Sample records for gaba transporter vgat

  1. Regulation of synapse development by Vgat deletion from ErbB4-positive interneurons.

    PubMed

    Lin, Thiri W; Tan, Zhibing; Barik, Arnab; Yin, Dong-Min; Brudvik, Egil; Wang, Hongsheng; Xiong, Wen-Cheng; Mei, Lin

    2018-02-05

    GABA signaling has been implicated in neural development; however, in vivo genetic evidence is missing because mutant mice lacking GABA activity die prematurely. Here, we studied synapse development by ablating vesicular GABA transporter Vgat in in ErbB4-positive (ErbB4+) interneurons. We show that inhibitory axo-somatic synapses onto pyramidal neurons vary from one cortical layer to another; however, inhibitory synapses on axon initial segments (AISs) were similar across layers. On the other hand, PV-positive (PV+)/ErbB4+ interneurons and PV-only interneurons receive a higher number of inhibitory synapses from PV+ErbB4+ interneurons, compared with ErbB4-only interneurons. Notably, Vgat deletion from ErbB4+ interneurons reduced axo-somatic or axo-axonic synapses from PV+ErbB4+ interneurons onto excitatory neurons. This effect was associated with corresponding changes in neurotransmission. However, the Vgat mutation seemed to have little effect on inhibitory synapses onto PV+ and/or ErbB4+ interneurons. Interestingly, perineuronal nets (PNNs), extracellular matrix structures implicated in maturation, survival, protection and plasticity of PV+ interneurons, were increased in the cortex of ErbB4-Vgat-/- mice. No apparent difference was observed between males and females. These results demonstrate that Vgat of ErbB4+ interneurons is essential for the development of inhibitory synapses onto excitatory neurons and suggest a role of GABA in circuit assembly. SIGNIFICANCE STATEMENT GABA has been implicated in neural development; however, in vivo genetic evidence is missing because mutant mice lacking GABA die prematurely. To this end, we ablated Vgat in ErbB4+ interneurons in an inducible manner. We provide evidence that the formation of inhibitory as well as excitatory synapses onto excitatory neurons requires Vgat in interneurons. In particular, inhibitory axo-somatic and axo-axonic synapses are more vulnerable. Our results suggest a role of GABA in circuit assembly

  2. VGLUT1 and VGAT are sorted to the same population of synaptic vesicles in subsets of cortical axon terminals.

    PubMed

    Fattorini, Giorgia; Verderio, Claudia; Melone, Marcello; Giovedì, Silvia; Benfenati, Fabio; Matteoli, Michela; Conti, Fiorenzo

    2009-09-01

    Glutamate and GABA mediate most of the excitatory and inhibitory synaptic transmission; they are taken up and accumulated in synaptic vesicles by specific vesicular transporters named VGLUT1-3 and VGAT, respectively. Recent studies show that VGLUT2 and VGLUT3 are co-expressed with VGAT. Because of the relevance this information has for our understanding of synaptic physiology and plasticity, we investigated whether VGLUT1 and VGAT are co-expressed in rat cortical neurons. In cortical cultures and layer V cortical terminals we observed a population of terminals expressing VGLUT1 and VGAT. Post-embedding immunogold studies showed that VGLUT1+/VGAT+ terminals formed both symmetric and asymmetric synapses. Triple-labeling studies revealed GABAergic synapses expressing VGLUT1 and glutamatergic synapses expressing VGAT. Immunoisolation studies showed that anti-VGAT immunoisolated vesicles contained VGLUT1 and anti-VGLUT1 immunoisolated vesicles contained VGAT. Finally, vesicles containing VGAT resident in glutamatergic terminals undergo active recycling. In conclusion, we demonstrate that in neocortex VGLUT1 and VGAT are co-expressed in a subset of axon terminals forming both symmetric and asymmetric synapses, that VGLUT1 and VGAT are sorted to the same vesicles and that vesicles at synapses expressing the vesicular heterotransporter participate in the exo-endocytotic cycle.

  3. Defining Subpopulations of Arcuate Nucleus GABA Neurons in Male, Female, and Prenatally Androgenized Female Mice.

    PubMed

    Marshall, Christopher J; Desroziers, Elodie; McLennan, Timothy; Campbell, Rebecca E

    2017-01-01

    Arcuate nucleus (ARN) γ-aminobutyric acid (GABA) neurons are implicated in many critical homeostatic mechanisms, from food intake to fertility. To determine the functional relevance of ARN GABA neurons, it is essential to define the neurotransmitters co-expressed with and potentially co-released from ARN GABA neurons. The present study investigated the expression of markers of specific signaling molecules by ARN GABA neurons in brain sections from male, female, and, in some cases, prenatally androgen-treated (PNA) female, vesicular GABA transporter (VGaT)-ires-Cre/tdTomato reporter mice. Immunofluorescence for kisspeptin, β-endorphin, neuropeptide Y (NPY), tyrosine hydroxylase (TH) and neuronal nitric oxide synthase (nNOS) was detected by confocal microscopy, and co-localization with tdTomato VGaT reporter expression throughout the ARN was quantified. GABA neurons rarely co-localized with kisspeptin (<2%) or β-endorphin (<1%), and only a small proportion of kisspeptin (∼10%) or β-endorphin (∼3%) neurons co-localized with VGaT in male and female mice. In contrast, one-third of ARN GABA neurons co-localized with NPY, and nearly all NPY neurons (>95%) co-localized with VGaT across groups. Both TH and nNOS labeling was co-localized with ∼10% of ARN GABA neurons. The proportion of TH neurons co-localized with VGaT was significantly greater in males than either control or PNA females, and the proportion of nNOS neurons co-localizing VGaT was higher in control and PNA females compared with males. These data highlight NPY as a significant subpopulation of ARN GABA neurons, demonstrate no significant impact of PNA on signal co-expression, and, for the first time, show sexually dimorphic co-expression patterns of TH and nNOS with ARN GABA neurons. © 2016 S. Karger AG, Basel.

  4. Unique pH dynamics in GABAergic synaptic vesicles illuminates the mechanism and kinetics of GABA loading.

    PubMed

    Egashira, Yoshihiro; Takase, Miki; Watanabe, Shoji; Ishida, Junji; Fukamizu, Akiyoshi; Kaneko, Ryosuke; Yanagawa, Yuchio; Takamori, Shigeo

    2016-09-20

    GABA acts as the major inhibitory neurotransmitter in the mammalian brain, shaping neuronal and circuit activity. For sustained synaptic transmission, synaptic vesicles (SVs) are required to be recycled and refilled with neurotransmitters using an H(+) electrochemical gradient. However, neither the mechanism underlying vesicular GABA uptake nor the kinetics of GABA loading in living neurons have been fully elucidated. To characterize the process of GABA uptake into SVs in functional synapses, we monitored luminal pH of GABAergic SVs separately from that of excitatory glutamatergic SVs in cultured hippocampal neurons. By using a pH sensor optimal for the SV lumen, we found that GABAergic SVs exhibited an unexpectedly higher resting pH (∼6.4) than glutamatergic SVs (pH ∼5.8). Moreover, unlike glutamatergic SVs, GABAergic SVs displayed unique pH dynamics after endocytosis that involved initial overacidification and subsequent alkalization that restored their resting pH. GABAergic SVs that lacked the vesicular GABA transporter (VGAT) did not show the pH overshoot and acidified further to ∼6.0. Comparison of luminal pH dynamics in the presence or absence of VGAT showed that VGAT operates as a GABA/H(+) exchanger, which is continuously required to offset GABA leakage. Furthermore, the kinetics of GABA transport was slower (τ > 20 s at physiological temperature) than that of glutamate uptake and may exceed the time required for reuse of exocytosed SVs, allowing reuse of incompletely filled vesicles in the presence of high demand for inhibitory transmission.

  5. Altered cortical expression of GABA-related genes in schizophrenia: illness progression vs developmental disturbance.

    PubMed

    Hoftman, Gil D; Volk, David W; Bazmi, H Holly; Li, Siyu; Sampson, Allan R; Lewis, David A

    2015-01-01

    Schizophrenia is a neurodevelopmental disorder with altered expression of GABA-related genes in the prefrontal cortex (PFC). However, whether these gene expression abnormalities reflect disturbances in postnatal developmental processes before clinical onset or arise as a consequence of clinical illness remains unclear. Expression levels for 7 GABA-related transcripts (vesicular GABA transporter [vGAT], GABA membrane transporter [GAT1], GABAA receptor subunit α1 [GABRA1] [novel in human and monkey cohorts], glutamic acid decarboxylase 67 [GAD67], parvalbumin, calretinin, and somatostatin [previously reported in human cohort, but not in monkey cohort]) were quantified in the PFC from 42 matched pairs of schizophrenia and comparison subjects and from 49 rhesus monkeys ranging in age from 1 week postnatal to adulthood. Levels of vGAT and GABRA1, but not of GAT1, messenger RNAs (mRNAs) were lower in the PFC of the schizophrenia subjects. As previously reported, levels of GAD67, parvalbumin, and somatostatin, but not of calretinin, mRNAs were also lower in these subjects. Neither illness duration nor age accounted for the levels of the transcripts with altered expression in schizophrenia. In monkey PFC, developmental changes in expression levels of many of these transcripts were in the opposite direction of the changes observed in schizophrenia. For example, mRNA levels for vGAT, GABRA1, GAD67, and parvalbumin all increased with age. Together with published reports, these findings support the interpretation that the altered expression of GABA-related transcripts in schizophrenia reflects a blunting of normal postnatal development changes, but they cannot exclude a decline during the early stages of clinical illness. © The Author 2013. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Region-specific expression of vesicular glutamate and GABA transporters under various ischaemic conditions in mouse forebrain and retina.

    PubMed

    Michalski, D; Härtig, W; Krügel, K; Edwards, R H; Böddener, M; Böhme, L; Pannicke, T; Reichenbach, A; Grosche, A

    2013-02-12

    There is accumulating evidence that glutamate and GABA release are key mechanisms of ischaemic events in the CNS. However, data on the expression of involved transporters for these mediators are inconsistent, potentially impeding further neuroprotective approaches. Here, we applied immunofluorescence labelling to characterise the expression pattern of vesicular glutamate (VGLUT) and GABA transporters (VGAT) after acute focal cerebral ischaemia and in two models of retinal ischaemia. Mice were subjected to filament-based focal cerebral ischaemia predominantly involving the middle cerebral artery territory, also leading to retinal ischaemia due to central retinal artery occlusion (CRAO). Alternatively, retinal ischaemia was induced by a transient increase of the intraocular pressure (HIOP). One day after ischaemia onset, diminished immunolabelling of neuronal nuclei and microtubule-associated protein 2-positive structures were found in the ipsilateral neocortex, subcortex and the retina, indicating neuronal degeneration. VGLUT1 expression did not change significantly in ischaemic tissues whereas VGLUT2 was down-regulated in specific areas of the brain. VGLUT3 expression was only slightly down-regulated in the ischaemia-affected neocortex, and was found to form clusters on fibrils of unknown origin in the ischaemic lateral hypothalamus. In contrast, retinae subjected to CRAO or HIOP displayed a rapid loss of VGLUT3-immunoreactivity. The expression of VGAT appears resistant to ischaemia as there was no significant alteration in all the regions analysed. In summary, these data indicate a region- and subtype-specific change of VGLUT expression in the ischaemia-affected CNS, whose consideration might help to generate specific neuroprotective strategies. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Differential maturation of vesicular glutamate and GABA transporter expression in the mouse auditory forebrain during the first weeks of hearing.

    PubMed

    Hackett, Troy A; Clause, Amanda R; Takahata, Toru; Hackett, Nicholas J; Polley, Daniel B

    2016-06-01

    Vesicular transporter proteins are an essential component of the presynaptic machinery that regulates neurotransmitter storage and release. They also provide a key point of control for homeostatic signaling pathways that maintain balanced excitation and inhibition following changes in activity levels, including the onset of sensory experience. To advance understanding of their roles in the developing auditory forebrain, we tracked the expression of the vesicular transporters of glutamate (VGluT1, VGluT2) and GABA (VGAT) in primary auditory cortex (A1) and medial geniculate body (MGB) of developing mice (P7, P11, P14, P21, adult) before and after ear canal opening (~P11-P13). RNA sequencing, in situ hybridization, and immunohistochemistry were combined to track changes in transporter expression and document regional patterns of transcript and protein localization. Overall, vesicular transporter expression changed the most between P7 and P21. The expression patterns and maturational trajectories of each marker varied by brain region, cortical layer, and MGB subdivision. VGluT1 expression was highest in A1, moderate in MGB, and increased with age in both regions. VGluT2 mRNA levels were low in A1 at all ages, but high in MGB, where adult levels were reached by P14. VGluT2 immunoreactivity was prominent in both regions. VGluT1 (+) and VGluT2 (+) transcripts were co-expressed in MGB and A1 somata, but co-localization of immunoreactive puncta was not detected. In A1, VGAT mRNA levels were relatively stable from P7 to adult, while immunoreactivity increased steadily. VGAT (+) transcripts were rare in MGB neurons, whereas VGAT immunoreactivity was robust at all ages. Morphological changes in immunoreactive puncta were found in two regions after ear canal opening. In the ventral MGB, a decrease in VGluT2 puncta density was accompanied by an increase in puncta size. In A1, perisomatic VGAT and VGluT1 terminals became prominent around the neuronal somata. Overall, the

  8. Differential maturation of vesicular glutamate and GABA transporter expression in the mouse auditory forebrain during the first weeks of hearing

    PubMed Central

    Hackett, Troy A.; Clause, Amanda R.; Takahata, Toru; Hackett, Nicholas J.; Polley, Daniel B.

    2015-01-01

    Vesicular transporter proteins are an essential component of the presynaptic machinery that regulates neurotransmitter storage and release. They also provide a key point of control for homeostatic signaling pathways that maintain balanced excitation and inhibition following changes in activity levels, including the onset of sensory experience. To advance understanding of their roles in the developing auditory forebrain, we tracked the expression of the vesicular transporters of glutamate (VGluT1, VGluT2) and GABA (VGAT) in primary auditory cortex (A1) and medial geniculate body (MGB) of developing mice (P7, P11, P14, P21, adult) before and after ear canal opening (~P11–P13). RNA sequencing, in situ hybridization, and immunohistochemistry were combined to track changes in transporter expression and document regional patterns of transcript and protein localization. Overall, vesicular transporter expression changed the most between P7 and P21. The expression patterns and maturational trajectories of each marker varied by brain region, cortical layer, and MGB subdivision. VGluT1 expression was highest in A1, moderate in MGB, and increased with age in both regions. VGluT2 mRNA levels were low in A1 at all ages, but high in MGB, where adult levels were reached by P14. VGluT2 immunoreactivity was prominent in both regions. VGluT1+ and VGluT2+ transcripts were co-expressed in MGB and A1 somata, but co-localization of immunoreactive puncta was not detected. In A1, VGAT mRNA levels were relatively stable from P7 to adult, while immunoreactivity increased steadily. VGAT+ transcripts were rare in MGB neurons, whereas VGAT immunoreactivity was robust at all ages. Morphological changes in immunoreactive puncta were found in two regions after ear canal opening. In the ventral MGB, a decrease in VGluT2 puncta density was accompanied by an increase in puncta size. In A1, peri-somatic VGAT and VGluT1 terminals became prominent around the neuronal somata. Overall, the observed

  9. Electrophysiological and morphological properties of neurons in the prepositus hypoglossi nucleus that express both ChAT and VGAT in a double-transgenic rat model.

    PubMed

    Saito, Yasuhiko; Zhang, Yue; Yanagawa, Yuchio

    2015-04-01

    Although it has been proposed that neurons that contain both acetylcholine (ACh) and γ-aminobutyric acid (GABA) are present in the prepositus hypoglossi nucleus (PHN), these neurons have not been characterized because of the difficulty in identifying them. In the present study, PHN neurons that express both choline acetyltransferase and the vesicular GABA transporter (VGAT) were identified using double-transgenic rats, in which the cholinergic and inhibitory neurons express the fluorescent proteins tdTomato and Venus, respectively. To characterize the neurons that express both tdTomato and Venus (D+ neurons), the afterhyperpolarization (AHP) profiles and firing patterns of these neurons were investigated via whole-cell recordings of brainstem slice preparations. Regarding the three AHP profiles and four firing patterns that the D+ neurons exhibited, an AHP with an afterdepolarization and a firing pattern that exhibited a delay in the generation of the first spike were the preferential properties of these neurons. In the three morphological types classified, the multipolar type that exhibited radiating dendrites was predominant among the D+ neurons. Immunocytochemical analysis revealed that the VGAT-immunopositive axonal boutons that expressed tdTomato were primarily located in the dorsal cap of inferior olive (IO) and the PHN. Although the PHN receives cholinergic inputs from the pedunculopontine tegmental nucleus and laterodorsal tegmental nucleus, D+ neurons were absent from these brain areas. Together, these results suggest that PHN neurons that co-express ACh and GABA exhibit specific electrophysiological and morphological properties, and innervate the dorsal cap of the IO and the PHN. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  10. Aluminum-Activated Malate Transporters Can Facilitate GABA Transport.

    PubMed

    Ramesh, Sunita A; Kamran, Muhammad; Sullivan, Wendy; Chirkova, Larissa; Okamoto, Mamoru; Degryse, Fien; McLaughlin, Michael; Gilliham, Matthew; Tyerman, Stephen D

    2018-05-01

    Plant aluminum-activated malate transporters (ALMTs) are currently classified as anion channels; they are also known to be regulated by diverse signals, leading to a range of physiological responses. Gamma-aminobutyric acid (GABA) regulation of anion flux through ALMT proteins requires a specific amino acid motif in ALMTs that shares similarity with a GABA binding site in mammalian GABA A receptors. Here, we explore why TaALMT1 activation leads to a negative correlation between malate efflux and endogenous GABA concentrations ([GABA] i ) in both wheat ( Triticum aestivum ) root tips and in heterologous expression systems. We show that TaALMT1 activation reduces [GABA] i because TaALMT1 facilitates GABA efflux but GABA does not complex Al 3+ TaALMT1 also leads to GABA transport into cells, demonstrated by a yeast complementation assay and via 14 C-GABA uptake into TaALMT1 -expressing Xenopus laevis oocytes; this was found to be a general feature of all ALMTs we examined. Mutation of the GABA motif (TaALMT1 F213C ) prevented both GABA influx and efflux, and resulted in no correlation between malate efflux and [GABA] i We conclude that ALMTs are likely to act as both GABA and anion transporters in planta. GABA and malate appear to interact with ALMTs in a complex manner to regulate each other's transport, suggestive of a role for ALMTs in communicating metabolic status. © 2018 American Society of Plant Biologists. All rights reserved.

  11. Genes in the GABA pathway increase in the lateral thalamus of Sprague Dawley rats during the proestrus/estrus phase

    PubMed Central

    Umorin, Mikhail; Stinson, Crystal; Bellinger, Larry L.; Kramer, Phillip

    2015-01-01

    Pain can vary over the estrous cycle as a result of changes in estradiol concentration but the mechanism causing this variation is unclear. Because the thalamus is important in pain control, gene expression in the lateral thalamus (ventral posteromedial, ventral posterolateral, reticular thalamic nuclei) was screened at different phases of the estrous cycle. Gene expression changes in Sprague-Dawley rats were further analyzed by real-time PCR and ELISA and plasma estradiol levels were measured by RIAs at different phases of the estrous cycle. Our results indicated that both the RNA and protein expression of glutamate decarboxylase 1 and 2 (GAD1, GAD2), GABA(A) receptor-associated protein like 1 (GABARAPL1) and vesicular GABA transporter (VGAT) significantly increased in the lateral thalamus when plasma estradiol levels were elevated. Estradiol levels were elevated during the proestrus and estrus phases of the estrous cycle. Estrogen receptor α (ERα) was observed to be co-localized in thalamic cells and thalamic infusion of an ERα antagonist significantly reduced GAD1 and VGAT transcript. GAD1, GAD2 GABARAPL1 and VGAT have been shown to effect neuronal responses suggesting that modulation of pain during the estrous cycle can be dependent, in part, through estradiol induced changes in thalamic gene expression. PMID:26388520

  12. γ-Amino-butyric acid (GABA) receptor subunit and transporter expression in the gonad and liver of the fathead minnow (Pimephales promelas).

    PubMed

    Biggs, Katie; Seidel, Jason S; Wilson, Alex; Martyniuk, Christopher J

    2013-09-01

    γ-Amino-butyric acid (GABA) is the major inhibitory neurotransmitter in the vertebrate central nervous system. GABA receptors and synthesizing enzymes have also been localized to peripheral tissues including the liver, oviduct, uterus and ovary of mammals but the distribution and role of GABA in peripheral tissues of fish has not been fully investigated. The objectives of this study were to (1) determine if mRNA encoding GABA synthesizing enzymes (glutamic acid decarboxylase 65 and 67; gad65 and gad67), GABA transporters, and GABAA receptor subunits are localized to liver and gonad of fathead minnow (Pimephales promelas) (FHM) (2) investigate the effects of GABA on ovarian 17β-estradiol (E2) production, and (3) measure transcript responses in the ovary after in vitro incubation to GABA. Real-time PCR assays were developed for gad65, gad67, vesicular GABA transporter (vgat) and GABA transporter 1 (gat1), and select GABAA receptor subunits (gabra1, gabra5, gabrb1, gabrb2, gabrg1, gabrg2). All transcripts were localized to the brain as expected; however transcripts were also detected in the liver, ovary, and testis of FHMs. In the female liver, gad65 mRNA was significantly higher in expression compared to the male liver. Transcripts for gad67 were the highest in the brain>gonad>liver and in the gonads, gad67 was significantly higher in expression than gad65 mRNA. In the liver and gonad, the relative abundance of the subunits followed a general trend of gabrb1>gabrb2=gabrg1=gabrg2>gabra1=gabra5. To explore the effects of GABA in the ovary, tissue explants from reproductive female FHMs were treated with GABA (10(-10), 10(-8) and 10(-6)M) for 12h. GABA had no significant effect on 17β-estradiol production or on mRNA abundance for genes involved in ovarian steroidogenesis (e.g., 11βhsd, cyp17, cyp19a). There was a significant decrease in estrogen receptor 2a (esr2a) mRNA with 10(-10)M GABA. This study begins to investigate the GABA system in non-neural tissues of

  13. Systematic Analysis of γ-Aminobutyric Acid (GABA) Metabolism and Function in the Social Amoeba Dictyostelium discoideum*

    PubMed Central

    Wu, Yuantai; Janetopoulos, Chris

    2013-01-01

    While GABA has been suggested to regulate spore encapsulation in the social amoeba Dictyostelium discoideum, the metabolic profile and other potential functions of GABA during development remain unclear. In this study, we investigated the homeostasis of GABA metabolism by disrupting genes related to GABA metabolism and signaling. Extracellular levels of GABA are tightly regulated during early development, and GABA is generated by the glutamate decarboxylase, GadB, during growth and in early development. However, overexpression of the prespore-specific homologue, GadA, in the presence of GadB reduces production of extracellular GABA. Perturbation of extracellular GABA levels delays the process of aggregation. Cytosolic GABA is degraded by the GABA transaminase, GabT, in the mitochondria. Disruption of a putative vesicular GABA transporter (vGAT) homologue DdvGAT reduces secreted GABA. We identified the GABAB receptor-like family member GrlB as the major GABA receptor during early development, and either disruption or overexpression of GrlB delays aggregation. This delay is likely the result of an abolished pre-starvation response and late expression of several “early” developmental genes. Distinct genes are employed for GABA generation during sporulation. During sporulation, GadA alone is required for generating GABA and DdvGAT is likely responsible for GABA secretion. GrlE but not GrlB is the GABA receptor during late development. PMID:23548898

  14. Gamma-amino butyric acid (GABA) release in the ciliated protozoon Paramecium occurs by neuronal-like exocytosis.

    PubMed

    Ramoino, P; Milanese, M; Candiani, S; Diaspro, A; Fato, M; Usai, C; Bonanno, G

    2010-04-01

    Paramecium primaurelia expresses a significant amount of gamma-amino butyric acid (GABA). Paramecia possess both glutamate decarboxylase (GAD)-like and vesicular GABA transporter (vGAT)-like proteins, indicating the ability to synthesize GABA from glutamate and to transport GABA into vesicles. Using antibodies raised against mammalian GAD and vGAT, bands with an apparent molecular weight of about 67 kDa and 57 kDa were detected. The presence of these bands indicated a similarity between the proteins in Paramecium and in mammals. VAMP, syntaxin and SNAP, putative proteins of the release machinery that form the so-called SNARE complex, are present in Paramecium. Most VAMP, syntaxin and SNAP fluorescence is localized in spots that vary in size and density and are primarily distributed near the plasma membrane. Antibodies raised against mammal VAMP-3, sintaxin-1 or SNAP-25 revealed protein immunoblot bands having molecular weights consistent with those observed in mammals. Moreover, P. primaurelia spontaneously releases GABA into the environment, and this neurotransmitter release significantly increases after membrane depolarization. The depolarization-induced GABA release was strongly reduced not only in the absence of extracellular Ca(2+) but also by pre-incubation with bafilomycin A1 or with botulinum toxin C1 serotype. It can be concluded that GABA occurs in Paramecium, where it is probably stored in vesicles capable of fusion with the cell membrane; accordingly, GABA can be released from Paramecium by stimulus-induced, neuronal-like exocytotic mechanisms.

  15. Drug-induced GABA transporter currents enhance GABA release to induce opioid withdrawal behaviors.

    PubMed

    Bagley, Elena E; Hacker, Jennifer; Chefer, Vladimir I; Mallet, Christophe; McNally, Gavan P; Chieng, Billy C H; Perroud, Julie; Shippenberg, Toni S; Christie, MacDonald J

    2011-10-30

    Neurotransmitter transporters can affect neuronal excitability indirectly via modulation of neurotransmitter concentrations or directly via transporter currents. A physiological or pathophysiological role for transporter currents has not been described. We found that GABA transporter 1 (GAT-1) cation currents directly increased GABAergic neuronal excitability and synaptic GABA release in the periaqueductal gray (PAG) during opioid withdrawal in rodents. In contrast, GAT-1 did not indirectly alter GABA receptor responses via modulation of extracellular GABA concentrations. Notably, we found that GAT-1-induced increases in GABAergic activity contributed to many PAG-mediated signs of opioid withdrawal. Together, these data support the hypothesis that GAT-1 activity directly produces opioid withdrawal signs through direct hyperexcitation of GABAergic PAG neurons and nerve terminals, which presumably enhances GABAergic inhibition of PAG output neurons. These data provide, to the best of our knowledge, the first evidence that dysregulation of a neurotransmitter transporter current is important for the maladaptive plasticity that underlies opiate withdrawal.

  16. Reduction of Phosphorylated Synapsin I (Ser-553) Leads to Spatial Memory Impairment by Attenuating GABA Release after Microwave Exposure in Wistar Rats

    PubMed Central

    Qiao, Simo; Peng, Ruiyun; Yan, Haitao; Gao, Yabing; Wang, Changzhen; Wang, Shuiming; Zou, Yong; Xu, Xinping; Zhao, Li; Dong, Ji; Su, Zhentao; Feng, Xinxin; Wang, Lifeng; Hu, Xiangjun

    2014-01-01

    Background Abnormal release of neurotransmitters after microwave exposure can cause learning and memory deficits. This study investigated the mechanism of this effect by exploring the potential role of phosphorylated synapsin I (p-Syn I). Methods Wistar rats, rat hippocampal synaptosomes, and differentiated (neuronal) PC12 cells were exposed to microwave radiation for 5 min at a mean power density of 30 mW/cm2. Sham group rats, synaptosomes, and cells were otherwise identically treated and acted as controls for all of the following post-exposure analyses. Spatial learning and memory in rats was assessed using the Morris Water Maze (MWM) navigation task. The protein expression and presynaptic distribution of p-Syn I and neurotransmitter transporters were examined via western blotting and immunoelectron microscopy, respectively. Levels amino acid neurotransmitter release from rat hippocampal synaptosomes and PC12 cells were measured using high performance liquid chromatograph (HPLC) at 6 hours after exposure, with or without synapsin I silencing via shRNA transfection. Results In the rat experiments, there was a decrease in spatial memory performance after microwave exposure. The expression of p-Syn I (ser-553) was decreased at 3 days post-exposure and elevated at later time points. Vesicular GABA transporter (VGAT) was significantly elevated after exposure. The GABA release from synaptosomes was attenuated and p-Syn I (ser-553) and VGAT were both enriched in small clear synaptic vesicles, which abnormally assembled in the presynaptic terminal after exposure. In the PC12 cell experiments, the expression of p-Syn I (ser-553) and GABA release were both attenuated at 6 hours after exposure. Both microwave exposure and p-Syn I silencing reduced GABA release and maximal reduction was found for the combination of the two, indicating a synergetic effect. Conclusion p-Syn I (ser-553) was found to play a key role in the impaired GABA release and cognitive dysfunction that was

  17. Reduction of phosphorylated synapsin I (ser-553) leads to spatial memory impairment by attenuating GABA release after microwave exposure in Wistar rats.

    PubMed

    Qiao, Simo; Peng, Ruiyun; Yan, Haitao; Gao, Yabing; Wang, Changzhen; Wang, Shuiming; Zou, Yong; Xu, Xinping; Zhao, Li; Dong, Ji; Su, Zhentao; Feng, Xinxin; Wang, Lifeng; Hu, Xiangjun

    2014-01-01

    Abnormal release of neurotransmitters after microwave exposure can cause learning and memory deficits. This study investigated the mechanism of this effect by exploring the potential role of phosphorylated synapsin I (p-Syn I). Wistar rats, rat hippocampal synaptosomes, and differentiated (neuronal) PC12 cells were exposed to microwave radiation for 5 min at a mean power density of 30 mW/cm2. Sham group rats, synaptosomes, and cells were otherwise identically treated and acted as controls for all of the following post-exposure analyses. Spatial learning and memory in rats was assessed using the Morris Water Maze (MWM) navigation task. The protein expression and presynaptic distribution of p-Syn I and neurotransmitter transporters were examined via western blotting and immunoelectron microscopy, respectively. Levels amino acid neurotransmitter release from rat hippocampal synaptosomes and PC12 cells were measured using high performance liquid chromatograph (HPLC) at 6 hours after exposure, with or without synapsin I silencing via shRNA transfection. In the rat experiments, there was a decrease in spatial memory performance after microwave exposure. The expression of p-Syn I (ser-553) was decreased at 3 days post-exposure and elevated at later time points. Vesicular GABA transporter (VGAT) was significantly elevated after exposure. The GABA release from synaptosomes was attenuated and p-Syn I (ser-553) and VGAT were both enriched in small clear synaptic vesicles, which abnormally assembled in the presynaptic terminal after exposure. In the PC12 cell experiments, the expression of p-Syn I (ser-553) and GABA release were both attenuated at 6 hours after exposure. Both microwave exposure and p-Syn I silencing reduced GABA release and maximal reduction was found for the combination of the two, indicating a synergetic effect. p-Syn I (ser-553) was found to play a key role in the impaired GABA release and cognitive dysfunction that was induced by microwave exposure.

  18. Co-existence of Functionally Different Vesicular Neurotransmitter Transporters.

    PubMed

    Münster-Wandowski, Agnieszka; Zander, Johannes-Friedrich; Richter, Karin; Ahnert-Hilger, Gudrun

    2016-01-01

    The vesicular transmitter transporters VGLUT, VGAT, VMAT2 and VAChT, define phenotype and physiological properties of neuronal subtypes. VGLUTs concentrate the excitatory amino acid glutamate, VGAT the inhibitory amino acid GABA, VMAT2 monoamines, and VAChT acetylcholine (ACh) into synaptic vesicle (SV). Following membrane depolarization SV release their content into the synaptic cleft. A strict segregation of vesicular transporters is mandatory for the precise functioning of synaptic communication and of neuronal circuits. In the last years, evidence accumulates that subsets of neurons express more than one of these transporters leading to synaptic co-release of different and functionally opposing transmitters and modulation of synaptic plasticity. Synaptic co-existence of transporters may change during pathological scenarios in order to ameliorate misbalances in neuronal activity. In addition, evidence increases that transporters also co-exist on the same vesicle providing another layer of regulation. Generally, vesicular transmitter loading relies on an electrochemical gradient ΔμH(+) driven by the proton ATPase rendering the lumen of the vesicle with respect to the cytosol positive (Δψ) and acidic (ΔpH). While the activity of VGLUT mainly depends on the Δψ component, VMAT, VGAT and VAChT work best at a high ΔpH. Thus, a vesicular synergy of transporters depending on the combination may increase or decrease the filling of SV with the principal transmitter. We provide an overview on synaptic co-existence of vesicular transmitter transporters including changes in the excitatory/inhibitory balance under pathological conditions. Additionally, we discuss functional aspects of vesicular synergy of transmitter transporters.

  19. Co-existence of Functionally Different Vesicular Neurotransmitter Transporters

    PubMed Central

    Münster-Wandowski, Agnieszka; Zander, Johannes-Friedrich; Richter, Karin; Ahnert-Hilger, Gudrun

    2016-01-01

    The vesicular transmitter transporters VGLUT, VGAT, VMAT2 and VAChT, define phenotype and physiological properties of neuronal subtypes. VGLUTs concentrate the excitatory amino acid glutamate, VGAT the inhibitory amino acid GABA, VMAT2 monoamines, and VAChT acetylcholine (ACh) into synaptic vesicle (SV). Following membrane depolarization SV release their content into the synaptic cleft. A strict segregation of vesicular transporters is mandatory for the precise functioning of synaptic communication and of neuronal circuits. In the last years, evidence accumulates that subsets of neurons express more than one of these transporters leading to synaptic co-release of different and functionally opposing transmitters and modulation of synaptic plasticity. Synaptic co-existence of transporters may change during pathological scenarios in order to ameliorate misbalances in neuronal activity. In addition, evidence increases that transporters also co-exist on the same vesicle providing another layer of regulation. Generally, vesicular transmitter loading relies on an electrochemical gradient ΔμH+ driven by the proton ATPase rendering the lumen of the vesicle with respect to the cytosol positive (Δψ) and acidic (ΔpH). While the activity of VGLUT mainly depends on the Δψ component, VMAT, VGAT and VAChT work best at a high ΔpH. Thus, a vesicular synergy of transporters depending on the combination may increase or decrease the filling of SV with the principal transmitter. We provide an overview on synaptic co-existence of vesicular transmitter transporters including changes in the excitatory/inhibitory balance under pathological conditions. Additionally, we discuss functional aspects of vesicular synergy of transmitter transporters. PMID:26909036

  20. Rapid Substrate-Induced Charge Movements of the GABA Transporter GAT1

    PubMed Central

    Bicho, Ana; Grewer, Christof

    2005-01-01

    The GABA transporter GAT1 removes the neurotransmitter GABA from the synaptic cleft by coupling of GABA uptake to the co-transport of two sodium ions and one chloride ion. The aim of this work was to investigate the individual reaction steps of GAT1 after a GABA concentration jump. GAT1 was transiently expressed in HEK293 cells and its pre-steady-state kinetics were studied by combining the patch-clamp technique with the laser-pulse photolysis of caged GABA, which allowed us to generate GABA concentration jumps within <100 μs. Recordings of transport currents generated by GAT1, both in forward and exchange transport modes, showed multiple charge movements that can be separated along the time axis. The individual reactions associated with these charge movements differ from the well-characterized electrogenic “sodium-occlusion” reaction by GAT1. One of the observed electrogenic reactions is shown to be associated with the GABA-translocating half-cycle of the transporter, in contradiction to previous studies that showed no charge movements associated with these reactions. Interestingly, reactions of the GABA-bound transporter were not affected by the absence of extracellular chloride, suggesting that Cl− may not be co-translocated with GABA. Based on the results, a new alternating access sequential-binding model is proposed for GAT1's transport cycle that describes the results presented here and those by others. PMID:15849242

  1. Gamma-vinyl GABA increases nonvesicular release of GABA and glutamate in the nucleus accumbens in rats via action on anion channels and GABA transporters

    PubMed Central

    Peng, Xiao-Qing; Gardner, Eliot L.

    2013-01-01

    Rationale γ-Amino butyric acid (GABA) is a well-characterized inhibitory neurotransmitter in the central nervous system, which may also stimulate nonvesicular release of other neurotransmitters under certain conditions. We have recently reported that γ-vinyl GABA (GVG), an irreversible GABA transaminase inhibitor, elevates extracellular GABA but fails to alter dopamine release in the nucleus accumbens (NAc). Objectives Here, we investigated the mechanism(s) by which GVG elevates extracellular GABA levels and whether GVG also alters glutamate release in the NAc. Materials and methods In vivo microdialysis was used to simultaneously measure extracellular NAc GABA and glutamate before and after GVG administration in freely moving rats. Results Systemic administration of GVG or intra-NAc local perfusion of GVG significantly increased extracellular NAc GABA and glutamate. GVG-enhanced GABA was completely blocked by intra-NAc local perfusion of 5-nitro-2, 3-(phenylpropylamino)-benzoic acid (NPPB), a selective anion channel blocker and partially blocked by SKF89976A, a type 1 GABA transporter inhibitor. GVG-enhanced glutamate was completely blocked by NPPB or SKF89976A. Tetrodotoxin, a voltage-dependent Na+-channel blocker, failed to alter GVG-enhanced GABA and glutamate. Conclusions These data suggest that GVG-enhanced extracellular GABA and glutamate are mediated predominantly by the opening of anion channels and partially by the reversal of GABA transporters. Enhanced extracellular glutamate may functionally attenuate the pharmacological action of GABA and prevent enhanced GABA-induced excess inhibition. PMID:20033132

  2. Glutamate modulation of GABA transport in retinal horizontal cells of the skate

    PubMed Central

    Kreitzer, Matthew A; Andersen, Kristen A; Malchow, Robert Paul

    2003-01-01

    Transport of the amino acid GABA into neurons and glia plays a key role in regulating the effects of GABA in the vertebrate retina. We have examined the modulation of GABA-elicited transport currents of retinal horizontal cells by glutamate, the likely neurotransmitter of vertebrate photoreceptors. Enzymatically isolated external horizontal cells of skate were examined using whole-cell voltage-clamp techniques. GABA (1 mm) elicited an inward current that was completely suppressed by the GABA transport inhibitors tiagabine (10 μm) and SKF89976-A (100 μm), but was unaffected by 100 μm picrotoxin. Prior application of 100 μm glutamate significantly reduced the GABA-elicited current. Glutamate depressed the GABA dose-response curve without shifting the curve laterally or altering the voltage dependence of the current. The ionotropic glutamate receptor agonists kainate and AMPA also reduced the GABA-elicited current, and the effects of glutamate and kainate were abolished by the ionotropic glutamate receptor antagonist 6-cyano-7-nitroquinoxaline. NMDA neither elicited a current nor modified the GABA-induced current, and metabotropic glutamate analogues were also without effect. Inhibition of the GABA-elicited current by glutamate and kainate was reduced when extracellular calcium was removed and when recording pipettes contained high concentrations of the calcium chelator BAPTA. Caffeine (5 mm) and thapsigargin (2 nm), agents known to alter intracellular calcium levels, also reduced the GABA-elicited current, but increases in calcium induced by depolarization alone did not. Our data suggest that glutamate regulates GABA transport in retinal horizontal cells through a calcium-dependent process, and imply a close physical relationship between calcium-permeable glutamate receptors and GABA transporters in these cells. PMID:12562999

  3. Regulation of Local Ambient GABA Levels via Transporter-Mediated GABA Import and Export for Subliminal Learning.

    PubMed

    Hoshino, Osamu

    2015-06-01

    Perception of supraliminal stimuli might in general be reflected in bursts of action potentials (spikes), and their memory traces could be formed through spike-timing-dependent plasticity (STDP). Memory traces for subliminal stimuli might be formed in a different manner, because subliminal stimulation evokes a fraction (but not a burst) of spikes. Simulations of a cortical neural network model showed that a subliminal stimulus that was too brief (10 msec) to perceive transiently (more than about 500 msec) depolarized stimulus-relevant principal cells and hyperpolarized stimulus-irrelevant principal cells in a subthreshold manner. This led to a small increase or decrease in ongoing-spontaneous spiking activity frequency (less than 1 Hz). Synaptic modification based on STDP during this period effectively enhanced relevant synaptic weights, by which subliminal learning was improved. GABA transporters on GABAergic interneurons modulated local levels of ambient GABA. Ambient GABA molecules acted on extrasynaptic receptors, provided principal cells with tonic inhibitory currents, and contributed to achieving the subthreshold neuronal state. We suggest that ongoing-spontaneous synaptic alteration through STDP following subliminal stimulation may be a possible neuronal mechanism for leaving its memory trace in cortical circuitry. Regulation of local ambient GABA levels by transporter-mediated GABA import and export may be crucial for subliminal learning.

  4. Inhibitory synapse dynamics: coordinated presynaptic and postsynaptic mobility and the major contribution of recycled vesicles to new synapse formation.

    PubMed

    Dobie, Frederick A; Craig, Ann Marie

    2011-07-20

    Dynamics of GABAergic synaptic components have been studied previously over milliseconds to minutes, revealing mobility of postsynaptic scaffolds and receptors. Here we image inhibitory synapses containing fluorescently tagged postsynaptic scaffold Gephyrin, together with presynaptic vesicular GABA transporter (VGAT) or postsynaptic GABA(A) receptor γ2 subunit (GABA(A)Rγ2), over seconds to days in cultured rat hippocampal neurons, revealing modes of inhibitory synapse formation and remodeling. Entire synapses were mobile, translocating rapidly within a confined region and exhibiting greater nonstochastic motion over multihour periods. Presynaptic and postsynaptic components moved in unison, maintaining close apposition while translocating distances of several micrometers. An observed flux in the density of synaptic puncta partially resulted from the apparent merging and splitting of preexisting clusters. De novo formation of inhibitory synapses was observed, marked by the appearance of stably apposed Gephyrin and VGAT clusters at sites previously lacking either component. Coclustering of GABA(A)Rγ2 supports the identification of such new clusters as synapses. Nascent synapse formation occurred by gradual accumulation of components over several hours, with VGAT clustering preceding that of Gephyrin and GABA(A)Rγ2. Comparing VGAT labeling by active uptake of a luminal domain antibody with post hoc immunocytochemistry indicated that recycling vesicles from preexisting boutons significantly contribute to vesicle pools at the majority of new inhibitory synapses. Although new synapses formed primarily on dendrite shafts, some also formed on dendritic protrusions, without apparent interconversion. Altogether, the long-term imaging of GABAergic presynaptic and postsynaptic components reveals complex dynamics and perpetual remodeling with implications for mechanisms of assembly and synaptic integration.

  5. Astrocytic GABA transporter activity modulates excitatory neurotransmission

    PubMed Central

    Boddum, Kim; Jensen, Thomas P.; Magloire, Vincent; Kristiansen, Uffe; Rusakov, Dmitri A.; Pavlov, Ivan; Walker, Matthew C.

    2016-01-01

    Astrocytes are ideally placed to detect and respond to network activity. They express ionotropic and metabotropic receptors, and can release gliotransmitters. Astrocytes also express transporters that regulate the extracellular concentration of neurotransmitters. Here we report a previously unrecognized role for the astrocytic GABA transporter, GAT-3. GAT-3 activity results in a rise in astrocytic Na+ concentrations and a consequent increase in astrocytic Ca2+ through Na+/Ca2+ exchange. This leads to the release of ATP/adenosine by astrocytes, which then diffusely inhibits neuronal glutamate release via activation of presynaptic adenosine receptors. Through this mechanism, increases in astrocytic GAT-3 activity due to GABA released from interneurons contribute to 'diffuse' heterosynaptic depression. This provides a mechanism for homeostatic regulation of excitatory transmission in the hippocampus. PMID:27886179

  6. Nonvesicular inhibitory neurotransmission via reversal of the GABA transporter GAT-1

    PubMed Central

    Wu, Yuanming; Wang, Wengang; Díez-Sampedro, Ana; Richerson, George B.

    2007-01-01

    SUMMARY GABA transporters play an important but poorly understood role in neuronal inhibition. They can reverse, but this is widely thought to occur only under pathological conditions. Here we use a heterologous expression system to show that the reversal potential of GAT-1 under physiologically relevant conditions is near the normal resting potential of neurons, and that reversal can occur rapidly enough to release GABA during simulated action potentials. We then use paired recordings from cultured hippocampal neurons, and show that GABAergic transmission is not prevented by four methods widely used to block vesicular release. This nonvesicular neurotransmission was potently blocked by GAT-1 antagonists, and was enhanced as predicted by agents that increase cytosolic [GABA] or [Na+]. The results indicate that GAT-1 regulates tonic inhibition by clamping ambient [GABA] at a level high enough to activate high affinity GABAA receptors, and that transporter-mediated GABA release can contribute to phasic inhibition. PMID:18054861

  7. Enhanced glutamatergic and decreased GABAergic synaptic appositions to GnRH neurons on proestrus in the rat: modulatory effect of aging.

    PubMed

    Khan, Mohammad; De Sevilla, Liesl; Mahesh, Virendra B; Brann, Darrell W

    2010-04-14

    Previous work by our lab and others has implicated glutamate as a major excitatory signal to gonadotropin hormone releasing hormone (GnRH) neurons, with gamma amino butyric acid (GABA) serving as a potential major inhibitory signal. However, it is unknown whether GABAergic and/or glutamatergic synaptic appositions to GnRH neurons changes on the day of the proestrous LH surge or is affected by aging. To examine this question, synaptic terminal appositions on GnRH neurons for VGAT (vesicular GABA transporter) and VGLUT2 (vesicular glutamate transporter-2), markers of GABAergic and glutamatergic synaptic terminals, respectively, was examined by immunohistochemistry and confocal microscopic analysis in young and middle-aged diestrous and proestrous rats. The results show that in young proestrous rats at the time of LH surge, we observed reciprocal changes in the VGAT and VGLUT2 positive terminals apposing GnRH neurons, where VGAT terminal appositions were decreased and VGLUT2 terminal appositions were significantly increased, as compared to young diestrus control animals. Interestingly, in middle-aged cycling animals this divergent modulation of VGAT and VGLUT2 terminal apposition was greatly impaired, as no significant differences were observed between VGAT and VGLUT2 terminals apposing GnRH neurons at proestrous. However, the density of VGAT and VGLUT2 terminals apposing GnRH neurons were both significantly increased in the middle-aged animals. In conclusion, there is an increase in glutamatergic and decrease in GABAergic synaptic terminal appositions on GnRH neurons on proestrus in young animals, which may serve to facilitate activation of GnRH neurons. In contrast, middle-aged diestrous and proestrous animals show a significant increase in both VGAT and VGLUT synaptic terminal appositions on GnRH neurons as compared to young animals, and the cycle-related change in these appositions between diestrus and proestrus that is observed in young animals is lost.

  8. Endothelial cell-derived GABA signaling modulates neuronal migration and postnatal behavior

    PubMed Central

    Li, Suyan; Kumar T, Peeyush; Joshee, Sampada; Kirschstein, Timo; Subburaju, Sivan; Khalili, Jahan S; Kloepper, Jonas; Du, Chuang; Elkhal, Abdallah; Szabó, Gábor; Jain, Rakesh K; Köhling, Rüdiger; Vasudevan, Anju

    2018-01-01

    The cerebral cortex is essential for integration and processing of information that is required for most behaviors. The exquisitely precise laminar organization of the cerebral cortex arises during embryonic development when neurons migrate successively from ventricular zones to coalesce into specific cortical layers. While radial glia act as guide rails for projection neuron migration, pre-formed vascular networks provide support and guidance cues for GABAergic interneuron migration. This study provides novel conceptual and mechanistic insights into this paradigm of vascular-neuronal interactions, revealing new mechanisms of GABA and its receptor-mediated signaling via embryonic forebrain endothelial cells. With the use of two new endothelial cell specific conditional mouse models of the GABA pathway (Gabrb3ΔTie2-Cre and VgatΔTie2-Cre), we show that partial or complete loss of GABA release from endothelial cells during embryogenesis results in vascular defects and impairs long-distance migration and positioning of cortical interneurons. The downstream effects of perturbed endothelial cell-derived GABA signaling are critical, leading to lasting changes to cortical circuits and persistent behavioral deficits. Furthermore, we illustrate new mechanisms of activation of GABA signaling in forebrain endothelial cells that promotes their migration, angiogenesis and acquisition of blood-brain barrier properties. Our findings uncover and elucidate a novel endothelial GABA signaling pathway in the CNS that is distinct from the classical neuronal GABA signaling pathway and shed new light on the etiology and pathophysiology of neuropsychiatric diseases, such as autism spectrum disorders, epilepsy, anxiety, depression and schizophrenia. PMID:29086765

  9. Markedly Lower Glutamic Acid Decarboxylase 67 Protein Levels in a Subset of Boutons in Schizophrenia.

    PubMed

    Rocco, Brad R; Lewis, David A; Fish, Kenneth N

    2016-06-15

    Convergent findings indicate that cortical gamma-aminobutyric acid (GABA)ergic circuitry is altered in schizophrenia. Postmortem studies have consistently found lower levels of glutamic acid decarboxylase 67 (GAD67) messenger RNA (mRNA) in the prefrontal cortex (PFC) of subjects with schizophrenia. At the cellular level, the density of GABA neurons with detectable levels of GAD67 mRNA is ~30% lower across cortical layers. Knowing how this transcript deficit translates to GAD67 protein levels in axonal boutons is important for understanding the impact it might have on GABA synthesis. In addition, because reductions in GAD67 expression before, but not after, the maturation of GABAergic boutons results in a lower density of GABAergic boutons in mouse cortical cultures, knowing if GABAergic bouton density is altered in schizophrenia would provide insight into the timing of the GAD67 deficit. PFC tissue sections from 20 matched pairs of schizophrenia and comparison subjects were immunolabeled for the vesicular GABA transporter (vGAT) and GAD67. vGAT+ bouton density did not differ between subject groups, consistent with findings that vGAT mRNA levels are unaltered in the illness and confirming that the number of cortical GABAergic boutons is not lower in schizophrenia. In contrast, in schizophrenia subjects, the proportion of vGAT+ boutons with detectable GAD67 levels (vGAT+/GAD67+ boutons) was 16% lower and mean GAD67 levels were 14% lower in the remaining vGAT+/GAD67+ boutons. Our findings suggest that GABA production is markedly reduced in a subset of boutons in the PFC of schizophrenia subjects and that this reduction likely occurs after the maturation of GABAergic boutons. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  10. GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters.

    PubMed

    Ramesh, Sunita A; Tyerman, Stephen D; Xu, Bo; Bose, Jayakumar; Kaur, Satwinder; Conn, Vanessa; Domingos, Patricia; Ullah, Sana; Wege, Stefanie; Shabala, Sergey; Feijó, José A; Ryan, Peter R; Gilliham, Matthew; Gillham, Matthew

    2015-07-29

    The non-protein amino acid, gamma-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to biotic and abiotic stress, and regulates plant growth. Until now it was not known whether GABA exerts its effects in plants through the regulation of carbon metabolism or via an unidentified signalling pathway. Here, we demonstrate that anion flux through plant aluminium-activated malate transporter (ALMT) proteins is activated by anions and negatively regulated by GABA. Site-directed mutagenesis of selected amino acids within ALMT proteins abolishes GABA efficacy but does not alter other transport properties. GABA modulation of ALMT activity results in altered root growth and altered root tolerance to alkaline pH, acid pH and aluminium ions. We propose that GABA exerts its multiple physiological effects in plants via ALMT, including the regulation of pollen tube and root growth, and that GABA can finally be considered a legitimate signalling molecule in both the plant and animal kingdoms.

  11. GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters

    PubMed Central

    Ramesh, Sunita A.; Tyerman, Stephen D.; Xu, Bo; Bose, Jayakumar; Kaur, Satwinder; Conn, Vanessa; Domingos, Patricia; Ullah, Sana; Wege, Stefanie; Shabala, Sergey; Feijó, José A.; Ryan, Peter R.; Gillham, Matthew

    2015-01-01

    The non-protein amino acid, gamma-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to biotic and abiotic stress, and regulates plant growth. Until now it was not known whether GABA exerts its effects in plants through the regulation of carbon metabolism or via an unidentified signalling pathway. Here, we demonstrate that anion flux through plant aluminium-activated malate transporter (ALMT) proteins is activated by anions and negatively regulated by GABA. Site-directed mutagenesis of selected amino acids within ALMT proteins abolishes GABA efficacy but does not alter other transport properties. GABA modulation of ALMT activity results in altered root growth and altered root tolerance to alkaline pH, acid pH and aluminium ions. We propose that GABA exerts its multiple physiological effects in plants via ALMT, including the regulation of pollen tube and root growth, and that GABA can finally be considered a legitimate signalling molecule in both the plant and animal kingdoms. PMID:26219411

  12. Manganese exposure alters extracellular GABA, GABA receptor and transporter protein and mRNA levels in the developing rat brain

    PubMed Central

    Anderson, Joel G.; Fordahl, Steve C.; Cooney, Paula T.; Weaver, Tara L.; Colyer, Christa L.; Erikson, Keith M.

    2011-01-01

    Unlike other essential trace elements (e.g., zinc and iron) it is the toxicity of manganese (Mn) that is more common in human populations than its deficiency. Data suggest alterations in dopamine biology may drive the effects associated with Mn neurotoxicity, though recently γ-aminobutyric acid (GABA) has been implicated. In addition, iron deficiency (ID), a common nutritional problem, may cause disturbances in neurochemistry by facilitating accumulation of Mn in the brain. Previous data from our lab have shown decreased brain tissue levels of GABA as well as decreased 3H-GABA uptake in synaptosomes as a result of Mn exposure and ID. These results indicate a possible increase in the concentration of extracellular GABA due to alterations in expression of GABA transport and receptor proteins. In this study weanling-male Sprague-Dawley rats were randomly placed into one of four dietary treatment groups: control (CN; 35 mg Fe/kg diet), iron-deficient (ID; 6 mg Fe/kg diet), CN with Mn supplementation (via the drinking water; 1 g Mn/L) (CNMn), and ID with Mn supplementation (IDMn). Using in vivo microdialysis, an increase in extracellular GABA concentrations in the striatum was observed in response to Mn exposure and ID although correlational analysis reveals that extracellular GABA is related more to extracellular iron levels and not Mn. A diverse effect of Mn exposure and ID was observed in the regions examined via Western blot and RT-PCR analysis, with effects on mRNA and protein expression of GAT-1, GABAA, and GABAB differing between and within the regions examined. For example, Mn exposure reduced GAT-1 protein expression by approximately 50% in the substantia nigra, while increasing mRNA expression approximately four-fold, while in the caudate putamen mRNA expression was decreased with no effect on protein expression. These data suggest that Mn exposure results in an increase in extracellular GABA concentrations via altered expression of transport and receptor

  13. Alterations in a Unique Class of Cortical Chandelier Cell Axon Cartridges in Schizophrenia.

    PubMed

    Rocco, Brad R; DeDionisio, Adam M; Lewis, David A; Fish, Kenneth N

    2017-07-01

    The axons of chandelier cells (ChCs) target the axon initial segment of pyramidal neurons, forming an array of boutons termed a cartridge. In schizophrenia, the density of cartridges detectable by gamma-aminobutyric acid (GABA) membrane transporter 1 immunoreactivity is lower, whereas the density of axon initial segments detectable by immunoreactivity for the α2 subunit of the GABA A receptor is higher in layers 2/superficial 3 of the prefrontal cortex. These findings were interpreted as compensatory responses to lower GABA levels in ChCs. However, we recently found that in schizophrenia, ChC cartridge boutons contain normal levels of the 67 kDa isoform of glutamic acid decarboxylase (GAD67) protein, the enzyme responsible for GABA synthesis in these boutons. To understand these findings we quantified the densities of ChC cartridges immunoreactive for vesicular GABA transporter (vGAT+), which is present in all cartridge boutons, and the subset of cartridges that contain calbindin (CB+). Prefrontal cortex tissue sections from 20 matched pairs of schizophrenia and unaffected comparison subjects were immunolabeled for vGAT, GAD67, and CB. The mean density of vGAT+/CB+ cartridges was 2.7-fold higher, exclusively in layer 2 of schizophrenia subjects, whereas the density of vGAT+/CB- cartridges did not differ between subject groups. Neither vGAT, CB, or GAD67 protein levels per ChC bouton nor the number of boutons per cartridge differed between subject groups. Our findings of a greater density of CB+ ChC cartridges in prefrontal cortex layer 2 from schizophrenia subjects suggests that the normal developmental pruning of these cartridges is blunted in the illness. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  14. Localization of a GABA transporter to glial cells in the developing and adult olfactory pathway of the moth Manduca sexta1

    PubMed Central

    Oland, Lynne A; Gibson, Nicholas J; Tolbert, Leslie P

    2010-01-01

    Glial cells have several critical roles in the developing and adult olfactory (antennal) lobe of the moth Manduca sexta. Early in development, glial cells occupy discrete regions of the developing olfactory pathway and processes of GABAergic neurons extend into some of these regions. Because GABA is known to have developmental effects in a variety of systems, we explored the possibility that the glial cells express a GABA transporter that could regulate GABA levels to which olfactory neurons and glial cells are exposed. Using an antibody raised against a characterized high-affinity M. sexta GABA transporter with high sequence homology to known mammalian GABA transporters (Mbungu et al., 1995; Umesh and Gill, 2002), we found that the GABA transporter is localized to subsets of centrally derived glial cells during metamorphic adult development. The transporter persists into adulthood in a subset of the neuropil-associated glial cells, but its distribution pattern as determined by light- and electron-microscopic-level immunocytochemistry indicates that it could not serve to regulate GABA concentration in the synaptic cleft. Rather its role is more likely to regulate extracellular GABA levels within the glomerular neuropil. Expression in the sorting zone glial cells disappears after the period of olfactory receptor axon ingrowth, but may be important during ingrowth if GABA regulates axon growth. Glial cells take up GABA, and that uptake can be blocked by DABA. This is the first molecular evidence that the central glial cell population in this pathway is heterogeneous. PMID:20058309

  15. GABAergic inhibition through synergistic astrocytic neuronal interaction transiently decreases vasopressin neuronal activity during hypoosmotic challenge.

    PubMed

    Wang, Yu-Feng; Sun, Min-Yu; Hou, Qiuling; Hamilton, Kathryn A

    2013-04-01

    The neuropeptide vasopressin is crucial to mammalian osmotic regulation. Local hypoosmotic challenge transiently decreases and then increases vasopressin secretion. To investigate mechanisms underlying this transient response, we examined the effects of hypoosmotic challenge on the electrical activity of rat hypothalamic supraoptic nucleus (SON) vasopressin neurons using patch-clamp recordings. We found that 5 min exposure of hypothalamic slices to hypoosmotic solution transiently increased inhibitory postsynaptic current (IPSC) frequency and reduced the firing rate of vasopressin neurons. Recovery occurred by 10 min of exposure, even though the osmolality remained low. The γ-aminobutyric acid (GABA)A receptor blocker, gabazine, blocked the IPSCs and the hypoosmotic suppression of firing. The gliotoxin l-aminoadipic acid blocked the increase in IPSC frequency at 5 min and the recovery of firing at 10 min, indicating astrocytic involvement in hypoosmotic modulation of vasopressin neuronal activity. Moreover, β-alanine, an osmolyte of astrocytes and GABA transporter (GAT) inhibitor, blocked the increase in IPSC frequency at 5 min of hypoosmotic challenge. Confocal microscopy of immunostained SON sections revealed that astrocytes and magnocellular neurons both showed positive staining of vesicular GATs (VGAT). Hypoosmotic stimulation in vivo reduced the number of VGAT-expressing neurons, and increased co-localisation and molecular association of VGAT with glial fibrillary acidic protein that increased significantly by 10 min. By 30 min, neuronal VGAT labelling was partially restored, and astrocytic VGAT was relocated to the ventral portion while it decreased in the somatic zone of the SON. Thus, synergistic astrocytic and neuronal GABAergic inhibition could ensure that vasopressin neuron firing is only transiently suppressed under hypoosmotic conditions. © 2013 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  16. Localization and function of GABA transporters in the globus pallidus of parkinsonian monkeys

    PubMed Central

    Galvan, Adriana; Hu, Xing; Smith, Yoland; Wichmann, Thomas

    2010-01-01

    The GABA transporters GAT-1 and GAT-3 are abundant in the external and internal segments of the globus pallidus (GPe and GPi, respectively). We have shown that pharmacological blockade of either of these transporters results in decreased neuronal firing, and in elevated levels of extracellular GABA in normal monkeys. We now studied whether the electrophysiologic and biochemical effects of local intra-pallidal injections of GAT-1 and GAT-3 blockers, or the subcellular localization of these transporters, are altered in monkeys rendered parkinsonian by the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The subcellular localization of the transporters in GPe and GPi, studied with electron microscopy immunoperoxidase, was similar to that found in normal animals: i.e., GAT-3 immunoreactivity was mostly confined to glial processes, while GAT-1 labeling was expressed in unmyelinated axons and glial processes. A combined injection/recording device was used to record extracellular activity of single neurons in GPe and GPi, before, during and after administration of small volumes (1 μl) of either the GAT-1 inhibitor, SKF-89976A hydrochloride (720 ng), or the GAT-3 inhibitor, (S)-SNAP-5114 (500 ng). In GPe, the effects of GAT-1 or GAT-3 blockade were similar to those seen in normal monkeys. However, unlike the findings in the normal state, the firing of most neurons was not affected by blockade of either transporter in GPi. These results suggest that, after dopaminergic depletion, the functions of GABA transporters are altered in GPi; without major changes in their subcellular localization. PMID:20138865

  17. A Novel Population of Wake-Promoting GABAergic Neurons in the Ventral Lateral Hypothalamus.

    PubMed

    Venner, Anne; Anaclet, Christelle; Broadhurst, Rebecca Y; Saper, Clifford B; Fuller, Patrick M

    2016-08-22

    The largest synaptic input to the sleep-promoting ventrolateral preoptic area (VLPO) [1] arises from the lateral hypothalamus [2], a brain area associated with arousal [3-5]. However, the neurochemical identity of the majority of these VLPO-projecting neurons within the lateral hypothalamus (LH), as well as their function in the arousal network, remains unknown. Herein we describe a population of VLPO-projecting neurons in the LH that express the vesicular GABA transporter (VGAT; a marker for GABA-releasing neurons). In addition to the VLPO, these neurons also project to several other established sleep and arousal nodes, including the tuberomammillary nucleus, ventral periaqueductal gray, and locus coeruleus. Selective and acute chemogenetic activation of LH VGAT(+) neurons was profoundly wake promoting, whereas acute inhibition increased sleep. Because of its direct and massive inputs to the VLPO, this population may play a particularly important role in sleep-wake switching. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Presynaptic Na+-dependent transport and exocytose of GABA and glutamate in brain in hypergravity.

    NASA Astrophysics Data System (ADS)

    Borisova, T.; Pozdnyakova, N.; Krisanova, N.; Himmelreich, N.

    γ-Aminobutyric acid (GABA) and L-glutamate are the most widespread neurotransmitter amino acids in the mammalian central nervous system. GABA is now widely recognized as the major inhibitory neurotransmitter. L-glutamate mediates the most of excitatory synaptic neurotransmission in the brain. They involved in the main aspects of normal brain function. The nerve terminals (synaptosomes) offer several advantages as a model system for the study of general mechanisms of neurosecretion. Our data allowed to conclude that exposure of animals to hypergravity (centrifugation of rats at 10G for 1 hour) had a profound effect on synaptic processes in brain. Comparative analysis of uptake and release of GABA and glutamate have demonstrated that hypergravity loading evokes oppositely directed alterations in inhibitory and excitatory signal transmission. We studied the maximal velocities of [^3H]GABA reuptake and revealed more than twofold enhancement of GABA transporter activity (Vmax rises from 1.4 |pm 0.3 nmol/min/mg of protein in the control group to 3.3 ± 0.59 nmol/min/mg of protein for animals exposed to hypergravity (P ≤ 0.05)). Recently we have also demonstrated the significant lowering of glutamate transporter activity (Vmax of glutamate reuptake decreased from 12.5 ± 3.2 nmol/min/mg of protein in the control group to 5.6 ± 0.9 nmol/min/mg of protein in the group of animals, exposed to the hypergravity stress (P ≤ 0.05)). Significant changes occurred in release of neurotransmitters induced by stimulating exocytosis with the agents, which depolarized nerve terminal plasma membrane. Depolarization-evoked Ca2+-stimulated release was more abundant for GABA (7.2 ± 0.54% and 11,74 ±1,2 % of total accumulated label for control and hypergravity, respectively (P≤0.05)) and was essentially less for glutamate (14.4 ± 0.7% and 6.2 ± 1.9%) after exposure of animals to centrifuge induced artificial gravity. Changes observed in depolarization-evoked exocytotic release

  19. Heterogeneity of glutamatergic and GABAergic release machinery in cerebral cortex: analysis of synaptogyrin, vesicle-associated membrane protein, and syntaxin.

    PubMed

    Bragina, L; Giovedì, S; Barbaresi, P; Benfenati, F; Conti, F

    2010-02-03

    To define whether cortical glutamatergic and GABAergic release machineries can be differentiated on the basis of the nature and amount of proteins they express, we studied the degree of co-localization of synaptogyrin (SGYR) 1 and 3, vesicle-associated membrane protein (VAMP) 1 and 2, syntaxin (STX) 1A and 1B in vesicular glutamate transporter (VGLUT)1-, VGLUT2- and vesicular GABA transporter (VGAT)-positive (+) puncta and synaptic vesicles in the rat cerebral cortex. Co-localization studies showed that SGYR1 and 3 were expressed in about 90% of VGLUT1+, 70% of VGLUT2+ and 80% of VGAT+ puncta; VAMP1 was expressed in approximately 45% of VGLUT1+, 55% of VGLUT2+, and 80% of VGAT+ puncta; VAMP2 in about 95% of VGLUT1+, 75% of VGLUT2+, and 80% of VGAT+ puncta; STX1A in about 65% of VGLUT1+, 30% of VGLUT2+, and 3% of VGAT+ puncta, and STX1B in approximately 45% of VGLUT1+, 35% of VGLUT2+, and 70% of VGAT+ puncta. Immunoisolation studies showed that while STX1A was completely segregated and virtually absent from VGAT synaptic vesicles, STX1B, VAMP1/VAMP2, SGYR1/SGYR3 showed a similar pattern with the highest expression in VGLUT1 immunoisolated vesicles and the lowest in VGAT immunoisolated vesicles. Moreover, we studied the localization of STX1B at the electron microscope and found that a population of axon terminals forming symmetric synapses were STX1B-positive.These results extend our previous observations on the differential expression of presynaptic proteins involved in neurotransmitter release in GABAergic and glutamatergic terminals and indicate that heterogeneity of glutamatergic and GABAergic release machinery can be contributed by both the presence or absence of a given protein in a nerve terminal and the amount of protein expressed by synaptic vesicles. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. MFS Transporters and GABA Metabolism Are Involved in the Self-Defense Against DON in Fusarium graminearum

    PubMed Central

    Wang, Qinhu; Chen, Daipeng; Wu, Mengchun; Zhu, Jindong; Jiang, Cong; Xu, Jin-Rong; Liu, Huiquan

    2018-01-01

    Trichothecene mycotoxins, such as deoxynivalenol (DON) produced by the fungal pathogen, Fusarium graminearum, are not only important for plant infection but are also harmful to human and animal health. Trichothecene targets the ribosomal protein Rpl3 that is conserved in eukaryotes. Hence, a self-defense mechanism must exist in DON-producing fungi. It is reported that TRI (trichothecene biosynthesis) 101 and TRI12 are two genes responsible for self-defense against trichothecene toxins in Fusarium. In this study, however, we found that simultaneous disruption of TRI101 and TRI12 has no obvious influence on DON resistance upon exogenous DON treatment in F. graminearum, suggesting that other mechanisms may be involved in self-defense. By using RNA-seq, we identified 253 genes specifically induced in DON-treated cultures compared with samples from cultures treated or untreated with cycloheximide, a commonly used inhibitor of eukaryotic protein synthesis. We found that transporter genes are significantly enriched in this group of DON-induced genes. Of those genes, 15 encode major facilitator superfamily transporters likely involved in mycotoxin efflux. Significantly, we found that genes involved in the metabolism of gamma-aminobutyric acid (GABA), a known inducer of DON production in F. graminearum, are significantly enriched among the DON-induced genes. The GABA biosynthesis gene PROLINE UTILIZATION 2-2 (PUT2-2) is downregulated, while GABA degradation genes are upregulated at least twofold upon treatment with DON, resulting in decreased levels of GABA. Taken together, our results suggest that transporters influencing DON efflux are important for self-defense and that GABA mediates the balance of DON production and self-defense in F. graminearum. PMID:29706976

  1. MFS Transporters and GABA Metabolism Are Involved in the Self-Defense Against DON in Fusarium graminearum.

    PubMed

    Wang, Qinhu; Chen, Daipeng; Wu, Mengchun; Zhu, Jindong; Jiang, Cong; Xu, Jin-Rong; Liu, Huiquan

    2018-01-01

    Trichothecene mycotoxins, such as deoxynivalenol (DON) produced by the fungal pathogen, Fusarium graminearum , are not only important for plant infection but are also harmful to human and animal health. Trichothecene targets the ribosomal protein Rpl3 that is conserved in eukaryotes. Hence, a self-defense mechanism must exist in DON-producing fungi. It is reported that TRI (trichothecene biosynthesis) 101 and TRI12 are two genes responsible for self-defense against trichothecene toxins in Fusarium . In this study, however, we found that simultaneous disruption of TRI101 and TRI12 has no obvious influence on DON resistance upon exogenous DON treatment in F. graminearum , suggesting that other mechanisms may be involved in self-defense. By using RNA-seq, we identified 253 genes specifically induced in DON-treated cultures compared with samples from cultures treated or untreated with cycloheximide, a commonly used inhibitor of eukaryotic protein synthesis. We found that transporter genes are significantly enriched in this group of DON-induced genes. Of those genes, 15 encode major facilitator superfamily transporters likely involved in mycotoxin efflux. Significantly, we found that genes involved in the metabolism of gamma-aminobutyric acid (GABA), a known inducer of DON production in F. graminearum , are significantly enriched among the DON-induced genes. The GABA biosynthesis gene PROLINE UTILIZATION 2-2 ( PUT2-2 ) is downregulated, while GABA degradation genes are upregulated at least twofold upon treatment with DON, resulting in decreased levels of GABA. Taken together, our results suggest that transporters influencing DON efflux are important for self-defense and that GABA mediates the balance of DON production and self-defense in F. graminearum .

  2. Evaluation of the electrophysiological consequences of GABA removal from the synaptic cleft by Na+ ion transport-coupled neuronal uptake.

    PubMed

    Cupello, A; Hydén, H

    1985-12-09

    The pre- and postsynaptic electrophysiological consequences of a carrier-mediated, Na+ ion transport-coupled removal of gamma-aminobutyric acid (GABA) from the relevant synaptic clefts are discussed. Assuming for the GABA internalization process a stoichiometry like GABAo + 3NA+o + K+i in equilibrium GABAi + 3Na+i + K+o and a synaptic cleft GABA maximal concentration of 100 microM we calculated the presynaptic depolarization associated with GABA removal between 11.5 and 38.2 mV. At the postsynaptic level the effect appears to be less marked.

  3. Mutations in the GABA Transporter SLC6A1 Cause Epilepsy with Myoclonic-Atonic Seizures

    PubMed Central

    Carvill, Gemma L.; McMahon, Jacinta M.; Schneider, Amy; Zemel, Matthew; Myers, Candace T.; Saykally, Julia; Nguyen, John; Robbiano, Angela; Zara, Federico; Specchio, Nicola; Mecarelli, Oriano; Smith, Robert L.; Leventer, Richard J.; Møller, Rikke S.; Nikanorova, Marina; Dimova, Petia; Jordanova, Albena; Petrou, Steven; Helbig, Ingo; Striano, Pasquale; Weckhuysen, Sarah; Berkovic, Samuel F.; Scheffer, Ingrid E.; Mefford, Heather C.

    2015-01-01

    GAT-1, encoded by SLC6A1, is one of the major gamma-aminobutyric acid (GABA) transporters in the brain and is responsible for re-uptake of GABA from the synapse. In this study, targeted resequencing of 644 individuals with epileptic encephalopathies led to the identification of six SLC6A1 mutations in seven individuals, all of whom have epilepsy with myoclonic-atonic seizures (MAE). We describe two truncations and four missense alterations, all of which most likely lead to loss of function of GAT-1 and thus reduced GABA re-uptake from the synapse. These individuals share many of the electrophysiological properties of Gat1-deficient mice, including spontaneous spike-wave discharges. Overall, pathogenic mutations occurred in 6/160 individuals with MAE, accounting for ∼4% of unsolved MAE cases. PMID:25865495

  4. Assignment of the human GABA transporter gene (GABATHG) locus to chromosome 3p24-p25

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Fang; Fei, Jian; Guo, Li-He

    1995-09-01

    An essential regulatory process of synaptic transmission is the inactivation of released neurotransmitters by the transmitter-specific uptake mechanism, {gamma}-Aminobutyric acid (GABA) is an inhibitory transmitter in the vertebrate central nervous system; its activity is terminated by a high-affinity Na{sup +} and Cl{sup -} -dependent specific GABA transporter (GAT), which carries the neurotransmitter to the presynaptic neuron and/or glial elements surrounding the synaptic cleft. Deficiency of the transporter may cause epilepsy and some other nervous diseases. The human GAT gene (GABATHG), approximately 25 kb in length, has been cloned and sequenced by our colleagues (7). Here the results of the inmore » situ hybridization mapping with the gene are presented. 10 refs., 1 fig.« less

  5. Expression of ESR1 in Glutamatergic and GABAergic Neurons Is Essential for Normal Puberty Onset, Estrogen Feedback, and Fertility in Female Mice.

    PubMed

    Cheong, Rachel Y; Czieselsky, Katja; Porteous, Robert; Herbison, Allan E

    2015-10-28

    Circulating estradiol exerts a profound influence on the activity of the gonadotropin-releasing hormone (GnRH) neuronal network controlling fertility. Using genetic strategies enabling neuron-specific deletion of estrogen receptor α (Esr1), we examine here whether estradiol-modulated GABA and glutamate transmission are critical for the functioning of the GnRH neuron network in the female mouse. Using Vgat- and Vglut2-ires-Cre knock-in mice and ESR1 immunohistochemistry, we demonstrate that subpopulations of GABA and glutamate neurons throughout the limbic forebrain express ESR1, with ESR1-GABAergic neurons being more widespread and numerous than ESR1-glutamatergic neurons. We crossed Vgat- and Vglut2-ires-Cre mice with an Esr1(lox/lox) line to generate animals with GABA-neuron-specific or glutamate-neuron-specific deletion of Esr1. Vgat-ires-Cre;Esr1(lox/lox) mice were infertile, with abnormal estrous cycles, and exhibited a complete failure of the estrogen positive feedback mechanism responsible for the preovulatory GnRH surge. However, puberty onset and estrogen negative feedback were normal. Vglut2-ires-Cre;Esr1(lox/lox) mice were also infertile but displayed a wider range of deficits, including advanced puberty onset, abnormal negative feedback, and abolished positive feedback. Whereas <25% of preoptic kisspeptin neurons expressed Cre in Vgat- and Vglut2-ires-Cre lines, ∼70% of arcuate kisspeptin neurons were targeted in Vglut2-ires-Cre;Esr1(lox/lox) mice, possibly contributing to their advanced puberty phenotype. These observations show that, unexpectedly, ESR1-GABA neurons are only essential for the positive feedback mechanism. In contrast, we reveal the key importance of ESR1 in glutamatergic neurons for multiple estrogen feedback loops within the GnRH neuronal network required for fertility in the female mouse. Copyright © 2015 the authors 0270-6474/15/3514533-11$15.00/0.

  6. [Schizophrenia and cortical GABA neurotransmission].

    PubMed

    Hashimoto, Takanori; Matsubara, Takuro; Lewis, David A

    2010-01-01

    Individuals with schizophrenia show disturbances in a number of brain functions that regulate cognitive, affective, motor, and sensory processing. The cognitive deficits associated with dysfunction of the dorsolateral prefrontal cortex result, at least in part, from abnormalities in GABA neurotransmission, as reflected in a specific pattern of altered expression of GABA-related molecules. First, mRNA levels for the 67-kilodalton isoform of glutamic acid decarboxylase (GAD67), an enzyme principally responsible for GABA synthesis, and the GABA membrane transporter GAT1, which regulates the reuptake of synaptically released GABA, are decreased in a subset of GABA neurons. Second, affected GABA neurons include those that express the calcium-binding protein parvalbumin (PV), because PV mRNA levels are decreased in the prefrontal cortex of subjects with schizophrenia and GAD67 mRNA is undetectable in almost half of PV-containing neurons. These changes are accompanied by decreased GAT1 expression in the presynaptic terminals of PV-containing neurons and by increased postsynaptic GABA-A receptor alpha2 subunit expression at the axon initial segments of pyramidal neurons. These findings indicate decreased GABA synthesis/release by PV-containing GABA neurons and compensatory changes at synapses formed by these neurons. Third, another subset of GABA neurons that express the neuropeptide somatostatin (SST) also appear to be affected because their specific markers, SST and neuropeptide Y mRNAs, are decreased in a manner highly correlated with the decreases in GAD67 mRNA. Finally, mRNA levels for GABA-A receptor subunits for synaptic (alpha1 and gamma2) and extra-synaptic (delta) receptors are decreased, indicating alterations in both synaptic and extra-synaptic GABA neurotransmission. Together, this pattern of changes indicates that the altered GABA neurotransmission is specific to PV-containing and SST-containing GABA neuron subsets and involves both synaptic and extra

  7. Gamma-aminobutyric acid and related molecules in the sea fan Eunicella cavolini (Cnidaria: Octocorallia): a biochemical and immunohistochemical approach.

    PubMed

    Girosi, Laura; Ferrando, Sara; Beltrame, Francesco; Ciarcia, Gaetano; Diaspro, Alberto; Fato, Marco; Magnone, Mirko; Raiteri, Luca; Ramoino, Paola; Tagliafierro, Grazia

    2007-07-01

    The aim of this study has been the biochemical demonstration of the presence of gamma-aminobutyric acid (GABA) in the Mediterranean sea fan Eunicella cavolini by means of high-performance liquid chromatography, and the description of the distribution pattern of GABA and its related molecules, glutamic acid decarboxylase (GAD), vesicular GABA transporter (VGAT) and one of the GABA receptors (GABA(B) R) by immunohistochemical methods. The interrelationships of GABA, GAD and GABA receptor immunoreactivity have been established by using double-immunohistochemical methods and confocal microscopy. The immunodetection of monoclonal and/or polyclonal antibodies has revealed GABA immunoreactivity throughout the polyp tissue, both in neuronal and non-neuronal elements. GAD immunoreactivity has been mostly localized in the neuronal compartment, contacting epithelial and muscular elements. GABA(B) R immunoreactivity appears particularly intense in the nematocytes and in the oocyte envelope; its presence in GAD-immunoreactive neurons in the tentacles suggests an autocrine type of regulation. Western blot analysis has confirmed that a GABA(B) R, with a molecular weight of 142 kDa, similar to that of rat brain, is present in E. cavolini polyp tissue. The identification of the sites of the synthesis, vesicular transport, storage and reception of GABA strongly suggests the presence of an almost complete set of GABA-related molecules for the functioning of the GABAergic system in this simple nervous system. The distribution of these different immunoreactivities has allowed us to hypothesize GABA involvement in nematocyst discharge, in body wall and enteric muscular contraction, in neuronal integration and in male gametocyte differentiation.

  8. γ-Aminobutyric acid (GABA) signalling in plants.

    PubMed

    Ramesh, Sunita A; Tyerman, Stephen D; Gilliham, Matthew; Xu, Bo

    2017-05-01

    The role of γ-aminobutyric acid (GABA) as a signal in animals has been documented for over 60 years. In contrast, evidence that GABA is a signal in plants has only emerged in the last 15 years, and it was not until last year that a mechanism by which this could occur was identified-a plant 'GABA receptor' that inhibits anion passage through the aluminium-activated malate transporter family of proteins (ALMTs). ALMTs are multigenic, expressed in different organs and present on different membranes. We propose GABA regulation of ALMT activity could function as a signal that modulates plant growth, development, and stress response. In this review, we compare and contrast the plant 'GABA receptor' with mammalian GABA A receptors in terms of their molecular identity, predicted topology, mode of action, and signalling roles. We also explore the implications of the discovery that GABA modulates anion flux in plants, its role in signal transduction for the regulation of plant physiology, and predict the possibility that there are other GABA interaction sites in the N termini of ALMT proteins through in silico evolutionary coupling analysis; we also explore the potential interactions between GABA and other signalling molecules.

  9. Inhibitory and excitatory amino acid neurotransmitters are utilized by the projection from the dorsal deep mesencephalic nucleus to the sublaterodorsal nucleus REM sleep induction zone

    PubMed Central

    Liang, Chang-Lin; Nguyen, Tin Quang; Marks, Gerald A.

    2014-01-01

    The sublaterodorsal nucleus (SLD) in the pons of the rat is a locus supporting short-latency induction of a REM sleep-like state following local application of a GABAA receptor antagonist or kainate, glutamate receptor agonist. One putatively relevant source of these neurotransmitters is from the region of the deep mesencephalic nucleus (DpMe) just ventrolateral to the periaquiductal gray, termed the dorsal DpMe (dDpMe). Here, the amino acid neurotransmitter innervation of SLD from dDpMe was studied utilizing anterograde tract-tracing with biotinylated dextranamine (BDA) and fluorescence immunohistochemistry visualized with laser scanning confocal microscopy. Both markers for inhibitory and excitatory amino acid neurotransmitters were found in varicose axon fibers in SLD originating from dDpMe. Vesicular glutamate transporter2 (VGLUT2) represented the largest number of anterogradely labeled varicosities followed by vesicular GABA transporter (VGAT). Numerous VGAT and VGLUT2 labeled varicosities were observed apposed to dDpMe-labeled axon fibers indicating both excitatory and inhibitory presynaptic, local modulation within the SLD. Some double-labeled BDA/VGAT varicosities were seen apposed to small somata labeled for glutamate consistent with being presynaptic to the phenotype of REM sleep-active SLD neurons. Results found support the current theoretical framework of the interaction of dDpMe and SLD in control of REM sleep, while also indicating operation of mechanisms with a greater level of complexity. PMID:24751569

  10. The Role of Ventral Tegmental Area Gamma-Aminobutyric Acid in Chronic Neuropathic Pain after Spinal Cord Injury in Rats.

    PubMed

    Ko, Moon Yi; Jang, Eun Young; Lee, June Yeon; Kim, Soo Phil; Whang, Sung Hun; Lee, Bong Hyo; Kim, Hee Young; Yang, Chae Ha; Cho, Hee Jung; Gwak, Young S

    2018-04-20

    Spinal cord injury (SCI) frequently results in chronic neuropathic pain (CNP). However, the understanding of brain neural circuits in CNP modulation is unclear. The present study examined the changes of ventral tegmental area (VTA) putative GABAergic and dopaminergic neuronal activity with CNP attenuation in rats. SCI was established by T10 clip compression injury (35 g, 1 min) in rats, and neuropathic pain behaviors, in vivo extracellular single-cell recording of putative VTA gamma-aminobutyric acid (GABA)/dopamine neurons, extracellular GABA level, glutamic acid decarboxylase (GAD), and vesicular GABA transporters (VGATs) were measured in the VTA, respectively. The results revealed that extracellular GABA level was significantly increased in the CNP group (50.5 ± 18.9 nM) compared to the sham control group (10.2 ± 1.7 nM). In addition, expression of GAD 65/67 , c-Fos, and VGAT exhibited significant increases in the SCI groups compared to the sham control group. With regard to neuropathic pain behaviors, spontaneous pain measured by ultrasound vocalizations (USVs) and evoked pain measured by paw withdrawal thresholds showed significant alteration, which was reversed by intravenous (i.v.) administration of morphine (0.5-5.0 mg/kg). With regard to in vivo electrophysiology, VTA putative GABAergic neuronal activity (13.6 ± 1.7 spikes/sec) and putative dopaminergic neuronal activity (2.4 ± 0.8 spikes/sec) were increased and decreased, respectively, in the SCI group compared to the sham control group. These neuronal activities were reversed by i.v. administration of morphine. The present study suggests that chronic increase of GABAergic neuronal activity suppresses dopaminergic neuronal activity in the VTA and is responsible for negative emotion and motivation for attenuation of SCI-induced CNP.

  11. A tonoplast Glu/Asp/GABA exchanger that affects tomato fruit amino acid composition.

    PubMed

    Snowden, Christopher J; Thomas, Benjamin; Baxter, Charles J; Smith, J Andrew C; Sweetlove, Lee J

    2015-03-01

    Vacuolar accumulation of acidic metabolites is an important aspect of tomato fruit flavour and nutritional quality. The amino acids Asp and Glu accumulate to high concentrations during ripening, while γ-aminobutyrate (GABA) shows an approximately stoichiometric decline. Given that GABA can be catabolised to form Glu and subsequently Asp, and the requirement for the fruit to maintain osmotic homeostasis during ripening, we hypothesised the existence of a tonoplast transporter that exports GABA from the vacuole in exchange for import of either Asp or Glu. We show here that the tomato vacuolar membrane possesses such a transport property: transport of Glu across isolated tonoplast vesicle membranes was trans-stimulated in counterexchange mode by GABA, Glu and Asp. We identified SlCAT9 as a candidate protein for this exchanger using quantitative proteomics of a tonoplast-enriched membrane fraction. Transient expression of a SlCAT9-YFP fusion in tobacco confirmed a tonoplast localisation. The function of the protein was examined by overexpression of SlCAT9 in transgenic tomato plants. Tonoplast vesicles isolated from transgenic plants showed higher rates of Glu and GABA transport than wild-type (WT) only when assayed in counterexchange mode with Glu, Asp, or GABA. Moreover, there were substantial increases in the content of all three cognate amino acids in ripe fruit from the transgenic plants. We conclude that SlCAT9 is a tonoplast Glu/Asp/GABA exchanger that strongly influences the accumulation of these amino acids during fruit development. © 2015 The Authors The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  12. Increased vulnerability to depressive-like behavior of mice with decreased expression of VGLUT1.

    PubMed

    Garcia-Garcia, Alvaro L; Elizalde, Natalia; Matrov, Denis; Harro, Jaanus; Wojcik, Sonja M; Venzala, Elisabet; Ramírez, Maria J; Del Rio, Joaquin; Tordera, Rosa M

    2009-08-01

    Many studies link depression to an increase in the excitatory-inhibitory ratio in the forebrain. Presynaptic alterations in a shared pathway of the glutamate/gamma-aminobutyric acid (GABA) cycle may account for this imbalance. Evidence suggests that decreased vesicular glutamate transporter 1 (VGLUT1) levels in the forebrain affect the glutamate/GABA cycle and induce helpless behavior. We studied decreased VGLUT1 as a potential factor enhancing a depressive-like phenotype in an animal model. Glutamate and GABA synthesis as well as oxidative metabolism were studied in heterozygous mice for the VGLUT1+/- and wildtype. The regulation of neurotransmitter levels, proteins involved in the glutamate/GABA cycle, and behavior by both genotype and chronic mild stress (CMS) were studied. Finally, the effect of chronic imipramine on VGLUT1 control and CMS mice was studied. VGLUT1+/- mice showed increased neuronal synthesis of glutamate; decreased cortical and hippocampal GABA, VGLUT1, and excitatory amino acid transporter 1 (EAAT1) as well as helplessness and anhedonia. CMS induced an increase of glutamate and a decrease of GABA, the vesicular GABA transporter (VGAT), and glutamic acid decarboxylase 65 (GAD65) in both areas and led to upregulation of EAAT1 in the hippocampus. Moreover, CMS induced anhedonia, helplessness, anxiety, and impaired recognition memory. VGLUT1+/- CMS mice showed a combined phenotype (genotype plus stress) and specific alterations, such as an upregulation of VGLUT2 and hyperlocomotion. Moreover, an increased vulnerability to anhedonia and helplessness reversible by chronic imipramine was shown. These studies highlight a crucial role for decreased VGLUT1 in the forebrain as a biological mediator of increased vulnerability to chronic mild stress.

  13. Evidence that GABA ρ subunits contribute to functional ionotropic GABA receptors in mouse cerebellar Purkinje cells

    PubMed Central

    Harvey, Victoria L; Duguid, Ian C; Krasel, Cornelius; Stephens, Gary J

    2006-01-01

    Ionotropic γ-amino butyric acid (GABA) receptors composed of heterogeneous molecular subunits are major mediators of inhibitory responses in the adult CNS. Here, we describe a novel ionotropic GABA receptor in mouse cerebellar Purkinje cells (PCs) using agents reported to have increased affinity for ρ subunit-containing GABAC over other GABA receptors. Exogenous application of the GABAC-preferring agonist cis-4-aminocrotonic acid (CACA) evoked whole-cell currents in PCs, whilst equimolar concentrations of GABA evoked larger currents. CACA-evoked currents had a greater sensitivity to the selective GABAC antagonist (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) than GABA-evoked currents. Focal application of agonists produced a differential response profile; CACA-evoked currents displayed a much more pronounced attenuation with increasing distance from the PC soma, displayed a slower time-to-peak and exhibited less desensitization than GABA-evoked currents. However, CACA-evoked currents were also completely blocked by bicuculline, a selective agent for GABAA receptors. Thus, we describe a population of ionotropic GABA receptors with a mixed GABAA/GABAC pharmacology. TPMPA reduced inhibitory synaptic transmission at interneurone–Purkinje cell (IN–PC) synapses, causing clear reductions in miniature inhibitory postsynaptic current (mIPSC) amplitude and frequency. Combined application of NO-711 (a selective GABA transporter subtype 1 (GAT-1) antagonist) and SNAP-5114 (a GAT-(2)/3/4 antagonist) induced a tonic GABA conductance in PCs; however, TPMPA had no effect on this current. Immunohistochemical studies suggest that ρ subunits are expressed predominantly in PC soma and proximal dendritic compartments with a lower level of expression in more distal dendrites; this selective immunoreactivity contrasted with a more uniform distribution of GABAA α1 subunits in PCs. Finally, co-immunoprecipitation studies suggest that ρ subunits can form complexes

  14. Molecular dynamics investigation of Cl(-) transport through the closed and open states of the 2α12β2γ2 GABA(A) receptor.

    PubMed

    Xie, Hong-Bo; Wang, Jian; Sha, Yu; Cheng, Mao-Sheng

    2013-01-01

    The α1β2γ2 gamma-aminobutyric type A receptor (GABA(A)R) is one of the most widely expressed GABA(A)R subtypes in the mammalian brain. GABA(A)Rsbelonging to the Cys-loop superfamily of ligand-gated ion channels have been identified as key targets for many clinical drugs, and the motions that govern the gating mechanism are still not well understood. In this study, an open-state GABA(A)R was constructed using the structure of the glutamate-gated chloride channel (GluCl), which has a high sequence identity to GABA(A)R. A closed-state model was constructed using the structure of the nicotinic acetylcholine receptor (nAChR). Molecular dynamics simulations of the open-state and closed-state GABA(A)R were performed. We calculated the electrostatic potential of the two conformations, the pore radius of the two ion channels and the root-mean-square fluctuation. We observed the presence of two positively charged girdles around the ion channel and found flexible regions in the GABA(A)R. Then, the free-energy of chloride ion permeations through the closed-state and open-state G GABA(A)R has been estimated using adaptive biasing force (ABF) simulation. For the closed-state G GABA(A)R, we observed two major energy barriers for chloride ion translocation in the transmembrane domain (TMD). For the open-state GABA(A)R, there was only one energy barrier formed by two Thr261 (α1), two Thr255 (β2) and one Thr271 (γ2). By using ABF simulation, the overall free-energy profile is obtained for Cl(-) transporting through GABA(A)R, which gives a complete map of the ion channel of Cl(-) permeation. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. The main source of ambient GABA responsible for tonic inhibition in the mouse hippocampus.

    PubMed

    Glykys, Joseph; Mody, Istvan

    2007-08-01

    The extracellular space of the brain contains gamma-aminobutyric acid (GABA) that activates extrasynaptic GABA(A) receptors mediating tonic inhibition. The source of this GABA is uncertain: it could be overspill of vesicular release, non-vesicular leakage, reverse transport, dying cells or glia. Using a novel approach, we simultaneously measured phasic and tonic inhibitory currents and assessed their correlation. Enhancing or diminishing vesicular GABA release in hippocampal neurons caused highly correlated changes in the two inhibitions. During high-frequency phasic inhibitory bursts, tonic current was also enhanced as shown by simulating the summation of IPSCs and by recordings in knockout mice devoid of tonic inhibitory current. When vesicular release was reduced by blocking action potentials or the vesicular GABA transporter, phasic and tonic currents decreased in a correlated fashion. Our results are consistent with most of hippocampal tonic inhibitory current being mediated by GABA released from the very vesicles responsible for activating phasic inhibition.

  16. Role of glutamic acid decarboxylase 67 in regulating cortical parvalbumin and GABA membrane transporter 1 expression: implications for schizophrenia.

    PubMed

    Curley, Allison A; Eggan, Stephen M; Lazarus, Matt S; Huang, Z Josh; Volk, David W; Lewis, David A

    2013-02-01

    Markers of GABA neurotransmission are altered in multiple regions of the neocortex in individuals with schizophrenia. Lower levels of glutamic acid decarboxylase 67 (GAD67) mRNA and protein, which is responsible for most cortical GABA synthesis, are accompanied by lower levels of GABA membrane transporter 1 (GAT1) mRNA. These alterations are thought to be most prominent in the parvalbumin (PV)-containing subclass of interneurons, which also contain lower levels of PV mRNA. Since GAT1 and PV each reduce the availability of GABA at postsynaptic receptors, lower levels of GAT1 and PV mRNAs have been hypothesized to represent compensatory responses to an upstream reduction in cortical GABA synthesis in schizophrenia. However, such cause-and-effect hypotheses cannot be directly tested in a human illness. Consequently, we used two mouse models with reduced GAD67 expression specifically in PV neurons (PV(GAD67+/-)) or in all interneurons (GABA(GAD67+/-)) and quantified GAD67, GAT1 and PV mRNA levels using methods identical to those employed in studies of schizophrenia. Cortical levels of PV or GAT1 mRNAs were not altered in PV(GAD67+/-) mice during postnatal development or in adulthood. Furthermore, cellular analyses confirmed the predicted reduction in GAD67 mRNA, but failed to show a deficit in PV mRNA in these animals. Levels of PV and GAT1 mRNAs were also unaltered in GABA(GAD67+/-) mice. Thus, mouse lines with cortical reductions in GAD67 mRNA that match or exceed those present in schizophrenia, and that differ in the developmental timing and cell type-specificity of the GAD67 deficit, failed to provide proof-of-concept evidence that lower PV and GAT1 expression in schizophrenia are a consequence of lower GAD67 expression. Together, these findings suggest that the correlated decrements in cortical GAD67, PV and GAT1 mRNAs in schizophrenia may be a common consequence of some other upstream factor. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Interaction of GABA-mimetics with the taurine transporter (TauT, Slc6a6) in hyperosmotic treated Caco-2, LLC-PK1 and rat renal SKPT cells.

    PubMed

    Rasmussen, Rune Nørgaard; Lagunas, Candela; Plum, Jakob; Holm, René; Nielsen, Carsten Uhd

    2016-01-20

    The aim of the present study was to investigate if basic GABA-mimetics interact with the taurine transporter (TauT, Slc6a6), and to find a suitable cell based model that is robust towards extracellular changes in osmolality during uptake studies. Taurine uptake was measured in human Caco-2 cells, porcine LLC-PK1 cells, and rat SKPT cells using radiolabelled taurine. Hyperosmotic conditions were obtained by incubation with raffinose (final osmolality of 500mOsm) for 24h prior to the uptake experiments. Expression of the taurine transporter, TauT, was investigated at the mRNA level by real-time PCR. Uptake of the GABA-mimetics gaboxadol and vigabatrin was investigated in SKPT cells, and quantified by liquid scintillation or HPLC-MS/MS analysis, respectively. The uptake rate of [(3)H]-taurine was Na(+) and Cl(-) and concentration dependent with taurine with an apparent Vmax of 6.3±1.6pmolcm(-2)min(-1) and a Km of 24.9±15.0μM. β-alanine, nipecotic acid, gaboxadol, GABA, vigabatrin, δ-ALA and guvacine inhibited the taurine uptake rate in a concentration dependent manner. The order of affinity for TauT was β-alanine>GABA>nipecotic acid>guvacine>δ-ALA>vigabatrin>gaboxadol with IC50-values of 0.04, 1.07, 2.02, 4.19, 4.94, 31.4 and 39.9mM, respectively. In conclusion, GABA mimetics inhibited taurine uptake in hyperosmotic rat renal SKPT cells. SKPT cells, which seem to be a useful model for investigating taurine transport in the short-term presence of high concentrations of osmolytes. Furthermore, analogues of β-alanine appear to have higher affinities for TauT than GABA-analogues. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. The effects of volatile anesthetics on the extracellular accumulation of [(3)H]GABA in rat brain cortical slices.

    PubMed

    Diniz, Paulo H C; Guatimosim, Cristina; Binda, Nancy S; Costa, Flávia L P; Gomez, Marcus V; Gomez, Renato S

    2014-01-01

    GABA is an inhibitory neurotransmitter that appears to be associated with the action of volatile anesthetics. These anesthetics potentiate GABA-induced postsynaptic currents by synaptic GABAA receptors, although recent evidence suggests that these agents also significantly affect extrasynaptic GABA receptors. However, the effect of volatile anesthetics on the extracellular concentration of GABA in the central nervous system has not been fully established. In the present study, rat brain cortical slices loaded with [(3)H]GABA were used to investigate the effect of halothane and sevoflurane on the extracellular accumulation of this neurotransmitter. The accumulation of [(3)H]GABA was significantly increased by sevoflurane (0.058, 0.11, 0.23, 0.46, and 0.93 mM) and halothane (0.006, 0.012, 0.024, 0.048, 0072, and 0.096 mM) with an EC50 of 0.26 mM and 35 μM, respectively. TTX (blocker of voltage-dependent Na(+) channels), EGTA (an extracellular Ca(2+) chelator) and BAPTA-AM (an intracellular Ca(2+) chelator) did not interfere with the accumulation of [(3)H]GABA induced by 0.23 mM sevoflurane and 0.048 mM halothane. SKF 89976A, a GABA transporter type 1 (GAT-1) inhibitor, reduced the sevoflurane- and halothane-induced increase in the accumulation of GABA by 57 and 63 %, respectively. Incubation of brain cortical slices at low temperature (17 °C), a condition that inhibits GAT function and reduces GABA release through reverse transport, reduced the sevoflurane- and halothane-induced increase in the accumulation of [(3)H]GABA by 82 and 75 %, respectively, relative to that at normal temperature (37 °C). Ouabain, a Na(+)/K(+) ATPase pump inhibitor, which is known to induce GABA release through reverse transport, abolished the sevoflurane and halothane effects on the accumulation of [(3)H]GABA. The effect of sevoflurane and halothane did not involve glial transporters because β-alanine, a blocker of GAT-2 and GAT-3, did not inhibit the effect of the anesthetics

  19. GABA action in immature neocortical neurons directly depends on the availability of ketone bodies.

    PubMed

    Rheims, Sylvain; Holmgren, Carl D; Chazal, Genevieve; Mulder, Jan; Harkany, Tibor; Zilberter, Tanya; Zilberter, Yuri

    2009-08-01

    In the early postnatal period, energy metabolism in the suckling rodent brain relies to a large extent on metabolic pathways alternate to glucose such as the utilization of ketone bodies (KBs). However, how KBs affect neuronal excitability is not known. Using recordings of single NMDA and GABA-activated channels in neocortical pyramidal cells we studied the effects of KBs on the resting membrane potential (E(m)) and reversal potential of GABA-induced anionic currents (E(GABA)), respectively. We show that during postnatal development (P3-P19) if neocortical brain slices are adequately supplied with KBs, E(m) and E(GABA) are both maintained at negative levels of about -83 and -80 mV, respectively. Conversely, a KB deficiency causes a significant depolarization of both E(m) (>5 mV) and E(GABA) (>15 mV). The KB-mediated shift in E(GABA) is largely determined by the interaction of the NKCC1 cotransporter and Cl(-)/HCO3 transporter(s). Therefore, by inducing a hyperpolarizing shift in E(m) and modulating GABA signaling mode, KBs can efficiently control the excitability of neonatal cortical neurons.

  20. The main source of ambient GABA responsible for tonic inhibition in the mouse hippocampus

    PubMed Central

    Glykys, Joseph; Mody, Istvan

    2007-01-01

    The extracellular space of the brain contains γ-aminobutyric acid (GABA) that activates extrasynaptic GABAA receptors mediating tonic inhibition. The source of this GABA is uncertain: it could be overspill of vesicular release, non-vesicular leakage, reverse transport, dying cells or glia. Using a novel approach, we simultaneously measured phasic and tonic inhibitory currents and assessed their correlation. Enhancing or diminishing vesicular GABA release in hippocampal neurons caused highly correlated changes in the two inhibitions. During high-frequency phasic inhibitory bursts, tonic current was also enhanced as shown by simulating the summation of IPSCs and by recordings in knockout mice devoid of tonic inhibitory current. When vesicular release was reduced by blocking action potentials or the vesicular GABA transporter, phasic and tonic currents decreased in a correlated fashion. Our results are consistent with most of hippocampal tonic inhibitory current being mediated by GABA released from the very vesicles responsible for activating phasic inhibition. PMID:17525114

  1. Glutamate and GABA receptors and transporters in the basal ganglia: What does their subsynaptic localization reveal about their function?

    PubMed Central

    Galvan, Adriana; Kuwajima, Masaaki; Smith, Yoland

    2006-01-01

    GABA and glutamate, the main transmitters in the basal ganglia, exert their effects through ionotropic and metabotropic receptors. The dynamic activation of these receptors in response to released neurotransmitter depends, among other factors, on their precise localization in relation to corresponding synapses. The use of high resolution quantitative electron microscope immunocytochemical techniques has provided in-depth description of the subcellular and subsynaptic localization of these receptors in the CNS. In this article, we review recent findings on the ultrastructural localization of GABA and glutamate receptors and transporters in the basal ganglia, at synaptic, extrasynaptic and presynaptic sites. The anatomical evidence supports numerous potential locations for receptor-neurotransmitter interactions, and raises important questions regarding mechanisms of activation and function of synaptic versus extrasynaptic receptors in the basal ganglia. PMID:17059868

  2. Effects of new fluorinated analogues of GABA, pregabalin bioisosters, on the ambient level and exocytotic release of [3H]GABA from rat brain nerve terminals.

    PubMed

    Borisova, T; Pozdnyakova, N; Shaitanova, E; Gerus, I; Dudarenko, M; Haufe, G; Kukhar, V

    2017-01-15

    Recently, we have shown that new fluorinated analogues of γ-aminobutyric acid (GABA), bioisosters of pregabalin (β-i-Bu-GABA), i.e. β-polyfluoroalkyl-GABAs (FGABAs), with substituents: β-CF 3 -β-OH (1), β-CF 3 (2); β-CF 2 CF 2 H (3), are able to increase the initial rate of [ 3 H]GABA uptake by isolated rat brain nerve terminals (synaptosomes), and this effect is higher than that of pregabalin. So, synthesized FGABAs are structural but not functional analogues of GABA. Herein, we assessed the effects of synthesized FGABAs (100μM) on the ambient level and exocytotic release of [ 3 H]GABA in nerve terminals and compared with those of pregabalin (100μM). It was shown that FGABAs 1-3 did not influence the ambient level of [ 3 H]GABA in the synaptosomal preparations, and this parameter was also not altered by pregabalin. During blockage of GABA transporters GAT1 by specific inhibitor NO-711, FGABAs and pregabalin also did not change ambient [ 3 H]GABA in synaptosomal preparations. Exocytotic release of [ 3 H]GABA from synaptosomes decreased in the presence of FGABAs 1-3 and pregabalin, and the effects of FGABAs 1 &3 were more significant than those of FGABAs 2 and pregabalin. FGABAs 1-3/pregabalin-induced decrease in exocytotic release of [ 3 H]GABA from synaptosomes was not a result of changes in the potential of the plasma membrane. Therefore, new synthesized FGABAs 1 &3 were able to decrease exocytotic release of [ 3 H]GABA from nerve terminals more effectively in comparison to pregabalin. Absence of unspecific side effects of FGABAs 1 &3 on the membrane potential makes these compounds perspective for medical application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Acute engagement of Gq-mediated signaling in the bed nucleus of the stria terminalis induces anxiety-like behavior.

    PubMed

    Mazzone, C M; Pati, D; Michaelides, M; DiBerto, J; Fox, J H; Tipton, G; Anderson, C; Duffy, K; McKlveen, J M; Hardaway, J A; Magness, S T; Falls, W A; Hammack, S E; McElligott, Z A; Hurd, Y L; Kash, T L

    2018-01-01

    The bed nucleus of the stria terminalis (BNST) is a brain region important for regulating anxiety-related behavior in both humans and rodents. Here we used a chemogenetic strategy to investigate how engagement of G protein-coupled receptor (GPCR) signaling cascades in genetically defined GABAergic BNST neurons modulates anxiety-related behavior and downstream circuit function. We saw that stimulation of vesicular γ-aminobutyric acid (GABA) transporter (VGAT)-expressing BNST neurons using hM3Dq, but neither hM4Di nor rM3Ds designer receptors exclusively activated by a designer drug (DREADD), promotes anxiety-like behavior. Further, we identified that activation of hM3Dq receptors in BNST VGAT neurons can induce a long-term depression-like state of glutamatergic synaptic transmission, indicating DREADD-induced changes in synaptic plasticity. Further, we used DREADD-assisted metabolic mapping to profile brain-wide network activity following activation of G q -mediated signaling in BNST VGAT neurons and saw increased activity within ventral midbrain structures, including the ventral tegmental area and hindbrain structures such as the locus coeruleus and parabrachial nucleus. These results highlight that G q -mediated signaling in BNST VGAT neurons can drive downstream network activity that correlates with anxiety-like behavior and points to the importance of identifying endogenous GPCRs within genetically defined cell populations. We next used a microfluidics approach to profile the receptorome of single BNST VGAT neurons. This approach yielded multiple G q -coupled receptors that are associated with anxiety-like behavior and several potential novel candidates for regulation of anxiety-like behavior. From this, we identified that stimulation of the G q -coupled receptor 5-HT 2C R in the BNST is sufficient to elevate anxiety-like behavior in an acoustic startle task. Together, these results provide a novel profile of receptors within genetically defined BNST VGAT

  4. The excitatory/inhibitory input to orexin/hypocretin neuron soma undergoes day/night reorganization.

    PubMed

    Laperchia, Claudia; Imperatore, Roberta; Azeez, Idris A; Del Gallo, Federico; Bertini, Giuseppe; Grassi-Zucconi, Gigliola; Cristino, Luigia; Bentivoglio, Marina

    2017-11-01

    Orexin (OX)/hypocretin-containing neurons are main regulators of wakefulness stability, arousal, and energy homeostasis. Their activity varies in relation to the animal's behavioral state. We here tested whether such variation is subserved by synaptic plasticity phenomena in basal conditions. Mice were sacrificed during day or night, at times when sleep or wake, respectively, predominates, as assessed by electroencephalography in matched mice. Triple immunofluorescence was used to visualize OX-A perikarya and varicosities containing the vesicular glutamate transporter (VGluT)2 or the vesicular GABA transporter (VGAT) combined with synaptophysin (Syn) as a presynaptic marker. Appositions on OX-A + somata were quantitatively analyzed in pairs of sections in epifluorescence and confocal microscopy. The combined total number of glutamatergic (Syn + /VGluT2 + ) and GABAergic (Syn + /VGAT + ) varicosities apposed to OX-A somata was similar during day and night. However, glutamatergic varicosities were significantly more numerous at night, whereas GABAergic varicosities prevailed in the day. Triple immunofluorescence in confocal microscopy was employed to visualize synapse scaffold proteins as postsynaptic markers and confirmed the nighttime prevalence of VGluT2 + together with postsynaptic density protein 95 + excitatory contacts, and daytime prevalence of VGAT + together with gephyrin + inhibitory contacts, while also showing that they formed synapses on OX-A + cell bodies. The findings reveal a daily reorganization of axosomatic synapses in orexinergic neurons, with a switch from a prevalence of excitatory innervation at a time corresponding to wakefulness to a prevalence of inhibitory innervations in the antiphase, at a time corresponding to sleep. This reorganization could represent a key mechanism of plasticity of the orexinergic network in basal conditions.

  5. GABA type a receptor trafficking and the architecture of synaptic inhibition.

    PubMed

    Lorenz-Guertin, Joshua M; Jacob, Tija C

    2018-03-01

    Ubiquitous expression of GABA type A receptors (GABA A R) in the central nervous system establishes their central role in coordinating most aspects of neural function and development. Dysregulation of GABAergic neurotransmission manifests in a number of human health disorders and conditions that in certain cases can be alleviated by drugs targeting these receptors. Precise changes in the quantity or activity of GABA A Rs localized at the cell surface and at GABAergic postsynaptic sites directly impact the strength of inhibition. The molecular mechanisms constituting receptor trafficking to and from these compartments therefore dictate the efficacy of GABA A R function. Here we review the current understanding of how GABA A Rs traffic through biogenesis, plasma membrane transport, and degradation. Emphasis is placed on discussing novel GABAergic synaptic proteins, receptor and scaffolding post-translational modifications, activity-dependent changes in GABA A R confinement, and neuropeptide and neurosteroid mediated changes. We further highlight modern techniques currently advancing the knowledge of GABA A R trafficking and clinically relevant neurodevelopmental diseases connected to GABAergic dysfunction. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 238-270, 2018. © 2017 Wiley Periodicals, Inc.

  6. Effect of chronic treatment with the GABA transaminase inhibitors gamma-vinyl GABA and ethanolamine O-sulphate on the in vitro GABA release from rat hippocampus.

    PubMed

    Qume, M; Fowler, L J

    1997-10-01

    1. The effects of 2, 8 and 21 day oral treatment with the specific gamma-aminobutyric acid transaminase (GABA-T) inhibitors gamma-vinyl GABA (GVG) and ethanolamine O-sulphate (EOS) on brain GABA levels, GABA-T activity, and basal and stimulated GABA release from rat cross-chopped brain hippocampal slices was investigated. 2. Treatment with GABA-T inhibitors lead to a reduction in brain GABA-T activity by 65-80% compared with control values, with a concomitant increase in brain GABA content of 40-100%. 3. Basal hippocampal GABA release was increased to 250-450% of control levels following inhibition of GABA-T activity. No Ca2+ dependence was observed in either control or treated tissues. 4. GVG and EOS administration led to a significant elevation in the potassium stimulated release of GABA from cross-chopped hippocampal slices compared with that of controls. Although stimulated GABA release from control tissues was decreased in the presence of a low Ca2+ medium, GVG and EOS treatment abolished this Ca2+ dependency. 5. GABA compartmentalization, Na+ and Cl- coupled GABA uptake carriers and glial release may provide explanations for the loss of the Ca2+ dependency of stimulated GABA release observed following GVG and EOS treatment. 6. Administration of GABA-T inhibitors led to increases in both basal and stimulated hippocampal GABA release. However, it is not clear which is the most important factor in the anticonvulsant activity of these drugs, the increased GABA content 'leaking' out of neurones and glia leading to widespread inhibition, or the increase in stimulated GABA release which may occur following depolarization caused by an epileptic discharge.

  7. Effect of chronic treatment with the GABA transaminase inhibitors γ-vinyl GABA and ethanolamine O-sulphate on the in vitro GABA release from rat hippocampus

    PubMed Central

    Qume, M; Fowler, L J

    1997-01-01

    The effects of 2, 8 and 21 day oral treatment with the specific γ-aminobutyric acid transaminase (GABA-T) inhibitors γ-vinyl GABA (GVG) and ethanolamine O-sulphate (EOS) on brain GABA levels, GABA-T activity, and basal and stimulated GABA release from rat cross-chopped brain hippocampal slices was investigated. Treatment with GABA-T inhibitors lead to a reduction in brain GABA-T activity by 65–80% compared with control values, with a concomitant increase in brain GABA content of 40–100%. Basal hippocampal GABA release was increased to 250–450% of control levels following inhibition of GABA-T activity. No Ca2+ dependence was observed in either control or treated tissues. GVG and EOS administration led to a significant elevation in the potassium stimulated release of GABA from cross-chopped hippocampal slices compared with that of controls. Although stimulated GABA release from control tissues was decreased in the presence of a low Ca2+ medium, GVG and EOS treatment abolished this Ca2+ dependency. GABA compartmentalization, Na+ and Cl− coupled GABA uptake carriers and glial release may provide explanations for the loss of the Ca2+ dependency of stimulated GABA release observed following GVG and EOS treatment. Administration of GABA-T inhibitors led to increases in both basal and stimulated hippocampal GABA release. However, it is not clear which is the most important factor in the anticonvulsant activity of these drugs, the increased GABA content ‘leaking' out of neurones and glia leading to widespread inhibition, or the increase in stimulated GABA release which may occur following depolarization caused by an epileptic discharge. PMID:9351512

  8. Altered cortical GABA neurotransmission in schizophrenia: insights into novel therapeutic strategies.

    PubMed

    Stan, Ana D; Lewis, David A

    2012-06-01

    Altered markers of cortical GABA neurotransmission are among the most consistently observed abnormalities in postmortem studies of schizophrenia. The altered markers are particularly evident between the chandelier class of GABA neurons and their synaptic targets, the axon initial segment (AIS) of pyramidal neurons. For example, in the dorsolateral prefrontal cortex of subjects with schizophrenia immunoreactivity for the GABA membrane transporter is decreased in presynaptic chandelier neuron axon terminals, whereas immunoreactivity for the GABAA receptor α2 subunit is increased in postsynaptic AIS. Both of these molecular changes appear to be compensatory responses to a presynaptic deficit in GABA synthesis, and thus could represent targets for novel therapeutic strategies intended to augment the brain's own compensatory mechanisms. Recent findings that GABA inputs from neocortical chandelier neurons can be powerfully excitatory provide new ideas about the role of these neurons in the pathophysiology of cortical dysfunction in schizophrenia, and consequently in the design of pharmacological interventions.

  9. GABA as a rising gliotransmitter

    PubMed Central

    Yoon, Bo-Eun; Lee, C. Justin

    2014-01-01

    Gamma-amino butyric acid (GABA) is the major inhibitory neurotransmitter that is known to be synthesized and released from GABAergic neurons in the brain. However, recent studies have shown that not only neurons but also astrocytes contain a considerable amount of GABA that can be released and activate GABA receptors in neighboring neurons. These exciting new findings for glial GABA raise further interesting questions about the source of GABA, its mechanism of release and regulation and the functional role of glial GABA. In this review, we highlight recent studies that identify the presence and release of GABA in glial cells, we show several proposed potential pathways for accumulation and modulation of glial intracellular and extracellular GABA content, and finally we discuss functional roles for glial GABA in the brain. PMID:25565970

  10. Physical exercise prevents stress-induced activation of granule neurons and enhances local inhibitory mechanisms in the dentate gyrus.

    PubMed

    Schoenfeld, Timothy J; Rada, Pedro; Pieruzzini, Pedro R; Hsueh, Brian; Gould, Elizabeth

    2013-05-01

    Physical exercise is known to reduce anxiety. The ventral hippocampus has been linked to anxiety regulation but the effects of running on this subregion of the hippocampus have been incompletely explored. Here, we investigated the effects of cold water stress on the hippocampus of sedentary and runner mice and found that while stress increases expression of the protein products of the immediate early genes c-fos and arc in new and mature granule neurons in sedentary mice, it has no such effect in runners. We further showed that running enhances local inhibitory mechanisms in the hippocampus, including increases in stress-induced activation of hippocampal interneurons, expression of vesicular GABA transporter (vGAT), and extracellular GABA release during cold water swim stress. Finally, blocking GABAA receptors in the ventral hippocampus, but not the dorsal hippocampus, with the antagonist bicuculline, reverses the anxiolytic effect of running. Together, these results suggest that running improves anxiety regulation by engaging local inhibitory mechanisms in the ventral hippocampus.

  11. GABA Levels Are Decreased After Stroke and GABA Changes During Rehabilitation Correlate With Motor Improvement

    PubMed Central

    Blicher, Jakob Udby; Near, Jamie; Næss-Schmidt, Erhard; Stagg, Charlotte J.; Johansen-Berg, Heidi; Nielsen, Jørgen Feldbæk; Østergaard, Leif; Ho, Yi-Ching Lynn

    2017-01-01

    Background and Objective γ-Aminobutyric acid (GABA) is the dominant inhibitory neurotransmitter in the brain and is important in motor learning. We aimed to measure GABA content in primary motor cortex poststroke (using GABA-edited magnetic resonance spectroscopy [MRS]) and in relation to motor recovery during 2 weeks of constraint-induced movement therapy (CIMT). Methods Twenty-one patients (3-12 months poststroke) and 20 healthy subjects were recruited. Magnetic resonance imaging structural T1 and GABA-edited MRS were performed at baseline and after CIMT, and once in healthy subjects. GABA:creatine (GABA:Cr) ratio was measured by GABA-edited MRS. Motor function was measured using Wolf Motor Function Test (WMFT). Results Baseline comparison between stroke patients (n = 19) and healthy subjects showed a significantly lower GABA:Cr ratio in stroke patients (P < .001) even after correcting for gray matter content in the voxel (P < .01) and when expressing GABA relative to N-acetylaspartic acid (NAA; P = .03). After 2 weeks of CIMT patients improved significantly on WMFT, but no consistent change across the group was observed for the GABA:Cr ratio (n = 17). However, the extent of improvement on WMFT correlated significantly with the magnitude of GABA:Cr changes (P < .01), with decreases in GABA:Cr ratio being associated with better improvements in motor function. Conclusions In patients 3 to 12 months poststroke, GABA levels are lower in the primary motor cortex than in healthy subjects. The observed association between GABA and recovery warrants further studies on the potential use of GABA MRS as a biomarker in poststroke recovery. PMID:25055837

  12. Engineering the intracellular metabolism of Escherichia coli to produce gamma-aminobutyric acid by co-localization of GABA shunt enzymes.

    PubMed

    Pham, Van Dung; Somasundaram, Sivachandiran; Lee, Seung Hwan; Park, Si Jae; Hong, Soon Ho

    2016-02-01

    To direct the carbon flux from Krebs cycle into the gamma-aminobutyric acid (GABA) shunt pathway for the production of GABA by protein scaffold introduction in Escherichia coli. Escherichia coli was engineered to produce GABA from glucose by the co-localization of enzymes succinate semialdehyde dehydrogenase (GadD), GABA aminotransferase (PuuE) and GABA transporter (GadC) by protein scaffold. 0.7 g GABA l(-1) was produced from 10 g glucose l(-1) while no GABA was produced in wild type E. coli. pH 6 and 30 °C were optimum for GABA production, and GABA concentration increased to 1.12 g GABA l(-1) when 20 g glucose l(-1) was used. When competing metabolic networks were inactivated, GABA increased by 24 % (0.87 g GABA l(-1)). The novel GABA production system was constructed by co-localization of GABA shunt enzymes.

  13. Enhancement of GABA release through endogenous activation of axonal GABA(A) receptors in juvenile cerebellum.

    PubMed

    Trigo, Federico F; Chat, Mireille; Marty, Alain

    2007-11-14

    Recent evidence indicates the presence of presynaptic GABA(A) receptors (GABA(A)Rs) in the axon domain of several classes of central neurons, including cerebellar basket and stellate cells. Here, we investigate the possibility that these receptors could be activated in the absence of electrical or chemical stimulation. We find that low concentrations of GABA increase the frequency of miniature GABAergic synaptic currents. Submaximal concentrations of a GABA(A)R blocker, gabazine, decrease both the miniature current frequency and the probability of evoked GABA release. Zolpidem, an agonist of the benzodiazepine binding site, and NO-711 (1-[2-[[(diphenylmethylene)imino]oxy]ethyl]-1,2,5,6-tetrahydro-3-pyridinecarboxylic acid hydrochloride), a blocker of GABA uptake, both increase the frequency of miniature currents. These effects occur up to postnatal day 14, but not later. Immunohistochemistry indicates the presence of alpha1-containing GABA(A)Rs in interneuron presynaptic terminals with a similar age dependence. We conclude that, under resting conditions, axonal GABA(A)Rs are significantly activated, that this activation results in enhanced GABA release, and that it can be augmented by increasing the affinity of GABA(A)Rs or reducing GABA uptake. Our findings suggest the existence of a positive-feedback mechanism involving presynaptic GABA(A)Rs that maintains a high release rate and a high local GABA concentration in the immature cerebellar network.

  14. Effects of surface functionalization of hydrophilic NaYF4 nanocrystals doped with Eu3+ on glutamate and GABA transport in brain synaptosomes

    NASA Astrophysics Data System (ADS)

    Sojka, Bartlomiej; Kociołek, Daria; Banski, Mateusz; Borisova, Tatiana; Pozdnyakova, Natalia; Pastukhov, Artem; Borysov, Arsenii; Dudarenko, Marina; Podhorodecki, Artur

    2017-08-01

    Specific rare earth doped nanocrystals (NCs), a recent class of nanoparticles with fluorescent features, have great bioanalytical potential. Neuroactive properties of NaYF4 nanocrystals doped with Eu3+ were assessed based on the analysis of their effects on glutamate- and γ-aminobutyric acid (GABA) transport process in nerve terminals isolated from rat brain (synaptosomes). Two types of hydrophilic NCs were examined in this work: (i) coated by polyethylene glycol (PEG) and (ii) with OH groups at the surface. It was found that NaYF4:Eu3+-PEG and NaYF4:Eu3+-OH within the concentration range of 0.5-3.5 and 0.5-1.5 mg/ml, respectively, did not influence Na+-dependent transporter-dependent l-[14C]glutamate and [3H]GABA uptake and the ambient level of the neurotransmitters in the synaptosomes. An increase in NaYF4:Eu3+-PEG and NaYF4:Eu3+-OH concentrations up to 7.5 and 3.5 mg/ml, respectively, led to the (1) attenuation of the initial velocity of uptake of l-[14C]glutamate and [3H]GABA and (2) elevation of ambient neurotransmitters in the suspension of nerve terminals. In the mentioned concentrations, nanocrystals did not influence acidification of synaptic vesicles that was shown with pH-sensitive fluorescent dye acridine orange, however, decreased the potential of the plasma membrane of synaptosomes. In comparison with other nanoparticles studied with similar methodological approach, NCs start to exhibit their effects on neurotransmitter transport at concentrations several times higher than those shown for carbon dots, detonation nanodiamonds and an iron storage protein ferritin, whose activity can be registered at 0.08, 0.5 and 0.08 mg/ml, respectively. Therefore, NCs can be considered lesser neurotoxic as compared to above nanoparticles.

  15. GABA transporter currents activated by protein kinase A excite midbrain neurons during opioid withdrawal.

    PubMed

    Bagley, Elena E; Gerke, Michelle B; Vaughan, Christopher W; Hack, Stephen P; Christie, MacDonald J

    2005-02-03

    Adaptations in neurons of the midbrain periaqueductal gray (PAG) induced by chronic morphine treatment mediate expression of many signs of opioid withdrawal. The abnormally elevated action potential rate of opioid-sensitive PAG neurons is a likely cellular mechanism for withdrawal expression. We report here that opioid withdrawal in vitro induced an opioid-sensitive cation current that was mediated by the GABA transporter-1 (GAT-1) and required activation of protein kinase A (PKA) for its expression. Inhibition of GAT-1 or PKA also prevented withdrawal-induced hyperexcitation of PAG neurons. Our findings indicate that GAT-1 currents can directly increase the action potential rates of neurons and that GAT-1 may be a target for therapy to alleviate opioid-withdrawal symptoms.

  16. The effects of elevated endogenous GABA levels on movement-related network oscillations.

    PubMed

    Muthukumaraswamy, S D; Myers, J F M; Wilson, S J; Nutt, D J; Lingford-Hughes, A; Singh, K D; Hamandi, K

    2013-02-01

    The EEG/MEG signal is generated primarily by the summation of the post-synaptic potentials of cortical principal cells. At a microcircuit level, these glutamatergic principal cells are reciprocally connected to GABAergic interneurons and cortical oscillations are thought to be dependent on the balance of excitation and inhibition between these cell types. To investigate the dependence of movement-related cortical oscillations on excitation-inhibition balance, we pharmacologically manipulated the GABA system using tiagabine, which blocks GABA Transporter 1(GAT-1), the GABA uptake transporter and increases endogenous GABA activity. In a blinded, placebo-controlled, crossover design, in 15 healthy participants we administered either 15mg of tiagabine or a placebo. We recorded whole-head magnetoencephalograms, while the participants performed a movement task, prior to, one hour post, three hour post and five hour post tiagabine ingestion. Using time-frequency analysis of beamformer source reconstructions, we quantified the baseline level of beta activity (15-30Hz), the post-movement beta rebound (PMBR), beta event-related desynchronisation (beta-ERD) and movement-related gamma synchronisation (MRGS) (60-90Hz). Our results demonstrated that tiagabine, and hence elevated endogenous GABA levels causes, an elevation of baseline beta power, enhanced beta-ERD and reduced PMBR, but no modulation of MRGS. Comparing our results to recent literature (Hall et al., 2011) we suggest that beta-ERD may be a GABAA receptor mediated process while PMBR may be GABAB receptor mediated. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. The dynamics of GABA signaling: Revelations from the circadian pacemaker in the suprachiasmatic nucleus

    PubMed Central

    Albers, H. Elliott; Walton, James C.; Gamble, Karen L.; McNeill, John K.; Hummer, Daniel L.

    2016-01-01

    Virtually every neuron within the suprachiasmatic nucleus (SCN) communicates via GABAergic signaling. The extracellular levels of GABA within the SCN are determined by a complex interaction of synthesis and transport, as well as synaptic and non-synaptic release. The response to GABA is mediated by GABAA receptors that respond to both phasic and tonic GABA release and that can produce excitatory as well as inhibitory cellular responses. GABA also influences circadian control through the exclusively inhibitory effects of GABAB receptors. Both GABA and neuropeptide signaling occur within the SCN, although the functional consequences of the interactions of these signals are not well understood. This review considers the role of GABA in the circadian pacemaker, in the mechanisms responsible for the generation of circadian rhythms, in the ability of non-photic stimuli to reset the phase of the pacemaker, and in the ability of the day-night cycle to entrain the pacemaker. PMID:27894927

  18. GABA predicts visual intelligence.

    PubMed

    Cook, Emily; Hammett, Stephen T; Larsson, Jonas

    2016-10-06

    Early psychological researchers proposed a link between intelligence and low-level perceptual performance. It was recently suggested that this link is driven by individual variations in the ability to suppress irrelevant information, evidenced by the observation of strong correlations between perceptual surround suppression and cognitive performance. However, the neural mechanisms underlying such a link remain unclear. A candidate mechanism is neural inhibition by gamma-aminobutyric acid (GABA), but direct experimental support for GABA-mediated inhibition underlying suppression is inconsistent. Here we report evidence consistent with a global suppressive mechanism involving GABA underlying the link between sensory performance and intelligence. We measured visual cortical GABA concentration, visuo-spatial intelligence and visual surround suppression in a group of healthy adults. Levels of GABA were strongly predictive of both intelligence and surround suppression, with higher levels of intelligence associated with higher levels of GABA and stronger surround suppression. These results indicate that GABA-mediated neural inhibition may be a key factor determining cognitive performance and suggests a physiological mechanism linking surround suppression and intelligence. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  19. Harmful impact on presynaptic glutamate and GABA transport by carbon dots synthesized from sulfur-containing carbohydrate precursor.

    PubMed

    Borisova, Tatiana; Dekaliuk, Mariia; Pozdnyakova, Natalia; Pastukhov, Artem; Dudarenko, Marina; Borysov, Arsenii; Vari, Sandor G; Demchenko, Alexander P

    2017-07-01

    Carbon nanoparticles that may be potent air pollutants with adverse effects on human health often contain heteroatoms including sulfur. In order to study in detail their effects on different physiological and biochemical processes, artificially produced carbon dots (CDs) with well-controlled composition that allows fluorescence detection may be of great use. Having been prepared from different types of organic precursors, CDs expose different atoms at their surface suggesting a broad variation of functional groups. Recently, we demonstrated neurotoxic properties of CDs synthesized from the amino acid β-alanine, and it is of importance to analyze whether CDs obtained from different precursors and particularly those exposing sulfur atoms induce similar neurotoxic effects. This study focused on synthesis of CDs from the sulfur-containing precursor thiourea-CDs (TU-CDs) with a size less than 10 nm, their characterization, and neuroactivity assessment. Neuroactive properties of TU-CDs were analyzed based on their effects on the key characteristics of glutamatergic and γ-aminobutyric acid (GABA) neurotransmission in isolated rat brain nerve terminals. It was observed that TU-CDs (0.5-1.0 mg/ml) attenuated the initial velocity of Na + -dependent transporter-mediated uptake and accumulation of L-[ 14 C]glutamate and [ 3 H]GABA by nerve terminals in a dose-dependent manner and increased the ambient level of the neurotransmitters. Starting from the concentration of 0.2 mg/ml, TU-CDs evoked a gradual dose-dependent depolarization of the plasma membrane of nerve terminals measured with the cationic potentiometric dye rhodamine 6G. Within the concentration range of 0.1-0.5 mg/ml, TU-CDs caused an "unphysiological" step-like increase in fluorescence intensity of the рН-sensitive fluorescent dye acridine orange accumulated by synaptic vesicles. Therefore, despite different surface properties and fluorescent features of CDs prepared from different starting materials

  20. Homeostatic scaling of vesicular glutamate and GABA transporter expression in rat neocortical circuits.

    PubMed

    De Gois, Stéphanie; Schäfer, Martin K-H; Defamie, Norah; Chen, Chu; Ricci, Anthony; Weihe, Eberhard; Varoqui, Hélène; Erickson, Jeffrey D

    2005-08-03

    Homeostatic control of pyramidal neuron firing rate involves a functional balance of feedforward excitation and feedback inhibition in neocortical circuits. Here, we reveal a dynamic scaling in vesicular excitatory (vesicular glutamate transporters VGLUT1 and VGLUT2) and inhibitory (vesicular inhibitory amino acid transporter VIAAT) transporter mRNA and synaptic protein expression in rat neocortical neuronal cultures, using a well established in vitro protocol to induce homeostatic plasticity. During the second and third week of synaptic differentiation, the predominant vesicular transporters expressed in neocortical neurons, VGLUT1 and VIAAT, are both dramatically upregulated. In mature cultures, VGLUT1 and VIAAT exhibit bidirectional and opposite regulation by prolonged activity changes. Endogenous coregulation during development and homeostatic scaling of the expression of the transporters in functionally differentiated cultures may serve to control vesicular glutamate and GABA filling and adjust functional presynaptic excitatory/inhibitory balance. Unexpectedly, hyperexcitation in differentiated cultures triggers a striking increase in VGLUT2 mRNA and synaptic protein, whereas decreased excitation reduces levels. VGLUT2 mRNA and protein are expressed in subsets of VGLUT1-encoded neocortical neurons that we identify in primary cultures and in neocortex in situ and in vivo. After prolonged hyperexcitation, downregulation of VGLUT1/synaptophysin intensity ratios at most synapses is observed, whereas a subset of VGLUT1-containing boutons selectively increase the expression of VGLUT2. Bidirectional and opposite regulation of VGLUT1 and VGLUT2 by activity may serve as positive or negative feedback regulators for cortical synaptic transmission. Intracortical VGLUT1/VGLUT2 coexpressing neurons have the capacity to independently modulate the level of expression of either transporter at discrete synapses and therefore may serve as a plastic interface between subcortical

  1. GABA(C) receptors: a molecular view.

    PubMed

    Enz, R

    2001-08-01

    In the central nervous system inhibitory neurotransmission is primarily achieved through activation of receptors for gamma-aminobutyric acid (GABA). Three types of GABA receptors have been identified on the basis of their pharmacological and electrophysiological properties. The predominant type, termed GABA(A), and a recently identified GABA(C) type, form ligand-gated chloride channels, whereas GABA(B) receptors activate separate cation channels via G proteins. Based on their homology to nicotinic acetylcholine receptors, GABA(C) receptors are believed to be oligomeric protein complexes composed of five subunits in a pentameric arrangement. To date up to five different GABA(C) receptors subunits have been identified in various species. Recent studies have shed new light on the biological characteristics of GABA(C) receptors, including the chromosomal localization of its subunit genes and resulting links to deseases, the cloning of new splice variants, the identification of GABA(C) receptor-associated proteins, the identification of domains involved in subunit assembly, and finally structure/function studies examining functional consequences of introduced mutations. This review summarizes recent data in view of the molecular structure of GABA(C) receptors and presents new insights into the biological function of this protein in the retina.

  2. Role of GABA Release From Leptin Receptor-Expressing Neurons in Body Weight Regulation

    PubMed Central

    Xu, Yuanzhong; O'Brien, William G.; Lee, Cheng-Chi; Myers, Martin G.

    2012-01-01

    It is well established that leptin regulates energy balance largely through isoform B leptin receptor-expressing neurons (LepR neurons) in the brain and that leptin activates one subset of LepR neurons (leptin-excited neurons) while inhibiting the other (leptin-inhibited neurons). However, the neurotransmitters released from LepR neurons that mediate leptin action in the brain are not well understood. Previous results demonstrate that leptin mainly acts on γ-aminobutyric acid (GABA)ergic neurons to reduce body weight, and that leptin activates proopiomelanocortin neuron activity by reducing GABA release onto these neurons, suggesting a body weight-promoting role for GABA released from leptin-inhibited neurons. To directly examine the role of GABA release from LepR neurons in body weight regulation, mice with disruption of GABA release specifically from LepR neurons were generated by deletion of vesicular GABA transporter in LepR neurons. Interestingly, these mice developed mild obesity on chow diet and were sensitive to diet-induced obesity, which were associated with higher food intake and lower energy expenditure. Moreover, these mice showed blunted responses in both food intake and body weight to acute leptin administration. These results demonstrate that GABA plays an important role in mediating leptin action. In combination with the previous studies that leptin reduces GABA release onto proopiomelanocortin neurons through leptin-inhibited neurons and that disruption of GABA release from agouti gene-related protein neurons, one subset of LepR-inhibited neurons, leads to a lean phenotype, our results suggest that, under our experimental conditions, GABA release from leptin-excited neuron dominates over leptin-inhibited ones. PMID:22334723

  3. Prevention of GABA reduction during dough fermentation using a baker's yeast dal81 mutant.

    PubMed

    Ando, Akira; Nakamura, Toshihide

    2016-10-01

    γ-Aminobutyric acid (GABA) is consumed by yeasts during fermentation. To prevent GABA reduction in bread dough, a baker's yeast mutant AY77 deficient in GABA assimilation was characterized and utilized for wheat dough fermentation. An amber mutation in the DAL81 gene, which codes for a positive regulator of multiple nitrogen degradation pathways, was found in the AY77 strain. The qPCR analyses of genes involved in nitrogen utilization showed that transcriptional levels of the UGA1 and DUR3 genes encoding GABA transaminase and urea transporter, respectively, are severely decreased in the AY77 cells. The AY77 strain cultivated by fed-batch culture using cane molasses exhibited inferior gas production during dough fermentation compared to that of wild-type strain AY13. However, when fed with molasses containing 0.5% ammonium sulfate, the mutant strain exhibited gas production comparable to that of the AY13 strain. In contrast to the AY13 strain, which completely consumed GABA in dough within 5 h, the AY77 strain consumed no GABA under either culture condition. Dough fermentation with the dal81 mutant strain should be useful for suppression of GABA reduction in breads. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. GABA pharmacology: the search for analgesics.

    PubMed

    McCarson, Kenneth E; Enna, S J

    2014-10-01

    Decades of research have been devoted to defining the role of GABAergic transmission in nociceptive processing. Much of this work was performed using rigid, orthosteric GABA analogs created by Povl Krogsgaard-Larsen and his associates. A relationship between GABA and pain is suggested by the anatomical distribution of GABA receptors and the ability of some GABA agonists to alter nociceptive responsiveness. Outlined in this report are data supporting this proposition, with particular emphasis on the anatomical localization and function of GABA-containing neurons and the molecular and pharmacological properties of GABAA and GABAB receptor subtypes. Reference is made to changes in overall GABAergic tone, GABA receptor expression and activity as a function of the duration and intensity of a painful stimulus or exposure to GABAergic agents. Evidence is presented that the plasticity of this receptor system may be responsible for the variability in the antinociceptive effectiveness of compounds that influence GABA transmission. These findings demonstrate that at least some types of persistent pain are associated with a regionally selective decline in GABAergic tone, highlighting the need for agents that enhance GABA activity in the affected regions without compromising GABA function over the long-term. As subtype selective positive allosteric modulators may accomplish these goals, such compounds might represent a new class of analgesic drugs.

  5. Glucose, Lactate, β-Hydroxybutyrate, Acetate, GABA, and Succinate as Substrates for Synthesis of Glutamate and GABA in the Glutamine-Glutamate/GABA Cycle.

    PubMed

    Hertz, Leif; Rothman, Douglas L

    2016-01-01

    The glutamine-glutamate/GABA cycle is an astrocytic-neuronal pathway transferring precursors for transmitter glutamate and GABA from astrocytes to neurons. In addition, the cycle carries released transmitter back to astrocytes, where a minor fraction (~25 %) is degraded (requiring a similar amount of resynthesis) and the remainder returned to the neurons for reuse. The flux in the cycle is intense, amounting to the same value as neuronal glucose utilization rate or 75-80 % of total cortical glucose consumption. This glucose:glutamate ratio is reduced when high amounts of β-hydroxybutyrate are present, but β-hydroxybutyrate can at most replace 60 % of glucose during awake brain function. The cycle is initiated by α-ketoglutarate production in astrocytes and its conversion via glutamate to glutamine which is released. A crucial reaction in the cycle is metabolism of glutamine after its accumulation in neurons. In glutamatergic neurons all generated glutamate enters the mitochondria and its exit to the cytosol occurs in a process resembling the malate-aspartate shuttle and therefore requiring concomitant pyruvate metabolism. In GABAergic neurons one half enters the mitochondria, whereas the other one half is released directly from the cytosol. A revised concept is proposed for the synthesis and metabolism of vesicular and nonvesicular GABA. It includes the well-established neuronal GABA reuptake, its metabolism, and use for resynthesis of vesicular GABA. In contrast, mitochondrial glutamate is by transamination to α-ketoglutarate and subsequent retransamination to releasable glutamate essential for the transaminations occurring during metabolism of accumulated GABA and subsequent resynthesis of vesicular GABA.

  6. Impact of exogenous GABA treatments on endogenous GABA metabolism in anthurium cut flowers in response to postharvest chilling temperature.

    PubMed

    Aghdam, Morteza Soleimani; Naderi, Roohangiz; Jannatizadeh, Abbasali; Babalar, Mesbah; Sarcheshmeh, Mohammad Ali Askari; Faradonbe, Mojtaba Zamani

    2016-09-01

    Anthurium flowers are susceptible to chilling injury, and the optimum storage temperature is 12.5-20 °C. The γ-aminobutyric acid (GABA) shunt pathway may alleviate chilling stress in horticultural commodities by providing energy (ATP), reducing molecules (NADH), and minimizing accumulation of reactive oxygen species (ROS). In this experiment, the impact of a preharvest spray treatment with 1 mM GABA and postharvest treatment of 5 mM GABA stem-end dipping on GABA shunt pathway activity of anthurium cut flowers (cv. Sirion) in response to cold storage (4 °C for 21 days) was investigated. GABA treatments resulted in lower glutamate decarboxylase (GAD) and higher GABA transaminase (GABA-T) activities in flowers during cold storage, which was associated with lower GABA content and coincided with higher ATP content. GABA treatments also enhanced accumulation of endogenous glycine betaine (GB) in flowers during cold storage, as well as higher spathe relative water content (RWC). These findings suggest that GABA treatments may alleviate chilling injury of anthurium cut flowers by enhancing GABA shunt pathway activity leading to provide sufficient ATP and promoting endogenous GB accumulation. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. The effects of agonists of ionotropic GABA(A) and metabotropic GABA(B) receptors on learning.

    PubMed

    Zyablitseva, Evgeniya A; Kositsyn, Nikolay S; Shul'gina, Galina I

    2009-05-01

    The research described here investigates the role played by inhibitory processes in the discriminations made by the nervous system of humans and animals between familiar and unfamiliar and significant and nonsignificant events. This research compared the effects of two inhibitory mediators of gamma-aminobutyric acid (GABA): 1) phenibut, a nonselective agonist of ionotropic GABA(A) and metabotropic GABA(B) receptors and 2) gaboxadol a selective agonist of ionotropic GABA(A) receptors on the process of developing active defensive and inhibitory conditioned reflexes in alert non-immobilized rabbits. It was found that phenibut, but not gaboxadol, accelerates the development of defensive reflexes at an early stage of conditioning. Both phenibut and gaboxadol facilitate the development of conditioned inhibition, but the effect of gaboxadol occurs at later stages of conditioning and is less stable than that of phenibut. The earlier and more stable effects of phenibut, as compared to gaboxadol, on storage in memory of the inhibitory significance of a stimulus may occur because GABA(B) receptors play the dominant role in the development of internal inhibition during an early stage of conditioning. On the other hand this may occur because the participation of both GABA(A) and GABA(B) receptors are essential to the process. We discuss the polyfunctionality of GABA receptors as a function of their structure and the positions of the relevant neurons in the brain as this factor can affect regulation of various types of psychological processes.

  8. Effects of betaine on lipopolysaccharide-induced memory impairment in mice and the involvement of GABA transporter 2

    PubMed Central

    2011-01-01

    Background Betaine (glycine betaine or trimethylglycine) plays important roles as an osmolyte and a methyl donor in animals. While betaine is reported to suppress expression of proinflammatory molecules and reduce oxidative stress in aged rat kidney, the effects of betaine on the central nervous system are not well known. In this study, we investigated the effects of betaine on lipopolysaccharide (LPS)-induced memory impairment and on mRNA expression levels of proinflammatory molecules, glial markers, and GABA transporter 2 (GAT2), a betaine/GABA transporter. Methods Mice were continuously treated with betaine for 13 days starting 1 day before they were injected with LPS, or received subacute or acute administration of betaine shortly before or after LPS injection. Then, their memory function was evaluated using Y-maze and novel object recognition tests 7 and 10-12 days after LPS injection (30 μg/mouse, i.c.v.), respectively. In addition, mRNA expression levels in hippocampus were measured by real-time RT-PCR at different time points. Results Repeated administration of betaine (0.163 mmol/kg, s.c.) prevented LPS-induced memory impairment. GAT2 mRNA levels were significantly increased in hippocampus 24 hr after LPS injection, and administration of betaine blocked this increase. However, betaine did not affect LPS-induced increases in levels of mRNA related to inflammatory responses. Both subacute administration (1 hr before, and 1 and 24 hr after LPS injection) and acute administration (1 hr after LPS injection) of betaine also prevented LPS-induced memory impairment in the Y-maze test. Conclusions These data suggest that betaine has protective effects against LPS-induced memory impairment and that prevention of LPS-induced changes in GAT2 mRNA expression is crucial to this ameliorating effect. PMID:22053950

  9. Glutamate transporter EAAT4 in Purkinje cells controls intersynaptic diffusion of climbing fiber transmitter mediating inhibition of GABA release from interneurons.

    PubMed

    Satake, Shin'ichiro; Song, Si-Young; Konishi, Shiro; Imoto, Keiji

    2010-12-01

    Neurotransmitters diffuse out of the synaptic cleft and act on adjacent synapses to exert concerted control of the synaptic strength within neural pathways that converge on single target neurons. The excitatory transmitter released from climbing fibers (CFs), presumably glutamate, is shown to inhibit γ-aminobutyric acid (GABA) release at basket cell (BC)-Purkinje cell (PC) synapses in the rat cerebellar cortex through its extrasynaptic diffusion and activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors on BC axon terminals. This study aimed at examining how the CF transmitter-diffusion-mediated presynaptic inhibition is controlled by glutamate transporters. Pharmacological blockade of the PC-selective neuronal transporter EAAT4 markedly enhanced CF-induced inhibition of GABAergic transmission. Tetanic CF-stimulation elicited long-term potentiation of glutamate transporters in PCs, and thereby attenuated the CF-induced inhibition. Combined use of electrophysiology and immunohistochemistry revealed a significant inverse relationship between the level of EAAT4 expression and the inhibitory action of CF-stimulation on the GABA release at different cerebellar lobules - the CF-induced inhibition was profound in lobule III, where the EAAT4 expression level was low, whereas it was minimal in lobule X, where EAAT4 was abundant. The findings clearly demonstrate that the neuronal glutamate transporter EAAT4 in PCs plays a critical role in the extrasynaptic diffusion of CF transmitter - it appears not only to retrogradely determine the degree of CF-mediated inhibition of GABAergic inputs to the PC by controlling the glutamate concentration for intersynaptic diffusion, but also regulate synaptic information processing in the cerebellar cortex depending on its differential regional distribution as well as use-dependent plasticity of uptake efficacy. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience

  10. Acute spinal cord injury (SCI) transforms how GABA affects nociceptive sensitization.

    PubMed

    Huang, Yung-Jen; Lee, Kuan H; Murphy, Lauren; Garraway, Sandra M; Grau, James W

    2016-11-01

    Noxious input can sensitize pain (nociceptive) circuits within the spinal cord, inducing a lasting increase in spinal cord neural excitability (central sensitization) that is thought to contribute to chronic pain. The development of spinally-mediated central sensitization is regulated by descending fibers and GABAergic interneurons. The current study provides evidence that spinal cord injury (SCI) transforms how GABA affects nociceptive transmission within the spinal cord, recapitulating an earlier developmental state wherein GABA has an excitatory effect. In spinally transected rats, noxious electrical stimulation and inflammation induce enhanced mechanical reactivity (EMR), a behavioral index of nociceptive sensitization. Pretreatment with the GABA A receptor antagonist bicuculline blocked these effects. Peripheral application of an irritant (capsaicin) also induced EMR. Both the induction and maintenance of this effect were blocked by bicuculline. Cellular indices of central sensitization [c-fos expression and ERK phosphorylation (pERK)] were also attenuated. In intact (sham operated) rats, bicuculline had the opposite effect. Pretreatment with a GABA agonist (muscimol) attenuated nociceptive sensitization in intact, but not spinally injured, rats. The effect of SCI on GABA function was linked to a reduction in the Cl - transporter, KCC2, leading to a reduction in intracellular Cl - that would attenuate GABA-mediated inhibition. Pharmacologically blocking the KCC2 channel (with i.t. DIOA) in intact rats mimicked the effect of SCI. Conversely, a pharmacological treatment (bumetanide) that should increase intracellular Cl - levels blocked the effect of SCI. The results suggest that GABAergic neurons drive, rather than inhibit, the development of nociceptive sensitization after spinal injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Multiple functions of GABA A and GABA B receptors during pattern processing in the zebrafish olfactory bulb.

    PubMed

    Tabor, Rico; Yaksi, Emre; Friedrich, Rainer W

    2008-07-01

    gamma-Aminobutyric acid (GABA)ergic synapses are thought to play pivotal roles in the processing of activity patterns in the olfactory bulb (OB), but their functions have been difficult to study during odor responses in the intact system. We pharmacologically manipulated GABA(A) and GABA(B) receptors in the OB of zebrafish and analysed the effects on odor responses of the output neurons, the mitral cells (MCs), by electrophysiological recordings and temporally deconvolved two-photon Ca2+ imaging. The blockade of GABA(B) receptors enhanced presynaptic Ca2+ influx into afferent axon terminals, and changed the amplitude and time course of a subset of MC responses, indicating that GABA(B) receptors have a modulatory influence on OB output activity. The blockade of GABA(A) receptors induced epileptiform firing, enhanced excitatory responses and abolished fast oscillations in the local field potential. Moreover, the topological reorganization and decorrelation of MC activity patterns during the initial phase of the response was perturbed. These results indicate that GABA(A) receptor-containing circuits participate in the balance of excitation and inhibition, the regulation of total OB output activity, the synchronization of odor-dependent neuronal ensembles, and the reorganization of odor-encoding activity patterns. GABA(A) and GABA(B) receptors are therefore differentially involved in multiple functions of neuronal circuits in the OB.

  12. Developmental Programming: Reproductive Endocrinopathies in the Adult Female Sheep After Prenatal Testosterone Treatment Are Reflected in Altered Ontogeny of GnRH Afferents

    PubMed Central

    Hershey, John; Mytinger, Andrea; Foster, Douglas L.; Padmanabhan, Vasantha

    2011-01-01

    The GnRH system represents a useful model of long-term neural plasticity. An unexplored facet of this plasticity relates to the ontogeny of GnRH neural afferents during critical periods when the hypothalamic-pituitary-gonadal axis is highly susceptible to perturbation by sex steroids. Sheep treated with testosterone (T) in utero exhibit profound reproductive neuroendocrine dysfunctions during their lifespan. The current study tested the hypothesis that these changes are associated with alterations in the normal ontogeny of GnRH afferents and glial associations. Adult pregnant sheep (n = 50) were treated with vehicle [control (CONT)] or T daily from gestational day (GD)30 to GD90. CONT and T fetuses (n = 4–6/treatment per age group) were removed by cesarean section on GD90 and GD140 and the brains frozen at −80°C. Brains were also collected from CONT and T females at 20–23 wk (prepubertal), 10 months (normal onset of puberty and oligo-anovulation), and 21 months (oligo-anovulation in T females). Tissue was analyzed for GnRH immunoreactivity (ir), total GnRH afferents (Synapsin-I ir), glutamate [vesicular glutamate transporter-2 (VGLUT2)-ir], and γ-aminobutyric acid [GABA, vesicular GABA transporter (VGAT)-ir] afferents and glial associations (glial fibrillary acidic protein-ir) with GnRH neurons using optical sectioning techniques. The results revealed that: 1) GnRH soma size was slightly reduced by T, 2) the total (Synapsin-I) GnRH afferents onto both somas and dendrites increased significantly with age and was reduced by T, 3) numbers of both VGAT and VGLUT inputs increased significantly with age and were also reduced by T, and 4) glial associations with GnRH neurons were reduced (<10%) by T. Together, these findings reveal a previously unknown developmental plasticity in the GnRH system of the sheep. The altered developmental trajectory of GnRH afferents after T reinforces the notion that prenatal programming plays an important role in the normal

  13. Laser photolysis of DPNI-GABA, a tool for investigating the properties and distribution of GABA receptors and for silencing neurons in situ.

    PubMed

    Trigo, Federico F; Papageorgiou, George; Corrie, John E T; Ogden, David

    2009-07-30

    Laser photolysis to release GABA at precisely defined times and locations permits investigation of the distribution of functional GABA(A) receptors in neuronal compartments, the activation kinetics and pharmacology of GABA(A) receptors in situ, and the role of individual neurons in neural circuits by selective silencing with low GABA concentrations. We describe the experimental evaluation and applications of a new nitroindoline-caged GABA, DPNI-GABA, modified to minimize the pharmacological interference commonly found with caged GABA reagents, but retaining the advantages of nitroindoline cages. Unlike the 5-methoxycarbonylmethyl-7-nitroindolinyl-GABA tested previously, DPNI-GABA inhibited GABA(A) receptors with much lower affinity, reducing peak GABA-evoked responses with an IC(50) of approximately 0.5 mM. Most importantly, the kinetics of receptor activation, determined as 10-90% rise-times, were comparable to synaptic events and were little affected by DPNI-GABA present at 1mM concentration, permitting photolysis of DPNI-GABA to mimic synaptic activation of GABA(A) receptors. With a laser spot of 1 microm applied to cerebellar molecular layer interneurons, the spatial resolution of uncaging DPNI-GABA in dendrites was estimated as 2 microm laterally and 7.5 microm focally. Finally, at low DPNI-GABA concentration, photorelease restricted to the area of the soma suppressed spiking in single Purkinje neurons or molecular layer interneurons for periods controlled by the flash intensity and duration. DPNI-GABA has properties better adapted for fast kinetic studies with laser photolysis at GABA(A) receptors than previously reported caged GABA reagents, and can be used in experiments where spatial resolution is determined by the dimensions of the laser light spot.

  14. In vivo measurement of GABA transmission in healthy subjects and schizophrenia patients.

    PubMed

    Frankle, W Gordon; Cho, Raymond Y; Prasad, Konasale M; Mason, N Scott; Paris, Jennifer; Himes, Michael L; Walker, Christopher; Lewis, David A; Narendran, Rajesh

    2015-11-01

    Postmortem studies in schizophrenia reveal alterations in gene products that regulate the release and extracellular persistence of GABA. However, results of in vivo studies of schizophrenia measuring total tissue GABA with magnetic resonance spectroscopy (MRS) have been inconsistent. Neither the postmortem nor the MRS studies directly address the physiological properties of GABA neurotransmission. The present study addresses this question through an innovative positron emission tomography (PET) paradigm. The binding of [(11)C]flumazenil, a benzodiazepine-specific PET radiotracer, was measured before and after administration of tiagabine (0.2 mg/kg of body weight), a GABA membrane transporter (GAT1) blocker, in 17 off-medication patients with schizophrenia and 22 healthy comparison subjects. Increased extracellular GABA, through GAT1 blockade, enhances the affinity of GABAA receptors for benzodiazepine ligands, detected as an increase in [(11)C]flumazenil tissue distribution volume (VT). [(11)C]Flumazenil VT was significantly increased across all cortical brain regions in the healthy comparison group but not in the schizophrenia group. This lack of effect was most prominent in the antipsychotic-naive schizophrenia group. In this subgroup, [(11)C]flumazenil ΔVT in the medial temporal lobe was correlated with positive symptoms, and baseline [(11)C]flumazenil VT in the medial temporal lobe was negatively correlated with visual learning. In the healthy comparison group but not the schizophrenia group, [(11)C]flumazenil ΔVT was positively associated with gamma-band oscillation power. This study demonstrates, for the first time, an in vivo impairment in GABA transmission in schizophrenia, most prominent in antipsychotic-naive individuals. The impairment in GABA transmission appears to be linked to clinical symptoms, disturbances in cortical oscillations, and cognition.

  15. In Vivo Measurement of GABA Transmission in Healthy Subjects and Schizophrenia Patients

    PubMed Central

    Frankle, W. Gordon; Cho, Raymond Y.; Prasad, Konasale M.; Mason, N. Scott; Paris, Jennifer; Himes, Michael L.; Walker, Christopher; Lewis, David A.; Narendran, Rajesh

    2016-01-01

    Objective Postmortem studies in schizophrenia reveal alterations in gene products that regulate the release and extracellular persistence of GABA. However, results of in vivo studies of schizophrenia measuring total tissue GABA with magnetic resonance spectroscopy (MRS) have been inconsistent. Neither the postmortem nor the MRS studies directly address the physiological properties of GABA neurotransmission. The present study addresses this question through an innovative positron emission tomography (PET) paradigm. Method The binding of [11C]flumazenil, a benzodiazepine-specific PET radiotracer, was measured before and after administration of tiagabine (0.2 mg/kg of body weight), a GABA membrane transporter (GAT1) blocker, in 17 off-medication patients with schizophrenia and 22 healthy comparison subjects. Increased extracellular GABA, through GAT1 blockade, enhances the affinity of GABAA receptors for benzodiazepine ligands, detected as an increase in [11C]flumazenil tissue distribution volume (VT). Results [11C]Flumazenil VT was significantly increased across all cortical brain regions in the healthy comparison group but not in the schizophrenia group. This lack of effect was most prominent in the antipsychotic-naive schizophrenia group. In this subgroup, [11C]flumazenil ΔVT in the medial temporal lobe was correlated with positive symptoms, and baseline [11C] flumazenil VT in the medial temporal lobe was negatively correlated with visual learning. In the healthy comparison group but not the schizophrenia group, [11C]flumazenil ΔVT was positively associated with gamma-band oscillation power. Conclusions This study demonstrates, for the first time, an in vivo impairment in GABA transmission in schizophrenia, most prominent in antipsychotic-naive individuals. The impairment in GABA transmission appears to be linked to clinical symptoms, disturbances in cortical oscillations, and cognition. PMID:26133962

  16. Isolation and chemical characterization of agelaiatoxin8 (AvTx8) from Agelaia vicina wasp venom and its biological effects on GABA neurotransmission.

    PubMed

    Pizzo, Andrea B; Beleboni, Renê O; Gomes Carolino, Ruither O; de Oliveira, Luciana; Miranda, Antonio; Coutinho-Netto, Joaquim; Fontana, Andréia C K; Dos Santos, Wagner Ferreira

    2017-10-01

    Arthropod venoms are sources of molecules that may be useful tools to investigate molecular mechanisms of putative new medicines and laboratory drugs. Here we show the effects of the compound agelaiatoxin-8 (AVTx8), isolated from Agelaia vicina venom, on γ-aminobutyric acid (GABA) neurotransmission in rat brain synaptosomes. Analysis reveals that AvTx8 is composed by 14 amino acid residues with a molecular weight (MW) of 1567 Da. AvTx8 increased GABA release and inhibited GABA uptake in synaptosomes from rat cerebral cortex. AvTx8 inhibited GABA uptake and increased GABA release in the presence of Ca + , Na + , and K + channel blockers, suggesting that it acts directly on GABA transporters. In addition, AvTx8 significantly decreases GABA binding in synaptic membranes from rat brain cortex, suggesting that it also modulates the activity of GABA receptors. Moreover, AvTx8 decreased GAT-1- and GAT-3-mediated GABA uptake in transfected COS-7 cells. Accordingly, we suggest that AvTx8 modulates GABA neurotransmission and might provide a novel entry point for identifying a new class of GABA-modulating neuroprotective drugs. © 2017 Wiley Periodicals, Inc.

  17. Exogenous Application of GABA Improves PEG-Induced Drought Tolerance Positively Associated with GABA-Shunt, Polyamines, and Proline Metabolism in White Clover.

    PubMed

    Yong, Bin; Xie, Huan; Li, Zhou; Li, Ya-Ping; Zhang, Yan; Nie, Gang; Zhang, Xin-Quan; Ma, Xiao; Huang, Lin-Kai; Yan, Yan-Hong; Peng, Yan

    2017-01-01

    In order to investigate the physiological effects of exogenous γ-aminobutyric acid (GABA) on drought tolerance in white clover (Trifolium repens), GABA shunt, polyamines (PAs), and proline (Pro) metabolism were examined after plants pretreated with or without GABA (8 mM) and then exposed to water or 15% PEG-induced drought stress in growth chamber. In this study, exogenous application of GABA effectively alleviated drought-induced damage in leaves, as reflected by significantly higher relative water content, lower electrolyte leakage, lipid peroxidation, and leaf wilt. Exogenous GABA further promoted drought-induced increases in GABA transaminase and alpha ketone glutarate dehydrogenase activities, but inhibited glutamate decarboxylase activity under both control and drought conditions, resulting in an increase in endogenous glutamate (Glu) and GABA content. Besides, exogenous GABA could well accelerated PAs synthesis and suppressed PAs catabolism, which lead to the extremely enhanced different types of PAs content (free Put and Spd, insoluble bound Spd and Spm, soluble conjugated Spd and Spm, and total Put, Spd and Spm) under drought stress. In addition, exogenous GABA application further activated drought-induced Δ 1 -pyrroline-5-carboxylate synthetase and proline dehydrogenase activities, but suppressed drought-facilitated ornithine -δ-amino transferase activities, leading to a higher Pro accumulation and metabolism in GABA-pretreated plants in the middle and last period of drought. The results suggested that increased endogenous GABA by exogenous GABA treatment could improve drought tolerance of white clover associated with a positive regulation in the GABA-shunt, PAs and Pro metabolism.

  18. Exogenous Application of GABA Improves PEG-Induced Drought Tolerance Positively Associated with GABA-Shunt, Polyamines, and Proline Metabolism in White Clover

    PubMed Central

    Yong, Bin; Xie, Huan; Li, Zhou; Li, Ya-Ping; Zhang, Yan; Nie, Gang; Zhang, Xin-Quan; Ma, Xiao; Huang, Lin-Kai; Yan, Yan-Hong; Peng, Yan

    2017-01-01

    In order to investigate the physiological effects of exogenous γ-aminobutyric acid (GABA) on drought tolerance in white clover (Trifolium repens), GABA shunt, polyamines (PAs), and proline (Pro) metabolism were examined after plants pretreated with or without GABA (8 mM) and then exposed to water or 15% PEG-induced drought stress in growth chamber. In this study, exogenous application of GABA effectively alleviated drought-induced damage in leaves, as reflected by significantly higher relative water content, lower electrolyte leakage, lipid peroxidation, and leaf wilt. Exogenous GABA further promoted drought-induced increases in GABA transaminase and alpha ketone glutarate dehydrogenase activities, but inhibited glutamate decarboxylase activity under both control and drought conditions, resulting in an increase in endogenous glutamate (Glu) and GABA content. Besides, exogenous GABA could well accelerated PAs synthesis and suppressed PAs catabolism, which lead to the extremely enhanced different types of PAs content (free Put and Spd, insoluble bound Spd and Spm, soluble conjugated Spd and Spm, and total Put, Spd and Spm) under drought stress. In addition, exogenous GABA application further activated drought-induced Δ1-pyrroline-5-carboxylate synthetase and proline dehydrogenase activities, but suppressed drought-facilitated ornithine -δ-amino transferase activities, leading to a higher Pro accumulation and metabolism in GABA-pretreated plants in the middle and last period of drought. The results suggested that increased endogenous GABA by exogenous GABA treatment could improve drought tolerance of white clover associated with a positive regulation in the GABA-shunt, PAs and Pro metabolism. PMID:29312009

  19. Plasticity of rat central inhibitory synapses through GABA metabolism

    PubMed Central

    Engel, Dominique; Pahner, Ingrid; Schulze, Katrin; Frahm, Christiane; Jarry, Hubertus; Ahnert-Hilger, Gudrun; Draguhn, Andreas

    2001-01-01

    The production of the central inhibitory transmitter GABA (γ-aminobutyric acid) varies in response to different patterns of activity. It therefore seems possible that GABA metabolism can determine inhibitory synaptic strength and that presynaptic GABA content is a regulated parameter for synaptic plasticity. We altered presynaptic GABA metabolism in cultured rat hippocampal slices using pharmacological tools. Degradation of GABA by GABA-transaminase (GABA-T) was blocked by γ-vinyl-GABA (GVG) and synthesis of GABA through glutamate decarboxylase (GAD) was suppressed with 3-mercaptopropionic acid (MPA). We measured miniature GABAergic postsynaptic currents (mIPSCs) in CA3 pyramidal cells using the whole-cell patch clamp technique. Elevated intra-synaptic GABA levels after block of GABA-T resulted in increased mIPSC amplitude and frequency. In addition, tonic GABAergic background noise was enhanced by GVG. Electron micrographs from inhibitory synapses identified by immunogold staining for GABA confirmed the enhanced GABA content but revealed no further morphological alterations. The suppression of GABA synthesis by MPA had opposite functional consequences: mIPSC amplitude and frequency decreased and current noise was reduced compared with control. However, we were unable to demonstrate the decreased GABA content in biochemical analyses of whole slices or in electron micrographs. We conclude that the transmitter content of GABAergic vesicles is variable and that postsynaptic receptors are usually not saturated, leaving room for up-regulation of inhibitory synaptic strength. Our data reveal a new mechanism of plasticity at central inhibitory synapses and provide a rationale for the activity-dependent regulation of GABA synthesis in mammals. PMID:11533137

  20. Carrier-mediated γ-aminobutyric acid transport across the basolateral membrane of human intestinal Caco-2 cell monolayers.

    PubMed

    Nielsen, Carsten Uhd; Carstensen, Mette; Brodin, Birger

    2012-06-01

    The aim of the present study was to investigate the transport of γ-aminobutyric acid (GABA) across the basolateral membrane of intestinal cells. The proton-coupled amino acid transporter, hPAT1, mediates the influx of GABA and GABA mimetic drug substances such as vigabatrin and gaboxadol and the anticancer prodrug δ-aminolevulinic acid across the apical membrane of small intestinal enterocytes. Little is however known about the basolateral transport of these substances. We investigated basolateral transport of GABA in mature Caco-2 cell monolayers using isotope studies. Here we report that, at least two transporters seem to be involved in the basolateral transport of GABA. The basolateral uptake consisted of a high-affinity system with a K(m) of 290 μM and V(max) of 75 pmol cm(-2) min(-1) and a low affinity system with a K(m) of approximately 64 mM and V(max) of 1.6 nmol cm(-2) min(-1). The high-affinity transporter is Na(+) and Cl(-) dependent. The substrate specificity of the high-affinity transporter was further studied and Gly-Sar, Leucine, gaboxadol, sarcosine, lysine, betaine, 5-hydroxythryptophan, proline and glycine reduced the GABA uptake to approximately 44-70% of the GABA uptake in the absence of inhibitor. Other substances such as β-alanine, GABA, 5-aminovaleric acid, taurine and δ-aminolevulinic acid reduced the basolateral GABA uptake to 6-25% of the uptake in the absence of inhibitor. Our results indicate that the distance between the charged amino- and acid-groups is particular important for inhibition of basolateral GABA uptake. Thus, there seems to be a partial substrate overlap between the basolateral GABA transporter and hPAT1, which may prove important for understanding drug interactions at the level of intestinal transport. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Zinc ion enhances GABA tea-mediated oxidative DNA damage.

    PubMed

    Chuang, Show-Mei; Wang, Hsueh-Fang; Hsiao, Ching-Chuan; Cherng, Shur-Hueih

    2012-02-15

    GABA tea is a tea product that contains a high level of γ-aminobutyric acid (GABA). Previous study has demonstrated a synergistic effect of GABA tea and copper ions on DNA breakage. This study further explored whether zinc (Zn), a nonredox metal, modulated DNA cleavage induced by GABA tea extract. In a cell-free system, Zn(2+) significantly enhanced GABA tea extract and (-)-epigallocatechin-3-gallate (EGCG)- or H(2)O(2)-induced DNA damage at 24 h of incubation. Additionally, low dosages of GABA tea extract (1-10 μg/mL) possessed pro-oxidant activity to increase H(2)O(2)/Zn(2+)-induced DNA cleavage in a dose-dependent profile. By use of various reactive oxygen scavengers, it was observed that glutathione, catalase, and potassium iodide effectively inhibited DNA degradation caused by the GABA tea extract/H(2)O(2)/Zn(2+) system. Moreover, the data showed that the GABA tea extract itself (0.5-5 mg/mL) could induce DNA cleavage in a long-term exposure (48 h). EGCG, but not the GABA tea extract, enhanced H(2)O(2)-induced DNA cleavage. In contrast, GABA decreased H(2)O(2)- and EGCG-induced DNA cleavage, suggesting that GABA might contribute the major effect on the antioxidant activity of GABA tea extract. Furthermore, a comet assay revealed that GABA tea extract (0.25 mg/mL) and GABA had antioxidant activity on H(2)O(2)-induced DNA breakage in human peripheral lymphocytes. Taken together, these findings indicate that GABA tea has the potential of both pro-oxidant and antioxidant. It is proposed that a balance between EGCG-induced pro-oxidation and GABA-mediated antioxidation may occur in a complex mixture of GABA tea extract.

  2. [Effect of acupuncture at different acupoints on expression of hypothalamic GABA and GABA(A) receptor proteins in insomnia rats].

    PubMed

    Zhou, Yan-Li; Gao, Xi-Yan; Wang, Pei-Yu; Ren, Shan

    2012-08-01

    To observe the effect of acupuncture of "Shenmai" (BL 62) and "Zhaohai" (KI 6), "Shenmen" (HT 7), etc. on the expression of hypothalamic gamma-aminobutyric acid (GABA) and GABA(A) receptor (GABA(A)R) proteins in experimental insomnia rats so as to explore its mechanism underlying improving sleeping. Seventy Wistar rats were randomly divided into normal control, model, "Sanyinjiao" (SP6), "Neiguan" (PC 6), "Zusanli" (ST 36), "Shenmen" (HT7), and "Shenmai" (BL 62)-Zhaohai (KI 6, BL 62-KI 6) groups, with 10 rats in each group. Insomnia model was established by intraperitoneal injection of chlorophenylalanine solution (PCPA, 1 mL/100 g). An acupuncture needle was inserted into each of the bilateral HT 7, PC 6, SP 6, ST 36 and BL 62-KI 6 respectively and manipulated for about 1 min, once daily for 7 days. Hypothamic GABA and GABA(A)R protein expressions were detected by immunohistochemistry. The animals' physical ability was evaluated by using pole-climbing test in a water tank. In comparison with the normal control group, the numbers of hypothalamic GABA immunoreaction (IR)- and GABA(A)R IR-positive neurons and the pole-climbing time were reduced significantly in the model group (P < 0.05). While in comparison with the model group, the numbers of hypothalamic GABA IR-positive neurons and those of hypothalamic GABA(A)R IR-positive neurons in the HT 7, PC 6, SP 6, ST 36 and BL 62-KI 6 groups, as well as the pole-climbing duration in the SP 6, ST 36 and BL 62-KI 6 groups were increased considerably (P < 0.05, P < 0.01). The effects of HT 7 and BL 62-KI 6 groups were significantly superior to those of PC 6, ST 36 and SP 6 groups in up-regulating GABA and GABA(A)R expression, and the effect of BL 62-KI 6 group was remarkably better than those of HT 7, PC 6, SP 6 and ST 36 groups in lengthening the pole-climbing time (P < 0.05). Acupuncture can effectively suppress insomnia induced down-regulation of hypothalamic GABA and GABA(A)R in rats and lengthen pole-climbing time

  3. GABA dramatically improves glucose tolerance in streptozotocin-induced diabetic rats fed with high-fat diet.

    PubMed

    Sohrabipour, Shahla; Sharifi, Mohammad Reza; Talebi, Ardeshir; Sharifi, Mohammadreza; Soltani, Nepton

    2018-05-05

    Skeletal muscle, hepatic insulin resistance, and beta cell dysfunction are the characteristic pathophysiological features of type 2 diabetes mellitus. GABA has an important role in pancreatic islet cells. The present study attempted to clarify the possible mechanism of GABA to improve glucose tolerance in a model of type 2 diabetes mellitus in rats. Fifty Wistar rats were divided into five groups: NDC that was fed the normal diet, CD which received a high-fat diet with streptozotocin, CD-GABA animals that received GABA via intraperitoneal injection, plus CD-Ins1 and CD-Ins2 groups which were treated with low and high doses of insulin, respectively. Body weight and blood glucose were measured weekly. Intraperitoneal glucose tolerance test (IPGTT), insulin tolerance test (ITT), urine volume, amount of water drinking, and food intake assessments were performed monthly. The hyperinsulinemic euglycemic clamp was done for assessing insulin resistance. Plasma insulin and glucagon were measured. Abdominal fat was measured. Glucagon receptor, Glucose 6 phosphatase, Phosphoenolpyruvate carboxykinase genes expression were evaluated in liver and Glucose transporter 4 (GLUT4) genes expression and protein translocation were evaluated in the muscle. GABA or insulin therapy improved blood glucose, insulin level, IPGTT, ITT, gluconeogenesis pathway, Glucagon receptor, body weight and body fat in diabetic rats. GLUT4 gene and protein expression increased. GABA whose beneficial effect was comparable to that of insulin, also increased glucose infusion rate during an euglycemic clamp. GABA could improve insulin resistance via rising GLUT4 and also decreasing the gluconeogenesis pathway and Glucagon receptor gene expression. Copyright © 2018. Published by Elsevier B.V.

  4. A Sensitive Period of Mice Inhibitory System to Neonatal GABA Enhancement by Vigabatrin is Brain Region Dependent

    PubMed Central

    Levav-Rabkin, Tamar; Melamed, Osnat; Clarke, Gerard; Farber, Malca; Cryan, John F; Dinan, Timothy G; Grossman, Yoram; Golan, Hava M

    2010-01-01

    Neurodevelopmental disorders, such as schizophrenia and autism, have been associated with disturbances of the GABAergic system in the brain. We examined immediate and long-lasting influences of exposure to the GABA-potentiating drug vigabatrin (GVG) on the GABAergic system in the hippocampus and cerebral cortex, before and during the developmental switch in GABA function (postnatal days P1–7 and P4–14). GVG induced a transient elevation of GABA levels. A feedback response to GABA enhancement was evident by a short-term decrease in glutamate decarboxylase (GAD) 65 and 67 levels. However, the number of GAD65/67-immunoreactive (IR) cells was greater in 2-week-old GVG-treated mice. A long-term increase in GAD65 and GAD67 levels was dependent on brain region and treatment period. Vesicular GABA transporter was insensitive to GVG. The overall effect of GVG on the Cl− co-transporters NKCC1 and KCC2 was an enhancement of their synthesis, which was dependent on the treatment period and brain region studied. In addition, a short-term increase was followed by a long-term decrease in KCC2 oligomerization in the cell membrane of P4–14 hippocampi and cerebral cortices. Analysis of the Ca2+ binding proteins expressed in subpopulations of GABAergic cells, parvalbumin and calbindin, showed region-specific effects of GVG during P4–14 on parvalbumin-IR cell density. Moreover, calbindin levels were elevated in GVG mice compared to controls during this period. Cumulatively, these results suggest a particular susceptibility of the hippocampus to GVG when exposed during days P4–14. In conclusion, our studies have identified modifications of key components in the inhibitory system during a critical developmental period. These findings provide novel insights into the deleterious consequences observed in children following prenatal and neonatal exposure to GABA-potentiating drugs. PMID:20043003

  5. Brain gamma-aminobutyric acid (GABA) abnormalities in bipolar disorder

    PubMed Central

    Brady, Roscoe O; McCarthy, Julie M; Prescot, Andrew P; Jensen, J Eric; Cooper, Alissa J; Cohen, Bruce M; Renshaw, Perry F; Ongür, Dost

    2017-01-01

    Objectives Gamma-aminobutyric acid (GABA) abnormalities have been implicated in bipolar disorder. However, due to discrepant studies measuring postmortem, cerebrospinal fluid, plasma, and in vivo brain levels of GABA, the nature of these abnormalities is unclear. Using proton magnetic resonance spectroscopy, we investigated tissue levels of GABA in the anterior cingulate cortex and parieto-occipital cortex of participants with bipolar disorder and healthy controls. Methods Fourteen stably medicated euthymic outpatients with bipolar disorder type I (mean age 32.6 years, eight male) and 14 healthy control participants (mean age 36.9 years, 10 male) completed a proton magnetic resonance spectroscopy scan at 4-Tesla after providing informed consent. We collected data from two 16.7-mL voxels using MEGAPRESS, and they were analyzed using LCModel. Results GABA/creatine ratios were elevated in bipolar disorder participants compared to healthy controls [F(1,21) = 4.4, p = 0.048] in the anterior cingulate cortex (25.1% elevation) and the parieto-occipital cortex (14.6% elevation). Bipolar disorder participants not taking GABA-modulating medications demonstrated greater GABA/creatine elevations than patients taking GABA-modulating medications. Conclusions We found higher GABA/creatine levels in euthymic bipolar disorder outpatients compared to healthy controls, and the extent of this elevation may be affected by the use of GABA-modulating medications. Our findings suggest that elevated brain GABA levels in bipolar disorder may be associated with GABAergic dysfunction and that GABA-modulating medications reduce GABA levels in this condition. PMID:23634979

  6. Activation of VTA GABA neurons disrupts reward consumption

    PubMed Central

    van Zessen, Ruud; Phillips, Jana L.; Budygin, Evgeny A.; Stuber, Garret D.

    2012-01-01

    The activity of Ventral Tegmental Area (VTA) dopamine (DA) neurons promotes behavioral responses to rewards and environmental stimuli that predict them. VTA GABA inputs synapse directly onto DA neurons and may regulate DA neuronal activity to alter reward-related behaviors, however, the functional consequences of selective activation of VTA GABA neurons remains unknown. Here, we show that in vivo optogenetic activation of VTA GABA neurons disrupts reward consummatory behavior, but not conditioned anticipatory behavior in response to reward-predictive cues. In addition, direct activation of VTA GABA projections to the nucleus accumbens (NAc) resulted in detectable GABA release, but did not alter reward consumption. Furthermore, optogenetic stimulation of VTA GABA neurons directly suppressed the activity and excitability of neighboring DA neurons, as well as the release of DA in the NAc, suggesting that the dynamic interplay between VTA DA and GABA neurons can control the initiation and termination of reward-related behaviors. PMID:22445345

  7. Production of gaba (γ - Aminobutyric acid) by microorganisms: a review.

    PubMed

    Dhakal, Radhika; Bajpai, Vivek K; Baek, Kwang-Hyun

    2012-10-01

    GABA (γ-aminobutyric acid) is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB), which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods.

  8. Design and Mechanism of Tetrahydrothiophene-based GABA Aminotransferase Inactivators

    PubMed Central

    Le, Hoang V.; Hawker, Dustin D.; Wu, Rui; Doud, Emma; Widom, Julia; Sanishvili, Ruslan; Liu, Dali; Kelleher, Neil L.; Silverman, Richard B.

    2015-01-01

    Low levels of γ-aminobutyric acid (GABA), one of two major neurotransmitters that regulate brain neuronal activity, are associated with many neurological disorders, such as epilepsy, Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, and cocaine addiction. One of the main methods to raise the GABA level in human brain is to use small molecules that cross the blood-brain barrier and inhibit the activity of γ-aminobutyric acid aminotransferase (GABA-AT), the enzyme that degrades GABA. We have designed a series of conformationally-restricted, tetrahydrothiophene-based GABA analogs with a properly-positioned leaving group that could facilitate a ring-opening mechanism, leading to inactivation of GABA-AT. One compound in the series is eight times more efficient an inactivator of GABA-AT than vigabatrin, the only FDA-approved inactivator of GABA-AT. Our mechanistic studies show that the compound inactivates GABA-AT by a new mechanism. The metabolite resulting from inactivation does not covalently bind to amino acid residues of GABA-AT but stays in the active site via H-bond interactions with Arg-192, a π-π interaction with Phe-189, and a weak nonbonded S···O=C interaction with Glu-270, thereby inactivating the enzyme. PMID:25781189

  9. Big GABA: Edited MR spectroscopy at 24 research sites.

    PubMed

    Mikkelsen, Mark; Barker, Peter B; Bhattacharyya, Pallab K; Brix, Maiken K; Buur, Pieter F; Cecil, Kim M; Chan, Kimberly L; Chen, David Y-T; Craven, Alexander R; Cuypers, Koen; Dacko, Michael; Duncan, Niall W; Dydak, Ulrike; Edmondson, David A; Ende, Gabriele; Ersland, Lars; Gao, Fei; Greenhouse, Ian; Harris, Ashley D; He, Naying; Heba, Stefanie; Hoggard, Nigel; Hsu, Tun-Wei; Jansen, Jacobus F A; Kangarlu, Alayar; Lange, Thomas; Lebel, R Marc; Li, Yan; Lin, Chien-Yuan E; Liou, Jy-Kang; Lirng, Jiing-Feng; Liu, Feng; Ma, Ruoyun; Maes, Celine; Moreno-Ortega, Marta; Murray, Scott O; Noah, Sean; Noeske, Ralph; Noseworthy, Michael D; Oeltzschner, Georg; Prisciandaro, James J; Puts, Nicolaas A J; Roberts, Timothy P L; Sack, Markus; Sailasuta, Napapon; Saleh, Muhammad G; Schallmo, Michael-Paul; Simard, Nicholas; Swinnen, Stephan P; Tegenthoff, Martin; Truong, Peter; Wang, Guangbin; Wilkinson, Iain D; Wittsack, Hans-Jörg; Xu, Hongmin; Yan, Fuhua; Zhang, Chencheng; Zipunnikov, Vadim; Zöllner, Helge J; Edden, Richard A E

    2017-10-01

    Magnetic resonance spectroscopy (MRS) is the only biomedical imaging method that can noninvasively detect endogenous signals from the neurotransmitter γ-aminobutyric acid (GABA) in the human brain. Its increasing popularity has been aided by improvements in scanner hardware and acquisition methodology, as well as by broader access to pulse sequences that can selectively detect GABA, in particular J-difference spectral editing sequences. Nevertheless, implementations of GABA-edited MRS remain diverse across research sites, making comparisons between studies challenging. This large-scale multi-vendor, multi-site study seeks to better understand the factors that impact measurement outcomes of GABA-edited MRS. An international consortium of 24 research sites was formed. Data from 272 healthy adults were acquired on scanners from the three major MRI vendors and analyzed using the Gannet processing pipeline. MRS data were acquired in the medial parietal lobe with standard GABA+ and macromolecule- (MM-) suppressed GABA editing. The coefficient of variation across the entire cohort was 12% for GABA+ measurements and 28% for MM-suppressed GABA measurements. A multilevel analysis revealed that most of the variance (72%) in the GABA+ data was accounted for by differences between participants within-site, while site-level differences accounted for comparatively more variance (20%) than vendor-level differences (8%). For MM-suppressed GABA data, the variance was distributed equally between site- (50%) and participant-level (50%) differences. The findings show that GABA+ measurements exhibit strong agreement when implemented with a standard protocol. There is, however, increased variability for MM-suppressed GABA measurements that is attributed in part to differences in site-to-site data acquisition. This study's protocol establishes a framework for future methodological standardization of GABA-edited MRS, while the results provide valuable benchmarks for the MRS community

  10. MEDU-05. THE ROLE OF GABA METABOLISM IN MEDULLOBLASTOMA

    PubMed Central

    Martirosian, Vahan; Deshpande, Krutika; Shackelford, Gregory; Julian, Alex; Lin, Michelle; Erdreich-Epstein, Anat; Chen, Thomas; Neman, Josh

    2017-01-01

    Abstract BACKGROUND: Brain tumors are the most common cause of childhood oncological death, and medulloblastoma (originating in the cerebellum) is the most common malignant pediatric brain tumor. In the microenvironment of the brain, especially the cerebellum, variables related to GABA, the major inhibitory neurotransmitter in the nervous system, are particularly prominent. Abnormal GABAergic Receptor activation has been described in in aggressive MYC-driven Group 3 medulloblastoma. However these studies did not look at the metabolic contribution of GABA for the development of medulloblastomas. In addition to its role in neurotransmission through GABA receptor, GABA can act as a trophic factor during nervous system development to influence cellular events including proliferation, migration, differentiation, synapse maturation, and cell death. Under conditions that inhibit the tricarboxylic acid cycle (TCA), impair respiration, and enhance the accumulation of reactive oxygen intermediates, GABA can be used as an NADH energy source for growth through the GABA-shunt pathway regulators (ABAT, SSADH, GAT-1, GAT-3). Therefore, we hypothesize that blocking GABA-metabolic-shunt will lead to growth suppression and invasiveness of medulloblastoma in the cerebellar GABA-rich microenvironment. RESULTS: Our results show RNA microarray from patient medulloblastoma tissue have high expression of GABA-shunt regulators with ~3-fold increase in the expression of ABAT in MYC amplified versus non-amplified MYC tumors. When medulloblastomas were supplemented with GABA, there was a significant fold change in expression of GABA-shunt mediators and induction of large and stable tumor spheres with Epithelial-Mesenchymal Transition gene expression signature. We next investigated whether a novel perrilyl alcohol-based small molecule NEO216 targeted the GABA-shunt metabolic pathway. NEO216 administration significantly reduced GABA-mediated NADH levels, reversed EMT-profiling, leading to loss

  11. Genetics Home Reference: GABA-transaminase deficiency

    MedlinePlus

    ... Chiriboga CA, Ichikawa K, Osaka H, Tsuji M, Gibson KM, Bonnen PE, Pearl PL. Phenotype of GABA- ... Meirleir L, Jaeken J, Jakobs C, Nyhan WL, Gibson KM. 4-Aminobutyrate aminotransferase (GABA-transaminase) deficiency. J ...

  12. [ERK activation effects on GABA secretion inhibition induced by SDF-1 in hippocampal neurons of rats].

    PubMed

    Zhang, Zi-juan; Guo, Mei-xia; Xing, Ying

    2015-09-01

    To investigate the effect of extracellular regulating kinase (ERK) signaling pathway on the secretion of gamma-aminobutyric acid (GABA) in cultured rat hippocampal neurons induced by stromal cell derived factor-1 (SDF-1). The hippocampal neurons of newborn SD rats were cultured and identified in vitro; the phosphorylation level of ERK1/2 was examined by Western blot; ELISA was used to detect the effect of PD98059, a ERK1/2 specific blocker on GABA secretion of cultured hippocampal neurons and Western blot were adopted to measure the protein expression levels of glutamate decarboxylase (GAD65/67) and gamma aminobutyric acid transporter (GAT); after blocking ERK1/2 signaling pathway with PD98059; RT-PCR was used to detect the mRNA expression levels of GAT-1 and GAD65 after treated with PD98059. The levels of ERKl/2 phosphorylation were increased significantly by SDF1 acting on hippocampal neurons, and CX-CR4 receptor blocker AMD3100, could inhibit SDF-1 induced ERK1/2 activation; SDF-1 could inhibit the secretion of GABA in cultured hippocampal neurons, and ERK1/2 specific inhibitor PD98059, could partly reverse the inhibition of GABA secretion by SDF-1. The effects of SDF-1 on cultured hippocampal neurons was to decrease the mRNA genesis of glutamic acid decarboxylase GAD65 and GABA transporter GAT-1, besides, ERK inhibitor PD98059 could effectively flip the effect of SDF-1. The results of Western blot showed that SDF-1 could inhibit the protein expression of GAT-1 and GAD65/67 in hippocampal neurons and the inhibition of GAT-1 and GAD65/67 protein expression could be partially restored by ERK1/2 blocker. SDF-1 acts on the CXCR4 of hippocampal neurons in vitro, and inhibits the expression of GAD by activating the ERK1/2 signaling pathway, and this may represent one possible pathway of GABA secretion inhibition.

  13. Centrifuge-induced hypergravity: [ 3H]GABA and L-[ 14C]glutamate uptake, exocytosis and efflux mediated by high-affinity, sodium-dependent transporters

    NASA Astrophysics Data System (ADS)

    Borisova, T. A.; Himmelreich, N. H.

    The effects of centrifuge-induced hypergravity on the presynaptic events have been investigated in order to provide further insight into regulation of glutamate and GABA neurotransmission and correlation between excitatory and inhibitory responses under artificial gravity conditions. Exposure of animals to hypergravity (centrifugation of rats at 10 G for 1 h) has been found to cause changes in the synaptic processes of brain, in particular neurotransmitter release and uptake in rat brain synaptosomes. Hypergravity loading resulted in more than two-fold enhancement of GABA transporter activity ( Vmax increased from 1.4 ± 0.3 nmol/min/mg of protein in the control group to 3.3 ± 0.59 nmol/min/mg of protein for the animals exposed to hypergravity ( P ⩽ 0.05)). The maximal velocity of L-[ 14C]glutamate uptake decreased from 12.5 ± 3.2 to 5.6 ± 0.9 nmol/min/mg of protein under artificial gravity conditions. Depolarization-evoked exocytotic release of the neurotransmitters has also changed in response to hypergravity. It increased for GABA (7.2 ± 0.54% and 11.74 ± 1.2% of total accumulated label for control and hypergravity, respectively ( P ⩽ 0.05)), but reduced for glutamate (14.4 ± 0.7% and 6.2 ± 1.9%, for control and hypergravity, respectively). Thus, comparative analysis of the neurotransmitter uptake and release has demonstrated that short-term centrifuge-induced 10 G hypergravity loading intensified inhibitory and attenuated excitatory processes in nerve terminals. The activation or reduction of neurotransmitter uptake appeared to be coupled with similarly directed alterations of the neurotransmitter release.

  14. GABA, its receptors, and GABAergic inhibition in mouse taste buds

    PubMed Central

    Dvoryanchikov, Gennady; Huang, Yijen A; Barro-Soria, Rene; Chaudhari, Nirupa; Roper, Stephen D.

    2012-01-01

    Taste buds consist of at least three principal cell types that have different functions in processing gustatory signals — glial-like Type I cells, Receptor (Type II) cells, and Presynaptic (Type III) cells. Using a combination of Ca2+ imaging, single cell RT-PCR, and immunostaining, we show that γ-amino butyric acid (GABA) is an inhibitory transmitter in mouse taste buds, acting on GABA-A and GABA-B receptors to suppress transmitter (ATP) secretion from Receptor cells during taste stimulation. Specifically, Receptor cells express GABA-A receptor subunits β2, δ, π, as well as GABA-B receptors. In contrast, Presynaptic cells express the GABA-Aβ3 subunit and only occasionally GABA-B receptors. In keeping with the distinct expression pattern of GABA receptors in Presynaptic cells, we detected no GABAergic suppression of transmitter release from Presynaptic cells. We suggest that GABA may serve function(s) in taste buds in addition to synaptic inhibition. Finally, we also defined the source of GABA in taste buds: GABA is synthesized by GAD65 in Type I taste cells as well as by GAD67 in Presynaptic (Type III) taste cells and is stored in both those two cell types. We conclude that GABA is released during taste stimulation and possibly also during growth and differentiation of taste buds. PMID:21490220

  15. GABA, its receptors, and GABAergic inhibition in mouse taste buds.

    PubMed

    Dvoryanchikov, Gennady; Huang, Yijen A; Barro-Soria, Rene; Chaudhari, Nirupa; Roper, Stephen D

    2011-04-13

    Taste buds consist of at least three principal cell types that have different functions in processing gustatory signals: glial-like (type I) cells, receptor (type II) cells, and presynaptic (type III) cells. Using a combination of Ca2+ imaging, single-cell reverse transcriptase-PCR and immunostaining, we show that GABA is an inhibitory transmitter in mouse taste buds, acting on GABA(A) and GABA(B) receptors to suppress transmitter (ATP) secretion from receptor cells during taste stimulation. Specifically, receptor cells express GABA(A) receptor subunits β2, δ, and π, as well as GABA(B) receptors. In contrast, presynaptic cells express the GABA(A) β3 subunit and only occasionally GABA(B) receptors. In keeping with the distinct expression pattern of GABA receptors in presynaptic cells, we detected no GABAergic suppression of transmitter release from presynaptic cells. We suggest that GABA may serve function(s) in taste buds in addition to synaptic inhibition. Finally, we also defined the source of GABA in taste buds: GABA is synthesized by GAD65 in type I taste cells as well as by GAD67 in presynaptic (type III) taste cells and is stored in both those two cell types. We conclude that GABA is an inhibitory transmitter released during taste stimulation and possibly also during growth and differentiation of taste buds.

  16. An Electrostatic Funnel in the GABA-Binding Pathway

    PubMed Central

    Lightstone, Felice C.

    2016-01-01

    The γ-aminobutyric acid type A receptor (GABAA-R) is a major inhibitory neuroreceptor that is activated by the binding of GABA. The structure of the GABAA-R is well characterized, and many of the binding site residues have been identified. However, most of these residues are obscured behind the C-loop that acts as a cover to the binding site. Thus, the mechanism by which the GABA molecule recognizes the binding site, and the pathway it takes to enter the binding site are both unclear. Through the completion and detailed analysis of 100 short, unbiased, independent molecular dynamics simulations, we have investigated this phenomenon of GABA entering the binding site. In each system, GABA was placed quasi-randomly near the binding site of a GABAA-R homology model, and atomistic simulations were carried out to observe the behavior of the GABA molecules. GABA fully entered the binding site in 19 of the 100 simulations. The pathway taken by these molecules was consistent and non-random; the GABA molecules approach the binding site from below, before passing up behind the C-loop and into the binding site. This binding pathway is driven by long-range electrostatic interactions, whereby the electrostatic field acts as a ‘funnel’ that sweeps the GABA molecules towards the binding site, at which point more specific atomic interactions take over. These findings define a nuanced mechanism whereby the GABAA-R uses the general zwitterionic features of the GABA molecule to identify a potential ligand some 2 nm away from the binding site. PMID:27119953

  17. Development of tolerance to the effects of vigabatrin (gamma-vinyl-GABA) on GABA release from rat cerebral cortex, spinal cord and retina.

    PubMed Central

    Neal, M. J.; Shah, M. A.

    1990-01-01

    1. The effects of acute and chronic vigabatrin (gamma-vinyl-GABA) (GVG) administration on gamma-aminobutyric acid (GABA) levels and release in rat cortical slices, spinal cord slices and retinas were studied. 2. GVG (250 mgkg-1 i.p.) administered to rats 18 h before death (acute administration) produced an almost 3 fold increase in GABA levels of the cortex and spinal cord and a 6 fold increase in retinal GABA. The levels of glutamate, aspartate, glycine and taurine were unaffected. 3. When GVG (250 mgkg-1 i.p.) was administered daily for 17 days (chronic administration) a similar (almost 3 fold) increase in cortical GABA occurred but the increases in spinal and retinal GABA were reduced by approximately 40%. 4. Acute administration of GVG strikingly increased the potassium-evoked release (KCl 50 mM) of GABA from all three tissues. This enhanced evoked release was reduced by about 50% in tissues taken from rats that had been chronically treated with GVG. 5. Acute administration of GVG reduced GABA-transaminase (GABA-T) activity by approximately 80% in cortex and cord and by 98% in the retina. Following the chronic administration of GVG, there was a trend for GABA-T activities to recover (significant only in cortex). Acute administration of GVG had no effect on glutamic acid decarboxylase (GAD) activity in cortex or spinal cord. However, chronic treatment resulted in significant decreases in GAD activity in both the cortex and cord (35% and 50% reduction respectively).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2379037

  18. Distribution of 3H-GABA uptake sites in the nematode Ascaris

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guastella, J.; Stretton, A.O.

    1991-05-22

    The distribution of uptake sites for the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) in the nematode Ascaris suum was examined by autoradiography of 3H-GABA uptake. Single neural processes in both the ventral and dorsal nerve cords were labeled with 3H-GABA. Serial section analysis identified the cells of origin of these processes as the RMEV-like and RMED-like neurons. These cells belong to a set of four neurons in the nerve ring, all of which are labeled by 3H-GABA. 3H-GABA labeling of at least two other sets of cephalic neurons was seen. One of these pairs consists of medium-sized lateral ganglia neurons, locatedmore » at the level of the amphid commissure bundle. A second pair is located in the lateral ganglia at the level of the deirid commissure bundle. The position and size of these lateral ganglia cells suggest that they are the GABA-immunoreactive lateral ganglia cells frequently seen in whole-mount immunocytochemical preparations. Four neuronal cell bodies located in the retrovesicular ganglion were also labeled with 3H-GABA. These cells, which are probably cholinergic excitatory motor neurons, do not contain detectable GABA-like immunoreactivity. Heavy labeling of muscle cells was also observed. The ventral and dorsal nerve cord inhibitory motor neurons, which are known to contain GABA-like immunoreactivity, were not labeled above background with 3H-GABA. Together with the experiments reported previously, these results define three classes of GABA-associated neurons in Ascaris: (1) neurons that contain endogenous GABA and possess a GABA uptake system; (2) neurons that contain endogenous GABA, but that either lack a GABA uptake system or possess a GABA uptake system of low activity; (3) neurons that possess a GABA uptake system, but that lack endogenous GABA.« less

  19. The GABA Hypothesis in Essential Tremor: Lights and Shadows.

    PubMed

    Gironell, Alexandre

    2014-01-01

    The gamma-aminobutyric acid (GABA) hypothesis in essential tremor (ET) implies a disturbance of the GABAergic system, especially involving the cerebellum. This review examines the evidence of the GABA hypothesis. The review is based on published data about GABA dysfunction in ET, taking into account studies on cerebrospinal fluid, pathology, electrophysiology, genetics, neuroimaging, experimental animal models, and human drug therapies. Findings from several studies support the GABA hypothesis in ET. The hypothesis follows four steps: 1) cerebellar neurodegeneration with Purkinje cell loss; 2) a decrease in GABA system activity in deep cerebellar neurons; 3) disinhibition in output deep cerebellar neurons with pacemaker activity; and 4) an increase in rhythmic activity of the thalamus and thalamo-cortical circuit, contributing to the generation of tremor. Doubts have been cast on this hypothesis, however, by the fact that it is based on relatively few works, controversial post-mortem findings, and negative genetic studies on the GABA system. Furthermore, GABAergic drug efficacy is low and some GABAergic drugs do not have antitremoric efficacy. The GABA hypothesis continues to be the most robust pathophysiological hypothesis to explain ET. There is light in all GABA hypothesis steps, but a number of shadows cannot be overlooked. We need more studies to clarify the neurodegenerative nature of the disease, to confirm the decrease of GABA activity in the cerebellum, and to test more therapies that enhance the GABA transmission specifically in the cerebellum area.

  20. Genetic manipulation of the γ-aminobutyric acid (GABA) shunt in rice: overexpression of truncated glutamate decarboxylase (GAD2) and knockdown of γ-aminobutyric acid transaminase (GABA-T) lead to sustained and high levels of GABA accumulation in rice kernels.

    PubMed

    Shimajiri, Yasuka; Oonishi, Takayuki; Ozaki, Kae; Kainou, Kumiko; Akama, Kazuhito

    2013-06-01

    Gamma-aminobutyric acid (GABA) is a non-protein amino acid commonly present in all organisms. Because cellular levels of GABA in plants are mainly regulated by synthesis (glutamate decarboxylase, GAD) and catabolism (GABA-transaminase, GABA-T), we attempted seed-specific manipulation of the GABA shunt to achieve stable GABA accumulation in rice. A truncated GAD2 sequence, one of five GAD genes, controlled by the glutelin (GluB-1) or rice embryo globulin promoters (REG) and GABA-T-based trigger sequences in RNA interference (RNAi) cassettes controlled by one of these promoters as well, was introduced into rice (cv. Koshihikari) to establish stable transgenic lines under herbicide selection using pyriminobac. T₁ and T₂ generations of rice lines displayed high GABA concentrations (2-100 mg/100 g grain). In analyses of two selected lines from the T₃ generation, there was a strong correlation between GABA level and the expression of truncated GAD2, whereas the inhibitory effect of GABA-T expression was relatively weak. In these two lines both with two T-DNA copies, their starch, amylose, and protein levels were slightly lower than non-transformed cv. Koshihikari. Free amino acid analysis of mature kernels of these lines demonstrated elevated levels of GABA (75-350 mg/100 g polished rice) and also high levels of several amino acids, such as Ala, Ser, and Val. Because these lines of seeds could sustain their GABA content after harvest (up to 6 months), the strategy in this study could lead to the accumulation GABA and for these to be sustained in the edible parts. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  1. Determination of GABA and vigabatrin in human plasma by a rapid and simple HPLC method: correlation between clinical response to vigabatrin and increase in plasma GABA.

    PubMed

    Löscher, W; Fassbender, C P; Gram, L; Gramer, M; Hörstermann, D; Zahner, B; Stefan, H

    1993-03-01

    The novel antiepileptic drug vigabatrin (Sabril) acts by inhibiting degradation of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA), increasing the GABA concentrations in the brain. Because the GABA degrading enzyme GABA aminotransferase (GABA-T) is also present in peripheral tissues, including blood platelets, measurement of plasma GABA levels might be a useful indication of the pharmacological response to vigabatrin during therapeutic monitoring. However, because of the very low concentrations of GABA in plasma, the few methods available for plasma GABA analysis are time-consuming, difficult to perform and/or not selective enough because of potential interference with other plasma constituents. In the present study, a rapid, selective and sensitive amino acid analysis HPLC method has been developed for plasma GABA determination with fluorescence detection, using o-phthaldialdehyde as a precolumn derivatizing agent. By employing a 3 microns particle size reversed-phase column and a multi-step gradient system of two solvents, the very low endogenous concentration of GABA in human plasma could be reproducibly quantitated without interference of other endogenous compounds. Incubation of human plasma samples with GABA degrading enzyme(s) resulted in an almost total loss of the GABA peak, thus demonstrating the specificity of the method for GABA analysis. In addition to GABA and other endogenous amino acids, the HPLC method could be used to quantitate plasma levels of vigabatrin. Thus, this improved HPLC amino acid assay might be used to examine whether concomitant monitoring of plasma GABA and vigabatrin is useful for clinical purposes. This was examined in 20 epileptic patients undergoing chronic treatment with vigabatrin. The average plasma GABA level of these 20 patients did not differ significantly from non-epileptic controls. However, when epileptic patients were subdivided according to their clinical response to vigabatrin, vigabatrin responders

  2. Neonatal maternal separation delays the GABA excitatory-to-inhibitory functional switch by inhibiting KCC2 expression.

    PubMed

    Furukawa, Minami; Tsukahara, Takao; Tomita, Kazuo; Iwai, Haruki; Sonomura, Takahiro; Miyawaki, Shouichi; Sato, Tomoaki

    2017-11-25

    The excitatory-to-inhibitory functional switch of γ-aminobutyric acid (GABA; GABA switch), which normally occurs in the first to the second postnatal week in the hippocampus, is necessary for the development of appropriate central nervous system function. A deficit in GABAergic inhibitory function could cause excitatory/inhibitory (E/I) neuron imbalance that is found in many neurodegenerative disorders. In the present study, we examined whether neonatal stress can affect the timing of the GABA functional switch and cause disorders during adolescence. Neonatal stress was induced in C57BL/6J male mouse pups by maternal separation (MS) on postnatal days (PND) 1-21. Histological quantification of K + -Cl - co-transporter (KCC2) and Ca 2+ imaging were performed to examine the timing of the GABA switch during the MS period. To evaluate the influence of neonatal MS on adolescent hippocampal function, we quantified KCC2 expression and evaluated hippocampal-related behavioral tasks at PND35-38. We showed that MS delayed the timing of the GABA switch in the hippocampus and inhibited the increase in membrane KCC2 expression, with KCC2 expression inhibition persisting until adolescence. Behavioral tests showed impaired cognition, declined attention, hyperlocomotion, and aggressive character in maternally separated mice. Taken together, our results show that neonatal stress delayed the timing of the GABA switch, which could change the E/I balance and cause neurodegenerative disorders in later life. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Production of gaba (γ – Aminobutyric acid) by microorganisms: a review

    PubMed Central

    Dhakal, Radhika; Bajpai, Vivek K.; Baek, Kwang-Hyun

    2012-01-01

    GABA (γ-aminobutyric acid) is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB), which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods. PMID:24031948

  4. [Influence of exogenous gamma-aminobutyric acid (GABA) on GABA metabolism and amino acid contents in roots of melon seedling under hypoxia stress].

    PubMed

    Wang, Chun-Yan; Li, Jing-Rui; Xia, Qing-Ping; Wu, Xiao-Lei; Gao, Hong-Bo

    2014-07-01

    This paper investigated the influence of gamma-aminobutyric acid (GABA) on GABA metabolism and amino acid content under hypoxia stress by accurately controlling the level of dissolved oxygen in hydroponics, using the roots of melon 'Xiyu 1' seedlings as the test material. The results showed that compared with the control, the growth of roots was inhibited seriously under hypoxia stress. Meanwhile, the hypoxia-treated roots had significantly higher activities of glutamate decarboxylase (GAD), glutamate dehydrogenase (GDH), glutamate synthase (GOGAT), glutamine synthetase (GS), alanine aminotransferase (ALT), aspartate aminotransferase (AST) as well as the contents of GABA, pyruvic acid, alanine (Ala) and aspartic acid (Asp). But the contents of glutamic acid (Glu) and alpha-keto glutaric acid in roots under hypoxia stress was obviously lower than those of the control. Exogenous treatment with GABA alleviated the inhibition effect of hypoxia stress on root growth, which was accompanied by an increase in the contents of endogenous GABA, Glu, alpha-keto glutaric acid and Asp. Furthermore, under hypoxia stress, the activities of GAD, GDH, GOGAT, GS, ALT, AST as well as the contents of pyruvic acid and Ala significantly decreased in roots treated with GABA. However, adding GABA and viny-gamma-aminobutyric acid (VGB) reduced the alleviation effect of GABA on melon seedlings under hypoxia stress. The results suggested that absorption of GABA by roots could alleviate the injury of hypoxia stress to melon seedlings. This meant that GABA treatment allows the normal physiological metabolism under hypoxia by inhibiting the GAD activity through feedback and maintaining higher Glu content as well as the bal- ance of carbon and nitrogen.

  5. Occipital GABA correlates with cognitive failures in daily life.

    PubMed

    Sandberg, Kristian; Blicher, Jakob Udby; Dong, Mia Yuan; Rees, Geraint; Near, Jamie; Kanai, Ryota

    2014-02-15

    The brain has limited capacity, and so selective attention enhances relevant incoming information while suppressing irrelevant information. This process is not always successful, and the frequency of such cognitive failures varies to a large extent between individuals. Here we hypothesised that individual differences in cognitive failures might be reflected in inhibitory processing in the sensory cortex. To test this hypothesis, we measured GABA in human visual cortex using MR spectroscopy and found a negative correlation between occipital GABA (GABA+/Cr ratio) and cognitive failures as measured by an established cognitive failures questionnaire (CFQ). For a second site in parietal cortex, no correlation between CFQ score and GABA+/Cr ratio was found, thus establishing the regional specificity of the link between occipital GABA and cognitive failures. We further found that grey matter volume in the left superior parietal lobule (SPL) correlated with cognitive failures independently from the impact of occipital GABA and together, occipital GABA and SPL grey matter volume statistically explained around 50% of the individual variability in daily cognitive failures. We speculate that the amount of GABA in sensory areas may reflect the potential capacity to selectively suppress irrelevant information already at the sensory level, or alternatively that GABA influences the specificity of neural representations in visual cortex thus improving the effectiveness of successful attentional modulation. © 2013. Published by Elsevier Inc. All rights reserved.

  6. Perisylvian GABA levels in schizophrenia and bipolar disorder.

    PubMed

    Atagün, Murat İlhan; Şıkoğlu, Elif Muazzez; Soykan, Çağlar; Serdar Süleyman, Can; Ulusoy-Kaymak, Semra; Çayköylü, Ali; Algın, Oktay; Phillips, Mary Louise; Öngür, Dost; Moore, Constance Mary

    2017-01-10

    The aim of this study is to measure GABA levels of perisylvian cortices in schizophrenia and bipolar disorder patients, using proton magnetic resonance spectroscopy ( 1 H-MRS). Patients with schizophrenia (n=25), bipolar I disorder (BD-I; n=28) and bipolar II disorder (BD-II; n=20) were compared with healthy controls (n=30). 1 H-MRS data was acquired using a Siemens 3T whole body scanner to quantify right and left perisylvian structures' (including superior temporal lobes) GABA levels. Right perisylvian GABA values differed significantly between groups [χ 2 =9.62, df: 3, p=0.022]. GABA levels were significantly higher in the schizophrenia group compared with the healthy control group (p=0.002). Furthermore, Chlorpromazine equivalent doses of antipsychotics correlated with right hemisphere GABA levels (r 2 =0.68, p=0.006, n=33). GABA levels are elevated in the right hemisphere in patients with schizophrenia in comparison to bipolar disorder and healthy controls. The balance between excitatory and inhibitory controls over the cortical circuits may have direct relationship with GABAergic functions in auditory cortices. In addition, GABA levels may be altered by brain regions of interest, psychotropic medications, and clinical stage in schizophrenia and bipolar disorder. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Perisylvian GABA levels in schizophrenia and bipolar disorder

    PubMed Central

    ATAGÜN, Murat İlhan; ŞIKOĞLU, Elif Muazzez; SOYKAN, Çağlar; CAN, Serdar Süleyman; ULUSOY-KAYMAK, Semra; ÇAYKÖYLÜ, Ali; ALGIN, Oktay; PHILLIPS, Mary Louise; ÖNGÜR, Dost; MOORE, Constance Mary

    2016-01-01

    The aim of this study is to measure GABA levels of perisylvian cortices in schizophrenia and bipolar disorder patients, using proton magnetic resonance spectroscopy (1H-MRS). Patients with schizophrenia (n=25), bipolar I disorder (BD-I; n=28) and bipolar II disorder (BD-II; n=20) were compared with healthy controls (n=30). 1H-MRS data was acquired using a Siemens 3 Tesla whole body scanner to quantify right and left perisylvian structures’ (including superior temporal lobes) GABA levels. Right perisylvian GABA values differed significantly between groups [χ2=9.62, df: 3, p = 0.022]. GABA levels were significantly higher in the schizophrenia group compared with the healthy control group (p=0.002). Furthermore, Chlorpromazine equivalent doses of antipsychotics correlated with right hemisphere GABA levels (r2=0.68, p=0.006, n=33). GABA levels are elevated in the right hemisphere in patients with schizophrenia in comparison to bipolar disorder and healthy controls. The balance between excitatory and inhibitory controls over the cortical circuits may have direct relationship with GABAergic functions in auditory cortices. In addition, GABA levels may be altered by brain regions of interest, psychotropic medications, and clinical stage in schizophrenia and bipolar disorder. PMID:27890741

  8. Enchancement of Gamma-Aminobutyric Acid Production by Co-Localization of Neurospora crassa OR74A Glutamate Decarboxylase with Escherichia coli GABA Transporter Via Synthetic Scaffold Complex.

    PubMed

    Somasundaram, Sivachandiran; Maruthamuthu, Murali Kannan; Ganesh, Irisappan; Eom, Gyeong Tae; Hong, Soon Ho

    2017-09-28

    Gamma-aminobutyric acid is a precursor of nylon-4, which is a promising heat-resistant biopolymer. GABA can be produced from the decarboxylation of glutamate by glutamate decarboxylase. In this study, a synthetic scaffold complex strategy was employed involving the Neurospora crassa glutamate decarboxylase (GadB) and Escherichia coli GABA antiporter (GadC) to improve GABA production. To construct the complex, the SH3 domain was attached to the N. crassa GadB, and the SH3 ligand was attached to the N-terminus, middle, and C-terminus of E. coli GadC. In the C-terminus model, 5.8 g/l of GABA concentration was obtained from 10 g/l glutamate. When a competing pathway engineered strain was used, the final GABA concentration was further increased to 5.94 g/l, which corresponds to 97.5% of GABA yield. With the introduction of the scaffold complex, the GABA productivity increased by 2.9 folds during the initial culture period.

  9. Fast detection of extrasynaptic GABA with a whole-cell sniffer.

    PubMed

    Christensen, Rasmus K; Petersen, Anders V; Schmitt, Nicole; Perrier, Jean-François

    2014-01-01

    Gamma-amino-butyric acid (GABA) is the main inhibitory transmitter of the brain. It operates by binding to specific receptors located both inside and outside synapses. The extrasynaptic receptors are activated by spillover from GABAergic synapses and by ambient GABA in the extracellular space. Ambient GABA is essential for adjusting the excitability of neurons. However, due to the lack of suitable methods, little is known about its dynamics. Here we describe a new technique that allows detection of GABA transients and measurement of the steady state GABA concentration with high spatial and temporal resolution. We used a human embryonic kidney (HEK) cell line that stably expresses GABAA receptors composed of α1, β2, and γ2 subunits. We recorded from such a HEK cell with the whole-cell patch-clamp technique. The presence of GABA near the HEK cell generated a measurable electric current whose magnitude increased with concentration. A fraction of the current did not inactivate during prolonged exposition to GABA. This technique, which we refer to as a "sniffer" allows the measurement of ambient GABA concentration inside nervous tissue with a resolution of few tens of nanomolars. In addition, the sniffer detects variations in the extrasynaptic GABA concentration with millisecond time resolution. Pilot experiments demonstrate that the sniffer is able to report spillover of GABA induced by synaptic activation in real time. This is the first report on a GABA sensor that combines the ability to detect fast transients and to measure steady concentrations.

  10. Glial GABA, synthesized by monoamine oxidase B, mediates tonic inhibition

    PubMed Central

    Yoon, Bo-Eun; Woo, Junsung; Chun, Ye-Eun; Chun, Heejung; Jo, Seonmi; Bae, Jin Young; An, Heeyoung; Min, Joo Ok; Oh, Soo-Jin; Han, Kyung-Seok; Kim, Hye Yun; Kim, Taekeun; Kim, Young Soo; Bae, Yong Chul; Lee, C Justin

    2014-01-01

    GABA is the major inhibitory transmitter in the brain and is released not only from a subset of neurons but also from glia. Although neuronal GABA is well known to be synthesized by glutamic acid decarboxylase (GAD), the source of glial GABA is unknown. After estimating the concentration of GABA in Bergmann glia to be around 5–10 mm by immunogold electron microscopy, we demonstrate that GABA production in glia requires MAOB, a key enzyme in the putrescine degradation pathway. In cultured cerebellar glia, both Ca2+-induced and tonic GABA release are significantly reduced by both gene silencing of MAOB and the MAOB inhibitor selegiline. In the cerebellum and striatum of adult mice, general gene silencing, knock out of MAOB or selegiline treatment resulted in elimination of tonic GABA currents recorded from granule neurons and medium spiny neurons. Glial-specific rescue of MAOB resulted in complete rescue of tonic GABA currents. Our results identify MAOB as a key synthesizing enzyme of glial GABA, which is released via bestrophin 1 (Best1) channel to mediate tonic inhibition in the brain. PMID:25239459

  11. Zolpidem modulation of phasic and tonic GABA currents in the rat dorsal motor nucleus of the vagus

    PubMed Central

    Gao, Hong; Smith, Bret N.

    2010-01-01

    Zolpidem is a widely prescribed sleep aid with relative selectivity for GABAA receptors containing α1–3 subunits. We examined the effects of zolpidem on the inhibitory currents mediated by GABAA receptors using whole-cell patch-clamp recordings from DMV neurons in transverse brainstem slices from rat. Zolpidem prolonged the decay time of mIPSCs and of muscimol-evoked whole-cell GABAergic currents, and it occasionally enhanced the amplitude of mIPSCs. The effects were blocked by flumazenil, a benzodiazepine antagonist. Zolpidem also hyperpolarized the resting membrane potential, with a concomitant decrease in input resistance and action potential firing activity in a subset of cells. Zolpidem did not clearly alter the GABAA receptor-mediated tonic current (Itonic) under baseline conditions, but after elevating extracellular GABA concentration with nipecotic acid, a non-selective GABA transporter blocker, zolpidem consistently and significantly increased the tonic GABA current. This increase was suppressed by flumazenil and gabazine. These results suggest that α1–3 subunits are expressed in synaptic GABAA receptors on DMV neurons. The baseline tonic GABA current is likely not mediated by these same low affinity, zolpidem-sensitive GABAA receptors. However, when the extracellular GABA concentration is increased, zolpidem-sensitive extrasynaptic GABAA receptors containing α1–3 subunits contribute to the Itonic. PMID:20226798

  12. Furosemide suppresses ileal and colonic contractility via interactions with GABA-A receptor in mice.

    PubMed

    Kaewsaro, Kannaree; Nualplub, Suparp; Bumrungsri, Sara; Khuituan, Pissared

    2017-11-01

    The loop diuretic furosemide has an action to inhibit Na + -K + -2Cl - co-transporter at the thick ascending limb of Henle's loop resulting in diuresis. Furosemide also has the non-diuretic effects by binding to GABA-A receptor which may involve the gastrointestinal tract. The aim of this study was to investigate the effects of furosemide on smooth muscle contractions in mice ileum and proximal colon. Each intestinal segment suspended in an organ bath was connected to a force transducer. Signal output of mechanical activity was amplified and recorded for analysis using PowerLab System. After equilibration, the intestine was directly exposed to furosemide, GABA, GABA-A receptor agonist (muscimol), or muscarinic receptor antagonist (atropine). Furosemide (50, 100 and 500 μmol L -1 ) acutely reduced the amplitude of ileal and colonic contraction. In the ileum, 1 mmol L -1 GABA and 10-60 μmol L -1 muscimol significantly increased the amplitude, whereas in the colon, 50-100 mmol L -1 GABA and 60 μmol L -1 muscimol decreased the contractions. The contractions were also significantly suppressed by atropine. To investigate the mechanisms underlying the inhibiting effect of furosemide, furosemide was added to the organ bath prior to the addition of muscimol or atropine. A comparison of furosemide combined with muscimol or atropine group and furosemide group showed no significant difference of the ileal contraction, but the amplitude of colonic contraction significantly decreased when compared to adding furosemide alone. These results suggest that furosemide can reduce the ileal and proximal colonic contraction mediated by blocking and supporting of GABA-A receptor, respectively, resulting in decreased acetylcholine release. © 2017 John Wiley & Sons Australia, Ltd.

  13. Purinergic Modulation of Spinal Neuroglial Maladaptive Plasticity Following Peripheral Nerve Injury.

    PubMed

    Cirillo, Giovanni; Colangelo, Anna Maria; Berbenni, Miluscia; Ippolito, Vita Maria; De Luca, Ciro; Verdesca, Francesco; Savarese, Leonilde; Alberghina, Lilia; Maggio, Nicola; Papa, Michele

    2015-12-01

    Modulation of spinal reactive gliosis following peripheral nerve injury (PNI) is a promising strategy to restore synaptic homeostasis. Oxidized ATP (OxATP), a nonselective antagonist of purinergic P2X receptors, was found to recover a neuropathic behavior following PNI. We investigated the role of intraperitoneal (i.p.) OxATP treatment in restoring the expression of neuronal and glial markers in the mouse spinal cord after sciatic spared nerve injury (SNI). Using in vivo two-photon microscopy, we imaged Ca(2+) transients in neurons and astrocytes of the dorsal horn of spinal cord at rest and upon right hind paw electrical stimulation in sham, SNI, and OxATP-treated mice. Neuropathic behavior was investigated by von Frey and thermal plantar test. Glial [glial fibrillary acidic protein (GFAP), ionized calcium-binding adaptor molecule 1 (Iba1)] and GABAergic [vesicular GABA transporter (vGAT) and glutamic acid decarboxylase 65/76 (GAD65/67)] markers and glial [glutamate transporter (GLT1) and GLAST] and neuronal amino acid [EAAC1, vesicular glutamate transporter 1 (vGLUT1)] transporters have been evaluated. In SNI mice, we found (i) increased glial response, (ii) decreased glial amino acid transporters, and (iii) increased levels of neuronal amino acid transporters, and (iv) in vivo analysis of spinal neurons and astrocytes showed a persistent increase of Ca(2+) levels. OxATP administration reduced glial activation, modulated the expression of glial and neuronal glutamate/GABA transporters, restored neuronal and astrocytic Ca(2+) levels, and prevented neuropathic behavior. In vitro studies validated that OxATP (i) reduced levels of reactive oxygen species (ROS), (ii) reduced astrocytic proliferation, (iii) increase vGLUT expression. All together, these data support the correlation between reactive gliosis and perturbation of the spinal synaptic homeostasis and the role played by the purinergic system in modulating spinal plasticity following PNI.

  14. Fast detection of extrasynaptic GABA with a whole-cell sniffer

    PubMed Central

    Christensen, Rasmus K.; Petersen, Anders V.; Schmitt, Nicole; Perrier, Jean-François

    2014-01-01

    Gamma-amino-butyric acid (GABA) is the main inhibitory transmitter of the brain. It operates by binding to specific receptors located both inside and outside synapses. The extrasynaptic receptors are activated by spillover from GABAergic synapses and by ambient GABA in the extracellular space. Ambient GABA is essential for adjusting the excitability of neurons. However, due to the lack of suitable methods, little is known about its dynamics. Here we describe a new technique that allows detection of GABA transients and measurement of the steady state GABA concentration with high spatial and temporal resolution. We used a human embryonic kidney (HEK) cell line that stably expresses GABAA receptors composed of α1, β2, and γ2 subunits. We recorded from such a HEK cell with the whole-cell patch-clamp technique. The presence of GABA near the HEK cell generated a measurable electric current whose magnitude increased with concentration. A fraction of the current did not inactivate during prolonged exposition to GABA. This technique, which we refer to as a “sniffer” allows the measurement of ambient GABA concentration inside nervous tissue with a resolution of few tens of nanomolars. In addition, the sniffer detects variations in the extrasynaptic GABA concentration with millisecond time resolution. Pilot experiments demonstrate that the sniffer is able to report spillover of GABA induced by synaptic activation in real time. This is the first report on a GABA sensor that combines the ability to detect fast transients and to measure steady concentrations. PMID:24860433

  15. Conserved regional patterns of GABA-related transcript expression in the neocortex of subjects with schizophrenia.

    PubMed

    Hashimoto, Takanori; Bazmi, H Holly; Mirnics, Karoly; Wu, Qiang; Sampson, Allan R; Lewis, David A

    2008-04-01

    Individuals with schizophrenia exhibit disturbances in a number of cognitive, affective, sensory, and motor functions that depend on the circuitry of different cortical areas. The cognitive deficits associated with dysfunction of the dorsolateral prefrontal cortex result, at least in part, from abnormalities in GABA neurotransmission, as reflected in a specific pattern of altered expression of GABA-related genes. Consequently, the authors sought to determine whether this pattern of altered gene expression is restricted to the dorsolateral prefrontal cortex or could also contribute to the dysfunction of other cortical areas in subjects with schizophrenia. Real-time quantitative polymerase chain reaction was used to assess the levels of eight GABA-related transcripts in four cortical areas (dorsolateral prefrontal cortex, anterior cingulate cortex, and primary motor and primary visual cortices) of subjects (N=12) with schizophrenia and matched normal comparison subjects. Expression levels of seven transcripts were lower in subjects with schizophrenia, with the magnitude of reduction for each transcript comparable across the four areas. The largest reductions were detected for mRNA encoding somatostatin and parvalbumin, followed by moderate decreases in mRNA expression for the 67-kilodalton isoform of glutamic acid decarboxylase, the GABA membrane transporter GAT-1, and the alpha 1 and delta subunits of GABA(A) receptors. In contrast, the expression of calretinin mRNA did not differ between the subject groups in any of the four areas. Because the areas examined represent the major functional domains (e.g., association, limbic, motor, and sensory) of the cerebral cortex, our findings suggest that a conserved set of molecular alterations affecting GABA neurotransmission contribute to the pathophysiology of different clinical features of schizophrenia.

  16. Effect of GABA agonists and GABA-A receptor modulators on cocaine- and food-maintained responding and cocaine discrimination in rats.

    PubMed

    Barrett, Andrew C; Negus, S Stevens; Mello, Nancy K; Caine, S Barak

    2005-11-01

    Recent studies indicate that GABAergic ligands modulate abuse-related effects of cocaine. The goal of this study was to evaluate the effects of a mechanistically diverse group of GABAergic ligands on the discriminative stimulus and reinforcing effects of cocaine in rats. One group of rats was trained to discriminate 5.6 mg/kg cocaine from saline in a two-lever, food-reinforced, drug discrimination procedure. In two other groups, responding was maintained by cocaine (0-3.2 mg/kg/injection) or liquid food (0-100%) under a fixed ratio 5 schedule. Six GABA agonists were tested: the GABA-A receptor agonist muscimol, the GABA-B receptor agonist baclofen, the GABA transaminase inhibitor gamma-vinyl-GABA (GVG), and three GABA-A receptor modulators (the barbiturate pentobarbital, the high-efficacy benzodiazepine midazolam, and the low-efficacy benzodiazepine enazenil). When tested alone, none of the compounds substituted fully for the discriminative stimulus effects of cocaine. As acute pretreatments, select doses of midazolam and pentobarbital produced 2.2- to 3.6-fold rightward shifts in the cocaine dose-effect function. In contrast, muscimol, baclofen, GVG, and enazenil failed to alter the discriminative stimulus effects of cocaine. In assays of cocaine- and food-maintained responding, midazolam and pentobarbital decreased cocaine self-administration at doses 9.6- and 3.3-fold lower, respectively, than those that decreased food-maintained responding. In contrast, muscimol, baclofen, and GVG decreased cocaine self-administration at doses that also decreased food-maintained responding. Enazenil failed to alter cocaine self-administration. Together with previous studies, these data suggest that among mechanistically diverse GABA agonists, high-efficacy GABA-A modulators may be the most effective for modifying the abuse-related effects of cocaine.

  17. Influence of GABA and GABA-producing Lactobacillus brevis DPC 6108 on the development of diabetes in a streptozotocin rat model.

    PubMed

    Marques, T M; Patterson, E; Wall, R; O'Sullivan, O; Fitzgerald, G F; Cotter, P D; Dinan, T G; Cryan, J F; Ross, R P; Stanton, C

    2016-06-01

    The aim of this study was to investigate if dietary administration of γ-aminobutyric acid (GABA)-producing Lactobacillus brevis DPC 6108 and pure GABA exert protective effects against the development of diabetes in streptozotocin (STZ)-induced diabetic Sprague Dawley rats. In a first experiment, healthy rats were divided in 3 groups (n=10/group) receiving placebo, 2.6 mg/kg body weight (bw) pure GABA or L. brevis DPC 6108 (~10(9)microorganisms). In a second experiment, rats (n=15/group) were randomised to five groups and four of these received an injection of STZ to induce type 1 diabetes. Diabetic and non-diabetic controls received placebo [4% (w/v) yeast extract in dH2O], while the other three diabetic groups received one of the following dietary supplements: 2.6 mg/kg bw GABA (low GABA), 200 mg/kg bw GABA (high GABA) or ~10(9) L. brevis DPC 6108. L. brevis DPC 6108 supplementation was associated with increased serum insulin levels (P<0.05), but did not alter other metabolic markers in healthy rats. Diabetes induced by STZ injection decreased body weight (P<0.05), increased intestinal length (P<0.05) and stimulated water and food intake. Insulin was decreased (P<0.05), whereas glucose was increased (P<0.001) in all diabetic groups, compared with non-diabetic controls. A decrease (P<0.01) in glucose levels was observed in diabetic rats receiving L. brevis DPC 6108, compared with diabetic-controls. Both the composition and diversity of the intestinal microbiota were affected by diabetes. Microbial diversity in diabetic rats supplemented with low GABA was not reduced (P>0.05), compared with non-diabetic controls while all other diabetic groups displayed reduced diversity (P<0.05). L. brevis DPC 6108 attenuated hyperglycaemia induced by diabetes but additional studies are needed to understand the mechanisms involved in this reduction.

  18. Quality components and antidepressant-like effects of GABA green tea.

    PubMed

    Teng, Jie; Zhou, Wen; Zeng, Zhen; Zhao, Wenfang; Huang, Yahui; Zhang, Xu

    2017-09-20

    Gamma (γ)-aminobutyric acid (GABA) green tea, with high GABA content, is a kind of special green tea. The goals of this study are to analyze the changes in quality components of green tea during anaerobic treatment, and to investigate whether or not the extract of GABA present in green tea can prevent depression or improve the depressive state of animals. Results showed that GABA content in green tea had increased significantly after anaerobic treatment. The contents of tea polysaccharides, total free amino acids, and water extracts were also increased whereas tea polyphenols were reduced. More importantly, the extract of GABA green tea could alleviate mouse depression and stress from desperate environments through the forced swim test (FST), tail suspension test (TST), mRNA and protein expression levels of GABA A receptors. Therefore, these results indicate that GABA green tea may have a health effect on prevention and alleviation of depression, and it works on the GABAergic neurotransmission of mouse cerebral cortex via up-regulating expression of the GABA A receptor α1 subunit, thus ameliorating depression.

  19. Insights into GABA receptor signalling in TM3 Leydig cells.

    PubMed

    Doepner, Richard F G; Geigerseder, Christof; Frungieri, Monica B; Gonzalez-Calvar, Silvia I; Calandra, Ricardo S; Raemsch, Romi; Fohr, Karl; Kunz, Lars; Mayerhofer, Artur

    2005-01-01

    Gamma-aminobutyric acid (GABA) is an emerging signalling molecule in endocrine organs, since it is produced by endocrine cells and acts via GABA(A) receptors in a paracrine/autocrine fashion. Testicular Leydig cells are producers and targets for GABA. These cells express GABA(A) receptor subunits and in the murine Leydig cell line TM3 pharmacological activation leads to increased proliferation. The signalling pathway of GABA in these cells is not known in this study. We therefore attempted to elucidate details of GABA(A) signalling in TM3 and adult mouse Leydig cells using several experimental approaches. TM3 cells not only express GABA(A )receptor subunits, but also bind the GABA agonist [(3)H]muscimol with a binding affinity in the range reported for other endocrine cells (K(d) = 2.740 +/- 0.721 nM). However, they exhibit a low B(max) value of 28.08 fmol/mg protein. Typical GABA(A) receptor-associated events, including Cl(-) currents, changes in resting membrane potential, intracellular Ca(2+) or cAMP, were not measurable with the methods employed in TM3 cells, or, as studied in part, in primary mouse Leydig cells. GABA or GABA(A) agonist isoguvacine treatment resulted in increased or decreased levels of several mRNAs, including transcription factors (c-fos, hsf-1, egr-1) and cell cycle-associated genes (Cdk2, cyclin D1). In an attempt to verify the cDNA array results and because egr-1 was recently implied in Leydig cell development, we further studied this factor. RT-PCR and Western blotting confirmed a time-dependent regulation of egr-1 in TM3. In the postnatal testis egr-1 was seen in cytoplasmic and nuclear locations of developing Leydig cells, which bear GABA(A) receptors and correspond well to TM3 cells. Thus, GABA acts via an atypical novel signalling pathway in TM3 cells. Further details of this pathway remain to be elucidated. Copyright (c) 2005 S. Karger AG, Basel.

  20. Fiat lux! Phylogeny and bioinformatics shed light on GABA functions in plants.

    PubMed

    Renault, Hugues

    2013-06-01

    The non-protein amino acid γ-aminobutyric acid (GABA) accumulates in plants in response to a wide variety of environmental cues. Recent data point toward an involvement of GABA in tricarboxylic acid (TCA) cycle activity and respiration, especially in stressed roots. To gain further insights into potential GABA functions in plants, phylogenetic and bioinformatic approaches were undertaken. Phylogenetic reconstruction of the GABA transaminase (GABA-T) protein family revealed the monophyletic nature of plant GABA-Ts. However, this analysis also pointed to the common origin of several plant aminotransferases families, which were found more similar to plant GABA-Ts than yeast and human GABA-Ts. A computational analysis of AtGABA-T co-expressed genes was performed in roots and in stress conditions. This second approach uncovered a strong connection between GABA metabolism and glyoxylate cycle during stress. Both in silico analyses open new perspectives and hypotheses for GABA metabolic functions in plants.

  1. GABA (γ-Aminobutyric Acid) Uptake Via the GABA Permease GabP Represses Virulence Gene Expression in Pseudomonas syringae pv. tomato DC3000.

    PubMed

    McCraw, S L; Park, D H; Jones, R; Bentley, M A; Rico, A; Ratcliffe, R G; Kruger, N J; Collmer, A; Preston, G M

    2016-12-01

    The nonprotein amino acid γ-aminobutyric acid (GABA) is the most abundant amino acid in the tomato (Solanum lycopersicum) leaf apoplast and is synthesized by Arabidopsis thaliana in response to infection by the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (hereafter called DC3000). High levels of exogenous GABA have previously been shown to repress the expression of the type III secretion system (T3SS) in DC3000, resulting in reduced elicitation of the hypersensitive response (HR) in the nonhost plant tobacco (Nicotiana tabacum). This study demonstrates that the GABA permease GabP provides the primary mechanism for GABA uptake by DC3000 and that the gabP deletion mutant ΔgabP is insensitive to GABA-mediated repression of T3SS expression. ΔgabP displayed an enhanced ability to elicit the HR in young tobacco leaves and in tobacco plants engineered to produce increased levels of GABA, which supports the hypothesis that GABA uptake via GabP acts to regulate T3SS expression in planta. The observation that P. syringae can be rendered insensitive to GABA through loss of gabP but that gabP is retained by this bacterium suggests that GabP is important for DC3000 in a natural setting, either for nutrition or as a mechanism for regulating gene expression. [Formula: see text] Copyright © 2016 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .

  2. GABA-independent GABAA Receptor Openings Maintain Tonic Currents

    PubMed Central

    Wlodarczyk, Agnieszka I.; Sylantyev, Sergiy; Herd, Murray B.; Kersanté, Flavie; Lambert, Jeremy J.; Rusakov, Dmitri A.; Linthorst, Astrid C.E.; Semyanov, Alexey; Belelli, Delia; Pavlov, Ivan; Walker, Matthew C.

    2013-01-01

    Activation of GABAA receptors (GABAARs) produces two forms of inhibition: ‘phasic’ inhibition generated by the rapid, transient activation of synaptic GABAARs by presynaptic GABA release, and tonic inhibition generated by the persistent activation of peri- or extrasynaptic GABAARs which can detect extracellular GABA. Such tonic GABAAR-mediated currents are particularly evident in dentate granule cells in which they play a major role in regulating cell excitability. Here we show that in rat dentate granule cells in ex-vivo hippocampal slices, tonic currents are predominantly generated by GABA-independent GABAA receptor openings. This tonic GABAAR conductance is resistant to the competitive GABAAR antagonist SR95531, which at high concentrations acts as a partial agonist, but can be blocked by an open channel blocker picrotoxin. When slices are perfused with 200 nM GABA, a concentration that is comparable to cerebrospinal fluid concentrations but is twice that measured by us in the hippocampus in vivo using zero-net-flux microdialysis, negligible GABA is detected by dentate granule cells. Spontaneously opening GABAARs, therefore, maintain dentate granule cell tonic currents in the face of low extracellular GABA concentrations. PMID:23447601

  3. Involvement of GABA Transporters in Atropine-Treated Myopic Retina As Revealed by iTRAQ Quantitative Proteomics

    PubMed Central

    2015-01-01

    Atropine, a muscarinic antagonist, is known to inhibit myopia progression in several animal models and humans. However, the mode of action is not established yet. In this study, we compared quantitative iTRAQ proteomic analysis in the retinas collected from control and lens-induced myopic (LIM) mouse eyes treated with atropine. The myopic group received a (−15D) spectacle lens over the right eye on postnatal day 10 with or without atropine eye drops starting on postnatal day 24. Axial length was measured by optical low coherence interferometry (OLCI), AC-Master, and refraction was measured by automated infrared photorefractor at postnatal 24, 38, and 52 days. Retinal tissue samples were pooled from six eyes for each group. The experiments were repeated twice, and technical replicates were also performed for liquid chromatography–tandem mass spectrometry (LC–MS/MS) analysis. MetaCore was used to perform protein profiling for pathway analysis. We identified a total of 3882 unique proteins with <1% FDR by analyzing the samples in replicates for two independent experiments. This is the largest number of mouse retina proteome reported to date. Thirty proteins were found to be up-regulated (ratio for myopia/control > global mean ratio + 1 standard deviation), and 28 proteins were down-regulated (ratio for myopia/control < global mean ratio - 1 standard deviation) in myopic eyes as compared with control retinas. Pathway analysis using MetaCore revealed regulation of γ-aminobutyric acid (GABA) levels in the myopic eyes. Detailed analysis of the quantitative proteomics data showed that the levels of GABA transporter 1 (GAT-1) were elevated in myopic retina and significantly reduced after atropine treatment. These results were further validated with immunohistochemistry and Western blot analysis. In conclusion, this study provides a comprehensive quantitative proteomic analysis of atropine-treated mouse retina and suggests the involvement of GABAergic signaling in the

  4. Reconstruction of a metabolic regulatory network in Escherichia coli for purposeful switching from cell growth mode to production mode in direct GABA fermentation from glucose.

    PubMed

    Soma, Yuki; Fujiwara, Yuri; Nakagawa, Takuya; Tsuruno, Keigo; Hanai, Taizo

    2017-09-01

    γ-aminobutyric acid (GABA) is a drug and functional food additive and is used as a monomer for producing the biodegradable plastic, polyamide 4. Recently, direct GABA fermentation from glucose has been developed as an alternative to glutamate-based whole cell bioconversion. Although total productivity in fermentation is determined by the specific productivity and cell amount responsible for GABA production, the optimal metabolic state for GABA production conflicts with that for bacterial cell growth. Herein, we demonstrated metabolic state switching from the cell growth mode based on the metabolic pathways of the wild type strain to a GABA production mode based on a synthetic metabolic pathway in Escherichia coli through rewriting of the metabolic regulatory network and pathway engineering. The GABA production mode was achieved by multiple strategies such as conditional interruption of the TCA and glyoxylate cycles, engineering of GABA production pathway including a bypass for precursor metabolite supply, and upregulation of GABA transporter. As a result, we achieved 3-fold improvement in total GABA production titer and yield (4.8g/L, 49.2% (mol/mol glucose)) in batch fermentation compared to the case without metabolic state switching (1.6g/L, 16.4% (mol/mol glucose)). This study reports the highest GABA production performance among previous reports on GABA fermentation from glucose using engineered E. coli. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  5. Elevating Endogenous GABA Levels with GAT-1 Blockade Modulates Evoked but Not Induced Responses in Human Visual Cortex

    PubMed Central

    Muthukumaraswamy, Suresh D; Myers, Jim F M; Wilson, Sue J; Nutt, David J; Hamandi, Khalid; Lingford-Hughes, Anne; Singh, Krish D

    2013-01-01

    The electroencephalographic/magnetoencephalographic (EEG/MEG) signal is generated primarily by the summation of the postsynaptic currents of cortical principal cells. At a microcircuit level, these glutamatergic principal cells are reciprocally connected to GABAergic interneurons. Here we investigated the relative sensitivity of visual evoked and induced responses to altered levels of endogenous GABAergic inhibition. To do this, we pharmacologically manipulated the GABA system using tiagabine, which blocks the synaptic GABA transporter 1, and so increases endogenous GABA levels. In a single-blinded and placebo-controlled crossover study of 15 healthy participants, we administered either 15 mg of tiagabine or a placebo. We recorded whole-head MEG, while participants viewed a visual grating stimulus, before, 1, 3 and 5 h post tiagabine ingestion. Using beamformer source localization, we reconstructed responses from early visual cortices. Our results showed no change in either stimulus-induced gamma-band amplitude increases or stimulus-induced alpha amplitude decreases. However, the same data showed a 45% reduction in the evoked response component at ∼80 ms. These data demonstrate that, in early visual cortex the evoked response shows a greater sensitivity compared with induced oscillations to pharmacologically increased endogenous GABA levels. We suggest that previous studies correlating GABA concentrations as measured by magnetic resonance spectroscopy to gamma oscillation frequency may reflect underlying variations such as interneuron/inhibitory synapse density rather than functional synaptic GABA concentrations. PMID:23361120

  6. Neurochemical correlates of. gamma. -aminobutyrate (GABA) inhibition in cat visual cortex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balcar, V.J.; Dreher, B.

    1990-01-01

    High affinity binding of ({sup 3}H){gamma}-aminobutyric acid (GABA) to neuronal membranes from different parts of cat visual cortex was tested for sensitivity to GABA{sub A} agonists isoguvacine and THIP, GABA{sub A} antagonist SR95531 and GABA{sub B} agonist baclofen. Some of the GABA{sub A}-binding sites were found to have a very low affinity for THIP, suggesting the presence and, possibly, uneven distribution of non-synaptic GABA{sub A} receptors in cat visual cortex. There were no differences in K{sub m} and V{sub max} values of high affinity uptake of GABA and in the potency of K{sup +}-stimulated release of GABA, between primary andmore » association cortices. Consequently, the present results indicate that despite the anatomical and physiological differences between the primary and association feline visual cortices the neurochemical characteristics of GABAergic inhibition are very similar in the two regions.« less

  7. GABA[subscript A] Receptor Downregulation in Brains of Subjects with Autism

    ERIC Educational Resources Information Center

    Fatemi, S. Hossein; Reutiman, Teri J.; Folsom, Timothy D.; Thuras, Paul D.

    2009-01-01

    Gamma-aminobutyric acid A (GABA[subscript A]) receptors are ligand-gated ion channels responsible for mediation of fast inhibitory action of GABA in the brain. Preliminary reports have demonstrated altered expression of GABA receptors in the brains of subjects with autism suggesting GABA/glutamate system dysregulation. We investigated the…

  8. GABA transaminases from Saccharomyces cerevisiae and Arabidopsis thaliana complement function in cytosol and mitochondria.

    PubMed

    Cao, Juxiang; Barbosa, Jose M; Singh, Narendra; Locy, Robert D

    2013-07-01

    GABA transaminase (GABA-T) catalyses the conversion of GABA to succinate semialdehyde (SSA) in the GABA shunt pathway. The GABA-T from Saccharomyces cerevisiae (ScGABA-TKG) is an α-ketoglutarate-dependent enzyme encoded by the UGA1 gene, while higher plant GABA-T is a pyruvate/glyoxylate-dependent enzyme encoded by POP2 in Arabidopsis thaliana (AtGABA-T). The GABA-T from A. thaliana is localized in mitochondria and mediated by an 18-amino acid N-terminal mitochondrial targeting peptide predicated by both web-based utilities TargetP 1.1 and PSORT. Yeast UGA1 appears to lack a mitochondrial targeting peptide and is localized in the cytosol. To verify this bioinformatic analysis and examine the significance of ScGABA-TKG and AtGABA-T compartmentation and substrate specificity on physiological function, expression vectors were constructed to modify both ScGABA-TKG and AtGABA-T, so that they express in yeast mitochondria and cytosol. Physiological function was evaluated by complementing yeast ScGABA-TKG deletion mutant Δuga1 with AtGABA-T or ScGABA-TKG targeted to the cytosol or mitochondria for the phenotypes of GABA growth defect, thermosensitivity and heat-induced production of reactive oxygen species (ROS). This study demonstrates that AtGABA-T is functionally interchangeable with ScGABA-TKG for GABA growth, thermotolerance and limiting production of ROS, regardless of location in mitochondria or cytosol of yeast cells, but AtGABA-T is about half as efficient in doing so as ScGABA-TKG. These results are consistent with the hypothesis that pyruvate/glyoxylate-limited production of NADPH mediates the effect of the GABA shunt in moderating heat stress in Saccharomyces. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Cocaine disinhibits dopamine neurons in the ventral tegmental area via use-dependent blockade of GABA neuron voltage-sensitive sodium channels

    PubMed Central

    Steffensen, Scott C.; Taylor, Seth R.; Horton, Malia L.; Barber, Elise N.; Lyle, Laura T.; Stobbs, Sarah H.; Allison, David W.

    2010-01-01

    The aim of this study was to evaluate the effects of cocaine on γ-aminobutyric acid (GABA) and dopamine (DA) neurons in the ventral tegmental area (VTA). Utilizing single-unit recordings in vivo, microelectrophoretic administration of DA enhanced the firing rate of VTA GABA neurons via D2/D3 DA receptor activation. Lower doses of intravenous cocaine (0.25–0.5 mg/kg), or the DA transporter (DAT) blocker methamphetamine, enhanced VTA GABA neuron firing rate via D2/D3 receptor activation. Higher doses of cocaine (1.0–2.0 mg/kg) inhibited their firing rate, which was not sensitive to the D2/D3 antagonist eticlopride. The voltage-sensitive sodium channel (VSSC) blocker lidocaine inhibited the firing rate of VTA GABA neurons at all doses tested (0.25–2.0 mg/kg). Cocaine or lidocaine reduced VTA GABA neuron spike discharges induced by stimulation of the internal capsule (ICPSDs) at dose levels 0.25–2 mg/kg (IC50 1.2 mg/kg). There was no effect of DA or methamphetamine on ICPSDs, or of DA antagonists on cocaine inhibition of ICPSDs. In VTA GABA neurons in vitro, cocaine reduced (IC50 13 μm) current-evoked spikes and TTX-sensitive sodium currents in a use-dependent manner. In VTA DA neurons, cocaine reduced IPSCs (IC50 13 μm), increased IPSC paired-pulse facilitation and decreased spontaneous IPSC frequency, without affecting miniature IPSC frequency or amplitude. These findings suggest that cocaine acts on GABA neurons to reduce activity-dependent GABA release on DA neurons in the VTA, and that cocaine's use-dependent blockade of VTA GABA neuron VSSCs may synergize with its DAT inhibiting properties to enhance mesolimbic DA transmission implicated in cocaine reinforcement. PMID:19046384

  10. GABA and Glutamate Uptake and Metabolism in Retinal Glial (Müller) Cells

    PubMed Central

    Bringmann, Andreas; Grosche, Antje; Pannicke, Thomas; Reichenbach, Andreas

    2013-01-01

    Müller cells, the principal glial cells of the retina, support the synaptic activity by the uptake and metabolization of extracellular neurotransmitters. Müller cells express uptake and exchange systems for various neurotransmitters including glutamate and γ-aminobutyric acid (GABA). Müller cells remove the bulk of extracellular glutamate in the inner retina and contribute to the glutamate clearance around photoreceptor terminals. By the uptake of glutamate, Müller cells are involved in the shaping and termination of the synaptic activity, particularly in the inner retina. Reactive Müller cells are neuroprotective, e.g., by the clearance of excess extracellular glutamate, but may also contribute to neuronal degeneration by a malfunctioning or even reversal of glial glutamate transporters, or by a downregulation of the key enzyme, glutamine synthetase. This review summarizes the present knowledge about the role of Müller cells in the clearance and metabolization of extracellular glutamate and GABA. Some major pathways of GABA and glutamate metabolism in Müller cells are described; these pathways are involved in the glutamate-glutamine cycle of the retina, in the defense against oxidative stress via the production of glutathione, and in the production of substrates for the neuronal energy metabolism. PMID:23616782

  11. Immunocytochemical Mapping of an RDL-Like GABA Receptor Subunit and of GABA in Brain Structures Related to Learning and Memory in the Cricket Acheta domesticus

    PubMed Central

    Strambi, Colette; Cayre, Myriam; Sattelle, David B.; Augier, Roger; Charpin, Pierre; Strambi, Alain

    1998-01-01

    The distribution of putative RDL-like GABA receptors and of γ-aminobutyric acid (GABA) in the brain of the adult house cricket Acheta domesticus was studied using specific antisera. Special attention was given to brain structures known to be related to learning and memory. The main immunostaining for the RDL-like GABA receptor was observed in mushroom bodies, in particular the upper part of mushroom body peduncle and the two arms of the posterior calyx. Weaker immunostaining was detected in the distal part of the peduncle and in the α and β lobes. The dorso- and ventrolateral protocerebrum neuropils appeared rich in RDL-like GABA receptors. Staining was also detected in the glomeruli of the antennal lobe, as well as in the ellipsoid body of the central complex. Many neurons clustered in groups exhibit GABA-like immunoreactivity. Tracts that were strongly immunostained innervated both the calyces and the lobes of mushroom bodies. The glomeruli of the antennal lobe, the ellipsoid body, as well as neuropils of the dorso- and ventrolateral protocerebrum were also rich in GABA-like immuno- reactivity. The data demonstrated a good correlation between the distribution of the GABA-like and of the RDL-like GABA receptor immunoreactivity. The prominent distribution of RDL-like GABA receptor subunits, in particular areas of mushroom bodies and antennal lobes, underlines the importance of inhibitory signals in information processing in these major integrative centers of the insect brain. PMID:10454373

  12. Cocaine Dysregulates Opioid Gating of GABA Neurotransmission in the Ventral Pallidum

    PubMed Central

    Scofield, Michael D.; Rice, Kenner C.; Cheng, Kejun; Roques, Bernard P.

    2014-01-01

    The ventral pallidum (VP) is a target of dense nucleus accumbens projections. Many of these projections coexpress GABA and the neuropeptide enkephalin, a δ and μ opioid receptor (MOR) ligand. Of these two, the MOR in the VP is known to be involved in reward-related behaviors, such as hedonic responses to palatable food, alcohol intake, and reinstatement of cocaine seeking. Stimulating MORs in the VP decreases extracellular GABA, indicating that the effects of MORs in the VP on cocaine seeking are via modulating GABA neurotransmission. Here, we use whole-cell patch-clamp on a rat model of withdrawal from cocaine self-administration to test the hypothesis that MORs presynaptically regulate GABA transmission in the VP and that cocaine withdrawal changes the interaction between MORs and GABA. We found that in cocaine-extinguished rats pharmacological activation of MORs no longer presynaptically inhibited GABA release, whereas blocking the MORs disinhibited GABA release. Moreover, MOR-dependent long-term depression of GABA neurotransmission in the VP was lost in cocaine-extinguished rats. Last, GABA neurotransmission was found to be tonically suppressed in cocaine-extinguished rats. These substantial synaptic changes indicated that cocaine was increasing tone on MOR receptors. Accordingly, increasing endogenous tone by blocking the enzymatic degradation of enkephalin inhibited GABA neurotransmission in yoked saline rats but not in cocaine-extinguished rats. In conclusion, our results indicate that following withdrawal from cocaine self-administration enkephalin levels in the VP are elevated and the opioid modulation of GABA neurotransmission is impaired. This may contribute to the difficulties withdrawn addicts experience when trying to resist relapse. PMID:24431463

  13. Proline antagonizes GABA-induced quenching of quorum-sensing in Agrobacterium tumefaciens

    PubMed Central

    Haudecoeur, E.; Planamente, S.; Cirou, A.; Tannières, M.; Shelp, B. J.; Moréra, S.; Faure, D.

    2009-01-01

    Plants accumulate free L-proline (Pro) in response to abiotic stresses (drought and salinity) and presence of bacterial pathogens, including the tumor-inducing bacterium Agrobacterium tumefaciens. However, the function of Pro accumulation in host-pathogen interaction is still unclear. Here, we demonstrated that Pro antagonizes plant GABA-defense in the A. tumefaciens C58-induced tumor by interfering with the import of GABA and consequently the GABA-induced degradation of the bacterial quorum-sensing signal, 3-oxo-octanoylhomoserine lactone. We identified a bacterial receptor Atu2422, which is implicated in the uptake of GABA and Pro, suggesting that Pro acts as a natural antagonist of GABA-signaling. The Atu2422 amino acid sequence contains a Venus flytrap domain that is required for trapping GABA in human GABAB receptors. A constructed atu2422 mutant was more virulent than the wild type bacterium; moreover, transgenic plants with a low level of Pro exhibited less severe tumor symptoms than did their wild-type parents, revealing a crucial role for Venus flytrap GABA-receptor and relative abundance of GABA and Pro in host-pathogen interaction. PMID:19706545

  14. Thirst Driving and Suppressing Signals Encoded by Distinct Neural Populations in the Brain

    PubMed Central

    Oka, Yuki; Ye, Mingyu; Zuker, Charles S.

    2014-01-01

    Thirst is the basic instinct to drink water. Previously, it was shown that neurons in several circumventricular organs (CVO) of the hypothalamus are activated by thirst-inducing conditions 1. Here, we identify two distinct, genetically-separable neural populations in the subfornical organ (SFO) that trigger or suppress thirst. We show that optogenetic activation of SFO excitatory neurons, marked by the expression of the transcription factor ETV-1, evokes intense drinking behavior, and does so even in fully water-satiated animals. The light-induced response is highly specific for water, immediate, and strictly locked to the laser stimulus. In contrast, activation of a second population of SFO neurons, marked by expression of the vesicular GABA transporter VGAT, drastically suppressed drinking, even in water-craving thirsty animals. These results reveal an innate brain circuit that can turn on and off an animal’s water-drinking behavior, and likely functions as a center for thirst control in the mammalian brain. PMID:25624099

  15. l-Proline, GABA Synthesis and Gamma Oscillations in Schizophrenia.

    PubMed

    Volk, David W; Gonzalez-Burgos, Guillermo; Lewis, David A

    2016-12-01

    Altered inhibition from parvalbumin-containing GABA neurons is thought to contribute to impaired gamma frequency oscillations and cognitive deficits in schizophrenia. Crabtree and colleagues report that proline dehydrogenase deficits produce excessive cytosolic levels of the GABA-mimetic l-proline which impairs GABA synthesis and gamma oscillations in a manner that mimics schizophrenia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Lack of Change in Markers of Presynaptic Terminal Abundance Alongside Subtle Reductions in Markers of Presynaptic Terminal Plasticity in Prefrontal Cortex of Schizophrenia Patients

    PubMed Central

    Fung, Samantha J.; Sivagnanasundaram, Sinthuja; Shannon Weickert, Cynthia

    2010-01-01

    Background Reduced synaptic connectivity in frontal cortex may contribute to schizophrenia symptoms. While altered mRNA and protein expression of various synaptic genes has been found, discrepancies between studies mean a generalisable synaptic pathology in schizophrenia has not been identified. Methods We determined if mRNAs encoding presynaptic proteins enriched in inhibitory [vesicular GABA transporter (VGAT) and complexin 1] and/or excitatory [vesicular glutamate transporter (VGluT1) and complexin 2] terminals are altered in the dorsolateral prefrontal cortex of subjects with schizophrenia (n=37 patients, n=37 controls). We also measured mRNA expression of markers associated with synaptic plasticity/neurite outgrowth [growth associated protein 43 (GAP43) and neuronal navigators 1 and 2 (NAV1 and NAV2)]; and mRNAs of other synaptic-associated proteins previously implicated in schizophrenia: dysbindin and vesicle-associated membrane protein (VAMP1) mRNAs using quantitative RT-PCR. Results No significant changes in complexin 1, VGAT, complexin 2, VGluT1, dysbindin, NAV2, or VAMP1 mRNA expression were found, however we observed reduced expression of mRNAs associated with plasticity/cytoskeletal modification (GAP43 and NAV1) in schizophrenia. Although dysbindin mRNA did not differ in schizophrenia compared to controls, dysbindin mRNA positively correlated with GAP-43 and NAV1 in schizophrenia, but not in controls, suggesting low levels of dysbindin may be linked to reduced plasticity in the disease state. No relationships between three dysbindin genetic polymorphisms previously associated with dysbindin mRNA levels were found. Conclusions A reduction in the plasticity of synaptic terminals supports the hypothesis that reduced modifiability of synaptic terminals may contribute to neuropathology and working memory deficits in schizophrenia. PMID:21145444

  17. Molecular Mechanisms Underlying γ-Aminobutyric Acid (GABA) Accumulation in Giant Embryo Rice Seeds.

    PubMed

    Zhao, Guo-Chao; Xie, Mi-Xue; Wang, Ying-Cun; Li, Jian-Yue

    2017-06-21

    To uncover the molecular mechanisms underlying GABA accumulation in giant embryo rice seeds, we analyzed the expression levels of GABA metabolism genes and contents of GABA and GABA metabolic intermediates in developing grains and germinated brown rice of giant embryo rice 'Shangshida No. 5' and normal embryo rice 'Chao2-10' respectively. In developing grains, the higher GABA contents in 'Shangshida No. 5' were accompanied with upregulation of gene transcripts and intermediate contents in the polyamine pathway and downregulation of GABA catabolic gene transcripts, as compared with those in 'Chao2-10'. In germinated brown rice, the higher GABA contents in 'Shangshida No. 5' were parallel with upregulation of OsGAD and polyamine pathway gene transcripts and Glu and polyamine pathway intermediate contents and downregulation of GABA catabolic gene transcripts. These results are the first to indicate that polyamine pathway and GABA catabolic genes play a crucial role in GABA accumulation in giant embryo rice seeds.

  18. The endogenous GABA bioactivity of camel, bovine, goat and human milks.

    PubMed

    Limon, Agenor; Gallegos-Perez, Jose-Luis; Reyes-Ruiz, Jorge M; Aljohi, Mohammad A; Alshanqeeti, Ali S; Miledi, Ricardo

    2014-02-15

    GABA orally administered has several beneficial effects on health, including the regulation of hyperglycaemic states in humans. Those effects are similar to the effects reported for camel milk (CMk); however, it is not known whether compounds with GABAergic activity are present in milk from camels or other species. We determined CMk free-GABA concentration by LS/MS and its bioactivity on human GABA receptors. We found that camel and goat milks have significantly more bioavailable GABA than cow and human milks and are able to activate GABAρ receptors. The relationship between GABA and taurine concentrations suggests that whole camel milk may be more efficient to activate GABAρ1 receptors than goat milk. Because GABAρ receptors are normally found in enteroendocrine cells in the lumen of the digestive tract, these results suggest that GABA in camel and goat milk may participate in GABA-modulated functions of enteroendocrine cells in the GI lumen. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. GABA neuron alterations, cortical circuit dysfunction and cognitive deficits in schizophrenia.

    PubMed

    Gonzalez-Burgos, Guillermo; Fish, Kenneth N; Lewis, David A

    2011-01-01

    Schizophrenia is a brain disorder associated with cognitive deficits that severely affect the patients' capacity for daily functioning. Whereas our understanding of its pathophysiology is limited, postmortem studies suggest that schizophrenia is associated with deficits of GABA-mediated synaptic transmission. A major role of GABA-mediated transmission may be producing synchronized network oscillations which are currently hypothesized to be essential for normal cognitive function. Therefore, cognitive deficits in schizophrenia may result from a GABA synapse dysfunction that disturbs neural synchrony. Here, we highlight recent studies further suggesting alterations of GABA transmission and network oscillations in schizophrenia. We also review current models for the mechanisms of GABA-mediated synchronization of neural activity, focusing on parvalbumin-positive GABA neurons, which are altered in schizophrenia and whose function has been strongly linked to the production of neural synchrony. Alterations of GABA signaling that impair gamma oscillations and, as a result, cognitive function suggest paths for novel therapeutic interventions.

  20. GABA Neuron Alterations, Cortical Circuit Dysfunction and Cognitive Deficits in Schizophrenia

    PubMed Central

    Gonzalez-Burgos, Guillermo; Fish, Kenneth N.; Lewis, David A.

    2011-01-01

    Schizophrenia is a brain disorder associated with cognitive deficits that severely affect the patients' capacity for daily functioning. Whereas our understanding of its pathophysiology is limited, postmortem studies suggest that schizophrenia is associated with deficits of GABA-mediated synaptic transmission. A major role of GABA-mediated transmission may be producing synchronized network oscillations which are currently hypothesized to be essential for normal cognitive function. Therefore, cognitive deficits in schizophrenia may result from a GABA synapse dysfunction that disturbs neural synchrony. Here, we highlight recent studies further suggesting alterations of GABA transmission and network oscillations in schizophrenia. We also review current models for the mechanisms of GABA-mediated synchronization of neural activity, focusing on parvalbumin-positive GABA neurons, which are altered in schizophrenia and whose function has been strongly linked to the production of neural synchrony. Alterations of GABA signaling that impair gamma oscillations and, as a result, cognitive function suggest paths for novel therapeutic interventions. PMID:21904685

  1. Brain distribution and molecular cloning of the bovine GABA rho1 receptor.

    PubMed

    Rosas-Arellano, Abraham; Ochoa-de la Paz, Lenin David; Miledi, Ricardo; Martínez-Torres, Ataúlfo

    2007-03-01

    GABA(C) receptors were originally found in the mammalian retina and recent evidence shows that they are also expressed in several areas of the brain, including caudate nucleus, brain stem, pons and corpus callosum. In this study, plasma membranes from the caudate nucleus were microinjected into X. laevis oocytes. This led the oocyte plasma membrane to incorporate functional bicuculline-resistant, Cl(-) conducting bovine GABA receptors, similar to those of the retina. Immunolocalization of the GABA rho1 subunit revealed its expression in bovine neurons in the head of the caudate as well as in the olive, cuneiform and reticular nuclei of the brain stem. The same antibodies failed to show expression in the callosum and pons, where the GABA rho1 mRNA was previously detected. The cloned GABA rho1 sequence predicts a protein with 473 amino acids and 74-93% similarity to other GABA rho1 subunits. Oocytes injected with the cDNA express a non-desensitizing, homomeric receptor with a GABA EC(50)=6.0 microM and a Hill coefficient of 1.8. The results confirm the presence of GABA(C) receptor mRNAs in several areas of the mammalian brain and show that some of these areas express functional GABA rho1 receptors that have the classic GABA(C) receptor characteristics.

  2. The role of GABA(A) receptors in the development of alcoholism.

    PubMed

    Enoch, Mary-Anne

    2008-07-01

    Alcoholism is a common, heritable, chronic relapsing disorder. GABA(A) receptors undergo allosteric modulation by ethanol, anesthetics, benzodiazepines and neurosteroids and have been implicated in the acute as well as the chronic effects of ethanol including tolerance, dependence and withdrawal. Medications targeting GABA(A) receptors ameliorate the symptoms of acute withdrawal. Ethanol induces plasticity in GABA(A) receptors: tolerance is associated with generally decreased GABA(A) receptor activation and differentially altered subunit expression. The dopamine (DA) mesolimbic reward pathway originating in the ventral tegmental area (VTA), and interacting stress circuitry play an important role in the development of addiction. VTA GABAergic interneurons are the primary inhibitory regulators of DA neurons and a subset of VTA GABA(A) receptors may be implicated in the switch from heavy drinking to dependence. GABA(A) receptors modulate anxiety and response to stress; important elements of sustained drinking and relapse. The GABA(A) receptor subunit genes clustered on chromosome 4 are highly expressed in the reward pathway. Several recent studies have provided strong evidence that one of these genes, GABRA2, is implicated in alcoholism in humans. The influence of the interaction between ethanol and GABA(A) receptors in the reward pathway on the development of alcoholism together with genetic and epigenetic vulnerabilities will be explored in this review.

  3. Alterations of cortical GABA neurons and network oscillations in schizophrenia.

    PubMed

    Gonzalez-Burgos, Guillermo; Hashimoto, Takanori; Lewis, David A

    2010-08-01

    The hypothesis that alterations of cortical inhibitory gamma-aminobutyric acid (GABA) neurons are a central element in the pathology of schizophrenia has emerged from a series of postmortem studies. How such abnormalities may contribute to the clinical features of schizophrenia has been substantially informed by a convergence with basic neuroscience studies revealing complex details of GABA neuron function in the healthy brain. Importantly, activity of the parvalbumin-containing class of GABA neurons has been linked to the production of cortical network oscillations. Furthermore, growing knowledge supports the concept that gamma band oscillations (30-80 Hz) are an essential mechanism for cortical information transmission and processing. Herein we review recent studies further indicating that inhibition from parvalbumin-positive GABA neurons is necessary to produce gamma oscillations in cortical circuits; provide an update on postmortem studies documenting that deficits in the expression of glutamic acid decarboxylase67, which accounts for most GABA synthesis in the cortex, are widely observed in schizophrenia; and describe studies using novel, noninvasive approaches directly assessing potential relations between alterations in GABA, oscillations, and cognitive function in schizophrenia.

  4. Age-related differences in GABA levels are driven by bulk tissue changes.

    PubMed

    Maes, Celine; Hermans, Lize; Pauwels, Lisa; Chalavi, Sima; Leunissen, Inge; Levin, Oron; Cuypers, Koen; Peeters, Ronald; Sunaert, Stefan; Mantini, Dante; Puts, Nicolaas A J; Edden, Richard A E; Swinnen, Stephan P

    2018-05-02

    Levels of GABA, the main inhibitory neurotransmitter in the brain, can be regionally quantified using magnetic resonance spectroscopy (MRS). Although GABA is crucial for efficient neuronal functioning, little is known about age-related differences in GABA levels and their relationship with age-related changes in brain structure. Here, we investigated the effect of age on GABA levels within the left sensorimotor cortex and the occipital cortex in a sample of 85 young and 85 older adults using the MEGA-PRESS sequence. Because the distribution of GABA varies across different brain tissues, various correction methods are available to account for this variation. Considering that these correction methods are highly dependent on the tissue composition of the voxel of interest, we examined differences in voxel composition between age groups and the impact of these various correction methods on the identification of age-related differences in GABA levels. Results indicated that, within both voxels of interest, older (as compared to young adults) exhibited smaller gray matter fraction accompanied by larger fraction of cerebrospinal fluid. Whereas uncorrected GABA levels were significantly lower in older as compared to young adults, this age effect was absent when GABA levels were corrected for voxel composition. These results suggest that age-related differences in GABA levels are at least partly driven by the age-related gray matter loss. However, as alterations in GABA levels might be region-specific, further research should clarify to what extent gray matter changes may account for age-related differences in GABA levels within other brain regions. © 2018 Wiley Periodicals, Inc.

  5. Human Occipital and Parietal GABA Selectively Influence Visual Perception of Orientation and Size.

    PubMed

    Song, Chen; Sandberg, Kristian; Andersen, Lau Møller; Blicher, Jakob Udby; Rees, Geraint

    2017-09-13

    GABA is the primary inhibitory neurotransmitter in human brain. The level of GABA varies substantially across individuals, and this variability is associated with interindividual differences in visual perception. However, it remains unclear whether the association between GABA level and visual perception reflects a general influence of visual inhibition or whether the GABA levels of different cortical regions selectively influence perception of different visual features. To address this, we studied how the GABA levels of parietal and occipital cortices related to interindividual differences in size, orientation, and brightness perception. We used visual contextual illusion as a perceptual assay since the illusion dissociates perceptual content from stimulus content and the magnitude of the illusion reflects the effect of visual inhibition. Across individuals, we observed selective correlations between the level of GABA and the magnitude of contextual illusion. Specifically, parietal GABA level correlated with size illusion magnitude but not with orientation or brightness illusion magnitude; in contrast, occipital GABA level correlated with orientation illusion magnitude but not with size or brightness illusion magnitude. Our findings reveal a region- and feature-dependent influence of GABA level on human visual perception. Parietal and occipital cortices contain, respectively, topographic maps of size and orientation preference in which neural responses to stimulus sizes and stimulus orientations are modulated by intraregional lateral connections. We propose that these lateral connections may underlie the selective influence of GABA on visual perception. SIGNIFICANCE STATEMENT GABA, the primary inhibitory neurotransmitter in human visual system, varies substantially across individuals. This interindividual variability in GABA level is linked to interindividual differences in many aspects of visual perception. However, the widespread influence of GABA raises the

  6. GABA level, gamma oscillation, and working memory performance in schizophrenia

    PubMed Central

    Chen, Chi-Ming A.; Stanford, Arielle D.; Mao, Xiangling; Abi-Dargham, Anissa; Shungu, Dikoma C.; Lisanby, Sarah H.; Schroeder, Charles E.; Kegeles, Lawrence S.

    2014-01-01

    A relationship between working memory impairment, disordered neuronal oscillations, and abnormal prefrontal GABA function has been hypothesized in schizophrenia; however, in vivo GABA measurements and gamma band neural synchrony have not yet been compared in schizophrenia. This case–control pilot study (N = 24) compared baseline and working memory task-induced neuronal oscillations acquired with high-density electroencephalograms (EEGs) to GABA levels measured in vivo with magnetic resonance spectroscopy. Working memory performance, baseline GABA level in the left dorsolateral prefrontal cortex (DLPFC), and measures of gamma oscillations from EEGs at baseline and during a working memory task were obtained. A major limitation of this study is a relatively small sample size for several analyses due to the integration of diverse methodologies and participant compliance. Working memory performance was significantly lower for patients than for controls. During the working memory task, patients (n = 7) had significantly lower amplitudes in gamma oscillations than controls (n = 9). However, both at rest and across working memory stages, there were significant correlations between gamma oscillation amplitude and left DLPFC GABA level. Peak gamma frequency during the encoding stage of the working memory task (n = 16) significantly correlated with GABA level and working memory performance. Despite gamma band amplitude deficits in patients across working memory stages, both baseline and working memory-induced gamma oscillations showed strong dependence on baseline GABA levels in patients and controls. These findings suggest a critical role for GABA function in gamma band oscillations, even under conditions of system and cognitive impairments as seen in schizophrenia. PMID:24749063

  7. GABA level, gamma oscillation, and working memory performance in schizophrenia.

    PubMed

    Chen, Chi-Ming A; Stanford, Arielle D; Mao, Xiangling; Abi-Dargham, Anissa; Shungu, Dikoma C; Lisanby, Sarah H; Schroeder, Charles E; Kegeles, Lawrence S

    2014-01-01

    A relationship between working memory impairment, disordered neuronal oscillations, and abnormal prefrontal GABA function has been hypothesized in schizophrenia; however, in vivo GABA measurements and gamma band neural synchrony have not yet been compared in schizophrenia. This case-control pilot study (N = 24) compared baseline and working memory task-induced neuronal oscillations acquired with high-density electroencephalograms (EEGs) to GABA levels measured in vivo with magnetic resonance spectroscopy. Working memory performance, baseline GABA level in the left dorsolateral prefrontal cortex (DLPFC), and measures of gamma oscillations from EEGs at baseline and during a working memory task were obtained. A major limitation of this study is a relatively small sample size for several analyses due to the integration of diverse methodologies and participant compliance. Working memory performance was significantly lower for patients than for controls. During the working memory task, patients (n = 7) had significantly lower amplitudes in gamma oscillations than controls (n = 9). However, both at rest and across working memory stages, there were significant correlations between gamma oscillation amplitude and left DLPFC GABA level. Peak gamma frequency during the encoding stage of the working memory task (n = 16) significantly correlated with GABA level and working memory performance. Despite gamma band amplitude deficits in patients across working memory stages, both baseline and working memory-induced gamma oscillations showed strong dependence on baseline GABA levels in patients and controls. These findings suggest a critical role for GABA function in gamma band oscillations, even under conditions of system and cognitive impairments as seen in schizophrenia.

  8. The GABA uptake inhibitor beta-alanine reduces pilocarpine-induced tremor and increases extracellular GABA in substantia nigra pars reticulata as measured by microdialysis.

    PubMed

    Ishiwari, Keita; Mingote, Susana; Correa, Merce; Trevitt, Jennifer T; Carlson, Brian B; Salamone, John D

    2004-12-30

    Substantia nigra pars reticulata (SNr) is a major output nucleus of the basal ganglia that receives GABAergic projections from neostriatum and globus pallidus. Previous research has shown that local pharmacological manipulations of GABA in SNr can influence tremulous jaw movements in rats. Tremulous jaw movements are defined as rapid vertical deflections of the lower jaw that resemble chewing but are not directed at a particular stimulus, and evidence indicates that these movements share many characteristics with parkinsonian tremor in humans. In order to investigate the role of GABA in motor functions related to tremor, the present study tested the GABA uptake blocker beta-alanine for its ability to reduce pilocarpine-induced tremulous jaw movements. In a parallel experiment, the effect of an active dose of beta-alanine on dialysate levels of GABA in SNr was assessed using microdialysis methods. GABA levels in dialysis samples were measured using high performance liquid chromatography with electrochemical detection. beta-Alanine (250-500 mg/kg) significantly reduced tremulous jaw movements induced by pilocarpine (4.0 mg/kg). Moreover, systemic administration of beta-alanine at a dose that reduced tremulous jaw movements (500 mg/kg) resulted in a substantial increase in extracellular levels of GABA in SNr compared to the pre-injection baseline. Thus, the present results are consistent with the hypothesis that GABAergic tone in SNr plays a role in the regulation of tremulous jaw movements. This research may lead to a better understanding of how parkinsonian symptoms are modulated by SNr GABA mechanisms.

  9. Ketone bodies and brain glutamate and GABA metabolism.

    PubMed

    Daikhin, Y; Yudkoff, M

    1998-01-01

    The effects of ketone bodies on brain metabolism of glutamate and GABA were studied in three different systems: synaptosomes, cultured astrocytes and the whole animal. In synaptosomes the addition of either acetoacetate or 3-OH-butyrate was associated with diminished consumption of glutamate via transamination to aspartate and increased formation of labelled GABA from either L-[2H5-2,3,3,4, 4]glutamine or L-[15N]glutamine. There was no effect of ketone bodies on synaptosomal GABA transamination. An increase of total forebrain GABA and a diminution of aspartate was noted when mice were injected intraperitoneally with 3-OH-butyrate. In cultured astrocytes the addition of acetoacetate to the medium was associated with a significantly enhanced rate of citrate production and with a diminution in the rate of conversion of [15N]glutamate to [15N]aspartate. These data are consistent with the hypothesis that the metabolism of ketone bodies to acetyl-CoA results in a diminution of the pool of brain oxaloacetate, which is consumed in the citrate synthetase reaction (oxaloacetate + acetyl-CoA --> citrate). As less oxaloacetate is available to the aspartate aminotransferase reaction, thereby lowering the rate of glutamate transamination, more glutamate becomes accessible to the glutamate decarboxylase pathway, thereby favoring the synthesis of GABA.

  10. Neurotransmitters as food supplements: the effects of GABA on brain and behavior

    PubMed Central

    Boonstra, Evert; de Kleijn, Roy; Colzato, Lorenza S.; Alkemade, Anneke; Forstmann, Birte U.; Nieuwenhuis, Sander

    2015-01-01

    Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the human cortex. The food supplement version of GABA is widely available online. Although many consumers claim that they experience benefits from the use of these products, it is unclear whether these supplements confer benefits beyond a placebo effect. Currently, the mechanism of action behind these products is unknown. It has long been thought that GABA is unable to cross the blood–brain barrier (BBB), but the studies that have assessed this issue are often contradictory and range widely in their employed methods. Accordingly, future research needs to establish the effects of oral GABA administration on GABA levels in the human brain, for example using magnetic resonance spectroscopy. There is some evidence in favor of a calming effect of GABA food supplements, but most of this evidence was reported by researchers with a potential conflict of interest. We suggest that any veridical effects of GABA food supplements on brain and cognition might be exerted through BBB passage or, more indirectly, via an effect on the enteric nervous system. We conclude that the mechanism of action of GABA food supplements is far from clear, and that further work is needed to establish the behavioral effects of GABA. PMID:26500584

  11. Neurotransmitters as food supplements: the effects of GABA on brain and behavior.

    PubMed

    Boonstra, Evert; de Kleijn, Roy; Colzato, Lorenza S; Alkemade, Anneke; Forstmann, Birte U; Nieuwenhuis, Sander

    2015-01-01

    Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the human cortex. The food supplement version of GABA is widely available online. Although many consumers claim that they experience benefits from the use of these products, it is unclear whether these supplements confer benefits beyond a placebo effect. Currently, the mechanism of action behind these products is unknown. It has long been thought that GABA is unable to cross the blood-brain barrier (BBB), but the studies that have assessed this issue are often contradictory and range widely in their employed methods. Accordingly, future research needs to establish the effects of oral GABA administration on GABA levels in the human brain, for example using magnetic resonance spectroscopy. There is some evidence in favor of a calming effect of GABA food supplements, but most of this evidence was reported by researchers with a potential conflict of interest. We suggest that any veridical effects of GABA food supplements on brain and cognition might be exerted through BBB passage or, more indirectly, via an effect on the enteric nervous system. We conclude that the mechanism of action of GABA food supplements is far from clear, and that further work is needed to establish the behavioral effects of GABA.

  12. Vigabatrin transport across the human intestinal epithelial (Caco-2) brush-border membrane is via the H+-coupled amino-acid transporter hPAT1

    PubMed Central

    Abbot, Emily L; Grenade, Danielle S; Kennedy, David J; Gatfield, Kelly M; Thwaites, David T

    2005-01-01

    The aim of this investigation was to determine if the human proton-coupled amino-acid transporter 1 (hPAT1 or SLC36A1) is responsible for the intestinal uptake of the orally-administered antiepileptic agent 4-amino-5-hexanoic acid (vigabatrin). The Caco-2 cell line was used as a model of the human small intestinal epithelium. Competition experiments demonstrate that [3H]GABA uptake across the apical membrane was inhibited by vigabatrin and the GABA analogues trans-4-aminocrotonic acid (TACA) and guvacine, whereas 1-(aminomethyl)cyclohexaneacetic acid (gabapentin) had no affect. Experiments with 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF)-loaded Caco-2 cells demonstrate that apical exposure to vigabatrin and TACA induce comparable levels of intracellular acidification (due to H+/amino-acid symport) to that generated by GABA, suggesting that they are substrates for a H+-coupled absorptive transporter such as hPAT1. In hPAT1 and mPAT1-expressing Xenopus laevis oocytes [3H]GABA uptake was inhibited by vigabatrin, TACA and guvacine, whereas gabapentin failed to inhibit [3H]GABA uptake. In Na+-free conditions, vigabatrin and TACA evoked similar current responses (due to H+/amino-acid symport) in hPAT1-expressing oocytes under voltage-clamp conditions to that induced by GABA (whereas no current was observed in water-injected oocytes) consistent with the ability of these GABA analogues to inhibit [3H]GABA uptake. This study demonstrates that hPAT1 is the carrier responsible for the uptake of vigabatrin across the brush-border membrane of the small intestine and emphasises the therapeutic potential of hPAT1 as a delivery route for orally administered, clinically significant GABA-related compounds. PMID:16331283

  13. Control of cortical neuronal migration by glutamate and GABA

    PubMed Central

    Luhmann, Heiko J.; Fukuda, A.; Kilb, W.

    2015-01-01

    Neuronal migration in the cortex is controlled by the paracrine action of the classical neurotransmitters glutamate and GABA. Glutamate controls radial migration of pyramidal neurons by acting primarily on NMDA receptors and regulates tangential migration of inhibitory interneurons by activating non-NMDA and NMDA receptors. GABA, acting on ionotropic GABAA-rho and GABAA receptors, has a dichotomic action on radially migrating neurons by acting as a GO signal in lower layers and as a STOP signal in upper cortical plate (CP), respectively. Metabotropic GABAB receptors promote radial migration into the CP and tangential migration of interneurons. Besides GABA, the endogenous GABAergic agonist taurine is a relevant agonist controlling radial migration. To a smaller extent glycine receptor activation can also influence radial and tangential migration. Activation of glutamate and GABA receptors causes increases in intracellular Ca2+ transients, which promote neuronal migration by acting on the cytoskeleton. Pharmacological or genetic manipulation of glutamate or GABA receptors during early corticogenesis induce heterotopic cell clusters in upper layers and loss of cortical lamination, i.e., neuronal migration disorders which can be associated with neurological or neuropsychiatric diseases. The pivotal role of NMDA and ionotropic GABA receptors in cortical neuronal migration is of major clinical relevance, since a number of drugs acting on these receptors (e.g., anti-epileptics, anesthetics, alcohol) may disturb the normal migration pattern when present during early corticogenesis. PMID:25688185

  14. GABA from reactive astrocytes impairs memory in mouse models of Alzheimer's disease.

    PubMed

    Jo, Seonmi; Yarishkin, Oleg; Hwang, Yu Jin; Chun, Ye Eun; Park, Mijeong; Woo, Dong Ho; Bae, Jin Young; Kim, Taekeun; Lee, Jaekwang; Chun, Heejung; Park, Hyun Jung; Lee, Da Yong; Hong, Jinpyo; Kim, Hye Yun; Oh, Soo-Jin; Park, Seung Ju; Lee, Hyo; Yoon, Bo-Eun; Kim, YoungSoo; Jeong, Yong; Shim, Insop; Bae, Yong Chul; Cho, Jeiwon; Kowall, Neil W; Ryu, Hoon; Hwang, Eunmi; Kim, Daesoo; Lee, C Justin

    2014-08-01

    In Alzheimer's disease (AD), memory impairment is the most prominent feature that afflicts patients and their families. Although reactive astrocytes have been observed around amyloid plaques since the disease was first described, their role in memory impairment has been poorly understood. Here, we show that reactive astrocytes aberrantly and abundantly produce the inhibitory gliotransmitter GABA by monoamine oxidase-B (Maob) and abnormally release GABA through the bestrophin 1 channel. In the dentate gyrus of mouse models of AD, the released GABA reduces spike probability of granule cells by acting on presynaptic GABA receptors. Suppressing GABA production or release from reactive astrocytes fully restores the impaired spike probability, synaptic plasticity, and learning and memory in the mice. In the postmortem brain of individuals with AD, astrocytic GABA and MAOB are significantly upregulated. We propose that selective inhibition of astrocytic GABA synthesis or release may serve as an effective therapeutic strategy for treating memory impairment in AD.

  15. GABA and homovanillic acid in the plasma of Schizophrenic and bipolar I patients.

    PubMed

    Arrúe, Aurora; Dávila, Ricardo; Zumárraga, Mercedes; Basterreche, Nieves; González-Torres, Miguel A; Goienetxea, Biotza; Zamalloa, Maria I; Anguiano, Juan B; Guimón, José

    2010-02-01

    We have determined the plasma (p) concentration of gamma-aminobutyric acid (GABA) and the dopamine metabolite homovanillic acid (HVA), and the pHVA/pGABA ratio in schizophrenic and bipolar patients. The research was undertaken in a geographic area with an ethnically homogeneous population. The HVA plasma concentrations were significantly elevated in the schizophrenic patients compared to the bipolar patients. The levels of pGABA was significantly lower in the two groups of patients compared to the control group, while the pHVA/pGABA ratio was significantly greater in the both groups of patients compared to the controls. As the levels of pHVA and pGABA are partially under genetic control it is better to compare their concentrations within an homogeneous population. The values of the ratio pHVA/pGABA are compatible with the idea of an abnormal dopamine-GABA interaction in schizophrenic and bipolar patients. The pHVA/pGABA ratio may be a good peripheral marker in psychiatric research.

  16. Signal-dependent export of GABA transporter 1 from the ER-Golgi intermediate compartment is specified by a C-terminal motif

    PubMed Central

    Farhan, Hesso; Reiterer, Veronika; Kriz, Alexander; Hauri, Hans-Peter; Pavelka, Margit; Sitte, Harald H.; Freissmuth, Michael

    2015-01-01

    Summary The C-terminus of GABA transporter 1 (GAT1, SLC6A1) is required for trafficking of the protein through the secretory pathway to reach its final destination, i.e. the rim of the synaptic specialization. We identified a motif of three hydrophobic residues (569VMI571) that was required for export of GAT1 from the ER-Golgi intermediate compartment (ERGIC). This conclusion was based on the following observations: (i) GAT1-SSS, the mutant in which 569VMI571 was replaced by serine residues, was exported from the ER in a COPII-dependent manner but accumulated in punctate structures and failed to reach the Golgi; (ii) under appropriate conditions (imposing a block at 15°C, disruption of COPI), these structures also contained ERGIC53; (iii) the punctae were part of a dynamic compartment, because it was accessible to a second anterograde cargo [the temperature-sensitive variant of vesicular stomatitis virus G protein (VSV-G)] and because GAT1-SSS could be retrieved from the punctate structures by addition of a KKxx-based retrieval motif, which supported retrograde transport to the ER. To the best of our knowledge, the VMI-motif of GAT1 provides the first example of a cargo-based motif that specifies export from the ERGIC. PMID:18285449

  17. Ionic plasticity and pain: The loss of descending serotonergic fibers after spinal cord injury transforms how GABA affects pain.

    PubMed

    Huang, Yung-Jen; Grau, James W

    2018-05-02

    Activation of pain (nociceptive) fibers can sensitize neural circuits within the spinal cord, inducing an increase in excitability (central sensitization) that can foster chronic pain. The development of spinally-mediated central sensitization is regulated by descending fibers and GABAergic interneurons. In adult animals, the co-transporter KCC2 maintains a low intracellular concentration of the anion Cl - . As a result, when the GABA-A receptor is engaged, Cl - flows in the neuron which has a hyperpolarizing (inhibitory) effect. Spinal cord injury (SCI) can down-regulate KCC2 and reverse the flow of Cl - . Under these conditions, engaging the GABA-A receptor can have a depolarizing (excitatory) effect that fosters the development of nociceptive sensitization. The present paper explores how SCI alters GABA function and provides evidence that the loss of descending fibers alters pain transmission to the brain. Prior work has shown that, after SCI, administration of a GABA-A antagonist blocks the development of capsaicin-induced nociceptive sensitization, implying that GABA release plays an essential role. This excitatory effect is linked to serotonergic (5HT) fibers that descend through the dorsolateral funiculus (DLF) and impact spinal function via the 5HT-1A receptor. Supporting this, blocking the 5HT-1A receptor, or lesioning the DLF, emulated the effect of SCI. Conversely, spinal application of a 5HT-1A agonist up-regulated KCC2 and reversed the effect of bicuculline treatment. Finally, lesioning the DLF reversed how a GABA-A antagonist affects a capsaicin-induced aversion in a place conditioning task; in sham operated animals, bicuculline enhanced aversion whereas in DLF-lesioned rats biciculline had an antinociceptive effect. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Cytosolic Accumulation of L-Proline Disrupts GABA-Ergic Transmission through GAD Blockade.

    PubMed

    Crabtree, Gregg W; Park, Alan J; Gordon, Joshua A; Gogos, Joseph A

    2016-10-04

    Proline dehydrogenase (PRODH), which degrades L-proline, resides within the schizophrenia-linked 22q11.2 deletion suggesting a role in disease. Supporting this, elevated L-proline levels have been shown to increase risk for psychotic disorders. Despite the strength of data linking PRODH and L-proline to neuropsychiatric diseases, targets of disease-relevant concentrations of L-proline have not been convincingly described. Here, we show that Prodh-deficient mice with elevated CNS L-proline display specific deficits in high-frequency GABA-ergic transmission and gamma-band oscillations. We find that L-proline is a GABA-mimetic and can act at multiple GABA-ergic targets. However, at disease-relevant concentrations, GABA-mimesis is limited to competitive blockade of glutamate decarboxylase leading to reduced GABA production. Significantly, deficits in GABA-ergic transmission are reversed by enhancing net GABA production with the clinically relevant compound vigabatrin. These findings indicate that accumulation of a neuroactive metabolite can lead to molecular and synaptic dysfunction and help to understand mechanisms underlying neuropsychiatric disease. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. The Relevance of AgRP Neuron-Derived GABA Inputs to POMC Neurons Differs for Spontaneous and Evoked Release

    PubMed Central

    2017-01-01

    Hypothalamic agouti-related peptide (AgRP) neurons potently stimulate food intake, whereas proopiomelanocortin (POMC) neurons inhibit feeding. Whether AgRP neurons exert their orexigenic actions, at least in part, by inhibiting anorexigenic POMC neurons remains unclear. Here, the connectivity between GABA-releasing AgRP neurons and POMC neurons was examined in brain slices from male and female mice. GABA-mediated spontaneous IPSCs (sIPSCs) in POMC neurons were unaffected by disturbing GABA release from AgRP neurons either by cell type-specific deletion of the vesicular GABA transporter or by expression of botulinum toxin in AgRP neurons to prevent vesicle-associated membrane protein 2-dependent vesicle fusion. Additionally, there was no difference in the ability of μ-opioid receptor (MOR) agonists to inhibit sIPSCs in POMC neurons when MORs were deleted from AgRP neurons, and activation of the inhibitory designer receptor hM4Di on AgRP neurons did not affect sIPSCs recorded from POMC neurons. These approaches collectively indicate that AgRP neurons do not significantly contribute to the strong spontaneous GABA input to POMC neurons. Despite these observations, optogenetic stimulation of AgRP neurons reliably produced evoked IPSCs in POMC neurons, leading to the inhibition of POMC neuron firing. Thus, AgRP neurons can potently affect POMC neuron function without contributing a significant source of spontaneous GABA input to POMC neurons. Together, these results indicate that the relevance of GABAergic inputs from AgRP to POMC neurons is state dependent and highlight the need to consider different types of transmitter release in circuit mapping and physiologic regulation. SIGNIFICANCE STATEMENT Agouti-related peptide (AgRP) neurons play an important role in driving food intake, while proopiomelanocortin (POMC) neurons inhibit feeding. Despite the importance of these two well characterized neuron types in maintaining metabolic homeostasis, communication between these

  20. The Relevance of AgRP Neuron-Derived GABA Inputs to POMC Neurons Differs for Spontaneous and Evoked Release.

    PubMed

    Rau, Andrew R; Hentges, Shane T

    2017-08-02

    Hypothalamic agouti-related peptide (AgRP) neurons potently stimulate food intake, whereas proopiomelanocortin (POMC) neurons inhibit feeding. Whether AgRP neurons exert their orexigenic actions, at least in part, by inhibiting anorexigenic POMC neurons remains unclear. Here, the connectivity between GABA-releasing AgRP neurons and POMC neurons was examined in brain slices from male and female mice. GABA-mediated spontaneous IPSCs (sIPSCs) in POMC neurons were unaffected by disturbing GABA release from AgRP neurons either by cell type-specific deletion of the vesicular GABA transporter or by expression of botulinum toxin in AgRP neurons to prevent vesicle-associated membrane protein 2-dependent vesicle fusion. Additionally, there was no difference in the ability of μ-opioid receptor (MOR) agonists to inhibit sIPSCs in POMC neurons when MORs were deleted from AgRP neurons, and activation of the inhibitory designer receptor hM4Di on AgRP neurons did not affect sIPSCs recorded from POMC neurons. These approaches collectively indicate that AgRP neurons do not significantly contribute to the strong spontaneous GABA input to POMC neurons. Despite these observations, optogenetic stimulation of AgRP neurons reliably produced evoked IPSCs in POMC neurons, leading to the inhibition of POMC neuron firing. Thus, AgRP neurons can potently affect POMC neuron function without contributing a significant source of spontaneous GABA input to POMC neurons. Together, these results indicate that the relevance of GABAergic inputs from AgRP to POMC neurons is state dependent and highlight the need to consider different types of transmitter release in circuit mapping and physiologic regulation. SIGNIFICANCE STATEMENT Agouti-related peptide (AgRP) neurons play an important role in driving food intake, while proopiomelanocortin (POMC) neurons inhibit feeding. Despite the importance of these two well characterized neuron types in maintaining metabolic homeostasis, communication between these

  1. Determination of γ-Aminobutyric Acid (GABA) in Rambutan Fruit cv. Rongrian by HPLC-ELSD and Separation of GABA from Rambutan Fruit Using Dowex 50W-X8 Column.

    PubMed

    Meeploy, Maneerat; Deewatthanawong, Rujira

    2016-03-01

    A high-performance liquid chromatography method coupled with an evaporative light scattering detector (ELSD) was validated for the determination of γ-aminobutyric acid (GABA) in rambutan fruit without any sample pretreatment or derivatization. In the concentration range of 0.05-1.0 mg/mL GABA, the ELSD response was linear with a correlation coefficient (r) >0.999. Limit of detection and limit of quantitation were found to be 0.7 and 2.0 µg/mL, respectively. The method enabled the complete separation of GABA in the aqueous extract of rambutan flesh from the impurity peaks at 45.7 min. The recoveries of sample added GABA were obtained in the range of 92.0-99.3%. Intraday and interday relative standard deviations were <5.3%. Repeatability of the extraction process showed the acceptable precision. From the analysis of GABA content in rambutan flesh, 0.71 ± 0.23 mg of GABA was found in 1 g fresh weight. The recovery of GABA after passing through the Dowex 50W-X8 column was 96.65%. The analytical methodology could be potentially applied to the detection and quantification of GABA in other fruits and complex matrices when a sufficient quantity is available. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. GABA-B receptor activation and conflict behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ketelaars, C.E.J.; Bollen, E.L.; Rigter, H.

    1988-01-01

    Baclofen and oxazepam enhance extinction of conflict behavior in the Geller-Seifter test while baclofen and diazepam release punished behavior in Vogel's conflict test. In order to investigate the possibility that the effect of the selective GABA-B receptor agonist baclofen is mediated indirectly via the GABA-A/benzodiazepine receptor complex, the effect of pretreatment of rats with baclofen on (/sup 3/H)-diazepam binding to washed and unwashed cortical and cerebellar membranes of rats has been studied. Baclofen pretreatment increase Bmax in washed cerebellar membranes when bicuculline was present in the incubation mixture. No effect was seen in cortical membranes. The present results render itmore » unlikely that the effect of baclofen on extinction of conflict behavior and punished drinking is mediated via the GABA-A/benzodiazepine receptor complex. 50 references, 1 figure, 4 tables.« less

  3. Alleviation in the rat of a GABA-induced reduction in food intake and growth.

    PubMed

    Tews, J K; Repa, J J; Harper, A E

    1984-07-01

    Cold exposure and diet dilution which stimulate food intake of normal rats lessened depressions of food intake and growth induced by dietary GABA. During a 3-day adaptation to the cold, rats fed a diet containing 4.5% GABA lost weight; thereafter, food intake and growth rate differed little from those of cold control rats and were usually greater than those of normal rats fed GABA. Hepatic GABA-aminotransferase activity of cold-exposed rats fed the GABA diet increased to about twice that of normal control rats. Rats fed a control diet diluted by half with cellulose ate 50% more of this diet than of the undiluted diet but gained only 20% less weight. Rats ate twice as much of a diluted, 9% GABA diet as of an undiluted, 4.5% GABA diet (thus doubling their GABA intake) and gained three times as much weight. A novel food (condensed milk) barely lessened the adverse responses to GABA. These results show that conditions requiring rats to increase their food intake in order to maintain body weight can also increase their acceptance of a diet high in GABA.

  4. 2-Aminoethyl Methylphosphonate, a Potent and Rapidly Acting Antagonist of GABA A-ρ1 Receptors

    DOE PAGES

    Xie, A.; Yan, J.; Yue, L.; ...

    2011-08-02

    All three classes of receptors for the inhibitory neurotransmitter GABA (GABAR) are expressed in the retina. This study investigated roles of GABAR, especially GABA(C)R (GABA(A)-rho), in retinal signaling in vivo by studying effects on the mouse electroretinogram (ERG) of genetic deletion of GABA(C)R versus pharmacological blockade using receptor antagonists. Brief full-field flash ERGs were recorded from anesthetized GABA(C)R(-/-) mice, and WT C57BL/6 (B6) mice, before and after intravitreal injection of GABA(C)R antagonists, TPMPA, 3-APMPA, or the more recently developed 2-AEMP; GABA(A)R antagonist, SR95531; GABA(B)R antagonist, CGP, and agonist, baclofen. Intravitreal injections of TPMPA and SR95531 were also made in Brownmore » Norway rats. The effect of 2-AEMP on GABA-induced current was tested directly in isolated rat rod bipolar cells, and 2-AEMP was found to preferentially block GABA(C)R in those cells. Maximum amplitudes of dark (DA) and light-adapted (LA) ERG b-waves were reduced in GABA(C)R(-/-) mice, compared to B6 mice, by 30-60%; a-waves were unaltered and oscillatory potential amplitudes were increased. In B6 mice, after injection of TPMPA (also in rats), 3-APMPA or 2-AEMP, ERGs became similar to ERGs of GABA(C)R(-/-) mice. Blockade of GABA(A)Rs and GABA(B)Rs, or agonism of GABA(B)Rs did not alter B6 DA b-wave amplitude. The negative scotopic threshold response (nSTR) was slightly less sensitive in GABA(C)R(-/-) than in B6 mice, and unaltered by 2-AEMP. However, amplitudes of nSTR and photopic negative response (PhNR), both of which originate from inner retina, were enhanced by TPMPA and 3-APMPA, each of which has GABA(B) agonist properties, and further increased by baclofen. The finding that genetic deletion of GABA(C)R, the GABA(C)R antagonist 2-AEMP, and other antagonists all reduced ERG b-wave amplitude, supports a role for CABA(C)R in determining the maximum response amplitude of bipolar cells contributing to the b-wave. GABA(C)R antagonists

  5. Antiseizure Activity of Midazolam in Mice Lacking δ-Subunit Extrasynaptic GABA(A) Receptors.

    PubMed

    Reddy, Sandesh D; Younus, Iyan; Clossen, Bryan L; Reddy, Doodipala Samba

    2015-06-01

    Midazolam is a benzodiazepine anticonvulsant with rapid onset and short duration of action. Midazolam is the current drug of choice for acute seizures and status epilepticus, including those caused by organophosphate nerve agents. The antiseizure activity of midazolam is thought to result from its allosteric potentiation of synaptic GABA(A) receptors in the brain. However, there are indications that benzodiazepines promote neurosteroid synthesis via the 18-kDa cholesterol transporter protein (TSPO). Therefore, we investigated the role of neurosteroids and their extrasynaptic GABA(A) receptor targets in the antiseizure activity of midazolam. Here, we used δ-subunit knockout (DKO) mice bearing a targeted deletion of the extrasynaptic receptors to investigate the contribution of the extrasynaptic receptors to the antiseizure activity of midazolam using the 6-Hz and hippocampus kindling seizure models. In both models, midazolam produced rapid and dose-dependent protection against seizures (ED50, 0.4 mg/kg). Moreover, the antiseizure potency of midazolam was undiminished in DKO mice compared with control mice. Pretreatment with PK11195 [1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide], a TSPO blocker, or finasteride, a 5α-reductase neurosteroid inhibitor, did not affect the antiseizure effect of midazolam. The antiseizure activity of midazolam was significantly reversed by pretreatment with flumazenil, a benzodiazepine antagonist. Plasma and brain levels of the neurosteroid allopregnanolone were not significantly greater in midazolam-treated animals. These studies therefore provide strong evidence that neurosteroids and extrasynaptic GABA(A) receptors are not involved in the antiseizure activity of midazolam, which mainly occurs through synaptic GABA(A) receptors via direct binding to benzodiazepine sites. This study reaffirms midazolam's use for controlling acute seizures and status epilepticus. Copyright © 2015 by The American Society for

  6. GABA predicts inhibition of frequency-specific oscillations in schizophrenia.

    PubMed

    Rowland, Laura M; Edden, Richard A E; Kontson, Kimberly; Zhu, He; Barker, Peter B; Hong, L Elliot

    2013-01-01

    This study is the first to show a relationship between in-vivo brain gamma-amino butyric acid (GABA) levels and auditory inhibitory electrophysiological measures in schizophrenia. Results revealed a strong association between GABA levels and gating of the theta-alpha and beta activities in schizophrenia.

  7. Actions of insecticides on the insect GABA receptor complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bermudez, I.; Hawkins, C.A.; Taylor, A.M.

    1991-01-01

    The actions of insecticides on the insect gamma-aminobutyric acid (GABA) receptor were investigated using (35S)t-butylbicyclophosphorothionate (( 35S)TBPS) binding and voltage-clamp techniques. Specific binding of (35S)TBPS to a membrane homogenate derived from the brain of Locusta migratoria locusts is characterised by a Kd value of 79.3 {plus minus} 2.9 nM and a Bmax value of 1770 {plus minus} 40 fmol/mg protein. (35S)TBPS binding is inhibited by mM concentrations of barbiturates and benzodiazepines. In contrast dieldrin, ivermectin, lindane, picrotoxin and TBPS are inhibitors of (35S)TBPS binding at the nanomolar range. Bicuculline, baclofen and pyrethroid insecticides have no effect on (35S)TBPS binding. Thesemore » results are similar to those obtained in electrophysiological studies of the current elicited by GABA in both Locusta and Periplaneta americana central neurones. Noise analysis of the effects of lindane, TBPS, dieldrin and picrotoxin on the cockroach GABA responses reveals that these compounds decrease the variance of the GABA-induced current but have no effect on its mean open time. All these compounds, with the exception of dieldrin, significantly decrease the conductance of GABA-evoked single current.« less

  8. In Vivo Measurements of Glutamate, GABA, and NAAG in Schizophrenia

    PubMed Central

    Rowland, Laura M.

    2013-01-01

    The major excitatory and inhibitory neurotransmitters, glutamate (Glu) and gamma-aminobutyric acid (GABA), respectively, are implicated in the pathophysiology of schizophrenia. N-acetyl-aspartyl-glutamate (NAAG), a neuropeptide that modulates the Glu system, may also be altered in schizophrenia. This study investigated GABA, Glu + glutamine (Glx), and NAAG levels in younger and older subjects with schizophrenia. Forty-one subjects, 21 with chronic schizophrenia and 20 healthy controls, participated in this study. Proton magnetic resonance spectroscopy (1H-MRS) was used to measure GABA, Glx, and NAAG levels in the anterior cingulate (AC) and centrum semiovale (CSO) regions. NAAG in the CSO was higher in younger schizophrenia subjects compared with younger control subjects. The opposite pattern was observed in the older groups. Glx was reduced in the schizophrenia group irrespective of age group and brain region. There was a trend for reduced AC GABA in older schizophrenia subjects compared with older control subjects. Poor attention performance was correlated to lower AC GABA levels in both groups. Higher levels of CSO NAAG were associated with greater negative symptom severity in schizophrenia. These results provide support for altered glutamatergic and GABAergic function associated with illness course and cognitive and negative symptoms in schizophrenia. The study also highlights the importance of studies that combine MRS measurements of NAAG, GABA, and Glu for a more comprehensive neurochemical characterization of schizophrenia. PMID:23081992

  9. In vivo measurements of glutamate, GABA, and NAAG in schizophrenia.

    PubMed

    Rowland, Laura M; Kontson, Kimberly; West, Jeffrey; Edden, Richard A; Zhu, He; Wijtenburg, S Andrea; Holcomb, Henry H; Barker, Peter B

    2013-09-01

    The major excitatory and inhibitory neurotransmitters, glutamate (Glu) and gamma-aminobutyric acid (GABA), respectively, are implicated in the pathophysiology of schizophrenia. N-acetyl-aspartyl-glutamate (NAAG), a neuropeptide that modulates the Glu system, may also be altered in schizophrenia. This study investigated GABA, Glu + glutamine (Glx), and NAAG levels in younger and older subjects with schizophrenia. Forty-one subjects, 21 with chronic schizophrenia and 20 healthy controls, participated in this study. Proton magnetic resonance spectroscopy ((1)H-MRS) was used to measure GABA, Glx, and NAAG levels in the anterior cingulate (AC) and centrum semiovale (CSO) regions. NAAG in the CSO was higher in younger schizophrenia subjects compared with younger control subjects. The opposite pattern was observed in the older groups. Glx was reduced in the schizophrenia group irrespective of age group and brain region. There was a trend for reduced AC GABA in older schizophrenia subjects compared with older control subjects. Poor attention performance was correlated to lower AC GABA levels in both groups. Higher levels of CSO NAAG were associated with greater negative symptom severity in schizophrenia. These results provide support for altered glutamatergic and GABAergic function associated with illness course and cognitive and negative symptoms in schizophrenia. The study also highlights the importance of studies that combine MRS measurements of NAAG, GABA, and Glu for a more comprehensive neurochemical characterization of schizophrenia.

  10. Is GABA neurotransmission enhanced in auditory thalamus relative to inferior colliculus?

    PubMed Central

    Cai, Rui; Kalappa, Bopanna I.; Brozoski, Thomas J.; Ling, Lynne L.

    2013-01-01

    Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central auditory system. Sensory thalamic structures show high levels of non-desensitizing extrasynaptic GABAA receptors (GABAARs) and a reduction in the redundancy of coded information. The present study compared the inhibitory potency of GABA acting at GABAARs between the inferior colliculus (IC) and the medial geniculate body (MGB) using quantitative in vivo, in vitro, and ex vivo experimental approaches. In vivo single unit studies compared the ability of half maximal inhibitory concentrations of GABA to inhibit sound-evoked temporal responses, and found that GABA was two to three times (P < 0.01) more potent at suppressing MGB single unit responses than IC unit responses. In vitro whole cell patch-clamp slice recordings were used to demonstrate that gaboxadol, a δ-subunit selective GABAAR agonist, was significantly more potent at evoking tonic inhibitory currents from MGB neurons than IC neurons (P < 0.01). These electrophysiological findings were supported by an in vitro receptor binding assay which used the picrotoxin analog [3H]TBOB to assess binding in the GABAAR chloride channel. MGB GABAARs had significantly greater total open chloride channel capacity relative to GABAARs in IC (P < 0.05) as shown by increased total [3H]TBOB binding. Finally, a comparative ex vivo measurement compared endogenous GABA levels and suggested a trend towards higher GABA concentrations in MGB than in IC. Collectively, these studies suggest that, per unit GABA, high affinity extrasynaptic and synaptic GABAARs confer a significant inhibitory GABAAR advantage to MGB neurons relative to IC neurons. This increased GABA sensitivity likely underpins the vital filtering role of auditory thalamus. PMID:24155003

  11. Neuroimaging studies of GABA in schizophrenia: a systematic review with meta-analysis.

    PubMed

    Egerton, A; Modinos, G; Ferrera, D; McGuire, P

    2017-06-06

    Data from animal models and from postmortem studies suggest that schizophrenia is associated with brain GABAergic dysfunction. The extent to which this is reflected in data from in vivo studies of GABA function in schizophrenia is unclear. The Medline database was searched to identify articles published until 21 October 2016. The search terms included GABA, proton magnetic resonance spectroscopy ( 1 H-MRS), positron emission tomography (PET), single photon emission computed tomography (SPECT), schizophrenia and psychosis. Sixteen GABA 1 H-MRS studies (538 controls, 526 patients) and seven PET/SPECT studies of GABA A /benzodiazepine receptor (GABA A /BZR) availability (118 controls, 113 patients) were identified. Meta-analyses of 1 H-MRS GABA in the medial prefrontal cortex (mPFC), parietal/occipital cortex (POC) and striatum did not show significant group differences (mFC: g=-0.3, 409 patients, 495 controls, 95% confidence interval (CI): -0.6 to 0.1; POC: g=-0.3, 139 patients, 111 controls, 95% CI: -0.9 to 0.3; striatum: g=-0.004, 123 patients, 95 controls, 95% CI: -0.7 to 0.7). Heterogeneity across studies was high (I 2 >50%), and this was not explained by subsequent moderator or meta-regression analyses. There were insufficient PET/SPECT receptor availability studies for meta-analyses, but a systematic review did not suggest replicable group differences in regional GABA A /BZR availability. The current literature does not reveal consistent alterations in in vivo GABA neuroimaging measures in schizophrenia, as might be hypothesized from animal models and postmortem data. The analysis highlights the need for further GABA neuroimaging studies with improved methodology and addressing potential sources of heterogeneity.

  12. Cell type specificity of GABA(A) receptor mediated signaling in the hippocampus.

    PubMed

    Semyanov, A

    2003-08-01

    Inhibitory signaling mediated by ionotropic GABA(1) receptors generally acts as a major brake against excessive excitability in the brain. This is especially relevant in epilepsy-prone structures such as the hippocampus, in which GABA(A) receptor mediated inhibition is critical in suppressing epileptiform activity. Indeed, potentiating GABA(A) receptor mediated signaling is an important target for antiepileptic drug therapy. GABA(A) receptor mediated inhibition has different roles in the network dependent on the target neuron. Inhibiting principal cells will thus reduce network excitability, whilst inhibiting interneurons will increase network excitability; GABAergic therapeutic agents do not distinguish between these two alternatives, which may explain why, on occasion, GABAergic antiepileptic drugs can be proconvulsant. The importance of the target-cell for the effect of neuroactive drugs has emerged from a number of recent studies. Immunocytochemical data have suggested non-uniform distribution of GABA(A) receptor subunits among hippocampal interneurons and pyramidal cells. This has been confirmed by subsequent electropharmacological data. These have demonstrated that compounds which act on GABA(A) receptors or the extracellular GABA concentration can have distinct effects in different neuronal populations. Recently, it has also been discovered that presynaptic glutamate heteroreceptors can modulate GABA release in the hippocampus in a postsynaptic cell-specific manner. Since systemically administrated drugs may act on different neuronal subtypes, they can exhibit paradoxical effects. Distinguishing compounds that have target specific effects on GABAergic signaling may lead to novel and more effective treatments against epilepsy.

  13. Identification of differentiation-associated brain-specific phosphate transporter as a second vesicular glutamate transporter (VGLUT2).

    PubMed

    Takamori, S; Rhee, J S; Rosenmund, C; Jahn, R

    2001-11-15

    Glutamate is the major excitatory neurotransmitter in mammalian CNS. In the presynaptic nerve terminal, glutamate is stored in synaptic vesicles and released by exocytosis. Previously, it has been shown that a transport protein originally identified as a brain-specific Na(+)-dependent inorganic phosphate transporter I (BNPI) functions as vesicular glutamate transporter and thus has been renamed VGLUT1. Recently, a protein highly homologous to VGLUT1, "differentiation-associated BNPI" (DNPI), has been discovered. Northern blot and in situ hybridization analyses indicate that DNPI mRNA is expressed in some brain regions in which VGLUT1 mRNA is not expressed. We now show that DNPI functions as vesicular glutamate transporter with properties very similar to VGLUT1 and propose to rename the protein VGLUT2. VGLUT2 is highly enriched in synaptic vesicles. Furthermore, VGLUT2 resides on a vesicle population that is distinct from vesicles containing the vesicular GABA transporter or VGLUT1, showing that the expression of VGLUT1 and VGLUT2 do not overlap. When VGLUT2 was expressed in BON cells, membrane fractions displayed ATP-dependent, carbonyl cyanide p-trifluoromethoxyphenylhydrazone-sensitive glutamate uptake. Overexpression of VGLUT2 in cultured autaptic GABAergic neurons yielded postsynaptic currents that were insensitive to the GABA(A) receptor antagonist bicuculline but blocked by the AMPA-receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfonyl-benzo[F]quinoxaline. Thus, expression of VGLUT2 suffices to cause GABAergic neurons to release glutamate in addition to GABA in a manner very similar to that reported previously for VGLUT1.

  14. Neuroprotection of ebselen against ischemia/reperfusion injury involves GABA shunt enzymes.

    PubMed

    Seo, Jeong Yeol; Lee, Choong Hyun; Cho, Jun Hwi; Choi, Jung Hoon; Yoo, Ki-Yeon; Kim, Dae Won; Park, Ok Kyu; Li, Hua; Choi, Soo Young; Hwang, In Koo; Won, Moo-Ho

    2009-10-15

    Seleno-organic compound, ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one), is a substrate with radical-scavenging activity. In this study, we observed the neuroprotective effects of ebselen against ischemic damage and on GABA shunt enzymes such as glutamic acid decarboxylase 67 (GAD67), GABA transaminse (GABA-T) and succinic semialdehyde dehydrogenase (SSADH) in the hippocampal CA1 region after 5 min of transient forebrain ischemia in gerbils. For this, vehicle (physiological saline) or ebselen was administered 30 min before or after ischemia/reperfusion and sacrificed 4 days after ischemia/reperfusion. The administration of ebselen significantly reduced the neuronal death in the CA1 region induced by ischemia/reperfusion. In addition, treatment with ebselen markedly elevated GAD67, GABA-T and SSADH immunoreactivity and their protein levels compared to that in the vehicle-treated group, respectively. These results suggest that ebselen protects neurons from ischemic damage via control of the expressions of GABA shunt enzymes to enter the TCA cycle.

  15. GABA Signaling Promotes Synapse Elimination and Axon Pruning in Developing Cortical Inhibitory Interneurons

    PubMed Central

    Wu, Xiaoyun; Fu, Yu; Knott, Graham; Lu, Jiangteng; Di Cristo, Graziella

    2012-01-01

    Accumulating evidence indicates that GABA acts beyond inhibitory synaptic transmission and regulates the development of inhibitory synapses in the vertebrate brain, but the underlying cellular mechanism is not well understood. We have combined live imaging of cortical GABAergic axons across time scales from minutes to days with single-cell genetic manipulation of GABA release to examine its role in distinct steps of inhibitory synapse formation in the mouse neocortex. We have shown previously, by genetic knockdown of GABA synthesis in developing interneurons, that GABA signaling promotes the maturation of inhibitory synapses and axons. Here we found that a complete blockade of GABA release in basket interneurons resulted in an opposite effect, a cell-autonomous increase in axon and bouton density with apparently normal synapse structures. These results not only demonstrate that GABA is unnecessary for synapse formation per se but also uncover a novel facet of GABA in regulating synapse elimination and axon pruning. Live imaging revealed that developing GABAergic axons form a large number of transient boutons, but only a subset was stabilized. Release blockade led to significantly increased bouton stability and filopodia density, increased axon branch extension, and decreased branch retraction. Our results suggest that a major component of GABA function in synapse development is transmission-mediated elimination of subsets of nascent contacts. Therefore, GABA may regulate activity-dependent inhibitory synapse formation by coordinately eliminating certain nascent contacts while promoting the maturation of other nascent synapses. PMID:22219294

  16. In vivo electroretinographic studies of the role of GABA C receptors in retinal signal processing

    DOE PAGES

    Wang, Jing; Mojumder, Deb Kumar; Yan, Jun; ...

    2015-07-08

    The retina expresses all three classes of receptors for the inhibitory neurotransmitter GABA (GABAR). Our study investigated roles of GABAR, especially GABA(C)R (GABA(A)-rho), in retinal signaling in vivo by studying effects on the mouse electroretinogram (ERG) of genetic deletion of GABA(C)R versus pharmacological blockade using receptor antagonists. Brief full-field flash ERGs were recorded from anesthetized GABA(C)R(-/-) mice, and WT C57BL/6 (B6) mice, before and after intravitreal injection of GABA(C)R antagonists, TPMPA, 3-APMPA, or the more recently developed 2-AEMP; GABA(A)R antagonist, SR95531; GABA(B)R antagonist, CGP, and agonist, baclofen. Intravitreal injections of TPMPA and SR95531 were also made in Brown Norway rats.more » The effect of 2-AEMP on GABA-induced current was tested directly in isolated rat rod bipolar cells, and 2-AEMP was found to preferentially block GABA(C)R in those cells. Maximum amplitudes of dark (DA) and light-adapted (LA) ERG b-waves were reduced in GABA(C)R(-/-) mice, compared to B6 mice, by 30-60%; a-waves were unaltered and oscillatory potential amplitudes were increased. In B6 mice, after injection of TPMPA (also in rats), 3-APMPA or 2-AEMP, ERGs became similar to ERGs of GABA(C)R(-/-) mice. Blockade of GABA(A)Rs and GABA(B)Rs, or agonism of GABA(B)Rs did not alter B6 DA b-wave amplitude. Furthermore, the negative scotopic threshold response (nSTR) was slightly less sensitive in GABA(C)R(-/-) than in B6 mice, and unaltered by 2-AEMP. However, amplitudes of nSTR and photopic negative response (PhNR), both of which originate from inner retina, were enhanced by TPMPA and 3-APMPA, each of which has GABA(B) agonist properties, and further increased by baclofen. The finding that genetic deletion of GABA(C)R, the GABA(C)R antagonist 2-AEMP, and other antagonists all reduced ERG b-wave amplitude, supports a role for CABA(C)R in determining the maximum response amplitude of bipolar cells contributing to the b-wave. GABA

  17. GABA+ levels in postmenopausal women with mild-to-moderate depression

    PubMed Central

    Wang, Zhensong; Zhang, Aiying; Zhao, Bin; Gan, Jie; Wang, Guangbin; Gao, Fei; Liu, Bo; Gong, Tao; Liu, Wen; Edden, Richard A.E.

    2016-01-01

    Abstract Background: It is increasingly being recognized that alterations of the GABAergic system are implicated in the pathophysiology of depression. This study aimed to explore in vivo gamma-aminobutyric acid (GABA) levels in the anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC) and posterior-cingulate cortex (PCC) of postmenopausal women with depression using magnetic resonance spectroscopy (1H-MRS). Methods: Nineteen postmenopausal women with depression and thirteen healthy controls were enrolled in the study. All subjects underwent 1H-MRS of the ACC/mPFC and PCC using the “MEGA Point Resolved Spectroscopy Sequence” (MEGA-PRESS) technique. The severity of depression was assessed by 17-item Hamilton Depression Scale (HAMD). Quantification of MRS data was performed using Gannet program. Differences of GABA+ levels from patients and controls were tested using one-way analysis of variance. Spearman correlation coefficients were used to evaluate the linear associations between GABA+ levels and HAMD scores, as well as estrogen levels. Results: Significantly lower GABA+ levels were detected in the ACC/mPFC of postmenopausal women with depression compared to healthy controls (P = 0.002). No significant correlations were found between 17-HAMD/14-HAMA and GABA+ levels, either in ACC/mPFC (P = 0.486; r = 0.170/P = 0.814; r = −0.058) or PCC (P = 0.887; r = 0.035/ P = 0.987; r = −0.004) in the patients; there is also no significant correlation between GABA+ levels and estrogen levels in patients group (ACC/mPFC: P = 0.629, r = −0.018; PCC: P = 0.861, r = 0.043). Conclusion: Significantly lower GABA+ levels were found in the ACC/mPFC of postmenopausal women with depression, suggesting that the dysfunction of the GABAergic system may also be involved in the pathogenesis of depression in postmenopausal women. PMID:27684829

  18. Increased GABA Levels in Medial Prefrontal Cortex of Young Adults with Narcolepsy

    PubMed Central

    Kim, Seog Ju; Lyoo, In Kyoon; Lee, Yujin S.; Sung, Young Hoon; Kim, Hengjun J.; Kim, Jihyun H.; Kim, Kye Hyun; Jeong, Do-Un

    2008-01-01

    Study Objectives: To explore absolute concentrations of brain metabolites including gamma amino-butyric acid (GABA) in the medial prefrontal cortex and basal ganglia of young adults with narcolepsy. Design: Proton magnetic resonance (MR) spectroscopy centered on the medial prefrontal cortex and the basal ganglia was acquired. The absolute concentrations of brain metabolites including GABA and glutamate were assessed and compared between narcoleptic patients and healthy comparison subjects. Setting: Sleep and Chronobiology Center at Seoul National University Hospital; A high strength 3.0 Tesla MR scanner in the Department of Radiology at Seoul National University Hospital. Patients or Participants: Seventeen young adults with a sole diagnosis of HLA DQB1 0602 positive narcolepsy with cataplexy (25.1 ± 4.6 years old) and 17 healthy comparison subjects (26.8 ± 4.8 years old). Interventions: N/A. Measurements and Results: Relative to comparison subjects, narcoleptic patients had higher GABA concentration in the medial prefrontal cortex (t = 4.10, P <0.001). Narcoleptic patients with nocturnal sleep disturbance had higher GABA concentration in the medial prefrontal cortex than those without nocturnal sleep disturbance (t = 2.45, P= 0.03), but had lower GABA concentration than comparison subjects (t = 2.30, P = 0.03). Conclusions: The current study reports that young adults with narcolepsy had a higher GABA concentration in the medial prefrontal cortex, which was more prominent in patients without nocturnal sleep disturbance. Our findings suggest that the medial prefrontal GABA level may be increased in narcolepsy, and the increased medial prefrontal GABA might be a compensatory mechanism to reduce nocturnal sleep disturbances in narcolepsy. Citation: Kim SJ; Lyoo IK; Lee YS; Sung YH; Kim HJ; Kim JH; Kim KH; Jeong DU. Increased GABA levels in medial prefrontal cortex of young adults with narcolepsy. SLEEP 2008;31(3):342-347. PMID:18363310

  19. Non-neuronal, slow GABA signalling in the ventrobasal thalamus targets δ-subunit-containing GABAA receptors

    PubMed Central

    Jiménez-González, Cristina; Pirttimaki, Tiina; Cope, David W; Parri, H R

    2011-01-01

    The rodent ventrobasal (VB) thalamus contains a relatively uniform population of thalamocortical (TC) neurons that receive glutamatergic input from the vibrissae and the somatosensory cortex, and inhibitory input from the nucleus reticularis thalami (nRT). In this study we describe γ-aminobutyric acid (GABA)A receptor-dependent slow outward currents (SOCs) in TC neurons that are distinct from fast inhibitory postsynaptic currents (IPSCs) and tonic currents. SOCs occurred spontaneously or could be evoked by hypo-osmotic stimulus, and were not blocked by tetrodotoxin, removal of extracellular Ca2+ or bafilomycin A1, indicating a non-synaptic, non-vesicular GABA origin. SOCs were more common in TC neurons of the VB compared with the dorsal lateral geniculate nucleus, and were rarely observed in nRT neurons, whilst SOC frequency in the VB increased with age. Application of THIP, a selective agonist at δ-subunit-containing GABAA receptors, occluded SOCs, whereas the benzodiazepine site inverse agonist β-CCB had no effect, but did inhibit spontaneous and evoked IPSCs. In addition, the occurrence of SOCs was reduced in mice lacking the δ-subunit, and their kinetics were also altered. The anti-epileptic drug vigabatrin increased SOC frequency in a time-dependent manner, but this effect was not due to reversal of GABA transporters. Together, these data indicate that SOCs in TC neurons arise from astrocytic GABA release, and are mediated by δ-subunit-containing GABAA receptors. Furthermore, these findings suggest that the therapeutic action of vigabatrin may occur through the augmentation of this astrocyte–neuron interaction, and highlight the importance of glial cells in CNS (patho) physiology. PMID:21395866

  20. Remodelling of supraspinal neuroglial network in neuropathic pain is featured by a reactive gliosis of the nociceptive amygdala.

    PubMed

    Marcello, L; Cavaliere, C; Colangelo, A M; Bianco, M R; Cirillo, G; Alberghina, L; Papa, M

    2013-07-01

    Many brain areas participate to supraspinal control of nociception. In these regions, few studies have investigated the role of glial cells in supraspinal plasticity and the effect of 7-day intrathecal nerve growth factor-like (BB14®, Blueprint Biotech, Milano, Italy) treatment. In male Sprague-Dawley rats, we evaluated by immunohistochemistry the morphological and molecular rearrangement of neuroglial network occurring in several supraspinal brain regions involved in pain processing following spared nerve injury (SNI) of the sciatic nerve. In particular, the medial prefrontal cortex, the amygdala (Amy), the nucleus accumbens (Acb), the thalamus and the periaqueductal gray were analysed. Despite the modifications occurring in the dorsal horn of spinal cord following SNI, no significant changes in the Iba1 and glial fibrillary acidic protein (GFAP) expression were detected in all the analysed supraspinal regions, except for the Amy, showing a remarkable GFAP increase. Interestingly, neuropathic rats also displayed a significant increase of glial transporters (GTs) in all the supraspinal regions. Finally, the analysis of vesicular glutamate transporter 1 (vGLUT1) and vesicular gamma-aminobutyric acid (GABA) transporter (vGAT) expression revealed a significant enhancement of glutamatergic/GABAergic ratio in all selected brain regions of SNI animals, except for Acb. Both glial activation in the Amy and alteration of GTs and vGLUT/vGAT levels observed in neuropathic animals were largely reversed by BB14® treatment. All together, these data strengthen the role of supraspinal neuroglial network plasticity in the establishment of neuropathic pain syndrome. The hallmark is represented by the divergence between glial reaction confined to Amy and the widespread changes in the GT distribution and glutamate/GABA ratio detected in the other supraspinal region. © 2012 European Federation of International Association for the Study of Pain Chapters.

  1. A study on the involvement of GABA-transaminase in MCT induced pulmonary hypertension.

    PubMed

    Lingeshwar, Poorella; Kaur, Gurpreet; Singh, Neetu; Singh, Seema; Mishra, Akanksha; Shukla, Shubha; Ramakrishna, Rachumallu; Laxman, Tulsankar Sachin; Bhatta, Rabi Sankar; Siddiqui, Hefazat H; Hanif, Kashif

    2016-02-01

    Increased sympathetic nervous system (SNS) activity is associated with cardiovascular diseases but its role has not been completely explored in pulmonary hypertension (PH). Increased SNS activity is distinguished by elevated level of norepinephrine (NE) and activity of γ-Amino butyric acid Transminase (GABA-T) which degrades GABA, an inhibitory neurotransmitter within the central and peripheral nervous system. Therefore, we hypothesized that GABA-T may contribute in pathophysiology of PH by modulating level of GABA and NE. The effect of daily oral administration of GABA-T inhibitor, Vigabatrin (GVG, 50 and 75 mg/kg/day, 35 days) was studied following a single subcutaneous administration of monocrotaline (MCT, 60 mg/kg) in male SD rats. The pressure and hypertrophy of right ventricle (RV), oxidative stress, inflammation, pulmonary vascular remodelling were assessed after 35 days in MCT treated rats. The expression of GABA-T and HIF-1α was studied in lung tissue. The levels of plasma NE (by High performance liquid chromatography coupled with electrochemical detector; HPLC-ECD) and lung GABA (by liquid chromatography-mass spectrometry) were also estimated. GVG at both doses significantly attenuated increased in pressure (35.82 ± 4.80 mm Hg, p < 0.001; 28.37 ± 3.32 mm Hg, p < 0.001 respectively) and hypertrophy of RV, pulmonary vascular remodelling, oxidative stress and inflammation in lungs of MCT exposed rats. GVG also reduced the expression of GABA-T and HIF-1α in MCT treated rats. Increased NE level and decreased GABA level was also reversed by GVG in MCT exposed rats. GABA-T plays an important role in PH by modulating SNS activity and may be considered as a therapeutic target in PH. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Prenatal Ontogeny as a Susceptibility Period for Cortical GABA Neuron Disturbances in Schizophrenia

    PubMed Central

    Volk, David W.; Lewis, David A.

    2013-01-01

    Cognitive deficits in schizophrenia have been linked to disturbances in GABA neurons in the prefrontal cortex. Furthermore, cognitive deficits in schizophrenia appear well before the onset of psychosis and have been reported to be present during early childhood and even during the first year of life. Taken together, these data raise the following question: Does the disease process that produces abnormalities in prefrontal GABA neurons in schizophrenia begin prenatally and disrupt the ontogeny of cortical GABA neurons? Here, we address this question through a consideration of evidence that genetic and/or environmental insults that occur during gestation initiate a pathogenetic process that alters cortical GABA neuron ontogeny and produces the pattern of GABA neuron abnormalities, and consequently cognitive difficulties, seen in schizophrenia. First, we review available evidence from postmortem human brain tissue studies characterizing alterations in certain subpopulations of prefrontal GABA neuron that provide clues to a prenatal origin in schizophrenia. Second, we review recent discoveries of transcription factors, cytokine receptors, and other developmental regulators that govern the birth, migration, specification, maturation, and survival of different subpopulations of prefrontal GABA neurons. Third, we discuss recent studies demonstrating altered expression of these ontogenetic factors in the prefrontal cortex in schizophrenia. Fourth, we discuss the potential role of disturbances in the maternal-fetal environment such as maternal immune activation in the development of GABA neuron dysfunction. Finally, we propose critical questions that need to be answered in future research to further investigate the role of altered GABA neuron ontogeny in the pathogenesis of schizophrenia. PMID:23769891

  3. Temperature dependence and GABA modulation of (TH)triazolam binding in the rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Earle, M.E.; Concas, A.; Wamsley, J.K.

    1987-07-27

    The hypnotic triazolam (TZ), a triazolobenzodiazepine displays a short physiological half life and has been used for the treatment of insomnia related to anxiety states. The authors major objectives were the direct measurement of the temperature dependence and the gamma-aminobutyric acid (GABA) effect of (TH)TZ binding in the rat brain. Saturation studies showed a shift to lower affinity with increasing temperatures (K/sub d/ = 0.27 +/- 08 nM at 0C; K/sub d/ = 1.96 +/- 0.85 nM at 37C) while the B/sub max/ values remained unchanged (1220 +/- 176 fmoles/mg protein at 0C and 1160 +/- 383 fmoles/mg protein atmore » 37C). Saturation studies of (TH)TZ binding in the presence or absence of GABA (100 M) showed a GABA-shift. At 0C the K/sub d/ values were (K/sub d/ = 0.24 +/- 0.03 nM/-GABA; K/sub d/ = 0.16 +/- 0.04/+GABA) and at 37C the K/sub d/ values were (K/sub d/ = 1.84 +/- 0.44 nM/-GABA; K/sub d/ = 0.95 +/- 0.29 nM/+GABA). In contrast to reported literature, the authors findings show that TZ interacts with benzodiazepine receptors with a temperature dependence and GABA-shift consistent with predicted behavior for benzodiazepine agonists. 20 references, 3 tables.« less

  4. GABA promotes elastin synthesis and elastin fiber formation in normal human dermal fibroblasts (HDFs).

    PubMed

    Uehara, Eriko; Hokazono, Hideki; Hida, Mariko; Sasaki, Takako; Yoshioka, Hidekatsu; Matsuo, Noritaka

    2017-06-01

    The multiple physiological effects of γ-aminobutyric acid (GABA) as a functional food component have been recently reported. We previously reported that GABA upregulated the expression of type I collagen in human dermal fibroblasts (HDFs), and that oral administration of GABA significantly increased skin elasticity. However, details of the regulatory mechanism still remain unknown. In this study, we further examined the effects of GABA on elastin synthesis and elastin fiber formation in HDFs. Real-time PCR indicated that GABA significantly increased the expression of tropoelastin transcript in a dose-dependent manner. Additionally, the expression of fibrillin-1, fibrillin-2, and fibulin-5/DANCE, but not lysyl oxidase and latent transforming factor-β-binding protein 4, were also significantly increased in HDFs. Finally, immunohistochemical analysis confirmed that treatment with GABA dramatically increased the formation of elastic fibers in HDFs. Taken together, our results showed that GABA improves skin elasticity in HDFs by upregulating elastin synthesis and elastin fiber formation.

  5. Is plasma GABA level a biomarker of Post-Traumatic Stress Disorder (PTSD) severity? A preliminary study.

    PubMed

    Trousselard, Marion; Lefebvre, Bertrand; Caillet, Lionel; Andruetan, Yann; de Montleau, Franck; Denis, Josiane; Canini, Frédéric

    2016-07-30

    An increased reactivity to the environment is observed in Post-Traumatic Stress Disorder (PTSD). It would be related to impairment of the Gamma Amino Butyric Acid (GABA) neurotransmission. The study aimed to evaluate plasma GABA concentration as a candidate for PTSD severity biomarker. This hypothesis was studied in 17 PTSD patients and 17 healthy Controls using classic and emotional Stroop paradigms. Plasma GABA concentrations were assessed before and after both Stroop tests to evaluate GABA basal tone and GABA reactivity (change in GABAp), respectively. During baseline, PTSD had lower plasma GABA concentrations than the Controls. After the Stroop conflicts GABA reactivity was also lower in PTSD than in the Controls. The GABA baseline tone was negatively correlated with the severity of the PTSD symptoms. This relation was only marginally observed for GABA reactivity. The results produced a trend due to the small size of the sample compared to the number of statistical results given. Altogether, the reduced GABA concentration observed in PTSD could be considered as a possible biomarker for PTSD severity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. GABA/benzodiazepine receptor complex in long-sleep and short-sleep mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marley, R.J.

    LS mice are more sensitive to benzodiazepine-induced anesthesia; however, the two lines do not differ in their hypothermic response to flurazepam. SS mice are more resistant to 3-mercaptopropionic acid-induced seizures and more sensitive to the anticonvulsant effects of benzodiazepines. The various correlates of GABA and benzodiazepine actions probably are the results of different mechanisms of action and/or differential regional control. Bicuculline competition for /sup 3/H-GABA binding sites is greater in SS cerebellar tissue and /sup 3/H-flunitrazepam binding is greater in the mid-brain region of LS mice. GABA enhancement of /sup 3/H-flunitrazepma binding is greater in SS mice. Ethanol also enhancesmore » /sup 3/H-flunitrazepam binding and increases the levels of /sup 3/H-flunitrazepam binding above those observed for GABA. Using correlational techniques on data from LS and SS mice and several inbred mouse strains, it was demonstrated that a positive relationship exists between the degree of receptor coupling within the GABA receptor complex and the degree of resistance to seizures.« less

  7. GABA metabolism pathway genes, UGA1 and GAD1, regulate replicative lifespan in Saccharomycescerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamei, Yuka; Tamura, Takayuki; Yoshida, Ryo

    2011-04-01

    Highlights: {yields}We demonstrate that two genes in the yeast GABA metabolism pathway affect aging. {yields} Deletion of the UGA1 or GAD1 genes extends replicative lifespan. {yields} Addition of GABA to wild-type cultures has no effect on lifespan. {yields} Intracellular GABA levels do not differ in longevity mutants and wild-type cells. {yields} Levels of tricarboxylic acid cycle intermediates positively correlate with lifespan. -- Abstract: Many of the genes involved in aging have been identified in organisms ranging from yeast to human. Our previous study showed that deletion of the UGA3 gene-which encodes a zinc-finger transcription factor necessary for {gamma}-aminobutyric acid (GABA)-dependentmore » induction of the UGA1 (GABA aminotransferase), UGA2 (succinate semialdehyde dehydrogenase), and UGA4 (GABA permease) genes-extends replicative lifespan in the budding yeast Saccharomycescerevisiae. Here, we found that deletion of UGA1 lengthened the lifespan, as did deletion of UGA3; in contrast, strains with UGA2 or UGA4 deletions exhibited no lifespan extension. The {Delta}uga1 strain cannot deaminate GABA to succinate semialdehyde. Deletion of GAD1, which encodes the glutamate decarboxylase that converts glutamate into GABA, also increased lifespan. Therefore, two genes in the GABA metabolism pathway, UGA1 and GAD1, were identified as aging genes. Unexpectedly, intracellular GABA levels in mutant cells (except for {Delta}uga2 cells) did not differ from those in wild-type cells. Addition of GABA to culture media, which induces transcription of the UGA structural genes, had no effect on replicative lifespan of wild-type cells. Multivariate analysis of {sup 1}H nuclear magnetic resonance spectra for the whole-cell metabolite levels demonstrated a separation between long-lived and normal-lived strains. Gas chromatography-mass spectrometry analysis of identified metabolites showed that levels of tricarboxylic acid cycle intermediates positively correlated with

  8. Disruption of the GABA shunt affects mitochondrial respiration and virulence in the cereal pathogen Fusarium graminearum.

    PubMed

    Bönnighausen, Jakob; Gebhard, Daniel; Kröger, Cathrin; Hadeler, Birgit; Tumforde, Thomas; Lieberei, Reinhard; Bergemann, Jörg; Schäfer, Wilhelm; Bormann, Jörg

    2015-12-01

    The cereal pathogen Fusarium graminearum threatens food and feed production worldwide. It reduces the yield and poisons the remaining kernels with mycotoxins, notably deoxynivalenol (DON). We analyzed the importance of gamma-aminobutanoic acid (GABA) metabolism for the life cycle of this fungal pathogen. GABA metabolism in F. graminearum is partially regulated by the global nitrogen regulator AreA. Genetic disruption of the GABA shunt by deletion of two GABA transaminases renders the pathogen unable to utilize the plant stress metabolites GABA and putrescine. The mutants showed increased sensitivity against oxidative stress, GABA accumulation in the mycelium, downregulation of two key enzymes of the TCA cycle, disturbed potential gradient in the mitochondrial membrane and lower mitochondrial oxygen consumption. In contrast, addition of GABA to the wild type resulted in its rapid turnover and increased mitochondrial steady state oxygen consumption. GABA concentrations are highly upregulated in infected wheat tissues. We conclude that GABA is metabolized by the pathogen during infection increasing its energy production, whereas the mutants accumulate GABA intracellularly resulting in decreased energy production. Consequently, the GABA mutants are strongly reduced in virulence but, because of their DON production, are able to cross the rachis node. © 2015 John Wiley & Sons Ltd.

  9. Subchronic toxicity evaluation of γ-aminobutyric acid (GABA) in rats.

    PubMed

    Takeshima, Kazuhito; Yamatsu, Atsushi; Yamashita, Yusuke; Watabe, Kazuya; Horie, Noriko; Masuda, Kazuyuki; Kim, Mujo

    2014-06-01

    γ-Aminobutyric acid (GABA) is an amino acid compound contained in vegetables such as tomatoes and also widely distributed in mammals. GABA acts as an inhibitory neurotransmitter and promotes parasympathetic activity to provide several beneficial effects, for instance, relaxation, anti-stress, and insomnia. GABA, produced via a fermentation process, has been available as a functional food ingredient. As part of a program to assess its safety, GABA was administered by oral gavage at doses of 500, 1250, and 2500mg/kg body weight to groups of 10 male and 10 female Sprague-Dawley rats for 13weeks. Treatment was not associated with the test substance-related mortality and appeared to be well tolerated. There were no toxicologically and statistically significant changes in urinalysis, hematology, clinical chemistry parameters, and in necropsy findings. A few statistically significant changes in food consumption and body weights were noted in the male groups while any significant changes were not noted in female groups. There was no effect of treatment on organ weights or on the results of the histopathological examinations. The results of toxicity evaluation support the safety use of GABA and the potential use as a functional food ingredient. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. GABA(B) receptor modulation of feedforward inhibition through hippocampal neurogliaform cells.

    PubMed

    Price, Christopher J; Scott, Ricardo; Rusakov, Dmitri A; Capogna, Marco

    2008-07-02

    Feedforward inhibition of neurons is a fundamental component of information flow control in the brain. We studied the roles played by neurogliaform cells (NGFCs) of stratum lacunosum moleculare of the hippocampus in providing feedforward inhibition to CA1 pyramidal cells. We recorded from synaptically coupled pairs of anatomically identified NGFCs and CA1 pyramidal cells and found that, strikingly, a single presynaptic action potential evoked a biphasic unitary IPSC (uIPSC), consisting of two distinct components mediated by GABA(A) and GABA(B) receptors. A GABA(B) receptor-mediated unitary response has not previously been observed in hippocampal excitatory neurons. The decay of the GABA(A) receptor-mediated response was slow (time constant = 50 ms), and was tightly regulated by presynaptic GABA(B) receptors. Surprisingly, the GABA(B) receptor ligands baclofen and (2S)-3-{[(1S)-1-(3,4-dichlorophenyl)ethyl]amino-2-hydroxypropyl}(phenylmethyl)phosphinic acid (CGP55845), while affecting the NGFC-mediated uIPSCs, had no effect on action potential-evoked presynaptic Ca2+ signals monitored in individual axonal boutons of NGFCs with two-photon microscopy. In contrast, baclofen clearly depressed presynaptic Ca2+ transients in non-NGF interneurons. Changes in extracellular Ca2+ concentration that mimicked the effects of baclofen or CGP55845 on uIPSCs significantly altered presynaptic Ca2+ transients. Electrophysiological data suggest that GABA(B) receptors expressed by NGFCs contribute to the dynamic control of the excitatory input to CA1 pyramidal neurons from the temporoammonic path. The NGFC-CA1 pyramidal cell connection therefore provides a unique and subtle mechanism to shape the integration time domain for signals arriving via a major excitatory input to CA1 pyramidal cells.

  11. Dorsolateral Prefrontal Cortex GABA Concentration in Humans Predicts Working Memory Load Processing Capacity.

    PubMed

    Yoon, Jong H; Grandelis, Anthony; Maddock, Richard J

    2016-11-16

    The discovery of neural mechanisms of working memory (WM) would significantly enhance our understanding of complex human behaviors and guide treatment development for WM-related impairments found in neuropsychiatric conditions and aging. Although the dorsolateral prefrontal cortex (DLPFC) has long been considered critical for WM, we still know little about the neural elements and pathways within the DLPFC that support WM in humans. In this study, we tested whether an individual's DLPFC gamma-aminobutryic acid (GABA) content predicts individual differences in WM task performance using a novel behavioral approach. Twenty-three healthy adults completed a task that measured the unique contribution of major WM components (memory load, maintenance, and distraction resistance) to performance. This was done to address the possibility that components have differing GABA dependencies and the failure to parse WM into components would lead to missing true associations with GABA. The subjects then had their DLPFC GABA content measured by single-voxel proton magnetic spectroscopy. We found that individuals with lower DLPFC GABA showed greater performance degradation with higher load, accounting for 31% of variance, p (corrected) = 0.015. This relationship was component, neurochemical, and brain region specific. DLPFC GABA content did not predict performance sensitivity to other components tested; DLPFC glutamate + glutamine and visual cortical GABA content did not predict load sensitivity. These results confirm the involvement of DLPFC GABA in WM load processing in humans and implicate factors controlling DLPFC GABA content in the neural mechanisms of WM and its impairments. This study demonstrated for the first time that the amount of gamma-aminobutryic acid (GABA), the major inhibitory neurotransmitter of the brain, in an individual's prefrontal cortex predicts working memory (WM) task performance. Given that WM is required for many of the most characteristic cognitive and

  12. GABA-A Receptors Mediate Tonic Inhibition and Neurosteroid Sensitivity in the Brain.

    PubMed

    Reddy, Doodipala Samba

    2018-01-01

    Neurosteroids like allopregnanolone (AP) are positive allosteric modulators of synaptic and extrasynaptic GABA-A receptors. AP and related neurosteroids exhibit a greater potency for δ-containing extrasynaptic receptors. The δGABA-A receptors, which are expressed extrasynaptically in the dentate gyrus and other regions, contribute to tonic inhibition, promoting network shunting as well as reducing seizure susceptibility. Levels of endogenous neurosteroids fluctuate with ovarian cycle. Natural and synthetic neurosteroids maximally potentiate tonic inhibition in the hippocampus and provide robust protection against a variety of limbic seizures and status epilepticus. Recently, a consensus neurosteroid pharmacophore model has been proposed at extrasynaptic δGABA-A receptors based on structure-activity relationship for functional activation of tonic currents and seizure protection. Aside from anticonvulsant actions, neurosteroids have been found to be powerful anxiolytic and anesthetic agents. Neurosteroids and Zn 2+ have preferential affinity for δ-containing receptors. Thus, Zn 2+ can prevent neurosteroid activation of extrasynaptic δGABA-A receptor-mediated tonic inhibition. Recently, we demonstrated that Zn 2+ selectively inhibits extrasynaptic δGABA-A receptors and thereby fully prevents AP activation of tonic inhibition and seizure protection. We confirmed that neurosteroids exhibit greater sensitivity at extrasynaptic δGABA-A receptors. Overall, extrasynaptic GABA-A receptors are primary mediators of tonic inhibition in the brain and play a key role in the pathophysiology of epilepsy and other neurological disorders. © 2018 Elsevier Inc. All rights reserved.

  13. The Association Between Clinical Characteristics of Migraine and Brain GABA Levels: An Exploratory Study.

    PubMed

    Aguila, Maria-Eliza R; Rebbeck, Trudy; Leaver, Andrew M; Lagopoulos, Jim; Brennan, Patrick C; Hübscher, Markus; Refshauge, Kathryn M

    2016-10-01

    Migraine is prevalent and disabling yet is poorly understood. One way to better understand migraine is to examine its clinical characteristics and potential biomarkers such as gamma-aminobutyric acid (GABA). The primary objective of this study was to explore whether relevant disease characteristics of migraine are associated with brain GABA levels. Twenty adults fulfilling the established diagnostic criteria for migraine and 20 age- and gender-matched controls completed this cross-sectional study. Pain, central sensitization, negative emotional state, and perceived disability were measured using Short-form McGill Pain Questionnaire-2, Central Sensitization Inventory, Depression Anxiety Stress Scales-21, and Headache Impact Test-6, respectively. Secondary analysis of brain GABA levels of the same cohort measured using proton magnetic resonance spectroscopy was conducted. The migraine group had significantly higher scores than the control group on pain, central sensitization, and disability. Correlation analyses showed fair positive association between GABA levels and pain and central sensitization scores. No association was found between GABA levels and emotional state and disability. These findings are preliminary evidence supporting the use of questionnaires and GABA levels in characterizing migraine better and broadening the diagnostic process. These findings also strengthen the rationale for the role of GABA in migraine pathophysiology and corroborate the potential of GABA as a migraine biomarker. Higher pain and central sensitization scores were associated with increased brain GABA levels in individuals with migraine. These findings offer preliminary evidence for the usefulness of measuring pain and central sensitization in migraine and provide some support for the possible role of GABA in migraine pathophysiology and its potential as a diagnostic marker. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.

  14. Gamma-aminobutyric acid (GABA) stimulates pancreatic cancer growth through overexpressing GABAA receptor pi subunit.

    PubMed

    Takehara, Akio; Hosokawa, Masayo; Eguchi, Hidetoshi; Ohigashi, Hiroaki; Ishikawa, Osamu; Nakamura, Yusuke; Nakagawa, Hidewaki

    2007-10-15

    Gamma-aminobutyric acid (GABA) functions primarily as an inhibitory neurotransmitter in the mature central nervous system, and GABA/GABA receptors are also present in nonneural tissues, including cancer, but their precise function in nonneuronal or cancerous cells has thus far been poorly defined. Through the genome-wide cDNA microarray analysis of pancreatic ductal adenocarcinoma (PDAC) cells as well as subsequent reverse transcription-PCR and Northern blot analyses, we identified the overexpression of GABA receptor pi subunit (GABRP) in PDAC cells. We also found the expression of this peripheral type GABAA receptor subunit in few adult human organs. Knockdown of endogenous GABRP expression in PDAC cells by small interfering RNA attenuated PDAC cell growth, suggesting its essential role in PDAC cell viability. Notably, the addition of GABA into the cell culture medium promoted the proliferation of GABRP-expressing PDAC cells, but not GABRP-negative cells, and GABAA receptor antagonists inhibited this growth-promoting effect by GABA. The HEK293 cells constitutively expressing exogenous GABRP revealed the growth-promoting effect of GABA treatment. Furthermore, GABA treatment in GABRP-positive cells increased intracellular Ca2+ levels and activated the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/Erk) cascade. Clinical PDAC tissues contained a higher level of GABA than normal pancreas tissues due to the up-regulation of glutamate decarboxylase 1 expression, suggesting their autocrine/paracrine growth-promoting effect in PDACs. These findings imply that GABA and GABRP could play important roles in PDAC development and progression, and that this pathway can be a promising molecular target for the development of new therapeutic strategies for PDAC.

  15. Enhanced phasic GABA inhibition during the repair phase of stroke: a novel therapeutic target

    PubMed Central

    Paz, Jeanne T.; Wang, Eric Hou Jen; Badgely, Corrine; Olson, Andrew; Micheva, Kristina D.; Wang, Gordon; Lemmens, Robin; Tran, Kevin V.; Nishiyama, Yasuhiro; Liang, Xibin; Hamilton, Scott A.; O’Rourke, Nancy; Smith, Stephen J.; Huguenard, John R.; Bliss, Tonya M.

    2016-01-01

    Abstract Ischaemic stroke is the leading cause of severe long-term disability yet lacks drug therapies that promote the repair phase of recovery. This repair phase of stroke occurs days to months after stroke onset and involves brain remapping and plasticity within the peri-infarct zone. Elucidating mechanisms that promote this plasticity is critical for the development of new therapeutics with a broad treatment window. Inhibiting tonic (extrasynaptic) GABA signalling during the repair phase was reported to enhance functional recovery in mice suggesting that GABA plays an important function in modulating brain repair. While tonic GABA appears to suppress brain repair after stroke, less is known about the role of phasic (synaptic) GABA during the repair phase. We observed an increase in postsynaptic phasic GABA signalling in mice within the peri-infarct cortex specific to layer 5; we found increased numbers of α1 receptor subunit-containing GABAergic synapses detected using array tomography, and an associated increased efficacy of spontaneous and miniature inhibitory postsynaptic currents in pyramidal neurons. Furthermore, we demonstrate that enhancing phasic GABA signalling using zolpidem, a Food and Drug Administration (FDA)-approved GABA-positive allosteric modulator, during the repair phase improved behavioural recovery. These data identify potentiation of phasic GABA signalling as a novel therapeutic strategy, indicate zolpidem’s potential to improve recovery, and underscore the necessity to distinguish the role of tonic and phasic GABA signalling in stroke recovery. PMID:26685158

  16. Enhanced phasic GABA inhibition during the repair phase of stroke: a novel therapeutic target.

    PubMed

    Hiu, Takeshi; Farzampour, Zoya; Paz, Jeanne T; Wang, Eric Hou Jen; Badgely, Corrine; Olson, Andrew; Micheva, Kristina D; Wang, Gordon; Lemmens, Robin; Tran, Kevin V; Nishiyama, Yasuhiro; Liang, Xibin; Hamilton, Scott A; O'Rourke, Nancy; Smith, Stephen J; Huguenard, John R; Bliss, Tonya M; Steinberg, Gary K

    2016-02-01

    Ischaemic stroke is the leading cause of severe long-term disability yet lacks drug therapies that promote the repair phase of recovery. This repair phase of stroke occurs days to months after stroke onset and involves brain remapping and plasticity within the peri-infarct zone. Elucidating mechanisms that promote this plasticity is critical for the development of new therapeutics with a broad treatment window. Inhibiting tonic (extrasynaptic) GABA signalling during the repair phase was reported to enhance functional recovery in mice suggesting that GABA plays an important function in modulating brain repair. While tonic GABA appears to suppress brain repair after stroke, less is known about the role of phasic (synaptic) GABA during the repair phase. We observed an increase in postsynaptic phasic GABA signalling in mice within the peri-infarct cortex specific to layer 5; we found increased numbers of α1 receptor subunit-containing GABAergic synapses detected using array tomography, and an associated increased efficacy of spontaneous and miniature inhibitory postsynaptic currents in pyramidal neurons. Furthermore, we demonstrate that enhancing phasic GABA signalling using zolpidem, a Food and Drug Administration (FDA)-approved GABA-positive allosteric modulator, during the repair phase improved behavioural recovery. These data identify potentiation of phasic GABA signalling as a novel therapeutic strategy, indicate zolpidem's potential to improve recovery, and underscore the necessity to distinguish the role of tonic and phasic GABA signalling in stroke recovery. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  17. Activation induced changes in GABA: Functional MRS at 7T with MEGA-sLASER.

    PubMed

    Chen, Chen; Sigurdsson, Hilmar P; Pépés, Sophia E; Auer, Dorothee P; Morris, Peter G; Morgan, Paul S; Gowland, Penny A; Jackson, Stephen R

    2017-08-01

    Functional magnetic resonance spectroscopy (fMRS) has been used to assess the dynamic metabolic responses of the brain to a physiological stimulus non-invasively. However, only limited information on the dynamic functional response of γ-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the brain, is available. We aimed to measure the activation-induced changes in GABA unambiguously using a spectral editing method, instead of the conventional direct detection techniques used in previous fMRS studies. The Mescher-Garwood-semi-localised by adiabatic selective refocusing (MEGA-sLASER) sequence was developed at 7T to obtain the time course of GABA concentration without macromolecular contamination. A significant decrease (-12±5%) in the GABA to total creatine ratio (GABA/tCr) was observed in the motor cortex during a period of 10min of hand-clenching, compared to an initial baseline level (GABA/tCr =0.11±0.02) at rest. An increase in the Glx (glutamate and glutamine) to tCr ratio was also found, which is in agreement with previous findings. In contrast, no significant changes in NAA/tCr and tCr were detected. With consistent and highly efficient editing performance for GABA detection and the advantage of visually identifying GABA resonances in the spectra, MEGA-sLASER is demonstrated to be an effective method for studying of dynamic changes in GABA at 7T. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The Improvement of Sleep by Oral Intake of GABA and Apocynum venetum Leaf Extract.

    PubMed

    Yamatsu, Atsushi; Yamashita, Yusuke; Maru, Isafumi; Yang, Jinwei; Tatsuzaki, Jin; Kim, Mujo

    2015-01-01

    The effects of two food materials, γ-aminobutyric acid (GABA) produced by natural fermentation and Apocynum venetum leaf extract (AVLE), on the improvement of sleep were investigated in humans. The electroencephalogram (EEG) test revealed that oral administration of GABA (100 mg) and AVLE (50 mg) had beneficial effects on sleep. GABA shortened sleep latency by 5.3 min and AVLE increased non-rapid eye movement (REM) sleep time by 7.6%. Simultaneous intake of GABA and AVLE shortened sleep latency by 4.3 min and increased non-REM sleep time by 5.1%. The result of questionnaires showed that GABA and AVLE enabled subjects to realize the effects on sleep. These results mean that GABA can help people to fall asleep quickly, AVLE induces deep sleep, and they function complementarily with simultaneous intake. Since both GABA and AVLE are materials of foods and have been ingested for a long time, they can be regarded as safe and appropriate for daily intake in order to improve the quality of sleep.

  19. Modulation of GABA receptors expressed in Xenopus oocytes by 13-L-hydroxylinoleic acid and food additives.

    PubMed

    Aoshima, H; Tenpaku, Y

    1997-12-01

    To study the effects of 13-L-hydroxylinoleic acid (LOH) and food additives on gamma-aminobutyric acid (GABA) receptors, ionotropic GABA receptors were expressed in Xenopus oocytes by injecting mRNAs prepared from rat whole brain. LOH, which was prepared by reduction of 13-L-hydroperoxylinoleic acid (LOOH), inhibited the response of GABA receptors in the presence of high concentrations of GABA. LOH also inhibited nicotinic acetylcholine, glycine, and kainate receptors, while it had little effect on NMDA receptors expressed in Xenopus oocytes. However, LOH potentiated the response of GABA receptors as well as LOOH in the presence of low concentrations of GABA, possibly increasing the affinity of GABA for the receptors, while linoleic acid did not. Since some modification of the compounds seemed to change their effects on GABA receptors, the responses of GABA receptors elicited by 10 microM GABA were measured in the presence of compounds with various kinds of functional groups or the structural isomers of pentanol. Potentiation of GABA receptors depended strongly on the species of functional groups and also depended on the structure of the isomers. Then effects of various kinds of food additives on GABA receptors were also examined; perfumes such as alcohols or esters potentiated the responses strongly, while hexylamine, nicotinamide, or caffeine inhibited the responses, mainly in a competitive manner, and vanillin inhibited the responses noncompetitively. These results suggest the possibility that production of LOOH and LOH, or intake of much of some food additives, modulates the neural transmission in the brain, especially through ionotropic GABA receptors and changes the frame of the human mind, as alcohol or tobacco does.

  20. Changes in plasma GABA concentration during vigabatrin treatment of epilepsy: a prospective study.

    PubMed

    Erdal, J; Gram, L; Alving, J; Löscher, W

    1999-04-01

    The aim of the present prospective study was to evaluate changes in plasma GABA concentration in relation to clinical response during vigabatrin treatment of epilepsy. We studied 29 patients with uncontrolled partial-onset seizures during open add-on vigabatrin treatment and measured plasma GABA and vigabatrin concentrations by a sensitive HPLC method. Following short-term treatment 17 out of 28 patients had a seizure reduction of > 50% (responders). After long-term treatment 16 out of 22 patients were responders. There was no difference between responders and nonresponders regarding pretreatment seizure frequency, treatment duration, vigabatrin dose, or plasma vigabatrin concentration. Responders had a significant (p < 0.001) increase in mean plasma GABA both after short-term (from 0.380 to 0.530 nmol/ml; mean increase: 48%) and after long-term (from 0.392 to 0.618 nmol/ml; mean increase: 71%) vigabatrin treatment, whilst nonresponders had no significant changes in GABA levels. However, since plasma GABA increased in a subgroup of nonresponders, mean plasma GABA levels did not differ between responders and nonresponders. Although plasma GABA increased significantly in the responder but not in the nonresponder group during vigabatrin treatment of patients with epilepsy, it does not seem to be a reliable marker of individual clinical response to vigabatrin treatment.

  1. Action of tremorgenic mycotoxins on GABA/sub A/ receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gant, D.B.; Cole, R.J.; Valdes, J.J.

    1987-11-09

    The effects of four tremorgenic and one nontremorgenic mycotoxins were studied on ..gamma..-aminobutyric acid (GABA/sub A/) receptor binding and function in rat brain and on binding of a voltage-operated Cl/sup -/ channel in Torpedo electric organ. None of the mycotoxins had significant effect on (/sup 3/H)muscimol or (/sup 3/H)flunitrazepam binding to the GAMA/sup A/ receptor. However, only the four tremorgenic mycotoxins inhibited GABA-induced /sup 36/Cl/sup -/ influx and (/sup 35/S)t-butylbicyclophosphorothionate ((/sup 35/S)TBPS) binding in rate brain membranes, while the nontremorgenic verruculotoxin had no effect. Inhibition of (/sup 35/S)TBPS binding by paspalinine was non-competitive. This suggests that tremorgenic mycotoxins inhibit GABA/submore » A/ receptor function by binding close to the receptor's Cl/sup -/ channel. On the voltage-operated Cl/sup -/ channel, only high concentrations of verruculogen and verruculotoxin caused significant inhibition of the channel's binding of (/sup 35/S)TBPS. The data suggest that the tremorgenic action of these mycotoxins may be due in part to their inhibition of GABA/sub A/ receptor function. 21 references, 4 figures, 2 tables.« less

  2. Depolarizing actions of GABA in immature neurons depend neither on ketone bodies nor on pyruvate.

    PubMed

    Tyzio, Roman; Allene, Camille; Nardou, Romain; Picardo, Michel A; Yamamoto, Sumii; Sivakumaran, Sudhir; Caiati, Maddalena D; Rheims, Sylvain; Minlebaev, Marat; Milh, Mathieu; Ferré, Pascal; Khazipov, Rustem; Romette, Jean-Louis; Lorquin, Jean; Cossart, Rosa; Khalilov, Ilgam; Nehlig, Astrid; Cherubini, Enrico; Ben-Ari, Yehezkel

    2011-01-05

    GABA depolarizes immature neurons because of a high [Cl(-)](i) and orchestrates giant depolarizing potential (GDP) generation. Zilberter and coworkers (Rheims et al., 2009; Holmgren et al., 2010) showed recently that the ketone body metabolite DL-3-hydroxybutyrate (DL-BHB) (4 mM), lactate (4 mM), or pyruvate (5 mM) shifted GABA actions to hyperpolarizing, suggesting that the depolarizing effects of GABA are attributable to inadequate energy supply when glucose is the sole energy source. We now report that, in rat pups (postnatal days 4-7), plasma D-BHB, lactate, and pyruvate levels are 0.9, 1.5, and 0.12 mM, respectively. Then, we show that DL-BHB (4 mM) and pyruvate (200 μM) do not affect (i) the driving force for GABA(A) receptor-mediated currents (DF(GABA)) in cell-attached single-channel recordings, (2) the resting membrane potential and reversal potential of synaptic GABA(A) receptor-mediated responses in perforated patch recordings, (3) the action potentials triggered by focal GABA applications, or (4) the GDPs determined with electrophysiological recordings and dynamic two-photon calcium imaging. Only very high nonphysiological concentrations of pyruvate (5 mM) reduced DF(GABA) and blocked GDPs. Therefore, DL-BHB does not alter GABA signals even at the high concentrations used by Zilberter and colleagues, whereas pyruvate requires exceedingly high nonphysiological concentrations to exert an effect. There is no need to alter conventional glucose enriched artificial CSF to investigate GABA signals in the developing brain.

  3. Galanin-Expressing GABA Neurons in the Lateral Hypothalamus Modulate Food Reward and Noncompulsive Locomotion.

    PubMed

    Qualls-Creekmore, Emily; Yu, Sangho; Francois, Marie; Hoang, John; Huesing, Clara; Bruce-Keller, Annadora; Burk, David; Berthoud, Hans-Rudolf; Morrison, Christopher D; Münzberg, Heike

    2017-06-21

    The lateral hypothalamus (LHA) integrates reward and appetitive behavior and is composed of many overlapping neuronal populations. Recent studies associated LHA GABAergic neurons (LHA GABA ), which densely innervate the ventral tegmental area (VTA), with modulation of food reward and consumption; yet, LHA GABA projections to the VTA exclusively modulated food consumption, not reward. We identified a subpopulation of LHA GABA neurons that coexpress the neuropeptide galanin (LHA Gal ). These LHA Gal neurons also modulate food reward, but lack direct VTA innervation. We hypothesized that LHA Gal neurons may represent a subpopulation of LHA GABA neurons that mediates food reward independent of direct VTA innervation. We used chemogenetic activation of LHA Gal or LHA GABA neurons in mice to compare their role in feeding behavior. We further analyzed locomotor behavior to understand how differential VTA connectivity and transmitter release in these LHA neurons influences this behavior. LHA Gal or LHA GABA neuronal activation both increased operant food-seeking behavior, but only activation of LHA GABA neurons increased overall chow consumption. Additionally, LHA Gal or LHA GABA neuronal activation similarly induced locomotor activity, but with striking differences in modality. Activation of LHA GABA neurons induced compulsive-like locomotor behavior; while LHA Gal neurons induced locomotor activity without compulsivity. Thus, LHA Gal neurons define a subpopulation of LHA GABA neurons without direct VTA innervation that mediate noncompulsive food-seeking behavior. We speculate that the striking difference in compulsive-like locomotor behavior is also based on differential VTA innervation. The downstream neural network responsible for this behavior and a potential role for galanin as neuromodulator remains to be identified. SIGNIFICANCE STATEMENT The lateral hypothalamus (LHA) regulates motivated feeding behavior via GABAergic LHA neurons. The molecular identity of LHA

  4. GABA abnormalities in schizophrenia: a methodological review of in vivo studies.

    PubMed

    Taylor, Stephan F; Tso, Ivy F

    2015-09-01

    Abnormalities of GABAergic interneurons are some of the most consistent findings from post-mortem studies of schizophrenia. However, linking these molecular deficits with in vivo observations in patients - a critical goal in order to evaluate interventions that would target GABAergic deficits - presents a challenge. Explanatory models have been developed based on animal work and the emerging experimental literature in schizophrenia patients. This literature includes: neuroimaging ligands to GABA receptors, magnetic resonance spectroscopy (MRS) of GABA concentration, transcranial magnetic stimulation of cortical inhibitory circuits and pharmacologic probes of GABA receptors to dynamically challenge the GABA system, usually in combination with neuroimaging studies. Pharmacologic challenges have elicited behavioral changes, and preliminary studies of therapeutic GABAergic interventions have been conducted. This article critically reviews the evidence for GABAergic dysfunction from each of these areas. These methods remain indirect measures of GABAergic function, and a broad array of dysfunction is linked with the putative GABAergic measures, including positive symptoms, cognition, emotion, motor processing and sensory processing, covering diverse brain areas. Measures of receptor binding have not shown replicable group differences in binding, and MRS assays of GABA concentration have yielded equivocal evidence of large-scale alteration in GABA concentration. Overall, the experimental base remains sparse, and much remains to be learned about the role of GABAergic interneurons in healthy brains. Challenges with pharmacologic and functional probes show promise, and may yet enable a better characterization of GABAergic deficits in schizophrenia. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Synchronization by Food Access Modifies the Daily Variations in Expression and Activity of Liver GABA Transaminase

    PubMed Central

    De Ita-Pérez, Dalia; Vázquez-Martínez, Olivia; Villalobos-Leal, Mónica

    2014-01-01

    Daytime restricted feeding (DRF) is an experimental protocol that influences the circadian timing system and underlies the expression of a biological clock known as the food entrained oscillator (FEO). Liver is the organ that reacts most rapidly to food restriction by adjusting the functional relationship between the molecular circadian clock and the metabolic networks. γ-Aminobutyric acid (GABA) is a signaling molecule in the liver, and able to modulate the cell cycle and apoptosis. This study was aimed at characterizing the expression and activity of the mostly mitochondrial enzyme GABA transaminase (GABA-T) during DRF/FEO expression. We found that DRF promotes a sustained increase of GABA-T in the liver homogenate and mitochondrial fraction throughout the entire day-night cycle. The higher amount of GABA-T promoted by DRF was not associated to changes in GABA-T mRNA or GABA-T activity. The GABA-T activity in the mitochondrial fraction even tended to decrease during the light period. We concluded that DRF influences the daily variations of GABA-T mRNA levels, stability, and catalytic activity of GABA-T. These data suggest that the liver GABAergic system responds to a metabolic challenge such as DRF and the concomitant appearance of the FEO. PMID:24809054

  6. Synchronization by food access modifies the daily variations in expression and activity of liver GABA transaminase.

    PubMed

    De Ita-Pérez, Dalia; Méndez, Isabel; Vázquez-Martínez, Olivia; Villalobos-Leal, Mónica; Díaz-Muñoz, Mauricio

    2014-01-01

    Daytime restricted feeding (DRF) is an experimental protocol that influences the circadian timing system and underlies the expression of a biological clock known as the food entrained oscillator (FEO). Liver is the organ that reacts most rapidly to food restriction by adjusting the functional relationship between the molecular circadian clock and the metabolic networks. γ-Aminobutyric acid (GABA) is a signaling molecule in the liver, and able to modulate the cell cycle and apoptosis. This study was aimed at characterizing the expression and activity of the mostly mitochondrial enzyme GABA transaminase (GABA-T) during DRF/FEO expression. We found that DRF promotes a sustained increase of GABA-T in the liver homogenate and mitochondrial fraction throughout the entire day-night cycle. The higher amount of GABA-T promoted by DRF was not associated to changes in GABA-T mRNA or GABA-T activity. The GABA-T activity in the mitochondrial fraction even tended to decrease during the light period. We concluded that DRF influences the daily variations of GABA-T mRNA levels, stability, and catalytic activity of GABA-T. These data suggest that the liver GABAergic system responds to a metabolic challenge such as DRF and the concomitant appearance of the FEO.

  7. GABA regulates synaptic integration of newly generated neurons in the adult brain

    NASA Astrophysics Data System (ADS)

    Ge, Shaoyu; Goh, Eyleen L. K.; Sailor, Kurt A.; Kitabatake, Yasuji; Ming, Guo-Li; Song, Hongjun

    2006-02-01

    Adult neurogenesis, the birth and integration of new neurons from adult neural stem cells, is a striking form of structural plasticity and highlights the regenerative capacity of the adult mammalian brain. Accumulating evidence suggests that neuronal activity regulates adult neurogenesis and that new neurons contribute to specific brain functions. The mechanism that regulates the integration of newly generated neurons into the pre-existing functional circuitry in the adult brain is unknown. Here we show that newborn granule cells in the dentate gyrus of the adult hippocampus are tonically activated by ambient GABA (γ-aminobutyric acid) before being sequentially innervated by GABA- and glutamate-mediated synaptic inputs. GABA, the major inhibitory neurotransmitter in the adult brain, initially exerts an excitatory action on newborn neurons owing to their high cytoplasmic chloride ion content. Conversion of GABA-induced depolarization (excitation) into hyperpolarization (inhibition) in newborn neurons leads to marked defects in their synapse formation and dendritic development in vivo. Our study identifies an essential role for GABA in the synaptic integration of newly generated neurons in the adult brain, and suggests an unexpected mechanism for activity-dependent regulation of adult neurogenesis, in which newborn neurons may sense neuronal network activity through tonic and phasic GABA activation.

  8. Antagonism of GABA-B but not GABA-A receptors in the VTA prevents stress- and intra-VTA CRF-induced reinstatement of extinguished cocaine seeking in rats

    PubMed Central

    Blacktop, Jordan M.; Vranjkovic, Oliver; Mayer, Matthieu; Van Hoof, Matthew; Baker, David A.; Mantsch, John R.

    2015-01-01

    Stress-induced reinstatement of cocaine seeking requires corticotropin releasing factor (CRF) actions in the ventral tegmental area (VTA). However the mechanisms through which CRF regulates VTA function to promote cocaine use are not fully understood. Here we examined the role of GABAergic neurotransmission in the VTA mediated by GABA-A or GABA-B receptors in the reinstatement of extinguished cocaine seeking by a stressor, uncontrollable intermittent footshock, or bilateral intra-VTA administration of CRF. Rats underwent repeated daily cocaine self-administration (1.0 mg/kg/ing; 14 × 6 hrs/day) and extinction and were tested for reinstatement in response to footshock (0.5 mA, 0.5” duration, average every 40 sec; range 10–70 sec) or intra-VTA CRF delivery (500 ng/side) following intra-VTA pretreatment with the GABA-A antagonist, bicuculline, the GABA-B antagonist, 2-hydroxysaclofen or vehicle. Intra-VTA bicuculline (1, 10 or 20 ng/side) failed to block footshock- or CRF-induced cocaine seeking at either dose tested. By contrast, 2-hydroxysaclofen (0.2 or 2 µg/side) prevented reinstatement by both footshock and intra-VTA CRF at a concentration that failed to attenuate food-reinforced lever pressing (45 mg sucrose-sweetened pellets; FR4 schedule) in a separate group of rats. These data suggest that GABA-B receptor-dependent CRF actions in the VTA mediate stress-induced cocaine seeking and that GABA-B receptor antagonists may have utility for the management of stress-induced relapse in cocaine addicts. PMID:26596556

  9. Modulation of GABA-stimulated chloride influx into membrane vesicles from rat cerebral cortex by triazolobenzodiazepines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obata, T.; Yamamura, H.I.

    1988-01-01

    The effects of triazolobenzodiazepines of GABA-stimulated /sup 36/Cl/sup -/ uptake by membrane vesicles from rat cerebral cortex were examined. Triazolam and alprazolam showed a significant enhancement of GABA-stimulated /sup 36/Cl/sup -/ uptake at 0.01-10 uM. On the other hand, adinazolam showed a small enhancement at 0.1-1 uM followed by a significant inhibition of GABA-stimulated /sup 36/Cl/sup -/ uptake at 100 uM. The enhancement of GABA-stimulated /sup 36/Cl/sup -/ uptake by 1 uM alprazolam was antagonized by Ro15-1788, a benzodiazepine antagonist, but the inhibition of this response by 30 uM adinazolam was not antagonized by Ro15-1788. These results indicate that triazolobenzodiazepinesmore » enhanced GABA-stimulated /sup 36/Cl/sup -/ uptake through benzodiazepine receptors. High concentrations of adinazolam inhibit GABA-stimulated /sup 36/Cl/sup -/ uptake which may be due to the direct blockade of GABA-gated chloride channel. 23 references, 4 figures.« less

  10. Ghrelin Causes a Decline in GABA Release by Reducing Fatty Acid Oxidation in Cortex.

    PubMed

    Mir, Joan Francesc; Zagmutt, Sebastián; Lichtenstein, Mathieu P; García-Villoria, Judit; Weber, Minéia; Gracia, Ana; Fabriàs, Gemma; Casas, Josefina; López, Miguel; Casals, Núria; Ribes, Antònia; Suñol, Cristina; Herrero, Laura; Serra, Dolors

    2018-02-02

    Lipid metabolism, specifically fatty acid oxidation (FAO) mediated by carnitine palmitoyltransferase (CPT) 1A, has been described to be an important actor of ghrelin action in hypothalamus. However, it is not known whether CPT1A and FAO mediate the effect of ghrelin on the cortex. Here, we show that ghrelin produces a differential effect on CPT1 activity and γ-aminobutyric acid (GABA) metabolism in the hypothalamus and cortex of mice. In the hypothalamus, ghrelin enhances CPT1A activity while GABA transaminase (GABAT) activity, a key enzyme in GABA shunt metabolism, is unaltered. However, in cortex CPT1A activity and GABAT activity are reduced after ghrelin treatment. Furthermore, in primary cortical neurons, ghrelin reduces GABA release through a CPT1A reduction. By using CPT1A floxed mice, we have observed that genetic ablation of CPT1A recapitulates the effect of ghrelin on GABA release in cortical neurons, inducing reductions in mitochondrial oxygen consumption, cell content of citrate and α-ketoglutarate, and GABA shunt enzyme activity. Taken together, these observations indicate that ghrelin-induced changes in CPT1A activity modulate mitochondrial function, yielding changes in GABA metabolism. This evidence suggests that the action of ghrelin on GABA release is region specific within the brain, providing a basis for differential effects of ghrelin in the central nervous system.

  11. Technological and safety properties of newly isolated GABA-producing Lactobacillus futsaii strains.

    PubMed

    Sanchart, C; Rattanaporn, O; Haltrich, D; Phukpattaranont, P; Maneerat, S

    2016-09-01

    To evaluate the technological and safety properties of Lactobacillus futsaii CS3 and CS5 isolated from Thai fermented shrimp products (Kung-Som) in order to develop a valuable gamma-aminobutyric acid (GABA)-producing starter culture. Both strains showed a high GABA-producing ability (>8 mg ml(-1) ) in MRS broth containing 20 mg ml(-1) monosodium glutamate (MSG) for 120 h. They also exhibited inhibitory activity against foodborne pathogens and spoilage bacteria. Cell surface hydrophobicity and proteolytic activity were observed in both strains. Strain CS3 survived better under simulated gastrointestinal tract conditions with only 1·5 log-units cell decrease over 8 h. Both strains showed the ability to deconjugate taurocholate and taurodeoxycholate acid. Neither virulence genes nor biogenic amine production was detected. Strain CS3 exhibited susceptibility to all tested antibiotics with the exception of vancomycin, while strain CS5 showed resistance to vancomycin, ampicillin and chloramphenicol. Based on the results obtained, Lact. futsaii CS3 is very promising as a GABA-producing and potentially probiotic starter culture strain for applications in functional fermented foods. This study focuses on the technological and safety characteristics of Lact. futsaii CS3 and CS5 including their high GABA-producing capacity for the first time. This provides a way of replacing chemical GABA by natural GABA using a GABA-producing starter culture candidate, at the same time offering the consumer new attractive food products. © 2016 The Society for Applied Microbiology.

  12. Restoration of GABA production machinery in Lactobacillus brevis by accessible carbohydrates, anaerobiosis and early acidification.

    PubMed

    Wu, Qinglong; Shah, Nagendra P

    2018-02-01

    Lactobacillus brevis is an efficient cell factory for producing bioactive γ-aminobutyric acid (GABA) by its gad operon-encoded glutamic acid decarboxylase (GAD) system. However, little mechanistic insights have been reported on the effects of carbohydrate, oxygen and early acidification on GABA production machinery in Lb. brevis. In the present study, GABA production from Lb. brevis was enhanced by accessible carbohydrates. Fast growth of this organism was stimulated by maltose and xylose. However, its GABA production was highly suppressed by oxygen exposure, but was fully restored by anaerobiosis that up-regulated the expression of gad operon in Lb. brevis cells. Although the level of cytosolic acidity was suitable for the functioning of GadA and GadB, early acidification of the medium (ipH 5 and ipH 4) restored GABA synthesis strictly in aerated cells of Lb. brevis because the expression of gad operon was not up-regulated in them. We conclude that GABA production machinery in Lb. brevis could be restored by accessible carbohydrates, anaerobiosis and early acidification. This will be of interest for controlling fermentation for synthesis of GABA and manufacturing GABA-rich fermented vegetables. Copyright © 2017. Published by Elsevier Ltd.

  13. Effect of acute psychological stress on prefrontal GABA concentration determined by proton magnetic resonance spectroscopy.

    PubMed

    Hasler, Gregor; van der Veen, Jan Willem; Grillon, Christian; Drevets, Wayne C; Shen, Jun

    2010-10-01

    Impaired function of the central gamma-aminobutyric acid (GABA) system, which provides the brain's major inhibitory pathways, is thought to play an important role in the pathophysiology of anxiety disorders. The effect of acute psychological stress on the human GABA-ergic system is still unknown, however. The purpose of this study was to determine the effect of acute stress on prefrontal GABA levels. A recently developed noninvasive magnetic resonance spectroscopy method was used to measure changes in the GABA concentration of the prefrontal cortex in 10 healthy human subjects during a threat-of-shock condition and during a safe condition (two sessions on different days). The main outcome measure was the mean GABA concentration within a 3×3×2-cm(3) voxel selected from the medial prefrontal cortex. Prefrontal GABA decreased by approximately 18% in the threat-of-shock condition relative to the safe condition. This reduction was specific to GABA, since the concentrations of N-acetyl-aspartate, choline-containing compounds, and glutamate/glutamine levels obtained in the same spectra did not change significantly. This result appeared compatible with evidence from preclinical studies in rodents, which showed rapid presynaptic down-regulation of GABA-ergic neurotransmission in response to acute psychological stress. The molecular mechanism and functional significance of this reduced inhibitory effect of acute psychological stress in relation to impaired GABA-ergic function in anxiety disorders merit further investigation.

  14. Accumulation of GABAergic neurons, causing a focal ambient GABA gradient, and downregulation of KCC2 are induced during microgyrus formation in a mouse model of polymicrogyria.

    PubMed

    Wang, Tianying; Kumada, Tatsuro; Morishima, Toshitaka; Iwata, Satomi; Kaneko, Takeshi; Yanagawa, Yuchio; Yoshida, Sachiko; Fukuda, Atsuo

    2014-04-01

    Although focal cortical malformations are considered neuronal migration disorders, their formation mechanisms remain unknown. We addressed how the γ-aminobutyric acid (GABA)ergic system affects the GABAergic and glutamatergic neuronal migration underlying such malformations. A focal freeze-lesion (FFL) of the postnatal day zero (P0) glutamic acid decarboxylase-green fluorescent protein knock-in mouse neocortex produced a 3- or 4-layered microgyrus at P7. GABAergic interneurons accumulated around the necrosis including the superficial region during microgyrus formation at P4, whereas E17.5-born, Cux1-positive pyramidal neurons outlined the GABAergic neurons and were absent from the superficial layer, forming cell-dense areas in layer 2 of the P7 microgyrus. GABA imaging showed that an extracellular GABA level temporally increased in the GABAergic neuron-positive area, including the necrotic center, at P4. The expression of the Cl(-) transporter KCC2 was downregulated in the microgyrus-forming GABAergic and E17.5-born glutamatergic neurons at P4; these cells may need a high intracellular Cl(-) concentration to induce depolarizing GABA effects. Bicuculline decreased the frequency of spontaneous Ca(2+) oscillations in these microgyrus-forming cells. Thus, neonatal FFL causes specific neuronal accumulation, preceded by an increase in ambient GABA during microgyrus formation. This GABA increase induces GABAA receptor-mediated Ca(2+) oscillation in KCC2-downregulated microgyrus-forming cells, as seen in migrating cells during early neocortical development.

  15. Regulation of (/sup 3/H)GABA release from strips of guinea pig urinary bladder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirakawa, J.; Taniyama, K.; Iwai, S.

    1988-12-01

    The presence of receptors that regulate the release of gamma-aminobutyric acid (GABA) was studied in strips of the guinea pig urinary bladder. GABA (10(-8)-10(-5) M) and muscimol (10(-8)-10(-5) M), but not baclofen (10(-5) M), reduced the Ca2+-dependent, tetrodotoxin-resistant release of (/sup 3/H)GABA evoked by high K+ from the urinary bladder strips preloaded with (/sup 3/H)GABA. The inhibitory effect of muscimol was antagonized by bicuculline and potentiated by diazepam, clonazepam, and pentobarbital sodium. The potentiating effect of clonazepam was antagonized by Ro 15-1788. Acetylcholine (ACh) inhibited the high K+-evoked release of (/sup 3/H)GABA. The inhibitory effect of ACh was antagonized bymore » atropine sulfate and pirenzepine but not by hexamethonium. Norepinephrine (NE) inhibited the evoked release of (/sup 3/H)GABA. The inhibitory effect of NE was mimicked by clonidine, but not by phenylephrine, and was antagonized by yohimbine but not by prazosin. These results provide evidence that the release of GABA from strips of guinea pig urinary bladder is regulated via the bicuculline-sensitive GABAA receptor, M1-muscarinic, and alpha 2-adrenergic receptors.« less

  16. New Pharmacotherapy Targeting Cognitive Dysfunction of Schizophrenia via Modulation of GABA Neuronal Function

    PubMed Central

    Jeon, Won Je; Sumiyoshi, Tomiki; Kurachi, Masayoshi

    2015-01-01

    Schizophrenia is considered a neurodevelopmental and neurodegenerative disorder. Cognitive impairment is a core symptom in patients with the illness, and has been suggested a major predictor of functional outcomes. Reduction of parvalbumin (PV)-positive γ-aminobutyric acid (GABA) interneurons has been associated with the pathophysiology of schizophrenia, in view of the link between the abnormality of GABA neurons and cognitive impairments of the disease. It is assumed that an imbalance of excitatory and inhibitory (E-I) activity induced by low activity of glutamatergic projections and PV-positive GABA interneurons in the prefrontal cortex resulted in sustained neural firing and gamma oscillation, leading to impaired cognitive function. Therefore, it is important to develop novel pharmacotherapy targeting GABA neurons and their activities. Clinical evidence suggests serotonin (5-HT) 1A receptor agonist improves cognitive disturbances of schizophrenia, consistent with results from preclinical studies, through mechanism that corrects E-I imbalance via the suppression of GABA neural function. On the other hand, T-817MA, a novel neurotrophic agent, ameliorated loss of PV-positive GABA neurons in the medial prefrontal cortex and reduction of gamma-band activity, as well as cognitive dysfunction in animal model of schizophrenia. In conclusion, a pharmacotherapy to alleviate abnormalities in GABA neurons through 5-HT1A agonists and T-817MA is expected to prevent the onset and/or progression of schizophrenia. PMID:26630957

  17. New Pharmacotherapy Targeting Cognitive Dysfunction of Schizophrenia via Modulation of GABA Neuronal Function.

    PubMed

    Uehara, Takashi; Sumiyoshi, Tomiki; Kurachi, Masayoshi

    2015-01-01

    Schizophrenia is considered a neurodevelopmental and neurodegenerative disorder. Cognitive impairment is a core symptom in patients with the illness, and has been suggested a major predictor of functional outcomes. Reduction of parvalbumin (PV)-positive γ-aminobutyric acid (GABA) interneurons has been associated with the pathophysiology of schizophrenia, in view of the link between the abnormality of GABA neurons and cognitive impairments of the disease. It is assumed that an imbalance of excitatory and inhibitory (E-I) activity induced by low activity of glutamatergic projections and PV-positive GABA interneurons in the prefrontal cortex resulted in sustained neural firing and gamma oscillation, leading to impaired cognitive function. Therefore, it is important to develop novel pharmacotherapy targeting GABA neurons and their activities. Clinical evidence suggests serotonin (5-HT) 1A receptor agonist improves cognitive disturbances of schizophrenia, consistent with results from preclinical studies, through mechanism that corrects E-I imbalance via the suppression of GABA neural function. On the other hand, T-817MA, a novel neurotrophic agent, ameliorated loss of PV-positive GABA neurons in the medial prefrontal cortex and reduction of gamma-band activity, as well as cognitive dysfunction in animal model of schizophrenia. In conclusion, a pharmacotherapy to alleviate abnormalities in GABA neurons through 5-HT1A agonists and T-817MA is expected to prevent the onset and/or progression of schizophrenia.

  18. Medial frontal GABA is lower in older schizophrenia: a MEGA-PRESS with macromolecule suppression study.

    PubMed

    Rowland, L M; Krause, B W; Wijtenburg, S A; McMahon, R P; Chiappelli, J; Nugent, K L; Nisonger, S J; Korenic, S A; Kochunov, P; Hong, L E

    2016-02-01

    Gamma-butyric acid (GABA) dysfunction has been implicated in the pathophysiology of schizophrenia and its cognitive deficits. Proton magnetic resonance spectroscopy (MRS) was used to test the hypothesis that older participants with schizophrenia have lower anterior cingulate GABA levels compared with older control participants. One-hundred forty-five participants completed this study. For detection of GABA, spectra were acquired from the medial frontal/anterior cingulate cortex using a macromolecule-suppressed MEGA-PRESS sequence. Patients were evaluated for psychopathology and all participants completed neuropsychological tests of working memory, processing speed and functional capacity. GABA levels were significantly lower in the older participants with schizophrenia (n=31) compared with the older control (n=37) group (P=0.003) but not between the younger control (n=40) and schizophrenia (n=29) groups (P=0.994). Age strongly predicted GABA levels in the schizophrenia group accounting for 42% of the variance, but the effect of age was less in the control group accounting for 5.7% of the variance. GABA levels were specifically related to working memory but not processing speed performance, functional capacity, or positive or negative symptom severity. This is the largest MRS study of GABA in schizophrenia and the first to examine GABA without macromolecule contamination, a potentially significant issue in previous studies. GABA levels more rapidly declined with advancing age in the schizophrenia compared with the control group. Interventions targeted at halting the decline or increasing GABA levels may improve functional outcomes and quality of life as patients with schizophrenia age.

  19. Medial Frontal GABA is Lower in Older Schizophrenia: A MEGA-PRESS with Macromolecule Suppression Study

    PubMed Central

    Rowland, Laura M; Krause, Benjamin W.; Wijtenburg, S. Andrea; McMahon, Robert P.; Chiappelli, Joshua; Nugent, Katie L.; Nisonger, Sarah J.; Korenic, Stephanie A.; Kochunov, Peter; Hong, L. Elliot

    2015-01-01

    Gamma-butyric acid (GABA) dysfunction has been implicated in the pathophysiology of schizophrenia and its cognitive deficits. Proton magnetic resonance spectroscopy (MRS) was used to test the hypothesis that older participants with schizophrenia have lower anterior cingulate GABA levels compared to older control participants. One-hundred and forty-five participants completed this study. For detection of GABA, spectra were acquired from the medial frontal/anterior cingulate cortex using a macromolecule-suppressed MEGA-PRESS sequence. Patients were evaluated for psychopathology and all participants completed neuropsychological tests of working memory, processing speed, and functional capacity. GABA levels were significantly lower in the older participants with schizophrenia(n=31) compared to the older control(n=37) group (p=0.003) but not between the younger control(n=40) and schizophrenia (n=29) groups (p=0.994). Age strongly predicted GABA levels in the schizophrenia group accounting for 42% of the variance, but the effect of age was less in the control group accounting for 5.7% of the variance. GABA levels were specifically related to working memory but not processing speed performance, functional capacity, or positive or negative symptom severity. This is the largest MRS study of GABA in schizophrenia and the first to examine GABA without macromolecule contamination, a potentially significant issue in previous studies. GABA levels more rapidly declined with advancing age in the schizophrenia compared to the control group. Interventions targeted at halting the decline or increasing GABA levels may improve functional outcomes and quality of life as patients with schizophrenia age. PMID:25824298

  20. Stellate and pyramidal neurons in goldfish telencephalon respond differently to anoxia and GABA receptor inhibition.

    PubMed

    Hossein-Javaheri, Nariman; Wilkie, Michael P; Lado, Wudu E; Buck, Leslie T

    2017-02-15

    With oxygen deprivation, the mammalian brain undergoes hyper-activity and neuronal death while this does not occur in the anoxia-tolerant goldfish ( Carassius auratus ). Anoxic survival of the goldfish may rely on neuromodulatory mechanisms to suppress neuronal hyper-excitability. As γ-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain, we decided to investigate its potential role in suppressing the electrical activity of goldfish telencephalic neurons. Utilizing whole-cell patch-clamp recording, we recorded the electrical activities of both excitatory (pyramidal) and inhibitory (stellate) neurons. With anoxia, membrane potential ( V m ) depolarized in both cell types from -72.2 mV to -57.7 mV and from -64.5 mV to -46.8 mV in pyramidal and stellate neurons, respectively. While pyramidal cells remained mostly quiescent, action potential frequency (AP f ) of the stellate neurons increased 68-fold. Furthermore, the GABA A receptor reversal potential ( E - GABA ) was determined using the gramicidin perforated-patch-clamp method and found to be depolarizing in pyramidal (-53.8 mV) and stellate neurons (-42.1 mV). Although GABA was depolarizing, pyramidal neurons remained quiescent as E GABA was below the action potential threshold (-36 mV pyramidal and -38 mV stellate neurons). Inhibition of GABA A receptors with gabazine reversed the anoxia-mediated response. While GABA B receptor inhibition alone did not affect the anoxic response, co-antagonism of GABA A and GABA B receptors (gabazine and CGP-55848) led to the generation of seizure-like activities in both neuron types. We conclude that with anoxia, V m depolarizes towards E GABA which increases AP f in stellate neurons and decreases AP f in pyramidal neurons, and that GABA plays an important role in the anoxia tolerance of goldfish brain. © 2017. Published by The Company of Biologists Ltd.

  1. Aldehyde dehydrogenase 1a1 mediates a GABA synthesis pathway in midbrain dopaminergic neurons.

    PubMed

    Kim, Jae-Ick; Ganesan, Subhashree; Luo, Sarah X; Wu, Yu-Wei; Park, Esther; Huang, Eric J; Chen, Lu; Ding, Jun B

    2015-10-02

    Midbrain dopamine neurons are an essential component of the basal ganglia circuitry, playing key roles in the control of fine movement and reward. Recently, it has been demonstrated that γ-aminobutyric acid (GABA), the chief inhibitory neurotransmitter, is co-released by dopamine neurons. Here, we show that GABA co-release in dopamine neurons does not use the conventional GABA-synthesizing enzymes, glutamate decarboxylases GAD65 and GAD67. Our experiments reveal an evolutionarily conserved GABA synthesis pathway mediated by aldehyde dehydrogenase 1a1 (ALDH1a1). Moreover, GABA co-release is modulated by ethanol (EtOH) at concentrations seen in blood alcohol after binge drinking, and diminished ALDH1a1 leads to enhanced alcohol consumption and preference. These findings provide insights into the functional role of GABA co-release in midbrain dopamine neurons, which may be essential for reward-based behavior and addiction. Copyright © 2015, American Association for the Advancement of Science.

  2. Utilization of barley or wheat bran to bioconvert glutamate to γ-aminobutyric acid (GABA).

    PubMed

    Jin, Wen-Jie; Kim, Min-Ju; Kim, Keun-Sung

    2013-09-01

    This study deals with the utilization of agro-industrial wastes created by barley and wheat bran in the production of a value-added product, γ-aminobutyric acid (GABA). The simple and eco-friendly reaction requires no pretreatment or microbial fermentation steps but uses barley or wheat bran as an enzyme source, glutamate as a substrate, and pyridoxal 5'-phosphate (PLP) as a cofactor. The optimal reaction conditions were determined on the basis of the temperatures and times used for the decarboxylation reactions and the initial concentrations of barley or wheat bran, glutamate, and PLP. The optimal reactions produced 9.2 mM of GABA from 10 mM glutamate, yielding a 92% GABA conversion rate, when barley bran was used and 6.0 mM of GABA from 10 mM glutamate, yielding a 60% GABA conversion rate, when wheat bran was used. The results imply that barley bran is more efficient than wheat bran in the production of GABA. © 2013 Institute of Food Technologists®

  3. Homocysteine alters cerebral microvascular integrity and causes remodeling by antagonizing GABA-A receptor*

    PubMed Central

    Lominadze, David; Tyagi, Neetu; Sen, Utpal; Ovechkin, Alexander; Tyagi, Suresh C.

    2012-01-01

    High levels of homocysteine (Hcy), known as hyperhomocysteinemia (HHcy), are associated with cerebrovascular diseases, such as vascualr dementia, stroke, and Alzheimer's disease. The -amino butyric acid (GABA) is a inhibitory neurotransmitter and a ligand of GABA-A receptor. By inhibiting excitatory response it may decrease complications associated with vascular dementia and stroke. Hcy specifically competes with the GABA-A receptors and acts as an excitotoxic neurotransmitter. Previously we have shown that Hcy increases levels of NADPH oxidase and reactive oxygen species (ROS), and decreases levels of thioredoxin and peroxiredoxin by antagonizing the GABA-A receptor. Hcy treatment leads to activation of matrix metalloproteinases (MMPs) in cerebral circualtion by inducing redox stress and ROS. The hypothesis is that Hcy induces MMPs and suppresses tissue inhibitors of metalloproteinase (TIMPs), in part, by inhibiting the GABA-A receptor. This leads to degradation of the matrix and disruption of the blood brain barrier. The brain cortex of transgenic mouse model of HHcy (cystathionine -synthase, CBS −/+) and GABA-A receptor null mice treated with and without muscimol (GABA-A receptor agonist) was analysed. The mRNA levels were measured by Q-RT-PCR. Levels of MMP-2, -9, -13, and TIMP-1, -2, -3, and -4 were evaluated by in situ labeling and PCR-gene arrays. Pial venular permeability to fluorescence-labeled albumin was assessed with intravital fluorescence microscopy. We found that Hcy increases metalloproteinase activity and decreases TIMP-4 by antagonizing the GABA-A receptor. The results demonstrate a novel mechanism in which brain microvascular permeability changes during HHcy and vascular dementias, and have therapeutic ramifications for microvascular disease in Alzheimer's patients. PMID:22886392

  4. GABA editing with macromolecule suppression using an improved MEGA-SPECIAL sequence.

    PubMed

    Gu, Meng; Hurd, Ralph; Noeske, Ralph; Baltusis, Laima; Hancock, Roeland; Sacchet, Matthew D; Gotlib, Ian H; Chin, Frederick T; Spielman, Daniel M

    2018-01-01

    The most common γ-aminobutyric-acid (GABA) editing approach, MEGA-PRESS, uses J-editing to measure GABA distinct from larger overlapping metabolites, but suffers contamination from coedited macromolecules (MMs) comprising 40 to 60% of the observed signal. MEGA-SPECIAL is an alternative method with better MM suppression, but is not widely used primarily because of its relatively poor spatial localization. Our goal was to develop an improved MM-suppressed GABA editing sequence at 3 Tesla. We modified a single-voxel MEGA-SPECIAL sequence with an oscillating readout gradient for improved spatial localization, and used very selective 30-ms editing pulses for improved suppression of coedited MMs. Simulation and in vivo experiments confirmed excellent MM suppression, insensitive to the range of B 0 frequency drifts typically encountered in vivo. Both intersubject and intrasubject studies showed that MMs, when suppressed by the improved MEGA-SPECIAL method, contributed approximately 40% to the corresponding MEGA-PRESS measurements. From the intersubject study, the coefficient of variation for GABA+/Cre (MEGA-PRESS) was 11.2% versus 7% for GABA/Cre (improved MEGA-SPECIAL), demonstrating significantly reduced variance (P = 0.005), likely coming from coedited MMs. This improved MEGA-SPECIAL sequence provides unbiased GABA measurements with reduced variance as compared with conventional MEGA-PRESS. This approach is also relatively insensitive to the range of B 0 drifts typically observed in in vivo human studies. Magn Reson Med 79:41-47, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  5. Ventral tegmental area GABA neurons and opiate motivation

    PubMed Central

    Vargas-Perez, Hector; Mabey, Jennifer K.; Shin, Samuel I.; Steffensen, Scott C.; van der Kooy, Derek

    2013-01-01

    Rational Past research has demonstrated that when an animal changes from a previously drug-naive to an opiate-dependent and withdrawn state, morphine’s motivational effects are switched from a tegmental pedunculopontine nucleus (TPP)-dependent to a dopamine-dependent pathway. Interestingly, a corresponding change is observed in ventral tegmental area (VTA) GABAA receptors, which change from mediating hyperpolarization of VTA GABA neurons to mediating depolarization. Objectives The present study investigated whether pharmacological manipulation of VTA GABAA receptor activity could directly influence the mechanisms underlying opiate motivation. Results Using an unbiased place conditioning procedure, we demonstrated that in Wistar rats, intra-VTA administration of furosemide, a Cl− cotransporter inhibitor, was able to promote a switch in the mechanisms underlying morphine’s motivational properties, one which is normally observed only after chronic opiate exposure. This behavioral switch was prevented by intra-VTA administration of acetazolamide, an inhibitor of the bicarbonate ion-producing carbonic anhydrase enzyme. Electrophysiological recordings of mouse VTA showed that furosemide reduced the sensitivity of VTA GABA neurons to inhibition by the GABAA receptor agonist muscimol, instead increasing the firing rate of a significant subset of these GABA neurons. Conclusion Our results suggest that the carbonic anhydrase enzyme may constitute part of a common VTA GABA neuron-based biological pathway responsible for controlling the mechanisms underlying opiate motivation, supporting the hypothesis that VTA GABAA receptor hyperpolarization or depolarization is responsible for selecting TPP- or dopamine-dependent motivational outputs, respectively. PMID:23392354

  6. Impaired striatal GABA transmission in experimental autoimmune encephalomyelitis.

    PubMed

    Rossi, Silvia; Muzio, Luca; De Chiara, Valentina; Grasselli, Giorgio; Musella, Alessandra; Musumeci, Gabriele; Mandolesi, Georgia; De Ceglia, Roberta; Maida, Simona; Biffi, Emilia; Pedrocchi, Alessandra; Menegon, Andrea; Bernardi, Giorgio; Furlan, Roberto; Martino, Gianvito; Centonze, Diego

    2011-07-01

    Synaptic dysfunction triggers neuronal damage in experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS). While excessive glutamate signaling has been reported in the striatum of EAE, it is still uncertain whether GABA synapses are altered. Electrophysiological recordings showed a reduction of spontaneous GABAergic synaptic currents (sIPSCs) recorded from striatal projection neurons of mice with MOG((35-55))-induced EAE. GABAergic sIPSC deficits started in the acute phase of the disease (20-25days post immunization, dpi), and were exacerbated at later time-points (35, 50, 70 and 90dpi). Of note, in slices they were independent of microglial activation and of release of TNF-α. Indeed, sIPSC inhibition likely involved synaptic inputs arising from GABAergic interneurons, because EAE preferentially reduced sIPSCs of high amplitude, and was associated with a selective loss of striatal parvalbumin (PV)-positive GABAergic interneurons, which contact striatal projection neurons in their somatic region, giving rise to more efficient synaptic inhibition. Furthermore, we found also that the chronic persistence of pro-inflammatory cytokines were able, per se, to produce profound alterations of electrophysiological network properties, that were reverted by GABA administration. The results of the present investigation indicate defective GABA transmission in MS models depending from alteration of PV cells number and, in part, deriving from the effects of a chronic inflammation, and suggest that pharmacological agents potentiating GABA signaling might be considered to limit neuronal damage in MS patients. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. [Local GABA-ergic modulation of serotonergic neuron activity in the nucleus raphe magnus].

    PubMed

    Iniushkin, A N; Merkulova, N A; Orlova, A O; Iniushkina, E M

    2009-07-01

    In voltage-clamp experimental on slices of the rat brainstem the effects of 5-HT and GABA on serotonergic neurons of nucleus raphe magnus were investigated. Local applications of 5-HT induced an increase in IPCSs frequency and amplitude in 45% of serotonergic cells. The effect suppressed by the blocker of fast sodium channels tetradotoxin. Antagonist of GABA receptor gabazine blocked IPSCs in neurons both sensitive and non-sensitive to 5-HT action. Applications of GABA induced a membrane current (I(GABA)), which was completely blocked by gabazine. The data suggest self-control of the activity of serotonergic neurons in nucleus raphe magnus by negative feedback loop via local GABAergic interneurons.

  8. Antagonism of GABA-B but not GABA-A receptors in the VTA prevents stress- and intra-VTA CRF-induced reinstatement of extinguished cocaine seeking in rats.

    PubMed

    Blacktop, Jordan M; Vranjkovic, Oliver; Mayer, Matthieu; Van Hoof, Matthew; Baker, David A; Mantsch, John R

    2016-03-01

    Stress-induced reinstatement of cocaine seeking requires corticotropin releasing factor (CRF) actions in the ventral tegmental area (VTA). However the mechanisms through which CRF regulates VTA function to promote cocaine use are not fully understood. Here we examined the role of GABAergic neurotransmission in the VTA mediated by GABA-A or GABA-B receptors in the reinstatement of extinguished cocaine seeking by a stressor, uncontrollable intermittent footshock, or bilateral intra-VTA administration of CRF. Rats underwent repeated daily cocaine self-administration (1.0 mg/kg/ing; 14 × 6 h/day) and extinction and were tested for reinstatement in response to footshock (0.5 mA, 0.5" duration, average every 40 s; range 10-70 s) or intra-VTA CRF delivery (500 ng/side) following intra-VTA pretreatment with the GABA-A antagonist, bicuculline, the GABA-B antagonist, 2-hydroxysaclofen or vehicle. Intra-VTA bicuculline (1, 10 or 20 ng/side) failed to block footshock- or CRF-induced cocaine seeking at either dose tested. By contrast, 2-hydroxysaclofen (0.2 or 2 μg/side) prevented reinstatement by both footshock and intra-VTA CRF at a concentration that failed to attenuate food-reinforced lever pressing (45 mg sucrose-sweetened pellets; FR4 schedule) in a separate group of rats. These data suggest that GABA-B receptor-dependent CRF actions in the VTA mediate stress-induced cocaine seeking and that GABA-B receptor antagonists may have utility for the management of stress-induced relapse in cocaine addicts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. GABA stimulates human hepatocellular carcinoma growth through overexpressed GABAA receptor theta subunit

    PubMed Central

    Li, Yue-Hui; Liu, Yan; Li, Yan-Dong; Liu, Yan-Hong; Li, Feng; Ju, Qiang; Xie, Ping-Li; Li, Guan-Cheng

    2012-01-01

    AIM: To investigate the function of gamma-aminobutyric acid (GABA) and gamma-aminobutyric acid A receptor θ subunit (GABRQ) in hepatocellular carcinoma (HCC). METHODS: Semiquantitative polymerase chain reaction was used for detecting the expression of GABRQ receptor among HCC cell line HepG2, normal liver cell line L-02, non-malignant Chang’s liver cells, 8 samples of HCC tissues and paired non-cancerous tissues. HepG2 cells were treated with GABA at serial concentrations (0, 1, 10, 20, 40 and 60 μmol/L), and their proliferating abilities were analyzed with the methyl thiazolyl tetrazolium assay, cell cycle analysis and tumor implanted in nude mice. Small interfering RNA was used for knocking down the endogenous GABRQ in HepG2. Proliferating abilities of these cells treated with or without GABA were analyzed. RESULTS: We identified the overexpression of GABRQ in HCC cell lines and half of the tested HCC tissues. Knockdown of endogenous GABRQ expression in HepG2 attenuated HCC cell growth, suggesting its role in HCC cell viability. We studied the effect of GABA in the proliferation of GABRQ-positive cell lines in vitro and in vivo, and found that GABA increased HCC growth in a dose-dependent manner. Notably, the addition of GABA into the cell culture medium promoted the proliferation of GABRQ-expressing HepG2 cells, but not GABRQ-knockdown HepG2 cells, which means that GABA stimulates HepG2 cell growth through GABRQ. CONCLUSION: GABRQ play important roles in HCC development and progression and could be a promising molecular target for the development of new diagnostic and therapeutic strategies of HCC. PMID:22690081

  10. γ-amino butyric acid (GABA) level as an overall survival risk factor in breast cancer.

    PubMed

    Brzozowska, Anna; Burdan, Franciszek; Duma, Dariusz; Solski, Janusz; Mazurkiewicz, Maria

    2017-09-21

    The γ-amino butyric acid (GABA) plays important role in the proliferation and migration of cancer cells. The aim of the study was to evaluate the level of GABA in breast cancer, in relation to clinical and epidemiological data. The study was conducted on 89 patients with breast cancer in stage I-II. GABA level was assessed using spectrofluorometric method in tumour homogenates. Immunoexpression of E-cadherin was evaluated histologically on paraffin fixed specimens. Overall and disease-free survival was assessed for a 15-year interval period. Median overall survival was significantly longer (127.2 months) in patients with a high level of GABA (>89.3 μg/1), compared with a group with a low level of the amino acid (106.4 months). Disease-free survival was insignificantly different - 99 and 109 months, respectively. A significantly longer overall survival (131.2 months) was seen among patients with a high level of GABA and positive E-cadherin immunoexpression, compared with a group characterized by a low level of GABA and lack of E-cadherin immunorectivity (98.1 months). The co-existence of negative immunoexpression of E-cadherin and low GABA concentration resulted in a six-fold increase in the risk of death (HR=6.03). GABA has a significant prognostic value in breast cancer. Co-existence of a low level of GABA and loss of E-cadherin immune-expression seems to be a new, independent, and negative prognostic marker of the neoplasm.

  11. Effect of Acute Psychological Stress on Prefrontal GABA Concentration Determined by Proton Magnetic Resonance Spectroscopy

    PubMed Central

    Hasler, Gregor; van der Veen, Jan Willem; Grillon, Christian; Drevets, Wayne C.; Shen, Jun

    2011-01-01

    Objective Impaired function of the central gamma-aminobutyric acid (GABA) system, which provides the brain’s major inhibitory pathways, is thought to play an important role in the pathophysiology of anxiety disorders. The effect of acute psychological stress on the human GABA-ergic system is still unknown, however. The purpose of this study was to determine the effect of acute stress on prefrontal GABA levels. Method A recently developed noninvasive magnetic resonance spectroscopy method was used to measure changes in the GABA concentration of the prefrontal cortex in 10 healthy human subjects during a threat-of-shock condition and during a safe condition (two sessions on different days). The main outcome measure was the mean GABA concentration within a 3×3×2-cm3 voxel selected from the medial prefrontal cortex. Results Prefrontal GABA decreased by approximately 18% in the threat-of-shock condition relative to the safe condition. This reduction was specific to GABA, since the concentrations of N-acetyl-aspartate, choline-containing compounds, and glutamate/glutamine levels obtained in the same spectra did not change significantly. Conclusions This result appeared compatible with evidence from preclinical studies in rodents, which showed rapid presynaptic down-regulation of GABA-ergic neurotransmission in response to acute psychological stress. The molecular mechanism and functional significance of this reduced inhibitory effect of acute psychological stress in relation to impaired GABA-ergic function in anxiety disorders merit further investigation. PMID:20634372

  12. Hypoxia and GABA shunt activation in the pathogenesis of Alzheimer's disease.

    PubMed

    Salminen, Antero; Jouhten, Paula; Sarajärvi, Timo; Haapasalo, Annakaisa; Hiltunen, Mikko

    2016-01-01

    We have previously observed that the conversion of mild cognitive impairment to definitive Alzheimer's disease (AD) is associated with a significant increase in the serum level of 2,4-dihydroxybutyrate (2,4-DHBA). The metabolic generation of 2,4-DHBA is linked to the activation of the γ-aminobutyric acid (GABA) shunt, an alternative energy production pathway activated during cellular stress, when the function of Krebs cycle is compromised. The GABA shunt can be triggered by local hypoperfusion and subsequent hypoxia in AD brains caused by cerebral amyloid angiopathy. Succinic semialdehyde dehydrogenase (SSADH) is a key enzyme in the GABA shunt, converting succinic semialdehyde (SSA) into succinate, a Krebs cycle intermediate. A deficiency of SSADH activity stimulates the conversion of SSA into γ-hydroxybutyrate (GHB), an alternative route from the GABA shunt. GHB can exert not only acute neuroprotective activities but unfortunately also chronic detrimental effects which may lead to cognitive impairment. Subsequently, GHB can be metabolized to 2,4-DHBA and secreted from the brain. Thus, the activation of the GABA shunt and the generation of GHB and 2,4-DHBA can have an important role in the early phase of AD pathogenesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Identification of a novel synaptic protein, TMTC3, involved in periventricular nodular heterotopia with intellectual disability and epilepsy

    PubMed Central

    Farhan, Sali M K; Nixon, Kevin C J; Everest, Michelle; Edwards, Tara N; Long, Shirley; Segal, Dmitri; Knip, Maria J; Arts, Heleen H; Chakrabarti, Rana; Wang, Jian; Robinson, John F; Lee, Donald; Mirsattari, Seyed M; Rupar, C Anthony; Siu, Victoria M; Poulter, Michael O; Hegele, Robert A; Kramer, Jamie M

    2017-01-01

    Abstract Defects in neuronal migration cause brain malformations, which are associated with intellectual disability (ID) and epilepsy. Using exome sequencing, we identified compound heterozygous variants (p.Arg71His and p. Leu729ThrfsTer6) in TMTC3, encoding transmembrane and tetratricopeptide repeat containing 3, in four siblings with nocturnal seizures and ID. Three of the four siblings have periventricular nodular heterotopia (PVNH), a common brain malformation caused by failure of neurons to migrate from the ventricular zone to the cortex. Expression analysis using patient-derived cells confirmed reduced TMTC3 transcript levels and loss of the TMTC3 protein compared to parental and control cells. As TMTC3 function is currently unexplored in the brain, we gathered support for a neurobiological role for TMTC3 by generating flies with post-mitotic neuron-specific knockdown of the highly conserved Drosophila melanogaster TMTC3 ortholog, CG4050/tmtc3. Neuron-specific knockdown of tmtc3 in flies resulted in increased susceptibility to induced seizures. Importantly, this phenotype was rescued by neuron-specific expression of human TMTC3, suggesting a role for TMTC3 in seizure biology. In addition, we observed co-localization of TMTC3 in the rat brain with vesicular GABA transporter (VGAT), a presynaptic marker for inhibitory synapses. TMTC3 is localized at VGAT positive pre-synaptic terminals and boutons in the rat hypothalamus and piriform cortex, suggesting a role for TMTC3 in the regulation of GABAergic inhibitory synapses. TMTC3 did not co-localize with Vglut2, a presynaptic marker for excitatory neurons. Our data identified TMTC3 as a synaptic protein that is involved in PVNH with ID and epilepsy, in addition to its previously described association with cobblestone lissencephaly. PMID:28973161

  14. Identification of a novel synaptic protein, TMTC3, involved in periventricular nodular heterotopia with intellectual disability and epilepsy.

    PubMed

    Farhan, Sali M K; Nixon, Kevin C J; Everest, Michelle; Edwards, Tara N; Long, Shirley; Segal, Dmitri; Knip, Maria J; Arts, Heleen H; Chakrabarti, Rana; Wang, Jian; Robinson, John F; Lee, Donald; Mirsattari, Seyed M; Rupar, C Anthony; Siu, Victoria M; Poulter, Michael O; Hegele, Robert A; Kramer, Jamie M

    2017-11-01

    Defects in neuronal migration cause brain malformations, which are associated with intellectual disability (ID) and epilepsy. Using exome sequencing, we identified compound heterozygous variants (p.Arg71His and p. Leu729ThrfsTer6) in TMTC3, encoding transmembrane and tetratricopeptide repeat containing 3, in four siblings with nocturnal seizures and ID. Three of the four siblings have periventricular nodular heterotopia (PVNH), a common brain malformation caused by failure of neurons to migrate from the ventricular zone to the cortex. Expression analysis using patient-derived cells confirmed reduced TMTC3 transcript levels and loss of the TMTC3 protein compared to parental and control cells. As TMTC3 function is currently unexplored in the brain, we gathered support for a neurobiological role for TMTC3 by generating flies with post-mitotic neuron-specific knockdown of the highly conserved Drosophila melanogaster TMTC3 ortholog, CG4050/tmtc3. Neuron-specific knockdown of tmtc3 in flies resulted in increased susceptibility to induced seizures. Importantly, this phenotype was rescued by neuron-specific expression of human TMTC3, suggesting a role for TMTC3 in seizure biology. In addition, we observed co-localization of TMTC3 in the rat brain with vesicular GABA transporter (VGAT), a presynaptic marker for inhibitory synapses. TMTC3 is localized at VGAT positive pre-synaptic terminals and boutons in the rat hypothalamus and piriform cortex, suggesting a role for TMTC3 in the regulation of GABAergic inhibitory synapses. TMTC3 did not co-localize with Vglut2, a presynaptic marker for excitatory neurons. Our data identified TMTC3 as a synaptic protein that is involved in PVNH with ID and epilepsy, in addition to its previously described association with cobblestone lissencephaly. © The Author 2017. Published by Oxford University Press.

  15. Allosteric modulation by benzodiazepines of GABA-gated chloride channels of an identified insect motor neurone.

    PubMed

    Buckingham, Steven D; Higashino, Yoshiaki; Sattelle, David B

    2009-11-01

    The actions of benzodiazepines were studied on the responses to GABA of the fast coxal depressor (D(f)) motor neurone of the cockroach, Periplaneta americana. Ro5-4864, diazepam and clonazepam were investigated. Responses to GABA receptors were enhanced by both Ro5-4864 and diazepam, whereas clonazepam, a potent-positive allosteric modulator of human GABA(A) receptors, was ineffective on the native insect GABA receptors of the D(f) motor neurone. Thus, clear pharmacological differences exist between insect and mammalian native GABA-gated chloride channels with respect to the actions of benzodiazepines. The results enhance our understanding of invertebrate GABA-gated chloride channels which have recently proved important in (a) comparative studies aimed at identifying human allosteric drug-binding sites and (b) understanding the actions of compounds used to control ectoparasites and insect crop pests.

  16. Imbalance between Glutamate and GABA in Fmr1 Knockout Astrocytes Influences Neuronal Development

    PubMed Central

    Wang, Lu; Wang, Yan; Zhou, Shimeng; Yang, Liukun; Shi, Qixin; Li, Yujiao; Zhang, Kun; Yang, Le; Zhao, Minggao; Yang, Qi

    2016-01-01

    Fragile X syndrome (FXS) is a form of inherited mental retardation that results from the absence of the fragile X mental retardation protein (FMRP), the product of the Fmr1 gene. Numerous studies have shown that FMRP expression in astrocytes is important in the development of FXS. Although astrocytes affect neuronal dendrite development in Fmr1 knockout (KO) mice, the factors released by astrocytes are still unclear. We cultured wild type (WT) cortical neurons in astrocyte-conditioned medium (ACM) from WT or Fmr1 KO mice. Immunocytochemistry and Western blotting were performed to detect the dendritic growth of both WT and KO neurons. We determined glutamate and γ-aminobutyric acid (GABA) levels using high-performance liquid chromatography (HPLC). The total neuronal dendritic length was reduced when cultured in the Fmr1 KO ACM. This neurotoxicity was triggered by an imbalanced release of glutamate and GABA from Fmr1 KO astrocytes. We found increased glutaminase and GABA transaminase (GABA-T) expression and decreased monoamine oxidase B expression in Fmr1 KO astrocytes. The elevated levels of glutamate contributed to oxidative stress in the cultured neurons. Vigabatrin (VGB), a GABA-T inhibitor, reversed the changes caused by glutamate and GABA release in Fmr1 KO astrocytes and the abnormal behaviors in Fmr1 KO mice. Our results indicate that the imbalance in the astrocytic glutamate and GABA release may be involved in the neuropathology and the underlying symptoms of FXS, and provides a therapeutic target for treatment. PMID:27517961

  17. CSF GABA is reduced in first-episode psychosis and associates to symptom severity

    PubMed Central

    Orhan, F; Fatouros-Bergman, H; Goiny, M; Malmqvist, A; Piehl, F; Engberg, Göran; Erhardt, Sophie; Schwieler, Lilly; Orhan, Funda; Malmqvist, Anna; Hedberg, Mikael; Farde, Lars; Cervenka, Simon; Flyckt, Lena; Collste, Karin; Ikonen, Pauliina; Piehl, Fredrik; Agartz, Ingrid; Cervenka, S; Collste, K; Victorsson, P; Sellgren, C M; Flyckt, L; Erhardt, S; Engberg, G

    2018-01-01

    Schizophrenia is characterized by a multiplicity of symptoms arising from almost all domains of mental function. γ-Aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the brain and is increasingly recognized to have a significant role in the pathophysiology of the disorder. In the present study, cerebrospinal fluid (CSF) concentrations of GABA were analyzed in 41 first-episode psychosis (FEP) patients and 21 age- and sex-matched healthy volunteers by high-performance liquid chromatography. We found lower CSF GABA concentration in FEP patients compared with that in the healthy volunteers, a condition that was unrelated to antipsychotic and/or anxiolytic medication. Moreover, lower CSF GABA levels were associated with total and general score of Positive and Negative Syndrome Scale, illness severity and probably with a poor performance in a test of attention. This study offers clinical in vivo evidence for a potential role of GABA in early-stage schizophrenia. PMID:28289277

  18. Treatment of GABA from Fermented Rice Germ Ameliorates Caffeine-Induced Sleep Disturbance in Mice

    PubMed Central

    Mabunga, Darine Froy N.; Gonzales, Edson Luck T.; Kim, Hee Jin; Choung, Se Young

    2015-01-01

    γ-Aminobutyric acid (GABA), a major inhibitory neurotransmitter in the mammalian central nervous system, is involved in sleep physiology. Caffeine is widely used psychoactive substance known to induce wakefulness and insomnia to its consumers. This study was performed to examine whether GABA extracts from fermented rice germ ameliorates caffeine-induced sleep disturbance in mice, without affecting spontaneous locomotor activity and motor coordination. Indeed, caffeine (10 mg/kg, i.p.) delayed sleep onset and reduced sleep duration of mice. Conversely, rice germ ferment extracts-GABA treatment (10, 30, or 100 mg/kg, p.o.), especially at 100 mg/kg, normalized the sleep disturbance induced by caffeine. In locomotor tests, rice germ ferment extracts-GABA slightly but not significantly reduced the caffeine-induced increase in locomotor activity without affecting motor coordination. Additionally, rice germ ferment extracts-GABA per se did not affect the spontaneous locomotor activity and motor coordination of mice. In conclusion, rice germ ferment extracts-GABA supplementation can counter the sleep disturbance induced by caffeine, without affecting the general locomotor activities of mice. PMID:25995826

  19. d Subunit-Containing GABA[subscript A] Receptor Prevents Overgeneralization of Fear in Adult Mice

    ERIC Educational Resources Information Center

    Zhang, Wen-Hua; Zhou, Jin; Pan, Han-Qing; Wang, Xiao-Yang; Liu, Wei-Zhu; Zhang, Jun-Yu; Yin, Xiao-Ping; Pan, Bing-Xing

    2017-01-01

    The role of d subunit-containing GABA[subscript A] receptor (GABA[subscript A](d)R) in fear generalization is uncertain. Here, by using mice with or without genetic deletion of GABA[subscript A](d)R and using protocols in which the conditioned tone stimuli were cross presented with different nonconditioned stimuli, we observed that when the two…

  20. Optogenetic and pharmacological evidence that somatostatin‐GABA neurons are important regulators of parasympathetic outflow to the stomach

    PubMed Central

    Lewin, Amanda E.; Vicini, Stefano; Richardson, Janell; Dretchen, Kenneth L.; Gillis, Richard A.

    2016-01-01

    Key points The dorsal motor nucleus of the vagus (DMV) in the brainstem consists primarily of vagal preganglionic neurons that innervate postganglionic neurons of the upper gastrointestinal tract.The activity of the vagal preganglionic neurons is predominantly regulated by GABAergic transmission in the DMV.The present findings indicate that the overwhelming GABAergic drive present at the DMV is primarily from somatostatin positive GABA (Sst‐GABA) DMV neurons.Activation of both melanocortin and μ‐opioid receptors at the DMV inhibits Sst‐GABA DMV neurons.Sst‐GABA DMV neurons may serve as integrative targets for modulating vagal output activity to the stomach. Abstract We have previously shown that local GABA signalling in the brainstem is an important determinant of vagally‐mediated gastric activity. However, the neural identity of this GABA source is currently unknown. To determine this, we focused on the somatostatin positive GABA (Sst‐GABA) interneuron in the dorsal motor nucleus of the vagus (DMV), a nucleus that is intimately involved in regulating gastric activity. Also of particular interest was the effect of melanocortin and μ‐opioid agonists on neural activity of Sst‐GABA DMV neurons because their in vivo administration in the DMV mimics GABA blockade in the nucleus. Experiments were conducted in brain slice preparation of transgenic adult Sst‐IRES‐Cre mice expressing tdTomato fluorescence, channelrhodopsin‐2, archaerhodopsin or GCaMP3. Electrophysiological recordings were obtained from Sst‐GABA DMV neurons or DiI labelled gastric‐antrum projecting DMV neurons. Our results show that optogenetic stimulation of Sst‐GABA neurons results in a robust inhibition of action potentials of labelled premotor DMV neurons to the gastric‐antrum through an increase in inhibitory post‐synaptic currents. The activity of the Sst‐GABA neurons in the DMV is inhibited by both melanocortin and μ‐opioid agonists. These agonists counteract the

  1. Optogenetic and pharmacological evidence that somatostatin-GABA neurons are important regulators of parasympathetic outflow to the stomach.

    PubMed

    Lewin, Amanda E; Vicini, Stefano; Richardson, Janell; Dretchen, Kenneth L; Gillis, Richard A; Sahibzada, Niaz

    2016-05-15

    The dorsal motor nucleus of the vagus (DMV) in the brainstem consists primarily of vagal preganglionic neurons that innervate postganglionic neurons of the upper gastrointestinal tract. The activity of the vagal preganglionic neurons is predominantly regulated by GABAergic transmission in the DMV. The present findings indicate that the overwhelming GABAergic drive present at the DMV is primarily from somatostatin positive GABA (Sst-GABA) DMV neurons. Activation of both melanocortin and μ-opioid receptors at the DMV inhibits Sst-GABA DMV neurons. Sst-GABA DMV neurons may serve as integrative targets for modulating vagal output activity to the stomach. We have previously shown that local GABA signalling in the brainstem is an important determinant of vagally-mediated gastric activity. However, the neural identity of this GABA source is currently unknown. To determine this, we focused on the somatostatin positive GABA (Sst-GABA) interneuron in the dorsal motor nucleus of the vagus (DMV), a nucleus that is intimately involved in regulating gastric activity. Also of particular interest was the effect of melanocortin and μ-opioid agonists on neural activity of Sst-GABA DMV neurons because their in vivo administration in the DMV mimics GABA blockade in the nucleus. Experiments were conducted in brain slice preparation of transgenic adult Sst-IRES-Cre mice expressing tdTomato fluorescence, channelrhodopsin-2, archaerhodopsin or GCaMP3. Electrophysiological recordings were obtained from Sst-GABA DMV neurons or DiI labelled gastric-antrum projecting DMV neurons. Our results show that optogenetic stimulation of Sst-GABA neurons results in a robust inhibition of action potentials of labelled premotor DMV neurons to the gastric-antrum through an increase in inhibitory post-synaptic currents. The activity of the Sst-GABA neurons in the DMV is inhibited by both melanocortin and μ-opioid agonists. These agonists counteract the pronounced inhibitory effect of Sst-GABA neurons on

  2. GABA and glutamate levels in occlusal splint-wearing males with possible bruxism.

    PubMed

    Dharmadhikari, Shalmali; Romito, Laura M; Dzemidzic, Mario; Dydak, Ulrike; Xu, Jun; Bodkin, Cynthia L; Manchanda, Shalini; Byrd, Kenneth E

    2015-07-01

    The inhibitory neurotransmitter γ-aminobutyric acid (GABA) plays an important role in the pathophysiology of anxiety behavioural disorders such as panic disorder and post-traumatic stress disorder and is also implicated in the manifestation of tooth-grinding and clenching behaviours generally known as bruxism. In order to test whether the stress-related behaviours of tooth-grinding and clenching share similar underlying mechanisms involving GABA and other metabolites as do anxiety-related behavioural disorders, we performed a Magnetic Resonance Spectroscopy (MRS) study for accurate, in vivo metabolite quantification in anxiety-related brain regions. MRS was performed in the right hippocampus and right thalamus involved in the hypothalamic-pituitary-adrenal axis system, together with a motor planning region (dorsal anterior cingulate cortex/pre-supplementary motor area) and right dorsolateral prefrontal cortex (DLPFC). Eight occlusal splint-wearing men (OCS) with possible tooth-grinding and clenching behaviours and nine male controls (CON) with no such behaviour were studied. Repeated-measures ANOVA showed significant Group×Region interaction for GABA+ (p = 0.001) and glutamate (Glu) (p = 0.031). Between-group post hoc ANOVA showed significantly lower levels of GABA+ (p = 0.003) and higher levels of Glu (p = 0.002) in DLPFC of OCS subjects. These GABA+ and Glu group differences remained significant (GABA+, p = 0.049; Glu, p = 0.039) after the inclusion of anxiety as a covariate. Additionally, GABA and Glu levels in the DLPFC of all subjects were negatively related (Pearson's r = -0.75, p = 0.003). These findings indicate that the oral behaviours of tooth-grinding and clenching, generally known as bruxism, may be associated with disturbances in brain GABAergic and glutamatergic systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Beta Peak Frequencies at Rest Correlate with Endogenous GABA+/Cr Concentrations in Sensorimotor Cortex Areas

    PubMed Central

    Baumgarten, Thomas J.; Oeltzschner, Georg; Hoogenboom, Nienke; Wittsack, Hans-Jörg; Schnitzler, Alfons; Lange, Joachim

    2016-01-01

    Neuronal oscillatory activity in the beta band (15–30 Hz) is a prominent signal within the human sensorimotor cortex. Computational modeling and pharmacological modulation studies suggest an influence of GABAergic interneurons on the generation of beta band oscillations. Accordingly, studies in humans have demonstrated a correlation between GABA concentrations and power of beta band oscillations. It remains unclear, however, if GABA concentrations also influence beta peak frequencies and whether this influence is present in the sensorimotor cortex at rest and without pharmacological modulation. In the present study, we investigated the relation between endogenous GABA concentration (measured by magnetic resonance spectroscopy) and beta oscillations (measured by magnetoencephalography) at rest in humans. GABA concentrations and beta band oscillations were measured for left and right sensorimotor and occipital cortex areas. A significant positive linear correlation between GABA concentration and beta peak frequency was found for the left sensorimotor cortex, whereas no significant correlations were found for the right sensorimotor and the occipital cortex. The results show a novel connection between endogenous GABA concentration and beta peak frequency at rest. This finding supports previous results that demonstrated a connection between oscillatory beta activity and pharmacologically modulated GABA concentration in the sensorimotor cortex. Furthermore, the results demonstrate that for a predominantly right-handed sample, the correlation between beta band oscillations and endogenous GABA concentrations is evident only in the left sensorimotor cortex. PMID:27258089

  4. Increased glutamate/GABA+ ratio in a shared autistic and schizotypal trait phenotype termed Social Disorganisation.

    PubMed

    Ford, Talitha C; Nibbs, Richard; Crewther, David P

    2017-01-01

    Autism and schizophrenia are multi-dimensional spectrum disorders that have substantial phenotypic overlap. This overlap is readily identified in the non-clinical population, and has been conceptualised as Social Disorganisation (SD). This study investigates the balance of excitatory glutamate and inhibitory γ -aminobutyric acid (GABA) concentrations in a non-clinical sample with high and low trait SD, as glutamate and GABA abnormalities are reported across the autism and schizophrenia spectrum disorders. Participants were 18 low (10 females) and 19 high (9 females) SD scorers aged 18 to 40 years who underwent 1 H-MRS for glutamate and GABA+macromolecule (GABA+) concentrations in right and left hemisphere superior temporal (ST) voxels. Reduced GABA+ concentration ( p  = 0.03) and increased glutamate/GABA+ ratio ( p  = 0.003) in the right ST voxel for the high SD group was found, and there was increased GABA+ concentration in the left compared to right ST voxel ( p  = 0.047). Bilateral glutamate concentration was increased for the high SD group ( p  = 0.006); there was no hemisphere by group interaction ( p  = 0.772). Results suggest that a higher expression of the SD phenotype may be associated with increased glutamate/GABA+ ratio in the right ST region, which may affect speech prosody processing, and lead behavioural characteristics that are shared within the autistic and schizotypal spectra.

  5. Contribution of ventral tegmental GABA receptors to cocaine self-administration in rats.

    PubMed

    Backes, E N; Hemby, S E

    2008-03-01

    Recent evidence has suggested that compounds affecting GABAergic transmission may provide useful pharmacological tools for the treatment of cocaine addiction. Using a rat model of self-administration, the present study examined the effects of GABA agonists and antagonists injected directly into the ventral tegmental area (VTA) on cocaine intake in rats trained to self-administer cocaine (0, 125, 250 and 500 microg/infusion) under an FR5 schedule of reinforcement. Separate groups of rats received bilateral intra-VTA injections of the GABA-A antagonist picrotoxin (34 ng/side, n = 7; 68 ng/side, n = 8), GABA-A agonist muscimol (14 ng/side, n = 8), GABA-B agonist baclofen (56 ng/side, n = 7; 100 ng/side, n = 6), picrotoxin (68 ng/side) co-injected with the GABA-B antagonist 2-hydroxysaclofen (100 ng/side, n = 7; 2 microg/side, n = 8) or artificial cerebrospinal fluid (aCSF, n = 6) to assess the effects of the various compounds on the cocaine self-administration dose-response curve. Both picrotoxin and baclofen reduced responding maintained by cocaine, whereas muscimol had no effect on responding. In contrast, neither picrotoxin (n = 6) nor baclofen (n = 8) affected responding maintained by food. Interestingly, 2-hydroxysaclofen effectively blocked the suppression of responding produced by picrotoxin, suggesting that both picrotoxin and baclofen exert their effects via activation of GABA-B receptors. Additionally, these effects appear to be specific to cocaine reinforcement, supporting current investigation of baclofen as a treatment for cocaine addiction.

  6. Contribution of ventral tegmental GABA receptors to cocaine self-administration in rats

    PubMed Central

    Backes, E.N.; Hemby, S.E.

    2008-01-01

    Recent evidence has suggested that compounds affecting GABAergic transmission may provide useful pharmacological tools for the treatment of cocaine addiction. Using a rat model of self-administration, the present study examined the effects of GABA agonists and antagonists injected directly into the ventral tegmental area (VTA) on cocaine intake in rats trained to self-administer cocaine (0, 125, 250 and 500 µg/infusion) under an FR5 schedule of reinforcement. Separate groups of rats received bilateral intra-VTA injections of the GABA-A antagonist picrotoxin (34 ng/side, n=7; 68 ng/side, n=8), GABA-A agonist muscimol (14 ng/side, n=8), GABA-B agonist baclofen (56 ng/side, n=7; 100 ng/side, n=6), picrotoxin (68 ng/side) co-injected with the GABA-B antagonist 2-hydroxysaclofen (100 ng/side, n=7; 2 µg/side, n=8) or artificial cerebrospinal fluid (aCSF, n=6) to assess the effects of the various compounds on the cocaine self-administration dose-response curve. Both picrotoxin and baclofen reduced responding maintained by cocaine, whereas muscimol had no effect on responding. In contrast, neither picrotoxin (n=6) nor baclofen (n=8) affected responding maintained by food. Interestingly, 2-hydroxysaclofen effectively blocked the suppression of responding produced by picrotoxin, suggesting that both picrotoxin and baclofen exert their effects via activation of GABA-B receptors. Additionally, these effects appear to be specific to cocaine reinforcement, supporting current investigation of baclofen as a treatment for cocaine addiction. PMID:17943439

  7. Role of proline and GABA in sexual reproduction of angiosperms

    PubMed Central

    Biancucci, Marco; Mattioli, Roberto; Forlani, Giuseppe; Funck, Dietmar; Costantino, Paolo; Trovato, Maurizio

    2015-01-01

    Two glutamate derivatives, proline and γ-aminobutyric acid (GABA), appear to play pivotal roles in different aspects of sexual reproduction in angiosperms, although their precise function in plant reproduction and the molecular basis of their action are not yet fully understood. Proline and GABA have long been regarded as pivotal amino acids in pollen vitality and fertility. Proline may constitute up to 70% of the free amino acid pool in pollen grains and it has been recently shown that Arabidopsis mutants affected in the first and rate-limiting step in proline synthesis produce aberrant and infertile pollen grains, indicating that proline synthesis is required for pollen development and fertility. Concerning GABA, a large body of evidence points to this glutamate derivative as a key determinant of post-pollination fertilization. Intriguingly, proline has also been associated with pollination, another aspect of sexual reproduction, since honeybees were reported to show a strong preference for proline-enriched nectars. In this review, we survey current knowledge on the roles of proline and GABA in plant fertility, and discuss future perspectives potentially capable to improve our understanding on the functions of these amino acids in pollen development, pollination, and pollen tube guidance. PMID:26388884

  8. Regional GABA Concentrations Modulate Inter-network Resting-state Functional Connectivity.

    PubMed

    Chen, Xi; Fan, Xiaoying; Hu, Yuzheng; Zuo, Chun; Whitfield-Gabrieli, Susan; Holt, Daphne; Gong, Qiyong; Yang, Yihong; Pizzagalli, Diego A; Du, Fei; Ongur, Dost

    2018-03-28

    Coordinated activity within and differential activity between large-scale neuronal networks such as the default mode network (DMN) and the control network (CN) is a critical feature of brain organization. The CN usually exhibits activations in response to cognitive tasks while the DMN shows deactivations; in addition, activity between the two networks is anti-correlated at rest. To address this issue, we used functional MRI to measure whole-brain BOLD signal during resting-state and task-evoked conditions, and MR spectroscopy (MRS) to quantify GABA and glutamate concentrations, in nodes within the DMN and CN (MPFC and DLPFC, respectively) in 19 healthy individuals at 3 Tesla. We found that GABA concentrations in the MPFC were significantly associated with DMN deactivation during a working memory task and with anti-correlation between DMN and CN at rest and during task performance, while GABA concentrations in the DLPFC weakly modulated DMN-CN anti-correlation in the opposite direction. Highlighting specificity, glutamate played a less significant role related to brain activity. These findings indicate that GABA in the MPFC is potentially involved in orchestrating between-network brain activity at rest and during task performance.

  9. GABA receptors and T-type Ca2+ channels crosstalk in thalamic networks.

    PubMed

    Leresche, Nathalie; Lambert, Régis C

    2017-06-07

    Although the thalamus presents a rather limited repertoire of GABAergic cell types compare to other CNS area, this structure is a privileged system to study how GABA impacts neuronal network excitability. Indeed both glutamatergic thalamocortical (TC) and GABAergic nucleus reticularis thalami (NRT) neurons present a high expression of T-type voltage-dependent Ca 2+ channels whose activation that shapes the output of the thalamus critically depends upon a preceding hyperpolarisation. Because of this strict dependence, a tight functional link between GABA mediated hyperpolarization and T-currents characterizes the thalamic network excitability. In this review we summarize a number of studies showing that the relationships between the various thalamic GABA A/B receptors and T-channels are complex and bidirectional. We discuss how this dynamic interaction sets the global intrathalamic network activity and its long-term plasticity and highlight how the functional relationship between GABA release and T-channel-dependent excitability is finely tuned by the T-channel activation itself. Finally, we illustrate how an impaired balance between T-channels and GABA receptors can lead to pathologically abnormal cellular and network behaviours. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Endogenous GABA levels in the pontine reticular formation are greater during wakefulness than during REM sleep

    PubMed Central

    Vanini, Giancarlo; Wathen, Bradley L.; Lydic, Ralph; Baghdoyan, Helen A.

    2011-01-01

    Studies using drugs that increase or decrease GABAergic transmission suggest that GABA in the pontine reticular formation (PRF) promotes wakefulness and inhibits rapid eye movement (REM) sleep. Cholinergic transmission in the PRF promotes REM sleep, and levels of endogenous acetylcholine (ACh) in the PRF are significantly greater during REM sleep than during wakefulness or non-REM (NREM) sleep. No previous studies have determined whether levels of endogenous GABA in the PRF vary as a function of sleep and wakefulness. This study tested the hypothesis that GABA levels in cat PRF are greatest during wakefulness and lowest during REM sleep. Extracellular GABA levels were measured during wakefulness, NREM sleep, REM sleep, and the REM sleep-like state (REMNeo) caused by microinjecting neostigmine into the PRF. GABA levels varied significantly as a function of sleep and wakefulness, and decreased significantly below waking levels during REM sleep (−42%) and REMNeo (−63%). The decrease in GABA levels during NREM sleep (22% below waking levels) was not statistically significant. Compared to NREM sleep, GABA levels decreased significantly during REM sleep (−27%) and REMNeo (−52%). Comparisons of REM sleep and REMNeo revealed no differences in GABA levels or cortical EEG power. GABA levels did not vary significantly as a function of dialysis site within the PRF. The inverse relationship between changes in PRF levels of GABA and ACh during REM sleep indicates that low GABAergic tone combined with high cholinergic tone in the PRF contributes to the generation of REM sleep. PMID:21325533

  11. Relative Neurotoxicity of Ivermectin and Moxidectin in Mdr1ab (−/−) Mice and Effects on Mammalian GABA(A) Channel Activity

    PubMed Central

    Ménez, Cécile; Sutra, Jean-François; Prichard, Roger; Lespine, Anne

    2012-01-01

    The anthelmintics ivermectin (IVM) and moxidectin (MOX) display differences in toxicity in several host species. Entrance into the brain is restricted by the P-glycoprotein (P-gp) efflux transporter, while toxicity is mediated through the brain GABA(A) receptors. This study compared the toxicity of IVM and MOX in vivo and their interaction with GABA(A) receptors in vitro. Drug toxicity was assessed in Mdr1ab(−/−) mice P-gp-deficient after subcutaneous administration of increasing doses (0.11–2.0 and 0.23–12.9 µmol/kg for IVM and MOX in P-gp-deficient mice and half lethal doses (LD50) in wild-type mice). Survival was evaluated over 14-days. In Mdr1ab(−/−) mice, LD50 was 0.46 and 2.3 µmol/kg for IVM and MOX, respectively, demonstrating that MOX was less toxic than IVM. In P-gp-deficient mice, MOX had a lower brain-to-plasma concentration ratio and entered into the brain more slowly than IVM. The brain sublethal drug concentrations determined after administration of doses close to LD50 were, in Mdr1ab(−/−) and wild-type mice, respectively, 270 and 210 pmol/g for IVM and 830 and 740–1380 pmol/g for MOX, indicating that higher brain concentrations are required for MOX toxicity than IVM. In rat α1β2γ2 GABA channels expressed in Xenopus oocytes, IVM and MOX were both allosteric activators of the GABA-induced response. The Hill coefficient was 1.52±0.45 for IVM and 0.34±0.56 for MOX (p<0.001), while the maximum potentiation caused by IVM and MOX relative to GABA alone was 413.7±66.1 and 257.4±40.6%, respectively (p<0.05), showing that IVM causes a greater potentiation of GABA action on this receptor. Differences in the accumulation of IVM and MOX in the brain and in the interaction of IVM and MOX with GABA(A) receptors account for differences in neurotoxicity seen in intact and Mdr1-deficient animals. These differences in neurotoxicity of IVM and MOX are important in considering their use in humans. PMID:23133688

  12. Impact of Precooling and Controlled-Atmosphere Storage on γ-Aminobutyric Acid (GABA) Accumulation in Longan (Dimocarpus longan Lour.) Fruit.

    PubMed

    Zhou, Molin; Ndeurumio, Kessy H; Zhao, Lei; Hu, Zhuoyan

    2016-08-24

    Longan (Dimocarpus longan Lour.) fruit cultivars 'Chuliang' and 'Shixia' were analyzed for γ-aminobutyric acid (GABA) accumulation after precooling and in controlled-atmosphere storage. Fruit were exposed to 5% O2 plus 3%, 5%, or 10% CO2 at 4 °C, and GABA and associated enzymes, aril firmness, and pericarp color were measured. Aril softening and pericarp browning were delayed by 5% CO2 + 5% O2. GABA concentrations and glutamate decarboxylase (GAD; EC 4.1.1.15) activities declined during storage at the higher-CO2 treatments. However, GABA aminotransferase (GABA-T; EC 2.6.1.19) activities in elevated CO2-treated fruit fluctuated during storage. GABA concentrations increased after precooling treatments. GAD activity and GABA-T activity were different between cultivars after precooling. GABA concentrations in fruit increased after 3 days of 10% CO2 + 5% O2 treatment and then declined as storage time increased. GABA accumulation was associated with stimulation of GAD activity rather than inhibition of GABA-T activity.

  13. Immunoreactivity for GABA, GAD65, GAD67 and Bestrophin-1 in the meninges and the choroid plexus: implications for non-neuronal sources for GABA in the developing mouse brain.

    PubMed

    Tochitani, Shiro; Kondo, Shigeaki

    2013-01-01

    Neural progenitors in the developing neocortex, neuroepithelial cells and radial glial cells, have a bipolar shape with a basal process contacting the basal membrane of the meninge and an apical plasma membrane facing the lateral ventricle, which the cerebrospinal fluid is filled with. Recent studies revealed that the meninges and the cerebrospinal fluid have certain roles to regulate brain development. γ-aminobutyric acid (GABA) is a neurotransmitter which appears first during development and works as a diffusible factor to regulate the properties of neural progenitors. In this study, we examined whether GABA can be released from the meninges and the choroid plexus in the developing mouse brain. Immunohistochemical analyses showed that glutamic acid decarboxylase 65 and 67 (GAD65 and GAD67), both of which are GABA-synthesizing enzymes, are expressed in the meninges. The epithelial cells in the choroid plexus express GAD65. GABA immunoreactivity could be observed beneath the basal membrane of the meninge and in the epithelial cells of the choroid plexus. Expression analyses on Bestrophin-1, which is known as a GABA-permeable channel in differentiated glial cells, suggested that the cells in the meninges and the epithelial cells in the choroid plexus have the channels able to permeate non-synaptic GABA into the extracellular space. Further studies showed that GAD65/67-expressing meningeal cells appear in a manner with rostral to caudal and lateral to dorsal gradient to cover the entire neocortex by E14.5 during development, while the cells in the choroid plexus in the lateral ventricle start to express GAD65 on E11-E12, the time when the choroid plexus starts to develop in the developing brain. These results totally suggest that the meninges and the choroid plexus can work as non-neuronal sources for ambient GABA which can modulate the properties of neural progenitors during neocortical development.

  14. The PLC/IP3R/PKC Pathway is Required for Ethanol-enhanced GABA Release

    PubMed Central

    Kelm, M. Katherine; Weinberg, Richard J.; Criswell, Hugh E.; Breese, George R.

    2010-01-01

    Summary Research on the actions of ethanol at the GABAergic synapse has traditionally focused on postsynaptic mechanisms, but recent data demonstrate that ethanol also increases both evoked and spontaneous GABA release in many brain regions. Using whole-cell voltage-clamp recordings, we previously showed that ethanol increases spontaneous GABA release at the rat interneuron-Purkinje cell synapse. This presynaptic ethanol effect is dependent on calcium release from internal stores, possibly through activation of inositol 1,4,5-trisphosphate receptors (IP3Rs). After confirming that ethanol targets vesicular GABA release, in the present study we used electron microscopic immunohistochemistry to demonstrate that IP3Rs are located in presynaptic terminals of cerebellar interneurons. Activation of IP3Rs requires binding of IP3, generated through activation of phospholipase C (PLC). We find that the PLC antagonist edelfosine prevents ethanol from increasing spontaneous GABA release. Diacylglycerol generated by PLC and calcium released by activation of the IP3R activate protein kinase C (PKC). Ethanol-enhanced GABA release was blocked by two PKC antagonists, chelerythrine and calphostin C. When a membrane impermeable PKC antagonist, PKC (19-36), was delivered intracellularly to the postsynaptic neuron, ethanol continued to increase spontaneous GABA release. Overall, these results suggest that activation of the PLC/IP3R/PKC pathway is necessary for ethanol to increase spontaneous GABA release from presynaptic terminals onto Purkinje cells. PMID:20206640

  15. Under stressful conditions activation of the ionotropic P2X7 receptor differentially regulates GABA and glutamate release from nerve terminals of the rat cerebral cortex.

    PubMed

    Barros-Barbosa, Aurora R; Oliveira, Ângela; Lobo, M Graça; Cordeiro, J Miguel; Correia-de-Sá, Paulo

    2018-01-01

    γ-Aminobutyric acid (GABA) and glutamate (Glu) are the main inhibitory and excitatory neurotransmitters in the central nervous system (CNS), respectively. Fine tuning regulation of extracellular levels of these amino acids is essential for normal brain activity. Recently, we showed that neocortical nerve terminals from patients with epilepsy express higher amounts of the non-desensitizing ionotropic P2X7 receptor. Once activated by ATP released from neuronal cells, the P2X7 receptor unbalances GABAergic vs. glutamatergic neurotransmission by differentially interfering with GABA and Glu uptake. Here, we investigated if activation of the P2X7 receptor also affects [ 3 H]GABA and [ 14 C]Glu release measured synchronously from isolated nerve terminals (synaptosomes) of the rat cerebral cortex. Data show that activation of the P2X7 receptor consistently increases [ 14 C]Glu over [ 3 H]GABA release from cortical nerve terminals, but the GABA/Glu ratio depends on extracellular Ca 2+ concentrations. While the P2X7-induced [ 3 H]GABA release is operated by a Ca 2+ -dependent pathway when external Ca 2+ is available, this mechanism shifts towards the reversal of the GAT1 transporter in low Ca 2+ conditions. A different scenario is verified regarding [ 14 C]Glu outflow triggered by the P2X7 receptor, since the amino acid seems to be consistently released through the recruitment of connexin-containing hemichannels upon P2X7 activation, both in the absence and in the presence of external Ca 2+ . Data from this study add valuable information suggesting that ATP, via P2X7 activation, not only interferes with the high-affinity uptake of GABA and Glu but actually favors the release of these amino acids through distinct molecular mechanisms amenable to differential therapeutic control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Individual differences in GABA content are reliable but are not uniform across the human cortex

    PubMed Central

    Greenhouse, Ian; Noah, Sean; Maddock, Richard J; Ivry, Richard B

    2016-01-01

    1H magnetic resonance spectroscopy (MRS) provides a powerful tool to measure gamma-aminobutyric acid (GABA), the principle inhibitory neurotransmitter in the human brain. We asked whether individual differences in MRS estimates of GABA are uniform across the cortex or vary between regions. In two sessions, resting GABA concentrations in the lateral prefrontal, sensorimotor, dorsal premotor, and occipital cortices were measured in twenty-eight healthy individuals. GABA estimates within each region were stable across weeks, with low coefficients of variation. Despite this stability, the GABA estimates were not correlated between regions. In contrast, the percentage of brain tissue per volume, a control measure, was correlated between the three anterior regions. These results provide an interesting dissociation between an anatomical measure of individual differences and a neurochemical measure. The different patterns of anatomy and GABA concentrations have implications for understanding regional variation in the molecular topography of the brain in health and disease. PMID:27288552

  17. MaxiK channel interactome reveals its interaction with GABA transporter 3 and heat shock protein 60 in the mammalian brain.

    PubMed

    Singh, H; Li, M; Hall, L; Chen, S; Sukur, S; Lu, R; Caputo, A; Meredith, A L; Stefani, E; Toro, L

    2016-03-11

    Large conductance voltage and calcium-activated potassium (MaxiK) channels are activated by membrane depolarization and elevated cytosolic Ca(2+). In the brain, they localize to neurons and astrocytes, where they play roles such as resetting the membrane potential during an action potential, neurotransmitter release, and neurovascular coupling. MaxiK channels are known to associate with several modulatory proteins and accessory subunits, and each of these interactions can have distinct physiological consequences. To uncover new players in MaxiK channel brain physiology, we applied a directed proteomic approach and obtained MaxiK channel pore-forming α subunit brain interactome using specific antibodies. Controls included immunoprecipitations with rabbit immunoglobulin G (IgG) and with anti-MaxiK antibodies in wild type and MaxiK channel knockout mice (Kcnma1(-/-)), respectively. We have found known and unreported interactive partners that localize to the plasma membrane, extracellular space, cytosol and intracellular organelles including mitochondria, nucleus, endoplasmic reticulum and Golgi apparatus. Localization of MaxiK channel to mitochondria was further confirmed using purified brain mitochondria colabeled with MitoTracker. Independent proof of MaxiK channel interaction with previously unidentified partners is given for GABA transporter 3 (GAT3) and heat shock protein 60 (HSP60). In human embryonic kidney 293 cells containing SV40 T-antigen (HEK293T) cells, both GAT3 and HSP60 coimmunoprecipitated and colocalized with MaxiK channel; colabeling was observed mainly at the cell periphery with GAT3 and intracellularly with HSP60 with protein proximity indices of ∼ 0.6 and ∼ 0.4, respectively. In rat primary hippocampal neurons, colocalization index was identical for GAT3 (∼ 0.6) and slightly higher for HSP60 (∼ 0.5) association with MaxiK channel. The results of this study provide a complete interactome of MaxiK channel the mouse brain, further establish

  18. Correlation between the enhancement of flunitrazepam binding by GABA and seizure susceptibility in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marley, R.J.; Wehner, J.M.

    Various populations of mice exhibit differential sensitivity to seizure-inducing agents. The relationship of seizure susceptibility to alterations in the GABA receptor complex was investigated in six different populations of mice consisting of four inbred strains (C57BL, DBA, C3H, and BALB) and two selected lines (long sleep and short sleep). Seizure activity was induced by intraperitoneal administration of the GAD inhibitor, 3-mercaptopropionic acid, and latencies to seizure onset and tonus were measured. In naive mice of the same populations, GABA enhancement of TH-flunitrazepam binding was measured in extensively washed whole brain membranes at several GABA concentrations. Both differential seizure sensitivity tomore » 3-mercaptopropionic acid and differential enhancement of TH-flunitrazepam binding by GABA were observed in these six populations of mice. Correlational analyses indicated a positive correlation between the degree of GABA enhancement of TH-flunitrazepam binding and resistance to the seizure-inducing properties of 3-mercaptopropionic acid. These data suggest that genetic differences in sensitivity to seizure-inducing agents that disrupt the GABAergic system may be related to differences in coupling between the various receptors associated with the GABA receptor complex.« less

  19. Responses to GABA(A) receptor activation are altered in NTS neurons isolated from chronic hypoxic rats.

    PubMed

    Tolstykh, Gleb; Belugin, Sergei; Mifflin, Steve

    2004-04-23

    The inhibitory amino acid GABA is released within the nucleus of the solitary tract (NTS) during hypoxia and modulates the respiratory response to hypoxia. To determine if responses of NTS neurons to activation of GABA(A) receptors are altered following exposure to chronic hypoxia, GABA(A) receptor-evoked whole cell currents were measured in enzymatically dispersed NTS neurons from normoxic and chronic hypoxic rats. Chronic hypoxic rats were exposed to 10% O(2) for 9-12 days. Membrane capacitance was the same in neurons from normoxic (6.9+/-0.5 pF, n=16) and hypoxic (6.3+/-0.5 pF, n=15) rats. The EC(50) for peak GABA-evoked current density was significantly greater in neurons from hypoxic (21.7+/-2.2 microM) compared to normoxic rats (12.2+/-0.9 microM) (p<0.001). Peak and 5-s adapted GABA currents evoked by 1, 3 and 10 microM were greater in neurons from normoxic compared to hypoxic rats (p<0.05) whereas peak and 5-s adapted responses to 30 and 100 microM GABA were not different comparing normoxic to hypoxic rats. Desensitization of GABA(A)-evoked currents was observed at concentrations greater than 3 microM and, measured as the ratio of the current 5 s after the onset of 100 microM GABA application to the peak GABA current, was the same in neurons from normoxic (0.37+/-0.03) and hypoxic rats (0.33+/-0.04). Reduced sensitivity to GABA(A) receptor-evoked inhibition in chronic hypoxia could influence chemoreceptor afferent integration by NTS neurons.

  20. Anterior Insula GABA Levels Correlate with Emotional Aspects of Empathy: A Proton Magnetic Resonance Spectroscopy Study

    PubMed Central

    Dong, Fang; Chen, Luguang; Zheng, Li; Guo, Xiuyan; Li, Jianqi

    2014-01-01

    Background: Empathy is a multidimensional construct referring to the capacity to understand and share the emotional and affective states of another person. Cerebral γ-aminobutyric acid (GABA)-ergic levels are associated with a variety of neurological and psychiatric disorders. However, the role of the GABA system in different dimensions of empathy has not been investigated. Materials and Methods: Thirty-two right-handed healthy volunteers took part in this study. We used proton magnetic resonance spectroscopy to determine GABA concentrations in the anterior insula (AI) and the anterior cingulate cortex (ACC) and to examine the relationship between the GABA concentrations and the subcomponents of empathy evaluated by the Interpersonal Reactivity Index (IRI). Result: Pearson correlation analyses (two-tailed) showed that AI GABA was significantly associated with the empathy concern score (r = 0.584, p<0.05) and the personal distress score (r = 0.538, p<0.05) but not significantly associated with other empathy subscales. No significant correlation was found between ACC GABA and empathy subscores. Conclusion: Left AI GABA was positively correlated with the emotional aspects of empathy. These preliminary findings call into question whether AI GABA alterations might predict empathy dysfunction in major psychiatric disorders such as autism and schizophrenia, which have been described as deficits in emotional empathic abilities. PMID:25419976

  1. GABA concentration is reduced in visual cortex in schizophrenia and correlates with orientation-specific surround suppression.

    PubMed

    Yoon, Jong H; Maddock, Richard J; Rokem, Ariel; Silver, Michael A; Minzenberg, Michael J; Ragland, J Daniel; Carter, Cameron S

    2010-03-10

    The neural mechanisms underlying cognitive deficits in schizophrenia remain essentially unknown. The GABA hypothesis proposes that reduced neuronal GABA concentration and neurotransmission results in cognitive impairments in schizophrenia. However, few in vivo studies have directly examined this hypothesis. We used magnetic resonance spectroscopy (MRS) at high field to measure visual cortical GABA levels in 13 subjects with schizophrenia and 13 demographically matched healthy control subjects. We found that the schizophrenia group had an approximately 10% reduction in GABA concentration. We further tested the GABA hypothesis by examining the relationship between visual cortical GABA levels and orientation-specific surround suppression (OSSS), a behavioral measure of visual inhibition thought to be dependent on GABAergic synaptic transmission. Previous work has shown that subjects with schizophrenia exhibit reduced OSSS of contrast discrimination (Yoon et al., 2009). For subjects with both MRS and OSSS data (n = 16), we found a highly significant positive correlation (r = 0.76) between these variables. GABA concentration was not correlated with overall contrast discrimination performance for stimuli without a surround (r = -0.10). These results suggest that a neocortical GABA deficit in subjects with schizophrenia leads to impaired cortical inhibition and that GABAergic synaptic transmission in visual cortex plays a critical role in OSSS.

  2. Valerian Inhibits Rat Hepatocarcinogenesis by Activating GABA(A) Receptor-Mediated Signaling

    PubMed Central

    Kakehashi, Anna; Kato, Ayumi; Ishii, Naomi; Wei, Min; Morimura, Keiichirou; Fukushima, Shoji; Wanibuchi, Hideki

    2014-01-01

    Valerian is widely used as a traditional medicine to improve the quality of sleep due to interaction of several active components with the γ-aminobutyric acid (GABA) A receptor (GABA(A)R) system. Recently, activation of GABA signaling in stem cells has been reported to suppress cell cycle progression in vivo. Furthermore, possible inhibitory effects of GABA(A)R agonists on hepatocarcinogenesis have been reported. The present study was performed to investigate modulating effects of Valerian on hepatocarcinogenesis using a medium-term rat liver bioassay. Male F344 rats were treated with one of the most powerful Valerian species (Valeriana sitchensis) at doses of 0, 50, 500 and 5000 ppm in their drinking water after initiation of hepatocarcinogenesis with diethylnitrosamine (DEN). Formation of glutathione S-transferase placental form positive (GST-P+) foci was significantly inhibited by Valerian at all applied doses compared with DEN initiation control rats. Generation of 8-hydroxy-2′-deoxyguanosine in the rat liver was significantly suppressed by all doses of Valerian, likely due to suppression of Nrf2, CYP7A1 and induction of catalase expression. Cell proliferation was significantly inhibited, while apoptosis was induced in areas of GST-P+ foci of Valerian groups associated with suppression of c-myc, Mafb, cyclin D1 and induction of p21Waf1/Cip1, p53 and Bax mRNA expression. Interestingly, expression of the GABA(A)R alpha 1 subunit was observed in GST-P+ foci of DEN control rats, with significant elevation associated with Valerian treatment. These results indicate that Valerian exhibits inhibitory effects on rat hepatocarcinogenesis by inhibiting oxidative DNA damage, suppressing cell proliferation and inducing apoptosis in GST-P+ foci by activating GABA(A)R-mediated signaling. PMID:25419570

  3. Optimization of culture condition for ACEI and GABA production by lactic acid bacteria.

    PubMed

    Tung, Yi-Ting; Lee, Bao-Hong; Liu, Chin-Feng; Pan, Tzu-Ming

    2011-01-01

    Gamma-aminobutyric acid (GABA) and angiotensin-converting enzyme inhibitor (ACEI) are compounds which can influence hypertension. The goal of this study is to optimize the culture condition for GABA and ACEI production by Lactobacillus plantarum NTU 102 fermented skim milk. In this study, we used 3-factor-3-level Box-Behnken design combining with response surface methodology, where the 3 factors represent the concentration of skim milk, the concentration of monosodium glutamate, and culture temperature. Best conditions for GABA and ACEI production differed. The results indicated that L. plantarum NTU 102 produced the highest combined levels of GABA and ACEI at 37 °C, in milk having 8% to 12% nonfat solids supplemented with 0.6% to 1% MSG. Agitation of the medium during fermentation had no effect on GABA or ACEI production but extended incubation (up to 6 d) increases levels of the bioactive compounds. L. plantarum NTU 102 fermented products may be a potential functional food source for regulating hypertension. © 2011 Institute of Food Technologists®

  4. Prefrontal Cortical GABA Levels in Panic Disorder Determined by Proton Magnetic Resonance Spectroscopy

    PubMed Central

    Hasler, Gregor; van der Veen, Jan Willem; Geraci, Marilla; Shen, Jun; Pine, Daniel; Drevets, Wayne C.

    2009-01-01

    Background Panic disorder (PD) is hypothesized to be associated with altered function of the major inhibitory neurotransmitter, gamma-amino butyric acid (GABA). Previous proton magnetic resonance spectroscopy (MRS) studies found lower GABA concentrations in the occipital cortex of subjects with PD relative to healthy controls. The current study is the first MRS study to compare GABA concentrations between unmedicated PD subjects and controls in the prefrontal cortex (PFC). Methods Unmedicated subjects with PD (n=17) and age- and sex-matched healthy controls (n=17) were scanned on a 3 Tesla scanner using a transmit-receive head coil that provided a sufficiently homogenous radiofrequency field to obtain spectroscopic measurements in the dorsomedial/dorsal anterolateral and ventromedial areas of the PFC. Results The prefrontal cortical GABA concentrations did not differ significantly between PD subjects and controls. There also was no statistically significant difference in Glx, choline or N-acetyl-aspartate concentrations. Conclusions The previously reported finding of reduced GABA concentrations in the occipital cortex of PD subjects does not appear to extend to the PFC. PMID:18692172

  5. Behavioral effects of gamma-hydroxybutyrate, its precursor gamma-butyrolactone, and GABA(B) receptor agonists: time course and differential antagonism by the GABA(B) receptor antagonist 3-aminopropyl(diethoxymethyl)phosphinic acid (CGP35348).

    PubMed

    Koek, Wouter; Mercer, Susan L; Coop, Andrew; France, Charles P

    2009-09-01

    Gamma-hydroxybutyrate (GHB) is used therapeutically and recreationally. The mechanism by which GHB produces its therapeutic and recreational effects is not entirely clear, although GABA(B) receptors seem to play an important role. This role could be complex, because there are indications that different GABA(B) receptor mechanisms mediate the effects of GHB and the prototypical GABA(B) receptor agonist baclofen. To further explore possible differences in underlying GABA(B) receptor mechanisms, the present study examined the effects of GHB and baclofen on operant responding and their antagonism by the GABA(B) receptor antagonist 3-aminopropyl(diethoxymethyl)phosphinic acid (CGP35348). Pigeons were trained to peck a key for access to food during response periods that started at different times after the beginning of the session. In these pigeons, GHB, its precursor gamma-butyrolactone (GBL), and the GABA(B) receptor agonists baclofen and 3-aminopropyl(methyl)phosphinic acid hydrochloride (SKF97541) decreased the rate of responding in a dose- and time-dependent manner. CGP35348 shifted the dose-response curve of each agonist to the right, but the magnitude of the shift differed among the agonists. Schild analysis yielded a pA(2) value of CGP35348 to antagonize GHB and GBL [i.e., 3.9 (3.7-4.2)] that was different (P = 0.0011) from the pA(2) value to antagonize baclofen and SKF97541 [i.e., 4.5 (4.4-4.7)]. This finding is further evidence that the GABA(B) receptor mechanisms mediating the effects of GHB and prototypical GABA(B) receptor agonists are not identical. A better understanding of the similarities and differences between these mechanisms, and their involvement in the therapeutic effects of GHB and baclofen, could lead to more effective medications with fewer adverse effects.

  6. Self-enhancement of GABA in rice bran using various stress treatments.

    PubMed

    Kim, Hyun Soo; Lee, Eun Jung; Lim, Seung-Taik; Han, Jung-Ah

    2015-04-01

    Gamma-aminobutyric acid (GABA) may be synthesized in plant tissues when the organism is under stressful conditions. Rice bran byproduct obtained from the milling of brown rice was treated under anaerobic storage with nitrogen at different temperatures (20-60 °C) and moisture contents (10-50%) up to 12h. For the GABA synthesis, the storage at 30% moisture content and 40 °C appeared optimal. Utilisation of an electrolyzed oxidizing water (EOW, pH 3.3) for moisture adjustment and addition of glutamic acid increased the GABA content in rice bran. The maximum GABA content in rice bran (523 mg/100g) could be achieved by the anaerobic storage at 30% EOW for 5h at 40 °C after an addition of glutamic acid (5mM). This amount was approximately 17 times higher than that in the control (30 mg/100g). The use of EOW also prevented bacterial growth by decreasing the colony counts almost by half. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Antidepressants and seizure-interactions at the GABA-receptor chloride-ionophore complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malatynska, E.; Knapp, R.J.; Ikeda, M.

    1988-01-01

    Convulsive seizures are a potential side effect of antidepressant drug treatment and can be produced by all classes of antidepressants. It is also know that some convulsant and anticonvulsant drug actions are mediated by the GABA-receptor chloride-ionophore complex. Drugs acting at this complex appear to induce convulsions by inhibiting chloride conductance through the associated chloride channel. Using the method of GABA-stimulated /sup 36/Cl-uptake by rat cerebral cortical vesicles, we show that some antidepressant drugs can inhibit the GABA-receptor chloride uptake, and that the degree of chloride channel inhibition by these drugs correlates with the frequency of convulsive seizures induced bymore » them.« less

  8. Decreased GABA-A binding on FMZ-PET in succinic semialdehyde dehydrogenase deficiency.

    PubMed

    Pearl, P L; Gibson, K M; Quezado, Z; Dustin, I; Taylor, J; Trzcinski, S; Schreiber, J; Forester, K; Reeves-Tyer, P; Liew, C; Shamim, S; Herscovitch, P; Carson, R; Butman, J; Jakobs, C; Theodore, W

    2009-08-11

    Succinic semialdehyde dehydrogenase (SSADH) deficiency is an autosomal recessive disorder of GABA metabolism characterized by elevated levels of GABA and gamma-hydroxybutyric acid. Clinical findings include intellectual impairment, hypotonia, hyporeflexia, hallucinations, autistic behaviors, and seizures. Autoradiographic labeling and slice electrophysiology studies in the murine model demonstrate use-dependent downregulation of GABA(A) receptors. We studied GABA(A) receptor activity in human SSADH deficiency utilizing [(11)C]-flumazenil (FMZ)-PET. FMZ binding was measured in 7 patients, 10 unaffected parents, and 8 healthy controls. Data analysis was performed using a reference region compartmental model, with time-activity curve from pons as the input function. Relative parametric binding potential (BP(ND)) was derived, with MRI-based pixel by pixel partial volume correction, in regions of interest drawn on coregistered MRI. In amygdala, hippocampus, cerebellar vermis, frontal, parietal, and occipital cortex, patients with SSADH deficiency had significant reductions in FMZ BP(ND) compared to parents and controls. Mean cortical values were 6.96 +/- 0.79 (controls), 6.89 +/- 0.71 (parents), and 4.88 +/- 0.77 (patients) (F ratio 16.1; p < 0.001). There were no differences between controls and parents in any cortical region. Succinic semialdehyde dehydrogenase (SSADH) deficient patients show widespread reduction in BZPR binding on [(11)C]-flumazenil-PET. Our results suggest that high endogenous brain GABA levels in SSADH deficiency downregulate GABA(A)-BZPR binding site availability. This finding suggests a potential mechanism for neurologic dysfunction in a serious neurodevelopmental disorder, and suggests that PET may be useful to translate studies in animal models to human disease.

  9. GABA and glutamate in schizophrenia: a 7 T ¹H-MRS study.

    PubMed

    Marsman, Anouk; Mandl, René C W; Klomp, Dennis W J; Bohlken, Marc M; Boer, Vincent O; Andreychenko, Anna; Cahn, Wiepke; Kahn, René S; Luijten, Peter R; Hulshoff Pol, Hilleke E

    2014-01-01

    Schizophrenia is characterized by loss of brain volume, which may represent an ongoing pathophysiological process. This loss of brain volume may be explained by reduced neuropil rather than neuronal loss, suggesting abnormal synaptic plasticity and cortical microcircuitry. A possible mechanism is hypofunction of the NMDA-type of glutamate receptor, which reduces the excitation of inhibitory GABAergic interneurons, resulting in a disinhibition of glutamatergic pyramidal neurons. Disinhibition of pyramidal cells may result in excessive stimulation by glutamate, which in turn could cause neuronal damage or death through excitotoxicity. In this study, GABA/creatine ratios, and glutamate, NAA, creatine and choline concentrations in the prefrontal and parieto-occipital cortices were measured in 17 patients with schizophrenia and 23 healthy controls using proton magnetic resonance spectroscopy at an ultra-high magnetic field strength of 7 T. Significantly lower GABA/Cr ratios were found in patients with schizophrenia in the prefrontal cortex as compared to healthy controls, with GABA/Cr ratios inversely correlated with cognitive functioning in the patients. No significant change in the GABA/Cr ratio was found between patients and controls in the parieto-occipital cortex, nor were levels of glutamate, NAA, creatine, and choline differed in patients and controls in the prefrontal and parieto-occipital cortices. Our findings support a mechanism involving altered GABA levels distinguished from glutamate levels in the medial prefrontal cortex in schizophrenia, particularly in high functioning patients. A (compensatory) role for GABA through altered inhibitory neurotransmission in the prefrontal cortex may be ongoing in (higher functioning) patients with schizophrenia.

  10. GABA content within the ventromedial prefrontal cortex is related to trait anxiety.

    PubMed

    Delli Pizzi, Stefano; Padulo, Caterina; Brancucci, Alfredo; Bubbico, Giovanna; Edden, Richard A; Ferretti, Antonio; Franciotti, Raffaella; Manippa, Valerio; Marzoli, Daniele; Onofrj, Marco; Sepede, Gianna; Tartaro, Armando; Tommasi, Luca; Puglisi-Allegra, Stefano; Bonanni, Laura

    2016-05-01

    The ventromedial prefrontal cortex (vmPFC) plays a key role in emotion processing and regulation. vmPFC dysfunction may lead to disinhibition of amygdala causing high anxiety levels. γ-Aminobutyric acid (GABA) inter-neurons within vmPFC shape the information flow to amygdala. Thus, we hypothesize that GABA content within vmPFC could be relevant to trait anxiety. Forty-three healthy volunteers aged between 20 and 88 years were assessed for trait anxiety with the Subscale-2 of the State-Trait-Anxiety Inventory (STAI-Y2) and were studied with proton magnetic resonance spectroscopy to investigate GABA and Glx (glutamate+glutamine) contents within vmPFC. Total creatine (tCr) was used as internal reference. Partial correlations assessed the association between metabolite levels and STAI-Y2 scores, removing the effect of possible nuisance factors including age, educational level, volumes of gray matter and white matter within magnetic resonance spectroscopy voxel. We observed a positive relationship between GABA/tCr and STAI-Y2 scores. No significant relationships were found between Glx/tCr and STAI-Y2 and between tCr/water and STAI-Y2. No differences were found between males and females as regards to age, STAI-Y2, GABA/tCr, Glx/tCr, tCr/water, gray matter and white matter volumes. We suggest a close relationship between GABA content within vmPFC and trait anxiety providing new insights in the physiology of emotional brain. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  11. GABA is not elevated during neuroprotective neuronal depression in the hypoxic epaulette shark (Hemiscyllium ocellatum).

    PubMed

    Mulvey, Jamin M; Renshaw, Gillian M C

    2009-02-01

    Prolonged hypoxic exposure results in cell failure, glutamate excitotoxicity and apoptosis in the brain. The epaulette shark can withstand prolonged hypoxic exposure without brain injury, while maintaining normal function and activity at tropical temperatures. We examined whether the inhibitory neurotransmitter GABA was involved in hypoxia tolerance and neuroprotection during hypoxic preconditioning. Sharks were exposed to either cyclic hypoxic preconditioning or normoxic conditions. Whole brain GABA concentration was determined using high performance liquid chromatography; GABA distribution in neuronal structures was localised with immunohistochemistry and quantified. While the overall brain level of GABA was not significantly different, there was a significant heterogeneous change in GABA distribution. GABA immunoreactivity was elevated in key motor and sensory nuclei from preconditioned animals, including the nucleus motorius nervi vagi and the cerebellar crest (p<0.001), corresponding to areas of previously reported neuronal hypometabolism. Since the neuroprotection in all other hypoxia and anoxia tolerant species examined so far relies in part on significant elevations in GABA and the phylogenetically older epaulette shark does not, it is reasonable to assume that further research in this unique animal model may yield clues to new key modulators of neuroprotection. Understanding such mechanisms may facilitate the development of therapeutic interventions in the treatment of transient ischaemic attacks, strokes and traumatic brain injury.

  12. Functional role of ambient GABA in refining neuronal circuits early in postnatal development

    PubMed Central

    Cellot, Giada; Cherubini, Enrico

    2013-01-01

    Early in development, γ-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the mature brain, depolarizes and excites targeted neurons by an outwardly directed flux of chloride, resulting from the peculiar balance between the cation-chloride importer NKCC1 and the extruder KCC2. The low expression of KCC2 at birth leads to accumulation of chloride inside the cell and to the equilibrium potential for chloride positive respect to the resting membrane potential. GABA exerts its action via synaptic and extrasynaptic GABAA receptors mediating phasic and tonic inhibition, respectively. Here, recent data on the contribution of “ambient” GABA to the refinement of neuronal circuits in the immature brain have been reviewed. In particular, we focus on the hippocampus, where, prior to the formation of conventional synapses, GABA released from growth cones and astrocytes in a calcium- and SNARE (soluble N-ethylmaleimide-sensitive-factor attachment protein receptor)-independent way, diffuses away to activate in a paracrine fashion extrasynaptic receptors localized on distal neurons. The transient increase in intracellular calcium following the depolarizing action of GABA leads to inhibition of DNA synthesis and cell proliferation. Tonic GABA exerts also a chemotropic action on cell migration. Later on, when synapses are formed, GABA spilled out from neighboring synapses, acting mainly on extrasynaptic α5, β2, β3, and γ containing GABAA receptor subunits, provides the membrane depolarization necessary for principal cells to reach the window where intrinsic bursts are generated. These are instrumental in triggering calcium transients associated with network-driven giant depolarizing potentials which act as coincident detector signals to enhance synaptic efficacy at emerging GABAergic and glutamatergic synapses. PMID:23964205

  13. A human anti-neuronal autoantibody against GABA B receptor induces experimental autoimmune agrypnia.

    PubMed

    Frisullo, Giovanni; Della Marca, Giacomo; Mirabella, Massimiliano; Caggiula, Marcella; Broccolini, Aldobrando; Rubino, Marco; Mennuni, Gioacchino; Tonali, Pietro Attilio; Batocchi, Anna Paola

    2007-04-01

    In the serum and cerebrospinal fluid of a patient with recurrent acute episodes of respiratory crises, autonomic symptoms and total insomnia (agrypnia), we identified a novel anti-neural complement fixing antibody directed against GABA(B) receptor (GABA(B)R). Patient purified IgG recognized a band of approximately 110 kDa on protein extracts of mouse cerebellum, cortex and brainstem and immunolabelled cultured Chinese hamster ovary (CHO) cells, transfected with human GABA(B)R1 and rat GABA(B)R2 receptors. Western blot analysis of transfected CHO homogenates showed the same band using both patient purified IgG and anti-GABA(B)R1 antibody. In order to verify the pathogenic role of these purified antibodies, we injected patient IgG intrathecally into cisterna magna of C57BL/6 mice pre-implanted with EEG electrodes and we observed severe ataxia followed by breathing depression and total suppression of slow wave sleep, as evidenced by EEG recording, in a dose-dependent manner. Immunohistochemistry on brain sections of mice injected with patient IgG showed the simultaneous presence of bound human IgG and C5b-9 deposits on Purkinje cells and cerebellar granular layer. After incubation with anti-GABA(B)R antibody, a marked reduction of receptor immunostaining was found with relative sparing of neuronal architecture. In conclusion we recognized an anti-neuronal autoantibody directed against GABA(B)R that is associated with autoimmune agrypnia and we showed that our patient purified IgG was able to induce in mice experimental autoimmune agrypnia characterized by a complex neurological syndrome affecting several CNS functions.

  14. Dietary GABA and food selection by rats.

    PubMed

    Tews, J K; Repa, J J; Harper, A E

    1986-01-01

    To obtain further information pertaining to amino acid-induced alterations in feeding behavior, studies were performed to examine the food choices made by rats fed low protein diets made more or less aversive by the addition of various amino acids. When rats were allowed to choose between two diets, they preferred a low protein control, threonine-imbalanced or nonprotein diet to one containing 2.5% gamma-aminobutyric acid (GABA). Acceptance increased when GABA content was lowered to 1.5%; rats preferred this diet when the alternative diet was made sufficiently aversive. There were large individual differences among rats selecting from pairs of unacceptable diets. Avoidance of, or preference for, a given diet is clearly affected by the relative aversive qualities of the offered pair of diets.

  15. Increased GABA(A) inhibition of the RVLM after hindlimb unloading in rats

    NASA Technical Reports Server (NTRS)

    Moffitt, Julia A.; Heesch, Cheryl M.; Hasser, Eileen M.

    2002-01-01

    Attenuated baroreflex-mediated increases in renal sympathetic nerve activity (RSNA) in hindlimb unloaded (HU) rats apparently are due to changes within the central nervous system. We hypothesized that GABA(A) receptor-mediated inhibition of the rostral ventrolateral medulla (RVLM) is increased after hindlimb unloading. Responses to bilateral microinjection of the GABA(A) antagonist (-)-bicuculline methiodide (BIC) into the RVLM were examined before and during caudal ventrolateral medulla (CVLM) inhibition in Inactin-anesthetized control and HU rats. Increases in mean arterial pressure (MAP), heart rate (HR), and RSNA in response to BIC in the RVLM were significantly enhanced in HU rats. Responses to bilateral CVLM blockade were not different. When remaining GABA(A) inhibition in the RVLM was blocked by BIC during CVLM inhibition, the additional increases in MAP and RSNA were significantly greater in HU rats. These data indicate that GABA(A) receptor-mediated inhibition of RVLM neurons is augmented after hindlimb unloading. Effects of input from the CVLM were unaltered. Thus, after cardiovascular deconditioning in rodents, the attenuated increase in sympathetic nerve activity in response to hypotension is associated with greater GABA(A) receptor-mediated inhibition of RVLM neurons originating at least in part from sources other than the CVLM.

  16. Prefrontal Cortical GABA Modulation of Spatial Reference and Working Memory

    PubMed Central

    Auger, Meagan L.

    2015-01-01

    Background: Dysfunction in prefrontal cortex (PFC) GABA transmission has been proposed to contribute to cognitive dysfunction in schizophrenia, yet how this system regulates different cognitive and mnemonic functions remains unclear. Methods: We assessed the effects of pharmacological reduction of GABAA signaling in the medial PFC of rats on spatial reference/working memory using different versions of the radial-arm maze task. We used a massed-trials procedure to probe how PFC GABA regulates susceptibility to proactive interference. Male rats were well-trained to retrieve food from the same 4 arms of an 8-arm maze, receiving 5 trials/day (1–2min intervals). Results: Infusions of the GABAA receptor antagonist bicuculline (12.5–50ng) markedly increased working and reference memory errors and response latencies. Similar treatments also impaired short-term memory on an 8-baited arm task. These effects did not appear to be due to increased susceptibility to proactive interference. In contrast, PFC inactivation via infusion of GABA agonists baclofen/muscimol did not affect reference/working memory. In comparison to the pronounced effects on the 8-arm maze tasks, PFC GABAA antagonism only causes a slight and transient decrease in accuracy on a 2-arm spatial discrimination. Conclusions: These findings demonstrate that prefrontal GABA hypofunction severely disrupts spatial reference and short-term memory and that disinhibition of the PFC can, in some instances, perturb memory processes not normally dependent on the frontal lobes. Moreover, these impairments closely resemble those observed in schizophrenic patients, suggesting that perturbation in PFC GABA signaling may contribute to these types of cognitive deficits associated with the disorder. PMID:25552433

  17. Prefrontal cortical GABA modulation of spatial reference and working memory.

    PubMed

    Auger, Meagan L; Floresco, Stan B

    2014-10-31

    Dysfunction in prefrontal cortex (PFC) GABA transmission has been proposed to contribute to cognitive dysfunction in schizophrenia, yet how this system regulates different cognitive and mnemonic functions remains unclear. We assessed the effects of pharmacological reduction of GABAA signaling in the medial PFC of rats on spatial reference/working memory using different versions of the radial-arm maze task. We used a massed-trials procedure to probe how PFC GABA regulates susceptibility to proactive interference. Male rats were well-trained to retrieve food from the same 4 arms of an 8-arm maze, receiving 5 trials/day (1-2 min intervals). Infusions of the GABAA receptor antagonist bicuculline (12.5-50 ng) markedly increased working and reference memory errors and response latencies. Similar treatments also impaired short-term memory on an 8-baited arm task. These effects did not appear to be due to increased susceptibility to proactive interference. In contrast, PFC inactivation via infusion of GABA agonists baclofen/muscimol did not affect reference/working memory. In comparison to the pronounced effects on the 8-arm maze tasks, PFC GABAA antagonism only causes a slight and transient decrease in accuracy on a 2-arm spatial discrimination. These findings demonstrate that prefrontal GABA hypofunction severely disrupts spatial reference and short-term memory and that disinhibition of the PFC can, in some instances, perturb memory processes not normally dependent on the frontal lobes. Moreover, these impairments closely resemble those observed in schizophrenic patients, suggesting that perturbation in PFC GABA signaling may contribute to these types of cognitive deficits associated with the disorder. © The Author 2014. Published by Oxford University Press on behalf of CINP.

  18. Acupuncture suppresses intravenous methamphetamine self-administration through GABA receptor's mediation.

    PubMed

    Choi, Yi Jeong; Kim, Nam Jun; Zhao, Rong Jie; Kim, Da Hye; Yang, Chae Ha; Kim, Hee Young; Gwak, Young S; Jang, Eun Young; Kim, Jae Su; Lee, Yun Kyu; Lee, Hyun Jong; Lee, Sang Nam; Lim, Sung Chul; Lee, Bong Hyo

    2018-01-01

    Methamphetamine is one of the widely abused drugs. In spite of a number of studies, there is still little successful therapy to suppress the methamphetamine abuse. Acupuncture has shown to attenuate the reinforcing effects of psychostimulant. Based on, the present study investigated if acupuncture could suppress intravenous methamphetamine self-administration behavior. In addition, a possible neuronal mechanism was investigated. Male Sprague-Dawley rats weighing 270-300g were trained to intake food pellet. After catheter implantation, animal was trained to self-administer methamphetamine (0.05mg/kg) intravenously using fixed ratio 1 schedule in daily 2h session during 3 weeks. After training, rats who established baseline (infusion variation less than 20% of the mean for 3 consecutive days) received acupuncture treatment on the next day. Acupuncture was performed at each acupoint manually. In the second experiment, the selective antagonists of GABA A or GABA B receptor were given before acupuncture to investigate the possible neuronal involvement of GABA receptor pathway in the acupuncture effects. C-Fos expression was examined in the nucleus accumbens to support behavioral data. Acupuncture at HT7, but not at control acupoint LI5, reduced the self-administration behavior significantly. Also, the effects of acupuncture were blocked by the GABA receptor antagonists. C-Fos expression was shown to be parallel with the behavioral data. Results of this study have shown that acupuncture at HT7 suppressed methamphetamine self-administration through GABA receptor system, suggesting that acupuncture at HT7 can be a useful therapy for the treatment of methamphetamine abuse. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Characterization of GABA/sub A/ receptor-mediated /sup 36/chloride uptake in rat brain synaptoneurosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luu, M.D.; Morrow, A.L.; Paul, S.M.

    1987-09-07

    ..gamma..-Aminobutyric acid (GABA) receptor-mediated /sup 36/chloride (/sup 36/Cl/sup -/) uptake was measured in synaptoneurosomes from rat brain. GABA and GABA agonists stimulated /sup 36/Cl/sup -/ uptake in a concentration-dependent manner with the following order of potency: Muscimol>GABA>piperidine-4-sulfonic acid (P4S)>4,5,6,7-tetrahydroisoxazolo-(5,4-c)pyridin-3-ol (THIP)=3-aminopropanesulfonic acid (3APS)>>taurine. Both P4S and 3APS behaved as partial agonists, while the GABA/sub B/ agonist, baclofen, was ineffective. The response to muscimol was inhibited by bicuculline and picrotoxin in a mixed competitive/non-competitive manner. Other inhibitors of GABA receptor-opened channels or non-neuronal anion channels such as penicillin, picrate, furosemide and disulfonic acid stilbenes also inhibited the response to muscimol. A regionalmore » variation in muscimol-stimulated /sup 36/Cl/sup -/ uptake was observed; the largest responses were observed in the cerebral cortex, cerebellum and hippocampus, moderate responses were obtained in the striatum and hypothalamus and the smallest response was observed in the pons-medulla. GABA receptor-mediated /sup 36/Cl/sup -/ uptake was also dependent on the anion present in the media. The muscinol response varied in media containing the following anions: Br/sup -/>Cl/sup -/greater than or equal toNO/sub 3//sup -/>I/sup -/greater than or equal toSCN/sup -/>>C/sub 3/H/sub 5/OO/sup -/greater than or equal toClO/sub 4//sup -/>F/sup -/, consistent with the relative anion permeability through GABA receptor-gated anion channels and the enhancement of convulsant binding to the GABA receptor-gated Cl/sup -/ channel. 43 references, 4 figures, 3 tables.« less

  20. Glutamate and GABA in lateral hypothalamic mechanisms controlling food intake.

    PubMed

    Stanley, B G; Urstadt, K R; Charles, J R; Kee, T

    2011-07-25

    By the 1990s a convergence of evidence had accumulated to suggest that neurons within the lateral hypothalamus (LH) play important roles in the stimulation of feeding behavior. However, there was little direct evidence demonstrating that neurotransmitters in the LH could, like electrical stimulation, elicit feeding in satiated animals. The present paper is a brief review in honor of Bartley Hoebel's scientific contributions, emphasizing the evidence from my lab that the excitatory neurotransmitter glutamate and the inhibitory neurotransmitter gamma aminobutyric acid (GABA) in the LH mediate feeding stimulation and feeding inhibition respectively. Specifically, we summarize evidence that LH injection of glutamate, or agonists of its N-methyl-D-aspartate (NMDA) and non-NMDA receptors, elicits feeding in satiated rats, that NMDA receptor antagonists block the eating elicited by NMDA and, more importantly, that NMDA blockade suppresses natural feeding and can reduce body weight. Conversely, GABA(A) agonists injected into the LH suppress feeding and can also reduce body weight, while GABA(A) receptor antagonists actually elicit eating when injected into the LH of satiated rats. It is suggested that natural feeding may reflect the moment-to-moment balance in the activity of glutamate and GABA within the LH. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Ionotropic GABA Receptors and Distal Retinal ON and OFF Responses

    PubMed Central

    Popova, E.

    2014-01-01

    In the vertebrate retina, visual signals are segregated into parallel ON and OFF pathways, which provide information for light increments and decrements. The segregation is first evident at the level of the ON and OFF bipolar cells in distal retina. The activity of large populations of ON and OFF bipolar cells is reflected in the b- and d-waves of the diffuse electroretinogram (ERG). The role of gamma-aminobutyric acid (GABA), acting through ionotropic GABA receptors in shaping the ON and OFF responses in distal retina, is a matter of debate. This review summarized current knowledge about the types of the GABAergic neurons and ionotropic GABA receptors in the retina as well as the effects of GABA and specific GABAA and GABAC receptor antagonists on the activity of the ON and OFF bipolar cells in both nonmammalian and mammalian retina. Special emphasis is put on the effects on b- and d-waves of the ERG as a useful tool for assessment of the overall function of distal retinal ON and OFF channels. The role of GABAergic system in establishing the ON-OFF asymmetry concerning the time course and absolute and relative sensitivity of the ERG responses under different conditions of light adaptation in amphibian retina is also discussed. PMID:25143858

  2. Determination and comparison of γ-aminobutyric acid (GABA) content in pu-erh and other types of Chinese tea.

    PubMed

    Zhao, Ming; Ma, Yan; Wei, Zhen-zhen; Yuan, Wen-xia; Li, Ya-li; Zhang, Chun-hua; Xue, Xiao-ting; Zhou, Hong-jie

    2011-04-27

    Two previous studies have reported that pu-erh tea contains a high level of γ-aminobutyric acid (GABA), which is the major inhibitory neurotransmitter in the central nervous system and has several physiological functions. However, two other researchers have demonstrated that the GABA content of several pu-erh teas was low. Due to the high value and health benefits of GABA, analysis of mass-produced pu-erh tea is necessary to determine whether it is actually enriched with GABA. A high-performance liquid chromatography (HPLC) method was developed for the determination of GABA in tea, the results of which were verified by amino acid analysis using an Amino Acid Analyzer (AAA). A total of 114 samples of various types of Chinese tea, including 62 pu-erh teas, 13 green teas, 8 oolong teas, 8 black teas, 3 white teas, 4 GABA teas, and 16 process samples from two industrial fermentations of pu-erh tea (including the raw material and the first to seventh turnings), were analyzed using HPLC. Statistical analysis demonstrated that the GABA content in pu-erh tea was significantly lower than that in other types of tea (p < 0.05) and that the GABA content decreased during industrial fermentation of pu-erh tea (p < 0.05). This mass analysis and comparison suggested GABA was not a major bioactive constituent and resolved the disagreement GABA content in pu-erh tea. In addition, the GABA content in white tea was found to be significantly higher than that in the other types of tea (p < 0.05), leading to the possibility of producing GABA-enriched white tea.

  3. Gad1 mRNA as a reliable indicator of altered GABA release from orexigenic neurons in the hypothalamus

    PubMed Central

    Dicken, Matthew S.; Hughes, Alexander R.; Hentges, Shane T.

    2016-01-01

    The strength of γ-aminobutyric acid (GABA)-mediated inhibitory synaptic input is a principle determinant of neuronal activity. However, because of differences in the number of GABA afferent inputs and the sites of synapses, it is difficult to directly assay for altered GABA transmission between specific cells. The present study tested the hypothesis that the level of mRNA for the GABA synthetic enzyme glutamate decarboxylase (GAD) can provide a reliable proxy for GABA release. This was tested in a mouse hypothalamic circuit important in the regulation of energy balance. Fluorescent in situ hybridization results show that the expression of Gad1 mRNA (encoding the GAD67 enzyme) was increased in hypothalamic neuropeptide Y/agouti-related peptide (NPY/AgRP) neurons after an overnight fast, consistent with the ability of GABA from these neurons to stimulate food intake. Optogenetic studies confirmed that the observed increase in Gad1 mRNA correlated with an increase in the probability of GABA release from NPY/AgRP neurons onto downstream proopiomelanocortin neurons. Likewise, there was an increase in the readily releasable pool of GABA in NPY/AgRP neurons. Selective inhibition of GAD activity in NPY/AgRP neurons decreased GABA release, indicating that GAD67 activity, which is largely dictated by expression level, is a key determinant of GABA release. Altogether, it appears that Gad expression may be a reliable proxy of altered GABAergic transmission. Examining changes in Gad mRNA as a proxy for GABA release may be particularly helpful when the downstream targets are not known or when limited tools exist for detecting GABA release at a particular synapse. PMID:26370162

  4. Metabotropic GABAB receptors mediate GABA inhibition of acetylcholine release in the rat neuromuscular junction.

    PubMed

    Malomouzh, Artem I; Petrov, Konstantin A; Nurullin, Leniz F; Nikolsky, Evgeny E

    2015-12-01

    Gamma-aminobutyric acid (GABA) is an amino acid which acts as a neurotransmitter in the central nervous system. Here, we studied the effects of GABA on non-quantal, spontaneous, and evoked quantal acetylcholine (ACh) release from motor nerve endings. We found that while the application of 10 μM of GABA had no effect on spontaneous quantal ACh release, as detected by the frequency of miniature endplate potentials, GABA reduced the non-quantal ACh release by 57%, as determined by the H-effect value. Finally, the evoked quantal ACh release, estimated by calculating the quantal content of full-sized endplate potentials (EPPs), was reduced by 34%. GABA's inhibitory effect remained unchanged after pre-incubation with picrotoxin, an ionotropic GABAA receptor blocker, but was attenuated following application of the GABAB receptor blocker CGP 55845, which itself had no effect on ACh release. An inhibitor of phospholipase C, U73122, completely prevented the GABA-induced decrease in ACh release. Immunofluorescence demonstrated the presence of both subunits of the GABAB receptor (GABAB R1 and GABAB R2) in the neuromuscular junction. These findings suggest that metabotropic GABAB receptors are expressed in the mammalian neuromuscular synapse and their activation results in a phospholipase C-mediated reduction in the intensity of non-quantal and evoked quantal ACh release. We investigated the effect of gamma-aminobutyric acid (GABA) on neuromuscular transmission. GABA reduced the non-quantal and evoked quantal release of acetylcholine. These effects are mediated by GABAB receptors and are implemented via phospholipase C (PLC) activation. Our findings suggest that in the mammalian neuromuscular synapse, metabotropic GABAB receptors are expressed and their activation results in a reduction in the intensity of acetylcholine release. © 2015 International Society for Neurochemistry.

  5. Altered Cortical GABA in Female Veterans with Suicidal Behavior: Sex Differences and Clinical Correlates.

    PubMed

    Prescot, Andrew; Sheth, Chandni; Legarreta, Margaret; Renshaw, Perry F; McGlade, Erin; Yurgelun-Todd, Deborah

    2018-01-01

    Suicide is a public health concern in the civilian and veteran populations. Stressful life events are precipitating factors for suicide. The neurochemical underpinnings of the association between stress/trauma and suicide risk are unclear, especially in regards to sex differences. We hypothesized that gamma-amino butyric acid (GABA), the major inhibitory neurotransmitter may be a neurochemical candidate that is critical in the association between stress and suicide risk in veterans. Proton magnetic resonance spectroscopy ( 1 H MRS) at 3.0 Tesla was used to measure in vivo neurochemistry in the anterior cingulate cortex (ACC; predominantly the dorsal ACC) of 81 veterans (16 females), including 57 (11 females) who endorsed past suicidal ideation (SI) and/or suicide attempt (SA) and 24 (5 females) with no history of SI and/or SA. Suicidal behavior (SB) was defined as the presence of SI and/or SA. We observed no significant differences in GABA/ Creatine+phosphocreatine (Cr+PCr) between veterans with SB (SB+) and without SB (SB-). However, the female SB+ group showed significantly reduced GABA/Cr+PCr vs. the female SB- group. We observed a trend-level significant negative correlation between GABA/Cr+PCr and the defensive avoidance (DA) subscale on the Trauma Symptom Inventory (TSI) in the SB+ group. In contrast, the SB- group exhibited a positive relationship between the two variables. Furthermore, we found significant negative correlations between GABA/Cr+PCr and Hamilton Rating Scale for Depression (HAM-D) scores as well as between GABA/Cr+PCr and several subscales of the TSI in female veterans. This study suggests that reduced GABA/Cr+ PCr ratio in the ACC, which may be related to altered inhibitory capacity, may underlie suicide risk in female veterans. Further, the negative association between GABA/Cr+PCr and stress symptomatology and depression scores suggests that MRS studies may shed light on intermediate phenotypes of SB.

  6. Field trial of GABA-fortified rice plants and oral administration of milled rice in spontaneously hypertensive rats.

    PubMed

    Kowaka, Emi; Shimajiri, Yasuka; Kawakami, Kouhei; Tongu, Miki; Akama, Kazuhito

    2015-06-01

    Hypertension is one of the most critical risk factors accompanying cardiovascular diseases. γ-Aminobutyric acid (GABA) is a non-protein amino acid that functions as a major neurotransmitter in mammals and also as a blood-pressure lowering agent. We previously produced GABA-fortified rice lines of a popular Japonica rice cultivar 'Koshihikari' by genetic manipulation of GABA shunt-related genes. In the study reported here, we grew these same novel rice lines in a field trial and administered the milled rice orally to rats. The yield parameters of the transgenic rice plants were almost unchanged compared to those of untransformed cv. 'Koshihikari' plants, while the rice grains of the transgenic plants contained a high GABA content (3.5 g GABA/kg brown rice; 0.75-0.85 GABA g/kg milled rice) in a greenhouse trial. Oral administration of a diet containing 2.5% GABA-fortified rice, with a daily intake for 8 weeks, had an approximately 20 mmHg anti-hypertensive effect in spontaneous hypertensive rats but not in normotensive Wistar-Kyoto rats. These results suggest that GABA-fortified rice may be applicable as a staple food to control or prevent hypertension.

  7. Acutely increasing δGABA(A) receptor activity impairs memory and inhibits synaptic plasticity in the hippocampus.

    PubMed

    Whissell, Paul D; Eng, Dave; Lecker, Irene; Martin, Loren J; Wang, Dian-Shi; Orser, Beverley A

    2013-01-01

    Extrasynaptic γ-aminobutyric acid type A (GABA(A)) receptors that contain the δ subunit (δGABA(A) receptors) are expressed in several brain regions including the dentate gyrus (DG) and CA1 subfields of the hippocampus. Drugs that increase δGABA(A) receptor activity have been proposed as treatments for a variety of disorders including insomnia, epilepsy and chronic pain. Also, long-term pretreatment with the δGABA(A) receptor-preferring agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) enhances discrimination memory and increases neurogenesis in the DG. Despite the potential therapeutic benefits of such treatments, the effects of acutely increasing δGABA(A) receptor activity on memory behaviors remain unknown. Here, we studied the effects of THIP (4 mg/kg, i.p.) on memory performance in wild-type (WT) and δGABA(A) receptor null mutant (Gabrd(-/-)) mice. Additionally, the effects of THIP on long-term potentiation (LTP), a molecular correlate of memory, were studied within the DG and CA1 subfields of the hippocampus using electrophysiological recordings of field potentials in hippocampal slices. The results showed that THIP impaired performance in the Morris water maze, contextual fear conditioning and object recognition tasks in WT mice but not Gabrd(-/-) mice. Furthermore, THIP inhibited LTP in hippocampal slices from WT but not Gabrd(-/-) mice, an effect that was blocked by GABA(A) receptor antagonist bicuculline. Thus, acutely increasing δGABA(A) receptor activity impairs memory behaviors and inhibits synaptic plasticity. These results have important implications for the development of therapies aimed at increasing δGABA(A) receptor activity.

  8. Functional neuroanatomy of the ventral striopallidal GABA pathway. New sites of intervention in the treatment of schizophrenia.

    PubMed

    O'Connor, W T

    2001-08-15

    Microdialysis was employed to investigate the dopamine, cholecystokinin (CCK) and neurotensin receptor regulation of ventral striopallidal GABA transmission by intra-accumbens perfusion with selective receptor ligands and monitoring local or ipsilateral ventral pallidal GABA release. In the dual probe studies intra-accumbens perfusion with the dopamine D1 and D2 receptor agonists SKF28293 and pergolide had no effect on ventral pallidal GABA, while both the D1 and D2 receptor antagonists SCH23390 and raclopride increased ventral pallidal GABA release. In contrast, intra-accumbens CCK decreased ventral pallidal GABA release and this was reversed by local perfusion with the CCK2 receptor antagonist PD134308 but not the CCK1 receptor antagonist L-364,718. In a single probe study intra-accumbens neurotensin increased local GABA release, which was strongly potentiated when the peptidase inhibitor phosphodiepryl 08 was perfused together with neurotensin. In addition, the neurotensin receptor antagonist SR48692 counteracted this phosphodiepryl 08 induced potentiated increased in GABA release. Taken together, these findings indicate that mesolimbic dopamine and CCK exert a respective tonic and phasic inhibition of ventral pallidal GABA release while the antipsychotic activity associated with D1 and D2 receptor antagonists may be explained by their ability to increase ventral striopallidal GABA transmission. Furthermore, the findings suggest that CCK2 receptor antagonists and neurotensin endopeptidase inhibitors may be useful antipsychotics.

  9. GABA concentration in schizophrenia patients and the effects of antipsychotic medication: a proton magnetic resonance spectroscopy study.

    PubMed

    Tayoshi, Shin'Ya; Nakataki, Masahito; Sumitani, Satsuki; Taniguchi, Kyoko; Shibuya-Tayoshi, Sumiko; Numata, Shusuke; Iga, Jun-ichi; Ueno, Shu-ichi; Harada, Masafumi; Ohmori, Tetsuro

    2010-03-01

    Gamma-amino butyric acid (GABA) is thought to play a role in the pathophysiology of schizophrenia. High magnetic field proton magnetic resonance spectroscopy ((1)H-MRS) provides a reliable measurement of GABA in specific regions of the brain. This study measured GABA concentration in the anterior cingulate cortex (ACC) and in the left basal ganglia (ltBG) in 38 patients with chronic schizophrenia and 29 healthy control subjects. There was no significant difference in GABA concentration between the schizophrenia patients and the healthy controls in either the ACC (1.36+/-0.45 mmol/l in schizophrenia patients and 1.52+/-0.54 mmol/l in control subjects) or the ltBG (1.13+/-0.26 mmol/l in schizophrenia patients and 1.18+/-0.20 mmol/l in control subjects). Among the right handed schizophrenia patients, the GABA concentration in the ltBG was significantly higher in patients taking typical antipsychotics (1.25+/-0.24 mmol/l) than in those taking atypical antipsychotics (1.03+/-0.24 mmol/l, p=0.026). In the ACC, the GABA concentration was negatively correlated with the dose of the antipsychotics (rs=-0.347, p=0.035). In the ltBG, the GABA concentration was positively correlated with the dose of the anticholinergics (rs=0.403, p=0.015). To the best of our knowledge, this is the first study to have directly measured GABA concentrations in schizophrenia patients using (1)H-MRS. Our results suggest that there are no differences in GABA concentrations in the ACC or the ltBG of schizophrenia patients compared to healthy controls. Antipsychotic medication may cause changes in GABA concentration, and atypical and typical antipsychotics may have differing effects. It is possible that medication effects conceal inherent differences in GABA concentrations between schizophrenia patients and healthy controls. (c) 2009 Elsevier B.V. All rights reserved.

  10. Paracrine GABA and insulin regulate pancreatic alpha cell proliferation in a mouse model of type 1 diabetes.

    PubMed

    Feng, Allen L; Xiang, Yun-Yan; Gui, Le; Kaltsidis, Gesthika; Feng, Qingping; Lu, Wei-Yang

    2017-06-01

    This study aimed to elucidate the mechanism of increased proliferation of alpha cells in recent-onset type 1 diabetes. Pancreatic beta cells express GAD and produce γ-aminobutyric acid (GABA), which inhibits alpha cell secretion of glucagon. We explored the roles of GABA in alpha cell proliferation in conditions corresponding to type 1 diabetes in a mouse model and in vitro. Type 1 diabetes was induced by injecting the mice with streptozotocin (STZ). Some of the STZ-injected mice were treated with GABA (10 mg/kg daily) for 12 days. Isolated pancreatic islets were treated with STZ or STZ together with GABA for 2 days. The effects of GABA treatment on STZ-induced alpha cell proliferation in vivo and in vitro were assessed. The effect of muscimol, a GABA receptor agonist, on αTC1-6 cell proliferation was also examined. STZ injection substantially decreased levels of GAD, GABA and insulin in pancreatic beta cells 12 h after injection; this was followed by an upsurge of phosphorylated mechanistic target of rapamycin (p-mTOR) in the alpha cells at day 1, and a significant increase in alpha cell mass at day 3. Treating STZ-injected mice with GABA largely restored the immunodetectable levels of insulin and GAD in the beta cells and significantly decreased the number of aldehyde dehydrogenase 1 family, member A3 (ALDH1a3)-positive cells, alpha cell mass and hyperglucagonaemia. STZ treatment also increased alpha cell proliferation in isolated islets, which was reversed by co-treatment with GABA. Muscimol, together with insulin, significantly lowered the level of cytosolic Ca 2+ and p-mTOR, and decreased the proliferation rate of αTC1-6 cells. GABA signalling critically controls the alpha cell population in pancreatic islets. Low intraislet GABA may contribute to alpha cell hyperplasia in early type 1 diabetes.

  11. Contrast adaptation in cat visual cortex is not mediated by GABA.

    PubMed

    DeBruyn, E J; Bonds, A B

    1986-09-24

    The possible involvement of gamma-aminobutyric acid (GABA) in contrast adaptation in single cells in area 17 of the cat was investigated. Iontophoretic application of N-methyl bicuculline increased cell responses, but had no effect on the magnitude of adaptation. These results suggest that contrast adaptation is the result of inhibition through a parallel pathway, but that GABA does not mediate this process.

  12. A high-fat diet decreases GABA concentration in the frontal cortex and hippocampus of rats.

    PubMed

    Sandoval-Salazar, Cuauhtemoc; Ramírez-Emiliano, Joel; Trejo-Bahena, Aurora; Oviedo-Solís, Cecilia I; Solís-Ortiz, Martha Silvia

    2016-02-29

    It has been proposed that the γ-aminobutyric acid (GABA) plays a key role in the regulation of food intake and body weight by controlling the excitability, plasticity and the synchronization of neuronal activity in the frontal cortex (FC). It has been also proposed that the high-fat diet (HFD) could disturb the metabolism of glutamate and consequently the GABA levels, but the mechanism is not yet clearly understood. Therefore, the aim of this study was to investigate the effect of a HFD on the GABA levels in the FC and hippocampus of rats. The HFD significantly increased weight gain and blood glucose levels, whereas decreased the GABA levels in the FC and hippocampus compared with standard diet-fed rats. HFD decreases GABA levels in the FC and hippocampus of rat, which likely disrupts the GABAergic inhibitory processes, underlying feeding behavior.

  13. Gamma-amino butyric acid (GABA) synthesis of Lactobacillus in fermentation of defatted rice bran extract

    NASA Astrophysics Data System (ADS)

    Dat, Lai Quoc; Ngan, Tran Thi Kim; Nu, Nguyen Thi Xuan

    2017-09-01

    This research focused on the synthesis of GABA by Lactobacillus bacteria in fermentation of defatted rice bran extract without adding glutamate. Two strains of Lactobacillus were investigated into capacity of GABA synthesis. Result indicates that, Lactobacillus brevis VTCC - B - 454 exhibited the higher capacity of GABA synthesis in fermentation of defatted rice bran extract than that of Lactobacillus plantarum VTCC - B - 890. Total dissolved solid (TDS), free amino acids (AA) and reducing sugar (RS) contents in fermentation of defatted rice bran extract with two strains also significantly decreased. At pH 5 and 9 %w/w of TDS content in defatted rice bran extract, Lactobacillus brevis VTCC - B - 454 accumulated 2,952 ppm of GABA in 24 hours of fermentation. The result implies that fermentation with Lactobacillus brevis VTCC - B - 454 can be applied for GABA production from defatted rice bran extract.

  14. Immunoreactivity for GABA, GAD65, GAD67 and Bestrophin-1 in the Meninges and the Choroid Plexus: Implications for Non-Neuronal Sources for GABA in the Developing Mouse Brain

    PubMed Central

    Tochitani, Shiro; Kondo, Shigeaki

    2013-01-01

    Neural progenitors in the developing neocortex, neuroepithelial cells and radial glial cells, have a bipolar shape with a basal process contacting the basal membrane of the meninge and an apical plasma membrane facing the lateral ventricle, which the cerebrospinal fluid is filled with. Recent studies revealed that the meninges and the cerebrospinal fluid have certain roles to regulate brain development. γ-aminobutyric acid (GABA) is a neurotransmitter which appears first during development and works as a diffusible factor to regulate the properties of neural progenitors. In this study, we examined whether GABA can be released from the meninges and the choroid plexus in the developing mouse brain. Immunohistochemical analyses showed that glutamic acid decarboxylase 65 and 67 (GAD65 and GAD67), both of which are GABA-synthesizing enzymes, are expressed in the meninges. The epithelial cells in the choroid plexus express GAD65. GABA immunoreactivity could be observed beneath the basal membrane of the meninge and in the epithelial cells of the choroid plexus. Expression analyses on Bestrophin-1, which is known as a GABA-permeable channel in differentiated glial cells, suggested that the cells in the meninges and the epithelial cells in the choroid plexus have the channels able to permeate non-synaptic GABA into the extracellular space. Further studies showed that GAD65/67-expressing meningeal cells appear in a manner with rostral to caudal and lateral to dorsal gradient to cover the entire neocortex by E14.5 during development, while the cells in the choroid plexus in the lateral ventricle start to express GAD65 on E11–E12, the time when the choroid plexus starts to develop in the developing brain. These results totally suggest that the meninges and the choroid plexus can work as non-neuronal sources for ambient GABA which can modulate the properties of neural progenitors during neocortical development. PMID:23437266

  15. Meroterpenoid Chrodrimanins Are Selective and Potent Blockers of Insect GABA-Gated Chloride Channels

    PubMed Central

    Ihara, Makoto; Ling, Yun; Yang, Xinling; Kai, Kenji; Hayashi, Hideo; Matsuda, Kazuhiko

    2015-01-01

    Meroterpenoid chrodrimanins, produced from Talaromyces sp. YO-2, are known to paralyze silkworm (Bombyx mori) larvae, but their target is unknown. We have investigated the actions of chrodrimanin B on ligand-gated ion channels of silkworm larval neurons using patch-clamp electrophysiology. Chrodrimanin B had no effect on membrane currents when tested alone at 1 μM. However, it completely blocked the γ-aminobutyric acid (GABA)-induced current and showed less pronounced actions on acetylcholine- and L-glutamate-induced currents, when delivered at 1 μM for 1 min prior to co-application with transmitter GABA. Thus, chrodrimanins were also tested on a wild-type isoform of the B. mori GABA receptor (GABAR) RDL using two-electrode voltage-clamp electrophysiology. Chrodrimanin B attenuated the peak current amplitude of the GABA response of RDL with an IC50 of 1.66 nM. The order of the GABAR-blocking potency of chrodrimanins B > D > A was in accordance with their reported insecticidal potency. Chrodrimanin B had no open channel blocking action when tested at 3 nM on the GABA response of RDL. Co-application with 3 nM chrodrimanin B shifted the GABA concentration response curve to a higher concentration and further increase of chrodrimanin B concentration to10 nM; it reduced maximum current amplitude of the GABA response, pointing to a high-affinity competitive action and a lower affinity non-competitive action. The A282S;T286V double mutation of RDL, which impairs the actions of fipronil, hardly affected the blocking action of chrodrimanin B, indicating a binding site of chrodrimanin B distinct from that of fipronil. Chrodrimanin B showed approximately 1,000-fold lower blocking action on human α1β2γ2 GABAR compared to RDL and thus is a selective blocker of insect GABARs. PMID:25902139

  16. Neuroimaging studies of GABA in schizophrenia: a systematic review with meta-analysis

    PubMed Central

    Egerton, A; Modinos, G; Ferrera, D; McGuire, P

    2017-01-01

    Data from animal models and from postmortem studies suggest that schizophrenia is associated with brain GABAergic dysfunction. The extent to which this is reflected in data from in vivo studies of GABA function in schizophrenia is unclear. The Medline database was searched to identify articles published until 21 October 2016. The search terms included GABA, proton magnetic resonance spectroscopy (1H-MRS), positron emission tomography (PET), single photon emission computed tomography (SPECT), schizophrenia and psychosis. Sixteen GABA 1H-MRS studies (538 controls, 526 patients) and seven PET/SPECT studies of GABAA/benzodiazepine receptor (GABAA/BZR) availability (118 controls, 113 patients) were identified. Meta-analyses of 1H-MRS GABA in the medial prefrontal cortex (mPFC), parietal/occipital cortex (POC) and striatum did not show significant group differences (mFC: g=−0.3, 409 patients, 495 controls, 95% confidence interval (CI): −0.6 to 0.1; POC: g=−0.3, 139 patients, 111 controls, 95% CI: −0.9 to 0.3; striatum: g=−0.004, 123 patients, 95 controls, 95% CI: −0.7 to 0.7). Heterogeneity across studies was high (I2>50%), and this was not explained by subsequent moderator or meta-regression analyses. There were insufficient PET/SPECT receptor availability studies for meta-analyses, but a systematic review did not suggest replicable group differences in regional GABAA/BZR availability. The current literature does not reveal consistent alterations in in vivo GABA neuroimaging measures in schizophrenia, as might be hypothesized from animal models and postmortem data. The analysis highlights the need for further GABA neuroimaging studies with improved methodology and addressing potential sources of heterogeneity. PMID:28585933

  17. Early environmental therapy rescues brain development in a mouse model of Down syndrome.

    PubMed

    Begenisic, Tatjana; Sansevero, Gabriele; Baroncelli, Laura; Cioni, Giovanni; Sale, Alessandro

    2015-10-01

    Down syndrome (DS), the most common genetic disorder associated with intellectual disabilities, is an untreatable condition characterized by a number of developmental defects and permanent deficits in the adulthood. Ts65Dn mice, the major animal model for DS, display severe cognitive and synaptic plasticity defects closely resembling the human phenotype. Here, we employed a multidisciplinary approach to investigate, for the first time in developing Ts65Dn mice, the effects elicited by early environmental enrichment (EE) on brain maturation and function. We report that exposure to EE resulted in a robust increase in maternal care levels displayed by Ts65Dn mothers and led to a normalization of declarative memory abilities and hippocampal plasticity in trisomic offspring. The positive effects of EE on Ts65Dn phenotype were not limited to the cognitive domain, but also included a rescue of visual system maturation. The beneficial EE effects were accompanied by increased BDNF and correction of over-expression of the GABA vesicular transporter vGAT. These findings highlight the beneficial impact of early environmental stimuli and their potential for application in the treatment of major functional deficits in children with DS. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. GABA production and structure of gadB/gadC genes in Lactobacillus and Bifidobacterium strains from human microbiota.

    PubMed

    Yunes, R A; Poluektova, E U; Dyachkova, M S; Klimina, K M; Kovtun, A S; Averina, O V; Orlova, V S; Danilenko, V N

    2016-12-01

    Gamma-amino butyric acid (GABA) is an active biogenic substance synthesized in plants, fungi, vertebrate animals and bacteria. Lactic acid bacteria are considered the main producers of GABA among bacteria. GABA-producing lactobacilli are isolated from food products such as cheese, yogurt, sourdough, etc. and are the source of bioactive properties assigned to those foods. The ability of human-derived lactobacilli and bifidobacteria to synthesize GABA remains poorly characterized. In this paper, we screened our collection of 135 human-derived Lactobacillus and Bifidobacterium strains for their ability to produce GABA from its precursor monosodium glutamate. Fifty eight strains were able to produce GABA. The most efficient GABA-producers were Bifidobacterium strains (up to 6 g/L). Time profiles of cell growth and GABA production as well as the influence of pyridoxal phosphate on GABA production were studied for L. plantarum 90sk, L. brevis 15f, B. adolescentis 150 and B. angulatum GT102. DNA of these strains was sequenced; the gadB and gadC genes were identified. The presence of these genes was analyzed in 14 metagenomes of healthy individuals. The genes were found in the following genera of bacteria: Bacteroidetes (Bacteroides, Parabacteroides, Alistipes, Odoribacter, Prevotella), Proteobacterium (Esherichia), Firmicutes (Enterococcus), Actinobacteria (Bifidobacterium). These data indicate that gad genes as well as the ability to produce GABA are widely distributed among lactobacilli and bifidobacteria (mainly in L. plantarum, L. brevis, B. adolescentis, B. angulatum, B. dentium) and other gut-derived bacterial species. Perhaps, GABA is involved in the interaction of gut microbiota with the macroorganism and the ability to synthesize GABA may be an important feature in the selection of bacterial strains - psychobiotics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Gad1 mRNA as a reliable indicator of altered GABA release from orexigenic neurons in the hypothalamus.

    PubMed

    Dicken, Matthew S; Hughes, Alexander R; Hentges, Shane T

    2015-11-01

    The strength of γ-aminobutyric acid (GABA)-mediated inhibitory synaptic input is a principle determinant of neuronal activity. However, because of differences in the number of GABA afferent inputs and the sites of synapses, it is difficult to directly assay for altered GABA transmission between specific cells. The present study tested the hypothesis that the level of mRNA for the GABA synthetic enzyme glutamate decarboxylase (GAD) can provide a reliable proxy for GABA release. This was tested in a mouse hypothalamic circuit important in the regulation of energy balance. Fluorescent in situ hybridization results show that the expression of Gad1 mRNA (encoding the GAD67 enzyme) was increased in hypothalamic neuropeptide Y/agouti-related peptide (NPY/AgRP) neurons after an overnight fast, consistent with the ability of GABA from these neurons to stimulate food intake. Optogenetic studies confirmed that the observed increase in Gad1 mRNA correlated with an increase in the probability of GABA release from NPY/AgRP neurons onto downstream proopiomelanocortin neurons. Likewise, there was an increase in the readily releasable pool of GABA in NPY/AgRP neurons. Selective inhibition of GAD activity in NPY/AgRP neurons decreased GABA release, indicating that GAD67 activity, which is largely dictated by expression level, is a key determinant of GABA release. Altogether, it appears that Gad expression may be a reliable proxy of altered GABAergic transmission. Examining changes in Gad mRNA as a proxy for GABA release may be particularly helpful when the downstream targets are not known or when limited tools exist for detecting GABA release at a particular synapse. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. Glutamate-glutamine and GABA in brain of normal aged and patients with cognitive impairment.

    PubMed

    Huang, Dandan; Liu, Dan; Yin, Jianzhong; Qian, Tianyi; Shrestha, Susan; Ni, Hongyan

    2017-07-01

    To explore the changes of glutamate-glutamine (Glx) and gamma-aminobutyric acid (GABA) in the brain in normal old age and cognitive impairment using magnetic resonance spectroscopy (MRS). Seventeen normal young controls (NYC), 15 normal elderly controls (NEC), 21 patients with mild cognitive impairment (MCI) and 17 with Alzheimer disease (AD) patients were included in this study. Glx and GABA+ levels in the anterior cingulate cortex (ACC) and right hippocampus (rHP) were measured by using a MEGA-PRESS sequence. Glx/Cr and GABA+/Cr ratios were compared between NYC and NEC and between the three elderly groups using analysis of covariance (ANCOVA); the tissue fractions of voxels were used as covariates. The relationships between metabolite ratios and cognitive performance were analysed using Spearman correlation coefficients. For NEC and NYC groups, Glx/Cr and GABA+/Cr ratios were lower in NEC in ACC and rHP. For the three elderly groups, Glx/Cr ratio was lower in AD in ACC compared to NEC and MCI; Glx/Cr ratio was lower in AD in rHP compared to NEC. There was no significant decrease for GABA+/Cr ratio. Glx and GABA levels may decrease simultaneously in normal aged, and Glx level decreased predominantly in AD, and it is helpful in the early diagnosis of AD. • Glx and GABA levels may decrease simultaneously in normal aged. • Glx level may decrease predominantly in Alzheimer disease. • The balance in excitatory-inhibitory systems may be broken in AD. • Decreased Glx level may be helpful in early diagnosis of AD.

  1. Comparative mapping of GABA-immunoreactive neurons in the central nervous systems of nudibranch molluscs.

    PubMed

    Gunaratne, Charuni A; Sakurai, Akira; Katz, Paul S

    2014-03-01

    The relative simplicity of certain invertebrate nervous systems, such as those of gastropod molluscs, allows behaviors to be dissected at the level of small neural circuits composed of individually identifiable neurons. Elucidating the neurotransmitter phenotype of neurons in neural circuits is important for understanding how those neural circuits function. In this study, we examined the distribution of γ-aminobutyric-acid;-immunoreactive (GABA-ir) neurons in four species of sea slugs (Mollusca, Gastropoda, Opisthobranchia, Nudibranchia): Tritonia diomedea, Melibe leonina, Dendronotus iris, and Hermissenda crassicornis. We found consistent patterns of GABA immunoreactivity in the pedal and cerebral-pleural ganglia across species. In particular, there were bilateral clusters in the lateral and medial regions of the dorsal surface of the cerebral ganglia as well as a cluster on the ventral surface of the pedal ganglia. There were also individual GABA-ir neurons that were recognizable across species. The invariant presence of these individual neurons and clusters suggests that they are homologous, although there were interspecies differences in the numbers of neurons in the clusters. The GABAergic system was largely restricted to the central nervous system, with the majority of axons confined to ganglionic connectives and commissures, suggesting a central, integrative role for GABA. GABA was a candidate inhibitory neurotransmitter for neurons in central pattern generator (CPG) circuits underlying swimming behaviors in these species, however none of the known swim CPG neurons were GABA-ir. Although the functions of these GABA-ir neurons are not known, it is clear that their presence has been strongly conserved across nudibranchs. Copyright © 2013 Wiley Periodicals, Inc.

  2. Analgesia and hyperalgesia from GABA-mediated modulation of the cerebral cortex.

    PubMed

    Jasmin, Luc; Rabkin, Samuel D; Granato, Alberto; Boudah, Abdennacer; Ohara, Peter T

    2003-07-17

    It is known that pain perception can be altered by mood, attention and cognition, or by direct stimulation of the cerebral cortex, but we know little of the neural mechanisms underlying the cortical modulation of pain. One of the few cortical areas consistently activated by painful stimuli is the rostral agranular insular cortex (RAIC) where, as in other parts of the cortex, the neurotransmitter gamma-aminobutyric acid (GABA) robustly inhibits neuronal activity. Here we show that changes in GABA neurotransmission in the RAIC can raise or lower the pain threshold--producing analgesia or hyperalgesia, respectively--in freely moving rats. Locally increasing GABA, by using an enzyme inhibitor or gene transfer mediated by a viral vector, produces lasting analgesia by enhancing the descending inhibition of spinal nociceptive neurons. Selectively activating GABA(B)-receptor-bearing RAIC neurons produces hyperalgesia through projections to the amygdala, an area involved in pain and fear. Whereas most studies focus on the role of the cerebral cortex as the end point of nociceptive processing, we suggest that cerebral cortex activity can change the set-point of pain threshold in a top-down manner.

  3. Behavioral deficit and decreased GABA receptor functional regulation in the hippocampus of epileptic rats: effect of Bacopa monnieri.

    PubMed

    Mathew, Jobin; Gangadharan, Gireesh; Kuruvilla, Korah P; Paulose, C S

    2011-01-01

    In the present study, alterations of the General GABA and GABA(A) receptors in the hippocampus of pilocarpine-induced temporal lobe epileptic rats and the therapeutic application of Bacopa monnieri and its active component Bacoside-A were investigated. Bacopa monnieri (Linn.) is a herbaceous plant belonging to the family Scrophulariaceae. Hippocampus is the major region of the brain belonging to the limbic system and plays an important role in epileptogenesis, memory and learning. Scatchard analysis of [³H]GABA and [³H]bicuculline in the hippocampus of the epileptic rat showed significant decrease in B(max) (P < 0.001) compared to control. Real Time PCR amplification of GABA(A) receptor sub-units such as GABA(Aά₁), GABA(Aά₅) GABA(Aδ), and GAD were down regulated (P < 0.001) in the hippocampus of the epileptic rats compared to control. GABA(Aγ) subunit was up regulated. Epileptic rats have deficit in the radial arm and Y maze performance. Bacopa monnieri and Bacoside-A treatment reverses all these changes near to control. Our results suggest that decreased GABA receptors in the hippocampus have an important role in epilepsy associated behavioral deficit, Bacopa monnieri and Bacoside-A have clinical significance in the management of epilepsy.

  4. Investigation of brain GABA+ in primary hypothyroidism using edited proton MR spectroscopy

    PubMed Central

    Liu, Bo; Yang, Huan; Gao, Fei; Wang, Qing; Zhao, Bin; Gong, Tao; Wang, Zhensong; Chen, Weibo; Wang, Guangbin; Edden, Richard A.E.

    2017-01-01

    Summary Objective Evidence indicates that thyroid hormones have effects on the inhibitory GABAergic system. The aim of this study was to investigate whether brain GABA levels are altered in patients with hypothyroidism compared with healthy controls. Design/Methods Fifteen patients with primary hypothyroidism and 15 matched healthy controls underwent single-voxel MEGA-PRESS magnetic resonance spectroscopy at 3T, to quantify GABA levels in the median prefrontal cortex (mPFC) and posterior cingulate cortex (PCC). All participants underwent thyroid function test. Neuropsychological performances were evaluated by administration of the Montreal Cognitive Assessment (MoCA) and the 21-item Beck Depression Inventory-II (BDI-II). Results The patients with hypothyroidism had significantly lower GABA+ levels in the mPFC compared with healthy controls (P = 0·016), whereas no significant difference (P = 0·214) was observed in the PCC. Exploratory analyses revealed that mPFC GABA+ levels were negatively correlated with the BDI-II scores in patient group (r = −0·60, P = 0·018). No correlations were found between GABA+ levels and TSH or fT3 or fT4 levels in either region (all P > 0·05). Conclusion This study suggests that alteration of GABAergic neurotransmission may play an important role in the pathophysiology of primary hypothyroidism, providing intriguing neurochemical clues to understand thyroid–brain interactions. PMID:27581339

  5. Cell and receptor type-specific alterations in markers of GABA neurotransmission in the prefrontal cortex of subjects with schizophrenia.

    PubMed

    Lewis, David A; Hashimoto, Takanori; Morris, Harvey M

    2008-10-01

    Impairments in cognitive control, such as those involved in working memory, are associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC) in individuals with schizophrenia. This dysfunction appears to result, at least in part, from abnormalities in GABA-mediated neurotransmission. In this paper, we review recent findings indicating that the altered DLPFC circuitry in subjects with schizophrenia reflects changes in the expression of genes that encode selective presynaptic and postsynaptic components of GABA neurotransmission. Specifically, using a combination of methods, we found that subjects with schizophrenia exhibited expression deficits in GABA-related transcripts encoding presynaptic regulators of GABA neurotransmission, neuropeptide markers of specific subpopulations of GABA neurons, and certain subunits of the GABA(A) receptor. In particular, alterations in the expression of the neuropeptide somatostatin suggested that GABA neurotransmission is impaired in the Martinotti subset of GABA neurons that target the dendrites of pyramidal cells. In contrast, none of the GABA-related transcripts assessed to date were altered in the DLPFC of monkeys chronically exposed to antipsychotic medications, suggesting that the effects observed in the human studies reflect the disease process and not its treatment. In concert with previous findings, these data suggest that working memory dysfunction in schizophrenia may be attributable to altered GABA neurotransmission in specific DLPFC microcircuits.

  6. Decreased GABA receptor in the striatum and spatial recognition memory deficit in epileptic rats: effect of Bacopa monnieri and bacoside-A.

    PubMed

    Mathew, Jobin; Soman, Smijin; Sadanandan, Jayanarayanan; Paulose, Cheramadathikudyil Skaria

    2010-07-20

    Gamma-aminobutyric acid A receptors are the principal mediators of synaptic inhibition in striatal neurons and play an important role in preventing the spreading of seizures through the striatum. In the present study, effect of Bacopa monnieri (L.) Pennel and its active component bacoside-A on spatial recognition memory deficit and alterations of GABA receptor in the striatum of epileptic rats were investigated. Total GABA and GABA(A) receptor numbers in the control and epileptic rats were evaluated using [(3)H]GABA and [(3)H]bicuculline binding. GABA(Aalpha1,) GABA(Aalpha5,) GABA(Agamma3) and GABA(Adelta) gene expressions were studied. Behavioral performance was assed using Y-maze. Scatchard analysis of [(3)H]GABA and [(3)H]bicuculline in the striatum of epileptic rats showed significant decrease in B(max) compared to control. Real-Time PCR amplification of GABA(A) receptor subunits such as GABA(Aalpha1,) GABA(Aalpha5) and GABA(Adelta), were down regulated (p<0.001) in the striatum of epileptic rats compared to control. Epileptic rats have deficit in Y-maze performance. Bacopa monnieri and bacoside-A treatment reversed these changes to near control. Our results suggest that decreased GABA receptors in the striatum have an important role in epilepsy associated motor learning deficits and Bacopa monnieri and bacoside-A has a beneficial effect in the management of epilepsy. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  7. Decreased auditory GABA+ concentrations in presbycusis demonstrated by edited magnetic resonance spectroscopy

    PubMed Central

    Gao, Fei; Wang, Guangbin; Ma, Wen; Ren, Fuxin; Li, Muwei; Dong, Yuling; Liu, Cheng; Liu, Bo; Bai, Xue; Zhao, Bin; Edden, Richard A.E.

    2014-01-01

    Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the central auditory system. Altered GABAergic neurotransmission has been found in both the inferior colliculus and the auditory cortex in animal models of presbycusis. Edited magnetic resonance spectroscopy (MRS), using the MEGA-PRESS sequence, is the most widely used technique for detecting GABA in the human brain. However, to date there has been a paucity of studies exploring changes to the GABA concentrations in the auditory region of patients with presbycusis. In this study, sixteen patients with presbycusis (5 males/11 females, mean age 63.1 ± 2.6 years) and twenty healthy controls (6 males/14 females, mean age 62.5 ± 2.3 years) underwent audiological and MRS examinations. Pure tone audiometry from 0.125 to 8 KHz and tympanometry were used to assess the hearing abilities of all subjects. The pure tone average (PTA; the average of hearing thresholds at 0.5, 1, 2, and 4 kHz) was calculated. The MEGA-PRESS sequence was used to measure GABA+ concentrations in 4 × 3 × 3 cm3 volumes centered on the left and right Heschl’s gyri. GABA+ concentrations were significantly lower in the presbycusis group compared to the control group (left auditory regions: p = 0.002, right auditory regions: p = 0.008). Significant negative correlations were observed between PTA and GABA+ concentrations in the presbycusis group (r = −0.57, p = 0.02), while a similar trend was found in the control group (r = −0.40, p = 0.08). These results are consistent with a hypothesis of dysfunctional GABAergic neurotransmission in the central auditory system in presbycusis, and suggest a potential treatment target for presbycusis. PMID:25463460

  8. Glutamate/GABA+ ratio is associated with the psychosocial domain of autistic and schizotypal traits.

    PubMed

    Ford, Talitha C; Nibbs, Richard; Crewther, David P

    2017-01-01

    The autism and schizophrenia spectra overlap to a large degree in the social and interpersonal domains. Similarly, abnormal excitatory glutamate and inhibitory γ-aminobutyric acid (GABA) neurotransmitter concentrations have been reported for both spectra, with the interplay of these neurotransmitters important for cortical excitation to inhibition regulation. This study investigates whether these neurotransmitter abnormalities are specific to the shared symptomatology, and whether the degree of abnormality increases with increasing symptom severity. Hence, the relationship between the glutamate/GABA ratio and autism and schizophrenia spectrum traits in an unmedicated, subclinical population was investigated. A total of 37 adults (19 female, 18 male) aged 18-38 years completed the Autism Spectrum Quotient (AQ) and Schizotypal Personality Questionnaire (SPQ), and participated in the resting state proton magnetic resonance spectroscopy study in which sequences specific for quantification of glutamate and GABA+ concentration were applied to a right and left superior temporal voxel. There were significant, moderate, positive relationships between right superior temporal glutamate/GABA+ ratio and AQ, SPQ and AQ+SPQ total scores (p<0.05), SPQ subscales Social Anxiety, No Close Friend, Constricted Affect, Odd Behaviour, Odd Speech, Ideas of Reference and Suspiciousness, and AQ subscales Social Skills, Communication and Attention Switching (p<0.05); increased glutamate/GABA+ coinciding with higher scores on these subscales. Only the relationships between glutamate/GABA+ ratio and Social Anxiety, Constricted Affect, Social Skills and Communication survived multiple comparison correction (p< 0.004). Left superior temporal glutamate/GABA+ ratio reduced with increasing restricted imagination (p<0.05). These findings demonstrate evidence for an association between excitatory/inhibitory neurotransmitter concentrations and symptoms that are shared between the autism and

  9. The γ-Aminobutyrate Permease GabP Serves as the Third Proline Transporter of Bacillus subtilis

    PubMed Central

    Zaprasis, Adrienne; Hoffmann, Tamara; Stannek, Lorena; Gunka, Katrin; Commichau, Fabian M.

    2014-01-01

    PutP and OpuE serve as proline transporters when this imino acid is used by Bacillus subtilis as a nutrient or as an osmostress protectant, respectively. The simultaneous inactivation of the PutP and OpuE systems still allows the utilization of proline as a nutrient. This growth phenotype pointed to the presence of a third proline transport system in B. subtilis. We took advantage of the sensitivity of a putP opuE double mutant to the toxic proline analog 3,4-dehydro-dl-proline (DHP) to identify this additional proline uptake system. DHP-resistant mutants were selected and found to be defective in the use of proline as a nutrient. Whole-genome resequencing of one of these strains provided the lead that the inactivation of the γ-aminobutyrate (GABA) transporter GabP was responsible for these phenotypes. DNA sequencing of the gabP gene in 14 additionally analyzed DHP-resistant strains confirmed this finding. Consistently, each of the DHP-resistant mutants was defective not only in the use of proline as a nutrient but also in the use of GABA as a nitrogen source. The same phenotype resulted from the targeted deletion of the gabP gene in a putP opuE mutant strain. Hence, the GabP carrier not only serves as an uptake system for GABA but also functions as the third proline transporter of B. subtilis. Uptake studies with radiolabeled GABA and proline confirmed this conclusion and provided information on the kinetic parameters of the GabP carrier for both of these substrates. PMID:24142252

  10. Decreasing GABA function within the medial prefrontal cortex or basolateral amygdala decreases sociability.

    PubMed

    Paine, Tracie A; Swedlow, Nathan; Swetschinski, Lucien

    2017-01-15

    Decreased sociability is a symptom of psychiatric conditions including autism-spectrum disorder and schizophrenia. Both of these conditions are associated with decreases in GABA function, particularly in the medial prefrontal cortex (PFC) and the basolateral amygdala (BLA); structures that are components of the social brain. Here, we determined if decreasing GABA transmission within either the PFC or the BLA decreases social behavior. Rats were implanted with cannulae aimed at either the medial PFC or the BLA and then were tested on up to 4 behavioral tests following bilateral infusions of 0.5μl bicuculline methiodide (BMI, a GABA A receptor antagonist) at doses of 0, 25, or 50ng/μl. Rats were tested in the social interaction test, the social preference test, the sucrose preference test and for locomotor activity (BLA infusions only). Intra-BLA or PFC BMI infusions decreased the amount of time and the number of social interactions in the social interaction test. Further, in the social preference test, rats infused with 50ng BMI no longer exhibited a preference to explore a social over a non-social stimulus. The change in sociability was not due to a change in reward processing or locomotor behavior. Decreasing GABA transmission in either the medial PFC or BLA decreased sociability. Thus, changes in GABA signaling observed in conditions such as autism or schizophrenia may mediate the social withdrawal characteristic of these conditions. Moreover, they suggest that social withdrawal may be treated by drugs that potentiate GABA transmission. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Effects of NaCl Replacement with Gamma-Aminobutyric acid (GABA) on the Quality Characteristics and Sensorial Properties of Model Meat Products

    PubMed Central

    Chun, Ji-Yeon; Cho, Hyung-Yong; Min, Sang-Gi

    2014-01-01

    This study investigated the effects of γ-aminobutylic acid (GABA) on the quality and sensorial properties of both the GABA/NaCl complex and model meat products. GABA/NaCl complex was prepared by spray-drying, and the surface dimensions, morphology, rheology, and saltiness were characterized. For model meat products, pork patties were prepared by replacing NaCl with GABA. For characteristics of the complex, increasing GABA concentration increased the surface dimensions of the complex. However, GABA did not affect the rheological properties of solutions containing the complex. The addition of 2% GABA exhibited significantly higher saltiness than the control (no GABA treatment). In the case of pork patties, sensory testing indicated that the addition of GABA decreased the saltiness intensity. Both the intensity of juiciness and tenderness of patties containing GABA also scored lower than the control, based on the NaCl reduction. These results were consistent with the quality characteristics (cooking loss and texture profile analysis). Nevertheless, overall acceptability of the pork patties showed that up to 1.5%, patties containing GABA did not significantly differ from the control. Consequently, the results indicated that GABA has a potential application in meat products, but also manifested a deterioration of quality by the NaCl reduction, which warrants further exploration. PMID:26761294

  12. Endogenous GABA levels in the pontine reticular formation are greater during wakefulness than during rapid eye movement sleep.

    PubMed

    Vanini, Giancarlo; Wathen, Bradley L; Lydic, Ralph; Baghdoyan, Helen A

    2011-02-16

    Studies using drugs that increase or decrease GABAergic transmission suggest that GABA in the pontine reticular formation (PRF) promotes wakefulness and inhibits rapid eye movement (REM) sleep. Cholinergic transmission in the PRF promotes REM sleep, and levels of endogenous acetylcholine (ACh) in the PRF are significantly greater during REM sleep than during wakefulness or non-REM (NREM) sleep. No previous studies have determined whether levels of endogenous GABA in the PRF vary as a function of sleep and wakefulness. This study tested the hypothesis that GABA levels in cat PRF are greatest during wakefulness and lowest during REM sleep. Extracellular GABA levels were measured during wakefulness, NREM sleep, REM sleep, and the REM sleep-like state (REM(Neo)) caused by microinjecting neostigmine into the PRF. GABA levels varied significantly as a function of sleep and wakefulness, and decreased significantly below waking levels during REM sleep (-42%) and REM(Neo) (-63%). The decrease in GABA levels during NREM sleep (22% below waking levels) was not statistically significant. Compared with NREM sleep, GABA levels decreased significantly during REM sleep (-27%) and REM(Neo) (-52%). Comparisons of REM sleep and REM(Neo) revealed no differences in GABA levels or cortical EEG power. GABA levels did not vary significantly as a function of dialysis site within the PRF. The inverse relationship between changes in PRF levels of GABA and ACh during REM sleep indicates that low GABAergic tone combined with high cholinergic tone in the PRF contributes to the generation of REM sleep.

  13. Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera)

    PubMed Central

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2016-01-01

    γ-Aminobutyric acid is a non-protein amino acid involved in various metabolic processes. The objectives of this study were to examine whether increased GABA could improve heat tolerance in cool-season creeping bentgrass through physiological analysis, and to determine major metabolic pathways regulated by GABA through metabolic profiling. Plants were pretreated with 0.5 mM GABA or water before exposed to non-stressed condition (21/19 °C) or heat stress (35/30 °C) in controlled growth chambers for 35 d. The growth and physiological analysis demonstrated that exogenous GABA application significantly improved heat tolerance of creeping bentgrass. Metabolic profiling found that exogenous application of GABA led to increases in accumulations of amino acids (glutamic acid, aspartic acid, alanine, threonine, serine, and valine), organic acids (aconitic acid, malic acid, succinic acid, oxalic acid, and threonic acid), sugars (sucrose, fructose, glucose, galactose, and maltose), and sugar alcohols (mannitol and myo-inositol). These findings suggest that GABA-induced heat tolerance in creeping bentgrass could involve the enhancement of photosynthesis and ascorbate-glutathione cycle, the maintenance of osmotic adjustment, and the increase in GABA shunt. The increased GABA shunt could be the supply of intermediates to feed the tricarboxylic acid cycle of respiration metabolism during a long-term heat stress, thereby maintaining metabolic homeostasis. PMID:27455877

  14. A molecular characterization of the agonist binding site of a nematode cys-loop GABA receptor

    PubMed Central

    Kaji, Mark D; Kwaka, Ariel; Callanan, Micah K; Nusrat, Humza; Desaulniers, Jean-Paul; Forrester, Sean G

    2015-01-01

    Background and Purpose Cys-loop GABA receptors represent important targets for human chemotherapeutics and insecticides and are potential targets for novel anthelmintics (nematicides). However, compared with insect and mammalian receptors, little is known regarding the pharmacological characteristics of nematode Cys-loop GABA receptors. Here we have investigated the agonist binding site of the Cys-loop GABA receptor UNC-49 (Hco-UNC-49) from the parasitic nematode Haemonchus contortus. Experimental Approach We used two-electrode voltage-clamp electrophysiology to measure channel activation by classical GABA receptor agonists on Hco-UNC-49 expressed in Xenopus laevis oocytes, along with site-directed mutagenesis and in silico homology modelling. Key Results The sulphonated molecules P4S and taurine had no effect on Hco-UNC-49. Other classical Cys-loop GABAA receptor agonists tested on the Hco-UNC-49B/C heteromeric channel had a rank order efficacy of GABA > trans-4-aminocrotonic acid > isoguvacine > imidazole-4-acetic acid (IMA) > (R)-(−)-4-amino-3-hydroxybutyric acid [R(−)-GABOB] > (S)-(+)-4-amino-3-hydroxybutyric acid [S(+)-GABOB] > guanidinoacetic acid > isonipecotic acid > 5-aminovaleric acid (DAVA) (partial agonist) > β-alanine (partial agonist). In silico ligand docking revealed some variation in binding between agonists. Mutagenesis of a key serine residue in binding loop C to threonine had minimal effects on GABA and IMA but significantly increased the maximal response to DAVA and decreased twofold the EC50 for R(−)- and S(+)-GABOB. Conclusions and Implications The pharmacological profile of Hco-UNC-49 differed from that of vertebrate Cys-loop GABA receptors and insect resistance to dieldrin receptors, suggesting differences in the agonist binding pocket. These findings could be exploited to develop new drugs that specifically target GABA receptors of parasitic nematodes. PMID:25850584

  15. Endogenous concentrations, pharmacokinetics, and selected pharmacodynamic effects of a single dose of exogenous GABA in horses.

    PubMed

    Knych, H K; Steinmetz, S J; McKemie, D S

    2015-04-01

    The anti-anxiety and calming effects following activation of the GABA receptor have been exploited in performance horses by administering products containing GABA. The primary goal of the study reported here was to describe endogenous concentrations of GABA in horses and the pharmacokinetics, selected pharmacodynamic effects, and CSF concentrations following administration of a GABA-containing product. The mean (±SD) endogenous GABA level was 36.4 ± 12.5 ng/mL (n = 147). Sixteen of these horses received a single intravenous and oral dose of GABA (1650 mg). Blood, urine, and cerebrospinal fluid (n = 2) samples were collected at time 0 and at various times for up to 48 h and analyzed using LC-MS. Plasma clearance and volume of distribution was 155.6 and 147.6 L/h and 0.154 and 7.39 L for the central and peripheral compartments, respectively. Terminal elimination half-life was 22.1 (intravenous) and 25.1 (oral) min. Oral bioavailability was 9.81%. Urine GABA concentrations peaked rapidly returning to baseline levels by 3 h. Horses appeared behaviorally unaffected following oral administration, while sedative-like changes following intravenous administration were transient. Heart rate was increased for 1 h postintravenous administration, and gastrointestinal sounds decreased for approximately 30 min following both intravenous and oral administration. Based on a limited number of horses and time points, exogenously administered GABA does not appear to enter the CSF to an appreciable extent. © 2014 John Wiley & Sons Ltd.

  16. Effect of GABA on oxidative stress in the skeletal muscles and plasma free amino acids in mice fed high-fat diet.

    PubMed

    Xie, Z X; Xia, S F; Qiao, Y; Shi, Y H; Le, G W

    2015-06-01

    Increased levels of plasma free amino acids (pFAAs) can disturb the blood glucose levels in patients with obesity, diabetes mellitus and metabolic syndrome (MS) and are associated with enhanced protein oxidation. Oxidation of proteins, especially in the muscles, can promote protein degradation and elevate the levels of pFAAs. Gamma-aminobutyric acid (GABA), a food additive, can reduce high-fat diet (HFD)-induced hyperglycaemia; however, the mechanisms remain unclear. The aim of this study was to evaluate the effects of GABA on protein oxidation and pFAAs changes. One hundred male C57BL/6 mice were randomly divided into five groups that were fed with control diet, HFD and HFD supplied with 0.2%, 0.12% and 0.06% GABA in drinking water for 20 weeks respectively. HFD feeding led to muscular oxidative stress, protein oxidation, pFAA disorders, hyperglycaemia and augmented plasma GABA levels. Treatment with GABA restored normally fasting blood glucose level and dose-dependently inhibited body weight gains, muscular oxidation and protein degradation. While medium and low doses of GABA mitigated HFD-induced pFAA disorders, the high dose of GABA deteriorated the pFAA disorders. Medium dose of GABA increased the levels of GABA, but high dose of GABA reduced the levels of plasma GABA and increased the activity of succinic semialdehyde dehydrogenase in the liver. Therefore, treatment with GABA mitigated HFD-induced hyperglycaemia probably by repairing HFD-induced muscular oxidative stress and pFAA disorders in mice. Our data also suggest that an optimal dose of GABA is crucial for the prevention of excess GABA-related decrease in the levels of pFAA and GABA as well as obesity. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  17. Different in vitro and in vivo profiles of substituted 3-aminopropylphosphinate and 3-aminopropyl(methyl)phosphinate GABA(B) receptor agonists as inhibitors of transient lower oesophageal sphincter relaxation.

    PubMed

    Lehmann, A; Antonsson, M; Aurell-Holmberg, A; Blackshaw, L A; Brändén, L; Elebring, T; Jensen, J; Kärrberg, L; Mattsson, J P; Nilsson, K; Oja, S S; Saransaari, P; von Unge, S

    2012-03-01

    Gastro-oesophageal reflux is predominantly caused by transient lower oesophageal sphincter relaxation (TLOSR) and GABA(B) receptor stimulation inhibits TLOSR. Lesogaberan produces fewer CNS side effects than baclofen, which has been attributed to its affinity for the GABA transporter (GAT), the action of which limits stimulation of central GABA(B) receptors. To understand the structure-activity relationship for analogues of lesogaberan (3-aminopropylphosphinic acids), and corresponding 3-aminopropyl(methyl)phosphinic acids, we have compared representatives of these classes in different in vitro and in vivo models. The compounds were characterized in terms of GABA(B) agonism in vitro. Binding to GATs and cellular uptake was done using rat brain membranes and slices respectively. TLOSR was measured in dogs, and CNS side effects were evaluated as hypothermia in mice and rats. 3-Aminopropylphosphinic acids inhibited TLOSR with a superior therapeutic index compared to 3-aminopropyl(methyl)phosphinic acids. This difference was most likely due to differential GAT-mediated uptake into brain cells of the former but not latter. In agreement, 3-aminopropyl(methyl)phosphinic acids were much more potent in producing hypothermia in rats even when administered i.c.v. An enhanced therapeutic window for 3-aminopropylphosphinic acids compared with 3-aminopropyl(methyl)phosphinic acids with respect to inhibition of TLOSR was observed and is probably mechanistically linked to neural cell uptake of the former but not latter group of compounds. These findings offer a platform for discovery of new GABA(B) receptor agonists for the treatment of reflux disease and other conditions where selective peripheral GABA(B) receptor agonism may afford therapeutic effects. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  18. Taurine-induced attenuation of MPP+ neurotoxicity in vitro: a possible role for the GABA(A) subclass of GABA receptors.

    PubMed

    O'Byrne, M B; Tipton, K F

    2000-05-01

    Taurine is a sulphur-containing beta-amino acid found in high (millimolar) concentrations in excitable tissues such as brain and heart. Its suggested roles include osmoregulator, thermoregulator, neuromodulator, and potential neurotransmitter. This amino acid has also been shown to be released in large concentrations during ischaemia and excitotoxin-induced neuronal damage. Here we report a protective effect of taurine against MPP(+)-induced neurotoxicity in coronal slices from rat brain. Significant protective effects were observed at taurine concentrations of 20 and 1 mM, suggesting a potential role for taurine in cases of neuronal insult. Studies with the synthetic taurine analogues taurine phosphonate, guanidinoethane sulphonate, and trimethyltaurine suggested the observed effect to be mediated via an extracellular mechanism. The use of GABA receptor ligands muscimol and bicuculline indicated the effect to be mediated through activation of GABA(A) receptors.

  19. GABA and glutamate immunoreactivity in tentacles of the sea anemone Phymactis papillosa (LESSON 1830).

    PubMed

    Delgado, Luz M; Couve, Eduardo; Schmachtenberg, Oliver

    2010-07-01

    Sea anemones have a structurally simple nervous system that controls behaviors like feeding, locomotion, aggression, and defense. Specific chemical and tactile stimuli are transduced by ectodermal sensory cells and transmitted via a neural network to cnidocytes and epithelio-muscular cells, but the nature of the neurotransmitters operating in these processes is still under discussion. Previous studies demonstrated an important role of peptidergic transmission in cnidarians, but during the last decade the contribution of conventional neurotransmitters became increasingly evident. Here, we used immunohistochemistry on light and electron microscopical preparations to investigate the localization of glutamate and GABA in tentacle cross-sections of the sea anemone Phymactis papillosa. Our results demonstrate strong glutamate immunoreactivity in the nerve plexus, while GABA labeling was most prominent in the underlying epithelio-muscular layer. Immunoreactivity for both molecules was also found in glandular epithelial cells, and putative sensory cells were GABA positive. Under electron microscopy, both glutamate and GABA immunogold labeling was found in putative neural processes within the neural plexus. These data support a function of glutamate and GABA as signaling molecules in the nervous system of sea anemones.

  20. The Enantiomers of 4-Amino-3-fluorobutanoic Acid as Substrates for γ-Aminobutyric Acid Aminotransferase. Conformational Probes for GABA Binding†

    PubMed Central

    Clift, Michael; Ji, Haitao; Deniau, Gildas P.; O’Hagan, David; Silverman, Richard B.

    2008-01-01

    γ-Aminobutyric acid aminotransferase (GABA-AT), a pyridoxal 5’-phosphate dependent enzyme, catalyzes the degradation of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) to succinic semialdehyde with concomitant conversion of pyridoxal 5’-phosphate (PLP) to pyridoxamine 5’-phosphate (PMP). The enzyme then catalyzes the conversion of α-ketoglutarate to the excitatory neurotransmitter L-glutamate. Racemic 4-amino-3-fluorobutanoic acid (3-F-GABA) was shown previously to act as a substrate for GABA-AT, not for transamination, but for HF elimination. Here we report studies of the reaction catalyzed by GABA-AT on (R)- and (S)-3-F-GABA. Neither enantiomer is a substrate for transamination. Very little elimination from the (S)-enantiomer was detected using a coupled enzyme assay; The rate of elimination of HF from the (R)-enantiomer is at least 10 times greater than that for the (S)-enantiomer. The (R)-enantiomer is about 20 times more efficient as a substrate for GABA-AT catalyzed HF elimination than GABA is a substrate for transamination. The (R)-enantiomer also inhibits the transamination of GABA 10 times more effectively than the (S)-enantiomer. Using a combination of computer modeling and the knowledge that vicinal C-F and C-NH3+ bonds have a strong preference to align gauche rather than anti to each other, it is concluded that on binding of free 3-F-GABA to GABA-AT the optimal conformation places the C-NH3+ and C-F bonds gauche in the (R)-enantiomer but anti in the (S)-enantiomer. Furthermore, the dynamic binding process and the bioactive conformation of GABA bound to GABA-AT have been inferred based on the different biological behavior of the two enantiomers of 3-F-GABA when they bind to the enzyme. The present study suggests that the C-F bond can be utilized as a conformational probe to explore the dynamic binding process and provide insight into the bioactive conformation of substrates, which cannot be easily determined by other biophysical

  1. GABA(A) receptors in visual and auditory cortex and neural activity changes during basic visual stimulation.

    PubMed

    Qin, Pengmin; Duncan, Niall W; Wiebking, Christine; Gravel, Paul; Lyttelton, Oliver; Hayes, Dave J; Verhaeghe, Jeroen; Kostikov, Alexey; Schirrmacher, Ralf; Reader, Andrew J; Northoff, Georg

    2012-01-01

    Recent imaging studies have demonstrated that levels of resting γ-aminobutyric acid (GABA) in the visual cortex predict the degree of stimulus-induced activity in the same region. These studies have used the presentation of discrete visual stimulus; the change from closed eyes to open also represents a simple visual stimulus, however, and has been shown to induce changes in local brain activity and in functional connectivity between regions. We thus aimed to investigate the role of the GABA system, specifically GABA(A) receptors, in the changes in brain activity between the eyes closed (EC) and eyes open (EO) state in order to provide detail at the receptor level to complement previous studies of GABA concentrations. We conducted an fMRI study involving two different modes of the change from EC to EO: an EO and EC block design, allowing the modeling of the haemodynamic response, followed by longer periods of EC and EO to allow the measuring of functional connectivity. The same subjects also underwent [(18)F]Flumazenil PET to measure GABA(A) receptor binding potentials. It was demonstrated that the local-to-global ratio of GABA(A) receptor binding potential in the visual cortex predicted the degree of changes in neural activity from EC to EO. This same relationship was also shown in the auditory cortex. Furthermore, the local-to-global ratio of GABA(A) receptor binding potential in the visual cortex also predicted the change in functional connectivity between the visual and auditory cortex from EC to EO. These findings contribute to our understanding of the role of GABA(A) receptors in stimulus-induced neural activity in local regions and in inter-regional functional connectivity.

  2. Comparison of taurine, GABA, Glu, and Asp as scavengers of malondialdehyde in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Deng, Yan; Wang, Wei; Yu, Pingfeng; Xi, Zhijiang; Xu, Lijian; Li, Xiaolong; He, Nongyue

    2013-04-01

    The purpose of this study is to determine if amino acid neurotransmitters such as gamma-aminobutyric acid (GABA), taurine, glutamate (Glu), and aspartate (Asp) can scavenge activated carbonyl toxicants. In vitro, direct reaction between malondialdehyde (MDA) and amino acids was researched using different analytical methods. The results indicated that scavenging activated carbonyl function of taurine and GABA is very strong and that of Glu and Asp is very weak in pathophysiological situations. The results provided perspective into the reaction mechanism of taurine and GABA as targets of activated carbonyl such as MDA in protecting nerve terminals. In vivo, we studied the effect of taurine and GABA as antioxidants by detecting MDA concentration and superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities. It was shown that MDA concentration was decreased significantly, and the activities of SOD and GSH-Px were increased significantly in the cerebral cortex and hippocampus of acute epileptic state rats, after the administration of taurine and GABA. The results indicated that the peripherally administered taurine and GABA can scavenge free radicals and protect the tissue against activated carbonyl in vivo and in vitro.

  3. Mechanism of Inactivation of GABA Aminotransferase by (E)- and (Z)-(1S,3S)-3-Amino-4-fluoromethylenyl-1-cyclopentanoic Acid

    PubMed Central

    Lee, Hyunbeom; Le, Hoang V.; Wu, Rui; Doud, Emma; Sanishvili, Ruslan; Kellie, John F.; Compton, Phillip D.; Pachaiyappan, Boobalan; Liu, Dali; Kelleher, Neil L.

    2015-01-01

    When γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the mammalian central nervous system, falls below a threshold level, seizures occur. One approach to raise GABA concentrations is to inhibit GABA aminotransferase (GABA-AT), a pyridoxal 5’-phosphate-dependent enzyme that degrades GABA. We have previously developed (1S,3S)-3-amino-4-difluoromethylene-1-cyclopentanoic acid (CPP-115), which is 186 times more efficient in inactivating GABA-AT than vigabatrin, the only FDA-approved inactivator of GABA-AT. We also developed (E)- and (Z)-(1S,3S)-3-amino-4-fluoromethylenyl-1-cyclopentanoic acid (1 and 2, respectively), monofluorinated analogs of CPP-115, which are comparable to vigabatrin in inactivating GABA-AT. Here we report the mechanism of inactivation of GABA-AT by 1 and 2. Both produce a metabolite that induces disruption of the Glu270-Arg445 salt bridge to accommodate interaction between the metabolite formyl group and Arg445. This is the second time that Arg445 has interacted with a ligand and is involved in GABA-AT inactivation, thereby confirming the importance of Arg445 in future inactivator design. PMID:26110556

  4. Mechanism of Inactivation of GABA Aminotransferase by (E)- and (Z)-(1S,3S)-3-Amino-4-fluoromethylenyl-1-cyclopentanoic Acid.

    PubMed

    Lee, Hyunbeom; Le, Hoang V; Wu, Rui; Doud, Emma; Sanishvili, Ruslan; Kellie, John F; Compton, Phillip D; Pachaiyappan, Boobalan; Liu, Dali; Kelleher, Neil L; Silverman, Richard B

    2015-09-18

    When γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the mammalian central nervous system, falls below a threshold level, seizures occur. One approach to raise GABA concentrations is to inhibit GABA aminotransferase (GABA-AT), a pyridoxal 5'-phosphate-dependent enzyme that degrades GABA. We have previously developed (1S,3S)-3-amino-4-difluoromethylene-1-cyclopentanoic acid (CPP-115), which is 186 times more efficient in inactivating GABA-AT than vigabatrin, the only FDA-approved inactivator of GABA-AT. We also developed (E)- and (Z)-(1S,3S)-3-amino-4-fluoromethylenyl-1-cyclopentanoic acid (1 and 2, respectively), monofluorinated analogs of CPP-115, which are comparable to vigabatrin in inactivating GABA-AT. Here, we report the mechanism of inactivation of GABA-AT by 1 and 2. Both produce a metabolite that induces disruption of the Glu270-Arg445 salt bridge to accommodate interaction between the metabolite formyl group and Arg445. This is the second time that Arg445 has interacted with a ligand and is involved in GABA-AT inactivation, thereby confirming the importance of Arg445 in future inactivator design.

  5. Monoamine Transporters as Ionotropic Receptors.

    PubMed

    De Felice, Louis J

    2017-04-01

    It is well established that glutamate and GABA signal through both ionotropic and metabotropic receptors. Conversely, it is thought that, with one exception, monoamines (dopamine, serotonin, and norepinephrine) signal via metabotropic receptors. Given their capacity to generate fast-acting currents, I suggest that the monoamine transporters should be considered as ionotropic receptors. Copyright © 2017. Published by Elsevier Ltd.

  6. Effects of yoga versus walking on mood, anxiety, and brain GABA levels: a randomized controlled MRS study.

    PubMed

    Streeter, Chris C; Whitfield, Theodore H; Owen, Liz; Rein, Tasha; Karri, Surya K; Yakhkind, Aleksandra; Perlmutter, Ruth; Prescot, Andrew; Renshaw, Perry F; Ciraulo, Domenic A; Jensen, J Eric

    2010-11-01

    Yoga and exercise have beneficial effects on mood and anxiety. γ-Aminobutyric acid (GABA)-ergic activity is reduced in mood and anxiety disorders. The practice of yoga postures is associated with increased brain GABA levels. This study addresses the question of whether changes in mood, anxiety, and GABA levels are specific to yoga or related to physical activity. Healthy subjects with no significant medical/psychiatric disorders were randomized to yoga or a metabolically matched walking intervention for 60 minutes 3 times a week for 12 weeks. Mood and anxiety scales were taken at weeks 0, 4, 8, 12, and before each magnetic resonance spectroscopy scan. Scan 1 was at baseline. Scan 2, obtained after the 12-week intervention, was followed by a 60-minute yoga or walking intervention, which was immediately followed by Scan 3. The yoga subjects (n = 19) reported greater improvement in mood and greater decreases in anxiety than the walking group (n = 15). There were positive correlations between improved mood and decreased anxiety and thalamic GABA levels. The yoga group had positive correlations between changes in mood scales and changes in GABA levels. The 12-week yoga intervention was associated with greater improvements in mood and anxiety than a metabolically matched walking exercise. This is the first study to demonstrate that increased thalamic GABA levels are associated with improved mood and decreased anxiety. It is also the first time that a behavioral intervention (i.e., yoga postures) has been associated with a positive correlation between acute increases in thalamic GABA levels and improvements in mood and anxiety scales. Given that pharmacologic agents that increase the activity of the GABA system are prescribed to improve mood and decrease anxiety, the reported correlations are in the expected direction. The possible role of GABA in mediating the beneficial effects of yoga on mood and anxiety warrants further study.

  7. Effects of traditionally used anxiolytic botanicals on enzymes of the gamma-aminobutyric acid (GABA) system.

    PubMed

    Awad, R; Levac, D; Cybulska, P; Merali, Z; Trudeau, V L; Arnason, J T

    2007-09-01

    In Canada, the use of botanical natural health products (NHPs) for anxiety disorders is on the rise, and a critical evaluation of their safety and efficacy is required. The purpose of this study was to determine whether commercially available botanicals directly affect the primary brain enzymes responsible for gamma-aminobutyric acid (GABA) metabolism. Anxiolytic plants may interact with either glutamic acid decarboxylase (GAD) or GABA transaminase (GABA-T) and ultimately influence brain GABA levels and neurotransmission. Two in vitro rat brain homogenate assays were developed to determine the inhibitory concentrations (IC50) of aqueous and ethanolic plant extracts. Approximately 70% of all extracts that were tested showed little or no inhibitory effect (IC50 values greater than 1 mg/mL) and are therefore unlikely to affect GABA metabolism as tested. The aqueous extract of Melissa officinalis (lemon balm) exhibited the greatest inhibition of GABA-T activity (IC50 = 0.35 mg/mL). Extracts from Centella asiatica (gotu kola) and Valeriana officinalis (valerian) stimulated GAD activity by over 40% at a dose of 1 mg/mL. On the other hand, both Matricaria recutita (German chamomile) and Humulus lupulus (hops) showed significant inhibition of GAD activity (0.11-0.65 mg/mL). Several of these species may therefore warrant further pharmacological investigation. The relation between enzyme activity and possible in vivo mode of action is discussed.

  8. GABA Immunoreactivity in Auditory and Song Control Brain Areas of Zebra Finches

    PubMed Central

    Pinaud, Raphael; Mello, Claudio V.

    2009-01-01

    Inhibitory transmission is critical to sensory and motor processing and is believed to play a role in experience-dependent plasticity. The main inhibitory neurotransmitter in vertebrates, GABA, has been implicated in both sensory and motor aspects of vocalization in songbirds. To understand the role of GABAergic mechanisms in vocal communication, GABAergic elements must be characterized fully. Hence, we investigated GABA immunohistochemistry in the zebra finch brain, emphasizing auditory areas and song control nuclei. Several nuclei of the ascending auditory pathway showed a moderate to high density of GABAergic neurons including the cochlear nuclei, nucleus laminaris, superior olivary nucleus, mesencephalic nucleus lateralis pars dorsalis, and nucleus ovoidalis. Telencephalic auditory areas, including field L subfields L1, L2a and L3, as well as the caudomedial nidopallium (NCM) and mesopallium (CMM), contained GABAergic cells at particularly high densities. Considerable GABA labeling was also seen in the shelf area of caudodorsal nidopallium, and the cup area in the arcopallium, as well as in area X, the lateral magnocellular nucleus of the anterior nidopallium, the robust nucleus of the arcopallium and nidopallial nucleus HVC. GABAergic cells were typically small, most likely local inhibitory interneurons, although large GABA-positive cells that were sparsely distributed were also identified. GABA-positive neurites and puncta were identified in most nuclei of the ascending auditory pathway and in song control nuclei. Our data are in accordance with a prominent role of GABAergic mechanisms in regulating the neural circuits involved in song perceptual processing, motor production, and vocal learning in songbirds. PMID:17466487

  9. Role of GABA Deficit in Sensitivity to the Psychotomimetic Effects of Amphetamine.

    PubMed

    Ahn, Kyung-Heup; Sewell, Andrew; Elander, Jacqueline; Pittman, Brian; Ranganathan, Mohini; Gunduz-Bruce, Handan; Krystal, John; D'Souza, Deepak Cyril

    2015-11-01

    Some schizophrenia patients are more sensitive to amphetamine (AMPH)-induced exacerbations in psychosis-an effect that correlates with higher striatal dopamine release. This enhanced vulnerability may be related to gamma-aminobutyric acid (GABA) deficits observed in schizophrenia. We hypothesized that a pharmacologically induced GABA deficit would create vulnerability to the psychotomimetic effects to the 'subthreshold' dose of AMPH in healthy subjects, which by itself would not induce clinically significant increase in positive symptoms. To test this hypothesis, a GABA deficit was induced by intravenous infusion of iomazenil (IOM; 3.7 μg/kg), an antagonist and partial inverse agonist of benzodiazepine receptor. A subthreshold dose of AMPH (0.1 mg/kg) was administered by intravenous infusion. Healthy subjects received placebo IOM followed by placebo AMPH, active IOM followed by placebo AMPH, placebo IOM followed by active AMPH, and active IOM followed by active AMPH in a randomized, double-blind crossover design over 4 test days. Twelve healthy subjects who had a subclinical response to active AMPH alone were included in the analysis. Psychotomimetic effects (Positive and Negative Syndrome Scale (PANSS)), perceptual alterations (Clinician Administered Dissociative Symptoms Scale (CADSS)), and subjective effects (visual analog scale) were captured before and after the administration of drugs. IOM significantly augmented AMPH-induced peak changes in PANSS positive symptom subscale and both subjective and objective CADSS scores. There were no pharmacokinetic interactions. In conclusion, GABA deficits increased vulnerability to amphetamine-induced psychosis-relevant effects in healthy subjects, suggesting that pre-existing GABA deficits may explain why a subgroup of schizophrenia patients are vulnerable to AMPH.

  10. Verification of γ-Amino-Butyric Acid (GABA) Signaling System Components in Periodontal Ligament Cells In Vivo and In Vitro.

    PubMed

    Konermann, Anna; Kantarci, Alpdogan; Wilbert, Steven; Van Dyke, Thomas; Jäger, Andreas

    2016-11-01

    CNS key neurotransmitter γ-amino-butyric acid (GABA) and its signaling components are likewise detectable in non-neuronal tissues displaying inter alia immunomodulatory functions. This study aimed at identifying potential glutamate decarboxylase (GAD)65 and GABA receptor expression in periodontal ligament (PDL) cells in vivo and in vitro, with particular regard to inflammation and mechanical loading. Gene expression was analyzed in human PDL cells at rest or in response to IL-1ß (5 ng/ml) or TNFα (5 ng/ml) challenge via qRT-PCR. Western blot determined constitutive receptor expression, and confocal laser scanning fluorescence microscopy visualized expression changes induced by inflammation. ELISA quantified GAD65 release. Immunocytochemistry was performed for GABA component detection in vitro on mechanically loaded PDL cells, and in vivo on rat upper jaw biopsies with mechanically induced root resorptions. Statistical significance was set at p < 0.05. GABA B1 , GABA B2 , GABA A1 , and GABA A3 were ubiquitously expressed both on gene and protein level. GABA A2 and GAD65 were undetectable in resting cells, but induced by inflammation. GABA B1 exhibited the highest basal gene expression (6.97 % ± 0.16). IL-1ß markedly increased GABA B2 on a transcriptional (57.28-fold ± 12.40) and protein level seen via fluorescence microscopy. TNFα-stimulated PDL cells released GAD65 (3.68 pg/ml ± 0.17 after 24 h, 5.77 pg/ml ± 0.65 after 48 h). Immunocytochemistry revealed GAD65 expression in mechanically loaded PDL cells. In vivo, GABA components were varyingly expressed in an inflammatory periodontal environment. PDL cells differentially express GABA signaling components and secrete GAD65. Inflammation and mechanical loading regulate these neurotransmitter molecules, which are also detectable in vivo and are potentially involved in periodontal pathophysiology.

  11. Seizure-induced alterations in fast-spiking basket cell GABA currents modulate frequency and coherence of gamma oscillation in network simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proddutur, Archana; Yu, Jiandong; Elgammal, Fatima S.

    2013-12-15

    Gamma frequency oscillations have been proposed to contribute to memory formation and retrieval. Fast-spiking basket cells (FS-BCs) are known to underlie development of gamma oscillations. Fast, high amplitude GABA synapses and gap junctions have been suggested to contribute to gamma oscillations in FS-BC networks. Recently, we identified that, apart from GABAergic synapses, FS-BCs in the hippocampal dentate gyrus have GABAergic currents mediated by extrasynaptic receptors. Our experimental studies demonstrated two specific changes in FS-BC GABA currents following experimental seizures [Yu et al., J. Neurophysiol. 109, 1746 (2013)]: increase in the magnitude of extrasynaptic (tonic) GABA currents and a depolarizing shiftmore » in GABA reversal potential (E{sub GABA}). Here, we use homogeneous networks of a biophysically based model of FS-BCs to examine how the presence of extrasynaptic GABA conductance (g{sub GABA-extra}) and experimentally identified, seizure-induced changes in g{sub GABA-extra} and E{sub GABA} influence network activity. Networks of FS-BCs interconnected by fast GABAergic synapses developed synchronous firing in the dentate gamma frequency range (40–100 Hz). Systematic investigation revealed that the biologically realistic range of 30 to 40 connections between FS-BCs resulted in greater coherence in the gamma frequency range when networks were activated by Poisson-distributed dendritic synaptic inputs rather than by homogeneous somatic current injections, which were balanced for FS-BC firing frequency in unconnected networks. Distance-dependent conduction delay enhanced coherence in networks with 30–40 FS-BC interconnections while inclusion of gap junctional conductance had a modest effect on coherence. In networks activated by somatic current injections resulting in heterogeneous FS-BC firing, increasing g{sub GABA-extra} reduced the frequency and coherence of FS-BC firing when E{sub GABA} was shunting (−74 mV), but failed to alter

  12. GABA and Gap Junctions in the Development of Synchronized Activity in Human Pluripotent Stem Cell-Derived Neural Networks

    PubMed Central

    Mäkinen, Meeri Eeva-Liisa; Ylä-Outinen, Laura; Narkilahti, Susanna

    2018-01-01

    The electrical activity of the brain arises from single neurons communicating with each other. However, how single neurons interact during early development to give rise to neural network activity remains poorly understood. We studied the emergence of synchronous neural activity in human pluripotent stem cell (hPSC)-derived neural networks simultaneously on a single-neuron level and network level. The contribution of gamma-aminobutyric acid (GABA) and gap junctions to the development of synchronous activity in hPSC-derived neural networks was studied with GABA agonist and antagonist and by blocking gap junctional communication, respectively. We characterized the dynamics of the network-wide synchrony in hPSC-derived neural networks with high spatial resolution (calcium imaging) and temporal resolution microelectrode array (MEA). We found that the emergence of synchrony correlates with a decrease in very strong GABA excitation. However, the synchronous network was found to consist of a heterogeneous mixture of synchronously active cells with variable responses to GABA, GABA agonists and gap junction blockers. Furthermore, we show how single-cell distributions give rise to the network effect of GABA, GABA agonists and gap junction blockers. Finally, based on our observations, we suggest that the earliest form of synchronous neuronal activity depends on gap junctions and a decrease in GABA induced depolarization but not on GABAA mediated signaling. PMID:29559893

  13. Abnormal relationship between GABA, neurophysiology and impulsive behavior in neurofibromatosis type 1.

    PubMed

    Ribeiro, Maria J; Violante, Inês R; Bernardino, Inês; Edden, Richard A E; Castelo-Branco, Miguel

    2015-03-01

    Neurofibromatosis type 1 (NF1) is a neurodevelopmental disorder characterized by a broad spectrum of cognitive deficits. In particular, executive dysfunction is recognized as a core deficit of NF1, including impairments in executive attention and inhibitory control. Yet, the neural mechanisms behind these important deficits are still unknown. Here, we studied inhibitory control in a visual go/no-go task in children and adolescents with NF1 and age- and gender-matched controls (n = 16 per group). We applied a multimodal approach using high-density electroencephalography (EEG), to study the evoked brain responses, and magnetic resonance spectroscopy (MRS) to measure the levels of GABA and glutamate + glutamine in the medial frontal cortex, a brain region that plays a pivotal role in inhibitory control, and also in a control region, the occipital cortex. Finally, we run correlation analyses to identify the relationship between inhibitory control, levels of neurotransmitters, and EEG markers of neural function. Individuals with NF1 showed impaired impulse control and reduced EEG correlates of early visual processing (parieto-occipital P1) and inhibitory control (frontal P3). MRS data revealed a reduction in medial frontal GABA+/tCr (total Creatine) levels in the NF1 group, in parallel with the already reported reduced occipital GABA levels. In contrast, glutamate + glutamine/tCr levels were normal, suggesting the existence of abnormal inhibition/excitation balance in this disorder. Notably, medial frontal but not occipital GABA levels correlated with general intellectual abilities (IQ) in NF1, and inhibitory control in both groups. Surprisingly, the relationship between inhibitory control and medial frontal GABA was reversed in NF1: higher GABA was associated with a faster response style whereas in controls it was related to a cautious strategy. Abnormal GABAergic physiology appears, thus, as an important factor underlying impaired cognition in NF1, in a level and

  14. Ameliorative effect of synthetic γ-aminobutyric acid (GABA) on performance traits, antioxidant status and immune response in broiler exposed to cyclic heat stress.

    PubMed

    Chand, Naila; Muhammad, Sher; Khan, Rifat Ullah; Alhidary, Ibrahim Abdullah; Rehman, Zia Ur

    2016-12-01

    The aim of this study was to find the effect of synthetic γ-aminobutyric acid (GABA) on the performance, antioxidant status, and immune response in broiler exposed to summer stress. A total of 400-day-old male broiler chickens (Ross 308) was randomly distributed into five treatments (5 replicates). One group served as a control (basal diet only) while the others were supplemented with GABA at the rate of 25 (GABA-25), 50 (GABA 50), 75 (GABA-75), and 100 (GABA-100) mg/kg feed. The experiment was continued for 35 days. Feed intake during the third week was significantly higher (P < 0.05) in GABA-75 and GABA-100, however, it increased significantly (P < 0.05) in GABA-100 during the fourth and fifth week. Overall mean feed intake was significantly (P < 0.05) high in GABA-75 and GABA-100. From the results, we found that body weight improved significantly (P < 0.05) in GABA-50 in week-3. During the fourth, fifth, and overall, body weight increased significantly (P < 0.05) in GABA-100. Significantly, high (P < 0.05) feed conversion ratio (FCR) was found in GABA-100 during the third, fourth, fifth, and on an overall basis. Mean Malondialdehyde (MDA) decreased significantly (P < 0.05) in GABA-100 while Paraoxonase (PON1) and Newcastle disease (ND) titer increased significantly (P < 0.05) in the same group. We concluded that performance traits, antioxidant status, and immune response improved in broiler supplemented 100 mg/kg GABA, exposed to cyclic heat stress.

  15. GABA and primary motor cortex inhibition in young and older adults: a multimodal reliability study.

    PubMed

    Mooney, Ronan A; Cirillo, John; Byblow, Winston D

    2017-07-01

    The effects of healthy aging on γ-aminobutyric acid (GABA) within primary motor cortex (M1) remain poorly understood. Studies have reported contrasting results, potentially due to limitations with the common assessment technique. The aim of the present study was to investigate the effect of healthy aging on M1 GABA concentration and neurotransmission using a multimodal approach. Fifteen young and sixteen older adults participated in this study. Magnetic resonance spectroscopy (MRS) was used to measure M1 GABA concentration. Single-pulse and threshold-tracking paired-pulse transcranial magnetic stimulation (TMS) protocols were used to examine cortical silent period duration, short- and long-interval intracortical inhibition (SICI and LICI), and late cortical disinhibition (LCD). The reliability of TMS measures was examined with intraclass correlation coefficient analyses. SICI at 1 ms was reduced in older adults (15.13 ± 2.59%) compared with young (25.66 ± 1.44%; P = 0.002). However, there was no age-related effect for cortical silent period duration, SICI at 3 ms, LICI, or LCD (all P > 0.66). The intersession reliability of threshold-tracking measures was good to excellent for both young (range 0.75-0.96) and older adults (range 0.88-0.93). Our findings indicate that extrasynaptic inhibition may be reduced with advancing age, whereas GABA concentration and synaptic inhibition are maintained. Furthermore, MRS and threshold-tracking TMS provide valid and reliable assessment of M1 GABA concentration and neurotransmission, respectively, in young and older adults. NEW & NOTEWORTHY γ-Aminobutyric acid (GABA) in primary motor cortex was assessed in young and older adults using magnetic resonance spectroscopy and threshold-tracking paired-pulse transcranial magnetic stimulation. Older adults exhibited reduced extrasynaptic inhibition (short-interval intracortical inhibition at 1 ms) compared with young, whereas GABA concentration and synaptic inhibition were

  16. New GABA modulators protect photoreceptor cells from light-induced degeneration in mouse models.

    PubMed

    Schur, Rebecca M; Gao, Songqi; Yu, Guanping; Chen, Yu; Maeda, Akiko; Palczewski, Krzysztof; Lu, Zheng-Rong

    2018-01-24

    No clinically approved therapies are currently available that prevent the onset of photoreceptor death in retinal degeneration. Signaling between retinal neurons is regulated by the release and uptake of neurotransmitters, wherein GABA is the main inhibitory neurotransmitter. In this work, novel 3-chloropropiophenone derivatives and the clinical anticonvulsants tiagabine and vigabatrin were tested to modulate GABA signaling and protect against light-induced retinal degeneration. Abca4 -/- Rdh8 -/- mice, an accelerated model of retinal degeneration, were exposed to intense light after prophylactic injections of one of these compounds. Imaging and functional assessments of the retina indicated that these compounds successfully protected photoreceptor cells from degeneration to maintain a full-visual-field response. Furthermore, these compounds demonstrated a strong safety profile in wild-type mice and did not compromise visual function or damage the retina, despite repeated administration. These results indicate that modulating inhibitory GABA signaling can offer prophylactic protection against light-induced retinal degeneration.-Schur, R. M., Gao, S., Yu, G., Chen, Y., Maeda, A., Palczewski, K., Lu, Z.-R. New GABA modulators protect photoreceptor cells from light-induced degeneration in mouse models.

  17. Baclofen and phaclofen modulate GABA release from slices of rat cerebral cortex and spinal cord but not from retina.

    PubMed Central

    Neal, M. J.; Shah, M. A.

    1989-01-01

    1. The effects of (-)-baclofen, muscimol and phaclofen on endogenous gamma-aminobutyric acid (GABA) release from rat cortical slices, spinal cord slices and entire retinas were studied. 2. The spontaneous resting release of GABA from the three tissues was 3 to 6 pmol mg-1 wet wt 10 min-1. Depolarization of cortical slices with KCl (50 mM) (high-K) produced an 8 fold increase in GABA release but high-K did not evoke an increased release of GABA from spinal slices or retinas. 3. When rats were injected with gamma-vinyl-GABA (250 mg kg-1 i.p.) (GVG) 18 h before death, the tissue GABA stores were increased 3 to 6 fold and high-K then evoked striking Ca-dependent releases of GABA from all three tissues. Thus, in subsequent experiments, unless otherwise stated, the nervous tissues were taken from GVG-treated rats. 4. (-)-Baclofen (10 microM) significantly reduced the K-evoked release of GABA from cortical and spinal slices but retinal release was not affected, even at a concentration of (+/-)-baclofen of 1 mM. For cortical slices, the IC50 for baclofen was approximately 5.2 microM. The inhibitory effect of baclofen on GABA release from cortical slices also occurred in slices prepared from saline-injected rats, indicating that GVG treatment did not qualitatively affect the results. 5. The inhibitory effect of (-)-baclofen on the K-evoked release of GABA from cortical and spinal slices was antagonised by phaclofen (500 microM), confirming that baclofen was producing its effects by acting at the GABAB-receptor.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2804540

  18. Purification of gamma-amino butyric acid (GABA) from fermentation of defatted rice bran extract by using ion exchange resin

    NASA Astrophysics Data System (ADS)

    Tuan Nha, Vi; Phung, Le Thi Kim; Dat, Lai Quoc

    2017-09-01

    Rice bran is one of the significant byproducts of rice processing with 10 %w/w of constitution of whole rice grain. It is rich in nutrient compounds, including glutamic acid. Thus, it could be utilized for the fermentation with Lactobateria for synthesis of GABA, a valuable bioactive for antihypertensive effects. However, the concentration and purity of GABA in fermentation broth of defatted rice bran extract is low for production of GABA drug. This research focused on the purification of GABA from the fermentation broth of defatted rice bran extract by using cation exchange resin. The results indicate that, the adsorption isotherm of GABA by Purelite C100 showed the good agreement with Freundlich model, with high adsorption capacity. The effects of pH and concentration of NaCl in eluent on the elution were also investigated. The obtained results show that, at the operating conditions of elution as follows: pH 6.5, 0.8 M of NaCl in eluent, 0.43 of bed volume; concentration of GABA in accumulative eluent, the purity and recovery yield of GABA were 743.8 ppm, 44.0% and 84.2%, respectively. Results imply that, it is feasible to apply cation exchange resin for purification of GABA from fermentation broth of defatted rice bran extract.

  19. Chronic infusion of GABA and saline into the nucleus basalis magnocellularis of rats: II. Cognitive impairments.

    PubMed

    Majchrzak, M; Brailowsky, S; Will, B

    1990-02-12

    In order to assess sensorimotor and/or cognitive modifications following chronic inhibition of nucleus basalis magnocellularis (NBM) neurons, rats trained in two radial maze paradigms (the classical version of the test and a modified version introducing a one-hour delay between the fourth and the fifth choice) received chronic infusion of gamma-aminobutyric acid (GABA) into the NBM area. GABA (10 and 50 micrograms/microliters/h) was infused for 3 days into the NBM contralateral to their preferred turning direction in the radial maze. Simultaneously, saline (NaCl 0.9%; 1 microliter/h) was infused into the contralateral NBM. GABA and saline infusions were alternated for the subsequent 3-day period. One week later, we investigated the rats' ability to learn a multiple trial passive avoidance task. At the dose of 50 micrograms/microliters, GABA infusion produced (1) a turning bias ipsilateral to the side first infused with GABA, (2) transitory cognitive impairments in radial maze tasks and (3) a deficit in the acquisition of the passive avoidance task. At the dose of 10 micrograms/microliters, the same behavioral deficits were observed except that (1) the turning bias was reversed by the contralateral GABA infusion and (2) cognitive impairments in the radial maze were observed only when a delay was inserted between the fourth and the fifth choice. Histologically, we found a dose-dependent gliosis in the NBM area first infused with GABA. These data suggest a reactivity of the NBM to GABAergic manipulations and the intervention of this structure in both sensorimotor and cognitive processes involved in the radial maze paradigms.

  20. Impact of oral supplementation of Glutamate and GABA on memory performance and neurochemical profile in hippocampus of rats.

    PubMed

    Tabassum, Saiqa; Ahmad, Saara; Madiha, Syeda; Khaliq, Saima; Shahzad, Sidrah; Batool, Zehra; Haider, Saida

    2017-05-01

    Glutamate (GLU) and gamma-amino butyric acid (GABA) are essential amino acids (AA) for brain function serving as excitatory and inhibitory neurotransmitter respectively. Their tablets are available in market for improving gut function and muscle performance. Despite of having a major role during memory formation and processing, effects of these tablets on brain functioning like learning and memory have not been investigated. Therefore, present study is aimed to investigate the effects of orally supplemented GLU and GABA on learning and memory performance and further to monitor related effects of these orally supplemented GLU and GABA on brain levels of these AA. Three groups of rats were supplemented orally with drinking water (control group) or suspension of tablets of GABA and Glutamate, respectively for four weeks. Cognitive performance was determined using behavioral tests (Novel object recognition test, Morris water maze, Passive avoidance test) measuring recognition, spatial reference and aversive memory. Levels of GLU, GABA and acetylcholine (ACh) were estimated in rat hippocampus. Results showed that chronic oral administration of GLU and GABA tablets has a significant impact on brain function and can alter GLU and GABA content in rat hippocampus. Compared to GABA, GLU supplementation specifically enhances memory performance via increasing ACh. Thus, GLU can be suggested as a useful supplement for improving learning and memory performance and neurochemical status of brain and in future could be effective in the treatment of neurological disorders affecting learning and memory performance.

  1. Sleep Duration Varies as a Function of Glutamate and GABA in Rat Pontine Reticular Formation

    PubMed Central

    Watson, Christopher J.; Lydic, Ralph; Baghdoyan, Helen A.

    2011-01-01

    The oral part of the pontine reticular formation (PnO) is a component of the ascending reticular activating system and plays a role in the regulation of sleep and wakefulness. The PnO receives glutamatergic and GABAergic projections from many brain regions that regulate behavioral state. Indirect, pharmacological evidence has suggested that glutamatergic and GABAergic signaling within the PnO alters traits that characterize wakefulness and sleep. No previous studies have simultaneously measured endogenous glutamate and GABA from rat PnO in relation to sleep and wakefulness. The present study utilized in vivo microdialysis coupled on-line to capillary electrophoresis with laser-induced fluorescence to test the hypothesis that concentrations of glutamate and GABA in the PnO vary across the sleep/wake cycle. Concentrations of glutamate and GABA were significantly higher during wakefulness than during NREM sleep and REM sleep. Regression analysis revealed that decreases in glutamate and GABA accounted for a significant portion of the variance in the duration of NREM sleep and REM sleep episodes. These data provide novel support for the hypothesis that endogenous glutamate and GABA in the PnO contribute to the regulation of sleep duration. PMID:21679185

  2. Gaba mediated long-term depression (LTD) in the rat medial vestibular nuclei.

    PubMed

    Grassi, S; Della Torre, G; Zampolini, M; Pettorossi, V E

    1995-01-01

    As previously demonstrated, high frequency stimulation (HFS) of the primary vestibular afferents always induces a clear, long lasting depression of the polysynaptic (N2) component of the field potentials recorded in the dorsal portion of the medial vestibular nuclei (MVN). The induction of the HFS effect was mediated by the activation of glutamate NMDA receptors, since it was blocked by AP5. The mechanisms at the basis of such a depression were studied. Our results demonstrate that Gaba, acting on both GabaA and GabaB receptors, is involved in mediating this phenomenon. In fact, HFS applied during Bicuculline and Saclofen perfusion, was no longer able to induce an N2 depression, but provoked a slight potentiation. However, the N2 depression clearly emerged after drug wash-out. Furthermore, Bicuculline and Saclofen fully abolished the N2 depression and highlighted the potentiation, when administered after HFS. The possibility that the N2 depression is the result of a homosynaptic LTD can be excluded on the basis of our results. On the contrary, our findings suggest that the depression is due to an enhancement of the Gaba inhibitory effect due to an HFS dependent increase in gabaergic interneuron activity, which resets vestibular neuron excitability at a lower level.

  3. Decreased GABA receptor in the cerebral cortex of epileptic rats: effect of Bacopa monnieri and Bacoside-A.

    PubMed

    Mathew, Jobin; Balakrishnan, Savitha; Antony, Sherin; Abraham, Pretty Mary; Paulose, C S

    2012-02-24

    Gamma amino butyric acid (GABA), the principal inhibitory neurotransmitter in the cerebral cortex, maintains the inhibitory tones that counter balances neuronal excitation. When this balance is perturbed, seizures may ensue. In the present study, alterations of the general GABA, GABAA and GABAB receptors in the cerebral cortex of the epileptic rat and the therapeutic application of Bacopa monnieri were investigated. Scatchard analysis of [3H]GABA, [3H]bicuculline and [3H]baclofen in the cerebral cortex of the epileptic rat showed significant decrease in Bmax (P < 0.001) compared to control. Real Time PCR amplification of GABA receptor subunits such as GABAAά1, GABAAγ, GABAAδ, GABAB and GAD where down regulated (P < 0.001) in epileptic rats. GABAAά5 subunit and Cyclic AMP responsible element binding protein were up regulated. Confocal imaging study confirmed the decreased GABA receptors in epileptic rats. Epileptic rats have deficit in radial arm and Y maze performance. Bacopa monnieri and Bacoside-A treatment reverses epilepsy associated changes to near control suggesting that decreased GABA receptors in the cerebral cortex have an important role in epileptic occurrence; Bacopa monnieri and Bacoside-A have therapeutic application in epilepsy management.

  4. [Ion-dependency of the GABA-potentiating effects of benzodiazepine tranquilizers and harmane].

    PubMed

    Abramets, I I; Komissarov, I V

    1984-06-01

    Experiments on an isolated spinal cord of 8-15-day-old rats have shown that one of the possible mechanisms of the GABA-potentiating action of the benzodiazepine tranquilizer, chlorodiazepoxide, may be a decrease in the intraneuronal concentration of Ca2+. This is evidenced by the enhancement of the GABA-potentiating action of chlorodiazepoxide under Ca2+ deficiency in the medium and in the presence of the blockers of the voltage-dependent Ca2+ ionic channels--Mn2+ and Co2+, and by the reduction of the effect in question under Ca2+ excess in the medium and in the presence of the K+ channels blockers--tetraethylammonium and 4-aminopyridine. The GABA-potentiating action of harmane is likely to be related to the blockade of the voltage-dependent K+ channels and elevation of the intracellular concentration of Ca2+.

  5. mRNA and Protein Levels for GABA[subscript A][alpha]4, [alpha]5, [beta]1 and GABA[subscript B]R1 Receptors are Altered in Brains from Subjects with Autism

    ERIC Educational Resources Information Center

    Fatemi, S. Hossein; Reutiman, Teri J.; Folsom, Timothy D.; Rooney, Robert J.; Patel, Diven H.; Thuras, Paul D.

    2010-01-01

    We have shown altered expression of gamma-aminobutyric acid A (GABA[subscript A]) and gamma-aminobutyric acid B (GABA[subscript B]) receptors in the brains of subjects with autism. In the current study, we sought to verify our western blotting data for GABBR1 via qRT-PCR and to expand our previous work to measure mRNA and protein levels of 3…

  6. Ornithine aminotransferase versus GABA aminotransferase: implications for the design of new anticancer drugs.

    PubMed

    Lee, Hyunbeom; Juncosa, Jose I; Silverman, Richard B

    2015-03-01

    Ornithine aminotransferase (OAT) and γ-aminobutyric acid aminotransferase (GABA-AT) are classified under the same evolutionary subgroup and share a large portion of structural, functional, and mechanistic features. Therefore, it is not surprising that many molecules that bind to GABA-AT also bind well to OAT. Unlike GABA-AT, OAT had not been viewed as a potential therapeutic target until recently; consequently, the number of therapeutically viable molecules that target OAT is very limited. In this review the two enzymes are compared with respect to their active-site structures, catalytic and inactivation mechanisms, and selective inhibitors. Insight is offered that could aid in the design and development of new selective inhibitors of OAT for the treatment of cancer. © 2014 Wiley Periodicals, Inc.

  7. Responses to GABA(A) receptor activation are altered in NTS neurons isolated from renal-wrap hypertensive rats.

    PubMed

    Tolstykh, Gleb; Belugin, Sergei; Tolstykh, Olga; Mifflin, Steve

    2003-10-01

    The inhibitory amino acid GABA is a potent modulator of the spontaneous discharge and the responses to afferent inputs of neurons in the nucleus of the solitary tract (NTS). To determine if responses to activation of GABA(A) receptors are altered in hypertension, GABA(A) receptor-evoked whole cell currents were measured in enzymatically dispersed NTS neurons from 33 normotensive (NT, 109+/-4 mm Hg, n=7) and 24 hypertensive (HT, 167+/-5 mm Hg, n=24) rats. GABA(A) receptor-evoked currents reversed at the calculated equilibrium potential for chloride and were blocked by bicuculline (n=6). Membrane capacitance was the same in neurons from NT (7.5+/-0.6 pF, n=62) and HT (6.8+/-0.6 pF, n=51) rats. The EC50 for peak GABA-evoked currents cells was significantly greater in neurons from HT (21.0+/-2.6 micromol/L, n=16) compared with NT rats (13.0+/-1.8 micromol/L, n=14, P=0.01). The EC50 of neurons exhibiting DiA labeling of presumptive aortic nerve terminals was no different than that observed in the nonlabeled cells (19.0+/-4.9 micromol/L, n=4). The time constant for desensitization of GABA(A)-evoked currents was the same in neurons from HT (4.5+/-0.3 seconds, n=17) and NT rats (3.8+/-0.3 seconds, n=17, P>0.05). Repetitive pulse application of GABA revealed a more rapid decline in the evoked current in neurons from HT compared with NT rats. The amplitude of the 5th pulse of GABA (5-second duration, 2-second interval) was 21+/-2% the amplitude of the 1st pulse in NT rats (n=10) and 14+/-2% in HT rats (n=11, P<0.05). These alterations in GABAA-receptor evoked currents could render the neurons less sensitive to GABA(A) receptor inhibition and influence afferent integration by NTS neurons in HT.

  8. Effect of dietary protein and GABA on food intake, growth and tissue amino acids in cats.

    PubMed

    Tews, J K; Rogers, Q R; Morris, J G; Harper, A E

    1984-02-01

    GABA at 5%, but not 3%, of a low protein diet depressed food intake and growth of kittens. Adaptation to high protein prevented these effects. When cats adapted to low or high protein were fed a meal containing GABA, plasma GABA concentration after 2 hr was 8-fold higher in the low than in the high protein group; clearance was almost complete within 6 hr. Concentrations of proline, branched-chain, other large neutral and basic (especially ornithine) amino acids increased more when cats were fed a high rather than a low protein meal; glycine decreased. At 6 hr, concentrations had consistently returned to initial levels only in the low protein group. Feeding the high protein diet ad lib increased tissue concentrations of threonine, proline and the branched-chain amino acids. Hepatic or renal GABA-aminotransferase activity was not altered in kittens fed the high protein diet. Kidney activity was 10-fold that of liver, which may contribute to the better tolerance of GABA by cats than by rats.

  9. Structure and functional interaction of the extracellular domain of human GABA[subscript B] receptor GBR2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Yong; Xiong, Dazhi; Mosyak, Lidia

    2012-10-24

    Inhibitory neurotransmission is mediated primarily by GABA. The metabotropic GABA{sub B} receptor is a G protein-coupled receptor central to mammalian brain function. Malfunction of GABA{sub B} receptor has been implicated in several neurological disorders. GABA{sub B} receptor functions as a heterodimeric assembly of GBR1 and GBR2 subunits, where GBR1 is responsible for ligand-binding and GBR2 is responsible for G protein coupling. Here we demonstrate that the GBR2 ectodomain directly interacts with the GBR1 ectodomain to increase agonist affinity by selectively stabilizing the agonist-bound conformation of GBR1. We present the crystal structure of the GBR2 ectodomain, which reveals a polar heterodimericmore » interface. We also identify specific heterodimer contacts from both subunits, and GBR1 residues involved in ligand recognition. Lastly, our structural and functional data indicate that the GBR2 ectodomain adopts a constitutively open conformation, suggesting a structural asymmetry in the active state of GABA{sub B} receptor that is unique to the GABAergic system.« less

  10. The effect of fermented buckwheat on producing l-carnitine- and γ-aminobutyric acid (GABA)-enriched designer eggs.

    PubMed

    Park, Namhyeon; Lee, Tae-Kyung; Nguyen, Thi Thanh Hanh; An, Eun-Bae; Kim, Nahyun M; You, Young-Hyun; Park, Tae-Sub; Kim, Doman

    2017-07-01

    The potential of fermented buckwheat as a feed additive was studied to increase l-carnitine and γ-aminobutyric acid (GABA) in designer eggs. Buckwheat contains high levels of lysine, methionine and glutamate, which are precursors for the synthesis of l-carnitine and GABA. Rhizopus oligosporus was used for the fermentation of buckwheat to produce l-carnitine and GABA that exert positive effects such as enhanced metabolism, antioxidant activities, immunity and blood pressure control. A novel analytical method for simultaneously detecting l-carnitine and GABA was developed using liquid chromatography/mass spectrometry (LC/MS) and LC/MS/MS. The fermented buckwheat extract contained 4 and 34 times more l-carnitine and GABA respectively compared with normal buckwheat. Compared with the control, the fermented buckwheat extract-fed group showed enriched l-carnitine (13.6%) and GABA (8.4%) in the yolk, though only l-carnitine was significantly different (P < 0.05). Egg production (9.4%), albumen weight (2.1%) and shell weight (5.8%) were significantly increased (P < 0.05). There was no significant difference in yolk weight, and total cholesterol (1.9%) and triglyceride (4.9%) in the yolk were lowered (P < 0.05). Fermented buckwheat as a feed additive has the potential to produce l-carnitine- and GABA-enriched designer eggs with enhanced nutrition and homeostasis. These designer eggs pose significant potential to be utilized in superfood production and supplement industries. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. GABA(A) receptors mediate orexin-A induced stimulation of food intake.

    PubMed

    Kokare, Dadasaheb M; Patole, Angad M; Carta, Anna; Chopde, Chandrabhan T; Subhedar, Nishikant K

    2006-01-01

    Although the role of orexins in sleep/wake cycle and feeding behavior is well established, underlying mechanisms have not been fully understood. An attempt has been made to investigate the role of GABA(A) receptors and their benzodiazepine site on the orexin-A induced response to feeding. Different groups of rats were food deprived overnight and next day injected intracerebroventricularly (icv) with vehicle (artificial CSF; 5 microl/rat) or orexin-A (20-50 nM/rat) and the animals were given free access to food. Cumulative food intake was measured during light phase of light/dark cycle at 1-, 2-, 4- and 6-h post-injection time points. Orexin-A (30-50 nM/rat, icv) stimulated food intake at all the time points (P < 0.05). Prior administration of GABA(A) receptor agonists muscimol (25 ng/rat, icv) and diazepam (0.5 mg/kg, ip) at subeffective doses significantly potentiated the hyperphagic effect of orexin-A (30 nM/rat, icv). However, the effect was negated by the GABA(A) receptor antagonist bicuculline (1 mg/kg, ip). Interestingly, benzodiazepine receptor antagonist flumazenil (5 ng/rat, icv), augmented the orexin-A (30 nM/rat, icv) induced hyperphagia; the effect may be attributed to the intrinsic activity of the agent. The results suggest that the hyperphagic effect of orexin-A, at least in part, is mediated by enhanced GABA(A) receptor activity.

  12. [Effect of stimulation of GABA-ergic structures of the substantia nigra and caudate nucleus on food-getting behavior in the cat].

    PubMed

    Shugalev, N P

    1983-01-01

    A study was made of the functional significance of GABA-ergic structures of the substantia nigra (SN) and the caudate nucleus (CN) and their role in food-procuring behaviour of cats. Analysis was made of behavioral and EEG-effects of local GABA and the GABA antagonist, picrotoxin, microinjections into the studied brain structures. Stimulation of the GABA-ergic structures of the SN produced a sedative effect and depression of the cat food-procuring behaviour. Effects of stimulation of the CN GABA-ergic structures were to a great degree reverse. The conclusion has been made that GABA-ergic structures of the SN and the CN play different roles in controlling the CN inhibitory influence upon food-procuring behaviour.

  13. γ-Aminobutyric acid (GABA) concentration inversely correlates with basal perfusion in human occipital lobe

    PubMed Central

    Donahue, Manus J; Rane, Swati; Hussey, Erin; Mason, Emily; Pradhan, Subechhya; Waddell, Kevin W; Ally, Brandon A

    2014-01-01

    Commonly used neuroimaging approaches in humans exploit hemodynamic or metabolic indicators of brain function. However, fundamental gaps remain in our ability to relate such hemo-metabolic reactivity to neurotransmission, with recent reports providing paradoxical information regarding the relationship among basal perfusion, functional imaging contrast, and neurotransmission in awake humans. Here, sequential magnetic resonance spectroscopy (MRS) measurements of the primary inhibitory neurotransmitter, γ-aminobutyric acid (GABA+macromolecules normalized by the complex N-acetyl aspartate-N-acetyl aspartyl glutamic acid: [GABA+]/[NAA–NAAG]), and magnetic resonance imaging (MRI) measurements of perfusion, fractional gray-matter volume, and arterial arrival time (AAT) are recorded in human visual cortex from a controlled cohort of young adult male volunteers with neurocognitive battery-confirmed comparable cognitive capacity (3 T; n=16; age=23±3 years). Regression analyses reveal an inverse correlation between [GABA+]/[NAA–NAAG] and perfusion (R=−0.46; P=0.037), yet no relationship between AAT and [GABA+]/[NAA–NAAG] (R=−0.12; P=0.33). Perfusion measurements that do not control for AAT variations reveal reduced correlations between [GABA+]/[NAA–NAAG] and perfusion (R=−0.13; P=0.32). These findings largely reconcile contradictory reports between perfusion and inhibitory tone, and underscore the physiologic origins of the growing literature relating functional imaging signals, hemodynamics, and neurotransmission. PMID:24398941

  14. PLP and GABA trigger GabR-mediated transcription regulation in Bacillus subtilis via external aldimine formation

    DOE PAGES

    Wu, Rui; Sanishvili, Ruslan; Belitsky, Boris R.; ...

    2017-03-27

    Here, the Bacillus subtilis protein regulator of the gabTD operon and its own gene (GabR) is a transcriptional activator that regulates transcription of gamma-aminobutyric acid aminotransferase (GABA-AT; GabT) upon interactions with pyridoxal-5'-phosphate (PLP) and GABA, and thereby promotes the biosynthesis of glutamate from GABA. We show here that the external aldimine formed between PLP and GABA is apparently responsible for triggering the GabR-mediated transcription activation. Details of the "active site" in the structure of the GabR effector-binding/oligomerization (Eb/O) domain suggest that binding a monocarboxylic.-amino acid such as GABA should be preferred over dicarboxylic acid ligands. A reactive GABA analog, (S)-4-amino-5-fluoropentanoicmore » acid (AFPA), was used as a molecular probe to examine the reactivity of PLP in both GabR and a homologous aspartate aminotransferase (Asp-AT) from Escherichia coli as a control. A comparison between the structures of the Eb/O-PLP-AFPA complex and Asp-AT-PLP-AFPA complex revealed that GabR is incapable of facilitating further steps of the transamination reaction after the formation of the external aldimine. Results of in vitro and in vivo assays using full-length GabR support the conclusion that AFPA is an agonistic ligand capable of triggering GabR-mediated transcription activation via formation of an external aldimine with PLP.« less

  15. PLP and GABA trigger GabR-mediated transcription regulation in Bacillus subtilis via external aldimine formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Rui; Sanishvili, Ruslan; Belitsky, Boris R.

    Here, the Bacillus subtilis protein regulator of the gabTD operon and its own gene (GabR) is a transcriptional activator that regulates transcription of gamma-aminobutyric acid aminotransferase (GABA-AT; GabT) upon interactions with pyridoxal-5'-phosphate (PLP) and GABA, and thereby promotes the biosynthesis of glutamate from GABA. We show here that the external aldimine formed between PLP and GABA is apparently responsible for triggering the GabR-mediated transcription activation. Details of the "active site" in the structure of the GabR effector-binding/oligomerization (Eb/O) domain suggest that binding a monocarboxylic.-amino acid such as GABA should be preferred over dicarboxylic acid ligands. A reactive GABA analog, (S)-4-amino-5-fluoropentanoicmore » acid (AFPA), was used as a molecular probe to examine the reactivity of PLP in both GabR and a homologous aspartate aminotransferase (Asp-AT) from Escherichia coli as a control. A comparison between the structures of the Eb/O-PLP-AFPA complex and Asp-AT-PLP-AFPA complex revealed that GabR is incapable of facilitating further steps of the transamination reaction after the formation of the external aldimine. Results of in vitro and in vivo assays using full-length GabR support the conclusion that AFPA is an agonistic ligand capable of triggering GabR-mediated transcription activation via formation of an external aldimine with PLP.« less

  16. Co-localization of glycine and gaba immunoreactivity in interneurons in Macaca monkey cerebellar cortex.

    PubMed

    Crook, J; Hendrickson, A; Robinson, F R

    2006-09-15

    Previous work demonstrates that the cerebellum uses glycine as a fast inhibitory neurotransmitter [Ottersen OP, Davanger S, Storm-Mathisen J (1987) Glycine-like immunoreactivity in the cerebellum of rat and Senegalese baboon, Papio papio: a comparison with the distribution of GABA-like immunoreactivity and with [3H]glycine and [3H]GABA uptake. Exp Brain Res 66(1):211-221; Ottersen OP, Storm-Mathisen J, Somogyi P (1988) Colocalization of glycine-like and GABA-like immunoreactivities in Golgi cell terminals in the rat cerebellum: a postembedding light and electron microscopic study. Brain Res 450(1-2):342-353; Dieudonne S (1995) Glycinergic synaptic currents in Golgi cells of the rat cerebellum. Proc Natl Acad Sci U S A 92:1441-1445; Dumoulin A, Triller A, Dieudonne S (2001) IPSC kinetics at identified GABAergic and mixed GABAergic and glycinergic synapses onto cerebellar Golgi cells. J Neurosci 21(16):6045-6057; Dugue GP, Dumoulin A, Triller A, Dieudonne S (2005) Target-dependent use of coreleased inhibitory transmitters at central synapses. J Neurosci 25(28):6490-6498; Zeilhofer HU, Studler B, Arabadzisz D, Schweizer C, Ahmadi S, Layh B, Bosl MR, Fritschy JM (2005) Glycinergic neurons expressing enhanced green fluorescent protein in bacterial artificial chromosome transgenic mice. J Comp Neurol 482(2):123-141]. In the rat cerebellum glycine is not released by itself but is released together with GABA by Lugaro cells onto Golgi cells [Dumoulin A, Triller A, Dieudonne S (2001) IPSC kinetics at identified GABAergic and mixed GABAergic and glycinergic synapses onto cerebellar Golgi cells. J Neurosci 21(16):6045-6057] and by Golgi cells onto unipolar brush and granule cells [Dugue GP, Dumoulin A, Triller A, Dieudonne S (2005) Target-dependent use of coreleased inhibitory transmitters at central synapses. J Neurosci 25(28):6490-6498]. Here we report, from immunolabeling evidence in Macaca cerebellum, that interneurons in the granular cell layer are glycine+ at a density

  17. Cardiovascular and behavioral effects produced by administration of liposome-entrapped GABA into the rat central nervous system.

    PubMed

    Vaz, G C; Bahia, A P C O; de Figueiredo Müller-Ribeiro, F C; Xavier, C H; Patel, K P; Santos, R A S; Moreira, F A; Frézard, F; Fontes, M A P

    2015-01-29

    Liposomes are nanosystems that allow a sustained release of entrapped substances. Gamma-aminobutyric acid (GABA) is the most prevalent inhibitory neurotransmitter of the central nervous system (CNS). We developed a liposomal formulation of GABA for application in long-term CNS functional studies. Two days after liposome-entrapped GABA was injected intracerebroventricularly (ICV), Wistar rats were submitted to the following evaluations: (1) changes in mean arterial pressure (MAP), heart rate (HR) and renal sympathetic nerve activity (RSNA) to ICV injection of bicuculline methiodide (BMI) in anesthetized rats; (2) changes in cardiovascular reactivity to air jet stress in conscious rats; and (3) anxiety-like behavior in conscious rats. GABA and saline-containing pegylated liposomes were prepared with a mean diameter of 200 nm. Rats with implanted cannulas targeted to lateral cerebral ventricle (n = 5-8/group) received either GABA solution (GS), empty liposomes (EL) or GABA-containing liposomes (GL). Following (48 h) central microinjection (2 μL, 0.09 M and 99 g/L) of liposomes, animals were submitted to the different protocols. Animals that received GL demonstrated attenuated response of RSNA to BMI microinjection (GS 48 ± 9, EL 43 ± 9, GL 11 ± 8%; P < 0.05), blunted tachycardia in the stress trial (ΔHR: GS 115 ± 14, EL 117 ± 10, GL 74 ± 9 bpm; P<0.05) and spent more time in the open arms of elevated plus maze (EL 6 ± 2 vs. GL 18 ± 5%; P = 0.028) compared with GS and EL groups. These results indicate that liposome-entrapped GABA can be a potential tool for exploring the chronic effects of GABA in specific regions and pathways of the central nervous system. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. GABA and Glutamate Pathways Are Spatially and Developmentally Affected in the Brain of Mecp2-Deficient Mice

    PubMed Central

    Matagne, Valérie; Ghata, Adeline; Villard, Laurent; Roux, Jean-Christophe

    2014-01-01

    Proper brain functioning requires a fine-tuning between excitatory and inhibitory neurotransmission, a balance maintained through the regulation and release of glutamate and GABA. Rett syndrome (RTT) is a rare genetic disorder caused by mutations in the methyl-CpG binding protein 2 (MECP2) gene affecting the postnatal brain development. Dysfunctions in the GABAergic and glutamatergic systems have been implicated in the neuropathology of RTT and a disruption of the balance between excitation and inhibition, together with a perturbation of the electrophysiological properties of GABA and glutamate neurons, were reported in the brain of the Mecp2-deficient mouse. However, to date, the extent and the nature of the GABA/glutamate deficit affecting the Mecp2-deficient mouse brain are unclear. In order to better characterize these deficits, we simultaneously analyzed the GABA and glutamate levels in Mecp2-deficient mice at 2 different ages (P35 and P55) and in several brain areas. We used a multilevel approach including the quantification of GABA and glutamate levels, as well as the quantification of the mRNA and protein expression levels of key genes involved in the GABAergic and glutamatergic pathways. Our results show that Mecp2-deficient mice displayed regional- and age-dependent variations in the GABA pathway and, to a lesser extent, in the glutamate pathway. The implication of the GABA pathway in the RTT neuropathology was further confirmed using an in vivo treatment with a GABA reuptake inhibitor that significantly improved the lifespan of Mecp2-deficient mice. Our results confirm that RTT mouse present a deficit in the GABAergic pathway and suggest that GABAergic modulators could be interesting therapeutic agents for this severe neurological disorder. PMID:24667344

  19. Prefrontal Cortical GABA Transmission Modulates Discrimination and Latent Inhibition of Conditioned Fear: Relevance for Schizophrenia

    PubMed Central

    Piantadosi, Patrick T; Floresco, Stan B

    2014-01-01

    Inhibitory gamma-aminobutyric acid (GABA) transmission within the prefrontal cortex (PFC) regulates numerous functions, and perturbations in GABAergic transmission within this region have been proposed to contribute to some of the cognitive and behavioral abnormalities associated with disorders such as schizophrenia. These abnormalities include deficits in emotional regulation and aberrant attributions of affective salience. Yet, how PFC GABA regulates these types of emotional processes are unclear. To address this issue, we investigated the contribution of PFC GABA transmission to different aspects of Pavlovian emotional learning in rats using translational discriminative fear conditioning and latent inhibition (LI) assays. Reducing prelimbic PFC GABAA transmission via infusions of the antagonist bicuculline before the acquisition or expression of fear conditioning eliminated the ability to discriminate between an aversive conditioned stimulus (CS+) paired with footshock vs a neutral CS–, resembling similar deficits observed in schizophrenic patients. In a separate experiment, blockade of PFC GABAA receptors before CS preexposure (PE) and conditioning did not affect subsequent expression of LI, but did enhance fear in rats that were not preexposed to the CS. In contrast, PFC GABA-blockade before a fear expression test disrupted the recall of learned irrelevance and abolished LI. These data suggest that normal PFC GABA transmission is critical for regulating and mitigating multiple aspects of aversive learning, including discrimination between fear vs safety signals and recall of information about the irrelevance of stimuli. Furthermore, they suggest that similar deficits in emotional regulation observed in schizophrenia may be driven in part by deficient PFC GABA activity. PMID:24784549

  20. Prefrontal cortical GABA transmission modulates discrimination and latent inhibition of conditioned fear: relevance for schizophrenia.

    PubMed

    Piantadosi, Patrick T; Floresco, Stan B

    2014-09-01

    Inhibitory gamma-aminobutyric acid (GABA) transmission within the prefrontal cortex (PFC) regulates numerous functions, and perturbations in GABAergic transmission within this region have been proposed to contribute to some of the cognitive and behavioral abnormalities associated with disorders such as schizophrenia. These abnormalities include deficits in emotional regulation and aberrant attributions of affective salience. Yet, how PFC GABA regulates these types of emotional processes are unclear. To address this issue, we investigated the contribution of PFC GABA transmission to different aspects of Pavlovian emotional learning in rats using translational discriminative fear conditioning and latent inhibition (LI) assays. Reducing prelimbic PFC GABAA transmission via infusions of the antagonist bicuculline before the acquisition or expression of fear conditioning eliminated the ability to discriminate between an aversive conditioned stimulus (CS+) paired with footshock vs a neutral CS-, resembling similar deficits observed in schizophrenic patients. In a separate experiment, blockade of PFC GABAA receptors before CS preexposure (PE) and conditioning did not affect subsequent expression of LI, but did enhance fear in rats that were not preexposed to the CS. In contrast, PFC GABA-blockade before a fear expression test disrupted the recall of learned irrelevance and abolished LI. These data suggest that normal PFC GABA transmission is critical for regulating and mitigating multiple aspects of aversive learning, including discrimination between fear vs safety signals and recall of information about the irrelevance of stimuli. Furthermore, they suggest that similar deficits in emotional regulation observed in schizophrenia may be driven in part by deficient PFC GABA activity.

  1. Gas release-based prescreening combined with reversed-phase HPLC quantitation for efficient selection of high-γ-aminobutyric acid (GABA)-producing lactic acid bacteria.

    PubMed

    Wu, Qinglong; Shah, Nagendra P

    2015-02-01

    High γ-aminobutyric acid (GABA)-producing lactobacilli are promising for the manufacture of GABA-rich foods and to synthesize GRAS (generally recognized as safe)-grade GABA. However, common chromatography-based screening is time-consuming and inefficient. In the present study, Korean kimchi was used as a model of lactic acid-based fermented foods, and a gas release-based prescreening of potential GABA producers was developed. The ability to produce GABA by potential GABA producers in de Man, Rogosa, and Sharpe medium supplemented with or without monosodium glutamate was further determined by HPLC. Based on the results, 9 isolates were regarded as high GABA producers, and were further genetically identified as Lactobacillus brevis based on the sequences of 16S rRNA gene. Gas release-based prescreening combined with reversed-phase HPLC confirmation was an efficient and cost-effective method to identify high-GABA-producing LAB, which could be good candidates for probiotics. The GABA that is naturally produced by these high-GABA-producing LAB could be used as a food additive. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Cerebellin 4, a synaptic protein, enhances inhibitory activity and resistance of neurons to amyloid-β toxicity.

    PubMed

    Chacón, Pedro J; del Marco, Ángel; Arévalo, Ángeles; Domínguez-Giménez, Paloma; García-Segura, Luis Miguel; Rodríguez-Tébar, Alfredo

    2015-02-01

    Imbalances between excitatory and inhibitory transmissions in the brain anticipate the neuronal damage and death that occur in the neurodegenerative diseases like Alzheimer's disease (AD). We previously showed that amyloid-β (Aß), a natural peptide involved in the onset and development of AD, counteracts the neurotrophic activity of the nerve growth factor (NGF) by dampening the γ-aminobutyric acid (GABA)ergic connectivity of cultured hippocampal neurons. Neuronal plasticity is partly controlled by the NGF-promoted expression of the homologue of enhancer-of-split 1 (Hes1), a transcription factor that regulates the formation of GABAergic synapses. We now show that Hes1 controls the expression of cerebellin 4 (Cbln4), a member of a small family of secreted synaptic proteins, and we present the evidence that Cbln4 plays an essential role in the formation and maintenance of inhibitory GABAergic connections. Cbln4 immunoreactivity was found in the hippocampus, mostly in the dendrites and somata of pyramidal neurons. In the CA1, the hippocampal region where the first neurons degenerate in AD, Cbln4 immunoreactivity was associated with GABAergic synapses (detected by vesicular inhibitory amino acid transporter [VGAT] immunostaining), which appear to surround and embrace the somata of CA1 pyramidal neurons (basket cells). Moreover, significant decreases of Hes1, Cbln4, and VGAT immunoreactivities and messenger RNA expression were found in the hippocampus of a mouse model of AD. We also found that either the overexpression of Cbln4 in cultured hippocampal neurons or the application of recombinant Cbln4 to the cultures increased the number of GABAergic varicosities, rescuing neurons from Aß-induced death. In contrast, knockdown of Cbln4 gene in cultured neurons was followed by a large reduction of GABAergic connections. Such an effect was reverted by exogenously added Cbln4. These findings suggest a therapeutic potential for Cbln4 in the treatment of AD. Copyright

  3. Decreased GABA receptor in the cerebral cortex of epileptic rats: effect of Bacopa monnieri and Bacoside-A

    PubMed Central

    2012-01-01

    Abstact Background Gamma amino butyric acid (GABA), the principal inhibitory neurotransmitter in the cerebral cortex, maintains the inhibitory tones that counter balances neuronal excitation. When this balance is perturbed, seizures may ensue. Methods In the present study, alterations of the general GABA, GABAA and GABAB receptors in the cerebral cortex of the epileptic rat and the therapeutic application of Bacopa monnieri were investigated. Results Scatchard analysis of [3H]GABA, [3H]bicuculline and [3H]baclofen in the cerebral cortex of the epileptic rat showed significant decrease in Bmax (P < 0.001) compared to control. Real Time PCR amplification of GABA receptor subunits such as GABAAά1, GABAAγ, GABAAδ, GABAB and GAD where down regulated (P < 0.001) in epileptic rats. GABAAά5 subunit and Cyclic AMP responsible element binding protein were up regulated. Confocal imaging study confirmed the decreased GABA receptors in epileptic rats. Epileptic rats have deficit in radial arm and Y maze performance. Conclusions Bacopa monnieri and Bacoside-A treatment reverses epilepsy associated changes to near control suggesting that decreased GABA receptors in the cerebral cortex have an important role in epileptic occurrence; Bacopa monnieri and Bacoside-A have therapeutic application in epilepsy management. PMID:22364254

  4. Sleep duration varies as a function of glutamate and GABA in rat pontine reticular formation.

    PubMed

    Watson, Christopher J; Lydic, Ralph; Baghdoyan, Helen A

    2011-08-01

    The oral part of the pontine reticular formation (PnO) is a component of the ascending reticular activating system and plays a role in the regulation of sleep and wakefulness. The PnO receives glutamatergic and GABAergic projections from many brain regions that regulate behavioral state. Indirect, pharmacological evidence has suggested that glutamatergic and GABAergic signaling within the PnO alters traits that characterize wakefulness and sleep. No previous studies have simultaneously measured endogenous glutamate and GABA from rat PnO in relation to sleep and wakefulness. The present study utilized in vivo microdialysis coupled on-line to capillary electrophoresis with laser-induced fluorescence to test the hypothesis that concentrations of glutamate and GABA in the PnO vary across the sleep/wake cycle. Concentrations of glutamate and GABA were significantly higher during wakefulness than during non-rapid eye movement sleep and rapid eye movement sleep. Regression analysis revealed that decreases in glutamate and GABA accounted for a significant portion of the variance in the duration of non-rapid eye movement sleep and rapid eye movement sleep episodes. These data provide novel support for the hypothesis that endogenous glutamate and GABA in the PnO contribute to the regulation of sleep duration. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  5. Contributions of GABA to alcohol responsivity during adolescence: Insights from preclinical and clinical studies

    PubMed Central

    Silveri, Marisa M.

    2015-01-01

    There is a considerable body of literature demonstrating that adolescence is a unique age period, which includes rapid and dramatic maturation of behavioral, cognitive, hormonal and neurobiological systems. Most notably, adolescence is also a period of unique responsiveness to alcohol effects, with both hyposensitivity and hypersensitivity observed to the various effects of alcohol. Multiple neurotransmitter systems are undergoing fine-tuning during this critical period of brain development, including those that contribute to the rewarding effects of drugs of abuse. The role of developmental maturation of the γ-amino-butyric acid (GABA) system, however, has received less attention in contributing to age-specific alcohol sensitivities. This review integrates GABA findings from human magnetic resonance spectroscopy studies as they may translate to understanding adolescent-specific responsiveness to alcohol effects. Better understanding of the vulnerability of the GABA system both during adolescent development, and in psychiatric conditions that include alcohol dependence, could point to a putative mechanism, boosting brain GABA, that may have increased effectiveness for treating alcohol abuse disorders. PMID:24631274

  6. Neuromodulatory properties of fluorescent carbon dots: effect on exocytotic release, uptake and ambient level of glutamate and GABA in brain nerve terminals.

    PubMed

    Borisova, Tatiana; Nazarova, Anastasia; Dekaliuk, Mariia; Krisanova, Natalia; Pozdnyakova, Natalia; Borysov, Arsenii; Sivko, Roman; Demchenko, Alexander P

    2015-02-01

    Carbon dots (C-dots), a recently discovered class of fluorescent nano-sized particles with pure carbon core, have great bioanalytical potential. Neuroactive properties of fluorescent C-dots obtained from β-alanine by microwave heating were assessed based on the analysis of their effects on the key characteristics of GABA- and glutamatergic neurotransmission in isolated rat brain nerve terminals. It was found that C-dots (40-800 μg/ml) in dose-dependent manner: (1) decreased exocytotic release of [(3)H]GABA and L-[(14)C]glutamate; (2) reduced acidification of synaptic vesicles; (3) attenuated the initial velocity of Na(+)-dependent transporter-mediated uptake of [(3)H]GABA and L-[(14)C]glutamate; (4) increased the ambient level of the neurotransmitters, nevertheless (5) did not change significantly the potential of the plasma membrane of nerve terminals. Almost complete suppression of exocytotic release of the neurotransmitters was caused by C-dots at a concentration of 800 μg/ml. Fluorescent and neuromodulatory features combined in C-dots create base for their potential usage for labeling and visualization of key processes in nerve terminals, and also in theranostics. In addition, natural presence of carbon-containing nanoparticles in the human food chain and in the air may provoke the development of neurologic consequences. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Enhanced excitatory input to MCH neurons during developmental period of high food intake is mediated by GABA

    PubMed Central

    Li, Ying; van den Pol, Anthony N.

    2010-01-01

    In contrast to the local axons of GABA neurons of the cortex and hippocampus, lateral hypothalamic neurons containing melanin concentrating hormone (MCH) and GABA send long axons throughout the brain and play key roles in energy homeostasis and mental status. In adults, MCH neurons maintain a hyperpolarized membrane potential and most of the synaptic input is inhibitory. In contrast, we found that developing MCH neurons received substantially more excitatory synaptic input. Based on gramicidicin-perforated patch recordings in hypothalamic slices from MCH-GFP transgenic mice, we found that GABA was the primary excitatory synaptic transmitter in embryonic and neonatal ages up to postnatal day 10. Surprisingly, glutamate assumed only a minor excitatory role, if any. GABA plays a complex role in developing MCH neurons, with its actions conditionally dependent on a number of factors. GABA depolarization could lead to an increase in spikes either independently or in summation with other depolarizing stimuli, or alternately, depending on the relative timing of other depolarizing events, could lead to shunting inhibition. The developmental shift from depolarizing to hyperpolarizing occurred later in the dendrites than in the cell body. Early GABA depolarization was based on a Cl− dependent inward current. An interesting secondary depolarization in mature neurons that followed an initial hyperpolarization was based on a bicarbonate mechanism. Thus during the early developmental period when food consumption is high, MCH neurons are more depolarized than in the adult, and an increased level of excitatory synaptic input to these orexigenic cells is mediated by GABA. PMID:19955372

  8. GABA concentration in superior temporal sulcus predicts gamma power and perception in the sound-induced flash illusion.

    PubMed

    Balz, Johanna; Keil, Julian; Roa Romero, Yadira; Mekle, Ralf; Schubert, Florian; Aydin, Semiha; Ittermann, Bernd; Gallinat, Jürgen; Senkowski, Daniel

    2016-01-15

    In everyday life we are confronted with inputs of multisensory stimuli that need to be integrated across our senses. Individuals vary considerably in how they integrate multisensory information, yet the neurochemical foundations underlying this variability are not well understood. Neural oscillations, especially in the gamma band (>30Hz) play an important role in multisensory processing. Furthermore, gamma-aminobutyric acid (GABA) neurotransmission contributes to the generation of gamma band oscillations (GBO), which can be sustained by activation of metabotropic glutamate receptors. Hence, differences in the GABA and glutamate systems might contribute to individual differences in multisensory processing. In this combined magnetic resonance spectroscopy and electroencephalography study, we examined the relationships between GABA and glutamate concentrations in the superior temporal sulcus (STS), source localized GBO, and illusion rate in the sound-induced flash illusion (SIFI). In 39 human volunteers we found robust relationships between GABA concentration, GBO power, and the SIFI perception rate (r-values=0.44 to 0.53). The correlation between GBO power and SIFI perception rate was about twofold higher when the modulating influence of the GABA level was included in the analysis as compared to when it was excluded. No significant effects were obtained for glutamate concentration. Our study suggests that the GABA level shapes individual differences in audiovisual perception through its modulating influence on GBO. GABA neurotransmission could be a promising target for treatment interventions of multisensory processing deficits in clinical populations, such as schizophrenia or autism. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. The Memory-Impairing Effects of Septal GABA Receptor Activation Involve GABAergic Septo-Hippocampal Projection Neurons

    ERIC Educational Resources Information Center

    Krebs-Kraft, Desiree L.; Wheeler, Marina G.; Parent, Marise B.

    2007-01-01

    Septal infusions of the [gamma]-aminobutyric acid (GABA)[subscript A] agonist muscimol impair memory, and the effect likely involves the hippocampus. GABA[subscript A] receptors are present on the perikarya of cholinergic and GABAergic septo-hippocampal (SH) projections. The current experiments determined whether GABAergic SH projections are…

  10. Increased GAD67 mRNA levels are correlated with in vivo GABA synthesis in the MPTP-treated catecholamine-depleted goldfish brain.

    PubMed

    Hibbert, Benjamin; Fung, Irene; McAuley, Rebecca; Larivière, Katherine; MacNeil, Brian; Bafi-Yeboa, Nana; Livesey, John; Trudeau, Vance

    2004-09-28

    The role of catecholamine neuronal input on GABAergic activity in the hypothalamus, telencephalon, optic tectum, and cerebellum was investigated in early recrudescent female goldfish (Carassius auratus). A new quantitative technique was developed and validated, permitting concomitant quantification and correlational analysis of glutamic acid decarboxylase 65 (GAD65), GAD67, and GAD3 mRNA levels and in vivo GABA synthesis. Catecholamine depletion was achieved by the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 50 microg/g body weight) and dopamine (DA) depletion verified by HPLC. Endogenous GABA levels were increased by intraperitoneal administration of gamma-vinyl GABA (GVG; 300 microg/g body weight), an inhibitor of the GABA catabolic enzyme GABA transaminase. Treatment with MPTP resulted in a greater than twofold increase in GABA synthesis rate in the optic tectum and telencephalon. The increase in GABA synthesis rate was highly correlated with an increase in GAD67, but not GAD65 or GAD3 mRNA levels. These results suggest that catecholaminergic input exerts inhibitory effects on GABA synthesis rates through the modulation of GAD67 in the optic tectum and telencephalon. Together with previously published observations in rodents and primates, it is suggested that catecholaminergic control of GABA synthesis must have evolved more than 200 million years ago, before the emergence of the teleost fishes.

  11. Decreased agonist sensitivity of human GABA(A) receptors by an amino acid variant, isoleucine to valine, in the alpha1 subunit.

    PubMed

    Westh-Hansen, S E; Rasmussen, P B; Hastrup, S; Nabekura, J; Noguchi, K; Akaike, N; Witt, M R; Nielsen, M

    1997-06-25

    Recombinant human GABA(A) receptors were investigated in vitro by coexpression of cDNAs coding for alpha1, beta2, and gamma2 subunits in the baculovirus/Sf-9 insect cell system. We report that a single amino acid exchange (isoleucine 121 to valine 121) in the N-terminal, extracellular part of the alpha1 subunit induces a marked decrease in agonist GABA(A) receptor ligand sensitivity. The potency of muscimol and GABA to inhibit the binding of the GABA(A) receptor antagonist [3H]SR 95531 (2-(3-carboxypropyl)-3-amino-6-(4-methoxyphenyl)pyridazinium bromide) was higher in receptor complexes of alpha1(ile 121) beta2gamma2 than in those of alpha1(val 121) beta2gamma2 (IC50 values were 32-fold and 26-fold lower for muscimol and GABA, respectively). The apparent affinity of the GABA(A) receptor antagonist bicuculline methiodide to inhibit the binding of [3H]SR 95531 did not differ between the two receptor complex variants. Electrophysiological measurements of GABA induced whole-cell Cl- currents showed a ten-fold decrease in the GABA(A) receptor sensitivity of alpha1 (val 121) beta2gamma2 as compared to alpha1(ile 121) beta2gamma2 receptor complexes. Thus, a relatively small change in the primary structure of the alpha1 subunit leads to a decrease selective for GABA(A) receptor sensitivity to agonist ligands, since no changes were observed in a GABA(A) receptor antagonist affinity and benzodiazepine receptor binding.

  12. Activating glutamate decarboxylase activity by removing the autoinhibitory domain leads to hyper γ-aminobutyric acid (GABA) accumulation in tomato fruit.

    PubMed

    Takayama, Mariko; Matsukura, Chiaki; Ariizumi, Tohru; Ezura, Hiroshi

    2017-01-01

    The C-terminal extension region of SlGAD3 is likely involved in autoinhibition, and removing this domain increases GABA levels in tomato fruits. γ-Aminobutyric acid (GABA) is a ubiquitous non-protein amino acid with several health-promoting benefits. In many plants including tomato, GABA is synthesized via decarboxylation of glutamate in a reaction catalyzed by glutamate decarboxylase (GAD), which generally contains a C-terminal autoinhibitory domain. We previously generated transgenic tomato plants in which tomato GAD3 (SlGAD3) was expressed using the 35S promoter/NOS terminator expression cassette (35S-SlGAD3-NOS), yielding a four- to fivefold increase in GABA levels in red-ripe fruits compared to the control. In this study, to further increase GABA accumulation in tomato fruits, we expressed SlGAD3 with (SlGAD3 OX ) or without (SlGAD3ΔC OX ) a putative autoinhibitory domain in tomato using the fruit ripening-specific E8 promoter and the Arabidopsis heat shock protein 18.2 (HSP) terminator. Although the GABA levels in SlGAD3 OX fruits were equivalent to those in 35S-SlGAD3-NOS fruits, GABA levels in SlGAD3ΔC OX fruits increased by 11- to 18-fold compared to control plants, indicating that removing the autoinhibitory domain increases GABA biosynthesis activity. Furthermore, the increased GABA levels were accompanied by a drastic reduction in glutamate and aspartate levels, indicating that enhanced GABA biosynthesis affects amino acid metabolism in ripe-fruits. Moreover, SlGAD3ΔC OX fruits exhibited an orange-ripe phenotype, which was associated with reduced levels of both carotenoid and mRNA transcripts of ethylene-responsive carotenogenic genes, suggesting that over activation of GAD influences ethylene sensitivity. Our strategy utilizing the E8 promoter and HSP terminator expression cassette, together with SlGAD3 C-terminal deletion, would facilitate the production of tomato fruits with increased GABA levels.

  13. Enhancement of muscle contraction in the stomach of the crab Cancer borealis: a possible hormonal role for GABA.

    PubMed

    Suljak, Steven W; Rose, Christopher M; Sabatier, Christelle; Le, Thuc; Trieu, Quoc; Verley, Derek R; Lewis, Alexandra M; Birmingham, John T

    2010-06-01

    Gamma-aminobutyric acid (GABA) is best known as an inhibitory neurotransmitter in the mammalian central nervous system. Here we show, however, that GABA has an excitatory effect on nerve-evoked contractions and on excitatory junctional potentials (EJPs) of the gastric mill 4 (gm4) muscle from the stomach of the crab Cancer borealis. The threshold concentration for these effects was between 1 and 10 micromol l(-1). Using immunohistochemical techniques, we found that GABA is colocalized with the vesicle-associated protein synapsin in nearby nerves and hence is presumably released there. However, since these nerves do not innervate the muscle directly, we conclude that these release sites are not the likely source of the GABA responsible for muscle modulation. We also extracted hemolymph from the crab pericardial cavity, which contains the pericardial organs, a major neurosecretory structure. Through reversed-phase liquid chromatography-mass spectrometry analysis we determined the concentration of GABA in the hemolymph to be 3.3 +/- 0.7 micromol l(-1), high enough to modulate the muscle. These findings suggest that the gm4 muscle could be modulated by GABA produced by and released from a distant neurohemal organ.

  14. Molecular and functional differences in voltage-activated sodium currents between GABA projection neurons and dopamine neurons in the substantia nigra

    PubMed Central

    Ding, Shengyuan; Wei, Wei

    2011-01-01

    GABA projection neurons (GABA neurons) in the substantia nigra pars reticulata (SNr) and dopamine projection neurons (DA neurons) in substantia nigra pars compacta (SNc) have strikingly different firing properties. SNc DA neurons fire low-frequency, long-duration spikes, whereas SNr GABA neurons fire high-frequency, short-duration spikes. Since voltage-activated sodium (NaV) channels are critical to spike generation, the different firing properties raise the possibility that, compared with DA neurons, NaV channels in SNr GABA neurons have higher density, faster kinetics, and less cumulative inactivation. Our quantitative RT-PCR analysis on immunohistochemically identified nigral neurons indicated that mRNAs for pore-forming NaV1.1 and NaV1.6 subunits and regulatory NaVβ1 and Navβ4 subunits are more abundant in SNr GABA neurons than SNc DA neurons. These α-subunits and β-subunits are key subunits for forming NaV channels conducting the transient NaV current (INaT), persistent Na current (INaP), and resurgent Na current (INaR). Nucleated patch-clamp recordings showed that INaT had a higher density, a steeper voltage-dependent activation, and a faster deactivation in SNr GABA neurons than in SNc DA neurons. INaT also recovered more quickly from inactivation and had less cumulative inactivation in SNr GABA neurons than in SNc DA neurons. Furthermore, compared with nigral DA neurons, SNr GABA neurons had a larger INaR and INaP. Blockade of INaP induced a larger hyperpolarization in SNr GABA neurons than in SNc DA neurons. Taken together, these results indicate that NaV channels expressed in fast-spiking SNr GABA neurons and slow-spiking SNc DA neurons are tailored to support their different spiking capabilities. PMID:21880943

  15. Neuropsychiatric Phenotypes Produced by GABA Reduction in Mouse Cortex and Hippocampus.

    PubMed

    Kolata, Stefan M; Nakao, Kazuhito; Jeevakumar, Vivek; Farmer-Alroth, Emily L; Fujita, Yuko; Bartley, Aundrea F; Jiang, Sunny Zhihong; Rompala, Gregory R; Sorge, Robert E; Jimenez, Dennisse V; Martinowich, Keri; Mateo, Yolanda; Hashimoto, Kenji; Dobrunz, Lynn E; Nakazawa, Kazu

    2018-05-01

    Whereas cortical GAD67 reduction and subsequent GABA level decrease are consistently observed in schizophrenia and depression, it remains unclear how these GABAergic abnormalities contribute to specific symptoms. We modeled cortical GAD67 reduction in mice, in which the Gad1 gene is genetically ablated from ~50% of cortical and hippocampal interneurons. Mutant mice showed a reduction of tissue GABA in the hippocampus and cortex including mPFC, and exhibited a cluster of effort-based behavior deficits including decreased home-cage wheel running and increased immobility in both tail suspension and forced swim tests. Since saccharine preference, progressive ratio responding to food, and learned helplessness task were normal, such avolition-like behavior could not be explained by anhedonia or behavioral despair. In line with the prevailing view that dopamine in anterior cingulate cortex (ACC) plays a role in evaluating effort cost for engaging in actions, we found that tail-suspension triggered dopamine release in ACC of controls, which was severely attenuated in the mutant mice. Conversely, ACC dopamine release by progressive ratio responding to reward, during which animals were allowed to effortlessly perform the nose-poking, was not affected in mutants. These results suggest that cortical GABA reduction preferentially impairs the effort-based behavior which requires much effort with little benefit, through a deficit of ACC dopamine release triggered by high-effort cost behavior, but not by reward-seeking behavior. Collectively, a subset of negative symptoms with a reduced willingness to expend costly effort, often observed in patients with schizophrenia and depression, may be attributed to cortical GABA level reduction.

  16. Ionotropic GABA and Glutamate Receptor Mutations and Human Neurologic Diseases.

    PubMed

    Yuan, Hongjie; Low, Chian-Ming; Moody, Olivia A; Jenkins, Andrew; Traynelis, Stephen F

    2015-07-01

    The advent of whole exome/genome sequencing and the technology-driven reduction in the cost of next-generation sequencing as well as the introduction of diagnostic-targeted sequencing chips have resulted in an unprecedented volume of data directly linking patient genomic variability to disorders of the brain. This information has the potential to transform our understanding of neurologic disorders by improving diagnoses, illuminating the molecular heterogeneity underlying diseases, and identifying new targets for therapeutic treatment. There is a strong history of mutations in GABA receptor genes being involved in neurologic diseases, particularly the epilepsies. In addition, a substantial number of variants and mutations have been found in GABA receptor genes in patients with autism, schizophrenia, and addiction, suggesting potential links between the GABA receptors and these conditions. A new and unexpected outcome from sequencing efforts has been the surprising number of mutations found in glutamate receptor subunits, with the GRIN2A gene encoding the GluN2A N-methyl-d-aspartate receptor subunit being most often affected. These mutations are associated with multiple neurologic conditions, for which seizure disorders comprise the largest group. The GluN2A subunit appears to be a locus for epilepsy, which holds important therapeutic implications. Virtually all α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor mutations, most of which occur within GRIA3, are from patients with intellectual disabilities, suggesting a link to this condition. Similarly, the most common phenotype for kainate receptor variants is intellectual disability. Herein, we summarize the current understanding of disease-associated mutations in ionotropic GABA and glutamate receptor families, and discuss implications regarding the identification of human mutations and treatment of neurologic diseases. Copyright © 2015 by The American Society for Pharmacology and Experimental

  17. Ionotropic GABA and Glutamate Receptor Mutations and Human Neurologic Diseases

    PubMed Central

    Yuan, Hongjie; Low, Chian-Ming; Moody, Olivia A.; Jenkins, Andrew

    2015-01-01

    The advent of whole exome/genome sequencing and the technology-driven reduction in the cost of next-generation sequencing as well as the introduction of diagnostic-targeted sequencing chips have resulted in an unprecedented volume of data directly linking patient genomic variability to disorders of the brain. This information has the potential to transform our understanding of neurologic disorders by improving diagnoses, illuminating the molecular heterogeneity underlying diseases, and identifying new targets for therapeutic treatment. There is a strong history of mutations in GABA receptor genes being involved in neurologic diseases, particularly the epilepsies. In addition, a substantial number of variants and mutations have been found in GABA receptor genes in patients with autism, schizophrenia, and addiction, suggesting potential links between the GABA receptors and these conditions. A new and unexpected outcome from sequencing efforts has been the surprising number of mutations found in glutamate receptor subunits, with the GRIN2A gene encoding the GluN2A N-methyl-d-aspartate receptor subunit being most often affected. These mutations are associated with multiple neurologic conditions, for which seizure disorders comprise the largest group. The GluN2A subunit appears to be a locus for epilepsy, which holds important therapeutic implications. Virtually all α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor mutations, most of which occur within GRIA3, are from patients with intellectual disabilities, suggesting a link to this condition. Similarly, the most common phenotype for kainate receptor variants is intellectual disability. Herein, we summarize the current understanding of disease-associated mutations in ionotropic GABA and glutamate receptor families, and discuss implications regarding the identification of human mutations and treatment of neurologic diseases. PMID:25904555

  18. Reduced Brain GABA in Primary Insomnia: Preliminary Data from 4T Proton Magnetic Resonance Spectroscopy (1H-MRS)

    PubMed Central

    Winkelman, John W.; Buxton, Orfeu M.; Jensen, J. Eric; Benson, Kathleen L.; O'Connor, Shawn P.; Wang, Wei; Renshaw, Perry F.

    2008-01-01

    Study Objectives: Both basic and clinical data suggest a potential significant role for GABA in the etiology and maintenance of primary insomnia (PI). Proton magnetic resonance spectroscopy (1H-MRS) can non-invasively determine GABA levels in human brain. Our objective was to assess GABA levels in unmedicated individuals with PI, using 1H-MRS. Design and Setting: Matched-groups, cross-sectional study conducted at two university-based hospitals. Participants: Sixteen non-medicated individuals (8 women) with PI (mean age = 37.3 +/− 8.1) and 16 (7 women) well-screened normal sleepers (mean age = 37.6 +/− 4.5). Methods and Measurements: PI was established with an unstructured clinical interview, a Structured Clinical Interview for DSM-IV (SCID), sleep diary, actigraphy and polysomnography (PSG). 1H-MRS data were collected on a Varian 4 Tesla magnetic resonance imaging/spectroscopy scanner. Global brain GABA levels were averaged from samples in the basal ganglia, thalamus, and temporal, parietal, and occipital white-matter and cortex. Results: Average brain GABA levels were nearly 30% lower in patients with PI (.18 +/− .06) compared to controls (.25 +/− .11). GABA levels were negatively correlated with wake after sleep onset (WASO) on two independent PSGs (r = −0.71, p = 0.0024 and −0.70, p = 0.0048). Conclusions: Our preliminary finding of a global reduction in GABA in non-medicated individuals with PI is the first demonstration of a neurochemical difference in the brains of those with PI compared to normal sleeping controls. 1H-MRS is a valuable tool to assess GABA in vivo, and may provide a means to shed further light on the neurobiology of insomnia. Citation: Winkelman JW; Buxton OM; Jensen JE; Benson KL; O'Connor SP; Wang W; Renshaw PF. Reduced brain GABA in primary insomnia: preliminary data from 4T proton magnetic resonance spectroscopy (1H-MRS). SLEEP 2008;31(11):1499–1506. PMID:19014069

  19. Striatal GABA-MRS predicts response inhibition performance and its cortical electrophysiological correlates.

    PubMed

    Quetscher, Clara; Yildiz, Ali; Dharmadhikari, Shalmali; Glaubitz, Benjamin; Schmidt-Wilcke, Tobias; Dydak, Ulrike; Beste, Christian

    2015-11-01

    Response inhibition processes are important for performance monitoring and are mediated via a network constituted by different cortical areas and basal ganglia nuclei. At the basal ganglia level, striatal GABAergic medium spiny neurons are known to be important for response selection, but the importance of the striatal GABAergic system for response inhibition processes remains elusive. Using a novel combination of behavior al, EEG and magnetic resonance spectroscopy (MRS) data, we examine the relevance of the striatal GABAergic system for response inhibition processes. The study shows that striatal GABA levels modulate the efficacy of response inhibition processes. Higher striatal GABA levels were related to better response inhibition performance. We show that striatal GABA modulate specific subprocesses of response inhibition related to pre-motor inhibitory processes through the modulation of neuronal synchronization processes. To our knowledge, this is the first study providing direct evidence for the relevance of the striatal GABAergic system for response inhibition functions and their cortical electrophysiological correlates in humans.

  20. Dependence-induced ethanol drinking and GABA neurotransmission are altered in Alk deficient mice

    PubMed Central

    Schweitzer, Paul; Cates-Gatto, Chelsea; Varodayan, Florence P.; Nadav, Tali; Roberto, Marisa; Lasek, Amy W.; Roberts, Amanda J.

    2016-01-01

    Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase that is expressed in the brain and implicated in alcohol abuse in humans and behavioral responses to ethanol in mice. Previous studies have shown an association of human ALK with acute responses to alcohol and alcohol dependence. In addition, Alk knockout (Alk −/−) mice consume more ethanol in a binge-drinking test and show increased sensitivity to ethanol sedation. However, the function of ALK in excessive drinking following the establishment of ethanol dependence has not been examined. In this study, we tested Alk −/− mice for dependence-induced drinking using the chronic intermittent ethanol-two bottle choice drinking (CIE-2BC) protocol. We found that Alk −/− mice initially consume more ethanol prior to CIE exposure, but do not escalate ethanol consumption after exposure, suggesting that ALK may promote the escalation of drinking after ethanol dependence. To determine the mechanism(s) responsible for this behavioral phenotype we used an electrophysiological approach to examine GABA neurotransmission in the central nucleus of the amygdala (CeA), a brain region that regulates alcohol consumption and shows increased GABA signaling after chronic ethanol exposure. GABA transmission in ethanol-naïve Alk −/− mice was enhanced at baseline and potentiated in response to acute ethanol application when compared to wild-type (Alk +/+) mice. Moreover, basal GABA transmission was not elevated by CIE exposure in Alk −/− mice as it was in Alk +/+ mice. These data suggest that ALK plays a role in dependence-induced drinking and the regulation of presynaptic GABA release in the CeA. PMID:26946429

  1. Clozapine and GABA transmission in schizophrenia disease models: establishing principles to guide treatments.

    PubMed

    O'Connor, William T; O'Shea, Sean D

    2015-06-01

    Schizophrenia disease models are necessary to elucidate underlying changes and to establish new therapeutic strategies towards a stage where drug efficacy in schizophrenia (against all classes of symptoms) can be predicted. Here we summarise the evidence for a GABA dysfunction in schizophrenia and review the functional neuroanatomy of five pathways implicated in schizophrenia, namely the mesocortical, mesolimbic, ventral striopallidal, dorsal striopallidal and perforant pathways including the role of local GABA transmission and we describe the effect of clozapine on local neurotransmitter release. This review also evaluates psychotropic drug-induced, neurodevelopmental and environmental disease models including their compatibility with brain microdialysis. The validity of disease models including face, construct, etiological and predictive validity and how these models constitute theories about this illness is also addressed. A disease model based on the effect of the abrupt withdrawal of clozapine on GABA release is also described. The review concludes that while no single animal model is entirely successful in reproducing schizophreniform symptomatology, a disease model based on an ability to prevent and/or reverse the abrupt clozapine discontinuation-induced changes in GABA release in brain regions implicated in schizophrenia may be useful for hypothesis testing and for in vivo screening of novel ligands not limited to a single pharmacological class. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Regulation of /sup 3/H-dopamine release by presynaptic GABA and glutamate heteroreceptors in rat brain nucleus accumbens synaptosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovalev, G.I.; Hetey, L.

    1987-06-01

    The aim of this investigation was a neurochemical study of the effect of agonists of different types of GABA receptors - muscimol (type A receptor), baclofen (type B receptor), delta-aminolevulinic acid (DALA; GABA autoreceptor), and also of GABA itself - on tritium-labelled dopamine release, stimulated by potassium cations, from synaptosomes of the nuclei accumbenes of the rat brain.

  3. Alterations in food intake elicited by GABA and opioid agonists and antagonists administered into the ventral tegmental area region of rats.

    PubMed

    Echo, Joyce A; Lamonte, Nicole; Ackerman, Tsippa F; Bodnar, Richard J

    2002-05-01

    Food intake is significantly increased following administration of mu-selective opioid agonists into the ventral tegmental area (VTA) region acting through multiple local opioid receptor subtypes. Since GABA receptor agonists in the VTA region are capable of eliciting feeding, the present study investigated whether feeding elicited by the mu-selective opioid agonist [D-Ala(2), NMe(4), Gly-ol(5)]-enkephalin (DAMGO) in the VTA region was altered by pretreatment into the same site with equimolar doses of either GABA(A) (bicuculline) or GABA(B) (saclofen) antagonists, and further, whether pretreatment with either general opioid or selective GABA receptor antagonists decreased feeding elicited by GABA(A) (muscimol) or GABA(B) (baclofen) agonists in the VTA region. DAMGO-induced feeding in the VTA region was dose-dependently decreased following pretreatment with either GABA(A) or GABA(B) antagonists in the absence of significant alterations in food intake by the antagonists per se. However, the presence of short-lived seizures following bicuculline in the VTA region suggests that this ingestive effect was caused by nonspecific actions. In contrast, GABA(B) receptors are involved in the full expression of mu-opioid agonist-induced feeding in this region since saclofen failed to elicit either seizure activity or a conditioned taste aversion. Pretreatment with naltrexone in the VTA region reduced intake elicited by baclofen, but not muscimol. Finally, baclofen-induced feeding was significantly reduced by saclofen, but not bicuculline, pretreatment in the VTA region. Therefore, possible coregulation between GABA(B) and opioid receptors in the VTA region, as suggested by immunocytochemical evidence, is supported by these behavioral effects upon ingestion.

  4. Sleep-promoting effects of a GABA/5-HTP mixture: Behavioral changes and neuromodulation in an invertebrate model.

    PubMed

    Hong, Ki-Bae; Park, Yooheon; Suh, Hyung Joo

    2016-04-01

    This study was to investigate the sleep promoting effects of combined γ-aminobutyric acid (GABA) and 5-hydroxytryptophan (5-HTP), by examining neuronal processes governing mRNA level alterations, as well as assessing neuromodulator concentrations, in a fruit fly model. Behavioral assays were applied to investigate subjective nighttime activity, sleep episodes, and total duration of subjective nighttime sleep of two amino acids and GABA/5-HTP mixture with caffeine treated flies. Also, real-time PCR and HPLC analysis were applied to analyze the signaling pathway. Subjective nighttime activity and sleep patterns of individual flies significantly decreased with 1% GABA treatment in conjunction with 0.1% 5-HTP treatment (p<0.001). Furthermore, GABA/5-HTP mixture resulted in significant differences between groups related to sleep patterns (40%, p<0.017) and significantly induced subjective nighttime sleep in the awake model (p<0.003). These results related to transcript levels of the GABAB receptor (GABAB-R1) and serotonin receptor (5-HT1A), compared to the control group. In addition, GABA/5-HTP mixture significantly increased GABA levels 1h and 12h following treatment (2.1 fold and 1.2 fold higher than the control, respectively) and also increased 5-HTP levels (0 h: 1.01 μg/protein, 12h: 3.45 μg/protein). In this regard, we successfully demonstrated that using a GABA/5-HTP mixture modulates subjective nighttime activity, sleep episodes, and total duration of subjective nighttime sleep to a greater extent than single administration of each amino acid, and that this modulation occurs via GABAergic and serotonergic signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Flavonoid nutraceuticals and ionotropic receptors for the inhibitory neurotransmitter GABA.

    PubMed

    Johnston, Graham A R

    2015-10-01

    Flavonoids that are found in nutraceuticals have many and varied effects on the activation of ionotropic receptors for GABA, the major inhibitory neurotransmitter in our brains. They can act as positive or negative modulators enhancing or reducing the effect of GABA. They can act as allosteric agonists. They can act to modulate the action of other modulators. There is considerable evidence that these flavonoids are able to enter the brain to influence brain function. They may have a range of effects including relief of anxiety, improvement in cognition, acting as neuroprotectants and as sedatives. All of these effects are sought after in nutraceuticals. A number of studies have likened flavonoids to the widely prescribed benzodiazepines as 'a new family of benzodiazepine receptor ligands'. They are much more than that with many flavonoid actions on ionotropic GABA receptors being insensitive to the classic benzodiazepine antagonist flumazenil and thus independent of the classic benzodiazepine actions. It is time to consider flavonoids in their own right as important modulators of these vital receptors in brain function. Flavonoids are rarely consumed as a single flavonoid except as dietary supplements. The effects of mixtures of flavonoids and other modulators on GABAA receptors need to be more thoroughly investigated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Exogenous γ-aminobutyric Acid (GABA) Application Improved Early Growth, Net Photosynthesis, and Associated Physio-Biochemical Events in Maize.

    PubMed

    Li, Wu; Liu, Jianhua; Ashraf, Umair; Li, Gaoke; Li, Yuliang; Lu, Wenjia; Gao, Lei; Han, Fuguang; Hu, Jianguang

    2016-01-01

    γ-aminobutyric acid (GABA) is an endogenous signaling molecule and involved in growth regulations and plant development, however, a little information is available on the consequences of exogenous GABA application on growth, development, and associated physio-biochemical processes in maize. The present study examined the GABA-induced regulations in early growth, net photosynthetic rate, gas exchange, osmoregulation, and enzymatic activities in three maize cultivars, i.e., Yuecainuo 6, Zhengtian 68, and Yuecainuo 2. Two levels of GABA, i.e., 0 mg L(-1) and 50 mg L(-1), in solution form, with total application volume of 100 ml per pot containing 15 maize seedlings were exogenously applied. Results revealed that exogenous GABA application improved seedling growth in terms of seedling length and biomass accumulation in all maize cultivars at both 3 and 7 days after treatment (DAT). It also promoted net photosynthesis and variably affected gas exchange attributes, i.e., stomatal conductance (Gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr), as well as leaves SPAD value. Furthermore, lipid peroxidation [in terms of malondialdehyde (MDA)] under GABA treated maize seedlings were also remained variable; however, osmolyte accumulation (protein and proline) and activities of anti-oxidants enzymes, i.e., super-oxide dismutase and peroxidase were also affected differently at both 3 and 7 DAT in all maize cultivars. Furthermore, enzymes involved in nitrogen metabolism, e.g., nitrate reductase and glutamine synthetase were improved. These results suggest the involvement of GABA in various physio-metablical mechanisms which might lead to improvement in morphological growth of maize. In future, research is still needed at molecular and genetic levels to unravel the involvement of GABA-mediated regulations in growth and its associated physio-biochemical mechanisms.

  7. Quantification of γ-aminobutyric acid (GABA) in 1 H MRS volumes composed heterogeneously of grey and white matter.

    PubMed

    Mikkelsen, Mark; Singh, Krish D; Brealy, Jennifer A; Linden, David E J; Evans, C John

    2016-11-01

    The quantification of γ-aminobutyric acid (GABA) concentration using localised MRS suffers from partial volume effects related to differences in the intrinsic concentration of GABA in grey (GM) and white (WM) matter. These differences can be represented as a ratio between intrinsic GABA in GM and WM: r M . Individual differences in GM tissue volume can therefore potentially drive apparent concentration differences. Here, a quantification method that corrects for these effects is formulated and empirically validated. Quantification using tissue water as an internal concentration reference has been described previously. Partial volume effects attributed to r M can be accounted for by incorporating into this established method an additional multiplicative correction factor based on measured or literature values of r M weighted by the proportion of GM and WM within tissue-segmented MRS volumes. Simulations were performed to test the sensitivity of this correction using different assumptions of r M taken from previous studies. The tissue correction method was then validated by applying it to an independent dataset of in vivo GABA measurements using an empirically measured value of r M . It was shown that incorrect assumptions of r M can lead to overcorrection and inflation of GABA concentration measurements quantified in volumes composed predominantly of WM. For the independent dataset, GABA concentration was linearly related to GM tissue volume when only the water signal was corrected for partial volume effects. Performing a full correction that additionally accounts for partial volume effects ascribed to r M successfully removed this dependence. With an appropriate assumption of the ratio of intrinsic GABA concentration in GM and WM, GABA measurements can be corrected for partial volume effects, potentially leading to a reduction in between-participant variance, increased power in statistical tests and better discriminability of true effects. Copyright © 2016 John

  8. A Review of the Updated Pharmacophore for the Alpha 5 GABA(A) Benzodiazepine Receptor Model

    PubMed Central

    Clayton, Terry; Poe, Michael M.; Rallapalli, Sundari; Biawat, Poonam; Savić, Miroslav M.; Rowlett, James K.; Gallos, George; Emala, Charles W.; Kaczorowski, Catherine C.; Stafford, Douglas C.; Arnold, Leggy A.; Cook, James M.

    2015-01-01

    An updated model of the GABA(A) benzodiazepine receptor pharmacophore of the α5-BzR/GABA(A) subtype has been constructed prompted by the synthesis of subtype selective ligands in light of the recent developments in both ligand synthesis, behavioral studies, and molecular modeling studies of the binding site itself. A number of BzR/GABA(A) α5 subtype selective compounds were synthesized, notably α5-subtype selective inverse agonist PWZ-029 (1) which is active in enhancing cognition in both rodents and primates. In addition, a chiral positive allosteric modulator (PAM), SH-053-2′F-R-CH3 (2), has been shown to reverse the deleterious effects in the MAM-model of schizophrenia as well as alleviate constriction in airway smooth muscle. Presented here is an updated model of the pharmacophore for α5β2γ2 Bz/GABA(A) receptors, including a rendering of PWZ-029 docked within the α5-binding pocket showing specific interactions of the molecule with the receptor. Differences in the included volume as compared to α1β2γ2, α2β2γ2, and α3β2γ2 will be illustrated for clarity. These new models enhance the ability to understand structural characteristics of ligands which act as agonists, antagonists, or inverse agonists at the Bz BS of GABA(A) receptors. PMID:26682068

  9. Individual Differences in Resting Corticospinal Excitability Are Correlated with Reaction Time and GABA Content in Motor Cortex

    PubMed Central

    Ivry, Richard B.

    2017-01-01

    Individuals differ in the intrinsic excitability of their corticospinal pathways and, perhaps more generally, their entire nervous system. At present, we have little understanding of the mechanisms underlying these differences and how variation in intrinsic excitability relates to behavior. Here, we examined the relationship between individual differences in intrinsic corticospinal excitability, local cortical GABA levels, and reaction time (RT) in a group of 20 healthy human adults. We measured corticospinal excitability at rest with transcranial magnetic stimulation, local concentrations of basal GABA with magnetic resonance spectroscopy, and RT with a behavioral task. All measurements were repeated in two separate sessions, and tests of reliability confirmed the presence of stable individual differences. There was a negative correlation between corticospinal excitability and RT, such that larger motor-evoked potentials (MEPs) measured at rest were associated with faster RTs. Interestingly, larger MEPs were associated with higher levels of GABA in M1, but not in three other cortical regions. Together, these results suggest that individuals with more excitable corticospinal pathways are faster to initiate planned responses and have higher levels of GABA within M1, possibly to compensate for a more excitable motor system. SIGNIFICANCE STATEMENT This study brings together physiological, behavioral, and neurochemical evidence to examine variability in the excitability of the human motor system. Previous work has focused on state-based factors (e.g., preparedness, uncertainty), with little attention given to the influence of inherent stable characteristics. Here, we examined how the excitability of the motor system relates to reaction time and the regional content of the inhibitory neurotransmitter GABA. Importantly, motor pathway excitability and GABA concentrations were measured at rest, outside a task context, providing assays of intrinsic properties of the

  10. Low doses of alcohol potentiate GABA sub B inhibition of spontaneous activity of hippocampal CA1 neurons in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Criado, J.R.; Thies, R.

    1991-03-11

    Low doses of alcohol facilitate firing of hippocampal neurons. Such doses also enhance the inhibitory actions of GABA. Alcohol is known to potentiate inhibition via GABA{sub A} receptors. However, the effects of alcohol on GABA{sub B} receptor function are not understood. Spontaneous activity of single units was recorded from CA1 neurons of male rats anesthetized with 1.0% halothane. Electrical recordings and local application of drugs were done with multi-barrel pipettes. CA1 pyramidal neurons fired spontaneous bursts of action potentials. Acute alcohol decreased the interval between bursts, a mild excitatory action. Alcohol also more than doubled the period of complete inhibitionmore » produced by local application of both GABA and baclofen. These data suggest that GABA{sub B}-mediated inhibition is also potentiated by low doses of alcohol.« less

  11. Targeted transcranial theta-burst stimulation alters fronto-insular network and prefrontal GABA.

    PubMed

    Iwabuchi, Sarina J; Raschke, Felix; Auer, Dorothee P; Liddle, Peter F; Lankappa, Sudheer T; Palaniyappan, Lena

    2017-02-01

    Repetitive transcranial magnetic stimulation (rTMS) has been used worldwide to treat depression. However, the exact physiological effects are not well understood. Pathophysiology of depression involves crucial limbic structures (e.g. insula), and it is still not clear if these structures can be modulated through neurostimulation of surface regions (e.g. dorsolateral prefrontal cortex, DLPFC), and whether rTMS-induced excitatory/inhibitory transmission alterations relate to fronto-limbic connectivity changes. Therefore, we sought proof-of-concept for neuromodulation of insula via prefrontal intermittent theta-burst stimulation (iTBS), and how these effects relate to GABAergic and glutamatergic systems. In 27 healthy controls, we employed a single-blind crossover randomised-controlled trial comparing placebo and real iTBS using resting-state functional MRI and magnetic resonance spectroscopy. Granger causal analysis was seeded from right anterior insula (rAI) to locate individualized left DLPFC rTMS targets. Effective connectivity coefficients within rAI and DLPFC were calculated, and levels of GABA/Glx, GABA/Cr and Glx/Cr in DLPFC and anterior cingulate voxels were also measured. ITBS significantly dampened fronto-insular connectivity and reduced GABA/Glx in both voxels. GABA/Glx had a significant mediating effect on iTBS-induced changes in DLPFC-to-rAI connectivity. We demonstrate modulation of the rAI using targeted iTBS through alterations of excitatory/inhibitory interactions, which may underlie therapeutic effects of rTMS, offering promise for rTMS treatment optimization. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Estradiol and luteinizing hormone regulate recognition memory following subchronic phencyclidine: Evidence for hippocampal GABA action.

    PubMed

    Riordan, Alexander J; Schaler, Ari W; Fried, Jenny; Paine, Tracie A; Thornton, Janice E

    2018-05-01

    The cognitive symptoms of schizophrenia are poorly understood and difficult to treat. Estrogens may mitigate these symptoms via unknown mechanisms. To examine these mechanisms, we tested whether increasing estradiol (E) or decreasing luteinizing hormone (LH) could mitigate short-term episodic memory loss in a phencyclidine (PCP) model of schizophrenia. We then assessed whether changes in cortical or hippocampal GABA may underlie these effects. Female rats were ovariectomized and injected subchronically with PCP. To modulate E and LH, animals received estradiol capsules or Antide injections. Short-term episodic memory was assessed using the novel object recognition task (NORT). Brain expression of GAD67 was analyzed via western blot, and parvalbumin-containing cells were counted using immunohistochemistry. Some rats received hippocampal infusions of a GABA A agonist, GABA A antagonist, or GAD inhibitor before behavioral testing. We found that PCP reduced hippocampal GAD67 and abolished recognition memory. Antide restored hippocampal GAD67 and rescued recognition memory in PCP-treated animals. Estradiol prevented PCP's amnesic effect in NORT but failed to restore hippocampal GAD67. PCP did not cause significant differences in number of parvalbumin-expressing cells or cortical expression of GAD67. Hippocampal infusions of a GABA A agonist restored recognition memory in PCP-treated rats. Blocking hippocampal GAD or GABA A receptors in ovx animals reproduced recognition memory loss similar to PCP and inhibited estradiol's protection of recognition memory in PCP-treated animals. In summary, decreasing LH or increasing E can lessen short-term episodic memory loss, as measured by novel object recognition, in a PCP model of schizophrenia. Alterations in hippocampal GABA may contribute to both PCP's effects on recognition memory and the hormones' ability to prevent or reverse them. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. GABA and Glutamate in Children with Primary Complex Motor Stereotypies: A 1H MRS Study at 7T

    PubMed Central

    Harris, A. D.; Singer, H. S.; Horska, A.; Kline, T.; Ryan, M.; Edden, R. A. E.; Mahone, E. Mark

    2015-01-01

    Background and Purpose Complex motor stereotypies (CMS) are rhythmic, repetitive, fixed, purposeful but purposeless movements that stop with distraction. They can occur in otherwise normal healthy children (primary stereotypies), as well in those with autism spectrum disorders (secondary stereotypies). The underlying neurobiological basis for these movements is unknown, but thought to involve cortical-striatal-thalamo-cortical pathways. In order to further clarify potential neurochemical alterations, GABA, glutamate (Glu), glutamine (Gln), N-acetyl aspartate (NAA) and choline (Cho) levels were measured in four frontostriatal regions, using 1H MRS at 7T. Materials and Methods A total of 18 children with primary CMS and 24 typically developing controls, ages 5-10 years completed MRS at 7T. Single voxel STEAM acquisitions from the anterior cingulate cortex (ACC), premotor cortex (PMC), dorsolateral prefrontal cortex (DLPFC) and striatum were obtained and metabolites were quantified with respect to creatine using LCModel. Results The 7T scan was well tolerated by all participants. Compared to controls, children with CMS had lower levels of GABA ACC (GABA/Cr, p=0.049; GABA/Glu: p=0.051) and striatum (GABA/Cr: p= 0.028; GABA/Glu: p=0.0037), but not the DLPFC or PMC. Glu, Gln, NAA, and Cho levels did not differ between groups in any of the aforementioned regions. Within the CMS group, reduced GABA/Cr in the ACC was significantly associated with greater severity of motor stereotypies (r=-0.59, p= 0.021). Conclusions These results suggest possible GABAergic dysfunction within corticostriatal pathways in children with primary CMS. PMID:26542237

  14. Inhibition of GABA-gated chloride channels by 12,14-dichlorodehydroabietic acid in mammalian brain.

    PubMed

    Nicholson, R A; Lees, G; Zheng, J; Verdon, B

    1999-03-01

    1. 12,14-dichlorodehydroabietic acid (12,14-Cl2DHA) reduced GABA-stimulated uptake of 36Cl- into mouse brain synaptoneurosomes suggesting inhibition of mammalian GABA(A) receptor function. 2. 12,14-Cl2DHA did not affect the binding of [3H]-muscimol to brain membranes but displaced specifically bound [3H]-EBOB. The inhibitory effect on [3H]-EBOB binding was not reversible. 12,14-Cl2DHA reduced the availability of [3H]-EBOB binding sites (Bmax) without changing the KD of the radioligand for remaining sites. 12,14-Cl2DHA did not affect the rate of association of [3H]-EBOB with its chloride channel receptor, but increased the initial rate of [3H]-EBOB dissociation. 3. 12,14-Cl2DHA enhanced the incidence of EPSCs when rapidly applied to cultured rat cortical neurones. Longer exposures produced block of IPSCs with marked increases in the frequency of EPSCs and min EPSCs. 12,14-Cl2DHA also irreversibly suppressed chloride currents evoked by pulses of exogenous GABA in these cells. 4. Ultimately, 12,14-Cl2DHA inhibited all synaptic traffic and action currents in current clamped cells indicating that, in contrast to picrotoxinin (which causes paroxysmal bursting), it is not fully selective for the GABA(A) receptor-chloride channel complex. 5. The depolarizing block seen with 12,14-Cl2DHA in amphotericin-perforated preparations implicates loss of Ca2+ buffering in the polarity change and this may account for inhibition of spontaneous action potentials. 6. Our investigation demonstrates that 12,14-Cl2DHA blocks GABA-dependent chloride entry in mammalian brain and operates as a non-competitive insurmountable GABA(A) antagonist. The mechanism likely involves either irreversible binding of 12,14-Cl2DHA to the trioxabicyclooctane recognition site or a site that is allosterically coupled to it. We cannot exclude, however, the possibility that 12,14-Cl2DHA causes localized proteolysis or more extensive conformational change within a critical subunit of the chloride channel.

  15. Interplay between DISC1 and GABA signaling regulates neurogenesis in mice and risk for schizophrenia.

    PubMed

    Kim, Ju Young; Liu, Cindy Y; Zhang, Fengyu; Duan, Xin; Wen, Zhexing; Song, Juan; Feighery, Emer; Lu, Bai; Rujescu, Dan; St Clair, David; Christian, Kimberly; Callicott, Joseph H; Weinberger, Daniel R; Song, Hongjun; Ming, Guo-li

    2012-03-02

    How extrinsic stimuli and intrinsic factors interact to regulate continuous neurogenesis in the postnatal mammalian brain is unknown. Here we show that regulation of dendritic development of newborn neurons by Disrupted-in-Schizophrenia 1 (DISC1) during adult hippocampal neurogenesis requires neurotransmitter GABA-induced, NKCC1-dependent depolarization through a convergence onto the AKT-mTOR pathway. In contrast, DISC1 fails to modulate early-postnatal hippocampal neurogenesis when conversion of GABA-induced depolarization to hyperpolarization is accelerated. Extending the period of GABA-induced depolarization or maternal deprivation stress restores DISC1-dependent dendritic regulation through mTOR pathway during early-postnatal hippocampal neurogenesis. Furthermore, DISC1 and NKCC1 interact epistatically to affect risk for schizophrenia in two independent case control studies. Our study uncovers an interplay between intrinsic DISC1 and extrinsic GABA signaling, two schizophrenia susceptibility pathways, in controlling neurogenesis and suggests critical roles of developmental tempo and experience in manifesting the impact of susceptibility genes on neuronal development and risk for mental disorders. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Dual Modulators of GABA-A and Alpha 7 Nicotinic Receptors for Treating Autism

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0144 TITLE: Dual Modulators of GABA-A and Alpha 7 Nicotinic Receptors for Treating Autism PRINCIPAL INVESTIGATOR...SUBTITLE 5a. CONTRACT NUMBER Dual Modulators of GABA-A and Alpha 7 Nicotinic Receptors for Treating Autism 5b. GRANT NUMBER W81XWH-13-1-0144 5c...ABSTRACT Autism spectrum disorder (ASD) is a polygenic signaling disorder that may result, in part, from an imbalance in excitatory and inhibitory

  17. Connections between EM2-containing terminals and GABA/μ-opioid receptor co-expressing neurons in the rat spinal trigeminal caudal nucleus

    PubMed Central

    Li, Meng-Ying; Wu, Zhen-Yu; Lu, Ya-Cheng; Yin, Jun-Bin; Wang, Jian; Zhang, Ting; Dong, Yu-Lin; Wang, Feng

    2014-01-01

    Endomorphin-2 (EM2) demonstrates a potent antinociceptive effect via the μ-opioid receptor (MOR). To provide morphological evidence for the pain control effect of EM2, the synaptic connections between EM2-immunoreactive (IR) axonal terminals and γ-amino butyric acid (GABA)/MOR co-expressing neurons in lamina II of the spinal trigeminal caudal nucleus (Vc) were investigated in the rat. Dense EM2-, MOR- and GABA-IR fibers and terminals were mainly observed in lamina II of the Vc. Within lamina II, GABA- and MOR-neuronal cell bodies were also encountered. The results of immunofluorescent histochemical triple-staining showed that approximately 14.2 or 18.9% of GABA-IR or MOR-IR neurons also showed MOR- or GABA-immunopositive staining in lamina II; approximately 45.2 and 36.1% of the GABA-IR and MOR-IR neurons, respectively, expressed FOS protein in their nuclei induced by injecting formalin into the left lower lip of the mouth. Most of the GABA/MOR, GABA/FOS, and MOR/FOS double-labeled neurons made close contacts with EM2-IR fibers and terminals. Immuno-electron microscopy confirmed that the EM2-IR terminals formed synapses with GABA-IR or MOR-IR dendritic processes and neuronal cell bodies in lamina II of the Vc. These results suggest that EM2 might participate in pain transmission and modulation by binding to MOR-IR and GABAergic inhibitory interneuron in lamina II of the Vc to exert inhibitory effect on the excitatory interneuron in lamina II and projection neurons in laminae I and III. PMID:25386121

  18. GABA, 5-HT and amino acids in the rotifers Brachionus plicatilis and Brachionus rotundiformis.

    PubMed

    Gallardo, W G; Hagiwara, A; Hara, K; Soyano, K; Snell, T W

    2000-11-01

    gamma-Aminobutyric acid (GABA) and 5-hydroxytryptamine (5-HT) have been shown to increase the reproduction of the Brachionus plicatilis (NH3L strain). In the present study, the endogenous presence of GABA and 5-HT in the rotifers B. plicatilis (NH3L and Kamiura strains) and Brachionus rotundiformis (Langkawi strain) were confirmed by dot blot immunoassay and high-performance liquid chromatography (HPLC). HPLC showed that GABA and 5-HT concentrations in the three rotifer strains range from 71 to 188 pmol/mg and from 12 to 64 pmol/mg, respectively. A total of 33 amino acids were also detected in B. plicatilis and B. rotundiformis, with glutamic acid, serine, glycine, taurine, threonine, alanine, arginine, proline, valine and isoleucine in high concentrations relative to other amino acids.

  19. Synergistic GABA-Enhancing Therapy against Seizures in a Mouse Model of Dravet Syndrome

    PubMed Central

    Oakley, John C.; Cho, Alvin R.; Cheah, Christine S.; Scheuer, Todd

    2013-01-01

    Seizures remain uncontrolled in 30% of patients with epilepsy, even with concurrent use of multiple drugs, and uncontrolled seizures result in increased morbidity and mortality. An extreme example is Dravet syndrome (DS), an infantile-onset severe epilepsy caused by heterozygous loss of function mutations in SCN1A, the gene encoding the brain type-I voltage-gated sodium channel NaV1.1. Studies in Scn1a heterozygous knockout mice demonstrate reduced excitability of GABAergic interneurons, suggesting that enhancement of GABA signaling may improve seizure control and comorbidities. We studied the efficacy of two GABA-enhancing drugs, clonazepam and tiagabine, alone and in combination, against thermally evoked myoclonic and generalized tonic-clonic seizures. Clonazepam, a positive allosteric modulator of GABA-A receptors, protected against myoclonic and generalized tonic-clonic seizures. Tiagabine, a presynaptic GABA reuptake inhibitor, was protective against generalized tonic-clonic seizures but only minimally protective against myoclonic seizures and enhanced myoclonic seizure susceptibility at high doses. Combined therapy with clonazepam and tiagabine was synergistic against generalized tonic-clonic seizures but was additive against myoclonic seizures. Toxicity determined by rotorod testing was additive for combination therapy. The synergistic actions of clonazepam and tiagabine gave enhanced seizure protection and reduced toxicity, suggesting that combination therapy may be well tolerated and effective for seizures in DS. PMID:23424217

  20. Women with PTSD have a changed sensitivity to GABA-A receptor active substances.

    PubMed

    Möller, Anna Tiihonen; Bäckström, Torbjörn; Nyberg, Sigrid; Söndergaard, Hans Peter; Helström, Lotti

    2016-06-01

    The use of benzodiazepines in treating anxiety symptoms in patients with posttraumatic stress disorder (PTSD) has been debated. Studies on other anxiety disorders have indicated changed sensitivity to GABA-A receptor active substances. In the present study, we investigated the GABA receptor sensitivity in PTSD patients. Injections of allopreganolone, diazepam, and flumazenil were carried out, each on separate occasions, in 10 drug naïve patients with PTSD compared to 10 healthy controls. Effects were measured in saccadic eye velocity (SEV) and in subjective ratings of sedation. The PTSD patients were less sensitive to allopregnanolone compared with healthy controls. This was seen as a significant difference in SEV between the groups (p = 0.047). Further, the patients were less sensitive to diazepam, with a significant less increase in sedation compared to controls (p = 0.027). After flumazenil injection, both patients and controls had a significant agonistic effect on SEV, leading to decreased SEV after injection. The patients also responded with an increase in sedation after flumazenil injection, while this was not seen in the controls. Patients with PTSD have a changed sensitivity to GABA-A receptor active substances. As a consequence of this, benzodiazepines and other GABA-A receptor active compounds such as sleeping pills will be less useful for this group of patients.

  1. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes.

    PubMed

    Chao, Hsiao-Tuan; Chen, Hongmei; Samaco, Rodney C; Xue, Mingshan; Chahrour, Maria; Yoo, Jong; Neul, Jeffrey L; Gong, Shiaoching; Lu, Hui-Chen; Heintz, Nathaniel; Ekker, Marc; Rubenstein, John L R; Noebels, Jeffrey L; Rosenmund, Christian; Zoghbi, Huda Y

    2010-11-11

    Mutations in the X-linked MECP2 gene, which encodes the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2), cause Rett syndrome and several neurodevelopmental disorders including cognitive disorders, autism, juvenile-onset schizophrenia and encephalopathy with early lethality. Rett syndrome is characterized by apparently normal early development followed by regression, motor abnormalities, seizures and features of autism, especially stereotyped behaviours. The mechanisms mediating these features are poorly understood. Here we show that mice lacking Mecp2 from GABA (γ-aminobutyric acid)-releasing neurons recapitulate numerous Rett syndrome and autistic features, including repetitive behaviours. Loss of MeCP2 from a subset of forebrain GABAergic neurons also recapitulates many features of Rett syndrome. MeCP2-deficient GABAergic neurons show reduced inhibitory quantal size, consistent with a presynaptic reduction in glutamic acid decarboxylase 1 (Gad1) and glutamic acid decarboxylase 2 (Gad2) levels, and GABA immunoreactivity. These data demonstrate that MeCP2 is critical for normal function of GABA-releasing neurons and that subtle dysfunction of GABAergic neurons contributes to numerous neuropsychiatric phenotypes.

  2. Effects of disrupting medial prefrontal cortex GABA transmission on decision-making in a rodent gambling task.

    PubMed

    Paine, T A; O'Hara, A; Plaut, B; Lowes, D C

    2015-05-01

    Decision-making is a complex cognitive process that is mediated, in part, by subregions of the medial prefrontal cortex (PFC). Decision-making is impaired in a number of psychiatric conditions including schizophrenia. Notably, people with schizophrenia exhibit reductions in GABA function in the same PFC areas that are implicated in decision-making. For example, expression of the GABA-synthesizing enzyme GAD67 is reduced in the dorsolateral PFC of people with schizophrenia. The goal of this experiment was to determine whether disrupting cortical GABA transmission impairs decision-making using a rodent gambling task (rGT). Rats were trained on the rGT until they reached stable performance and then were implanted with guide cannulae aimed at the medial PFC. Following recovery, the effects of intra-PFC infusions of the GABAA receptor antagonist bicuculline methiodide (BMI) or the GABA synthesis inhibitor L-allylglycine (LAG) on performance on the rGT were assessed. Intracortical infusions of BMI (25 ng/μl/side), but not LAG (10 μg/μl/side), altered decision-making. Following BMI infusions, rats made fewer advantageous choices. Follow-up experiments suggested that the change in decision-making was due to a change in the sensitivity to the punishments, rather than a change in the sensitivity to reward magnitudes, associated with each outcome. LAG infusions increased premature responding, a measure of response inhibition, but did not affect decision-making. Blocking GABAA receptors, but not inhibiting cortical GABA synthesis, within the medial PFC affects decision-making in the rGT. These data provide proof-of-concept evidence that disruptions in GABA transmission can contribute to the decision-making deficits in schizophrenia.

  3. Lateral Preoptic Control of the Lateral Habenula through Convergent Glutamate and GABA Transmission.

    PubMed

    Barker, David J; Miranda-Barrientos, Jorge; Zhang, Shiliang; Root, David H; Wang, Hui-Ling; Liu, Bing; Calipari, Erin S; Morales, Marisela

    2017-11-14

    The lateral habenula (LHb) is a brain structure that participates in cognitive and emotional processing and has been implicated in several mental disorders. Although one of the largest inputs to the LHb originates in the lateral preoptic area (LPO), little is known about how the LPO participates in the regulation of LHb function. Here, we provide evidence that the LPO exerts bivalent control over the LHb through the convergent transmission of LPO glutamate and γ-aminobutyric acid (GABA) onto single LHb neurons. In vivo, both LPO-glutamatergic and LPO-GABAergic inputs to the LHb are activated by aversive stimuli, and their predictive cues yet produce opposing behaviors when stimulated independently. These results support a model wherein the balanced response of converging LPO-glutamate and LPO-GABA are necessary for a normal response to noxious stimuli, and an imbalance in LPO→LHb glutamate or GABA results in the type of aberrant processing that may underlie mental disorders. Published by Elsevier Inc.

  4. Common Distribution of gad Operon in Lactobacillus brevis and its GadA Contributes to Efficient GABA Synthesis toward Cytosolic Near-Neutral pH

    PubMed Central

    Wu, Qinglong; Tun, Hein Min; Law, Yee-Song; Khafipour, Ehsan; Shah, Nagendra P.

    2017-01-01

    Many strains of lactic acid bacteria (LAB) and bifidobacteria have exhibited strain-specific capacity to produce γ-aminobutyric acid (GABA) via their glutamic acid decarboxylase (GAD) system, which is one of amino acid-dependent acid resistance (AR) systems in bacteria. However, the linkage between bacterial AR and GABA production capacity has not been well established. Meanwhile, limited evidence has been provided to the global diversity of GABA-producing LAB and bifidobacteria, and their mechanisms of efficient GABA synthesis. In this study, genomic survey identified common distribution of gad operon-encoded GAD system in Lactobacillus brevis for its GABA production among varying species of LAB and bifidobacteria. Importantly, among four commonly distributed amino acid-dependent AR systems in Lb. brevis, its GAD system was a major contributor to maintain cytosolic pH homeostasis by consuming protons via GABA synthesis. This highlights that Lb. brevis applies GAD system as the main strategy against extracellular and intracellular acidification demonstrating its high capacity of GABA production. In addition, the abundant GadA retained its activity toward near-neutral pH (pH 5.5–6.5) of cytosolic acidity thus contributing to efficient GABA synthesis in Lb. brevis. This is the first global report illustrating species-specific characteristic and mechanism of efficient GABA synthesis in Lb. brevis. PMID:28261168

  5. Neonatal blockade of GABA-A receptors alters behavioral and physiological phenotypes in adult mice.

    PubMed

    Salari, Ali-Akbar; Amani, Mohammad

    2017-04-01

    Gamma-aminobutyric acid (GABA) plays an inhibitory role in the mature brain, and has a complex and bidirectional effect in different parts of the immature brain which affects proliferation, migration and differentiation of neurons during development. There is also increasing evidence suggesting that activation or blockade of the GABA-A receptors during early life can induce brain and behavioral abnormalities in adulthood. We investigated whether neonatal blockade of the GABA-A receptors by bicuculline can alter anxiety- and depression-like behaviors, body weight, food intake, corticosterone and testosterone levels in adult mice (postnatal days 80-95). To this end, neonatal mice were treated with either DMSO or bicuculline (70, 150 and 300μg/kg) during postnatal days 7, 9 and 11. When grown to adulthood, mice were exposed to behavioral tests to measure anxiety- (elevated plus-maze and light-dark box) and depression-like behaviors (tail suspension test and forced swim test). Stress-induced serum corticosterone and testosterone levels, body weight and food intake were also evaluated. Neonatal bicuculline exposure at dose of 300μg/kg decreased anxiety-like behavior, stress-induced corticosterone levels and increased testosterone levels, body weight and food intake, without significantly influencing depression-like behavior in adult male mice. However, no significant changes in these parameters were observed in adult females. These findings suggest that neonatal blockade of GABA-A receptors affects anxiety-like behavior, physiological and hormonal parameters in a sex-dependent manner in mice. Taken together, these data corroborate the concept that GABA-A receptors during early life have an important role in programming neurobehavioral phenotypes in adulthood. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  6. Reduction of GABA/sub B/ receptor binding induced by climbing fiber degeneration in the rat cerebellum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, K.; Fukuda, H.

    1985-07-22

    When the rat cerebellar climbing fibers degenerated, as induced by lesioning the inferior olive with 3-acetylpyridine (3-AP), GABA/sub B/ receptor binding determined with /sup 3/H-(+/-)baclofen was reduced in the cerebellum but not in the cerebral cortex of rats. Computer analysis of saturation data revealed two components of the binding sites, and indicated that decrease of the binding in the cerebellum was due to reduction in receptor density, mainly of the high-affinity sites, the B/sub max/ of which was reduced to one-third that in the control animals. In vitro treatment with 3-AP, of the membranes prepared from either the cerebellum ormore » the cerebral cortex, induced no alteration in the binding sites, thereby indicating that the alteration of GABA/sub B/ sites induced by in vivo treatment with 3-AP is not due to a direct action of 3-AP on the receptor. GABA/sub A/ and benzodiazepine receptor binding labelled with /sup 3/H-muscimol and /sup 3/H-diazepam, respectively, in both of brain regions was not affected by destruction of the inferior olive. These results provide evidence that some of the GABA/sub B/ sites but neither GABA/sub A/ nor benzodiazepine receptors in the cerebellum are located at the climbing fiber terminals. 28 references, 4 figures, 2 tables.« less

  7. Evaluation of commercial soy sauce koji strains of Aspergillus oryzae for γ-aminobutyric acid (GABA) production.

    PubMed

    Ab Kadir, Safuan; Wan-Mohtar, Wan Abd Al Qadr Imad; Mohammad, Rosfarizan; Abdul Halim Lim, Sarina; Sabo Mohammed, Abdulkarim; Saari, Nazamid

    2016-10-01

    In this study, four selected commercial strains of Aspergillus oryzae were collected from soy sauce koji. These A. oryzae strains designated as NSK, NSZ, NSJ and NST shared similar morphological characteristics with the reference strain (A. oryzae FRR 1675) which confirmed them as A. oryzae species. They were further evaluated for their ability to produce γ-aminobutyric acid (GABA) by cultivating the spore suspension in a broth medium containing 0.4 % (w/v) of glutamic acid as a substrate for GABA production. The results showed that these strains were capable of producing GABA; however, the concentrations differed significantly (P < 0.05) among themselves. Based on the A. oryzae strains, highest GABA concentration was obtained from NSK (194 mg/L) followed by NSZ (63 mg/L), NSJ (51.53 mg/L) and NST (31.66 mg/L). Therefore, A. oryzae NSK was characterized and the sequence was found to be similar to A. oryzae and A. flavus with 99 % similarity. The evolutionary distance (K nuc) between sequences of identical fungal species was calculated and a phylogenetic tree prepared from the K nuc data showed that the isolate belonged to the A. oryzae species. This finding may allow the development of GABA-rich ingredients using A. oryzae NSK as a starter culture for soy sauce production.

  8. The “Stop” and “Go” of Nicotine Dependence: Role of GABA and Glutamate

    PubMed Central

    D’Souza, Manoranjan S.; Markou, Athina

    2013-01-01

    Nicotine plays an important role in the initiation and maintenance of tobacco smoking. Importantly, chronic nicotine exposure alters the function of brain reward systems, resulting in the development of a nicotine-dependent state. This nicotine-dependent state is associated with aversive affective and somatic signs upon abstinence from smoking, often leading to relapse in abstinent smokers. This article reviews the role of the major excitatory and inhibitory neurotransmitters glutamate and γ-aminobutyric acid (GABA), respectively, in both the reinforcing effects of nicotine and development of nicotine dependence. Evidence suggests that blockade of glutamatergic neurotransmission attenuates both nicotine intake and nicotine seeking. In contrast, both nicotine intake and nicotine seeking are attenuated when GABA neurotransmission is facilitated. In conclusion, medications that either attenuate/negatively modulate glutamatergic neurotransmission or facilitate/positively modulate GABA neurotransmission may be useful for promoting smoking cessation in humans. PMID:23732855

  9. Enhanced excitatory input to melanin concentrating hormone neurons during developmental period of high food intake is mediated by GABA.

    PubMed

    Li, Ying; van den Pol, Anthony N

    2009-12-02

    In contrast to the local axons of GABA neurons of the cortex and hippocampus, lateral hypothalamic neurons containing melanin concentrating hormone (MCH) and GABA send long axons throughout the brain and play key roles in energy homeostasis and mental status. In adults, MCH neurons maintain a hyperpolarized membrane potential and most of the synaptic input is inhibitory. In contrast, we found that developing MCH neurons received substantially more excitatory synaptic input. Based on gramicidin-perforated patch recordings in hypothalamic slices from MCH-green fluorescent protein transgenic mice, we found that GABA was the primary excitatory synaptic transmitter in embryonic and neonatal ages up to postnatal day 10. Surprisingly, glutamate assumed only a minor excitatory role, if any. GABA plays a complex role in developing MCH neurons, with its actions conditionally dependent on a number of factors. GABA depolarization could lead to an increase in spikes either independently or in summation with other depolarizing stimuli, or alternately, depending on the relative timing of other depolarizing events, could lead to shunting inhibition. The developmental shift from depolarizing to hyperpolarizing occurred later in the dendrites than in the cell body. Early GABA depolarization was based on a Cl(-)-dependent inward current. An interesting secondary depolarization in mature neurons that followed an initial hyperpolarization was based on a bicarbonate mechanism. Thus during the early developmental period when food consumption is high, MCH neurons are more depolarized than in the adult, and an increased level of excitatory synaptic input to these orexigenic cells is mediated by GABA.

  10. Enhancing Contents of γ-Aminobutyric Acid (GABA) and Other Micronutrients in Dehulled Rice during Germination under Normoxic and Hypoxic Conditions.

    PubMed

    Ding, Junzhou; Yang, Tewu; Feng, Hao; Dong, Mengyi; Slavin, Margaret; Xiong, Shanbai; Zhao, Siming

    2016-02-10

    Biofortification of staple grains with high contents of essential micronutrients is an important strategy to overcome micronutrient malnutrition. However, few attempts have targeted at γ-aminobutyric acid (GABA), a functional nutrient for aging populations. In this study, two rice cultivars, Heinuo and Xianhui 207, were used to investigate changes in GABA and other nutritional compounds of dehulled rice after germination under normoxic and hypoxic conditions. Forty-one metabolites were identified in both cultivars treated by normoxic germination, whereas the germinated dehulled rice of Heinuo and Xianhui 207 under hypoxic treatment had 43 and 41 metabolites identified, respectively. GABA increased in dehulled rice after germination, especially under hypoxia. Meanwhile, a number of other health-beneficial and/or flavor-related compounds such as lysine and d-mannose increased after the hypoxic treatment. The accumulation of GABA exhibited genotype-specific modes in both normoxic and hypoxic treatments. With regard to GABA production, Xianhui 207 was more responsive to the germination process than Heinuo, whereas Heinuo was more responsive to hypoxia than Xianhui 207. This study provides a promising approach to biofortify dehulled rice with increased GABA and other nutrients through metabolomic-based regulation.

  11. β-Hydroxybutyrate is the preferred substrate for GABA and glutamate synthesis while glucose is indispensable during depolarization in cultured GABAergic neurons.

    PubMed

    Lund, Trine M; Obel, Linea F; Risa, Øystein; Sonnewald, Ursula

    2011-08-01

    The ketogenic diet has multiple beneficial effects not only in treatment of epilepsy, but also in that of glucose transporter 1 deficiency, cancer, Parkinson's disease, obesity and pain. Thus, there is an increasing interest in understanding the mechanism behind this metabolic therapy. Patients on a ketogenic diet reach high plasma levels of ketone bodies, which are used by the brain as energy substrates. The interaction between glucose and ketone bodies is complex and there is still controversy as to what extent it affects the homeostasis of the neurotransmitters glutamate, aspartate and GABA. The present study was conducted to study this metabolic interaction in cultured GABAergic neurons exposed to different combinations of (13)C-labeled and unlabeled glucose and β-hydroxybutyrate. Depolarization was induced and the incorporation of (13)C into glutamate, GABA and aspartate was analyzed. The presence of β-hydroxybutyrate together with glucose did not affect the total GABA content but did, however, decrease the aspartate content to a lower value than when either glucose or β-hydroxybutyrate was employed alone. When combinations of the two substrates were used (13)C-atoms from β-hydroxybutyrate were found in all three amino acids to a greater extent than (13)C-atoms from glucose, but only the (13)C contribution from [1,6-(13)C]glucose increased upon depolarization. In conclusion, β-hydroxybutyrate was preferred over glucose as substrate for amino acid synthesis but the total content of aspartate decreased when both substrates were present. Furthermore only the use of glucose increased upon depolarization. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Association of GABA(B)R1 receptor gene polymorphism with obstructive sleep apnea syndrome.

    PubMed

    Bayazit, Yildirim A; Yilmaz, Metin; Kokturk, Oguz; Erdal, M Emin; Ciftci, Tansu; Gokdogan, Tuba; Kemaloglu, Yusuf; Ileri, Fikret

    2007-01-01

    GABA(B)R (gamma-amino butyric acid B receptor)-mediated neurotransmission has been implicated in the pathophysiology of a variety of neuropsychiatric disorders. GABA(B)R1 gene variants were identified by single-strand conformation analysis. The nucleotide exchanges cause a substitution of alanine to valine in exon 1a1 (Ala20Val), a substitution of glycine to serine in exon 7 (Gly489Ser) and a silent C to G nucleotide exchange encoding the amino acid phenylalanine in exon 11 (Phe658Phe). The significance of GABA(B)R1a gene polymorphism in obstructive sleep apnea syndrome (OSAS) as well as the association of these polymorphisms with the polysomnography findings in OSAS patients are not known. In this study, we aimed to assess the significance of 3 different GABA(B)R1 gene polymorphisms (Ala20Val, Gly489Ser and Phe658Phe) in OSAS. Seventy-five patients (23 female and 52 male) with OSAS and 99 healthy volunteers (51 female, 48 male) were included in the study to assess Ala20Val, Gly489Ser and Phe658Phe polymorphisms of the GABA(B)R1 gene. For the Ala20Val variants, there was no significant difference between the genotypes and allele frequencies of the patients and controls, nor between both genders (p > 0.05). For Phe658Phe polymorphism, there was no significant difference between genotypes and allele frequencies of the patients and controls (p > 0.05). However, the C/C genotype was overrepresented and the T/C genotype was less frequent in male than female patients (p = 0.03). The C/C genotype was overrepresented and the T/C genotype was less frequent in male patients than male controls (p = 0.01). For GABA(B)R1-Gly489Ser polymorphism, all of the patients and controls had G/G genotype. The apnea arousal index scores of the male patients with C/C genotype were significantly higher than in the patients with C/T genotype (p = 0.01). The percent total sleep time in non-REM 1 scores of the male patients with T/T genotype were significantly higher than in the patients with T

  13. Behavioral deficit and decreased GABA receptor functional regulation in the cerebellum of epileptic rats: effect of Bacopa monnieri and bacoside A.

    PubMed

    Mathew, Jobin; Peeyush Kumar, T; Khan, Reas S; Paulose, C S

    2010-04-01

    In the present study, the effects of Bacopa monnieri and its active component, bacoside A, on motor deficit and alterations of GABA receptor functional regulation in the cerebellum of epileptic rats were investigated. Scatchard analysis of [(3)H]GABA and [(3)H]bicuculline in the cerebellum of epileptic rats revealed a significant decrease in B(max) compared with control. Real-time polymerase chain reaction amplification of GABA(A) receptor subunits-GABA(Aalpha1), GABA(Aalpha5,) and GABA(Adelta)-was downregulated (P<0.001) in the cerebellum of epileptic rats compared with control rats. Epileptic rats exhibit deficits in radial arm and Y-maze performance. Treatment with B. monnieri and bacoside A reversed these changes to near-control levels. Our results suggest that changes in GABAergic activity, motor learning, and memory deficit are induced by the occurrence of repetitive seizures. Treatment with B. monnieri and bacoside A prevents the occurrence of seizures thereby reducing the impairment of GABAergic activity, motor learning, and memory deficit. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  14. p-Coumaric acid activates the GABA-A receptor in vitro and is orally anxiolytic in vivo.

    PubMed

    Scheepens, Arjan; Bisson, Jean-Francois; Skinner, Margot

    2014-02-01

    The increasing prevalence and social burden of subclinical anxiety in the western world represents a significant psychosocial and financial cost. Consumers are favouring a more natural and nonpharmacological approach for alleviating the effects of everyday stress and anxiety. The gamma-aminobutyric acid (GABA) receptor is the primary mediator of central inhibitory neurotransmission, and GABA-receptor agonists are well known to convey anxiolytic effects. Using an in vitro screening approach to identify naturally occurring phytochemical GABA agonists, we discovered the plant secondary metabolite p-coumaric acid to have significant GABAergic activity, an effect that could be blocked by co-administration of the specific GABA-receptor antagonist, picrotoxin. Oral administration of p-coumaric acid to rodents induced a significant anxiolytic effect in vivo as measured using the elevated plus paradigm, in line with the effects of oral diazepam. Given that p-coumaric acid is reasonably well absorbed following oral consumption in man and is relatively nontoxic, it may be suitable for the formulation of a safe and effective anxiolytic functional food. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Epigenetic regulation of dorsal raphe GABA(B1a) associated with isolation-induced abnormal responses to social stimulation in mice.

    PubMed

    Araki, Ryota; Hiraki, Yosuke; Nishida, Shoji; Kuramoto, Nobuyuki; Matsumoto, Kinzo; Yabe, Takeshi

    2016-02-01

    In isolation-reared mice, social encounter stimulation induces locomotor hyperactivity and activation of the dorsal raphe nucleus (DRN), suggesting that dysregulation of dorsal raphe function may be involved in abnormal behaviors. In this study, we examined the involvement of dorsal raphe GABAergic dysregulation in the abnormal behaviors of isolation-reared mice. We also studied an epigenetic mechanism underlying abnormalities of the dorsal raphe GABAergic system. Both mRNA and protein levels of GABA(B1a), a GABA(B) receptor subunit, were increased in the DRN of isolation-reared mice, compared with these levels in group-reared mice. In contrast, mRNA levels for other GABAergic system-related genes (GABA(A) receptor α1, β2 and γ2 subunits, GABA(B) receptor 1b and 2 subunits, and glutamate decarboxylase 67 and 65) were unchanged. Intra-DRN microinjection of 0.06 nmol baclofen (a GABA(B) receptor agonist) exacerbated encounter-induced hyperactivity and aggressive behavior, while microinjection of 0.3 nmol phaclofen (a GABA(B) receptor antagonist) attenuated encounter-induced hyperactivity and aggressive behavior in isolation-reared mice. Furthermore, microinjection of 0.06 nmol baclofen elicited encounter-induced hyperactivity in group-reared mice. Neither baclofen nor phaclofen affected immobility time in the forced swim test and hyperactivity in a novel environment of isolation reared mice. Bisulfite sequence analyses revealed that the DNA methylation level of the CpG island around the transcription start site (TSS) of GABA(B1a) was decreased in the DRN of isolation-reared mice. Chromatin immunoprecipitation analysis showed that histone H3 was hyperacetylated around the TSS of GABA(B1a) in the DRN of isolation-reared mice. These findings indicate that an increase in dorsal raphe GABA(B1a) expression via epigenetic regulation is associated with abnormal responses to social stimulation such as encounter-induced hyperactivity and aggressive behavior in isolation

  16. Hypoglycemia induced behavioural deficit and decreased GABA receptor, CREB expression in the cerebellum of streptozoticin induced diabetic rats.

    PubMed

    Sherin, A; Peeyush, K T; Naijil, G; Chinthu, R; Paulose, C S

    2010-11-20

    Intensive glycemic control during diabetes is associated with an increased incidence of hypoglycemia, which is the major barrier in blood glucose homeostasis during diabetes therapy. The CNS neurotransmitters play an important role in the regulation of glucose homeostasis. In the present study, we showed the effects of hypoglycemia in diabetic and non- diabetic rats on motor functions and alterations of GABA receptor and CREB expression in the cerebellum. Cerebellar dysfunction is associated with seizure generation, motor deficits and memory impairment. Scatchard analysis of [(3)H]GABA binding in the cerebellum of diabetic hypoglycemic and control hypoglycemic rats showed significant (P<0.01) decrease in B(max) and K(d) compared to diabetic and control rats. Real-time PCR amplification of GABA receptor subunit GABA(Aα1) and GAD showed significant (P<0.001) down-regulation in the cerebellum of hypoglycemic rats compared to diabetic and control rats. Confocal imaging study confirmed the decreased GABA receptors in hypoglycemic rats. CREB mRNA expression was down-regulated during recurrent hypoglycemia. Both diabetic and non-diabetic hypoglycemic rats showed impaired performance in grid walk test compared to diabetic and control. Impaired GABA receptor and CREB expression along with motor function deficit were more prominent in hypoglycemic rats than hyperglycemic which showed that hypoglycemia is causing more neuronal damage at molecular level. These molecular changes observed during hypo/hyperglycemia contribute to motor and learning deficits which has clinical significance in diabetes treatment. 2010 Elsevier Inc. All rights reserved.

  17. Hap1 and GABA: thinking about food intake.

    PubMed

    Woods, Stephen C; Seeley, Randy J

    2006-06-01

    GABA stimulation of hypothalamic GABAA receptors increases food intake and body weight. Huntingtin-associated protein-1 (Hap1), is highly expressed in the hypothalamus and increases activity at GABAA receptors; mice lacking Hap1 are hypophagic. A recent paper (Sheng et al.,2006) further explores the role of Hap1 in the control of food intake.

  18. The depolarizing action of GABA in cultured hippocampal neurons is not due to the absence of ketone bodies.

    PubMed

    Waddell, Jaylyn; Kim, Jimok; Alger, Bradley E; McCarthy, Margaret M

    2011-01-01

    Two recent reports propose that the depolarizing action of GABA in the immature brain is an artifact of in vitro preparations in which glucose is the only energy source. The authors argue that this does not mimic the physiological environment because the suckling rats use ketone bodies and pyruvate as major sources of metabolic energy. Here, we show that availability of physiologically relevant levels of ketone bodies has no impact on the excitatory action of GABA in immature cultured hippocampal neurons. Addition of β-hydroxybutyrate (BHB), the primary ketone body in the neonate rat, affected neither intracellular calcium elevation nor membrane depolarizations induced by the GABA-A receptor agonist muscimol, when assessed with calcium imaging or perforated patch-clamp recording, respectively. These results confirm that the addition of ketone bodies to the extracellular environment to mimic conditions in the neonatal brain does not reverse the chloride gradient and therefore render GABA hyperpolarizing. Our data are consistent with the existence of a genuine "developmental switch" mechanism in which GABA goes from having a predominantly excitatory role in immature cells to a predominantly inhibitory one in adults.

  19. Seizure-induced alterations in fast-spiking basket cell GABA currents modulate frequency and coherence of gamma oscillation in network simulations

    NASA Astrophysics Data System (ADS)

    Proddutur, Archana; Yu, Jiandong; Elgammal, Fatima S.; Santhakumar, Vijayalakshmi

    2013-12-01

    Gamma frequency oscillations have been proposed to contribute to memory formation and retrieval. Fast-spiking basket cells (FS-BCs) are known to underlie development of gamma oscillations. Fast, high amplitude GABA synapses and gap junctions have been suggested to contribute to gamma oscillations in FS-BC networks. Recently, we identified that, apart from GABAergic synapses, FS-BCs in the hippocampal dentate gyrus have GABAergic currents mediated by extrasynaptic receptors. Our experimental studies demonstrated two specific changes in FS-BC GABA currents following experimental seizures [Yu et al., J. Neurophysiol. 109, 1746 (2013)]: increase in the magnitude of extrasynaptic (tonic) GABA currents and a depolarizing shift in GABA reversal potential (EGABA). Here, we use homogeneous networks of a biophysically based model of FS-BCs to examine how the presence of extrasynaptic GABA conductance (gGABA-extra) and experimentally identified, seizure-induced changes in gGABA-extra and EGABA influence network activity. Networks of FS-BCs interconnected by fast GABAergic synapses developed synchronous firing in the dentate gamma frequency range (40-100 Hz). Systematic investigation revealed that the biologically realistic range of 30 to 40 connections between FS-BCs resulted in greater coherence in the gamma frequency range when networks were activated by Poisson-distributed dendritic synaptic inputs rather than by homogeneous somatic current injections, which were balanced for FS-BC firing frequency in unconnected networks. Distance-dependent conduction delay enhanced coherence in networks with 30-40 FS-BC interconnections while inclusion of gap junctional conductance had a modest effect on coherence. In networks activated by somatic current injections resulting in heterogeneous FS-BC firing, increasing gGABA-extra reduced the frequency and coherence of FS-BC firing when EGABA was shunting (-74 mV), but failed to alter average FS-BC frequency when EGABA was depolarizing

  20. Abnormal Concentration of GABA and Glutamate in The Prefrontal Cortex in Schizophrenia.-An in Vivo 1H-MRS Study.

    PubMed

    Chen, Tianyi; Wang, Yingchan; Zhang, Jianye; Wang, Zuowei; Xu, Jiale; Li, Yao; Yang, Zhilei; Liu, Dengtang

    2017-10-25

    The etiology and pathomechanism of schizophrenia are unknown. The traditional dopamine (DA) hypothesis is unable to fully explain its pathology and therapeutics. The glutamate (Glu) and γ-aminobutyric acid (GABA) hypotheses suggest Glu or GABA concentrations are abnormal in the brains of patients with schizophrenia. Magnetic resonance spectroscopy (MRS) show glutamate level increases in the ventromedial prefrontal cortex (vmPFC) including the anterior cingulated cortex (ACC) in those with schizophrenia. To investigate the function of the glutamate system (glutamate and γ-aminobutyric acid) in the etiology and pathomechanism of schizophrenia. 24 drug naïve patients with schizophrenia and 24 healthy volunteers were matched by gender, age, and educational level. The Siemens 3T MRI system was used to collect the magnetic resonance spectroscopy (MRS) data of the subjects. The regions of interest included the left dorsolateral prefrontal cortex (IDLPFC), ventromedial prefrontal cortex (vmPFC), and anterior cingulate cortex (ACC). LCModel software was used to analyze the concentrations of γ-aminobutyric acid (GABA), glutamate (Glu), glutamine (Gln), N-acetylaspartate (NAA), and N-acetylaspartylglutamate (NAAG) in the region of interest. Meanwhile, the Positive and Negative Syndrome Scale (PANSS) and the Clinical Global Impression Scale (CGI) were used to assess the mental symptoms and severity of the disease. The median GABA concentrations in the anterior cingulate cortex of the schizophrenia group and the healthy control group were 1.90 (Q1=1.55, Q3=2.09) and 2.16 (Q1=1.87, Q3=2.59) respectively; the mean (sd) Glu concentrations were 6.07 (2.48) and 6.54 (1.99); the median Gln concentrations were 0.36 (Q1=0.00, Q3=0.74) and 0.29 (Q1=0.00, Q3=0.59); the between-group difference of the GABA concentrations was statistically significant ( Z =-2.95, p =0.003); the between-group difference of the GABA/(NAA+NAAG) was statistically significant ( Z =-2.72, p =0.012); the

  1. Nicotinic receptors and functional regulation of GABA cell microcircuitry in bipolar disorder and schizophrenia.

    PubMed

    Benes, Francine M

    2012-01-01

    Studies of the hippocampus in postmortem brains from patients with schizophrenia and bipolar disorder have provided evidence for a defect of GABAergic interneurons. Significant decreases in the expression of GAD67, a marker for GABA cell function, have been found repeatedly in several different brain regions that include the hippocampus. In this region, nicotinic receptors are thought to play an important role in modulating the activity of GABAergic interneurons by influences of excitatory cholinergic afferents on their activity. In bipolar disorder, this influence appears to be particularly prominent in the stratum oriens of sectors CA3/2 and CA1, two sites where these cells constitute the exclusive neuronal cell type. In sector CA3/2, this layer receives a robust excitatory projection from the basolateral amygdala (BLA) and this is thought to play a central role in regulating GABA cells at this locus. Using laser microdissection, recent studies have focused selectively on these two layers and their associated GABA cells using microarray technology. The results have provided support for the idea that nicotinic cholinergic receptors play a particularly important role in regulating the activity of GABA neurons at these loci by regulating the progression of cell cycle and the repair of damaged DNA. In bipolar disorder, there is a prominent reduction in the expression of mRNAs for several different nicotinic subunit isoforms. These decreases could reflect a diminished influence of this receptor system on these GABA cells, particularly in sector CA3/2 where a preponderance of abnormalities have been observed in postmortem studies. In patients with bipolar disorder, excitatory nicotinic cholinergic fibers from the medial septum may converge with glutamatergic fibers from the BLA on GABAergic interneurons in the stratum oriens of CA3/2 and result in disturbances of their genomic and functional integrity, ones that may induce disruptions of the integration of

  2. Effect of oral administration of GABA on temperature regulation in humans during rest and exercise at high ambient temperature.

    PubMed

    Miyazawa, Taiki; Kawabata, Takashi; Suzuki, Takashi; Imai, Daiki; Hamamoto, Takeshi; Yoshikawa, Takahiro; Miyagawa, Toshiaki

    2009-12-01

    Centric administration of gamma-aminobutyric acid (GABA) has been implicated to affect temperature regulation in animals during rest or under anesthesia. However, there are few reports concerning the effects of the oral administration of GABA on temperature regulation in humans during rest and exercise. In order to clarify the effects and underlying mechanisms, we measured several parameters related to temperature regulation of humans during rest and exercise at high ambient temperature (35 degrees C). On two occasions, eight endurance-trained men rested for 20 min and cycled at 65% VO2peak for 30 min. In control trial (trial-C), subjects drank the sample which was a sports drink of 200 mL (placebo) before the rest period. In another trial (trial-G), subjects drank the sample which was a sports drink containing 1000 mg of GABA (GABA drink) before the rest period. In trial-G, the plasma GABA concentrations were maintained higher than those in trial-C during the experiment. An increase of esophageal temperature during rest and exercise was inhibited in trial-G. Sweat rate, and plasma catecholamine concentrations during exercise were inhibited in trial-G. Esophageal temperature inhibition is suggested to be induced by the suppression of cold-sensitive neurons during rest, and the inhibition of plasma catecholamine concentrations caused by the GABA-induced attenuation of the sympathetic nervous system during exercise.

  3. Exposure to the cytokine EGF leads to abnormal hyperactivity of pallidal GABA neurons: implications for schizophrenia and its modeling.

    PubMed

    Sotoyama, Hidekazu; Namba, Hisaaki; Chiken, Satomi; Nambu, Atsushi; Nawa, Hiroyuki

    2013-08-01

    Previous studies on a cytokine model for schizophrenia reveal that the hyperdopaminergic innervation and neurotransmission in the globus pallidus (GP) is involved in its behavioral impairments. Here, we further explored the physiological consequences of the GP abnormality in the indirect pathway, using the same schizophrenia model established by perinatal exposure to epidermal growth factor (EGF). Single-unit recordings revealed that the neural activity from the lateral GP was elevated in EGF-treated rats in vivo and in vitro (i.e., slice preparations), whereas the central area of the GP exhibited no significant differences. The increase in the pallidal activity was normalized by subchronic treatment with risperidone, which is known to ameliorate their behavioral deficits. We also monitored extracellular GABA concentrations in the substantia nigra, one of the targets of pallidal efferents. There was a significant increase in basal GABA levels in EGF-treated rats, whereas high potassium-evoked GABA effluxes and glutamate levels were not affected. A neurotoxic lesion in the GP of EGF-treated rats normalized GABA concentrations to control levels. Corroborating our in vivo results, GABA release from GP slices was elevated in EGF-treated animals. These findings suggest that the hyperactivity and enhanced GABA release of GP neurons represent the key pathophysiological features of this cytokine-exposure model for schizophrenia. © 2013 International Society for Neurochemistry.

  4. Excitatory action of GABA on immature neurons is not due to absence of ketone bodies metabolites or other energy substrates.

    PubMed

    Ben-Ari, Yehezkel; Tyzio, Roman; Nehlig, Astrid

    2011-09-01

    Brain slices incubated with glucose have provided most of our knowledge on cellular, synaptic, and network driven mechanisms. It has been recently suggested that γ-aminobutyric acid (GABA) excites neonatal neurons in conventional glucose-perfused slices but not when ketone bodies metabolites, pyruvate, and/or lactate are added, suggesting that the excitatory actions of GABA are due to energy deprivation when glucose is the sole energy source. In this article, we review the vast number of studies that show that slices are not energy deprived in glucose-containing medium, and that addition of other energy substrates at physiologic concentrations does not alter the excitatory actions of GABA on neonatal neurons. In contrast, lactate, like other weak acids, can produce an intracellular acidification that will cause a reduction of intracellular chloride and a shift of GABA actions. The effects of high concentrations of lactate, and particularly of pyruvate (4-5 mm), as used are relevant primarily to pathologic conditions; these concentrations not being found in the brain in normal "control" conditions. Slices in glucose-containing medium may not be ideal, but additional energy substrates neither correspond to physiologic conditions nor alter GABA actions. In keeping with extensive observations in a wide range of animal species and brain structures, GABA depolarizes immature neurons and the reduction of the intracellular concentration of chloride ([Cl(-)](i)) is a basic property of brain maturation that has been preserved throughout evolution. In addition, this developmental sequence has important clinical implications, notably concerning the higher incidence of seizures early in life and their long-lasting deleterious sequels. Immature neurons have difficulties exporting chloride that accumulates during seizures, leading to permanent increase of [Cl(-)](i) that converts the inhibitory actions of GABA to excitatory and hampers the efficacy of GABA-acting antiepileptic

  5. GABA-benzodiazepine receptor function in alcohol dependence: a combined 11C-flumazenil PET and pharmacodynamic study.

    PubMed

    Lingford-Hughes, A R; Wilson, S J; Cunningham, V J; Feeney, A; Stevenson, B; Brooks, D J; Nutt, D J

    2005-08-01

    Gamma-aminobutyric acid (GABA)-benzodiazepine receptor function is hypothesised to be reduced in alcohol dependence. We used positron emission tomography (PET) with [11C]flumazenil, a non-selective tracer for brain GABA-benzodiazepine (GABA-BDZ) receptor binding, to determine in vivo the relationship between BDZ receptor occupancy by an agonist, midazolam, and its functional effects. Abstinent male alcohol dependent subjects underwent [11C]flumazenil PET to measure occupancy of BDZ receptors by midazolam whilst recording its pharmacodynamic effects on behavioural and physiological measures. Rate constants describing the exchange of [11C]flumazenil between the plasma and brain compartments were derived from time activity curves. A 50% reduction in electroencephalography (EEG)-measured sleep time was seen in the alcohol dependent group despite the same degree of occupancy by midazolam as seen in the control group. The effects of midazolam on other measures of benzodiazepine receptor function, increasing EEG beta1 power and slowing of saccadic eye movements, were similar in the two groups. No differences in midazolam or flumazenil metabolism were found between the groups. In summary, our study suggests that alcohol dependence in man is associated with a reduced EEG sleep response to the benzodiazepine agonist, midazolam, which is not explained by reduced BDZ receptor occupancy, and is consistent with reduced sensitivity in this measure of GABA-BDZ receptor function in alcohol dependence. The lack of change in other functional measures may reflect a differential involvement of particular subtypes of the GABA-BDZ receptor.

  6. The developmental switch in GABA polarity is delayed in fragile X mice.

    PubMed

    He, Qionger; Nomura, Toshihiro; Xu, Jian; Contractor, Anis

    2014-01-08

    Delays in synaptic and neuronal development in the cortex are key hallmarks of fragile X syndrome, a prevalent neurodevelopmental disorder that causes intellectual disability and sensory deficits and is the most common known cause of autism. Previous studies have demonstrated that the normal progression of plasticity and synaptic refinement during the critical period is altered in the cortex of fragile X mice. Although the disruptions in excitatory synapses are well documented in fragile X, there is less known about inhibitory neurotransmission during the critical period. GABAergic transmission plays a crucial trophic role in cortical development through its early depolarizing action. At the end of cortical critical period, response properties of GABA transform into their mature hyperpolarizing type due to developmental changes in intracellular chloride homeostasis. We found that the timing of the switch from depolarizing to hyperpolarizing GABA is delayed in the cortex of fragile X mice and there is a concurrent alteration in the expression of the neuronal chloride cotransporter NKCC1 that promotes the accumulation of intracellular chloride. Disruption of the trophic effects of GABA during cortical development could contribute to the altered trajectory of synaptic maturation in fragile X syndrome.

  7. Olfactory bulb short axon cell release of GABA and dopamine produces a temporally biphasic inhibition-excitation response in external tufted cells.

    PubMed

    Liu, Shaolin; Plachez, Celine; Shao, Zuoyi; Puche, Adam; Shipley, Michael T

    2013-02-13

    Evidence for coexpression of two or more classic neurotransmitters in neurons has increased, but less is known about cotransmission. Ventral tegmental area (VTA) neurons corelease dopamine (DA), the excitatory transmitter glutamate, and the inhibitory transmitter GABA onto target cells in the striatum. Olfactory bulb (OB) short axon cells (SACs) form interglomerular connections and coexpress markers for DA and GABA. Using an optogenetic approach, we provide evidence that mouse OB SACs release both GABA and DA onto external tufted cells (ETCs) in other glomeruli. Optical activation of channelrhodopsin specifically expressed in DAergic SACs produced a GABA(A) receptor-mediated monosynaptic inhibitory response, followed by DA-D(1)-like receptor-mediated excitatory response in ETCs. The GABA(A) receptor-mediated hyperpolarization activates I(h) current in ETCs; synaptically released DA increases I(h), which enhances postinhibitory rebound spiking. Thus, the opposing actions of synaptically released GABA and DA are functionally integrated by I(h) to generate an inhibition-to-excitation "switch" in ETCs. Consistent with the established role of I(h) in ETC burst firing, we show that endogenous DA release increases ETC spontaneous bursting frequency. ETCs transmit sensory signals to mitral/tufted output neurons and drive intraglomerular inhibition to shape glomerulus output to downstream olfactory networks. GABA and DA cotransmission from SACs to ETCs may play a key role in regulating output coding across the glomerular array.

  8. Presynaptic gain control by endogenous cotransmission of dopamine and GABA in the olfactory bulb.

    PubMed

    Vaaga, Christopher E; Yorgason, Jordan T; Williams, John T; Westbrook, Gary L

    2017-03-01

    In the olfactory bulb, lateral inhibition mediated by local juxtaglomerular interneurons has been proposed as a gain control mechanism, important for decorrelating odorant responses. Among juxtaglomerular interneurons, short axon cells are unique as dual-transmitter neurons that release dopamine and GABA. To examine their intraglomerular function, we expressed channelrhodopsin under control of the DAT-cre promoter and activated olfactory afferents within individual glomeruli. Optical stimulation of labeled cells triggered endogenous dopamine release as measured by cyclic voltammetry and GABA release as measured by whole cell GABA A receptor currents. Activation of short axon cells reduced the afferent presynaptic release probability via D 2 and GABA B receptor activation, resulting in reduced spiking in both mitral and external tufted cells. Our results suggest that short axon cells influence glomerular activity not only by direct inhibition of external tufted cells but also by inhibition of afferent inputs to external tufted and mitral cells. NEW & NOTEWORTHY Sensory systems, including the olfactory system, encode information across a large dynamic range, making synaptic mechanisms of gain control critical to proper function. Here we demonstrate that a dual-transmitter interneuron in the olfactory bulb controls the gain of intraglomerular afferent input via two distinct mechanisms, presynaptic inhibition as well as inhibition of a principal neuron subtype, and thereby potently controls the synaptic gain of afferent inputs. Copyright © 2017 the American Physiological Society.

  9. Improvement in daytime sleepiness with clarithromycin in patients with GABA-related hypersomnia: Clinical experience.

    PubMed

    Trotti, Lynn Marie; Saini, Prabhjyot; Freeman, Amanda A; Bliwise, Donald L; García, Paul S; Jenkins, Andrew; Rye, David B

    2014-07-01

    The macrolide antibiotic clarithromycin can enhance central nervous system excitability, possibly by antagonism of GABA-A receptors. Enhancement of GABA signaling has recently been demonstrated in a significant proportion of patients with central nervous system hypersomnias, so we sought to determine whether clarithromycin might provide symptomatic benefit in these patients. We performed a retrospective review of all patients treated with clarithromycin for hypersomnia, in whom cerebrospinal fluid enhanced GABA-A receptor activity in vitro in excess of controls, excluding those with hypocretin deficiency or definite cataplexy. Subjective reports of benefit and objective measures of psychomotor vigilance were collected to assess clarithromycin's effects. Clinical and demographic characteristics were compared in responders and non-responders. In total, 53 patients (38 women, mean age 35.2 (SD 12.8 years)) were prescribed clarithromycin. Of these, 34 (64%) reported improvement in daytime sleepiness, while 10 (19%) did not tolerate its side effects, and nine (17%) found it tolerable but without symptomatic benefit. In those who reported subjective benefit, objective corroboration of improved vigilance was evident on the psychomotor vigilance task. Twenty patients (38%) elected to continue clarithromycin therapy. Clarithromycin responders were significantly younger than non-responders. Clarithromycin may be useful in the treatment of hypersomnia associated with enhancement of GABA-A receptor function. Further evaluation of this novel therapy is needed. © The Author(s) 2013.

  10. Pedophilic sex offenders are characterised by reduced GABA concentration in dorsal anterior cingulate cortex.

    PubMed

    Ristow, Inka; Li, Meng; Colic, Lejla; Marr, Vanessa; Födisch, Carina; von Düring, Felicia; Schiltz, Kolja; Drumkova, Krasimira; Witzel, Joachim; Walter, Henrik; Beier, Klaus; Kruger, Tillmann H C; Ponseti, Jorge; Schiffer, Boris; Walter, Martin

    2018-01-01

    A pedophilic disorder is characterised by abnormal sexual urges towards prepubescent children. Child abusive behavior is frequently a result of lack of behavioral inhibition and current treatment options entail, next to suppressing unchangeable sexual orientation, measures to increase cognitive and attentional control. We tested, if in brain regions subserving attentional control of behavior and perception of salient stimuli, such inhibition deficit can be observed also on the level of inhibitory neurotransmitters. We measured GABA concentration in the dorsal anterior cingulate cortex (dACC) and in a control region, the pregenual anterior cingulate cortex (pgACC) in pedophilic sex offenders ( N  = 13) and matched controls ( N  = 13) using a 7 Tesla STEAM magnetic resonance spectroscopy (MRS). In dACC but not in the control region pedophilic sex offenders showed reduced GABA/Cr concentrations compared to healthy controls. The reduction was robust after controlling for potential influence of age and gray matter proportion within the MRS voxel ( p  < 0.04). Importantly, reduced GABA/Cr in patients was correlated with lower self-control measured with the Barratt Impulsiveness Scale (p = 0.028, r = -0.689). In a region related to cognitive control and salience mapping, pedophilic sex offenders showed reduction of the inhibitory neurotransmitter GABA which may be seen as a neuronal correlate of inhibition and behavioral control.

  11. GABA(B) receptors, schizophrenia and sleep dysfunction: a review of the relationship and its potential clinical and therapeutic implications.

    PubMed

    Kantrowitz, Joshua; Citrome, Leslie; Javitt, Daniel

    2009-08-01

    Evidence for an intrinsic relationship between sleep, cognition and the symptomatic manifestations of schizophrenia is accumulating. This review presents evidence for the possible utility of GABA(B) receptor agonists for the treatment of subjective and objective sleep abnormalities related to schizophrenia. At the phenotypic level, sleep disturbance occurs in 16-30% of patients with schizophrenia and is related to reduced quality of life and poor coping skills. On the neurophysiological level, studies suggest that sleep deficits reflect a core component of schizophrenia. Specifically, slow-wave sleep deficits, which are inversely correlated with cognition scores, are seen. Moreover, sleep plays an increasingly well documented role in memory consolidation in schizophrenia. Correlations of slow-wave sleep deficits with impaired reaction time and declarative memory have also been reported. Thus, both behavioural insomnia and sleep architecture are critical therapeutic targets in patients with schizophrenia. However, long-term treatment with antipsychotics often results in residual sleep dysfunction and does not improve slow-wave sleep, and adjunctive GABA(A) receptor modulators, such as benzodiazepines and zolpidem, can impair sleep architecture and cognition in schizophrenia. GABA(B) receptor agonists have therapeutic potential in schizophrenia. These agents have minimal effect on rapid eye movement sleep while increasing slow-wave sleep. Preclinical associations with increased expression of genes related to slow-wave sleep production and circadian rhythm function have also been reported. GABA(B) receptor deficits result in a sustained hyperdopaminergic state and can be reversed by a GABA(B) receptor agonist. Genetic, postmortem and electrophysiological studies also associate GABA(B) receptors with schizophrenia. While studies thus far have not shown significant effects, prior focus on the use of GABA(B) receptor agonists has been on the positive symptoms of

  12. Quantitative distribution of GABA-immunoreactive neurons in cetacean visual cortex is similar to that in land mammals.

    PubMed

    Garey, L J; Takács, J; Revishchin, A V; Hámori, J

    1989-04-24

    Sections of the anterior portion of the visual cortex in the lateral gyrus of the Black Sea porpoise were studied to determine the neuronal architecture and numerical density, and the distribution of neurons immunoreactive to gamma-aminobutyric acid (GABA). Cytoarchitecture and neuronal density are similar to those described in another cetacean, the bottlenose dolphin. GABA-positive neurons are distributed through all layers of the visual cortex but are especially dense in layers II and III, and comprise some 20% of the total neuronal population in this part of the cortex. The distribution of GABA-positive neurons is similar to that found in land mammals.

  13. γ-Aminobutyric acid (GABA) oral rinse reduces capsaicin-induced burning mouth pain sensation: An experimental quantitative sensory testing study in healthy subjects.

    PubMed

    Zhang, Y; Wang, K; Arendt-Nielsen, L; Cairns, B E

    2018-02-01

    In burning mouth patients, analgesia after oral administration of clonazepam may result from modulation of peripheral γ-aminobutyric acid (GABA) receptors. The effect of oral administration of test solutions (water, 0.5 mol/L or 0.05 mol/L GABA, 1% lidocaine) was investigated for the amelioration of pain and sensitivity induced by application of capsaicin (1%, 2 min) to the tongue of thirty healthy male and female subjects in this four-session, randomized, placebo-controlled, double-blinded, cross-over study. Intra-oral quantitative sensory testing was used to assess cold (CDT), warm (WDT) and mechanical (MDT) detection thresholds as well as mechanical (MPT) and heat (HPT) pain thresholds. Capsaicin-induced pain intensity was continuously rated on a 0-10 electronic visual analogue scale (VAS). The area under the VAS curve (VASAUC) after rinsing was calculated for each solution. Capsaicin application on the tongue evoked burning pain with a peak of 4.8/10, and significantly increased CDT and MDT while significantly decreasing WDT, HPT, and MPT. The VASAUC was significantly smaller after oral rinse with 0.05 mol/L GABA, 0.5 mol/L GABA, and 1% lidocaine than after oral rinse with water. Rinse with 0.5 mol/L or 0.05 mol/L GABA were similarly effective in decreasing VASAUC. Rinsing with either 1% lidocaine, 0.5 mol/L or 0.05 mol/L GABA also significantly attenuated the effects of capsaicin on WDT and HPT in a treatment independent manner. There were no sex-related differences in these effects of GABA. Capsaicin-induced burning tongue pain and decreases in WDT and HPT can be ameliorated by rinsing the mouth with lidocaine and GABA solutions. Rinsing the mouth with an oral GABA containing solution ameliorated burning pain and increased heat sensitivity produced by application of capsaicin to the tongue. This finding suggests that GABA can act as a local analgesic agent in the oral cavity. © 2017 European Pain Federation - EFIC®.

  14. Assessment of GABA(A)benzodiazepine receptor (GBzR) sensitivity in patients on benzodiazepines.

    PubMed

    Potokar, J; Coupland, N; Wilson, S; Rich, A; Nutt, D

    1999-09-01

    To measure GABA(A) benzodiazepine receptor sensitivity in patients taking benzodiazepines and compare with matched controls. Seven patients who were on prescribed benzodiazepines for an anxiety disorder or insomnia were recruited from general practice and an adult mental health service outpatient clinic. They were matched with seven volunteers. All subjects received an intravenous injection of midazolam 50 microgram/kg in 10 ml normal saline over 10 min. Objective responses to midazolam were assessed using saccadic eye movement velocity slowing and subjective assessments using visual analogue scales. Measurements were recorded for 120 min and plasma midazolam concentrations obtained at 15-min intervals post-infusion to 120 min. Ratios of pharmacodynamic/pharmacokinetic effects were obtained for each individual to estimate GABA(A) benzodiazepine receptor sensitivity. Patients had an attenuated response to midazolam on both subjective and objective measures. GABA(A) benzodiazepine receptor sensitivity was significantly reduced in the patient group. Chronic treatment with benzodiazepines was associated with reduced effects of midazolam. Saccadic eye movement velocity was especially sensitive as a measure of attenuated response.

  15. Embryonic GABA(B) receptor blockade alters cell migration, adult hypothalamic structure, and anxiety- and depression-like behaviors sex specifically in mice.

    PubMed

    Stratton, Matthew S; Staros, Michelle; Budefeld, Tomaz; Searcy, Brian T; Nash, Connor; Eitel, Chad; Carbone, David; Handa, Robert J; Majdic, Gregor; Tobet, Stuart A

    2014-01-01

    Neurons of the paraventricular nucleus of the hypothalamus (PVN) regulate the hypothalamic- pituitary-adrenal (HPA) axis and the autonomic nervous system. Females lacking functional GABA(B) receptors because of a genetic disruption of the R1 subunit have altered cellular characteristics in and around the PVN at birth. The genetic disruption precluded appropriate assessments of physiology or behavior in adulthood. The current study was conducted to test the long term impact of a temporally restricting pharmacological blockade of the GABA(B) receptor to a 7-day critical period (E11-E17) during embryonic development. Experiments tested the role of GABA(B) receptor signaling in fetal development of the PVN and later adult capacities for adult stress related behaviors and physiology. In organotypic slices containing fetal PVN, there was a female specific, 52% increase in cell movement speeds with GABA(B) receptor antagonist treatment that was consistent with a sex-dependent lateral displacement of cells in vivo following 7 days of fetal exposure to GABA(B) receptor antagonist. Anxiety-like and depression-like behaviors, open-field activity, and HPA mediated responses to restraint stress were measured in adult offspring of mothers treated with GABA(B) receptor antagonist. Embryonic exposure to GABA(B) receptor antagonist resulted in reduced HPA axis activation following restraint stress and reduced depression-like behaviors. There was also increased anxiety-like behavior selectively in females and hyperactivity in males. A sex dependent response to disruptions of GABA(B) receptor signaling was identified for PVN formation and key aspects of physiology and behavior. These changes correspond to sex specific prevalence in similar human disorders, namely anxiety disorders and hyperactivity.

  16. Prenatal cocaine exposure decreases parvalbumin-immunoreactive neurons and GABA-to-projection neuron ratio in the medial prefrontal cortex.

    PubMed

    McCarthy, Deirdre M; Bhide, Pradeep G

    2012-01-01

    Cocaine abuse during pregnancy produces harmful effects not only on the mother but also on the unborn child. The neurotransmitters dopamine and serotonin are known as the principal targets of the action of cocaine in the fetal and postnatal brain. However, recent evidence suggests that cocaine can impair cerebral cortical GABA neuron development and function. We sought to analyze the effects of prenatal cocaine exposure on the number and distribution of GABA and projection neurons (inhibitory interneurons and excitatory output neurons, respectively) in the mouse cerebral cortex. We found that the prenatal cocaine exposure decreased GABA neuron numbers and GABA-to-projection neuron ratio in the medial prefrontal cortex of 60-day-old mice. The neighboring prefrontal cortex did not show significant changes in either of these measures. However, there was a significant increase in projection neuron numbers in the prefrontal cortex but not in the medial prefrontal cortex. Thus, the effects of cocaine on GABA and projection neurons appear to be cortical region specific. The population of parvalbumin-immunoreactive GABA neurons was decreased in the medial prefrontal cortex following the prenatal cocaine exposure. The cocaine exposure also delayed the developmental decline in the volume of the medial prefrontal cortex. Thus, prenatal cocaine exposure produced persisting and region-specific effects on cortical cytoarchitecture and impaired the physiological balance between excitatory and inhibitory neurotransmission. These structural changes may underlie the electrophysiological and behavioral effects of prenatal cocaine exposure observed in animal models and human subjects. Copyright © 2012 S. Karger AG, Basel.

  17. A therapeutic dose of zolpidem reduces thalamic GABA in healthy volunteers: a proton MRS study at 4 T.

    PubMed

    Licata, Stephanie C; Jensen, J Eric; Penetar, David M; Prescot, Andrew P; Lukas, Scott E; Renshaw, Perry F

    2009-05-01

    Zolpidem is a nonbenzodiazepine sedative/hypnotic that acts at GABA(A) receptors to influence inhibitory neurotransmission throughout the central nervous system. A great deal is known about the behavioral effects of this drug in humans and laboratory animals, but little is known about zolpidem's specific effects on neurochemistry in vivo. We evaluated how acute administration of zolpidem affected levels of GABA, glutamate, glutamine, and other brain metabolites. Proton magnetic resonance spectroscopy ((1)H MRS) at 4 T was employed to measure the effects of zolpidem on brain chemistry in 19 healthy volunteers. Participants underwent scanning following acute oral administration of a therapeutic dose of zolpidem (10 mg) in a within-subject, single-blind, placebo-controlled, single-visit study. In addition to neurochemical measurements from single voxels within the anterior cingulate (ACC) and thalamus, a series of questionnaires were administered periodically throughout the experimental session to assess subjective mood states. Zolpidem reduced GABA levels in the thalamus, but not the ACC. There were no treatment effects with respect to other metabolite levels. Self-reported ratings of "dizzy," "nauseous," "confused," and "bad effects" were increased relative to placebo, as were ratings on the sedation/intoxication (PCAG) and psychotomimetic/dysphoria (LSD) scales of the Addiction Research Center Inventory. Moreover, there was a significant correlation between the decrease in GABA and "dizzy." Zolpidem engendered primarily dysphoric-like effects and the correlation between reduced thalamic GABA and "dizzy" may be a function of zolpidem's interaction with alpha1GABA(A) receptors in the cerebellum, projecting through the vestibular system to the thalamus.

  18. The GABA(A) receptor RDL acts in peptidergic PDF neurons to promote sleep in Drosophila.

    PubMed

    Chung, Brian Y; Kilman, Valerie L; Keath, J Russel; Pitman, Jena L; Allada, Ravi

    2009-03-10

    Sleep is regulated by a circadian clock that times sleep and wake to specific times of day and a homeostat that drives sleep as a function of prior wakefulness. To analyze the role of the circadian clock, we have used the fruit fly Drosophila. Flies display the core behavioral features of sleep, including relative immobility, elevated arousal thresholds, and homeostatic regulation. We assessed sleep-wake modulation by a core set of circadian pacemaker neurons that express the neuropeptide PDF. We find that disruption of PDF function increases sleep during the late night in light:dark and the first subjective day of constant darkness. Flies deploy genetic and neurotransmitter pathways to regulate sleep that are similar to those of their mammalian counterparts, including GABA. We find that RNA interference-mediated knockdown of the GABA(A) receptor gene, Resistant to dieldrin (Rdl), in PDF neurons reduces sleep, consistent with a role for GABA in inhibiting PDF neuron function. Patch-clamp electrophysiology reveals GABA-activated picrotoxin-sensitive chloride currents on PDF+ neurons. In addition, RDL is detectable most strongly on the large subset of PDF+ pacemaker neurons. These results suggest that GABAergic inhibition of arousal-promoting PDF neurons is an important mode of sleep-wake regulation in vivo.

  19. Endogenous GABA and glutamate finely tune the bursting of olfactory bulb external tufted cells.

    PubMed

    Hayar, Abdallah; Ennis, Matthew

    2007-08-01

    In rat olfactory bulb slices, external tufted (ET) cells spontaneously generate spike bursts. Although ET cell bursting is intrinsically generated, its strength and precise timing may be regulated by synaptic input. We tested this hypothesis by analyzing whether the burst properties are modulated by activation of ionotropic gamma-aminobutyric acid (GABA) and glutamate receptors. Blocking GABA(A) receptors increased--whereas blocking ionotropic glutamate receptors decreased--the number of spikes/burst without changing the interburst frequency. The GABA(A) agonist (isoguvacine, 10 microM) completely inhibited bursting or reduced the number of spikes/burst, suggesting a shunting effect. These findings indicate that the properties of ET cell spontaneous bursting are differentially controlled by GABAergic and glutamatergic fast synaptic transmission. We suggest that ET cell excitatory and inhibitory inputs may be encoded as a change in the pattern of spike bursting in ET cells, which together with mitral/tufted cells constitute the output circuit of the olfactory bulb.

  20. Inhibition of GABA synthesis in the prefrontal cortex increases locomotor activity but does not affect attention in the 5-choice serial reaction time task.

    PubMed

    Asinof, Samuel K; Paine, Tracie A

    2013-02-01

    Attention deficits are a core cognitive symptom of schizophrenia; the neuropathology underlying these deficits is not known. Attention is regulated, at least in part, by the prefrontal cortex (PFC), a brain area in which pathology of γ-aminobutyric acid (GABA) neurons has been consistently observed in post-mortem analysis of the brains of people with schizophrenia. Specifically, expression of the 67-kD isoform of the GABA synthesis enzyme glutamic acid decarboxylase (GAD67) is reduced in parvalbumin-containing fast-spiking GABA interneurons. Thus it is hypothesized that reduced cortical GABA synthesis and release may contribute to the attention deficits in schizophrenia. Here the effect of reducing cortical GABA synthesis with l-allylglycine (LAG) on attention was tested using three different versions of the 5-choice serial reaction time task (5CSRTT). Because 5CSRTT performance can be affected by locomotor activity, we also measured this behavior in an open field. Finally, the expression of Fos protein was used as an indirect measure of reduced GABA synthesis. Intra-cortical LAG (10 μg/0.5 μl/side) infusions increased Fos expression and resulted in hyperactivity in the open field. Intra-cortical LAG infusions did not affect attention in any version of the 5CSRTT. These results suggest that a general decrease in GABA synthesis is not sufficient to cause attention deficits. It remains to be tested whether a selective decrease in GABA synthesis in parvalbumin-containing GABA neurons could cause attention deficits. Decreased cortical GABA synthesis did increase locomotor activity; this may reflect the positive symptoms of schizophrenia. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Genetic differences in the ethanol sensitivity of GABA sub A receptors expressed in Xenopus oocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wafford, K.A.; Burnett, D.M.; Dunwiddie, T.V.

    1990-07-20

    Animal lines selected for differences in drug sensitivity can be used to help determine the molecular basis of drug action. Long-sleep (LS) and short-sleep (SS) mice differ markedly in their genetic sensitivity to ethanol. To investigate the molecular basis for this difference, mRNA from brains of LS and SS mice was expressed in Xenopus oocytes and the ethanol sensitivity of gamma-aminobutyric acid A (GABA{sub A})- and N-methyl D-aspartate (NMDA) - activated ion channels was tested. Ethanol facilitated GABA responses in oocytes injected with mRNA from LS mice but antagonized responses in oocytes injected with mRNA from SS animals. Ethanol inhibitedmore » NMDA responses equally in the two lines. Thus, genes coding for the GABA{sub A} receptor or associated proteins may be critical determinants of individual differences in ethanol sensitivity.« less

  2. Rapid binge-like eating and body weight gain driven by zona incerta GABA neuron activation.

    PubMed

    Zhang, Xiaobing; van den Pol, Anthony N

    2017-05-26

    The neuronal substrate for binge eating, which can at times lead to obesity, is not clear. We find that optogenetic stimulation of mouse zona incerta (ZI) γ-aminobutyric acid (GABA) neurons or their axonal projections to paraventricular thalamus (PVT) excitatory neurons immediately (in 2 to 3 seconds) evoked binge-like eating. Minimal intermittent stimulation led to body weight gain; ZI GABA neuron ablation reduced weight. ZI stimulation generated 35% of normal 24-hour food intake in just 10 minutes. The ZI cells were excited by food deprivation and the gut hunger signal ghrelin. In contrast, stimulation of excitatory axons from the parasubthalamic nucleus to PVT or direct stimulation of PVT glutamate neurons reduced food intake. These data suggest an unexpected robust orexigenic potential for the ZI GABA neurons. Copyright © 2017, American Association for the Advancement of Science.

  3. Cerebrospinal fluid GABA concentration: relationship with impulsivity and history of suicidal behavior, but not aggression, in human subjects.

    PubMed

    Lee, Royce; Petty, Frederick; Coccaro, Emil F

    2009-01-01

    The objective of this study was to assess the relationship between cerebrospinal fluid concentrations of the neurotransmitter gamma-aminobutyric acid (GABA) and measures of impulsivity and related behaviors (aggression and suicidality) in healthy volunteer and personality disordered subjects. CSF GABA levels, and measures of impulsivity, aggression, and history of suicidal behavior were obtained by morning lumbar puncture in 57 healthy volunteer subjects and in subjects with personality disorder. CSF GABA levels were not found to correlate with measures of aggression but were found to correlate directly with measures of impulsivity; e.g., a composite measure of impulsivity in all subjects (r=0.35, df=46, P=0.015) and in personality disordered subjects examined separately (r=0.39, df=30, P=0.029). In the personality disorder group, CSF GABA levels were higher among subjects with a history of suicidal behavior compared with those without this history. These data suggest that central GABAergic function correlates directly with impulsiveness and history of suicidal behavior, but not aggressiveness, in personality disordered subjects. This may be consistent with observations that high doses of benzodiazepines can lead to "behavioral disinhibition" in human subjects. Further work assessing this and other aspects of the central GABA system in personality disordered subjects are warranted.

  4. CB1-Dependent Long-Term Depression in Ventral Tegmental Area GABA Neurons: A Novel Target for Marijuana

    PubMed Central

    Friend, Lindsey; Sandoval, Philip; Nufer, Teresa; Ostlund, Isaac

    2017-01-01

    The VTA is necessary for reward behavior with dopamine cells critically involved in reward signaling. Dopamine cells in turn are innervated and regulated by neighboring inhibitory GABA cells. Using whole-cell electrophysiology in juvenile-adolescent GAD67-GFP male mice, we examined excitatory plasticity in fluorescent VTA GABA cells. A novel CB1-dependent LTD was induced in GABA cells that was dependent on metabotropic glutamate receptor 5, and cannabinoid receptor 1 (CB1). LTD was absent in CB1 knock-out mice but preserved in heterozygous littermates. Bath applied Δ9-tetrahydrocannabinol depressed GABA cell activity, therefore downstream dopamine cells will be disinhibited; and thus, this could potentially result in increased reward. Chronic injections of Δ9-tetrahydrocannabinol occluded LTD compared with vehicle injections; however, a single exposure was insufficient to do so. As synaptic modifications by drugs of abuse are often tied to addiction, these data suggest a possible mechanism for the addictive effects of Δ9-tetrahydrocannabinol in juvenile-adolescents, by potentially altering reward behavioral outcomes. SIGNIFICANCE STATEMENT The present study identifies a novel form of glutamatergic synaptic plasticity in VTA GABA neurons, a currently understudied cell type that is critical for the brain's reward circuit, and how Δ9-tetrahydrocannabinol occludes this plasticity. This study specifically addresses a potential unifying mechanism whereby marijuana could exert rewarding and addictive/withdrawal effects. Marijuana use and legalization are a pressing issue for many states in the United States. Although marijuana is the most commonly abused illicit drug, the implications of legalized, widespread, or continued usage are speculative. This study in juvenile-adolescent aged mice identifies a novel form of synaptic plasticity in VTA GABA cells, and the synaptic remodeling that can occur after Δ9-tetrahydrocannabinol use. PMID:29038246

  5. CB1-Dependent Long-Term Depression in Ventral Tegmental Area GABA Neurons: A Novel Target for Marijuana.

    PubMed

    Friend, Lindsey; Weed, Jared; Sandoval, Philip; Nufer, Teresa; Ostlund, Isaac; Edwards, Jeffrey G

    2017-11-08

    The VTA is necessary for reward behavior with dopamine cells critically involved in reward signaling. Dopamine cells in turn are innervated and regulated by neighboring inhibitory GABA cells. Using whole-cell electrophysiology in juvenile-adolescent GAD67-GFP male mice, we examined excitatory plasticity in fluorescent VTA GABA cells. A novel CB1-dependent LTD was induced in GABA cells that was dependent on metabotropic glutamate receptor 5, and cannabinoid receptor 1 (CB1). LTD was absent in CB1 knock-out mice but preserved in heterozygous littermates. Bath applied Δ 9 -tetrahydrocannabinol depressed GABA cell activity, therefore downstream dopamine cells will be disinhibited; and thus, this could potentially result in increased reward. Chronic injections of Δ 9 -tetrahydrocannabinol occluded LTD compared with vehicle injections; however, a single exposure was insufficient to do so. As synaptic modifications by drugs of abuse are often tied to addiction, these data suggest a possible mechanism for the addictive effects of Δ 9 -tetrahydrocannabinol in juvenile-adolescents, by potentially altering reward behavioral outcomes. SIGNIFICANCE STATEMENT The present study identifies a novel form of glutamatergic synaptic plasticity in VTA GABA neurons, a currently understudied cell type that is critical for the brain's reward circuit, and how Δ 9 -tetrahydrocannabinol occludes this plasticity. This study specifically addresses a potential unifying mechanism whereby marijuana could exert rewarding and addictive/withdrawal effects. Marijuana use and legalization are a pressing issue for many states in the United States. Although marijuana is the most commonly abused illicit drug, the implications of legalized, widespread, or continued usage are speculative. This study in juvenile-adolescent aged mice identifies a novel form of synaptic plasticity in VTA GABA cells, and the synaptic remodeling that can occur after Δ 9 -tetrahydrocannabinol use. Copyright © 2017 the

  6. GABA neurons are the major cell type of the nucleus reticularis thalami.

    PubMed

    Houser, C R; Vaughn, J E; Barber, R P; Roberts, E

    1980-11-03

    Glutamic acid decarboxylase (GAD), the synthesizing enzyme for the neurotransmitter gamma-aminobutyric acid (GABA), has been localized in a large number of neuronal somata within the nucleus reticularis thalami (NR) of rat brain by light microscopic immunocytochemical methods. GAD-positive staining of neuronal somata and proximal dendrites is observed in the NR of normal (untreated) rats, and this staining is substantially enhanced following colchicine injection into the lateral cerebral ventricle. GAD-positive neuronal cell bodies are prominent throughout the dorsoventral and rostrocaudal extents of the NR and, thus, form a band around the entire lateral aspect of the thalamus. In the lateral part of the NR, oval-shaped neurons with elongated GAD-positive dendritic processes are oriented parallel to the narrow axis of the NR and lie perpendicular to the penetrating fascicles of unstained thalamocortical and corticothalamic fibers. Semithin (2 micrometers) sections confirm that GAD-positive reaction product is contain within the cytoplasm of cell bodies and proximal dendrites. In addition, GAD-positive punctate structures, representing axon terminals, are present in the neuropil and, occasionally, are observed in close proximity to positively-stained neuronal somata. This finding suggests that GABA-mediated inhibition of GABA neurons may occur in the NR. The large number of GAD-positive cell bodies within the NR contrasts with a paucity of positively-stained somata in the more internally located thalamic nuclei. Within these nuclei, GAD-positive punctate structures that represent GABAergic synaptic sites are a characteristic feature. Since previous anatomical studies have demonstrated that a large proportion or reticularis neurons project into the thalamus, it is suggested that many of these GAD-positive punctate structures are the axon terminals of reticularis neurons. Through these projections, reticularis neurons may contribute to GABA-mediated inhibition within

  7. Short-term dopaminergic regulation of GABA release in dopamine deafferented caudate-putamen is not directly associated with glutamic acid decarboxylase gene expression.

    PubMed

    O'Connor, W T; Lindefors, N; Brené, S; Herrera-Marschitz, M; Persson, H; Ungerstedt, U

    1991-07-08

    In vivo microdialysis and in situ hybridization were combined to study dopaminergic regulation of gamma-amino butyric acid (GABA) neurons in rat caudate-putamen (CPu). Potassium-stimulated GABA release in CPu was elevated following a dopamine deafferentation. Local perfusion with exogenous dopamine (50 microM) for 3 h via the microdialysis probe attenuated the potassium-stimulated increase in extracellular GABA in CPu. Expression of glutamic acid decarboxylase (GAD) mRNA was also increased in the dopamine deafferented CPu. However, local perfusion with dopamine had no significant attenuating effect on the increased GAD mRNA expression. These findings indicate that dopaminergic regulation of GABA neurons in the dopamine deafferented CPu includes both a short-term effect at the level of GABA release independent of changes in GAD mRNA expression and a long-term modulation at the level of GAD gene expression.

  8. The effects of endomorphins on striatal [3H]GABA release induced by electrical stimulation: an in vitro superfusion study in rats.

    PubMed

    Bagosi, Zsolt; Jászberényi, Miklós; Telegdy, Gyula

    2009-05-01

    The endomorphins (EM1 and EM2) are selective endogenous ligands for mu-opioid receptors (MOR1 and MOR2) with neurotransmitter and neuromodulator roles in mammals. In the present study we investigated the potential actions of EMs on striatal GABA release and the implication of different MORs in these processes. Rat striatal slices were preincubated with tritium-labelled GABA ([(3)H]GABA), pretreated with selective MOR1 and MOR2 antagonist beta-funaltrexamine and selective MOR1 antagonist naloxonazine and then superfused with the selective MOR agonists, EM1 and EM2. EM1 significantly decreased the striatal [(3)H]GABA release induced by electrical stimulation. Beta-funaltrexamine antagonized the inhibitory action of EM1, but naloxonazine did not affect it considerably. EM2 was ineffective, even in case of specific enzyme inhibitor diprotin A pretreatment. The results demonstrate that EM1 decreases GABA release in the basal ganglia through MOR2, while EM2 does not influence it.

  9. Brain GABA levels across psychiatric disorders: A systematic literature review and meta-analysis of (1) H-MRS studies.

    PubMed

    Schür, Remmelt R; Draisma, Luc W R; Wijnen, Jannie P; Boks, Marco P; Koevoets, Martijn G J C; Joëls, Marian; Klomp, Dennis W; Kahn, René S; Vinkers, Christiaan H

    2016-09-01

    The inhibitory gamma-aminobutyric acid (GABA) system is involved in the etiology of most psychiatric disorders, including schizophrenia, autism spectrum disorder (ASD) and major depressive disorder (MDD). It is therefore not surprising that proton magnetic resonance spectroscopy ((1) H-MRS) is increasingly used to investigate in vivo brain GABA levels. However, integration of the evidence for altered in vivo GABA levels across psychiatric disorders is lacking. We therefore systematically searched the clinical (1) H-MRS literature and performed a meta-analysis. A total of 40 studies (N = 1,591) in seven different psychiatric disorders were included in the meta-analysis: MDD (N = 437), schizophrenia (N = 517), ASD (N = 150), bipolar disorder (N = 129), panic disorder (N = 81), posttraumatic stress disorder (PTSD) (N = 104), and attention deficit/hyperactivity disorder (ADHD) (N = 173). Brain GABA levels were lower in ASD (standardized mean difference [SMD] = -0.74, P = 0.001) and in depressed MDD patients (SMD = -0.52, P = 0.005), but not in remitted MDD patients (SMD = -0.24, P = 0.310) compared with controls. In schizophrenia this finding did not reach statistical significance (SMD = -0.23, P = 0.089). No significant differences in GABA levels were found in bipolar disorder, panic disorder, PTSD, and ADHD compared with controls. In conclusion, this meta-analysis provided evidence for lower brain GABA levels in ASD and in depressed (but not remitted) MDD patients compared with healthy controls. Findings in schizophrenia were more equivocal. Even though future (1) H-MRS studies could greatly benefit from a longitudinal design and consensus on the preferred analytical approach, it is apparent that (1) H-MRS studies have great potential in advancing our understanding of the role of the GABA system in the pathogenesis of psychiatric disorders. Hum Brain Mapp 37:3337-3352, 2016. © 2016 Wiley Periodicals

  10. Mechanisms of carbacholine and GABA action on resting membrane potential and Na+/K+-ATPase of Lumbricus terrestris body wall muscles.

    PubMed

    Volkov, Eugeny M; Nurullin, Leniz F; Volkov, Michael E; Nikolsky, Eugeny E; Vyskočil, Frantisek

    2011-04-01

    This work was aimed to identify the action of several ion channel and pump inhibitors as well as nicotinic, GABAergic, purinergic and serotoninergic drugs on the resting membrane potential (RMP) and assess the role of cholinergic and GABAergic sensitivity in earthworm muscle electrogenesis. The nicotinic agonists acetylcholine (ACh), carbacholine (CCh) and nicotine depolarize the RMP at concentrations of 5 μM and higher. The nicotinic antagonists (+)tubocurarine, α-bungarotoxin, muscarinic antagonists atropine and hexamethonium do not remove or prevent the CCh-induced depolarization. Verapamil, tetrodotoxin, removal of Cl(-) and Ca(2+) from the solution also cannot prevent the depolarization by CCh. In a Na(+)-free medium, however, CCh lost this depolarization ability and this indicates that the drug opens the sodium permeable pathway. Serotonin, glutamate, glycine, adenosine triphosphate (ATP) and cis-4-aminocrotonic acid (GABA(C) receptor antagonist) had no effect on the RMP. On the other hand, isoguvacin, γ-aminobutyric acid (GABA) and baclofen (GABA(B) receptor agonist) hyperpolarized the RMP. Ouabain, bicucullin (GABA(A) antagonist) and phaclofen (GABA(B) antagonist), as well as the removal of Cl(-), suppressed the effect of GABA and baclofen. CCh did not enhance the depolarization generated by ouabain but, on the other hand, hindered the hyperpolarizing activity of baclofen both in the absence and presence of atropine and (+)tubocurarine. The long-term application of CCh depolarizes the RMP primarily by inhibiting the Na(+)/K(+)-ATPase. The muscle membrane also contains A and B type GABA binding sites, the activation of which increases the RMP at the expense of increasing the action of ouabain- and Cl(-) -sensitive electrogenic pumps. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Cortical GABA markers identify a molecular subtype of psychotic and bipolar disorders.

    PubMed

    Volk, D W; Sampson, A R; Zhang, Y; Edelson, J R; Lewis, D A

    2016-09-01

    Deficits in gamma aminobutyric acid (GABA) neuron-related markers, including the GABA-synthesizing enzyme GAD67, the calcium-binding protein parvalbumin, the neuropeptide somatostatin, and the transcription factor Lhx6, are most pronounced in a subset of schizophrenia subjects identified as having a 'low GABA marker' (LGM) molecular phenotype. Furthermore, schizophrenia shares degrees of genetic liability, clinical features and cortical circuitry abnormalities with schizoaffective disorder and bipolar disorder. Therefore, we determined the extent to which a similar LGM molecular phenotype may also exist in subjects with these disorders. Transcript levels for GAD67, parvalbumin, somatostatin, and Lhx6 were quantified using quantitative PCR in prefrontal cortex area 9 of 184 subjects with a diagnosis of schizophrenia (n = 39), schizoaffective disorder (n = 23) or bipolar disorder (n = 35), or with a confirmed absence of any psychiatric diagnoses (n = 87). A blinded clustering approach was employed to determine the presence of a LGM molecular phenotype across all subjects. Approximately 49% of the subjects with schizophrenia, 48% of the subjects with schizoaffective disorder, and 29% of the subjects with bipolar disorder, but only 5% of unaffected subjects, clustered in the cortical LGM molecular phenotype. These findings support the characterization of psychotic and bipolar disorders by cortical molecular phenotype which may help elucidate more pathophysiologically informed and personalized medications.

  12. Expression of GABA signaling molecules KCC2, NKCC1, and GAD1 in cortical development and schizophrenia.

    PubMed

    Hyde, Thomas M; Lipska, Barbara K; Ali, Towhid; Mathew, Shiny V; Law, Amanda J; Metitiri, Ochuko E; Straub, Richard E; Ye, Tianzhang; Colantuoni, Carlo; Herman, Mary M; Bigelow, Llewellyn B; Weinberger, Daniel R; Kleinman, Joel E

    2011-07-27

    GABA signaling molecules are critical for both human brain development and the pathophysiology of schizophrenia. We examined the expression of transcripts derived from three genes related to GABA signaling [GAD1 (GAD67 and GAD25), SLC12A2 (NKCC1), and SLC12A5 (KCC2)] in the prefrontal cortex (PFC) and hippocampal formation of a large cohort of nonpsychiatric control human brains (n = 240) across the lifespan (from fetal week 14 to 80 years) and in patients with schizophrenia (n = 30-31), using quantitative RT-PCR. We also examined whether a schizophrenia risk-associated promoter SNP in GAD1 (rs3749034) is related to expression of these transcripts. Our studies revealed that development and maturation of both the PFC and hippocampal formation are characterized by progressive switches in expression from GAD25 to GAD67 and from NKCC1 to KCC2. Previous studies have demonstrated that the former leads to GABA synthesis, and the latter leads to switching from excitatory to inhibitory neurotransmission. In the hippocampal formation, GAD25/GAD67 and NKCC1/KCC2 ratios are increased in patients with schizophrenia, reflecting a potentially immature GABA physiology. Remarkably, GAD25/GAD67 and NKCC1/KCC2 expression ratios are associated with rs3749034 genotype, with risk alleles again predicting a relatively less mature pattern. These findings suggest that abnormalities in GABA signaling critical to brain development contribute to genetic risk for schizophrenia.

  13. Exogenous γ-aminobutyric acid (GABA) affects pollen tube growth via modulating putative Ca2+-permeable membrane channels and is coupled to negative regulation on glutamate decarboxylase

    PubMed Central

    Yu, Guang-Hui; Zou, Jie; Feng, Jing; Peng, Xiong-Bo; Wu, Ju-You; Wu, Ying-Liang; Palanivelu, Ravishankar; Sun, Meng-Xiang

    2014-01-01

    γ-Aminobutyric acid (GABA) is implicated in pollen tube growth, but the molecular and cellular mechanisms that it mediates are largely unknown. Here, it is shown that exogenous GABA modulates putative Ca2+-permeable channels on the plasma membranes of tobacco pollen grains and pollen tubes. Whole-cell voltage-clamp experiments and non-invasive micromeasurement technology (NMT) revealed that the influx of Ca2+ increases in pollen tubes in response to exogenous GABA. It is also demonstrated that glutamate decarboxylase (GAD), the rate-limiting enzyme of GABA biosynthesis, is involved in feedback controls of Ca2+-permeable channels to fluctuate intracellular GABA levels and thus modulate pollen tube growth. The findings suggest that GAD activity linked with Ca2+-permeable channels relays an extracellular GABA signal and integrates multiple signal pathways to modulate tobacco pollen tube growth. Thus, the data explain how GABA mediates the communication between the style and the growing pollen tubes. PMID:24799560

  14. Transcriptional dysregulation of γ-aminobutyric acid transporter in parvalbumin-containing inhibitory neurons in the prefrontal cortex in schizophrenia.

    PubMed

    Bitanihirwe, Byron K Y; Woo, Tsung-Ung W

    2014-12-30

    Parvalbumin (PV)-containing neurons are functionally compromised in schizophrenia. Using double in situ hybridization in postmortem human prefrontal cortex, we found that the messenger RNA (mRNA) for the γ-aminobutyric acid (GABA) transporter GAT-1 was undetectable in 22-41% of PV neurons in layers 3-4 in schizophrenia. In the remaining PV neurons with detectable GAT-1 mRNA, transcript expression was decreased by 26% in layer 3. Hence, the dysfunction of PV neurons involves the molecular dysregulation of presynaptic GABA reuptake. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Context-dependent modulation of alphabetagamma and alphabetadelta GABA A receptors by penicillin: implications for phasic and tonic inhibition.

    PubMed

    Feng, Hua-Jun; Botzolakis, Emmanuel J; Macdonald, Robert L

    2009-01-01

    Penicillin, an open-channel blocker of GABA(A) receptors, was recently reported to inhibit phasic, but not tonic, currents in hippocampal neurons. To distinguish between isoform-specific and context-dependent modulation as possible explanations for this selectivity, the effects of penicillin were evaluated on recombinant GABA(A) receptors expressed in HEK293T cells. When co-applied with saturating GABA, penicillin decreased peak amplitude, induced rebound, and prolonged deactivation of currents evoked from both synaptic and extrasynaptic receptor isoforms. However, penicillin had isoform-specific effects on the extent of desensitization, reflecting its ability to differentially modulate peak (non-equilibrium) and residual (near-equilibrium) currents. This suggested that the context of activation could determine the apparent sensitivity of a given receptor isoform to penicillin. To test this hypothesis, we explored the ability of penicillin to modulate synaptic and extrasynaptic isoform currents that were activated under more physiologically relevant conditions. Interestingly, while currents evoked from synaptic isoforms under phasic conditions (transient activation by a saturating concentration of GABA) were substantially inhibited by penicillin, currents evoked from extrasynaptic isoforms under tonic conditions (prolonged application by a sub-saturating concentration of GABA) were minimally affected. We therefore concluded that the reported inability of penicillin to modulate tonic currents could not simply be attributed to insensitivity of extrasynaptic receptors, but rather, reflected an inability to modulate these receptors in their native context of activation.

  16. Gamma-aminobutyric acid (GABA)-B receptor 1 in cerebellar cortex of essential tremor.

    PubMed

    Luo, C; Rajput, A H; Robinson, C A; Rajput, A

    2012-06-01

    Some reports suggest cerebellar dysfunction as the basis of essential tremor (ET). Several drugs with the action of gamma-aminobutyric acid (GABA) are known to improve ET. Autopsy studies were performed on brains from nine former patients followed at the Movement Disorders Clinic Saskatchewan, Canada, and compared with five normal control brains. We aimed to measure the concentration of GABA B receptor 1 (GBR1) in the brains of patients who had had ET and to compare them to the GABA concentration in brains of controls. Western blot was used to determine the expression of GBR1 in cerebellar cortex tissue. We found that compared to the controls, the ET brains had three different patterns of GBR1 protein concentration--two with high, four comparable, and three with marginally low levels. There was no association between the age of onset, severity or duration of tremor, the response to alcohol or other drugs and GBR1 level. Thus, we conclude that our study does not support that GBR1 is involved in ET. Further studies are needed to verify these results. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Submerged fermentation of Lactobacillus rhamnosus YS9 for γ-aminobutyric acid (GABA) production

    PubMed Central

    Lin, Qian

    2013-01-01

    γ-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter in central nervous system, and its application in drugs and functional foods has attracted great attention. To enhance production of γ-aminobutyric acid, Lactobacillus rhamnosus YS9, a strain isolated from Chinese traditional fermented food pickled vegetable, was grown under submerged fermentation. Its cultivation conditions were investigated. When culture pH condition was adjusted to the optimal pH of glutamate decarboxylase activity, culture of Lb. rhamnosus YS9 in medium supplemented with 200 mM of monosodium glutamate and 200 μM of pyridoxal phosphate (PLP), produced 187 mM of GABA. PMID:24159304

  18. Investigation of Glutamine and GABA Levels in Patients With Idiopathic Generalized Epilepsy Using MEGAPRESS

    PubMed Central

    Chowdhury, Fahmida A.; O’Gorman, Ruth L.; Nashef, Lina; Elwes, Robert D.; Edden, Richard A.; Murdoch, James B.; Barker, Gareth J.; Richardson, Mark P.

    2015-01-01

    Purpose Idiopathic generalized epilepsies (IGE) comprise a group of clinical syndromes associated with spike wave discharges, putatively linked to alterations in neurotransmission. The purpose of this study was to investigate whether patients with IGE have altered glutamine and γ-aminobutyric acid (GABA) levels indicative of altered excitatory and inhibitory neurotransmission in frontal regions. Materials and Methods Single-voxel MEGA-edited PRESS magnetic resonance imaging (MRI) spectra were acquired from a 30-mL voxel in the dorsolateral prefrontal cortex in 13 patients with IGE (8 female) and 16 controls (9 female) at 3T. Metabolite concentrations were derived using LCModel. Differences between groups were investigated using an unpaired t-test. Results Patients with IGE were found to have significantly higher glutamine than controls (P = 0.02). GABA levels were also elevated in patients with IGE (P = 0.03). Conclusion Patients with IGE have increased frontal glutamine and GABA compared with controls. Since glutamine has been suggested to act as a surrogate for metabolically active glutamate, it may represent a marker for excitatory neurotransmission. PMID:24585443

  19. Modulation of acetylcholine release from rat striatal slices by the GABA/benzodiazepine receptor complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supavilai, P.; Karobath, M.

    1985-02-04

    GABA, THIP and muscimol enhance spontaneous and inhibit electrically induced release of tritium labelled compounds from rat striatal slices which have been pre-labelled with /sup 3/H-choline. Baclofen is inactive in this model. Muscimol can inhibit electrically induced release of tritiated material by approximately 75% with half maximal effects at 2 ..mu..M. The response to muscimol can be blocked by the GABA antagonists bicuculline methobromide, picrotoxin, anisatin, R 5135 and CPTBO (cyclopentylbicyclophosphate). Drugs which act on the benzodiazepine receptor (BR) require the presence of muscimol to be effective and they modulate the effects of muscimol in a bidirectional manner. Thus BRmore » agonists enhance and inverse BR agonists attenuate the inhibitory effects of muscimol on electrically induced release. Ro15-1788, a BR antagonist, does not modulate the inhibitory effects of muscimol but antagonizes the actions of clonazepam, a BR agonist, and of DMCM, an inverse BR agonist. These results demonstrate that a GABA/benzodiazepine receptor complex can modulate acetylcholine release from rat striatal slices in vitro. 24 references, 3 figures, 5 table.« less

  20. The effects of neuroleptics on the GABA-induced Cl- current in rat dorsal root ganglion neurons: differences between some neuroleptics.

    PubMed

    Yokota, Kenjiro; Tatebayashi, Hideharu; Matsuo, Tadashi; Shoge, Takashi; Motomura, Haruhiko; Matsuno, Toshiyuki; Fukuda, Akira; Tashiro, Nobutada

    2002-03-01

    1. Several neuroleptics inhibited the 3 microM gamma-aminobutyric acid induced-chloride current (GABA-current) on dissociated rat dorsal root ganglion neurons in whole-cell patch-clamp investigations. 2. The IC(50) for clozapine, zotepine, olanzapine, risperidone and chlorpromazine were 6.95, 18.26, 20.30, 106.01 and 114.56 microM, respectively. The values for the inhibitory effects of neuroleptics on the GABA (3 microM)-current, which were calculated by the fitting Hill's equations where the concentrations represent the mean therapeutic blood concentrations, were ranked clozapine>zotepine>chlorpromazine>olanzapine>risperidone. These inhibitory effects, weighted with the therapeutic concentrations of neuroleptics, were correlated with the clinical incidences of seizure during treatment with neuroleptics. 3. Clozapine reduced the picrotoxin-inhibiton, and may compete with a ligand of the t-butylbicyclophosphorothionate (TBPS) binding site. 4. Haloperidol and quetiapine did not affect the peak amplitude of the GABA (3 microM)-current. However, haloperidol reduced the clozapine-inhibition, and may antagonize ligand binding to TBPS binding site. 5. Neuroleptics including haloperidol and quetiapine enhanced the desensitization of the GABA (3 microM)-current. However, haloperidol and quetiapine at 100 microM inhibited the desensitization at the beginning of application. 6. Blonanserin (AD-5423) at 30 and 50 microM potentiated the GABA (3 microM)-current to 170.1+/-6.9 and 192.0+/-10.6% of the control current, respectively. Blonanserin shifted GABA concentration-response curve leftward. Blonanserin only partly negatively interacted with diazepam. The blonanserin-potentiation was not reversed by flumazenil. Blonanserin is not a benzodiazepine receptor agonist. 7. The various effects of neuroleptics on the GABA-current may be related to the clinical effects including modifying the seizure threshold.

  1. The effects of neuroleptics on the GABA-induced Cl− current in rat dorsal root ganglion neurons: differences between some neuroleptics

    PubMed Central

    Yokota, Kenjiro; Tatebayashi, Hideharu; Matsuo, Tadashi; Shoge, Takashi; Motomura, Haruhiko; Matsuno, Toshiyuki; Fukuda, Akira; Tashiro, Nobutada

    2002-01-01

    Several neuroleptics inhibited the 3 μM γ-aminobutyric acid induced-chloride current (GABA-current) on dissociated rat dorsal root ganglion neurons in whole-cell patch-clamp investigations. The IC50 for clozapine, zotepine, olanzapine, risperidone and chlorpromazine were 6.95, 18.26, 20.30, 106.01 and 114.56 μM, respectively. The values for the inhibitory effects of neuroleptics on the GABA (3 μM)-current, which were calculated by the fitting Hill's equations where the concentrations represent the mean therapeutic blood concentrations, were ranked clozapine>zotepine>chlorpromazine>olanzapine>risperidone. These inhibitory effects, weighted with the therapeutic concentrations of neuroleptics, were correlated with the clinical incidences of seizure during treatment with neuroleptics. Clozapine reduced the picrotoxin-inhibiton, and may compete with a ligand of the t-butylbicyclophosphorothionate (TBPS) binding site. Haloperidol and quetiapine did not affect the peak amplitude of the GABA (3 μM)-current. However, haloperidol reduced the clozapine-inhibition, and may antagonize ligand binding to TBPS binding site. Neuroleptics including haloperidol and quetiapine enhanced the desensitization of the GABA (3 μM)-current. However, haloperidol and quetiapine at 100 μM inhibited the desensitization at the beginning of application. Blonanserin (AD-5423) at 30 and 50 μM potentiated the GABA (3 μM)-current to 170.1±6.9 and 192.0±10.6% of the control current, respectively. Blonanserin shifted GABA concentration-response curve leftward. Blonanserin only partly negatively interacted with diazepam. The blonanserin-potentiation was not reversed by flumazenil. Blonanserin is not a benzodiazepine receptor agonist. The various effects of neuroleptics on the GABA-current may be related to the clinical effects including modifying the seizure threshold. PMID:11906969

  2. Proton modulation of recombinant GABAA receptors: influence of GABA concentration and the β subunit TM2–TM3 domain

    PubMed Central

    Wilkins, Megan E; Hosie, Alastair M; Smart, Trevor G

    2005-01-01

    Regulation of GABAA receptors by extracellular pH exhibits a dependence on the receptor subunit composition. To date, the molecular mechanism responsible for the modulation of GABAA receptors at alkaline pH has remained elusive. We report here that the GABA-activated current can be potentiated at pH 8.4 for both αβ and αβγ subunit-containing receptors, but only at GABA concentrations below the EC40. Site-specific mutagenesis revealed that a single lysine residue, K279 in the β subunit TM2–TM3 linker, was critically important for alkaline pH to modulate the function of both α1β2 and α1β2γ2 receptors. The ability of low concentrations of GABA to reveal different pH titration profiles for GABAA receptors was also examined at acidic pH. At pH 6.4, GABA activation of αβγ receptors was enhanced at low GABA concentrations. This effect was ablated by the mutation H267A in the β subunit. Decreasing the pH further to 5.4 inhibited GABA responses via αβγ receptors, whereas those responses recorded from αβ receptors were potentiated. Inserting homologous β subunit residues into the γ2 subunit to recreate, in αβγ receptors, the proton modulatory profile of αβ receptors, established that in the presence of β2H267, the mutation γ2T294K was necessary to potentiate the GABA response at pH 5.4. This residue, T294, is homologous to K279 in the β subunit and suggests that a lysine at this position is an important residue for mediating the allosteric effects of both acidic and alkaline pH changes, rather than forming a direct site for protonation within the GABAA receptor. PMID:15946973

  3. Developmental excitatory-to-inhibitory GABA polarity switch is delayed in Ts65Dn mice, a genetic model of Down syndrome.

    PubMed

    Lysenko, Larisa V; Kim, Jeesun; Madamba, Francisco; Tyrtyshnaia, Anna A; Ruparelia, Aarti; Kleschevnikov, Alexander M

    2018-07-01

    Down syndrome (DS) is the most frequent genetic cause of developmental abnormalities leading to intellectual disability. One notable phenomenon affecting the formation of nascent neural circuits during late developmental periods is developmental switch of GABA action from depolarizing to hyperpolarizing mode. We examined properties of this switch in DS using primary cultures and acute hippocampal slices from Ts65Dn mice, a genetic model of DS. Cultures of DIV3-DIV13 Ts65Dn and control normosomic (2 N) neurons were loaded with FURA-2 AM, and GABA action was assessed using local applications. In 2 N cultures, the number of GABA-activated cells dropped from ~100% to 20% between postnatal days 3-13 (P3-P13) reflecting the switch in GABA action polarity. In Ts65Dn cultures, the timing of this switch was delayed by 2-3 days. Next, microelectrode recordings of multi-unit activity (MUA) were performed in CA3 slices during bath application of the GABA A agonist isoguvacine. MUA frequency was increased in P8-P12 and reduced in P14-P22 slices reflecting the switch of GABA action from excitatory to inhibitory mode. The timing of this switch was delayed in Ts65Dn by approximately 2 days. Finally, frequency of giant depolarizing potentials (GDPs), a form of primordial neural activity, was significantly increased in slices from Ts65Dn pups at P12 and P14. These experimental evidences show that GABA action polarity switch is delayed in Ts65Dn model of DS, and that these changes lead to a delay in maturation of nascent neural circuits. These alterations may affect properties of neural circuits in adult animals and, therefore, represent a prospective target for pharmacotherapy of cognitive impairment in DS. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. GABA-A receptors in mPOAH simultaneously regulate sleep and body temperature in freely moving rats.

    PubMed

    Jha, S K; Yadav, V; Mallick, B N

    2001-09-01

    Sleep-wakefulness and body temperature are two circadian rhythmic biological phenomena. The role of GABAergic inputs in the medial preoptico-anterior hypothalamus (mPOAH) on simultaneous regulation of those phenomena was investigated in freely moving normally behaving rats. The GABA-A receptors were blocked by microinjecting picrotoxin, and the effects on electrophysiological parameters signifying sleep-wakefulness, rectal temperature and brain temperature were recorded simultaneously. The results suggest that, normally, GABA in the medial preoptic area acts through GABA-A receptor that induces sleep and prevents an excessive rise in body temperature. However, the results do not allow us to comment on the cause and effect relationship, if any, between changes in sleep-wakefulness and body temperature. The changes in brain and rectal temperatures showed a positive correlation, however, the former varied within a narrower range than that of the latter.

  5. GABA homeostasis contributes to the developmental programming of anxiety-related behavior.

    PubMed

    Depino, Amaicha Mara; Tsetsenis, Theodoros; Gross, Cornelius

    2008-05-19

    During development, when inhibitory and excitatory synapses are formed and refined, homeostatic mechanisms act to adjust inhibitory input in order to maintain neural activity within a normal range. As the brain matures, synaptogenesis slows and a relatively stable level of inhibition is achieved. Deficits in inhibitory neurotransmission are associated with increased anxiety-related behavior and drugs that potentiate GABA function, the major inhibitory neurotransmitter in the brain, are effective anxiolytics. These observations raise the possibility that transient perturbations in the activity of neural circuits during development might induce compensatory changes in inhibition that could persist into adulthood and contribute to changes in anxiety-related behavior. To test this hypothesis, we treated mice continuously during the major period of forebrain synaptogenesis (P14-28) with the GABA-A receptor positive modulator diazepam and assessed anxiety-related behavior in adulthood. Control experiments confirmed anxiolytic effects of the drug following one day of treatment and the development of tolerance following two weeks of treatment. When tested in adulthood, one month after the end of treatment, diazepam-treated mice exhibited significantly increased behavioral inhibition in the open-field, elevated-plus maze, and novel object behavioral paradigms. Levels of benzodiazepine binding sites in amygdala and frontal cortex were specifically decreased in diazepam-treated mice demonstrating that homeostatic adjustments in GABA function persist into adulthood. Our results show that increased GABAergic activity can affect the developmental programming of anxiety-related behavior.

  6. GABA-CREB signalling regulates maturation and survival of newly generated neurons in the adult hippocampus

    PubMed Central

    Jagasia, Ravi; Steib, Kathrin; Englberger, Elisabeth; Herold, Sabine; Faus-Kessler, Theresa; Saxe, Michael; Gage, Fred H.; Song, Hongjun; Lie, D. Chichung

    2009-01-01

    Survival and integration of new neurons in the hippocampal circuit are rate-limiting steps in adult hippocampal neurogenesis. Neuronal network activity is a major regulator of these processes, yet little is known about the respective downstream signalling pathways. Here, we investigate the role of CREB signalling in adult hippocampal neurogenesis. CREB is activated in new granule neurons during a distinct developmental period. Loss of CREB function in a cell-autonomous fashion impairs dendritic development, decreases the expression of the neurogenic transcription factor NeuroD and of the neuronal microtubule associated protein, DCX, and compromises the survival of newborn neurons. In addition, GABA-mediated excitation regulates CREB activation at early developmental stages. Importantly, developmental defects following loss of GABA-mediated excitation can be compensated by enhanced CREB signalling. These results indicate that CREB signalling is a central pathway in adult hippocampal neurogenesis, regulating the development and survival of new hippocampal neurons downstream of GABA-mediated excitation. PMID:19553437

  7. GABA neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia.

    PubMed

    Gonzalez-Burgos, Guillermo; Lewis, David A

    2008-09-01

    Synchronization of neuronal activity in the neocortex may underlie the coordination of neural representations and thus is critical for optimal cognitive function. Because cognitive deficits are the major determinant of functional outcome in schizophrenia, identifying their neural basis is important for the development of new therapeutic interventions. Here we review the data suggesting that phasic synaptic inhibition mediated by specific subtypes of cortical gamma-aminobutyric acid (GABA) neurons is essential for the production of synchronized network oscillations. We also discuss evidence indicating that GABA neurotransmission is altered in schizophrenia and propose mechanisms by which such alterations can decrease the strength of inhibitory connections in a cell-type-specific manner. We suggest that some alterations observed in the neocortex of schizophrenia subjects may be compensatory responses that partially restore inhibitory synaptic efficacy. The findings of altered neural synchrony and impaired cognitive function in schizophrenia suggest that such compensatory responses are insufficient and that interventions aimed at augmenting the efficacy of GABA neurotransmission might be of therapeutic value.

  8. Experiment K-6-18. Study of muscarinic and gaba (benzodiazepine) receptors in the sensory-motor cortex, hippcampus and spinal code

    NASA Technical Reports Server (NTRS)

    Daunton, N.; Damelio, F.; Krasnov, I.

    1990-01-01

    Frontal lobe samples of rat brains flown aboard Cosmos 1887 were processed for the study of muscarinic (cholinergic) and GABA (benzodiazepine) receptors and for immunocytochemical localization of the neurotransmitter gamma-aminobutyric acid (GABA) and glial fibrillary acidic protein (GFAP). Although radioactive labeling of both muscarinic cholinergic and GABA (benzodiazepine) receptors proved to be successful with the techniques employed, distinct receptor localization of individual laminae of the frontal neocortex was not possible since the sampling of the area was different in the various groups of animals. In spite of efforts made for proper orientation and regional identification of laminae, it was found that a densitometric (quantitation of autoradiograms) analysis of the tissue did not contribute to the final interpretation of the effects of weightlessness on these receptors. As to the immunocytochemical studies the use of both markers, GFAP and GABA antiserum, confirmed the suitability of the techniques for use in frozen material. However, similar problems to those encountered in the receptor studies prevented an adequate interpretation of the effects of micro-G exposure on the localization and distribution of GABA and GFAP. This study did, however, confirm the feasibility of investigating neurotransmitters and their receptors in future space flight experiments.

  9. Ionotropic GABA receptor antagonism-induced adverse outcome pathways for potential neurotoxicity biomarkers.

    PubMed

    Gong, Ping; Hong, Huixiao; Perkins, Edward J

    2015-01-01

    Antagonism of ionotropic GABA receptors (iGABARs) can occur at three distinct types of receptor binding sites causing chemically induced epileptic seizures. Here we review three adverse outcome pathways, each characterized by a specific molecular initiating event where an antagonist competitively binds to active sites, negatively modulates allosteric sites or noncompetitively blocks ion channel on the iGABAR. This leads to decreased chloride conductance, followed by depolarization of affected neurons, epilepsy-related death and ultimately decreased population. Supporting evidence for causal linkages from the molecular to population levels is presented and differential sensitivity to iGABAR antagonists in different GABA receptors and organisms discussed. Adverse outcome pathways are poised to become important tools for linking mechanism-based biomarkers to regulated outcomes in next-generation risk assessment.

  10. In vivo single-shot three-dimensionally localized multiple quantum spectroscopy of GABA in the human brain with improved spectral selectivity

    NASA Astrophysics Data System (ADS)

    Choi, In-Young; Lee, Sang-Pil; Shen, Jun

    2005-01-01

    A single-shot multiple quantum filtering method is developed that uses two double-band frequency selective pulses for enhanced spectral selectivity in combination with a slice-selective 90°, a slice-selective universal rotator 90°, and a spectral-spatial pulse composed of two slice-selective universal rotator 45° pulses for single-shot three-dimensional localization. The use of this selective multiple quantum filtering method for C3 and C4 methylene protons of GABA resulted in improved spectral selectivity for GABA and effective suppression of overlapping signals such as creatine and glutathione in each single scan, providing reliable measurements of the GABA doublet in all subjects. The concentration of GABA was measured to be 0.7 ± 0.2 μmol/g (means ± SD, n = 15) in the fronto-parietal region of the human brain in vivo.

  11. Contribution of polyamines metabolism and GABA shunt to chilling tolerance induced by nitric oxide in cold-stored banana fruit.

    PubMed

    Wang, Yansheng; Luo, Zisheng; Mao, Linchun; Ying, Tiejin

    2016-04-15

    Effect of exogenous nitric oxide (NO) on polyamines (PAs) catabolism, γ-aminobutyric acid (GABA) shunt, proline accumulation and chilling injury of banana fruit under cold storage was investigated. Banana fruit treated with NO sustained lower chilling injury index than the control. Notably elevated nitric oxide synthetase activity and endogenous NO level were observed in NO-treated banana fruit. PAs contents in treated fruit were significantly higher than control fruit, due to the elevated activities of arginine decarboxylase and ornithine decarboxylase. NO treatment increased the activities of diamine oxidase, polyamine oxidase and glutamate decarboxylase, while reduced GABA transaminase activity to lower levels compared with control fruit, which resulted the accumulation of GABA. Besides, NO treatment upregulated proline content and significantly enhanced the ornithine aminotransferase activity. These results indicated that the chilling tolerance induced by NO treatment might be ascribed to the enhanced catabolism of PAs, GABA and proline. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Enhancement of γ-aminobutyric acid (GABA) in Nham (Thai fermented pork sausage) using starter cultures of Lactobacillus namurensis NH2 and Pediococcus pentosaceus HN8.

    PubMed

    Ratanaburee, Anussara; Kantachote, Duangporn; Charernjiratrakul, Wilawan; Sukhoom, Ampaitip

    2013-10-15

    The aim was to produce Nham that was enriched with γ-aminobutyric acid (GABA); therefore two GABA producing lactic acid bacteria (Pediococcus pentosaceus HN8 and Lactobacillus namurensis NH2) were used as starter cultures. By using the central composite design (CCD) we showed that addition of 0.5% monosodium glutamate (MSG) together with an inoculum size of roughly 6logCFU/g of each of the two strains produced a maximal amounts of GABA (4051 mg/kg) in the 'GABA Nham' product. This was higher than any current popular commercial Nham product by roughly 8 times. 'GABA Nham' with the additions of both starters and MSG (TSM) supported maximum populations of lactic acid bacteria (LAB) with a minimum of yeasts and no staphylococci or molds when compared to the controls that had no addition of any starters or MSG (TNN), or only the addition of MSG (TNM), or with only the starter (TSN). Based on proximate analysis among the Nham sets, 'GABA Nham' was low in fat, carbohydrate and energy although its texture and color were slightly different from the control (TNN). However, sensory evaluations of 'GABA Nham' were more acceptable than the controls and commercial Nham products for all tested parameters. Hence, a unique novel 'GABA Nham' fermented pork sausage was successfully developed. © 2013.

  13. A new strategy for in vivo spectral editing. Application to GABA editing using selective homonuclear polarization transfer spectroscopy

    NASA Astrophysics Data System (ADS)

    Shen, Jun; Yang, Jehoon; Choi, In-Young; Li, Shizhe Steve; Chen, Zhengguang

    2004-10-01

    A novel single-shot in vivo spectral editing method is proposed in which the signal to be detected, is regenerated anew from the thermal equilibrium magnetization of a source to which it is J-coupled. The thermal equilibrium magnetization of the signal to be detected together with those of overlapping signals are suppressed by single-shot gradient dephasing prior to the signal regeneration process. Application of this new strategy to in vivo GABA editing using selective homonuclear polarization transfer allows complete suppression of overlapping creatine and glutathione while detecting the GABA-4 methylene resonance at 3.02 ppm with an editing yield similar to that of conventional editing methods. The NAA methyl group at 2.02 ppm was simultaneously detected and can be used as an internal navigator echo for correcting the zero order phase and frequency shifts and as an internal reference for concentration. This new method has been demonstrated for robust in vivo GABA editing in the rat brain and for study of GABA synthesis after acute vigabatrin administration.

  14. Dissociation of nNOS from PSD-95 promotes functional recovery after cerebral ischaemia in mice through reducing excessive tonic GABA release from reactive astrocytes.

    PubMed

    Lin, Yu-Hui; Liang, Hai-Ying; Xu, Ke; Ni, Huan-Yu; Dong, Jian; Xiao, Hui; Chang, Lei; Wu, Hai-Yin; Li, Fei; Zhu, Dong-Ya; Luo, Chun-Xia

    2018-02-01

    Mechanisms underlying functional recovery after stroke are little known, and effective drug intervention during the delayed stage is desirable. One potential drug target, the protein-protein interaction between neuronal nitric oxide synthase (nNOS) and postsynaptic density protein 95 (PSD-95), is critical to acute ischaemic damage and neurogenesis. We show that nNOS-PSD-95 dissociation induced by microinjection of a recombinant fusion protein, Tat-nNOS-N 1-133 , or systemic administration of a small-molecule, ZL006, from day 4 to day 10 after photothrombotic ischaemia in mice reduced excessive tonic inhibition in the peri-infarct cortex and ameliorated motor functional outcome. We also demonstrated improved neuroplasticity including increased dendrite spine density and synaptogenesis after reducing excessive tonic inhibition by nNOS-PSD-95 dissociation. Levels of gamma-aminobutyric acid (GABA) and GABA transporter-3/4 (GAT-3/4) are increased in the reactive astrocytes in the peri-infarct cortex. The GAT-3/4-selective antagonist SNAP-5114 reduced tonic inhibition and promoted function recovery, suggesting that increased tonic inhibition in the peri-infarct cortex was due to GABA release from reversed GAT-3/4 in reactive astrocytes. Treatments with Tat-nNOS-N 1-133 or ZL006 after ischaemia inhibited astrocyte activation and GABA production, prevented the reversal of GAT-3/4, and consequently decreased excessive tonic inhibition and ameliorated functional outcome. The underlying molecular mechanisms were associated with epigenetic inhibition of glutamic acid decarboxylase 67 and monoamine oxidase B expression through reduced NO production. The nNOS-PSD-95 interaction is thus a potential target for functional restoration after stroke and ZL006, a small molecule inhibitor of this interaction, is a promising pharmacological lead compound. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017

  15. Trans-synaptic (GABA-dopamine) modulation of cocaine induced dopamine release: A potential therapeutic strategy for cocaine abuse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewey, S.L.; Straughter-Moore, R.; Chen, R.

    We recently developed a new experimental strategy for measuring interactions between functionally-linked neurotransmitter systems in the primate and human brain with PET. As part of this research, we demonstrated that increases in endogenous GABA concentrations significantly reduced striatal dopamine concentrations in the primate brain. We report here the application of the neurotransmitter interaction paradigm with PET and with microdialysis to the investigation of a novel therapeutic strategy for treating cocaine abuse based on the ability of GABA to inhibit cocaine induced increases in striatal dopamine. Using gamma-vinyl GABA (GVG, a suicide inhibitor of GABA transaminase), we performed a series ofmore » PET studies where animals received a baseline PET scan with labeled raclopride injection, animals received cocaine (2.0 mg/kg). Normally, a cocaine challenge significantly reduces the striatal binding of {sup 11}C-raclopride. However, in animals pretreated with GVG, {sup 11}C-raclopride binding was less affected by a cocaine challenge compared to control studies. Furthermore, microdialysis studies in freely moving rats demonstrate that GVG (300 mg/kg) significantly inhibited cocaine-induced increases in extracellular dopamine release. GVG also attenuated cocaine-induced increases in locomotor activity. However, at a dose of 100 mg/kg, GVG had no effect. Similar findings were obtained with alcohol. Alcohol pretreatment dose dependantly (1-4 g/kg) inhibited cocaine-induced increases in extracellular dopamine concentrations in freely moving rats. Taken together, these studies suggest that therapeutic strategies targeted at increasing central GABA concentrations may be beneficial for the treatment of cocaine abuse.« less

  16. Effects of GABA(B) receptor agents on cocaine priming, discrete contextual cue and food induced relapses.

    PubMed

    Filip, Małgorzata; Frankowska, Małgorzata

    2007-10-01

    In the present study we investigated the effects of the GABA(B) receptor antagonist (2S)-(+)-5,5-dimethyl-2-morpholineacetic acid (SCH 50911), the agonists baclofen and 3-aminopropyl(methyl)phosphinic acid (SKF 97541), and the allosteric positive modulator 3,5-bis(1,1-dimethylethyl)-4-hydroxy-beta,beta-dimethylbenzenepropanol (CGP 7930) on cocaine seeking behavior. The effects of the above drugs on the reinstatement of responding induced by natural reinforcer (food) were also studied. Male Wistar rats were trained to self-administer either cocaine (0.5 mg/kg/infusion) or food (sweet milk) and responding on the reinforcer-paired lever was extinguished. Reinstatement of responding was induced by a noncontingent presentation of the self-administered reinforcer (10 mg/kg cocaine, i.p.), a discrete contextual cue, or a contingent presentation of food. SCH 50911 (3-10 mg/kg) dose-dependently attenuated responding on the previously cocaine-paired lever during both reinstatement conditions, with slightly greater efficacy at reducing conditioned cue reinstatement. At the same time, it failed to alter reinstatement of food-seeking behavior. Baclofen (1.25-5 mg/kg) and SKF 97541 (0.03-0.3 mg/kg) attenuated cocaine- or food-seeking behavior; the effect of the drug appeared more effective for cocaine-seeking than food-seeking. CGP 7930 (10-30 mg/kg) reduced cocaine seeking without affecting food-induced reinstatement on reward seeking. Our results indicate that tonic activation of GABA(B) receptors is required for cocaine seeking behavior in rats. Moreover, the GABA(B) receptor antagonist SCH 50911 was effective in reducing relapse to cocaine at doses that failed to alter reinstatement of food-seeking behavior (present study), basal locomotor activity, cocaine and food self-administration (Filip et al., submitted for publication), suggesting its selective effects on motivated drug-seeking behavior. The potent inhibitory responses on cocaine seeking behavior were also seen

  17. Subcellular fractionation on Percoll gradient of mossy fiber synaptosomes: evoked release of glutamate, GABA, aspartate and glutamate decarboxylase activity in control and degranulated rat hippocampus.

    PubMed

    Taupin, P; Ben-Ari, Y; Roisin, M P

    1994-05-02

    Using discontinuous density gradient centrifugation in isotonic Percoll sucrose, we have characterized two subcellular fractions (PII and PIII) enriched in mossy fiber synaptosomes and two others (SII and SIII) enriched in small synaptosomes. These synaptosomal fractions were compared with those obtained from adult hippocampus irradiated at neonatal stage to destroy granule cells and their mossy fibers. Synaptosomes were viable as judged by their ability to release aspartate, glutamate and GABA upon K+ depolarization. After irradiation, compared to the control values, the release of glutamate and GABA was decreased by 57 and 74% in the PIII fraction, but not in the other fractions and the content of glutamate, aspartate and GABA was also decreased in PIII fraction by 62, 44 and 52% respectively. These results suggest that mossy fiber (MF) synaptosomes contain and release glutamate and GABA. Measurement of the GABA synthesizing enzyme, glutamate decarboxylase, exhibited no significant difference after irradiation, suggesting that GABA is not synthesized by this enzyme in mossy fibers.

  18. Acute effects of sodium valproate and gamma-vinyl GABA on regional amino acid metabolism in the rat brain: incorporation of 2-[14C]glucose into amino acids.

    PubMed

    Chapman, A G; Riley, K; Evans, M C; Meldrum, B S

    1982-09-01

    Amino acid concentrations have been determined in rat brain regions (cortex, striatum, cerebellum, and hippocampus) by HPLC after administration of acute anticonvulsant doses of sodium valproate (400 mg/kg, i.p.) and gamma-vinyl-GABA (1 g/kg, i.p.). After valproate administration the GABA level increases only in the cortex; aspartic acid concentration decreases in the cortex and hippocampus, and glutamic acid decreases in the hippocampus and striatum and increases in the cortex and cerebellum. There are no changes in the concentrations of glutamine, taurine, glycine, serine, and alanine following valproate administration. Only the GABA level increases in all the regions after gamma-vinyl-GABA administration. Cortical analyses 2, 4 and 10 minutes after pulse labeling with 2-[14C]glucose, i.v., show no change in the rate of cortical glucose utilization in the valproate treated group. The rate of labeling of glutamic acid is also unchanged, but the rate of labeling of GABA is reduced following valproate administration. After gamma-vinyl-GABA administration there is no change in the rate of labeling of GABA. These biochemical findings can be interpreted in terms of a primary anticonvulsant action of valproate on membrane receptors with secondary effects on the metabolism of amino acid neurotransmitters. This contrasts with the primary action of gamma-vinyl-GABA on GABA-transaminase activity.

  19. Hippocampal low-frequency stimulation inhibits afterdischarge and increases GABA (A) receptor expression in amygdala-kindled pharmacoresistant epileptic rats.

    PubMed

    Wu, Guofeng; Wang, Likun; Hong, Zhen; Ren, Siying; Zhou, Feng

    2017-08-01

    The purpose of the present study was to observe the effects of hippocampal low-frequency stimulation (Hip-LFS) on amygdala afterdischarge and GABA (A) receptor expression in pharmacoresistant epileptic (PRE) rats. A total of 110 healthy adult male Wistar rats were used to generate a model of epilepsy by chronic stimulation of the amygdala. Sixteen PRE rats were selected from 70 amygdala-kindled rats by testing their response to Phenytoin and Phenobarbital, and they were randomly assigned to a pharmacoresistant stimulation group (PRS group, 8 rats) or a pharmacoresistant control group (PRC group, 8 rats). A stimulation electrode was implanted into the hippocampus of all of the rats. Hip-LFS was administered twice per day in the PRS group for two weeks. Simultaneously, amygdala stimulus-induced seizures and afterdischarge were recorded. After the hippocampal stimulation was terminated, the brain tissues were obtained to determine the GABA (A) receptors by a method of immumohistochemistry and a real-time polymerase chain reaction. The stages and duration of the amygdala stimulus-induced epileptic seizures were decreased in the PRS group. The afterdischarge threshold was increased and the duration as well as the afterdischarge frequency was decreased. Simultaneously, the GABA (A) expression was significantly increased in the PRS group. Hip-LFS may inhibit amygdala stimulus-induced epileptic seizures and up-regulate GABA (A) receptor expression in PRE rats. The antiepileptic effects of hippocampal stimulation may be partly achieved by increasing the GABA (A) receptor.

  20. Effects of central histamine receptors blockade on GABA(A) agonist-induced food intake in broiler cockerels.

    PubMed

    Morteza, Zendehdel; Vahhab, Babapour; Hossein, Jonaidi

    2008-02-01

    In this study, the effect of intracerebroventricular (i.c.v) injection of H1, H2 and H3 antagonists on feed intake induced by GABA(A) agonist was evaluated. In Experiment 1, the animals received chloropheniramine, a H1 antagonist and then muscimol, a GABA(A) agonist. In Experiment 2, chickens received famotidine, a H2 receptor antagonist, prior to injection of muscimol. Finally in Experiment 3, the birds were injected with thioperamide, a H3 receptor antagonist and muscimol. Cumulative food intake was measured 15, 30, 45, 60, 90, 120, 150 and 180 min after injections. The results of this study indicated that effects of muscimol on food intake inhibited by pretreatment with chloropheneramine maleate (p < or = 0.05), significantly, while the famotidine and thioperamide were ineffective. These results suggest the existence of H1-receptor mediated histamine-GABA(A) receptor interaction on food intake in broiler cockerels.