAergic postsynaptic structures

    PubMed Central

    Uchigashima, Motokazu; Ohtsuka, Toshihisa; Kobayashi, Kazuto; Watanabe, Masahiko

    2016-01-01

    Midbrain dopamine neurons project densely to the striatum and form so-called dopamine synapses on medium spiny neurons (MSNs), principal neurons in the striatum. Because dopamine receptors are widely expressed away from dopamine synapses, it remains unclear how dopamine synapses are involved in dopaminergic transmission. Here we demonstrate that dopamine synapses are contacts formed between dopaminergic presynaptic and GABAergic postsynaptic structures. The presynaptic structure expressed tyrosine hydroxylase, vesicular monoamine transporter-2, and plasmalemmal dopamine transporter, which are essential for dopamine synthesis, vesicular filling, and recycling, but was below the detection threshold for molecules involving GABA synthesis and vesicular filling or for GABA itself. In contrast, the postsynaptic structure of dopamine synapses expressed GABAergic molecules, including postsynaptic adhesion molecule neuroligin-2, postsynaptic scaffolding molecule gephyrin, and GABAA receptor α1, without any specific clustering of dopamine receptors. Of these, neuroligin-2 promoted presynaptic differentiation in axons of midbrain dopamine neurons and striatal GABAergic neurons in culture. After neuroligin-2 knockdown in the striatum, a significant decrease of dopamine synapses coupled with a reciprocal increase of GABAergic synapses was observed on MSN dendrites. This finding suggests that neuroligin-2 controls striatal synapse formation by giving competitive advantage to heterologous dopamine synapses over conventional GABAergic synapses. Considering that MSN dendrites are preferential targets of dopamine synapses and express high levels of dopamine receptors, dopamine synapse formation may serve to increase the specificity and potency of dopaminergic modulation of striatal outputs by anchoring dopamine release sites to dopamine-sensing targets. PMID:27035941

  16. Arithmetic and local circuitry underlying dopamine prediction errors

    PubMed Central

    Eshel, Neir; Bukwich, Michael; Rao, Vinod; Hemmelder, Vivian; Tian, Ju; Uchida, Naoshige

    2015-01-01

    Dopamine neurons are thought to facilitate learning by comparing actual and expected reward1,2. Despite two decades of investigation, little is known about how this comparison is made. To determine how dopamine neurons calculate prediction error, we combined optogenetic manipulations with extracellular recordings in the ventral tegmental area (VTA) while mice engaged in classical conditioning. By manipulating the temporal expectation of reward, we demonstrate that dopamine neurons perform subtraction, a computation that is ideal for reinforcement learning but rarely observed in the brain. Furthermore, selectively exciting and inhibiting neighbouring GABA neurons in the VTA reveals that these neurons are a source of subtraction: they inhibit dopamine neurons when reward is expected, causally contributing to prediction error calculations. Finally, bilaterally stimulating VTA GABA neurons dramatically reduces anticipatory licking to conditioned odours, consistent with an important role for these neurons in reinforcement learning. Together, our results uncover the arithmetic and local circuitry underlying dopamine prediction errors. PMID:26322583

  17. Effect of unilateral 6-hydroxydopamine lesions of the nigrostriatal pathway on GABA(A) receptor subunit gene expression in the rodent basal ganglia and thalamus.

    PubMed

    Chadha, A; Dawson, L G; Jenner, P G; Duty, S

    2000-01-01

    In Parkinson's disease, changes in GABAergic activity occurring downstream of the striatal dopamine loss are accompanied by reciprocal changes in GABA(A) receptor binding, the underlying molecular mechanisms for which are unknown. This study examined whether changes in expression of the genes encoding known GABA(A) receptor subunits (alpha(1-4), beta(1-3), gamma(1-3) and delta) could account for this receptor plasticity using a rodent model of Parkinson's disease with a 6-hydroxydopamine-induced nigrostriatal lesion. Analysis of autoradiograms of the basal ganglia and thalamus revealed changes in expression of only four of the 11 subunits studied. Expression of alpha1 and beta2 subunit genes was altered in a parallel manner following a 6-hydroxydopamine lesion; messenger RNA levels for both were significantly increased in the substantia nigra pars reticulata (11 +/- 4% and 17 +/- 1%, respectively), and significantly reduced in the globus pallidus (18 +/- 3% and 16 +/- 3%, respectively) and parafascicular nucleus (19 +/- 3% and 16 +/- 5%, respectively). Smaller changes in the messenger RNA levels encoding the alpha1 subunit in the lateral amygdala (8 +/- 1% decrease) and the alpha4 and gamma2 subunits in the striatum (10 +/- 2% and 6 +/- 1% increase, respectively) were also observed. No changes in expression were noted for any other subunits in any region studied. Clearly, both region- and subunit-specific regulation of GABA(A) receptor subunit gene expression occurs following a nigrostriatal tract lesion. The changes in expression of the alpha1 and beta2 subunit genes probably contribute to the documented changes in GABA(A) receptor binding following striatal dopamine depletion. Moreover, they provide a molecular basis by which the pathological changes in GABAergic activity in Parkinson's disease may be partially compensated.

  18. Comparative Mapping of GABA-Immunoreactive Neurons in the Buccal Ganglia of Nudipleura Molluscs.

    PubMed

    Gunaratne, Charuni A; Katz, Paul S

    2016-04-15

    Phylogenetic comparisons of neurotransmitter distribution are important for understanding the ground plan organization of nervous systems. This study describes the γ-aminobutyric acid (GABA)-immunoreactive (GABA-ir) neurons in the buccal ganglia of six sea slug species (Mollusca, Gastropoda, Euthyneura, Nudipleura). In the nudibranch species, Hermissenda crassicornis, Tritonia diomedea, Tochuina tetraquetra, and Dendronotus iris, the number of GABA-ir neurons was highly consistent. Another nudibranch, Melibe leonina, however, contained approximately half the number of GABA-ir neurons. This may relate to its loss of a radula and its unique feeding behavior. The GABA immunoreactivity in a sister group to the nudibranchs, Pleurobranchaea californica, differed drastically from that of the nudibranchs. Not only did it have significantly more GABA-ir neurons but it also had a unique GABA distribution pattern. Furthermore, unlike the nudibranchs, the Pleurobranchaea GABA distribution was also different from that of other, more distantly related, euopisthobranch and panpulmonate snails and slugs. This suggests that the Pleurobranchaea GABA distribution may be a derived feature, unique to this lineage. The majority of GABA-ir axons and neuropil in the Nudipleura were restricted to the buccal ganglia, commissures, and connectives. However, in Tritonia and Pleurobranchaea, we detected a few GABA-ir fibers in buccal nerves that innervate feeding muscles. Although the specific functions of the GABA-ir neurons in the species in this study are not known, the innervation pattern suggests these neurons may play an integrative or regulatory role in bilaterally coordinated behaviors in the Nudipleura.

  19. Selected Gamma Aminobutyric Acid (GABA) Esters may Provide Analgesia for Some Central Pain Conditions

    PubMed Central

    Goldberg, Joel S.

    2010-01-01

    Central pain is an enigmatic, intractable condition, related to destruction of thalamic areas, resulting in likely loss of inhibitory synaptic transmission mediated by GABA. It is proposed that treatment of central pain, a localized process, may be treated by GABA supplementation, like Parkinson’s disease and depression. At physiologic pH, GABA exists as a zwitterion that is poorly permeable to the blood brain barrier (BBB). Because the pH of the cerebral spinal fluid (CSF) is acidic relative to the plasma, ion trapping may allow a GABA ester prodrug to accumulate and be hydrolyzed within the CSF. Previous investigations with ester local anesthetics may be applicable to some GABA esters since they are weak bases, hydrolyzed by esterases and cross the BBB. Potential non-toxic GABA esters are discussed. Many GABA esters were investigated in the 1980s and it is hoped that this paper may spark renewed interest in their development. PMID:20703328

  20. Dopamine controls neurogenesis in the adult salamander midbrain in homeostasis and during regeneration of dopamine neurons.

    PubMed

    Berg, Daniel A; Kirkham, Matthew; Wang, Heng; Frisén, Jonas; Simon, András

    2011-04-08

    Appropriate termination of regenerative processes is critical for producing the correct number of cells in tissues. Here we provide evidence for an end-product inhibition of dopamine neuron regeneration that is mediated by dopamine. Ablation of midbrain dopamine neurons leads to complete regeneration in salamanders. Regeneration involves extensive neurogenesis and requires activation of quiescent ependymoglia cells, which express dopamine receptors. Pharmacological compensation for dopamine loss by L-dopa inhibits ependymoglia proliferation and regeneration in a dopamine receptor-signaling-dependent manner, specifically after ablation of dopamine neurons. Systemic administration of the dopamine receptor antagonist haloperidol alone causes ependymoglia proliferation and the appearance of excessive number of neurons. Our data show that stem cell quiescence is under dopamine control and provide a model for termination once normal homeostasis is restored. The findings establish a role for dopamine in the reversible suppression of neurogenesis in the midbrain and have implications for regenerative strategies in Parkinson's disease.

  1. Effect of antioxidant treatment on spinal GABA neurons in a neuropathic pain model in the mouse.

    PubMed

    Yowtak, June; Wang, Jigong; Kim, Hee Young; Lu, Ying; Chung, Kyungsoon; Chung, Jin Mo

    2013-11-01

    One feature of neuropathic pain is a reduced spinal gamma-aminobutyric acid (GABA)-ergic inhibitory function. However, the mechanisms behind this attenuation remain to be elucidated. This study investigated the involvement of reactive oxygen species in the spinal GABA neuron loss and reduced GABA neuron excitability in spinal nerve ligation (SNL) model of neuropathic pain in mice. The importance of spinal GABAergic inhibition in neuropathic pain was tested by examining the effects of intrathecally administered GABA receptor agonists and antagonists in SNL and naïve mice, respectively. The effects of SNL and antioxidant treatment on GABA neuron loss and functional changes were examined in transgenic GAD67-enhanced green fluorescent protein positive (EGFP+) mice. GABA receptor agonists transiently reversed mechanical hypersensitivity of the hind paw in SNL mice. On the other hand, GABA receptor antagonists made naïve mice mechanically hypersensitive. Stereological analysis showed that the numbers of enhanced green fluorescent protein positive (EGFP+) GABA neurons were significantly decreased in the lateral superficial laminae (I-II) on the ipsilateral L5 spinal cord after SNL. Repeated antioxidant treatments significantly reduced the pain behaviors and prevented the reduction in EGFP+ GABA neurons. The response rate of the tonic firing GABA neurons recorded from SNL mice increased with antioxidant treatment, whereas no change was seen in those recorded from naïve mice, which suggested that oxidative stress impaired some spinal GABA neuron activity in the neuropathic pain condition. Together the data suggest that neuropathic pain, at least partially, is attributed to oxidative stress, which induces both a GABA neuron loss and dysfunction of surviving GABA neurons.

  2. The role of GABA(A) receptors in the development of alcoholism.

    PubMed

    Enoch, Mary-Anne

    2008-07-01

    Alcoholism is a common, heritable, chronic relapsing disorder. GABA(A) receptors undergo allosteric modulation by ethanol, anesthetics, benzodiazepines and neurosteroids and have been implicated in the acute as well as the chronic effects of ethanol including tolerance, dependence and withdrawal. Medications targeting GABA(A) receptors ameliorate the symptoms of acute withdrawal. Ethanol induces plasticity in GABA(A) receptors: tolerance is associated with generally decreased GABA(A) receptor activation and differentially altered subunit expression. The dopamine (DA) mesolimbic reward pathway originating in the ventral tegmental area (VTA), and interacting stress circuitry play an important role in the development of addiction. VTA GABAergic interneurons are the primary inhibitory regulators of DA neurons and a subset of VTA GABA(A) receptors may be implicated in the switch from heavy drinking to dependence. GABA(A) receptors modulate anxiety and response to stress; important elements of sustained drinking and relapse. The GABA(A) receptor subunit genes clustered on chromosome 4 are highly expressed in the reward pathway. Several recent studies have provided strong evidence that one of these genes, GABRA2, is implicated in alcoholism in humans. The influence of the interaction between ethanol and GABA(A) receptors in the reward pathway on the development of alcoholism together with genetic and epigenetic vulnerabilities will be explored in this review.

  3. Manganese exposure alters extracellular GABA, GABA receptor and transporter protein and mRNA levels in the developing rat brain.

    PubMed

    Anderson, Joel G; Fordahl, Steve C; Cooney, Paula T; Weaver, Tara L; Colyer, Christa L; Erikson, Keith M

    2008-11-01

    Unlike other essential trace elements (e.g., zinc and iron) it is the toxicity of manganese (Mn) that is more common in human populations than its deficiency. Data suggest alterations in dopamine biology may drive the effects associated with Mn neurotoxicity, though recently gamma-aminobutyric acid (GABA) has been implicated. In addition, iron deficiency (ID), a common nutritional problem, may cause disturbances in neurochemistry by facilitating accumulation of Mn in the brain. Previous data from our lab have shown decreased brain tissue levels of GABA as well as decreased (3)H-GABA uptake in synaptosomes as a result of Mn exposure and ID. These results indicate a possible increase in the concentration of extracellular GABA due to alterations in expression of GABA transport and receptor proteins. In this study weanling-male Sprague-Dawley rats were randomly placed into one of four dietary treatment groups: control (CN; 35mg Fe/kg diet), iron-deficient (ID; 6mg Fe/kg diet), CN with Mn supplementation (via the drinking water; 1g Mn/l) (CNMn), and ID with Mn supplementation (IDMn). Using in vivo microdialysis, an increase in extracellular GABA concentrations in the striatum was observed in response to Mn exposure and ID although correlational analysis reveals that extracellular GABA is related more to extracellular iron levels and not Mn. A diverse effect of Mn exposure and ID was observed in the regions examined via Western blot and RT-PCR analysis, with effects on mRNA and protein expression of GAT-1, GABA(A), and GABA(B) differing between and within the regions examined. For example, Mn exposure reduced GAT-1 protein expression by approximately 50% in the substantia nigra, while increasing mRNA expression approximately four-fold, while in the caudate putamen mRNA expression was decreased with no effect on protein expression. These data suggest that Mn exposure results in an increase in extracellular GABA concentrations via altered expression of transport and

  4. Disorders of GABA metabolism: SSADH and GABA-transaminase deficiencies.

    PubMed

    Parviz, Mahsa; Vogel, Kara; Gibson, K Michael; Pearl, Phillip L

    2014-11-25

    Clinical disorders known to affect inherited gamma-amino butyric acid (GABA) metabolism are autosomal recessively inherited succinic semialdehyde dehydrogenase and GABA-transaminase deficiency. The clinical presentation of succinic semialdehyde dehydrogenase deficiency includes intellectual disability, ataxia, obsessive-compulsive disorder and epilepsy with a nonprogressive course in typical cases, although a progressive form in early childhood as well as deterioration in adulthood with worsening epilepsy are reported. GABA-transaminase deficiency is associated with a severe neonatal-infantile epileptic encephalopathy.

  5. GABA-receptor complex in monkeys treated with MPTP

    SciTech Connect

    Huffman, R.D.; Ticku, M.K.

    1986-03-01

    Tissue samples from the brains of monkeys made parkinsonian by the depletion of dopamine (DA) with dopaminergic neurotoxin (N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (1.4-3.4 mg/kg, i.v.) were assayed for changed in GABA ((/sup 3/H)-GABA), benzodiazepine ((/sup 3/H)-flunitrazepam) and picrotoxin ((/sup 35/S)-TBPS) binding sites. One point binding assays were performed on globus pallidus (GP), substantia nigra reticulata (SN/sub R/) and VA-VL thalamic samples. GABA binding was markedly increased in the SN/sub R/ (129 +/- 12%, n = 2) and GP (108 +/- 33%, n = 4) and not altered in the striatum or thalamus. However, benzodiazepine binding was increased in the striatum (170%; 257 fm/mg, control; 692 fm/mg, treated) and GP (28%; 317 fm/mg, control, 405 fm/mg, treated) and (/sup 35/S)-TBPS binding was also increased in GP (100%; 32.5 fm/mg, control; 65.5 fm/mg, treated). atScatchard analysis of (/sup 3/H)-GABA binding was also performed on tissue samples of motor cortex, cerebellar vermis and striatum pooled from half brains of 4 parkinsonian and 2 control monkeys. Depletion of DA (92 +/- 5%) in the striatum of these monkeys was not associated with any change in the K/sub D/ or B/sub max/ for the high or low affinity GABA binding sites in the striatum, motor cortex or cerebellum. Thus, in the basal ganglia, DA depletion is associated with an increase in GABA binding sites in GP and SN/sub R/, an increase in picrotoxin binding sites in GP and an increase in benzodiazepine binding sites in the striatum.

  6. Fabrication of Stretchable Nanocomposites with High Energy Density and Low Loss from Cross-Linked PVDF Filled with Poly(dopamine) Encapsulated BaTiO3.

    PubMed

    Xie, Yunchuan; Yu, Yangyang; Feng, Yefeng; Jiang, Wanrong; Zhang, Zhicheng

    2017-01-25

    In this report, a simple solution-cast method was employed to prepare poly(dopamine) (PDA) encapsulated BaTiO3 (BT) nanoparticle (PDA@BT) filled composites using PVDF matrix cross-linked by the free radical initiator. The effects of both the particle encapsulation and matrix cross-linking on the mechanical and dielectric properties of the composites were carefully investigated. The results suggested that the introduction of BT particles improved permittivity of the composites to ∼30 at 100 Hz when particle contents of only 7 wt % were utilized. This was attributed to the enhanced polarization, which was induced by high permittivity ceramic particles. Compared to bare BT, PDA@BT particles could be dispersed more homogeneously in the matrix, and the catechol groups of PDA layer might form chelation with free ions present in the matrix. The latter might depress the ion conduction loss in the composites. Other results revealed that the formation of hydrogen-bonding between the PDA layer and the polymer, especially the chemical cross-linking across the matrix, resulted in increased Young' modulus by ∼25%, improved breakdown strength by ∼40%, and declined conductivity by nearly 1 order of magnitude when compared to BT filled composites. The composite films filled with PDA@BTs indicated greater energy storage capacities by nearly 190% when compared to the pristine matrix. More importantly, the excellent mechanical performance allowed the composite films to adopt uni- or biaxially stretching, a crucial feature required for the realization of high breakdown strength. This work provided a facile strategy for fabrication of flexible and stretchable dielectric composites with depressed dielectric loss and enhanced energy storage capacity at low filler loadings (<10 wt %).

  7. Ventral tegmental area glutamate neurons co-release GABA and promote positive reinforcement.

    PubMed

    Yoo, Ji Hoon; Zell, Vivien; Gutierrez-Reed, Navarre; Wu, Johnathan; Ressler, Reed; Shenasa, Mohammad Ali; Johnson, Alexander B; Fife, Kathryn H; Faget, Lauren; Hnasko, Thomas S

    2016-12-15

    In addition to dopamine neurons, the ventral tegmental area (VTA) contains GABA-, glutamate- and co-releasing neurons, and recent reports suggest a complex role for the glutamate neurons in behavioural reinforcement. We report that optogenetic stimulation of VTA glutamate neurons or terminals serves as a positive reinforcer on operant behavioural assays. Mice display marked preference for brief over sustained VTA glutamate neuron stimulation resulting in behavioural responses that are notably distinct from dopamine neuron stimulation and resistant to dopamine receptor antagonists. Whole-cell recordings reveal EPSCs following stimulation of VTA glutamate terminals in the nucleus accumbens or local VTA collaterals; but reveal both excitatory and monosynaptic inhibitory currents in the ventral pallidum and lateral habenula, though the net effects on postsynaptic firing in each region are consistent with the observed rewarding behavioural effects. These data indicate that VTA glutamate neurons co-release GABA in a projection-target-dependent manner and that their transient activation drives positive reinforcement.

  8. Ventral tegmental area glutamate neurons co-release GABA and promote positive reinforcement

    PubMed Central

    Yoo, Ji Hoon; Zell, Vivien; Gutierrez-Reed, Navarre; Wu, Johnathan; Ressler, Reed; Shenasa, Mohammad Ali; Johnson, Alexander B.; Fife, Kathryn H.; Faget, Lauren; Hnasko, Thomas S.

    2016-01-01

    In addition to dopamine neurons, the ventral tegmental area (VTA) contains GABA-, glutamate- and co-releasing neurons, and recent reports suggest a complex role for the glutamate neurons in behavioural reinforcement. We report that optogenetic stimulation of VTA glutamate neurons or terminals serves as a positive reinforcer on operant behavioural assays. Mice display marked preference for brief over sustained VTA glutamate neuron stimulation resulting in behavioural responses that are notably distinct from dopamine neuron stimulation and resistant to dopamine receptor antagonists. Whole-cell recordings reveal EPSCs following stimulation of VTA glutamate terminals in the nucleus accumbens or local VTA collaterals; but reveal both excitatory and monosynaptic inhibitory currents in the ventral pallidum and lateral habenula, though the net effects on postsynaptic firing in each region are consistent with the observed rewarding behavioural effects. These data indicate that VTA glutamate neurons co-release GABA in a projection-target-dependent manner and that their transient activation drives positive reinforcement. PMID:27976722

  9. Exposure to repeated immobilization stress inhibits cocaine-induced increase in dopamine extracellular levels in the rat ventral tegmental area.

    PubMed

    Sotomayor-Zárate, Ramón; Abarca, Jorge; Araya, Katherine A; Renard, Georgina M; Andrés, María E; Gysling, Katia

    2015-11-01

    A higher vulnerability to drug abuse has been observed in human studies of individuals exposed to chronic or persistent stress, as well as in animal models of drug abuse. Here, we explored the effect of repeated immobilization stress on cocaine-induced increase in dopamine extracellular levels in VTA and its regulation by corticotropin-releasing factor (CRF) and GABA systems. Cocaine (10mg/Kg i.p.) induced an increase of VTA DA extracellular levels in control rats. However, this effect was not observed in repeated stress rats. Considering the evidence relating stress with CRF, we decided to perfuse CRF and CP-154526 (selective antagonist of CRF1 receptor) in the VTA of control and repeated stress rats, respectively. We observed that perfusion of 20μM CRF inhibited the increase of VTA DA extracellular levels induced by cocaine in control rats. Interestingly, we observed that in the presence of 10μM CP-154526, cocaine induced a significant increase of VTA DA extracellular levels in repeated stress rats. Regarding the role of VTA GABA neurotransmission, cocaine administration induced a significant increase in VTA GABA extracellular levels only in repeated stress rats. Consistently, cocaine was able to increase VTA DA extracellular levels in repeated stress rats when 100μM bicuculline, an antagonist of GABAA receptor, was perfused intra VTA. Thus, both CRF and GABA systems are involved in the lack of response to cocaine in the VTA of repeated stress rats. It is tempting to suggest that the loss of response in VTA dopaminergic neurons to cocaine, after repeated stress, is due to an interaction between CRF and GABA systems.

  10. Control of cortical neuronal migration by glutamate and GABA.

    PubMed

    Luhmann, Heiko J; Fukuda, A; Kilb, W

    2015-01-01

    Neuronal migration in the cortex is controlled by the paracrine action of the classical neurotransmitters glutamate and GABA. Glutamate controls radial migration of pyramidal neurons by acting primarily on NMDA receptors and regulates tangential migration of inhibitory interneurons by activating non-NMDA and NMDA receptors. GABA, acting on ionotropic GABAA-rho and GABAA receptors, has a dichotomic action on radially migrating neurons by acting as a GO signal in lower layers and as a STOP signal in upper cortical plate (CP), respectively. Metabotropic GABAB receptors promote radial migration into the CP and tangential migration of interneurons. Besides GABA, the endogenous GABAergic agonist taurine is a relevant agonist controlling radial migration. To a smaller extent glycine receptor activation can also influence radial and tangential migration. Activation of glutamate and GABA receptors causes increases in intracellular Ca(2+) transients, which promote neuronal migration by acting on the cytoskeleton. Pharmacological or genetic manipulation of glutamate or GABA receptors during early corticogenesis induce heterotopic cell clusters in upper layers and loss of cortical lamination, i.e., neuronal migration disorders which can be associated with neurological or neuropsychiatric diseases. The pivotal role of NMDA and ionotropic GABA receptors in cortical neuronal migration is of major clinical relevance, since a number of drugs acting on these receptors (e.g., anti-epileptics, anesthetics, alcohol) may disturb the normal migration pattern when present during early corticogenesis.

  11. Control of cortical neuronal migration by glutamate and GABA

    PubMed Central

    Luhmann, Heiko J.; Fukuda, A.; Kilb, W.

    2015-01-01

    Neuronal migration in the cortex is controlled by the paracrine action of the classical neurotransmitters glutamate and GABA. Glutamate controls radial migration of pyramidal neurons by acting primarily on NMDA receptors and regulates tangential migration of inhibitory interneurons by activating non-NMDA and NMDA receptors. GABA, acting on ionotropic GABAA-rho and GABAA receptors, has a dichotomic action on radially migrating neurons by acting as a GO signal in lower layers and as a STOP signal in upper cortical plate (CP), respectively. Metabotropic GABAB receptors promote radial migration into the CP and tangential migration of interneurons. Besides GABA, the endogenous GABAergic agonist taurine is a relevant agonist controlling radial migration. To a smaller extent glycine receptor activation can also influence radial and tangential migration. Activation of glutamate and GABA receptors causes increases in intracellular Ca2+ transients, which promote neuronal migration by acting on the cytoskeleton. Pharmacological or genetic manipulation of glutamate or GABA receptors during early corticogenesis induce heterotopic cell clusters in upper layers and loss of cortical lamination, i.e., neuronal migration disorders which can be associated with neurological or neuropsychiatric diseases. The pivotal role of NMDA and ionotropic GABA receptors in cortical neuronal migration is of major clinical relevance, since a number of drugs acting on these receptors (e.g., anti-epileptics, anesthetics, alcohol) may disturb the normal migration pattern when present during early corticogenesis. PMID:25688185

  12. Regulation of GABA and benzodiazepine receptors following neurotoxin-induced striatal and medial forebrain bundle lesions

    SciTech Connect

    Pan, H.S.I.

    1985-01-01

    GABA, a major inhibitory transmitter, is used by many projection neurons of the striatum. To investigate the role of GABA in striatal function, the GABA receptor complex was studied after lesions of the striatum or the nigrostriatal neurons. Quantitative receptor autoradiography using thaw-mounted tissue slices was developed for the study of GABA and benzodiazepine (BDZ) receptors. With the technique established, binding to GABA and BDZ receptors after unilateral striatal kainate lesions was examined. Subsequently, changes in GABA and BDZ receptors were studied following the destruction of dopaminergic nigrostriatal cells by unilateral 6-hydroxydopamine lesion of the medial forebrain bundle. In summary, quantitative receptor autoradiography allowed the detection of GABA and BDZ receptor changes in multiple small areas in each lesioned brain. This technique made it feasible to carry out kinetic saturation, and competition studies using less than 1 mg of tissue. The data suggest that dopamine is functionally inhibitory on striatopallidal neurons but is functionally excitatory on striatoentopeduncular and striatonigral cells which in turn inhibit the thalamus. This quantitative autoradiographic technique can be generalized to study other transmitter receptors and can be combined with 2-deoxyglucose uptake studies.

  13. Acetyl-L-Carnitine via Upegulating Dopamine D1 Receptor and Attenuating Microglial Activation Prevents Neuronal Loss and Improves Memory Functions in Parkinsonian Rats.

    PubMed

    Singh, Sonu; Mishra, Akanksha; Srivastava, Neha; Shukla, Rakesh; Shukla, Shubha

    2016-12-14

    Parkinson's disease is accompanied by nonmotor symptoms including cognitive impairment, which precede the onset of motor symptoms in patients and are regulated by dopamine (DA) receptors and the mesocorticolimbic pathway. The relative contribution of DA receptors and astrocytic glutamate transporter (GLT-1) in cognitive functions is largely unexplored. Similarly, whether microglia-derived increased immune response affects cognitive functions and neuronal survival is not yet understood. We have investigated the effect of acetyl-L-carnitine (ALCAR) on cognitive functions and its possible underlying mechanism of action in 6-hydroxydopamine (6-OHDA)-induced hemiparkinsonian rats. ALCAR treatment in 6-OHDA-lesioned rats improved memory functions as confirmed by decreased latency time and path length in the Morris water maze test. ALCAR further enhanced D1 receptor levels without altering D2 receptor levels in the hippocampus and prefrontal cortex (PFC) regions, suggesting that the D1 receptor is preferentially involved in the regulation of cognitive functions. ALCAR attenuated microglial activation and release of inflammatory mediators through balancing proinflammatory and anti-inflammatory cytokines, which subsequently enhanced the survival of mature neurons in the CA1, CA3, and PFC regions and improved cognitive functions in hemiparkinsonian rats. ALCAR treatment also improved glutathione (GSH) content, while decreasing oxidative stress indices, inducible nitrogen oxide synthase (iNOS) levels, and astrogliosis resulting in the upregulation of GLT-1 levels. Additionally, ALCAR prevented the loss of dopaminergic (DAergic) neurons in ventral tagmental area (VTA)/substantia nigra pars compacta (SNpc) regions of 6-OHDA-lesioned rats, thus maintaining the integrity of the nigrostriatal pathway. Together, these results demonstrate that ALCAR treatment in hemiparkinsonian rats ameliorates neurodegeneration and cognitive deficits, hence suggesting its therapeutic potential in

  14. Differential patterns of dopamine transporter loss in the basal ganglia of progressive supranuclear palsy and Parkinson's disease: analysis with [(123)I]IPT single photon emission computed tomography.

    PubMed

    Im, Joo-Hyuk; Chung, Sun J; Kim, Jae-Seung; Lee, Myoung C

    2006-05-15

    We evaluated the patterns of dopamine transporter loss in the striatum of ten controls, twenty patients with Parkinson's disease (PD), and nine with progressive supranuclear palsy (PSP) using (123)I-IPT single photon emission tomography (SPECT). Four ROIs in the striatum correspond to the head of caudate nucleus (ROI 1), a transitional region between head of caudate and putamen (ROI 2), anterior putamen (ROI 3), and posterior putamen (ROI 4). A striatal ratio of specific to nondisplaceable uptake (V3'') was calculated normalizing the activity of the ROIs to that of occipital cortex. V3'' values were significantly reduced in all ROIs of PD and PSP patients, compared with controls (p=0.001). V3'' value in ROI 2 was significantly lower in PSP group, compared with PD group (p=0.02). The percent reductions of striatal uptake in ROI 1, ROI 2, ROI 3 and ROI 4 were 56%, 53%, 64% and 78% in PD patients, whereas 75%, 72%, 75% and 77% in PSP patients, respectively. The reduction patterns of uptake were significantly different between PD and PSP groups (p=0.001). In PD patients, the percent reductions of (123)I-IPT uptake were significantly greater in ROI 3 and 4 compared with ROI 1 or 2, whereas those were similar in all ROIs of PSP patients. In addition, PD patients showed a significantly higher posterior putamen/caudate ratio of reduced (123)I-IPT uptake than the anterior putamen/caudate ratio (p=0.005). Our results implicate that (123)I-IPT SPECT is a relatively simple and reliable technique that may be useful in differentiating PD from PSP.

  15. GABA deficiency in NF1

    PubMed Central

    Patricio, Miguel; Bernardino, Inês; Rebola, José; Abrunhosa, Antero J.; Ferreira, Nuno; Castelo-Branco, Miguel

    2016-01-01

    Objective: To provide a comprehensive investigation of the γ-aminobutyric acid (GABA) system in patients with neurofibromatosis type 1 (NF1) that allows understanding the nature of the GABA imbalance in humans at pre- and postsynaptic levels. Methods: In this cross-sectional study, we employed multimodal imaging and spectroscopy measures to investigate GABA type A (GABAA) receptor binding, using [11C]-flumazenil PET, and GABA concentration, using magnetic resonance spectroscopy (MRS). Fourteen adult patients with NF1 and 13 matched controls were included in the study. MRS was performed in the occipital cortex and in a frontal region centered in the functionally localized frontal eye fields. PET and MRS acquisitions were performed in the same day. Results: Patients with NF1 have reduced concentration of GABA+ in the occipital cortex (p = 0.004) and frontal eye fields (p = 0.026). PET results showed decreased binding of GABAA receptors in patients in the parieto-occipital cortex, midbrain, and thalamus, which are not explained by decreased gray matter levels. Conclusions: Abnormalities in the GABA system in NF1 involve both GABA concentration and GABAA receptor density suggestive of neurodevelopmental synaptopathy with both pre- and postsynaptic involvement. PMID:27473134

  16. Atypical effect of dopamine in modulating the functional inhibition of NMDA receptors of cultured retina cells.

    PubMed

    Do Nascimento, J L; Kubrusly, R C; Reis, R A; De Mello, M C; De Mello, F G

    1998-02-05

    Cultured retina cells released accumulated [3H]GABA (gamma-aminobutyric acid) when stimulated by L-glutamate, N-methyl-D-aspartate (NMDA) and kainate. In the absence of Mg2+, dopamine at 200 microM (IC50 60 microM), inhibited in more than 50% the release of [3H]GABA induced by L-glutamate and NMDA, but not by kainate. This effect was not blocked by the D1-like dopamine receptor antagonist, R-(+)-7-chloro-8-hydroxy-3-methyl- -phenyl-2,3,4,5-tetrahydro- H-3-benzazepine hydrochloride (SCH 23390), neither by haloperidol nor spiroperidol (dopamine D2-like receptor antagonists). The dopamine D1-like receptor agonist R(+)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,diol hydrochloride (SKF 38393) at 50 microM, but not its enantiomer, also inhibited the release of [3H]GABA induced by NMDA, but not by kainate; an effect that was not prevented by the antagonists mentioned above. (+/-)-6-Chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepin e hydrobromide (SKF 812497) had no effect. Neither 8BrcAMP (5 mM) nor forskolin (10 microM) inhibited the release of [3H]GABA. Our results suggest that dopamine and (+)-SKF 38393 inhibit the glutamate and NMDA-evoked [3H]GABA release through mechanisms that seem not to involve known dopaminergic receptor systems.

  17. Hyperpolarizing inhibition develops without trophic support by GABA in cultured rat midbrain neurons.

    PubMed

    Titz, Stefan; Hans, Michael; Kelsch, Wolfgang; Lewen, Andrea; Swandulla, Dieter; Misgeld, Ulrich

    2003-08-01

    During a limited period of early neuronal development, GABA is depolarizing and elevates [Ca2+]i, which mediates the trophic action of GABA in neuronal maturation. We tested the attractive hypothesis that GABA itself promotes the developmental change of its response from depolarizing to hyperpolarizing (Ganguly et al. 2001). In cultured midbrain neurons we found that the GABA response changed from depolarizing to hyperpolarizing, although GABAA receptors had been blocked throughout development. In immature neurons prolonged exposure of the cells to nanomolar concentrations of GABA or brief repetitive applications of GABA strongly diminished the elevation of [Ca+]i by GABA. As revealed by gramicidin perforated-patch recording, reduced [Ca2+]i responses were due to a diminished driving force for Cl-. This suggests that immature neurons do not have an efficient inward transport that can compensate the loss of cytosolic Cl-resulting from sustained GABAA receptor activation by ambient GABA. Transient increases in external K+, which can induce voltage-dependent Cl- entry, restored GABA-induced [Ca2+]i elevations. In mature neurons, GABA reduced [Ca2+]i provided that background [Ca2+]i was elevated by the application of an L-type Ca2+ channel agonist. This was probably due to a hyperpolarization of the membrane by Cl- currents. K(+)-Cl- cotransport maintained the gradient for hyperpolarizing Cl-currents. We conclude that in immature midbrain neurons an inward Cl- transport is not effective although the GABA response is depolarizing. Further, GABA itself is not required for the developmental switch of GABAergic responses from depolarizing to hyperpolarizing in cultured midbrain neurons.

  18. Hyperpolarizing Inhibition Develops without Trophic support by GABA in Cultured Rat Midbrain Neurons

    PubMed Central

    Titz, Stefan; Hans, Michael; Kelsch, Wolfgang; Lewen, Andrea; Swandulla, Dieter; Misgeld, Ulrich

    2003-01-01

    During a limited period of early neuronal development, GABA is depolarizing and elevates [Ca2+]i, which mediates the trophic action of GABA in neuronal maturation. We tested the attractive hypothesis that GABA itself promotes the developmental change of its response from depolarizing to hyperpolarizing (Ganguly et al. 2001). In cultured midbrain neurons we found that the GABA response changed from depolarizing to hyperpolarizing, although GABAA receptors had been blocked throughout development. In immature neurons prolonged exposure of the cells to nanomolar concentrations of GABA or brief repetitive applications of GABA strongly diminished the elevation of [Ca2+]i by GABA. As revealed by gramicidin perforated-patch recording, reduced [Ca2+]i responses were due to a diminished driving force for Cl−. This suggests that immature neurons do not have an efficient inward transport that can compensate the loss of cytosolic Cl− resulting from sustained GABAA receptor activation by ambient GABA. Transient increases in external K+, which can induce voltage-dependent Cl− entry, restored GABA-induced [Ca2+]i elevations. In mature neurons, GABA reduced [Ca2+]i provided that background [Ca2+]i was elevated by the application of an L-type Ca2+ channel agonist. This was probably due to a hyperpolarization of the membrane by Cl− currents. K+-Cl− cotransport maintained the gradient for hyperpolarizing Cl− currents. We conclude that in immature midbrain neurons an inward Cl− transport is not effective although the GABA response is depolarizing. Further, GABA itself is not required for the developmental switch of GABAergic responses from depolarizing to hyperpolarizing in cultured midbrain neurons. PMID:12938674

  19. GABA(B) receptors: altered coupling to G-proteins in rats sensitized to amphetamine.

    PubMed

    Zhang, K; Tarazi, F I; Campbell, A; Baldessarini, R J

    2000-01-01

    Modified dopamine and glutamate neurotransmission in discrete brain regions is implicated in stimulant-induced behavioral sensitization. Release of both neurotransmitters is influenced by GABA(B) metabotropic receptors for the principal inhibitory neurotransmitter GABA. Accordingly, GABA(B) receptors were examined in rats sensitized to amphetamine by measuring receptor density and coupling to G-proteins indicated as [(3)H]baclofen binding and baclofen-mediated [(35)S]GTP gamma S binding. Repeated treatment with (+)-amphetamine (5mg/kg per day, i.p., for five days) sensitized the rats to amphetamine challenge (1mg/kg) at 14 days, but not one day, later. GABA(B) receptor density was not altered at either time. Baclofen-mediated [(35)S]GTP gamma S binding, however, was selectively augmented in the prefrontal cortex and attenuated in the nucleus accumbens at 14 days, but not one day, after amphetamine treatment. Changes in GABA(B) receptor coupling to G-proteins in rats sensitized to amphetamine, but not in similarly treated but unsensitized rats, lead us to suggest that altered GABA(B) receptor functioning may contribute to the expression of amphetamine-induced behavioral sensitization.

  20. RAPID DOPAMINE TRANSMISSION WITHIN THE NUCLEUS ACCUMBENS DRAMATICALLY DIFFERS FOLLOWING MORPHINE AND OXYCODONE DELIVERY

    PubMed Central

    Mabrouk, Omar S.; Lovic, Vedran; Singer, Bryan F.; Kennedy, Robert T.; Aragona, Brandon J.

    2014-01-01

    While most drugs of abuse increase dopamine neurotransmission, rapid neurochemical measurements show that different drugs evoke distinct dopamine release patterns within the nucleus accumbens. Rapid changes in dopamine concentration following psychostimulant administration have been well studied; however, such changes have never been examined following opioid delivery. Here, we provide novel measures of rapid dopamine release following intravenous infusion of two opioids, morphine and oxycodone, in drug naïve rats using fast-scan cyclic voltammetry and rapid (1 min) microdialysis coupled with mass spectrometry. In addition to measuring rapid dopamine transmission, microdialysis HPLC-MS measures changes in GABA, glutamate, monoamines, monoamine metabolites, and several other neurotransmitters. Although both opioids increased dopamine release in the nucleus accumbens, their patterns of drug-evoked dopamine transmission differed dramatically. Oxycodone evoked a robust and stable increase in dopamine concentration and a robust increase in the frequency and amplitude of phasic dopamine release events. Conversely, morphine evoked a brief (~ 1 min) increase in dopamine that was coincident with a surge in GABA concentration and then both transmitters returned to baseline levels. Thus, by providing rapid measures of neurotransmission, this study reveals previously unknown differences in opioid-induced neurotransmitter signaling. Investigating these differences may be essential for understanding how these two drugs of abuse could differentially usurp motivational circuitry and powerfully influence behavior. PMID:25208732

  1. Phenibut (beta-phenyl-GABA): a tranquilizer and nootropic drug.

    PubMed

    Lapin, I

    2001-01-01

    Phenibut (beta-phenyl-gamma-aminobutyric acid HCl) is a neuropsychotropic drug that was discovered and introduced into clinical practice in Russia in the 1960s. It has anxiolytic and nootropic (cognition enhancing) effects. It acts as a GABA-mimetic, primarily at GABA(B) and, to some extent, at GABA(A) receptors. It also stimulates dopamine receptors and antagonizes beta-phenethylamine (PEA), a putative endogenous anxiogenic. The psychopharmacological activity of phenibut is similar to that of baclofen, a p-Cl-derivative of phenibut. This article reviews the structure-activity relationship of phenibut and its derivatives. Emphasis is placed on the importance of the position of the phenyl ring, the role of the carboxyl group, and the activity of optical isomers. Comparison of phenibut with piracetam and diazepam reveals similarities and differences in their pharmacological and clinical effects. Phenibut is widely used in Russia to relieve tension, anxiety, and fear, to improve sleep in psychosomatic or neurotic patients; as well as a pre- or post-operative medication. It is also used in the therapy of disorders characterized by asthenia and depression, as well as in post-traumatic stress, stuttering and vestibular disorders.

  2. Gestational changes of GABA levels and GABA binding in the human uterus

    SciTech Connect

    Erdoe, S.L.; Villanyi, P.; Laszlo, A.

    1989-01-01

    The concentrations of gamma-aminobutyric acid (GABA), the activities of L-glutamate decarboxylase and GABA-transaminase, and the nature of the sodium-independent binding of GABA were examined in uterine tissue pieces obtained surgically from pregnant and non-pregnant women. GABA concentrations were reduced, while the activity of GABA-transaminase and the specific binding of (/sup 3/H)GABA significantly increased in specimens from pregnant subjects. These findings suggest some gestation-related functional role for the GABA system in the human uterus.

  3. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and gamma-vinyl-gamma-aminobutyric acid (gamma-vinyl GABA) alter neurotransmitter concentrations in the nervous tissue of the goldfish (Carassius auratus) but not the cockroach (Periplaneta americana).

    PubMed

    Sloley, B D; McKenna, K F

    1993-02-01

    1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 1-methyl-4-phenylpyridinium iodide (MPP+) and gamma-vinyl-gamma-aminobutyric acid (gamma-vinyl GABA) are drugs demonstrated to alter catecholamine or gamma-aminobutyric acid (GABA) concentrations in vertebrate nervous tissue. MPTP and MPP+, which are potent and selective vertebrate neurotoxins, are effective in depleting noradrenaline and dopamine concentrations in goldfish. However, only MPP+ depletes dopamine in the central nervous tissues of the cockroach, and only when injected directly into the nervous tissue. Systemic injection of gamma-vinyl GABA, a selective GABA transaminase inhibitor in vertebrates, increases GABA concentrations in goldfish but not cockroach nervous tissue. Incubations of both goldfish hypothalamus and cockroach nervous tissue demonstrated the presence of GABA transaminase activity in vitro. However, the GABA transaminase activity obtained from goldfish tissues was much more sensitive to inhibition by gamma-vinyl GABA than that obtained from cockroach nervous tissue. These results demonstrate that MPTP, MPP+ and gamma-vinyl GABA are useful pharmacological tools which can alter neurotransmitter concentrations in a lower vertebrate. Unfortunately, they possess limited effectiveness in the cockroach.

  4. Effects of NaCl Replacement with Gamma-Aminobutyric acid (GABA) on the Quality Characteristics and Sensorial Properties of Model Meat Products

    PubMed Central

    Chun, Ji-Yeon; Cho, Hyung-Yong; Min, Sang-Gi

    2014-01-01

    This study investigated the effects of γ-aminobutylic acid (GABA) on the quality and sensorial properties of both the GABA/NaCl complex and model meat products. GABA/NaCl complex was prepared by spray-drying, and the surface dimensions, morphology, rheology, and saltiness were characterized. For model meat products, pork patties were prepared by replacing NaCl with GABA. For characteristics of the complex, increasing GABA concentration increased the surface dimensions of the complex. However, GABA did not affect the rheological properties of solutions containing the complex. The addition of 2% GABA exhibited significantly higher saltiness than the control (no GABA treatment). In the case of pork patties, sensory testing indicated that the addition of GABA decreased the saltiness intensity. Both the intensity of juiciness and tenderness of patties containing GABA also scored lower than the control, based on the NaCl reduction. These results were consistent with the quality characteristics (cooking loss and texture profile analysis). Nevertheless, overall acceptability of the pork patties showed that up to 1.5%, patties containing GABA did not significantly differ from the control. Consequently, the results indicated that GABA has a potential application in meat products, but also manifested a deterioration of quality by the NaCl reduction, which warrants further exploration. PMID:26761294

  5. PKCβ Inhibitors Attenuate Amphetamine-Stimulated Dopamine Efflux.

    PubMed

    Zestos, Alexander G; Mikelman, Sarah R; Kennedy, Robert T; Gnegy, Margaret E

    2016-06-15

    Amphetamine abuse afflicts over 13 million people, and there is currently no universally accepted treatment for amphetamine addiction. Amphetamine serves as a substrate for the dopamine transporter and reverses the transporter to cause an increase in extracellular dopamine. Activation of the beta subunit of protein kinase C (PKCβ) enhances extracellular dopamine in the presence of amphetamine by facilitating the reverse transport of dopamine and internalizing the D2 autoreceptor. We previously demonstrated that PKCβ inhibitors block amphetamine-stimulated dopamine efflux in synaptosomes from rat striatum in vitro. In this study, we utilized in vivo microdialysis in live, behaving rats to assess the effect of the PKCβ inhibitors, enzastaurin and ruboxistaurin, on amphetamine-stimulated locomotion and increases in monoamines and their metabolites. A 30 min perfusion of the nucleus accumbens core with 1 μM enzastaurin or 1 μM ruboxistaurin reduced efflux of dopamine and its metabolite 3-methoxytyramine induced by amphetamine by approximately 50%. The inhibitors also significantly reduced amphetamine-stimulated extracellular levels of norepinephrine. The stimulation of locomotor behavior by amphetamine, measured simultaneously with the analytes, was comparably reduced by the PKCβ inhibitors. Using a stable isotope label retrodialysis procedure, we determined that ruboxistaurin had no effect on basal levels of dopamine, norepinephrine, glutamate, or GABA. In addition, normal uptake function through the dopamine transporter was unaltered by the PKCβ inhibitors, as measured in rat synaptosomes. Our results support the utility of using PKCβ inhibitors to reduce the effects of amphetamine.

  6. NKCC1 knockdown decreases neuron production through GABA(A)-regulated neural progenitor proliferation and delays dendrite development.

    PubMed

    Young, Stephanie Z; Taylor, M Morgan; Wu, Sharon; Ikeda-Matsuo, Yuri; Kubera, Cathryn; Bordey, Angélique

    2012-09-26

    Signaling through GABA(A) receptors controls neural progenitor cell (NPC) development in vitro and is altered in schizophrenic and autistic individuals. However, the in vivo function of GABA(A) signaling on neural stem cell proliferation, and ultimately neurogenesis, remains unknown. To examine GABA(A) function in vivo, we electroporated plasmids encoding short-hairpin (sh) RNA against the Na-K-2Cl cotransporter NKCC1 (shNKCC1) in NPCs of the neonatal subventricular zone in mice to reduce GABA(A)-induced depolarization. Reduced GABA(A) depolarization identified by a loss of GABA(A)-induced calcium responses in most electroporated NPCs led to a 70% decrease in the number of proliferative Ki67(+) NPCs and a 60% reduction in newborn neuron density. Premature loss of GABA(A) depolarization in newborn neurons resulted in truncated dendritic arborization at the time of synaptic integration. However, by 6 weeks the dendritic tree had partially recovered and displayed a small, albeit significant, decrease in dendritic complexity but not total dendritic length. To further examine GABA(A) function on NPCs, we treated animals with a GABA(A) allosteric agonist, pentobarbital. Enhancement of GABA(A) activity in NPCs increased the number of proliferative NPCs by 60%. Combining shNKCC1 and pentobarbital prevented the shNKCC1 and the pentobarbital effects on NPC proliferation, suggesting that these manipulations affected NPCs through GABA(A) receptors. Thus, dysregulation in GABA(A) depolarizing activity delayed dendritic development and reduced NPC proliferation resulting in decreased neuronal density.

  7. Mechanism of action of nitrogen pressure in controlling striatal dopamine level of freely moving rats is changed by recurrent exposures to nitrogen narcosis.

    PubMed

    Lavoute, Cécile; Weiss, Michel; Risso, Jean-Jacques; Rostain, Jean-Claude

    2012-03-01

    In rats, a single exposure to 3 MPa nitrogen induces change in motor processes, a sedative action and a decrease in dopamine release in the striatum. These changes due to a narcotic effect of nitrogen have been attributed to a decrease in glutamatergic control and the facilitation of GABAergic neurotransmission involving NMDA and GABA(A) receptors, respectively. After repeated exposure to nitrogen narcosis, a second exposure to 3 MPa increased dopamine levels suggesting a change in the control of the dopaminergic pathway. We investigated the role of the nigral NMDA and GABA(A) receptors in changes in the striatal dopamine levels. Dopamine-sensitive electrodes were implanted into the striatum under general anesthesia, together with a guide-cannula for drug injections into the SNc. Dopamine level was monitored by in vivo voltammetry. The effects of NMDA/GABA(A) receptor agonists (NMDA/muscimol) and antagonists (AP7/gabazine) on dopamine levels were investigated. Rats were exposed to 3 MPa nitrogen before and after five daily exposures to 1 MPa. After these exposures to nitrogen narcosis, gabazine, NMDA and AP7 had no effect on the nitrogen-induced increase in dopamine levels. By contrast, muscimol strongly enhanced the increase in dopamine level induced by nitrogen. Our findings suggest that repeated nitrogen exposure disrupted NMDA receptor function and decreased GABAergic input by modifying GABA(A) receptor sensitivity. These findings demonstrated a change in the mechanism of action of nitrogen at pressure.

  8. The role of the GABA system in amphetamine-type stimulant use disorders

    PubMed Central

    Jiao, Dongliang; liu, Yao; Li, Xiaohong; liu, Jinggen; Zhao, Min

    2015-01-01

    Abuse of amphetamine-type stimulants (ATS) has become a global public health problem. ATS causes severe neurotoxicity, which could lead to addiction and could induce psychotic disorders or cognitive dysfunctions. However, until now, there has been a lack of effective medicines for treating ATS-related problems. Findings from recent studies indicate that in addition to the traditional dopamine-ergic system, the GABA (gamma-aminobutyric acid)-ergic system plays an important role in ATS abuse. However, the exact mechanisms of the GABA-ergic system in amphetamine-type stimulant use disorders are not fully understood. This review discusses the role of the GABA-ergic system in ATS use disorders, including ATS induced psychotic disorders and cognitive dysfunctions. We conclude that the GABA-ergic system are importantly involved in the development of ATS use disorders through multiple pathways, and that therapies or medicines that target specific members of the GABA-ergic system may be novel effective interventions for the treatment of ATS use disorders. PMID:25999814

  9. Extracellular GABA in globus pallidus increases during the induction of oral tremor by haloperidol but not by muscarinic receptor stimulation.

    PubMed

    Collins-Praino, Lyndsey E; Podurgiel, Samantha J; Kovner, Rotem; Randall, Patrick A; Salamone, John D

    2012-09-01

    Tremulous jaw movements in rats can be induced by several conditions associated with parkinsonism and tremorogenesis, including dopamine depletion, dopamine antagonism, and cholinomimetic drugs. Previous research indicates that neostriatal mechanisms are involved in the generation of tremulous jaw movements, but the striatal output pathways involved in these movements remain uncertain. One important pathway for striatal output is the GABAergic striatopallidal system. The present studies were undertaken to determine if extracellular levels of GABA in globus pallidus are associated with the induction of tremulous jaw movements by either a dopamine D2 antagonist (haloperidol) or a cholinomimetic (the muscarinic agonist pilocarpine). The first experiment studied the effects of both acute and repeated (i.e. 8 days) administration of the D2 antagonist haloperidol. In the second experiment, the effect of acute administration of the muscarinic agonist pilocarpine on GABA levels in the globus pallidus was examined. In both experiments, behavioral observations of tremulous jaw movements were conducted in parallel with the collection of microdialysis samples. Acute and repeated haloperidol treatment induced tremulous jaw movements, and significantly elevated extracellular GABA in globus pallidus. Pooling across all treatment groups, there was a significant positive correlation between pallidal GABA levels and the number of tremulous jaw movements induced during the first three samples collected after injection. However, injection of 4.0mg/kg pilocarpine had no effect on pallidal GABA release, despite the robust induction of tremulous jaw movements. These results indicate that the tremulous jaw movements induced by dopamine D2 antagonism and those induced through muscarinic receptor stimulation may be generated via distinct mechanisms.

  10. Manganese exposure inhibits the clearance of extracellular GABA and influences taurine homeostasis in the striatum of developing rats.

    PubMed

    Fordahl, Steve C; Anderson, Joel G; Cooney, Paula T; Weaver, Tara L; Colyer, Christa L; Erikson, Keith M

    2010-12-01

    Manganese (Mn) accumulation in the brain has been shown to alter the neurochemistry of the basal ganglia. Mn-induced alterations in dopamine biology are fairly well understood, but recently more evidence has emerged characterizing the role of γ-aminobutyric acid (GABA) in this dysfunction. The purpose of this study was to determine if the previously observed Mn-induced increase in extracellular GABA (GABA(EC)) was due to altered GABA transporter (GAT) function, and whether Mn perturbs other amino acid neurotransmitters, namely taurine and glycine (known modulators of GABA). Extracellular GABA, taurine, and glycine concentrations were collected from the striatum of control (CN) or Mn-exposed Sprague-Dawley rats using in vivo microdialysis, and the GAT inhibitor nipecotic acid (NA) was used to probe GAT function. Tissue and extracellular Mn levels were significantly increased, and the Fe:Mn ratio was decreased 36-fold in the extracellular space due to Mn-exposure. NA led to a 2-fold increase in GABA(EC) of CNs, a response that was attenuated by Mn. Taurine responded inversely to GABA, and a novel 10-fold increase in taurine was observed after the removal of NA in CNs. Mn blunted this response and nearly abolished extracellular taurine throughout collection. Striatal taurine transporter (Slc6a6) mRNA levels were significantly increased with Mn-exposure, and Mn significantly increased (3)H-Taurine uptake after 3-min exposure in primary rat astrocytes. These data suggest that Mn increases GABA(EC) by inhibiting the function of GAT, and that perturbed taurine homeostasis potentially impacts neural function by jeopardizing the osmoregulatory and neuromodulatory functions of taurine in the brain.

  11. Quadruplex Integrated DNA (QuID) Nanosensors for Monitoring Dopamine

    PubMed Central

    Morales, Jennifer M.; Skipwith, Christopher G.; Clark, Heather A.

    2015-01-01

    Dopamine is widely innervated throughout the brain and critical for many cognitive and motor functions. Imbalances or loss in dopamine transmission underlie various psychiatric disorders and degenerative diseases. Research involving cellular studies and disease states would benefit from a tool for measuring dopamine transmission. Here we show a Quadruplex Integrated DNA (QuID) nanosensor platform for selective and dynamic detection of dopamine. This nanosensor exploits DNA technology and enzyme recognition systems to optically image dopamine levels. The DNA quadruplex architecture is designed to be compatible in physically constrained environments (110 nm) with high flexibility, homogeneity, and a lower detection limit of 110 µM. PMID:26287196

  12. Dopamine transporter deficiency syndrome: phenotypic spectrum from infancy to adulthood

    PubMed Central

    Ng, Joanne; Zhen, Juan; Meyer, Esther; Erreger, Kevin; Li, Yan; Kakar, Naseebullah; Ahmad, Jamil; Thiele, Holger; Kubisch, Christian; Rider, Nicholas L.; Holmes Morton, D.; Strauss, Kevin A.; Puffenberger, Erik G.; D’Agnano, Daniela; Anikster, Yair; Carducci, Claudia; Hyland, Keith; Rotstein, Michael; Leuzzi, Vincenzo; Borck, Guntram; Reith, Maarten E. A.

    2014-01-01

    Dopamine transporter deficiency syndrome due to SLC6A3 mutations is the first inherited dopamine ‘transportopathy’ to be described, with a classical presentation of early infantile-onset progressive parkinsonism dystonia. In this study we have identified a new cohort of patients with dopamine transporter deficiency syndrome, including, most significantly, atypical presentation later in childhood with a milder disease course. We report the detailed clinical features, molecular genetic findings and in vitro functional investigations undertaken for adult and paediatric cases. Patients presenting with parkinsonism dystonia or a neurotransmitter profile characteristic of dopamine transporter deficiency syndrome were recruited for study. SLC6A3 mutational analysis was undertaken in all patients. The functional consequences of missense variants on the dopamine transporter were evaluated by determining the effect of mutant dopamine transporter on dopamine uptake, protein expression and amphetamine-mediated dopamine efflux using an in vitro cellular heterologous expression system. We identified eight new patients from five unrelated families with dopamine transporter deficiency syndrome. The median age at diagnosis was 13 years (range 1.5–34 years). Most significantly, the case series included three adolescent males with atypical dopamine transporter deficiency syndrome of juvenile onset (outside infancy) and progressive parkinsonism dystonia. The other five patients in the cohort presented with classical infantile-onset parkinsonism dystonia, with one surviving into adulthood (currently aged 34 years) and labelled as having ‘juvenile parkinsonism’. All eight patients harboured homozygous or compound heterozygous mutations in SLC6A3, of which the majority are previously unreported variants. In vitro studies of mutant dopamine transporter demonstrated multifaceted loss of dopamine transporter function. Impaired dopamine uptake was universally present, and more

  13. Complexity of dopamine metabolism

    PubMed Central

    2013-01-01

    Parkinson’s disease (PD) coincides with a dramatic loss of dopaminergic neurons within the substantia nigra. A key player in the loss of dopaminergic neurons is oxidative stress. Dopamine (DA) metabolism itself is strongly linked to oxidative stress as its degradation generates reactive oxygen species (ROS) and DA oxidation can lead to endogenous neurotoxins whereas some DA derivatives show antioxidative effects. Therefore, DA metabolism is of special importance for neuronal redox-homeostasis and viability. In this review we highlight different aspects of dopamine metabolism in the context of PD and neurodegeneration. Since most reviews focus only on single aspects of the DA system, we will give a broader overview by looking at DA biosynthesis, sequestration, degradation and oxidation chemistry at the metabolic level, as well as at the transcriptional, translational and posttranslational regulation of all enzymes involved. This is followed by a short overview of cellular models currently used in PD research. Finally, we will address the topic from a medical point of view which directly aims to encounter PD. PMID:23683503

  14. Methamphetamine-evoked depression of GABA(B) receptor signaling in GABA neurons of the VTA.

    PubMed

    Padgett, Claire L; Lalive, Arnaud L; Tan, Kelly R; Terunuma, Miho; Munoz, Michaelanne B; Pangalos, Menelas N; Martínez-Hernández, José; Watanabe, Masahiko; Moss, Stephen J; Luján, Rafael; Lüscher, Christian; Slesinger, Paul A

    2012-03-08

    Psychostimulants induce neuroadaptations in excitatory and fast inhibitory transmission in the ventral tegmental area (VTA). Mechanisms underlying drug-evoked synaptic plasticity of slow inhibitory transmission mediated by GABA(B) receptors and G protein-gated inwardly rectifying potassium (GIRK/Kir(3)) channels, however, are poorly understood. Here, we show that 1 day after methamphetamine (METH) or cocaine exposure both synaptically evoked and baclofen-activated GABA(B)R-GIRK currents were significantly depressed in VTA GABA neurons and remained depressed for 7 days. Presynaptic inhibition mediated by GABA(B)Rs on GABA terminals was also weakened. Quantitative immunoelectron microscopy revealed internalization of GABA(B1) and GIRK2, which occurred coincident with dephosphorylation of serine 783 (S783) in GABA(B2), a site implicated in regulating GABA(B)R surface expression. Inhibition of protein phosphatases recovered GABA(B)R-GIRK currents in VTA GABA neurons of METH-injected mice. This psychostimulant-evoked impairment in GABA(B)R signaling removes an intrinsic brake on GABA neuron spiking, which may augment GABA transmission in the mesocorticolimbic system.

  15. Enhancement of GABA release through endogenous activation of axonal GABA(A) receptors in juvenile cerebellum.

    PubMed

    Trigo, Federico F; Chat, Mireille; Marty, Alain

    2007-11-14

    Recent evidence indicates the presence of presynaptic GABA(A) receptors (GABA(A)Rs) in the axon domain of several classes of central neurons, including cerebellar basket and stellate cells. Here, we investigate the possibility that these receptors could be activated in the absence of electrical or chemical stimulation. We find that low concentrations of GABA increase the frequency of miniature GABAergic synaptic currents. Submaximal concentrations of a GABA(A)R blocker, gabazine, decrease both the miniature current frequency and the probability of evoked GABA release. Zolpidem, an agonist of the benzodiazepine binding site, and NO-711 (1-[2-[[(diphenylmethylene)imino]oxy]ethyl]-1,2,5,6-tetrahydro-3-pyridinecarboxylic acid hydrochloride), a blocker of GABA uptake, both increase the frequency of miniature currents. These effects occur up to postnatal day 14, but not later. Immunohistochemistry indicates the presence of alpha1-containing GABA(A)Rs in interneuron presynaptic terminals with a similar age dependence. We conclude that, under resting conditions, axonal GABA(A)Rs are significantly activated, that this activation results in enhanced GABA release, and that it can be augmented by increasing the affinity of GABA(A)Rs or reducing GABA uptake. Our findings suggest the existence of a positive-feedback mechanism involving presynaptic GABA(A)Rs that maintains a high release rate and a high local GABA concentration in the immature cerebellar network.

  16. Mitochondrial stress-induced dopamine efflux and neuronal damage by malonate involves the dopamine transporter.

    PubMed

    Moy, Lily Y; Wang, Sheng-Ping; Sonsalla, Patricia K

    2007-02-01

    Endogenous striatal dopamine (DA) overflow has been associated with neuropathological conditions resulting from ischemia, psychostimulants, and metabolic inhibition. Malonate, a reversible inhibitor of succinate dehydrogenase, models the effects of energy impairment in neurodegenerative disorders. We have previously reported that the striatal DA efflux and damage to DA nerve terminals resulting from intrastriatal malonate infusions is prevented by prior DA depletion, suggesting that DA plays a role in the neuronal damage. We presently report that the malonate-induced DA efflux is partially mediated by reverse transport of DA from the cytosol to the extracellular space via the DA transporter (DAT). Pharmacological blockade of the DAT with a series of structurally different inhibitors [cocaine, mazindol, 1-(2-(bis(4-fluophenyl methoxy) ethyl)-4-(3-(4-fluorophenyl)-propyl)piperazine) dimethane sulfonate (GBR 13098) and methyl(-)-3beta-(p-fluorophenyl)-1alphaH,5alphaH-tropane-2beta-carboxylate1,5-naphthalene (Win 35,428)] attenuated malonate-induced DA overflow in vivo and protected mice against subsequent damage to DA nerve terminals. Consistent with these findings, the DAT inhibitors prevented malonate-induced damage to DA neurons in mesencephalic cultures and also protected against the loss of GABA neurons in this system. The DAT inhibitors did not modify malonate-induced formation of reactive oxygen species or lactate production, indicating that the DAT inhibitors neither exert antioxidant effects nor interfere with the actions of malonate. Taken together, these findings provide direct evidence that mitochondrial impairment and metabolic stress cause striatal DA efflux via the DAT and suggest that disruptions in DA homeostasis resulting from energy impairment may contribute to the pathogenesis of neurodegenerative diseases.

  17. Anion transport and GABA signaling

    PubMed Central

    Hübner, Christian A.; Holthoff, Knut

    2013-01-01

    Whereas activation of GABAA receptors by GABA usually results in a hyperpolarizing influx of chloride into the neuron, the reversed chloride driving force in the immature nervous system results in a depolarizing efflux of chloride. This GABAergic depolarization is deemed to be important for the maturation of the neuronal network. The concept of a developmental GABA switch has mainly been derived from in vitro experiments and reliable in vivo evidence is still missing. As GABAA receptors are permeable for both chloride and bicarbonate, the net effect of GABA also critically depends on the distribution of bicarbonate. Whereas chloride can either mediate depolarizing or hyperpolarizing currents, bicarbonate invariably mediates a depolarizing current under physiological conditions. Intracellular bicarbonate is quickly replenished by cytosolic carbonic anhydrases. Intracellular bicarbonate levels also depend on different bicarbonate transporters expressed by neurons. The expression of these proteins is not only developmentally regulated but also differs between cell types and even subcellular regions. In this review we will summarize current knowledge about the role of some of these transporters for brain development and brain function. PMID:24187533

  18. GABA (γ-Aminobutyric Acid) Uptake Via the GABA Permease GabP Represses Virulence Gene Expression in Pseudomonas syringae pv. tomato DC3000.

    PubMed

    McCraw, S L; Park, D H; Jones, R; Bentley, M A; Rico, A; Ratcliffe, R G; Kruger, N J; Collmer, A; Preston, G M

    2016-12-01

    The nonprotein amino acid γ-aminobutyric acid (GABA) is the most abundant amino acid in the tomato (Solanum lycopersicum) leaf apoplast and is synthesized by Arabidopsis thaliana in response to infection by the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (hereafter called DC3000). High levels of exogenous GABA have previously been shown to repress the expression of the type III secretion system (T3SS) in DC3000, resulting in reduced elicitation of the hypersensitive response (HR) in the nonhost plant tobacco (Nicotiana tabacum). This study demonstrates that the GABA permease GabP provides the primary mechanism for GABA uptake by DC3000 and that the gabP deletion mutant ΔgabP is insensitive to GABA-mediated repression of T3SS expression. ΔgabP displayed an enhanced ability to elicit the HR in young tobacco leaves and in tobacco plants engineered to produce increased levels of GABA, which supports the hypothesis that GABA uptake via GabP acts to regulate T3SS expression in planta. The observation that P. syringae can be rendered insensitive to GABA through loss of gabP but that gabP is retained by this bacterium suggests that GabP is important for DC3000 in a natural setting, either for nutrition or as a mechanism for regulating gene expression. [Formula: see text] Copyright © 2016 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .

  19. Effects of intraventricular taurine, homotaurine and GABA on serum prolactin and thyrotropin levels in female and in male rats.

    PubMed

    Mäkinen, M; Ahtee, L; Rosenqvist, K; Tuominen, R K; Männistö, P

    1993-01-01

    Serum prolactin and thyrotropin levels of conscious, unrestrained male and female rats were compared after intracerebroventricular (i.c.v.) administration of taurine, gamma-aminobutyric acid (GABA) and homotaurine. The amino acids studied had no clear effect on serum basal thyrotropin levels in male or female rats. All amino acids elevated serum prolactin levels in female rats at the dose of 5 mumol/rat; homotaurine by about 18-fold, taurine and GABA by 3-fold. Only homotaurine elevated serum prolactin of male rats at this dose, but its effect was less pronounced (p < 0.01) in male than in female rats. Although homotaurine was clearly more potent than the two other amino acids, at the dose of 10 mumol/rat taurine and GABA also elevated serum prolactin in male rats. These findings show that there are gender-related differences in the responses of serum prolactin levels to homotaurine, taurine and GABA in rats. The tuberoinfundibular dopaminergic pathway, which exerts tonic inhibitory influence on prolactin secretion, is sexually differentiated. Hence the gender-related differences in the effects of the amino acids on prolactin secretion suggest that they might inhibit dopamine release from the median eminence. In case of homotaurine, the gender effect was most pronounced. The less clear dependence of GABA's effect on the gender is in accordance with the suggestions that GABA influences the secretion of serum prolactin by more than one mechanism.

  20. Prenatal cocaine exposure decreases parvalbumin-immunoreactive neurons and GABA-to-projection neuron ratio in the medial prefrontal cortex.

    PubMed

    McCarthy, Deirdre M; Bhide, Pradeep G

    2012-01-01

    Cocaine abuse during pregnancy produces harmful effects not only on the mother but also on the unborn child. The neurotransmitters dopamine and serotonin are known as the principal targets of the action of cocaine in the fetal and postnatal brain. However, recent evidence suggests that cocaine can impair cerebral cortical GABA neuron development and function. We sought to analyze the effects of prenatal cocaine exposure on the number and distribution of GABA and projection neurons (inhibitory interneurons and excitatory output neurons, respectively) in the mouse cerebral cortex. We found that the prenatal cocaine exposure decreased GABA neuron numbers and GABA-to-projection neuron ratio in the medial prefrontal cortex of 60-day-old mice. The neighboring prefrontal cortex did not show significant changes in either of these measures. However, there was a significant increase in projection neuron numbers in the prefrontal cortex but not in the medial prefrontal cortex. Thus, the effects of cocaine on GABA and projection neurons appear to be cortical region specific. The population of parvalbumin-immunoreactive GABA neurons was decreased in the medial prefrontal cortex following the prenatal cocaine exposure. The cocaine exposure also delayed the developmental decline in the volume of the medial prefrontal cortex. Thus, prenatal cocaine exposure produced persisting and region-specific effects on cortical cytoarchitecture and impaired the physiological balance between excitatory and inhibitory neurotransmission. These structural changes may underlie the electrophysiological and behavioral effects of prenatal cocaine exposure observed in animal models and human subjects.

  1. Synapsins Differentially Control Dopamine and Serotonin Release

    PubMed Central

    Kile, Brian M.; Guillot, Thomas S.; Venton, B. Jill; Wetsel, William C.; Augustine, George J.; Wightman, R. Mark

    2010-01-01

    Synapsins are a family of synaptic vesicle proteins that are important for neurotransmitter release. Here we have used triple knockout (TKO) mice lacking all three synapsin genes to determine the roles of synapsins in the release of two monoamine neurotransmitters, dopamine and serotonin. Serotonin release evoked by electrical stimulation was identical in substantia nigra pars reticulata slices prepared from TKO and wild-type mice. In contrast, release of dopamine in response to electrical stimulation was approximately doubled in striatum of TKO mice, both in vivo and in striatal slices, in comparison to wild-type controls. This was due to loss of synapsin III, because deletion of synapsin III alone was sufficient to increase dopamine release. Deletion of synapsins also increased the sensitivity of dopamine release to extracellular calcium ions. Although cocaine did not affect the release of serotonin from nigral tissue, this drug did enhance dopamine release. Cocaine-induced facilitation of dopamine release was a function of external calcium, an effect that was reduced in TKO mice. We conclude that synapsins play different roles in the control of release of dopamine and serotonin, with release of dopamine being negatively regulated by synapsins, specifically synapsin III, while serotonin release appears to be relatively independent of synapsins. These results provide further support for the concept that synapsin function in presynaptic terminals varies according to the neurotransmitter being released. PMID:20660258

  2. Basic aspects of GABA-transmission in alcoholism, with particular reference to GABA-transaminase.

    PubMed

    Sherif, F M; Tawati, A M; Ahmed, S S; Sharif, S I

    1997-02-01

    Neuronal dysfunction is the neurobiological basis for alcoholic behaviour, and ethanol craving seems related to hypofunction of the GABA-ergic activity. Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system (CNS). In several studies, GABA has been shown to be an important target of ethanol in the CNS, partly, as a consequence of damage to membrane-bound enzymes and receptors. GABA is involved in mediating pre- and post-synaptic inhibition of neuronal activity. It is speculated that the initial excitatory effects of ethanol may be due to inhibition of GABA-ergic activity whereas the sedative effects of the higher doses may be mediated by the activation of this inhibitory system. In the CNS, GABA is synthesised from glutamic acid by the enzyme glutamate decarboxylase (GAD) and catabolized into succinic semialdehyde by the enzyme GABA-transaminase (GABA-T), which are pyridoxal phosphate (PLP) dependent enzymes. Platelet GABA-T was characterized as being similar to central GABA-T. Inhibition of GABA-T with certain potent and selective compounds markedly increases the levels of brain GABA. Experimentally, acute ethanol treatment does not alter GABA-T activity whereas chronic treatment produces an increase in the activity, though, with some reservations since a bimodal effect has been found in chronically ethanol-treated rats. Thus, as it will be discussed below, it may be suggested that GABA-T inhibitors (e.g. vigabatrin) could have a potential role in the treatment of alcoholism and in some of the problems of ethanol withdrawal and of other drugs of abuse. Related studies on metabolism and concentrations of GABA are also promising and show a greater increase in our understanding of the aetiology and treatment of ethanol dependence and withdrawal. In general, this article also reviews both the animal and clinical observations in the field of alcoholism with regard to the GABA system.

  3. GABA interaction with lipids in organic medium

    SciTech Connect

    Beltramo, D.; Kivatinitz, S.; Lassaga, E.; Arce, A.

    1987-08-10

    The interaction of TH-GABA and UC-glutamate with lipids in an aqueous organic partition system was studied. With this partition system TH-GABA and UC-glutamate were able to interact with sphingomyelin, sulfatide, phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine and phosphatidic acid but not with cholesterol or ceramide. In an homogeneous aqueous medium the authors could not demonstrate any interaction between TH-GABA-lipids. The apparent dissociation constants (K/sub d/) for TH-GABA-lipids or UC-glutamate-lipids interactions inorganic medium were in the millimolar range and maximal charge between 3 and 7 moles of GABA or glutamate by mole of lipid. Amino acids such as glutamic acid, US -alanine and glycine displaced TH-GABA with the same potency as GABA itself; thus these results show that the interaction lacks pharmacological specificity. To detect this interaction lipid concentrations higher than 2 M were required and in the partition system TH-GABA and lipid phosphorus were both concentrated at the interface. Therefore, lipids tested with a biphasic partition system do not fulfill the classical criteria for a neurotransmitter receptor at least not for GABA and glutamate. 15 references, 1 figure, 3 tables.

  4. Dopamine-deprived striatal GABAergic interneurons burst and generate repetitive gigantic IPSCs in medium spiny neurons.

    PubMed

    Dehorter, Nathalie; Guigoni, Celine; Lopez, Catherine; Hirsch, June; Eusebio, Alexandre; Ben-Ari, Yehezkel; Hammond, Constance

    2009-06-17

    Striatal GABAergic microcircuits modulate cortical responses and movement execution in part by controlling the activity of medium spiny neurons (MSNs). How this is altered by chronic dopamine depletion, such as in Parkinson's disease, is not presently understood. We now report that, in dopamine-depleted slices of the striatum, MSNs generate giant spontaneous postsynaptic GABAergic currents (single or in bursts at 60 Hz) interspersed with silent episodes, rather than the continuous, low-frequency GABAergic drive (5 Hz) observed in control MSNs. This shift was observed in one-half of the MSN population, including both "D(1)-negative" and "D(1)-positive" MSNs. Single GABA and NMDA channel recordings revealed that the resting membrane potential and reversal potential of GABA were similar in control and dopamine-depleted MSNs, and depolarizing, but not excitatory, actions of GABA were observed. Glutamatergic and cholinergic antagonists did not block the GABAergic oscillations, suggesting that they were generated by GABAergic neurons. In support of this, cell-attached recordings revealed that a subpopulation of intrastriatal GABAergic interneurons generated bursts of spikes in dopamine-deprived conditions. This subpopulation included low-threshold spike interneurons but not fast-spiking interneurons, cholinergic interneurons, or MSNs. Therefore, a population of local GABAergic interneurons shifts from tonic to oscillatory mode when dopamine deprived and gives rise to spontaneous repetitive giant GABAergic currents in one-half the MSNs. We suggest that this may in turn alter integration of cortical signals by MSNs.

  5. Recovery of dopamine transporters with methamphetamine detoxification is not linked to changes in dopamine release.

    PubMed

    Volkow, Nora D; Wang, Gene-Jack; Smith, Lisa; Fowler, Joanna S; Telang, Frank; Logan, Jean; Tomasi, Dardo

    2015-11-01

    Methamphetamine's widepread abuse and concerns that it might increase Parkinson's disease led us to assess if the reported loss of dopamine transporters (DAT) in methamphetamine abusers (MA) reflected damage to dopamine neurons. Using PET with [(11)C]cocaine to measure DAT, and with [(11)C]raclopride to measure dopamine release (assessed as changes in specific binding of [(11)C]raclopride between placebo and methylphenidate), which was used as a marker of dopamine neuronal function, we show that MA (n=16), tested during early detoxification, had lower DAT (20-30%) but overall normal DA release in striatum (except for a small decrease in left putamen), when compared to controls (n=15). In controls, DAT were positively correlated with DA release (higher DAT associated with larger DA increases), consistent with DAT serving as markers of DA terminals. In contrast, MA showed a trend for a negative correlation (p=0.07) (higher DAT associated with lower DA increases), consistent with reduced DA re-uptake following DAT downregulation. MA who remained abstinent nine-months later (n=9) showed significant increases in DAT (20%) but methylphenidate-induced dopamine increases did not change. In contrast, in controls, DAT did not change when retested 9 months later but methylphenidate-induced dopamine increases in ventral striatum were reduced (p=0.05). Baseline D2/D3 receptors in caudate were lower in MA than in controls and did not change with detoxification, nor did they change in the controls upon retest. The loss of DAT in the MA, which was not associated with a concomitant reduction in dopamine release as would have been expected if DAT loss reflected DA terminal degneration; as well as the recovery of DAT after protracted detoxification, which was not associated with increased dopamine release as would have been expected if DAT increases reflected terminal regeneration, indicate that the loss of DAT in these MA does not reflect degeneration of dopamine terminals.

  6. Closing the loop on the GABA shunt in plants: are GABA metabolism and signaling entwined?

    PubMed Central

    Michaeli, Simon; Fromm, Hillel

    2015-01-01

    γ-Aminobutyric acid (GABA) is a non-proteinogenic amino acid that is found in uni- and multi-cellular organisms and is involved in many aspects of plant life cycle. GABA metabolism occurs by the action of evolutionary conserved enzymes that constitute the GABA shunt, bypassing two steps of the TCA cycle. The central position of GABA in the interface between plant carbon and nitrogen metabolism is well established. In parallel, there is evidence to support a role for GABA as a signaling molecule in plants. Here we cover some of the recent findings on GABA metabolism and signaling in plants and further suggest that the metabolic and signaling aspects of GABA may actually be inseparable. PMID:26106401

  7. Loss of dopamine D1 receptors and diminished D1/5 receptor-mediated ERK phosphorylation in the periaqueductal gray after spinal cord lesion

    PubMed Central

    Voulalas, Pamela J.; Ji, Yadong; Jiang, Li; Asgar, Jamila; Ro, Jin Y.; Masri, Radi

    2016-01-01

    Neuropathic pain resulting from spinal cord injury is often accompanied by maladaptive plasticity of the central nervous system, including the opioid receptor-rich periaqueductal gray (PAG). Evidence suggests that sensory signaling via the PAG is robustly modulated by dopamine D1- and D2-like receptors, but the effect of damage to the spinal cord on D1 and D2 receptor protein expression and function in the PAG has not been examined. Here we show that 21 days after a T10 or C6 spinothalamic tract lesion, both mice and rats display a remarkable decline in the expression of D1 receptors in the PAG, revealed by western blot analysis. These changes were associated with a significant reduction in hindpaw withdrawal thresholds in lesioned animals compared to sham-operated controls. We investigated the consequences of diminished D1 receptor levels by quantifying D1-like receptor-mediated phosphorylation of ERK1,2 and CREB, events that have been observed in numerous brain structures. In naïve animals, western blot analysis revealed that ERK1,2, but not CREB phosphorylation was significantly increased in the PAG by the D1-like agonist SKF 81297. Using immunohistochemistry, we found that SKF 81297 increased ERK1,2 phosphorylation in the PAG of sham animals. However, in lesioned animals, basal pERK1,2 levels were elevated and did not significantly increase after exposure to SKF 81297. Our findings provide support for the hypothesis that molecular adaptions resulting in a decrease in D1 receptor expression and signaling in the PAG are a consequence of SCL. PMID:27932310

  8. Enhanced sucrose and cocaine self-administration and cue-induced drug seeking after loss of VGLUT2 in midbrain dopamine neurons in mice.

    PubMed

    Alsiö, Johan; Nordenankar, Karin; Arvidsson, Emma; Birgner, Carolina; Mahmoudi, Souha; Halbout, Briac; Smith, Casey; Fortin, Guillaume M; Olson, Lars; Descarries, Laurent; Trudeau, Louis-Éric; Kullander, Klas; Lévesque, Daniel; Wallén-Mackenzie, Asa

    2011-08-31

    The mesostriatal dopamine (DA) system contributes to several aspects of responses to rewarding substances and is implicated in conditions such as drug addiction and eating disorders. A subset of DA neurons has been shown to express the type 2 Vesicular glutamate transporter (Vglut2) and may therefore corelease glutamate. In the present study, we analyzed mice with a conditional deletion of Vglut2 in DA neurons (Vglut2(f/f;DAT-Cre)) to address the functional significance of the glutamate-DA cophenotype for responses to cocaine and food reinforcement. Biochemical parameters of striatal DA function were also examined by using DA receptor autoradiography, immediate-early gene quantitative in situ hybridization after cocaine challenge, and DA-selective in vivo chronoamperometry. Mice in which Vglut2 expression had been abrogated in DA neurons displayed enhanced operant self-administration of both high-sucrose food and intravenous cocaine. Furthermore, cocaine seeking maintained by drug-paired cues was increased by 76%, showing that reward-dependent plasticity is perturbed in these mice. In addition, several lines of evidence suggest that adaptive changes occurred in both the ventral and dorsal striatum in the absence of VGLUT2: DA receptor binding was increased, and basal mRNA levels of the DA-induced early genes Nur77 and c-fos were elevated as after cocaine induction. Furthermore, in vivo challenge of the DA system by potassium-evoked depolarization revealed less DA release in both striatal areas. This study demonstrates that absence of VGLUT2 in DA neurons leads to perturbations of reward consumption as well as reward-associated memory, features of particular relevance for addictive-like behavior.

  9. Structure, function, and plasticity of GABA transporters

    PubMed Central

    Scimemi, Annalisa

    2014-01-01

    GABA transporters belong to a large family of neurotransmitter:sodium symporters. They are widely expressed throughout the brain, with different levels of expression in different brain regions. GABA transporters are present in neurons and in astrocytes and their activity is crucial to regulate the extracellular concentration of GABA under basal conditions and during ongoing synaptic events. Numerous efforts have been devoted to determine the structural and functional properties of GABA transporters. There is also evidence that the expression of GABA transporters on the cell membrane and their lateral mobility can be modulated by different intracellular signaling cascades. The strength of individual synaptic contacts and the activity of entire neuronal networks may be finely tuned by altering the density, distribution and diffusion rate of GABA transporters within the cell membrane. These findings are intriguing because they suggest the existence of complex regulatory systems that control the plasticity of GABAergic transmission in the brain. Here we review the current knowledge on the structural and functional properties of GABA transporters and highlight the molecular mechanisms that alter the expression and mobility of GABA transporters at central synapses. PMID:24987330

  10. GABA localization in the nematode Ascaris

    SciTech Connect

    Guastella, J.

    1988-01-01

    A histochemical approach was used to examine the distribution of GABA-associated neurons in the nematode Ascaris, an organism whose small number of morphologically simple neurons make it an excellent preparation for analyzing neuronal phenotypes. Two GABAergic markers were examined: GABA-like immunoreactivity (GLIR), a marker for endogenous stores of GABA; and ({sup 3}H)-GABA uptake, a marker for GABA uptake sites. Strong GLIR was present in the cell bodies, neurites and commissures of dorsal and ventral inhibitory motorneurons present in this region. Strong GLIR was also present in the cell bodies and processes of the four RME neurons in the nerve ring and in several other ganglionic neurons. Staining was absent in excitatory motorneurons, in ventral cord interneurons and in muscle cells and hypodermis. GABA uptake sites were found in single neural processes in both the ventral and dorsal nerve cords. ({sup 3}H)-GABA labeling was also observed in the other two RME cells and several other cephalic neurons. Four putative cholinergic excitatory motorneurons in the retrovesicular ganglion (RVG) were heavily labeled. Ventral and dorsal nerve cord inhibitory motorneurons did not take up ({sup 3}H)-GABA. Labeling of the ventral cord excitatory motorneuron somata and cell bodies was at or slightly above background. Heavy labeling of muscle cells was also observed.

  11. Dopamine modulation of GABAergic function enables network stability and input selectivity for sustaining working memory in a computational model of the prefrontal cortex.

    PubMed

    Lew, Sergio E; Tseng, Kuei Y

    2014-12-01

    Dopamine modulation of GABAergic transmission in the prefrontal cortex (PFC) is thought to be critical for sustaining cognitive processes such as working memory and decision-making. Here, we developed a neurocomputational model of the PFC that includes physiological features of the facilitatory action of dopamine on fast-spiking interneurons to assess how a GABAergic dysregulation impacts on the prefrontal network stability and working memory. We found that a particular non-linear relationship between dopamine transmission and GABA function is required to enable input selectivity in the PFC for the formation and retention of working memory. Either degradation of the dopamine signal or the GABAergic function is sufficient to elicit hyperexcitability in pyramidal neurons and working memory impairments. The simulations also revealed an inverted U-shape relationship between working memory and dopamine, a function that is maintained even at high levels of GABA degradation. In fact, the working memory deficits resulting from reduced GABAergic transmission can be rescued by increasing dopamine tone and vice versa. We also examined the role of this dopamine-GABA interaction for the termination of working memory and found that the extent of GABAergic excitation needed to reset the PFC network begins to occur when the activity of fast-spiking interneurons surpasses 40 Hz. Together, these results indicate that the capability of the PFC to sustain working memory and network stability depends on a robust interplay of compensatory mechanisms between dopamine tone and the activity of local GABAergic interneurons.

  12. Dopamine and Serotonin Modulate Human GABAρ1 Receptors Expressed in Xenopus laevis Oocytes

    PubMed Central

    2011-01-01

    GABAρ1 receptors are highly expressed in bipolar neurons of the retina and to a lesser extent in several areas of the central nervous system (CNS), and dopamine and serotonin are also involved in the modulation of retinal neural transmission. Whether these biogenic amines have a direct effect on ionotropic GABA receptors was not known. Here, we report that GABAρ1 receptors, expressed in X. laevis oocytes, were negatively modulated by dopamine and serotonin and less so by octopamine and tyramine. Interestingly, these molecules did not have effects on GABAA receptors. 5-Carboxamido-tryptamine and apomorphine did not exert evident effects on any of the receptors. Schild plot analyses of the inhibitory actions of dopamine and serotonin on currents elicited by GABA showed slopes of 2.7 ± 0.3 and 6.1 ± 1.8, respectively, indicating a noncompetitive mechanism of inhibition. The inhibition of GABAρ1 currents was independent of the membrane potential and was insensitive to picrotoxin, a GABA receptor channel blocker and to the GABAρ-specific antagonist (1,2,5,6-tetrahydropyridine-4-yl)methyl phosphinic acid (TPMPA). Dopamine and serotonin changed the sensitivity of GABAρ1 receptors to the inhibitory actions of Zn2+. In contrast, La3+ potentiated the amplitude of the GABA currents generated during negative modulation by dopamine (EC50 146 μM) and serotonin (EC50 196 μM). The functional role of the direct modulation of GABAρ receptors by dopamine and serotonin remains to be elucidated; however, it may represent an important modulatory pathway in the retina, where GABAρ receptors are highly expressed and where these biogenic amines are abundant. PMID:22860179

  13. Evidence for GABA-Induced Systemic GABA Accumulation in Arabidopsis upon Wounding

    PubMed Central

    Scholz, Sandra S.; Malabarba, Jaiana; Reichelt, Michael; Heyer, Monika; Ludewig, Frank; Mithöfer, Axel

    2017-01-01

    The non-proteinogenic amino acid γ-aminobutyric acid (GABA) is present in all plant species analyzed so far. Its synthesis is stimulated by either acidic conditions occurring after tissue disruption or higher cytosolic calcium level. In mammals, GABA acts as inhibitory neurotransmitter but its function in plants is still not well understood. Besides its involvement in abiotic stress resistance, GABA has a role in the jasmonate-independent defense against invertebrate pests. While the biochemical basis for GABA accumulation in wounded leaves is obvious, the underlying mechanisms for wounding-induced GABA accumulation in systemic leaves remained unclear. Here, the Arabidopsis thaliana knock-out mutant lines pop2-5, unable to degrade GABA, and tpc1-2, lacking a wounding-induced systemic cytosolic calcium elevation, were employed for a comprehensive investigation of systemic GABA accumulation. A wounding-induced systemic GABA accumulation was detected in tpc1-2 plants demonstrating that an increased calcium level was not involved. Similarly, after both mechanical wounding and Spodoptera littoralis feeding, GABA accumulation in pop2-5 plants was significantly higher in local and systemic leaves, compared to wild-type plants. Consequently, larvae feeding on these GABA-enriched mutant plants grew significantly less. Upon exogenous application of a D2-labeled GABA to wounded leaves of pop2-5 plants, its uptake but no translocation to unwounded leaves was detected. In contrast, an accumulation of endogenous GABA was observed in vascular connected systemic leaves. These results suggest that the systemic accumulation of GABA upon wounding does not depend on the translocation of GABA or on an increase in cytosolic calcium. PMID:28382046

  14. VTA Projection Neurons Releasing GABA and Glutamate in the Dentate Gyrus

    PubMed Central

    2016-01-01

    Abstract Both dopamine and nondopamine neurons from the ventral tegmental area (VTA) project to a variety of brain regions. Here we examine nondopaminergic neurons in the mouse VTA that send long-range projections to the hippocampus. Using a combination of retrograde tracers, optogenetic tools, and electrophysiological recordings, we show that VTA GABAergic axons make synaptic contacts in the granule cell layer of the dentate gyrus, where we can elicit small postsynaptic currents. Surprisingly, the currents displayed a partial sensitivity to both bicuculline and NBQX, suggesting that these mesohippocampal neurons corelease both GABA and glutamate. Finally, we show that this projection is functional in vivo and its stimulation reduces granule cell-firing rates under anesthesia. Altogether, the present results describe a novel connection between GABA and glutamate coreleasing of cells of the VTA and the dentate gyrus. This connection could be relevant for a variety of functions, including reward-related memory and neurogenesis. PMID:27648470

  15. Cortical GABA Levels in Primary Insomnia

    PubMed Central

    Morgan, Peter T.; Pace-Schott, Edward F.; Mason, Graeme F.; Forselius, Erica; Fasula, Madonna; Valentine, Gerald W.; Sanacora, Gerard

    2012-01-01

    Study Objectives: GABA is increasingly recognized as an important neurotransmitter for the initiation and maintenance of sleep. We sought to measure cortical GABA content through proton magnetic resonance spectroscopy (MRS) in persons with and without primary insomnia, and relate brain GABA levels to polysomnographic sleep measures. Design: Two-group comparison study. Setting: Outpatient study at a university research clinic. Participants: Non-medicated persons with primary insomnia (N = 16) and no sleep complaints (N = 17). Interventions: Participants kept sleep diaries and a regular time-in-bed schedule for 9 days, culminating in 2 consecutive nights of ambulatory polysomnography and a single proton MRS session. The main outcome measure was occipital GABA/creatine ratios; secondary measures included sleep measurements and relationship between polysomnographically measured time awake after sleep onset and occipital GABA content. Measurements and Results: The primary insomnia group was distinguished from persons with no sleep complaints on self-reported and polysomnographically measured sleep. The two groups did not differ in age, sex, body mass index, habitual bed- and wake-times, napping, use of caffeine, or use of cigarettes. Mean occipital GABA level was 12% higher in persons with insomnia than in persons without sleep complaints (P < 0.05). In both groups, GABA levels correlated negatively with polysomnographically measured time awake after sleep onset (P < 0.05). Conclusions: Increased GABA levels in persons with insomnia may reflect an allostatic response to chronic hyperarousal. The preserved, negative relationship between GABA and time awake after sleep onset supports this notion, indicating that the possible allostatic response is adaptive. Citation: Morgan PT; Pace-Schott EF; Mason GF; Forselius E; Fasula M; Valentine GW; Sanacora G. Cortical GABA levels in primary insomnia. SLEEP 2012;35(6):807-814. PMID:22654200

  16. Facilitation of amphetamine-induced hypothermia in mice by GABA agonists and CCK-8.

    PubMed

    Boschi, G; Launay, N; Rips, R

    1991-04-01

    1. Amphetamine-induced hypothermia in mice is facilitated by dopaminergic stimulation and 5-hydroxytryptaminergic inhibition. The present study was designed to investigate: (a) the involvement of other neuronal systems, such as the gamma-aminobutyric acid (GABA), the opioid and the cholecystokinin (CCK-8) systems; (b) the possible contribution of hydroxylated metabolites of amphetamine to the hypothermia; (c) the capacity of dopamine itself to induce hypothermia and its mechanisms, in order to clarify the resistance of amphetamine-induced hypothermia to certain neuroleptics. 2. Pretreatment with the GABA antagonists, bicuculline and picrotoxin, did not inhibit amphetamine-induced hypothermia. The GABAB agonist, baclofen (2.5 mg kg-1, i.p.) potentiated this hypothermia, whereas the GABAA agonist, muscimol, did not. gamma-Butyrolactone (GBL) (40 mg kg-1, i.p.) and the neuropeptide CCK-8 (0.04 mg kg-1, i.p.) also induced potentiation. The opioid antagonist, naloxone, was without effect. 3. Dopamine itself (3, 9, 16 and 27 micrograms, i.c.v.) induced less hypothermia than the same doses of amphetamine. Sulpiride did not block dopamine-induced hypothermia, but pimozide (4 mg kg-1, i.p.), cis(z)flupentixol (0.25 mg kg-1, i.p.) and haloperidol (5 micrograms, i.c.v.) did. The direct dopamine receptor agonist, apomorphine, did not alter the hypothermia. Neither the 5-hydroxytryptamine (5-HT) receptor blocker, cyproheptadine, nor the inhibitor of 5-HT synthesis, p-chlorophenylalanine (PCPA), modified dopamine-induced hypothermia. Fluoxetine, an inhibitor of 5-HT reuptake, had no effect, whereas quipazine (6 mg kg-1, i.p.), a 5-HT agonist, totally prevented the hypothermia. Hypothermia was unaffected by pretreatment with CCK-8. 4. These data indicate that the hypothermia induced by amphetamine involves not only dopaminergic and 5-hydroxytryptaminergic systems which are functionally antagonistic, but is also facilitated by direct or indirect GABA and CCK-8 receptor stimulation

  17. Alterations in nigral NMDA and GABAA receptor control of the striatal dopamine level after repetitive exposures to nitrogen narcosis.

    PubMed

    Lavoute, Cécile; Weiss, Michel; Rostain, Jean-Claude

    2008-07-01

    Nitrogen pressure exposure in rats results in decreased dopamine (DA) release at the striatal terminals of the substantia nigra pars compacta (SNc) dopaminergic neurons, demonstrating the narcotic potency of nitrogen. This effect is attributed to decreased excitatory and increased inhibitory inputs to dopaminergic neurons, involving a change in NMDA and GABA(A) receptor function. We investigated whether repetitive exposures to nitrogen modify the excitatory and inhibitory control of the dopaminergic nigro-striatal pathway. We used voltammetry to measure dopamine levels in freely-moving rats, implanted with dopamine-sensitive electrodes in the striatum. NMDA/GABA(A) receptor agonists (NMDA/muscimol) and antagonists (AP7/gabazine) were administered through a guide-cannula into the SNc, and their effects on striatal dopamine levels were measured under normobaric conditions, before and after five repetitive exposures to 1 MPa nitrogen. NMDA-mediated dopamine release was greater following repetitive exposures, AP7-mediated inhibition of glutamatergic input was blocked, suggesting that NMDA receptor sensitivity was increased and glutamate release reduced. Muscimol did not modify dopamine levels following repetitive exposures, whereas the effect of gabazine was greater after exposures than before. This suggested that interneuronal GABA(A) receptors were desensitized, leading to an increased GABAergic input at dopaminergic cells. Thus, repetitive nitrogen exposure induced persistent changes in glutamatergic and GABAergic control of dopaminergic neurons, resulting in decreased activity of the nigrostriatal pathway.

  18. Neuronal GABA release and GABA inhibition of ACh release in guinea pig urinary bladder.

    PubMed

    Kusunoki, M; Taniyama, K; Tanaka, C

    1984-04-01

    gamma-Aminobutyric acid (GABA) and glutamate decarboxylase (GAD) are present in the urinary bladder of guinea pigs, and the possible correlation in regional distribution between GABA, GAD, and the number of vesical ganglion cells was studied. Electrical stimulation of the bladder strips produced an increase in the calcium-dependent and tetrodotoxin-sensitive [3H]GABA release and contractions in the strips preloaded with [3H]GABA. Nicotine, acetylcholine chloride (ACh), and hexamethonium did not significantly alter the release of [3H]GABA. Bicuculline significantly enhanced [3H]ACh release and cholinergic components of contractions evoked by electrical stimulation of the bladder strips preloaded with [3H]choline, thereby suggesting that this compound antagonizes the effect of endogenous GABA released during stimulation. GABA and muscimol but not baclofen reduced both the [3H]ACh release and contractions evoked by nicotine. These effects of GABA were antagonized by bicuculline and furosemide but not by alpha- and beta-adrenergic blockers. These findings suggest that GABA may be a noncholinergic nonadrenergic inhibitory neurotransmitter in the urinary bladder. The motility of the urinary bladder is thus inhibited by reducing the release of ACh from the postganglionic cholinergic neurons through bicuculline-sensitive GABA receptors probably associated with the chloride ion channel.

  19. GABA and glycine actions on spinal motoneurons.

    PubMed

    Krnjević, K; Puil, E; Werman, R

    1977-06-01

    Applied microiontophoretically in the spinal cord of cats, glycine is consistently more powerful than gamma-aminobutyric acid (GABA) in raising the membrane conductance of lumbosacral motoneurons (mean ratio of equipotent iontophoretic currents tested on same cells is 5.6:1). This is the reverse of the situation in cerebral cortex. The effect of glycine is well maintained during applications lasting about 1 min, but that of GABA, after an early peak, drops to a much lower plateau (mean plateau-over-peak ratio is 0.23). The reversal potentials for the action of GABA and glycine are initially similar but they behave differently during a prolonged application; that for glycine usually remains constant or becomes more negative whereas that for GABA tends to shift in the positive direction. Various explanations of these phenomena are considered. It is suggested that a single process, electrogenic uptake of GABA, may account for both desensitization (by removing GABA from its site of action) and the positive shift in GABA reversal potential (became uptake is probably associated with an influx of Na+).

  20. GABA transmission in the ventral pallidum is not involved in the control of latent inhibition in the rat.

    PubMed

    Lawrence, N S; Sharp, T; Peters, S P; Gray, J A; Young, A M J

    2003-01-01

    Latent inhibition describes a process of learning to ignore stimuli of no consequence, and is disrupted in acute, positive-symptomatic schizophrenia. Understanding the neural basis of latent inhibition in animals may help to elucidate the neural dysfunction underlying positive schizophrenic symptoms in man. Evidence suggests a crucial role for dopamine transmission in the nucleus accumbens in the control of latent inhibition. The present studies investigated the role of the GABA-ergic efferent from the nucleus accumbens to the ventral pallidum in latent inhibition. The GABA(A) agonist muscimol (4.56 ng/microl), and antagonist picrotoxin (0.2 microg/microl), were infused into the ventral pallidum, and effects on latent inhibition were assessed using a conditioned suppression procedure. Neither drug produced specific effects on latent inhibition when given alone and, in the case of muscimol, failed to reverse the disruption of latent inhibition induced by systemic amphetamine. In addition to significant non-specific drug effects, a positive control experiment revealed that intra-pallidal picrotoxin significantly enhanced locomotion, suggesting that our manipulations of ventral pallidal GABA function were behaviourally effective. We conclude that modulating ventral pallidal GABA transmission does not affect latent inhibition. The implications of this finding for theories of the neural circuitry mediating latent inhibition and for understanding the functional role of ventral pallidal GABA transmission are discussed.

  1. Low nanomolar GABA effects at extrasynaptic α4β1/β3δ GABA(A) receptor subtypes indicate a different binding mode for GABA at these receptors.

    PubMed

    Karim, Nasiara; Wellendorph, Petrine; Absalom, Nathan; Bang, Line Haunstrup; Jensen, Marianne Lerbech; Hansen, Maja Michelle; Lee, Ho Joon; Johnston, Graham A R; Hanrahan, Jane R; Chebib, Mary

    2012-08-15

    Ionotropic GABA(A) receptors are a highly heterogenous population of receptors assembled from a combination of multiple subunits. The aims of this study were to characterize the potency of GABA at human recombinant δ-containing extrasynaptic GABA(A) receptors expressed in Xenopus oocytes using the two-electrode voltage clamp technique, and to investigate, using site-directed mutagenesis, the molecular determinants for GABA potency at α4β3δ GABA(A) receptors. α4/δ-Containing GABA(A) receptors displayed high sensitivity to GABA, with mid-nanomolar concentrations activating α4β1δ (EC₅₀=24 nM) and α4β3δ (EC₅₀=12 nM) receptors. In the majority of oocytes expressing α4β3δ subtypes, GABA produced a biphasic concentration-response curve, and activated the receptor with low and high concentrations (EC₅₀(1)=16 nM; EC₅₀(2)=1.2 μM). At α4β2δ, GABA had low micromolar activity (EC₅₀=1 μM). An analysis of 10 N-terminal singly mutated α4β3δ receptors shows that GABA interacts with amino acids different to those reported for α1β2γ2 GABA(A) receptors. Residues Y205 and R207 of the β3-subunit significantly affected GABA potency, while the residue F71 of the α4- and the residue Y97 of the β3-subunit did not significantly affect GABA potency. Mutating the residue R218 of the δ-subunit, equivalent to the GABA binding residue R207 of the β2-subunit, reduced the potency of GABA by 670-fold, suggesting a novel GABA binding site at the δ-subunit interface. Taken together, GABA may have different binding modes for extrasynaptic δ-containing GABA(A) receptors compared to their synaptic counterparts.

  2. No dopamine cell loss or changes in cytoskeleton function in transgenic mice expressing physiological levels of wild type or G2019S mutant LRRK2 and in human fibroblasts.

    PubMed

    Garcia-Miralles, Marta; Coomaraswamy, Janaky; Häbig, Karina; Herzig, Martin C; Funk, Natalja; Gillardon, Frank; Maisel, Martina; Jucker, Mathias; Gasser, Thomas; Galter, Dagmar; Biskup, Saskia

    2015-01-01

    Mutations within the LRRK2 gene have been identified in Parkinson's disease (PD) patients and have been implicated in the dysfunction of several cellular pathways. Here, we explore how pathogenic mutations and the inhibition of LRRK2 kinase activity affect cytoskeleton dynamics in mouse and human cell systems. We generated and characterized a novel transgenic mouse model expressing physiological levels of human wild type and G2019S-mutant LRRK2. No neuronal loss or neurodegeneration was detected in midbrain dopamine neurons at the age of 12 months. Postnatal hippocampal neurons derived from transgenic mice showed no alterations in the seven parameters examined concerning neurite outgrowth sampled automatically on several hundred neurons using high content imaging. Treatment with the kinase inhibitor LRRK2-IN-1 resulted in no significant changes in the neurite outgrowth. In human fibroblasts we analyzed whether pathogenic LRRK2 mutations change cytoskeleton functions such as cell adhesion. To this end we compared the adhesion characteristics of human skin fibroblasts derived from six PD patients carrying one of three different pathogenic LRRK2 mutations and from four age-matched control individuals. The mutant LRRK2 variants as well as the inhibition of LRRK2 kinase activity did not reveal any significant cell adhesion differences in cultured fibroblasts. In summary, our results in both human and mouse cell systems suggest that neither the expression of wild type or mutant LRRK2, nor the inhibition of LRRK2 kinase activity affect neurite complexity and cellular adhesion.

  3. No Dopamine Cell Loss or Changes in Cytoskeleton Function in Transgenic Mice Expressing Physiological Levels of Wild Type or G2019S Mutant LRRK2 and in Human Fibroblasts

    PubMed Central

    Garcia-Miralles, Marta; Coomaraswamy, Janaky; Häbig, Karina; Herzig, Martin C.; Funk, Natalja; Gillardon, Frank; Maisel, Martina; Jucker, Mathias; Gasser, Thomas; Galter, Dagmar; Biskup, Saskia

    2015-01-01

    Mutations within the LRRK2 gene have been identified in Parkinson’s disease (PD) patients and have been implicated in the dysfunction of several cellular pathways. Here, we explore how pathogenic mutations and the inhibition of LRRK2 kinase activity affect cytoskeleton dynamics in mouse and human cell systems. We generated and characterized a novel transgenic mouse model expressing physiological levels of human wild type and G2019S-mutant LRRK2. No neuronal loss or neurodegeneration was detected in midbrain dopamine neurons at the age of 12 months. Postnatal hippocampal neurons derived from transgenic mice showed no alterations in the seven parameters examined concerning neurite outgrowth sampled automatically on several hundred neurons using high content imaging. Treatment with the kinase inhibitor LRRK2-IN-1 resulted in no significant changes in the neurite outgrowth. In human fibroblasts we analyzed whether pathogenic LRRK2 mutations change cytoskeleton functions such as cell adhesion. To this end we compared the adhesion characteristics of human skin fibroblasts derived from six PD patients carrying one of three different pathogenic LRRK2 mutations and from four age-matched control individuals. The mutant LRRK2 variants as well as the inhibition of LRRK2 kinase activity did not reveal any significant cell adhesion differences in cultured fibroblasts. In summary, our results in both human and mouse cell systems suggest that neither the expression of wild type or mutant LRRK2, nor the inhibition of LRRK2 kinase activity affect neurite complexity and cellular adhesion. PMID:25830304

  4. Status epilepticus enhances tonic GABA currents and depolarizes GABA reversal potential in dentate fast-spiking basket cells

    PubMed Central

    Yu, Jiandong; Proddutur, Archana; Elgammal, Fatima S.; Ito, Takahiro

    2013-01-01

    Temporal lobe epilepsy is associated with loss of interneurons and inhibitory dysfunction in the dentate gyrus. While status epilepticus (SE) leads to changes in granule cell inhibition, whether dentate basket cells critical for regulating granule cell feedforward and feedback inhibition express tonic GABA currents (IGABA) and undergo changes in inhibition after SE is not known. We find that interneurons immunoreactive for parvalbumin in the hilar-subgranular region express GABAA receptor (GABAAR) δ-subunits, which are known to underlie tonic IGABA. Dentate fast-spiking basket cells (FS-BCs) demonstrate baseline tonic IGABA blocked by GABAAR antagonists. In morphologically and physiologically identified FS-BCs, tonic IGABA is enhanced 1 wk after pilocarpine-induced SE, despite simultaneous reduction in spontaneous inhibitory postsynaptic current (sIPSC) frequency. Amplitude of tonic IGABA in control and post-SE FS-BCs is enhanced by 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), demonstrating the contribution of GABAAR δ-subunits. Whereas FS-BC resting membrane potential is unchanged after SE, perforated-patch recordings from FS-BCs show that the reversal potential for GABA currents (EGABA) is depolarized after SE. In model FS-BCs, increasing tonic GABA conductance decreased excitability when EGABA was shunting and increased excitability when EGABA was depolarizing. Although simulated focal afferent activation evoked seizurelike activity in model dentate networks with FS-BC tonic GABA conductance and shunting EGABA, excitability of identical networks with depolarizing FS-BC EGABA showed lower activity levels. Thus, together, post-SE changes in tonic IGABA and EGABA maintain homeostasis of FS-BC activity and limit increases in dentate excitability. These findings have implications for normal FS-BC function and can inform studies examining comorbidities and therapeutics following SE. PMID:23324316

  5. Muscimol as an ionotropic GABA receptor agonist.

    PubMed

    Johnston, Graham A R

    2014-10-01

    Muscimol, a psychoactive isoxazole from Amanita muscaria and related mushrooms, has proved to be a remarkably selective agonist at ionotropic receptors for the inhibitory neurotransmitter GABA. This historic overview highlights the discovery and development of muscimol and related compounds as a GABA agonist by Danish and Australian neurochemists. Muscimol is widely used as a ligand to probe GABA receptors and was the lead compound in the development of a range of GABAergic agents including nipecotic acid, tiagabine, 4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol, (Gaboxadol(®)) and 4-PIOL.

  6. Synthesis and evaluation of novel heteroaromatic substrates of GABA aminotransferase

    PubMed Central

    Hawker, Dustin D.; Silverman, Richard B.

    2012-01-01

    Two principal neurotransmitters are involved in the regulation of mammalian neuronal activity, namely, γ-aminobutyric acid (GABA), an inhibitory neurotransmitter, and L-glutamic acid, an excitatory neurotransmitter. Low GABA levels in the brain have been implicated in epilepsy and several other neurological diseases. Because of GABA’s poor ability to cross the blood-brain barrier (BBB), a successful strategy to raise brain GABA concentrations is the use of a compound that does cross the BBB and inhibits or inactivates GABA aminotransferase (GABA-AT), the enzyme responsible for GABA catabolism. Vigabatrin, a mechanism-based inactivator of GABA-AT, is currently a successful therapeutic for epilepsy, but has harmful side effects, leaving a need for improved GABA-AT inactivators. Here, we report the synthesis and evaluation of a series of heteroaromatic GABA analogues as substrates of GABA-AT, which will be used as the basis for the design of novel enzyme inactivators. PMID:22944334

  7. Guinea Pig Horizontal Cells Express GABA, the GABA-Synthesizing Enzyme GAD65, and the GABA Vesicular Transporter

    PubMed Central

    Guo, Chenying; Hirano, Arlene A.; Stella, Salvatore L.; Bitzer, Michaela; Brecha, Nicholas C.

    2013-01-01

    γ-Aminobutyric acid (GABA) is likely expressed in horizontal cells of all species, although conflicting physiological findings have led to considerable controversy regarding its role as a transmitter in the outer retina. This study has evaluated key components of the GABA system in the outer retina of guinea pig, an emerging retinal model system. The presence of GABA, its rate-limiting synthetic enzyme glutamic acid decarboxylase (GAD65 and GAD67 isoforms), the plasma membrane GABA transporters (GAT-1 and GAT-3), and the vesicular GABA transporter (VGAT) was evaluated by using immunohistochemistry with well-characterized antibodies. The presence of GAD65 mRNA was also evaluated by using laser capture microdissection and reverse transcriptase-polymerase chain reaction. Specific GABA, GAD65, and VGAT immunostaining was localized to horizontal cell bodies, as well as to their processes and tips in the outer plexiform layer. Furthermore, immunostaining of retinal whole mounts and acutely dissociated retinas showed GAD65 and VGAT immunoreactivity in both A-type and B-type horizontal cells. However, these cells did not contain GAD67, GAT-1, or GAT-3 immunoreactivity. GAD65 mRNA was detected in horizontal cells, and sequencing of the amplified GAD65 fragment showed approximately 85% identity with other mammalian GAD65 mRNAs. These studies demonstrate the presence of GABA, GAD65, and VGAT in horizontal cells of the guinea pig retina, and support the idea that GABA is synthesized from GAD65, taken up into synaptic vesicles by VGAT, and likely released by a vesicular mechanism from horizontal cells. PMID:20235161

  8. The gamma 2 subunit of GABA(A) receptors is required for maintenance of receptors at mature synapses.

    PubMed

    Schweizer, Claude; Balsiger, Sylvia; Bluethmann, Horst; Mansuy, Isabelle M; Fritschy, Jean-Marc; Mohler, Hanns; Lüscher, Bernhard

    2003-10-01

    The gamma2 subunit of GABA(A) receptor chloride channels is required for normal channel function and for postsynaptic clustering of these receptors during synaptogenesis. In addition, GABA(A) receptor function is thought to contribute to normal postnatal maturation of neurons. Loss of postsynaptic GABA(A) receptors in gamma2-deficient neurons might therefore reflect a deficit in maturation of neurons due to the reduced channel function. Here, we have used the Cre-loxP strategy to examine the clustering function of the gamma2 subunit at mature synapses. Deletion of the gamma2 subunit in the third postnatal week resulted in loss of benzodiazepine-binding sites and parallel loss of punctate immunoreactivity for postsynaptic GABA(A) receptors and gephyrin. Thus, the gamma2 subunit contributes to postsynaptic localization of GABA(A) receptors and gephyrin by a mechanism that is operant in mature neurons and not limited to immature neurons, most likely through interaction with proteins involved in trafficking of synaptic GABA(A) receptors.

  9. Dopamine Modulation of GABAergic Function Enables Network Stability and Input Selectivity for Sustaining Working Memory in a Computational Model of the Prefrontal Cortex

    PubMed Central

    Lew, Sergio E; Tseng, Kuei Y

    2014-01-01

    Dopamine modulation of GABAergic transmission in the prefrontal cortex (PFC) is thought to be critical for sustaining cognitive processes such as working memory and decision-making. Here, we developed a neurocomputational model of the PFC that includes physiological features of the facilitatory action of dopamine on fast-spiking interneurons to assess how a GABAergic dysregulation impacts on the prefrontal network stability and working memory. We found that a particular non-linear relationship between dopamine transmission and GABA function is required to enable input selectivity in the PFC for the formation and retention of working memory. Either degradation of the dopamine signal or the GABAergic function is sufficient to elicit hyperexcitability in pyramidal neurons and working memory impairments. The simulations also revealed an inverted U-shape relationship between working memory and dopamine, a function that is maintained even at high levels of GABA degradation. In fact, the working memory deficits resulting from reduced GABAergic transmission can be rescued by increasing dopamine tone and vice versa. We also examined the role of this dopamine–GABA interaction for the termination of working memory and found that the extent of GABAergic excitation needed to reset the PFC network begins to occur when the activity of fast-spiking interneurons surpasses 40 Hz. Together, these results indicate that the capability of the PFC to sustain working memory and network stability depends on a robust interplay of compensatory mechanisms between dopamine tone and the activity of local GABAergic interneurons. PMID:24975022

  10. GABA Australis, some reflections on the history of GABA receptor research in Australia.

    PubMed

    Johnston, Graham A R

    2017-02-01

    Research on GABA receptors has a long history in Australia dating from 1958 with David Curtis and his colleagues in Canberra. This review traces many of the advances made in Australia guided by highly cited publications and some obscure ones. It covers the discovery of key chemicals with which to investigate GABA receptor function including bicuculline, muscimol, phaclofen, THIP and (+)-CAMP. Also described are findings relevant to the involvement of mutant GABA receptors in inherited epilepsy. The modulation of GABA receptors by a bewildering range of chemicals, especially by flavonoids and terpenoids, is discussed.

  11. Kinetic studies on the inhibition of GABA-T by gamma-vinyl GABA and taurine.

    PubMed

    Sulaiman, Saba A J; Suliman, Fakhr Eldin O; Barghouthi, Samira

    2003-08-01

    Gamma-aminobutyric acid transaminase (GABA-T, EC 2.6.1.19) is a pyridoxal phosphate (PLP) dependent enzyme that catalyzes the degradation of gamma-aminobutyric acid. The kinetics of this reaction are studied in vitro, both in the absence, and in the presence of two inhibitors: gamma-vinyl GABA (4-aminohex-5-enoic acid), and a natural product, taurine (ethylamine-2-sulfonic acid). A kinetic model that describes the transamination process is proposed. GABA-T from Pseudomonas fluorescens is inhibited by gamma-vinyl GABA and taurine at concentrations of 51.0 and 78.5 mM. Both inhibitors show competitive inhibition behavior when GABA is the substrate and the inhibition constant (Ki) values for gamma-vinyl GABA and taurine were found to be 26 +/- 3 mM and 68 +/- 7 mM respectively. The transamination process of alpha-ketoglutarate was not affected by the presence of gamma-vinyl GABA, whereas, taurine was a noncompetitive inhibitor of GABA-T when alpha-ketoglutarate was the substrate. The inhibition dissociation constant (Kii) for this system was found to be 96 +/- 10 mM. The Michaelis-Menten constant (Km) in the absence of inhibition, was found to be 0.79 +/- 0.11 mM, and 0.47 +/- 0.10 mM for GABA and alpha-ketoglutarate respectively.

  12. Inhibition of GABA release by presynaptic ionotropic GABA receptors in hippocampal CA3.

    PubMed

    Axmacher, Nikolai; Draguhn, Andreas

    2004-02-09

    Vesicular transmitter release can be regulated by transmitter-gated ion channels at presynaptic axon terminals. The central inhibitory transmitter GABA acts on such presynaptic ionotropic receptors in various cells, including inhibitory interneurons. Here we report that GABA-mediated postsynaptic inhibitory currents in CA3 pyramidal cells of rat hippocampal slices are suppressed by agonists of GABAA receptors. The effect is present for both stimulus-induced and miniature IPSCs, indicating a reduction in the probability of vesicular release by presynaptic, action-potential-independent mechanisms. We conclude that the release of GABA from hippocampal CA3 interneurons is regulated by a negative feedback via presynaptic ionotropic GABA autoreceptors.

  13. Evidence That GABA Mediates Dopaminergic and Serotonergic Pathways Associated with Locomotor Activity in Juvenile Chinook Salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Clements, S.; Schreck, C.B.

    2004-01-01

    The authors examined the control of locomotor activity in juvenile salmon (Oncorhynchus tshawytscha) by manipulating 3 neurotransmitter systems-gamma-amino-n-butyric acid (GABA), dopamine, and serotonin-as well as the neuropeptide corticotropin releasing hormone (CRH). Intracerebroventricular (ICV) injections of CRH and the GABAAagonist muscimol stimulated locomotor activity. The effect of muscimol was attenuated by administration of a dopamine receptor antagonist, haloperidol. Conversely, the administration of a dopamine uptake inhibitor (4???,4??? -difluoro-3-alpha-[diphenylmethoxy] tropane hydrochloride [DUI]) potentiated the effect of muscimol. They found no evidence that CRH-induced hyperactivity is mediated by dopaminergic systems following concurrent injections of haloperidol or DUI with CRH. Administration of muscimol either had no effect or attenuated the locomotor response to concurrent injections of CRH and fluoxetine, whereas the GABAA antagonist bicuculline methiodide potentiated the effect of CRH and fluoxetine.

  14. Novel GABA receptor pesticide targets.

    PubMed

    Casida, John E; Durkin, Kathleen A

    2015-06-01

    The γ-aminobutyric acid (GABA) receptor has four distinct but overlapping and coupled targets of pesticide action importantly associated with little or no cross-resistance. The target sites are differentiated by binding assays with specific radioligands, resistant strains, site-directed mutagenesis and molecular modeling. Three of the targets are for non-competitive antagonists (NCAs) or channel blockers of widely varied chemotypes. The target of the first generation (20th century) NCAs differs between the larger or elongated compounds (NCA-IA) including many important insecticides of the past (cyclodienes and polychlorocycloalkanes) or present (fiproles) and the smaller or compact compounds (NCA-IB) highly toxic to mammals and known as cage convulsants, rodenticides or chemical threat agents. The target of greatest current interest is designated NCA-II for the second generation (21st century) of NCAs consisting for now of isoxazolines and meta-diamides. This new and uniquely different NCA-II site apparently differs enough between insects and mammals to confer selective toxicity. The fourth target is the avermectin site (AVE) for allosteric modulators of the chloride channel. NCA pesticides vary in molecular surface area and solvent accessible volume relative to avermectin with NCA-IBs at 20-22%, NCA-IAs at 40-45% and NCA-IIs at 57-60%. The same type of relationship relative to ligand-docked length is 27-43% for NCA-IBs, 63-71% for NCA-IAs and 85-105% for NCA-IIs. The four targets are compared by molecular modeling for the Drosophila melanogaster GABA-R. The principal sites of interaction are proposed to be: pore V1' and A2' for NCA-IB compounds; pore A2', L6' and T9' for NCA-IA compounds; pore T9' to S15' in proximity to M1/M3 subunit interface (or alternatively an interstitial site) for NCA-II compounds; and M1/M3, M2 interfaces for AVE. Understanding the relationships of these four binding sites is important in resistance management and in the discovery and use

  15. The role of NMDA and GABAA receptors in the inhibiting effect of 3 MPa nitrogen on striatal dopamine level.

    PubMed

    Lavoute, Cécile; Weiss, Michel; Rostain, Jean-Claude

    2007-10-24

    Nitrogen pressure exposure, in rats, resulted in a decreased dopamine (DA) level by the striatal terminals of the substantia nigra pars compacta (SNc) dopaminergic neurons, due to the narcotic potency of nitrogen. In the SNc, the nigrostriatal pathway is under glutamatergic and GABAergic control mediated by ion-channel NMDA and GABA(A) receptors, main targets of volatile anesthetics. The aim of this study was to investigate the role of these receptors in the regulation of striatal dopamine level under nitrogen narcosis. Under general anesthesia, male Sprague-Dawley rats were bilaterally implanted in the striatum with dopamine-sensitive electrodes and, in the SNc, with guide cannulae for drug injections. After recovery from surgery, the striatal dopamine level was quantified using differential pulse voltammetric measurements in freely moving rats. Focal injections of agonists (NMDA/muscimol) and antagonists (AP7/gabazine) of NMDA/GABA(A) receptors were made within SNc. Both normobaric condition and 3 MPa nitrogen pressure were studied. Control experiments confirmed a direct glutamatergic control on the striatal DA level through NMDA receptors. Both direct and indirect GABAergic control through two different types of GABA(A) receptors located on GABAergic interneurons and on DA cells were indicated. Under nitrogen pressure, the decrease in dopamine level (20%) was suppressed by both NMDA and GABA(A) agonist infusion. There was an unexpected increasing DA level, induced by AP7 (about 10%) and gabazine (about 30%). These results indicate that NMDA receptors remain functional and suggest a decreased glutamate release. The findings also describe an increase of GABA(A) receptor-mediated inhibition on DA cells under nitrogen pressure exposure.

  16. Adolescent rats are resistant to adaptations in excitatory and inhibitory mechanisms that modulate mesolimbic dopamine during nicotine withdrawal

    PubMed Central

    Natividad, Luis A.; Buczynski, Matthew W.; Parsons, Loren H.; Torres, Oscar; O'Dell, Laura E.

    2012-01-01

    Adolescent smokers report enhanced positive responses to tobacco and fewer negative effects of withdrawal from this drug than adults, and this is believed to propel higher tobacco use during adolescence. Differential dopaminergic responses to nicotine are thought to underlie these age-related effects, since adolescent rats experience lower withdrawal-related deficits in nucleus accumbens (NAcc) dopamine versus adults. This study examined whether age differences in NAcc dopamine during withdrawal are mediated by excitatory or inhibitory transmission in the ventral tegmental area (VTA) dopamine cell body region. In vivo microdialysis was used to monitor extracellular levels of glutamate and gamma-aminobutyric acid (GABA) in the VTA of adolescent and adult rats experiencing nicotine withdrawal. In adults, nicotine withdrawal produced decreases in VTA glutamate levels (44% decrease) and increases in VTA GABA levels (38% increase). In contrast, adolescents did not exhibit changes in either of these measures. Naïve controls of both ages did not display changes in NAcc dopamine, VTA glutamate or VTA GABA following mecamylamine. These results indicate that adolescents display resistance to withdrawal-related neurochemical processes that inhibit mesolimbic dopamine function in adults experiencing nicotine withdrawal. Our findings provide a potential mechanism involving VTA amino acid neurotransmission that modulates age differences during withdrawal. PMID:22905672

  17. Adolescent rats are resistant to adaptations in excitatory and inhibitory mechanisms that modulate mesolimbic dopamine during nicotine withdrawal.

    PubMed

    Natividad, Luis A; Buczynski, Matthew W; Parsons, Loren H; Torres, Oscar V; O'Dell, Laura E

    2012-11-01

    Adolescent smokers report enhanced positive responses to tobacco and fewer negative effects of withdrawal from this drug than adults, and this is believed to propel higher tobacco use during adolescence. Differential dopaminergic responses to nicotine are thought to underlie these age-related effects, as adolescent rats experience lower withdrawal-related deficits in nucleus accumbens (NAcc) dopamine versus adults. This study examined whether age differences in NAcc dopamine during withdrawal are mediated by excitatory or inhibitory transmission in the ventral tegmental area (VTA) dopamine cell body region. In vivo microdialysis was used to monitor extracellular levels of glutamate and gamma-aminobutyric acid (GABA) in the VTA of adolescent and adult rats experiencing nicotine withdrawal. In adults, nicotine withdrawal produced decreases in VTA glutamate levels (44% decrease) and increases in VTA GABA levels (38% increase). In contrast, adolescents did not exhibit changes in either of these measures. Naïve controls of both ages did not display changes in NAcc dopamine, VTA glutamate, or VTA GABA following mecamylamine. These results indicate that adolescents display resistance to withdrawal-related neurochemical processes that inhibit mesolimbic dopamine function in adults experiencing nicotine withdrawal. Our findings provide a potential mechanism involving VTA amino acid neurotransmission that modulates age differences during withdrawal.

  18. Dopamine suppresses persistent network activity via D1-like dopamine receptors in rat medial entorhinal cortex

    PubMed Central

    Mayne, Elizabeth W; Craig, Michael T; McBain, Chris J; Paulsen, Ole

    2013-01-01

    Cortical networks display persistent activity in the form of periods of sustained synchronous depolarizations (‘UP states’) punctuated by periods of relative hyperpolarization (‘DOWN states’), which together form the slow oscillation. UP states are known to be synaptically generated and are sustained by a dynamic balance of excitation and inhibition, with fast ionotropic glutamatergic excitatory and GABAergic inhibitory conductances increasing during the UP state. Previously, work from our group demonstrated that slow metabotropic GABA receptors also play an important role in terminating the UP state, but the effects of other neuromodulators on this network phenomenon have received little attention. Given that persistent activity is a neural correlate of working memory and that signalling through dopamine receptors has been shown to be critical for working memory tasks, we examined whether dopaminergic neurotransmission affected the slow oscillation. Here, using an in vitro model of the slow oscillation in rat medial entorhinal cortex, we showed that dopamine strongly and reversibly suppressed cortical UP states. We showed that this effect was mediated through D1-like and not D2-like dopamine receptors, and we found no evidence that tonic dopaminergic transmission affected UP states in our model. PMID:23336973

  19. Mutations in the GABA Transporter SLC6A1 Cause Epilepsy with Myoclonic-Atonic Seizures.

    PubMed

    Carvill, Gemma L; McMahon, Jacinta M; Schneider, Amy; Zemel, Matthew; Myers, Candace T; Saykally, Julia; Nguyen, John; Robbiano, Angela; Zara, Federico; Specchio, Nicola; Mecarelli, Oriano; Smith, Robert L; Leventer, Richard J; Møller, Rikke S; Nikanorova, Marina; Dimova, Petia; Jordanova, Albena; Petrou, Steven; Helbig, Ingo; Striano, Pasquale; Weckhuysen, Sarah; Berkovic, Samuel F; Scheffer, Ingrid E; Mefford, Heather C

    2015-05-07

    GAT-1, encoded by SLC6A1, is one of the major gamma-aminobutyric acid (GABA) transporters in the brain and is responsible for re-uptake of GABA from the synapse. In this study, targeted resequencing of 644 individuals with epileptic encephalopathies led to the identification of six SLC6A1 mutations in seven individuals, all of whom have epilepsy with myoclonic-atonic seizures (MAE). We describe two truncations and four missense alterations, all of which most likely lead to loss of function of GAT-1 and thus reduced GABA re-uptake from the synapse. These individuals share many of the electrophysiological properties of Gat1-deficient mice, including spontaneous spike-wave discharges. Overall, pathogenic mutations occurred in 6/160 individuals with MAE, accounting for ~4% of unsolved MAE cases.

  20. Synaptic GABA release prevents GABA transporter type-1 reversal during excessive network activity

    PubMed Central

    Savtchenko, Leonid; Megalogeni, Maria; Rusakov, Dmitri A.; Walker, Matthew C.; Pavlov, Ivan

    2015-01-01

    GABA transporters control extracellular GABA, which regulates the key aspects of neuronal and network behaviour. A prevailing view is that modest neuronal depolarization results in GABA transporter type-1 (GAT-1) reversal causing non-vesicular GABA release into the extracellular space during intense network activity. This has important implications for GABA uptake-targeting therapies. Here we combined a realistic kinetic model of GAT-1 with experimental measurements of tonic GABAA receptor currents in ex vivo hippocampal slices to examine GAT-1 operation under varying network conditions. Our simulations predict that synaptic GABA release during network activity robustly prevents GAT-1 reversal. We test this in the 0 Mg2+ model of epileptiform discharges using slices from healthy and chronically epileptic rats and find that epileptiform activity is associated with increased synaptic GABA release and is not accompanied by GAT-1 reversal. We conclude that sustained efflux of GABA through GAT-1 is unlikely to occur during physiological or pathological network activity. PMID:25798861

  1. Differential effects of phosphonic analogues of GABA on GABA(B) autoreceptors in rat neocortical slices.

    PubMed

    Ong, J; Marino, V; Parker, D A; Kerr, D I

    1998-04-01

    The effects of five phosphonic derivatives of GABA on the release of [3H]-GABA from rat neocortical slices, preloaded with [3H]-GABA, were investigated. Phaclofen and 4-aminobutylphosphonic acid (4-ABPA) increased the overflow of [3H] evoked by electrical stimulation (2 Hz) in a concentration-dependent manner, with similar potencies (phaclofen EC50=0.3 mmol/l, 4-ABPA EC50=0.4 mmol/l). At 3 mmol/l, phaclofen increased the release of [3H]-GABA by 82.6+/-8.6%, and 4-ABPA increased the release by 81.3+/-9.0%. 2-Amino-ethylphosphonic acid (2-AEPA) increased the overflow of [3H] by 46.8+/-10.9% at the highest concentration tested (3 mmol/l). In contrast, the lower phosphonic homologue 3-aminopropylphosphonic acid (3-APPA), and 2-amino-2-(p-chlorophenyl)-ethylphosphonic acid (2-CPEPA), a baclofen analogue, did not modify the stimulated overflow. These results suggest that phaclofen, 4-ABPA and 2-AEPA are antagonists at GABA(B) autoreceptors, the latter being the weakest antagonist, whilst neither 3-APPA nor 2-CPEPA are active at these receptors. Since phaclofen, 4-ABPA and 2-CPEPA are antagonists and 3-APPA a partial agonist/antagonist on GABA(B) heteroreceptors, the lack of effect of 3-APPA and 2-CPEPA on [3H]-GABA release in this study suggests that GABA(B) autoreceptors may be pharmacologically distinct from the heteroreceptors.

  2. GABA(B2) is essential for g-protein coupling of the GABA(B) receptor heterodimer.

    PubMed

    Robbins, M J; Calver, A R; Filippov, A K; Hirst, W D; Russell, R B; Wood, M D; Nasir, S; Couve, A; Brown, D A; Moss, S J; Pangalos, M N

    2001-10-15

    GABA(B) receptors are unique among G-protein-coupled receptors (GPCRs) in their requirement for heterodimerization between two homologous subunits, GABA(B1) and GABA(B2), for functional expression. Whereas GABA(B1) is capable of binding receptor agonists and antagonists, the role of each GABA(B) subunit in receptor signaling is unknown. Here we identified amino acid residues within the second intracellular domain of GABA(B2) that are critical for the coupling of GABA(B) receptor heterodimers to their downstream effector systems. Our results provide strong evidence for a functional role of the GABA(B2) subunit in G-protein coupling of the GABA(B) receptor heterodimer. In addition, they provide evidence for a novel "sequential" GPCR signaling mechanism in which ligand binding to one heterodimer subunit can induce signal transduction through the second partner of a heteromeric complex.

  3. GABA(B) receptor agonists for the treatment of drug addiction: a review of recent findings.

    PubMed

    Cousins, Michael S; Roberts, David C S; de Wit, Harriet

    2002-02-01

    A growing preclinical and clinical literature suggests that GABA(B) receptor agonists promote abstinence and reduce the use of cocaine, heroin, alcohol and nicotine. The purpose of this paper is to critically review these data. GABA(B) receptor agonists, such as baclofen, appear to reduce the reinforcing effects of abused drugs in animal models under multiple experimental procedures. This occurs at doses that have little effect on responding for other positive reinforcers such as food or water. We review evidence that these potential therapeutic effects may be mediated by modulation of mesolimbic dopamine neurons. This review also examines the preliminary clinical data from studies of the efficacy of baclofen for treatment of cocaine, alcohol, and nicotine dependence. We suggest that these preliminary data provide a rationale for conducting more systematic studies of the effects of GABA(B) receptor agonists as treatment for drug abuse. This line of research may also improve our understanding of the neurochemical mechanisms underlying the drug dependence process.

  4. Decreased Spontaneous Eye Blink Rates in Chronic Cannabis Users: Evidence for Striatal Cannabinoid-Dopamine Interactions

    PubMed Central

    Kowal, Mikael A.; Colzato, Lorenza S.; Hommel, Bernhard

    2011-01-01

    Chronic cannabis use has been shown to block long-term depression of GABA-glutamate synapses in the striatum, which is likely to reduce the extent to which endogenous cannabinoids modulate GABA- and glutamate-related neuronal activity. The current study aimed at investigating the effect of this process on striatal dopamine levels by studying the spontaneous eye blink rate (EBR), a clinical marker of dopamine level in the striatum. 25 adult regular cannabis users and 25 non-user controls matched for age, gender, race, and IQ were compared. Results show a significant reduction in EBR in chronic users as compared to non-users, suggesting an indirect detrimental effect of chronic cannabis use on striatal dopaminergic functioning. Additionally, EBR correlated negatively with years of cannabis exposure, monthly peak cannabis consumption, and lifetime cannabis consumption, pointing to a relationship between the degree of impairment of striatal dopaminergic transmission and cannabis consumption history. PMID:22125599

  5. Acupuncture reduces relapse to cocaine-seeking behavior via activation of GABA neurons in the ventral tegmental area.

    PubMed

    Jin, Wyju; Kim, Min Sun; Jang, Eun Young; Lee, Jun Yeon; Lee, Jin Gyeom; Kim, Hong Yu; Yoon, Seong Shoon; Lee, Bong Hyo; Chang, Suchan; Kim, Jae Hyo; Choi, Kwang H; Koo, Ho; Gwak, Young Seob; Steffensen, Scott C; Ryu, Yeon-Hee; Kim, Hee Young; Yang, Chae Ha

    2017-03-07

    There is growing public interest in alternative approaches to addiction treatment and scientific interest in elucidating the neurobiological underpinnings of acupuncture. Our previous studies showed that acupuncture at a specific Shenmen (HT7) points reduced dopamine (DA) release in the nucleus accumbens (NAc) induced by drugs of abuse. The present study was carried out to evaluate the effects of HT7 acupuncture on γ-aminobutyric acid (GABA) neuronal activity in the ventral tegmental area (VTA) and the reinstatement of cocaine-seeking behavior. Using microdialysis and in vivo single-unit electrophysiology, we evaluated the effects of HT7 acupuncture on VTA GABA and NAc DA release and VTA GABA neuronal activity in rats. Using a within-session reinstatement paradigm in rats self-administering cocaine, we evaluated the effects of HT7 stimulation on cocaine-primed reinstatement. Acupuncture at HT7 significantly reduced cocaine suppression of GABA release and GABA neuron firing rates in the VTA. HT7 acupuncture attenuated cocaine-primed reinstatement, which was blocked by VTA infusions of the selective GABAB receptor antagonist 2-hydroxysaclofen. HT7 stimulation significantly decreased acute cocaine-induced DA release in the NAc, which was also blocked by 2-hydroxysaclofen. HT7 acupuncture also attenuated cocaine-induced sensitization of extracellular DA levels in the NAc. Moreover, HT7 acupuncture reduced both locomotor activity and neuronal activation in the NAc induced by acute cocaine in a needle-penetration depth-dependent fashion. These results suggest that acupuncture may suppress cocaine-induced DA release in the NAc and cocaine-seeking behavior through activation of VTA GABA neurons. Acupuncture may be an effective therapy to reduce cocaine relapse by enhancing GABAergic inhibition in the VTA.

  6. Manganese exposure inhibits the clearance of extracellular GABA and influences taurine homeostasis in the striatum of developing rats

    PubMed Central

    Fordahl, Steve C.; Anderson, Joel G.; Cooney, Paula T.; Weaver, Tara L.; Colyer, Christa L.; Erikson, Keith M.

    2010-01-01

    Manganese (Mn) accumulation in the brain has been shown to alter the neurochemistry of the basal ganglia. Mn-induced alterations in dopamine biology are fairly well understood, but recently more evidence has emerged characterizing the role of γ-aminobutyric acid (GABA) in this dysfunction. The purpose of this study was to determine if the previously observed Mn-induced increase in extracellular GABA (GABAEC) was due to altered GABA transporter (GAT) function, and whether Mn perturbs other amino acid neurotransmitters, namely taurine and glycine (known modulators of GABA). Extracellular GABA, taurine, and glycine concentrations were collected from the striatum of control (CN) or Mn-exposed Sprague-Dawley rats using in vivo microdialysis, and the GAT inhibitor nipecotic acid (NA) was used to probe GAT function. Tissue and extracellular Mn levels were significantly increased, and the Fe:Mn ratio was decreased 36-fold in the extracellular space due to Mn exposure. NA led to a 2-fold increase in GABAEC of CNs, a response that was attenuated by Mn. Taurine responded inversely to GABA, and a novel 10-fold increase in taurine was observed after the removal of NA in CNs. Mn blunted this response and nearly abolished extracellular taurine throughout collection. Striatal taurine transporter (Slc6a6) mRNA levels were significantly increased with Mn exposure, and Mn significantly increased 3H-Taurine uptake after 3-minute exposure in primary rat astrocytes. These data suggest that Mn increases GABAEC by inhibiting the function of GAT, and that perturbed taurine homeostasis potentially impacts neural function by jeopardizing the osmoregulatory and neuromodulatory functions of taurine in the brain. PMID:20832424

  7. My close encounter with GABA(B) receptors.

    PubMed

    Nicoll, Roger A

    2004-10-15

    In this review, I summarize the sequence of events involved in characterizing the functional role of GABA(B) receptors in the CNS and their involvement in synaptic transmission. The story was launched with the realization that baclofen was a selective agonist of GABA(B) receptors. This lead to the discovery in the CNS that GABA(B) receptor activation could result in a presynaptic inhibition of transmitter release as well as a postsynaptic increase in potassium conductance. Based on this information, it was found that GABA also activated a potassium conductance. A role for GABA(B) receptors in synaptic transmission was suggested by the fact that activation of GABAergic interneurons could generate a slow IPSP mediated by an increase in potassium conductance. To link this slow IPSP to GABA(B) receptors required a selective GABA(B) antagonist. Phaclofen was the first antagonist developed and was found to antagonize the action of baclofen and the GABA(A) independent action of GABA. Most importantly, it blocked the slow IPSP. The properties of GABA(A) and GABA(B) IPSPs are remarkably different. GABA(A) IPSPs powerfully inhibit neurons and rapidly curtail excitatory inputs. This greatly enhances the precision of excitatory synaptic transmission. GABA(B) IPSPs are recruited with repetitive and synchronous activity and are postulated to modulate the rhythmic network activity of cortical tissue.

  8. Production of gaba (γ - Aminobutyric acid) by microorganisms: a review.

    PubMed

    Dhakal, Radhika; Bajpai, Vivek K; Baek, Kwang-Hyun

    2012-10-01

    GABA (γ-aminobutyric acid) is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB), which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods.

  9. Dopamine D(2)-class receptor supersensitivity as reflected in Ca2+ current modulation in neostriatal neurons.

    PubMed

    Prieto, G A; Perez-Burgos, A; Fiordelisio, T; Salgado, H; Galarraga, E; Drucker-Colin, R; Bargas, J

    2009-12-01

    The loss of dopaminergic neurons followed by dopamine (DA) depletion in the neostriatum is a hallmark of Parkinson's disease. Among other changes, DA D(2)-receptor class (D(2)R-class) supersensitivity is a result of striatal DA depletion. Pharmacological, biochemical and behavioral data have documented this phenomenon, but clear electrophysiological-functional correlates are still lacking. This work describes an electrophysiological correlate of D(2)R-class supersensitivity in DA-depleted striata after unilateral 6-hydroxydopamine (6-OHDA) lesions in the rat substantia nigra compacta (SNc). Ca2+ current modulation mediated by D(2)R-class activation reflected an altered sensitivity. Thus, while the concentration-response relationship (C-R plot) from control striata was better fit with a two sites model, the C-R plot obtained from DA-depleted striata was better fit by a three sites model, exhibited a considerable leftward shift, and presented an increased maximal response. Because Ca2+ current modulation by D(2)R-class activation is involved in the control of spiny neurons excitability and their synaptic GABA release, the present findings may help to explain several functional changes found in the striatal circuitry after dopaminergic denervation.

  10. Taurine activates GABA(A) but not GABA(B) receptors in rat hippocampal CA1 area.

    PubMed

    del Olmo, N; Bustamante, J; del Río, R M; Solís, J M

    2000-05-12

    We investigated if taurine, an endogenous GABA analog, could mimic both hyperpolarizing and depolarizing GABA(A)-mediated responses as well as pre- and postsynaptic GABA(B)-mediated actions in the CA1 region of rat hippocampal slices. Taurine (10 mM) perfusion induced changes in membrane potential and input resistance that are compatible with GABA(A) receptor activation. Local pressure application of taurine and GABA from a double barrel pipette positioned along the dendritic shaft of pyramidal cells revealed that taurine evoked a very small change of membrane potential and resistance compared with the large changes induced by GABA in these parameters. Moreover, in the presence of GABA(A) antagonists, local application of GABA on the dendrites evoked a GABA(B)-mediated hyperpolarization while taurine did not induce any change. Taurine neither mimicked baclofen inhibitory actions on presynaptic release of glutamate and GABA as judging by the lack of taurine effect on paired-pulse facilitation ratio and slow inhibitory postsynaptic potentials, respectively. These results show that taurine mainly activates GABA(A) receptors located on the cell body, indicating therefore that if taurine has any action on the dendrites it will not be mediated by either GABA(A) or GABA(B) receptors activation.

  11. Advantages of an antagonist: bicuculline and other GABA antagonists

    PubMed Central

    Johnston, Graham AR

    2013-01-01

    The convulsant alkaloid bicuculline continues to be investigated more than 40 years after the first publication of its action as an antagonist of receptors for the inhibitory neurotransmitter GABA. This historical perspective highlights key aspects of the discovery of bicuculline as a GABA antagonist and the sustained interest in this and other GABA antagonists. The exciting advances in the molecular biology, pharmacology and physiology of GABA receptors provide a continuing stimulus for the discovery of new antagonists with increasing selectivity for the myriad of GABA receptor subclasses. Interesting GABA antagonists not structurally related to bicuculline include gabazine, salicylidene salicylhydrazide, RU5135 and 4-(3-biphenyl-5-(4-piperidyl)-3-isoxazole. Bicuculline became the benchmark antagonist for what became known as GABAA receptors, but not all ionotropic GABA receptors are susceptible to bicuculline. In addition, not all GABAA receptor antagonists are convulsants. Thus there are still surprises in store as the study of GABA receptors evolves. PMID:23425285

  12. Trophic actions of GABA on neuronal development.

    PubMed

    Represa, Alfonso; Ben-Ari, Yehezkel

    2005-06-01

    During brain development, transmitter-gated receptors are operative before synapse formation, suggesting that their action is not restricted to synaptic transmission. GABA, which is the principal excitatory transmitter in the developing brain, acts as an epigenetic factor to control processes including cell proliferation, neuroblast migration and dendritic maturation. These effects appear to be mediated through a paracrine, diffuse, non-synaptic mode of action that precedes the more focused, rapid mode of operation characteristic of synaptic connections. This sequential operation implies that GABA is used as an informative agent but in a unique context at an early developmental stage. This sequence also implies that by altering these effects, drugs acting on the GABA system could be pathogenic during pregnancy.

  13. An excitatory GABA loop operating in vivo

    PubMed Central

    Astorga, Guadalupe; Bao, Jin; Marty, Alain; Augustine, George J.; Franconville, Romain; Jalil, Abdelali; Bradley, Jonathan; Llano, Isabel

    2015-01-01

    While it has been proposed that the conventional inhibitory neurotransmitter GABA can be excitatory in the mammalian brain, much remains to be learned concerning the circumstances and the cellular mechanisms governing potential excitatory GABA action. Using a combination of optogenetics and two-photon calcium imaging in vivo, we find that activation of chloride-permeable GABAA receptors in parallel fibers (PFs) of the cerebellar molecular layer of adult mice causes parallel fiber excitation. Stimulation of PFs at submaximal stimulus intensities leads to GABA release from molecular layer interneurons (MLIs), thus creating a positive feedback loop that enhances excitation near the center of an activated PF bundle. Our results imply that elevated chloride concentration can occur in specific intracellular compartments of mature mammalian neurons and suggest an excitatory role for GABAA receptors in the cerebellar cortex of adult mice. PMID:26236197

  14. Specific features of sensorimotor cerebral cortex activity modulation by dopamine releaser amantadine.

    PubMed

    Storozhuk, Viktor M; Zinyuk, Larissa E

    2007-09-01

    The modulatory effects of amantadine (1-adamantanamine) on the activity of sensorimotor cerebral cortex neurones during microiontophoretic application of agonists of glutamatergic and GABA-ergic (gamma-aminobutyric acid) transmission were studied. In non-anaesthetised cats, dopamine (DA) released by amantadine application in a small area of the neocortex increased baseline and evoked neuronal activity, providing stabilization and optimum course of both the neuronal and the conditioned responses of the animal. Amantadine eliminates a decrease in the level of neuronal baseline and evoked activity and marked increase in the latency of neuronal activation and conditioned movement mediated by D2 receptor antagonist sulpiride ((S)-5-aminosulfonyl-N-[(1-ethyl-2-pyrrolidinyl) methyl]-2-methoamantadineybenzamide) or GABA. This is reflected by a proportionate decrease in the onset of neuronal impulse reaction and latency of conditioned movement. Combined NMDA (N-methyl-D: -aspartate) and amantadine application also caused a considerable increase in baseline and evoked activity, but produced a slightly weaker effect than that evoked by NMDA application alone. A decrease in the baseline and evoked neuronal activity after NMDA withdrawn lasted during next control session (up to 40 min). The ability of DA releaser amantadine to alleviate significant increase in the latency of neuronal responses and conditioned movement induced by sulpiride or GABA suggests that dopamine modulates the activity of GABA-ergic inhibitory fast spike interneurons in the cat sensorimotor cortex during conditioning.

  15. The effect of Gly-Gln [ß-endorphin30-31] on morphine-evoked serotonin and GABA efflux in the nucleus accumbens of conscious rats.

    PubMed

    Basaran, Nesrin F; Buyukuysal, R Levent; Sertac Yilmaz, M; Aydin, Sami; Cavun, Sinan; Millington, William R

    2016-08-01

    Glycyl-L-glutamine (Gly-Gln; β-endorphin30-31) is an endogenous dipeptide synthesized through the post-translational processing of β-endorphin1-31. Central Gly-Gln administration inhibits the rewarding properties of morphine and attenuates morphine tolerance, dependence and withdrawal although it does not interfere with morphine analgesia. In an earlier study, we found that Gly-Gln inhibits morphine-induced dopamine efflux in the nucleus accumbens (NAc), consistent with its ability to inhibit morphine reward. To further investigate the mechanism responsible for its central effects we tested whether i.c.v. Gly-Gln administration influences the rise in extracellular serotonin and GABA concentrations evoked by morphine in the NAc. Conscious rats were treated with Gly-Gln (100nmol/5μl) or saline i.c.v. followed, 2min later, by morphine (2.5mg/kg) or saline i.p. and extracellular serotonin and GABA concentrations were analyzed by microdialysis and HPLC. Morphine administration increased extracellular serotonin and GABA concentrations significantly within 20min, as shown previously. Unexpectedly, Gly-Gln also increased extracellular serotonin concentrations significantly in control animals. Combined treatment with Gly-Gln+morphine also elevated extracellular serotonin concentrations although the magnitude of the response did not differ significantly from the effect of Gly-Gln or morphine, given alone suggesting that Gly-Gln suppressed morphine induced serotonin efflux. Gly-Gln abolished the morphine-induced rise in extracellular GABA concentrations but had no effect on extracellular GABA when given alone to otherwise untreated animals. These data show that Gly-Gln stimulates NAc serotonin efflux and, together with earlier studies, support the hypothesis that Gly-Gln inhibits the rewarding effects of morphine by modulating morphine induced dopamine, GABA and serotonin efflux in the NAc.

  16. Glutamate and GABA in Appetite Regulation

    PubMed Central

    Delgado, Teresa C.

    2013-01-01

    Appetite is regulated by a coordinated interplay between gut, adipose tissue, and brain. A primary site for the regulation of appetite is the hypothalamus where interaction between orexigenic neurons, expressing Neuropeptide Y/Agouti-related protein, and anorexigenic neurons, expressing Pro-opiomelanocortin cocaine/Amphetamine-related transcript, controls energy homeostasis. Within the hypothalamus, several peripheral signals have been shown to modulate the activity of these neurons, including the orexigenic peptide ghrelin and the anorexigenic hormones insulin and leptin. In addition to the accumulated knowledge on neuropeptide signaling, presence and function of amino acid neurotransmitters in key hypothalamic neurons brought a new light into appetite regulation. Therefore, the principal aim of this review will be to describe the current knowledge of the role of amino acid neurotransmitters in the mechanism of neuronal activation during appetite regulation and the associated neuronal-astrocytic metabolic coupling mechanisms. Glutamate and GABA dominate synaptic transmission in the hypothalamus and administration of their receptors agonists into hypothalamic nuclei stimulates feeding. By using 13C High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance spectroscopy based analysis, the Cerdán group has shown that increased neuronal firing in mice hypothalamus, as triggered by appetite during the feeding-fasting paradigm, may stimulate the use of lactate as neuronal fuel leading to increased astrocytic glucose consumption and glycolysis. Moreover, fasted mice showed increased hypothalamic [2-13C]GABA content, which may be explained by the existence of GABAergic neurons in key appetite regulation hypothalamic nuclei. Interestingly, increased [2-13C]GABA concentration in the hypothalamus of fasted animals appears to result mainly from reduction in GABA metabolizing pathways, rather than increased GABA synthesis by augmented activity of the glutamate-glutamine-GABA

  17. Glutamate and GABA in Appetite Regulation.

    PubMed

    Delgado, Teresa C

    2013-01-01

    Appetite is regulated by a coordinated interplay between gut, adipose tissue, and brain. A primary site for the regulation of appetite is the hypothalamus where interaction between orexigenic neurons, expressing Neuropeptide Y/Agouti-related protein, and anorexigenic neurons, expressing Pro-opiomelanocortin cocaine/Amphetamine-related transcript, controls energy homeostasis. Within the hypothalamus, several peripheral signals have been shown to modulate the activity of these neurons, including the orexigenic peptide ghrelin and the anorexigenic hormones insulin and leptin. In addition to the accumulated knowledge on neuropeptide signaling, presence and function of amino acid neurotransmitters in key hypothalamic neurons brought a new light into appetite regulation. Therefore, the principal aim of this review will be to describe the current knowledge of the role of amino acid neurotransmitters in the mechanism of neuronal activation during appetite regulation and the associated neuronal-astrocytic metabolic coupling mechanisms. Glutamate and GABA dominate synaptic transmission in the hypothalamus and administration of their receptors agonists into hypothalamic nuclei stimulates feeding. By using (13)C High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance spectroscopy based analysis, the Cerdán group has shown that increased neuronal firing in mice hypothalamus, as triggered by appetite during the feeding-fasting paradigm, may stimulate the use of lactate as neuronal fuel leading to increased astrocytic glucose consumption and glycolysis. Moreover, fasted mice showed increased hypothalamic [2-(13)C]GABA content, which may be explained by the existence of GABAergic neurons in key appetite regulation hypothalamic nuclei. Interestingly, increased [2-(13)C]GABA concentration in the hypothalamus of fasted animals appears to result mainly from reduction in GABA metabolizing pathways, rather than increased GABA synthesis by augmented activity of the glutamate-glutamine-GABA

  18. Friedreich Ataxia: Failure of GABA-ergic and Glycinergic Synaptic Transmission in the Dentate Nucleus

    PubMed Central

    Koeppen, Arnulf H.; Ramirez, Liane; Becker, Alyssa B.; Feustel, Paul J.; Mazurkiewicz, Joseph E.

    2014-01-01

    Atrophy of large neurons in the dentate nucleus (DN) is an important pathological correlate of neurological disability in patients with Friedreich ataxia (FA). Thinning of the DN was quantified in 29 autopsy cases of FA and 2 carriers by measuring the thickness of the gray matter ribbon on stains with anti-glutamic acid decarboxylase (GAD), the rate-limiting enzyme in the biosynthesis of γ-amino-butyric acid (GABA). The DN was thinner than normal in all cases of FA, and atrophy correlated inversely with disease duration but not with age of onset or length of the homozygous guanine-adenine-adenine trinucleotide expansions. In 13 of the FA cases, frozen DN tissue was available for assay of frataxin. DN atrophy was more severe when frataxin was very low. Immunohistochemical staining for GAD revealed grumose reaction and preservation of small GABA-ergic neurons in the DN of FA patients. Residual small DN neurons and varicose axons also contained the glycine transporter 2, identifying them as glycinergic. Immunohistochemistry also confirmed severe loss of GABA-A and glycine receptors in the DN with comparable depletion of the receptor-anchoring protein gephyrin. Thus, loss of gephyrin and failure to position GABA-A and glycine receptors correctly may reduce trophic support of large DN neurons and contribute to their atrophy. By contrast, Purkinje cells may escape retrograde atrophy in FA by issuing new axonal sprouts to small surviving DN neurons where they form reparative grumose clusters. PMID:25575136

  19. A descending dopamine pathway conserved from basal vertebrates to mammals

    PubMed Central

    Ryczko, Dimitri; Cone, Jackson J.; Alpert, Michael H.; Goetz, Laurent; Auclair, François; Dubé, Catherine; Parent, Martin; Roitman, Mitchell F.; Alford, Simon; Dubuc, Réjean

    2016-01-01

    Dopamine neurons are classically known to modulate locomotion indirectly through ascending projections to the basal ganglia that project down to brainstem locomotor networks. Their loss in Parkinson’s disease is devastating. In lampreys, we recently showed that brainstem networks also receive direct descending dopaminergic inputs that potentiate locomotor output. Here, we provide evidence that this descending dopaminergic pathway is conserved to higher vertebrates, including mammals. In salamanders, dopamine neurons projecting to the striatum or brainstem locomotor networks were partly intermingled. Stimulation of the dopaminergic region evoked dopamine release in brainstem locomotor networks and concurrent reticulospinal activity. In rats, some dopamine neurons projecting to the striatum also innervated the pedunculopontine nucleus, a known locomotor center, and stimulation of the dopaminergic region evoked pedunculopontine dopamine release in vivo. Finally, we found dopaminergic fibers in the human pedunculopontine nucleus. The conservation of a descending dopaminergic pathway across vertebrates warrants re-evaluating dopamine’s role in locomotion. PMID:27071118

  20. Extracellular dopamine and alterations on dopamine transporter are related to reserpine toxicity in Caenorhabditis elegans.

    PubMed

    Reckziegel, Patrícia; Chen, Pan; Caito, Sam; Gubert, Priscila; Soares, Félix Alexandre Antunes; Fachinetto, Roselei; Aschner, Michael

    2016-03-01

    Reserpine is used as an animal model of parkinsonism. We hypothesized that the involuntary movements induced by reserpine in rodents are induced by dopaminergic toxicity caused by extracellular dopamine accumulation. The present study tested the effects of reserpine on the dopaminergic system in Caenorhabditis elegans. Reserpine was toxic to worms (decreased the survival, food intake, development and changed egg laying and defecation cycles). In addition, reserpine increased the worms' locomotor rate on food and decreased dopamine levels. Morphological evaluations of dopaminergic CEP neurons confirmed neurodegeneration characterized by decreased fluorescence intensity and the number of worms with intact CEP neurons, and increased number of shrunken somas per worm. These effects were unrelated to reserpine's effect on decreased expression of the dopamine transporter, dat-1. Interestingly, the locomotor rate on food and the neurodegenerative parameters fully recovered to basal conditions upon reserpine withdrawal. Furthermore, reserpine decreased survival in vesicular monoamine transporter and dat-1 loss-of-function mutant worms. In addition, worms pre-exposed to dopamine followed by exposure to reserpine had decreased survival. Reserpine activated gst-4, which controls a phase II detoxification enzymes downstream of nuclear factor (erythroid-derived-2)-like 2. Our findings establish that the dopamine transporter, dat-1, plays an important role in reserpine toxicity, likely by increasing extracellular dopamine concentrations.

  1. Recovery of dopamine transporters with methamphetamine detoxification is not linked to changes in dopamine release

    DOE PAGES

    Volkow, Nora D.; Wang, Gene-Jack; Smith, Lisa; ...

    2015-07-21

    Metamphetamine’s widepread abuse and concerns that it may increase Parkinson’s disease led us to assess if the reported loss of dopamine transporters (DAT) in methamphetamine abusers (MA) reflected damage to dopamine neurons. Using PET with [11C]cocaine to measure DAT, and with [11C]raclopride to measure dopamine release (assessed as changes in specific binding of [11C]raclopride between placebo and methylphenidate), which was used as marker of dopamine neuronal function, we show that MA (n=16), tested during early detoxification, had lower DAT (20-30%) but overall normal DA release in striatum (except for a small decrease in left putamen), when compared to controls (n=15).more » In controls, DAT were positively correlated with DA release (higher DAT associated with larger DA increases), consistent with DAT serving as markers of DA terminals. In contrast, MA showed a trend for a negative correlation (p=0.07) (higher DAT associated with lower DA increases), consistent with reduced DA re-uptake following DAT downregulation. MA who remained abstinent nine-months later (n=9) showed significant increases in DAT (20%) but methylphenidate-induced dopamine increases did not change. In contrast, in controls, DAT did not change when retested 9 months later but methylphenidate-induced dopamine increases in ventral striatum were reduced (p=0.05). Baseline D2/D3 receptors in caudate were lower in MA than in controls and did not change with detoxification, nor did they change in the controls upon retest. The loss of DAT in the MA, which was not associated with a concomitant reduction in dopamine release as would have been expected if DAT loss reflected DA terminal degneration; as well as the recovery of DAT after protracted detoxification, which was not associated with increased dopamine release as would have been expected if DAT increases reflected terminal regeneration, indicate that the loss of DAT in these MA does not reflect degeneration of dopamine terminals.« less

  2. Recovery of dopamine transporters with methamphetamine detoxification is not linked to changes in dopamine release

    SciTech Connect

    Volkow, Nora D.; Wang, Gene-Jack; Smith, Lisa; Fowler, Joanna S.; Telang, Frank; Logan, Jean; Tomasi, Dardo

    2015-07-21

    Metamphetamine’s widepread abuse and concerns that it may increase Parkinson’s disease led us to assess if the reported loss of dopamine transporters (DAT) in methamphetamine abusers (MA) reflected damage to dopamine neurons. Using PET with [11C]cocaine to measure DAT, and with [11C]raclopride to measure dopamine release (assessed as changes in specific binding of [11C]raclopride between placebo and methylphenidate), which was used as marker of dopamine neuronal function, we show that MA (n=16), tested during early detoxification, had lower DAT (20-30%) but overall normal DA release in striatum (except for a small decrease in left putamen), when compared to controls (n=15). In controls, DAT were positively correlated with DA release (higher DAT associated with larger DA increases), consistent with DAT serving as markers of DA terminals. In contrast, MA showed a trend for a negative correlation (p=0.07) (higher DAT associated with lower DA increases), consistent with reduced DA re-uptake following DAT downregulation. MA who remained abstinent nine-months later (n=9) showed significant increases in DAT (20%) but methylphenidate-induced dopamine increases did not change. In contrast, in controls, DAT did not change when retested 9 months later but methylphenidate-induced dopamine increases in ventral striatum were reduced (p=0.05). Baseline D2/D3 receptors in caudate were lower in MA than in controls and did not change with detoxification, nor did they change in the controls upon retest. The loss of DAT in the MA, which was not associated with a concomitant reduction in dopamine release as would have been expected if DAT loss reflected DA terminal degneration; as well as the recovery of DAT after protracted detoxification, which was not associated with increased dopamine release as would have been expected if DAT increases reflected terminal regeneration, indicate that the loss of DAT in these MA does not reflect degeneration of

  3. GABA-ergic neurons in the leach central nervous system

    SciTech Connect

    Cline, H.T.

    1985-01-01

    GABA is a candidate for an inhibitory neurotransmitter in the leech central nervous system because of the well-documented inhibitory action of GABA in other invertebrates. To demonstrate that GABA meets the criteria used to identify a substance as a neurotransmitter, the author examined GABA metabolism and synaptic interactions of inhibitory motor neurons in two leech species, Hirudo medicinalis and Haementeria ghilianii. Segmental ganglia of the leech ventral nerve cord and identified inhibitors have the capacity to synthesize GABA when incubated in the presence of the precursor glutamate. Application of GABA to cell bodies of excitatory motor neurons or muscle fibers innervated by the inhibitors hyperpolarizes the membrane potential of the target cell and activates a chloride ion conductance channel, similar to the inhibitory membrane response following intracellular stimulation of the inhibitor. Bicuculline methiodide (5 x 10/sup -5/M), GABA receptor antagonist, blocks reversibly the response to applied GABA and the inhibitory synaptic inputs onto the postsynaptic neurons or muscle fibers without interfering with their excitatory inputs. Furthermore, the inhibitors are included among approximately 25 neurons per segmental ganglion that take up GABA by a high affinity uptake system, as revealed by /sup 3/H-GABA-autoradiography. The development of the capacities to synthesize and to take up GABA were examined in leech embryos. The embryos are able to synthesize GABA at early stages of the development of the nervous system, before any neurons have extended neutrites.

  4. The Anaphase-Promoting Complex (APC) ubiquitin ligase regulates GABA transmission at the C. elegans neuromuscular junction

    PubMed Central

    Kowalski, Jennifer R.; Dube, Hitesh; Touroutine, Denis; Rush, Kristen M.; Goodwin, Patricia R.; Carozza, Marc; Didier, Zachary; Francis, Michael M.; Juo, Peter

    2014-01-01

    Regulation of both excitatory and inhibitory synaptic transmission is critical for proper nervous system function. Aberrant synaptic signaling, including altered excitatory to inhibitory balance, is observed innumerous neurological diseases. The ubiquitin enzyme system controls the abundance of many synaptic proteins and thus plays a key role in regulating synaptic transmission. The Anaphase-Promoting Complex (APC) is a multi-subunit ubiquitin ligase that was originally discovered as a key regulator of protein turnover during the cell cycle. More recently, the APC has been shown to function in postmitotic neurons, where it regulates diverse processes such as synapse development and synaptic transmission at glutamatergic synapses. Here we report that the APC regulates synaptic GABA signaling by acting in motor neurons to control the balance of excitatory (acetylcholine) to inhibitory (GABA) transmission at the Caenorhabditis elegans neuromuscular junction (NMJ). Loss-of-function mutants in multiple APC subunits have increased muscle excitation at the NMJ; this phenotype is rescued by expression of the missing subunit in GABA neurons. Quantitative imaging and electrophysiological analyses indicate that APC mutants have decreased GABA release but normal cholinergic transmission. Consistent with this, APC mutants exhibit convulsions in a seizure assay sensitive to reductions in GABA signaling. Previous studies in other systems showed that the APC can negatively regulate the levels of the active zone protein SYD-2 Liprin-α. Similarly, we found that SYD-2 accumulates in APC mutants at GABAergic presynaptic sites. Finally, we found that the APC subunit EMB-27 CDC16 can localize to presynapses in GABA neurons. Together, our data suggest a model in which the APC acts at GABAergic presynapses to promote GABA release and inhibit muscle excitation. These findings are the first evidence that the APC regulates transmission at inhibitory synapses and have implications for

  5. Nicotine withdrawal produces a decrease in extracellular levels of dopamine in the nucleus accumbens that is lower in adolescent versus adult male rats.

    PubMed

    Natividad, Luis A; Tejeda, Hugo A; Torres, Oscar V; O'Dell, Laura E

    2010-02-01

    The behavioral effects of nicotine withdrawal are lower in adolescent versus adult rats. However, the neurochemical mechanisms that mediate these developmental differences are unknown. Previous studies have shown that extracellular levels of dopamine in the nucleus accumbens (NAcc) are reduced in adult rats experiencing withdrawal. This study compared dopamine levels in the NAcc of male adolescent and adult rats experiencing nicotine withdrawal. Animals were prepared with subcutaneous pumps that delivered an equivalent nicotine dose in these age groups. Following 13 days of nicotine exposure, rats were implanted unilaterally with microdialysis probes into the NAcc and ipsilateral ventral tegmental area (VTA). The next day, dialysate levels were collected following systemic administration of the nicotinic-receptor antagonist mecamylamine to precipitate withdrawal. Mecamylamine produced an average % decrease in NAcc dopamine that was lower in adolescents (20%) versus adults (44%). Similar developmental differences were observed with the dopaminergic (DOPAC and HVA) but not serotonergic (5-HIAA) metabolites. A follow-up study compared NAcc dopamine in adolescent and adult rats receiving intra-VTA administration of bicuculline, which reduces gamma-aminobutyric acid (GABA) inhibition of dopamine transmission. The results revealed that blockade of GABA(A) receptors in the VTA produced a two-fold increase in NAcc dopamine of adults but not adolescents. These results provide a potential mechanism involving dopamine that mediates developmental differences in nicotine withdrawal. Specifically, they suggest that GABA systems are underdeveloped during adolescence and this reduced inhibition of dopamine neurons in the VTA may lead to reduced decreases in NAcc dopamine of young animals experiencing withdrawal.

  6. Effects of taurine and light on retinal GABA content and the efflux of 14C-GABA and 14C-aspartate from frog retina.

    PubMed

    Haroutounian, J E; Petrosian, A M

    1998-01-01

    GABA content of isolated, dark adapted frog retina was found to be 3.15 +/- 0.28 mM. After 30 minutes of exposure to intense light (200 lx), retinal GABA levels increased about 70%. Interestingly, incubation of dark adapted retina for 30 minutes with medium containing 0.4 mM taurine also led to a 70% increase in GABA levels. Since the light-induced elevation in GABA content was reduced over 50% by a simultaneous injection of 0.02 mM strychinine, it is likely that the light-induced GABA change is partly mediated by the release of taurine from the retina seen after light exposure. However, incubation of isolated retina with medium containing increasing concentrations of taurine (1, 2 and 20 mM), caused a progressive rise in 14C-GABA efflux from retina that was preloaded with 2.2 microM GABA and exposed to dim light (0.05 lx). It was also shown that taurine (1 and 5 mM) dramatically reduced 14C-aspartate efflux from retina preloaded with radioactive aspartate and exposed to dim light conditions. By comparison, intense light stimulation (40 lx) reduced basal 14C-aspartate efflux while dark exposure increased 14C-aspartate loss from the isolated retina. We found that taurine depressed the b-wave signal of frog retina, with the maximum effect occurring at a concentration of 1 mM. Addition of strychnine (0.4 mM) reversed the taurine effect on the b-wave, indicating that taurine receptors must be present in the inner retina. By contrast, taurine (0.1-20 mM) had no effect on the P111 component of the ERG initiated by either aspartate or cobalt. However, taurine exerted a modest depressant activity on P111 initiated by glutamate. The significance of these data relative to the putative neurotransmitter function of taurine in the inner retina is discussed.

  7. Frontal GABA levels change during working memory.

    PubMed

    Michels, Lars; Martin, Ernst; Klaver, Peter; Edden, Richard; Zelaya, Fernando; Lythgoe, David J; Lüchinger, Rafael; Brandeis, Daniel; O'Gorman, Ruth L

    2012-01-01

    Functional neuroimaging metrics are thought to reflect changes in neurotransmitter flux, but changes in neurotransmitter levels have not been demonstrated in humans during a cognitive task, and the relationship between neurotransmitter dynamics and hemodynamic activity during cognition has not yet been established. We evaluate the concentration of the major inhibitory (GABA) and excitatory (glutamate + glutamine: Glx) neurotransmitters and the cerebral perfusion at rest and during a prolonged delayed match-to-sample working memory task. Resting GABA levels in the dorsolateral prefrontal cortex correlated positively with the resting perfusion and inversely with the change in perfusion during the task. Further, only GABA increased significantly during the first working memory run and then decreased continuously across subsequent task runs. The decrease of GABA over time was paralleled by a trend towards decreased reaction times and higher task accuracy. These results demonstrate a link between neurotransmitter dynamics and hemodynamic activity during working memory, indicating that functional neuroimaging metrics depend on the balance of excitation and inhibition required for cognitive processing.

  8. Plant reproduction: GABA gradient, guidance and growth.

    PubMed

    Ma, Hong

    2003-10-28

    How a pollen tube manages to navigate through the female tissues during plant reproduction has been a mystery. A new analysis of an Arabidopsis mutant has provided the strongest evidence yet that a GABA gradient may be a critical signal for correct targeting of the pollen tube.

  9. Comparative immunohistochemical localisation of GABA(B1a), GABA(B1b) and GABA(B2) subunits in rat brain, spinal cord and dorsal root ganglion.

    PubMed

    Charles, K J; Evans, M L; Robbins, M J; Calver, A R; Leslie, R A; Pangalos, M N

    2001-01-01

    GABA(B) receptors are G-protein-coupled receptors mediating the slow onset and prolonged synaptic actions of GABA in the CNS. The recent cloning of two genes, GABA(B1) and GABA(B2), has revealed a novel requirement for GABA(B) receptor signalling. Studies have demonstrated that the two receptor subunits associate as a GABA(B1)/GABA(B2) heterodimer to form a functional GABA(B) receptor. In this study we have developed polyclonal antisera specific to two splice variants of the GABA(B1) subunit, GABA(B1a) and GABA(B1b), as well as an antiserum to the GABA(B2) subunit. Using affinity-purified antibodies derived from these antisera we have mapped out the distribution profile of each subunit in rat brain, spinal cord and dorsal root ganglion. In brain the highest areas of GABA(B1a), GABA(B1b) and GABA(B2) subunit expression were found in neocortex, hippocampus, thalamus, cerebellum and habenula. In spinal cord, GABA(B1) and GABA(B2) subunits were expressed in the superficial layers of the dorsal horn, as well as in motor neurones in the deeper layers of the ventral horn. GABA(B) receptor subunit immunoreactivity in dorsal root ganglion suggested that expression of GABA(B1b) was restricted to the large diameter neurones, in contrast to GABA(B1a) and GABA(B2) subunits which were expressed in both large and small diameter neurones. Although expression levels of GABA(B1) and GABA(B2) subunits varied we found no areas in which GABA(B1) was expressed in the absence of GABA(B2). This suggests that most, if not all, GABA(B1) immunoreactivity may represent functional GABA(B) receptors. Although our data are in general agreement with functional studies, some discrepancies in GABA(B1) subunit expression occurred with respect to other immunohistochemical studies. Overall our data suggest that GABA(B) receptors are widely expressed throughout the brain and spinal cord, and that GABA(B1a) and GABA(B1b) subunits can associate with GABA(B2) to form both pre- and post-synaptic receptors.

  10. Drug interactions at GABA(A) receptors.

    PubMed

    Korpi, Esa R; Gründer, Gerhard; Lüddens, Hartmut

    2002-06-01

    Neurotransmitter receptor systems have been the focus of intensive pharmacological research for more than 20 years for basic and applied scientific reasons, but only recently has there been a better understanding of their key features. One of these systems includes the type A receptor for the gamma-aminobutyric acid (GABA), which forms an integral anion channel from a pentameric subunit assembly and mediates most of the fast inhibitory neurotransmission in the adult vertebrate central nervous system. Up to now, depending on the definition, 16-19 mammalian subunits have been cloned and localized on different genes. Their assembly into proteins in a poorly defined stoichiometry forms the basis of functional and pharmacological GABA(A) receptor diversity, i.e. the receptor subtypes. The latter has been well documented in autoradiographic studies using ligands that label some of the receptors' various binding sites, corroborated by recombinant expression studies using the same tools. Significantly less heterogeneity has been found at the physiological level in native receptors, where the subunit combinations have been difficult to dissect. This review focuses on the characteristics, use and usefulness of various ligands and their binding sites to probe GABA(A) receptor properties and to gain insight into the biological function from fish to man and into evolutionary conserved GABA(A) receptor heterogeneity. We also summarize the properties of the novel mouse models created for the study of various brain functions and review the state-of-the-art imaging of brain GABA(A) receptors in various human neuropsychiatric conditions. The data indicate that the present ligands are only partly satisfactory tools and further ligands with subtype-selective properties are needed for imaging purposes and for confirming the behavioral and functional results of the studies presently carried out in gene-targeted mice with other species, including man.

  11. Differential degradation of motor deficits during gradual dopamine depletion with 6-hydroxydopamine in mice

    PubMed Central

    Willard, Amanda M.; Bouchard, Rachel S.; Gittis, Aryn H.

    2015-01-01

    Parkinson’s disease (PD) is a movement disorder whose cardinal motor symptoms arise due to the progressive loss of dopamine. Although this dopamine loss typically progresses slowly over time, currently there are very few animal models that enable incremental dopamine depletion over time within the same animal. This type of gradual dopamine depletion model would be useful in studies aimed at the prodromal phase of PD, when dopamine levels are pathologically low but motor symptoms have not yet presented. Utilizing the highly characterized neurotoxin 6-hydroxydopamine (6-OHDA), we have developed a paradigm to gradually deplete dopamine levels in the striatum over a user-defined time course – spanning weeks to months – in C57BL/6 mice. Dopamine depletions were achieved by administration of five low dose injections (0.75 µg) of 6-OHDA through an implanted intracranial bilateral cannula targeting the medial forebrain bundle. Levels of dopamine within the striatum declined linearly with successive injections, quantified using tyrosine hydroxylase immunostaining and high-performance liquid chromatography. Behavioral testing was carried out at each time point to study the onset and progression of motor impairments as a function of dopamine loss over time. We found that spontaneous locomotion, measured in an open field, was robust to loss of dopamine until ~70% of striatal dopamine was lost. Beyond this point, additional dopamine loss caused a sharp decline in motor performance, reaching a final level comparable to that of acutely depleted mice. Similarly, although rearing behavior was more sensitive to dopamine loss and declined linearly as a function of dopamine levels, it eventually declined to levels similar to that seen in acutely depleted mice. In contrast, motor coordination, measured on a vertical pole task, was only moderately impaired in gradually depleted mice, despite severe impairments observed in acutely depleted mice. These results demonstrate the

  12. Excitatory GABA in rodent developing neocortex in vitro.

    PubMed

    Rheims, Sylvain; Minlebaev, Marat; Ivanov, Anton; Represa, Alfonso; Khazipov, Rustem; Holmes, Gregory L; Ben-Ari, Yehezkel; Zilberter, Yuri

    2008-08-01

    GABA depolarizes immature cortical neurons. However, whether GABA excites immature neocortical neurons and drives network oscillations as in other brain structures remains controversial. Excitatory actions of GABA depend on three fundamental parameters: the resting membrane potential (Em), reversal potential of GABA (E(GABA)), and threshold of action potential generation (Vthr). We have shown recently that conventional invasive recording techniques provide an erroneous estimation of these parameters in immature neurons. In this study, we used noninvasive single N-methyl-d-aspartate and GABA channel recordings in rodent brain slices to measure both Em and E(GABA) in the same neuron. We show that GABA strongly depolarizes pyramidal neurons and interneurons in both deep and superficial layers of the immature neocortex (P2-P10). However, GABA generates action potentials in layer 5/6 (L5/6) but not L2/3 pyramidal cells, since L5/6 pyramidal cells have more depolarized resting potentials and more hyperpolarized Vthr. The excitatory GABA transiently drives oscillations generated by L5/6 pyramidal cells and interneurons during development (P5-P12). The NKCC1 co-transporter antagonist bumetanide strongly reduces [Cl(-)]i, GABA-induced depolarization, and network oscillations, confirming the importance of GABA signaling. Thus a strong GABA excitatory drive coupled with high intrinsic excitability of L5/6 pyramidal neurons and interneurons provide a powerful mechanism of synapse-driven oscillatory activity in the rodent neocortex in vitro. In the companion paper, we show that the excitatory GABA drives layer-specific seizures in the immature neocortex.

  13. Dopamine and dopamine receptor D1 associated with decreased social interaction.

    PubMed

    Liu, Qiang; Shi, Jieyun; Lin, Rongfei; Wen, Tieqiao

    2017-02-13

    Deficits in social interaction are hallmarks of neurological and psychiatric disorders. However, its underlying mechanism is still unclear. Here, we show that the loss of dendritic cell factor 1 (Dcf1) in the nervous system of mice induces social interaction deficiency, autism-like behaviour, and influences social interaction via the dopamine system. Dopamine receptor D1 agonist rescues this social cognition phenotype, and improves short-term plasticity. Together, this study presents a new genetic mechanism that affects social interaction and may provide a new way to improve positive social interaction and treat autism spectrum disorders.

  14. RGS2 modulates coupling between GABAB receptors and GIRK channels in dopamine neurons of the ventral tegmental area.

    PubMed

    Labouèbe, Gwenaël; Lomazzi, Marta; Cruz, Hans G; Creton, Cyril; Luján, Rafael; Li, Meng; Yanagawa, Yuchio; Obata, Kunihiko; Watanabe, Masahiko; Wickman, Kevin; Boyer, Stephanie B; Slesinger, Paul A; Lüscher, Christian

    2007-12-01

    Agonists of GABA(B) receptors exert a bi-directional effect on the activity of dopamine (DA) neurons of the ventral tegmental area, which can be explained by the fact that coupling between GABA(B) receptors and G protein-gated inwardly rectifying potassium (GIRK) channels is significantly weaker in DA neurons than in GABA neurons. Thus, low concentrations of agonists preferentially inhibit GABA neurons and thereby disinhibit DA neurons. This disinhibition might confer reinforcing properties on addictive GABA(B) receptor agonists such as gamma-hydroxybutyrate (GHB) and its derivatives. Here we show that, in DA neurons of mice, the low coupling efficiency reflects the selective expression of heteromeric GIRK2/3 channels and is dynamically modulated by a member of the regulator of G protein signaling (RGS) protein family. Moreover, repetitive exposure to GHB increases the GABA(B) receptor-GIRK channel coupling efficiency through downregulation of RGS2. Finally, oral self-administration of GHB at a concentration that is normally rewarding becomes aversive after chronic exposure. On the basis of these results, we propose a mechanism that might underlie tolerance to GHB.

  15. Impact of exogenous GABA treatments on endogenous GABA metabolism in anthurium cut flowers in response to postharvest chilling temperature.

    PubMed

    Aghdam, Morteza Soleimani; Naderi, Roohangiz; Jannatizadeh, Abbasali; Babalar, Mesbah; Sarcheshmeh, Mohammad Ali Askari; Faradonbe, Mojtaba Zamani

    2016-09-01

    Anthurium flowers are susceptible to chilling injury, and the optimum storage temperature is 12.5-20 °C. The γ-aminobutyric acid (GABA) shunt pathway may alleviate chilling stress in horticultural commodities by providing energy (ATP), reducing molecules (NADH), and minimizing accumulation of reactive oxygen species (ROS). In this experiment, the impact of a preharvest spray treatment with 1 mM GABA and postharvest treatment of 5 mM GABA stem-end dipping on GABA shunt pathway activity of anthurium cut flowers (cv. Sirion) in response to cold storage (4 °C for 21 days) was investigated. GABA treatments resulted in lower glutamate decarboxylase (GAD) and higher GABA transaminase (GABA-T) activities in flowers during cold storage, which was associated with lower GABA content and coincided with higher ATP content. GABA treatments also enhanced accumulation of endogenous glycine betaine (GB) in flowers during cold storage, as well as higher spathe relative water content (RWC). These findings suggest that GABA treatments may alleviate chilling injury of anthurium cut flowers by enhancing GABA shunt pathway activity leading to provide sufficient ATP and promoting endogenous GB accumulation.

  16. Neurobeachin Regulates Glutamate- and GABA-Receptor Targeting to Synapses via Distinct Pathways.

    PubMed

    Farzana, F; Zalm, R; Chen, N; Li, K W; Grant, Seth G N; Smit, A B; Toonen, R F; Verhage, M

    2016-05-01

    Neurotransmission and synaptic strength depend on expression of post-synaptic receptors on the cell surface. Post-translational modification of receptors, trafficking to the synapse through the secretory pathway, and subsequent insertion into the synapse involves interaction of the receptor with A-kinase anchor proteins (AKAPs) and scaffolding proteins. Neurobeachin (Nbea), a brain specific AKAP, is required for synaptic surface expression of both glutamate and GABA receptors. Here, we investigated the role of Nbea-dependent targeting of postsynaptic receptors by studying Nbea interaction with synapse-associated protein 102 (SAP102/Dlg3) and protein kinase A subunit II (PKA II). A Nbea mutant lacking the PKA binding domain showed a similar distribution as wild-type Nbea in Nbea null neurons and partially restored GABA receptor surface expression. To understand the relevance of Nbea interaction with SAP102, we analysed SAP102 null mutant mice. Nbea levels were reduced by ~80% in SAP102 null mice, but glutamatergic receptor expression was normal. A single-point mutation in the pleckstrin homology domain of Nbea (E2218R) resulted in loss of binding with SAP102. When expressed in Nbea null neurons, this mutant fully restored GABA receptor surface expression, but not glutamate receptor expression. Our results suggest that the PKA-binding domain is not essential for Nbea's role in receptor targeting and that Nbea targets glutamate and GABA receptors to the synapse via distinct molecular pathways by interacting with specific effector proteins.

  17. GABA and 5-HT chitosan nanoparticles decrease striatal neuronal degeneration and motor deficits during liver injury.

    PubMed

    Shilpa, J; Paulose, C S

    2014-07-01

    The metabolic alterations resulted from hepatic injury and cell loss lead to synaptic defects and neurodegeneration that undoubtedly contribute motor deficits. In the present study, GABA and 5-HT chitosan nanoparticles mediated liver cell proliferation influenced by growth factor and cytokines and neuronal survival in corpus striatum of partially hepatectomised rats was evaluated. Liver cell proliferation was initiated and progressed by the combined effect of increased expression of growth factor, insulin like growth factor-1 and decreased expressions of cytokines, tumor necrosis factor-α and Akt-1. This was confirmed by the extent of incorporation of thymidine analogue, BrdU, in the DNA of rapidly dividing cells. Inappropriate influx of compounds to corpus striatum resulting from incomplete metabolism elevated GABAB and 5-HT2A neurotransmissions compared to those treated with nanoparticles. This directly influenced cyclic AMP response element binding protein, glial cell derived neurotrophic factor and brain derived neurotrophic factor in the corpus striatum that facilitate neurogenesis, neuronal survival, development, differentiation and neuroprotection. Motor deficits due to liver injury followed striatal neuronal damage were scored by grid walk and rotarod studies, which confirmed the regain of motor activity by GABA and 5-HT chitosan nanoparticle treatment. The present study revealed the therapeutic significance of GABA and 5-HT chitosan nanoparticles in liver based diseases and related striatal neuronal damage that influenced by GABA and 5-HT.

  18. Neuronal gamma-aminobutyric acid (GABA) type A receptors undergo cognate ligand chaperoning in the endoplasmic reticulum by endogenous GABA

    PubMed Central

    Wang, Ping; Eshaq, Randa S.; Meshul, Charles K.; Moore, Cynthia; Hood, Rebecca L.; Leidenheimer, Nancy J.

    2015-01-01

    GABAA receptors mediate fast inhibitory neurotransmission in the brain. Dysfunction of these receptors is associated with various psychiatric/neurological disorders and drugs targeting this receptor are widely used therapeutic agents. Both the efficacy and plasticity of GABAA receptor-mediated neurotransmission depends on the number of surface GABAA receptors. An understudied aspect of receptor cell surface expression is the post-translational regulation of receptor biogenesis within the endoplasmic reticulum (ER). We have previously shown that exogenous GABA can act as a ligand chaperone of recombinant GABAA receptors in the early secretory pathway leading us to now investigate whether endogenous GABA facilitates the biogenesis of GABAA receptors in primary cerebral cortical cultures. In immunofluorescence labeling experiments, we have determined that neurons expressing surface GABAA receptors contain both GABA and its degradative enzyme GABA transaminase (GABA-T). Treatment of neurons with GABA-T inhibitors, a treatment known to increase intracellular GABA levels, decreases the interaction of the receptor with the ER quality control protein calnexin, concomittantly increasing receptor forward-trafficking and plasma membrane insertion. The effect of GABA-T inhibition on the receptor/calnexin interaction is not due to the activation of surface GABAA or GABAB receptors. Consistent with our hypothesis that GABA acts as a cognate ligand chaperone in the ER, immunogold-labeling of rodent brain slices reveals the presence of GABA within the rough ER. The density of this labeling is similar to that present in mitochondria, the organelle in which GABA is degraded. Lastly, the effect of GABA-T inhibition on the receptor/calnexin interaction was prevented by pretreatment with a GABA transporter inhibitor. Together, these data indicate that endogenous GABA acts in the rough ER as a cognate ligand chaperone to facilitate the biogenesis of neuronal GABAA receptors. PMID

  19. Proteomic analysis of rat brain mitochondria following exposure to dopamine quinone: implications for Parkinson disease.

    PubMed

    Van Laar, Victor S; Dukes, April A; Cascio, Michael; Hastings, Teresa G

    2008-03-01

    Oxidative stress and mitochondrial dysfunction have been linked to dopaminergic neuron degeneration in Parkinson disease. We have previously shown that dopamine oxidation leads to selective dopaminergic terminal degeneration in vivo and alters mitochondrial function in vitro. In this study, we utilized 2-D difference in-gel electrophoresis to assess changes in the mitochondrial proteome following in vitro exposure to reactive dopamine quinone. A subset of proteins exhibit decreased fluorescence labeling following dopamine oxidation, suggesting a rapid loss of specific proteins. Amongst these proteins are mitochondrial creatine kinase, mitofilin, mortalin, the 75 kDa subunit of NADH dehydrogenase, and superoxide dismutase 2. Western blot analyses for mitochondrial creatine kinase and mitofilin confirmed significant losses in isolated brain mitochondria exposed to dopamine quinone and PC12 cells exposed to dopamine. These results suggest that specific mitochondrial proteins are uniquely susceptible to changes in abundance following dopamine oxidation, and carry implications for mitochondrial stability in Parkinson disease neurodegeneration.

  20. Dopamine and γ-aminobutyric acid are colocalized in restricted groups of neurons in the sea lamprey brain: insights into the early evolution of neurotransmitter colocalization in vertebrates

    PubMed Central

    Barreiro-Iglesias, Antón; Villar-Cerviño, Verona; Anadón, Ramón; Rodicio, María Celina

    2009-01-01

    Since its discovery, the possible corelease of classic neurotransmitters from neurons has received much attention. Colocalization of monoamines and amino acidergic neurotransmitters [mainly glutamate and dopamine (DA) or serotonin] in mammalian neurons has been reported. However, few studies have dealt with the colocalization of DA and γ-aminobutyric acid (GABA) in neurons. With the aim of providing some insight into the colocalization of neurotransmitters during early vertebrate phylogeny, we studied GABA expression in dopaminergic neurons in the sea lamprey brain by using double-immunofluorescence methods with anti-DA and anti-GABA antibodies. Different degrees of colocalization of DA and GABA were observed in different dopaminergic brain nuclei. A high degree of colocalization (GABA in at least 25% of DA-immunoreactive neurons) was observed in populations of the caudal rhombencephalon, ventral isthmus, postoptic commissure nucleus, preoptic nucleus and in granule-like cells of the olfactory bulb. A new DA-immunoreactive striatal population that showed colocalization with GABA in about a quarter of its neurons was observed. In the periventricular hypothalamus, colocalization was observed in only a few cells, despite the abundance of DA- and GABA-immunoreactive neurons, and no double-labelled cells were observed in the paratubercular nucleus. The frequent colocalization of DA and GABA reveals that the dopaminergic populations of lampreys are more complex than previously reported. Double-labelled fibres or terminals were observed in different brain regions, suggesting possible corelease of DA and GABA by these lamprey neurons. The present results suggest that colocalization of DA and GABA in neurons appeared early in vertebrate evolution. PMID:19840024

  1. Excitatory actions of GABA in developing rat hypothalamic neurones.

    PubMed Central

    Chen, G; Trombley, P Q; van den Pol, A N

    1996-01-01

    1. Gramicidin-perforated patch clamp recording was employed to study GABA-mediated responses in rat hypothalamic neurones (n = 102) with an intracellular Cl- concentration unaltered by the pipette solution. 2. In young cultures after 1-7 days in vitro (DIV), GABA induced depolarizing membrane potentials (+16.5 +/- 1.3 mV) that often surpassed the threshold for the firing of action potentials (-42 +/- 1 mV) and resulted in an increase in neuronal activity. The depolarizing responses to GABA in young cultures were dose dependent. The concentration of GABA necessary to evoke the half-maximal depolarization (EC50) was 2.8 microM. In contrast, GABA induced hyperpolarizing membrane potentials (-12.0 +/- 1.4 mV) and a decrease in neuronal activity in older neurones (20-33 DIV). Both the depolarization and the hyperpolarization induced by GABA were blocked by bicuculline, indicating a mediation by GABAA receptors. 3. The reversal potentials of the GABA-evoked currents were between -40 to -50 mV during the first week of culture, and shifted to below -70 mV after 3 weeks of culture. In parallel, neurones that were dissociated from older animals (postnatal day 5) had a more negative reversal potential for the GABA-evoked currents than cells from younger animals (embryonic day 15), suggesting that the negative shift of the reversal potential occurs both in vitro and in vivo. Our data suggest that the mechanism for GABA-induced depolarization is the depolarized Cl- reversal potential found in young but not older neurones. 4. Consistent with the depolarizing response to exogenous application of GABA, some spontaneous depolarizing postsynaptic potentials in young cultures were insensitive to AP5-CNQX, but were eliminated by bicuculline, indicating that synaptically released GABA mediated excitatory synaptic transmission in early development. 5. By combining a rapid computer-controlled delivery of GABA with subthreshold positive current injections into recorded neurones, we found

  2. Pharmacologically novel GABA receptor in human dorsal root ganglion neurons.

    PubMed

    Valeyev, A Y; Hackman, J C; Wood, P M; Davidoff, R A

    1996-11-01

    1. Whole cell voltage-clamp studies of gamma-aminobutyric acid (GABA) receptors were performed on large (> 80 microns) cultured human dorsal root ganglion (DRG) neurons. 2. GABA and pentobarbital sodium when applied in micromolar concentrations evoked inward Cl- currents in DRG neurons voltage clamped at negative membrane potentials. 3. Diazepam (10 microM) and pentobarbital (10 microM) upmodulated the GABA current by approximately 149 and 168%, respectively. 4. The GABA currents in human DRG cells were unaffected by the classical GABA antagonists picrotoxin and bicuclline (100 microM). In contrast, the GABA responses evoked in adult rat DRG cells cultured in an identical manner were inhibited by both antagonists. The glycine receptor antagonist strychnine (100 microM) did not alter GABA currents in human DRG cells. 5. Human DRG cells did not respond to glycine (10-100 microM) or taurine (10-100 microM). The GABAB agonist baclofen had no effect on the holding current when patch pipettes were filled with 130 mM KCl. The GABAB antagonists saclofen applied either alone or with GABA was without effect. 6. The differences between the GABA receptors described here and GABA receptors in other species may reflect the presence of receptor subunits unique to human DRG cells.

  3. Design and Mechanism of Tetrahydrothiophene-based GABA Aminotransferase Inactivators

    PubMed Central

    Le, Hoang V.; Hawker, Dustin D.; Wu, Rui; Doud, Emma; Widom, Julia; Sanishvili, Ruslan; Liu, Dali; Kelleher, Neil L.; Silverman, Richard B.

    2015-01-01

    Low levels of γ-aminobutyric acid (GABA), one of two major neurotransmitters that regulate brain neuronal activity, are associated with many neurological disorders, such as epilepsy, Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, and cocaine addiction. One of the main methods to raise the GABA level in human brain is to use small molecules that cross the blood-brain barrier and inhibit the activity of γ-aminobutyric acid aminotransferase (GABA-AT), the enzyme that degrades GABA. We have designed a series of conformationally-restricted, tetrahydrothiophene-based GABA analogs with a properly-positioned leaving group that could facilitate a ring-opening mechanism, leading to inactivation of GABA-AT. One compound in the series is eight times more efficient an inactivator of GABA-AT than vigabatrin, the only FDA-approved inactivator of GABA-AT. Our mechanistic studies show that the compound inactivates GABA-AT by a new mechanism. The metabolite resulting from inactivation does not covalently bind to amino acid residues of GABA-AT but stays in the active site via H-bond interactions with Arg-192, a π-π interaction with Phe-189, and a weak nonbonded S···O=C interaction with Glu-270, thereby inactivating the enzyme. PMID:25781189

  4. Immunocytochemical localization of the GABA transporter in rat brain.

    PubMed

    Radian, R; Ottersen, O P; Storm-Mathisen, J; Castel, M; Kanner, B I

    1990-04-01

    Polyclonal antibodies were raised against the GABA transporter (GABA-Tp) purified from rat brain tissue (Radian et al., 1986) and used for immunocytochemical localization of the antigen in several rat brain areas, including the cerebellum, hippocampus, substantia nigra, and cerebral cortex. Light microscopic studies with the peroxidase-antiperoxidase and biotin-avidin-peroxidase techniques suggested that GABA-Tp is localized in the same types of axons and terminals that contain endogenous GABA, as judged by comparison with parallel sections incubated with antibodies against glutaraldehyde-conjugated GABA. However, as expected from biochemical results, different neurons differed in their relative contents of GABA-Tp and GABA; thus, GABA-Tp was relatively low in striatonigral and Purkinje axon terminals and relatively high in nerve plexus around the bases of cerebellar Purkinje cells and hippocampal pyramidal and granule cells. The GABA-Tp antiserum did not produce detectable labeling of nerve cell bodies. Electron microscopic studies supported the light microscopic observations and provided direct evidence of cellular co-localization of GABA-Tp and GABA (as visualized by the peroxidase-antiperoxidase technique and postembedding immunogold labeling, respectively). The ultrastructural studies indicated the presence of GABA-Tp also in glial processes but not in glial cell bodies. The relative intensity of the neuronal and glial staining varied among regions: glial staining predominated over neuronal staining in the substantia nigra, whereas the converse was true in the cerebellum and hippocampus. The present immunocytochemical data demonstrate directly what has previously been inferred from biochemical and autoradiographic evidence: that the mechanisms for high-affinity GABA uptake is selectively and differentially localized in GABAergic neurons and in glial cells.

  5. Astrocytic GABA transporter activity modulates excitatory neurotransmission

    PubMed Central

    Boddum, Kim; Jensen, Thomas P.; Magloire, Vincent; Kristiansen, Uffe; Rusakov, Dmitri A.; Pavlov, Ivan; Walker, Matthew C.

    2016-01-01

    Astrocytes are ideally placed to detect and respond to network activity. They express ionotropic and metabotropic receptors, and can release gliotransmitters. Astrocytes also express transporters that regulate the extracellular concentration of neurotransmitters. Here we report a previously unrecognized role for the astrocytic GABA transporter, GAT-3. GAT-3 activity results in a rise in astrocytic Na+ concentrations and a consequent increase in astrocytic Ca2+ through Na+/Ca2+ exchange. This leads to the release of ATP/adenosine by astrocytes, which then diffusely inhibits neuronal glutamate release via activation of presynaptic adenosine receptors. Through this mechanism, increases in astrocytic GAT-3 activity due to GABA released from interneurons contribute to 'diffuse' heterosynaptic depression. This provides a mechanism for homeostatic regulation of excitatory transmission in the hippocampus. PMID:27886179

  6. GABA and GABA receptors alterations in the primary visual cortex of concave lens-induced myopic model.

    PubMed

    Zhao, Wen; Bi, Ai-Ling; Xu, Chao-Li; Ye, Xiang; Chen, Mei-Qing; Wang, Xin-Ting; Zhang, Xiao-Yan; Guo, Jun-Guo; Jiang, Wen-Jun; Zhang, Jin; Bi, Hong-Sheng

    2017-02-02

    Until recently most researches on myopia mechanisms have mainly been focused on the eye ball and few investigations were explored on the upper visual pathway, such as the visual cortex. The roles of gamma-aminobutyric acid (GABA) in the retinal and in the upper visual pathway are inter-correlated. As the retinal glutamate decarboxylase (GAD), GABA, and the mRNA levels of GABA receptors increased during the concave lens induced myopia formation, however, whether GABA alterations also occurred in the visual cortex during the concave lens induction is still unknown. In the present study, using HPLC, Enzyme-Linked Immunosorbent Assay (ELISA) and Real-Time Quantitative-PCR (RT-PCR) methods, we observed the changing trends of GABA, glutamate decarboxylase (GAD), and GABA receptors in the visual cortex of concave lens-induced myopic guinea pigs. Similar to the changing patterns of retinal GABA, the concentrations of GAD, GABA and the mRNA levels of GABA receptors in the visual cortex also increased. These results indicate that the exploration on myopia mechanisms should possibly be investigated on the whole visual pathway and the detailed significance of cortical GABA alterations needs further investigation.

  7. GABA-A receptors regulate neocortical neuronal migration in vitro and in vivo.

    PubMed

    Heck, Nicolas; Kilb, Werner; Reiprich, Petra; Kubota, Hisahiko; Furukawa, Tomonori; Fukuda, Atsuo; Luhmann, Heiko J

    2007-01-01

    The cortical migration process depends on a number of trophic factors and on the activation of different voltage- and ligand-gated channels. We investigated the role of gamma-aminobutyric acid (GABA) type A receptors in the neuronal migration process of the newborn rat parietal cortex in vivo and in vitro. Local in vivo application of the GABA-A antagonist bicuculline methiodide (BMI) or the agonist muscimol via cortical surface Elvax implants induced prominent alterations in the cortical architecture when compared with untreated or sham-operated controls. BMI- and muscimol-treated animals revealed heterotopic cell clusters in the upper layers and a complete loss of the cortical lamination in the region underlying the Elvax implant. Immunocytochemical staining for glial fibrillary acidic protein, N-methyl-D-aspartate receptors, and GABA demonstrated that heterotopia was not provoked by glial proliferation and confirmed the presence of both glutamatergic and GABAergic neurons. In organotypic neocortical slices from embryonic day 18-19 embryos, application of BMI and to a lesser extent also muscimol induced an increase in the migration speed and an accumulation of neurons in the upper cortical layers. Spontaneous intracellular calcium ([Ca2+]i) oscillations in neocortical slices from newborn rats were abolished by BMI (5 and 20 microM) and muscimol (1 and 10 microM), indicating that both compounds interfere with [Ca2+]i signaling required for normal neuronal migration. Electrophysiological recordings from migrating neurons in newborn rat neocortical slices indicate that long-term application of muscimol causes a pronounced reduction (1 microM muscimol) or blockade (10 microM) in the responsiveness of postsynaptic GABA-A receptors due to a pronounced receptor desensitization. Our results indicate that modulation of GABA-A receptors by compounds acting as agonists or antagonists may profoundly influence the neuronal migration process in the developing cerebral cortex.

  8. Treatment of Huntington disease with gamma-acetylenic GABA an irreversible inhibitor of GABA-transaminase: increased CSF GABA and homocarnosine without clinical amelioration.

    PubMed

    Tell, G; Böhlen, P; Schechter, P J; Koch-Weser, J; Agid, Y; Bonnet, A M; Coquillat, G; Chazot, G; Fischer, C

    1981-02-01

    gamma-Acetylenic GABA (GAG, RMI 71.645), a potent irreversible inhibitor of gamma-aminobutyric acid transaminase, was given orally in various dosage schedules to 14 patients with Huntington disease. The biochemical effects of the drug on cerebrospinal fluid (CSF) concentrations of gamma-aminobutyric acid (GABA) and the GABA-containing dipeptide, homocarnosine, were measured in 10 of 14 patients. Treatment with GAG increased CSF concentrations of GABA and homocarnosine as compared to pretreatment values, suggesting that the drug increased brain GABA concentration. Despite this neurochemical effect, the clinical state was not improved. Except for single seizure episodes in five patients, GAG therapy was well tolerated. These results do not exclude the possibility that agents that augment CNS GABAergic function may prove useful in therapy of Huntington disease.

  9. The diversity of GABA(A) receptor subunit distribution in the normal and Huntington's disease human brain.

    PubMed

    Waldvogel, H J; Faull, R L M

    2015-01-01

    GABA(A) receptors are assembled into pentameric receptor complexes from a total of 19 different subunits derived from a variety of different subunit classes (α1-6, β1-3, γ1-3, δ, ɛ, θ, and π) which surround a central chloride ion channel. GABA(A) receptor complexes are distributed heterogeneously throughout the brain and spinal cord and are activated by the extensive GABAergic inhibitory system. In this chapter, we describe the heterogeneous distribution of six of the most widely distributed subunits (α1, α2, α3, β2,3, and γ2) throughout the human basal ganglia. This review describes the studies we have carried out on the normal and Huntington's disease human basal ganglia using autoradiographic labeling and immunohistochemistry in the human basal ganglia. GABA(A) receptors are known to react to changing conditions in the brain in neurological disorders, especially in Huntington's disease and display a high degree of plasticity which is thought to compensate for loss of function caused by disease. In Huntington's disease, the variable loss of GABAergic medium spiny striatopallidal projection neurons is associated with a loss of GABA(A) receptor subunits in the striosome and/or the matrix compartments of the striatum. By contrast in the globus pallidus, a loss of the GABAergic striatal projection neurons results in a dramatic upregulation of subunits on the large postsynaptic pallidal neurons; this is thought to be a compensatory plastic mechanism resulting from the loss of striatal GABAergic input. Most interestingly, our studies have revealed that the subventricular zone overlying the caudate nucleus contains a variety of proliferating progenitor stem cells that possess a heterogeneity of GABA(A) receptor subunits which may play a role in human brain repair mechanisms.

  10. Proton MRS of the unilateral substantia nigra in the human brain at 4 tesla: detection of high GABA concentrations.

    PubMed

    Oz, Gülin; Terpstra, Melissa; Tkác, Ivan; Aia, Pratibha; Lowary, Jodi; Tuite, Paul J; Gruetter, Rolf

    2006-02-01

    Parkinson's disease (PD) is characterized by loss of dopaminergic neurons in the substantia nigra (SN), the cause of which is unknown. Characterization of early SN pathology could prove beneficial in the treatment and diagnosis of PD. The present study shows that with the use of short-echo (5 ms) Stimulated-Echo Acquisition Mode (STEAM) spectroscopy and LCModel, a neurochemical profile consisting of 10 metabolites, including gamma-aminobutyric acid (GABA), glutamate (Glu), and glutathione (GSH), can be measured from the unilateral SN at 4 tesla. The neurochemical profile of the SN is unique and characterized by a fourfold higher GABA/Glu ratio compared to the cortex, in excellent agreement with established neurochemistry. The presence of elevated GABA levels in SN was validated with the use of editing, suggesting that partial volume effects were greatly reduced. These findings establish the feasibility of obtaining a neurochemical profile of the unilateral human SN by single-voxel spectroscopy in small volumes.

  11. Co-activation of VTA DA and GABA neurons mediates nicotine reinforcement.

    PubMed

    Tolu, S; Eddine, R; Marti, F; David, V; Graupner, M; Pons, S; Baudonnat, M; Husson, M; Besson, M; Reperant, C; Zemdegs, J; Pagès, C; Hay, Y A H; Lambolez, B; Caboche, J; Gutkin, B; Gardier, A M; Changeux, J-P; Faure, P; Maskos, U

    2013-03-01

    Smoking is the most important preventable cause of mortality and morbidity worldwide. This nicotine addiction is mediated through the nicotinic acetylcholine receptor (nAChR), expressed on most neurons, and also many other organs in the body. Even within the ventral tegmental area (VTA), the key brain area responsible for the reinforcing properties of all drugs of abuse, nicotine acts on several different cell types and afferents. Identifying the precise action of nicotine on this microcircuit, in vivo, is important to understand reinforcement, and finally to develop efficient smoking cessation treatments. We used a novel lentiviral system to re-express exclusively high-affinity nAChRs on either dopaminergic (DAergic) or γ-aminobutyric acid-releasing (GABAergic) neurons, or both, in the VTA. Using in vivo electrophysiology, we show that, contrary to widely accepted models, the activation of GABA neurons in the VTA plays a crucial role in the control of nicotine-elicited DAergic activity. Our results demonstrate that both positive and negative motivational values are transmitted through the dopamine (DA) neuron, but that the concerted activity of DA and GABA systems is necessary for the reinforcing actions of nicotine through burst firing of DA neurons. This work identifies the GABAergic interneuron as a potential target for smoking cessation drug development.

  12. Involvement of noradrenaline in potentiation of the head-twitch response by GABA-related drugs.

    PubMed

    Singh, L; Heaton, J C; Rea, P J; Handley, S L

    1986-01-01

    The involvement of noradrenaline in the potentiation of head-twitching by drugs acting at GABA and related receptors has been examined in mice. The direct 5-HT agonist 5-methoxy-N,N-dimethyltryptamine was used to induce the head-twitch. The dopamine beta-oxidase inhibitor FLA-63 depleted whole brain noradrenaline by 90% and potentiated head-twitching when this was measured 4 h after injection. The GABAA-receptor agonists muscimol and 3-aminopropanesulphonic acid (3-APS), a low dose of pentobarbitone, diazepam and picrotoxin (PTX) potentiated control head-twitch rates but had no further effect when head-twitching had been potentiated by FLA-63. The potentiating action of FLA-63 was prevented by the beta-adrenoceptor antagonist metoprolol; the latter having no effect on control head-twitch rates. Muscimol and diazepam potentiation was examined and found to be blocked by metoprolol. The GABAB-receptor agonist baclofen reduced head-twitching. This was also prevented by FLA-63. The role of beta-adrenoceptors in modulating these actions of GABA-related drugs is discussed.

  13. Dopamine and anorexia nervosa.

    PubMed

    Södersten, P; Bergh, C; Leon, M; Zandian, M

    2016-01-01

    We have suggested that reduced food intake increases the risk for anorexia nervosa by engaging mesolimbic dopamine neurons, thereby initially rewarding dieting. Recent fMRI studies have confirmed that dopamine neurons are activated in anorexia nervosa, but it is not clear whether this response is due to the disorder or to its resulting nutritional deficit. When the body senses the shortage of nutrients, it rapidly shifts behavior toward foraging for food as a normal physiological response and the mesolimbic dopamine neurons may be involved in that process. On the other hand, the altered dopamine status of anorexics has been suggested to result from a brain abnormality that underlies their complex emotional disorder. We suggest that the outcomes of the treatments that emerge from that perspective remain poor because they target the mental symptoms that are actually the consequences of the food deprivation that accompanies anorexia. On the other hand, a method that normalizes the disordered eating behavior of anorexics results in much better physiological, behavioral, and emotional outcomes.

  14. Antipsychotic treatment leading to dopamine supersensitivity persistently alters nucleus accumbens function.

    PubMed

    El Hage, Cynthia; Bédard, Anne-Marie; Samaha, Anne-Noël

    2015-12-01

    Chronic exposure to some antipsychotic medications can induce supersensitivity to dopamine receptor stimulation. This is linked to a worsening of clinical outcome and to antipsychotic treatment failure. Here we investigated the role of striatal subregions [nucleus accumbens (NAc) and caudate-putamen (CPu)] in the expression of antipsychotic-induced dopamine supersensitivity. We treated rats with haloperidol (HAL) or olanzapine (OLZ), using regimens that achieve clinically relevant kinetics of striatal D2 receptor occupancy. Under these conditions, HAL produces dopamine supersensitivity whereas OLZ does not. We then assessed behaviors evoked by the dopamine agonist amphetamine (AMPH). We either injected AMPH into the striatum or inhibited striatal function with microinjections of GABA receptor agonists prior to injecting AMPH systemically. HAL-treated rats were dopamine supersensitive, as indicated by sensitization to systemic AMPH-induced potentiation of both locomotor activity and operant responding for a conditioned reward (CR). Intra-CPu injections of AMPH had no effect on these behaviors, in any group. Intra-NAc injections of AMPH enhanced operant responding for CR in OLZ-treated and control rats, but not in HAL-treated rats. In HAL-treated rats, inhibition of the NAc also failed to disrupt systemic AMPH-induced potentiation of operant responding for CR. Furthermore, while intra-NAc AMPH enhanced locomotion in both HAL-treated and control animals, inhibition of the NAc disrupted systemic AMPH-induced locomotion only in control rats. Thus, antipsychotic-induced dopamine supersensitivity persistently disrupts NAc function, such that some behaviors that normally depend upon NAc dopamine no longer do so. This has implications for understanding dysfunctions in dopamine-mediated behaviors in patients undergoing chronic antipsychotic treatment.

  15. Subsecond dopamine fluctuations in human striatum encode superposed error signals about actual and counterfactual reward

    PubMed Central

    Kishida, Kenneth T.; Saez, Ignacio; Lohrenz, Terry; Witcher, Mark R.; Laxton, Adrian W.; Tatter, Stephen B.; White, Jason P.; Ellis, Thomas L.; Phillips, Paul E. M.; Montague, P. Read

    2016-01-01

    In the mammalian brain, dopamine is a critical neuromodulator whose actions underlie learning, decision-making, and behavioral control. Degeneration of dopamine neurons causes Parkinson’s disease, whereas dysregulation of dopamine signaling is believed to contribute to psychiatric conditions such as schizophrenia, addiction, and depression. Experiments in animal models suggest the hypothesis that dopamine release in human striatum encodes reward prediction errors (RPEs) (the difference between actual and expected outcomes) during ongoing decision-making. Blood oxygen level-dependent (BOLD) imaging experiments in humans support the idea that RPEs are tracked in the striatum; however, BOLD measurements cannot be used to infer the action of any one specific neurotransmitter. We monitored dopamine levels with subsecond temporal resolution in humans (n = 17) with Parkinson’s disease while they executed a sequential decision-making task. Participants placed bets and experienced monetary gains or losses. Dopamine fluctuations in the striatum fail to encode RPEs, as anticipated by a large body of work in model organisms. Instead, subsecond dopamine fluctuations encode an integration of RPEs with counterfactual prediction errors, the latter defined by how much better or worse the experienced outcome could have been. How dopamine fluctuations combine the actual and counterfactual is unknown. One possibility is that this process is the normal behavior of reward processing dopamine neurons, which previously had not been tested by experiments in animal models. Alternatively, this superposition of error terms may result from an additional yet-to-be-identified subclass of dopamine neurons. PMID:26598677

  16. Subsecond dopamine fluctuations in human striatum encode superposed error signals about actual and counterfactual reward.

    PubMed

    Kishida, Kenneth T; Saez, Ignacio; Lohrenz, Terry; Witcher, Mark R; Laxton, Adrian W; Tatter, Stephen B; White, Jason P; Ellis, Thomas L; Phillips, Paul E M; Montague, P Read

    2016-01-05

    In the mammalian brain, dopamine is a critical neuromodulator whose actions underlie learning, decision-making, and behavioral control. Degeneration of dopamine neurons causes Parkinson's disease, whereas dysregulation of dopamine signaling is believed to contribute to psychiatric conditions such as schizophrenia, addiction, and depression. Experiments in animal models suggest the hypothesis that dopamine release in human striatum encodes reward prediction errors (RPEs) (the difference between actual and expected outcomes) during ongoing decision-making. Blood oxygen level-dependent (BOLD) imaging experiments in humans support the idea that RPEs are tracked in the striatum; however, BOLD measurements cannot be used to infer the action of any one specific neurotransmitter. We monitored dopamine levels with subsecond temporal resolution in humans (n = 17) with Parkinson's disease while they executed a sequential decision-making task. Participants placed bets and experienced monetary gains or losses. Dopamine fluctuations in the striatum fail to encode RPEs, as anticipated by a large body of work in model organisms. Instead, subsecond dopamine fluctuations encode an integration of RPEs with counterfactual prediction errors, the latter defined by how much better or worse the experienced outcome could have been. How dopamine fluctuations combine the actual and counterfactual is unknown. One possibility is that this process is the normal behavior of reward processing dopamine neurons, which previously had not been tested by experiments in animal models. Alternatively, this superposition of error terms may result from an additional yet-to-be-identified subclass of dopamine neurons.

  17. The impact of a parkinsonian lesion on dynamic striatal dopamine transmission depends on nicotinic receptor activation.

    PubMed

    Jennings, Katie A; Platt, Nicola J; Cragg, Stephanie J

    2015-10-01

    Dopamine function is disturbed in Parkinson's disease (PD), but whether and how release of dopamine from surviving neurons is altered has long been debated. Nicotinic acetylcholine receptors (nAChRs) on dopamine axons powerfully govern dopamine release and could be critical contributing factors. We revisited whether fundamental properties of dopamine transmission are changed in a parkinsonian brain and tested the potentially profound masking effects of nAChRs. Using real-time detection of dopamine in mouse striatum after a partial 6-hydroxydopamine lesion and under nAChR inhibition, we reveal that dopamine signals show diminished sensitivity to presynaptic activity. This effect manifested as diminished contrast between DA release evoked by the lowest versus highest frequencies. This reduced activity-dependence was underpinned by loss of short-term facilitation of dopamine release, consistent with an increase in release probability (Pr). With nAChRs active, the reduced activity-dependence of dopamine release after a parkinsonian lesion was masked. Consequently, moment-by-moment variation in activity of nAChRs may lead to dynamic co-variation in dopamine signal impairments in PD.

  18. The expression of GABA(B1) and GABA(B2) receptor subunits in the cNS differs from that in peripheral tissues.

    PubMed

    Calver, A R; Medhurst, A D; Robbins, M J; Charles, K J; Evans, M L; Harrison, D C; Stammers, M; Hughes, S A; Hervieu, G; Couve, A; Moss, S J; Middlemiss, D N; Pangalos, M N

    2000-01-01

    GABA(B) receptors are G-protein-coupled receptors that mediate the slow and prolonged synaptic actions of GABA in the CNS via the modulation of ion channels. Unusually, GABA(B) receptors form functional heterodimers composed of GABA(B1) and GABA(B2) subunits. The GABA(B1) subunit is essential for ligand binding, whereas the GABA(B2) subunit is essential for functional expression of the receptor dimer at the cell surface. We have used real-time reverse transcriptase-polymerase chain reaction to analyse expression levels of these subunits, and their associated splice variants, in the CNS and peripheral tissues of human and rat. GABA(B1) subunit splice variants were expressed throughout the CNS and peripheral tissues, whereas surprisingly GABA(B2) subunit splice variants were neural specific. Using novel antisera specific to individual GABA(B) receptor subunits, we have confirmed these findings at the protein level. Analysis by immunoblotting demonstrated the presence of the GABA(B1) subunit, but not the GABA(B2) subunit, in uterus and spleen. Furthermore, we have shown the first immunocytochemical analysis of the GABA(B2) subunit in the brain and spinal cord using a GABA(B2)-specific antibody. We have, therefore, identified areas of non-overlap between GABA(B1) and GABA(B2) subunit expression in tissues known to contain functional GABA(B) receptors. Such areas are of interest as they may well contain novel GABA(B) receptor subunit isoforms, expression of which would enable the GABA(B1) subunit to reach the cell surface and form functional GABA(B) receptors.

  19. Nicotine withdrawal produces a decrease in extracellular levels of dopamine in the nucleus accumbens that is lower in adolescent versus adult male rats

    PubMed Central

    Natividad, Luis A.; Tejeda, Hugo A.; Torres, Oscar V.; O’Dell, Laura E.

    2010-01-01

    The behavioral effects of nicotine withdrawal are lower in adolescent versus adult rats. However, the neurochemical mechanisms that mediate these developmental differences are unknown. Previous studies have shown that extracellular levels of dopamine in the nucleus accumbens (NAcc) are reduced in adult rats experiencing withdrawal. This study compared dopamine levels in the NAcc of male adolescent and adult rats experiencing nicotine withdrawal. Animals were prepared with subcutaneous pumps that delivered an equivalent nicotine dose in these age groups. Following 13 days of nicotine exposure, rats were implanted unilaterally with microdialysis probes into the NAcc and ipsilateral ventral tegmental area (VTA). The next day, dialysate levels were collected following systemic administration of the nicotinic-receptor antagonist mecamylamine to precipitate withdrawal. Mecamylamine produced an average % decrease in NAcc dopamine that was lower in adolescents (20%) versus adults (44%). Similar developmental differences were observed with the dopaminergic (DOPAC and HVA) but not serotonergic (5-HIAA) metabolites. A follow up study compared NAcc dopamine in adolescent and adult rats receiving intra-VTA administration of bicuculline, which reduces gamma-aminobutyric acid (GABA) inhibition of dopamine transmission. The results revealed that blockade of GABAA receptors in the VTA produced a 2-fold increase in NAcc dopamine of adults but not adolescents. These results provide a potential mechanism involving dopamine that mediates developmental differences in nicotine withdrawal. Specifically, they suggest that GABA systems are underdeveloped during adolescence and this reduced inhibition of dopamine neurons in the VTA may lead to reduced decreases in NAcc dopamine of young animals experiencing withdrawal. PMID:19771590

  20. The effects of nigrostriatal dopamine depletion on the thalamic parafascicular nucleus.

    PubMed

    Kusnoor, Sheila V; Bubser, Michael; Deutch, Ariel Y

    2012-03-29

    Neuronal loss in Parkinson's disease (PD) is seen in a number of brain regions in addition to the substantia nigra (SN). Among these is the thalamic parafascicular nucleus (PF), which sends glutamatergic projections to the striatum and receives GABAergic inputs from the SN. Recent data suggest that lesions of nigrostriatal dopamine axons cause a loss of PF neurons, which has been interpreted to suggest that the PF cell loss seen in PD is secondary to dopamine denervation. However, the extent of a PF dopamine innervation in the rat is unclear, and it is possible that PF cell loss in parkinsonism is independent of nigrostriatal dopamine degeneration. We characterized the dopamine innervation of the PF in the rat and determined if 6-hydroxydopamine SN lesions cause PF neuron degeneration. Dual-label immunohistochemistry revealed that almost all tyrosine hydroxylase-immunoreactive (TH-ir) axons in the PF also expressed dopamine-beta-hydroxylase and were therefore noradrenergic or adrenergic. Moreover, an antibody directed against dopamine revealed only very rare PF dopaminergic axons. Retrograde-tract tracing-immunohistochemistry did not uncover an innervation of the PF from midbrain dopamine neurons. Nigrostriatal dopamine neuron lesions did not elicit degeneration of PF cells, as reflected by a lack of FluoroJade C staining. Similarly, neither unilateral 6-OHDA lesions of nigrostriatal axons nor the dorsal noradrenergic bundle decreased the number of PF neurons or the number of PF neurons retrogradely-labeled from the striatum. These data suggest that the loss of thalamostriatal PF neurons in Parkinson's Disease is a primary event rather than secondary to nigrostriatal dopamine degeneration.

  1. The GABA-B antagonist 2-hydroxysaclofen reverses the effects of baclofen on the discriminative stimulus effects of D-amphetamine in the conditioned taste aversion procedure.

    PubMed

    Miranda, Florencio; Jiménez, Juan C; Cedillo, Laura N; Sandoval-Sánchez, Alma; Millán-Mejía, Patricia; Sánchez-Castillo, Hugo; Velázquez-Martínez, David N

    2009-07-01

    Some of the behavioral effects of d-amphetamine (d-AMPH) are mediated by an increase in dopamine neurotransmission in the nucleus accumbens. However, there is evidence that gamma-amino-butyric-acid-B (GABA-B) receptors are involved in some behavioral effects of D-AMPH and cocaine. Here, we examined the effects of baclofen on the discriminative stimulus properties of D-AMPH, using conditioned taste aversion (CTA) as the drug discrimination procedure. Male Wistar rats were deprived of water and trained in the CTA procedure. They received D-AMPH (1 mg/kg, i.p.) before gaining access to saccharin, which was followed by an injection of LiCl. On alternate days, the subjects received saline before and after the access to saccharin. After the rats learned the D-AMPH-saline discrimination, the standard dose of D-AMPH was replaced by different doses of D-AMPH, baclofen (a GABA-B receptor agonist), 2-hydroxysaclofen (a GABA-B receptor antagonist), a combination of baclofen+D-AMPH, or a combination of 2-hydroxysaclofen+baclofen+D-AMPH. Baclofen did not substitute for D-AMPH, but, when combined with D-AMPH, it produced a small but significant decrease in the discriminative stimulus effects of D-AMPH. This effect was reversed by administration of 2-hydroxysaclofen. These data suggest that GABA-B receptors play a regulatory role in the discriminative stimulus effects of D-AMPH.

  2. A mitochondrial GABA permease connects the GABA shunt and the TCA cycle, and is essential for normal carbon metabolism.

    PubMed

    Michaeli, Simon; Fait, Aaron; Lagor, Kelly; Nunes-Nesi, Adriano; Grillich, Nicole; Yellin, Ayelet; Bar, Dana; Khan, Munziba; Fernie, Alisdair R; Turano, Frank J; Fromm, Hillel

    2011-08-01

    In plants, γ-aminobutyric acid (GABA) accumulates in the cytosol in response to a variety of stresses. GABA is transported into mitochondria, where it is catabolized into TCA cycle or other intermediates. Although there is circumstantial evidence for mitochondrial GABA transporters in eukaryotes, none have yet been identified. Described here is an Arabidopsis protein similar in sequence and topology to unicellular GABA transporters. The expression of this protein complements a GABA-transport-deficient yeast mutant. Thus the protein was termed AtGABP to indicate GABA-permease activity. In vivo localization of GABP fused to GFP and immunobloting of subcellular fractions demonstrate its mitochondrial localization. Direct [(3) H]GABA uptake measurements into isolated mitochondria revealed impaired uptake into mitochondria of a gabp mutant compared with wild-type (WT) mitochondria, implicating AtGABP as a major mitochondrial GABA carrier. Measurements of CO(2) release, derived from radiolabeled substrates in whole seedlings and in isolated mitochondria, demonstrate impaired GABA-derived input into the TCA cycle, and a compensatory increase in TCA cycle activity in gabp mutants. Finally, growth abnormalities of gabp mutants under limited carbon availability on artificial media, and in soil under low light intensity, combined with their metabolite profiles, suggest an important role for AtGABP in primary carbon metabolism and plant growth. Thus, AtGABP-mediated transport of GABA from the cytosol into mitochondria is important to ensure proper GABA-mediated respiration and carbon metabolism. This function is particularly essential for plant growth under conditions of limited carbon.

  3. Localization and expression of GABA transporters in the suprachiasmatic nucleus

    PubMed Central

    Moldavan, Michael; Cravetchi, Olga; Williams, Melissa; Irwin, Robert P.; Aicher, Sue A.; Allen, Charles N.

    2015-01-01

    GABA is a principal neurotransmitter in the suprachiasmatic hypothalamic nucleus (SCN), the master circadian clock. Despite the importance of GABA and GABA uptake for functioning of the circadian pacemaker, the localization and expression of GABA transporters (GATs) in the SCN has not been investigated. The present studies used Western blot analysis, immunohistochemistry, and electron microscopy to demonstrate the presence of GABA transporter 1 (GAT1) and GABA transporter 3 (GAT3) in the SCN. By light microscopy, GAT1 and GAT3 were co-localized throughout the SCN, but were not expressed in the perikarya of arginine vasopressin- or vasoactive intestinal peptide-immunoreactive (−ir) neurons of adult rats, nor in the neuronal processes labeled with the Neurofilament Heavy Chain. By electron microscopy, GAT1- and GAT3-ir was found in glial processes surrounding unlabeled neuronal perikarya, axons, dendrites, and enveloped symmetric and asymmetric axo-dendritic synapses. Glial Fibrillary Acidic Protein-ir astrocytes grown in cell culture were immunopositive for GAT1 and GAT3 – and both GATs could be observed in the same glial cell. These data demonstrate that synapses in the SCN function as “tripartite” synapses consisting of presynaptic axon terminals, postsynaptic membranes, and astrocytes that contain GABA transporters. This model suggests that astrocytes expressing both GATs may regulate the extracellular GABA, and thereby modulate the activity of neuronal networks in the SCN. PMID:26390912

  4. Inhibitory effect of taurine on 4-aminopyridine-stimulated release of labelled dopamine from striatal synaptosomes.

    PubMed

    Arzate, M E; Morán, J; Pasantes-Morales, H

    1986-07-01

    4-Aminopyridine (4-AP) stimulated the release of [3H]dopamine from striatal synaptosomes in the rat. At a concentration of 200 microM, 4-aminopyridine increased the spontaneous efflux of dopamine by 170%. The effect of 4-aminopyridine was calcium-dependent, being abolished when calcium was omitted from the incubation medium. Taurine, at a concentration of 25 mM, decreased the stimulatory effect of 4-aminopyridine from 170 to 49%, in the presence of 2.5 mM calcium. When the concentration of calcium in the superfusion medium was reduced to 0.1 mM, taurine had a complete inhibitory effect on the release of [3H]dopamine stimulated by 4-aminopyridine. The effect of taurine was dose-dependent. Glycine had no effect on the release of [3H]dopamine stimulated by 4-aminopyridine, either in the presence of absence of calcium, whereas gamma-aminobutyric acid (GABA) showed a slight inhibitory effect in both conditions. The results suggest that taurine antagonizes the release of [3H]dopamine induced by 4-aminopyridine through an effect mediated by calcium.

  5. Growth of dopamine crystals

    NASA Astrophysics Data System (ADS)

    Patil, Vidya; Patki, Mugdha

    2016-05-01

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution. Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.

  6. Updating dopamine reward signals

    PubMed Central

    Schultz, Wolfram

    2013-01-01

    Recent work has advanced our knowledge of phasic dopamine reward prediction error signals. The error signal is bidirectional, reflects well the higher order prediction error described by temporal difference learning models, is compatible with model-free and model-based reinforcement learning, reports the subjective rather than physical reward value during temporal discounting and reflects subjective stimulus perception rather than physical stimulus aspects. Dopamine activations are primarily driven by reward, and to some extent risk, whereas punishment and salience have only limited activating effects when appropriate controls are respected. The signal is homogeneous in terms of time course but heterogeneous in many other aspects. It is essential for synaptic plasticity and a range of behavioural learning situations. PMID:23267662

  7. Effects of baclofen on dopamine-dependent behaviors in mice.

    PubMed

    Balsara, J J; Muley, M P; Vaidya, A S; Chandorkar, A G

    1981-01-01

    Baclofen, the parachlorophenyl analog of GABA, was found to induce catalepsy and to inhibit the traction response in mice. However, baclofen pretreatment, instead of antagonizing methamphetamine stereotypy and apomorphine-induced cage climbing behavior, was found to potentiate these behaviors, thereby ruling out the possibility of its possessing postsynaptic dopamine (DA) receptor blocking activity. The possible mechanism involved in the induction of catalepsy and in the inhibition of the traction response by baclofen is discussed on the basis that baclofen, by inhibiting the firing of the nigrostriatal and mesolimbic DA neurons, reduces the release of DA and thereby produces a functional lack of DA at postsynaptic DA receptor sites with resultant induction of catalepsy and inhibition of the traction response. Further, the hyper-responsiveness to methamphetamine and apomorphine is explained on the basis that, as the postsynaptic DA receptors are acutely deprived of their transmitter, following baclofen pretreatment, they become supersensitive to the DA agonists.

  8. Dopamine, fronto-striato-thalamic circuits and risk for psychosis.

    PubMed

    Dandash, Orwa; Pantelis, Christos; Fornito, Alex

    2017-02-01

    A series of parallel, integrated circuits link distinct regions of prefrontal cortex with specific nuclei of the striatum and thalamus. Dysfunction of these fronto-striato-thalamic systems is thought to play a major role in the pathogenesis of psychosis. In this review, we examine evidence from human and animal investigations that dysfunction of a specific dorsal fronto-striato-thalamic circuit, linking the dorsolateral prefrontal cortex, dorsal (associative) striatum, and mediodorsal nucleus of the thalamus, is apparent across different stages of psychosis, including prior to the onset of a first episode, suggesting that it represents a candidate risk biomarker. We consider how abnormalities at distinct points in the circuit may give rise to the pattern of findings seen in patient populations, and how these changes relate to disruptions in dopamine, glutamate and GABA signaling.

  9. Cloning and expression of a rat brain GABA transporter

    SciTech Connect

    Guastella, J.; Czyzyk, L.; Davidson, N.; Lester, H.A. ); Nelson, N.; Nelson, H.; Miedel, M.C. ); Keynan, S.; Kanner, B.I. )

    1990-09-14

    A complementary DNA clone (designated GAT-1) encoding a transporter for the neurotransmitter {gamma}-aminobutyric acid (GABA) has been isolated from rat brain, and its functional properties have been examined in Xenopus oocytes. Oocytes injected with GAT-1 synthetic messenger RNA accumulated ({sup 3}H)GABA to levels above control values. The transporter encoded by GAT-1 has a high affinity for GABA, is sodium- and chloride-dependent, and is pharmacologically similar to neuronal GABA transporters. The GAT-1 protein shares antigenic determinants with a native rat brain GABA transporter. The nucleotide sequence of GAT-1 predicts a protein of 599 amino acids with a molecular weight of 67 kilodaltons. Hydropathy analysis of the deduced protein suggests multiple transmembrane regions, a feature shared by several cloned transporters; however, database searches indicate that GAT-1 is not homologous to any previously identified proteins. Therefore, GAT-1 appears to be a member of a previously uncharacterized family of transport molecules.

  10. A noncanonical release of GABA and glutamate modulates neuronal migration.

    PubMed

    Manent, Jean-Bernard; Demarque, Michaël; Jorquera, Isabel; Pellegrino, Christophe; Ben-Ari, Yehezkel; Aniksztejn, Laurent; Represa, Alfonso

    2005-05-11

    Immature neurons express GABA and glutamate receptors before synapse formation, and both transmitters are released at an early developmental stage. We have now tested the hypothesis that the ongoing release of GABA and glutamate modulates neuronal migration. Using 5-bromo-2'-deoxyuridine labeling and cocultures of hippocampal slices obtained from naive and green fluorescent protein-transgenic mice, we report that migration is severely affected by GABA(A) or NMDA receptor antagonist treatments. These effects were also present in munc18-1 knock-out slices in which soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-dependent vesicular secretion of transmitters has been deleted. GABA(A) antagonists were more efficient than NMDA antagonists to reduce cell migration, in keeping with the earlier maturation of GABAergic mechanisms. We conclude that GABA and, to a lesser degree, glutamate released in a SNARE-independent mechanism exert a paracrine action on neuronal migration.

  11. Laser photolysis of DPNI-GABA, a tool for investigating the properties and distribution of GABA receptors and for silencing neurons in situ.

    PubMed

    Trigo, Federico F; Papageorgiou, George; Corrie, John E T; Ogden, David

    2009-07-30

    Laser photolysis to release GABA at precisely defined times and locations permits investigation of the distribution of functional GABA(A) receptors in neuronal compartments, the activation kinetics and pharmacology of GABA(A) receptors in situ, and the role of individual neurons in neural circuits by selective silencing with low GABA concentrations. We describe the experimental evaluation and applications of a new nitroindoline-caged GABA, DPNI-GABA, modified to minimize the pharmacological interference commonly found with caged GABA reagents, but retaining the advantages of nitroindoline cages. Unlike the 5-methoxycarbonylmethyl-7-nitroindolinyl-GABA tested previously, DPNI-GABA inhibited GABA(A) receptors with much lower affinity, reducing peak GABA-evoked responses with an IC(50) of approximately 0.5 mM. Most importantly, the kinetics of receptor activation, determined as 10-90% rise-times, were comparable to synaptic events and were little affected by DPNI-GABA present at 1mM concentration, permitting photolysis of DPNI-GABA to mimic synaptic activation of GABA(A) receptors. With a laser spot of 1 microm applied to cerebellar molecular layer interneurons, the spatial resolution of uncaging DPNI-GABA in dendrites was estimated as 2 microm laterally and 7.5 microm focally. Finally, at low DPNI-GABA concentration, photorelease restricted to the area of the soma suppressed spiking in single Purkinje neurons or molecular layer interneurons for periods controlled by the flash intensity and duration. DPNI-GABA has properties better adapted for fast kinetic studies with laser photolysis at GABA(A) receptors than previously reported caged GABA reagents, and can be used in experiments where spatial resolution is determined by the dimensions of the laser light spot.

  12. Neurosteroids and GABA-A Receptor Function

    PubMed Central

    Wang, Mingde

    2011-01-01

    Neurosteroids represent a class of endogenous steroids that are synthesized in the brain, the adrenals, and the gonads and have potent and selective effects on the GABAA-receptor. 3α-hydroxy A-ring reduced metabolites of progesterone, deoxycorticosterone, and testosterone are positive modulators of GABAA-receptor in a non-genomic manner. Allopregnanolone (3α-OH-5α-pregnan-20-one), 5α-androstane-3α, 17α-diol (Adiol), and 3α5α-tetrahydrodeoxycorticosterone (3α5α-THDOC) enhance the GABA-mediated Cl- currents acting on a site (or sites) distinct from the GABA, benzodiazepine, barbiturate, and picrotoxin binding sites. 3α5α-P and 3α5α-THDOC potentiate synaptic GABAA-receptor function and activate δ-subunit containing extrasynaptic receptors that mediate tonic currents. On the contrary, 3β-OH pregnane steroids and pregnenolone sulfate (PS) are GABAA-receptor antagonists and induce activation-dependent inhibition of the receptor. The activities of neurosteroid are dependent on brain regions and types of neurons. In addition to the slow genomic action of the parent steroids, the non-genomic, and rapid actions of neurosteroids play a significant role in the GABAA-receptor function and shift in mood and memory function. This review describes molecular mechanisms underlying neurosteroid action on the GABAA-receptor, mood changes, and cognitive functions. PMID:22654809

  13. Genetics Home Reference: dopamine transporter deficiency syndrome

    MedlinePlus

    ... Genetics Home Health Conditions dopamine transporter deficiency syndrome dopamine transporter deficiency syndrome Enable Javascript to view the ... boxes. Download PDF Open All Close All Description Dopamine transporter deficiency syndrome is a rare movement disorder. ...

  14. Study of GABA in Healthy Volunteers: Pharmacokinetics and Pharmacodynamics

    PubMed Central

    Li, Junfeng; Zhang, Zhaoyun; Liu, Xiaoxia; Wang, Yi; Mao, Fei; Mao, Junjun; Lu, Xiaolan; Jiang, Dongdong; Wan, Yun; Lv, Jia-Ying; Cao, Guoying; Zhang, Jing; Zhao, Naiqing; Atkinson, Mark; Greiner, Dale L.; Prud'homme, Gerald J.; Jiao, Zheng; Li, Yiming; Wang, Qinghua

    2015-01-01

    Preclinical studies show that GABA exerts anti-diabetic effects in rodent models of type 1 diabetes. Because little is known about its absorption and effects in humans, we investigated the pharmacokinetics and pharmacodynamics of GABA in healthy volunteers. Twelve subjects were subjected to an open-labeled, three-period trial involving sequential oral administration of placebo, 2 g GABA once, and 2 g GABA three times/day for 7 days, with a 7-day washout between each period. GABA was rapidly absorbed (Tmax: 0.5 ~ 1 h) with the half-life (t1/2) of 5 h. No accumulation was observed after repeated oral GABA administration for 7 days. Remarkably, GABA significantly increased circulating insulin levels in the subjects under either fasting (1.6-fold, single dose; 2.0-fold, repeated dose; p < 0.01) or fed conditions (1.4-fold, single dose; 1.6-fold, repeated dose; p < 0.01). GABA also increased glucagon levels only under fasting conditions (1.3-fold, single dose, p < 0.05; 1.5-fold, repeated dose, p < 0.01). However, there were no significant differences in the insulin-to-glucagon ratio and no significant change in glucose levels in these healthy subjects during the study period. Importantly, GABA significantly decreased glycated albumin levels in the repeated dosing period. Subjects with repeated dosing showed an elevated incidence of minor adverse events in comparison to placebo or the single dosing period, most notably transient discomforts such as dizziness and sore throat. However, there were no serious adverse events observed throughout the study. Our data show that GABA is rapidly absorbed and tolerated in human beings; its endocrine effects, exemplified by increasing islet hormonal secretion, suggest potential therapeutic benefits for diabetes. PMID:26617516

  15. Could dopamine agonists aid in drug development for anorexia nervosa?

    PubMed

    Frank, Guido K W

    2014-01-01

    Anorexia nervosa is a severe psychiatric disorder most commonly starting during the teenage-years and associated with food refusal and low body weight. Typically there is a loss of menses, intense fear of gaining weight, and an often delusional quality of altered body perception. Anorexia nervosa is also associated with a pattern of high cognitive rigidity, which may contribute to treatment resistance and relapse. The complex interplay of state and trait biological, psychological, and social factors has complicated identifying neurobiological mechanisms that contribute to the illness. The dopamine D1 and D2 neurotransmitter receptors are involved in motivational aspects of food approach, fear extinction, and cognitive flexibility. They could therefore be important targets to improve core and associated behaviors in anorexia nervosa. Treatment with dopamine antagonists has shown little benefit, and it is possible that antagonists over time increase an already hypersensitive dopamine pathway activity in anorexia nervosa. On the contrary, application of dopamine receptor agonists could reduce circuit responsiveness, facilitate fear extinction, and improve cognitive flexibility in anorexia nervosa, as they may be particularly effective during underweight and low gonadal hormone states. This article provides evidence that the dopamine receptor system could be a key factor in the pathophysiology of anorexia nervosa and dopamine agonists could be helpful in reducing core symptoms of the disorder. This review is a theoretical approach that primarily focuses on dopamine receptor function as this system has been mechanistically better described than other neurotransmitters that are altered in anorexia nervosa. However, those proposed dopamine mechanisms in anorexia nervosa also warrant further study with respect to their interaction with other neurotransmitter systems, such as serotonin pathways.

  16. The effects of agonists of ionotropic GABA(A) and metabotropic GABA(B) receptors on learning.

    PubMed

    Zyablitseva, Evgeniya A; Kositsyn, Nikolay S; Shul'gina, Galina I

    2009-05-01

    The research described here investigates the role played by inhibitory processes in the discriminations made by the nervous system of humans and animals between familiar and unfamiliar and significant and nonsignificant events. This research compared the effects of two inhibitory mediators of gamma-aminobutyric acid (GABA): 1) phenibut, a nonselective agonist of ionotropic GABA(A) and metabotropic GABA(B) receptors and 2) gaboxadol a selective agonist of ionotropic GABA(A) receptors on the process of developing active defensive and inhibitory conditioned reflexes in alert non-immobilized rabbits. It was found that phenibut, but not gaboxadol, accelerates the development of defensive reflexes at an early stage of conditioning. Both phenibut and gaboxadol facilitate the development of conditioned inhibition, but the effect of gaboxadol occurs at later stages of conditioning and is less stable than that of phenibut. The earlier and more stable effects of phenibut, as compared to gaboxadol, on storage in memory of the inhibitory significance of a stimulus may occur because GABA(B) receptors play the dominant role in the development of internal inhibition during an early stage of conditioning. On the other hand this may occur because the participation of both GABA(A) and GABA(B) receptors are essential to the process. We discuss the polyfunctionality of GABA receptors as a function of their structure and the positions of the relevant neurons in the brain as this factor can affect regulation of various types of psychological processes.

  17. GABA-A and GABA-B receptors in the cuneate nucleus of the rat in vivo.

    PubMed

    Orviz, P; Cecchini, B G; Andrés-Trelles, F

    1986-09-01

    Electric stimulation of the rat forepaw evokes a negative potential (N-wave) at the ipsilateral cuneate nucleus. The responses of the N-wave to microiontophoretically applied GABA agonists and antagonists have been studied. Applications of GABA-A agonists (3-amino-propanesulfonic acid and muscimol) reduce the amplitude of the N-wave. This effect decreases during prolonged application, suggesting a desensitization of GABA-A receptors. In addition the effect of muscimol is reduced by (-)-bicuculline methiodide. Baclofen (a GABA-B agonist) also depresses the N-wave but its action lasts longer, is less reversible, shows no desensitization and is not blocked by (-)-bicuculline methiodide. The different responses of the N-wave to GABA-A and GABA-B agonists are compatible with the existence of different types of functional receptors for them in the cuneate nucleus of the rat. The receptors activated by muscimol (GABA-A) are clearly not the same as the ones activated by baclofen (conceivably GABA-B).

  18. Engagement of the GABA to KCC2 Signaling Pathway Contributes to the Analgesic Effects of A3AR Agonists in Neuropathic Pain

    PubMed Central

    Ford, Amanda; Castonguay, Annie; Cottet, Martin; Little, Joshua W.; Chen, Zhoumou; Symons-Liguori, Ashley M.; Doyle, Timothy; Egan, Terrance M.; Vanderah, Todd W.; De Konnick, Yves; Tosh, Dilip K.; Jacobson, Kenneth A.

    2015-01-01

    More than 1.5 billion people worldwide suffer from chronic pain, yet current treatment strategies often lack efficacy or have deleterious side effects in patients. Adenosine is an inhibitory neuromodulator that was previously thought to mediate antinociception through the A1 and A2A receptor subtypes. We have since demonstrated that A3AR agonists have potent analgesic actions in preclinical rodent models of neuropathic pain and that A3AR analgesia is independent of adenosine A1 or A2A unwanted effects. Herein, we explored the contribution of the GABA inhibitory system to A3AR-mediated analgesia using well-characterized mouse and rat models of chronic constriction injury (CCI)-induced neuropathic pain. The deregulation of GABA signaling in pathophysiological pain states is well established: GABA signaling can be hampered by a reduction in extracellular GABA synthesis by GAD65 and enhanced extracellular GABA reuptake via the GABA transporter, GAT-1. In neuropathic pain, GABAAR-mediated signaling can be further disrupted by the loss of the KCC2 chloride anion gradient. Here, we demonstrate that A3AR agonists (IB-MECA and MRS5698) reverse neuropathic pain via a spinal mechanism of action that modulates GABA activity. Spinal administration of the GABAA antagonist, bicuculline, disrupted A3AR-mediated analgesia. Furthermore, A3AR-mediated analgesia was associated with reductions in CCI-related GAD65 and GAT-1 serine dephosphorylation as well as an enhancement of KCC2 serine phosphorylation and activity. Our results suggest that A3AR-mediated reversal of neuropathic pain increases modulation of GABA inhibitory neurotransmission both directly and indirectly through protection of KCC2 function, underscoring the unique utility of A3AR agonists in chronic pain. PMID:25878279

  19. The transfection of BDNF to dopamine neurons potentiates the effect of dopamine D3 receptor agonist recovering the striatal innervation, dendritic spines and motor behavior in an aged rat model of Parkinson's disease.

    PubMed

    Razgado-Hernandez, Luis F; Espadas-Alvarez, Armando J; Reyna-Velazquez, Patricia; Sierra-Sanchez, Arturo; Anaya-Martinez, Veronica; Jimenez-Estrada, Ismael; Bannon, Michael J; Martinez-Fong, Daniel; Aceves-Ruiz, Jorge

    2015-01-01

    The progressive degeneration of the dopamine neurons of the pars compacta of substantia nigra and the consequent loss of the dopamine innervation of the striatum leads to the impairment of motor behavior in Parkinson's disease. Accordingly, an efficient therapy of the disease should protect and regenerate the dopamine neurons of the substantia nigra and the dopamine innervation of the striatum. Nigral neurons express Brain Derived Neurotropic Factor (BDNF) and dopamine D3 receptors, both of which protect the dopamine neurons. The chronic activation of dopamine D3 receptors by their agonists, in addition, restores, in part, the dopamine innervation of the striatum. Here we explored whether the over-expression of BDNF by dopamine neurons potentiates the effect of the activation of D3 receptors restoring nigrostriatal innervation. Twelve-month old Wistar rats were unilaterally injected with 6-hydroxydopamine into the striatum. Five months later, rats were treated with the D3 agonist 7-hydroxy-N,N-di-n-propy1-2-aminotetralin (7-OH-DPAT) administered i.p. during 4½ months via osmotic pumps and the BDNF gene transfection into nigral cells using the neurotensin-polyplex nanovector (a non-viral transfection) that selectively transfect the dopamine neurons via the high-affinity neurotensin receptor expressed by these neurons. Two months after the withdrawal of 7-OH-DPAT when rats were aged (24 months old), immunohistochemistry assays were made. The over-expression of BDNF in rats receiving the D3 agonist normalized gait and motor coordination; in addition, it eliminated the muscle rigidity produced by the loss of dopamine. The recovery of motor behavior was associated with the recovery of the nigral neurons, the dopamine innervation of the striatum and of the number of dendritic spines of the striatal neurons. Thus, the over-expression of BDNF in dopamine neurons associated with the chronic activation of the D3 receptors appears to be a promising strategy for restoring

  20. Dysbindin Deficiency Modifies the Expression of GABA Neuron and Ion Permeation Transcripts in the Developing Hippocampus

    PubMed Central

    Larimore, Jennifer; Zlatic, Stephanie A.; Arnold, Miranda; Singleton, Kaela S.; Cross, Rebecca; Rudolph, Hannah; Bruegge, Martha V.; Sweetman, Andrea; Garza, Cecilia; Whisnant, Eli; Faundez, Victor

    2017-01-01

    The neurodevelopmental factor dysbindin is required for synapse function and GABA interneuron development. Dysbindin protein levels are reduced in the hippocampus of schizophrenia patients. Mouse dysbindin genetic defects and other mouse models of neurodevelopmental disorders share defective GABAergic neurotransmission and, in several instances, a loss of parvalbumin-positive interneuron phenotypes. This suggests that mechanisms downstream of dysbindin deficiency, such as those affecting GABA interneurons, could inform pathways contributing to or ameliorating diverse neurodevelopmental disorders. Here we define the transcriptome of developing wild type and dysbindin null Bloc1s8sdy/sdy mouse hippocampus in order to identify mechanisms downstream dysbindin defects. The dysbindin mutant transcriptome revealed previously reported GABA parvalbumin interneuron defects. However, the Bloc1s8sdy/sdy transcriptome additionally uncovered changes in the expression of molecules controlling cellular excitability such as the cation-chloride cotransporters NKCC1, KCC2, and NCKX2 as well as the potassium channel subunits Kcne2 and Kcnj13. Our results suggest that dysbindin deficiency phenotypes, such as GABAergic defects, are modulated by the expression of molecules controlling the magnitude and cadence of neuronal excitability. PMID:28344592

  1. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes.

    PubMed

    Chao, Hsiao-Tuan; Chen, Hongmei; Samaco, Rodney C; Xue, Mingshan; Chahrour, Maria; Yoo, Jong; Neul, Jeffrey L; Gong, Shiaoching; Lu, Hui-Chen; Heintz, Nathaniel; Ekker, Marc; Rubenstein, John L R; Noebels, Jeffrey L; Rosenmund, Christian; Zoghbi, Huda Y

    2010-11-11

    Mutations in the X-linked MECP2 gene, which encodes the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2), cause Rett syndrome and several neurodevelopmental disorders including cognitive disorders, autism, juvenile-onset schizophrenia and encephalopathy with early lethality. Rett syndrome is characterized by apparently normal early development followed by regression, motor abnormalities, seizures and features of autism, especially stereotyped behaviours. The mechanisms mediating these features are poorly understood. Here we show that mice lacking Mecp2 from GABA (γ-aminobutyric acid)-releasing neurons recapitulate numerous Rett syndrome and autistic features, including repetitive behaviours. Loss of MeCP2 from a subset of forebrain GABAergic neurons also recapitulates many features of Rett syndrome. MeCP2-deficient GABAergic neurons show reduced inhibitory quantal size, consistent with a presynaptic reduction in glutamic acid decarboxylase 1 (Gad1) and glutamic acid decarboxylase 2 (Gad2) levels, and GABA immunoreactivity. These data demonstrate that MeCP2 is critical for normal function of GABA-releasing neurons and that subtle dysfunction of GABAergic neurons contributes to numerous neuropsychiatric phenotypes.

  2. New inducible genetic method reveals critical roles of GABA in the control of feeding and metabolism.

    PubMed

    Meng, Fantao; Han, Yong; Srisai, Dollada; Belakhov, Valery; Farias, Monica; Xu, Yong; Palmiter, Richard D; Baasov, Timor; Wu, Qi

    2016-03-29

    Currently available inducible Cre/loxP systems, despite their considerable utility in gene manipulation, have pitfalls in certain scenarios, such as unsatisfactory recombination rates and deleterious effects on physiology and behavior. To overcome these limitations, we designed a new, inducible gene-targeting system by introducing an in-frame nonsense mutation into the coding sequence of Cre recombinase (nsCre). Mutant mRNAs transcribed from nsCre transgene can be efficiently translated into full-length, functional Cre recombinase in the presence of nonsense suppressors such as aminoglycosides. In a proof-of-concept model, GABA signaling from hypothalamic neurons expressing agouti-related peptide (AgRP) was genetically inactivated within 4 d after treatment with a synthetic aminoglycoside. Disruption of GABA synthesis in AgRP neurons in young adult mice led to a dramatic loss of body weight due to reduced food intake and elevated energy expenditure; they also manifested glucose intolerance. In contrast, older mice with genetic inactivation of GABA signaling by AgRP neurons had only transient reduction of feeding and body weight; their energy expenditure and glucose tolerance were unaffected. These results indicate that GABAergic signaling from AgRP neurons plays a key role in the control of feeding and metabolism through an age-dependent mechanism. This new genetic technique will augment current tools used to elucidate mechanisms underlying many physiological and neurological processes.

  3. New inducible genetic method reveals critical roles of GABA in the control of feeding and metabolism

    PubMed Central

    Meng, Fantao; Han, Yong; Srisai, Dollada; Belakhov, Valery; Farias, Monica; Xu, Yong; Palmiter, Richard D.; Baasov, Timor; Wu, Qi

    2016-01-01

    Currently available inducible Cre/loxP systems, despite their considerable utility in gene manipulation, have pitfalls in certain scenarios, such as unsatisfactory recombination rates and deleterious effects on physiology and behavior. To overcome these limitations, we designed a new, inducible gene-targeting system by introducing an in-frame nonsense mutation into the coding sequence of Cre recombinase (nsCre). Mutant mRNAs transcribed from nsCre transgene can be efficiently translated into full-length, functional Cre recombinase in the presence of nonsense suppressors such as aminoglycosides. In a proof-of-concept model, GABA signaling from hypothalamic neurons expressing agouti-related peptide (AgRP) was genetically inactivated within 4 d after treatment with a synthetic aminoglycoside. Disruption of GABA synthesis in AgRP neurons in young adult mice led to a dramatic loss of body weight due to reduced food intake and elevated energy expenditure; they also manifested glucose intolerance. In contrast, older mice with genetic inactivation of GABA signaling by AgRP neurons had only transient reduction of feeding and body weight; their energy expenditure and glucose tolerance were unaffected. These results indicate that GABAergic signaling from AgRP neurons plays a key role in the control of feeding and metabolism through an age-dependent mechanism. This new genetic technique will augment current tools used to elucidate mechanisms underlying many physiological and neurological processes. PMID:26976589

  4. Catabolism of GABA, succinic semialdehyde or gamma-hydroxybutyrate through the GABA shunt impair mitochondrial substrate-level phosphorylation.

    PubMed

    Ravasz, Dora; Kacso, Gergely; Fodor, Viktoria; Horvath, Kata; Adam-Vizi, Vera; Chinopoulos, Christos

    2017-03-11

    GABA is catabolized in the mitochondrial matrix through the GABA shunt, encompassing transamination to succinic semialdehyde followed by oxidation to succinate by the concerted actions of GABA transaminase (GABA-T) and succinic semialdehyde dehydrogenase (SSADH), respectively. Gamma-hydroxybutyrate (GHB) is a neurotransmitter and a psychoactive drug that could enter the citric acid cycle through transhydrogenation with α-ketoglutarate to succinic semialdehyde and d-hydroxyglutarate, a reaction catalyzed by hydroxyacid-oxoacid transhydrogenase (HOT). Here, we tested the hypothesis that the elevation in matrix succinate concentration caused by exogenous addition of GABA, succinic semialdehyde or GHB shifts the equilibrium of the reversible reaction catalyzed by succinate-CoA ligase towards ATP (or GTP) hydrolysis, effectively negating substrate-level phosphorylation (SLP). Mitochondrial SLP was addressed by interrogating the directionality of the adenine nucleotide translocase during anoxia in isolated mouse brain and liver mitochondria. GABA eliminated SLP, and this was rescued by the GABA-T inhibitors vigabatrin and aminooxyacetic acid. Succinic semialdehyde was an extremely efficient substrate energizing mitochondria during normoxia but mimicked GABA in abolishing SLP in anoxia, in a manner refractory to vigabatrin and aminooxyacetic acid. GHB could moderately energize liver but not brain mitochondria consistent with the scarcity of HOT expression in the latter. In line with these results, GHB abolished SLP in liver but not brain mitochondria during anoxia and this was unaffected by either vigabatrin or aminooxyacetic acid. It is concluded that when mitochondria catabolize GABA or succinic semialdehyde or GHB through the GABA shunt, their ability to perform SLP is impaired.

  5. Changes in GABA(B) receptor mRNA expression in the rodent basal ganglia and thalamus following lesion of the nigrostriatal pathway.

    PubMed

    Johnston, T; Duty, S

    2003-01-01

    Loss of striatal dopaminergic innervation in Parkinson's disease (PD) is accompanied by widespread alterations in GABAergic activity within the basal ganglia and thalamus. Accompanying changes in GABA(B) receptor binding have been noted in some basal ganglia regions in parkinsonian primates, suggesting that plasticity of this receptor may also occur in PD. However, the molecular mechanisms underlying the changes in receptor binding and the manner and extent to which different GABA(B) receptor mRNA subunits and splice-variants are affected remain unknown. This study used in situ hybridisation to examine the full profile of changes in expression of the known rat GABA(B) receptor genes and gene variants in the basal ganglia and thalamus of rats, brought about by degeneration of the nigrostriatal tract. All of the GABA(B) mRNA species examined showed unique expression patterns throughout the basal ganglia and thalamus. In addition, all exhibited a marked loss of expression (between 46 and 80%) in the substantia nigra pars compacta of animals bearing a complete 6-hydroxydopamine-induced lesion of the nigrostriatal tract, confirming the presence of these variants in dopaminergic neurones in this region. Further analysis of autoradioagrams revealed additional changes only in GABA(B(1a)) mRNA in discrete anatomical regions. Expression of the GABA(B(1a)) variant was significantly increased in the substantia nigra pars reticulata (33+/-2%), entopeduncular nucleus (26+/-1%) and the subthalamic nucleus (16+/-1%). Since these regions all receive reduced GABAergic innervation following nigrostriatal tract lesioning, it is possible that the increased expression occurs as a compensatory measure. In conclusion, these data demonstrate that GABA(B) receptor genes exhibit regional- and subunit/variant-specific plasticity at the molecular level under parkinsonian conditions.

  6. Diacylglycerol lipase disinhibits VTA dopamine neurons during chronic nicotine exposure

    PubMed Central

    Buczynski, Matthew W.; Herman, Melissa A.; Natividad, Luis A.; Irimia, Cristina; Polis, Ilham Y.; Pugh, Holly; Chang, Jae Won; Niphakis, Micah J.; Cravatt, Benjamin F.; Roberto, Marisa; Parsons, Loren H.

    2016-01-01

    Chronic nicotine exposure (CNE) alters synaptic transmission in the ventral tegmental area (VTA) in a manner that enhances dopaminergic signaling and promotes nicotine use. The present experiments identify a correlation between enhanced production of the endogenous cannabinoid 2-arachidonoylglycerol (2-AG) and diminished release of the inhibitory neurotransmitter GABA in the VTA following CNE. To study the functional role of on-demand 2-AG signaling in GABAergic synapses, we used 1,2,3-triazole urea compounds to selectively inhibit 2-AG biosynthesis by diacylglycerol lipase (DAGL). The potency and selectivity of these inhibitors were established in rats in vitro (rat brain proteome), ex vivo (brain slices), and in vivo (intracerebroventricular administration) using activity-based protein profiling and targeted metabolomics analyses. Inhibition of DAGL (2-AG biosynthesis) rescues nicotine-induced VTA GABA signaling following CNE. Conversely, enhancement of 2-AG signaling in naïve rats by inhibiting 2-AG degradation recapitulates the loss of nicotine-induced GABA signaling evident following CNE. DAGL inhibition reduces nicotine self-administration without disrupting operant responding for a nondrug reinforcer or motor activity. Collectively, these findings provide a detailed characterization of selective inhibitors of rat brain DAGL and demonstrate that excessive 2-AG signaling contributes to a loss of inhibitory GABAergic constraint of VTA excitability following CNE. PMID:26755579

  7. Diacylglycerol lipase disinhibits VTA dopamine neurons during chronic nicotine exposure.

    PubMed

    Buczynski, Matthew W; Herman, Melissa A; Hsu, Ku-Lung; Natividad, Luis A; Irimia, Cristina; Polis, Ilham Y; Pugh, Holly; Chang, Jae Won; Niphakis, Micah J; Cravatt, Benjamin F; Roberto, Marisa; Parsons, Loren H

    2016-01-26

    Chronic nicotine exposure (CNE) alters synaptic transmission in the ventral tegmental area (VTA) in a manner that enhances dopaminergic signaling and promotes nicotine use. The present experiments identify a correlation between enhanced production of the endogenous cannabinoid 2-arachidonoylglycerol (2-AG) and diminished release of the inhibitory neurotransmitter GABA in the VTA following CNE. To study the functional role of on-demand 2-AG signaling in GABAergic synapses, we used 1,2,3-triazole urea compounds to selectively inhibit 2-AG biosynthesis by diacylglycerol lipase (DAGL). The potency and selectivity of these inhibitors were established in rats in vitro (rat brain proteome), ex vivo (brain slices), and in vivo (intracerebroventricular administration) using activity-based protein profiling and targeted metabolomics analyses. Inhibition of DAGL (2-AG biosynthesis) rescues nicotine-induced VTA GABA signaling following CNE. Conversely, enhancement of 2-AG signaling in naïve rats by inhibiting 2-AG degradation recapitulates the loss of nicotine-induced GABA signaling evident following CNE. DAGL inhibition reduces nicotine self-administration without disrupting operant responding for a nondrug reinforcer or motor activity. Collectively, these findings provide a detailed characterization of selective inhibitors of rat brain DAGL and demonstrate that excessive 2-AG signaling contributes to a loss of inhibitory GABAergic constraint of VTA excitability following CNE.

  8. Differential behavioral reinforcement effects of dopamine receptor agonists in the rat with bilateral lesion of the posterior ventral tegmental area.

    PubMed

    Ouachikh, Omar; Dieb, Wisam; Durif, Franck; Hafidi, Aziz

    2013-09-01

    Dopamine dysregulation syndrome in Parkinson's disease has been attributed to dopamine replacement therapies and/or a lesion of the dopaminergic system. The dopaminergic neuronal loss targets the substantia nigra and the ventral tegmental area (VTA). We hypothesize that dopamine replacement therapy is responsible for the potential reinforcement effect in Parkinson's disease by acting on the neuronal reward circuitry. Therefore this study was designed to explore the potential motivational effect of dopamine replacement therapy in bilateral VTA-lesioned animals. The posterior (p)VTA, which project to the nucleus accumbens (NAc) constitutes the major dopamine neuronal circuitry implicated in addictive disorders. Using the conditioned place preference (CPP) behavioral paradigm, we investigated the motivational effects of dopamine receptor agonists, and cocaine in rat with a 6-OHDA bilateral lesion of the pVTA. Amongst the dopamine receptor agonists used in this study only the D2R and D3R agonists (bromocriptine, PD128907 and pramipexole), induced a significant CPP in pVTA-lesioned animals. Dopamine receptor agonists did not induce behavioral sensitization in sham animals. Moreover, confocal D2R immunostaining analysis showed a significant increase in the number of D2R per cell body in the NAc shell of pVTA lesioned rats compared to sham. This result correlated, for the first time, the dopamine receptor agonists effect with DR2 overexpression in the NAc shell of pVTA-lesioned rats. In addition, cocaine, which is known to increase dopamine release, induced behavioral sensitization in sham group but not in dopamine deprived group. Thus, the later result highlighted the importance of pVTA-NAc dopaminergic pathway in positive reinforcements. Altogether these data suggested that the implication of the dopamine replacement therapy in the appearance of dopamine dysregulation syndrome in Parkinson's disease is probably due to both neuronal degeneration in the posterior VTA and

  9. GABA(B) receptors mediate motility signals for migrating embryonic cortical cells.

    PubMed

    Behar, T N; Smith, S V; Kennedy, R T; McKenzie, J M; Maric, I; Barker, J L

    2001-08-01

    During development, postmitotic neurons migrate from germinal regions into the cortical plate (cp), where lamination occurs. In rats, GABA is transiently expressed in the cp, near target destinations for migrating neurons. In vitro GABA stimulates neuronal motility, suggesting cp cells release GABA, which acts as a chemoattractant during corticogenesis. Pharmacological studies indicate GABA stimulates migration via GABA(B)-receptor (GABA(B)-R) activation. Using immunohistochemistry, RT-PCR and Western blotting, we examined embryonic cortical cell expression of GABA(B)-Rs in vivo. At E17, GABA(B)-R1(+) cells were identified in the ventricular zone (vz) and cp. RT-PCR and Western blotting demonstrated the presence of GABA(B)-R1a and GABA(B)-R1b mRNA and proteins. Using immuno- cytochemistry, GABA(B)-R expression was examined in vz and cp cell dissociates before and after migration to GABA in an in vitro chemotaxis assay. GABA-induced migration resulted in an increase of GABA(B)-R(+) cells in the migrated population. While <20% of each starting dissociate was GABA(B)-R(+), >70% of migrated cells were immunopositive. We used a microchemotaxis assay to analyze cp cell release of diffusible chemotropic factor(s). In vitro, cp dissociates induced vz cell migration in a cell density-dependent manner that was blocked by micromolar saclofen (a GABA(B)-R antagonist). HPLC demonstrated cp cells release micromolar levels of GABA and taurine in several hours. Micromolar levels of both molecules stimulated cell migration that was blocked by micromolar saclofen. Thus, migratory cortical cells express GABA(B)-Rs, cp cells release GABA and taurine, and both molecules stimulate cortical cell movement. Together these findings suggest GABA and/or taurine act as chemoattractants for neurons during rat cortical histogenesis via mechanisms involving GABA(B)-Rs.

  10. Corelease of acetylcholine and GABA from cholinergic forebrain neurons

    PubMed Central

    Saunders, Arpiar; Granger, Adam J; Sabatini, Bernardo L

    2015-01-01

    Neurotransmitter corelease is emerging as a common theme of central neuromodulatory systems. Though corelease of glutamate or GABA with acetylcholine has been reported within the cholinergic system, the full extent is unknown. To explore synaptic signaling of cholinergic forebrain neurons, we activated choline acetyltransferase expressing neurons using channelrhodopsin while recording post-synaptic currents (PSCs) in layer 1 interneurons. Surprisingly, we observed PSCs mediated by GABAA receptors in addition to nicotinic acetylcholine receptors. Based on PSC latency and pharmacological sensitivity, our results suggest monosynaptic release of both GABA and ACh. Anatomical analysis showed that forebrain cholinergic neurons express the GABA synthetic enzyme Gad2 and the vesicular GABA transporter (Slc32a1). We confirmed the direct release of GABA by knocking out Slc32a1 from cholinergic neurons. Our results identify GABA as an overlooked fast neurotransmitter utilized throughout the forebrain cholinergic system. GABA/ACh corelease may have major implications for modulation of cortical function by cholinergic neurons. DOI: http://dx.doi.org/10.7554/eLife.06412.001 PMID:25723967

  11. [Pharmacological influences on the brain level and transport of GABA. II) Effect of various psychoactive drugs on brain level and uptake of GABA].

    PubMed

    Gabana, M A; Varotto, M; Saladini, M; Zanchin, G; Battistin, L

    1981-04-30

    The effects of some psychoactive drugs on the level and uptake of GABA in the mouse brain was studied using well standardized procedures, mainely the silica-gel cromatography for determining the GABA content and the brain slices for measuring GABA uptake. It was found that levomepromazine, sulpiride, haloperidol and amytryptiline were without effects on the cerebral level of GABA; it was also found that these drugs do not influence the rates of uptake of GABA by mouse brain slices. Such results do indicate that the psychoactive drugs studied are without effects on the level and uptake of GABA in the brain.

  12. GABA[subscript A] Receptor Downregulation in Brains of Subjects with Autism

    ERIC Educational Resources Information Center

    Fatemi, S. Hossein; Reutiman, Teri J.; Folsom, Timothy D.; Thuras, Paul D.

    2009-01-01

    Gamma-aminobutyric acid A (GABA[subscript A]) receptors are ligand-gated ion channels responsible for mediation of fast inhibitory action of GABA in the brain. Preliminary reports have demonstrated altered expression of GABA receptors in the brains of subjects with autism suggesting GABA/glutamate system dysregulation. We investigated the…

  13. Early direct and transneuronal effects in mice with targeted expression of a toxin gene to D1 dopamine receptor neurons.

    PubMed

    Padungchaichot, P; Wong, J Y; Natoli, A L; Massalas, J S; Finkelstein, D I; Lawrence, A L; Drago, J

    2000-01-01

    The neurochemical profile was examined at postnatal day 3-4 in mutant mice generated by in vivo Cre mediated activation of an attenuated diphtheria toxin gene inserted into the D1 dopamine receptor gene locus. An earlier study of this model had shown that D1 dopamine receptor, substance P and dynorphin were not expressed in the striatum. Quantitative in situ hybridization analysis showed an increase in D2 dopamine receptor and enkephalin messenger RNA expression. The nigrostriatal pathway in the mutant pups was intact with a normal number of dopaminergic neurons in the substantia nigra and the ventral tegmental area in addition to a normal pattern of striatal dopamine transporter and tyrosine hydroxylase immunoreactivity. Quantitative analysis of striatal dopamine transporter density using [3H]mazindol showed a reduction of 26% suggesting a degree of transneuronal down-regulation. There was also a 49% reduction of striatal GABA receptor binding and a 36% reduction of striatal muscarinic receptor binding in mutant pups. The number of healthy striatal neuropeptide Y-containing interneurons was also substantially down-regulated in the mutant striatum. In contrast, there was an increase in the number of striatal cholinergic interneurons. Down-regulated cortical GABA receptor and muscarinic receptor binding was also observed in addition to subtle morphological changes in the neuropeptide Y-expressing population of cortical neurons. The changes reflect the early cascade of events which follows the ablation of D1 dopamine receptor-positive cells. Although extensive changes in a number of striatal and cortical neurons were demonstrated, only subtle transneuronal effects were seen in the nigrostriatal pathway.

  14. Prefrontal Markers and Cognitive Performance Are Dissociated during Progressive Dopamine Lesion

    PubMed Central

    Wilson, Charles R. E.; Vezoli, Julien; Faraut, Maïlys C. M.; Leviel, Vincent; Knoblauch, Kenneth; Procyk, Emmanuel

    2016-01-01

    Dopamine is thought to directly influence the neurophysiological mechanisms of both performance monitoring and cognitive control—two processes that are critically linked in the production of adapted behaviour. Changing dopamine levels are also thought to induce cognitive changes in several neurological and psychiatric conditions. But the working model of this system as a whole remains untested. Specifically, although many researchers assume that changing dopamine levels modify neurophysiological mechanisms and their markers in frontal cortex, and that this in turn leads to cognitive changes, this causal chain needs to be verified. Using longitudinal recordings of frontal neurophysiological markers over many months during progressive dopaminergic lesion in non-human primates, we provide data that fail to support a simple interaction between dopamine, frontal function, and cognition. Feedback potentials, which are performance-monitoring signals sometimes thought to drive successful control, ceased to differentiate feedback valence at the end of the lesion, just before clinical motor threshold. In contrast, cognitive control performance and beta oscillatory markers of cognitive control were unimpaired by the lesion. The differing dynamics of these measures throughout a dopamine lesion suggests they are not all driven by dopamine in the same way. These dynamics also demonstrate that a complex non-linear set of mechanisms is engaged in the brain in response to a progressive dopamine lesion. These results question the direct causal chain from dopamine to frontal physiology and on to cognition. They imply that biomarkers of cognitive functions are not directly predictive of dopamine loss. PMID:27824858

  15. Regulation of GABA-modulin phosphorylation and GABA receptor binding by excitatory amino acids

    SciTech Connect

    Vaccarino, F.; Guidotti, A.

    1987-05-01

    Primary cultures of cerebellar granule cells phosphorylate numerous proteins including GABA-modulin (GM), which is a putative allosteric modulator of GABA receptors. Cell depolarization and treatment with dicarboxylic excitatory amino acids, which activate PI turnover, Ca/sup 2 +/ influx and guanylate cyclase in granule cells increase the phosphorylation of specific proteins. To determine GM phosphorylation by endogenous protein kinases in living granule cell cultures, GM was isolated by immunoprecipitation and reverse-phase HPLC. High K/sup +/, veratridine, glutamate and NMDA treatment stimulated GM phosphorylation over 2-fold. This increase was abolished by the absence of extracellular Ca/sup 2 +/ and was antagonized by Mg/sup 2 +/ ions and by AVP. The excitatory amino acid action was mimicked by phorbol esters but not by forskolin or by cGMP, and thus may be mediated by an activation of protein kinase C (PKC). Moreover, excitatory amino acids increase /sup 3/H-labelled phorbol ester binding sites in granule cell membrane. The same cultures, treated with glutamate or kainate, showed a 50-fold greater efficacy of muscimol for the stimulation of benzodiazepine (BZ) binding. These data-suggest that excitatory amino acid stimulation of neurons triggers PKC translocation and the activated enzyme phosphorylates GM. The extent of GM phosphorylation may regulate the coupling between GABA and BZ binding sites.

  16. Phasic-like stimulation of the medial forebrain bundle augments striatal gene expression despite methamphetamine-induced partial dopamine denervation.

    PubMed

    Howard, Christopher D; Pastuzyn, Elissa D; Barker-Haliski, Melissa L; Garris, Paul A; Keefe, Kristen A

    2013-05-01

    Methamphetamine-induced partial dopamine depletions are associated with impaired basal ganglia function, including decreased preprotachykinin mRNA expression and impaired transcriptional activation of activity-regulated, cytoskeleton-associated (Arc) gene in striatum. Recent work implicates deficits in phasic dopamine signaling as a potential mechanism linking methamphetamine-induced dopamine loss to impaired basal ganglia function. This study thus sought to establish a causal link between phasic dopamine transmission and altered basal ganglia function by determining whether the deficits in striatal neuron gene expression could be restored by increasing phasic dopamine release. Three weeks after pretreatment with saline or a neurotoxic regimen of methamphetamine, rats underwent phasic- or tonic-like stimulation of ascending dopamine neurons. Striatal gene expression was examined using in situ hybridization histochemistry. Phasic-like, but not tonic-like, stimulation induced immediate-early genes Arc and zif268 in both groups, despite the partial striatal dopamine denervation in methamphetamine-pretreated rats, with the Arc expression occurring in presumed striatonigral efferent neurons. Phasic-like stimulation also restored preprotachykinin mRNA expression. These results suggest that disruption of phasic dopamine signaling likely underlies methamphetamine-induced impairments in basal ganglia function, and that restoring phasic dopamine signaling may be a viable approach to manage long-term consequences of methamphetamine-induced dopamine loss on basal ganglia functions.

  17. An Electrostatic Funnel in the GABA-Binding Pathway

    PubMed Central

    Lightstone, Felice C.

    2016-01-01

    The γ-aminobutyric acid type A receptor (GABAA-R) is a major inhibitory neuroreceptor that is activated by the binding of GABA. The structure of the GABAA-R is well characterized, and many of the binding site residues have been identified. However, most of these residues are obscured behind the C-loop that acts as a cover to the binding site. Thus, the mechanism by which the GABA molecule recognizes the binding site, and the pathway it takes to enter the binding site are both unclear. Through the completion and detailed analysis of 100 short, unbiased, independent molecular dynamics simulations, we have investigated this phenomenon of GABA entering the binding site. In each system, GABA was placed quasi-randomly near the binding site of a GABAA-R homology model, and atomistic simulations were carried out to observe the behavior of the GABA molecules. GABA fully entered the binding site in 19 of the 100 simulations. The pathway taken by these molecules was consistent and non-random; the GABA molecules approach the binding site from below, before passing up behind the C-loop and into the binding site. This binding pathway is driven by long-range electrostatic interactions, whereby the electrostatic field acts as a ‘funnel’ that sweeps the GABA molecules towards the binding site, at which point more specific atomic interactions take over. These findings define a nuanced mechanism whereby the GABAA-R uses the general zwitterionic features of the GABA molecule to identify a potential ligand some 2 nm away from the binding site. PMID:27119953

  18. A Gut Feeling about GABA: Focus on GABAB Receptors

    PubMed Central

    Hyland, Niall P.; Cryan, John F.

    2010-01-01

    γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the body and hence GABA-mediated neurotransmission regulates many physiological functions, including those in the gastrointestinal (GI) tract. GABA is located throughout the GI tract and is found in enteric nerves as well as in endocrine-like cells, implicating GABA as both a neurotransmitter and an endocrine mediator influencing GI function. GABA mediates its effects via GABA receptors which are either ionotropic GABAA or metabotropic GABAB. The latter which respond to the agonist baclofen have been least characterized, however accumulating data suggest that they play a key role in GI function in health and disease. Like GABA, GABAB receptors have been detected throughout the gut of several species in the enteric nervous system, muscle, epithelial layers as well as on endocrine-like cells. Such widespread distribution of this metabotropic GABA receptor is consistent with its significant modulatory role over intestinal motility, gastric emptying, gastric acid secretion, transient lower esophageal sphincter relaxation and visceral sensation of painful colonic stimuli. More intriguing findings, the mechanisms underlying which have yet to be determined, suggest GABAB receptors inhibit GI carcinogenesis and tumor growth. Therefore, the diversity of GI functions regulated by GABAB receptors makes it a potentially useful target in the treatment of several GI disorders. In light of the development of novel compounds such as peripherally acting GABAB receptor agonists, positive allosteric modulators of the GABAB receptor and GABA producing enteric bacteria, we review and summarize current knowledge on the function of GABAB receptors within the GI tract. PMID:21833169

  19. Amide-type adduct of dopamine - plausible cause of Parkinson diseases.

    PubMed

    Liu, Xuebo; Yamada, Naruomi; Osawa, Toshihiko

    2014-01-01

    Dopamine is the endogenous neurotransmitter produced by nigral neurons. Dopamine loss can trigger not only prominent secondary morphological changes, but also changes in the density and sensitivity of dopamine receptors; therefore, it is a sign of PD development. The reasons for dopamine loss are attributed to dopamine's molecular instability due to it is a member of catecholamine family, whose catechol structure contributes to high oxidative stress through enzymatic and non-enzymatic oxidation. Oxidative stress in the brain easily leads to the lipid peroxidation reaction due to a high concentration of polyunsaturated fatty acids (PUFA), such as docosahexaenoic acid (DHA, C22:6/ω-3) and arachidonic acid (AA, C18:4/ω-6). Recent studies have shown that lipid hydroperoxides, the primary peroxidative products, could non-specifically react with primary amino groups to form N-acyl-type (amide-linkage) adducts. Therefore, based on the NH2-teminals in dopamine's structure, the aims of this chapter are to describes the possibility that reactive LOOH species derived from DHA/AA lipid peroxidation may modify dopamine to form amide-linkage dopamine adducts, which might be related to etiology of Parkinson's diseases.

  20. Agonist pharmacology of two Drosophila GABA receptor splice variants.

    PubMed Central

    Hosie, A. M.; Sattelle, D. B.

    1996-01-01

    1. The Drosophila melanogaster gamma-aminobutyric acid (GABA) receptor subunits, RDLac and DRC 17-1-2, form functional homo-oligomeric receptors when heterologously expressed in Xenopus laevis oocytes. The subunits differ in only 17 amino acids, principally in regions of the N-terminal domain which determine agonist pharmacology in vertebrate ionotropic neurotransmitter receptors. A range of conformationally restricted GABA analogues were tested on the two homo-oligomers and their agonists pharmacology compared with that of insect and vertebrate iontropic GABA receptors. 2. The actions of GABA, isoguvacine and isonipecotic acid on RDLac and DRC 17-1-2 homo-oligomers were compared, by use of two-electrode voltage-clamp. All three compounds were full agonists of both receptors, but were 4-6 fold less potent agonists of DRC 17-1-2 homo-oligomers than of RDLac. However, the relative potencies of these agonists on each receptor were very similar. 3. A more complete agonist profile was established for RDLac homo-oligomers. The most potent agonists of these receptors were GABA, muscimol and trans-aminocrotonic acid (TACA), which were approximately equipotent. RDLac homo-oligomers were fully activated by a range of GABA analogues, with the order of potency: GABA > ZAPA ((Z)-3-[(aminoiminomethyl)thio]prop-2-enoic acid) > isoguvacine > imidazole-4-acetic acid > or = isonipecotic acid > or = cis-aminocrotonic acid (CACA) > beta-alanine. 3-Aminopropane sulphonic acid (3-APS), a partial agonist of RDLac homo-oligomers, was the weakest agonist tested and 100 fold less potent than GABA. 4. SR95531, an antagonist of vertebrate GABAA receptors, competitively inhibited the GABA responses of RDLac homo-oligomers, which have previously been found to insensitive to bicuculline. However, its potency (IC50 500 microM) was much reduced when compared to GABAA receptors. 5. The agonist pharmacology of Drosophila RDLac homo-oligomers exhibits aspects of the characteristic pharmacology of

  1. Dopaminergic neurons modulate GABA neuron migration in the embryonic midbrain.

    PubMed

    Vasudevan, Anju; Won, Chungkil; Li, Suyan; Erdélyi, Ferenc; Szabó, Gábor; Kim, Kwang-Soo

    2012-09-01

    Neuronal migration, a key event during brain development, remains largely unexplored in the mesencephalon, where dopaminergic (DA) and GABA neurons constitute two major neuronal populations. Here we study the migrational trajectories of DA and GABA neurons and show that they occupy ventral mesencephalic territory in a temporally and spatially specific manner. Our results from the Pitx3-deficient aphakia mouse suggest that pre-existing DA neurons modulate GABA neuronal migration to their final destination, providing novel insights and fresh perspectives concerning neuronal migration and connectivity in the mesencephalon in normal as well as diseased brains.

  2. Localization of dopamine D4 receptors in GABAergic neurons of the primate brain.

    PubMed

    Mrzljak, L; Bergson, C; Pappy, M; Huff, R; Levenson, R; Goldman-Rakic, P S

    1996-05-16

    Dopamine receptors are the principal targets of drugs used in the treatment of schizophrenia. Among the five mammalian dopamine-receptor subtypes, the D4 subtype is of particular interest because of its high affinity for the atypical neuroleptic clozapine. Interest in clozapine stems from its effectiveness in reducing positive and negative symptoms in acutely psychotic and treatment-resistant schizophrenic patients without eliciting extrapyramidal side effects. We have produced a subtype-specific antibody against the D4 receptor and localized it within specific cellular elements and synaptic circuits of the central nervous system. The D4-receptor antibody labelled GABAergic neurons in the cerebral cortex, hippocampus, thalamic reticular nucleus, globus pallidus and the substantia nigra (pars reticulata). Labelling was also observed in a subset of cortical pyramidal cells. Our findings suggest that clozapine's beneficial effects in schizophrenia may be achieved, in part, through D4-mediated GABA modulation, possibly implicating disinhibition of excitatory transmission in intrinsic cortical, thalamocortical and extrapyramidal pathways.

  3. Morphine disinhibits glutamatergic input to VTA dopamine neurons and promotes dopamine neuron excitation.

    PubMed

    Chen, Ming; Zhao, Yanfang; Yang, Hualan; Luan, Wenjie; Song, Jiaojiao; Cui, Dongyang; Dong, Yi; Lai, Bin; Ma, Lan; Zheng, Ping

    2015-07-24

    One reported mechanism for morphine activation of dopamine (DA) neurons of the ventral tegmental area (VTA) is the disinhibition model of VTA-DA neurons. Morphine inhibits GABA inhibitory neurons, which shifts the balance between inhibitory and excitatory input to VTA-DA neurons in favor of excitation and then leads to VTA-DA neuron excitation. However, it is not known whether morphine has an additional strengthening effect on excitatory input. Our results suggest that glutamatergic input to VTA-DA neurons is inhibited by GABAergic interneurons via GABAB receptors and that morphine promotes presynaptic glutamate release by removing this inhibition. We also studied the contribution of the morphine-induced disinhibitory effect on the presynaptic glutamate release to the overall excitatory effect of morphine on VTA-DA neurons and related behavior. Our results suggest that the disinhibitory action of morphine on presynaptic glutamate release might be the main mechanism for morphine-induced increase in VTA-DA neuron firing and related behaviors.

  4. Morphine disinhibits glutamatergic input to VTA dopamine neurons and promotes dopamine neuron excitation

    PubMed Central

    Chen, Ming; Zhao, Yanfang; Yang, Hualan; Luan, Wenjie; Song, Jiaojiao; Cui, Dongyang; Dong, Yi; Lai, Bin; Ma, Lan; Zheng, Ping

    2015-01-01

    One reported mechanism for morphine activation of dopamine (DA) neurons of the ventral tegmental area (VTA) is the disinhibition model of VTA-DA neurons. Morphine inhibits GABA inhibitory neurons, which shifts the balance between inhibitory and excitatory input to VTA-DA neurons in favor of excitation and then leads to VTA-DA neuron excitation. However, it is not known whether morphine has an additional strengthening effect on excitatory input. Our results suggest that glutamatergic input to VTA-DA neurons is inhibited by GABAergic interneurons via GABAB receptors and that morphine promotes presynaptic glutamate release by removing this inhibition. We also studied the contribution of the morphine-induced disinhibitory effect on the presynaptic glutamate release to the overall excitatory effect of morphine on VTA-DA neurons and related behavior. Our results suggest that the disinhibitory action of morphine on presynaptic glutamate release might be the main mechanism for morphine-induced increase in VTA-DA neuron firing and related behaviors. DOI: http://dx.doi.org/10.7554/eLife.09275.001 PMID:26208338

  5. Addiction: Beyond dopamine reward circuitry

    SciTech Connect

    Volkow, N.D.; Wang, G.; Volkow, N.D.; Wang, G.-J.; Fowler, J.S.; Tomasi, D.; Telang, F.

    2011-09-13

    Dopamine (DA) is considered crucial for the rewarding effects of drugs of abuse, but its role in addiction is much less clear. This review focuses on studies that used PET to characterize the brain DA system in addicted subjects. These studies have corroborated in humans the relevance of drug-induced fast DA increases in striatum [including nucleus accumbens (NAc)] in their rewarding effects but have unexpectedly shown that in addicted subjects, drug-induced DA increases (as well as their subjective reinforcing effects) are markedly blunted compared with controls. In contrast, addicted subjects show significant DA increases in striatum in response to drug-conditioned cues that are associated with self-reports of drug craving and appear to be of a greater magnitude than the DA responses to the drug. We postulate that the discrepancy between the expectation for the drug effects (conditioned responses) and the blunted pharmacological effects maintains drug taking in an attempt to achieve the expected reward. Also, whether tested during early or protracted withdrawal, addicted subjects show lower levels of D2 receptors in striatum (including NAc), which are associated with decreases in baseline activity in frontal brain regions implicated in salience attribution (orbitofrontal cortex) and inhibitory control (anterior cingulate gyrus), whose disruption results in compulsivity and impulsivity. These results point to an imbalance between dopaminergic circuits that underlie reward and conditioning and those that underlie executive function (emotional control and decision making), which we postulate contributes to the compulsive drug use and loss of control in addiction.

  6. How and why does tomato accumulate a large amount of GABA in the fruit?

    PubMed Central

    Takayama, Mariko; Ezura, Hiroshi

    2015-01-01

    Gamma-aminobutyric acid (GABA) has received much attention as a health-promoting functional compound, and several GABA-enriched foods have been commercialized. In higher plants, GABA is primarily metabolized via a short pathway called the GABA shunt. The GABA shunt bypasses two steps (the oxidation of α-ketoglutarate to succinate) of the tricarboxylic acid (TCA) cycle via reactions catalyzed by three enzymes: glutamate decarboxylase, GABA transaminase, and succinic semialdehyde dehydrogenase. The GABA shunt plays a major role in primary carbon and nitrogen metabolism and is an integral part of the TCA cycle under stress and non-stress conditions. Tomato is one of the major crops that accumulate a relatively high level of GABA in its fruits. The GABA levels in tomato fruits dramatically change during fruit development; the GABA levels increase from flowering to the mature green stage and then rapidly decrease during the ripening stage. Although GABA constitutes up to 50% of the free amino acids at the mature green stage, the molecular mechanism of GABA accumulation and the physiological function of GABA during tomato fruit development remain unclear. In this review, we summarize recent studies of GABA accumulation in tomato fruits and discuss the potential biological roles of GABA in tomato fruit development. PMID:26322056

  7. Anterior cingulate dopamine turnover and behavior change in Parkinson's disease.

    PubMed

    Gallagher, Catherine L; Bell, Brian; Palotti, Matthew; Oh, Jen; Christian, Bradley T; Okonkwo, Ozioma; Sojkova, Jitka; Buyan-Dent, Laura; Nickles, Robert J; Harding, Sandra J; Stone, Charles K; Johnson, Sterling C; Holden, James E

    2015-12-01

    Subtle cognitive and behavioral changes are common in early Parkinson's disease. The cause of these symptoms is probably multifactorial but may in part be related to extra-striatal dopamine levels. 6-[(18) F]-Fluoro-L-dopa (FDOPA) positron emission tomography has been widely used to quantify dopamine metabolism in the brain; the most frequently measured kinetic parameter is the tissue uptake rate constant, Ki. However, estimates of dopamine turnover, which also account for the small rate of FDOPA loss from areas of specific trapping, may be more sensitive than Ki for early disease-related changes in dopamine biosynthesis. The purpose of the present study was to compare effective distribution volume ratio (eDVR), a metric for dopamine turnover, to cognitive and behavioral measures in Parkinson's patients. We chose to focus the investigation on anterior cingulate cortex, which shows highest FDOPA uptake within frontal regions and has known roles in executive function. Fifteen non-demented early-stage PD patients were pretreated with carbidopa and tolcapone, a central catechol-O-methyl transferase (COMT) inhibitor, and then underwent extended imaging with FDOPA PET. Anterior cingulate eDVR was compared with composite scores for language, memory, and executive function measured by neuropsychological testing, and behavior change measured using two informant-based questionnaires, the Cambridge Behavioral Inventory and the Behavior Rating Inventory of Executive Function-Adult Version. Lower mean eDVR (thus higher dopamine turnover) in anterior cingulate cortex was related to lower (more impaired) behavior scores. We conclude that subtle changes in anterior cingulate dopamine metabolism may contribute to dysexecutive behaviors in Parkinson's disease.

  8. GABA Metabolism and Transport: Effects on Synaptic Efficacy

    PubMed Central

    Roth, Fabian C.; Draguhn, Andreas

    2012-01-01

    GABAergic inhibition is an important regulator of excitability in neuronal networks. In addition, inhibitory synaptic signals contribute crucially to the organization of spatiotemporal patterns of network activity, especially during coherent oscillations. In order to maintain stable network states, the release of GABA by interneurons must be plastic in timing and amount. This homeostatic regulation is achieved by several pre- and postsynaptic mechanisms and is triggered by various activity-dependent local signals such as excitatory input or ambient levels of neurotransmitters. Here, we review findings on the availability of GABA for release at presynaptic terminals of interneurons. Presynaptic GABA content seems to be an important determinant of inhibitory efficacy and can be differentially regulated by changing synthesis, transport, and degradation of GABA or related molecules. We will discuss the functional impact of such regulations on neuronal network patterns and, finally, point towards pharmacological approaches targeting these processes. PMID:22530158

  9. Dual role of GABA in the neonatal rat hippocampus.

    PubMed

    Khalilov, I; Dzhala, V; Ben-Ari, Y; Khazipov, R

    1999-11-01

    The effects of modulators of GABA-A receptors on neuronal network activity were studied in the neonatal (postnatal days 0-5) rat hippocampus in vitro. Under control conditions, the physiological pattern of activity of the neonatal hippocampal network was characterized by spontaneous network-driven giant depolarizing potentials (GDPs). The GABA-A receptor agonist isoguvacine (1-2 microM) and the allosteric modulator diazepam (2 microM) induced biphasic responses: initially the frequency of GDPs increased 3 to 4 fold followed by blockade of GDPs and desynchronization of the network activity. The GABA-A receptor antagonists bicuculline (10 microM) and picrotoxin (100 microM) blocked GDPs and induced glutamate (AMPA and NMDA)-receptor-mediated interictal- and ictal-like activities in the hippocampal slices and the intact hippocampus. These data suggest that at early postnatal ages GABA can exert a dual - both excitatory and inhibitory - action on the network activity.

  10. Endogenous synthesis of taurine and GABA in rat ocular tissues.

    PubMed

    Heinämäki, A A

    1988-01-01

    The endogenous production of taurine and gamma-aminobutyric acid (GABA) in rat ocular tissues was investigated. The activities of taurine-producing enzyme, cysteine sulfinic acid decarboxylase (CSAD), and GABA-synthesizing enzyme, glutamic acid decarboxylase (GAD), were observed in the retina, lens, iris-ciliary body and cornea. The highest specific activity of CSAD was in the cornea and that of GAD in the retina. The discrepancy between CSAD activity and taurine content within the ocular tissues indicates that intra- or extraocular transport processes may regulate the concentration of taurine in the rat eye. The GAD activity and the content of GABA were distributed in parallel within the rat ocular tissues. The quantitative results suggest that the GAD/GABA system has functional significance only in the retina of the rat eye.

  11. [GABA-Receptors in Modulation of Fear Memory Extinction].

    PubMed

    Dubrovina, N I

    2016-01-01

    GABA is the major inhibitory neurotransmitter in the central nervous system determining the efficacy of neuronal interaction. GABA-receptors play a key role in different aspects of fear memory--acquisition and consolidation, retention, reconsolidation and extinction. Extinction is an important behavioural phenomenon which allows organism to adapt its behavior to a changing environment. Extinction of fear memory is a form of new inhibitory learning which interferes with expression of the initial acquired fear conditioning. Resistance to extinction is symptom of depression and posttraumatic stress disorder. The aim of the present review was to summarize own and literary data about GABAergic modulation of fear extinction and pharmacological correction of extinction impairment at influences on GABA(A)- and GABA(B)- receptors.

  12. Dopamine release in the basal ganglia

    PubMed Central

    Rice, Margaret E.; Patel, Jyoti C.; Cragg, Stephanie J.

    2011-01-01

    Dopamine (DA) is a key transmitter in the basal ganglia, yet DA transmission does not conform to several aspects of the classic synaptic doctrine. Axonal DA release occurs through vesicular exocytosis and is action-potential and Ca2+ dependent. However, in addition to axonal release, DA neurons in midbrain exhibit somatodendritic release, by an incompletely understood, but apparently exocytotic mechanism. Even in striatum, axonal release sites are controversial, with evidence for DA varicosities that lack postsynaptic specialization, and largely extrasynaptic DA receptors and transporters. Moreover, DA release is often assumed to reflect a global response to a population of activities in midbrain DA neurons, whether tonic or phasic, with precise timing and specificity of action governed by other basal ganglia circuits. This view has been reinforced by anatomical evidence showing dense axonal DA arbors throughout striatum, and a lattice network formed by DA axons and glutamatergic input from cortex and thalamus. Nonetheless, localized DA transients are seen in vivo using voltammetric methods with high spatial and temporal resolution. Mechanistic studies using similar methods in vitro have revealed local regulation of DA release by other transmitters and modulators, as well as by proteins known to be disrupted in Parkinson’s disease and other movement disorders. Notably, the actions of most other striatal transmitters on DA release also do not conform to the synaptic doctrine, with the absence of direct synaptic contacts for glutamate, GABA and aceylcholie (ACh) on striatal DA axons. Overall, the findings reviewed here indicate that DA signaling in the basal ganglia is sculpted by cooperation between the timing and pattern of DA input and those of local regulatory factors. PMID:21939738

  13. Benzodiazepines do not potentiate GABA responses in neonatal hippocampal neurons.

    PubMed

    Rovira, C; Ben-Ari, Y

    1991-09-16

    Benzodiazepines (midazolam; flunitrazepam) and pentobarbital increase the response to exogenous gamma-aminobutyric acid (GABA) in adult hippocampal cells. We report in this paper that in contrast pentobarbital but not benzodiazepine potentiate the effects of exogenous (GABA) in neurons recorded from slices of less than two weeks old. This finding suggests that the functional association of benzodiazepine and GABAA receptors is changed during early postnatal life.

  14. Parkinson's Disease and Neurodegeneration: GABA-Collapse Hypothesis

    PubMed Central

    Błaszczyk, Janusz W.

    2016-01-01

    Neurodegenerative diseases constitute a heterogeneous group of age-related disorders that are characterized by a slow but irreversible deterioration of brain functions. Evidence accumulated over more than two decades has implicated calcium-related homeostatic mechanisms, giving rise to the Ca2+ hypothesis of brain aging and, ultimately, cell death. Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter within the central (CNS), peripheral and enteric nervous systems. It appears to be involved in a wide variety of physiological functions within and outside the nervous system, that are maintained through a complex interaction between GABA and calcium-dependent neurotransmission and cellular metabolic functions. Within CNS the Ca2+/GABA mechanism stabilizes neuronal activity both at cellular and systemic levels. Decline in the Ca2+/GABA control initiates several cascading processes leading to both weakened protective barriers (in particular the blood-brain barrier) and accumulations of intracellular deposits of calcium and Lewy bodies. Linking such a vital mechanism of synaptic transmission with metabolism (both at cellular and tissue level) by means of a common reciprocal Ca2+/GABA inhibition results in a fragile balance, which is prone to destabilization and auto-destruction. The GABA decline etiology proposed here appears to apply to all human neurodegenerative processes initiated by abnormal intracellular calcium levels. Therefore, the original description of Parkinson's disease (PD) as due to the selective damage of dopaminergic neurons in the mesencephalon should be updated into the concept of a severe multisystemic neurodegenerative disorder of the nervous system, whose clinical symptoms reflect the localization and progression of the most advanced GABA pathology. A future and more complete therapeutic approach to PD should be aimed first at slowing (or stopping) the progression of Ca2+/GABA functional decline. PMID:27375426

  15. GABA Signaling and Neuroactive Steroids in Adrenal Medullary Chromaffin Cells

    PubMed Central

    Harada, Keita; Matsuoka, Hidetada; Fujihara, Hiroaki; Ueta, Yoichi; Yanagawa, Yuchio; Inoue, Masumi

    2016-01-01

    Gamma-aminobutyric acid (GABA) is produced not only in the brain, but also in endocrine cells by the two isoforms of glutamic acid decarboxylase (GAD), GAD65 and GAD67. In rat adrenal medullary chromaffin cells only GAD67 is expressed, and GABA is stored in large dense core vesicles (LDCVs), but not synaptic-like microvesicles (SLMVs). The α3β2/3γ2 complex represents the majority of GABAA receptors expressed in rat and guinea pig chromaffin cells, whereas PC12 cells, an immortalized rat chromaffin cell line, express the α1 subunit as well as the α3. The expression of α3, but not α1, in PC12 cells is enhanced by glucocorticoid activity, which may be mediated by both the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR). GABA has two actions mediated by GABAA receptors in chromaffin cells: it induces catecholamine secretion by itself and produces an inhibition of synaptically evoked secretion by a shunt effect. Allopregnanolone, a neuroactive steroid which is secreted from the adrenal cortex, produces a marked facilitation of GABAA receptor channel activity. Since there are no GABAergic nerve fibers in the adrenal medulla, GABA may function as a para/autocrine factor in the chromaffin cells. This function of GABA may be facilitated by expression of the immature isoforms of GAD and GABAA receptors and the lack of expression of plasma membrane GABA transporters (GATs). In this review, we will consider how the para/autocrine function of GABA is achieved, focusing on the structural and molecular mechanisms for GABA signaling. PMID:27147972

  16. Modulation of horizontal cell function by GABA(A) and GABA(C) receptors in dark- and light-adapted tiger salamander retina.

    PubMed

    Yang, X L; Gao, F; Wu, S M

    1999-01-01

    The physiological function of GABA transporters and GABA receptors in retinal horizontal cells (HCs) under dark-and light-adapted conditions were studied by whole-cell voltage clamp and intracellular recording techniques in retinal slices and whole-mounted isolated retinas of the larval tiger salamander. Puff application of GABA in picrotoxin elicited a NO-711 (a potent GABA transporter blocker)-sensitive inward current that did not exhibit a reversal potential in the physiological range, consistent with the idea that these HCs contain electrogenic GABA transporters. Application of GABA in NO-711 elicited a chloride current in HCs; about half of the current was suppressed by bicuculline or I4AA (a GABA(C) receptor antagonist), and the remaining half was suppressed by bicuculline + I4AA or picrotoxin. In whole-mount retinas, NO-711, bicuculline, I4AA, or picrotoxin hyperpolarized the HCs and enhanced the light responses under dark-adapted conditions, and blocked the time-dependent recovery of HC membrane potential and light responses during background illumination. Based on the parallel conductance model, GABA released in darkness mediates a chloride conductance about three times greater than the leak conductance or the glutamate-gated cation conductance. About half of this chloride conductance is mediated by GABA(A) receptors, and the other half is mediated by GABA(C) receptors. These results suggest that GABA released from HCs through the NO-711-sensitive GABA transporters activates GABA(A) and GABA(C) receptors, resulting in chloride conductance increase which leads to a HC depolarization and reduction of the light response. Additionally, GABA transporters also mediate GABA release in background light that is responsible for the recovery of HC membrane potential and light responses.

  17. In Situ Controlled Release of Dopamine for Treatment of Parkinson's Disease

    NASA Astrophysics Data System (ADS)

    Lopez, Tessy; Ortiz, Emma; Kozina, Anna; Esquivel, Dulce; Espinoza, Karla

    2013-09-01

    Parkinson's disease (PD) is a progressive, neurodegenerative disorder of the central nervous system. The primary symptoms of PD result from greatly reduced activity of dopamine-secreting cells due to cell death in the pars compacta region of the substantia nigra. The loss of dopamine as a result of death of dopamine neurons accounts for most of the movementrelated symptoms of the disease. There is no cure for Parkinson's disease, but medications can provide relief from the symptoms. Since dopamine cannot cross the hemathoencephalic barrier, the drug delivery to the brain remains a big challenge. In this chapter we will discuss a novel way of dopamine release in situ from inorganic nanostructured reservoirs that may be potentially used in PD treatment.

  18. Effect of paraoxon on muscarinic, dopamine and. gamma. -aminobutyric acid receptors of brain and sensitivity to muscarinic antagonists

    SciTech Connect

    Fernando, J.C.R.; Hoskins, B.; Ho, I.K.

    1986-03-05

    Several acetylcholinesterase (AChE) inhibitors decrease muscarinic cholinergic (mACh) receptors in the brain, alteration of dopamine (DA) and ..gamma..-aminobutyric acid (GABA) receptors after AChE inhibition was also reported. In view of the important interactions among DA, GABA and ACh systems, whether this is a common effect of AChE inhibitors should be established. They report the effect of the AChE inhibitor, paraoxon, on DA, GABA and mACh receptors in the rat. The binding of /sup 3/H-QNB (for mACh), /sup 3/H-spiperone (for DA) and /sup 3/H-muscimol (for GABA) to striatal and hippocampal membranes was analyzed. Also, behavioral sensitivity to atropine was studied. Twenty-four hr after a single dose (0.75 mg/kg, s.c.) of paraoxon, the density of mACh receptors in the striatum was decreased but, at 3 days, no change was seen. In the hippocampus, the mACh receptors were not affected. Repeated treatment with paraoxon (0.3 mg/kg, 48 hourly) for 2 weeks reduced the mACh receptor density in both regions. Neither single nor repeated paraoxon treatment had an effect on DA or GABA receptors. After single or repeated dosing with paraoxon, myoclonus induced by atropine (10 mg/kg, i.p.) was enhanced. The results show rapid downregulation of mACh receptors by paraoxon. DA or GABA, however, appear not to be affected under these treatment regimens.

  19. Expression of GABA receptor rho subunits in rat brain.

    PubMed

    Boue-Grabot, E; Roudbaraki, M; Bascles, L; Tramu, G; Bloch, B; Garret, M

    1998-03-01

    The GABA receptor rho1, rho2, and rho3 subunits are expressed in the retina where they form bicuculline-insensitive GABA(C) receptors. We used northern blot, in situ hybridization, and RT-PCR analysis to study the expression of rho subunits in rat brains. In situ hybridization allowed us to detect rho-subunit expression in the superficial gray layer of the superior colliculus and in the cerebellar Purkinje cells. RT-PCR experiments indicated that (a) in retina and in domains that may contain functional GABA(C) receptors, rho2 and rho1 subunits are expressed at similar levels; and (b) in domains and in tissues that are unlikely to contain GABA(C) receptors, rho2 mRNA is enriched relative to rho1 mRNA. These results suggest that both rho1 and rho2 subunits are necessary to form a functional GABA(C) receptor. The use of RT-PCR also showed that, except in the superior colliculus, rho3 is expressed along with rho1 and rho2 subunits. We also raised an antibody against a peptide sequence unique to the rho1 subunit. The use of this antibody on cerebellum revealed the rat rho1 subunit in the soma and dendrites of Purkinje neurons. The allocation of GABA(C) receptor subunits to identified neurons paves the way for future electrophysiological studies.

  20. Regionally specific human GABA concentration correlates with tactile discrimination thresholds.

    PubMed

    Puts, Nicolaas A J; Edden, Richard A E; Evans, C John; McGlone, Francis; McGonigle, David J

    2011-11-16

    The neural mechanisms underlying variability in human sensory perception remain incompletely understood. In particular, few studies have attempted to investigate the relationship between in vivo measurements of neurochemistry and individuals' behavioral performance. Our previous work found a relationship between GABA concentration in the visual cortex and orientation discrimination thresholds (Edden et al., 2009). In the present study, we used magnetic resonance spectroscopy of GABA and psychophysical testing of vibrotactile frequency thresholds to investigate whether individual differences in tactile frequency discrimination performance are correlated with GABA concentration in sensorimotor cortex. Behaviorally, individuals showed a wide range of discrimination thresholds ranging from 3 to 7.6 Hz around the 25 Hz standard. These frequency discrimination thresholds were significantly correlated with GABA concentration (r = -0.58; p < 0.05) in individuals' sensorimotor cortex, but not with GABA concentration in an occipital control region (r = -0.04). These results demonstrate a link between GABA concentration and frequency discrimination in vivo, and support the hypothesis that GABAergic mechanisms have an important role to play in sensory discrimination.

  1. GABA-independent GABAA Receptor Openings Maintain Tonic Currents

    PubMed Central

    Wlodarczyk, Agnieszka I.; Sylantyev, Sergiy; Herd, Murray B.; Kersanté, Flavie; Lambert, Jeremy J.; Rusakov, Dmitri A.; Linthorst, Astrid C.E.; Semyanov, Alexey; Belelli, Delia; Pavlov, Ivan; Walker, Matthew C.

    2013-01-01

    Activation of GABAA receptors (GABAARs) produces two forms of inhibition: ‘phasic’ inhibition generated by the rapid, transient activation of synaptic GABAARs by presynaptic GABA release, and tonic inhibition generated by the persistent activation of peri- or extrasynaptic GABAARs which can detect extracellular GABA. Such tonic GABAAR-mediated currents are particularly evident in dentate granule cells in which they play a major role in regulating cell excitability. Here we show that in rat dentate granule cells in ex-vivo hippocampal slices, tonic currents are predominantly generated by GABA-independent GABAA receptor openings. This tonic GABAAR conductance is resistant to the competitive GABAAR antagonist SR95531, which at high concentrations acts as a partial agonist, but can be blocked by an open channel blocker picrotoxin. When slices are perfused with 200 nM GABA, a concentration that is comparable to cerebrospinal fluid concentrations but is twice that measured by us in the hippocampus in vivo using zero-net-flux microdialysis, negligible GABA is detected by dentate granule cells. Spontaneously opening GABAARs, therefore, maintain dentate granule cell tonic currents in the face of low extracellular GABA concentrations. PMID:23447601

  2. The Iowa Gambling Task and the three fallacies of dopamine in gambling disorder

    PubMed Central

    Linnet, Jakob

    2013-01-01

    Gambling disorder sufferers prefer immediately larger rewards despite long term losses on the Iowa Gambling Task (IGT), and these impairments are associated with dopamine dysfunctions. Dopamine is a neurotransmitter linked with temporal and structural dysfunctions in substance use disorder, which has supported the idea of impaired decision-making and dopamine dysfunctions in gambling disorder. However, evidence from substance use disorders cannot be directly transferred to gambling disorder. This article focuses on three hypotheses of dopamine dysfunctions in gambling disorder, which appear to be “fallacies,” i.e., have not been supported in a series of positron emission tomography (PET) studies. The first “fallacy” suggests that gambling disorder sufferers have lower dopamine receptor availability, as seen in substance use disorders. However, no evidence supported this hypothesis. The second “fallacy” suggests that maladaptive decision-making in gambling disorder is associated with higher dopamine release during gambling. No evidence supported the hypothesis, and the literature on substance use disorders offers limited support for this hypothesis. The third “fallacy” suggests that maladaptive decision-making in gambling disorder is associated with higher dopamine release during winning. The evidence did not support this hypothesis either. Instead, dopaminergic coding of reward prediction and uncertainty might better account for dopamine dysfunctions in gambling disorder. Studies of reward prediction and reward uncertainty show a sustained dopamine response toward stimuli with maximum uncertainty, which may explain the continued dopamine release and gambling despite losses in gambling disorder. The findings from the studies presented here are consistent with the notion of dopaminergic dysfunctions of reward prediction and reward uncertainty signals in gambling disorder. PMID:24115941

  3. Pharmacological characterisation of a cell line expressing GABA B1b and GABA B2 receptor subunits.

    PubMed

    Hirst, Warren D; Babbs, Adam J; Green, Andrew; Minton, Jayne A L; Shaw, Tracy E; Wise, Alan; Rice, Simon Q; Pangalos, Menelas N; Price, Gary W

    2003-04-01

    The gamma-aminobutyric acid (GABA(B)) receptor has been shown to be a heterodimer consisting of two receptor subunits, GABA(B1) and GABA(B2). We have stably co-expressed these two subunits in a CHO cell line, characterised its pharmacology and compared it to the native receptor in rat brain membranes. Radioligand binding using [3H]CGP54626A demonstrated a similar rank order of potency between recombinant and native receptors: CGP62349>CGP54626A>SCH 50911>3-aminopropylphosphinicacid(3-APPA)>GABA>baclofen>saclofen>phaclofen. However, differences were observed in the affinity of agonists, which were higher at the native receptor, suggesting that in the recombinant system a large number of the receptors were in the low agonist affinity state. In contrast, [35S]GTPgammaS binding studies did not show any differences between recombinant and native receptors with the full agonists GABA and 3-APPA. Measurement of cAMP accumulation in the cells revealed a degree of endogenous coupling of the receptors to G-proteins. This is most likely to be due to the high expression levels of receptors (B(max)=22.5+/-2.5pmol/mg protein) in this experimental system. There was no evidence of GABA(B2) receptors, when expressed alone, binding [3H]CGP54626A, [3H]GABA, [3H]3-APPA nor of GABA having any effect on basal [35S]GTPgammaS binding or cAMP levels.

  4. High Temporal Resolution Measurements of Dopamine with Carbon Nanotube Yarn Microelectrodes

    PubMed Central

    2015-01-01

    Fast-scan cyclic voltammetry (FSCV) can detect small changes in dopamine concentration; however, measurements are typically limited to scan repetition frequencies of 10 Hz. Dopamine oxidation at carbon-fiber microelectrodes (CFMEs) is dependent on dopamine adsorption, and increasing the frequency of FSCV scan repetitions decreases the oxidation current, because the time for adsorption is decreased. Using a commercially available carbon nanotube yarn, we characterized carbon nanotube yarn microelectrodes (CNTYMEs) for high-speed measurements with FSCV. For dopamine, CNTYMEs have a significantly lower ΔEp than CFMEs, a limit of detection of 10 ± 0.8 nM, and a linear response to 25 μM. Unlike CFMEs, the oxidation current of dopamine at CNTYMEs is independent of scan repetition frequency. At a scan rate of 2000 V/s, dopamine can be detected, without any loss in sensitivity, with scan frequencies up to 500 Hz, resulting in a temporal response that is four times faster than CFMEs. While the oxidation current is adsorption-controlled at both CFMEs and CNTYMEs, the adsorption and desorption kinetics differ. The desorption coefficient of dopamine-o-quinone (DOQ), the oxidation product of dopamine, is an order of magnitude larger than that of dopamine at CFMEs; thus, DOQ desorbs from the electrode and can diffuse away. At CNTYMEs, the rates of desorption for dopamine and dopamine-o-quinone are about equal, resulting in current that is independent of scan repetition frequency. Thus, there is no compromise with CNTYMEs: high sensitivity, high sampling frequency, and high temporal resolution can be achieved simultaneously. Therefore, CNTYMEs are attractive for high-speed applications. PMID:24832571

  5. High temporal resolution measurements of dopamine with carbon nanotube yarn microelectrodes.

    PubMed

    Jacobs, Christopher B; Ivanov, Ilia N; Nguyen, Michael D; Zestos, Alexander G; Venton, B Jill

    2014-06-17

    Fast-scan cyclic voltammetry (FSCV) can detect small changes in dopamine concentration; however, measurements are typically limited to scan repetition frequencies of 10 Hz. Dopamine oxidation at carbon-fiber microelectrodes (CFMEs) is dependent on dopamine adsorption, and increasing the frequency of FSCV scan repetitions decreases the oxidation current, because the time for adsorption is decreased. Using a commercially available carbon nanotube yarn, we characterized carbon nanotube yarn microelectrodes (CNTYMEs) for high-speed measurements with FSCV. For dopamine, CNTYMEs have a significantly lower ΔEp than CFMEs, a limit of detection of 10 ± 0.8 nM, and a linear response to 25 μM. Unlike CFMEs, the oxidation current of dopamine at CNTYMEs is independent of scan repetition frequency. At a scan rate of 2000 V/s, dopamine can be detected, without any loss in sensitivity, with scan frequencies up to 500 Hz, resulting in a temporal response that is four times faster than CFMEs. While the oxidation current is adsorption-controlled at both CFMEs and CNTYMEs, the adsorption and desorption kinetics differ. The desorption coefficient of dopamine-o-quinone (DOQ), the oxidation product of dopamine, is an order of magnitude larger than that of dopamine at CFMEs; thus, DOQ desorbs from the electrode and can diffuse away. At CNTYMEs, the rates of desorption for dopamine and dopamine-o-quinone are about equal, resulting in current that is independent of scan repetition frequency. Thus, there is no compromise with CNTYMEs: high sensitivity, high sampling frequency, and high temporal resolution can be achieved simultaneously. Therefore, CNTYMEs are attractive for high-speed applications.

  6. Altered GABA Signaling in Early Life Epilepsies

    PubMed Central

    Briggs, Stephen W.; Galanopoulou, Aristea S.

    2011-01-01

    The incidence of seizures is particularly high in the early ages of life. The immaturity of inhibitory systems, such as GABA, during normal brain development and its further dysregulation under pathological conditions that predispose to seizures have been speculated to play a major role in facilitating seizures. Seizures can further impair or disrupt GABAA signaling by reshuffling the subunit composition of its receptors or causing aberrant reappearance of depolarizing or hyperpolarizing GABAA receptor currents. Such effects may not result in epileptogenesis as frequently as they do in adults. Given the central role of GABAA signaling in brain function and development, perturbation of its physiological role may interfere with neuronal morphology, differentiation, and connectivity, manifesting as cognitive or neurodevelopmental deficits. The current GABAergic antiepileptic drugs, while often effective for adults, are not always capable of stopping seizures and preventing their sequelae in neonates. Recent studies have explored the therapeutic potential of chloride cotransporter inhibitors, such as bumetanide, as adjunctive therapies of neonatal seizures. However, more needs to be known so as to develop therapies capable of stopping seizures while preserving the age- and sex-appropriate development of the brain. PMID:21826277

  7. GABA receptors, alcohol dependence and criminal behavior.

    PubMed

    Terranova, Claudio; Tucci, Marianna; Sartore, Daniela; Cavarzeran, Fabiano; Di Pietra, Laura; Barzon, Luisa; Palù, Giorgio; Ferrara, Santo D

    2013-09-01

    The aim of this study was to analyze the connection between alcohol dependence and criminal behavior by an integrated genetic-environmental approach. The research, structured as a case-control study, examined 186 alcohol-dependent males; group 1 (N = 47 convicted subjects) was compared with group 2 (N = 139 no previous criminal records). Genetic results were innovative, highlighting differences in genotype distribution (p = 0.0067) in group 1 for single-nucleotide polymorphism rs 3780428, located in the intronic region of subunit 2 of the GABA B receptor gene (GABBR2). Some environmental factors (e.g., grade repetition) were associated with criminal behavior; others (e.g., attendance at Alcoholics Anonymous) were inversely related to convictions. The concomitant presence of the genetic and environmental factors found to be associated with the condition of alcohol-dependent inmate showed a 4-fold increase in the risk of antisocial behavior. The results need to be replicated on a larger population to develop new preventive and therapeutic proposals.

  8. A functional role for both γ-aminobutyric acid (GABA) transporter-1 and GABA transporter-3 in the modulation of extracellular GABA and GABAergic tonic conductances in the rat hippocampus

    PubMed Central

    Kersanté, Flavie; Rowley, Samuel C S; Pavlov, Ivan; Gutièrrez-Mecinas, María; Semyanov, Alexey; Reul, Johannes M H M; Walker, Matthew C; Linthorst, Astrid C E

    2013-01-01

    Tonic γ-aminobutyric acid (GABA)A receptor-mediated signalling controls neuronal network excitability in the hippocampus. Although the extracellular concentration of GABA (e[GABA]) is critical in determining tonic conductances, knowledge on how e[GABA] is regulated by different GABA transporters (GATs) in vivo is limited. Therefore, we studied the role of GATs in the regulation of hippocampal e[GABA] using in vivo microdialysis in freely moving rats. Here we show that GAT-1, which is predominantly presynaptically located, is the major GABA transporter under baseline, quiescent conditions. Furthermore, a significant contribution of GAT-3 in regulating e[GABA] was revealed by administration of the GAT-3 inhibitor SNAP-5114 during simultaneous blockade of GAT-1 by NNC-711. Thus, the GABA transporting activity of GAT-3 (the expression of which is confined to astrocytes) is apparent under conditions in which GAT-1 is blocked. However, sustained neuronal activation by K+-induced depolarization caused a profound spillover of GABA into the extrasynaptic space and this increase in e[GABA] was significantly potentiated by sole blockade of GAT-3 (i.e. even when uptake of GAT-1 is intact). Furthermore, experiments using tetrodotoxin to block action potentials revealed that GAT-3 regulates extrasynaptic GABA levels from action potential-independent sources when GAT-1 is blocked. Importantly, changes in e[GABA] resulting from both GAT-1 and GAT-3 inhibition directly precipitate changes in tonic conductances in dentate granule cells as measured by whole-cell patch-clamp recording. Thus, astrocytic GAT-3 contributes to the regulation of e[GABA] in the hippocampus in vivo and may play an important role in controlling the excitability of hippocampal cells when network activity is increased. PMID:23381899

  9. Dopamine reward prediction error coding.

    PubMed

    Schultz, Wolfram

    2016-03-01

    Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards-an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less reward than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and codes formal economic utility. Drugs of addiction generate, hijack, and amplify the dopamine reward signal and induce exaggerated, uncontrolled dopamine effects on neuronal plasticity. The striatum, amygdala, and frontal cortex also show reward prediction error coding, but only in subpopulations of neurons. Thus, the important concept of reward prediction errors is implemented in neuronal hardware.

  10. Dopamine reward prediction error coding

    PubMed Central

    Schultz, Wolfram

    2016-01-01

    Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards—an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less reward than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and codes formal economic utility. Drugs of addiction generate, hijack, and amplify the dopamine reward signal and induce exaggerated, uncontrolled dopamine effects on neuronal plasticity. The striatum, amygdala, and frontal cortex also show reward prediction error coding, but only in subpopulations of neurons. Thus, the important concept of reward prediction errors is implemented in neuronal hardware. PMID:27069377

  11. Distribution of 3H-GABA uptake sites in the nematode Ascaris

    SciTech Connect

    Guastella, J.; Stretton, A.O. )

    1991-05-22

    The distribution of uptake sites for the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) in the nematode Ascaris suum was examined by autoradiography of 3H-GABA uptake. Single neural processes in both the ventral and dorsal nerve cords were labeled with 3H-GABA. Serial section analysis identified the cells of origin of these processes as the RMEV-like and RMED-like neurons. These cells belong to a set of four neurons in the nerve ring, all of which are labeled by 3H-GABA. 3H-GABA labeling of at least two other sets of cephalic neurons was seen. One of these pairs consists of medium-sized lateral ganglia neurons, located at the level of the amphid commissure bundle. A second pair is located in the lateral ganglia at the level of the deirid commissure bundle. The position and size of these lateral ganglia cells suggest that they are the GABA-immunoreactive lateral ganglia cells frequently seen in whole-mount immunocytochemical preparations. Four neuronal cell bodies located in the retrovesicular ganglion were also labeled with 3H-GABA. These cells, which are probably cholinergic excitatory motor neurons, do not contain detectable GABA-like immunoreactivity. Heavy labeling of muscle cells was also observed. The ventral and dorsal nerve cord inhibitory motor neurons, which are known to contain GABA-like immunoreactivity, were not labeled above background with 3H-GABA. Together with the experiments reported previously, these results define three classes of GABA-associated neurons in Ascaris: (1) neurons that contain endogenous GABA and possess a GABA uptake system; (2) neurons that contain endogenous GABA, but that either lack a GABA uptake system or possess a GABA uptake system of low activity; (3) neurons that possess a GABA uptake system, but that lack endogenous GABA.

  12. Subsecond Regulation of Synaptically Released Dopamine by COMT in the Olfactory Bulb

    PubMed Central

    Cockerham, Renee; Liu, Shaolin; Cachope, Roger; Kiyokage, Emi; Cheer, Joseph F.; Shipley, Michael T.

    2016-01-01

    The efficacy of neurotransmission depends on multiple factors, including presynaptic vesicular release of transmitter, postsynaptic receptor populations and clearance/inactivation of the transmitter. In the olfactory bulb (OB), short axon cells (SACs) form an interglomerular circuit that uses GABA and dopamine (DA) as cotransmitters. Selective optical activation of SACs causes GABA and DA co-release, resulting in a fast, postsynaptic GABA inhibitory response and a slower G-protein-coupled DA rebound excitation. In most systems, vesicular release of DA is cleared by the dopamine transporter (DAT). However, in the OB, high levels of specific DA metabolites suggest that enzymatic catalysis by catechol-O-methyl-transferase (COMT) predominates over DAT re-uptake. To assess this possibility we measured the amount of the DA breakdown enzyme, COMT, present in the OB. Compared with the striatum, the brain structure richest in DA terminals, the OB contains 50% more COMT per unit of tissue. Furthermore, the OB has dramatically less DAT compared with striatum, supporting the idea that COMT enzymatic breakdown, rather than DAT recycling, is the predominant mechanism for DA clearance. To functionally assess COMT inactivation of vesicular release of DA we used fast-scan cyclic voltammetry and pharmacological blockade of COMT. In mice expressing ChR2 in tyrosine hydroxylase-containing neurons, optical activation of SACs evoked robust DA release in the glomerular layer. The COMT inhibitor, tolcapone, increased the DA signal ∼2-fold, whereas the DAT inhibitor GBR12909 had no effect. Together, these data indicate that the OB preferentially employs COMT enzymatic inactivation of vesicular release of DA. SIGNIFICANCE STATEMENT In the olfactory bulb (OB), odors are encoded by glomerular activation patterns. Dopaminergic short axon neurons (SACs) form an extensive network of lateral connections that mediate cross talk among glomeruli, releasing GABA and DA onto sensory nerve terminals

  13. Metformin Prevents Nigrostriatal Dopamine Degeneration Independent of AMPK Activation in Dopamine Neurons

    PubMed Central

    Bayliss, Jacqueline A.; Lemus, Moyra B.; Santos, Vanessa V.; Deo, Minh; Davies, Jeffrey S.; Kemp, Bruce E.; Elsworth, John D.

    2016-01-01

    Metformin is a widely prescribed drug used to treat type-2 diabetes, although recent studies show it has wide ranging effects to treat other diseases. Animal and retrospective human studies indicate that Metformin treatment is neuroprotective in Parkinson’s Disease (PD), although the neuroprotective mechanism is unknown, numerous studies suggest the beneficial effects on glucose homeostasis may be through AMPK activation. In this study we tested whether or not AMPK activation in dopamine neurons was required for the neuroprotective effects of Metformin in PD. We generated transgenic mice in which AMPK activity in dopamine neurons was ablated by removing AMPK beta 1 and beta 2 subunits from dopamine transporter expressing neurons. These AMPK WT and KO mice were then chronically exposed to Metformin in the drinking water then exposed to MPTP, the mouse model of PD. Chronic Metformin treatment significantly attenuated the MPTP-induced loss of Tyrosine Hydroxylase (TH) neuronal number and volume and TH protein concentration in the nigrostriatal pathway. Additionally, Metformin treatment prevented the MPTP-induced elevation of the DOPAC:DA ratio regardless of genotype. Metformin also prevented MPTP induced gliosis in the Substantia Nigra. These neuroprotective actions were independent of genotype and occurred in both AMPK WT and AMPK KO mice. Overall, our studies suggest that Metformin’s neuroprotective effects are not due to AMPK activation in dopaminergic neurons and that more research is required to determine how metformin acts to restrict the development of PD. PMID:27467571

  14. Variations of dopamine, serotonin, and amino acid concentrations in Noda epileptic rat (NER) retina.

    PubMed

    Chanut, Evelyne; Labarthe, Benoît; Lacroix, Brigitte; Noda, Atsuhi; Gasdeblay, Sylvie; Bondier, Jean-Robert; Versaux-Botteri, Claudine

    2006-01-27

    Noda epileptic rats (NER) exhibit frequent spontaneous tonic-clonic convulsions which represent a valuable model of human epilepsy. If implication of brain neurotransmitters was largely reported, little is known about retina. However, it has been reported that human epilepsy syndrome varies not only with the location of seizure foci but also according to rhythmic patterns, for which retina has a major role in the transmission of external light-dark cycle information. The purpose of this work was to evaluate dopamine (DA), DA metabolites, serotonin (5-HT), and amino acid [glutamate, aspartate, glycine, gamma aminobutyric acid (GABA), and taurine] level variations in retina from NER, at two different nycthemeral periods (11 a.m. and 11 p.m.) and at different ages (2, 6, and 12 months). In NER, retinal dopaminergic function was decreased as soon as 2 months, whereas GABA levels were increased, even if no differences among the different ages could be distinguished. These variations were associated to a slight increase in 5-HT. Other amino acids tested were not affected by epilepsy, whereas taurine decreased with aging in NER as well as in control rats. Retinal 5-HT occurs principally as a precursor of melatonin (MEL). A triangular interaction may be hypothesized: MEL could decrease DA synthesis or release by enhancing GABA activity. Taken together, these results suggest that the retinal physiology is affected by the epileptic status and that information transmitted from retina to the brain should be affected by epilepsy in NER.

  15. Dopamine, Affordance and Active Inference

    PubMed Central

    Friston, Karl J.; Shiner, Tamara; FitzGerald, Thomas; Galea, Joseph M.; Adams, Rick; Brown, Harriet; Dolan, Raymond J.; Moran, Rosalyn; Stephan, Klaas Enno; Bestmann, Sven

    2012-01-01

    The role of dopamine in behaviour and decision-making is often cast in terms of reinforcement learning and optimal decision theory. Here, we present an alternative view that frames the physiology of dopamine in terms of Bayes-optimal behaviour. In this account, dopamine controls the precision or salience of (external or internal) cues that engender action. In other words, dopamine balances bottom-up sensory information and top-down prior beliefs when making hierarchical inferences (predictions) about cues that have affordance. In this paper, we focus on the consequences of changing tonic levels of dopamine firing using simulations of cued sequential movements. Crucially, the predictions driving movements are based upon a hierarchical generative model that infers the context in which movements are made. This means that we can confuse agents by changing the context (order) in which cues are presented. These simulations provide a (Bayes-optimal) model of contextual uncertainty and set switching that can be quantified in terms of behavioural and electrophysiological responses. Furthermore, one can simulate dopaminergic lesions (by changing the precision of prediction errors) to produce pathological behaviours that are reminiscent of those seen in neurological disorders such as Parkinson's disease. We use these simulations to demonstrate how a single functional role for dopamine at the synaptic level can manifest in different ways at the behavioural level. PMID:22241972

  16. Potentiation of the ionotropic GABA receptor response by whiskey fragrance.

    PubMed

    Hossain, Sheikh Julfikar; Aoshima, Hitoshi; Koda, Hirofumi; Kiso, Yoshinobu

    2002-11-06

    It is well-known that the target of most mood-defining compounds is an ionotropic gamma-aminobutyric acid receptor (GABA(A) receptor). The potentiation of the response of these inhibitory neurotransmitter receptors induces anxiolytic, sedative, and anesthetic activity in the human brain. To study the effects of whiskey fragrance on the GABA(A) receptor-mediated response, GABA(A) receptors were expressed in Xenopus oocyte by injecting rat whole brain mRNA or cRNA prepared from the cloned cDNA for the alpha(1) and beta(1) subunits of the bovine receptors. Most whiskey components such as phenol, ethoxy, and lactone derivatives potentiated the electrical responses of GABA(A) receptors, especially ethyl phenylpropanoate (EPP), which strongly potentiated the response. When this compound was applied to mice through respiration, the convulsions induced by pentetrazole were delayed, suggesting that EPP was absorbed by the brain, where it could potentiate the GABA(A) receptor responses. The extract of other alcoholic drinks such as wine, sake, brandy, and shochu also potentiated the responses to varying degrees. Although these fragrant components are present in alcoholic drinks at low concentrations (extremely small quantities compared with ethanol), they may also modulate the mood or consciousness of the human through the potentiation of the GABA(A) receptor response after absorption into the brain, because these hydrophobic fragrant compounds are easily absorbed into the brain through the blood-brain barrier and are several thousands times as potent as ethanol in the potentiation of the GABA(A) receptor-mediated response.

  17. Analysis of GABA(A)- and GABA(B)-receptor mediated effects on intracellular Ca(2+) in DRG hybrid neurones.

    PubMed

    Yokogawa, T; Kim, S U; Krieger, C; Puil, E

    2001-09-01

    1. Using pharmacological analysis and fura-2 spectrofluorimetry, we examined the effects of gamma-aminobutyric acid (GABA) and related substances on intracellular Ca(2+) concentration ([Ca(2+)]i) of hybrid neurones, called MD3 cells. The cell line was produced by fusion between a mouse neuroblastoma cell and a mouse dorsal root ganglion (DRG) neurone. 2. MD3 cells exhibited DRG neurone-like properties, such as immunoreactivity to microtubule-associated protein-2 and neurofilament proteins. Bath applications of capsaicin and alpha, beta-methylene adenosine triphosphate reversibly increased [Ca(2+)]i. However, repeated applications of capsaicin were much less effective. 3. Pressure applications of GABA (100 microM), (Z)-3-[(aminoiminomethyl) thio] prop-2-enoic acid sulphate (ZAPA; 100 microM), an agonist at low affinity GABA(A)-receptors, or KCl (25 mM), transiently increased [Ca(2+)]i. 4. Bath application of bicuculline (100 nM - 100 microM), but not picrotoxinin (10 - 25 microM), antagonized GABA-induced increases in [Ca(2+)]i in a concentration-dependent manner (IC(50)=9.3 microM). 5. Ca(2+)-free perfusion reversibly abolished GABA-evoked increases in [Ca(2+)]i. Nifedipine and nimodipine eliminated GABA-evoked increases in [Ca(2+)]i. These results imply GABA response dependence on extracellular Ca(2+). 6. Baclofen (500 nM - 100 microM) activation of GABA(B)-receptors reversibly attenuated KCl-induced increases in [Ca(2+)]i in a concentration-dependent manner (EC(50)=1.8 microM). 2-hydroxy-saclofen (1 - 20 microM) antagonized the baclofen-depression of the KCl-induced increase in [Ca(2+)]i. 7. In conclusion, GABA(A)-receptor activation had effects similar to depolarization by high external K(+), initiating Ca(2+) influx through high voltage-activated channels, thereby transiently elevating [Ca(2+)]i. GABA(B)-receptor activation reduced Ca(2+) influx evoked by depolarization, possibly at Ca(2+)-channel sites in MD3 cells.

  18. Function of taurine transporter (Slc6a6/TauT) as a GABA transporting protein and its relevance to GABA transport in rat retinal capillary endothelial cells.

    PubMed

    Tomi, Masatoshi; Tajima, Ayumi; Tachikawa, Masanori; Hosoya, Ken-ichi

    2008-10-01

    The purpose of this study was to identify the uptake mechanism of gamma-aminobutyric acid (GABA) via taurine transporter (Slc6a6/TauT) and its relationship with GABA transport at the inner BRB. Rat Slc6a6/TauT-transfected HeLa cells exhibited Na(+)-, Cl(-)-, and concentration-dependent [3H]GABA uptake with a Km of 1.5 mM. Taurine, beta-alanine, and GABA markedly inhibited Slc6a6/TauT-mediated uptake of [3H]GABA. The uptake of [3H]GABA by a conditionally immortalized rat retinal capillary endothelial cell line (TR-iBRB2) was Na(+)-, Cl(-)-, and concentration-dependent with a Km of 2.0 mM. This process was more potently inhibited by substrates of Slc6a6/TauT, taurine and beta-alanine, than those of GABA transporters, GABA and betaine. In the presence of taurine, there was competitive inhibition with a Ki of 74 microM. [3H]Taurine also exhibited competitive inhibition with a Ki of 1.8 mM in the presence of GABA. In conclusion, rat Slc6a6/TauT has the ability to use GABA as a substrate and Slc6a6/TauT-mediated GABA transport appears to be present at the inner BRB.

  19. Dopamine denervation does not alter in vivo /sup 3/H-spiperone binding in rat striatum: implications for external imaging of dopamine receptors in Parkinson's disease

    SciTech Connect

    Bennett, J.P. Jr.; Wooten, G.F.

    1986-04-01

    Striatal particulate preparations, both from rats with lesion-induced striatal dopamine (DA) loss and from some striatal dopamine (DA) loss and from some patients with Parkinson's disease, exhibit increased /sup 3/H-neuroleptic binding, which is interpreted to be the mechanism of denervation-induced behavioral supersensitivity to dopaminergic compounds. After intravenous /sup 3/H-spiperone (/sup 3/H-SP) administration to rats with unilateral nigral lesions, we found no differences in accumulation of total or particulate-bound /sup 3/H-SP in dopamine-denervated compared with intact striata. /sup 3/H-SP in vivo binds to less than 10% of striatal sites labeled by /sup 3/H-SP incubated with striatal particulate preparations in vitro. Quantitative autoradiography of /sup 3/H-SP binding to striatal sections in vitro also failed to reveal any effects of dopamine denervation. /sup 3/H-SP bound to striatal sites in vivo dissociates more slowly than that bound to striatal particulate preparations labeled in vitro. Striatal binding properties of /sup 3/H-SP administered in vivo are quite different from the same kinetic binding parameters estimated in vitro using crude membrane preparations of striatum. In addition, striatal binding of in vivo-administered 3H-SP is not affected by prior lesion of the substantia nigra, which results in profound ipsilateral striatal dopamine depletion. Thus, behavioral supersensitivity to dopaminergic compounds may not be associated with altered striatal binding properties for dopamine receptor ligands in vivo.

  20. Production of gaba (γ – Aminobutyric acid) by microorganisms: a review

    PubMed Central

    Dhakal, Radhika; Bajpai, Vivek K.; Baek, Kwang-Hyun

    2012-01-01

    GABA (γ-aminobutyric acid) is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB), which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods. PMID:24031948

  1. Investigating GABA and its function in platelets as compared to neurons.

    PubMed

    Kaneez, Fatima Shad; Saeed, Sheikh Arshad

    2009-08-01

    We have recently suggested that platelets could be used as a model for neuronal receptors. In this paper we have investigated gamma-aminobutyric acid (GABA) metabolism and GABA receptors in platelets and in cultured neurons to see whether platelets' GABA mimics neuronal GABA receptor activities. We used the ELISA technique for detecting the GABA concentration in platelet rich plasma and cultured neurons. The functional effects of GABA and its receptor ligands on platelets were determined using an aggregometer. We found that the GABA concentration is 30% lower in platelets than in neurons and in both preparations GABA was metabolized by GABA transaminase (GABA-T). GABA potentiated calcium dependent platelet aggregation with a higher value in washed platelets suspension (WPS) then in platelet rich plasma (PRP). This effect was inhibited by benzodiazepines, calcium channel blockers and the selective phosphoinositide 3-kinase antagonist Wortmannin. GABA neurotransmission is involved in most aspects of normal brain function and can be perturbed in many neuropathologic conditions. We concluded that platelets could be further developed to be used as a peripheral model to study neuronal GABAergic function and its abnormality in diseases such as epilepsy and schizophrenia. Furthermore our results indicated that PI3-kinase is involved in calcium dependent GABA induced platelet aggregation as this synergistic effect is inhibited by Wortmannin in dose dependent manner.

  2. Marlin-1, a novel RNA-binding protein associates with GABA receptors.

    PubMed

    Couve, Andrés; Restituito, Sophie; Brandon, Julia M; Charles, Kelly J; Bawagan, Hinayana; Freeman, Katie B; Pangalos, Menelas N; Calver, Andrew R; Moss, Stephen J

    2004-04-02

    GABA(B) receptors are heterodimeric G protein-coupled receptors that mediate slow synaptic inhibition in the central nervous system. Whereas heterodimerization between GABA(B) receptor GABA(B)R1 and GABA(B)R2 subunits is essential for functional expression, how neurons coordinate the assembly of these critical receptors remains to be established. Here we have identified Marlin-1, a novel GABA(B) receptor-binding protein that associates specifically with the GABA(B)R1 subunit in yeast, tissue culture cells, and neurons. Marlin-1 is expressed in the brain and exhibits a granular distribution in cultured hippocampal neurons. Marlin-1 binds different RNA species including the 3'-untranslated regions of both the GABA(B)R1 and GABA(B)R2 mRNAs in vitro and also associates with RNA in cultured neurons. Inhibition of Marlin-1 expression via small RNA interference technology results in enhanced intracellular levels of the GABA(B)R2 receptor subunit without affecting the level of GABA(B)R1. Together our results suggest that Marlin-1 functions to regulate the cellular levels of GABA(B) R2 subunits, which may have significant effects on the production of functional GABA(B) receptor heterodimers. Therefore, our observations provide an added level of regulation for the control of GABA(B) receptor expression and for the efficacy of inhibitory synaptic transmission.

  3. Pyrethroid pesticide-induced alterations in dopamine transporter function

    SciTech Connect

    Elwan, Mohamed A.; Richardson, Jason R.; Guillot, Thomas S.; Caudle, W. Michael; Miller, Gary W. . E-mail: gary.miller@emory.edu

    2006-03-15

    Parkinson's disease (PD) is a progressive neurodegenerative disease affecting the nigrostriatal dopaminergic pathway. Several epidemiological studies have demonstrated an association between pesticide exposure and the incidence of PD. Studies from our laboratory and others have demonstrated that certain pesticides increase levels of the dopamine transporter (DAT), an integral component of dopaminergic neurotransmission and a gateway for dopaminergic neurotoxins. Here, we report that repeated exposure (3 injections over 2 weeks) of mice to two commonly used pyrethroid pesticides, deltamethrin (3 mg/kg) and permethrin (0.8 mg/kg), increases DAT-mediated dopamine uptake by 31 and 28%, respectively. Using cells stably expressing DAT, we determined that exposure (10 min) to deltamethrin and permethrin (1 nM-100 {mu}M) had no effect on DAT-mediated dopamine uptake. Extending exposures to both pesticides for 30 min (10 {mu}M) or 24 h (1, 5, and 10 {mu}M) resulted in significant decrease in dopamine uptake. This reduction was not the result of competitive inhibition, loss of DAT protein, or cytotoxicity. However, there was an increase in DNA fragmentation, an index of apoptosis, in cells exhibiting reduced uptake at 30 min and 24 h. These data suggest that up-regulation of DAT by in vivo pyrethroid exposure is an indirect effect and that longer-term exposure of cells results in apoptosis. Since DAT can greatly affect the vulnerability of dopamine neurons to neurotoxicants, up-regulation of DAT by deltamethrin and permethrin may increase the susceptibility of dopamine neurons to toxic insult, which may provide insight into the association between pesticide exposure and PD.

  4. Seizures beget seizures: the quest for GABA as a key player.

    PubMed

    Ben-Ari, Yehezkel

    2006-01-01

    Synapses mediated by gamma-aminobutyric acid (GABA) A receptors are notoriously altered during periods of enhanced activity. Since a loss of inhibitory tone is a basic cause of seizures and epilepsies, it is important to determine the underlying mechanisms and the way this could be alleviated or at least reduced. Alterations of the intracellular content of chloride are thought to be a major player in the sequence of events that follow episodes of hyperactivity. In this review, I discuss these mechanisms both in the adult and developing brain, relying on studies in which chloride and GABAergic currents were measured by electrophysiological and imaging techniques. The main conclusion is that in adult systems, status epilepticus induces a complete re-organization of the networks, with cell death, axonal growth, and glutamatergic neosynapse formation leading to an increased glutamatergic drive. This, in turn, will decrease the threshold of seizure generation and thus contribute to seizure generation. In contrast, GABAergic synapses are not readily "plastic" as the lost interneurones and synapses are not replaced. Somatostatin-positive 0-LM Interneurons that innervate the dendrites of the principal cells in the hippocampus degenerate selectively, leading to a loss of the inhibitory drive in the dendrites, whereas somatic projecting basket cells and somatic inhibitory drives are relatively spared. This imbalance leads to a reduction of the inhibitory strength that is necessary but not sufficient to generate ongoing seizures. An additional important factor is the persistent increase of the intracellular chloride concentration that leads to a long-lasting shift in the depolarizing direction of the actions of GABA that will also contribute to seizure generation. In the developing brain, a major source of seizure generation is the depolarizing and often excitatory actions of GABA due to a higher intracellular chloride concentration ([Cl-]I) in immature neurons, a property

  5. Ethanol increases GABA release in the embryonic avian retina.

    PubMed

    Pohl-Guimarães, Fernanda; Calaza, Karin da Costa; Yamasaki, Edna Nanami; Kubrusly, Regina Célia Cussa; Reis, Ricardo Augusto de Melo

    2010-04-01

    Several mechanisms underlying ethanol action in GABAergic synapses have been proposed, one of these mechanisms is on GABA release. Here, we report that in ovo exposure to ethanol induces an increase on GABA release in the embryonic chick retina. Eleven-day-old chick embryos (E11) received an injection of either phosphate buffer saline (PBS) or ethanol (10%, v/v, diluted in PBS), and were allowed to develop until E16. A single glutamate stimulus (2 mM) showed approximately a 40% increase on GABA release in E16 retinas when compared to controls. The effect was dependent on NMDA receptors and GAD65 mRNA levels, which were increased following the ethanol treatment. However, the numbers of GABA-, GAD-, and NR1-immunoreactive cells, and the expression levels of these proteins, were not affected. We conclude that ethanol treatment at a time point when synapses are being formed during development selectively increases GABA release in the retina via a NMDA receptor-dependent process.

  6. Actions of insecticides on the insect GABA receptor complex

    SciTech Connect

    Bermudez, I.; Hawkins, C.A.; Taylor, A.M.; Beadle, D.J. )

    1991-01-01

    The actions of insecticides on the insect gamma-aminobutyric acid (GABA) receptor were investigated using (35S)t-butylbicyclophosphorothionate (( 35S)TBPS) binding and voltage-clamp techniques. Specific binding of (35S)TBPS to a membrane homogenate derived from the brain of Locusta migratoria locusts is characterised by a Kd value of 79.3 {plus minus} 2.9 nM and a Bmax value of 1770 {plus minus} 40 fmol/mg protein. (35S)TBPS binding is inhibited by mM concentrations of barbiturates and benzodiazepines. In contrast dieldrin, ivermectin, lindane, picrotoxin and TBPS are inhibitors of (35S)TBPS binding at the nanomolar range. Bicuculline, baclofen and pyrethroid insecticides have no effect on (35S)TBPS binding. These results are similar to those obtained in electrophysiological studies of the current elicited by GABA in both Locusta and Periplaneta americana central neurones. Noise analysis of the effects of lindane, TBPS, dieldrin and picrotoxin on the cockroach GABA responses reveals that these compounds decrease the variance of the GABA-induced current but have no effect on its mean open time. All these compounds, with the exception of dieldrin, significantly decrease the conductance of GABA-evoked single current.

  7. Dopamine Receptors and Neurodegeneration

    PubMed Central

    Rangel-Barajas, Claudia; Coronel, Israel; Florán, Benjamín

    2015-01-01

    Dopamine (DA) is one of the major neurotransmitters and participates in a number of functions such as motor coordination, emotions, memory, reward mechanism, neuroendocrine regulation etc. DA exerts its effects through five DA receptors that are subdivided in 2 families: D1-like DA receptors (D1 and D5) and the D2-like (D2, D3 and D4). All DA receptors are widely expressed in the central nervous system (CNS) and play an important role in not only in physiological conditions but also pathological scenarios. Abnormalities in the DAergic system and its receptors in the basal ganglia structures are the basis Parkinson’s disease (PD), however DA also participates in other neurodegenerative disorders such as Huntington disease (HD) and multiple sclerosis (MS). Under pathological conditions reorganization of DAergic system has been observed and most of the times, those changes occur as a mechanism of compensation, but in some cases contributes to worsening the alterations. Here we review the changes that occur on DA transmission and DA receptors (DARs) at both levels expression and signals transduction pathways as a result of neurotoxicity, inflammation and in neurodegenerative processes. The better understanding of the role of DA receptors in neuropathological conditions is crucial for development of novel therapeutic approaches to treat alterations related to neurodegenerative diseases. PMID:26425390

  8. Alcohol effects on synaptic transmission in periaqueductal gray dopamine neurons

    PubMed Central

    Li, Chia; McCall, Nora M.; Lopez, Alberto J.; Kash, Thomas L.

    2014-01-01

    The role of dopamine (DA) signaling in regulating the rewarding properties of drugs, including alcohol, has been widely studied. The majority of these studies, however, have focused on the DA neurons located in the ventral tegmental area (VTA), and their projections to the nucleus accumbens. DA neurons within the ventral periaqueductal gray (vPAG) have been shown to regulate reward but little is known about the functional properties of these neurons, or how they are modified by drugs of abuse. This lack of knowledge is likely due to the highly heterogeneous cell composition of the vPAG, with both γ-amino-butyric acid (GABA) and glutamate neurons present in addition to DA neurons. In this study, we performed whole-cell recordings in a TH–eGFP transgenic mouse line to evaluate the properties of vPAG-DA neurons. Following this initial characterization, we examined how both acute and chronic alcohol exposure modify synaptic transmission onto vPAG-DA neurons. We found minimal effects of acute alcohol exposure on GABA transmission, but a robust enhancement of glutamatergic synaptic transmission in vPAG-DA. Consistent with this effect on excitatory transmission, we also found that alcohol caused an increase in firing rate. These data were in contrast to the effects of chronic intermittent alcohol exposure, which had no significant impact on either inhibitory or excitatory synaptic transmission on the vPAG-DA neurons. These data add to a growing body of literature that points to alcohol having both region-dependent and cell-type dependent effects on function. PMID:23597415

  9. GABA depolarizes immature neurons and inhibits network activity in the neonatal neocortex in vivo.

    PubMed

    Kirmse, Knut; Kummer, Michael; Kovalchuk, Yury; Witte, Otto W; Garaschuk, Olga; Holthoff, Knut

    2015-07-16

    A large body of evidence from in vitro studies suggests that GABA is depolarizing during early postnatal development. However, the mode of GABA action in the intact developing brain is unknown. Here we examine the in vivo effects of GABA in cells of the upper cortical plate using a combination of electrophysiological and Ca(2+)-imaging techniques. We report that at postnatal days (P) 3-4, GABA depolarizes the majority of immature neurons in the occipital cortex of anaesthetized mice. At the same time, GABA does not efficiently activate voltage-gated Ca(2+) channels and fails to induce action potential firing. Blocking GABA(A) receptors disinhibits spontaneous network activity, whereas allosteric activation of GABA(A) receptors has the opposite effect. In summary, our data provide evidence that in vivo GABA acts as a depolarizing neurotransmitter imposing an inhibitory control on network activity in the neonatal (P3-4) neocortex.

  10. Refuting the challenges of the developmental shift of polarity of GABA actions: GABA more exciting than ever!

    PubMed Central

    Ben-Ari, Yehezkel; Woodin, Melanie A.; Sernagor, Evelyne; Cancedda, Laura; Vinay, Laurent; Rivera, Claudio; Legendre, Pascal; Luhmann, Heiko J.; Bordey, Angelique; Wenner, Peter; Fukuda, Atsuo; van den Pol, Anthony N.; Gaiarsa, Jean-Luc; Cherubini, Enrico

    2012-01-01

    During brain development, there is a progressive reduction of intracellular chloride associated with a shift in GABA polarity: GABA depolarizes and occasionally excites immature neurons, subsequently hyperpolarizing them at later stages of development. This sequence, which has been observed in a wide range of animal species, brain structures and preparations, is thought to play an important role in activity-dependent formation and modulation of functional circuits. This sequence has also been considerably reinforced recently with new data pointing to an evolutionary preserved rule. In a recent “Hypothesis and Theory Article,” the excitatory action of GABA in early brain development is suggested to be “an experimental artefact” (Bregestovski and Bernard, 2012). The authors suggest that the excitatory action of GABA is due to an inadequate/insufficient energy supply in glucose-perfused slices and/or to the damage produced by the slicing procedure. However, these observations have been repeatedly contradicted by many groups and are inconsistent with a large body of evidence including the fact that the developmental shift is neither restricted to slices nor to rodents. We summarize the overwhelming evidence in support of both excitatory GABA during development, and the implications this has in developmental neurobiology. PMID:22973192

  11. Refuting the challenges of the developmental shift of polarity of GABA actions: GABA more exciting than ever!

    PubMed

    Ben-Ari, Yehezkel; Woodin, Melanie A; Sernagor, Evelyne; Cancedda, Laura; Vinay, Laurent; Rivera, Claudio; Legendre, Pascal; Luhmann, Heiko J; Bordey, Angelique; Wenner, Peter; Fukuda, Atsuo; van den Pol, Anthony N; Gaiarsa, Jean-Luc; Cherubini, Enrico

    2012-01-01

    DURING BRAIN DEVELOPMENT, THERE IS A PROGRESSIVE REDUCTION OF INTRACELLULAR CHLORIDE ASSOCIATED WITH A SHIFT IN GABA POLARITY: GABA depolarizes and occasionally excites immature neurons, subsequently hyperpolarizing them at later stages of development. This sequence, which has been observed in a wide range of animal species, brain structures and preparations, is thought to play an important role in activity-dependent formation and modulation of functional circuits. This sequence has also been considerably reinforced recently with new data pointing to an evolutionary preserved rule. In a recent "Hypothesis and Theory Article," the excitatory action of GABA in early brain development is suggested to be "an experimental artefact" (Bregestovski and Bernard, 2012). The authors suggest that the excitatory action of GABA is due to an inadequate/insufficient energy supply in glucose-perfused slices and/or to the damage produced by the slicing procedure. However, these observations have been repeatedly contradicted by many groups and are inconsistent with a large body of evidence including the fact that the developmental shift is neither restricted to slices nor to rodents. We summarize the overwhelming evidence in support of both excitatory GABA during development, and the implications this has in developmental neurobiology.

  12. Regulation of Local Ambient GABA Levels via Transporter-Mediated GABA Import and Export for Subliminal Learning.

    PubMed

    Hoshino, Osamu

    2015-06-01

    Perception of supraliminal stimuli might in general be reflected in bursts of action potentials (spikes), and their memory traces could be formed through spike-timing-dependent plasticity (STDP). Memory traces for subliminal stimuli might be formed in a different manner, because subliminal stimulation evokes a fraction (but not a burst) of spikes. Simulations of a cortical neural network model showed that a subliminal stimulus that was too brief (10 msec) to perceive transiently (more than about 500 msec) depolarized stimulus-relevant principal cells and hyperpolarized stimulus-irrelevant principal cells in a subthreshold manner. This led to a small increase or decrease in ongoing-spontaneous spiking activity frequency (less than 1 Hz). Synaptic modification based on STDP during this period effectively enhanced relevant synaptic weights, by which subliminal learning was improved. GABA transporters on GABAergic interneurons modulated local levels of ambient GABA. Ambient GABA molecules acted on extrasynaptic receptors, provided principal cells with tonic inhibitory currents, and contributed to achieving the subthreshold neuronal state. We suggest that ongoing-spontaneous synaptic alteration through STDP following subliminal stimulation may be a possible neuronal mechanism for leaving its memory trace in cortical circuitry. Regulation of local ambient GABA levels by transporter-mediated GABA import and export may be crucial for subliminal learning.

  13. GABA-B receptor activation and conflict behavior

    SciTech Connect

    Ketelaars, C.E.J.; Bollen, E.L.; Rigter, H.; Bruinvels, J.

    1988-01-01

    Baclofen and oxazepam enhance extinction of conflict behavior in the Geller-Seifter test while baclofen and diazepam release punished behavior in Vogel's conflict test. In order to investigate the possibility that the effect of the selective GABA-B receptor agonist baclofen is mediated indirectly via the GABA-A/benzodiazepine receptor complex, the effect of pretreatment of rats with baclofen on (/sup 3/H)-diazepam binding to washed and unwashed cortical and cerebellar membranes of rats has been studied. Baclofen pretreatment increase Bmax in washed cerebellar membranes when bicuculline was present in the incubation mixture. No effect was seen in cortical membranes. The present results render it unlikely that the effect of baclofen on extinction of conflict behavior and punished drinking is mediated via the GABA-A/benzodiazepine receptor complex. 50 references, 1 figure, 4 tables.

  14. Enhanced Extracellular Glutamate and Dopamine in the Ventral Pallidum of Alcohol-Preferring AA and Alcohol-Avoiding ANA Rats after Morphine.

    PubMed

    Kemppainen, Heidi; Nurmi, Harri; Raivio, Noora; Kiianmaa, Kalervo

    2015-01-01

    The purpose of the present study was to investigate the role of ventral pallidal opioidergic mechanisms in the control of ethanol intake by studying the effects of acute administration of morphine on the levels of GABA, glutamate, and dopamine in the ventral pallidum. The study was conducted using the alcohol-preferring Alko Alcohol (AA) and alcohol-avoiding Alko Non-Alcohol (ANA) rat lines that have well-documented differences in their voluntary ethanol intake and brain opioidergic systems. Therefore, examination of neurobiological differences between the lines is supposed to help to identify the neuronal mechanisms underlying ethanol intake, since selection pressure is assumed gradually to lead to enrichment of alleles promoting high or low ethanol intake, respectively. The effects of an acute dose of morphine (1 or 10 mg/kg s.c.) on the extracellular levels of GABA and glutamate in the ventral pallidum were monitored with in vivo microdialysis. The concentrations of GABA and glutamate in the dialyzates were determined with a high performance liquid chromatography system using fluorescent detection, while electrochemical detection was used for dopamine. The levels of glutamate in the rats injected with morphine 1 mg/kg were significantly above the levels found in the controls and in the rats receiving morphine 10 mg/kg. Morphine 10 mg/kg also increased the levels of dopamine. Morphine could not, however, modify the levels of GABA. The rat lines did not differ in any of the effects of morphine. The data suggest that the glutamatergic and dopaminergic systems in the ventral pallidum may mediate some effects of morphine. Since there were no differences between the AA and ANA lines, the basic hypothesis underlying the use of the genetic animal model suggests that the effects of morphine detected probably do not underlie the different intake of ethanol by the lines and contribute to the control of ethanol intake in these animals.

  15. Dopamine regulates body size in Caenorhabditis elegans.

    PubMed

    Nagashima, Takashi; Oami, Eitaro; Kutsuna, Natsumaro; Ishiura, Shoichi; Suo, Satoshi

    2016-04-01

    The nervous system plays a critical role in the regulation of animal body sizes. In Caenorhabditis elegans, an amine neurotransmitter, dopamine, is required for the tactile perception of food and food-dependent behavioral changes, while its role in development is unknown. In this study, we show that dopamine negatively regulates body size through a D2-like dopamine receptor, DOP-3, in C. elegans. Dopamine alters body size without affecting food intake or developmental rate. We also found that dopamine promotes egg-laying, although the regulation of body size by dopamine was not solely caused by this effect. Furthermore, dopamine negatively regulates body size through the suppression of signaling by octopamine and Gq-coupled octopamine receptors, SER-3 and SER-6. Our results demonstrate that dopamine and octopamine regulate the body size of C. elegans and suggest a potential role for perception in addition to ingestion of food for growth.

  16. Dopamine, reward learning, and active inference

    PubMed Central

    FitzGerald, Thomas H. B.; Dolan, Raymond J.; Friston, Karl

    2015-01-01

    Temporal difference learning models propose phasic dopamine signaling encodes reward prediction errors that drive learning. This is supported by studies where optogenetic stimulation of dopamine neurons can stand in lieu of actual reward. Nevertheless, a large body of data also shows that dopamine is not necessary for learning, and that dopamine depletion primarily affects task performance. We offer a resolution to this paradox based on an hypothesis that dopamine encodes the precision of beliefs about alternative actions, and thus controls the outcome-sensitivity of behavior. We extend an active inference scheme for solving Markov decision processes to include learning, and show that simulated dopamine dynamics strongly resemble those actually observed during instrumental conditioning. Furthermore, simulated dopamine depletion impairs performance but spares learning, while simulated excitation of dopamine neurons drives reward learning, through aberrant inference about outcome states. Our formal approach provides a novel and parsimonious reconciliation of apparently divergent experimental findings. PMID:26581305

  17. GABA excitation in mouse hilar neuropeptide Y neurons

    PubMed Central

    Fu, Li-Ying; van den Pol, Anthony N

    2007-01-01

    Neuropeptide Y-containing interneurons in the dentate hilar area play an important role in inhibiting the activity of hippocampal circuitry. Hilar cells are often among the first lost in hippocampal epilepsy. As many types of neurons are found in the hilus, we used a new transgenic mouse expressing green fluorescent protein (GFP) in a subset of neurons that colocalized neuropeptide Y (NPY), somatostatin (SST), and GABA for whole-cell, perforated, and cell-attached recording in 240 neurons. As these neurons have not previously been identifiable in live slices, they have not been the focus of physiological analysis. Hilar NPY neurons showed modest spike frequency adaptation, a large 15.6 ± 1.0 mV afterhyperpolarization, a mean input resistance of 335 ± 26 mΩ, and were capable of fast-firing. Muscimol-mediated excitatory actions were found in a nominally Ca2+-free/high-Mg2+ bath solution using cell-attached recording. GABAA receptor antagonists inhibited half the recorded neurons and blocked burst firing. Gramicidin perforated-patch recording revealed a GABA reversal potential positive to both the resting membrane potential and spike threshold. Together, these data suggest GABA is excitatory to many NPY cells. NPY and SST consistently hyperpolarized and reduced spike frequency in these neurons. No hyperpolarization of NPY on membrane potential was detected in the presence of tetrodotoxin, AP5, CNQX and bicuculline, supporting an indirect effect. Under similar conditions, SST hyperpolarized the cells, suggesting a direct postsynaptic action. Depolarizing actions of GABA and GABA-dependent burst-firing may synchronize a rapid release of GABA, NPY, and SST, leading to pre- and postsynaptic inhibition of excitatory hippocampal circuits. PMID:17204505

  18. Posttraumatic GABA(A)-mediated [Ca2+]i increase is essential for the induction of brain-derived neurotrophic factor-dependent survival of mature central neurons.

    PubMed

    Shulga, Anastasia; Thomas-Crusells, Judith; Sigl, Thomas; Blaesse, Anne; Mestres, Pedro; Meyer, Michael; Yan, Qiao; Kaila, Kai; Saarma, Mart; Rivera, Claudio; Giehl, Klaus M

    2008-07-02

    A shift of GABA(A)-mediated responses from hyperpolarizing to depolarizing after neuronal injury leads to GABA(A)-mediated increase in [Ca2+](i). In addition, central neurons become dependent on BDNF for survival. Whether these two mechanisms are causally interrelated is an open question. Here, we show in lesioned CA3 hippocampal neurons in vitro and in axotomized corticospinal neurons in vivo that posttraumatic downregulation of the neuron-specific K-Cl cotransporter KCC2 leads to intracellular chloride accumulation by the Na-K-2Cl cotransporter NKCC1, resulting in GABA-induced [Ca2+](i) transients. This mechanism is required by a population of neurons to survive in a BDNF-dependent manner after injury, because blocking GABA(A)-depolarization with the NKCC1 inhibitor bumetanide prevents the loss of neurons on BDNF withdrawal. The resurgence of KCC2 expression during recovery coincides with loss of BDNF dependency for survival. This is likely mediated through BDNF itself, because injured neurons reverse their response to this neurotrophin by switching the BDNF-induced downregulation of KCC2 to upregulation.

  19. Attenuation of γ-aminobutyric acid (GABA) transaminase activity contributes to GABA increase in the cerebral cortex of mice exposed to β-cypermethrin.

    PubMed

    Han, Y; Cao, D; Li, X; Zhang, R; Yu, F; Ren, Y; An, L

    2014-03-01

    The current study investigated the γ-aminobutyric acid (GABA) levels and GABA metabolic enzymes (GABA transaminase (GABA(T)) and glutamate decarboxylase (GAD)) activities at 2 and 4 h after treatment, using a high-performance liquid chromatography with ultraviolet detectors and colorimetric assay, in the cerebral cortex of mice treated with 20, 40 or 80 mg/kg β-cypermethrin by a single oral gavage, with corn oil as vehicle control. In addition, GABA protein (4 h after treatment), GABA(T) protein (2 h after treatment) and GABA receptors messenger RNA (mRNA) expression were detected by immunohistochemistry, Western blot and real-time quantitative reverse transcriptase polymerase chain reaction, respectively. β-Cypermethrin (80 mg/kg) significantly increased GABA levels in the cerebral cortex of mice, at both 2 and 4 h after treatment, compared with the control. Also, GABA immunohistochemistry results suggested that the number of positive granules was increased in the cerebral cortex of mice 4 h after exposure to 80 mg/kg β-cypermethrin when compared with the control. Furthermore, the results also showed that GABA(T) activity detected was significantly decreased in the cerebral cortex of mice 2 h after β-cypermethrin administration (40 or 80 mg/kg). No significant changes were found in GAD activity, or the expression of GABA(T) protein and GABAB receptors mRNA, in the cerebral cortex of mice, except that 80 mg/kg β-cypermethrin caused a significant decrease, compared with the vehicle control, in GABAA receptors mRNA expression 4 h after administration. These results suggested that attenuated GABA(T) activity induced by β-cypermethrin contributed to increased GABA levels in the mouse brain. The downregulated GABAA receptors mRNA expression is most likely a downstream event.

  20. [GABA, a key transmitter for fetal brain maturation].

    PubMed

    Ben-Ari, Yehezkel

    2007-01-01

    GABA, the principal inhibitory transmitter excites immature neurons in all animal species studied. This is due to the higher intracellular concentration of chloride at early developmental stages. Excitatory actions of GABA play an important action in brain maturation. Recent observations also suggest an abrupt shift during delivery that exerts a neuro-protective action contributing to reduce the sequels of trauma and anoxic episodes. These observations have important clinical implications in relation to delivery associated insults but also preterm delivery and more generally consumption of agents during gestation.

  1. Induction of rotational behaviour by intranigral baclofen suggests possible GABA-agonist activity.

    PubMed

    Waddington, J L

    1977-10-15

    In rats, unilateral injections of the GABA-derivative baclofen into the zona reticulata of the substantia nigra produced a contralateral rotation that was translated to ipsilateral rotation under the influence of amphetamine. These results mimic those following unilateral elevation of GABA levels in the substantia nigra and suggest that baclofen may have some GABA agonist activity following intracerebral injection.

  2. Edited magnetic resonance spectroscopy detects an age-related decline in brain GABA levels.

    PubMed

    Gao, Fei; Edden, Richard A E; Li, Muwei; Puts, Nicolaas A J; Wang, Guangbin; Liu, Cheng; Zhao, Bin; Wang, Huiquan; Bai, Xue; Zhao, Chen; Wang, Xin; Barker, Peter B

    2013-09-01

    Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the brain. Although measurements of GABA levels in vivo in the human brain using edited proton magnetic resonance spectroscopy ((1)H-MRS) have been established for some time, it is has not been established how regional GABA levels vary with age in the normal human brain. In this study, 49 healthy men and 51 healthy women aged between 20 and 76 years were recruited and J-difference edited spectra were recorded at 3T to determine the effect of age on GABA levels, and to investigate whether there are regional and gender differences in GABA in mesial frontal and parietal regions. Because the signal detected at 3.02 ppm using these experimental parameters is also expected to contain contributions from both macromolecules (MM) and homocarnosine, in this study the signal is labeled GABA+ rather than GABA. Significant negative correlations were observed between age and GABA+ in both regions studied (GABA+/Cr: frontal region, r=-0.68, p<0.001, parietal region, r=-0.54, p<0.001; GABA+/NAA: frontal region, r=-0.58, p<0.001, parietal region, r=-0.49, p<0.001). The decrease in GABA+ with age in the frontal region was more rapid in women than men. Evidence of a measureable decline in GABA is important in considering the neurochemical basis of the cognitive decline that is associated with normal aging.

  3. Combinational Spinal GAD65 Gene Delivery and Systemic GABA-Mimetic Treatment for Modulation of Spasticity

    PubMed Central

    Kakinohana, Osamu; Hefferan, Michael P.; Miyanohara, Atsushi; Nejime, Tetsuya; Marsala, Silvia; Juhas, Stefan; Juhasova, Jana; Motlik, Jan; Kucharova, Karolina; Strnadel, Jan; Platoshyn, Oleksandr; Lazar, Peter; Galik, Jan; Vinay, Laurent; Marsala, Martin

    2012-01-01

    Background Loss of GABA-mediated pre-synaptic inhibition after spinal injury plays a key role in the progressive increase in spinal reflexes and the appearance of spasticity. Clinical studies show that the use of baclofen (GABAB receptor agonist), while effective in modulating spasticity is associated with major side effects such as general sedation and progressive tolerance development. The goal of the present study was to assess if a combined therapy composed of spinal segment-specific upregulation of GAD65 (glutamate decarboxylase) gene once combined with systemic treatment with tiagabine (GABA uptake inhibitor) will lead to an antispasticity effect and whether such an effect will only be present in GAD65 gene over-expressing spinal segments. Methods/Principal Findings Adult Sprague-Dawley (SD) rats were exposed to transient spinal ischemia (10 min) to induce muscle spasticity. Animals then received lumbar injection of HIV1-CMV-GAD65 lentivirus (LVs) targeting ventral α-motoneuronal pools. At 2–3 weeks after lentivirus delivery animals were treated systemically with tiagabine (4, 10, 20 or 40 mg/kg or vehicle) and the degree of spasticity response measured. In a separate experiment the expression of GAD65 gene after spinal parenchymal delivery of GAD65-lentivirus in naive minipigs was studied. Spastic SD rats receiving spinal injections of the GAD65 gene and treated with systemic tiagabine showed potent and tiagabine-dose-dependent alleviation of spasticity. Neither treatment alone (i.e., GAD65-LVs injection only or tiagabine treatment only) had any significant antispasticity effect nor had any detectable side effect. Measured antispasticity effect correlated with increase in spinal parenchymal GABA synthesis and was restricted to spinal segments overexpressing GAD65 gene. Conclusions/Significance These data show that treatment with orally bioavailable GABA-mimetic drugs if combined with spinal-segment-specific GAD65 gene overexpression can represent a novel

  4. Photoaffinity labelling of high affinity dopamine binding proteins

    SciTech Connect

    Ross, G.M.; McCarry, B.E.; Mishra, R.K.

    1986-03-01

    A photoactive analogue of the dopamine agonist 2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronapthalene (ADTN) has been synthesized and used to photoaffinity label dopamine binding proteins prepared from bovine caudate nucleus. N-(3-)N'-4-azidobenzamidol)-aminopropyl)-aminopropyl)-ADTN (AzB-AP-ADTN) was incubated with caudate membranes and irradiated with UV light. Membranes were then repeatedly washed by centrifugation to remove excess photolabel. A binding assay, using (/sup 3/H)-SCH 23390 (a D/sub 1/ specific antagonist), was then performed to evaluate the loss of receptor density in the photolyzed preparation. AzB-AP-ADTN irreversibly blocked (/sup 3/H)-SCH 23390 binding in a dose-dependent manner. Scatchard analysis revealed a decrease in the B/sub max/, with no significant change in the K/sub d/, of (/sup 3/H)-SCH 23390 binding. Compounds which compete for D/sub 1/ receptor binding (such as dopamine, SKF 38393 or apomorphine), proteted the SCH 23390 binding site from inactivation. This data would suggest that the novel photoaffinity ligand, AzB-AP-ADTN, can covalently label the D/sub 1/ (adenylate cyclase linked) dopamine receptor.

  5. Dopamine-dependent corticostriatal synaptic filtering regulates sensorimotor behavior

    PubMed Central

    Wong, Minerva Y.; Borgkvist, Anders; Choi, Se Joon; Mosharov, Eugene V.; Bamford, Nigel S.; Sulzer, David

    2015-01-01

    Summary Modulation of corticostriatal synaptic activity by dopamine is required for normal sensorimotor behaviors. After loss of nigrostriatal dopamine axons in Parkinson's disease, l-DOPA and dopamine D2-like receptor agonists are used as replacement therapy, although these drugs also trigger sensitized sensorimotor responses including dyskinesias and impulse control disorders. In mice, we lesioned dopamine projections to left dorsal striatum and assayed unilateral sensorimotor deficits with the corridor test as well as presynaptic corticostriatal activity with the synaptic vesicle probe, FM1-43. Sham-lesioned mice acquired food equivalently on both sides, while D2 receptor activation filtered the less active corticostriatal terminals, a response that required coincident co-activation of mGlu-R5 metabotropic glutamate and CB1 endocannabinoid receptors. Lesioned mice did not acquire food from their right, but overused that side following treatment with l-DOPA. Synaptic filtering on the lesioned side was abolished by either l-DOPA or a D2 receptor agonist, but when combined with a CB1 receptor antagonist, l-DOPA or D2 agonists normalized both synaptic filtering and behavior. Thus, high-pass filtering of corticostriatal synapses by the coordinated activation of D2, mGlu-R5, and CB1 receptors is required for normal sensorimotor response to environmental cues. PMID:25637802

  6. Systematic analysis of γ-aminobutyric acid (GABA) metabolism and function in the social amoeba Dictyostelium discoideum.

    PubMed

    Wu, Yuantai; Janetopoulos, Chris

    2013-05-24

    While GABA has been suggested to regulate spore encapsulation in the social amoeba Dictyostelium discoideum, the metabolic profile and other potential functions of GABA during development remain unclear. In this study, we investigated the homeostasis of GABA metabolism by disrupting genes related to GABA metabolism and signaling. Extracellular levels of GABA are tightly regulated during early development, and GABA is generated by the glutamate decarboxylase, GadB, during growth and in early development. However, overexpression of the prespore-specific homologue, GadA, in the presence of GadB reduces production of extracellular GABA. Perturbation of extracellular GABA levels delays the process of aggregation. Cytosolic GABA is degraded by the GABA transaminase, GabT, in the mitochondria. Disruption of a putative vesicular GABA transporter (vGAT) homologue DdvGAT reduces secreted GABA. We identified the GABAB receptor-like family member GrlB as the major GABA receptor during early development, and either disruption or overexpression of GrlB delays aggregation. This delay is likely the result of an abolished pre-starvation response and late expression of several "early" developmental genes. Distinct genes are employed for GABA generation during sporulation. During sporulation, GadA alone is required for generating GABA and DdvGAT is likely responsible for GABA secretion. GrlE but not GrlB is the GABA receptor during late development.

  7. Familial Parkinson mutant alpha-synuclein causes dopamine neuron dysfunction in transgenic Caenorhabditis elegans.

    PubMed

    Kuwahara, Tomoki; Koyama, Akihiko; Gengyo-Ando, Keiko; Masuda, Mayumi; Kowa, Hisatomo; Tsunoda, Makoto; Mitani, Shohei; Iwatsubo, Takeshi

    2006-01-06

    Mutations in alpha-synuclein gene cause familial form of Parkinson disease, and deposition of wild-type alpha-synuclein as Lewy bodies occurs as a hallmark lesion of sporadic Parkinson disease and dementia with Lewy bodies, implicating alpha-synuclein in the pathogenesis of Parkinson disease and related neurodegenerative diseases. Dopamine neurons in substantia nigra are the major site of neurodegeneration associated with alpha-synuclein deposition in Parkinson disease. Here we establish transgenic Caenorhabditis elegans (TG worms) that overexpresses wild-type or familial Parkinson mutant human alpha-synuclein in dopamine neurons. The TG worms exhibit accumulation of alpha-synuclein in the cell bodies and neurites of dopamine neurons, and EGFP labeling of dendrites is often diminished in TG worms expressing familial Parkinson disease-linked A30P or A53T mutant alpha-synuclein, without overt loss of neuronal cell bodies. Notably, TG worms expressing A30P or A53T mutant alpha-synuclein show failure in modulation of locomotory rate in response to food, which has been attributed to the function of dopamine neurons. This behavioral abnormality was accompanied by a reduction in neuronal dopamine content and was treatable by administration of dopamine. These phenotypes were not seen upon expression of beta-synuclein. The present TG worms exhibit dopamine neuron-specific dysfunction caused by accumulation of alpha-synuclein, which would be relevant to the genetic and compound screenings aiming at the elucidation of pathological cascade and therapeutic strategies for Parkinson disease.

  8. Determination of dopamine in pharmaceutical formulation using enhanced luminescence from europium complex.

    PubMed

    Wabaidur, Saikh Mohammad; Alothman, Zeid Abdullah; Naushad, Mu

    2012-07-01

    Biologically important compound dopamine plays an important role in the central and peripheral nervous systems. Insufficient dopamine level due to the loss of dopamine producing cells may lead to disease called Schizophrenia and Parkinson's disease. Hence, a simple and fast detection of dopamine is necessary to study in the fields of neurophysiology and clinical medicine. An enhanced fluorimetric determination of dopamine in the presence of ascorbic acid is achieved using photoluminescence of europium complex, Eu(III)-dipicolinic acid. In order to obtain better responses, several operational parameters have been investigated. Under the optimum conditions, the method showed good stability and reproducibility. The application of this method for the determination of dopamine neurotransmitters was satisfactory. Linear response was found down to 3.0 × 10(-7)M with limit of detection 1.0 × 10(-8)M. The relative standard deviation was found to be 3.33% from 20 independent measurements for 1.0 × 10(-5)M of dopamine.

  9. Determination of dopamine in pharmaceutical formulation using enhanced luminescence from europium complex

    NASA Astrophysics Data System (ADS)

    Wabaidur, Saikh Mohammad; ALOthman, Zeid Abdullah; Naushad, Mu.

    Biologically important compound dopamine plays an important role in the central and peripheral nervous systems. Insufficient dopamine level due to the loss of dopamine producing cells may lead to disease called Schizophrenia and Parkinson's disease. Hence, a simple and fast detection of dopamine is necessary to study in the fields of neurophysiology and clinical medicine. An enhanced fluorimetric determination of dopamine in the presence of ascorbic acid is achieved using photoluminescence of europium complex, Eu(III)-dipicolinic acid. In order to obtain better responses, several operational parameters have been investigated. Under the optimum conditions, the method showed good stability and reproducibility. The application of this method for the determination of dopamine neurotransmitters was satisfactory. Linear response was found down to 3.0 × 10-7 M with limit of detection 1.0 × 10-8 M. The relative standard deviation was found to be 3.33% from 20 independent measurements for 1.0 × 10-5 M of dopamine.

  10. Endogenous dopamine is involved in the herbicide paraquat-induced dopaminergic cell death.

    PubMed

    Izumi, Yasuhiko; Ezumi, Masayuki; Takada-Takatori, Yuki; Akaike, Akinori; Kume, Toshiaki

    2014-06-01

    The herbicide paraquat is an environmental factor that may be involved in the etiology of Parkinson's disease (PD). Systemic exposure of mice to paraquat causes a selective loss of dopaminergic neurons in the substantia nigra pars compacta, although paraquat is not selectively incorporated in dopaminergic neurons. Here, we report a contribution of endogenous dopamine to paraquat-induced dopaminergic cell death. Exposure of PC12 cells to paraquat (50μM) caused delayed toxicity from 36 h onward. A decline in intracellular dopamine content achieved by inhibiting tyrosine hydroxylase (TH), an enzyme for dopamine synthesis, conferred resistance to paraquat toxicity on dopaminergic cells. Paraquat increased the levels of cytosolic and vesicular dopamine, accompanied by transiently increased TH activity. Quinone derived from cytosolic dopamine conjugates with cysteine residues in functional proteins to form quinoproteins. Formation of quinoprotein was transiently increased early during exposure to paraquat. Furthermore, pretreatment with ascorbic acid, which suppressed the elevations of intracellular dopamine and quinoprotein, almost completely prevented paraquat toxicity. These results suggest that the elevation of cytosolic dopamine induced by paraquat participates in the vulnerability of dopaminergic cells to delayed toxicity through the formation of quinoproteins.

  11. Pramipexole enhances disadvantageous decision-making: Lack of relation to changes in phasic dopamine release.

    PubMed

    Pes, Romina; Godar, Sean C; Fox, Andrew T; Burgeno, Lauren M; Strathman, Hunter J; Jarmolowicz, David P; Devoto, Paola; Levant, Beth; Phillips, Paul E; Fowler, Stephen C; Bortolato, Marco

    2017-03-01

    Pramipexole (PPX) is a high-affinity D2-like dopamine receptor agonist, used in the treatment of Parkinson's disease (PD) and restless leg syndrome. Recent evidence indicates that PPX increases the risk of problem gambling and impulse-control disorders in vulnerable patients. Although the molecular bases of these complications remain unclear, several authors have theorized that PPX may increase risk propensity by activating presynaptic dopamine receptors in the mesolimbic system, resulting in the reduction of dopamine release in the nucleus accumbens (NAcc). To test this possibility, we subjected rats to a probability-discounting task specifically designed to capture the response to disadvantageous options. PPX enhanced disadvantageous decision-making at a dose (0.3 mg/kg/day, SC) that reduced phasic dopamine release in the NAcc. To test whether these modifications in dopamine efflux were responsible for the observed neuroeconomic deficits, PPX was administered in combination with the monoamine-depleting agent reserpine (RES), at a low dose (1 mg/kg/day, SC) that did not affect baseline locomotor and operant responses. Contrary to our predictions, RES surprisingly exacerbated the effects of PPX on disadvantageous decision-making, even though it failed to augment PPX-induced decreases in phasic dopamine release. These results collectively suggest that PPX impairs the discounting of probabilistic losses and that the enhancement in risk-taking behaviors secondary to this drug may be dissociated from dynamic changes in mesolimbic dopamine release.

  12. Increased vesicular monoamine transporter enhances dopamine release and opposes Parkinson disease-related neurodegeneration in vivo.

    PubMed

    Lohr, Kelly M; Bernstein, Alison I; Stout, Kristen A; Dunn, Amy R; Lazo, Carlos R; Alter, Shawn P; Wang, Minzheng; Li, Yingjie; Fan, Xueliang; Hess, Ellen J; Yi, Hong; Vecchio, Laura M; Goldstein, David S; Guillot, Thomas S; Salahpour, Ali; Miller, Gary W

    2014-07-08

    Disruption of neurotransmitter vesicle dynamics (transport, capacity, release) has been implicated in a variety of neurodegenerative and neuropsychiatric conditions. Here, we report a novel mouse model of enhanced vesicular function via bacterial artificial chromosome (BAC)-mediated overexpression of the vesicular monoamine transporter 2 (VMAT2; Slc18a2). A twofold increase in vesicular transport enhances the vesicular capacity for dopamine (56%), dopamine vesicle volume (33%), and basal tissue dopamine levels (21%) in the mouse striatum. The elevated vesicular capacity leads to an increase in stimulated dopamine release (84%) and extracellular dopamine levels (44%). VMAT2-overexpressing mice show improved outcomes on anxiety and depressive-like behaviors and increased basal locomotor activity (41%). Finally, these mice exhibit significant protection from neurotoxic insult by the dopaminergic toxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), as measured by reduced dopamine terminal damage and substantia nigra pars compacta cell loss. The increased release of dopamine and neuroprotection from MPTP toxicity in the VMAT2-overexpressing mice suggest that interventions aimed at enhancing vesicular capacity may be of therapeutic benefit in Parkinson disease.

  13. Increased vesicular monoamine transporter enhances dopamine release and opposes Parkinson disease-related neurodegeneration in vivo

    PubMed Central

    Lohr, Kelly M.; Bernstein, Alison I.; Stout, Kristen A.; Dunn, Amy R.; Lazo, Carlos R.; Alter, Shawn P.; Wang, Minzheng; Li, Yingjie; Fan, Xueliang; Hess, Ellen J.; Yi, Hong; Vecchio, Laura M.; Goldstein, David S.; Guillot, Thomas S.; Salahpour, Ali; Miller, Gary W.

    2014-01-01

    Disruption of neurotransmitter vesicle dynamics (transport, capacity, release) has been implicated in a variety of neurodegenerative and neuropsychiatric conditions. Here, we report a novel mouse model of enhanced vesicular function via bacterial artificial chromosome (BAC)-mediated overexpression of the vesicular monoamine transporter 2 (VMAT2; Slc18a2). A twofold increase in vesicular transport enhances the vesicular capacity for dopamine (56%), dopamine vesicle volume (33%), and basal tissue dopamine levels (21%) in the mouse striatum. The elevated vesicular capacity leads to an increase in stimulated dopamine release (84%) and extracellular dopamine levels (44%). VMAT2-overexpressing mice show improved outcomes on anxiety and depressive-like behaviors and increased basal locomotor activity (41%). Finally, these mice exhibit significant protection from neurotoxic insult by the dopaminergic toxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), as measured by reduced dopamine terminal damage and substantia nigra pars compacta cell loss. The increased release of dopamine and neuroprotection from MPTP toxicity in the VMAT2-overexpressing mice suggest that interventions aimed at enhancing vesicular capacity may be of therapeutic benefit in Parkinson disease. PMID:24979780

  14. Yield Enhancement of a Double-Quantum Filter Sequence Designed for the Edited Detection of GABA

    NASA Astrophysics Data System (ADS)

    Wilman, Alan H.; Allen, Peter S.

    1995-11-01

    To overcome limitations in the signal to noise ratio (S/N) of previously proposed multiple-quantum filters (MQFs), designed for editing the GABA A2multiplet from the creatine (Cr) singlet in proton spectroscopy of brain, a new double-quantum filter is proposed which significantly enhancesS/N(thereby making it comparable with the spin-echo difference editing technique) while maintaining the superior Cr suppression and zero vulnerability to subtraction errors of previously proposed MQFs. TheS/Nenhancement results primarily from a significant reduction in transverse-relaxation losses, achieved by shortening the filter sequence by ∼70%, first by altering the criterion that determines the initial evolution period and, second, by effectively eliminating the refocusing time prior to the start of acquisition. The altered evolution time criterion also leads to an increase in the intrinsic yield of the filter from 25 to 39%. The analysis of the filter design was verifiedin vitroon phantoms of GABA in D2O, and the maintenance of editing capability, i.e., Cr suppression by more than 1600, was demonstrated on rat brain extracts.

  15. Release and effect of gamma-aminobutyric acid (GABA) on rat pineal melatonin production in vitro.

    PubMed

    Rosenstein, R E; Chuluyan, H E; Pereyra, E N; Cardinali, D P

    1989-06-01

    1. 3H-gamma-Aminobutyric acid (GABA) release elicited by a depolarizing K+ stimulus or by noradrenergic transmitter was examined in rat pineals in vitro. 2. The release of 3H-GABA was detectable at a 20 mM K+ concentration in medium and increased steadily up to 80 mM K+. 3. In a Ca2+-free medium 3H-GABA release elicited by 30 mM K+, but not that elicited by 50 mM K+, became blunted. 4. Norepinephrine (NE; 10(-6)-10(-4) M) stimulated 3H-GABA release from rat pineal explants in a dose-dependent manner. 5. The activity of 10(-5) M NE on pineal GABA release was suppressed by equimolecular amounts of prazosin or phentolamine (alpha 1- and alpha 1/alpha 2-adrenoceptor blockers, respectively) and was unaffected by propranolol (beta-adrenoceptor blocker). 6. The alpha 1-adrenoceptor agonist phenylephrine (10(-7)-10(-5) M) and the beta-adrenoceptor agonist isoproterenol (10(-5) M) mimicked the GABA releasing activity of NE, while 10(-7) M isoproterenol failed to affect it; the alpha 2-adrenoceptor agonist clonidine (10(-7)-10(-5) M) did not modify 3H-GABA release. 7. The addition of 10(-4) M GABA or of the GABA transaminase inhibitor gamma-acetylenic GABA or aminooxyacetic acid inhibited the melatonin content and/or release to the medium in rat pineal organotypic cultures. 8. GABA at concentrations of 10(-5) M or greater partially inhibited the NE-induced increase in melatonin production by pineal explants. 9. The depressant effect of GABA on melatonin production was inhibited by the GABA type A receptor antagonist bicuculline; bicuculline alone increased the pineal melatonin content. Baclofen, a GABA type B receptor agonist, did not affect the pineal melatonin content or release. 10. The decrease in serotonin (5-HT) content of rat pineal explants brought about by NE was not modified by GABA; GABA by itself increased 5-HT levels. 11. These results indicate that (a) GABA is released from rat pineals by a depolarizing stimulus of K+ through a mechanism which is partially Ca2

  16. Chaotic behavior in dopamine neurodynamics.

    PubMed Central

    King, R; Barchas, J D; Huberman, B A

    1984-01-01

    We report the results of the dynamics of a model of the central dopaminergic neuronal system. In particular, for certain values of a parameter k, which monitors the efficacy of dopamine at the postsynaptic receptor, chaotic solutions of the dynamical equations appear--a prediction that correlates with the observed increased variability in behavior among schizophrenics, the rapid fluctuations in motor activity among Parkinsonian patients treated chronically with L-dopa, and the lability of mood in some patients with an affective disorder. Moreover our hypothesis offers specific results concerning the appearance or disappearance of erratic solutions as a function of k and the external input to the dopamine neuronal system. PMID:6583705

  17. Chaotic behavior in dopamine neurodynamics.

    PubMed

    King, R; Barchas, J D; Huberman, B A

    1984-02-01

    We report the results of the dynamics of a model of the central dopaminergic neuronal system. In particular, for certain values of a parameter k, which monitors the efficacy of dopamine at the postsynaptic receptor, chaotic solutions of the dynamical equations appear--a prediction that correlates with the observed increased variability in behavior among schizophrenics, the rapid fluctuations in motor activity among Parkinsonian patients treated chronically with L-dopa, and the lability of mood in some patients with an affective disorder. Moreover our hypothesis offers specific results concerning the appearance or disappearance of erratic solutions as a function of k and the external input to the dopamine neuronal system.

  18. Time-course of SKF-81297-induced increase in glutamic acid decarboxylase 65 and 67 mRNA levels in striatonigral neurons and decrease in GABA(A) receptor alpha1 subunit mRNA levels in the substantia nigra, pars reticulata, in adult rats with a unilateral 6-hydroxydopamine lesion.

    PubMed

    Yamamoto, N; Soghomonian, J-J

    2008-06-26

    Striatal projection neurons use GABA as their neurotransmitter and express the rate-limiting synthesizing enzyme glutamic acid decarboxylase (GAD) and the vesicular GABA transporter vGAT. The chronic systemic administration of an agonist of dopamine D1/D5-preferring receptors is known to alter GAD mRNA levels in striatonigral neurons in intact and dopamine-depleted rats. In the present study, the effects of a single or subchronic systemic administration of the dopamine D1/D5-preferring receptor agonist SKF-81297 on GAD65, GAD67, PPD and vGAT mRNA levels in the striatum and GABA(A) receptor alpha1 subunit mRNA levels in the substantia nigra, pars reticulata, were measured in rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion. After a single injection of SKF-81297, striatal GAD65 mRNA levels were significantly increased at 3 but not 72 h. In contrast, striatal GAD67 mRNA levels were increased and nigral alpha1 mRNA levels were decreased at 72 but not 3 h. Single cell analysis on double-labeled sections indicated that increased GAD or vGAT mRNA levels after acute SKF-81297 occurred in striatonigral neurons identified by their lack of preproenkephalin expression. Subchronic SKF-81297 induced significant increases in striatal GAD67, GAD65, preprodynorphin and vGAT mRNA levels and decreases in nigral alpha1 mRNA levels. In the striatum contralateral to the 6-OHDA lesion, subchronic but not acute SKF-81297 induced a significant increase in GAD65 mRNA levels. The other mRNA levels were not significantly altered. Finally, striatal GAD67 mRNA levels were negatively correlated with nigral alpha1 mRNA levels in the dopamine-depleted but not dopamine-intact side. The results suggest that different signaling pathways are involved in the modulation by dopamine D1/D5 receptors of GAD65 and GAD67 mRNA levels in striatonigral neurons. They also suggest that the down-regulation of nigral GABA(A) receptors is linked to the increase in striatal GAD67 mRNA levels in the dopamine

  19. Alcohol interactions with channel activation and desensitization at 5-HT[sub 3] and GABA[sub A] receptors

    SciTech Connect

    Lovinger, D.M.; Zhou, O. )

    1992-01-01

    Ethanol (EtOH) and trichloroethanol (TCEt) potentiate 5-HT[sub 3] receptor-mediated ion current in NCB-20 neuroblastoma cells and nodose ganglion neurons. TCEt potentiates GABA[sub A] receptor-mediated current in dorsal root ganglion neurons. Whole-cell patch-clamp recording was used to examine the interactions of alcohols with current activation and receptor desensitization. Alcohols increased the potency of 5-HT, consistent with an increase in channel activation rate. Current decay rate increased in the presence of alcohols such that potentiation decreased with time following in onset of agonist + alcohol treatment. Potentiation of 5-HT-activated current by EtOH was 61 [plus minus] 17% above control at the start of application but was absent 10 sec after current onset. Agonist pretreatment decreased potentiation by subsequent agonist + alcohol application. Potentiation by TCEt of 5-HT-activated current decreased from 96% above control with simultaneous application of 5-HT + TCEt to 44% after a 30 sec 5-HT treatment. This agonist- and time-dependent loss of potentiation was observed prior to the onset of current decay when low agonist concentrations were used. Agonist pretreatment appears to drive the channel into an alcohol-insensitive. Current activated by GABA + TCEt recovers from desensitization produced by GABA alone more slowly than recovery tested in the absence of TCEt.

  20. Dual effect of GABA on the contractile activity of the guinea-pig isolated urinary bladder.

    PubMed

    Maggi, C A; Santicioli, P; Meli, A

    1985-06-01

    The effects of GABA and related substances were examined in isolated detrusor strips from the dome of the guinea-pig urinary bladder. GABA (0.01-1 mM) produced concentration-related phasic contractions of isolated strips from the guinea-pig urinary bladder dome. This effect of GABA was mimicked by homotaurine and muscimol, selective GABAA receptor agonists but not by (+/-)-baclofen, a selective GABAB receptor agonist. A specific cross desensitization was observed between GABA, homotaurine and muscimol but not between (+/-)-baclofen and GABA. GABA (1 mM)-induced contractions were antagonized by picrotoxin, a selective GABAA receptor antagonist. GABA-induced contractions were almost abolished by tetrodotoxin (0.5 microM, TTX) thus indicating their neurogenic origin. In addition GABA-induced contractions were partially antagonized by atropine (to about the same extent as those produced by dimethylphenylpiperazinium (DMPP), a ganglionic stimulant), but were unaffected by hexamethonium (10 microM), phentolamine (0.2 microM) or indomethacin (5 microM). In the presence of GABA the contractile effect of both DMPP (TTX-sensitive) and acetylcholine (ACh, TTX-insensitive) were significantly reduced. Similar findings were obtained with DMPP, i.e. in preparations exposed to this ganglionic stimulant both GABA- and ACh-induced contractions were depressed. Homotaurine but not (+/-)-baclofen mimicked the depressant effect of GABA on DMPP-induced contractions. The depressant effect of GABA on ACh-induced contractions of the guinea-pig urinary bladder was neurogenic in origin, i.e., was not observed in preparations exposed to TTX. These experiments indicate that GABA has a dual effect on the contractile behaviour of the guinea-pig isolated urinary bladder. Recently it has been proposed that endogenous GABA plays a neuromodulatory role in this organ. Our data suggest that in the early phase of neurogenic activation of detrusor muscle (micturition reflex) GABA might transiently

  1. Benzodiazepine-dependent stabilization of GABA(A) receptors at synapses.

    PubMed

    Gouzer, Géraldine; Specht, Christian G; Allain, Laure; Shinoe, Toru; Triller, Antoine

    2014-11-01

    GABA(A) receptors constitutively enter and exit synapses by lateral diffusion in the plane of the neuronal membrane. They are trapped at synapses through their interactions with gephyrin, the main scaffolding protein at inhibitory post-synaptic densities. Previous work has shown that the synaptic accumulation and diffusion dynamics of GABA(A)Rs are controlled via excitatory synaptic activity. However, it remains unknown whether GABA(A)R activity can itself impact the surface trafficking of the receptors. Here we report the effects of GABA(A)R agonists, antagonists and allosteric modulators on the receptor's surface dynamics. Using immunocytochemistry and single particle tracking experiments on mouse hippocampal neurons, we show that the agonist muscimol decreases GABA(A)R and gephyrin levels at synapses and accelerates the receptor's lateral diffusion within 30–120 min of treatment. In contrast, the GABA(A)R antagonist gabazine increased GABA(A)R amounts and slowed down GABA(A)R diffusion at synapses. The response to GABA(A)R activation or inhibition appears to be an adaptative regulation of GABAergic synapses. Surprisingly, the positive allosteric modulator diazepam abolished the regulation induced by muscimol, and this effect was observed on α1, α2, α5 and γ2 GABA(A)R subunits. Altogether these results indicate that diazepam stabilizes synaptic GABA(A)Rs and thus prevents the agonist-induced regulation of GABA(A)R levels at synapses. This occurred independently of neuronal activity and intracellular calcium and involved GABA(A)R–gephyrin interactions, suggesting that the changes in GABA(A)R diffusion depend on conformational changes of the receptor. Our study provides a new molecular mechanism involved in the adaptative response to changes in GABA(A)R activity and benzodiazepine treatments.

  2. The role of dopamine in risk taking: a specific look at Parkinson’s disease and gambling

    PubMed Central

    Clark, Crystal A.; Dagher, Alain

    2014-01-01

    An influential model suggests that dopamine signals the difference between predicted and experienced reward. In this way, dopamine can act as a learning signal that can shape behaviors to maximize rewards and avoid punishments. Dopamine is also thought to invigorate reward seeking behavior. Loss of dopamine signaling is the major abnormality in Parkinson’s disease. Dopamine agonists have been implicated in the occurrence of impulse control disorders in Parkinson’s disease patients, the most common being pathological gambling, compulsive sexual behavior, and compulsive buying. Recently, a number of functional imaging studies investigating impulse control disorders in Parkinson’s disease have been published. Here we review this literature, and attempt to place it within a decision-making framework in which potential gains and losses are evaluated to arrive at optimum choices. We also provide a hypothetical but still incomplete model on the effect of dopamine agonist treatment on these value and risk assessments. Two of the main brain structures thought to be involved in computing aspects of reward and loss are the ventral striatum (VStr) and the insula, both dopamine projection sites. Both structures are consistently implicated in functional brain imaging studies of pathological gambling in Parkinson’s disease. PMID:24910600

  3. GAT-1 mediated GABA uptake in rat oligodendrocytes.

    PubMed

    Fattorini, Giorgia; Melone, Marcello; Sánchez-Gómez, María Victoria; Arellano, Rogelio O; Bassi, Silvia; Matute, Carlos; Conti, Fiorenzo

    2017-03-01

    Stimulated by the results of a recent paper on the effects of tiagabine, a selective inhibitor of the main GABA transporter GAT-1, on oligodendrogenesis, we verified the possibility that GAT-1 may be expressed in oligodendrocytes using immunocytochemical methods and functional assays. Light microscopic analysis of the subcortical white matter of all animals revealed the presence of numerous GAT-1+ cells of different size (from 3 to 29 µm) and morphology. An electron microscope analysis revealed that, besides fibrous astrocytes and interstitial neurons, GAT-1 immunoreactivity was present in immature and mature oligodendrocytes. Co-localization studies between GAT-1 and markers specific for oligodendrocytes (NG2 and RIP) showed that about 12% of GAT-1 positive cells in the white matter were immature oligodendrocytes, while about 15% were mature oligodendrocytes. In vitro functional assays showed that oligodendrocytes exhibit tiagabine-sensitive Na(+) -dependent GABA uptake. Although relationships between GABA and oligodendrocytes have been known for many years, this is the first demonstration that GAT-1 is expressed in oligodendrocytes. The present results on the one hand definitely closes the era of "neuronal" and "glial" GABA transporters, on the other they suggest that oligodendrocytes may contribute to pathophysiology of the several diseases in which GAT-1 have been implicated to date. GLIA 2017;65:514-522.

  4. Role of proline and GABA in sexual reproduction of angiosperms

    PubMed Central

    Biancucci, Marco; Mattioli, Roberto; Forlani, Giuseppe; Funck, Dietmar; Costantino, Paolo; Trovato, Maurizio

    2015-01-01

    Two glutamate derivatives, proline and γ-aminobutyric acid (GABA), appear to play pivotal roles in different aspects of sexual reproduction in angiosperms, although their precise function in plant reproduction and the molecular basis of their action are not yet fully understood. Proline and GABA have long been regarded as pivotal amino acids in pollen vitality and fertility. Proline may constitute up to 70% of the free amino acid pool in pollen grains and it has been recently shown that Arabidopsis mutants affected in the first and rate-limiting step in proline synthesis produce aberrant and infertile pollen grains, indicating that proline synthesis is required for pollen development and fertility. Concerning GABA, a large body of evidence points to this glutamate derivative as a key determinant of post-pollination fertilization. Intriguingly, proline has also been associated with pollination, another aspect of sexual reproduction, since honeybees were reported to show a strong preference for proline-enriched nectars. In this review, we survey current knowledge on the roles of proline and GABA in plant fertility, and discuss future perspectives potentially capable to improve our understanding on the functions of these amino acids in pollen development, pollination, and pollen tube guidance. PMID:26388884

  5. Novel functions of GABA signaling in adult neurogenesis

    PubMed Central

    PONTES, Adalto; ZHANG, Yonggang; HU, Wenhui

    2013-01-01

    Neurotransmitter gamma-aminobutiric acid (GABA) through ionotropic GABAA and metabotropic GABAB receptors plays key roles in modulating the development, plasticity and function of neuronal networks. GABA is inhibitory in mature neurons but excitatory in immature neurons, neuroblasts and neural stem/progenitor cells (NSCs/NPCs). The switch from excitatory to inhibitory occurs following the development of glutamatergic synaptic input and results from the dynamic changes in the expression of Na+/K+/2Cl− co-transporter NKCC1 driving Cl− influx and neuron-specific K+/Cl− co-transporter KCC2 driving Cl− efflux. The developmental transition of KCC2 expression is regulated by Disrupted-in-Schizophrenia 1 (DISC1) and brain-derived neurotrophic factor (BDNF) signaling. The excitatory GABA signaling during early neurogenesis is important to the activity/experience-induced regulation of NSC quiescence, NPC proliferation, neuroblast migration and newborn neuronal maturation/functional integration. The inhibitory GABA signaling allows for the sparse and static functional networking essential for learning/memory development and maintenance. PMID:24285940

  6. Action of tremorgenic mycotoxins on GABA/sub A/ receptor

    SciTech Connect

    Gant, D.B.; Cole, R.J.; Valdes, J.J.; Eldefrawi, M.E.; Eldefrawi, A.T.

    1987-11-09

    The effects of four tremorgenic and one nontremorgenic mycotoxins were studied on ..gamma..-aminobutyric acid (GABA/sub A/) receptor binding and function in rat brain and on binding of a voltage-operated Cl/sup -/ channel in Torpedo electric organ. None of the mycotoxins had significant effect on (/sup 3/H)muscimol or (/sup 3/H)flunitrazepam binding to the GAMA/sup A/ receptor. However, only the four tremorgenic mycotoxins inhibited GABA-induced /sup 36/Cl/sup -/ influx and (/sup 35/S)t-butylbicyclophosphorothionate ((/sup 35/S)TBPS) binding in rate brain membranes, while the nontremorgenic verruculotoxin had no effect. Inhibition of (/sup 35/S)TBPS binding by paspalinine was non-competitive. This suggests that tremorgenic mycotoxins inhibit GABA/sub A/ receptor function by binding close to the receptor's Cl/sup -/ channel. On the voltage-operated Cl/sup -/ channel, only high concentrations of verruculogen and verruculotoxin caused significant inhibition of the channel's binding of (/sup 35/S)TBPS. The data suggest that the tremorgenic action of these mycotoxins may be due in part to their inhibition of GABA/sub A/ receptor function. 21 references, 4 figures, 2 tables.

  7. Cocaine inhibition of GABA(A) current: role of dephosphorylation.

    PubMed

    Ye, Jiang-Hong; Ren, Jun

    2006-01-01

    Acute cocaine toxicity is frequently associated with seizures. The mechanisms underlying the convulsant effect of cocaine are not well understood. Previously, we have shown that cocaine depresses whole-cell current evoked by gamma-aminobutyric acid (GABA) in hippocampal neurons freshly isolated from rats. Cocaine's effect was voltage-independent and concentration-dependent. In the present study, using whole-cell patch-clamp recording on rat neurons freshly isolated from hippocampus, we examined the intracellular mechanisms involved in cocaine's action. Increasing intracellular Ca(2+) concentration ([Ca]i) from 0.01 to 5 microM strongly increased the depressant effect of cocaine. By contrast, 1-[N, O-bis (5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine (KN-62), a specific antagonist of Ca/calmodulin-dependent protein kinase (CaMKII), attenuated or enhanced cocaine's action in different neurons: in three out of nine neurons dialysed with 5 microM KN-62,1 mM cocaine depressed GABA current by only 33%, but in another three out of nine neurons, cocaine depressed GABA current by as much as 83%. Chelerythrine (a specific CaCa(2+)/phospholipid-dependent protein kinase C [PKC] antagonist) had minimal effect on cocaine's action. We suggest that cocaine induces an increase in [Ca]i, which stimulates phosphatase activity and thus leads to dephosphorylation of GABA receptors. This dephosphorylation-mediated disinhibitory action may play a role in cocaine-induced convulsant states.

  8. Ionotropic GABA Receptors and Distal Retinal ON and OFF Responses

    PubMed Central

    Popova, E.

    2014-01-01

    In the vertebrate retina, visual signals are segregated into parallel ON and OFF pathways, which provide information for light increments and decrements. The segregation is first evident at the level of the ON and OFF bipolar cells in distal retina. The activity of large populations of ON and OFF bipolar cells is reflected in the b- and d-waves of the diffuse electroretinogram (ERG). The role of gamma-aminobutyric acid (GABA), acting through ionotropic GABA receptors in shaping the ON and OFF responses in distal retina, is a matter of debate. This review summarized current knowledge about the types of the GABAergic neurons and ionotropic GABA receptors in the retina as well as the effects of GABA and specific GABAA and GABAC receptor antagonists on the activity of the ON and OFF bipolar cells in both nonmammalian and mammalian retina. Special emphasis is put on the effects on b- and d-waves of the ERG as a useful tool for assessment of the overall function of distal retinal ON and OFF channels. The role of GABAergic system in establishing the ON-OFF asymmetry concerning the time course and absolute and relative sensitivity of the ERG responses under different conditions of light adaptation in amphibian retina is also discussed. PMID:25143858

  9. Arabidopsis aldehyde dehydrogenase 10 family members confer salt tolerance through putrescine-derived 4-aminobutyrate (GABA) production

    PubMed Central

    Zarei, Adel; Trobacher, Christopher P.; Shelp, Barry J.

    2016-01-01

    Polyamines represent a potential source of 4-aminobutyrate (GABA) in plants exposed to abiotic stress. Terminal catabolism of putrescine in Arabidopsis thaliana involves amine oxidase and the production of 4-aminobutanal, which is a substrate for NAD+-dependent aminoaldehyde dehydrogenase (AMADH). Here, two AMADH homologs were chosen (AtALDH10A8 and AtALDH10A9) as candidates for encoding 4-aminobutanal dehydrogenase activity for GABA synthesis. The two genes were cloned and soluble recombinant proteins were produced in Escherichia coli. The pH optima for activity and catalytic efficiency of recombinant AtALDH10A8 with 3-aminopropanal as substrate was 10.5 and 8.5, respectively, whereas the optima for AtALDH10A9 were approximately 9.5. Maximal activity and catalytic efficiency were obtained with NAD+ and 3-aminopropanal, followed by 4-aminobutanal; negligible activity was obtained with betaine aldehyde. NAD+ reduction was accompanied by the production of GABA and β-alanine, respectively, with 4-aminobutanal and 3-aminopropanal as substrates. Transient co-expression systems using Arabidopsis cell suspension protoplasts or onion epidermal cells and several organelle markers revealed that AtALDH10A9 was peroxisomal, but AtALDH10A8 was cytosolic, although the N-terminal 140 amino acid sequence of AtALDH10A8 localized to the plastid. Root growth of single loss-of-function mutants was more sensitive to salinity than wild-type plants, and this was accompanied by reduced GABA accumulation. PMID:27725774

  10. GABA mediated excitation in immature rat CA3 hippocampal neurons.

    PubMed

    Cherubini, E; Rovira, C; Gaiarsa, J L; Corradetti, R; Ben Ari, Y

    1990-01-01

    Intracellular recordings from rat hippocampal neurons in vitro during the first postnatal week revealed the presence of spontaneous giant depolarizing potentials (GDPs). These were generated by the synchronous discharge of a population of neurons. GDPs reversed polarity at -27 and -51 mV when recorded with KCl or K-methylsulphate filled electrodes, respectively. GDPs were blocked by the GABAA receptor antagonist bicuculline (10 microM). Iontophoretic or bath applications of GABA (10-300 microM) in the presence of tetrodotoxin (1 microM), induced a membrane depolarization or in voltage clamp experiments an inward current which reversed polarity at the same potential as GDPs. The response to GABA was blocked in a non-competitive manner by bicuculline (10 microM) and did not desensitize. GABA mediated GDPs were presynaptically modulated by N-methyl-D-aspartate (NMDA) and non-NMDA receptors. Their frequency was reduced or blocked by NMDA receptor antagonists and by the rather specific non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). The frequency of GDPs was enhanced by glycine and D-serine (10-30 microM) in a strychnine insensitive manner. This effect was blocked by AP-5, suggesting that it was mediated by the allosteric modulatory site of the NMDA receptor. These observations suggest that most of the 'excitatory' drive in immature neurons is mediated by GABA acting on GABAA receptors; furthermore excitatory amino acids modulate the release of GABA by a presynaptic action on GABAergic interneurons.

  11. Unsaturated phosphinic analogues of gamma-aminobutyric acid as GABA(C) receptor antagonists.

    PubMed

    Chebib, M; Vandenberg, R J; Froestl, W; Johnston, G A

    1997-06-25

    The phosphinic and methylphosphinic analogues of gamma-aminobutyric acid (GABA) are potent GABA(C) receptor antagonists but are even more potent as GABA(B) receptor agonists. Conformationally restricted unsaturated phosphinic and methylphosphinic analogues of GABA and some potent GABA(B) receptor phosphonoamino acid antagonists were tested on GABA(C) receptors in Xenopus oocytes expressing human retinal rho1 mRNA. 3-Aminopropyl-n-butyl-phosphinic acid (CGP36742), an orally active GABA(B) receptor antagonist, was found to be a moderately potent GABA(C) receptor antagonist (IC50 = 62 microM). The unsaturated methylphosphinic and phosphinic analogues of GABA were competitive antagonists of the GABA(C) receptors, the order of potency being [(E)-3-aminopropen-1-yl]methylphosphinic acid (CGP44530, IC50 = 5.53 microM) > [(E)-3-aminopropen-1-yl]phosphinic acid (CGP38593, IC50 = 7.68 microM) > [(Z)-3-aminopropen-1-yl]methylphosphinic acid (CGP70523, IC50 = 38.94 microM) > [(Z)-3-aminopropen-1-yl]phosphinic acid (CGP70522, IC50 > 100 microM). This order of potency differs from that reported for these compounds as GABA(B) receptor agonists, where the phosphinic acids are more potent than the corresponding methylphosphinic acids.

  12. Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms.

    PubMed

    dela Peña, Ike; Gevorkiana, Ruzanna; Shi, Wei-Xing

    2015-10-05

    The precise mechanisms by which cocaine and amphetamine-like psychostimulants exert their reinforcing effects are not yet fully defined. It is widely believed, however, that these drugs produce their effects by enhancing dopamine neurotransmission in the brain, especially in limbic areas such as the nucleus accumbens, by inducing dopamine transporter-mediated reverse transport and/or blocking dopamine reuptake though the dopamine transporter. Here, we present the evidence that aside from dopamine transporter, non-dopamine transporter-mediated mechanisms also participate in psychostimulant-induced dopamine release and contribute to the behavioral effects of these drugs, such as locomotor activation and reward. Accordingly, psychostimulants could increase norepinephrine release in the prefrontal cortex, the latter then alters the firing pattern of dopamine neurons resulting in changes in action potential-dependent dopamine release. These alterations would further affect the temporal pattern of dopamine release in the nucleus accumbens, thereby modifying information processing in that area. Hence, a synaptic input to a nucleus accumbens neuron may be enhanced or inhibited by dopamine depending on its temporal relationship to dopamine release. Specific temporal patterns of dopamine release may also be required for certain forms of synaptic plasticity in the nucleus accumbens. Together, these effects induced by psychostimulants, mediated through a non-dopamine transporter-mediated mechanism involving norepinephrine and the prefrontal cortex, may also contribute importantly to the reinforcing properties of these drugs.

  13. On the pH-dependent quenching of quantum dot photoluminescence by redox active dopamine.

    PubMed

    Ji, Xin; Palui, Goutam; Avellini, Tommaso; Na, Hyon Bin; Yi, Chongyue; Knappenberger, Kenneth L; Mattoussi, Hedi

    2012-04-04

    We investigated the charge transfer interactions between luminescent quantum dots (QDs) and redox active dopamine. For this, we used pH-insensitive ZnS-overcoated CdSe QDs rendered water-compatible using poly (ethylene glycol)-appended dihydrolipoic acid (DHLA-PEG), where a fraction of the ligands was amine-terminated to allow for controlled coupling of dopamine-isothiocyanate onto the nanocrystal. Using this sample configuration, we probed the effects of changing the density of dopamine and the buffer pH on the fluorescence properties of these conjugates. Using steady-state and time-resolved fluorescence, we measured a pronounced pH-dependent photoluminescence (PL) quenching for all QD-dopamine assemblies. Several parameters affect the PL loss. First, the quenching efficiency strongly depends on the number of dopamines per QD-conjugate. Second, the quenching efficiency is substantially increased in alkaline buffers. Third, this pH-dependent PL loss can be completely eliminated when oxygen-depleted buffers are used, indicating that oxygen plays a crucial role in the redox activity of dopamine. We attribute these findings to charge transfer interactions between QDs and mainly two forms of dopamine: the reduced catechol and oxidized quinone. As the pH of the dispersions is changed from acidic to basic, oxygen-catalyzed transformation progressively reduces the dopamine potential for oxidation and shifts the equilibrium toward increased concentration of quinones. Thus, in a conjugate, a QD can simultaneously interact with quinones (electron acceptors) and catechols (electron donors), producing pH-dependent PL quenching combined with shortening of the exciton lifetime. This also alters the recombination kinetics of the electron and hole of photoexcited QDs. Transient absorption measurements that probed intraband transitions supported those findings where a simultaneous pronounced change in the electron and hole relaxation rates was measured when the pH was changed from

  14. GAD67-mediated GABA synthesis and signaling regulate inhibitory synaptic innervation in the visual cortex.

    PubMed

    Chattopadhyaya, Bidisha; Di Cristo, Graziella; Wu, Cai Zhi; Knott, Graham; Kuhlman, Sandra; Fu, Yu; Palmiter, Richard D; Huang, Z Josh

    2007-06-21

    The development of GABAergic inhibitory circuits is shaped by neural activity, but the underlying mechanisms are unclear. Here, we demonstrate a novel function of GABA in regulating GABAergic innervation in the adolescent brain, when GABA is mainly known as an inhibitory transmitter. Conditional knockdown of the rate-limiting synthetic enzyme GAD67 in basket interneurons in adolescent visual cortex resulted in cell autonomous deficits in axon branching, perisomatic synapse formation around pyramidal neurons, and complexity of the innervation fields; the same manipulation had little influence on the subsequent maintenance of perisomatic synapses. These effects of GABA deficiency were rescued by suppressing GABA reuptake and by GABA receptor agonists. Germline knockdown of GAD67 but not GAD65 showed similar deficits, suggesting a specific role of GAD67 in the maturation of perisomatic innervation. Since intracellular GABA levels are modulated by neuronal activity, our results implicate GAD67-mediated GABA synthesis in activity-dependent regulation of inhibitory innervation patterns.

  15. The endogenous GABA bioactivity of camel, bovine, goat and human milks.

    PubMed

    Limon, Agenor; Gallegos-Perez, Jose-Luis; Reyes-Ruiz, Jorge M; Aljohi, Mohammad A; Alshanqeeti, Ali S; Miledi, Ricardo

    2014-02-15

    GABA orally administered has several beneficial effects on health, including the regulation of hyperglycaemic states in humans. Those effects are similar to the effects reported for camel milk (CMk); however, it is not known whether compounds with GABAergic activity are present in milk from camels or other species. We determined CMk free-GABA concentration by LS/MS and its bioactivity on human GABA receptors. We found that camel and goat milks have significantly more bioavailable GABA than cow and human milks and are able to activate GABAρ receptors. The relationship between GABA and taurine concentrations suggests that whole camel milk may be more efficient to activate GABAρ1 receptors than goat milk. Because GABAρ receptors are normally found in enteroendocrine cells in the lumen of the digestive tract, these results suggest that GABA in camel and goat milk may participate in GABA-modulated functions of enteroendocrine cells in the GI lumen.

  16. GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters.

    PubMed

    Ramesh, Sunita A; Tyerman, Stephen D; Xu, Bo; Bose, Jayakumar; Kaur, Satwinder; Conn, Vanessa; Domingos, Patricia; Ullah, Sana; Wege, Stefanie; Shabala, Sergey; Feijó, José A; Ryan, Peter R; Gilliham, Matthew; Gillham, Matthew

    2015-07-29

    The non-protein amino acid, gamma-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to biotic and abiotic stress, and regulates plant growth. Until now it was not known whether GABA exerts its effects in plants through the regulation of carbon metabolism or via an unidentified signalling pathway. Here, we demonstrate that anion flux through plant aluminium-activated malate transporter (ALMT) proteins is activated by anions and negatively regulated by GABA. Site-directed mutagenesis of selected amino acids within ALMT proteins abolishes GABA efficacy but does not alter other transport properties. GABA modulation of ALMT activity results in altered root growth and altered root tolerance to alkaline pH, acid pH and aluminium ions. We propose that GABA exerts its multiple physiological effects in plants via ALMT, including the regulation of pollen tube and root growth, and that GABA can finally be considered a legitimate signalling molecule in both the plant and animal kingdoms.

  17. Local GABA Concentration Predicts Perceptual Improvements After Repetitive Sensory Stimulation in Humans.

    PubMed

    Heba, Stefanie; Puts, Nicolaas A J; Kalisch, Tobias; Glaubitz, Benjamin; Haag, Lauren M; Lenz, Melanie; Dinse, Hubert R; Edden, Richard A E; Tegenthoff, Martin; Schmidt-Wilcke, Tobias

    2016-03-01

    Learning mechanisms are based on synaptic plasticity processes. Numerous studies on synaptic plasticity suggest that the regulation of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) plays a central role maintaining the delicate balance of inhibition and excitation. However, in humans, a link between learning outcome and GABA levels has not been shown so far. Using magnetic resonance spectroscopy of GABA prior to and after repetitive tactile stimulation, we show here that baseline GABA+ levels predict changes in perceptual outcome. Although no net changes in GABA+ are observed, the GABA+ concentration prior to intervention explains almost 60% of the variance in learning outcome. Our data suggest that behavioral effects can be predicted by baseline GABA+ levels, which provide new insights into the role of inhibitory mechanisms during perceptual learning.

  18. Photorelease of GABA with Visible Light Using an Inorganic Caging Group

    PubMed Central

    Rial Verde, Emiliano M.; Zayat, Leonardo; Etchenique, Roberto; Yuste, Rafael

    2008-01-01

    We describe the selective photorelease of γ-amino butyric acid (GABA) with a novel caged-GABA compound that uses a ruthenium complex as photosensor. This compound (“RuBi-GABA”) can be excited with visible wavelengths, providing greater tissue penetration, less photo-toxicity, and faster photorelease kinetics than currently used UV light-sensitive caged compounds. Using pyramidal neurons from neocortical brain slices, we show that RuBi-GABA uncaging induces GABA-A receptor-mediated responses, has no detectable side effects on endogenous GABAergic and glutamatergic receptors and generates responses with kinetics and spatial resolution comparable to the best caged GABA compounds presently available. Finally, we illustrate two potential applications of RuBi-GABA uncaging: GABA receptor mapping, and optical silencing of neuronal firing. PMID:18946542

  19. Different transporter systems regulate extracellular GABA from vesicular and non-vesicular sources

    PubMed Central

    Song, Inseon; Volynski, Kirill; Brenner, Tanja; Ushkaryov, Yuri; Walker, Matthew; Semyanov, Alexey

    2013-01-01

    Tonic GABA type A (GABAA) conductance is a key factor regulating neuronal excitability and computation in neuronal networks. The magnitude of the tonic GABAA conductance depends on the concentration of ambient GABA originating from vesicular and non-vesicular sources and is tightly regulated by GABA uptake. Here we show that the transport system regulating ambient GABA responsible for tonic GABAA conductances in hippocampal CA1 interneurons depends on its source. In mice, GABA from vesicular sources is regulated by mouse GABA transporter 1 (mGAT1), while that from non-vesicular sources by mouse GABA transporters 3/4 (mGAT3/4). This finding suggests that the two transporter systems do not just provide backup for each other, but regulate distinct signaling pathways. This allows individual tuning of the two signaling systems and indicates that drugs designed to act at specific transporters will have distinct therapeutic actions. PMID:23494150

  20. 3H-GABA uptake selectively labels identifiable neurons in the leech central nervous system

    SciTech Connect

    Cline, H.T.

    1983-04-10

    Segmental ganglia of the leech ventral nerve cord synthesize the neurotransmitter gamma-aminobutyric acid (GABA) when incubated in the presence of the precursor glutamate, suggesting that there may be GABA-ergic neurons in the leech nerve cord. GABA-accumulating neurons of the two taxonomically distant leech species, Haementeria ghilianii and Hirudo medicinalis, have been labeled by taking advantage of their high-affinity uptake system for the neurotransmitter. Autoradiography of sectioned segmental ganglia previously exposed to 3H-GABA reveals a reproducible pattern of about thirty 3H-GABA-labeled neuronal cell bodies per ganglion. The majority of 3H-GABA-labeled neuronal cell bodies are bilaterally paired, although some apparently unpaired cell bodies also accumulate label. Neuronal processes were reproducibly labeled by GABA uptake and could be traced in the neuropil through commissures and fiber tracts into the segmental nerve roots and interganglionic connectives, respectively.

  1. The role of GABA in the regulation of GnRH neurons

    PubMed Central

    Watanabe, Miho; Fukuda, Atsuo; Nabekura, Junichi

    2014-01-01

    Gonadotropin-releasing hormone (GnRH) neurons form the final common pathway for the central regulation of reproduction. Gamma-amino butyric acid (GABA) has long been implicated as one of the major players in the regulation of GnRH neurons. Although GABA is typically an inhibitory neurotransmitter in the mature adult central nervous system, most mature GnRH neurons show the unusual characteristic of being excited by GABA. While many reports have provided much insight into the contribution of GABA to the activity of GnRH neurons, the precise physiological role of the excitatory action of GABA on GnRH neurons remains elusive. This brief review presents the current knowledge of the role of GABA signaling in GnRH neuronal activity. We also discuss the modulation of GABA signaling by neurotransmitters and neuromodulators and the functional consequence of GABAergic inputs to GnRH neurons in both the physiology and pathology of reproduction. PMID:25506316

  2. Prejunctional GABA-B inhibition of cholinergic, neurally-mediated airway contractions in guinea-pigs.

    PubMed

    Chapman, R W; Danko, G; Rizzo, C; Egan, R W; Mauser, P J; Kreutner, W

    1991-01-01

    GABA is a known inhibitory neurotransmitter in the CNS. Recent studies have also demonstrated the presence of GABA in peripheral tissue, including lung. To delineate a role for GABA in lung, the effect of GABA and selective GABA agonists and antagonists on neuronally-induced airway contractions in guinea pigs were studied. In vitro, tracheal contractions induced by electrical field stimulation (EFS) were inhibited by tetrodotoxin and atropine indicating that the contractions were mediated by neuronal release of acetylcholine. The contractions caused by EFS, but not those by exogenous acetylcholine, were inhibited by GABA (EC50 = 4.5 microM) and the selective GABA-B agonist baclofen (EC50 = 9 microM), but not by the GABA-A agonist, muscimol. The inhibitory effect of baclofen was not affected by the GABA-A antagonist, bicuculline, but was significantly reversed with the GABA-B antagonists, 3-aminopropylphosphonic acid (3-APPA) (pA2 = 4.5) and 2-hydroxysaclofen (pA2 = 4.1). In vivo, vagal nerve stimulation (5 V, 20 Hz, 0.5 ms, 5 s) in anesthetized, mechanically ventilated guinea-pigs caused cholinergic-dependent bronchospasms that were inhibited by intravenous GABA (3 and 10 mg/kg) and baclofen (1-10 mg/kg), but not by muscimol. The inhibitory effects of GABA and baclofen against vagal bronchospasm were blocked by 3-APPA (5 mg/kg, i.v.), but not by bicuculline. Responses to the GABA-B agonists were unaltered after the treatment of animals with phentolamine or propranolol to block alpha-adrenergic and beta-adrenergic receptors, respectively. Bronchospasm due to intravenous methacholine was also unchanged by GABA and baclofen.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Evidence for a Revised Ion/Substrate Coupling Stoichiometry of GABA Transporters.

    PubMed

    Willford, Samantha L; Anderson, Cynthia M; Spencer, Shelly R; Eskandari, Sepehr

    2015-08-01

    Plasma membrane γ-aminobutyric acid (GABA) transporters (GATs) are electrogenic transport proteins that couple the cotranslocation of Na(+), Cl(-), and GABA across the plasma membrane of neurons and glia. A fundamental property of the transporter that determines its ability to concentrate GABA in cells and, hence, regulate synaptic and extra-synaptic GABA concentrations, is the ion/substrate coupling stoichiometry. Here, we scrutinized the currently accepted 2 Na(+):1 Cl(-):1 GABA stoichiometry because it is inconsistent with the measured net charge translocated per co-substrate (Na(+), Cl(-), and GABA). We expressed GAT1 and GAT3 in Xenopus laevis oocytes and utilized thermodynamic and uptake under voltage-clamp measurements to determine the stoichiometry of the GABA transporters. Voltage-clamped GAT1-expressing oocytes were internally loaded with GABA, and the reversal potential (V rev) of the transporter-mediated current was recorded at different external concentrations of Na(+), Cl(-), or GABA. The shifts in V rev for a tenfold change in the external Na(+), Cl(-), and GABA concentration were 84 ± 4, 30 ± 1, and 29 ± 1 mV, respectively. To determine the net charge translocated per Na(+), Cl(-), and GABA, we measured substrate fluxes under voltage clamp in cells expressing GAT1 or GAT3. Charge flux to substrate flux ratios were 0.7 ± 0.1 charge/Na(+), 2.0 ± 0.2 charges/Cl(-), and 2.1 ± 0.1 charges/GABA. Altogether, our results strongly suggest a 3 Na(+):1 Cl(-):1 GABA coupling stoichiometry for the GABA transporters. The revised stoichiometry has important implications for understanding the contribution of GATs to GABAergic signaling in health and disease.

  4. Effect of various GABA-receptor agonists and antagonists on anaphylactic histamine release in the guinea-pig ileum.

    PubMed

    Luzzi, S; Franchi-Micheli, S; Ciuffi, M; Rosi, E; Zilletti, L

    1987-04-01

    In this paper we confirm the previously reported inhibition by GABA of anaphylactic histamine release from isolated guinea-pig ileum longitudinal muscle. Moreover we report that: GABA-inhibition of anaphylactic histamine release is mimicked both by GABA-A and GABA-B agonists; both GABA-A and GABA-B antagonists are effective in reversing GABA's inhibitory effect; the effect is exerted specifically by GABA-ergic drugs: taurine and beta-alanine are ineffective; the GABA-ergic effect seems not to involve cholinergic and adrenergic transmission. It is concluded that it might be interesting to assess the clinical value of GABA-ergic drugs in allergic gut disorders.

  5. The activation of cannabinoid receptors in striatonigral GABAergic neurons inhibited GABA uptake.

    PubMed

    Romero, J; de Miguel, R; Ramos, J A; Fernández-Ruiz, J J

    1998-01-01

    Cannabinoid receptors (CNRs) in basal ganglia are located on striatal efferent neurons which are gamma-aminobutiric acid (GABA)-containing neurons. Recently, we have demonstrated that CN-induced motor inhibition is reversed by GABA-B, but not GABA-A, receptor antagonists, presumably indicating that the activation of CNRs in striatal outflow nuclei, mainly in the substantia nigra, should be followed by an increase of GABA concentrations into the synaptic cleft of GABA-B receptor synapses. The present study was designed to examine whether this was originated by increasing GABA synthesis and/or release or by decreasing GABA uptake. We analyzed: (i) GABA synthesis, by measuring the activity of glutamic acid decarboxylase (GAD) and GABA contents in brain regions that contain striatonigral GABAergic neurons, after in vivo administration of CNs and/or the CNR antagonist SR141716; (ii) [3H]GABA release in vitro in the presence or the absence of a synthetic CN agonist, HU-210, by using perifusion of small fragments of substantia nigra; and (iii) [3H]GABA uptake in vitro in the presence or the absence of WIN-55,212-2, by using synaptosomes obtained from either globus pallidus or substantia nigra. Results were as follows. Delta9-tetrahydrocannabinol (delta9-THC) and HU-210, did not alter neither GAD activity nor GABA contents in both the striatum and the ventral midbrain at any of the two times tested, thus suggesting that CNs apparently failed to change GABA synthesis in striatonigral GABAergic neurons. A similar lack of effect of HU-210 on in vitro [3H]GABA release, both basal and K+-evoked, was seen when this CN was added to perifused substantia nigra fragments, also suggesting no changes at the level of GABA release. However, when synaptosome preparations obtained from the substantia nigra were incubated in the presence of WIN-55,212-2, a decrease in [3H]GABA uptake could be measured. This lowering effect was specific of striatonigral GABAergic neurons since it was not

  6. Physiological bases of the K+ and the glutamate/GABA hypotheses of epilepsy

    PubMed Central

    DiNuzzo, Mauro; Mangia, Silvia; Maraviglia, Bruno; Giove, Federico

    2016-01-01

    Epilepsy is a heterogeneous family of neurological disorders that manifest as seizures, i.e. the hypersynchronous activity of large population of neurons. About 30% of epileptic patients do not respond to currently available antiepileptic drugs. Decades of intense research have elucidated the involvement of a number of possible signaling pathways, however, at present we do not have a fundamental understanding of epileptogenesis. In this paper, we review the literature on epilepsy under a wide-angle perspective, a mandatory choice that responds to the recurrent and unanswered question about what is epiphenomenal and what is causal to the disease. While focusing on the involvement of K+ and glutamate/GABA in determining neuronal hyperexcitability, emphasis is given to astrocytic contribution to epileptogenesis, and especially to loss-of-function of astrocytic glutamine synthetase following reactive astrogliosis, a hallmark of epileptic syndromes. We finally introduce the potential involvement of abnormal glycogen synthesis induced by excess glutamate in increasing susceptibility to seizures. PMID:24818957

  7. Effects of dopamine on LC3-II activation as a marker of autophagy in a neuroblastoma cell model.

    PubMed

    Giménez-Xavier, Pol; Francisco, Roser; Santidrián, Antonio F; Gil, Joan; Ambrosio, Santiago

    2009-07-01

    Dopamine at 100-500 microM has toxic effects on human SH-SY5Y neuroblastoma cells, manifested as apoptotic cell loss and strong autophagy. The molecular mechanisms and types of dopamine-induced cell death are not yet well known. Their identification is important in the study of neurodegenerative diseases that specifically involve dopaminergic neurons. We looked for changes in expression and content of proteins involved in apoptosis and autophagy after dopamine treatment. All the changes found were prevented by avoiding dopamine oxidation with N-acetylcysteine, indicating a key role for the products of dopamine oxidation in dopamine toxicity. As early as 1-2h after treatment we found an increase in hypoxia-inducible factor-1alpha (HIF-1alpha) and an accumulation of ubiquitinated proteins. Proteins regulated by HIF-1alpha and involved in apoptosis and/or autophagy, such as p53, Puma and Bnip3, were subsequently increased. However, apoptotic parameters (caspase-3, caspase-7, PARP) were only activated after 12h of 500muM dopamine treatment. Autophagy, monitored by the LC3-II increase after LC3-I linkage to autophagic vacuoles, was evident after 6h of treatment with both 100 and 500 microM dopamine. The mTOR pathway was inhibited by dopamine, probably due to the intracellular redox changes and energy depletion leading to AMPK activation. However, this mechanism is not sufficient to explain the high LC3-II activation caused by dopamine: the LC3-II increase was not reversed by IGF-1, which prevented this effect when caused by the mTOR inhibitor rapamycin. Our results suggest that the aggregation of ubiquitinated non-degraded proteins may be the main cause of LC3-II activation and autophagy. As we have reported previously, cytosolic dopamine may cause damage by autophagy in neuroblastoma cells (and presumably in dopaminergic neurons), which develops to apoptosis and leads to cell degeneration.

  8. The Transfection of BDNF to Dopamine Neurons Potentiates the Effect of Dopamine D3 Receptor Agonist Recovering the Striatal Innervation, Dendritic Spines and Motor Behavior in an Aged Rat Model of Parkinson’s Disease

    PubMed Central

    Razgado-Hernandez, Luis F.; Espadas-Alvarez, Armando J.; Reyna-Velazquez, Patricia; Sierra-Sanchez, Arturo; Anaya-Martinez, Veronica; Jimenez-Estrada, Ismael; Bannon, Michael J.; Martinez-Fong, Daniel; Aceves-Ruiz, Jorge

    2015-01-01

    The progressive degeneration of the dopamine neurons of the pars compacta of substantia nigra and the consequent loss of the dopamine innervation of the striatum leads to the impairment of motor behavior in Parkinson’s disease. Accordingly, an efficient therapy of the disease should protect and regenerate the dopamine neurons of the substantia nigra and the dopamine innervation of the striatum. Nigral neurons express Brain Derived Neurotropic Factor (BDNF) and dopamine D3 receptors, both of which protect the dopamine neurons. The chronic activation of dopamine D3 receptors by their agonists, in addition, restores, in part, the dopamine innervation of the striatum. Here we explored whether the over-expression of BDNF by dopamine neurons potentiates the effect of the activation of D3 receptors restoring nigrostriatal innervation. Twelve-month old Wistar rats were unilaterally injected with 6-hydroxydopamine into the striatum. Five months later, rats were treated with the D3 agonist 7-hydroxy-N,N-di-n-propy1-2-aminotetralin (7-OH-DPAT) administered i.p. during 4½ months via osmotic pumps and the BDNF gene transfection into nigral cells using the neurotensin-polyplex nanovector (a non-viral transfection) that selectively transfect the dopamine neurons via the high-affinity neurotensin receptor expressed by these neurons. Two months after the withdrawal of 7-OH-DPAT when rats were aged (24 months old), immunohistochemistry assays were made. The over-expression of BDNF in rats receiving the D3 agonist normalized gait and motor coordination; in addition, it eliminated the muscle rigidity produced by the loss of dopamine. The recovery of motor behavior was associated with the recovery of the nigral neurons, the dopamine innervation of the striatum and of the number of dendritic spines of the striatal neurons. Thus, the over-expression of BDNF in dopamine neurons associated with the chronic activation of the D3 receptors appears to be a promising strategy for restoring

  9. Distinctive striatal dopamine signaling after dieting and gastric bypass.

    PubMed

    Hankir, Mohammed K; Ashrafian, Hutan; Hesse, Swen; Horstmann, Annette; Fenske, Wiebke K

    2015-05-01

    Highly palatable and/or calorically dense foods, such as those rich in fat, engage the striatum to govern and set complex behaviors. Striatal dopamine signaling has been implicated in hedonic feeding and the development of obesity. Dieting and bariatric surgery have markedly different outcomes on weight loss, yet how these interventions affect central homeostatic and food reward processing remains poorly understood. Here, we propose that dieting and gastric bypass produce distinct changes in peripheral factors with known roles in regulating energy homeostasis, resulting in differential modulation of nigrostriatal and mesolimbic dopaminergic reward circuits. Enhancement of intestinal fat metabolism after gastric bypass may also modify striatal dopamine signaling contributing to its unique long-term effects on feeding behavior and body weight in obese individuals.

  10. At immature mossy fibers-CA3 connections, activation of presynaptic GABA(B) receptors by endogenously released GABA contributes to synapses silencing.

    PubMed

    Safiulina, Victoria F; Cherubini, Enrico

    2009-01-01

    Early in postnatal life correlated GABAergic activity in the hippocampus is thought to play a crucial role in synaptogenesis and in the development of adult neuronal networks. Unlike adulthood, at this developmental stage, mossy fibers (MF) which are the axons of granule cells, release GABA into CA3 principal cells and interneurons. Here, we tested the hypothesis that at MF-CA3 connections, tonic activation of GABA(B) autoreceptors by GABA is responsible for the low probability of release and synapse silencing. Blocking GABA(B) receptors with CGP55845 enhanced the probability of GABA release and switched on silent synapses while the opposite was observed with baclofen. Both these effects were presynaptic and were associated with changes in paired-pulse ratio and coefficient of variation. In addition, enhancing the extracellular GABA concentration by repetitive stimulation of MF or by blocking the GABA transporter GAT-1, switched off active synapses, an effect that was prevented by CGP55845. In the presence of CGP55845, stimulation of MF-induced synaptic potentiation. The shift of E(GABA) from the depolarizing to the hyperpolarizing direction with bumetanide, a blocker of the cation-chloride co-transporter NKCC1, prevented synaptic potentiation and caused synaptic depression, suggesting that the depolarizing action of GABA observed in the presence of CGP55845 is responsible for the potentiating effect. It is proposed that, activation of GABA(B) receptors by spillover of GABA from MF terminals reduces the probability of release and contributes to synapses silencing. This would act as a filter to prevent excessive activation of the auto-associative CA3 network and the emergence of seizures.

  11. Antiferroptotic activity of non-oxidative dopamine.

    PubMed

    Wang, Ding; Peng, Yingpeng; Xie, Yangchun; Zhou, Borong; Sun, Xiaofang; Kang, Rui; Tang, Daolin

    2016-11-25

    Dopamine is a neurotransmitter that has many functions in the nervous and immune systems. Ferroptosis is a non-apoptotic form of regulated cell death that is involved in cancer and neurodegenerative diseases. However, the role of dopamine in ferroptosis remains unidentified. Here, we show that the non-oxidative form of dopamine is a strong inhibitor of ferroptotic cell death. Dopamine dose-dependently blocked ferroptosis in cancer (PANC1 and HEY) and non-cancer (MEF and HEK293) cells following treatment with erastin, a small molecule ferroptosis inducer. Notably, dopamine reduced erastin-induced ferrous iron accumulation, glutathione depletion, and malondialdehyde production. Mechanically, dopamine increased the protein stability of glutathione peroxidase 4, a phospholipid hydroperoxidase that protects cells against membrane lipid peroxidation. Moreover, dopamine suppressed dopamine receptor D4 protein degradation and promoted dopamine receptor D5 gene expression. Thus, our findings uncover a novel function of dopamine in cell death and provide new insight into the regulation of iron metabolism and lipid peroxidation by neurotransmitters.

  12. Inhibition of stimulated dopamine release and hemodynamic response in the brain through electrical stimulation of rat forepaw.

    PubMed Central

    Chen, Y Iris; Ren, Jiaqian; Wang, Fu-Nien; Xu, Haibo; Mandeville, Joseph B; Kim, Young; Rosen, Bruce R; Jenkins, Bruce G; Hui, Kathleen KS; Kwong, Kenneth K

    2008-01-01

    The subcortical response to peripheral somatosensory stimulation is not well studied. Prior literature suggests that somatosensory stimulation can affect dopaminergic tone. We studied the effects of electrical stimulation near the median nerve on the response to an amphetamine induced increase in synaptic dopamine. We applied the electrical stimulation close to the median nerve 20 minutes after administration of 3mg/kg amphetamine. We used fMRI and microdialysis to measure markers of DA release, together with the release of associated neurotransmitters of striatal Glutamate (Glu) and GABA. Result 1) Changes in cerebral blood volume (CBV), a marker used in fMRI, indicate that electrical stimulation significantly attenuated increased DA release (due to AMPH) in the striatum, thalamus, medial prefrontal and cingulate cortices. 2) Microdialysis showed that electrical stimulation increased Glu and GABA release and attenuated the AMPH-enhanced DA release. The striatal DA dynamics correlated with the CBV response. Conclusion These results demonstrate that electrical stimulation near the median nerve activates Glu/GABA release which subsequently attenuate excess striatal DA release. These data provide evidence for physiologic modulation caused by electroacupuncture at points near the median nerve. PMID:18178315

  13. The GABA B agonist baclofen reduces cigarette consumption in a preliminary double-blind placebo-controlled smoking reduction study.

    PubMed

    Franklin, Teresa R; Harper, Derek; Kampman, Kyle; Kildea-McCrea, Susan; Jens, Will; Lynch, Kevin G; O'Brien, Charles P; Childress, Anna Rose

    2009-07-01

    The surge in dopamine in ventral striatal regions in response to drugs of abuse and drug-associated stimuli is a final common pathway of addiction processes. GABA B agonists exert their effects indirectly, by quieting dopaminergic afferents. The ability of the GABA B agonist, baclofen to ameliorate nicotine and drug motivated behavior is established within the animal literature, however its potential to do so in humans is understudied, particularly with respect to its possible utility as a smoking cessation agent. We conducted a nine-week double-blind placebo-controlled pilot trial of baclofen for smoking reduction (N=30/group) in smokers contemplating, but not quite ready to quit. Baclofen was titrated upwards to 20mg q.i.d. over a period of twelve days. The primary outcome measure was the number of cigarettes smoked per day (CPD). A significant group by time effect of medication was observed. Baclofen was superior to placebo in reducing CPD (beta=0.01, t=1.97, p<0.05). The most common side effect reported during baclofen treatment is transient drowsiness, however there were no differences between groups in mild, moderate, or severe sedation. Craving was significantly lowered at end of treatment in all smokers (p<0.02). Retention did not differ between groups. In line with a multitude of preclinical studies examining the effects of baclofen on drug-motivated behavior, baclofen reduced CPD. In agreement with other studies examining craving and drug use, reductions in CPD were accompanied by a reduction in craving, a major motivator underlying continued smoking and relapse. These preliminary results demonstrate provisional evidence of the utility of baclofen to aid in smoking cessation and indicate further investigation.

  14. The GABA B agonist baclofen reduces cigarette consumption in a preliminary double-blind placebo-controlled smoking reduction study

    PubMed Central

    Franklin, Teresa R.; Harper, Derek; Kampman, Kyle; Kildea, Susan; Jens, Will; Lynch, Kevin; O’Brien, Charles P.; Childress, Anna Rose

    2009-01-01

    The surge in dopamine in ventral striatal regions in response to drugs of abuse and drug-associated stimuli is a final common pathway of addiction processes. GABA B agonists exert their effects indirectly, by quieting dopaminergic afferents. The ability of the GABA B agonist, baclofen to ameliorate nicotine and drug motivated behavior is established within the animal literature, however its potential to do so in humans is understudied, particularly with respect to its possible utility as a smoking cessation agent. We conducted a nine-week double-blind placebo-controlled pilot trial of baclofen for smoking reduction (N=30/group) in smokers contemplating, but not quite ready to quit. Baclofen was titrated upwards to 20 mg q.i.d. over a period of twelve days. The primary outcome measure was the number of cigarettes smoked per day (CPD). A significant group by time effect of medication was observed. Baclofen was superior to placebo in reducing CPD (β=0.01, t=1.97, p<0.05). The most common side effect reported during baclofen treatment is transient drowsiness, however there were no differences between groups in mild, moderate, or severe sedation. Craving was significantly lowered at end of treatment in all smokers (p<0.02). Retention did not differ between groups. In line with a multitude of preclinical studies examining the effects of baclofen on drug-motivated behavior, baclofen reduced CPD. In agreement with other studies examining craving and drug use, reductions in CPD were accompanied by a reduction in craving, a major motivator underlying continued smoking and relapse. These preliminary results demonstrate provisional evidence of the utility of baclofen to aid in smoking cessation and indicate further investigation. PMID:19398283

  15. Changes of prolactin regulatory mechanisms in aging: 24-h rhythms of serum prolactin and median eminence and adenohypophysial concentration of dopamine, serotonin, (gamma-aminobutyric acid, taurine and somatostatin in young and aged rats.

    PubMed

    Esquifino, A I; Cano, P; Jimenez, V; Reyes Toso, C F; Cardinali, D P

    2004-01-01

    Twenty-four hour rhythmicity of serum prolactin and median eminence and anterior pituitary content of dopamine (DA), serotonin (5HT), gamma-aminobutyric acid (GABA), taurine and somatostatin were examined in 2 months-old and 18-20 months-old Wistar male rats. The concentration of prolactin was higher in aged rats, with peaks in both groups of rats at the early phase of the activity span. Median eminence DA content of young rats attained its maximum at the middle of rest span and decreased as prolactin levels augmented while the lowest values of adenohypophysial DA were observed at the time of prolactin peak. DA rhythmicity disappeared in aged rats. GABA content of median eminence and adenohypophysis was lower in aged rats, with maximal values of median eminence GABA at light-dark transition in young rats and at the second half of activity span in aged rats. Serum prolactin correlated positively with median eminence GABA in young rats and negatively with pituitary GABA in young and aged rats. Median eminence somatostatin peaked at the beginning of the activity phase (young rats) or at the end of the rest phase (aged rats). Prolactin levels and somatostatin content correlated significantly in young rats only. Median eminence and pituitary 5HT and taurine content did not change with age. The results indicate disruption of prolactin regulatory mechanisms with aging in rats.

  16. Synchronization by Food Access Modifies the Daily Variations in Expression and Activity of Liver GABA Transaminase

    PubMed Central

    De Ita-Pérez, Dalia; Vázquez-Martínez, Olivia; Villalobos-Leal, Mónica

    2014-01-01

    Daytime restricted feeding (DRF) is an experimental protocol that influences the circadian timing system and underlies the expression of a biological clock known as the food entrained oscillator (FEO). Liver is the organ that reacts most rapidly to food restriction by adjusting the functional relationship between the molecular circadian clock and the metabolic networks. γ-Aminobutyric acid (GABA) is a signaling molecule in the liver, and able to modulate the cell cycle and apoptosis. This study was aimed at characterizing the expression and activity of the mostly mitochondrial enzyme GABA transaminase (GABA-T) during DRF/FEO expression. We found that DRF promotes a sustained increase of GABA-T in the liver homogenate and mitochondrial fraction throughout the entire day-night cycle. The higher amount of GABA-T promoted by DRF was not associated to changes in GABA-T mRNA or GABA-T activity. The GABA-T activity in the mitochondrial fraction even tended to decrease during the light period. We concluded that DRF influences the daily variations of GABA-T mRNA levels, stability, and catalytic activity of GABA-T. These data suggest that the liver GABAergic system responds to a metabolic challenge such as DRF and the concomitant appearance of the FEO. PMID:24809054

  17. The action of GABA receptor agonists and antagonists on muscle membrane conductance in Schistocerca gregaria.

    PubMed Central

    Murphy, V. F.; Wann, K. T.

    1988-01-01

    1. The properties of postsynaptic gamma-aminobutyric acid (GABA) receptors in the extensor tibiae muscle of Schistocerca gregaria were studied by conventional electrophysiological recording techniques. 2. GABA and other active GABA receptor agonists produced rapid, dose-dependent, reversible increases in membrane conductance. 3. In two microelectrode experiments the ED50 for GABA was approximately 1 mM. In three microelectrode experiments (assuming short cable theory conditions) the ED50 for GABA was 2.3 mM. The Hill coefficient for GABA estimated from the latter experiments was 1.4. 4. The relative potency of muscimol/GABA at the ED50 for GABA was 1.36. 3-Aminopropane sulphonic acid (3-APS) and isonipecotic acid were weakly active, baclofen and piperidine-4-sulphonic acid (P4S) were inactive. Isoguvacine produced depolarizations and increases in conductance in preparations which hyperpolarized in response to GABA. These depolarizations were enhanced by both picrotoxin and pitrazepin although the increases in input conductance were depressed. 5. Picrotoxin (20 microM), (+)-bicuculline (20-100 microM) and pitrazepin (1-10 microM) all reversibly antagonized GABA-induced responses. Such antagonism was not competitive in the case of picrotoxin and (+)-bicuculline but was competitive for pitrazepin. Schild plot analysis gave an average pA2 value of 5.5 for pitrazepin. 6. The significance of these results is briefly discussed. PMID:2850061

  18. Relaxation and immunity enhancement effects of gamma-aminobutyric acid (GABA) administration in humans.

    PubMed

    Abdou, Adham M; Higashiguchi, S; Horie, K; Kim, Mujo; Hatta, H; Yokogoshi, H

    2006-01-01

    The effect of orally administrated gamma-aminobutyric acid (GABA) on relaxation and immunity during stress has been investigated in humans. Two studies were conducted. The first evaluated the effect of GABA intake by 13 subjects on their brain waves. Electroencephalograms (EEG) were obtained after 3 tests on each volunteer as follows: intake only water, GABA, or L-theanine. After 60 minutes of administration, GABA significantly increases alpha waves and decreases beta waves compared to water or L-theanine. These findings denote that GABA not only induces relaxation but also reduces anxiety. The second study was conducted to see the role of relaxant and anxiolytic effects of GABA intake on immunity in stressed volunteers. Eight acrophobic subjects were divided into 2 groups (placebo and GABA). All subjects were crossing a suspended bridge as a stressful stimulus. Immunoglobulin A (IgA) levels in their saliva were monitored during bridge crossing. Placebo group showed marked decrease of their IgA levels, while GABA group showed significantly higher levels. In conclusion, GABA could work effectively as a natural relaxant and its effects could be seen within 1 hour of its administration to induce relaxation and diminish anxiety. Moreover, GABA administration could enhance immunity under stress conditions.

  19. Localization of glycine, GABA and neuropeptide containing neurons in tiger salamander retina

    SciTech Connect

    Yang, C.Y.

    1988-01-01

    Putative glycinergic and GABAergic neurons in the salamander retina were localized by a parallel analysis of high affinity {sup 3}H-glycine uptake and glycine-like immunoreactivity (Gly-IR) and a comparative analysis of high affinity {sup 3}H-GABA uptake, GABA, like immunoreactivity (GABA-IR), and glutamate decarboxylase immunoreactivity (GAD-IR) at the light microscopic level. Good correspondence of labeling of {sup 3}H-glycine uptake and Gly-IR as well as that of {sup 3}H-GABA uptake and GABA-IR were observed. In addition, GAD immunoreactive neurons contained GABA-IR as well. Extensive colocalization of {sup 3}H-glycine uptake and Gly-IR and that of {sup 3}H-GABA uptake, GABA-IR and perhaps GAD-IR were indicated by the similarities in the distribution, morphology and labeling frequency of neurons and lamination in the inner plexiform layer (IPL). However, the Gly-IR and the GABA-IR probes appeared to be more sensitive and can thus be a reliable marker for glycine and GABA containing neurons respectively.

  20. Hypertonicity enhances GABA uptake by cultured rat retinal capillary endothelial cells.

    PubMed

    Yahara, Tohru; Tachikawa, Masanori; Akanuma, Shin-ichi; Hosoya, Ken-ichi

    2010-01-01

    We have reported previously that taurine transporter (TauT) mediates γ-aminobutyric acid (GABA) as a substrate in a conditionally immortalized rat retinal capillary endothelial cell line (TR-iBRB2 cells). This study investigates how TauT-mediated GABA transport is regulated in TR-iBRB2 cells under hypertonic conditions. [³H]GABA uptake by TR-iBRB2 cells exposed to 12 h- to 24 h-hypertonic culture medium was significantly greater than that of isotonic culture medium. [³H]GABA uptake by TR-iBRB2 cells was Na(+)-, Cl(-)-, and concentration-dependent with a Michaelis-Menten (K(m)) constant of 3.5 mM under isotonic conditions and K(m) of 0.324 and 5.48 mM under hypertonic conditions. Under hypertonic conditions, [³H]GABA uptake by TR-iBRB2 cells was more potently inhibited by substrates of TauT, such as taurine and β-alanine, than those of GABA transporters such as GABA, nipecotic acid, and betaine. These results suggest that an unknown high-affinity GABA transport process and TauT-mediated GABA transport are enhanced under hypertonic conditions. In conclusion, hypertonicity enhances GABA uptake by cultured rat retinal capillary endothelial cells.

  1. Endogenous GABA levels in the pontine reticular formation are greater during wakefulness than during REM sleep

    PubMed Central

    Vanini, Giancarlo; Wathen, Bradley L.; Lydic, Ralph; Baghdoyan, Helen A.

    2011-01-01

    Studies using drugs that increase or decrease GABAergic transmission suggest that GABA in the pontine reticular formation (PRF) promotes wakefulness and inhibits rapid eye movement (REM) sleep. Cholinergic transmission in the PRF promotes REM sleep, and levels of endogenous acetylcholine (ACh) in the PRF are significantly greater during REM sleep than during wakefulness or non-REM (NREM) sleep. No previous studies have determined whether levels of endogenous GABA in the PRF vary as a function of sleep and wakefulness. This study tested the hypothesis that GABA levels in cat PRF are greatest during wakefulness and lowest during REM sleep. Extracellular GABA levels were measured during wakefulness, NREM sleep, REM sleep, and the REM sleep-like state (REMNeo) caused by microinjecting neostigmine into the PRF. GABA levels varied significantly as a function of sleep and wakefulness, and decreased significantly below waking levels during REM sleep (−42%) and REMNeo (−63%). The decrease in GABA levels during NREM sleep (22% below waking levels) was not statistically significant. Compared to NREM sleep, GABA levels decreased significantly during REM sleep (−27%) and REMNeo (−52%). Comparisons of REM sleep and REMNeo revealed no differences in GABA levels or cortical EEG power. GABA levels did not vary significantly as a function of dialysis site within the PRF. The inverse relationship between changes in PRF levels of GABA and ACh during REM sleep indicates that low GABAergic tone combined with high cholinergic tone in the PRF contributes to the generation of REM sleep. PMID:21325533

  2. Glutamate, GABA, and glutamine are synchronously upregulated in the mouse lateral septum during the postpartum period.

    PubMed

    Zhao, Changjiu; Gammie, Stephen C

    2014-12-03

    Dramatic structural and functional remodeling occurs in the postpartum brain for the establishment of maternal care, which is essential for the growth and development of young offspring. Glutamate and GABA signaling are critically important in modulating multiple behavioral performances. Large scale signaling changes occur in the postpartum brain, but it is still not clear to what extent the neurotransmitters glutamate and GABA change and whether the ratio of glutamate/GABA remains balanced. In this study, we examined the glutamate/GABA-glutamine cycle in the lateral septum (LS) of postpartum female mice. In postpartum females (relative to virgins), tissue levels of glutamate and GABA were elevated in LS and increased mRNA was found for the respective enzymes producing glutamate and GABA, glutaminase (Gls) and glutamate decarboxylase 1 and 2 (Gad1 and Gad2). The common precursor, glutamine, was elevated as was the enzyme that produces it, glutamate-ammonia ligase (Glul). Additionally, glutamate, GABA, and glutamine were positively correlated and the glutamate/GABA ratio was almost identical in the postpartum and virgin females. Collectively, these findings indicate that glutamate and GABA signaling are increased and that the ratio of glutamate/GABA is well balanced in the maternal LS. The postpartum brain may provide a useful model system for understanding how glutamate and GABA are linked despite large signaling changes. Given that some mental health disorders, including depression and schizophrenia display dysregulated glutamate/GABA ratio, and there is increased vulnerability to mental disorders in mothers, it is possible that these postpartum disorders emerge when glutamate and GABA changes are not properly coordinated.

  3. The reciprocal regulation of stress hormones and GABA(A) receptors.

    PubMed

    Mody, Istvan; Maguire, Jamie

    2011-01-01

    Stress-derived steroid hormones regulate the expression and function of GABA(A) receptors (GABA(A)Rs). Changes in GABA(A)R subunit expression have been demonstrated under conditions of altered steroid hormone levels, such as stress, as well as following exogenous steroid hormone administration. In addition to the effects of stress-derived steroid hormones on GABA(A)R subunit expression, stress hormones can also be metabolized to neuroactive derivatives which can alter the function of GABA(A)Rs. Neurosteroids allosterically modulate GABA(A)Rs at concentrations comparable to those during stress. In addition to the actions of stress-derived steroid hormones on GABA(A)Rs, GABA(A)Rs reciprocally regulate the production of stress hormones. The stress response is mediated by the hypothalamic-pituitary-adrenal (HPA) axis, the activity of which is governed by corticotropin releasing hormone (CRH) neurons. The activity of CRH neurons is largely controlled by robust GABAergic inhibition. Recently, it has been demonstrated that CRH neurons are regulated by neurosteroid-sensitive, GABA(A)R δ subunit-containing receptors representing a novel feedback mechanism onto the HPA axis. Further, it has been demonstrated that neurosteroidogenesis and neurosteroid actions on GABA(A)R δ subunit-containing receptors on CRH neurons are necessary to mount the physiological response to stress. Here we review the literature describing the effects of steroid hormones on GABA(A)Rs as well as the importance of GABA(A)Rs in regulating the production of steroid hormones. This review incorporates what we currently know about changes in GABA(A)Rs following stress and the role in HPA axis regulation.

  4. Dopamine Neurons Change the Type of Excitability in Response to Stimuli

    PubMed Central

    Gutkin, Boris S.; Lapish, Christopher C.; Kuznetsov, Alexey

    2016-01-01

    The dynamics of neuronal excitability determine the neuron’s response to stimuli, its synchronization and resonance properties and, ultimately, the computations it performs in the brain. We investigated the dynamical mechanisms underlying the excitability type of dopamine (DA) neurons, using a conductance-based biophysical model, and its regulation by intrinsic and synaptic currents. Calibrating the model to reproduce low frequency tonic firing results in N-methyl-D-aspartate (NMDA) excitation balanced by γ-Aminobutyric acid (GABA)-mediated inhibition and leads to type I excitable behavior characterized by a continuous decrease in firing frequency in response to hyperpolarizing currents. Furthermore, we analyzed how excitability type of the DA neuron model is influenced by changes in the intrinsic current composition. A subthreshold sodium current is necessary for a continuous frequency decrease during application of a negative current, and the low-frequency “balanced” state during simultaneous activation of NMDA and GABA receptors. Blocking this current switches the neuron to type II characterized by the abrupt onset of repetitive firing. Enhancing the anomalous rectifier Ih current also switches the excitability to type II. Key characteristics of synaptic conductances that may be observed in vivo also change the type of excitability: a depolarized γ-Aminobutyric acid receptor (GABAR) reversal potential or co-activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) leads to an abrupt frequency drop to zero, which is typical for type II excitability. Coactivation of N-methyl-D-aspartate receptors (NMDARs) together with AMPARs and GABARs shifts the type I/II boundary toward more hyperpolarized GABAR reversal potentials. To better understand how altering each of the aforementioned currents leads to changes in excitability profile of DA neuron, we provide a thorough dynamical analysis. Collectively, these results imply that type I

  5. [Autoimmune encephalitis induced by antibodies against GABA-A receptor].

    PubMed

    González R, Pablo; Hudson A, Lorena; Basáez M, Esteban; Miranda C, Marcelo

    2016-11-01

    Among autoimmune encephalitides, a prevalent group are those associated with antibodies against the N-Methyl-D-aspartate receptor, which present with behavior abnormalities, psychosis, seizures and abnormal movements. A new variant, mediated by antibodies against the GABA-A receptor, was recen-tly described. We report a 66-years-old female with this form of encephalitis whose main manifestation was the presence of severe seizures leading to status epilepticus. The patient had a good response to immunomodulatory therapy with intravenous methylprednisolone, azathioprine and anticonvulsants. The laboratory tests initially detected anti-thyroid peroxidase antibodies which lead to the misdiagnosis of Hashimoto Encephalitis, which was ruled out after the detection of antibodies against GABA-A receptor. No malignancy was detected.

  6. Glycine Transporter-1 Inhibition Promotes Striatal Axon Sprouting via NMDA Receptors in Dopamine Neurons

    PubMed Central

    Castagna, Candace; Mrejeru, Ana; Lizardi-Ortiz, José E.; Klein, Zoe; Lindsley, Craig W.

    2013-01-01

    NMDA receptor activity is involved in shaping synaptic connections throughout development and adulthood. We recently reported that brief activation of NMDA receptors on cultured ventral midbrain dopamine neurons enhanced their axon growth rate and induced axonal branching. To test whether this mechanism was relevant to axon regrowth in adult animals, we examined the reinnervation of dorsal striatum following nigral dopamine neuron loss induced by unilateral intrastriatal injections of the toxin 6-hydroxydopamine. We used a pharmacological approach to enhance NMDA receptor-dependent signaling by treatment with an inhibitor of glycine transporter-1 that elevates levels of extracellular glycine, a coagonist required for NMDA receptor activation. All mice displayed sprouting of dopaminergic axons from spared fibers in the ventral striatum to the denervated dorsal striatum at 7 weeks post-lesion, but the reinnervation in mice treated for 4 weeks with glycine uptake inhibitor was approximately twice as dense as in untreated mice. The treated mice also displayed higher levels of striatal dopamine and a complete recovery from lateralization in a test of sensorimotor behavior. We confirmed that the actions of glycine uptake inhibition on reinnervation and behavioral recovery required NMDA receptors in dopamine neurons using targeted deletion of the NR1 NMDA receptor subunit in dopamine neurons. Glycine transport inhibitors promote functionally relevant sprouting of surviving dopamine axons and could provide clinical treatment for disorders such as Parkinson's disease. PMID:24133278

  7. Dopa-testotoxicosis: disruptive hypersexuality in hypogonadal men with prolactinomas treated with dopamine agonists.

    PubMed

    De Sousa, Sunita M C; Chapman, Ian M; Falhammar, Henrik; Torpy, David J

    2017-02-01

    Dopamine agonists are the first line of therapy for prolactinomas, with high rates of biochemical control and tumour shrinkage. Toxicity is considered to be low and manageable by switching of agents and dose reduction. Dopamine agonist-induced impulse control disorders are well described in the neurology setting, but further data are required regarding this toxicity in prolactinoma patients. We performed a multicenter retrospective cohort study of eight men with prolactinomas and associated central hypogonadism. The eight men had no prior history of psychiatric disease, but each developed disruptive hypersexuality whilst on dopamine agonist therapy at various doses. Cabergoline, bromocriptine and quinagolide were all implicated. Hypersexuality had manifold consequences, including relationship discord, financial loss, reduced work performance, and illicit activity. We hypothesise that this phenomenon is due to synergy between reward pathway stimulation by dopamine agonists, together with rapid restoration of the eugonadal state after prolonged hypogonadism. We refer here to this distinct drug toxicity as 'dopa-testotoxicosis'. Given the profound impact in these patients and their families, cessation of dopamine agonists should be considered in men who develop hypersexuality, and pituitary surgery may be required to facilitate this. Awareness of this distinct impulse control disorder should enable further research into the prevalence, natural history and management of dopa-testotoxicosis. The condition is likely under-reported due to the highly personal nature of the symptoms and we suggest a simple written questionnaire to screen for hypersexuality and other behavioural symptoms within the first six months of dopamine agonist treatment.

  8. Cloning and characterization of the ionotropic GABA receptor subunit ρ1 from pig (Sus scrofa).

    PubMed

    Reyes-Ruiz, Jorge Mauricio; Limon, Agenor; Miledi, Ricardo

    2014-01-13

    Since human and pig eyes have remarkably anatomical and physiological similitudes swine models have been broadly used for functional studies and therapeutic research. Recently, a GABAρ-mediated relaxation of retinal vascularity suggested that GABAρ signaling may be used to improve retinal blood flow in vascular-driven impaired vision, and a further molecular characterization of GABAρ receptors would be beneficial. However, none of the GABAρ type subunits from pigs has been yet cloned; Among the 19 subunits that compose the family of GABAA receptors, ρ1-3 subunits are capable of forming homomeric channels. These homomeric receptors are particularly interesting because their pharmacological and kinetic properties are notably different from receptors composed by other GABAA subunits. Here we report the cloning of the GABAρ1subunit from the pig and the functional expression of homomeric channels in Xenopus oocytes. The most notable difference found in the pig GABAρ1 receptor was the absence of a stretch of 17 amino acids near the amino terminus (R41-V58) conserved in the rat and the human. This sequence has a higher nucleotidic match with the transcript variant 2 of the human GABAρ1 subunit. Xenopus oocytes injected with cRNA from the receptor generated currents when exposed to GABA that shared all the characteristics of other GABAρ1 subunits in mammals, including its modulation by dopamine. This study will help to increase the knowledge of the genetics of the pig, further the understanding of this important neurotransmitter receptor family and will shed some light in the evolution of these genes among mammals.

  9. Ketosis and brain handling of glutamate, glutamine, and GABA.

    PubMed

    Yudkoff, Marc; Daikhin, Yevgeny; Horyn, Oksana; Nissim, Ilana; Nissim, Itzhak

    2008-11-01

    We hypothesize that one mechanism of the anti-epileptic effect of the ketogenic diet is to alter brain handling of glutamate. According to this formulation, in ketotic brain astrocyte metabolism is more active, resulting in enhanced conversion of glutamate to glutamine. This allows for: (a) more efficient removal of glutamate, the most important excitatory neurotransmitter; and (b) more efficient conversion of glutamine to GABA, the major inhibitory neurotransmitter.

  10. Ionotropic GABA and Glutamate Receptor Mutations and Human Neurologic Diseases

    PubMed Central

    Yuan, Hongjie; Low, Chian-Ming; Moody, Olivia A.; Jenkins, Andrew

    2015-01-01

    The advent of whole exome/genome sequencing and the technology-driven reduction in the cost of next-generation sequencing as well as the introduction of diagnostic-targeted sequencing chips have resulted in an unprecedented volume of data directly linking patient genomic variability to disorders of the brain. This information has the potential to transform our understanding of neurologic disorders by improving diagnoses, illuminating the molecular heterogeneity underlying diseases, and identifying new targets for therapeutic treatment. There is a strong history of mutations in GABA receptor genes being involved in neurologic diseases, particularly the epilepsies. In addition, a substantial number of variants and mutations have been found in GABA receptor genes in patients with autism, schizophrenia, and addiction, suggesting potential links between the GABA receptors and these conditions. A new and unexpected outcome from sequencing efforts has been the surprising number of mutations found in glutamate receptor subunits, with the GRIN2A gene encoding the GluN2A N-methyl-d-aspartate receptor subunit being most often affected. These mutations are associated with multiple neurologic conditions, for which seizure disorders comprise the largest group. The GluN2A subunit appears to be a locus for epilepsy, which holds important therapeutic implications. Virtually all α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor mutations, most of which occur within GRIA3, are from patients with intellectual disabilities, suggesting a link to this condition. Similarly, the most common phenotype for kainate receptor variants is intellectual disability. Herein, we summarize the current understanding of disease-associated mutations in ionotropic GABA and glutamate receptor families, and discuss implications regarding the identification of human mutations and treatment of neurologic diseases. PMID:25904555

  11. Genetics Home Reference: dopamine beta-hydroxylase deficiency

    MedlinePlus

    ... Genetics Home Health Conditions dopamine beta-hydroxylase deficiency dopamine beta-hydroxylase deficiency Enable Javascript to view the ... boxes. Download PDF Open All Close All Description Dopamine beta (β)-hydroxylase deficiency is a condition that ...

  12. The C-terminal domains of the GABA(b) receptor subunits mediate intracellular trafficking but are not required for receptor signaling.

    PubMed

    Calver, A R; Robbins, M J; Cosio, C; Rice, S Q; Babbs, A J; Hirst, W D; Boyfield, I; Wood, M D; Russell, R B; Price, G W; Couve, A; Moss, S J; Pangalos, M N

    2001-02-15

    GABA(B) receptors are G-protein-coupled receptors that mediate slow synaptic inhibition in the brain and spinal cord. These receptors are heterodimers assembled from GABA(B1) and GABA(B2) subunits, neither of which is capable of producing functional GABA(B) receptors on homomeric expression. GABA(B1,) although able to bind GABA, is retained within the endoplasmic reticulum (ER) when expressed alone. In contrast, GABA(B2) is able to access the cell surface when expressed alone but does not couple efficiently to the appropriate effector systems or produce any detectable GABA-binding sites. In the present study, we have constructed chimeric and truncated GABA(B1) and GABA(B2) subunits to explore further GABA(B) receptor signaling and assembly. Removal of the entire C-terminal intracellular domain of GABA(B1) results in plasma membrane expression without the production of a functional GABA(B) receptor. However, coexpression of this truncated GABA(B1) subunit with either GABA(B2) or a truncated GABA(B2) subunit in which the C terminal has also been removed is capable of functional signaling via G-proteins. In contrast, transferring the entire C-terminal tail of GABA(B1) to GABA(B2) leads to the ER retention of the GABA(B2) subunit when expressed alone. These results indicate that the C terminal of GABA(B1) mediates the ER retention of this protein and that neither of the C-terminal tails of GABA(B1) or GABA(B2) is an absolute requirement for functional coupling of heteromeric receptors. Furthermore although GABA(B1) is capable of producing GABA-binding sites, GABA(B2) is of central importance in the functional coupling of heteromeric GABA(B) receptors to G-proteins and the subsequent activation of effector systems.

  13. Methylphenidate elevates resting dopamine which lowers the impulse-triggered release of dopamine: a hypothesis.

    PubMed

    Seeman, Philip; Madras, Bertha

    2002-03-10

    How do 'stimulants' reduce hyperactivity in children and adults? How can drugs which raise extracellular dopamine result in psychomotor slowing of hyperactive children when dopamine is known to enhance motor activity, such as in Parkinson's disease? In summary, the hypothesis for the anti-hyperactivity effects of the stimulants is as follows: during normal nerve activity, extracellular dopamine levels transiently rise 60-fold. At low therapeutic doses (0.2-0.5 mg/kg) to treat attention-deficit hyperactivity disorder, stimulant drugs such as methylphenidate and dextroamphetamine reduce locomotion in both humans and animals. The drugs raise resting extracellular levels of dopamine several-fold, but reduce the extent to which dopamine is released with nerve impulses, compared to the impulse-associated release in the absence of the drug. This relatively reduced amplitude of impulse-associated dopamine would result in less activation of post-synaptic dopamine receptors which drive psychomotor activity. At higher doses, stimulants produce generalized stimulation of the nervous system, as a result of the very high concentrations of extracellular dopamine at rest, and the markedly increased release of dopamine with nerve impulses. These high levels of resting and pulsatile dopamine cause widespread stimulation of post-synaptic dopamine receptors, overcoming any concomitant presynaptic inhibition of dopamine release.

  14. Modulation of GABA release from the thalamic reticular nucleus by cocaine and caffeine: role of serotonin receptors.

    PubMed

    Goitia, Belén; Rivero-Echeto, María Celeste; Weisstaub, Noelia V; Gingrich, Jay A; Garcia-Rill, Edgar; Bisagno, Verónica; Urbano, Francisco J

    2016-02-01

    Serotonin receptors are targets of drug therapies for a variety of neuropsychiatric and neurodegenerative disorders. Cocaine inhibits the re-uptake of serotonin (5-HT), dopamine, and noradrenaline, whereas caffeine blocks adenosine receptors and opens ryanodine receptors in the endoplasmic reticulum. We studied how 5-HT and adenosine affected spontaneous GABAergic transmission from thalamic reticular nucleus. We combined whole-cell patch clamp recordings of miniature inhibitory post-synaptic currents (mIPSCs) in ventrobasal thalamic neurons during local (puff) application of 5-HT in wild type (WT) or knockout mice lacking 5-HT2A receptors (5-HT2A -/-). Inhibition of mIPSCs frequency by low (10 μM) and high (100 μM) 5-HT concentrations was observed in ventrobasal neurons from 5-HT2A -/- mice. In WT mice, only 100 μM 5-HT significantly reduced mIPSCs frequency. In 5-HT2A -/- mice, NAN-190, a specific 5-HT1A antagonist, prevented the 100 μM 5-HT inhibition while blocking H-currents that prolonged inhibition during post-puff periods. The inhibitory effects of 100 μM 5-HT were enhanced in cocaine binge-treated 5-HT2A -/- mice. Caffeine binge treatment did not affect 5-HT-mediated inhibition. Our findings suggest that both 5-HT1A and 5-HT2A receptors are present in pre-synaptic thalamic reticular nucleus terminals. Serotonergic-mediated inhibition of GABA release could underlie aberrant thalamocortical physiology described after repetitive consumption of cocaine. Our findings suggest that both 5-HT1A , 5-HT2A and A1 receptors are present in pre-synaptic TRN terminals. 5-HT1A and A1 receptors would down-regulate adenylate cyclase, whereas 5-HT1A would also increase the probability of the opening of G-protein-activated inwardly rectifying K(+) channels (GIRK). Sustained opening of GIRK channels would hyperpolarize pre-synaptic terminals activating H-currents, resulting in less GABA release. 5-HT2A -would activate PLC and IP3 , increasing intracellular [Ca(2+) ] and

  15. Flavonoid nutraceuticals and ionotropic receptors for the inhibitory neurotransmitter GABA.

    PubMed

    Johnston, Graham A R

    2015-10-01

    Flavonoids that are found in nutraceuticals have many and varied effects on the activation of ionotropic receptors for GABA, the major inhibitory neurotransmitter in our brains. They can act as positive or negative modulators enhancing or reducing the effect of GABA. They can act as allosteric agonists. They can act to modulate the action of other modulators. There is considerable evidence that these flavonoids are able to enter the brain to influence brain function. They may have a range of effects including relief of anxiety, improvement in cognition, acting as neuroprotectants and as sedatives. All of these effects are sought after in nutraceuticals. A number of studies have likened flavonoids to the widely prescribed benzodiazepines as 'a new family of benzodiazepine receptor ligands'. They are much more than that with many flavonoid actions on ionotropic GABA receptors being insensitive to the classic benzodiazepine antagonist flumazenil and thus independent of the classic benzodiazepine actions. It is time to consider flavonoids in their own right as important modulators of these vital receptors in brain function. Flavonoids are rarely consumed as a single flavonoid except as dietary supplements. The effects of mixtures of flavonoids and other modulators on GABAA receptors need to be more thoroughly investigated.

  16. GABA Not Only a Neurotransmitter: Osmotic Regulation by GABAAR Signaling

    PubMed Central

    Cesetti, Tiziana; Ciccolini, Francesca; Li, Yuting

    2012-01-01

    Mature macroglia and almost all neural progenitor types express γ-aminobutyric (GABA) A receptors (GABAARs), whose activation by ambient or synaptic GABA, leads to influx or efflux of chloride (Cl−) depending on its electro-chemical gradient (ECl). Since the flux of Cl− is indissolubly associated to that of osmotically obliged water, GABAARs regulate water movements by modulating ion gradients. In addition, since water movements also occur through specialized water channels and transporters, GABAAR signaling could affect the movement of water by regulating the function of the channels and transporters involved, thereby affecting not only the direction of the water fluxes but also their dynamics. We will here review recent observations indicating that in neural cells GABAAR-mediated osmotic regulation affects the cellular volume thereby activating multiple intracellular signaling mechanisms important for cell proliferation, maturation, and survival. In addition, we will discuss evidence that the osmotic regulation exerted by GABA may contribute to brain water homeostasis in physiological and in pathological conditions causing brain edema, in which the GABAergic transmission is often altered. PMID:22319472

  17. Wakefulness Is Governed by GABA and Histamine Cotransmission

    PubMed Central

    Yu, Xiao; Ye, Zhiwen; Houston, Catriona M.; Zecharia, Anna Y.; Ma, Ying; Zhang, Zhe; Uygun, David S.; Parker, Susan; Vyssotski, Alexei L.; Yustos, Raquel; Franks, Nicholas P.; Brickley, Stephen G.; Wisden, William

    2015-01-01

    Summary Histaminergic neurons in the tuberomammilary nucleus (TMN) of the hypothalamus form a widely projecting, wake-active network that sustains arousal. Yet most histaminergic neurons contain GABA. Selective siRNA knockdown of the vesicular GABA transporter (vgat, SLC32A1) in histaminergic neurons produced hyperactive mice with an exceptional amount of sustained wakefulness. Ablation of the vgat gene throughout the TMN further sharpened this phenotype. Optogenetic stimulation in the caudate-putamen and neocortex of “histaminergic” axonal projections from the TMN evoked tonic (extrasynaptic) GABAA receptor Cl− currents onto medium spiny neurons and pyramidal neurons. These currents were abolished following vgat gene removal from the TMN area. Thus wake-active histaminergic neurons generate a paracrine GABAergic signal that serves to provide a brake on overactivation from histamine, but could also increase the precision of neocortical processing. The long range of histamine-GABA axonal projections suggests that extrasynaptic inhibition will be coordinated over large neocortical and striatal areas. PMID:26094607

  18. GABA and Central Neuropathic Pain following Spinal Cord Injury

    PubMed Central

    Gwak, Young S.; Hulsebosch, Claire E.

    2012-01-01

    Spinal cord injury induces maladaptive synaptic transmission in the somatosensory system that results in chronic central neuropathic pain. Recent literature suggests that glial-neuronal interactions are important modulators in synaptic transmission following spinal cord injury. Neuronal hyperexcitability is one of the predominant phenomenon caused by maladaptive synaptic transmission via altered glial-neuronal interactions after spinal cord injury. In the somatosensory system, spinal inhibitory neurons counter balance the enhanced synaptic transmission from peripheral input. For a decade, the literature suggests that hypofunction of GABAergic inhibitory tone is an important factor in the enhanced synaptic transmission that often results in neuronal hyperexcitability in dorsal horn neurons following spinal cord injury. Neurons and glial cells synergistically control intracellular chloride ion gradients via modulation of chloride transporters, extracellular glutamate and GABA concentrations via uptake mechanisms. Thus, the intracellular “GABA-glutamate-glutamine cycle” is maintained for normal physiological homeostasis. However, hyperexcitable neurons and glial activation after spinal cord injury disrupts the balance of chloride ions, glutamate and GABA distribution in the spinal dorsal horn and results in chronic neuropathic pain. In this review, we address spinal cord injury induced mechanisms in hypofunction of GABAergic tone that results in chronic central neuropathic pain. PMID:21216257

  19. The GABA transaminase, ABAT, is essential for mitochondrial nucleoside metabolism

    PubMed Central

    Besse, Arnaud; Wu, Ping; Bruni, Francesco; Donti, Taraka; Graham, Brett H.; Craigen, William J.; McFarland, Robert; Moretti, Paolo; Lalani, Seema; Scott, Kenneth L.; Taylor, Robert W.; Bonnen, Penelope E.

    2015-01-01

    Summary ABAT is a key enzyme responsible for catabolism of principal inhibitory neurotransmitter gamma-aminobutyric acid (GABA). We report an essential role for ABAT in a seemingly unrelated pathway, mitochondrial nucleoside salvage, and demonstrate that mutations in this enzyme cause an autosomal recessive neurometabolic disorder and mtDNA depletion syndrome (MDS). We describe a family with encephalomyopathic MDS caused by a homozygous missense mutation in ABAT that results in elevated GABA in subjects’ brains as well as decreased mtDNA levels in subjects’ fibroblasts. Nucleoside rescue and co-IP experiments pinpoint that ABAT functions in the mitochondrial nucleoside salvage pathway to facilitate conversion of dNDPs to dNTPs. Pharmacological inhibition of ABAT through the irreversible inhibitor Vigabatrin caused depletion of mtDNA in photoreceptor cells that was prevented through addition of dNTPs in cell culture media. This work reveals ABAT as a connection between GABA metabolism and nucleoside metabolism and defines a neurometabolic disorder that includes MDS. PMID:25738457

  20. Dopamine receptors – IUPHAR Review 13

    PubMed Central

    Beaulieu, Jean-Martin; Espinoza, Stefano; Gainetdinov, Raul R

    2015-01-01

    The variety of physiological functions controlled by dopamine in the brain and periphery is mediated by the D1, D2, D3, D4 and D5 dopamine GPCRs. Drugs acting on dopamine receptors are significant tools for the management of several neuropsychiatric disorders including schizophrenia, bipolar disorder, depression and Parkinson's disease. Recent investigations of dopamine receptor signalling have shown that dopamine receptors, apart from their canonical action on cAMP-mediated signalling, can regulate a myriad of cellular responses to fine-tune the expression of dopamine-associated behaviours and functions. Such signalling mechanisms may involve alternate G protein coupling or non-G protein mechanisms involving ion channels, receptor tyrosine kinases or proteins such as β-arrestins that are classically involved in GPCR desensitization. Another level of complexity is the growing appreciation of the physiological roles played by dopamine receptor heteromers. Applications of new in vivo techniques have significantly furthered the understanding of the physiological functions played by dopamine receptors. Here we provide an update of the current knowledge regarding the complex biology, signalling, physiology and pharmacology of dopamine receptors. PMID:25671228

  1. Grafted dopamine neurons: Morphology, neurochemistry, and electrophysiology.

    PubMed

    Strömberg, Ingrid; Bickford, Paula; Gerhardt, Greg A

    2010-02-09

    Grafting of dopamine-rich tissue to counteract the symptoms in Parkinson's disease became a promising tool for future treatment. This article discusses how to improve the functional outcome with respect to graft outgrowth and functions of dopamine release and electrophysiological responses to graft implantation in the host brain striatal target. It has been documented that a subpopulation of the dopamine neurons innervates the host brain in a target-specific manner, while some of the grafted dopamine neurons never project to the host striatum. Neurochemical studies have demonstrated that the graft-induced outgrowth synthesize, store, metabolize and release dopamine and possibly other neurotransmitters such as 5-HT. Furthermore, the released dopamine affects the dopamine-depleted brain in areas that are larger than the graft-derived nerve fibers reach. While stem cells will most likely be the future source of cells to be used in grafting, it is important to find the guiding cues for how to reinnervate the dopamine-depleted striatum in a proper way with respect to the dopamine subpopulations of A9 and A10 to efficiently treat the motor abnormalities seen in Parkinson's disease.

  2. Mesolimbic Dopamine Signals the Value of Work

    PubMed Central

    Hamid, Arif A.; Pettibone, Jeffrey R.; Mabrouk, Omar S.; Hetrick, Vaughn L.; Schmidt, Robert; Vander Weele, Caitlin M.; Kennedy, Robert T.; Aragona, Brandon J.; Berke, Joshua D.

    2015-01-01

    Dopamine cell firing can encode errors in reward prediction, providing a learning signal to guide future behavior. Yet dopamine is also a key modulator of motivation, invigorating current behavior. Existing theories propose that fast (“phasic”) dopamine fluctuations support learning, while much slower (“tonic”) dopamine changes are involved in motivation. We examined dopamine release in the nucleus accumbens across multiple time scales, using complementary microdialysis and voltammetric methods during adaptive decision-making. We first show that minute-by-minute dopamine levels covary with reward rate and motivational vigor. We then show that second-by-second dopamine release encodes an estimate of temporally-discounted future reward (a value function). We demonstrate that changing dopamine immediately alters willingness to work, and reinforces preceding action choices by encoding temporal-difference reward prediction errors. Our results indicate that dopamine conveys a single, rapidly-evolving decision variable, the available reward for investment of effort, that is employed for both learning and motivational functions. PMID:26595651

  3. Diminished GABA(A) receptor-binding capacity and a DNA base substitution in a patient with treatment-resistant depression and anxiety.

    PubMed

    Kosel, Markus; Rudolph, Uwe; Wielepp, Peter; Luginbühl, Martin; Schmitt, Wolfgang; Fisch, Hans U; Schlaepfer, Thomas E

    2004-02-01

    In this report, we describe the case of a caucasian male patient, aged 42 years, suffering from severe treatment-resistant generalized anxiety disorder with panic attacks and from severe major depression, for which he was treated with a course of electroconvulsive therapy. During electroconvulsive treatment, anesthesia was difficult to induce with etomidate and, once, propofol. Bispectral indices recordings (assessing the depth of anesthesia) revealed a much shorter duration of loss of responsiveness compared to a control patient receiving also a course of electroconvulsive therapy. Since GABA receptor-mediated regulation of cortical excitability is important with respect to general anesthesia, we investigated the density of GABA(A) receptors with (123)I-iomazenil SPECT and found a clearly diminished binding of the radiotracer in the right frontal and orbitotemporal regions compared to the recordings in a 38-year-old healthy male control. Genetic analysis of the exons 7 and 8 of the GABRB1-3 genes coding for the beta1-3 subunits of the GABA(A) receptors revealed a silent G to A substitution in the third position of amino acid 257 of the beta1-subunit. To our knowledge, this is the first report of a link between insensitivity to anesthetic agents and altered GABA(A) receptor function in a clinical case. Whereas reduced GABA(A) receptor-binding capacity has been investigated in anxiety disorders, this has not been the case in depressive disorders. This case illustrates how clinical observations in psychiatry can prompt investigation by modern techniques and potentially link clinics and basic sciences. No conclusion can, however, be made about casual links in this single case [corrected].

  4. Lamotrigine, carbamazepine and phenytoin differentially alter extracellular levels of 5-hydroxytryptamine, dopamine and amino acids.

    PubMed

    Ahmad, Shagufta; Fowler, Leslie J; Whitton, Peter S

    2005-02-01

    We have studied the effects of treatment with the anticonvulsants lamotrigine (LTG), phenytoin (PHN) and carbamazepine (CBZ) on basal and stimulated extracellular aspartate (ASP), glutamate (GLU), taurine (TAU), GABA, 5-hydroxytryptamine (5-HT) and dopamine (DA) in the hippocampus of freely moving rats using microdialysis. All of the drugs investigated have had inhibition of Na(+) channel activity implicated as their principal mechanism of action. Neither LTG (10-20 mg/kg), PHN (20-40 mg/kg) or CBZ (10-20 mg/kg) had an effect on the basal extracellular concentrations of any of the amino acids studied with the exception of glutamate, which was decreased at the highest LTG dose. However, when amino acid transmitter levels were increased with 50 microM veratridine, LTG was found to cause a dose-dependent decrease in dialysate levels of all four amino acids, with the effect being most pronounced for glutamate. In contrast, PHN decreased extracellular aspartate levels but had no effect on evoked-extracellular GLU, TAU or GABA. Somewhat unexpectedly, CBZ did not alter the stimulated increase in the excitatory amino acids, GLU and ASP, but, rather surprisingly for an antiepileptic drug, markedly decreased that of the inhibitory substances TAU and GABA. The three drugs had differing effects on basal extracellular 5-HT and DA. LTG caused a dose-dependent decrease in both, while CBZ and PHN both increased extracellular 5-HT and DA. When extracellular 5-HT and DA was evoked by veratridine LTG had no significant effect on this, while PHN but not CBZ increased stimulated extracellular 5-HT and both PHN and CBZ augmented DA. Thus, the effects of the three drugs studied seemed to depend on whether extracellular transmitter levels are evoked or basal and the particular transmitter in question. This suggests that there are marked differences in the neurochemical mechanisms of antiepileptic drug action of the three compounds studied.

  5. Cannabinoid-dopamine interaction in the pathophysiology and treatment of CNS disorders.

    PubMed

    Fernández-Ruiz, Javier; Hernández, Mariluz; Ramos, José A

    2010-06-01

    Endocannabinoids and their receptors, mainly the CB(1) receptor type, function as a retrograde signaling system in many synapses within the CNS, particularly in GABAergic and glutamatergic synapses. They also play a modulatory function on dopamine (DA) transmission, although CB(1) receptors do not appear to be located in dopaminergic terminals, at least in the major brain regions receiving dopaminergic innervation, e.g., the caudate-putamen and the nucleus accumbens/prefrontal cortex. Therefore, the effects of cannabinoids on DA transmission and DA-related behaviors are generally indirect and exerted through the modulation of GABA and glutamate inputs received by dopaminergic neurons. Recent evidence suggest, however, that certain eicosanoid-derived cannabinoids may directly activate TRPV(1) receptors, which have been found in some dopaminergic pathways, thus allowing a direct regulation of DA function. Through this direct mechanism or through indirect mechanisms involving GABA or glutamate neurons, cannabinoids may interact with DA transmission in the CNS and this has an important influence in various DA-related neurobiological processes (e.g., control of movement, motivation/reward) and, particularly, on different pathologies affecting these processes like basal ganglia disorders, schizophrenia, and drug addiction. The present review will address the current literature supporting these cannabinoid-DA interactions, with emphasis in aspects dealing with the neurochemical, physiological, and pharmacological/therapeutic bases of these interactions.

  6. Gestational lead exposure selectively decreases retinal dopamine amacrine cells and dopamine content in adult mice

    SciTech Connect

    Fox, Donald A.; Hamilton, W. Ryan; Johnson, Jerry E.; Xiao, Weimin; Chaney, Shawntay; Mukherjee, Shradha; Miller, Diane B.; O'Callaghan, James P.

    2011-11-15

    Gestational lead exposure (GLE) produces supernormal scotopic electroretinograms (ERG) in children, monkeys and rats, and a novel retinal phenotype characterized by an increased number of rod photoreceptors and bipolar cells in adult mice and rats. Since the loss of dopaminergic amacrine cells (DA ACs) in GLE monkeys and rats contributes to supernormal ERGs, the retinal DA system was analyzed in mice following GLE. C57BL/6 female mice were exposed to low (27 ppm), moderate (55 ppm) or high (109 ppm) lead throughout gestation and until postnatal day 10 (PN10). Blood [Pb] in control, low-, moderate- and high-dose GLE was {<=} 1, {<=} 10, {approx} 25 and {approx} 40 {mu}g/dL, respectively, on PN10 and by PN30 all were {<=} 1 {mu}g/dL. At PN60, confocal-stereology studies used vertical sections and wholemounts to characterize tyrosine hydroxylase (TH) expression and the number of DA and other ACs. GLE dose-dependently and selectively decreased the number of TH-immunoreactive (IR) DA ACs and their synaptic plexus without affecting GABAergic, glycinergic or cholinergic ACs. Immunoblots and confocal revealed dose-dependent decreases in retinal TH protein expression and content, although monoamine oxidase-A protein and gene expression were unchanged. High-pressure liquid chromatography showed that GLE dose-dependently decreased retinal DA content, its metabolites and DA utilization/release. The mechanism of DA selective vulnerability is unknown. However, a GLE-induced loss/dysfunction of DA ACs during development could increase the number of rods and bipolar cells since DA helps regulate neuronal proliferation, whereas during adulthood it could produce ERG supernormality as well as altered circadian rhythms, dark/light adaptation and spatial contrast sensitivity. -- Highlights: Black-Right-Pointing-Pointer Peak [BPb] in control, low-, moderate- and high-dose newborn mice with gestational lead exposure: {<=} 1, {<=} 10, 25 and 40 {mu}g/dL Black

  7. Distribution of GABA-like immunoreactivity in the rat amygdaloid complex.

    PubMed

    Nitecka, L; Ben-Ari, Y

    1987-12-01

    The distribution of GABA-like (GA