Sample records for gabaa receptor gabaar

  1. GABA-independent GABAA Receptor Openings Maintain Tonic Currents

    PubMed Central

    Wlodarczyk, Agnieszka I.; Sylantyev, Sergiy; Herd, Murray B.; Kersanté, Flavie; Lambert, Jeremy J.; Rusakov, Dmitri A.; Linthorst, Astrid C.E.; Semyanov, Alexey; Belelli, Delia; Pavlov, Ivan; Walker, Matthew C.

    2013-01-01

    Activation of GABAA receptors (GABAARs) produces two forms of inhibition: ‘phasic’ inhibition generated by the rapid, transient activation of synaptic GABAARs by presynaptic GABA release, and tonic inhibition generated by the persistent activation of peri- or extrasynaptic GABAARs which can detect extracellular GABA. Such tonic GABAAR-mediated currents are particularly evident in dentate granule cells in which they play a major role in regulating cell excitability. Here we show that in rat dentate granule cells in ex-vivo hippocampal slices, tonic currents are predominantly generated by GABA-independent GABAA receptor openings. This tonic GABAAR conductance is resistant to the competitive GABAAR antagonist SR95531, which at high concentrations acts as a partial agonist, but can be blocked by an open channel blocker picrotoxin. When slices are perfused with 200 nM GABA, a concentration that is comparable to cerebrospinal fluid concentrations but is twice that measured by us in the hippocampus in vivo using zero-net-flux microdialysis, negligible GABA is detected by dentate granule cells. Spontaneously opening GABAARs, therefore, maintain dentate granule cell tonic currents in the face of low extracellular GABA concentrations. PMID:23447601

  2. Extrasynaptic GABAA receptors in the crosshairs of hormones and ethanol

    PubMed Central

    Mody, Istvan

    2008-01-01

    Gamma-aminobutyric acid (GABA) is the main chemical inhibitory neurotransmitter in the brain. In the central nervous system (CNS) it acts on two distinct types of receptor: an ion channel, i.e., an “ionotropic” receptor permeable to Cl− and HCO3− (GABAA receptors) and a G-protein coupled “metabotropic” receptor that is linked to various effector mechanisms (GABAB receptors). This review will summarize novel developments in the physiology and pharmacology of GABAA receptors (GABAARs), specifically those found outside synapses. The focus will be on a particular combination of GABAAR subunits sensitive to ovarian and adrenal cortical steroid hormone metabolites that are synthesized in the brain (neurosteroids) and to sobriety impairing concentrations of ethanol. These receptors may be the final common pathway for interactions between ethanol and ovarian and stress-related neurosteroids. PMID:17714830

  3. Calcium/calmodulin-dependent kinase II phosphorylation of the GABAA receptor alpha1 subunit modulates benzodiazepine binding.

    PubMed

    Churn, Severn B; Rana, Aniruddha; Lee, Kangmin; Parsons, J Travis; De Blas, Angel; Delorenzo, Robert J

    2002-09-01

    gamma-Aminobutyric acid (GABA) is the primary neurotransmitter that is responsible for the fast inhibitory synaptic transmission in the central nervous system. A major post-translational mechanism that can rapidly regulate GABAAR function is receptor phosphorylation. This study was designed to test the effect of endogenous calcium and calmodulin-dependent kinase II (CaM kinase II) activation on both allosteric modulator binding and GABAA receptor subunit phosphorylation. Endogenous CaM kinase II activity was stimulated, and GABAA receptors were subsequently analyzed for bothallosteric modulator binding properties and immunoprecipitated and analyzed for subunit phosphorylation levels. A significant increase in allosteric-modulator binding of the GABAAR was observed under conditions maximal for CaM kinase II activation. In addition, CaM kinase II activation resulted in a direct increase in phosphorylation of the GABAA receptor alpha1 subunit. The data suggest that the CaM kinase II-dependent phosphorylation of the GABAA receptor alpha1 subunit modulated allosteric modulator binding to the GABAA receptor.

  4. Effects of Insecticidal Ketones Present in Mint Plants on GABAA Receptor from Mammalian Neurons

    PubMed Central

    Sánchez-Borzone, Mariela Eugenia; Marin, Leticia Delgado; García, Daniel Asmed

    2017-01-01

    Background: The genus Mentha, an important member of the Lamiaceae family, is represented by many species commonly known as mint. The insecticidal activity of Mentha oil and its main components has been tested and established against various insects/pests. Among these, the ketone monoterpenes that are most common in different Mentha species demonstrated insect toxicity, with pulegone being the most active, followed by carvone and menthone. Considering that the GABAA receptor (GABAA-R) is one of the main insecticide targets on neurons, and that pulegone would modulate the insect GABA system, it may be expected that the insecticidal properties of Mentha ketones are mediated by their interaction with this receptor. Objective: In order to discern the pharmacological actions of these products when used as insecticides on mammalian organisms, we evaluated the pharmacologic activity of ketones, commonly present in Mentha plants, on native GABAA-R from rats. Materials and Methods: Determination of ketones effects on allosterically enhanced benzodiazepine binding, using primary cultures of cortical neurons, which express functional receptors and MTT assay to evaluate their cell toxicity. Results: Our results seem to indicate that ketone components of Mentha, with proven repellent or insecticide activity, were able to behave as GABAA-R negative allosteric modulators in murine cells and consequently could exhibit convulsant activity in mammalians. Only pulegone at the highest assayed concentration (2 mM) showed a significant reduction in cell viability after exposure for 24 hr. Conclusion: The present results strongly suggest that the ketone components of Mentha are able to exhibit convulsant activity in mammalian organisms, but functional assays and in vivo experiments would be necessary to corroborate this proposed action. SUMMARY The pharmacological activity of insecticide ketones, commonly present in Mentha plants, was evaluated on native GABAA receptor from mammalian

  5. Astrocytes Modulate a Postsynaptic NMDA–GABAA-Receptor Crosstalk in Hypothalamic Neurosecretory Neurons

    PubMed Central

    Potapenko, Evgeniy S.; Biancardi, Vinicia C.; Zhou, Yiqiang

    2013-01-01

    A dynamic balance between the excitatory and inhibitory neurotransmitters glutamate and GABA is critical for maintaining proper neuronal activity in the brain. This balance is partly achieved via presynaptic interactions between glutamatergic and GABAAergic synapses converging into the same targets. Here, we show that in hypothalamic magnocellular neurosecretory neurons (MNCs), a direct crosstalk between postsynaptic NMDA receptors (NMDARs) and GABAA receptors (GABAARs) contributes to the excitatory/inhibitory balance in this system. We found that activation of NMDARs by endogenous glutamate levels controlled by astrocyte glutamate transporters, evokes a transient and reversible potentiation of postsynaptic GABAARs. This inter-receptor crosstalk is calcium-dependent and involves a kinase-dependent phosphorylation mechanism, but does not require nitric oxide as an intermediary signal. Finally, we found the NMDAR–GABAAR crosstalk to be blunted in rats with heart failure, a pathological condition in which the hypothalamic glutamate–GABA balance is tipped toward an excitatory predominance. Together, our findings support a novel form of glutamate–GABA interactions in MNCs, which involves crosstalk between NMDA and GABAA postsynaptic receptors, whose strength is controlled by the activity of local astrocytes. We propose this inter-receptor crosstalk to act as a compensatory, counterbalancing mechanism to dampen glutamate-mediated overexcitation. Finally, we propose that an uncoupling between NMDARs and GABAARs may contribute to exacerbated neuronal activity and, consequently, sympathohumoral activation in such disease conditions as heart failure. PMID:23303942

  6. Regulation of GABAA receptors by fragile X mental retardation protein

    PubMed Central

    Liu, Baosong; Li, Lijun; Chen, Juan; Wang, Zefen; Li, Zhiqiang; Wan, Qi

    2013-01-01

    Fragile X syndrome (FXS) is caused by the loss of fragile X mental retardation protein (FMRP). The deficiency of GABAA receptors (GABAARs) is implicated in FXS. However, the underlying mechanisms remain unclear. To investigate the effect of FMRP on GABAARs, we transfected FMRP cDNAs in rat cortical neurons. We measured the protein expression of GABAARs and phosphatase PTEN, and recorded GABAAR-mediated whole-cell currents in the transfected neurons. We show that the transfection of FMRP cDNAs causes increased protein expression of GABAARs in cortical neurons, but GABAAR-mediated whole-cell currents are not potentiated by FMRP transfection. These results suggest the possibility that intracellular signaling antagonizing GABAAR activity may play a role in inhibiting GABAAR function in FMRP-transfected neurons. We further show that FMRP transfection results in an enhanced protein expression of PTEN, which contributes to the inhibition of GABAAR function in FMRP-transfected neurons. These results indicate that GABAARs are regulated by FMRP through both an up-regulation of GABAAR expression and a PTEN enhancement-induced inhibition of GABAAR function, suggesting that an abnormal regulation of GABAAR and PTEN by the loss of FMRP underlies the pathogenesis of FXS. PMID:24044036

  7. Alcohol-induced tolerance and physical dependence in mice with ethanol insensitive α1 GABAA receptors

    PubMed Central

    Werner, David F.; Swihart, Andrew R.; Ferguson, Carolyn; Lariviere, William R.; Harrison, Neil L.; Homanics, Gregg E.

    2009-01-01

    Background Although many people consume alcohol (ethanol), it remains unknown why some become addicted. Elucidating the molecular mechanisms of tolerance and physical dependence (withdrawal) may provide insight into alcohol addiction. While the exact molecular mechanisms of ethanol action are unclear, γ-aminobutyric acid type A receptors (GABAA-Rs) have been extensively implicated in ethanol action. The α1 GABAA-R subunit is associated with tolerance and physical dependence, but its exact role remains unknown. In this report, we tested the hypothesis that α1-GABAA-Rs mediate in part these effects of ethanol. Methods Ethanol-induced behavioral responses related to tolerance and physical dependence were investigated in knockin mice that have ethanol-insensitive α1 GABAA-Rs and wildtype controls. Acute functional tolerance (AFT) was assessed using the stationary dowel and loss of righting reflex assays. Chronic tolerance was assessed on the loss of righting reflex, fixed speed rotarod, hypothermia, and radiant tail flick assays following ten consecutive days of ethanol exposure. Withdrawal-related hyperexcitability was assessed by handling-induced convulsions following 3 cycles of ethanol vapor exposure/withdrawal. Immunoblots were used to assess α1 protein levels. Results Compared to controls, knockin mice displayed decreased AFT and chronic tolerance to ethanol-induced motor ataxia, and also displayed heightened ethanol-withdrawal hyperexcitability. No differences between wildtype and knockin mice were seen in other ethanol-induced behavioral measures. Following chronic exposure to ethanol, control mice displayed reductions in α1 protein levels, but knockins did not. Conclusions We conclude that α1-GABAA-Rs play a role in tolerance to ethanol-induced motor ataxia and withdrawal-related hyperexcitability. However, other aspects of behavioral tolerance and physical dependence do not rely on α1-containing GABAA-Rs. PMID:19032579

  8. Muscarinic Long-Term Enhancement of Tonic and Phasic GABAA Inhibition in Rat CA1 Pyramidal Neurons

    PubMed Central

    Domínguez, Soledad; Fernández de Sevilla, David; Buño, Washington

    2016-01-01

    Acetylcholine (ACh) regulates network operation in the hippocampus by controlling excitation and inhibition in rat CA1 pyramidal neurons (PCs), the latter through gamma-aminobutyric acid type-A receptors (GABAARs). Although, the enhancing effects of ACh on GABAARs have been reported (Dominguez et al., 2014, 2015), its role in regulating tonic GABAA inhibition has not been explored in depth. Therefore, we aimed at determining the effects of the activation of ACh receptors on responses mediated by synaptic and extrasynaptic GABAARs. Here, we show that under blockade of ionotropic glutamate receptors ACh, acting through muscarinic type 1 receptors, paired with post-synaptic depolarization induced a long-term enhancement of tonic GABAA currents (tGABAA) and puff-evoked GABAA currents (pGABAA). ACh combined with depolarization also potentiated IPSCs (i.e., phasic inhibition) in the same PCs, without signs of interactions of synaptic responses with pGABAA and tGABAA, suggesting the contribution of two different GABAA receptor pools. The long-term enhancement of GABAA currents and IPSCs reduced the excitability of PCs, possibly regulating plasticity and learning in behaving animals. PMID:27833531

  9. Inhaled Anesthetic Responses of Recombinant Receptors and Knockin Mice Harboring α2(S270H/L277A) GABAA Receptor Subunits That Are Resistant to Isoflurane

    PubMed Central

    Werner, D. F.; Swihart, A.; Rau, V.; Jia, F.; Borghese, C. M.; McCracken, M. L.; Iyer, S.; Fanselow, M. S.; Oh, I.; Sonner, J. M.; Eger, E. I.; Harrison, N. L.; Harris, R. A.

    2011-01-01

    The mechanism by which the inhaled anesthetic isoflurane produces amnesia and immobility is not understood. Isoflurane modulates GABAA receptors (GABAA-Rs) in a manner that makes them plausible targets. We asked whether GABAA-R α2 subunits contribute to a site of anesthetic action in vivo. Previous studies demonstrated that Ser270 in the second transmembrane domain is involved in the modulation of GABAA-Rs by volatile anesthetics and alcohol, either as a binding site or a critical allosteric residue. We engineered GABAA-Rs with two mutations in the α2 subunit, changing Ser270 to His and Leu277 to Ala. Recombinant receptors with these mutations demonstrated normal affinity for GABA, but substantially reduced responses to isoflurane. We then produced mutant (knockin) mice in which this mutated subunit replaced the wild-type α2 subunit. The adult mutant mice were overtly normal, although there was evidence of enhanced neonatal mortality and fear conditioning. Electrophysiological recordings from dentate granule neurons in brain slices confirmed the decreased actions of isoflurane on mutant receptors contributing to inhibitory synaptic currents. The loss of righting reflex EC50 for isoflurane did not differ between genotypes, but time to regain the righting reflex was increased in N2 generation knockins. This effect was not observed at the N4 generation. Isoflurane produced immobility (as measured by tail clamp) and amnesia (as measured by fear conditioning) in both wild-type and mutant mice, and potencies (EC50) did not differ between the strains for these actions of isoflurane. Thus, immobility or amnesia does not require isoflurane potentiation of the α2 subunit. PMID:20807777

  10. Fragrant Dioxane Derivatives Identify β1-Subunit-containing GABAA Receptors*

    PubMed Central

    Sergeeva, Olga A.; Kletke, Olaf; Kragler, Andrea; Poppek, Anja; Fleischer, Wiebke; Schubring, Stephan R.; Görg, Boris; Haas, Helmut L.; Zhu, Xin-Ran; Lübbert, Hermann; Gisselmann, Günter; Hatt, Hanns

    2010-01-01

    Nineteen GABAA receptor (GABAAR) subunits are known in mammals with only a restricted number of functionally identified native combinations. The physiological role of β1-subunit-containing GABAARs is unknown. Here we report the discovery of a new structural class of GABAAR positive modulators with unique β1-subunit selectivity: fragrant dioxane derivatives (FDD). At heterologously expressed α1βxγ2L (x-for 1,2,3) GABAAR FDD were 6 times more potent at β1- versus β2- and β3-containing receptors. Serine at position 265 was essential for the high sensitivity of the β1-subunit to FDD and the β1N286W mutation nearly abolished modulation; vice versa the mutation β3N265S shifted FDD sensitivity toward the β1-type. In posterior hypothalamic neurons controlling wakefulness GABA-mediated whole-cell responses and GABAergic synaptic currents were highly sensitive to FDD, in contrast to β1-negative cerebellar Purkinje neurons. Immunostaining for the β1-subunit and the potency of FDD to modulate GABA responses in cultured hypothalamic neurons was drastically diminished by β1-siRNA treatment. In conclusion, with the help of FDDs we reveal a functional expression of β1-containing GABAARs in the hypothalamus, offering a new tool for studies on the functional diversity of native GABAARs. PMID:20511229

  11. Fragrant dioxane derivatives identify beta1-subunit-containing GABAA receptors.

    PubMed

    Sergeeva, Olga A; Kletke, Olaf; Kragler, Andrea; Poppek, Anja; Fleischer, Wiebke; Schubring, Stephan R; Görg, Boris; Haas, Helmut L; Zhu, Xin-Ran; Lübbert, Hermann; Gisselmann, Günter; Hatt, Hanns

    2010-07-30

    Nineteen GABA(A) receptor (GABA(A)R) subunits are known in mammals with only a restricted number of functionally identified native combinations. The physiological role of beta1-subunit-containing GABA(A)Rs is unknown. Here we report the discovery of a new structural class of GABA(A)R positive modulators with unique beta1-subunit selectivity: fragrant dioxane derivatives (FDD). At heterologously expressed alpha1betaxgamma2L (x-for 1,2,3) GABA(A)R FDD were 6 times more potent at beta1- versus beta2- and beta3-containing receptors. Serine at position 265 was essential for the high sensitivity of the beta1-subunit to FDD and the beta1N286W mutation nearly abolished modulation; vice versa the mutation beta3N265S shifted FDD sensitivity toward the beta1-type. In posterior hypothalamic neurons controlling wakefulness GABA-mediated whole-cell responses and GABAergic synaptic currents were highly sensitive to FDD, in contrast to beta1-negative cerebellar Purkinje neurons. Immunostaining for the beta1-subunit and the potency of FDD to modulate GABA responses in cultured hypothalamic neurons was drastically diminished by beta1-siRNA treatment. In conclusion, with the help of FDDs we reveal a functional expression of beta1-containing GABA(A)Rs in the hypothalamus, offering a new tool for studies on the functional diversity of native GABA(A)Rs.

  12. Structural determinants for antagonist pharmacology that distinguish the rho1 GABAC receptor from GABAA receptors.

    PubMed

    Zhang, Jianliang; Xue, Fenqin; Chang, Yongchang

    2008-10-01

    GABA receptor (GABAR) types C (GABACR) and A (GABAAR) are both GABA-gated chloride channels that are distinguished by their distinct competitive antagonist properties. The structural mechanism underlying these distinct properties is not well understood. In this study, using previously identified binding residues as a guide, we made individual or combined mutations of nine binding residues in the rho1 GABACR subunit to their counterparts in the alpha1beta2gamma2 GABAAR or reverse mutations in alpha1 or beta2 subunits. The mutants were expressed in Xenopus laevis oocytes and tested for sensitivities of GABA-induced currents to the GABAA and GABAC receptor antagonists. The results revealed that bicuculline insensitivity of the rho1 GABACR was mainly determined by Tyr106, Phe138 and Phe240 residues. Gabazine insensitivity of the rho1 GABACR was highly dependent on Tyr102, Tyr106, and Phe138. The sensitivity of the rho1 GABACR to 3-aminopropyl-phosphonic acid and its analog 3-aminopropyl-(methyl)phosphinic acid mainly depended on residues Tyr102, Val140, FYS240-242, and Phe138. Thus, the residues Tyr102, Tyr106, Phe138, and Phe240 in the rho1 GABACR are major determinants for its antagonist properties distinct from those in the GABAAR. In addition, Val140 in the GABACR contributes to 3-APA binding. In conclusion, we have identified the key structural elements underlying distinct antagonist properties for the GABACR. The mechanistic insights were further extended and discussed in the context of antagonists docking to the homology models of GABAA or GABAC receptors.

  13. Radixin regulates synaptic GABAA receptor density and is essential for reversal learning and short-term memory

    PubMed Central

    Hausrat, Torben J.; Muhia, Mary; Gerrow, Kimberly; Thomas, Philip; Hirdes, Wiebke; Tsukita, Sachiko; Heisler, Frank F.; Herich, Lena; Dubroqua, Sylvain; Breiden, Petra; Feldon, Joram; Schwarz, Jürgen R; Yee, Benjamin K.; Smart, Trevor G.; Triller, Antoine; Kneussel, Matthias

    2015-01-01

    Neurotransmitter receptor density is a major variable in regulating synaptic strength. Receptors rapidly exchange between synapses and intracellular storage pools through endocytic recycling. In addition, lateral diffusion and confinement exchanges surface membrane receptors between synaptic and extrasynaptic sites. However, the signals that regulate this transition are currently unknown. GABAA receptors containing α5-subunits (GABAAR-α5) concentrate extrasynaptically through radixin (Rdx)-mediated anchorage at the actin cytoskeleton. Here we report a novel mechanism that regulates adjustable plasma membrane receptor pools in the control of synaptic receptor density. RhoA/ROCK signalling regulates an activity-dependent Rdx phosphorylation switch that uncouples GABAAR-α5 from its extrasynaptic anchor, thereby enriching synaptic receptor numbers. Thus, the unphosphorylated form of Rdx alters mIPSCs. Rdx gene knockout impairs reversal learning and short-term memory, and Rdx phosphorylation in wild-type mice exhibits experience-dependent changes when exposed to novel environments. Our data suggest an additional mode of synaptic plasticity, in which extrasynaptic receptor reservoirs supply synaptic GABAARs. PMID:25891999

  14. Axonal GABAA receptors.

    PubMed

    Trigo, Federico F; Marty, Alain; Stell, Brandon M

    2008-09-01

    Type A GABA receptors (GABA(A)Rs) are well established as the main inhibitory receptors in the mature mammalian forebrain. In recent years, evidence has accumulated showing that GABA(A)Rs are prevalent not only in the somatodendritic compartment of CNS neurons, but also in their axonal compartment. Evidence for axonal GABA(A)Rs includes new immunohistochemical and immunogold data: direct recording from single axonal terminals; and effects of local applications of GABA(A)R modulators on action potential generation, on axonal calcium signalling, and on neurotransmitter release. Strikingly, whereas presynaptic GABA(A)Rs have long been considered inhibitory, the new studies in the mammalian brain mostly indicate an excitatory action. Depending on the neuron that is under study, axonal GABA(A)Rs can be activated by ambient GABA, by GABA spillover, or by an autocrine action, to increase either action potential firing and/or transmitter release. In certain neurons, the excitatory effects of axonal GABA(A)Rs persist into adulthood. Altogether, axonal GABA(A)Rs appear as potent neuronal modulators of the mammalian CNS.

  15. Side chain flexibility and the pore dimensions in the GABAA receptor

    NASA Astrophysics Data System (ADS)

    Rossokhin, Alexey V.; Zhorov, Boris S.

    2016-07-01

    Permeation of ions through open channels and their accessibility to pore-targeting drugs depend on the pore cross-sectional dimensions, which are known only for static X-ray and cryo-EM structures. Here, we have built homology models of the closed, open and desensitized α1β2γ2 GABAA receptor (GABAAR). The models are based, respectively, on the X-ray structure of α3 glycine receptor (α3 GlyR), cryo-EM structure of α1 GlyR and X-ray structure of β3 GABAAR. We employed Monte Carlo energy minimizations to explore how the pore lumen may increase due to repulsions of flexible side chains from a variable-diameter electroneutral atom (an expanding sphere) pulled through the pore. The expanding sphere computations predicted that the pore diameter averaged along the permeation pathway is larger by approximately 3 Å than that computed for the models with fixed sidechains. Our models predict three major pore constrictions located at the levels of -2', 9' and 20' residues. Residues around the -2' and 9' rings are known to form the desensitization and activation gates of GABAAR. Our computations predict that the 20' ring may also serve as GABAAR gate whose physiological role is unclear. The side chain flexibility of residues -2', 9' and 20' and hence the dimensions of the constrictions depend on the GABAAR functional state.

  16. mGluR2/3 agonist LY379268 rescues NMDA and GABAA receptor level deficits induced in a two-hit mouse model of schizophrenia.

    PubMed

    Engel, Martin; Snikeris, Peta; Matosin, Natalie; Newell, Kelly Anne; Huang, Xu-Feng; Frank, Elisabeth

    2016-04-01

    An imbalance of excitatory and inhibitory neurotransmission underlies the glutamate hypothesis of schizophrenia. Agonists of group II metabotropic glutamate receptors, mGluR2/3, have been proposed as novel therapeutic agents to correct this imbalance. However, the influence of mGluR2/3 activity on excitatory and inhibitory neurotransmitter receptors has not been explored. We aimed to investigate the ability of a novel mGluR2/3 agonist, LY379268, to modulate the availability of the excitatory N-methyl-D-aspartate receptor (NMDA-R) and the inhibitory gamma-aminobutyrate-A receptor (GABAA-R), in a two-hit mouse model of schizophrenia. Wild type (WT) and heterozygous neuregulin 1 transmembrane domain mutant mice (NRG1 HET) were treated daily with phencyclidine (10 mg/kg ip) or saline for 14 days. After a 14-day washout, an acute dose of the mGluR2/3 agonist LY379268 (3 mg/kg), olanzapine (antipsychotic drug comparison, 1.5 mg/kg), or saline was administered. NMDA-R and GABAA-R binding densities were examined by receptor autoradiography in several schizophrenia-relevant brain regions. In both WT and NRG1 HET mice, phencyclidine treatment significantly reduced NMDA-R and GABAA-R binding density in the prefrontal cortex, hippocampus, and nucleus accumbens. Acute treatment with LY379268 restored NMDA-R and GABAA-R levels in the two-hit mouse model comparable to olanzapine. We demonstrate that the mGluR2/3 agonist LY379268 restores excitatory and inhibitory deficits with similar efficiency as olanzapine in our two-hit schizophrenia mouse model. This study significantly contributes to our understanding of the mechanisms underlying the therapeutic effects of LY379268 and supports the use of agents aimed at mGluR2/3.

  17. Control of Inhibition by the Direct Action of Cannabinoids on GABAA Receptors.

    PubMed

    Golovko, Tatiana; Min, Rogier; Lozovaya, Natalia; Falconer, Caroline; Yatsenko, Natalia; Tsintsadze, Timur; Tsintsadze, Vera; Ledent, Catherine; Harvey, Robert J; Belelli, Delia; Lambert, Jeremy J; Rozov, Andrei; Burnashev, Nail

    2015-09-01

    Cannabinoids are known to regulate inhibitory synaptic transmission via activation of presynaptic G protein-coupled cannabinoid CB1 receptors (CB1Rs). Additionally, recent studies suggest that cannabinoids can also directly interact with recombinant GABAA receptors (GABAARs), potentiating currents activated by micromolar concentrations of γ-aminobutyric acid (GABA). However, the impact of this direct interaction on GABAergic inhibition in central nervous system is unknown. Here we report that currents mediated by recombinant GABAARs activated by high (synaptic) concentrations of GABA as well as GABAergic inhibitory postsynaptic currents (IPSCs) at neocortical fast spiking (FS) interneuron to pyramidal neuron synapses are suppressed by exogenous and endogenous cannabinoids in a CB1R-independent manner. This IPSC suppression may account for disruption of inhibitory control of pyramidal neurons by FS interneurons. At FS interneuron to pyramidal neuron synapses, endocannabinoids induce synaptic low-pass filtering of GABAAR-mediated currents evoked by high-frequency stimulation. The CB1R-independent suppression of inhibition is synapse specific. It does not occur in CB1R containing hippocampal cholecystokinin-positive interneuron to pyramidal neuron synapses. Furthermore, in contrast to synaptic receptors, the activity of extrasynaptic GABAARs in neocortical pyramidal neurons is enhanced by cannabinoids in a CB1R-independent manner. Thus, cannabinoids directly interact differentially with synaptic and extrasynaptic GABAARs, providing a potent novel context-dependent mechanism for regulation of inhibition. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Etomidate blocks LTP and impairs learning but does not enhance tonic inhibition in mice carrying the N265M point mutation in the beta3 subunit of the GABAA receptor

    PubMed Central

    Oh, I; Rau, V; Lor, C; Laha, KT; Jurd, R; Rudolph, U; Eger, EI; Pearce, RA

    2015-01-01

    Enhancement of tonic inhibition mediated by extrasynaptic α5-subunit containing GABAA receptors (GABAARs) has been proposed as the mechanism by which a variety of anesthetics, including the general anesthetic etomidate, impair learning and memory. Since α5 subunits preferentially partner with β3 subunits, we tested the hypothesis that etomidate acts through β3-subunit containing GABAARs to enhance tonic inhibition, block LTP, and impair memory. We measured the effects of etomidate in wild type mice and in mice carrying a point mutation in the GABAAR β3-subunit (β3-N265M) that renders these receptors insensitive to etomidate. Etomidate enhanced tonic inhibition in CA1 pyramidal cells of the hippocampus in wild type but not in mutant mice, demonstrating that tonic inhibition is mediated by β3-subunit containing GABAARs. However, despite its inability to enhance tonic inhibition, etomidate did block LTP in brain slices from mutant mice as well as in those from wild type mice. Etomidate also impaired fear conditioning to context, with no differences between genotypes. In studies of recombinant receptors expressed in HEK293 cells, α5β1γ2L GABAARs were insensitive to amnestic concentrations of etomidate (1 [.proportional]M and below), whereas α5β2γ2L and α5β3γ2L GABAARs were enhanced. We conclude that etomidate enhances tonic inhibition in pyramidal cells through its action on α5β3-containing GABAA receptors, but blocks LTP and impairs learning by other means - most likely by modulating α5β2-containing GABAA receptors. The critical anesthetic targets underlying amnesia might include other forms of inhibition imposed on pyramidal neurons (e.g. slow phasic inhibition), or inhibitory processes on non-pyramidal cells (e.g. interneurons). PMID:25680234

  19. LINKING GABAA RECEPTOR SUBUNITS TO ALCOHOL-INDUCED CONDITIONED TASTE AVERSION AND RECOVERY FROM ACUTE ALCOHOL INTOXICATION

    PubMed Central

    Blednov, Y.A.; Benavidez, J.M.; Black, M.; Chandra, D.; Homanics, G.E.; Rudolph, U.; Harris, R.A.

    2012-01-01

    GABA type A receptors (GABAA-R) are important for ethanol actions and it is of interest to link individual subunits with specific ethanol behaviors. We studied null mutant mice for six different GABAA-R subunits (α1, α2, α3, α4, α5 and δ). Only mice lacking the α2 subunit showed reduction of conditioned taste aversion (CTA) to ethanol. These results are in agreement with data from knock-in mice with mutation of the ethanol-sensitive site in the α2-subunit (Blednov et al., 2011) and indicate this aversive property of ethanol is dependent on ethanol action on α2-containing GABAA-R. Deletion of the α2-subunit led to faster recovery whereas absence of the α3-subunit slowed recovery from ethanol-induced incoordination (rotarod). Deletion of the other four subunits did not affect this behavior. Similar changes in this behavior for the α2 and α3 null mutants were found for flurazepam motor-incoordination. However, no differences in recovery were found in motor-incoordinating effects of an α1-selective modulator (zolpidem) or an α4-selective agonist (gaboxadol). Therefore, recovery of rotarod incoordination is under control of two GABAA-R subunits: α2 and α3. For motor activity, α3 null mice demonstrated higher activation by ethanol (1 g/kg) whereas both α2 and α3 (-/-) knockout mice were less sensitive to ethanol-induced reduction of motor activity (1.5 g/kg). These studies demonstrate that the effects of ethanol at GABAergic synapses containing α2 subunit are important for specific behavioral effects of ethanol which may be relevant to the genetic linkage of the α2 subunit with human alcoholism. PMID:23147414

  20. GABAA receptors: Various stoichiometrics of subunit arrangement in α1β3 and α1β3ε receptors.

    PubMed

    Has, Ahmad Tarmizi Che; Chebib, Mary

    2018-05-15

    GABAA receptors (GABAARs) are members of the Cys-loop ligand-gated ion channel (LGIC) superfamily, which includes nicotinic acetylcholine, glycine, and serotonin (5HT3) receptors [1,2,3,4]. LGICs typically mediate fast synaptic transmission via the movement of ions through channels gated by neurotransmitters, such as acetylcholine for nicotinic receptors and GABA for GABAARs [5]. The term Cys-loop receptors originates from the presence of a conserved disulphide bond (or bridge) which holds together two cysteine amino acids of the loop that forms from the structure of polypeptides in the extracellular domain of the receptor's subunit [6]. GABAARs are pentameric transmembrane protein complexes consisting of five subunits from a variety of polypeptide subunits [7,8]. All of these subunits are pseudo-symmetrically organized in the plane of the membrane, with a Cl--selective channel in the middle of the complex. To date, nineteen GABAAR subunits have been identified and categorized into eight classes, α1-6, β1-3, γ1-3, δ, ε, θ, π and ρ1-3, but their variety is further broadened by the existence of several splice forms for certain subunits (e.g., α6, β2 and γ2) [9,10,11,12]. The subunits within each class have an amino acid sequence homology of 70% or more, whereas those with a sequence homology of 30% or less are grouped into different classes [13,14]. A subunit consists of four transmembrane domains (TM1-TM4), each forming an α-helix; a large extracellular N-terminal domain that incorporates part of the orthosteric agonist/antagonist binding site; a large intracellular loop between the TM3 and TM4; a small intracellular loop between TM1 and TM2; a small extracellular loop between TM2 and TM3; and a C-terminal extracellular domain [15,16]. Each subunit is arranged in such a way as to create principal and complementary interfaces with the other subunits, and in a position such that the TM2 of each subunit forms the wall of the channel pore [17,18,19]. The

  1. Enhancement of GABA release through endogenous activation of axonal GABA(A) receptors in juvenile cerebellum.

    PubMed

    Trigo, Federico F; Chat, Mireille; Marty, Alain

    2007-11-14

    Recent evidence indicates the presence of presynaptic GABA(A) receptors (GABA(A)Rs) in the axon domain of several classes of central neurons, including cerebellar basket and stellate cells. Here, we investigate the possibility that these receptors could be activated in the absence of electrical or chemical stimulation. We find that low concentrations of GABA increase the frequency of miniature GABAergic synaptic currents. Submaximal concentrations of a GABA(A)R blocker, gabazine, decrease both the miniature current frequency and the probability of evoked GABA release. Zolpidem, an agonist of the benzodiazepine binding site, and NO-711 (1-[2-[[(diphenylmethylene)imino]oxy]ethyl]-1,2,5,6-tetrahydro-3-pyridinecarboxylic acid hydrochloride), a blocker of GABA uptake, both increase the frequency of miniature currents. These effects occur up to postnatal day 14, but not later. Immunohistochemistry indicates the presence of alpha1-containing GABA(A)Rs in interneuron presynaptic terminals with a similar age dependence. We conclude that, under resting conditions, axonal GABA(A)Rs are significantly activated, that this activation results in enhanced GABA release, and that it can be augmented by increasing the affinity of GABA(A)Rs or reducing GABA uptake. Our findings suggest the existence of a positive-feedback mechanism involving presynaptic GABA(A)Rs that maintains a high release rate and a high local GABA concentration in the immature cerebellar network.

  2. The orthosteric GABAA receptor ligand Thio-4-PIOL displays distinctly different functional properties at synaptic and extrasynaptic receptors

    PubMed Central

    Hoestgaard-Jensen, K; O'Connor, R M; Dalby, N O; Simonsen, C; Finger, B C; Golubeva, A; Hammer, H; Bergmann, M L; Kristiansen, U; Krogsgaard-Larsen, P; Bräuner-Osborne, H; Ebert, B; Frølund, B; Cryan, J F; Jensen, A A

    2013-01-01

    BACKGROUND AND PURPOSE Explorations into the heterogeneous population of native GABA type A receptors (GABAARs) and the physiological functions governed by the multiple GABAAR subtypes have for decades been hampered by the lack of subtype-selective ligands. EXPERIMENTAL APPROACH The functional properties of the orthosteric GABAA receptor ligand 5-(4-piperidyl)-3-isothiazolol (Thio-4-PIOL) have been investigated in vitro, ex vivo and in vivo. KEY RESULTS Thio-4-PIOL displayed substantial partial agonist activity at the human extrasynaptic GABAAR subtypes expressed in Xenopus oocytes, eliciting maximal responses of up to ∼30% of that of GABA at α5β3γ2S, α4β3δ and α6β3δ and somewhat lower efficacies at the corresponding α5β2γ2S, α4β2δ and α6β2δ subtypes (maximal responses of 4–12%). In contrast, it was an extremely low efficacious agonist at the α1β3γ2S, α1β2γ2S, α2β2γ2S, α2β3γ2S, α3β2γ2S and α3β3γ2S GABAARs (maximal responses of 0–4%). In concordance with its agonism at extrasynaptic GABAARs and its de facto antagonism at the synaptic receptors, Thio-4-PIOL elicited robust tonic currents in electrophysiological recordings on slices from rat CA1 hippocampus and ventrobasal thalamus and antagonized phasic currents in hippocampal neurons. Finally, the observed effects of Thio-4-PIOL in rat tests of anxiety, locomotion, nociception and spatial memory were overall in good agreement with its in vitro and ex vivo properties. CONCLUSION AND IMPLICATIONS The diverse signalling characteristics of Thio-4-PIOL at GABAARs represent one of the few examples of a functionally subtype-selective orthosteric GABAAR ligand reported to date. We propose that Thio-4-PIOL could be a useful pharmacological tool in future studies exploring the physiological roles of native synaptic and extrasynaptic GABAARs. PMID:23957253

  3. Seizure-Related Regulation of GABAA Receptors in Spontaneously Epileptic Rats

    PubMed Central

    González, Marco I.; Grabenstatter, Heidi L.; del Rio, Christian Cea; Del Angel, Yasmin Cruz; Carlsen, Jessica; Laoprasert, Rick; White, Andrew M.; Huntsman, Molly M.; Brooks-Kayal, Amy

    2015-01-01

    In this study, we analyzed the impact that spontaneous seizures might have on the plasma membrane expression, composition and function of GABAA receptors (GABAARs). For this, tissue of chronically epileptic rats was collected within 3 hours of seizure occurrence (≤3 hours group) or at least 24 hours after seizure occurrence (≥24 hours group). A retrospective analysis of seizure frequency revealed that selecting animals on the bases of seizure proximity also grouped animals in terms of overall seizure burden with a higher seizure burden observed in the ≤3 hours group. A biochemical analysis showed that although animals with more frequent/recent seizures (≤3 hours group) had similar levels of GABAAR at the plasma membrane they showed deficits in inhibitory neurotransmission. In contrast, tissue obtained from animals experiencing infrequent seizures (≥24 hours group) had increased plasma membrane levels of GABAAR and showed no deficit in inhibitory function. Together, our findings offer an initial insight into the molecular changes that might help to explain how alterations in GABAAR function can be associated with differential seizure burden. Our findings also suggest that increased plasma membrane levels of GABAAR might act as a compensatory mechanism to more effectively maintain inhibitory function, repress hyperexcitability and reduce seizure burden. This study is an initial step towards a fuller characterization of the molecular events that trigger alterations in GABAergic neurotransmission during chronic epilepsy. PMID:25769812

  4. GABAA receptors involved in sleep and anaesthesia: β1- versus β3-containing assemblies.

    PubMed

    Yanovsky, Yevgenij; Schubring, Stephan; Fleischer, Wiebke; Gisselmann, Günter; Zhu, Xin-Ran; Lübbert, Hermann; Hatt, Hanns; Rudolph, Uwe; Haas, Helmut L; Sergeeva, Olga A

    2012-01-01

    The histaminergic neurons of the posterior hypothalamus (tuberomamillary nucleus-TMN) control wakefulness, and their silencing through activation of GABA(A) receptors (GABA(A)R) induces sleep and is thought to mediate sedation under propofol anaesthesia. We have previously shown that the β1 subunit preferring fragrant dioxane derivatives (FDD) are highly potent modulators of GABA(A)R in TMN neurons. In recombinant receptors containing the β3N265M subunit, FDD action is abolished and GABA potency is reduced. Using rat, wild-type and β3N265M mice, FDD and propofol, we explored the relative contributions of β1- and β3-containing GABA(A)R to synaptic transmission from the GABAergic sleep-on ventrolateral preoptic area neurons to TMN. In β3N265M mice, GABA potency remained unchanged in TMN neurons, but it was decreased in cultured posterior hypothalamic neurons with impaired modulation of GABA(A)R by propofol. Spontaneous and evoked GABAergic synaptic currents (IPSC) showed β1-type pharmacology, with the same effects achieved by 3 μM propofol and 10 μM PI24513. Propofol and the FDD PI24513 suppressed neuronal firing in the majority of neurons at 5 and 100 μM, and in all cells at 10 and 250 μM, respectively. FDD given systemically in mice induced sedation but not anaesthesia. Propofol-induced currents were abolished (1-6 μM) or significantly reduced (12 μM) in β3N265M mice, whereas gating and modulation of GABA(A)R by PI24513 as well as modulation by propofol were unchanged. In conclusion, β1-containing (FDD-sensitive) GABA(A)R represent the major receptor pool in TMN neurons responding to GABA, while β3-containing (FDD-insensitive) receptors are gated by low micromolar doses of propofol. Thus, sleep and anaesthesia depend on different GABA(A)R types.

  5. The TM2 6′ Position of GABAA Receptors Mediates Alcohol Inhibition

    PubMed Central

    Howard, Rebecca J.; Trudell, James R.; Harris, R. Adron

    2012-01-01

    Ionotropic GABAA receptors (GABAARs), which mediate inhibitory neurotransmission in the central nervous system, are implicated in the behavioral effects of alcohol and alcoholism. Site-directed mutagenesis studies support the presence of discrete molecular sites involved in alcohol enhancement and, more recently, inhibition of GABAARs. We used Xenopus laevis oocytes to investigate the 6′ position in the second transmembrane region of GABAARs as a site influencing alcohol inhibition. We asked whether modification of the 6′ position by substitution with larger residues or methanethiol labeling [using methyl methanethiosulfonate (MMTS)] of a substituted cysteine, reduced GABA action and/or blocked further inhibition by alcohols. Labeling of the 6′ position in either α2 or β2 subunits reduced responses to GABA. In addition, methanol and ethanol potentiation increased after MMTS labeling or substitution with tryptophan or methionine, consistent with elimination of an inhibitory site for these alcohols. Specific alcohols, but not the anesthetic etomidate, competed with MMTS labeling at the 6′ position. We verified a role for the 6′ position in previously tested α2β2 as well as more physiologically relevant α2β2γ2s GABAARs. Finally, we built a novel molecular model based on the invertebrate glutamate-gated chloride channel receptor, a GABAAR homolog, revealing that the 6′ position residue faces the channel pore, and modification of this residue alters volume and polarity of the pore-facing cavity in this region. These results indicate that the 6′ positions in both α2 and β2 GABAAR subunits mediate inhibition by short-chain alcohols, which is consistent with the presence of multiple counteracting sites of action for alcohols on ligand-gated ion channels. PMID:22072732

  6. Assessment of Homology Templates and an Anesthetic Binding Site within the γ-Aminobutyric Acid Receptor

    PubMed Central

    Bertaccini, Edward J.; Yoluk, Ozge; Lindahl, Erik R.; Trudell, James R.

    2013-01-01

    Background Anesthetics mediate portions of their activity via modulation of the γ-aminobutyric acid receptor (GABAaR). While its molecular structure remains unknown, significant progress has been made towards understanding its interactions with anesthetics via molecular modeling. Methods The structure of the torpedo acetylcholine receptor (nAChRα), the structures of the α4 and β2 subunits of the human nAChR, the structures of the eukaryotic glutamate-gated chloride channel (GluCl), and the prokaryotic pH sensing channels, from Gloeobacter violaceus and Erwinia chrysanthemi, were aligned with the SAlign and 3DMA algorithms. A multiple sequence alignment from these structures and those of the GABAaR was performed with ClustalW. The Modeler and Rosetta algorithms independently created three-dimensional constructs of the GABAaR from the GluCl template. The CDocker algorithm docked a congeneric series of propofol derivatives into the binding pocket and scored calculated binding affinities for correlation with known GABAaR potentiation EC50’s. Results Multiple structure alignments of templates revealed a clear consensus of residue locations relevant to anesthetic effects except for torpedo nAChR. Within the GABAaR models generated from GluCl, the residues notable for modulating anesthetic action within transmembrane segments 1, 2, and 3 converged on the intersubunit interface between alpha and beta subunits. Docking scores of a propofol derivative series into this binding site showed strong linear correlation with GABAaR potentiation EC50. Conclusion Consensus structural alignment based on homologous templates revealed an intersubunit anesthetic binding cavity within the transmembrane domain of the GABAaR, which showed correlation of ligand docking scores with experimentally measured GABAaR potentiation. PMID:23770602

  7. Assessment of homology templates and an anesthetic binding site within the γ-aminobutyric acid receptor.

    PubMed

    Bertaccini, Edward J; Yoluk, Ozge; Lindahl, Erik R; Trudell, James R

    2013-11-01

    Anesthetics mediate portions of their activity via modulation of the γ-aminobutyric acid receptor (GABAaR). Although its molecular structure remains unknown, significant progress has been made toward understanding its interactions with anesthetics via molecular modeling. The structure of the torpedo acetylcholine receptor (nAChRα), the structures of the α4 and β2 subunits of the human nAChR, the structures of the eukaryotic glutamate-gated chloride channel (GluCl), and the prokaryotic pH-sensing channels, from Gloeobacter violaceus and Erwinia chrysanthemi, were aligned with the SAlign and 3DMA algorithms. A multiple sequence alignment from these structures and those of the GABAaR was performed with ClustalW. The Modeler and Rosetta algorithms independently created three-dimensional constructs of the GABAaR from the GluCl template. The CDocker algorithm docked a congeneric series of propofol derivatives into the binding pocket and scored calculated binding affinities for correlation with known GABAaR potentiation EC50s. Multiple structure alignments of templates revealed a clear consensus of residue locations relevant to anesthetic effects except for torpedo nAChR. Within the GABAaR models generated from GluCl, the residues notable for modulating anesthetic action within transmembrane segments 1, 2, and 3 converged on the intersubunit interface between α and β subunits. Docking scores of a propofol derivative series into this binding site showed strong linear correlation with GABAaR potentiation EC50. Consensus structural alignment based on homologous templates revealed an intersubunit anesthetic binding cavity within the transmembrane domain of the GABAaR, which showed a correlation of ligand docking scores with experimentally measured GABAaR potentiation.

  8. Prodepressant- and anxiogenic-like effects of serotonin-selective, but not noradrenaline-selective, antidepressant agents in mice lacking α2-containing GABAA receptors.

    PubMed

    Benham, Rebecca S; Hewage, Nishani B; Suckow, Raymond F; Engin, Elif; Rudolph, Uwe

    2017-08-14

    Deficits in neuronal inhibition via gamma-aminobutyric acid (GABA) type A receptors (GABAA-Rs) are implicated in the pathophysiology of major depressive disorder and the therapeutic effects of current antidepressant treatments, however, the relevant GABAA-R subtype as defined by its alpha subunit is still unknown. We previously reported anxiety- and depressive-like behavior in alpha2+/- and alpha2-/- mice, respectively (Vollenweider, 2011). We sought to determine whether this phenotype could be reversed by chronic antidepressant treatment. Adult male mice received 4 or 8mg/kg fluoxetine or 53mg/kg desipramine in their drinking water for four weeks before undergoing behavioral testing. In the novelty suppressed feeding test, desipramine had anxiolytic-like effects reducing the latencies to bite and to eat the pellet in both wild-type and alpha2+/- mice. Surprisingly, 4mg/kg fluoxetine had anxiogenic-like effects in alpha2+/- mice increasing latency to bite and to eat while 8mg/kg fluoxetine increased the latency to eat in both wild-type and alpha2+/- mice. In the forced swim and tail suspension tests, chronic desipramine treatment increased latency to immobility in wild-type and alpha2-/- mice. In contrast, chronic fluoxetine treatment increased immobility in alpha2-/- mice in both tasks while generally having no effect in wild-type mice. These findings suggest that in preclinical paradigms of anxiety and behavioral despair the antidepressant-like effects of desipramine are independent of alpha2-containing GABAA-Rs, while a reduction in alpha2 expression leads to an increased sensitivity to anxiogenic- and prodepressant-like effects with chronic fluoxetine treatment, pointing to a potential role of alpha2-containing GABAA-Rs in the response to serotonin-selective antidepressants. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Effect of progesterone on the expression of GABA(A) receptor subunits in the prefrontal cortex of rats: implications of sex differences and brain hemisphere.

    PubMed

    Andrade, Susie; Arbo, Bruno D; Batista, Bruna A M; Neves, Alice M; Branchini, Gisele; Brum, Ilma S; Barros, Helena M T; Gomez, Rosane; Ribeiro, Maria Flavia M

    2012-12-01

    Progesterone is a neuroactive hormone with non-genomic effects on GABA(A) receptors (GABA(A)R). Changes in the expression of GABA(A)R subunits are related to depressive-like behaviors in rats. Moreover, sex differences and depressive behaviors have been associated with prefrontal brain asymmetry in rodents and humans. Thus, our objective was to investigate the effect of progesterone on the GABA(A)R α1 and γ2 subunits mRNA expression in the right and left prefrontal cortex of diestrus female and male rats exposed to the forced swimming test (FST). Male and female rats (n = 8/group) were randomly selected to receive a daily dose of progesterone (0·4 mg·kg⁻¹) or vehicle, during two complete female estrous cycles (8-10 days). On the experiment day, male rats or diestrus female rats were euthanized 30 min after the FST. Our results showed that progesterone significantly increased the α1 subunit mRNA in both hemispheres of male and female rats. Moreover, there was an inverse correlation between depressive-like behaviors and GABA(A)R α1 subunit mRNA expression in the right hemisphere in female rats. Progesterone decreased the GABA(A)R γ2 mRNA expression only in the left hemisphere of male rats. Therefore, we conclude that the GABA(A) system displays an asymmetric distribution according to sex and that progesterone, at lower doses, presents an antidepressant effect after increasing the GABA(A) R α1 subunit expression in the right prefrontal cortex of female rats. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Ester to amide substitution improves selectivity, efficacy and kinetic behavior of a benzodiazepine positive modulator of GABAA receptors containing the α5 subunit

    PubMed Central

    Stamenić, Tamara Timić; Poe, Michael M.; Rehman, Sabah; Santrač, Anja; Divović, Branka; Scholze, Petra; Ernst, Margot; Cook, James M.; Savić, Miroslav M.

    2016-01-01

    We have synthesized and characterized MP-III-022 ((R)-8-ethynyl-6-(2-fluorophenyl)-N,4-dimethyl-4H-benzo[f]imidazo[1,5-a][1,4]diazepine-3-carboxamide) in vitro and in vivo as a binding- and efficacy-selective positive allosteric modulator of GABAA receptors containing the α5 subunit (α5GABAARs). By approximation of the electrophysiological responses which the estimated free rat brain concentrations can induce, we demonstrated that convenient systemic administration of MP-III-022 in the dose range 1-10 mg/kg may result in a selective potentiation, over a wide range from mild to moderate to strong, of α5βγ2 GABAA receptors. For eliciting a comparable range of potentiation, the widely studied parent ligand SH-053-2′F-R-CH3 containing an ester moiety needs to be administered over a much wider dose range (10-200 mg/kg), but at the price of activating non-α5 GABAARs as well as the desired α5GABAARs at the highest dose. At the dose of 10 mg/kg, which elicits a strong positive modulation of α5GABAARs, MP-III-022 caused mild, but significant muscle relaxation, while at doses 1-10 mg/kg was devoid of ataxia, sedation or an influence on the anxiety level, characteristic for non-selective benzodiazepines. As an amide compound with improved stability and kinetic properties, MP-III-022 may represent an optimized tool to study the influence of α5GABAARs on the neuronal pathways related to CNS disorders such as schizophrenia, Alzheimer's disease, Down syndrome or autism. PMID:27639297

  11. Seeking potential anticonvulsant agents that target GABAA receptors using experimental and theoretical procedures

    NASA Astrophysics Data System (ADS)

    Saavedra-Vélez, Margarita Virginia; Correa-Basurto, José; Matus, Myrna H.; Gasca-Pérez, Eloy; Bello, Martiniano; Cuevas-Hernández, Roberto; García-Rodríguez, Rosa Virginia; Trujillo-Ferrara, José; Ramos-Morales, Fernando Rafael

    2014-12-01

    The aim of this study was to identify compounds that possess anticonvulsant activity by using a pentylenetetrazol (PTZ)-induced seizure model. Theoretical studies of a set of ligands, explored the binding affinities of the ligands for the GABAA receptor (GABAAR), including some benzodiazepines. The ligands satisfy the Lipinski rules and contain a pharmacophore core that has been previously reported to be a GABAAR activator. To select the ligands with the best physicochemical properties, all of the compounds were analyzed by quantum mechanics and the energies of the highest occupied molecular orbital and lowest unoccupied molecular orbital were determined. Docking calculations between the ligands and the GABAAR were used to identify the complexes with the highest Gibbs binding energies. The identified compound D1 (dibenzo( b,f)(1,4)diazocine-6,11(5H,12H)-dione) was synthesized, experimentally tested, and the GABAAR-D1 complex was submitted to 12-ns-long molecular dynamics (MD) simulations to corroborate the binding conformation obtained by docking techniques. MD simulations were also used to analyze the decomposition of the Gibbs binding energy of the residues involved in the stabilization of the complex. To validate our theoretical results, molecular docking and MD simulations were also performed for three reference compounds that are currently in commercial use: clonazepam (CLZ), zolpidem and eszopiclone. The theoretical results show that the GABAAR-D1, and GABAAR-CLZ complexes bind to the benzodiazepine binding site, share a similar map of binding residues, and have similar Gibbs binding energies and entropic components. Experimental studies using a PTZ-induced seizure model showed that D1 possesses similar activity to CLZ, which corroborates the predicted binding free energy identified by theoretical calculations.

  12. Regulation of α3-containing GABAA receptors in guinea-pig adrenal medullary cells by adrenal steroids.

    PubMed

    Inoue, M; Harada, K; Nakamura, J; Matsuoka, H

    2013-12-03

    GABA is thought to function as a paracrine factor in adrenal medullary (AM) cells. Thus, we electrophysiologically and immunologically examined the properties of GABAA receptors (GABAARs) in guinea-pig AM cells. Bath application of GABA produced an inward current at -60 mV in a dose-dependent manner with an EC50 of 32.3 μM. This GABA-induced current was enhanced by allopregnanolone at concentrations of 0.01 μM and more. A prior exposure to allopregnanolone resulted in a decrease in an EC50 for GABA in activating GABAARs. The GABA-induced current was suppressed by Zn(2+) in a dose-dependent manner with an IC50 of 18 μM, whereas it was enhanced by 100 μM La(3+). The benzodiazepine analog diazepam was three times more potent than zolpidem in enhancing the GABA current, and it was also augmented by L-838,417, which has no action on α1-containing GABAARs. The GABAAR α3, but not α1, and γ2 subunits were immunologically detected at the cell periphery. The expression of α3 subunits in PC12 cells was enhanced by glucocorticoid activity. The results indicated that GABAARs in guinea-pig AM cells mainly comprise α3, β, and γ2 subunits and are enhanced by allopreganalone and glucocorticoids may play a major role in the expression of α3 subunits. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Ovarian cycle-linked plasticity of δ-GABAA receptor subunits in hippocampal interneurons affects γ oscillations in vivo

    PubMed Central

    Barth, Albert M. I.; Ferando, Isabella; Mody, Istvan

    2014-01-01

    GABAA receptors containing δ subunits (δ-GABAARs) are GABA-gated ion channels with extra- and perisynaptic localization, strong sensitivity to neurosteroids (NS), and a high degree of plasticity. In selective brain regions they are expressed on specific principal cells and interneurons (INs), and generate a tonic conductance that controls neuronal excitability and oscillations. Plasticity of δ-GABAARs in principal cells has been described during states of altered NS synthesis including acute stress, puberty, ovarian cycle, pregnancy and the postpartum period, with direct consequences on neuronal excitability and network dynamics. The defining network events implicated in cognitive function, memory formation and encoding are γ oscillations (30–120 Hz), a well-timed loop of excitation and inhibition between principal cells and PV-expressing INs (PV + INs). The δ-GABAARs of INs can modify γ oscillations, and a lower expression of δ-GABAARs on INs during pregnancy alters γ frequency recorded in vitro. The ovarian cycle is another physiological event with large fluctuations in NS levels and δ-GABAARs. Stages of the cycle are paralleled by swings in memory performance, cognitive function, and mood in both humans and rodents. Here we show δ-GABAARs changes during the mouse ovarian cycle in hippocampal cell types, with enhanced expression during diestrus in principal cells and specific INs. The plasticity of δ-GABAARs on PV-INs decreases the magnitude of γ oscillations continuously recorded in area CA1 throughout several days in vivo during diestrus and increases it during estrus. Such recurring changes in γ magnitude were not observed in non-cycling wild-type (WT) females, cycling females lacking δ-GABAARs only on PV-INs (PV-Gabrd-/-), and in male mice during a time course equivalent to the ovarian cycle. Our findings may explain the impaired memory and cognitive performance experienced by women with premenstrual syndrome (PMS) or premenstrual dysphoric

  14. DISC1 Protein Regulates γ-Aminobutyric Acid, Type A (GABAA) Receptor Trafficking and Inhibitory Synaptic Transmission in Cortical Neurons.

    PubMed

    Wei, Jing; Graziane, Nicholas M; Gu, Zhenglin; Yan, Zhen

    2015-11-13

    Association studies have suggested that Disrupted-in-Schizophrenia 1 (DISC1) confers a genetic risk at the level of endophenotypes that underlies many major mental disorders. Despite the progress in understanding the significance of DISC1 at neural development, the mechanisms underlying DISC1 regulation of synaptic functions remain elusive. Because alterations in the cortical GABA system have been strongly linked to the pathophysiology of schizophrenia, one potential target of DISC1 that is critically involved in the regulation of cognition and emotion is the GABAA receptor (GABAAR). We found that cellular knockdown of DISC1 significantly reduced GABAAR-mediated synaptic and whole-cell current, whereas overexpression of wild-type DISC1, but not the C-terminal-truncated DISC1 (a schizophrenia-related mutant), significantly increased GABAAR currents in pyramidal neurons of the prefrontal cortex. These effects were accompanied by DISC1-induced changes in surface GABAAR expression. Moreover, the regulation of GABAARs by DISC1 knockdown or overexpression depends on the microtubule motor protein kinesin 1 (KIF5). Our results suggest that DISC1 exerts an important effect on GABAergic inhibitory transmission by regulating KIF5/microtubule-based GABAAR trafficking in the cortex. The knowledge gained from this study would shed light on how DISC1 and the GABA system are linked mechanistically and how their interactions are critical for maintaining a normal mental state. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. A Multifaceted GABAA Receptor Modulator: Functional Properties and Mechanism of Action of the Sedative-Hypnotic and Recreational Drug Methaqualone (Quaalude).

    PubMed

    Hammer, Harriet; Bader, Benjamin M; Ehnert, Corina; Bundgaard, Christoffer; Bunch, Lennart; Hoestgaard-Jensen, Kirsten; Schroeder, Olaf H-U; Bastlund, Jesper F; Gramowski-Voß, Alexandra; Jensen, Anders A

    2015-08-01

    In the present study, we have elucidated the functional characteristics and mechanism of action of methaqualone (2-methyl-3-o-tolyl-4(3H)-quinazolinone, Quaalude), an infamous sedative-hypnotic and recreational drug from the 1960s-1970s. Methaqualone was demonstrated to be a positive allosteric modulator at human α1,2,3,5β2,3γ2S GABAA receptors (GABAARs) expressed in Xenopus oocytes, whereas it displayed highly diverse functionalities at the α4,6β1,2,3δ GABAAR subtypes, ranging from inactivity (α4β1δ), through negative (α6β1δ) or positive allosteric modulation (α4β2δ, α6β2,3δ), to superagonism (α4β3δ). Methaqualone did not interact with the benzodiazepine, barbiturate, or neurosteroid binding sites in the GABAAR. Instead, the compound is proposed to act through the transmembrane β((+))/α((-)) subunit interface of the receptor, possibly targeting a site overlapping with that of the general anesthetic etomidate. The negligible activities displayed by methaqualone at numerous neurotransmitter receptors and transporters in an elaborate screening for additional putative central nervous system (CNS) targets suggest that it is a selective GABAAR modulator. The mode of action of methaqualone was further investigated in multichannel recordings from primary frontal cortex networks, where the overall activity changes induced by the compound at 1-100 μM concentrations were quite similar to those mediated by other CNS depressants. Finally, the free methaqualone concentrations in the mouse brain arising from doses producing significant in vivo effects in assays for locomotion and anticonvulsant activity correlated fairly well with its potencies as a modulator at the recombinant GABAARs. Hence, we propose that the multifaceted functional properties exhibited by methaqualone at GABAARs give rise to its effects as a therapeutic and recreational drug. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  16. Loss of Ethanol Conditioned Taste Aversion and Motor Stimulation in Knockin Mice with Ethanol-Insensitive α2-Containing GABAA Receptors

    PubMed Central

    Borghese, C. M.; McCracken, M. L.; Benavidez, J. M.; Geil, C. R.; Osterndorff-Kahanek, E.; Werner, D. F.; Iyer, S.; Swihart, A.; Harrison, N. L.; Homanics, G. E.; Harris, R. A.

    2011-01-01

    GABA type A receptors (GABAA-Rs) are potential targets of ethanol. However, there are multiple subtypes of this receptor, and, thus far, individual subunits have not been definitively linked with specific ethanol behavioral actions. Interestingly, though, a chromosomal cluster of four GABAA-R subunit genes, including α2 (Gabra2), was associated with human alcoholism (Am J Hum Genet 74:705–714, 2004; Pharmacol Biochem Behav 90:95–104, 2008; J Psychiatr Res 42:184–191, 2008). The goal of our study was to determine the role of receptors containing this subunit in alcohol action. We designed an α2 subunit with serine 270 to histidine and leucine 277 to alanine mutations that was insensitive to potentiation by ethanol yet retained normal GABA sensitivity in a recombinant expression system. Knockin mice containing this mutant subunit were tested in a range of ethanol behavioral tests. These mutant mice did not develop the typical conditioned taste aversion in response to ethanol and showed complete loss of the motor stimulant effects of ethanol. Conversely, they also demonstrated changes in ethanol intake and preference in multiple tests. The knockin mice showed increased ethanol-induced hypnosis but no difference in anxiolytic effects or recovery from acute ethanol-induced motor incoordination. Overall, these studies demonstrate that the effects of ethanol at GABAergic synapses containing the α2 subunit are important for specific behavioral effects of ethanol that may be relevant to the genetic linkage of this subunit with human alcoholism. PMID:20876231

  17. Ectopic Expression of α6 and δ GABAA Receptor Subunits in Hilar Somatostatin Neurons Increases Tonic Inhibition and Alters Network Activity in the Dentate Gyrus

    PubMed Central

    Tong, Xiaoping; Peng, Zechun; Zhang, Nianhui; Cetina, Yliana; Huang, Christine S.; Wallner, Martin; Otis, Thomas S.

    2015-01-01

    The role of GABAA receptor (GABAAR)-mediated tonic inhibition in interneurons remains unclear and may vary among subgroups. Somatostatin (SOM) interneurons in the hilus of the dentate gyrus show negligible expression of nonsynaptic GABAAR subunits and very low tonic inhibition. To determine the effects of ectopic expression of tonic GABAAR subtypes in these neurons, Cre-dependent viral vectors were used to express GFP-tagged GABAAR subunits (α6 and δ) selectively in hilar SOM neurons in SOM-Cre mice. In single-transfected animals, immunohistochemistry demonstrated strong expression of either the α6 or δ subunit; in cotransfected animals, both subunits were consistently expressed in the same neurons. Electrophysiology revealed a robust increase of tonic current, with progressively larger increases following transfection of δ, α6, and α6/δ subunits, respectively, indicating formation of functional receptors in all conditions and likely coassembly of the subunits in the same receptor following cotransfection. An in vitro model of repetitive bursting was used to determine the effects of increased tonic inhibition in hilar SOM interneurons on circuit activity in the dentate gyrus. Upon cotransfection, the frequency of GABAAR-mediated bursting in granule cells was reduced, consistent with a reduction in synchronous firing among hilar SOM interneurons. Moreover, in vivo studies of Fos expression demonstrated reduced activation of α6/δ-cotransfected neurons following acute seizure induction by pentylenetetrazole. The findings demonstrate that increasing tonic inhibition in hilar SOM interneurons can alter dentate gyrus circuit activity during strong stimulation and suggest that tonic inhibition of interneurons could play a role in regulating excessive synchrony within the network. SIGNIFICANCE STATEMENT In contrast to many hippocampal interneurons, somatostatin (SOM) neurons in the hilus of the dentate gyrus have very low levels of nonsynaptic GABAARs and exhibit

  18. GABAA receptor γ2 subunit knockdown mice have enhanced anxiety-like behavior but unaltered hypnotic response to benzodiazepines

    PubMed Central

    Chandra, Dev; Korpi, Esa R; Miralles, Celia P; De Blas, Angel L; Homanics, Gregg E

    2005-01-01

    Background Gamma-aminobutyric acid type A receptors (GABAA-Rs) are the major inhibitory receptors in the mammalian brain and are modulated by a number of sedative/hypnotic drugs including benzodiazepines and anesthetics. The significance of specific GABAA-Rs subunits with respect to behavior and in vivo drug responses is incompletely understood. The γ2 subunit is highly expressed throughout the brain. Global γ2 knockout mice are insensitive to the hypnotic effects of diazepam and die perinatally. Heterozygous γ2 global knockout mice are viable and have increased anxiety-like behaviors. To further investigate the role of the γ2 subunit in behavior and whole animal drug action, we used gene targeting to create a novel mouse line with attenuated γ2 expression, i.e., γ2 knockdown mice. Results Knockdown mice were created by inserting a neomycin resistance cassette into intron 8 of the γ2 gene. Knockdown mice, on average, showed a 65% reduction of γ2 subunit mRNA compared to controls; however γ2 gene expression was highly variable in these mice, ranging from 10–95% of normal. Immunohistochemical studies demonstrated that γ2 protein levels were also variably reduced. Pharmacological studies using autoradiography on frozen brain sections demonstrated that binding of the benzodiazepine site ligand Ro15-4513 was decreased in mutant mice compared to controls. Behaviorally, knockdown mice displayed enhanced anxiety-like behaviors on the elevated plus maze and forced novelty exploration tests. Surprisingly, mutant mice had an unaltered response to hypnotic doses of the benzodiazepine site ligands diazepam, midazolam and zolpidem as well as ethanol and pentobarbital. Lastly, we demonstrated that the γ2 knockdown mouse line can be used to create γ2 global knockout mice by crossing to a general deleter cre-expressing mouse line. Conclusion We conclude that: 1) insertion of a neomycin resistance gene into intron 8 of the γ2 gene variably reduced the amount of γ2

  19. New insight into the role of the β3 subunit of the GABAA-R in development, behavior, body weight regulation, and anesthesia revealed by conditional gene knockout

    PubMed Central

    Ferguson, Carolyn; Hardy, Steven L; Werner, David F; Hileman, Stanley M; DeLorey, Timothy M; Homanics, Gregg E

    2007-01-01

    Background The β3 subunit of the γ-aminobutyric acid type A receptor (GABAA-R) has been reported to be important for palate formation, anesthetic action, and normal nervous system function. This subunit has also been implicated in the pathogenesis of Angelman syndrome and autism spectrum disorder. To further investigate involvement of this subunit, we previously produced mice with a global knockout of β3. However, developmental abnormalities, compensation, reduced viability, and numerous behavioral abnormalities limited the usefulness of that murine model. To overcome many of these limitations, a mouse line with a conditionally inactivated β3 gene was engineered. Results Gene targeting and embryonic stem cell technologies were used to create mice in which exon 3 of the β3 subunit was flanked by loxP sites (i.e., floxed). Crossing the floxed β3 mice to a cre general deleter mouse line reproduced the phenotype of the previously described global knockout. Pan-neuronal knockout of β3 was achieved by crossing floxed β3 mice to Synapsin I-cre transgenic mice. Palate development was normal in pan-neuronal β3 knockouts but ~61% died as neonates. Survivors were overtly normal, fertile, and were less sensitive to etomidate. Forebrain selective knockout of β3 was achieved using α CamKII-cre transgenic mice. Palate development was normal in forebrain selective β3 knockout mice. These knockouts survived the neonatal period, but ~30% died between 15–25 days of age. Survivors had reduced reproductive fitness, reduced sensitivity to etomidate, were hyperactive, and some became obese. Conclusion Conditional inactivation of the β3 gene revealed novel insight into the function of this GABAA-R subunit. The floxed β3 knockout mice described here will be very useful for conditional knockout studies to further investigate the role of the β3 subunit in development, ethanol and anesthetic action, normal physiology, and pathophysiologic processes. PMID:17927825

  20. GABAA-current rundown of temporal lobe epilepsy is associated with repetitive activation of GABAA “phasic” receptors

    PubMed Central

    Palma, Eleonora; Roseti, Cristina; Maiolino, Francesca; Fucile, Sergio; Martinello, Katiuscia; Mazzuferi, Manuela; Aronica, Eleonora; Manfredi, Mario; Esposito, Vincenzo; Cantore, Gianpaolo; Miledi, Ricardo; Simonato, Michele; Eusebi, Fabrizio

    2007-01-01

    A study was made of the “rundown” of GABAA receptors, microtransplanted to Xenopus oocytes from surgically resected brain tissues of patients afflicted with drug-resistant human mesial temporal lobe epilepsy (mTLE). Cell membranes, isolated from mTLE neocortex specimens, were injected into frog oocytes that rapidly incorporated functional GABAA receptors. Upon repetitive activation with GABA (1 mM), “epileptic” GABAA receptors exhibited a GABAA-current (IGABA) rundown that was significantly enhanced by Zn2+ (≤250 μM), and practically abolished by the high-affinity GABAA receptor inverse agonist SR95531 (gabazine; 2.5–25 μM). Conversely, IGABA generated by “control” GABAA receptors microtransplanted from nonepileptic temporal lobe, lesional TLE, or authoptic disease-free tissues remained stable during repetitive stimulation, even in oocytes treated with Zn2+. We conclude that rundown of mTLE epileptic receptors depends on the presence of “phasic GABAA receptors” that have low sensitivity to antagonism by Zn2+. Additionally, we found that GABAA receptors, microtransplanted from the cerebral cortex of adult rats exhibiting recurrent seizures, caused by pilocarpine-induced status epilepticus, showed greater rundown than control tissue, an event also occurring in patch-clamped rat pyramidal neurons. Rundown of epileptic rat receptors resembled that of human mTLE receptors, being enhanced by Zn2+ (40 μM) and sensitive to the antiepileptic agent levetiracetam, the neurotrophin brain-derived neurotrophic factor, and the phosphatase blocker okadaic acid. Our findings point to the rundown of GABAA receptors as a hallmark of TLE and suggest that modulating tonic and phasic mTLE GABAA receptor activity may represent a useful therapeutic approach to the disease. PMID:18083839

  1. Extrasynaptic GABAA receptors in rat pontine reticular formation increase wakefulness.

    PubMed

    Vanini, Giancarlo; Baghdoyan, Helen A

    2013-03-01

    Gamma-aminobutyric acid (GABA) causes phasic inhibition via synaptic GABAA receptors and tonic inhibition via extrasynaptic GABAA receptors. GABA levels in the extracellular space regulate arousal state and cognition by volume transmission via extrasynaptic GABAA receptors. GABAergic transmission in the pontine reticular formation promotes wakefulness. No previous studies have determined whether an agonist at extrasynaptic GABAA receptors administered into the pontine reticular formation alters sleep and wakefulness. Therefore, this study used gaboxadol (THIP; agonist at extrasynaptic GABAA receptors that contain a δ subunit) to test the hypothesis that extrasynaptic GABAA receptors within the pontine reticular formation modulate sleep and wakefulness. Within/between subjects. University of Michigan. Adult male Crl:CD*(SD) (Sprague-Dawley) rats (n = 10). Microinjection of gaboxadol, the nonsubtype selective GABAA receptor agonist muscimol (positive control), and saline (negative control) into the rostral pontine reticular formation. Gaboxadol significantly increased wakefulness and decreased both nonrapid eye movement sleep and rapid eye movement sleep in a concentration-dependent manner. Relative to saline, gaboxadol did not alter electroencephalogram power. Microinjection of muscimol into the pontine reticular formation of the same rats that received gaboxadol increased wakefulness and decreased sleep. Tonic inhibition via extrasynaptic GABAA receptors that contain a δ subunit may be one mechanism by which the extracellular pool of endogenous GABA in the rostral pontine reticular formation promotes wakefulness. Vanini G; Baghdoyan HA. Extrasynaptic GABAA receptors in rat pontine reticular formation increase wakefulness. SLEEP 2013;36(3):337-343.

  2. The Role of GABAA Receptors in the Development of Alcoholism

    PubMed Central

    Enoch, Mary-Anne

    2008-01-01

    Alcoholism is a common, heritable, chronic relapsing disorder. GABAA receptors undergo allosteric modulation by ethanol, anesthetics, benzodiazepines and neurosteroids and have been implicated in the acute as well as the chronic effects of ethanol including tolerance, dependence and withdrawal. Medications targeting GABAA receptors ameliorate the symptoms of acute withdrawal. Ethanol induces plasticity in GABAA receptors: tolerance is associated with generally decreased GABAA receptor activation and differentially altered subunit expression. The dopamine (DA) mesolimbic reward pathway originating in the ventral tegmental area (VTA), and interacting stress circuitry play an important role in the development of addiction. VTA GABAergic interneurons are the primary inhibitory regulators of DA neurons and a subset of VTA GABAA receptors may be implicated in the switch from heavy drinking to dependence. GABAA receptors modulate anxiety and response to stress; important elements of sustained drinking and relapse. The GABAA receptor subunit genes clustered on chromosome 4 are highly expressed in the reward pathway. Several recent studies have provided strong evidence that one of these genes, GABRA2, is implicated in alcoholism in humans. The influence of the interaction between ethanol and GABAA receptors in the reward pathway on the development of alcoholism together with genetic and epigenetic vulnerabilities will be explored in this review. PMID:18440057

  3. Context-Dependent Modulation of GABAAR-Mediated Tonic Currents

    PubMed Central

    Patel, Bijal; Bright, Damian P.; Mortensen, Martin; Frølund, Bente

    2016-01-01

    Tonic GABA currents mediated by high-affinity extrasynaptic GABAA receptors, are increasingly recognized as important regulators of cell and neuronal network excitability. Dysfunctional GABAA receptor signaling that results in modified tonic GABA currents is associated with a number of neurological disorders. Consequently, developing compounds to selectively modulate the activity of extrasynaptic GABAA receptors underlying tonic inhibition is likely to prove therapeutically useful. Here, we examine the GABAA receptor subtype selectivity of the weak partial agonist, 5-(4-piperidyl)isoxazol-3-ol (4-PIOL), as a potential mechanism for modulating extrasynaptic GABAA receptor-mediated tonic currents. By using recombinant GABAA receptors expressed in HEK293 cells, and native GABAA receptors of cerebellar granule cells, hippocampal neurons, and thalamic relay neurons, 4-PIOL evidently displayed differential agonist and antagonist-type profiles, depending on the extrasynaptic GABAA receptor isoforms targeted. For neurons, this resulted in differential modulation of GABA tonic currents, depending on the cell type studied, their respective GABAA receptor subunit compositions, and critically, on the ambient GABA levels. Unexpectedly, 4-PIOL revealed a significant population of relatively low-affinity γ2 subunit-containing GABAA receptors in the thalamus, which can contribute to tonic inhibition under specific conditions when GABA levels are raised. Together, these data indicate that partial agonists, such as 4-PIOL, may be useful for modulating GABAA receptor-mediated tonic currents, but the direction and extent of this modulation is strongly dependent on relative expression levels of different extrasynaptic GABAA receptor subtypes, and on the ambient GABA levels. SIGNIFICANCE STATEMENT A background level of inhibition (tonic) is important in the brain for controlling neuronal excitability. Increased levels of tonic inhibition are associated with some neurological disorders

  4. Extrasynaptic GABAA Receptors in Rat Pontine Reticular Formation Increase Wakefulness

    PubMed Central

    Vanini, Giancarlo; Baghdoyan, Helen A.

    2013-01-01

    Study Objectives: Gamma-aminobutyric acid (GABA) causes phasic inhibition via synaptic GABAA receptors and tonic inhibition via extrasynaptic GABAA receptors. GABA levels in the extracellular space regulate arousal state and cognition by volume transmission via extrasynaptic GABAA receptors. GABAergic transmission in the pontine reticular formation promotes wakefulness. No previous studies have determined whether an agonist at extrasynaptic GABAA receptors administered into the pontine reticular formation alters sleep and wakefulness. Therefore, this study used gaboxadol (THIP; agonist at extrasynaptic GABAA receptors that contain a δ subunit) to test the hypothesis that extrasynaptic GABAA receptors within the pontine reticular formation modulate sleep and wakefulness. Design: Within/between subjects. Setting: University of Michigan. Patients or Participants: Adult male Crl:CD*(SD) (Sprague-Dawley) rats (n = 10). Interventions: Microinjection of gaboxadol, the nonsubtype selective GABAA receptor agonist muscimol (positive control), and saline (negative control) into the rostral pontine reticular formation. Measurements and Results: Gaboxadol significantly increased wakefulness and decreased both nonrapid eye movement sleep and rapid eye movement sleep in a concentration-dependent manner. Relative to saline, gaboxadol did not alter electroencephalogram power. Microinjection of muscimol into the pontine reticular formation of the same rats that received gaboxadol increased wakefulness and decreased sleep. Conclusion: Tonic inhibition via extrasynaptic GABAA receptors that contain a δ subunit may be one mechanism by which the extracellular pool of endogenous GABA in the rostral pontine reticular formation promotes wakefulness. Citation: Vanini G; Baghdoyan HA. Extrasynaptic GABAA receptors in rat pontine reticular formation increase wakefulness. SLEEP 2013;36(3):337-343. PMID:23450652

  5. Context-Dependent Modulation of GABAAR-Mediated Tonic Currents.

    PubMed

    Patel, Bijal; Bright, Damian P; Mortensen, Martin; Frølund, Bente; Smart, Trevor G

    2016-01-13

    Tonic GABA currents mediated by high-affinity extrasynaptic GABAA receptors, are increasingly recognized as important regulators of cell and neuronal network excitability. Dysfunctional GABAA receptor signaling that results in modified tonic GABA currents is associated with a number of neurological disorders. Consequently, developing compounds to selectively modulate the activity of extrasynaptic GABAA receptors underlying tonic inhibition is likely to prove therapeutically useful. Here, we examine the GABAA receptor subtype selectivity of the weak partial agonist, 5-(4-piperidyl)isoxazol-3-ol (4-PIOL), as a potential mechanism for modulating extrasynaptic GABAA receptor-mediated tonic currents. By using recombinant GABAA receptors expressed in HEK293 cells, and native GABAA receptors of cerebellar granule cells, hippocampal neurons, and thalamic relay neurons, 4-PIOL evidently displayed differential agonist and antagonist-type profiles, depending on the extrasynaptic GABAA receptor isoforms targeted. For neurons, this resulted in differential modulation of GABA tonic currents, depending on the cell type studied, their respective GABAA receptor subunit compositions, and critically, on the ambient GABA levels. Unexpectedly, 4-PIOL revealed a significant population of relatively low-affinity γ2 subunit-containing GABAA receptors in the thalamus, which can contribute to tonic inhibition under specific conditions when GABA levels are raised. Together, these data indicate that partial agonists, such as 4-PIOL, may be useful for modulating GABAA receptor-mediated tonic currents, but the direction and extent of this modulation is strongly dependent on relative expression levels of different extrasynaptic GABAA receptor subtypes, and on the ambient GABA levels. A background level of inhibition (tonic) is important in the brain for controlling neuronal excitability. Increased levels of tonic inhibition are associated with some neurological disorders but there are no

  6. The role of GABA(A) receptors in the development of alcoholism.

    PubMed

    Enoch, Mary-Anne

    2008-07-01

    Alcoholism is a common, heritable, chronic relapsing disorder. GABA(A) receptors undergo allosteric modulation by ethanol, anesthetics, benzodiazepines and neurosteroids and have been implicated in the acute as well as the chronic effects of ethanol including tolerance, dependence and withdrawal. Medications targeting GABA(A) receptors ameliorate the symptoms of acute withdrawal. Ethanol induces plasticity in GABA(A) receptors: tolerance is associated with generally decreased GABA(A) receptor activation and differentially altered subunit expression. The dopamine (DA) mesolimbic reward pathway originating in the ventral tegmental area (VTA), and interacting stress circuitry play an important role in the development of addiction. VTA GABAergic interneurons are the primary inhibitory regulators of DA neurons and a subset of VTA GABA(A) receptors may be implicated in the switch from heavy drinking to dependence. GABA(A) receptors modulate anxiety and response to stress; important elements of sustained drinking and relapse. The GABA(A) receptor subunit genes clustered on chromosome 4 are highly expressed in the reward pathway. Several recent studies have provided strong evidence that one of these genes, GABRA2, is implicated in alcoholism in humans. The influence of the interaction between ethanol and GABA(A) receptors in the reward pathway on the development of alcoholism together with genetic and epigenetic vulnerabilities will be explored in this review.

  7. Role of GABAA receptors in the physiology and pharmacology of sleep.

    PubMed

    Winsky-Sommerer, Raphaëlle

    2009-05-01

    Most sedative-hypnotics used in insomnia treatment target the gamma-aminobutyric acid (GABA)(A) receptors. A vast repertoire of GABA(A) receptor subtypes has been identified and displays specific electrophysiological and functional properties. GABA(A)-mediated inhibition traditionally refers to 'phasic' inhibition, arising from synaptic GABA(A) receptors which transiently inhibit neurons. However, there is growing evidence that peri- or extra-synaptic GABA(A) receptors are continuously activated by low GABA concentrations and mediate a 'tonic' conductance. This slower type of signaling appears to play a key role in controlling cell excitability. This review aims at summarizing recent knowledge on GABA transmission, including the emergence of tonic conductance, and highlighting the importance of GABA(A) receptor heterogeneity. The mechanism of action of sedative-hypnotic drugs and their effects on sleep and the electroencephalogram will be reported. Furthermore, studies using genetically engineered mice will be emphasized, providing insights into the role of GABA(A) receptors in mechanisms underlying physiological and pharmacological sleep. Finally, we will address the potential of GABA(A) receptor pharmacology for the treatment of insomnia.

  8. Compromising the phosphodependent regulation of the GABAAR β3 subunit reproduces the core phenotypes of autism spectrum disorders.

    PubMed

    Vien, Thuy N; Modgil, Amit; Abramian, Armen M; Jurd, Rachel; Walker, Joshua; Brandon, Nicholas J; Terunuma, Miho; Rudolph, Uwe; Maguire, Jamie; Davies, Paul A; Moss, Stephen J

    2015-12-01

    Alterations in the efficacy of neuronal inhibition mediated by GABAA receptors (GABAARs) containing β3 subunits are continually implicated in autism spectrum disorders (ASDs). In vitro, the plasma membrane stability of GABAARs is potentiated via phosphorylation of serine residues 408 and 409 (S408/9) in the β3 subunit, an effect that is mimicked by their mutation to alanines. To assess if modifications in β3 subunit expression contribute to ASDs, we have created a mouse in which S408/9 have been mutated to alanines (S408/9A). S408/9A homozygotes exhibited increased phasic, but decreased tonic, inhibition, events that correlated with alterations in the membrane stability and synaptic accumulation of the receptor subtypes that mediate these distinct forms of inhibition. S408/9A mice exhibited alterations in dendritic spine structure, increased repetitive behavior, and decreased social interaction, hallmarks of ASDs. ASDs are frequently comorbid with epilepsy, and consistent with this comorbidity, S408/9A mice exhibited a marked increase in sensitivity to seizures induced by the convulsant kainic acid. To assess the relevance of our studies using S408/9A mice for the pathophysiology of ASDs, we measured S408/9 phosphorylation in Fmr1 KO mice, a model of fragile X syndrome, the most common monogenetic cause of ASDs. Phosphorylation of S408/9 was selectively and significantly enhanced in Fmr1 KO mice. Collectively, our results suggest that alterations in phosphorylation and/or activity of β3-containing GABAARs may directly contribute to the pathophysiology of ASDs.

  9. Tobacco smoking interferes with GABAA receptor neuroadaptations during prolonged alcohol withdrawal

    PubMed Central

    Cosgrove, Kelly P.; McKay, Reese; Esterlis, Irina; Kloczynski, Tracy; Perkins, Evgenia; Bois, Frederic; Pittman, Brian; Lancaster, Jack; Glahn, David C.; O’Malley, Stephanie; Carson, Richard E.; Krystal, John H.

    2014-01-01

    Understanding the effects of tobacco smoking on neuroadaptations in GABAA receptor levels over alcohol withdrawal will provide critical insights for the treatment of comorbid alcohol and nicotine dependence. We conducted parallel studies in human subjects and nonhuman primates to investigate the differential effects of tobacco smoking and nicotine on changes in GABAA receptor availability during acute and prolonged alcohol withdrawal. We report that alcohol withdrawal with or without concurrent tobacco smoking/nicotine consumption resulted in significant and robust elevations in GABAA receptor levels over the first week of withdrawal. Over prolonged withdrawal, GABAA receptors returned to control levels in alcohol-dependent nonsmokers, but alcohol-dependent smokers had significant and sustained elevations in GABAA receptors that were associated with craving for alcohol and cigarettes. In nonhuman primates, GABAA receptor levels normalized by 1 mo of abstinence in both groups—that is, those that consumed alcohol alone or the combination of alcohol and nicotine. These data suggest that constituents in tobacco smoke other than nicotine block the recovery of GABAA receptor systems during sustained alcohol abstinence, contributing to alcohol relapse and the perpetuation of smoking. PMID:25453062

  10. Recruitment of GABA(A) receptors and fearfulness in chicks: modulation by systemic insulin and/or epinephrine.

    PubMed

    Cid, Mariana Paula; Toledo, Carolina Maribel; Salvatierra, Nancy Alicia

    2013-02-01

    One-day-old chicks were individually assessed on their latency to peck pebbles, and categorized as low latency (LL) or high latency (HL) according to fear. Interactions between acute stress and systemic insulin and epinephrine on GABA(A) receptor density in the forebrain were studied. At 10 days of life, LL and HL chicks were intraperitoneally injected with insulin, epinephrine or saline, and immediately after stressed by partial water immersion for 15 min and killed by decapitation. Forebrains were dissected and the GABA(A) receptor density was measured ex vivo by the (3)[H]-flunitrazepam binding assay in synaptosomes. In non-stressed chicks, insulin (non-hypoglycemic dose) at 2.50 IU/kg of body weight incremented the Bmax by 40.53% in the HL chicks compared to saline group whereas no significant differences were observed between individuals in the LL subpopulation. Additionally, insulin increased the Bmax (23.48%) in the HL group with respect to the LL ones, indicating that the insulin responses were different according to the anxiety of each category. Epinephrine administration (0.25 and 0.50mg/kg) incremented the Bmax in non-stressed chicks, in the LL group by about 37% and 33%, respectively, compared to ones injected with saline. In the stressed chicks, 0.25mg/kg bw epinephrine increased the Bmax significantly in the HL group by about 24% compared to saline, suggesting that the effect of epinephrine was only observed in the HL group under acute stress conditions. Similarly, the same epinephrine doses co-administered with insulin increased the receptor density in both subpopulations and also showed that the highest dose of epinephrine did not further increase the maximum density of GABA(A)R in HL chicks. These results suggest that systemic epinephrine, perhaps by evoking central norepinephrine release, modulated the increase in the forebrain GABA(A) receptor recruitment induced by both insulin and stress in different ways depending on the subpopulation

  11. Enhanced GABAA-Mediated Tonic Inhibition in Auditory Thalamus of Rats with Behavioral Evidence of Tinnitus.

    PubMed

    Sametsky, Evgeny A; Turner, Jeremy G; Larsen, Deb; Ling, Lynne; Caspary, Donald M

    2015-06-24

    Accumulating evidence suggests a role for inhibitory neurotransmitter dysfunction in the pathology of tinnitus. Opposing hypotheses proposed either a pathologic decrease or increase of GABAergic inhibition in medial geniculate body (MGB). In thalamus, GABA mediates fast synaptic inhibition via synaptic GABAA receptors (GABAARs) and persistent tonic inhibition via high-affinity extrasynaptic GABAARs. Given that extrasynaptic GABAARs control the firing mode of thalamocortical neurons, we examined tonic GABAAR currents in MGB neurons in vitro, using the following three groups of adult rats: unexposed control (Ctrl); sound exposed with behavioral evidence of tinnitus (Tin); and sound exposed with no behavioral evidence of tinnitus (Non-T). Tonic GABAAR currents were evoked using the selective agonist gaboxadol. Months after a tinnitus-inducing sound exposure, gaboxadol-evoked tonic GABAAR currents showed significant tinnitus-related increases contralateral to the sound exposure. In situ hybridization studies found increased mRNA levels for GABAAR δ-subunits contralateral to the sound exposure. Tin rats showed significant increases in the number of spikes per burst evoked using suprathreshold-injected current steps. In summary, we found little evidence of tinnitus-related decreases in GABAergic neurotransmission. Tinnitus and chronic pain may reflect thalamocortical dysrhythmia, which results from abnormal theta-range resonant interactions between thalamus and cortex, due to neuronal hyperpolarization and the initiation of low-threshold calcium spike bursts (Walton and Llinás, 2010). In agreement with this hypothesis, we found tinnitus-related increases in tonic extrasynaptic GABAAR currents, in action potentials/evoked bursts, and in GABAAR δ-subunit gene expression. These tinnitus-related changes in GABAergic function may be markers for tinnitus pathology in the MGB. Copyright © 2015 the authors 0270-6474/15/359369-12$15.00/0.

  12. The α5 subunit-containing GABAA receptors contribute to chronic pain

    PubMed Central

    Bravo-Hernández, Mariana; Corleto, José A.; Barragán-Iglesias, Paulino; González-Ramírez, Ricardo; Pineda-Farias, Jorge B.; Felix, Ricardo; Calcutt, Nigel A.; Delgado-Lezama, Rodolfo; Marsala, Martin; Granados-Soto, Vinicio

    2016-01-01

    It has been recently proposed that α5-subunit containing GABAA receptors (α5-GABAA receptors) that mediate tonic inhibition might be involved in pain. The purpose of this study was to investigate the contribution of α5-GABAA receptors in the loss of GABAergic inhibition and in formalin-, Complete Freund’s adjuvant (CFA)- and L5/L6 spinal nerve ligation-induced long-lasting hypersensitivity. Formalin or CFA injection and L5/L6 spinal nerve ligation produced long-lasting allodynia and hyperalgesia. Moreover, formalin injection impaired the rate-dependent depression (RDD) of the Hofmann reflex. Peripheral and intrathecal pre-treatment or post-treatment with the α5-GABAA receptor antagonist, L-655,708 (0.15–15 nmol) prevented and reversed, respectively, these long-lasting behaviors. Formalin injection increased α5-GABAA receptors mRNA expression in the spinal cord and dorsal root ganglia (DRG) mainly at 3 days. α5-GABAA receptors were localized in the dorsal spinal cord and DRG co-labeling with NeuN, CGRP and IB4 suggesting their presence in peptidergic and non-peptidergic neurons. These receptors were found mainly in small- and medium-size neurons. Formalin injection enhanced α5-GABAA receptors fluorescence intensity in spinal cord and DRG at 3 and 6 days. Intrathecal administration of L-655,708 (15 nmol) prevented and reversed formalin-induced impairment of RDD. These results suggest that α5-GABAA receptors play a role in the loss of GABAergic inhibition and contribute to long-lasting secondary allodynia and hyperalgesia. PMID:26545088

  13. [Effect of acupuncture at different acupoints on expression of hypothalamic GABA and GABA(A) receptor proteins in insomnia rats].

    PubMed

    Zhou, Yan-Li; Gao, Xi-Yan; Wang, Pei-Yu; Ren, Shan

    2012-08-01

    To observe the effect of acupuncture of "Shenmai" (BL 62) and "Zhaohai" (KI 6), "Shenmen" (HT 7), etc. on the expression of hypothalamic gamma-aminobutyric acid (GABA) and GABA(A) receptor (GABA(A)R) proteins in experimental insomnia rats so as to explore its mechanism underlying improving sleeping. Seventy Wistar rats were randomly divided into normal control, model, "Sanyinjiao" (SP6), "Neiguan" (PC 6), "Zusanli" (ST 36), "Shenmen" (HT7), and "Shenmai" (BL 62)-Zhaohai (KI 6, BL 62-KI 6) groups, with 10 rats in each group. Insomnia model was established by intraperitoneal injection of chlorophenylalanine solution (PCPA, 1 mL/100 g). An acupuncture needle was inserted into each of the bilateral HT 7, PC 6, SP 6, ST 36 and BL 62-KI 6 respectively and manipulated for about 1 min, once daily for 7 days. Hypothamic GABA and GABA(A)R protein expressions were detected by immunohistochemistry. The animals' physical ability was evaluated by using pole-climbing test in a water tank. In comparison with the normal control group, the numbers of hypothalamic GABA immunoreaction (IR)- and GABA(A)R IR-positive neurons and the pole-climbing time were reduced significantly in the model group (P < 0.05). While in comparison with the model group, the numbers of hypothalamic GABA IR-positive neurons and those of hypothalamic GABA(A)R IR-positive neurons in the HT 7, PC 6, SP 6, ST 36 and BL 62-KI 6 groups, as well as the pole-climbing duration in the SP 6, ST 36 and BL 62-KI 6 groups were increased considerably (P < 0.05, P < 0.01). The effects of HT 7 and BL 62-KI 6 groups were significantly superior to those of PC 6, ST 36 and SP 6 groups in up-regulating GABA and GABA(A)R expression, and the effect of BL 62-KI 6 group was remarkably better than those of HT 7, PC 6, SP 6 and ST 36 groups in lengthening the pole-climbing time (P < 0.05). Acupuncture can effectively suppress insomnia induced down-regulation of hypothalamic GABA and GABA(A)R in rats and lengthen pole-climbing time

  14. Potentiation of tonic GABAergic inhibition by activation of postsynaptic kainate receptors.

    PubMed

    Jiang, L; Kang, D; Kang, J

    2015-07-09

    Presynaptic kainate-type glutamate ionotropic receptors (KARs) that mediate either the depression or the facilitation of GABA release have been intensively studied. Little attention has been given to the modulation of GABAA receptors (GABAARs) by postsynaptic KARs. Recent studies suggest that two GABAAR populations, synaptic (sGABAAR) and extrasynaptic (eGABAAR) GABAARs, mediate phasic and tonic forms of inhibition, respectively. Tonic inhibition plays an important role in the excitability of neuronal circuits and the occurrence of epileptic seizures. For this study, we are the first to report that the activation of postsynaptic KARs by the KAR agonist, Kainic acid (KA, 5 μM), enhanced tonic inhibition by potentiating eGABAARs. KA enhanced THIP-induced eGABAAR currents and prolonged the rise and decay time of muscimol-induced sGABAAR/eGABAAR currents, but also depressed the amplitude of evoked inhibitory postsynaptic currents (IPSCs), unitary IPSCs (uIPSCs), and muscimol-induced sGABAAR/eGABAAR currents. The PKC inhibitor, staurosporine (1 μM), in the patch pipette solution fully blocked the KA-induced potentiation of tonic inhibition, suggesting the involvement of an intracellular PKC pathway. Our study suggests that the activation of postsynaptic KARs potentiates eGABAARs but depresses sGABAARs. By activating postsynaptic KARs, synaptically released glutamate depresses phasic inhibition to facilitate neuronal plasticity, but potentiates tonic inhibition to protect neurons from over-excitation. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Involvement of GABAA receptor in Bufo arenarum oocyte maturation.

    PubMed

    Toranzo, G Sánchez; Zelarayán, L; Bonilla, F; Oterino, J; Bühler, M I

    2008-05-01

    Amphibian oocytes meiotic arrest is released under the stimulus of progesterone; this hormone interacts with the oocyte surface and starts a cascade of events leading to the activation of a cytoplasmic maturation promoting factor (MPF) that induces germinal vesicle breakdown (GVBD), chromosome condensation and extrusion of the first polar body. The aim of this work was to determine whether the activation of a GABAA receptor is able to induce GVBD in fully grown denuded oocytes of Bufo arenarum and to analyse its possible participation in progesterone-induced maturation. We also evaluated the role of purines and phospholipids in the maturation process induced by a GABAA receptor agonist such as muscimol. Our results indicated that the activation of the GABAA receptor by muscimol induces maturation in a dose- and time-dependent manner and that this activation is a genuine maturation that enables oocytes to form pronuclei. Assays with a receptor antagonist, picrotoxine, showed that the maturation induced by muscimol was inhibited. Treatment with picrotoxine, however, shows that the participation of GABAA receptor in progesterone-induced maturation is not significant. In addition, our results indicate that high intracellular levels of purines obtained by the use of db-AMPc and theophylline or the inhibition of the phosphatidylinositol 4,5-bisphosphate (PIP2 hydrolysis by neomycin and PIP2 turn over by LiCl, respectively, inhibited the maturation induced by muscimol. Treatment with H-7 indicated, however, that PKC activation is not necessary for GVBD induced by the GABAA receptor agonist. Results suggest that the transduction pathway used by the GABAA receptor to induce maturation is different from those used by progesterone.

  16. GABAA Receptor Regulation of Voluntary Ethanol Drinking Requires PKCε

    PubMed Central

    Besheer, Joyce; Lepoutre, Veronique; Mole, Beth; Hodge, Clyde W.

    2010-01-01

    Protein kinase C (PKC) regulates a variety of neural functions, including ion channel activity, neurotransmitter release, receptor desensitization and differentiation. We have shown previously that mice lacking the ε-isoform of PKC (PKCε) self-administer 75% less ethanol and exhibit supersensitivity to acute ethanol and allosteric positive modulators of GABAA receptors when compared with wild-type controls. The purpose of the present study was to examine involvement of PKCε in GABAA receptor regulation of voluntary ethanol drinking. To address this question, PKCε null-mutant and wild-type control mice were allowed to drink ethanol (10% v/v) vs. water on a two-bottle continuous access protocol. The effects of diazepam (nonselective GABAA BZ positive modulator), zolpidem (GABAA α1 agonist), L-655,708 (BZ-sensitive GABAA α5 inverse agonist), and flumazenil (BZ antagonist) were then tested on ethanol drinking. Ethanol intake (grams/kg/day) by wild-type mice decreased significantly after diazepam or zolpidem but increased after L-655,708 administration. Flumazenil antagonized diazepam-induced reductions in ethanol drinking in wild-type mice. However, ethanol intake by PKCε null mice was not altered by any of the GABAergic compounds even though effects were seen on water drinking in these mice. Increased acute sensitivity to ethanol and diazepam, which was previously reported, was confirmed in PKCε null mice. Thus, results of the present study show that PKCε null mice do not respond to doses of GABAA BZ receptor ligands that regulate ethanol drinking by wild-type control mice. This suggests that PKCε may be required for GABAA receptor regulation of chronic ethanol drinking. PMID:16881070

  17. Interneuron- and GABAA receptor-specific inhibitory synaptic plasticity in cerebellar Purkinje cells

    NASA Astrophysics Data System (ADS)

    He, Qionger; Duguid, Ian; Clark, Beverley; Panzanelli, Patrizia; Patel, Bijal; Thomas, Philip; Fritschy, Jean-Marc; Smart, Trevor G.

    2015-07-01

    Inhibitory synaptic plasticity is important for shaping both neuronal excitability and network activity. Here we investigate the input and GABAA receptor subunit specificity of inhibitory synaptic plasticity by studying cerebellar interneuron-Purkinje cell (PC) synapses. Depolarizing PCs initiated a long-lasting increase in GABA-mediated synaptic currents. By stimulating individual interneurons, this plasticity was observed at somatodendritic basket cell synapses, but not at distal dendritic stellate cell synapses. Basket cell synapses predominantly express β2-subunit-containing GABAA receptors; deletion of the β2-subunit ablates this plasticity, demonstrating its reliance on GABAA receptor subunit composition. The increase in synaptic currents is dependent upon an increase in newly synthesized cell surface synaptic GABAA receptors and is abolished by preventing CaMKII phosphorylation of GABAA receptors. Our results reveal a novel GABAA receptor subunit- and input-specific form of inhibitory synaptic plasticity that regulates the temporal firing pattern of the principal output cells of the cerebellum.

  18. Functional characterization of GABAA receptor-mediated modulation of cortical neuron network activity in microelectrode array recordings.

    PubMed

    Bader, Benjamin M; Steder, Anne; Klein, Anders Bue; Frølund, Bente; Schroeder, Olaf H U; Jensen, Anders A

    2017-01-01

    The numerous γ-aminobutyric acid type A receptor (GABAAR) subtypes are differentially expressed and mediate distinct functions at neuronal level. In this study we have investigated GABAAR-mediated modulation of the spontaneous activity patterns of primary neuronal networks from murine frontal cortex by characterizing the effects induced by a wide selection of pharmacological tools at a plethora of activity parameters in microelectrode array (MEA) recordings. The basic characteristics of the primary cortical neurons used in the recordings were studied in some detail, and the expression levels of various GABAAR subunits were investigated by western blotting and RT-qPCR. In the MEA recordings, the pan-GABAAR agonist muscimol and the GABABR agonist baclofen were observed to mediate phenotypically distinct changes in cortical network activity. Selective augmentation of αβγ GABAAR signaling by diazepam and of δ-containing GABAAR (δ-GABAAR) signaling by DS1 produced pronounced changes in the majority of the activity parameters, both drugs mediating similar patterns of activity changes as muscimol. The apparent importance of δ-GABAAR signaling for network activity was largely corroborated by the effects induced by the functionally selective δ-GABAAR agonists THIP and Thio-THIP, whereas the δ-GABAAR selective potentiator DS2 only mediated modest effects on network activity, even when co-applied with low THIP concentrations. Interestingly, diazepam exhibited dramatically right-shifted concentration-response relationships at many of the activity parameters when co-applied with a trace concentration of DS1 compared to when applied alone. In contrast, the potencies and efficacies displayed by DS1 at the networks were not substantially altered by the concomitant presence of diazepam. In conclusion, the holistic nature of the information extractable from the MEA recordings offers interesting insights into the contributions of various GABAAR subtypes/subgroups to cortical

  19. The desensitization gate of inhibitory Cys-loop receptors

    NASA Astrophysics Data System (ADS)

    Gielen, Marc; Thomas, Philip; Smart, Trevor G.

    2015-04-01

    Cys-loop neurotransmitter-gated ion channels are vital for communication throughout the nervous system. Following activation, these receptors enter into a desensitized state in which the ion channel shuts even though the neurotransmitter molecules remain bound. To date, the molecular determinants underlying this most fundamental property of Cys-loop receptors have remained elusive. Here we present a generic mechanism for the desensitization of Cys-loop GABAA (GABAARs) and glycine receptors (GlyRs), which both mediate fast inhibitory synaptic transmission. Desensitization is regulated by interactions between the second and third transmembrane segments, which affect the ion channel lumen near its intracellular end. The GABAAR and GlyR pore blocker picrotoxin prevented desensitization, consistent with its deep channel-binding site overlapping a physical desensitization gate.

  20. GABAA Receptors, Anesthetics and Anticonvulsants in Brain Development

    PubMed Central

    Henschel, Oliver; Gipson, Keith E.; Bordey, Angelique

    2008-01-01

    GABA, acting via GABAA receptors, is well-accepted as the main inhibitory neurotransmitter of the mature brain, where it dampens neuronal excitability. The receptor's properties have been studied extensively, yielding important information about its structure, pharmacology, and regulation that are summarized in this review. Several GABAergic drugs have been commonly used as anesthetics, sedatives, and anticonvulsants for decades. However, findings that GABA has critical functions in brain development, in particular during the late embryonic and neonatal period, raise worthwhile questions regarding the side effects of GABAergic drugs that may lead to long-term cognitive deficits. Here, we will review some of these drugs in parallel with the control of CNS development that GABA exerts via activation of GABAA receptors. This review aims to provide a basic science and clinical perspective on the function of GABA and related pharmaceuticals acting at GABAA receptors. PMID:18537647

  1. Menthol enhances phasic and tonic GABAA receptor-mediated currents in midbrain periaqueductal grey neurons

    PubMed Central

    Lau, Benjamin K; Karim, Shafinaz; Goodchild, Ann K; Vaughan, Christopher W; Drew, Geoffrey M

    2014-01-01

    Background and Purpose Menthol, a naturally occurring compound in the essential oil of mint leaves, is used for its medicinal, sensory and fragrant properties. Menthol acts via transient receptor potential (TRPM8 and TRPA1) channels and as a positive allosteric modulator of recombinant GABAA receptors. Here, we examined the actions of menthol on GABAA receptor-mediated currents in intact midbrain slices. Experimental Approach Whole-cell voltage-clamp recordings were made from periaqueductal grey (PAG) neurons in midbrain slices from rats to determine the effects of menthol on GABAA receptor-mediated phasic IPSCs and tonic currents. Key Results Menthol (150–750 μM) produced a concentration-dependent prolongation of spontaneous GABAA receptor-mediated IPSCs, but not non-NMDA receptor-mediated EPSCs throughout the PAG. Menthol actions were unaffected by TRPM8 and TRPA1 antagonists, tetrodotoxin and the benzodiazepine antagonist, flumazenil. Menthol also enhanced a tonic current, which was sensitive to the GABAA receptor antagonists, picrotoxin (100 μM), bicuculline (30 μM) and Zn2+ (100 μM), but unaffected by gabazine (10 μM) and a GABAC receptor antagonist, 1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid hydrate (TPMPA; 50 μM). In addition, menthol potentiated currents induced by the extrasynaptic GABAA receptor agonist THIP/gaboxadol (10 μM). Conclusions and Implications These results suggest that menthol positively modulates both synaptic and extrasynaptic populations of GABAA receptors in native PAG neurons. The development of agents that potentiate GABAA-mediated tonic currents and phasic IPSCs in a manner similar to menthol could provide a basis for novel GABAA-related pharmacotherapies. PMID:24460753

  2. Lipid raft integrity affects GABAA receptor, but not NMDA receptor modulation by psychopharmacological compounds.

    PubMed

    Nothdurfter, Caroline; Tanasic, Sascha; Di Benedetto, Barbara; Uhr, Manfred; Wagner, Eva-Maria; Gilling, Kate E; Parsons, Chris G; Rein, Theo; Holsboer, Florian; Rupprecht, Rainer; Rammes, Gerhard

    2013-07-01

    Lipid rafts have been shown to play an important role for G-protein mediated signal transduction and the function of ligand-gated ion channels including their modulation by psychopharmacological compounds. In this study, we investigated the functional significance of the membrane distribution of NMDA and GABAA receptor subunits in relation to the accumulation of the tricyclic antidepressant desipramine (DMI) and the benzodiazepine diazepam (Diaz). In the presence of Triton X-100, which allowed proper separation of the lipid raft marker proteins caveolin-1 and flotillin-1 from the transferrin receptor, all receptor subunits were shifted to the non-raft fractions. In contrast, under detergent-free conditions, NMDA and GABAA receptor subunits were detected both in raft and non-raft fractions. Diaz was enriched in non-raft fractions without Triton X-100 in contrast to DMI, which preferentially accumulated in lipid rafts. Impairment of lipid raft integrity by methyl-β-cyclodextrine (MβCD)-induced cholesterol depletion did not change the inhibitory effect of DMI at the NMDA receptor, whereas it enhanced the potentiating effect of Diaz at the GABAA receptor at non-saturating concentrations of GABA. These results support the hypothesis that the interaction of benzodiazepines with the GABAA receptor likely occurs outside of lipid rafts while the antidepressant DMI acts on ionotropic receptors both within and outside these membrane microdomains.

  3. Modulation of neuronal and recombinant GABAA receptors by redox reagents

    PubMed Central

    Amato, Alessandra; Connolly, Christopher N; Moss, Stephen J; Smart, Trevor G

    1999-01-01

    The functional role played by the postulated disulphide bridge in γ-aminobutyric acid type A (GABAA) receptors and its susceptibility to oxidation and reduction were studied using recombinant (murine receptor subunits expressed in human embryonic kidney cells) and rat neuronal GABAA receptors in conjunction with whole-cell and single channel patch-clamp techniques. The reducing agent dithiothreitol (DTT) reversibly potentiated GABA-activated responses (IGABA) of α1β1 or α1β2 receptors while the oxidizing reagent 5,5′-dithio-bis-(2-nitrobenzoic acid) (DTNB) caused inhibition. Redox modulation of IGABA was independent of GABA concentration, membrane potential and the receptor agonist and did not affect the GABA EC50 or Hill coefficient. The endogenous antioxidant reduced glutathione (GSH) also potentiated IGABA in α1β2 receptors, while both the oxidized form of DTT and glutathione (GSSG) caused small inhibitory effects. Recombinant receptors composed of α1β1γ2S or α1β2γ2S were considerably less sensitive to DTT and DTNB. For neuronal GABAA receptors, IGABA was enhanced by flurazepam and relatively unaffected by redox reagents. However, in cultured sympathetic neurones, nicotinic acetylcholine-activated responses were inhibited by DTT whilst in cerebellar granule neurones, NMDA-activated currents were potentiated by DTT and inhibited by DTNB. Single GABA-activated ion channel currents exhibited a conductance of 16 pS for α1β1 constructs. DTT did not affect the conductance or individual open time constants determined from dwell time histograms, but increased the mean open time by affecting the channel open probability without increasing the number of cell surface receptors. A kinetic model of the effects of DTT and DTNB suggested that the receptor existed in equilibrium between oxidized and reduced forms. DTT increased the rate of entry into reduced receptor forms and also into desensitized states. DTNB reversed these kinetic effects. Our results

  4. Efficient modulation of γ-aminobutyric acid type A receptors by piperine derivatives.

    PubMed

    Schöffmann, Angela; Wimmer, Laurin; Goldmann, Daria; Khom, Sophia; Hintersteiner, Juliane; Baburin, Igor; Schwarz, Thomas; Hintersteininger, Michael; Pakfeifer, Peter; Oufir, Mouhssin; Hamburger, Matthias; Erker, Thomas; Ecker, Gerhard F; Mihovilovic, Marko D; Hering, Steffen

    2014-07-10

    Piperine activates TRPV1 (transient receptor potential vanilloid type 1 receptor) receptors and modulates γ-aminobutyric acid type A receptors (GABAAR). We have synthesized a library of 76 piperine analogues and analyzed their effects on GABAAR by means of a two-microelectrode voltage-clamp technique. GABAAR were expressed in Xenopus laevis oocytes. Structure-activity relationships (SARs) were established to identify structural elements essential for efficiency and potency. Efficiency of piperine derivatives was significantly increased by exchanging the piperidine moiety with either N,N-dipropyl, N,N-diisopropyl, N,N-dibutyl, p-methylpiperidine, or N,N-bis(trifluoroethyl) groups. Potency was enhanced by replacing the piperidine moiety by N,N-dibutyl, N,N-diisobutyl, or N,N-bistrifluoroethyl groups. Linker modifications did not substantially enhance the effect on GABAAR. Compound 23 [(2E,4E)-5-(1,3-benzodioxol-5-yl)-N,N-dipropyl-2,4-pentadienamide] induced the strongest modulation of GABAA (maximal GABA-induced chloride current modulation (IGABA-max = 1673% ± 146%, EC50 = 51.7 ± 9.5 μM), while 25 [(2E,4E)-5-(1,3-benzodioxol-5-yl)-N,N-dibutyl-2,4-pentadienamide] displayed the highest potency (EC50 = 13.8 ± 1.8 μM, IGABA-max = 760% ± 47%). Compound 23 induced significantly stronger anxiolysis in mice than piperine and thus may serve as a starting point for developing novel GABAAR modulators.

  5. Extrasynaptic localization of glycine receptors in the rat supraoptic nucleus: further evidence for their involvement in glia-to-neuron communication.

    PubMed

    Deleuze, C; Alonso, G; Lefevre, I A; Duvoid-Guillou, A; Hussy, N

    2005-01-01

    Neurons of the rat supraoptic nucleus (SON) express glycine receptors (GlyRs), which are implicated in the osmoregulation of neuronal activity. The endogenous agonist of the receptors has been postulated to be taurine, shown to be released from astrocytes. We here provide additional pieces of evidence supporting the absence of functional glycinergic synapses in the SON. First, we show that blockade of GlyRs with strychnine has no effect on either the amplitude or frequency of miniature inhibitory postsynaptic currents recorded in SON neurons, whereas they were all suppressed by the GABA(A) antagonist gabazine. Then, double immunostaining of sections with presynaptic markers and either GlyR or GABA(A) receptor (GABA(A)R) antibodies indicates that, in contrast with GABA(A)Rs, most GlyR membrane clusters are not localized facing presynaptic terminals, indicative of their extrasynaptic localization. Moreover, we found a striking anatomical association between SON GlyR clusters and glial fibrillary acidic protein (GFAP)-positive astroglial processes, which contain high levels of taurine. This type of correlation is specific to GlyRs, since GABA(A)R clusters show no association with GFAP-positive structures. These results substantiate and strengthen the concept of extrasynaptic GlyRs mediating a paracrine communication between astrocytes and neurons in the SON.

  6. 5-HT1A receptor blockade reverses GABAA receptor α3 subunit-mediated anxiolytic effects on stress-induced hyperthermia

    PubMed Central

    van Oorschot, Ruud; Korte, S. Mechiel; Olivier, Berend; Groenink, Lucianne

    2010-01-01

    Rationale Stress-related disorders are associated with dysfunction of both serotonergic and GABAergic pathways, and clinically effective anxiolytics act via both neurotransmitter systems. As there is evidence that the GABAA and the serotonin receptor system interact, a serotonergic component in the anxiolytic actions of benzodiazepines could be present. Objectives The main aim of the present study was to investigate whether the anxiolytic effects of (non-)selective α subunit GABAA receptor agonists could be reversed with 5-HT1A receptor blockade using the stress-induced hyperthermia (SIH) paradigm. Results The 5-HT1A receptor antagonist WAY-100635 (0.1–1 mg/kg) reversed the SIH-reducing effects of the non-α-subunit selective GABAA receptor agonist diazepam (1–4 mg/kg) and the GABAA receptor α3-subunit selective agonist TP003 (1 mg/kg), whereas WAY-100635 alone was without effect on the SIH response or basal body temperature. At the same time, co-administration of WAY-100635 with diazepam or TP003 reduced basal body temperature. WAY-100635 did not affect the SIH response when combined with the preferential α1-subunit GABAA receptor agonist zolpidem (10 mg/kg), although zolpidem markedly reduced basal body temperature. Conclusions The present study suggests an interaction between GABAA receptor α-subunits and 5-HT1A receptor activation in the SIH response. Specifically, our data indicate that benzodiazepines affect serotonergic signaling via GABAA receptor α3-subunits. Further understanding of the interactions between the GABAA and serotonin system in reaction to stress may be valuable in the search for novel anxiolytic drugs. PMID:20535452

  7. Anxiety and Depression: Mouse Genetics and Pharmacological Approaches to the Role of GABAA Receptor Subtypes

    PubMed Central

    Smith, Kiersten S.; Rudolph, Uwe

    2012-01-01

    GABAA receptors mediate fast synaptic inhibitory neurotransmission throughout the central nervous system. Recent work indicates a role for GABAA receptors in physiologically modulating anxiety and depression levels. In this review, we summarize research that led to the identification of the essential role of GABAA receptors in counteracting trait anxiety and depression-related behaviors, and research aimed at identifying individual GABAA receptor subtypes involved in physiological and pharmacological modulation of emotions. PMID:21810433

  8. Regulated lysosomal trafficking as a mechanism for regulating GABAA receptor abundance at synapses in Caenorhabditis elegans.

    PubMed

    Davis, Kathleen M; Sturt, Brianne L; Friedmann, Andrew J; Richmond, Janet E; Bessereau, Jean-Louis; Grant, Barth D; Bamber, Bruce A

    2010-08-01

    GABA(A) receptor plasticity is important for both normal brain function and disease progression. We are studying GABA(A) receptor plasticity in Caenorhabditis elegans using a genetic approach. Acute exposure of worms to the GABA(A) agonist muscimol hyperpolarizes postsynaptic cells, causing paralysis. Worms adapt after several hours, but show uncoordinated locomotion consistent with decreased GABA signaling. Using patch-clamp and immunofluorescence approaches, we show that GABA(A) receptors are selectively removed from synapses during adaptation. Subunit mRNA levels were unchanged, suggesting a post-transcriptional mechanism. Mutants with defective lysosome function (cup-5) show elevated GABA(A) receptor levels at synapses prior to muscimol exposure. During adaptation, these receptors are removed more slowly, and accumulate in intracellular organelles positive for the late endosome marker GFP-RAB-7. These findings suggest that chronic agonist exposure increases endocytosis and lysosomal trafficking of GABA(A) receptors, leading to reduced levels of synaptic GABA(A) receptors and reduced postsynaptic GABA sensitivity.

  9. Modulatory Effects of Eschscholzia californica Alkaloids on Recombinant GABAA Receptors

    PubMed Central

    Fedurco, Milan; Gregorová, Jana; Šebrlová, Kristýna; Kantorová, Jana; Peš, Ondřej; Baur, Roland; Sigel, Erwin; Táborská, Eva

    2015-01-01

    The California poppy (Eschscholzia californica Cham.) contains a variety of natural compounds including several alkaloids found exclusively in this plant. Because of the sedative, anxiolytic, and analgesic effects, this herb is currently sold in pharmacies in many countries. However, our understanding of these biological effects at the molecular level is still lacking. Alkaloids detected in E. californica could be hypothesized to act at GABAA receptors, which are widely expressed in the brain mainly at the inhibitory interneurons. Electrophysiological studies on a recombinant α 1 β 2 γ 2 GABAA receptor showed no effect of N-methyllaurotetanine at concentrations lower than 30 μM. However, (S)-reticuline behaved as positive allosteric modulator at the α 3, α 5, and α 6 isoforms of GABAA receptors. The depressant properties of aerial parts of E. californica are assigned to chloride-current modulation by (S)-reticuline at the α 3 β 2 γ 2 and α 5 β 2 γ 2 GABAA receptors. Interestingly, α 1, α 3, and α 5 were not significantly affected by (R)-reticuline, 1,2-tetrahydroreticuline, codeine, and morphine—suspected (S)-reticuline metabolites in the rodent brain. PMID:26509084

  10. α5-GABAA receptors negatively regulate MYC-amplified medulloblastoma growth

    PubMed Central

    Sengupta, Soma; Weeraratne, Shyamal Dilhan; Sun, Hongyu; Phallen, Jillian; Rallapalli, Sundari K.; Teider, Natalia; Kosaras, Bela; Amani, Vladimir; Pierre-Francois, Jessica; Tang, Yujie; Nguyen, Brian; Yu, Furong; Schubert, Simone; Balansay, Brianna; Mathios, Dimitris; Lechpammer, Mirna; Archer, Tenley C.; Tran, Phuoc; Reimer, Richard J.; Cook, James M.; Lim, Michael; Jensen, Frances E.; Pomeroy, Scott L.; Cho, Yoon-Jae

    2013-01-01

    Neural tumors often express neurotransmitter receptors as markers of their developmental lineage. Although these receptors have been well characterized in electrophysiological, developmental and pharmacological settings, their importance in the maintenance and progression of brain tumors, and importantly, the effect of their targeting in brain cancers remains obscure. Here, we demonstrate high levels of GABR5, which encodes the α-subunit of the GABAA receptor complex, in aggressive MYC-driven, “Group 3” medulloblastomas. We hypothesized that modulation of α-GABAA receptors alters medulloblastoma cell survival and monitored biological and electrophysiological responses of GABR5-expressing medulloblastoma cells upon pharmacological targeting of the GABAA receptor. While antagonists, inverse agonists and non-specific positive allosteric modulators had limited effects on medulloblastoma cells, a highly specific and potent α5-GABAA receptor agonist, QHii066, resulted in marked membrane depolarization and a significant decrease in cell survival. This effect was GABR5 dependent and mediated through the induction of apoptosis as well as accumulation of cells in S and G2 phases of the cell cycle. Chemical genomic profiling of QHii066-treated medulloblastoma cells confirmed inhibition of MYC-related transcriptional activity and revealed an enrichment of HOX5 target gene expression. siRNA-mediated knockdown of HOX5 markedly blunted the response of medulloblastoma cells to QHii066. Furthermore, QHii066 sensitized GABR5 positive medulloblastoma cells to radiation and chemotherapy consistent with the role of HOX5 in directly regulating p53 expression and inducing apoptosis. Thus, our results provide novel insights into the synthetic lethal nature of α5-GABAA receptor activation in MYC-driven/Group 3 medulloblastomas and propose its targeting as a novel strategy for the management of this highly aggressive tumor. PMID:24196163

  11. Metabotropic Glutamate Receptors in the Trafficking of Ionotropic Glutamate and GABAA Receptors at Central Synapses

    PubMed Central

    Xiao, Min-Yi; Gustafsson, Bengt; Niu, Yin-Ping

    2006-01-01

    The trafficking of ionotropic glutamate (AMPA, NMDA and kainate) and GABAA receptors in and out of, or laterally along, the postsynaptic membrane has recently emerged as an important mechanism in the regulation of synaptic function, both under physiological and pathological conditions, such as information processing, learning and memory formation, neuronal development, and neurodegenerative diseases. Non-ionotropic glutamate receptors, primarily group I metabotropic glutamate receptors (mGluRs), co-exist with the postsynaptic ionotropic glutamate and GABAA receptors. The ability of mGluRs to regulate postsynaptic phosphorylation and Ca2+ concentration, as well as their interactions with postsynaptic scaffolding/signaling proteins, makes them well suited to influence the trafficking of ionotropic glutamate and GABAA receptors. Recent studies have provided insights into how mGluRs may impose such an influence at central synapses, and thus how they may affect synaptic signaling and the maintenance of long-term synaptic plasticity. In this review we will discuss some of the recent progress in this area: i) long-term synaptic plasticity and the involvement of mGluRs; ii) ionotropic glutamate receptor trafficking and long-term synaptic plasticity; iii) the involvement of postsynaptic group I mGluRs in regulating ionotropic glutamate receptor trafficking; iv) involvement of postsynaptic group I mGluRs in regulating GABAA receptor trafficking; v) and the trafficking of postsynaptic group I mGluRs themselves. PMID:18615134

  12. Acutely increasing δGABAA receptor activity impairs memory and inhibits synaptic plasticity in the hippocampus

    PubMed Central

    Whissell, Paul D.; Eng, Dave; Lecker, Irene; Martin, Loren J.; Wang, Dian-Shi; Orser, Beverley A.

    2013-01-01

    Extrasynaptic γ-aminobutyric acid type A (GABAA) receptors that contain the δ subunit (δGABAA receptors) are expressed in several brain regions including the dentate gyrus (DG) and CA1 subfields of the hippocampus. Drugs that increase δGABAA receptor activity have been proposed as treatments for a variety of disorders including insomnia, epilepsy and chronic pain. Also, long-term pretreatment with the δGABAA receptor–preferring agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) enhances discrimination memory and increases neurogenesis in the DG. Despite the potential therapeutic benefits of such treatments, the effects of acutely increasing δGABAA receptor activity on memory behaviors remain unknown. Here, we studied the effects of THIP (4 mg/kg, i.p.) on memory performance in wild-type (WT) and δGABAA receptor null mutant (Gabrd−/−) mice. Additionally, the effects of THIP on long-term potentiation (LTP), a molecular correlate of memory, were studied within the DG and CA1 subfields of the hippocampus using electrophysiological recordings of field potentials in hippocampal slices. The results showed that THIP impaired performance in the Morris water maze, contextual fear conditioning and object recognition tasks in WT mice but not Gabrd−/− mice. Furthermore, THIP inhibited LTP in hippocampal slices from WT but not Gabrd−/− mice, an effect that was blocked by GABAA receptor antagonist bicuculline. Thus, acutely increasing δGABAA receptor activity impairs memory behaviors and inhibits synaptic plasticity. These results have important implications for the development of therapies aimed at increasing δGABAA receptor activity. PMID:24062648

  13. Efficient Modulation of γ-Aminobutyric Acid Type A Receptors by Piperine Derivatives

    PubMed Central

    2014-01-01

    Piperine activates TRPV1 (transient receptor potential vanilloid type 1 receptor) receptors and modulates γ-aminobutyric acid type A receptors (GABAAR). We have synthesized a library of 76 piperine analogues and analyzed their effects on GABAAR by means of a two-microelectrode voltage-clamp technique. GABAAR were expressed in Xenopus laevis oocytes. Structure–activity relationships (SARs) were established to identify structural elements essential for efficiency and potency. Efficiency of piperine derivatives was significantly increased by exchanging the piperidine moiety with either N,N-dipropyl, N,N-diisopropyl, N,N-dibutyl, p-methylpiperidine, or N,N-bis(trifluoroethyl) groups. Potency was enhanced by replacing the piperidine moiety by N,N-dibutyl, N,N-diisobutyl, or N,N-bistrifluoroethyl groups. Linker modifications did not substantially enhance the effect on GABAAR. Compound 23 [(2E,4E)-5-(1,3-benzodioxol-5-yl)-N,N-dipropyl-2,4-pentadienamide] induced the strongest modulation of GABAA (maximal GABA-induced chloride current modulation (IGABA-max = 1673% ± 146%, EC50 = 51.7 ± 9.5 μM), while 25 [(2E,4E)-5-(1,3-benzodioxol-5-yl)-N,N-dibutyl-2,4-pentadienamide] displayed the highest potency (EC50 = 13.8 ± 1.8 μM, IGABA-max = 760% ± 47%). Compound 23 induced significantly stronger anxiolysis in mice than piperine and thus may serve as a starting point for developing novel GABAAR modulators. PMID:24905252

  14. Homocysteine alters cerebral microvascular integrity and causes remodeling by antagonizing GABA-A receptor*

    PubMed Central

    Lominadze, David; Tyagi, Neetu; Sen, Utpal; Ovechkin, Alexander; Tyagi, Suresh C.

    2012-01-01

    High levels of homocysteine (Hcy), known as hyperhomocysteinemia (HHcy), are associated with cerebrovascular diseases, such as vascualr dementia, stroke, and Alzheimer's disease. The -amino butyric acid (GABA) is a inhibitory neurotransmitter and a ligand of GABA-A receptor. By inhibiting excitatory response it may decrease complications associated with vascular dementia and stroke. Hcy specifically competes with the GABA-A receptors and acts as an excitotoxic neurotransmitter. Previously we have shown that Hcy increases levels of NADPH oxidase and reactive oxygen species (ROS), and decreases levels of thioredoxin and peroxiredoxin by antagonizing the GABA-A receptor. Hcy treatment leads to activation of matrix metalloproteinases (MMPs) in cerebral circualtion by inducing redox stress and ROS. The hypothesis is that Hcy induces MMPs and suppresses tissue inhibitors of metalloproteinase (TIMPs), in part, by inhibiting the GABA-A receptor. This leads to degradation of the matrix and disruption of the blood brain barrier. The brain cortex of transgenic mouse model of HHcy (cystathionine -synthase, CBS −/+) and GABA-A receptor null mice treated with and without muscimol (GABA-A receptor agonist) was analysed. The mRNA levels were measured by Q-RT-PCR. Levels of MMP-2, -9, -13, and TIMP-1, -2, -3, and -4 were evaluated by in situ labeling and PCR-gene arrays. Pial venular permeability to fluorescence-labeled albumin was assessed with intravital fluorescence microscopy. We found that Hcy increases metalloproteinase activity and decreases TIMP-4 by antagonizing the GABA-A receptor. The results demonstrate a novel mechanism in which brain microvascular permeability changes during HHcy and vascular dementias, and have therapeutic ramifications for microvascular disease in Alzheimer's patients. PMID:22886392

  15. Inhibition of Orexin Signaling Promotes Sleep Yet Preserves Salient Arousability in Monkeys.

    PubMed

    Tannenbaum, Pamela L; Tye, Spencer J; Stevens, Joanne; Gotter, Anthony L; Fox, Steven V; Savitz, Alan T; Coleman, Paul J; Uslaner, Jason M; Kuduk, Scott D; Hargreaves, Richard; Winrow, Christopher J; Renger, John J

    2016-03-01

    In addition to enhancing sleep onset and maintenance, a desirable insomnia therapeutic agent would preserve healthy sleep's ability to wake and respond to salient situations while maintaining sleep during irrelevant noise. Dual orexin receptor antagonists (DORAs) promote sleep by selectively inhibiting wake-promoting neuropeptide signaling, unlike global inhibition of central nervous system excitation by gamma-aminobutyric acid (GABA)-A receptor (GABAaR) modulators. We evaluated the effect of DORA versus GABAaR modulators on underlying sleep architecture, ability to waken to emotionally relevant stimuli versus neutral auditory cues, and performance on a sleepiness-sensitive cognitive task upon awakening. DORA-22 and GABAaR modulators (eszopiclone, diazepam) were evaluated in adult male rhesus monkeys (n = 34) with continuous polysomnography recordings in crossover studies of sleep architecture, arousability to a classically conditioned salient versus neutral acoustical stimulus, and psychomotor vigilance task (PVT) performance if awakened. All compounds decreased wakefulness, but only DORA-22 sleep resembled unmedicated sleep in terms of underlying sleep architecture, preserved ability to awaken to salient-conditioned acoustic stimuli while maintaining sleep during neutral acoustic stimuli, and no congnitive impairment in PVT performance. Although GABAaR modulators induced lighter sleep, monkeys rarely woke to salient stimuli and PVT performance was impaired if monkeys were awakened. In nonhuman primates, DORAs' targeted mechanism for promoting sleep protects the ability to selectively arouse to salient stimuli and perform attentional tasks unimpaired, suggesting meaningful differentiation between a hypnotic agent that works through antagonizing orexin wake signaling versus the sedative hypnotic effects of the GABAaR modulator mechanism of action. © 2016 Associated Professional Sleep Societies, LLC.

  16. Metabotropic glutamate receptors in the trafficking of ionotropic glutamate and GABA(A) receptors at central synapses.

    PubMed

    Xiao, Min-Yi; Gustafsson, Bengt; Niu, Yin-Ping

    2006-01-01

    The trafficking of ionotropic glutamate (AMPA, NMDA and kainate) and GABA(A) receptors in and out of, or laterally along, the postsynaptic membrane has recently emerged as an important mechanism in the regulation of synaptic function, both under physiological and pathological conditions, such as information processing, learning and memory formation, neuronal development, and neurodegenerative diseases. Non-ionotropic glutamate receptors, primarily group I metabotropic glutamate receptors (mGluRs), co-exist with the postsynaptic ionotropic glutamate and GABA(A) receptors. The ability of mGluRs to regulate postsynaptic phosphorylation and Ca(2+) concentration, as well as their interactions with postsynaptic scaffolding/signaling proteins, makes them well suited to influence the trafficking of ionotropic glutamate and GABA(A) receptors. Recent studies have provided insights into how mGluRs may impose such an influence at central synapses, and thus how they may affect synaptic signaling and the maintenance of long-term synaptic plasticity. In this review we will discuss some of the recent progress in this area: i) long-term synaptic plasticity and the involvement of mGluRs; ii) ionotropic glutamate receptor trafficking and long-term synaptic plasticity; iii) the involvement of postsynaptic group I mGluRs in regulating ionotropic glutamate receptor trafficking; iv) involvement of postsynaptic group I mGluRs in regulating GABA(A) receptor trafficking; v) and the trafficking of postsynaptic group I mGluRs themselves.

  17. Metabolic products of linalool and modulation of GABAA receptors

    NASA Astrophysics Data System (ADS)

    Milanos, Sinem; Elsharif, Shaimaa A.; Janzen, Dieter; Buettner, Andrea; Villmann, Carmen

    2017-06-01

    Terpenoids are major subcomponents in aroma substances which harbor sedative physiological potential. We have demonstrated that various monoterpenoids such as the acyclic linalool enhance GABAergic currents in an allosteric manner in vitro upon overexpression of inhibitory a1b2 GABAA receptors in various expression systems. However, in plants or humans, i.e. following intake via inhalation or ingestion, linalool undergoes metabolic modifications including oxygenation and acetylation, which may affect the modulatory efficacy of the generated linalool derivatives. Here, we analyzed the modulatory potential of linalool derivatives at a1b2g2 GABAA receptors upon transient overexpression. Following receptor expression control, electrophysiological recordings in a whole cell configuration were used to determine the chloride influx upon co-application of GABA EC5-10 together with the modulatory substance. Our results show that only oxygenated linalool metabolites at carbon 8 positively affect GABAergic currents whereas derivatives hydroxylated or carboxylated at carbon 8 were rather ineffective. Acetylated linalool derivatives resulted in non-significant changes of GABAergic currents. We can conclude that metabolism of linalool reduces its positive allosteric potential at GABAA receptors compared to the significant potentiation effects of the parent molecule linalool itself.

  18. Cell type specificity of GABA(A) receptor mediated signaling in the hippocampus.

    PubMed

    Semyanov, A

    2003-08-01

    Inhibitory signaling mediated by ionotropic GABA(1) receptors generally acts as a major brake against excessive excitability in the brain. This is especially relevant in epilepsy-prone structures such as the hippocampus, in which GABA(A) receptor mediated inhibition is critical in suppressing epileptiform activity. Indeed, potentiating GABA(A) receptor mediated signaling is an important target for antiepileptic drug therapy. GABA(A) receptor mediated inhibition has different roles in the network dependent on the target neuron. Inhibiting principal cells will thus reduce network excitability, whilst inhibiting interneurons will increase network excitability; GABAergic therapeutic agents do not distinguish between these two alternatives, which may explain why, on occasion, GABAergic antiepileptic drugs can be proconvulsant. The importance of the target-cell for the effect of neuroactive drugs has emerged from a number of recent studies. Immunocytochemical data have suggested non-uniform distribution of GABA(A) receptor subunits among hippocampal interneurons and pyramidal cells. This has been confirmed by subsequent electropharmacological data. These have demonstrated that compounds which act on GABA(A) receptors or the extracellular GABA concentration can have distinct effects in different neuronal populations. Recently, it has also been discovered that presynaptic glutamate heteroreceptors can modulate GABA release in the hippocampus in a postsynaptic cell-specific manner. Since systemically administrated drugs may act on different neuronal subtypes, they can exhibit paradoxical effects. Distinguishing compounds that have target specific effects on GABAergic signaling may lead to novel and more effective treatments against epilepsy.

  19. Tonic Inhibitory Control of Dentate Gyrus Granule Cells by α5-Containing GABAA Receptors Reduces Memory Interference.

    PubMed

    Engin, Elif; Zarnowska, Ewa D; Benke, Dietmar; Tsvetkov, Evgeny; Sigal, Maksim; Keist, Ruth; Bolshakov, Vadim Y; Pearce, Robert A; Rudolph, Uwe

    2015-10-07

    Interference between similar or overlapping memories formed at different times poses an important challenge on the hippocampal declarative memory system. Difficulties in managing interference are at the core of disabling cognitive deficits in neuropsychiatric disorders. Computational models have suggested that, in the normal brain, the sparse activation of the dentate gyrus granule cells maintained by tonic inhibitory control enables pattern separation, an orthogonalization process that allows distinct representations of memories despite interference. To test this mechanistic hypothesis, we generated mice with significantly reduced expression of the α5-containing GABAA (α5-GABAARs) receptors selectively in the granule cells of the dentate gyrus (α5DGKO mice). α5DGKO mice had reduced tonic inhibition of the granule cells without any change in fast phasic inhibition and showed increased activation in the dentate gyrus when presented with novel stimuli. α5DGKO mice showed impairments in cognitive tasks characterized by high interference, without any deficiencies in low-interference tasks, suggesting specific impairment of pattern separation. Reduction of fast phasic inhibition in the dentate gyrus through granule cell-selective knock-out of α2-GABAARs or the knock-out of the α5-GABAARs in the downstream CA3 area did not detract from pattern separation abilities, which confirms the anatomical and molecular specificity of the findings. In addition to lending empirical support to computational hypotheses, our findings have implications for the treatment of interference-related cognitive symptoms in neuropsychiatric disorders, particularly considering the availability of pharmacological agents selectively targeting α5-GABAARs. Interference between similar memories poses a significant limitation on the hippocampal declarative memory system, and impaired interference management is a cognitive symptom in many disorders. Thus, understanding mechanisms of successful

  20. MmTX1 and MmTX2 from coral snake venom potently modulate GABAA receptor activity.

    PubMed

    Rosso, Jean-Pierre; Schwarz, Jürgen R; Diaz-Bustamante, Marcelo; Céard, Brigitte; Gutiérrez, José M; Kneussel, Matthias; Pongs, Olaf; Bosmans, Frank; Bougis, Pierre E

    2015-02-24

    GABAA receptors shape synaptic transmission by modulating Cl(-) conductance across the cell membrane. Remarkably, animal toxins that specifically target GABAA receptors have not been identified. Here, we report the discovery of micrurotoxin1 (MmTX1) and MmTX2, two toxins present in Costa Rican coral snake venom that tightly bind to GABAA receptors at subnanomolar concentrations. Studies with recombinant and synthetic toxin variants on hippocampal neurons and cells expressing common receptor compositions suggest that MmTX1 and MmTX2 allosterically increase GABAA receptor susceptibility to agonist, thereby potentiating receptor opening as well as desensitization, possibly by interacting with the α(+)/β(-) interface. Moreover, hippocampal neuron excitability measurements reveal toxin-induced transitory network inhibition, followed by an increase in spontaneous activity. In concert, toxin injections into mouse brain result in reduced basal activity between intense seizures. Altogether, we characterized two animal toxins that enhance GABAA receptor sensitivity to agonist, thereby establishing a previously unidentified class of tools to study this receptor family.

  1. A novel GABA(A) alpha 5 receptor inhibitor with therapeutic potential.

    PubMed

    Ling, István; Mihalik, Balázs; Etherington, Lori-An; Kapus, Gábor; Pálvölgyi, Adrienn; Gigler, Gábor; Kertész, Szabolcs; Gaál, Attila; Pallagi, Katalin; Kiricsi, Péter; Szabó, Éva; Szénási, Gábor; Papp, Lilla; Hársing, László G; Lévay, György; Spedding, Michael; Lambert, Jeremy J; Belelli, Delia; Barkóczy, József; Volk, Balázs; Simig, Gyula; Gacsályi, István; Antoni, Ferenc A

    2015-10-05

    Novel 2,3-benzodiazepine and related isoquinoline derivatives, substituted at position 1 with a 2-benzothiophenyl moiety, were synthesized to produce compounds that potently inhibited the action of GABA on heterologously expressed GABAA receptors containing the alpha 5 subunit (GABAA α5), with no apparent affinity for the benzodiazepine site. Substitutions of the benzothiophene moiety at position 4 led to compounds with drug-like properties that were putative inhibitors of extra-synaptic GABAA α5 receptors and had substantial blood-brain barrier permeability. Initial characterization in vivo showed that 8-methyl-5-[4-(trifluoromethyl)-1-benzothiophen-2-yl]-1,9-dihydro-2H-[1,3]oxazolo[4,5-h][2,3]benzodiazepin-2-one was devoid of sedative, pro-convulsive or motor side-effects, and enhanced the performance of rats in the object recognition test. In summary, we have discovered a first-in-class GABA-site inhibitor of extra-synaptic GABAA α5 receptors that has promising drug-like properties and warrants further development. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. PX-RICS-deficient mice mimic autism spectrum disorder in Jacobsen syndrome through impaired GABAA receptor trafficking.

    PubMed

    Nakamura, Tsutomu; Arima-Yoshida, Fumiko; Sakaue, Fumika; Nasu-Nishimura, Yukiko; Takeda, Yasuko; Matsuura, Ken; Akshoomoff, Natacha; Mattson, Sarah N; Grossfeld, Paul D; Manabe, Toshiya; Akiyama, Tetsu

    2016-03-16

    Jacobsen syndrome (JBS) is a rare congenital disorder caused by a terminal deletion of the long arm of chromosome 11. A subset of patients exhibit social behavioural problems that meet the diagnostic criteria for autism spectrum disorder (ASD); however, the underlying molecular pathogenesis remains poorly understood. PX-RICS is located in the chromosomal region commonly deleted in JBS patients with autistic-like behaviour. Here we report that PX-RICS-deficient mice exhibit ASD-like social behaviours and ASD-related comorbidities. PX-RICS-deficient neurons show reduced surface γ-aminobutyric acid type A receptor (GABAAR) levels and impaired GABAAR-mediated synaptic transmission. PX-RICS, GABARAP and 14-3-3ζ/θ form an adaptor complex that interconnects GABAAR and dynein/dynactin, thereby facilitating GABAAR surface expression. ASD-like behavioural abnormalities in PX-RICS-deficient mice are ameliorated by enhancing inhibitory synaptic transmission with a GABAAR agonist. Our findings demonstrate a critical role of PX-RICS in cognition and suggest a causal link between PX-RICS deletion and ASD-like behaviour in JBS patients.

  3. PX-RICS-deficient mice mimic autism spectrum disorder in Jacobsen syndrome through impaired GABAA receptor trafficking

    PubMed Central

    Nakamura, Tsutomu; Arima-Yoshida, Fumiko; Sakaue, Fumika; Nasu-Nishimura, Yukiko; Takeda, Yasuko; Matsuura, Ken; Akshoomoff, Natacha; Mattson, Sarah N.; Grossfeld, Paul D.; Manabe, Toshiya; Akiyama, Tetsu

    2016-01-01

    Jacobsen syndrome (JBS) is a rare congenital disorder caused by a terminal deletion of the long arm of chromosome 11. A subset of patients exhibit social behavioural problems that meet the diagnostic criteria for autism spectrum disorder (ASD); however, the underlying molecular pathogenesis remains poorly understood. PX-RICS is located in the chromosomal region commonly deleted in JBS patients with autistic-like behaviour. Here we report that PX-RICS-deficient mice exhibit ASD-like social behaviours and ASD-related comorbidities. PX-RICS-deficient neurons show reduced surface γ-aminobutyric acid type A receptor (GABAAR) levels and impaired GABAAR-mediated synaptic transmission. PX-RICS, GABARAP and 14-3-3ζ/θ form an adaptor complex that interconnects GABAAR and dynein/dynactin, thereby facilitating GABAAR surface expression. ASD-like behavioural abnormalities in PX-RICS-deficient mice are ameliorated by enhancing inhibitory synaptic transmission with a GABAAR agonist. Our findings demonstrate a critical role of PX-RICS in cognition and suggest a causal link between PX-RICS deletion and ASD-like behaviour in JBS patients. PMID:26979507

  4. Α2 GABAA receptor sub-units in the ventral hippocampus and α5 GABAA receptor sub-units in the dorsal hippocampus mediate anxiety and fear memory.

    PubMed

    McEown, K; Treit, D

    2013-11-12

    Temporary neuronal inactivation of the ventral hippocampus with the GABAA agonist muscimol suppresses unconditioned fear behavior (anxiety) but inactivation of the dorsal hippocampus does not. On the other hand, inactivating the dorsal hippocampus disrupts fear memory, while inactivating the ventral hippocampus does not. Here we investigate the roles of hippocampal GABAA receptor sub-units in mediating these anxiolytic and amnesic effects of GABAA receptor agonists. We microinfused TPA023 (α2 agonist) or TB-21007 (inverse α5 agonist) into the dorsal or ventral hippocampus prior to testing rats in two animal models of anxiety: the elevated plus-maze and shock-probe burying test. Twenty-four hours later rats were re-tested in the shock-probe chamber with a non-electrified probe to assess their memory of the initial shock-probe experience (i.e., fear memory). We found that TPA023 was anxiolytic in the plus-maze and shock-probe burying tests when microinfused into the ventral hippocampus. However, TPA023 did not affect anxiety-related behavior when infused into the dorsal hippocampus. Conversely, we found that the α5 sub-unit inverse agonist TB-21007 impaired rats' memory of the initial shock-probe experience when infused into the dorsal hippocampus, but not when infused into the ventral hippocampus. This double dissociation suggests that α2 GABAA receptor sub-units in the ventral hippocampus mediate unconditioned fear or anxiety, while α5 GABAA receptor sub-units in the dorsal hippocampus mediate conditioned fear memory. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Relative positioning of classical benzodiazepines to the γ2-subunit of GABAA receptors.

    PubMed

    Middendorp, Simon J; Hurni, Evelyn; Schönberger, Matthias; Stein, Marco; Pangerl, Michael; Trauner, Dirk; Sigel, Erwin

    2014-08-15

    GABAA receptors are the major inhibitory neurotransmitter receptors in the brain. Benzodiazepine exert their action via a high affinity-binding site at the α/γ subunit interface on some of these receptors. Diazepam has sedative, hypnotic, anxiolytic, muscle relaxant, and anticonvulsant effects. It acts by potentiating the current evoked by the agonist GABA. Understanding specific interaction of benzodiazepines in the binding pocket of different GABAA receptor isoforms might help to separate these divergent effects. As a first step, we characterized the interaction between diazepam and the major GABAA receptor isoform α1β2γ2. We mutated several amino acid residues on the γ2-subunit assumed to be located near or in the benzodiazepine binding pocket individually to cysteine and studied the interaction with three ligands that are modified with a cysteine-reactive isothiocyanate group (-NCS). When the reactive NCS group is in apposition to the cysteine residue this leads to a covalent reaction. In this way, three amino acid residues, γ2Tyr58, γ2Asn60, and γ2Val190 were located relative to classical benzodiazepines in their binding pocket on GABAA receptors.

  6. Modulation of neurosteroid potentiation by protein kinases at synaptic- and extrasynaptic-type GABAA receptors

    PubMed Central

    Adams, Joanna M.; Thomas, Philip; Smart, Trevor G.

    2015-01-01

    GABAA receptors are important for inhibition in the CNS where neurosteroids and protein kinases are potent endogenous modulators. Acting individually, these can either enhance or depress receptor function, dependent upon the type of neurosteroid or kinase and the receptor subunit combination. However, in vivo, these modulators probably act in concert to fine-tune GABAA receptor activity and thus inhibition, although how this is achieved remains unclear. Therefore, we investigated the relationship between these modulators at synaptic-type α1β3γ2L and extrasynaptic-type α4β3δ GABAA receptors using electrophysiology. For α1β3γ2L, potentiation of GABA responses by tetrahydro-deoxycorticosterone was reduced after inhibiting protein kinase C, and enhanced following its activation, suggesting this kinase regulates neurosteroid modulation. In comparison, neurosteroid potentiation was reduced at α1β3S408A,S409Aγ2L receptors, and unaltered by PKC inhibitors or activators, indicating that phosphorylation of β3 subunits is important for regulating neurosteroid activity. To determine whether extrasynaptic-type GABAA receptors were similarly modulated, α4β3δ and α4β3S408A,S409Aδ receptors were investigated. Neurosteroid potentiation was reduced at both receptors by the kinase inhibitor staurosporine. By contrast, neurosteroid-mediated potentiation at α4S443Aβ3S408A,S409Aδ receptors was unaffected by protein kinase inhibition, strongly suggesting that phosphorylation of α4 and β3 subunits is required for regulating neurosteroid activity at extrasynaptic receptors. Western blot analyses revealed that neurosteroids increased phosphorylation of β3S408,S409 implying that a reciprocal pathway exists for neurosteroids to modulate phosphorylation of GABAA receptors. Overall, these findings provide important insight into the regulation of GABAA receptors in vivo, and into the mechanisms by which GABAergic inhibitory transmission may be simultaneously tuned by

  7. GABAA receptor-expressing neurons promote consumption in Drosophila melanogaster.

    PubMed

    Cheung, Samantha K; Scott, Kristin

    2017-01-01

    Feeding decisions are highly plastic and bidirectionally regulated by neurons that either promote or inhibit feeding. In Drosophila melanogaster, recent studies have identified four GABAergic interneurons that act as critical brakes to prevent incessant feeding. These GABAergic neurons may inhibit target neurons that drive consumption. Here, we tested this hypothesis by examining GABA receptors and neurons that promote consumption. We find that Resistance to dieldrin (RDL), a GABAA type receptor, is required for proper control of ingestion. Knockdown of Rdl in a subset of neurons causes overconsumption of tastants. Acute activation of these neurons is sufficient to drive consumption of appetitive substances and non-appetitive substances and acute silencing of these neurons decreases consumption. Taken together, these studies identify GABAA receptor-expressing neurons that promote Drosophila ingestive behavior and provide insight into feeding regulation.

  8. A network of autism linked genes stabilizes two pools of synaptic GABAA receptors

    PubMed Central

    Tong, Xia-Jing; Hu, Zhitao; Liu, Yu; Anderson, Dorian; Kaplan, Joshua M

    2015-01-01

    Changing receptor abundance at synapses is an important mechanism for regulating synaptic strength. Synapses contain two pools of receptors, immobilized and diffusing receptors, both of which are confined to post-synaptic elements. Here we show that immobile and diffusing GABAA receptors are stabilized by distinct synaptic scaffolds at C. elegans neuromuscular junctions. Immobilized GABAA receptors are stabilized by binding to FRM-3/EPB4.1 and LIN-2A/CASK. Diffusing GABAA receptors are stabilized by the synaptic adhesion molecules Neurexin and Neuroligin. Inhibitory post-synaptic currents are eliminated in double mutants lacking both scaffolds. Neurexin, Neuroligin, and CASK mutations are all linked to Autism Spectrum Disorders (ASD). Our results suggest that these mutations may directly alter inhibitory transmission, which could contribute to the developmental and cognitive deficits observed in ASD. DOI: http://dx.doi.org/10.7554/eLife.09648.001 PMID:26575289

  9. GABA(A) receptors mediate orexin-A induced stimulation of food intake.

    PubMed

    Kokare, Dadasaheb M; Patole, Angad M; Carta, Anna; Chopde, Chandrabhan T; Subhedar, Nishikant K

    2006-01-01

    Although the role of orexins in sleep/wake cycle and feeding behavior is well established, underlying mechanisms have not been fully understood. An attempt has been made to investigate the role of GABA(A) receptors and their benzodiazepine site on the orexin-A induced response to feeding. Different groups of rats were food deprived overnight and next day injected intracerebroventricularly (icv) with vehicle (artificial CSF; 5 microl/rat) or orexin-A (20-50 nM/rat) and the animals were given free access to food. Cumulative food intake was measured during light phase of light/dark cycle at 1-, 2-, 4- and 6-h post-injection time points. Orexin-A (30-50 nM/rat, icv) stimulated food intake at all the time points (P < 0.05). Prior administration of GABA(A) receptor agonists muscimol (25 ng/rat, icv) and diazepam (0.5 mg/kg, ip) at subeffective doses significantly potentiated the hyperphagic effect of orexin-A (30 nM/rat, icv). However, the effect was negated by the GABA(A) receptor antagonist bicuculline (1 mg/kg, ip). Interestingly, benzodiazepine receptor antagonist flumazenil (5 ng/rat, icv), augmented the orexin-A (30 nM/rat, icv) induced hyperphagia; the effect may be attributed to the intrinsic activity of the agent. The results suggest that the hyperphagic effect of orexin-A, at least in part, is mediated by enhanced GABA(A) receptor activity.

  10. Extrasynaptic αβ subunit GABAA receptors on rat hippocampal pyramidal neurons

    PubMed Central

    Mortensen, Martin; Smart, Trevor G

    2006-01-01

    Extrasynaptic GABAA receptors that are tonically activated by ambient GABA are important for controlling neuronal excitability. In hippocampal pyramidal neurons, the subunit composition of these extrasynaptic receptors may include α5βγ and/or α4βδ subunits. Our present studies reveal that a component of the tonic current in the hippocampus is highly sensitive to inhibition by Zn2+. This component is probably not mediated by either α5βγ or α4βδ receptors, but might be explained by the presence of αβ isoforms. Using patch-clamp recording from pyramidal neurons, a small tonic current measured in the absence of exogenous GABA exhibited both high and low sensitivity to Zn2+ inhibition (IC50 values, 1.89 and 223 μm, respectively). Using low nanomolar and micromolar GABA concentrations to replicate tonic currents, we identified two components that are mediated by benzodiazepine-sensitive and -insensitive receptors. The latter indicated that extrasynaptic GABAA receptors exist that are devoid of γ2 subunits. To distinguish whether the benzodiazepine-insensitive receptors were αβ or αβδ isoforms, we used single-channel recording. Expressing recombinant α1β3γ2, α5β3γ2, α4β3δ and α1β3 receptors in human embryonic kidney (HEK) or mouse fibroblast (Ltk) cells, revealed similar openings with high main conductances (∼25–28 pS) for γ2 or δ subunit-containing receptors whereas αβ receptors were characterized by a lower main conductance state (∼11 pS). Recording from pyramidal cell somata revealed a similar range of channel conductances, indicative of a mixture of GABAA receptors in the extrasynaptic membrane. The lowest conductance state (∼11 pS) was the most sensitive to Zn2+ inhibition in accord with the presence of αβ receptors. This receptor type is estimated to account for up to 10% of all extrasynaptic GABAA receptors on hippocampal pyramidal neurons. PMID:17023503

  11. Benzodiazepine-site pharmacology on GABAA receptors in histaminergic neurons.

    PubMed

    May, A C; Fleischer, W; Kletke, O; Haas, H L; Sergeeva, O A

    2013-09-01

    The histaminergic tuberomamillary nucleus (TMN) of the posterior hypothalamus controls the cognitive aspects of vigilance which is reduced by common sedatives and anxiolytics. The receptors targeted by these drugs in histaminergic neurons are unknown. TMN neurons express nine different subunits of the GABAA receptor (GABAA R) with three α- (α1, α2 and α5) and two γ- (γ1, γ 2) subunits, which confer different pharmacologies of the benzodiazepine-binding site. We investigated the actions of zolpidem, midazolam, diazepam, chlordiazepoxide, flumazenil (Ro15-1788) and methyl-6,7-dimethoxy-4-ethyl-β-carboline-3-carboxylate (DMCM) in TMN neurons using mouse genetics, electrophysiological and molecular biological methods. We find the sensitivity of GABAA R to zolpidem, midazolam and DMCM significantly reduced in TMN neurons from γ2F77I mice, but modulatory activities of diazepam, chlordiazepoxide and flumazenil not affected. Potencies and efficacies of these compounds are in line with the dominance of α2- and α1-subunit containing receptors associated with γ2- or γ1-subunits. Functional expression of the γ1-subunit is supported by siRNA-based knock-down experiments in γ2F77I mice. GABAA R of TMN neurons respond to a variety of common sedatives with a high affinity binding site (γ2F77I) involved. The γ1-subunit likely contributes to the action of common sedatives in TMN neurons. This study is relevant for understanding the role of neuronal histamine and benzodiazepines in disorders of sleep and metabolism. © 2013 The British Pharmacological Society.

  12. α2-containing GABAA receptors expressed in hippocampal region CA3 control fast network oscillations

    PubMed Central

    Heistek, Tim S; Ruiperez-Alonso, Marta; Timmerman, A Jaap; Brussaard, Arjen B; Mansvelder, Huibert D

    2013-01-01

    GABAA receptors are critically involved in hippocampal oscillations. GABAA receptor α1 and α2 subunits are differentially expressed throughout the hippocampal circuitry and thereby may have distinct contributions to oscillations. It is unknown which GABAA receptor α subunit controls hippocampal oscillations and where these receptors are expressed. To address these questions we used transgenic mice expressing GABAA receptor α1 and/or α2 subunits with point mutations (H101R) that render these receptors insensitive to allosteric modulation at the benzodiazepine binding site, and tested how increased or decreased function of α subunits affects hippocampal oscillations. Positive allosteric modulation by zolpidem prolonged decay kinetics of hippocampal GABAergic synaptic transmission and reduced the frequency of cholinergically induced oscillations. Allosteric modulation of GABAergic receptors in CA3 altered oscillation frequency in CA1, while modulation of GABA receptors in CA1 did not affect oscillations. In mice having a point mutation (H101R) at the GABAA receptor α2 subunit, zolpidem effects on cholinergically induced oscillations were strongly reduced compared to wild-type animals, while zolpidem modulation was still present in mice with the H101R mutation at the α1 subunit. Furthermore, genetic knockout of α2 subunits strongly reduced oscillations, whereas knockout of α1 subunits had no effect. Allosteric modulation of GABAergic receptors was strongly reduced in unitary connections between fast spiking interneurons and pyramidal neurons in CA3 of α2H101R mice, but not of α1H101R mice, suggesting that fast spiking interneuron to pyramidal neuron synapses in CA3 contain α2 subunits. These findings suggest that α2-containing GABAA receptors expressed in the CA3 region provide the inhibition that controls hippocampal rhythm during cholinergically induced oscillations. PMID:23109109

  13. Inhibition of Orexin Signaling Promotes Sleep Yet Preserves Salient Arousability in Monkeys

    PubMed Central

    Tannenbaum, Pamela L.; Tye, Spencer J.; Stevens, Joanne; Gotter, Anthony L.; Fox, Steven V.; Savitz, Alan T.; Coleman, Paul J.; Uslaner, Jason M.; Kuduk, Scott D.; Hargreaves, Richard; Winrow, Christopher J.; Renger, John J.

    2016-01-01

    Study Objectives: In addition to enhancing sleep onset and maintenance, a desirable insomnia therapeutic agent would preserve healthy sleep's ability to wake and respond to salient situations while maintaining sleep during irrelevant noise. Dual orexin receptor antagonists (DORAs) promote sleep by selectively inhibiting wake-promoting neuropeptide signaling, unlike global inhibition of central nervous system excitation by gamma-aminobutyric acid (GABA)-A receptor (GABAaR) modulators. We evaluated the effect of DORA versus GABAaR modulators on underlying sleep architecture, ability to waken to emotionally relevant stimuli versus neutral auditory cues, and performance on a sleepiness-sensitive cognitive task upon awakening. Methods: DORA-22 and GABAaR modulators (eszopiclone, diazepam) were evaluated in adult male rhesus monkeys (n = 34) with continuous polysomnography recordings in crossover studies of sleep architecture, arousability to a classically conditioned salient versus neutral acoustical stimulus, and psychomotor vigilance task (PVT) performance if awakened. Results: All compounds decreased wakefulness, but only DORA-22 sleep resembled unmedicated sleep in terms of underlying sleep architecture, preserved ability to awaken to salient-conditioned acoustic stimuli while maintaining sleep during neutral acoustic stimuli, and no congnitive impairment in PVT performance. Although GABAaR modulators induced lighter sleep, monkeys rarely woke to salient stimuli and PVT performance was impaired if monkeys were awakened. Conclusions: In nonhuman primates, DORAs' targeted mechanism for promoting sleep protects the ability to selectively arouse to salient stimuli and perform attentional tasks unimpaired, suggesting meaningful differentiation between a hypnotic agent that works through antagonizing orexin wake signaling versus the sedative hypnotic effects of the GABAaR modulator mechanism of action. Citation: Tannenbaum PL, Tye SJ, Stevens J, Gotter AL, Fox SV, Savitz

  14. Modulation of GABAA receptors by valerian extracts is related to the content of valerenic acid.

    PubMed

    Trauner, Gabriele; Khom, Sophia; Baburin, Igor; Benedek, Birgit; Hering, Steffen; Kopp, Brigitte

    2008-01-01

    Valeriana Officinalis L . is a traditionally used sleep remedy, however, the mechanism of action and the substances responsible for its sedative and sleep-enhancing properties are not fully understood. As we previously identified valerenic acid as a subunit-specific allosteric modulator of GABAA receptors, we now investigated the relation between modulation of GABAA receptors by Valerian extracts of different polarity and the content of sesquiterpenic acids (valerenic acid, acetoxyvalerenic acid). All extracts were analysed by HPLC concerning the content of sesquiterpenic acids. GABAA receptors composed of alpha 1, beta 2 and gamma 2S subunits were expressed in Xenopus laevis oocytes and the modulation of chloride currents through GABAA receptors (IGABA) by Valerian extracts was investigated using the two-microelectrode voltage clamp technique. Apolar extracts induced a significant enhancement of IGABA, whereas polar extracts showed no effect. These results were confirmed by fractionating a highly active ethyl acetate extract: again fractions with high contents of valerenic acid exhibited strong receptor activation. In addition, removal of sesquiterpenic acids from the ethyl acetate extract led to a loss of I (GABA) enhancement. In conclusion, our data show that the extent of GABAA receptor modulation by Valerian extracts is related to the content of valerenic acid.

  15. Rigor, Reproducibility and in vitro CSF assays: The Devil in the Details

    PubMed Central

    Moody, Olivia A.; Talwar, Sahil; Jenkins, Meagan A.; Freeman, Amanda A.; Trotti, Lynn Marie; García, Paul S.; Bliwise, Donald; Lynch, Joseph W.; Cherson, Brad; Hernandez, Eric M; Feldman, Neil; Saini, Prabhjyot; Rye, David B.; Jenkins, Andrew

    2017-01-01

    Divergent results and misinterpretation of non-significant findings remain problematic in science – especially in retrospective, hypothesis generating, translational research.1 When such divergence occurs, it is imperative that the cause of the divergence be established. In their recent paper in Annals of Neurology, Dauvilliers et al2 challenged our earlier finding that cerebrospinal fluid (CSF) from some patients with unexplained excessive daytime sleepiness enhances the activation of GABAA receptors (GABAA-R)3. They present data from 15 subjects in which they were unable to find evidence of enhanced activation of GABAA receptors. Here we: 1) establish how flaws in Dauvilliers’ experimental design account for this difference; 2) present new data demonstrating the robustness and reproducibility of our methods and 3) summarize the clinical promise of GABAA-R antagonism in treating IH and related disorders. PMID:28440033

  16. Auditory Thalamic Circuits and GABAA Receptor Function: Putative Mechanisms in Tinnitus Pathology

    PubMed Central

    Caspary, Donald M.; Llano, Daniel A

    2016-01-01

    Tinnitus is defined as a phantom sound (ringing in the ears), and can significantly reduce the quality of life for those who suffer its effects. Ten to fifteen percent of the general adult population report symptoms of tinnitus with 1-2% reporting that tinnitus negatively impacts their quality of life. Noise exposure is the most common cause of tinnitus and the military environment presents many challenging high-noise situations. Military noise levels can be so intense that standard hearing protection is not adequate. Recent studies suggest a role for inhibitory neurotransmitter dysfunction in response to noise-induced peripheral deafferentation as a key element in the pathology of tinnitus. The auditory thalamus, or medial geniculate body (MGB), is an obligate auditory brain center in a unique position to gate the percept of sound as it projects to auditory cortex and to limbic structures. Both areas are thought to be involved in those individuals most impacted by tinnitus. For MGB, opposing hypotheses have posited either a tinnitus-related pathologic decrease or pathologic increase in GABAergic inhibition. In sensory thalamus, GABA mediates fast synaptic inhibition via synaptic GABAA receptors (GABAARs) as well as a persistent tonic inhibition via high-affinity extrasynaptic GABAARs and slow synaptic inhibition via GABABRs. Down-regulation of inhibitory neurotransmission, related to partial peripheral deafferentation, is consistently presented as partially underpinning neuronal hyperactivity seen in animal models of tinnitus. This maladaptive plasticity/Gain Control Theory of tinnitus pathology (see Auerbach et al., 2014; Richardson et al., 2012) is characterized by reduced inhibition associated with increased spontaneous and abnormal neuronal activity, including bursting and increased synchrony throughout much of the central auditory pathway. A competing hypothesis suggests that maladaptive oscillations between the MGB and auditory cortex, thalamocortical

  17. Molecular dynamics investigation of Cl(-) transport through the closed and open states of the 2α12β2γ2 GABA(A) receptor.

    PubMed

    Xie, Hong-Bo; Wang, Jian; Sha, Yu; Cheng, Mao-Sheng

    2013-01-01

    The α1β2γ2 gamma-aminobutyric type A receptor (GABA(A)R) is one of the most widely expressed GABA(A)R subtypes in the mammalian brain. GABA(A)Rsbelonging to the Cys-loop superfamily of ligand-gated ion channels have been identified as key targets for many clinical drugs, and the motions that govern the gating mechanism are still not well understood. In this study, an open-state GABA(A)R was constructed using the structure of the glutamate-gated chloride channel (GluCl), which has a high sequence identity to GABA(A)R. A closed-state model was constructed using the structure of the nicotinic acetylcholine receptor (nAChR). Molecular dynamics simulations of the open-state and closed-state GABA(A)R were performed. We calculated the electrostatic potential of the two conformations, the pore radius of the two ion channels and the root-mean-square fluctuation. We observed the presence of two positively charged girdles around the ion channel and found flexible regions in the GABA(A)R. Then, the free-energy of chloride ion permeations through the closed-state and open-state G GABA(A)R has been estimated using adaptive biasing force (ABF) simulation. For the closed-state G GABA(A)R, we observed two major energy barriers for chloride ion translocation in the transmembrane domain (TMD). For the open-state GABA(A)R, there was only one energy barrier formed by two Thr261 (α1), two Thr255 (β2) and one Thr271 (γ2). By using ABF simulation, the overall free-energy profile is obtained for Cl(-) transporting through GABA(A)R, which gives a complete map of the ion channel of Cl(-) permeation. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Isoflurane modulates excitability in the mouse thalamus via GABA-dependent and GABA-independent mechanisms

    PubMed Central

    Ying, Shui-Wang; Werner, David F.; Homanics, Gregg E.; Harrison, Neil L.; Goldstein, Peter A.

    2009-01-01

    Summary GABAergic neurons in the reticular thalamic nucleus (RTN) synapse onto thalamocortical neurons in the ventrobasal (VB) thalamus, and this reticulo-thalamocortical pathway is considered an anatomic target for general anesthetic-induced unconsciousness. A mutant mouse was engineered to harbor two amino acid substitutions (S270H, L277A) in the GABAA receptor (GABAA-R) α1 subunit; this mutation abolished sensitivity to the volatile anesthetic isoflurane in recombinant GABAA-Rs, and reduced in vivo sensitivity to isoflurane in the loss-of-righting-reflex assay. We examined the effects of the double mutation on GABAA-R-mediated synaptic currents and isoflurane sensitivity by recording from thalamic neurons in brain slices. The double mutation accelerated the decay, and decreased the ½ width of, evoked inhibitory postsynaptic currents (eIPSCs) in VB neurons and attenuated isoflurane-induced prolongation of the eIPSC. The hypnotic zolpidem, a selective modulator of GABAA-Rs containing the α1 subunit, prolonged eIPSC duration regardless of genotype, indicating that mutant mice incorporate α1-subunit containing GABAA-Rs into synapses. In RTN neurons, which lack the α1 subunit, eIPSC duration was longer than in VB, regardless of genotype. Isoflurane reduced the efficacy of GABAergic transmission from RTN to VB, independent of genotype, suggesting a presynaptic action in RTN neurons. Consistent with this observation, isoflurane inhibited both tonic action potential and rebound burst firing in the presence of GABAA-R blockade. The suppressed excitability in RTN neurons is likely mediated by isoflurane-enhanced Ba2+-sensitive, but 4-aminopyridine-insenstive, potassium conductances. We conclude that isoflurane enhances inhibition of thalamic neurons in VB via GABAA-R-dependent, but in RTN via GABAA-R-independent, mechanisms. PMID:18948126

  19. Role of amino acids in salivation and the localization of their receptors in the rat salivary gland.

    PubMed

    Shida, T; Kondo, E; Ueda, Y; Takai, N; Yoshida, Y; Araki, T; Kiyama, H; Tohyama, M

    1995-11-01

    The distribution of gamma-aminobutyric acid (GABA) receptor subunits such as GABAAR-gamma 1 and GABAAR-gamma 2, and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) type receptor subunits such as GluR-1, GluR-2/3 and GluR-4, and N-methyl-D-aspartic acid (NMDA) type subunits such as NR1 were investigated by immunocytochemistry. Furthermore, the roles of these amino acids, GABA and glutamate, on salivation were analyzed in the rat submandibular and sublingual glands. Some similarities were observed in the distribution patterns of GABAA type receptors and AMPA receptors. In the submandibular ganglion cells, collecting ducts and striated ducts, these subunits were expressed strongly; however, there were some differences in their expression patterns between the submandibular and sublingual gland acinar cells. Since these receptor subunits were expressed in the acinar cell bodies of the submandibular gland, they were not expressed in the acinar cells but were expressed in the myoepithelial cells in the sublingual gland. On the other hand, no NR1 expression was observed. To examine the roles of GABA and glutamate in salivation, the submandibular and sublingual glands were perfused partially with Ringer's solution via a facial artery to avoid systemic influence, and substrates were infused into the perfusion solution. No salivary secretion was evoked by GABA or glutamate infusion in the absence of electrical stimulation (2-3 V, 5 ms, 20 Hz). Salivary flow evoked by electrical stimulation of the chorda-lingual nerve caused significant inhibition by GABA (10(-6), 10(-5), 10(-4) and 10(-3) M) and the GABAAR agonist muscimol 10(-3) and 10(-6) M) (n = 6, P < 0.05). Such GABA-induced inhibition was antagonized by the GABAAR antagonists bicuculline (BCC; 10(-6) and 10(-3) M) and picrotoxin (PTX; 10(-6) and 10(-3) M). On the other hand, salivary flow evoked by electrical stimulation (8-10 V, 5 ms, 20 Hz) of the superior cervical ganglion (SCG) was not affected by

  20. Reversal of pathological pain through specific spinal GABAA receptor subtypes.

    PubMed

    Knabl, Julia; Witschi, Robert; Hösl, Katharina; Reinold, Heiko; Zeilhofer, Ulrike B; Ahmadi, Seifollah; Brockhaus, Johannes; Sergejeva, Marina; Hess, Andreas; Brune, Kay; Fritschy, Jean-Marc; Rudolph, Uwe; Möhler, Hanns; Zeilhofer, Hanns Ulrich

    2008-01-17

    Inflammatory diseases and neuropathic insults are frequently accompanied by severe and debilitating pain, which can become chronic and often unresponsive to conventional analgesic treatment. A loss of synaptic inhibition in the spinal dorsal horn is considered to contribute significantly to this pain pathology. Facilitation of spinal gamma-aminobutyric acid (GABA)ergic neurotransmission through modulation of GABA(A) receptors should be able to compensate for this loss. With the use of GABA(A)-receptor point-mutated knock-in mice in which specific GABA(A) receptor subtypes have been selectively rendered insensitive to benzodiazepine-site ligands, we show here that pronounced analgesia can be achieved by specifically targeting spinal GABA(A) receptors containing the alpha2 and/or alpha3 subunits. We show that their selective activation by the non-sedative ('alpha1-sparing') benzodiazepine-site ligand L-838,417 (ref. 13) is highly effective against inflammatory and neuropathic pain yet devoid of unwanted sedation, motor impairment and tolerance development. L-838,417 not only diminished the nociceptive input to the brain but also reduced the activity of brain areas related to the associative-emotional components of pain, as shown by functional magnetic resonance imaging in rats. These results provide a rational basis for the development of subtype-selective GABAergic drugs for the treatment of chronic pain, which is often refractory to classical analgesics.

  1. Association between alcoholism and the genetic polymorphisms of the GABAA receptor genes on chromosome 5q33-34 in Korean population.

    PubMed

    Park, Chul-Soo; Park, So-Young; Lee, Chul-Soon; Sohn, Jin-Wook; Hahn, Gyu-Hee; Kim, Bong-Jo

    2006-06-01

    Family, twin, and adoption studies have demonstrated that genes play an important role in the development of alcoholism. We investigated the association between alcoholism and the genetic polymorphisms of the GABAA receptor genes on chromosome 5q33-34 in Korean population. The genotype of the GABAA receptor gene polymorphisms were determined by performing polymerase chain reaction genotyping for 172 normal controls and 162 male alcoholics who are hospitalized in alcoholism treatment institute. We found a significant association between the genetic polymorphisms of the GABAA alpha1 and GABAA alpha6 receptor gene and alcoholism. The GG genotype of the GABAA alpha1 receptor gene was associated with the onset age of alcoholism and alcohol withdrawal symptoms, and a high score on the Korean version of the ADS. However, there was no association between the genetic polymorphisms of the GABAA beta2 and gamma2 receptor gene and alcoholisms. Our finding suggest that genetic polymorphisms of the GABAA alpha1 and GABAA alpha6 receptor gene may be associated with the development of alcoholism and that the GG genotype of the GABAA alpha1 receptor gene play an important role in the development of the early onset and the severe type of alcoholism.

  2. Alpha1- and alpha2-containing GABAA receptor modulation is not necessary for benzodiazepine-induced hyperphagia.

    PubMed

    Morris, H V; Nilsson, S; Dixon, C I; Stephens, D N; Clifton, P G

    2009-06-01

    Benzodiazepines increase food intake, an effect attributed to their ability to enhance palatability. We investigated which GABA(A) receptor subtypes may be involved in mediating benzodiazepine-induced hyperphagia. The role of the alpha2 subtype was investigated by observing the effects of midazolam, on the behavioural satiety sequence in mice with targeted deletion of the alpha2 gene (alpha2 knockout). Midazolam (0.125, 0.25 and 0.5mg/kg) increased food intake and the amount of time spent feeding in alpha2 knockout mice, suggesting that BZ-induced hyperphagia does not involve alpha2-containing GABA(A) receptors. We further investigated the roles of alpha1- and alpha3-containing GABA(A) receptors in mediating BZ-induced hyperphagia. We treated alpha2(H101R) mice, in which alpha2-containing receptors are rendered benzodiazepine insensitive, with L-838417, a compound which acts as a partial agonist at alpha2-, alpha3- and alpha5-receptors but is inactive at alpha1-containing receptors. L-838417 (10 and 30 mg/kg) increased food intake and the time spent feeding in both wildtype and alpha2(H101R) mice, demonstrating that benzodiazepine-induced hyperphagia does not require alpha1- and alpha2-containing GABA(A) receptors. These observations, together with evidence against the involvement of alpha5-containing GABA(A) receptors, suggest that alpha3-containing receptors mediate BZ-induced hyperphagia in the mouse.

  3. Glycine and GABAA Ultra-Sensitive Ethanol Receptors as Novel Tools for Alcohol and Brain Research

    PubMed Central

    Naito, Anna; Muchhala, Karan H.; Asatryan, Liana; Trudell, James R.; Homanics, Gregg E.; Perkins, Daya I.; Alkana, Ronald L.

    2014-01-01

    A critical obstacle to developing effective medications to prevent and/or treat alcohol use disorders is the lack of specific knowledge regarding the plethora of molecular targets and mechanisms underlying alcohol (ethanol) action in the brain. To identify the role of individual receptor subunits in ethanol-induced behaviors, we developed a novel class of ultra-sensitive ethanol receptors (USERs) that allow activation of a single receptor subunit population sensitized to extremely low ethanol concentrations. USERs were created by mutating as few as four residues in the extracellular loop 2 region of glycine receptors (GlyRs) or γ-aminobutyric acid type A receptors (GABAARs), which are implicated in causing many behavioral effects linked to ethanol abuse. USERs, expressed in Xenopus oocytes and tested using two-electrode voltage clamp, demonstrated an increase in ethanol sensitivity of 100-fold over wild-type receptors by significantly decreasing the threshold and increasing the magnitude of ethanol response, without altering general receptor properties including sensitivity to the neurosteroid, allopregnanolone. These profound changes in ethanol sensitivity were observed across multiple subunits of GlyRs and GABAARs. Collectively, our studies set the stage for using USER technology in genetically engineered animals as a unique tool to increase understanding of the neurobiological basis of the behavioral effects of ethanol. PMID:25245406

  4. Antiseizure Activity of Midazolam in Mice Lacking δ-Subunit Extrasynaptic GABAA Receptors

    PubMed Central

    Reddy, Sandesh D.; Younus, Iyan; Clossen, Bryan L.

    2015-01-01

    Midazolam is a benzodiazepine anticonvulsant with rapid onset and short duration of action. Midazolam is the current drug of choice for acute seizures and status epilepticus, including those caused by organophosphate nerve agents. The antiseizure activity of midazolam is thought to result from its allosteric potentiation of synaptic GABAA receptors in the brain. However, there are indications that benzodiazepines promote neurosteroid synthesis via the 18-kDa cholesterol transporter protein (TSPO). Therefore, we investigated the role of neurosteroids and their extrasynaptic GABAA receptor targets in the antiseizure activity of midazolam. Here, we used δ-subunit knockout (DKO) mice bearing a targeted deletion of the extrasynaptic receptors to investigate the contribution of the extrasynaptic receptors to the antiseizure activity of midazolam using the 6-Hz and hippocampus kindling seizure models. In both models, midazolam produced rapid and dose-dependent protection against seizures (ED50, 0.4 mg/kg). Moreover, the antiseizure potency of midazolam was undiminished in DKO mice compared with control mice. Pretreatment with PK11195 [1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide], a TSPO blocker, or finasteride, a 5α-reductase neurosteroid inhibitor, did not affect the antiseizure effect of midazolam. The antiseizure activity of midazolam was significantly reversed by pretreatment with flumazenil, a benzodiazepine antagonist. Plasma and brain levels of the neurosteroid allopregnanolone were not significantly greater in midazolam-treated animals. These studies therefore provide strong evidence that neurosteroids and extrasynaptic GABAA receptors are not involved in the antiseizure activity of midazolam, which mainly occurs through synaptic GABAA receptors via direct binding to benzodiazepine sites. This study reaffirms midazolam’s use for controlling acute seizures and status epilepticus. PMID:25784648

  5. Dual Modulators of GABA-A and Alpha 7 Nicotinic Receptors for Treating Autism

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0144 TITLE: Dual Modulators of GABA-A and Alpha 7 Nicotinic Receptors for Treating Autism PRINCIPAL INVESTIGATOR...SUBTITLE 5a. CONTRACT NUMBER Dual Modulators of GABA-A and Alpha 7 Nicotinic Receptors for Treating Autism 5b. GRANT NUMBER W81XWH-13-1-0144 5c...ABSTRACT Autism spectrum disorder (ASD) is a polygenic signaling disorder that may result, in part, from an imbalance in excitatory and inhibitory

  6. GABAa and GABAc receptor-mediated modulation of responses to color stimuli: electroretinographic study in the turtle Emys orbicularis.

    PubMed

    Kupenova, Petia; Vitanova, Lily; Popova, Elka

    2010-04-01

    GABAergic transmission is involved in color coding in the retina. The specific contribution of different GABA receptors to spectral sensitivity of the retinal responses is not well characterized. We studied GABAa and GABAc receptor-mediated effects on the intensity-response functions of the electroretinographic ON (b-wave) and OFF (d-wave) responses to color stimuli. For this purpose, we compared the effects of GABAa receptor blockade by bicuculline with the effects of GABAa + GABAc receptor blockade by picrotoxin. The blockade of both GABAa and GABAc receptors caused an amplitude increase of the electroretinographic responses, but the effects of the two blockades depended in a specific manner on stimulus intensity and wavelength. The effects of GABAa receptor blockade showed distinct color ON/OFF asymmetry. The absolute and relative sensitivities of the ON responses to blue stimuli and OFF responses to red stimuli were increased to the greatest degree while the sensitivity of the ON responses to red stimuli and OFF responses to blue stimuli was least increased. In contrast, color ON/OFF asymmetry was not typical of the effects of GABAc receptor blockade. The most prominent GABAc effect was the sensitivity increase of the ON and OFF responses to blue stimuli and, to some lesser extent, to green stimuli. The results of this study indicate a specific role of GABAa and GABAc receptor-mediated influences in processing of chromatic information in the distal retina.

  7. Benzodiazepine-induced anxiolysis and reduction of conditioned fear are mediated by distinct GABAA receptor subtypes in mice

    PubMed Central

    Smith, Kiersten S.; Engin, Elif; Meloni, Edward G.; Rudolph, Uwe

    2012-01-01

    GABAA receptor modulating drugs such as benzodiazepines (BZs) have been used to treat anxiety disorders for over five decades. In order to determine whether the same or different GABAA receptor subtypes are necessary for the anxiolytic-like action of BZs in unconditioned anxiety and conditioned fear models, we investigated the role of different GABAA receptor subtypes by challenging wild type, α1(H101R), α2(H101R) and α3(H126R) mice bred on the C57BL/6J background with diazepam or chlordiazepoxide in the elevated plus maze and the fear-potentiated startle paradigms. Both drugs significantly increased open arm exploration in the elevated plus maze in wild type, α1(H101R) and α3(H126R), but this effect was abolished in α2(H101R) mice; these were expected results based on previous published results. In contrast, while administration of diazepam and chlordiazepoxide significantly attenuated fear-potentiated startle (FPS) in wild type mice and α3(H126R) mice, the fear-reducing effects of these drugs were absent in both α1(H101R) and α2(H101R) point mutants, indicating that both α1- and α2-containing GABAA receptors are necessary for BZs to exert their effects on conditioned fear responses.. Our findings illustrate both an overlap and a divergence between the GABAA receptor subtype requirements for the impact of BZs, specifically that both α1- and α2-containing GABAA receptors are necessary for BZs to reduce conditioned fear whereas only α2-containing GABAA receptors are needed for BZ-induced anxiolysis in unconditioned tests of anxiety. This raises the possibility that GABAergic pharmacological interventions for specific anxiety disorders can be differentially tailored. PMID:22465203

  8. Fragrances in oolong tea that enhance the response of GABAA receptors.

    PubMed

    Hossain, Sheikh Julfikar; Aoshima, Hitoshi; Koda, Hirofumi; Kiso, Yoshinobu

    2004-09-01

    We electrophysiologically investigated the effect of some fragrant compounds in oolong tea on the response of ionotropic gamma-aminobutyric acid (GABA) receptors (GABAA receptors) which were expressed in Xenopus oocytes. Of the tested fragrances in oolong tea, cis-jasmone, jasmine lactone, linalool oxide and methyl jasmonate significantly potentiated the response. Among these, cis-jasmone and methyl jasmonate potently potentiated the response, having a respective dissociation constant of the compound (Kp) and maximum potentiation (Vm) of 0.49 mM and 322% for cis-jasmone, and 0.84 mM and 450% for methyl jasmonate. Inhalation of 0.1% cis-jasmone or methyl jasmonate significantly increased the sleeping time of mice induced by pentobarbital, suggesting that these fragrant compounds were absorbed by the brain and thereby potentiated the GABAA receptor response. Both of these compounds may therefore have a tranquillizing effect on the brain.

  9. Decreased agonist sensitivity of human GABA(A) receptors by an amino acid variant, isoleucine to valine, in the alpha1 subunit.

    PubMed

    Westh-Hansen, S E; Rasmussen, P B; Hastrup, S; Nabekura, J; Noguchi, K; Akaike, N; Witt, M R; Nielsen, M

    1997-06-25

    Recombinant human GABA(A) receptors were investigated in vitro by coexpression of cDNAs coding for alpha1, beta2, and gamma2 subunits in the baculovirus/Sf-9 insect cell system. We report that a single amino acid exchange (isoleucine 121 to valine 121) in the N-terminal, extracellular part of the alpha1 subunit induces a marked decrease in agonist GABA(A) receptor ligand sensitivity. The potency of muscimol and GABA to inhibit the binding of the GABA(A) receptor antagonist [3H]SR 95531 (2-(3-carboxypropyl)-3-amino-6-(4-methoxyphenyl)pyridazinium bromide) was higher in receptor complexes of alpha1(ile 121) beta2gamma2 than in those of alpha1(val 121) beta2gamma2 (IC50 values were 32-fold and 26-fold lower for muscimol and GABA, respectively). The apparent affinity of the GABA(A) receptor antagonist bicuculline methiodide to inhibit the binding of [3H]SR 95531 did not differ between the two receptor complex variants. Electrophysiological measurements of GABA induced whole-cell Cl- currents showed a ten-fold decrease in the GABA(A) receptor sensitivity of alpha1 (val 121) beta2gamma2 as compared to alpha1(ile 121) beta2gamma2 receptor complexes. Thus, a relatively small change in the primary structure of the alpha1 subunit leads to a decrease selective for GABA(A) receptor sensitivity to agonist ligands, since no changes were observed in a GABA(A) receptor antagonist affinity and benzodiazepine receptor binding.

  10. Hippocampal GABAA Receptor and Pain Sensitivity during Estrous Cycle in the Rat

    PubMed Central

    Taherianfard, Mahnaz; Mosavi, Mahnaz

    2011-01-01

    Background: Estradiol and progesterone as well as hippocampal GABAA receptors are believed to play a role in the modulation of pain. The aim of present study was to investigate the effect of intrahippocampal injections of GABAA receptor agonist (muscimol) and GABAA receptor antagonist (picrotoxin) on pain sensitivity during estrous cycle. Methods: Pain sensitivity was evaluated in rats by formalin test during all stages of estrous cycle. Animals were divided into five groups including; 1- control (intact animal); 2- sham 1 receiving 0.75 µl artificial cerebrospinal fluids (ACSF); 3- sham 2 receiving 0.75 µl alcoholic ACSF; 4- experimental 1 receiving 250 or 500 µg/rat of muscimol in 0.75 µl vehicle, and 5- experimental 2 receiving 20 or 30 µg/rat picrotoxin in 0.75 µl vehicle. Data were analyzed by Kruskal-Wallis followed by Tucky's test for pairwise comparisons using a P value of ≤0.50 for statistical significance. Results: Muscimol significantly (P<0.05) decreased pain sensitivity in all stages of estrous cycle, and the analgesic effect was higher during proestrus and estrus stages of estrous cycle than that during metestrus and diestrus stages. Picrotoxin significantly (P<0.05) increased pain sensitivity in all stages of estrous cycle, and such a hyperalgesic effect was lower during proestrus and estrus stages of estrous cycle than that during metestrus and diestrus stages. Conclusion: The findings of the present study indicate that the role of hippocampal GABAA receptor in the control of the pain sensitivity can be modulated by variation in gonadal steroids during different stages of the estrous cycle. PMID:23115414

  11. Antiseizure Activity of Midazolam in Mice Lacking δ-Subunit Extrasynaptic GABA(A) Receptors.

    PubMed

    Reddy, Sandesh D; Younus, Iyan; Clossen, Bryan L; Reddy, Doodipala Samba

    2015-06-01

    Midazolam is a benzodiazepine anticonvulsant with rapid onset and short duration of action. Midazolam is the current drug of choice for acute seizures and status epilepticus, including those caused by organophosphate nerve agents. The antiseizure activity of midazolam is thought to result from its allosteric potentiation of synaptic GABA(A) receptors in the brain. However, there are indications that benzodiazepines promote neurosteroid synthesis via the 18-kDa cholesterol transporter protein (TSPO). Therefore, we investigated the role of neurosteroids and their extrasynaptic GABA(A) receptor targets in the antiseizure activity of midazolam. Here, we used δ-subunit knockout (DKO) mice bearing a targeted deletion of the extrasynaptic receptors to investigate the contribution of the extrasynaptic receptors to the antiseizure activity of midazolam using the 6-Hz and hippocampus kindling seizure models. In both models, midazolam produced rapid and dose-dependent protection against seizures (ED50, 0.4 mg/kg). Moreover, the antiseizure potency of midazolam was undiminished in DKO mice compared with control mice. Pretreatment with PK11195 [1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide], a TSPO blocker, or finasteride, a 5α-reductase neurosteroid inhibitor, did not affect the antiseizure effect of midazolam. The antiseizure activity of midazolam was significantly reversed by pretreatment with flumazenil, a benzodiazepine antagonist. Plasma and brain levels of the neurosteroid allopregnanolone were not significantly greater in midazolam-treated animals. These studies therefore provide strong evidence that neurosteroids and extrasynaptic GABA(A) receptors are not involved in the antiseizure activity of midazolam, which mainly occurs through synaptic GABA(A) receptors via direct binding to benzodiazepine sites. This study reaffirms midazolam's use for controlling acute seizures and status epilepticus. Copyright © 2015 by The American Society for

  12. Endogenous Positive Allosteric Modulation of GABAA Receptors by Diazepam binding inhibitor

    PubMed Central

    Christian, Catherine A.; Herbert, Anne G.; Holt, Rebecca L.; Peng, Kathy; Sherwood, Kyla D.; Pangratz-Fuehrer, Susanne; Rudolph, Uwe; Huguenard, John R.

    2014-01-01

    Summary Benzodiazepines (BZs) allosterically modulate γ-aminobutyric acid type-A receptors (GABAARs) to increase inhibitory synaptic strength. Diazepam binding inhibitor (DBI) protein is a BZ site ligand expressed endogenously in the brain, but functional evidence for BZ-mimicking positive modulatory actions has been elusive. We demonstrate an endogenous potentiation of GABAergic synaptic transmission and responses to GABA uncaging in the thalamic reticular nucleus (nRT) that is absent in both nm1054 mice, in which the Dbi gene is deleted, and mice in which BZ binding to α3 subunit-containing GABAARs is disrupted. Viral transduction of DBI into nRT is sufficient to rescue the endogenous potentiation of GABAergic transmission in nm1054 mice. Both mutations enhance thalamocortical spike-and-wave discharges characteristic of absence epilepsy. Together these results indicate that DBI mediates endogenous nucleus-specific BZ-mimicking (“endozepine”) roles to modulate nRT function and suppress thalamocortical oscillations. Enhanced DBI signaling might serve as a novel therapy for epilepsy and other neurological disorders. PMID:23727119

  13. Towards functional selectivity for α6β3γ2 GABAA receptors: a series of novel pyrazoloquinolinones

    PubMed Central

    Treven, Marco; Siebert, David C B; Holzinger, Raphael; Bampali, Konstantina; Fabjan, Jure; Varagic, Zdravko; Wimmer, Laurin; Steudle, Friederike; Scholze, Petra; Schnürch, Michael; Mihovilovic, Marko D

    2017-01-01

    Background and Purpose The GABAA receptors are ligand‐gated ion channels, which play an important role in neurotransmission. Their variety of binding sites serves as an appealing target for many clinically relevant drugs. Here, we explored the functional selectivity of modulatory effects at specific extracellular α+/β− interfaces, using a systematically varied series of pyrazoloquinolinones. Experimental Approach Recombinant GABAA receptors were expressed in Xenopus laevis oocytes and modulatory effects on GABA‐elicited currents by the newly synthesized and reference compounds were investigated by the two‐electrode voltage clamp method. Key Results We identified a new compound which, to the best of our knowledge, shows the highest functional selectivity for positive modulation at α6β3γ2 GABAA receptors with nearly no residual activity at the other αxβ3γ2 (x = 1–5) subtypes. This modulation was independent of affinity for α+/γ− interfaces. Furthermore, we demonstrated for the first time a compound that elicits a negative modulation at specific extracellular α+/β− interfaces. Conclusion and Implications These results constitute a major step towards a potential selective positive modulation of certain α6‐containing GABAA receptors, which might be useful to elicit their physiological role. Furthermore, these studies pave the way towards insights into molecular principles that drive positive versus negative allosteric modulation of specific GABAA receptor isoforms. PMID:29127702

  14. GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls

    NASA Technical Reports Server (NTRS)

    Akbarian, S.; Huntsman, M. M.; Kim, J. J.; Tafazzoli, A.; Potkin, S. G.; Bunney, W. E. Jr; Jones, E. G.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The prefrontal cortex of schizophrenics is hypoactive and displays changes related to inhibitory, GABAergic neurons, and GABAergic synapses. These changes include decreased levels of glutamic acid decarboxylase (GAD), the enzyme for GABA synthesis, upregulation of muscimol binding, and downregulation of benzodiazepine binding to GABAA receptors. Studies in the visual cortex of nonhuman primates have demonstrated that gene expression for GAD and for several GABAA receptor subunit polypeptides is under control of neuronal activity, raising the possibility that similar mechanisms in the hypoactive prefrontal cortex of schizophrenics may explain the abnormalities in GAD and in GABAA receptor regulation. In the present study, which is the first of its type on human cerebral cortex, levels of mRNAs for six GABAA receptor subunits (alpha 1, alpha 2, alpha 5, beta 1, beta 2, gamma 2) and their laminar expression patterns were analyzed in the prefrontal cortex of schizophrenics and matched controls, using in situ hybridization histochemistry and densitometry. Three types of laminar expression pattern were observed: mRNAs for the alpha 1, beta 2, and gamma 2 subunits, which are the predominant receptor subunits expressed in the mature cortex, were expressed at comparatively high levels by cells of all six cortical layers, but most intensely by cells in lower layer III and layer IV. mRNAs for the alpha 2, alpha 5, and beta 1 subunits were expressed at lower levels; alpha 2 and beta 1 were expressed predominantly by cells in layers II, III, and IV; alpha 5 was expressed predominantly in layers IV, V, and VI. There were no significant changes in overall mRNA levels for any of the receptor subunits in the prefrontal cortex of schizophrenics, and the laminar expression pattern of all six receptor subunit mRNAs did not differ between schizophrenics and controls. Because gene expression for GABAA receptor subunits is not consistently altered in the prefrontal cortex of

  15. Emamectin is a non-selective allosteric activator of nicotinic acetylcholine receptors and GABAA/C receptors

    PubMed Central

    Xu, Xiaojun; Sepich, Caraline; Lukas, Ronald J; Zhu, Guonian; Chang, Yongchang

    2016-01-01

    Avermectins are a group of compounds isolated from a soil-dwelling bacterium. They have been widely used as parasiticides and insecticides, acting by relatively irreversible activation of invertebrate chloride channels. Emamectin is a soluble derivative of an avermectin. It is an insecticide, which persistently activates glutamate-gated chloride channels. However, its effects on mammalian ligand-gated ion channels are unknown. To this end, we tested the effect of emamectin on two cation selective nicotinic receptors and two GABA-gated chloride channels expressed in Xenopus oocytes using two-electrode voltage clamp. Our results demonstrate that emamectin could directly activate α7 nAChR, α4β2 nAChR, α1β2γ2 GABAA receptor and ρ1 GABAC receptor concentration dependently, with similar potencies for each channel. However, the potencies for it to activate these channels were at least two orders of magnitude lower than its potency of activating invertebrate glutamate-gated chloride channel. In contrast, ivermectin only activated the α1β2γ2 GABAA receptor. PMID:27049309

  16. Emamectin is a non-selective allosteric activator of nicotinic acetylcholine receptors and GABAA/C receptors.

    PubMed

    Xu, Xiaojun; Sepich, Caraline; Lukas, Ronald J; Zhu, Guonian; Chang, Yongchang

    2016-05-13

    Avermectins are a group of compounds isolated from a soil-dwelling bacterium. They have been widely used as parasiticides and insecticides, acting by relatively irreversible activation of invertebrate chloride channels. Emamectin is a soluble derivative of an avermectin. It is an insecticide, which persistently activates glutamate-gated chloride channels. However, its effects on mammalian ligand-gated ion channels are unknown. To this end, we tested the effect of emamectin on two cation selective nicotinic receptors and two GABA-gated chloride channels expressed in Xenopus oocytes using two-electrode voltage clamp. Our results demonstrate that emamectin could directly activate α7 nAChR, α4β2 nAChR, α1β2γ2 GABAA receptor and ρ1 GABAC receptor concentration dependently, with similar potencies for each channel. However, the potencies for it to activate these channels were at least two orders of magnitude lower than its potency of activating invertebrate glutamate-gated chloride channel. In contrast, ivermectin only activated the α1β2γ2 GABAA receptor. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. GABA(A) receptors in visual and auditory cortex and neural activity changes during basic visual stimulation.

    PubMed

    Qin, Pengmin; Duncan, Niall W; Wiebking, Christine; Gravel, Paul; Lyttelton, Oliver; Hayes, Dave J; Verhaeghe, Jeroen; Kostikov, Alexey; Schirrmacher, Ralf; Reader, Andrew J; Northoff, Georg

    2012-01-01

    Recent imaging studies have demonstrated that levels of resting γ-aminobutyric acid (GABA) in the visual cortex predict the degree of stimulus-induced activity in the same region. These studies have used the presentation of discrete visual stimulus; the change from closed eyes to open also represents a simple visual stimulus, however, and has been shown to induce changes in local brain activity and in functional connectivity between regions. We thus aimed to investigate the role of the GABA system, specifically GABA(A) receptors, in the changes in brain activity between the eyes closed (EC) and eyes open (EO) state in order to provide detail at the receptor level to complement previous studies of GABA concentrations. We conducted an fMRI study involving two different modes of the change from EC to EO: an EO and EC block design, allowing the modeling of the haemodynamic response, followed by longer periods of EC and EO to allow the measuring of functional connectivity. The same subjects also underwent [(18)F]Flumazenil PET to measure GABA(A) receptor binding potentials. It was demonstrated that the local-to-global ratio of GABA(A) receptor binding potential in the visual cortex predicted the degree of changes in neural activity from EC to EO. This same relationship was also shown in the auditory cortex. Furthermore, the local-to-global ratio of GABA(A) receptor binding potential in the visual cortex also predicted the change in functional connectivity between the visual and auditory cortex from EC to EO. These findings contribute to our understanding of the role of GABA(A) receptors in stimulus-induced neural activity in local regions and in inter-regional functional connectivity.

  18. Characterization of GABAA receptor ligands with automated patch-clamp using human neurons derived from pluripotent stem cells

    PubMed Central

    Yuan, Nina Y.; Poe, Michael M.; Witzigmann, Christopher; Cook, James M.; Stafford, Douglas; Arnold, Leggy A.

    2016-01-01

    Introduction Automated patch clamp is a recent but widely used technology to assess pre-clinical drug safety. With the availability of human neurons derived from pluripotent stem cells, this technology can be extended to determine CNS effects of drug candidates, especially those acting on the GABAA receptor. Methods iCell Neurons (Cellular Dynamics International, A Fujifilm Company) were cultured for ten days and analyzed by patch clamp in the presence of agonist GABA or in combination with positive allosteric GABAA receptor modulators. Both efficacy and affinity were determined. In addition, mRNA of GABAA receptor subunits were quantified by qRT-PCR. Results We have shown that iCell Neurons are compatible with the IonFlux microfluidic system of the automated patch clamp instrument. Resistance ranging from 15-25 MΩ was achieved for each trap channel of patch clamped cells in a 96-well plate format. GABA induced a robust change of current with an EC50 of 0.43 μM. Positive GABAA receptor modulators diazepam, HZ166, and CW-04-020 exhibited EC50 values of 0.42 μM, 1.56 μM, and 0.23 μM, respectively. The α2/α3/α5 selective compound HZ166-induced the highest potentiation (efficacy) of 810% of the current induced by 100 nM GABA. Quantification of GABAA receptor mRNA in iCell Neurons revealed high levels of α5 and β3 subunits and low levels of α1, which is similar to the configuration in human neonatal brain. Discussion iCell Neurons represent a new cellular model to characterize GABAergic compounds using automated patch clamp. These cells have excellent representation of cellular GABAA receptor distribution that enable determination of total small molecule efficacy and affinity as measured by cell membrane current change. PMID:27544543

  19. Molecular and neurochemical biomarkers in Arctic beluga whales (Delphinapterus leucas) were correlated to brain mercury and selenium concentrations.

    PubMed

    Ostertag, Sonja K; Shaw, Alyssa C; Basu, Niladri; Chan, Hing Man

    2014-10-07

    Mercury (Hg) concentrations have increased in western Arctic beluga whales (Delphinapterus leucas) since the industrial revolution. Methylmercruy (MeHg) is a known neurotoxicant, yet little is known about the risk of exposure for beluga whales. Selenium (Se) has been linked to demethylation of MeHg in cetaceans, but its role in attenuating Hg toxicity in beluga whales is poorly understood. The objective of this study is to explore relationships between Hg and Se concentrations and neurochemical biomarkers in different brain regions of beluga whales in order to assess potential neurotoxicological risk of Hg exposure in this population. Brain tissue was sampled from hunter-harvested beluga whales from the western Canadian Arctic in 2008 and 2010. Neurochemical and molecular biomarkers were measured with radioligand binding assays and quantitative PCR, respectively. Total Hg (HgT) concentration ranged from 2.6-113 mg kg(-1) dw in temporal cortex. Gamma-amminobutyric acid type A receptor (GABAA-R) binding in the cerebellum was negatively associated with HgT, MeHg and total Se (SeT) concentrations (p ≤ 0.05). The expression of mRNA for GABAA-R subunit α2 was negatively associated with HgT and MeHg (p ≤ 0.05). Furthermore, GABAA-R binding was positively correlated to mRNA expression for GABAA-R α2 subunit, and negatively correlated to the expression of mRNA for GABAA-R α4 subunit (p ≤ 0.05). The expression of N-methyl-d-aspartate receptor (NMDA-R) subunit 2b mRNA expression was negatively associated with iHglabile concentration in the cerebellum (p ≤ 0.05). Variation of molecular and/or biochemical components of the GABAergic and glutamatergic signaling pathways were associated with MeHg exposure in beluga whales. Our results show that MeHg exposure is associated with neurochemical variation in the cerebellum of beluga whales and Se may partially protect from MeHg-associated neurotoxicity.

  20. A new meaning for “Gin & Tonic”

    PubMed Central

    Mody, Istvan; Glykys, Joseph; Wei, Weizheng

    2007-01-01

    Gamma-aminobutyric acid (GABA) is the main chemical inhibitory neurotransmitter in the brain. In the central nervous system (CNS) it acts on two distinct types of receptor: an ion channel, i.e., an “ionotropic” receptor permeable to Cl- and HCO3- (GABAA receptors) and a G-protein coupled “metabotropic” receptor that is linked to various effector mechanisms (GABAB receptors). This review will summarize novel developments in the physiology and pharmacology of GABAA receptors (GABAARs), specifically those found outside synapses. The focus will be on a particular combination of GABAAR subunits responsible for mediating tonic inhibition and sensitive to concentrations of ethanol legally considered to be sobriety impairing. Since the same receptors are also a preferred target for the metabolites of steroid hormones synthesized in the brain (neurosteroids), the ethanol-sensitive tonic inhibition may be a common pathway for interactions between the effects of alcohol and those of ovarian and stress-related neurosteroids. PMID:17521846

  1. Unsaturated free fatty acids increase benzodiazepine receptor agonist binding depending on the subunit composition of the GABAA receptor complex.

    PubMed

    Witt, M R; Westh-Hansen, S E; Rasmussen, P B; Hastrup, S; Nielsen, M

    1996-11-01

    It has been shown previously that unsaturated free fatty acids (FFAs) strongly enhance the binding of agonist benzodiazepine receptor ligands and GABAA receptor ligands in the CNS in vitro. To investigate the selectivity of this effect, recombinant human GABAA/benzodiazepine receptor complexes formed by different subunit compositions (alpha x beta y gamma 2, x = 1, 2, 3, and 5; y = 1, 2, and 3) were expressed using the baculovirus-transfected Sf9 insect cell system. At 10(-4) M, unsaturated FFAs, particularly arachidonic (20:4) and docosahexaenoic (22:6) acids, strongly stimulated (> 200% of control values) the binding of [3H]flunitrazepam ([3H]FNM) to the alpha 3 beta 2 gamma 2 receptor combination in whole cell preparations. No effect or small increases in levels of unsaturated FFAs on [3H]FNM binding to alpha 1 beta x gamma 2 and alpha 2 beta x gamma 2 receptor combinations were observed, and weak effects (130% of control values) were detected using the alpha 5 beta 2 gamma 2 receptor combination. The saturated FFAs, stearic and palmitic acids, were without effect on [3H]FNM binding to any combination of receptor complexes. The hydroxylated unsaturated FFAs, ricinoleic and ricinelaidic acids, were shown to decrease the binding of [3H]FNM only if an alpha 1 beta 2 gamma 2 receptor combination was used. Given the heterogeneity of the GABAA/ benzodiazepine receptor subunit distribution in the CNS, the effects of FFAs on the benzodiazepine receptor can be assumed to vary at both cellular and regional levels.

  2. Human α1β3γ2L gamma-aminobutyric acid type A receptors: High-level production and purification in a functional state.

    PubMed

    Dostalova, Zuzana; Zhou, Xiaojuan; Liu, Aiping; Zhang, Xi; Zhang, Yinghui; Desai, Rooma; Forman, Stuart A; Miller, Keith W

    2014-02-01

    Gamma-aminobutyric acid type A receptors (GABA(A)Rs) are the most important inhibitory chloride ion channels in the central nervous system and are major targets for a wide variety of drugs. The subunit compositions of GABA(A)Rs determine their function and pharmacological profile. GABAA Rs are heteropentamers of subunits, and (α1)2 (β3)2 (γ2L)1 is a common subtype. Biochemical and biophysical studies of GABA(A)Rs require larger quantities of receptors of defined subunit composition than are currently available. We previously reported high-level production of active human α1β3 GABA(A)R using tetracycline-inducible stable HEK293 cells. Here we extend the strategy to receptors containing three different subunits. We constructed a stable tetracycline-inducible HEK293-TetR cell line expressing human (N)-FLAG-α1β3γ2L-(C)-(GGS)3 GK-1D4 GABA(A)R. These cells achieved expression levels of 70-90 pmol [(3)H]muscimol binding sites/15-cm plate at a specific activity of 15-30 pmol/mg of membrane protein. Incorporation of the γ2 subunit was confirmed by the ratio of [(3)H]flunitrazepam to [(3)H]muscimol binding sites and sensitivity of GABA-induced currents to benzodiazepines and zinc. The α1β3γ2L GABA(A)Rs were solubilized in dodecyl-D-maltoside, purified by anti-FLAG affinity chromatography and reconstituted in CHAPS/asolectin at an overall yield of ∼ 30%. Typical purifications yielded 1.0-1.5 nmoles of [(3)H]muscimol binding sites/60 plates. Receptors with similar properties could be purified by 1D4 affinity chromatography with lower overall yield. The composition of the purified, reconstituted receptors was confirmed by ligand binding, Western blot, and proteomics. Allosteric interactions between etomidate and [(3)H]muscimol binding were maintained in the purified state. © 2013 The Protein Society.

  3. Role of GABAA receptors in dorsal raphe nucleus in stress-induced reinstatement of morphine-conditioned place preference in rats.

    PubMed

    Li, Chen; Staub, Daniel R; Kirby, Lynn G

    2013-12-01

    The serotonin (5-hydroxytryptamine, 5-HT) system plays an important role in stress-related psychiatric disorders and substance abuse. Our data indicate that stress inhibits the dorsal raphe nucleus (DRN)-5-HT system via stimulation of GABA synaptic activity by the stress neurohormone corticotropin-releasing factor and, more recently, that morphine history sensitizes DRN-5-HT neurons to GABAergic inhibitory effects of stress. We tested the hypothesis that DRN GABAA receptors contribute to stress-induced reinstatement of morphine-conditioned place preference (CPP). First, we tested if activation of GABAA receptors in the DRN would reinstate morphine CPP. Second, we tested if blockade of GABAA receptors in the DRN would attenuate swim stress-induced reinstatement of morphine CPP. CPP was induced by morphine (5 mg/kg) in a 4-day conditioning phase followed by a conditioning test. Upon acquiring conditioning criteria, subjects underwent 4 days of extinction training followed by an extinction test. Upon acquiring extinction criteria, animals underwent a reinstatement test. For the first experiment, the GABAA receptor agonist muscimol (50 ng) or vehicle was injected into the DRN prior to the reinstatement test. For the second experiment, the GABAA receptor antagonist bicuculline (75 ng) or vehicle was injected into the DRN prior to a forced swim stress, and then, animals were tested for reinstatement of CPP. Intraraphe injection of muscimol reinstated morphine CPP, while intraraphe injection of bicuculline attenuated swim stress-induced reinstatement. These data provide evidence that GABAA receptor-mediated inhibition of the serotonergic DRN contributes to stress-induced reinstatement of morphine CPP.

  4. Interaction of H+ and Zn2+ on recombinant and native rat neuronal GABAA receptors

    PubMed Central

    Krishek, Belinda J; Moss, Stephen J; Smart, Trevor G

    1998-01-01

    The interaction of Zn2+ and H+ ions with GABAA receptors was examined using Xenopus laevis oocytes expressing recombinant GABAA receptors composed of subunits selected from α1, β1, γ2S and δ types, and by using cultured rat cerebellar granule neurones. The potency of Zn2+ as a non-competitive antagonist of GABA-activated responses on α1β1 receptors was reduced by lowering the external pH from 7.4 to 5.4, increasing the Zn2+ IC50 value from 1.2 to 58.3 μm. Zinc-induced inhibition was largely unaffected by alkaline pH up to pH 9.4. For α1β1δ subunits, concentration-response curves for GABA were displaced laterally by Zn2+ in accordance with a novel mixed/competitive-type inhibition. The Zn2+ IC50 at pH 7.4 was 16.3 μm. Acidification of Ringer solution resulted in a reduced antagonism by Zn2+ (IC50, 49.0 μm) without affecting the type of inhibition. At pH 9.4, Zn2+ inhibition remained unaffected. The addition of the γ2S subunit to the α1β1δ construct caused a marked reduction in the potency of Zn2+ (IC50, 615 μm), comparable to that observed with α1β1γ2S receptors (IC50 639 μm). GABA concentration-response curves were depressed in a mixed/non-competitive fashion. In cultured cerebellar granule neurones, Zn2+ inhibited responses to GABA in a concentration-dependent manner. Lowering external pH from 7.4 to 6.4 increased the IC50 from 139 to 253 μm. The type of inhibition exhibited by Zn2+ on cerebellar granule neurones, previously grown in high K+-containing culture media, was complex, with the GABA concentration-response curves shifting laterally with reduced slopes and similar maxima. The Zn2+-induced shift in the GABA EC50 values was reduced by lowering the external pH from 7.4 to 6.4. The interaction of H+ and Zn2+ ions on GABAA receptors suggests that they share either a common regulatory pathway or coincident binding sites on the receptor protein. The apparent competitive mode of block induced by Zn2+ on α1β1δ receptors is shared by GABAA

  5. Glycosylation of β2 Subunits Regulates GABAA Receptor Biogenesis and Channel Gating*

    PubMed Central

    Lo, Wen-yi; Lagrange, Andre H.; Hernandez, Ciria C.; Harrison, Rebecca; Dell, Anne; Haslam, Stuart M.; Sheehan, Jonathan H.; Macdonald, Robert L.

    2010-01-01

    γ-Aminobutyric acid type A (GABAA) receptors are heteropentameric glycoproteins. Based on consensus sequences, the GABAA receptor β2 subunit contains three potential N-linked glycosylation sites, Asn-32, Asn-104, and Asn-173. Homology modeling indicates that Asn-32 and Asn-104 are located before the α1 helix and in loop L3, respectively, near the top of the subunit-subunit interface on the minus side, and that Asn-173 is located in the Cys-loop near the bottom of the subunit N-terminal domain. Using site-directed mutagenesis, we demonstrated that all predicted β2 subunit glycosylation sites were glycosylated in transfected HEK293T cells. Glycosylation of each site, however, produced specific changes in α1β2 receptor surface expression and function. Although glycosylation of Asn-173 in the Cys-loop was important for stability of β2 subunits when expressed alone, results obtained with flow cytometry, brefeldin A treatment, and endo-β-N-acetylglucosaminidase H digestion suggested that glycosylation of Asn-104 was required for efficient α1β2 receptor assembly and/or stability in the endoplasmic reticulum. Patch clamp recording revealed that mutation of each site to prevent glycosylation decreased peak α1β2 receptor current amplitudes and altered the gating properties of α1β2 receptor channels by reducing mean open time due to a reduction in the proportion of long open states. In addition to functional heterogeneity, endo-β-N-acetylglucosaminidase H digestion and glycomic profiling revealed that surface β2 subunit N-glycans at Asn-173 were high mannose forms that were different from those of Asn-32 and N104. Using a homology model of the pentameric extracellular domain of α1β2 channel, we propose mechanisms for regulation of GABAA receptors by glycosylation. PMID:20639197

  6. Low concentrations of ethanol do not affect radioligand binding to the delta-subunit-containing GABAA receptors in the rat brain.

    PubMed

    Mehta, Ashok K; Marutha Ravindran, C R; Ticku, Maharaj K

    2007-08-24

    In the present study, we investigated the co-localization pattern of the delta subunit with other subunits of GABA(A) receptors in the rat brain using immunoprecipitation and Western blotting techniques. Furthermore, we investigated whether low concentrations of ethanol affect the delta-subunit-containing GABA(A) receptor assemblies in the rat brain using radioligand binding to the rat brain membrane homogenates as well as to the immunoprecipitated receptor assemblies. Our results revealed that delta subunit is not co-localized with gamma(2) subunit but it is associated with the alpha(1), alpha(4) or alpha(6), beta(2) and/or beta(3) subunit(s) of GABA(A) receptors in the rat brain. Ethanol (1-50 mM) neither affected [(3)H]muscimol (3 nM) binding nor diazepam-insensitive [(3)H]Ro 15-4513 (2 nM) binding in the rat cerebellum and cerebral cortex membranes. However, a higher concentration of ethanol (500 mM) inhibited the binding of these radioligands to the GABA(A) receptors partially in the rat cerebellum and cerebral cortex. Similarly, ethanol (up to 50 mM) did not affect [(3)H]muscimol (15 nM) binding to the immunoprecipitated delta-subunit-containing GABA(A) receptor assemblies in the rat cerebellum and hippocampus but it inhibited the binding partially at a higher concentration (500 mM). These results suggest that the native delta-subunit-containing GABA(A) receptors do not play a major role in the pharmacology of clinically relevant low concentrations of ethanol.

  7. Involvement of the CA1 GABAA receptors in MK-801-induced anxiolytic-like effects: an isobologram analysis.

    PubMed

    Naseri, Mohammad-Hasan; Hesami-Tackallou, Saeed; Torabi-Nami, Mohammad; Zarrindast, Mohammad-Reza; Nasehi, Mohammad

    2014-06-01

    There seems to be a close relationship between hippocampal N-methyl-D-aspartic acid (NMDA) and GABAA receptors with respect to the modulation of behavior that occurs in the CA1 region of the hippocampus. This study investigated the possible involvement of the CA1 GABAA receptors in anxiolytic-like effects induced by (+)-MK-801 (a noncompetitive antagonist of the NMDA subtype of the glutamate receptor). Male Wistar rats were subjected to the elevated plus-maze apparatus and open arm time (%OAT), and open arm entries (%OAE) for anxiety-related behaviors, and closed arm entries that correspond to the locomotor activity were assessed. An intra-CA1 injection of (+)-MK-801 (2 μg/rat) and muscimol (0.5 μg/rat; a GABAA receptor agonist) increased %OAT and %OAE by themselves while not altering the closed arm entries, indicating an anxiolytic-like effect of these drugs. Injection of bicuculline (0.1, 0.25, and 0.5 μg/rat; a GABAA receptor antagonist) did not alter any of the anxiety-related parameters. An intra-CA1 injection of a subthreshold dose of muscimol (0.1 μg/rat) or bicuculline (0.5 μg/rat), 5 min before injection of subthreshold and effective doses of (+)-MK-801 (0.5, 1 and 2 μg/rat), increased and decreased the anxiolytic-like effect of (+)-MK-801, respectively. The isobologram analysis of these findings suggested a synergistic anxiety-like effect of intra-CA1 (+)-MK-801 and muscimol. In conclusion, the CA1 GABAA receptors appear to be involved in anxiolytic-like behaviors induced by (+)-MK-801.

  8. Cyclohexanol analogues are positive modulators of GABAA receptor currents and act as general anaesthetics in vivo

    USDA-ARS?s Scientific Manuscript database

    GABAA receptors meet all the pharmacological criteria required to be considered important general anaesthetic targets. In the following study, the modulatory effects of various commercially available and novel cyclohexanol were investigated on recombinant human '-aminobutyric acid (GABAA, a1ß2'2s) r...

  9. Effects of Chronic Ethanol Consumption on Rat GABAA and Strychnine-sensitive Glycine Receptors Expressed by Lateral/Basolateral Amygdala Neurons

    PubMed Central

    McCool, Brian A.; Frye, Gerald D.; Pulido, Marisa D.; Botting, Shaleen K.

    2010-01-01

    It is well known that the anxiolytic potential of ethanol is maintained during chronic exposure. We have confirmed this using a light-dark box paradigm following chronic ethanol ingestion via a liquid diet. However, cessation from chronic ethanol exposure is known to cause severe withdrawal anxiety. These opposing effects on anxiety likely result from neuro-adaptations of neurotransmitter systems within the brain regions regulating anxiety. Recent work highlights the importance of amygdala ligand-gated chloride channels in the expression of anxiety. We have therefore examined the effects of chronic ethanol exposure on GABAA and strychnine-sensitive glycine receptors expressed by acutely isolated adult rat lateral/basolateral amygdala neurons. Chronic ethanol exposure increased the functional expression of GABAA receptors in acutely isolated basolateral amygdala neurons without altering strychnine-sensitive glycine receptors. Neither the acute ethanol nor benzodiazepine sensitivity of either receptor system was affected. We explored the likelihood that subunit composition might influence each receptor’s response to chronic ethanol. Importantly, when expressed in a mammalian heterologous system, GABAA receptors composed of unique α subunits were differentially sensitive to acute ethanol. Likewise, the presence of the β subunit appeared to influence the acute ethanol sensitivity of glycine receptors containing the α2 subunit. Our results suggest that the facilitation of GABAA receptors during chronic ethanol exposure may help explain the maintenance of ethanol’s anti-anxiety effects during chronic ethanol exposure. Furthermore, the subunit composition of GABAA and strychnine-sensitive glycine receptors may ultimately influence the response of each system to chronic ethanol exposure. PMID:12560122

  10. Women with PTSD have a changed sensitivity to GABA-A receptor active substances.

    PubMed

    Möller, Anna Tiihonen; Bäckström, Torbjörn; Nyberg, Sigrid; Söndergaard, Hans Peter; Helström, Lotti

    2016-06-01

    The use of benzodiazepines in treating anxiety symptoms in patients with posttraumatic stress disorder (PTSD) has been debated. Studies on other anxiety disorders have indicated changed sensitivity to GABA-A receptor active substances. In the present study, we investigated the GABA receptor sensitivity in PTSD patients. Injections of allopreganolone, diazepam, and flumazenil were carried out, each on separate occasions, in 10 drug naïve patients with PTSD compared to 10 healthy controls. Effects were measured in saccadic eye velocity (SEV) and in subjective ratings of sedation. The PTSD patients were less sensitive to allopregnanolone compared with healthy controls. This was seen as a significant difference in SEV between the groups (p = 0.047). Further, the patients were less sensitive to diazepam, with a significant less increase in sedation compared to controls (p = 0.027). After flumazenil injection, both patients and controls had a significant agonistic effect on SEV, leading to decreased SEV after injection. The patients also responded with an increase in sedation after flumazenil injection, while this was not seen in the controls. Patients with PTSD have a changed sensitivity to GABA-A receptor active substances. As a consequence of this, benzodiazepines and other GABA-A receptor active compounds such as sleeping pills will be less useful for this group of patients.

  11. Multiple Non-Equivalent Interfaces Mediate Direct Activation of GABAA Receptors by Propofol.

    PubMed

    Eaton, Megan M; Germann, Allison L; Arora, Ruby; Cao, Lily Q; Gao, Xiaoyi; Shin, Daniel J; Wu, Albert; Chiara, David C; Cohen, Jonathan B; Steinbach, Joe Henry; Evers, Alex S; Akk, Gustav

    2016-01-01

    Propofol is a sedative agent that at clinical concentrations acts by allosterically activating or potentiating the γ-aminobutyric acid type A (GABAA) receptor. Mutational, modeling, and photolabeling studies with propofol and its analogues have identified potential interaction sites in the transmembrane domain of the receptor. At the &quot;+&quot; of the β subunit, in the β-α interface, meta-azipropofol labels the M286 residue in the third transmembrane domain. Substitution of this residue with tryptophan results in loss of potentiation by propofol. At the &quot;-&quot; side of the β subunit, in the α-β interface (or β-β interface, in the case of homomeric β receptors), ortho-propofol diazirine labels the H267 residue in the second transmembrane domain. Structural modeling indicates that the β(H267) residue lines a cavity that docks propofol with favorable interaction energy. We used two-electrode voltage clamp to determine the functional effects of mutations to the "+" and "-" sides of the β subunit on activation of the α1β3 GABAA receptor by propofol. We found that while the individual mutations had a small effect, the combination of the M286W mutation with tryptophan mutations of selected residues at the α-β interface leads to strong reduction in gating efficacy for propofol. We conclude that α1β3 GABAA receptors can be activated by propofol interactions with the β-β, α-β, and β-α interfaces, where distinct, non-equivalent regions control channel gating. Any interface can mediate activation, hence substitutions at all interfaces are required for loss of activation by propofol.

  12. Multiple Non-Equivalent Interfaces Mediate Direct Activation of GABAA Receptors by Propofol

    PubMed Central

    Eaton, Megan M.; Germann, Allison L.; Arora, Ruby; Cao, Lily Q.; Gao, Xiaoyi; Shin, Daniel J.; Wu, Albert; Chiara, David C.; Cohen, Jonathan B.; Steinbach, Joe Henry; Evers, Alex S.; Akk, Gustav

    2016-01-01

    Abstract: Background Propofol is a sedative agent that at clinical concentrations acts by allosterically activating or potentiating the γ-aminobutyric acid type A (GABAA) receptor. Mutational, modeling, and photolabeling studies with propofol and its analogues have identified potential interaction sites in the transmembrane domain of the receptor. At the “+” of the β subunit, in the β-α interface, meta-azipropofol labels the M286 residue in the third transmembrane domain. Substitution of this residue with tryptophan results in loss of potentiation by propofol. At the “-” side of the β subunit, in the α-β interface (or β-β interface, in the case of homomeric β receptors), ortho-propofol diazirine labels the H267 residue in the second transmembrane domain. Structural modeling indicates that the β(H267) residue lines a cavity that docks propofol with favorable interaction energy. Method We used two-electrode voltage clamp to determine the functional effects of mutations to the 
“+” and “-” sides of the β subunit on activation of the α1β3 GABAA receptor by propofol. Results We found that while the individual mutations had a small effect, the combination of the M286W mutation with tryptophan mutations of selected residues at the α-β interface leads to strong reduction in gating efficacy for propofol. Conclusion We conclude that α1β3 GABAA receptors can be activated by propofol interactions with the β-β, α-β, and β-α interfaces, where distinct, non-equivalent regions control channel gating. Any interface can mediate activation, hence substitutions at all interfaces are required for loss of activation by propofol. PMID:26830963

  13. Reduced GABAA Receptor α6 Expression in The Trigeminal Ganglion Enhanced Myofascial Nociceptive Response

    PubMed Central

    Kramer, P. R.; Bellinger, L. L.

    2013-01-01

    Activation of the GABAA receptor results in inhibition of neuronal activity. One subunit of this multi-subunit receptor termed alpha 6 (Gabrα6) contributed to inflammatory temporomandibular joint (TMJ) nociception but TMJ disorders often include myofascial pain. To address Gabrα6 role in myofascial pain we hypothesized that Gabrα6 has an inhibitory role in myofascial nociceptive responses similar to inflammatory TMJ arthritis. To test this hypothesis a, myofascial nociceptive response was induced by placing a ligature bilaterally on the tendon attachment of the anterior superficial part of a male rat's masseter muscle. Four days after ligature placement Gabrα6 expression was reduced by infusing the trigeminal ganglia (TG) with small interfering RNA (siRNA) having homology to either the Gabrα6 gene (Gabra6 siRNA) or no known gene (control siRNA). After siRNA infusion nociceptive behavioral responses were measured, i.e., feeding behavior and head withdrawal after pressing upon the region above the ligature with von Frey filaments. Neuronal activity in the TG and trigeminal nucleus caudalis and upper cervical region (Vc–C1) was measured by quantitating the amount of phosphorylated extracellular signalregulated kinase (p-ERK). Total Gabrα6 and GABAA receptor contents in the TG and Vc–C1 were determined. Gabrα6 siRNA infusion reduced Gabrα6 and GABAA receptor expression and significantly increased the nociceptive response in both nociceptive assays. Gabra6 siRNA infusion also significantly increased TG p-ERK expression of the ligated rats. From these results we conclude GABAA receptors consisting of the Gabrα6 subunit inhibit TG nociceptive sensory afferents in the trigeminal pathway and have an important role in the regulation of myofascial nociception. PMID:23602886

  14. Differential Potency of 2,6-Dimethylcyclohexanol Isomers for Positive Modulation of GABAA Receptor Currents.

    PubMed

    Chowdhury, Luvana; Croft, Celine J; Goel, Shikha; Zaman, Naina; Tai, Angela C-S; Walch, Erin M; Smith, Kelly; Page, Alexandra; Shea, Kevin M; Hall, C Dennis; Jishkariani, D; Pillai, Girinath G; Hall, Adam C

    2016-06-01

    GABAA receptors meet all of the pharmacological requirements necessary to be considered important targets for the action of general anesthetic agents in the mammalian brain. In the following patch-clamp study, the relative modulatory effects of 2,6-dimethylcyclohexanol diastereomers were investigated on human GABAA (α1β3γ2s) receptor currents stably expressed in human embryonic kidney cells. Cis,cis-, trans,trans-, and cis,trans-isomers were isolated from commercially available 2,6-dimethylcyclohexanol and were tested for positive modulation of submaximal GABA responses. For example, the addition of 30 μM cis,cis-isomer resulted in an approximately 2- to 3-fold enhancement of the EC20 GABA current. Coapplications of 30 μM 2,6-dimethylcyclohexanol isomers produced a range of positive enhancements of control GABA responses with a rank order for positive modulation: cis,cis > trans,trans ≥ mixture of isomers > > cis,trans-isomer. In molecular modeling studies, the three cyclohexanol isomers bound with the highest binding energies to a pocket within transmembrane helices M1 and M2 of the β3 subunit through hydrogen-bonding interactions with a glutamine at the 224 position and a tyrosine at the 220 position. The energies for binding to and hydrogen-bond lengths within this pocket corresponded with the relative potencies of the agents for positive modulation of GABAA receptor currents (cis,cis > trans,trans > cis,trans-2,6-dimethylcyclohexanol). In conclusion, the stereochemical configuration within the dimethylcyclohexanols is an important molecular feature in conferring positive modulation of GABAA receptor activity and for binding to the receptor, a consideration that needs to be taken into account when designing novel anesthetics with enhanced therapeutic indices. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  15. HPLC-Based Activity Profiling: Discovery of Piperine as a Positive GABAA Receptor Modulator Targeting a Benzodiazepine-Independent Binding Site

    PubMed Central

    Zaugg, Janine; Baburin, Igor; Strommer, Barbara; Kim, Hyun-Jung; Hering, Steffen; Hamburger, Matthias

    2011-01-01

    A plant extract library was screened for GABAA receptor activity making use of a two-microelectrode voltage clamp assay on Xenopus laevis oocytes. An ethyl acetate extract of black pepper fruits [Piper nigrum L. (Piperaceae) 100 μg/mL] potentiated GABA-induced chloride currents through GABAA receptors (composed of α1, β2, and γ2S subunits) by 169.1 ± 2.4%. With the aid of an HPLC-based activity profiling approach, piperine (5) was identified as the main active compound, together with 12 structurally related less active or inactive piperamides (1–4, 6–13). Identification was achieved by on-line high-resolution mass spectrometry and off-line microprobe 1D and 2D NMR spectroscopy, using only milligram amounts of extract. Compound 5 induced a maximum potentiation of the chloride currents by 301.9 ± 26.5% with an EC50 of 52.4 ± 9.4 μM. A comparison of the modulatory activity of 5 and other naturally occurring piperamides enabled insights into structural features critical for GABAA receptor modulation. The stimulation of chloride currents through GABAA receptors by compound 5 was not antagonized by flumazenil (10 μM). These data show that piperine (5) represents a new scaffold of positive allosteric GABAA receptor modulators targeting a benzodiazepine-independent binding site. PMID:20085307

  16. Effects of chronic ethanol consumption on rat GABA(A) and strychnine-sensitive glycine receptors expressed by lateral/basolateral amygdala neurons.

    PubMed

    McCool, Brian A; Frye, Gerald D; Pulido, Marisa D; Botting, Shaleen K

    2003-02-14

    It is well known that the anxiolytic potential of ethanol is maintained during chronic exposure. We have confirmed this using a light-dark box paradigm following chronic ethanol ingestion via a liquid diet. However, cessation from chronic ethanol exposure is known to cause severe withdrawal anxiety. These opposing effects on anxiety likely result from neuro-adaptations of neurotransmitter systems within the brain regions regulating anxiety. Recent work highlights the importance of amygdala ligand-gated chloride channels in the expression of anxiety. We have therefore examined the effects of chronic ethanol exposure on GABA(A) and strychnine-sensitive glycine receptors expressed by acutely isolated adult rat lateral/basolateral amygdala neurons. Chronic ethanol exposure increased the functional expression of GABA(A) receptors in acutely isolated basolateral amygdala neurons without altering strychnine-sensitive glycine receptors. Neither the acute ethanol nor benzodiazepine sensitivity of either receptor system was affected. We explored the likelihood that subunit composition might influence each receptor's response to chronic ethanol. Importantly, when expressed in a mammalian heterologous system, GABA(A) receptors composed of unique alpha subunits were differentially sensitive to acute ethanol. Likewise, the presence of the beta subunit appeared to influence the acute ethanol sensitivity of glycine receptors containing the alpha(2) subunit. Our results suggest that the facilitation of GABA(A) receptors during chronic ethanol exposure may help explain the maintenance of ethanol's anti-anxiety effects during chronic ethanol exposure. Furthermore, the subunit composition of GABA(A) and strychnine-sensitive glycine receptors may ultimately influence the response of each system to chronic ethanol exposure.

  17. Developmental changes in expression of GABAA receptor-channels in rat intrinsic cardiac ganglion neurones

    PubMed Central

    Fischer, Harald; Harper, Alexander A; Anderson, Colin R; Adams, David J

    2005-01-01

    The effects of γ-aminobutyric acid (GABA) on the electrophysiological properties of intracardiac neurones were investigated in the intracardiac ganglion plexus in situ and in dissociated neurones from neonatal, juvenile and adult rat hearts. Focal application of GABA evoked a depolarizing, excitatory response in both intact and dissociated intracardiac ganglion neurones. Under voltage clamp, both GABA and muscimol elicited inward currents at −60 mV in a concentration-dependent manner. The fast, desensitizing currents were mimicked by the GABAA receptor agonists muscimol and taurine, and inhibited by the GABAA receptor antagonists, bicuculline and picrotoxin. The GABAA0 antagonist (1,2,5,6-tetrahydropyridin-4-yl)methyl phosphonic acid (TPMPA), had no effect on GABA-induced currents, suggesting that GABAA receptor-channels mediate the response. The GABA-evoked current amplitude recorded from dissociated neurones was age dependent whereby the peak current density measured at −100 mV was ∼ 20 times higher for intracardiac neurones obtained from neonatal rats (P2–5) compared with adult rats (P45–49). The decrease in GABA sensitivity occurred during the first two postnatal weeks and coincides with maturation of the sympathetic innervation of the rat heart. Immunohistochemical staining using antibodies against GABA demonstrate the presence of GABA in the intracardiac ganglion plexus of the neonatal rat heart. Taken together, these results suggest that GABA and taurine may act as modulators of neurotransmission and cardiac function in the developing mammalian intrinsic cardiac nervous system. PMID:15731187

  18. Nicotine and Nicotine Abstinence Do Not Interfere with GABAA Receptor Neuroadaptations During Alcohol Abstinence.

    PubMed

    Hillmer, Ansel T; Kloczynski, Tracy; Sandiego, Christine M; Pittman, Brian; Anderson, Jon M; Labaree, David; Gao, Hong; Huang, Yiyun; Deluliis, Giuseppe; O'Malley, Stephanie S; Carson, Richard E; Cosgrove, Kelly P

    2016-04-01

    Alcohol dependence and tobacco smoking are highly comorbid, and treating both conditions simultaneously is controversial. Previously, we showed that tobacco smoking interferes with GABAA receptor neuroadaptations during alcohol withdrawal in humans, while this effect did not occur with continued nicotine use during alcohol abstinence in nonhuman primates. Here, we extend our previous work by measuring GABAA receptor availability with positron emission tomography (PET) during drug abstinence in nonhuman primates exposed to alcohol alone, nicotine and alcohol together, and alcohol abstinence with continued nicotine exposure. Twenty-four adolescent male rhesus macaques orally self-administered alcohol and nicotine, available separately in water and saccharin, over 20 weeks. The groups included alcohol alone (n = 8); nicotine and alcohol with simultaneous abstinence (n = 8); nicotine and alcohol with alcohol abstinence while nicotine was still available (n = 8); and a pilot group of animals consuming nicotine alone (n = 6). Animals were imaged with [(11)C]flumazenil PET to measure binding potential (BPND), an index of GABAA receptor availability. Imaging occurred at baseline (drug-naíve), and following alcohol and/or nicotine cessation at 1 day, 8 days, and 12 weeks of abstinence. Generalized linear mixed models were used to examine the time course of [(11)C]flumazenil BPND during alcohol abstinence across groups. Animals consumed 3.95 ± 1.22 g/kg/d alcohol and 55.4 ± 35.1 mg/kg/d nicotine. No significant group effects were observed in [(11)C]flumazenil BPND during alcohol abstinence; however, a main effect of time was detected. Post hoc analyses indicated that all groups abstaining from alcohol exhibited significantly increased GABAA receptor availability at 1 day and 8 days (but not 12 weeks) of abstinence relative to baseline, while no changes in [(11)C]flumazenil BPND during nicotine abstinence alone were observed. These data indicate that neither nicotine nor

  19. Neonatal blockade of GABA-A receptors alters behavioral and physiological phenotypes in adult mice.

    PubMed

    Salari, Ali-Akbar; Amani, Mohammad

    2017-04-01

    Gamma-aminobutyric acid (GABA) plays an inhibitory role in the mature brain, and has a complex and bidirectional effect in different parts of the immature brain which affects proliferation, migration and differentiation of neurons during development. There is also increasing evidence suggesting that activation or blockade of the GABA-A receptors during early life can induce brain and behavioral abnormalities in adulthood. We investigated whether neonatal blockade of the GABA-A receptors by bicuculline can alter anxiety- and depression-like behaviors, body weight, food intake, corticosterone and testosterone levels in adult mice (postnatal days 80-95). To this end, neonatal mice were treated with either DMSO or bicuculline (70, 150 and 300μg/kg) during postnatal days 7, 9 and 11. When grown to adulthood, mice were exposed to behavioral tests to measure anxiety- (elevated plus-maze and light-dark box) and depression-like behaviors (tail suspension test and forced swim test). Stress-induced serum corticosterone and testosterone levels, body weight and food intake were also evaluated. Neonatal bicuculline exposure at dose of 300μg/kg decreased anxiety-like behavior, stress-induced corticosterone levels and increased testosterone levels, body weight and food intake, without significantly influencing depression-like behavior in adult male mice. However, no significant changes in these parameters were observed in adult females. These findings suggest that neonatal blockade of GABA-A receptors affects anxiety-like behavior, physiological and hormonal parameters in a sex-dependent manner in mice. Taken together, these data corroborate the concept that GABA-A receptors during early life have an important role in programming neurobehavioral phenotypes in adulthood. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  20. Valerian Inhibits Rat Hepatocarcinogenesis by Activating GABA(A) Receptor-Mediated Signaling

    PubMed Central

    Kakehashi, Anna; Kato, Ayumi; Ishii, Naomi; Wei, Min; Morimura, Keiichirou; Fukushima, Shoji; Wanibuchi, Hideki

    2014-01-01

    Valerian is widely used as a traditional medicine to improve the quality of sleep due to interaction of several active components with the γ-aminobutyric acid (GABA) A receptor (GABA(A)R) system. Recently, activation of GABA signaling in stem cells has been reported to suppress cell cycle progression in vivo. Furthermore, possible inhibitory effects of GABA(A)R agonists on hepatocarcinogenesis have been reported. The present study was performed to investigate modulating effects of Valerian on hepatocarcinogenesis using a medium-term rat liver bioassay. Male F344 rats were treated with one of the most powerful Valerian species (Valeriana sitchensis) at doses of 0, 50, 500 and 5000 ppm in their drinking water after initiation of hepatocarcinogenesis with diethylnitrosamine (DEN). Formation of glutathione S-transferase placental form positive (GST-P+) foci was significantly inhibited by Valerian at all applied doses compared with DEN initiation control rats. Generation of 8-hydroxy-2′-deoxyguanosine in the rat liver was significantly suppressed by all doses of Valerian, likely due to suppression of Nrf2, CYP7A1 and induction of catalase expression. Cell proliferation was significantly inhibited, while apoptosis was induced in areas of GST-P+ foci of Valerian groups associated with suppression of c-myc, Mafb, cyclin D1 and induction of p21Waf1/Cip1, p53 and Bax mRNA expression. Interestingly, expression of the GABA(A)R alpha 1 subunit was observed in GST-P+ foci of DEN control rats, with significant elevation associated with Valerian treatment. These results indicate that Valerian exhibits inhibitory effects on rat hepatocarcinogenesis by inhibiting oxidative DNA damage, suppressing cell proliferation and inducing apoptosis in GST-P+ foci by activating GABA(A)R-mediated signaling. PMID:25419570

  1. Extrasynaptic Glycine Receptors of Rodent Dorsal Raphe Serotonergic Neurons: A Sensitive Target for Ethanol

    PubMed Central

    Maguire, Edward P; Mitchell, Elizabeth A; Greig, Scott J; Corteen, Nicole; Balfour, David J K; Swinny, Jerome D; Lambert, Jeremy J; Belelli, Delia

    2014-01-01

    Alcohol abuse is a significant medical and social problem. Several neurotransmitter systems are implicated in ethanol's actions, with certain receptors and ion channels emerging as putative targets. The dorsal raphe (DR) nucleus is associated with the behavioral actions of alcohol, but ethanol actions on these neurons are not well understood. Here, using immunohistochemistry and electrophysiology we characterize DR inhibitory transmission and its sensitivity to ethanol. DR neurons exhibit inhibitory ‘phasic' post-synaptic currents mediated primarily by synaptic GABAA receptors (GABAAR) and, to a lesser extent, by synaptic glycine receptors (GlyR). In addition to such phasic transmission mediated by the vesicular release of neurotransmitter, the activity of certain neurons may be governed by a ‘tonic' conductance resulting from ambient GABA activating extrasynaptic GABAARs. However, for DR neurons extrasynaptic GABAARs exert only a limited influence. By contrast, we report that unusually the GlyR antagonist strychnine reveals a large tonic conductance mediated by extrasynaptic GlyRs, which dominates DR inhibition. In agreement, for DR neurons strychnine increases their input resistance, induces membrane depolarization, and consequently augments their excitability. Importantly, this glycinergic conductance is greatly enhanced in a strychnine-sensitive fashion, by behaviorally relevant ethanol concentrations, by drugs used for the treatment of alcohol withdrawal, and by taurine, an ingredient of certain ‘energy drinks' often imbibed with ethanol. These findings identify extrasynaptic GlyRs as critical regulators of DR excitability and a novel molecular target for ethanol. PMID:24264816

  2. Aripiprazole Increases the PKA Signalling and Expression of the GABAA Receptor and CREB1 in the Nucleus Accumbens of Rats.

    PubMed

    Pan, Bo; Lian, Jiamei; Huang, Xu-Feng; Deng, Chao

    2016-05-01

    The GABAA receptor is implicated in the pathophysiology of schizophrenia and regulated by PKA signalling. Current antipsychotics bind with D2-like receptors, but not the GABAA receptor. The cAMP-responsive element-binding protein 1 (CREB1) is also associated with PKA signalling and may be related to the positive symptoms of schizophrenia. This study investigated the effects of antipsychotics in modulating D2-mediated PKA signalling and its downstream GABAA receptors and CREB1. Rats were treated orally with aripiprazole (0.75 mg/kg, ter in die (t.i.d.)), bifeprunox (0.8 mg/kg, t.i.d.), haloperidol (0.1 mg/kg, t.i.d.) or vehicle for 1 week. The levels of PKA-Cα and p-PKA in the prefrontal cortex (PFC), nucleus accumbens (NAc) and caudate putamen (CPu) were detected by Western blots. The mRNA levels of Gabrb1, Gabrb2, Gabrb3 and Creb1, and their protein expression were measured by qRT-PCR and Western blots, respectively. Aripiprazole elevated the levels of p-PKA and the ratio of p-PKA/PKA in the NAc, but not the PFC and CPu. Correlated with this elevated PKA signalling, aripiprazole elevated the mRNA and protein expression of the GABAA (β-1) receptor and CREB1 in the NAc. While haloperidol elevated the levels of p-PKA and the ratio of p-PKA/PKA in both NAc and CPu, it only tended to increase the expression of the GABAA (β-1) receptor and CREB1 in the NAc, but not the CPu. Bifeprunox had no effects on PKA signalling in these brain regions. These results suggest that aripiprazole has selective effects on upregulating the GABAA (β-1) receptor and CREB1 in the NAc, probably via activating PKA signalling.

  3. Grp94 Protein Delivers γ-Aminobutyric Acid Type A (GABAA) Receptors to Hrd1 Protein-mediated Endoplasmic Reticulum-associated Degradation.

    PubMed

    Di, Xiao-Jing; Wang, Ya-Juan; Han, Dong-Yun; Fu, Yan-Lin; Duerfeldt, Adam S; Blagg, Brian S J; Mu, Ting-Wei

    2016-04-29

    Proteostasis maintenance of γ-aminobutyric acid type A (GABAA) receptors dictates their function in controlling neuronal inhibition in mammalian central nervous systems. However, as a multisubunit, multispan, integral membrane protein, even wild type subunits of GABAA receptors fold and assemble inefficiently in the endoplasmic reticulum (ER). Unassembled and misfolded subunits undergo ER-associated degradation (ERAD), but this degradation process remains poorly understood for GABAA receptors. Here, using the α1 subunits of GABAA receptors as a model substrate, we demonstrated that Grp94, a metazoan-specific Hsp90 in the ER lumen, uses its middle domain to interact with the α1 subunits and positively regulates their ERAD. OS-9, an ER-resident lectin, acts downstream of Grp94 to further recognize misfolded α1 subunits in a glycan-dependent manner. This delivers misfolded α1 subunits to the Hrd1-mediated ubiquitination and the valosin-containing protein-mediated extraction pathway. Repressing the initial ERAD recognition step by inhibiting Grp94 enhances the functional surface expression of misfolding-prone α1(A322D) subunits, which causes autosomal dominant juvenile myoclonic epilepsy. This study clarifies a Grp94-mediated ERAD pathway for GABAA receptors, which provides a novel way to finely tune their function in physiological and pathophysiological conditions. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. K+ channel TASK-1 knockout mice show enhanced sensitivities to ataxic and hypnotic effects of GABA(A) receptor ligands.

    PubMed

    Linden, Anni-Maija; Aller, M Isabel; Leppä, Elli; Rosenberg, Per H; Wisden, William; Korpi, Esa R

    2008-10-01

    TASK two-pore-domain leak K(+) channels occur throughout the brain. However, TASK-1 and TASK-3 knockout (KO) mice have few neurological impairments and only mildly reduced sensitivities to inhalational anesthetics, contrasting with the anticipated functions and importance of these channels. TASK-1/-3 channel expression can compensate for the absence of GABA(A) receptors in GABA(A) alpha6 KO mice. To investigate the converse, we analyzed the behavior of TASK-1 and -3 KO mice after administering drugs with preferential efficacies at GABA(A) receptor subtypes: benzodiazepines (diazepam and flurazepam, active at alpha1betagamma2, alpha2betagamma2, alpha3betagamma2, and alpha5betagamma2 subtypes), zolpidem (alpha1betagamma2 subtype), propofol (beta2-3-containing receptors), gaboxadol (alpha4betadelta and alpha6betadelta subtypes), pregnanolone, and pentobarbital (many subtypes). TASK-1 KO mice showed increased motor impairment in rotarod and beam-walking tests after diazepam and flurazepam administration but not after zolpidem. They also showed prolonged loss of righting reflex induced by propofol and pentobarbital. Autoradiography indicated no change in GABA(A) receptor ligand binding levels. These altered behavioral responses to GABAergic drugs suggest functional up-regulation of alpha2beta2/3gamma2 and alpha3beta2/3gamma2 receptor subtypes in TASK-1 KO mice. In addition, female, but not male, TASK-1 KO mice were more sensitive to gaboxadol, suggesting an increased influence of alpha4betadelta or alpha6betadelta subtypes. The benzodiazepine sensitivity of TASK-3 KO mice was marginally increased. Our results underline that TASK-1 channels perform such key functions in the brain that compensation is needed for their absence. Furthermore, because inhalation anesthetics act partially through GABA(A) receptors, the up-regulation of GABA(A) receptor function in TASK-1 KO mice might mask TASK-1 channel's significance as a target for inhalation anesthetics.

  5. GABA-A Receptors Mediate Tonic Inhibition and Neurosteroid Sensitivity in the Brain.

    PubMed

    Reddy, Doodipala Samba

    2018-01-01

    Neurosteroids like allopregnanolone (AP) are positive allosteric modulators of synaptic and extrasynaptic GABA-A receptors. AP and related neurosteroids exhibit a greater potency for δ-containing extrasynaptic receptors. The δGABA-A receptors, which are expressed extrasynaptically in the dentate gyrus and other regions, contribute to tonic inhibition, promoting network shunting as well as reducing seizure susceptibility. Levels of endogenous neurosteroids fluctuate with ovarian cycle. Natural and synthetic neurosteroids maximally potentiate tonic inhibition in the hippocampus and provide robust protection against a variety of limbic seizures and status epilepticus. Recently, a consensus neurosteroid pharmacophore model has been proposed at extrasynaptic δGABA-A receptors based on structure-activity relationship for functional activation of tonic currents and seizure protection. Aside from anticonvulsant actions, neurosteroids have been found to be powerful anxiolytic and anesthetic agents. Neurosteroids and Zn 2+ have preferential affinity for δ-containing receptors. Thus, Zn 2+ can prevent neurosteroid activation of extrasynaptic δGABA-A receptor-mediated tonic inhibition. Recently, we demonstrated that Zn 2+ selectively inhibits extrasynaptic δGABA-A receptors and thereby fully prevents AP activation of tonic inhibition and seizure protection. We confirmed that neurosteroids exhibit greater sensitivity at extrasynaptic δGABA-A receptors. Overall, extrasynaptic GABA-A receptors are primary mediators of tonic inhibition in the brain and play a key role in the pathophysiology of epilepsy and other neurological disorders. © 2018 Elsevier Inc. All rights reserved.

  6. Selective labelling of diazepam-insensitive GABAA receptors in vivo using [3H]Ro 15-4513.

    PubMed

    Pym, Luanda J; Cook, Susan M; Rosahl, Thomas; McKernan, Ruth M; Atack, John R

    2005-11-01

    Classical benzodiazepines (BZs), such as diazepam, bind to GABAA receptors containing alpha1, alpha2, alpha3 or alpha5 subunits that are therefore described as diazepam-sensitive (DS) receptors. However, the corresponding binding site of GABAA receptors containing either an alpha4 or alpha6 subunit do not bind the classical BZs and are therefore diazepam-insensitive (DIS) receptors; a difference attributable to a single amino acid (histidine in alpha1, alpha2, alpha3 and alpha5 subunits and arginine in alpha4 and alpha6). Unlike classical BZs, the imidazobenzodiazepines Ro 15-4513 and bretazenil bind to both DS and DIS populations of GABAA receptors. In the present study, an in vivo assay was developed using lorazepam to fully occupy DS receptors such that [3H]Ro 15-4513 was then only able to bind to DIS receptors. When dosed i.v., [3H]Ro 15-4513 rapidly entered and was cleared from the brain, with approximately 70% of brain radioactivity being membrane-bound. Essentially all membrane binding to DS+DIS receptors could be displaced by unlabelled Ro 15-4513 or bretazenil, with respective ID50 values of 0.35 and 1.2 mg kg(-1). A dose of 30 mg kg(-1) lorazepam was used to block all DS receptors in a [3H]Ro 15-1788 in vivo binding assay. When predosed in a [3H]Ro 15-4513 binding assay, lorazepam blocked [3H]Ro 15-4513 binding to DS receptors, with the remaining binding to DIS receptors accounting for 5 and 23% of the total (DS plus DIS) receptors in the forebrain and cerebellum, respectively. The in vivo binding of [3H]Ro 15-4513 to DIS receptors in the presence of lorazepam was confirmed using alpha1H101R knock-in mice, in which alpha1-containing GABAA receptors are rendered diazepam insensitive by mutation of the histidine that confers diazepam sensitivity to arginine. In these mice, and in the presence of lorazepam, there was an increase of in vivo [3H]Ro 15-4513 binding in the forebrain and cerebellum from 4 and 15% to 36 and 59% of the total (i.e. DS plus DIS) [3H

  7. The natural products magnolol and honokiol are positive allosteric modulators of both synaptic and extra-synaptic GABAA receptors

    PubMed Central

    Alexeev, Mikhail; Grosenbaugh, Denise K.; Mott, David D.; Fisher, Janet L.

    2012-01-01

    The National Center for Complementary and Alternative Medicine (NCCAM) estimates that nearly 40% of adults in the United States use alternative medicines, often in the form of an herbal supplement. Extracts from the tree bark of magnolia species have been used for centuries in traditional Chinese and Japanese medicines to treat a variety of neurological diseases, including anxiety, depression, and seizures. The active ingredients in the extracts have been identified as the bi-phenolic isomers magnolol and honokiol. These compounds were shown to enhance the activity of GABAA receptors, consistent with their biological effects. The GABAA receptors exhibit substantial subunit heterogeneity, which influences both their functional and pharmacological properties. We examined the activity of magnolol and honokiol at different populations of both neuronal and recombinant GABAA receptors to characterize their mechanism of action and to determine whether sensitivity to modulation was dependent upon the receptor’s subunit composition. We found that magnolol and honokiol enhanced both phasic and tonic GABAergic neurotransmission in hippocampal dentate granule neurons. In addition, all recombinant receptors examined were sensitive to modulation, regardless of the identity of the α, β, or γ subunit subtype, although the compounds showed particularly high efficacy at δ-containing receptors. This direct positive modulation of both synaptic and extra-synaptic populations of GABAA receptors suggests that supplements containing magnolol and/or honokiol would be effective anxiolytics, sedatives, and anti-convulsants. However, significant side-effects and risk of drug interactions would also be expected. PMID:22445602

  8. Estrous cycle variations in GABAA receptor phosphorylation enable rapid modulation by anabolic androgenic steroids in the medial preoptic area

    PubMed Central

    Oberlander, JG; Porter, DM; Onakomaiya, MM; Penatti, CAA; Vithlani, M; Moss, SJ; Clark, AS; Henderson, LP

    2012-01-01

    Anabolic androgenic steroids (AAS), synthetic testosterone derivatives that are used for ergogenic purposes, alter neurotransmission and behaviors mediated by GABAA receptors. Some of these effects may reflect direct and rapid action of these synthetic steroids at the receptor. The ability of other natural allosteric steroid modulators to alter GABAA receptor-mediated currents is dependent upon the phosphorylation state of the receptor complex. Here we show that phosphorylation of the GABAA receptor complex immunoprecipitated by β2/β3 subunit-specific antibodies from the medial preoptic area (mPOA) of the mouse varies across the estrous cycle; with levels being significantly lower in estrus. Acute exposure to the AAS, 17α-testosterone (17α-MeT), had no effect on the amplitude or kinetics of inhibitory postsynaptic currents in the mPOA of estrous mice when phosphorylation was low, but increased the amplitude of these currents from mice in diestrus, when it was high. Inclusion of the protein kinase C (PKC) inhibitor, calphostin, in the recording pipette eliminated the ability of 17α-MeT to enhance currents from diestrous animals, suggesting that PKC-receptor phosphorylation is critical for the allosteric modulation elicited by AAS during this phase. In addition, a single injection of 17α-MeT was found to impair an mPOA-mediated behavior (nest-building) in diestrus, but not in estrus. PKC is known to target specific serine residues in the β3 subunit of the GABAA receptor. Although phosphorylation of these β3 serine residues showed a similar profile across the cycle, as did phosphoserine in mPOA lysates immunoprecipitated with β2/β3 antibody (lower in estrus than in diestrus or proestrus), the differences were not significant. These data suggest that the phosphorylation state of the receptor complex regulates both the ability of AAS to modulate receptor function in the mPOA and the expression of a simple mPOA-dependent behavior through PKC-dependent mechanism

  9. Reduced tonic inhibition after stroke promotes motor performance and epileptic seizures

    PubMed Central

    Jaenisch, Nadine; Liebmann, Lutz; Guenther, Madlen; Hübner, Christian A.; Frahm, Christiane; Witte, Otto W.

    2016-01-01

    Stroke survivors often recover from motor deficits, either spontaneously or with the support of rehabilitative training. Since tonic GABAergic inhibition controls network excitability, it may be involved in recovery. Middle cerebral artery occlusion in rodents reduces tonic GABAergic inhibition in the structurally intact motor cortex (M1). Transcript and protein abundance of the extrasynaptic GABAA-receptor complex α4β3δ are concurrently reduced (δ-GABAARs). In vivo and in vitro analyses show that stroke-induced glutamate release activates NMDA receptors, thereby reducing KCC2 transporters and down-regulates δ-GABAARs. Functionally, this is associated with improved motor performance on the RotaRod, a test in which mice are forced to move in a similar manner to rehabilitative training sessions. As an adverse side effect, decreased tonic inhibition facilitates post-stroke epileptic seizures. Our data imply that early and sometimes surprisingly fast recovery following stroke is supported by homeostatic, endogenous plasticity of extrasynaptic GABAA receptors. PMID:27188341

  10. Functional Characterization of the 1,5-Benzodiazepine Clobazam and Its Major Active Metabolite N-Desmethylclobazam at Human GABAA Receptors Expressed in Xenopus laevis Oocytes

    PubMed Central

    Hammer, Harriet; Ebert, Bjarke; Jensen, Henrik Sindal; Jensen, Anders A.

    2015-01-01

    The 1,5-benzodiazepine clobazam is indicated for the adjunctive treatment of seizures associated with Lennox-Gastaut syndrome in patients 2 years of age or older in the United States, and for treatment of anxiety and various forms of epilepsy elsewhere. Clobazam has been reported to exhibit different in vivo adverse effects and addiction liability profile than the classic 1,4-benzodiazepines. In this study, it was investigated whether the in vitro pharmacological properties of clobazam and its major active metabolite N-desmethylclobazam could explain some of these clinical differences. The functional properties of the two 1,5-benzodiazepines were characterized at the human γ-aminobutyric acid type A receptor (GABAAR) subtypes α1β2γ2S, α2β2γ2S, α3β2γ2S, α5β2γ2S and α6β2δ expressed in Xenopus laevis oocytes by use of two-electrode voltage-clamp electrophysiology and compared to those exhibited by the 1,4-benzodiazepine clonazepam. All three compounds potentiated GABA EC20-evoked responses through the α1,2,3,5β2γ2S GABAARs in a reversible and concentration-dependent manner, with each displaying similar EC50 values at the four subtypes. Furthermore, the degrees of potentiation of the GABA EC20 currents through the four receptors mediated by saturating modulator concentrations did not differ substantially for any of the three benzodiazepines. The three compounds were substantially less potent (200-3900 fold) as positive allosteric modulators at the α6β2δ GABAAR than at the α1,2,3,5β2γ2S receptors. Interestingly, however, clobazam and especially N-desmethylclobazam were highly efficacious potentiators of α6β2δ receptor signaling. Although this activity component is unlikely to contribute to the in vivo effects of clobazam/N-desmethylclobazam, the 1,5-benzodiazepine could constitute an interesting lead for novel modulators targeting this low-affinity binding site in GABAARs. In conclusion, the non-selective modulation exerted by clobazam, N

  11. The effects of agonists of ionotropic GABA(A) and metabotropic GABA(B) receptors on learning.

    PubMed

    Zyablitseva, Evgeniya A; Kositsyn, Nikolay S; Shul'gina, Galina I

    2009-05-01

    The research described here investigates the role played by inhibitory processes in the discriminations made by the nervous system of humans and animals between familiar and unfamiliar and significant and nonsignificant events. This research compared the effects of two inhibitory mediators of gamma-aminobutyric acid (GABA): 1) phenibut, a nonselective agonist of ionotropic GABA(A) and metabotropic GABA(B) receptors and 2) gaboxadol a selective agonist of ionotropic GABA(A) receptors on the process of developing active defensive and inhibitory conditioned reflexes in alert non-immobilized rabbits. It was found that phenibut, but not gaboxadol, accelerates the development of defensive reflexes at an early stage of conditioning. Both phenibut and gaboxadol facilitate the development of conditioned inhibition, but the effect of gaboxadol occurs at later stages of conditioning and is less stable than that of phenibut. The earlier and more stable effects of phenibut, as compared to gaboxadol, on storage in memory of the inhibitory significance of a stimulus may occur because GABA(B) receptors play the dominant role in the development of internal inhibition during an early stage of conditioning. On the other hand this may occur because the participation of both GABA(A) and GABA(B) receptors are essential to the process. We discuss the polyfunctionality of GABA receptors as a function of their structure and the positions of the relevant neurons in the brain as this factor can affect regulation of various types of psychological processes.

  12. Increased GABA-A receptor binding and reduced connectivity at the motor cortex in children with hemiplegic cerebral palsy: a multimodal investigation using 18F-fluoroflumazenil PET, immunohistochemistry, and MR imaging.

    PubMed

    Park, Hae-Jeong; Kim, Chul Hoon; Park, Eun Sook; Park, Bumhee; Oh, So Ra; Oh, Maeng-Keun; Park, Chang Il; Lee, Jong Doo

    2013-08-01

    γ-aminobutyric acid (GABA)-A receptor-mediated neural transmission is important to promote practice-dependent plasticity after brain injury. This study investigated alterations in GABA-A receptor binding and functional and anatomic connectivity within the motor cortex in children with cerebral palsy (CP). We conducted (18)F-fluoroflumazenil PET on children with hemiplegic CP to investigate whether in vivo GABA-A receptor binding is altered in the ipsilateral or contralateral hemisphere of the lesion site. To evaluate changes in the GABA-A receptor subunit after prenatal brain injury, we performed GABA-A receptor immunohistochemistry using rat pups with a diffuse hypoxic ischemic insult. We also performed diffusion tensor MR imaging and resting-state functional MR imaging on the same children with hemiplegic CP to investigate alterations in anatomic and functional connectivity at the motor cortex with increased GABA-A receptor binding. In children with hemiplegic CP, the (18)F-fluoroflumazenil binding potential was increased within the ipsilateral motor cortex. GABA-A receptors with the α1 subunit were highly expressed exclusively within cortical layers III, IV, and VI of the motor cortex in rat pups. The motor cortex with increased GABA-A receptor binding in children with hemiplegic CP had reduced thalamocortical and corticocortical connectivity, which might be linked to increased GABA-A receptor distribution in cortical layers in rats. Increased expression of the GABA-A receptor α1 subunit within the ipsilateral motor cortex may be an important adaptive mechanism after prenatal brain injury in children with CP but may be associated with improper functional connectivity after birth and have adverse effects on the development of motor plasticity.

  13. Alteration of GABAergic synapses and gephyrin clusters in the thalamic reticular nucleus of GABAA receptor alpha3 subunit-null mice.

    PubMed

    Studer, Remo; von Boehmer, Lotta; Haenggi, Tatjana; Schweizer, Claude; Benke, Dietmar; Rudolph, Uwe; Fritschy, Jean-Marc

    2006-09-01

    Multiple GABAA-receptor subtypes are assembled from alpha, beta and gamma subunit variants. GABAA receptors containing the alpha3 subunit represent a minor population with a restricted distribution in the CNS. In addition, they predominate in monoaminergic neurons and in the nucleus reticularis thalami (nRT), suggesting a role in the regulation of cortical function and sleep. Mice with a targeted deletion of the alpha3 subunit gene (alpha3(0/0)) are viable and exhibit a subtle behavioural phenotype possibly related to dopaminergic hyperfunction. Here, we investigated immunohistochemically the consequences of the loss of alpha3 subunit for maturation of GABAA receptors and formation of GABAergic synapses in the nRT. Throughout postnatal development, the regional distribution of the alpha1, alpha2, or alpha5 subunit was unaltered in alpha3(0/0) mice and the prominent alpha3 subunit staining of nRT neurons in wildtype mice was not replaced. Subcellularly, as seen by double immunofluorescence, the alpha3 and gamma2 subunit were clustered at postsynaptic sites in the nRT of adult wildtype mice along with the scaffolding protein gephyrin. In alpha3(0/0) mice, gamma2 subunit clustering was disrupted and gephyrin formed large aggregates localized at the cell surface, but unrelated to postsynaptic sites, indicating that nRT neurons lack postsynaptic GABAA receptors in mutant mice. Furthermore, GABAergic terminals were enlarged and reduced in number, suggesting a partial deficit of GABAergic synapses. Therefore, GABAA receptors are required for gephyrin clustering and long-term synapse maintenance. The absence of GABAA-mediated transmission in the nRT may have a significant impact on the function of the thalamo-cortical loop of alpha3(0/0) mice.

  14. Methods for recording and measuring tonic GABAA receptor-mediated inhibition

    PubMed Central

    Bright, Damian P.; Smart, Trevor G.

    2013-01-01

    Tonic inhibitory conductances mediated by GABAA receptors have now been identified and characterized in many different brain regions. Most experimental studies of tonic GABAergic inhibition have been carried out using acute brain slice preparations but tonic currents have been recorded under a variety of different conditions. This diversity of recording conditions is likely to impact upon many of the factors responsible for controlling tonic inhibition and can make comparison between different studies difficult. In this review, we will firstly consider how various experimental conditions, including age of animal, recording temperature and solution composition, are likely to influence tonic GABAA conductances. We will then consider some technical considerations related to how the tonic conductance is measured and subsequently analyzed, including how the use of current noise may provide a complementary and reliable method for quantifying changes in tonic current. PMID:24367296

  15. Virus-mediated swapping of zolpidem-insensitive with zolpidem-sensitive GABA(A) receptors in cortical pyramidal cells.

    PubMed

    Sumegi, Mate; Fukazawa, Yugo; Matsui, Ko; Lorincz, Andrea; Eyre, Mark D; Nusser, Zoltan; Shigemoto, Ryuichi

    2012-04-01

    Recently developed pharmacogenetic and optogenetic approaches, with their own advantages and disadvantages, have become indispensable tools in modern neuroscience. Here, we employed a previously described knock-in mouse line (GABA(A)Rγ2(77I)lox) in which the γ2 subunit of the GABA(A) receptor (GABA(A)R) was mutated to become zolpidem insensitive (γ2(77I)) and used viral vectors to swap γ2(77I) with wild-type, zolpidem-sensitive γ2 subunits (γ2(77F)). The verification of unaltered density and subcellular distribution of the virally introduced γ2 subunits requires their selective labelling. For this we generated six N- and six C-terminal-tagged γ2 subunits, with which cortical cultures of GABA(A)Rγ2(−/−) mice were transduced using lentiviruses. We found that the N-terminal AU1 tag resulted in excellent immunodetection and unimpaired synaptic localization. Unaltered kinetic properties of the AU1-tagged γ2 ((AU1)γ2(77F)) channels were demonstrated with whole-cell patch-clamp recordings of spontaneous IPSCs from cultured cells. Next, we carried out stereotaxic injections of lenti- and adeno-associated viruses containing Cre-recombinase and the (AU1)γ2(77F) subunit (Cre-2A-(AU1)γ2(77F)) into the neocortex of GABA(A)Rγ2(77I)lox mice. Light microscopic immunofluorescence and electron microscopic freeze-fracture replica immunogold labelling demonstrated the efficient immunodetection of the AU1 tag and the normal enrichment of the (AU1)γ2(77F) subunits in perisomatic GABAergic synapses. In line with this,miniature and action potential-evoked IPSCs whole-cell recorded from transduced cells had unaltered amplitudes, kinetics and restored zolpidem sensitivity. Our results obtained with a wide range of structural and functional verification methods reveal unaltered subcellular distributions and functional properties of γ2(77I) and (AU1)γ2(77F) GABA(A)Rs in cortical pyramidal cells. This transgenic–viral pharmacogenetic approach has the advantage that it

  16. Decrement of GABAA receptor-mediated inhibitory postsynaptic currents in dentate granule cells in epileptic hippocampus.

    PubMed

    Isokawa, M

    1996-05-01

    1. Inhibitory postsynaptic currents (IPSCs) were studied in hippocampal dentate granule cells (DGCs) in the pilocarpine model and human temporal lobe epilepsy, with the use of the whole cell patch-clamp recording technique in slice preparations. 2. In the pilocarpine model, hippocampal slices were prepared from rats that were allowed to experience spontaneous seizures for 2 mo. Human hippocampal specimens were obtained from epileptic patients who underwent surgical treatment for medically intractable seizures. 3. IPSCs were generated by single perforant path stimulation and recorded at a membrane potential (Vm) of 0 mV near the reversal potential of glutamate excitatory postsynaptic currents in the voltage-clamp recording. IPSCs were pharmacologically identified as gamma-aminobutyric acid-A (GABAA) IPSCs by 10 microM bicuculline methiodide. 4. During low-frequency stimulation, IPSCs were not different in amplitude among non-seizure-experienced rat hippocampi, human nonsclerotic hippocampi, seizure-experienced rat hippocampi, and human sclerotic hippocampi. In the last two groups of DGCs, current-clamp recordings indicated the presence of prolonged excitatory postsynaptic potentials (EPSPs) mediated by the N-methyl-D-aspartate (NMDA) receptor. 5. High-frequency stimulation, administered at Vm = -30 mV to activate NMDA currents, reduced GABAA IPSC amplitude specifically in seizure-experienced rat hippocampi (t = 2.5, P < 0.03) and human sclerotic hippocampi (t = 7.7, P < 0.01). This reduction was blocked by an NMDA receptor antagonist, 2-amino-5-phosphonovaleric acid (APV) (50 microM). The time for GABAA IPSCs to recover to their original amplitude was also shortened by the application of APV. 6. I conclude that, when intensively activated, NMDA receptor-mediated excitatory transmission may interact with GABAergic synaptic inhibition in DGCs in seizure-experienced hippocampus to transiently reduce GABA(A) receptor-channel function. Such interactions may contribute to

  17. Responses to GABA(A) receptor activation are altered in NTS neurons isolated from renal-wrap hypertensive rats.

    PubMed

    Tolstykh, Gleb; Belugin, Sergei; Tolstykh, Olga; Mifflin, Steve

    2003-10-01

    The inhibitory amino acid GABA is a potent modulator of the spontaneous discharge and the responses to afferent inputs of neurons in the nucleus of the solitary tract (NTS). To determine if responses to activation of GABA(A) receptors are altered in hypertension, GABA(A) receptor-evoked whole cell currents were measured in enzymatically dispersed NTS neurons from 33 normotensive (NT, 109+/-4 mm Hg, n=7) and 24 hypertensive (HT, 167+/-5 mm Hg, n=24) rats. GABA(A) receptor-evoked currents reversed at the calculated equilibrium potential for chloride and were blocked by bicuculline (n=6). Membrane capacitance was the same in neurons from NT (7.5+/-0.6 pF, n=62) and HT (6.8+/-0.6 pF, n=51) rats. The EC50 for peak GABA-evoked currents cells was significantly greater in neurons from HT (21.0+/-2.6 micromol/L, n=16) compared with NT rats (13.0+/-1.8 micromol/L, n=14, P=0.01). The EC50 of neurons exhibiting DiA labeling of presumptive aortic nerve terminals was no different than that observed in the nonlabeled cells (19.0+/-4.9 micromol/L, n=4). The time constant for desensitization of GABA(A)-evoked currents was the same in neurons from HT (4.5+/-0.3 seconds, n=17) and NT rats (3.8+/-0.3 seconds, n=17, P>0.05). Repetitive pulse application of GABA revealed a more rapid decline in the evoked current in neurons from HT compared with NT rats. The amplitude of the 5th pulse of GABA (5-second duration, 2-second interval) was 21+/-2% the amplitude of the 1st pulse in NT rats (n=10) and 14+/-2% in HT rats (n=11, P<0.05). These alterations in GABAA-receptor evoked currents could render the neurons less sensitive to GABA(A) receptor inhibition and influence afferent integration by NTS neurons in HT.

  18. A Novel Bifunctional Alkylphenol Anesthetic Allows Characterization of γ-Aminobutyric Acid, Type A (GABAA), Receptor Subunit Binding Selectivity in Synaptosomes.

    PubMed

    Woll, Kellie A; Murlidaran, Sruthi; Pinch, Benika J; Hénin, Jérôme; Wang, Xiaoshi; Salari, Reza; Covarrubias, Manuel; Dailey, William P; Brannigan, Grace; Garcia, Benjamin A; Eckenhoff, Roderic G

    2016-09-23

    Propofol, an intravenous anesthetic, is a positive modulator of the GABAA receptor, but the mechanistic details, including the relevant binding sites and alternative targets, remain disputed. Here we undertook an in-depth study of alkylphenol-based anesthetic binding to synaptic membranes. We designed, synthesized, and characterized a chemically active alkylphenol anesthetic (2-((prop-2-yn-1-yloxy)methyl)-5-(3-(trifluoromethyl)-3H-diazirin-3-yl)phenol, AziPm-click (1)), for affinity-based protein profiling (ABPP) of propofol-binding proteins in their native state within mouse synaptosomes. The ABPP strategy captured ∼4% of the synaptosomal proteome, including the unbiased capture of five α or β GABAA receptor subunits. Lack of γ2 subunit capture was not due to low abundance. Consistent with this, independent molecular dynamics simulations with alchemical free energy perturbation calculations predicted selective propofol binding to interfacial sites, with higher affinities for α/β than γ-containing interfaces. The simulations indicated hydrogen bonding is a key component leading to propofol-selective binding within GABAA receptor subunit interfaces, with stable hydrogen bonds observed between propofol and α/β cavity residues but not γ cavity residues. We confirmed this by introducing a hydrogen bond-null propofol analogue as a protecting ligand for targeted-ABPP and observed a lack of GABAA receptor subunit protection. This investigation demonstrates striking interfacial GABAA receptor subunit selectivity in the native milieu, suggesting that asymmetric occupancy of heteropentameric ion channels by alkylphenol-based anesthetics is sufficient to induce modulation of activity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. A Novel Bifunctional Alkylphenol Anesthetic Allows Characterization of γ-Aminobutyric Acid, Type A (GABAA), Receptor Subunit Binding Selectivity in Synaptosomes*

    PubMed Central

    Woll, Kellie A.; Murlidaran, Sruthi; Pinch, Benika J.; Hénin, Jérôme; Wang, Xiaoshi; Salari, Reza; Covarrubias, Manuel; Dailey, William P.; Brannigan, Grace; Garcia, Benjamin A.; Eckenhoff, Roderic G.

    2016-01-01

    Propofol, an intravenous anesthetic, is a positive modulator of the GABAA receptor, but the mechanistic details, including the relevant binding sites and alternative targets, remain disputed. Here we undertook an in-depth study of alkylphenol-based anesthetic binding to synaptic membranes. We designed, synthesized, and characterized a chemically active alkylphenol anesthetic (2-((prop-2-yn-1-yloxy)methyl)-5-(3-(trifluoromethyl)-3H-diazirin-3-yl)phenol, AziPm-click (1)), for affinity-based protein profiling (ABPP) of propofol-binding proteins in their native state within mouse synaptosomes. The ABPP strategy captured ∼4% of the synaptosomal proteome, including the unbiased capture of five α or β GABAA receptor subunits. Lack of γ2 subunit capture was not due to low abundance. Consistent with this, independent molecular dynamics simulations with alchemical free energy perturbation calculations predicted selective propofol binding to interfacial sites, with higher affinities for α/β than γ-containing interfaces. The simulations indicated hydrogen bonding is a key component leading to propofol-selective binding within GABAA receptor subunit interfaces, with stable hydrogen bonds observed between propofol and α/β cavity residues but not γ cavity residues. We confirmed this by introducing a hydrogen bond-null propofol analogue as a protecting ligand for targeted-ABPP and observed a lack of GABAA receptor subunit protection. This investigation demonstrates striking interfacial GABAA receptor subunit selectivity in the native milieu, suggesting that asymmetric occupancy of heteropentameric ion channels by alkylphenol-based anesthetics is sufficient to induce modulation of activity. PMID:27462076

  20. An Electrostatic Funnel in the GABA-Binding Pathway

    PubMed Central

    Lightstone, Felice C.

    2016-01-01

    The γ-aminobutyric acid type A receptor (GABAA-R) is a major inhibitory neuroreceptor that is activated by the binding of GABA. The structure of the GABAA-R is well characterized, and many of the binding site residues have been identified. However, most of these residues are obscured behind the C-loop that acts as a cover to the binding site. Thus, the mechanism by which the GABA molecule recognizes the binding site, and the pathway it takes to enter the binding site are both unclear. Through the completion and detailed analysis of 100 short, unbiased, independent molecular dynamics simulations, we have investigated this phenomenon of GABA entering the binding site. In each system, GABA was placed quasi-randomly near the binding site of a GABAA-R homology model, and atomistic simulations were carried out to observe the behavior of the GABA molecules. GABA fully entered the binding site in 19 of the 100 simulations. The pathway taken by these molecules was consistent and non-random; the GABA molecules approach the binding site from below, before passing up behind the C-loop and into the binding site. This binding pathway is driven by long-range electrostatic interactions, whereby the electrostatic field acts as a ‘funnel’ that sweeps the GABA molecules towards the binding site, at which point more specific atomic interactions take over. These findings define a nuanced mechanism whereby the GABAA-R uses the general zwitterionic features of the GABA molecule to identify a potential ligand some 2 nm away from the binding site. PMID:27119953

  1. No association of the GABAA receptor genes on chromosome 5 with alcoholism in the collaborative study on the genetics of alcoholism sample.

    PubMed

    Dick, Danielle M; Edenberg, Howard J; Xuei, Xiaoling; Goate, Alison; Hesselbrock, Victor; Schuckit, Marc; Crowe, Raymond; Foroud, Tatiana

    2005-01-05

    A substantial body of literature suggests that gamma-aminobutyric acid (GABA) may be involved in the neurochemical pathways contributing to alcohol use and related disorders. Chromosome 5 contains a cluster of GABA(A) receptor genes, GABRA1, GABRA6, GABRB2, and GABRG2, which have been among the most extensively studied in relation to alcohol use. These studies have yielded mixed results. Using data from large, multiplex alcoholic families collected as part of the Collaborative Study on the Genetics of Alcoholism (COGA), we sought to provide more conclusive evidence regarding the role of the GABA(A) receptor genes on chromosome 5. Multiple single nucleotide polymorphisms (SNPs) were tested in each of the four chromosome 5q GABA(A) receptor genes, and we conducted both classic trio-based association analyzes and extended pedigree analyzes. We found no consistent evidence of association with alcohol dependence or alcohol dependence comorbid with antisocial personality disorder (ASPD) for any of the regions tested in the chromosome 5 GABA(A) receptor genes. These analyses suggest that the GABA(A) receptor genes on chromosome 5 do not play a strong role in alcohol dependence. Future studies are planned to test whether these genes are more important in influencing behavioral endophenotypes related to the risk of alcohol dependence. Copyright 2004 Wiley-Liss, Inc.

  2. 2-Aminoethyl Methylphosphonate, a Potent and Rapidly Acting Antagonist of GABAA-ρ1 Receptors

    PubMed Central

    Xie, An; Yan, Jun; Yue, Lan; Feng, Feng; Mir, Fozia; Abdel-Halim, Heba; Chebib, Mary; Le Breton, Guy C.; Standaert, Robert F.; Qian, Haohua

    2011-01-01

    2-Aminoethyl methylphosphonate (2-AEMP), an analog of GABA, has been found to exhibit antagonist activity at GABAA-ρ1 (also known as ρ1 GABAC) receptors. The present study was undertaken to elucidate 2-AEMP's action and to test the activities of 2-AEMP analogs. Whole-cell patch-clamp techniques were used to record membrane currents in neuroblastoma cells stably transfected with human GABAA-ρ1 receptors. The action of 2-AEMP was compared with that of 1,2,5,6-tetrahydropyridin-4-yl methylphosphinic acid (TPMPA), a commonly used GABAA-ρ1 antagonist. With 10 μM GABA, 2-AEMP's IC50 (18 μM) differed by less than 2.5-fold from that of TPMPA (7 μM), and results obtained were consistent with a primarily competitive mode of inhibition by 2-AEMP. Terminating the presentation of 2-AEMP or TPMPA in the presence of GABA produced a release from inhibition. However, the rate of inhibition release upon the termination of 2-AEMP considerably exceeded that determined with termination of TPMPA. Moreover, when presented at concentrations near their respective IC50 values, the preincubation period associated with 2-AEMP's onset of inhibition was much shorter than that for TPMPA. Analogs of 2-AEMP possessing a benzyl or n-butyl rather than a methyl substituent at the phosphorus atom, as well as analogs bearing a C-methyl substituent on the aminoethyl side chain, exhibited reduced potency relative to 2-AEMP. Of these analogs, only (R)-2-aminopropyl methylphosphonate significantly diminished the response to 10 μM GABA. Structure-activity relationships are discussed in the context of molecular modeling of ligand binding to the antagonist binding site of the GABAA-ρ1 receptor. PMID:21810922

  3. Activation of single heteromeric GABAA receptor ion channels by full and partial agonists

    PubMed Central

    Mortensen, Martin; Kristiansen, Uffe; Ebert, Bjarke; Frølund, Bente; Krogsgaard-Larsen, Povl; Smart, Trevor G

    2004-01-01

    The linkage between agonist binding and the activation of a GABAA receptor ion channel is yet to be resolved. This aspect was examined on human recombinant α1β2γ2S GABAA receptors expressed in human embryonic kidney cells using the following series of receptor agonists: GABA, isoguvacine, 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), isonipecotic acid, piperidine-4-sulphonic acid (P4S), imidazole-4-acetic acid (IAA), 5-(4-piperidyl)-3-isothiazolol (thio-4-PIOL) and 5-(4-piperidyl)-3-isoxazolol (4-PIOL). Whole-cell concentration–response curves enabled the agonists to be categorized into four classes based upon their maximum responses. Single channel analyses revealed that the channel conductance of 25–27 pS was unaffected by the agonists. However, two open states were resolved from the open period distributions with mean open times reduced 5-fold by the weakest partial agonists. Using saturating agonist concentrations, estimates of the channel shutting rate, α, ranged from 200 to 600 s−1. The shut period distributions were described by three or four components and for the weakest partial agonists, the interburst shut periods increased whilst the mean burst durations and longest burst lengths were reduced relative to the full agonists. From the burst analyses, the opening rates for channel activation, β, and the total dissociation rates, k−1, for the agonists leaving the receptor were estimated. The agonist efficacies were larger for the full agonists (E ∼7−9) compared to the weak partial agonists (∼0.4–0.6). Overall, changes in agonist efficacy largely determined the different agonist profiles with contributions from the agonist affinities and the degree of receptor desensitization. From this we conclude that GABAA receptor activation does not occur in a switch-like manner since the agonist recognition sites are flexible, accommodating diverse agonist structures which differentially influence the opening and shutting rates of the ion

  4. Neonatal finasteride administration alters hippocampal α4 and δ GABAAR subunits expression and behavioural responses to progesterone in adult rats.

    PubMed

    Modol, Laura; Casas, Caty; Navarro, Xavier; Llidó, Anna; Vallée, Monique; Pallarès, Marc; Darbra, Sònia

    2014-02-01

    Allopregnanolone is a neurosteroid that has been reported to fluctuate during early developmental stages. Previous experiments reported the importance of neonatal endogenous allopregnanolone levels for the maturation of the central nervous system and particularly for the hippocampus. Changes in neonatal allopregnanolone levels have been related to altered adult behaviour and with psychopathological susceptibility, including anxiety disorders, schizophrenia and drug abuse. However, the mechanism underlying these changes remains to be elucidated. In the present study we assessed changes in hippocampal expression of α4 and δ GABAA receptor (GABAAR) subunits as a consequence of neonatal finasteride (a 5-α reductase inhibitor) administration during early development (PD6 to PD15) in male rats. We observed that the treatment altered the temporal window of the natural peak in the expression of these subunits during development. Additionally, the level of these subunits were higher than in non-handled and control animals in the adult hippocampus. We observed that in adulthood, neonatal finasteride-treated animals presented an anxiogenic-like profile in response to progesterone administration which was absent in the rest of the groups. In conclusion, these results corroborate the relevance of neonatal maintenance of neurosteroid levels for behavioural anxiety responses in the adult, and point to some of the mechanisms involved in this alterations.

  5. Estrous Cycle Regulation of Extrasynaptic δ-Containing GABAA Receptor-Mediated Tonic Inhibition and Limbic Epileptogenesis

    PubMed Central

    Wu, Xin; Gangisetty, Omkaram; Carver, Chase Matthew

    2013-01-01

    The ovarian cycle affects susceptibility to behavioral and neurologic conditions. The molecular mechanisms underlying these changes are poorly understood. Deficits in cyclical fluctuations in steroid hormones and receptor plasticity play a central role in physiologic and pathophysiologic menstrual conditions. It has been suggested that synaptic GABAA receptors mediate phasic inhibition in the hippocampus and extrasynaptic receptors mediate tonic inhibition in the dentate gyrus. Here we report a novel role of extrasynaptic δ-containing GABAA receptors as crucial mediators of the estrous cycle–related changes in neuronal excitability in mice, with hippocampus subfield specificity. In molecular and immunofluorescence studies, a significant increase occurred in δ-subunit, but not α4- and γ2-subunits, in the dentate gyrus during diestrus. However, δ-subunit upregulation was not evident in the CA1 region. The δ-subunit expression was undiminished by age and ovariectomy and in mice lacking progesterone receptors, but it was significantly reduced by finasteride, a neurosteroid synthesis inhibitor. Electrophysiologic studies confirmed greater potentiation of GABA currents by progesterone-derived neurosteroid allopregnanolone in dissociated dentate gyrus granule cells in diestrus than in CA1 pyramidal cells. The baseline conductance and allopregnanolone potentiation of tonic currents in dentate granule cells from hippocampal slices were higher than in CA1 pyramidal cells. In behavioral studies, susceptibility to hippocampus kindling epileptogenesis was lower in mice during diestrus. These results demonstrate the estrous cycle–related plasticity of neurosteroid-sensitive, δ-containing GABAA receptors that mediate tonic inhibition and seizure susceptibility. These findings may provide novel insight on molecular cascades of menstrual disorders like catamenial epilepsy, premenstrual syndrome, and migraine. PMID:23667248

  6. Proton modulation of recombinant GABAA receptors: influence of GABA concentration and the β subunit TM2–TM3 domain

    PubMed Central

    Wilkins, Megan E; Hosie, Alastair M; Smart, Trevor G

    2005-01-01

    Regulation of GABAA receptors by extracellular pH exhibits a dependence on the receptor subunit composition. To date, the molecular mechanism responsible for the modulation of GABAA receptors at alkaline pH has remained elusive. We report here that the GABA-activated current can be potentiated at pH 8.4 for both αβ and αβγ subunit-containing receptors, but only at GABA concentrations below the EC40. Site-specific mutagenesis revealed that a single lysine residue, K279 in the β subunit TM2–TM3 linker, was critically important for alkaline pH to modulate the function of both α1β2 and α1β2γ2 receptors. The ability of low concentrations of GABA to reveal different pH titration profiles for GABAA receptors was also examined at acidic pH. At pH 6.4, GABA activation of αβγ receptors was enhanced at low GABA concentrations. This effect was ablated by the mutation H267A in the β subunit. Decreasing the pH further to 5.4 inhibited GABA responses via αβγ receptors, whereas those responses recorded from αβ receptors were potentiated. Inserting homologous β subunit residues into the γ2 subunit to recreate, in αβγ receptors, the proton modulatory profile of αβ receptors, established that in the presence of β2H267, the mutation γ2T294K was necessary to potentiate the GABA response at pH 5.4. This residue, T294, is homologous to K279 in the β subunit and suggests that a lysine at this position is an important residue for mediating the allosteric effects of both acidic and alkaline pH changes, rather than forming a direct site for protonation within the GABAA receptor. PMID:15946973

  7. Novel analogues of chlormethiazole are neuroprotective in four cellular models of neurodegeneration by a mechanism with variable dependence on GABAA receptor potentiation

    PubMed Central

    VandeVrede, Lawren; Tavassoli, Ehsan; Luo, Jia; Qin, Zhihui; Yue, Lan; Pepperberg, David R; Thatcher, Gregory R

    2014-01-01

    Background and Purpose: Chlormethiazole (CMZ), a clinical sedative/anxiolytic agent, did not reach clinical efficacy in stroke trials despite neuroprotection demonstrated in numerous animal models. Using CMZ as a lead compound, neuroprotective methiazole (MZ) analogues were developed, and neuroprotection and GABAA receptor dependence were studied. Experimental Approach: Eight MZs were selected from a novel library, of which two were studied in detail. Neuroprotection, glutamate release, intracellular calcium and response to GABA blockade by picrotoxin were measured in rat primary cortical cultures using four cellular models of neurodegeneration. GABA potentiation was assayed in oocytes expressing the α1β2γ2 GABAA receptor. Key Results: Neuroprotection against a range of insults was retained even with substantial chemical modification. Dependence on GABAA receptor activity was variable: at the extremes, neuroprotection by GN-28 was universally sensitive to picrotoxin, while GN-38 was largely insensitive. In parallel, effects on extracellular glutamate and intracellular calcium were associated with GABAA dependence. Consistent with these findings, GN-28 potentiated α1β2γ2 GABAA function, whereas GN-38 had a weak inhibitory effect. Neuroprotection against moderate dose oligomeric Aβ1–42 was also tolerant to structural changes. Conclusions and Implications: The results support the concept that CMZ does not contain a single pharmacophore, rather that broad-spectrum neuroprotection results from a GABAA-dependent mechanism represented by GN-28, combined with a mechanism represented in GN-38 that shows the least dependence on GABAA receptors. These findings allow further refinement of the neuroprotective pharmacophore and investigation into secondary mechanisms that will assist in identifying MZ-based compounds of use in treating neurodegeneration. PMID:24116891

  8. Lateral Orbitofrontal Cortical Modulation on the Medial Prefrontal Cortex-Amygdala Pathway: Differential Regulation of Intra-Amygdala GABAA and GABAB Receptors.

    PubMed

    Chang, Chun-Hui

    2017-07-01

    The basolateral complex of the amygdala receives inputs from neocortical areas, including the medial prefrontal cortex and lateral orbitofrontal cortex. Earlier studies have shown that lateral orbitofrontal cortex activation exerts an inhibitory gating on medial prefrontal cortex-amygdala information flow. Here we examined the individual role of GABAA and GABAB receptors in this process. In vivo extracellular single-unit recordings were done in anesthetized rats. We searched amygdala neurons that fire in response to medial prefrontal cortex activation, tested lateral orbitofrontal cortex gating at different delays (lateral orbitofrontal cortex-medial prefrontal cortex delays: 25, 50, 100, 250, 500, and 1000 milliseconds), and examined differential contribution of GABAA and GABAB receptors with iontophoresis. Relative to baseline, lateral orbitofrontal cortex stimulation exerted an inhibitory modulatory gating on the medial prefrontal cortex-amygdala pathway and was effective up to a long delay of 500 ms (long-delay latencies at 100, 250, and 500 milliseconds). Moreover, blockade of intra-amygdala GABAA receptors with bicuculline abolished the lateral orbitofrontal cortex inhibitory gating at both short- (25 milliseconds) and long-delay (100 milliseconds) intervals, while blockade of GABAB receptors with saclofen reversed the inhibitory gating at long delay (100 milliseconds) only. Among the majority of the neurons examined (8 of 9), inactivation of either GABAA or GABAB receptors during baseline did not change evoked probability per se, suggesting that local feed-forward inhibitory mechanism is pathway specific. Our results suggest that the effect of lateral orbitofrontal cortex inhibitory modulatory gating was effective up to 500 milliseconds and that intra-amygdala GABAA and GABAB receptors differentially modulate the short- and long-delay lateral orbitofrontal cortex inhibitory gating on the medial prefrontal cortex-amygdala pathway. © The Author 2017

  9. Effects of central histamine receptors blockade on GABA(A) agonist-induced food intake in broiler cockerels.

    PubMed

    Morteza, Zendehdel; Vahhab, Babapour; Hossein, Jonaidi

    2008-02-01

    In this study, the effect of intracerebroventricular (i.c.v) injection of H1, H2 and H3 antagonists on feed intake induced by GABA(A) agonist was evaluated. In Experiment 1, the animals received chloropheniramine, a H1 antagonist and then muscimol, a GABA(A) agonist. In Experiment 2, chickens received famotidine, a H2 receptor antagonist, prior to injection of muscimol. Finally in Experiment 3, the birds were injected with thioperamide, a H3 receptor antagonist and muscimol. Cumulative food intake was measured 15, 30, 45, 60, 90, 120, 150 and 180 min after injections. The results of this study indicated that effects of muscimol on food intake inhibited by pretreatment with chloropheneramine maleate (p < or = 0.05), significantly, while the famotidine and thioperamide were ineffective. These results suggest the existence of H1-receptor mediated histamine-GABA(A) receptor interaction on food intake in broiler cockerels.

  10. Expression of specific ionotropic glutamate and GABA-A receptor subunits is decreased in central amygdala of alcoholics.

    PubMed

    Jin, Zhe; Bhandage, Amol K; Bazov, Igor; Kononenko, Olga; Bakalkin, Georgy; Korpi, Esa R; Birnir, Bryndis

    2014-01-01

    The central amygdala (CeA) has a role for mediating fear and anxiety responses. It is also involved in emotional imbalance caused by alcohol abuse and dependence and in regulating relapse to alcohol abuse. Growing evidences suggest that excitatory glutamatergic and inhibitory γ-aminobutyric acid-ergic (GABAergic) transmissions in the CeA are affected by chronic alcohol exposure. Human post-mortem CeA samples from male alcoholics (n = 9) and matched controls (n = 9) were assayed for the expression level of ionotropic glutamate and GABA-A receptors subunit mRNAs using quantitative real-time reverse transcription-PCR (RT-qPCR). Our data revealed that out of the 16 ionotropic glutamate receptor subunits, mRNAs encoding two AMPA [2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid] receptor subunits GluA1 and GluA4; one kainate receptor subunit GluK2; one NMDA (N-methyl-D-aspartate) receptor subunit GluN2D and one delta receptor subunit GluD2 were significantly decreased in the CeA of alcoholics. In contrast, of the 19 GABA-A receptor subunits, only the mRNA encoding the α2 subunit was significantly down-regulated in the CeA of the alcoholics as compared with control subjects. Our findings imply that the down-regulation of specific ionotropic glutamate and GABA-A receptor subunits in the CeA of alcoholics may represent one of the molecular substrates underlying the new balance between excitatory and inhibitory neurotransmission in alcohol dependence.

  11. Expression of specific ionotropic glutamate and GABA-A receptor subunits is decreased in central amygdala of alcoholics

    PubMed Central

    Jin, Zhe; Bhandage, Amol K.; Bazov, Igor; Kononenko, Olga; Bakalkin, Georgy; Korpi, Esa R.; Birnir, Bryndis

    2014-01-01

    The central amygdala (CeA) has a role for mediating fear and anxiety responses. It is also involved in emotional imbalance caused by alcohol abuse and dependence and in regulating relapse to alcohol abuse. Growing evidences suggest that excitatory glutamatergic and inhibitory γ-aminobutyric acid-ergic (GABAergic) transmissions in the CeA are affected by chronic alcohol exposure. Human post-mortem CeA samples from male alcoholics (n = 9) and matched controls (n = 9) were assayed for the expression level of ionotropic glutamate and GABA-A receptors subunit mRNAs using quantitative real-time reverse transcription-PCR (RT-qPCR). Our data revealed that out of the 16 ionotropic glutamate receptor subunits, mRNAs encoding two AMPA [2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid] receptor subunits GluA1 and GluA4; one kainate receptor subunit GluK2; one NMDA (N-methyl-D-aspartate) receptor subunit GluN2D and one delta receptor subunit GluD2 were significantly decreased in the CeA of alcoholics. In contrast, of the 19 GABA-A receptor subunits, only the mRNA encoding the α2 subunit was significantly down-regulated in the CeA of the alcoholics as compared with control subjects. Our findings imply that the down-regulation of specific ionotropic glutamate and GABA-A receptor subunits in the CeA of alcoholics may represent one of the molecular substrates underlying the new balance between excitatory and inhibitory neurotransmission in alcohol dependence. PMID:25278838

  12. Linking GABA(A) receptor subunits to alcohol-induced conditioned taste aversion and recovery from acute alcohol intoxication.

    PubMed

    Blednov, Y A; Benavidez, J M; Black, M; Chandra, D; Homanics, G E; Rudolph, U; Harris, R A

    2013-04-01

    GABA type A receptors (GABA(A)-R) are important for ethanol actions and it is of interest to link individual subunits with specific ethanol behaviors. We studied null mutant mice for six different GABA(A)-R subunits (α1, α2, α3, α4, α5 and δ). Only mice lacking the α2 subunit showed reduction of conditioned taste aversion (CTA) to ethanol. These results are in agreement with data from knock-in mice with mutation of the ethanol-sensitive site in the α2-subunit (Blednov et al., 2011). All together, they indicate that aversive property of ethanol is dependent on ethanol action on α2-containing GABA(A)-R. Deletion of the α2-subunit led to faster recovery whereas absence of the α3-subunit slowed recovery from ethanol-induced incoordination (rotarod). Deletion of the other four subunits did not affect this behavior. Similar changes in this behavior for the α2 and α3 null mutants were found for flurazepam motor incoordination. However, no differences in recovery were found in motor-incoordinating effects of an α1-selective modulator (zolpidem) or an α4-selective agonist (gaboxadol). Therefore, recovery of rotarod incoordination is under control of two GABA(A)-R subunits: α2 and α3. For motor activity, α3 null mice demonstrated higher activation by ethanol (1 g/kg) whereas both α2 (-/-) and α3 (-/Y) knockout mice were less sensitive to ethanol-induced reduction of motor activity (1.5 g/kg). These studies demonstrate that the effects of ethanol at GABAergic synapses containing α2 subunit are important for specific behavioral effects of ethanol which may be relevant to the genetic linkage of the α2 subunit with human alcoholism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. CO2-induced ocean acidification increases anxiety in Rockfish via alteration of GABAA receptor functioning

    PubMed Central

    Hamilton, Trevor James; Holcombe, Adam; Tresguerres, Martin

    2014-01-01

    The average surface pH of the ocean is dropping at a rapid rate due to the dissolution of anthropogenic CO2, raising concerns for marine life. Additionally, some coastal areas periodically experience upwelling of CO2-enriched water with reduced pH. Previous research has demonstrated ocean acidification (OA)-induced changes in behavioural and sensory systems including olfaction, which is due to altered function of neural gamma-aminobutyric acid type A (GABAA) receptors. Here, we used a camera-based tracking software system to examine whether OA-dependent changes in GABAA receptors affect anxiety in juvenile Californian rockfish (Sebastes diploproa). Anxiety was estimated using behavioural tests that measure light/dark preference (scototaxis) and proximity to an object. After one week in OA conditions projected for the next century in the California shore (1125 ± 100 µatm, pH 7.75), anxiety was significantly increased relative to controls (483 ± 40 µatm CO2, pH 8.1). The GABAA-receptor agonist muscimol, but not the antagonist gabazine, caused a significant increase in anxiety consistent with altered Cl− flux in OA-exposed fish. OA-exposed fish remained more anxious even after 7 days back in control seawater; however, they resumed their normal behaviour by day 12. These results show that OA could severely alter rockfish behaviour; however, this effect is reversible. PMID:24285203

  14. CO2-induced ocean acidification increases anxiety in rockfish via alteration of GABAA receptor functioning.

    PubMed

    Hamilton, Trevor James; Holcombe, Adam; Tresguerres, Martin

    2014-01-22

    The average surface pH of the ocean is dropping at a rapid rate due to the dissolution of anthropogenic CO2, raising concerns for marine life. Additionally, some coastal areas periodically experience upwelling of CO2-enriched water with reduced pH. Previous research has demonstrated ocean acidification (OA)-induced changes in behavioural and sensory systems including olfaction, which is due to altered function of neural gamma-aminobutyric acid type A (GABAA) receptors. Here, we used a camera-based tracking software system to examine whether OA-dependent changes in GABAA receptors affect anxiety in juvenile Californian rockfish (Sebastes diploproa). Anxiety was estimated using behavioural tests that measure light/dark preference (scototaxis) and proximity to an object. After one week in OA conditions projected for the next century in the California shore (1125 ± 100 µatm, pH 7.75), anxiety was significantly increased relative to controls (483 ± 40 µatm CO2, pH 8.1). The GABAA-receptor agonist muscimol, but not the antagonist gabazine, caused a significant increase in anxiety consistent with altered Cl(-) flux in OA-exposed fish. OA-exposed fish remained more anxious even after 7 days back in control seawater; however, they resumed their normal behaviour by day 12. These results show that OA could severely alter rockfish behaviour; however, this effect is reversible.

  15. Mechanisms of anabolic androgenic steroid inhibition of mammalian ɛ-subunit-containing GABAA receptors

    PubMed Central

    Jones, Brian L; Whiting, Paul J; Henderson, Leslie P

    2006-01-01

    GABAergic transmission regulates the activity of gonadotrophin-releasing hormone (GnRH) neurons in the preoptic area/hypothalamus that control the onset of puberty and the expression of reproductive behaviours. One of the hallmarks of illicit use of anabolic androgenic steroids (AAS) is disruption of behaviours under neuroendocrine control. GnRH neurons are among a limited population of cells that express high levels of the ɛ-subunit of the GABAA receptor. To better understand the actions of AAS on neuroendocrine mechanisms, we have characterized modulation of GABAA receptor-mediated currents in mouse native GnRH neurons and in heterologous cells expressing recombinant α2β3ɛ-receptors. GnRH neurons exhibited robust currents in response to millimolar concentrations of GABA and a picrotoxin (PTX)-sensitive, bicuculline-insensitive current that probably arises from spontaneous openings of GABAA receptors. The AAS 17α-methyltestosterone (17α-MeT) inhibited spontaneous and GABA-evoked currents in GnRH neurons. For recombinant α2β3ɛ-receptors, 17α-MeT inhibited phasic and tonic GABA-elicited responses, accelerated desensitization and slowed paired pulse response recovery. Single channel analysis indicated that GABA-evoked events could be described by three open dwell components and that 17α-MeT enhanced residence in the intermediate dwell state. This AAS also inhibited a PTX-sensitive, spontaneous current (open probability, ∼0.15–0.2) in a concentration-dependent fashion (IC50 ≈ 9 μm). Kinetic modelling indicated that the inhibition induced by 17α-MeT occurs by an allosteric block in which the AAS interacts preferentially with a closed state and promotes accumulation in that state. Finally, studies with a G302S mutant ɛ-subunit suggest that this residue within the transmembrane domain TM2 plays a role in mediating AAS binding and modulation. In sum, our results indicate that inclusion of the ɛ-subunit significantly alters the profile of AAS

  16. Somato-synaptic variation of GABA(A) receptors in cultured murine cerebellar granule cells: investigation of the role of the alpha6 subunit.

    PubMed

    Mellor, J R; Wisden, W; Randall, A D

    2000-07-10

    Electrophysiological investigation of cultured cerebellar murine granule cells revealed differences between the GABA(A) receptors at inhibitory synapses and those on the cell body. Specifically, mIPSCs decayed more rapidly than cell body receptors deactivated, the mean single channel conductance at the synapse (32 pS) was greater than that at cell body (21 pS) and only cell body receptors were sensitive to Zn(2+) (150 microM), which depressed response amplitude by 82+/-5% and almost doubled the rate of channel deactivation. The GABA(A) receptor alpha6 subunit is selectively expressed in cerebellar granule cells. Although concentrated at synapses, it is also found on extrasynaptic membranes. Using a mouse line (Deltaalpha6lacZ) lacking this subunit, we investigated its role in the somato-synaptic differences in GABA(A) receptor function. All differences between cell body and synaptic GABA(A) receptors observed in wild-type (WT) granule cells persisted in Deltaalpha6lacZ cells, thus demonstrating that they are not specifically due to the cellular distribution of the alpha6 subunit. However, mIPSCs from WT and Deltaalpha6lacZ cells differed in both their kinetics (faster decay in WT cells) and underlying single channel conductance (32 pS WT, 25 pS Deltaalpha6lacZ). This provides good evidence for a functional contribution of the alpha6 subunit to postsynaptic GABA(A) receptors in these cells. Despite this, deactivation kinetics of mIPSCs in WT and Deltaalpha6lacZ granule cells exhibited similar benzodiazepene (BDZ) sensitivity. This suggests that the enhanced BDZ-induced ataxia seen in Deltaalpha6lacZ mice may reflect physiological activity at extrasynaptic receptors which, unlike those at synapses, display differential BDZ-sensitivity in WT and Deltaalpha6lacZ granule cells (Jones, A.M., Korpi, E.R., McKernan, R.M., Nusser, Z., Pelz, R., Makela, R., Mellor, J.R., Pollard, S., Bahn, S., Stephenson, F.A., Randall, A.D., Sieghart, W., Somogyi, P., Smith, A.J.H., Wisden

  17. Mechanisms Underlying Tolerance after Long-Term Benzodiazepine Use: A Future for Subtype-Selective GABAA Receptor Modulators?

    PubMed Central

    Vinkers, Christiaan H.; Olivier, Berend

    2012-01-01

    Despite decades of basic and clinical research, our understanding of how benzodiazepines tend to lose their efficacy over time (tolerance) is at least incomplete. In appears that tolerance develops relatively quickly for the sedative and anticonvulsant actions of benzodiazepines, whereas tolerance to anxiolytic and amnesic effects probably does not develop at all. In light of this evidence, we review the current evidence for the neuroadaptive mechanisms underlying benzodiazepine tolerance, including changes of (i) the GABAA receptor (subunit expression and receptor coupling), (ii) intracellular changes stemming from transcriptional and neurotrophic factors, (iii) ionotropic glutamate receptors, (iv) other neurotransmitters (serotonin, dopamine, and acetylcholine systems), and (v) the neurosteroid system. From the large variance in the studies, it appears that either different (simultaneous) tolerance mechanisms occur depending on the benzodiazepine effect, or that the tolerance-inducing mechanism depends on the activated GABAA receptor subtypes. Importantly, there is no convincing evidence that tolerance occurs with α subunit subtype-selective compounds acting at the benzodiazepine site. PMID:22536226

  18. GABA-A Receptor Modulation and Anticonvulsant, Anxiolytic, and Antidepressant Activities of Constituents from Artemisia indica Linn

    PubMed Central

    Khan, Imran; Karim, Nasiara; Ahmad, Waqar; Abdelhalim, Abeer; Chebib, Mary

    2016-01-01

    Artemisia indica, also known as “Mugwort,” has been widely used in traditional medicines. However, few studies have investigated the effects of nonvolatile components of Artemisia indica on central nervous system's function. Fractionation of Artemisia indica led to the isolation of carnosol, ursolic acid, and oleanolic acid which were evaluated for their effects on GABA-A receptors in electrophysiological studies in Xenopus oocytes and were subsequently investigated in mouse models of acute toxicity, convulsions (pentylenetetrazole induced seizures), depression (tail suspension and forced swim tests), and anxiety (elevated plus maze and light/dark box paradigms). Carnosol, ursolic acid, and oleanolic acid were found to be positive modulators of α1β2γ2L GABA-A receptors and the modulation was antagonized by flumazenil. Carnosol, ursolic acid, and oleanolic acid were found to be devoid of any signs of acute toxicity (50–200 mg/kg) but elicited anticonvulsant, antidepressant, and anxiolytic activities. Thus carnosol, ursolic acid, and oleanolic acid demonstrated CNS activity in mouse models of anticonvulsant, antidepressant, and anxiolysis. The anxiolytic activity of all three compounds was ameliorated by flumazenil suggesting a mode of action via the benzodiazepine binding site of GABA-A receptors. PMID:27143980

  19. The role of GABA-A and mitochondrial diazepam-binding inhibitor receptors on the effects of neurosteroids on food intake in mice.

    PubMed

    Reddy, D S; Kulkarni, S K

    1998-06-01

    The present studies were undertaken to investigate the neuroactive steroidal modulation of feeding behavior and possible involvement of gamma-aminobutyric acid type-A (GABA-A) and mitochondrial diazepam binding inhibitor (DBI) receptors (MDR) in food-deprived male mice. Allopregnanolone (0.5-2 mg/kg), a neurosteroid, progesterone (1-10 mg/kg), a neurosteroid precursor, and 4'-chlordiazepam (0.25-1 mg/kg), a specific high affinity MDR agonist, produced a dose-dependent hyperphagic effects. In contrast, neurosteroids pregnenolone sulfate (PS) (1-10 mg/kg) and dehydroepiandrosterone sulfate (DHEAS) (1-10 mg/kg) produced a hypophagic effect, in a dose-dependent manner. The allopregnanolone-, progesterone- and 4'-chlordiazepam-induced hyperphagic effect was blocked by picrotoxin (1 mg/kg), a GABA-A chloride channel antagonist, but not by flumazenil (2 mg/kg), a benzodiazepine (BZD) antagonist. The 4'-chlordiazepam-induced hyperphagic effect was prevented by pretreatment with PK11195 (2 mg/kg), a selective partial MDR antagonist. The hypophagic effect of DHEAS (10 mg/kg) was reversed by dizocilpine (10 microg/kg), an NMDA receptor antagonist, but resistant to muscimol (0.1 mg/kg), a selective GABA-A receptor agonist. In contrast, the PS (10 mg/kg)-induced hypophagic response was resistant to dizocilpine, but sensitive to muscimol (0.1 mg/kg). Both the sulfated neurosteroids PS and DHEAS also reversed the hyperphagic effect of allopregnanolone. In addition, the BZD agonist triazolam (0.05-0.25 mg/kg) also produced a flumazenil- and picrotoxin-sensitive hyperphagic effects, thereby suggesting the changes in feeding behavior by neurosteroids represent GABA-A receptor mediated hyperphagic action. Although the possible antistress or anxiolytic actions of neurosteroids may confound the hyperphagia, behavioral effects observed were specific to food because the mice were adopted to the test environment and diet, and of a possible variation between various neurosteroids in the

  20. HPLC-based activity profiling for GABAA receptor modulators from the traditional Chinese herbal drug Kushen (Sophora flavescens root)

    PubMed Central

    2011-01-01

    An EtOAc extract from the roots of Sophora flavescens (Kushen) potentiated γ -aminobutyric acid (GABA)-induced chloride influx in Xenopus oocytes transiently expressing GABAA receptors with subunit composition, α1β2γ2S. HPLC-based activity profiling of the extract led to the identification of 8-lavandulyl flavonoids, kushenol I, sophoraflavanone G, (–)-kurarinone, and kuraridine as GABAA receptor modulators. In addition, a series of inactive structurally related flavonoids were characterized. Among these, kushenol Y (4) was identified as a new natural product. The 8-lavandulyl flavonoids are first representatives of a novel scaffold for the target. PMID:21207144

  1. Functional expression of the GABAA receptor α2 and α3 subunits at synapses between intercalated medial paracapsular neurons of mouse amygdala

    PubMed Central

    Geracitano, Raffaella; Fischer, David; Kasugai, Yu; Ferraguti, Francesco; Capogna, Marco

    2012-01-01

    In the amygdala, GABAergic neurons in the intercalated medial paracapsular cluster (Imp) have been suggested to play a key role in fear learning and extinction. These neurons project to the central (CE) amygdaloid nucleus and to other areas within and outside the amygdala. In addition, they give rise to local collaterals that innervate other neurons in the Imp. Several drugs, including benzodiazepines (BZ), are allosteric modulators of GABAA receptors. BZ has both anxiolytic and sedative actions, which are mediated through GABAA receptors containing α2/α3 and α1 subunits, respectively. To establish whether α1 or α2/α3 subunits are expressed at Imp cell synapses, we used paired recordings of anatomically identified Imp neurons and high resolution immunocytochemistry in the mouse. We observed that a selective α3 subunit agonist, TP003 (100 nM), significantly increased the decay time constant of the unitary IPSCs. A similar effect was also induced by zolpidem (10 μM) or by diazepam (1 μM). In contrast, lower doses of zolpidem (0.1–1 μM) did not significantly alter the kinetics of the unitary IPSCs. Accordingly, immunocytochemical experiments established that the α2 and α3, but not the α1 subunits of the GABAA receptors, were present at Imp cell synapses of the mouse amygdala. These results define, for the first time, some of the functional GABAA receptor subunits expressed at synapses of Imp cells. The data also provide an additional rationale to prompt the search of GABAA receptor α3 selective ligands as improved anxiolytic drugs. PMID:22666188

  2. Role of gamma-aminobutyric acid type A (GABAA) receptor subtypes in acute benzodiazepine physical dependence-like effects: evidence from squirrel monkeys responding under a schedule of food presentation

    PubMed Central

    Fischer, Bradford D.; Teixeira, Laura P.; van Linn, Michael L.; Namjoshi, Ojas A.; Cook, James M.; Rowlett, James K.

    2013-01-01

    Rationale Assays of schedule-controlled responding can be used to characterize the pharmacology of benzodiazepines and other GABAA receptor modulators, and are sensitive to changes in drug effects that are related to physical dependence. Objective The present study used this approach to investigate the role of GABAA receptor subtypes in mediating dependence-like effects following benzodiazepine administration. Methods Squirrel monkeys (n=6) were trained on a fixed-ratio schedule of food reinforcement. Initially, the response rate-decreasing effects of chlordiazepoxide (0.1–10 mg/kg; nonselective GABAA receptor agonist), zolpidem (0.032–1.0 mg/kg; α1 subunit-containing GABAA subtype-preferring agonist) and HZ-166 (0.1–10 mg/kg; functionally selective α2 and α3 subunit-containing GABAA receptor agonist) were assessed. Next, acute dependence-like effects following single injections of chlordiazepoxide, zolpidem and HZ-166 were assessed with flumazenil (0.1–3.2 mg/kg; nonselective GABAA receptor antagonist). Finally, acute dependence-like effects following zolpidem administration were assessed with βCCt and 3-PBC (0.1–3.2 mg/kg and 0.32–10 mg/kg, respectively; α1 subunit-containing GABAA receptor antagonists). Results Chlordiazepoxide, zolpidem and HZ-166 produced dose- and time-dependent decreases in response rates, whereas flumazenil, βCCt and 3-PBC were ineffective. After the drug effects waned, flumazenil produced dose-dependent decreases in response rates following administration of 10 mg/kg chlordiazepoxide and 1.0 mg/kg zolpidem, but not following any dose of HZ-166. Further, both βCCt and 3-PBC produced dose-dependent decreases in response rates when administered after 1.0 mg/kg zolpidem. Conclusions These data raise the possibility that α1 subunit-containing GABAA receptors play a major role in physical dependence-related behaviors following a single injection of a benzodiazepine. PMID:23354533

  3. Role of gamma-aminobutyric acid type A (GABAA) receptor subtypes in acute benzodiazepine physical dependence-like effects: evidence from squirrel monkeys responding under a schedule of food presentation.

    PubMed

    Fischer, Bradford D; Teixeira, Laura P; van Linn, Michael L; Namjoshi, Ojas A; Cook, James M; Rowlett, James K

    2013-05-01

    Assays of schedule-controlled responding can be used to characterize the pharmacology of benzodiazepines and other GABAA receptor modulators, and are sensitive to changes in drug effects that are related to physical dependence. The present study used this approach to investigate the role of GABAA receptor subtypes in mediating dependence-like effects following benzodiazepine administration. Squirrel monkeys (n = 6) were trained on a fixed-ratio schedule of food reinforcement. Initially, the response rate-decreasing effects of chlordiazepoxide (0.1-10 mg/kg; nonselective GABAA receptor agonist), zolpidem (0.032-1.0 mg/kg; α1 subunit-containing GABAA subtype-preferring agonist), and HZ-166 (0.1-10 mg/kg; functionally selective α2 and α3 subunit-containing GABAA receptor agonist) were assessed. Next, acute dependence-like effects following single injections of chlordiazepoxide, zolpidem, and HZ-166 were assessed with flumazenil (0.1-3.2 mg/kg; nonselective GABAA receptor antagonist). Finally, acute dependence-like effects following zolpidem administration were assessed with βCCt and 3-PBC (0.1-3.2 mg/kg and 0.32-10 mg/kg, respectively; α1 subunit-containing GABAA receptor antagonists). Chlordiazepoxide, zolpidem, and HZ-166 produced dose- and time-dependent decreases in response rates, whereas flumazenil, βCCT, and 3-PBC were ineffective. After the drug effects waned, flumazenil produced dose-dependent decreases in response rates following administration of 10 mg/kg chlordiazepoxide and 1.0 mg/kg zolpidem, but not following any dose of HZ-166. Further, both βCCT and 3-PBC produced dose-dependent decreases in response rates when administered after 1.0 mg/kg zolpidem. These data raise the possibility that α1 subunit-containing GABAA receptors play a major role in physical dependence-related behaviors following a single injection of a benzodiazepine.

  4. Regulating the Efficacy of Inhibition Through Trafficking of γ-Aminobutyric Acid Type A Receptors.

    PubMed

    Vien, Thuy N; Moss, Stephen J; Davies, Paul A

    2016-11-01

    Trafficking of anesthetic-sensitive receptors within the plasma membrane, or from one cellular component to another, occurs continuously. Changes in receptor trafficking have implications in altering anesthetic sensitivity. γ-Aminobutyric acid type A receptors (GABAARs) are anion-permeable ion channels and are the major class of receptor in the adult mammalian central nervous system that mediates inhibition. GABAergic signaling allows for precise synchronized firing of action potentials within brain circuits that is critical for cognition, behavior, and consciousness. This precision depends upon tightly controlled trafficking of GABAARs into the membrane. General anesthetics bind to and allosterically enhance GABAARs by prolonging the open state of the receptor and thereby altering neuronal and brain circuit activity. Subunit composition and GABAAR localization strongly influence anesthetic end points; therefore, changes in GABAAR trafficking could have significant consequences to anesthetic sensitivity. GABAARs are not static membrane structures but are in a constant state of flux between extrasynaptic and synaptic locations and are continually endocytosed and recycled from and to the membrane. Neuronal activity, posttranslational modifications, and some naturally occurring and synthetic compounds can influence the expression and trafficking of GABAARs. In this article, we review GABAARs, their trafficking, and how phosphorylation of GABAAR subunits can influence the surface expression and function of the receptor. Ultimately, alterations of GABAAR trafficking could modify anesthetic end points, both unintentionally through pathologic processes but potentially as a therapeutic target to adjust anesthetic-sensitive GABAARs.

  5. Furosemide suppresses ileal and colonic contractility via interactions with GABA-A receptor in mice.

    PubMed

    Kaewsaro, Kannaree; Nualplub, Suparp; Bumrungsri, Sara; Khuituan, Pissared

    2017-11-01

    The loop diuretic furosemide has an action to inhibit Na + -K + -2Cl - co-transporter at the thick ascending limb of Henle's loop resulting in diuresis. Furosemide also has the non-diuretic effects by binding to GABA-A receptor which may involve the gastrointestinal tract. The aim of this study was to investigate the effects of furosemide on smooth muscle contractions in mice ileum and proximal colon. Each intestinal segment suspended in an organ bath was connected to a force transducer. Signal output of mechanical activity was amplified and recorded for analysis using PowerLab System. After equilibration, the intestine was directly exposed to furosemide, GABA, GABA-A receptor agonist (muscimol), or muscarinic receptor antagonist (atropine). Furosemide (50, 100 and 500 μmol L -1 ) acutely reduced the amplitude of ileal and colonic contraction. In the ileum, 1 mmol L -1 GABA and 10-60 μmol L -1 muscimol significantly increased the amplitude, whereas in the colon, 50-100 mmol L -1 GABA and 60 μmol L -1 muscimol decreased the contractions. The contractions were also significantly suppressed by atropine. To investigate the mechanisms underlying the inhibiting effect of furosemide, furosemide was added to the organ bath prior to the addition of muscimol or atropine. A comparison of furosemide combined with muscimol or atropine group and furosemide group showed no significant difference of the ileal contraction, but the amplitude of colonic contraction significantly decreased when compared to adding furosemide alone. These results suggest that furosemide can reduce the ileal and proximal colonic contraction mediated by blocking and supporting of GABA-A receptor, respectively, resulting in decreased acetylcholine release. © 2017 John Wiley & Sons Australia, Ltd.

  6. SH-I-048A, AN IN VITRO NONSELECTIVE SUPER-AGONIST AT THE BENZODIAZEPINE SITE OF GABAA RECEPTORS: THE APPROXIMATED ACTIVATION OF RECEPTOR SUBTYPES MAY EXPLAIN BEHAVIORAL EFFECTS

    PubMed Central

    Obradović, Aleksandar Lj.; Joksimović, Srđan; Poe, Michael M.; Ramerstorfer, Joachim; Varagic, Zdravko; Namjoshi, Ojas; Batinić, Bojan; Radulović, Tamara; Marković, Bojan; Roth, Brian; Sieghart, Werner; Cook, James M.; Savić, Miroslav M.

    2014-01-01

    Enormous progress in understanding the role of four populations of benzodiazepine-sensitive GABAA receptors was paralleled by the puzzling findings suggesting that substantial separation of behavioral effects may be accomplished by apparently non-selective modulators. We report on SH-I-048A, a newly-synthesized chiral positive modulator of GABAA receptors characterized by exceptional subnanomolar affinity, high efficacy and non-selectivity. Its influence on behavior was assessed in Wistar rats and contrasted to that obtained with 2 mg/kg diazepam. SH-I-048A reached micromolar concentrations in brain tissue, while the unbound fraction in brain homogenate was around 1.5%. The approximated electrophysiological responses, which estimated free concentrations of SH-I-048A or diazepam are able to elicit, suggested a similarity between the 10 mg/kg dose of the novel ligand and 2 mg/kg diazepam; however, SH-I-048A was relatively more active at α1- and α5-containing GABAA receptors. Behaviorally, SH-I-048A induced sedative, muscle relaxant and ataxic effects, reversed mechanical hyperalgesia 24 hours after injury, while it was devoid of clear anxiolytic actions and did not affect water-maze performance. While lack of clear anxiolytic actions may be connected with an enhanced potentiation at α1-containing GABAA receptors, the observed behavior in the rotarod, water maze and peripheral nerve injury tests was possibly affected by its prominent action at receptors containing the α5 subunit. The current results encourage further innovative approaches aimed at linking in vitro and in vivo data in order to help define fine-tuning mechanisms at four sensitive receptor populations that underlie subtle differences in behavioral profiles of benzodiazepine site ligands. PMID:24472579

  7. Removal of GABAA Receptor γ2 Subunits from Parvalbumin Neurons Causes Wide-Ranging Behavioral Alterations

    PubMed Central

    Leppä, Elli; Linden, Anni-Maija; Vekovischeva, Olga Y.; Swinny, Jerome D.; Rantanen, Ville; Toppila, Esko; Höger, Harald; Sieghart, Werner; Wulff, Peer; Wisden, William; Korpi, Esa R.

    2011-01-01

    We investigated the behavioral significance of fast synaptic inhibition by αβγ2-type GABAA receptors on parvalbumin (Pv) cells. The GABAA receptor γ2 subunit gene was selectively inactivated in Pv-positive neurons by Cre/loxP recombination. The resulting Pv-Δγ2 mice were relatively healthy in the first postnatal weeks; but then as Cre started to be expressed, the mice progressively developed wide-ranging phenotypic alterations including low body weight, motor deficits and tremor, decreased anxiety levels, decreased pain sensitivity and deficient prepulse inhibition of the acoustic startle reflex and impaired spatial learning. Nevertheless, the deletion was not lethal, and mice did not show increased mortality even after one year. Autoradiography with t-butylbicyclophosphoro[35S]thionate suggested an increased amount of GABAA receptors with only α and β subunits in central nervous system regions that contained high levels of parvalbumin neurons. Using BAC-transgenesis, we reduced some of the Pv-Δγ2 phenotype by selectively re-expressing the wild-type γ2 subunit back into some Pv cells (reticular thalamic neurons and cerebellar Pv-positive neurons). This produced less severe impairments of motor skills and spatial learning compared with Pv-Δγ2 mice, but all other deficits remained. Our results reveal the widespread significance of fast GABAergic inhibition onto Pv-positive neurons for diverse behavioral modalities, such as motor coordination, sensorimotor integration, emotional behavior and nociception. PMID:21912668

  8. Characteristics of concatemeric GABAA receptors containing α4/δ subunits expressed in Xenopus oocytes

    PubMed Central

    Shu, Hong-Jin; Bracamontes, John; Taylor, Amanda; Wu, Kyle; Eaton, Megan M; Akk, Gustav; Manion, Brad; Evers, Alex S; Krishnan, Kathiresan; Covey, Douglas F; Zorumski, Charles F; Steinbach, Joe Henry; Mennerick, Steven

    2012-01-01

    BACKGROUND AND PURPOSE GABAA receptors mediate both synaptic and extrasynaptic actions of GABA. In several neuronal populations, α4 and δ subunits are key components of extrasynaptic GABAA receptors that strongly influence neuronal excitability and could mediate the effects of neuroactive agents including neurosteroids and ethanol. However, these receptors can be difficult to study in native cells and recombinant δ subunits can be difficult to express in heterologous systems. EXPERIMENTAL APPROACH We engineered concatemeric (fused) subunits to ensure δ and α4 subunit expression. We tested the pharmacology of the concatemeric receptors, compared with a common synaptic-like receptor subunit combination (α1 +β2 +γ2L), and with free-subunit α4/δ receptors, expressed in Xenopus oocytes. KEY RESULTS δ-β2 −α4 +β2-α4 cRNA co-injected into Xenopus oocytes resulted in GABA-gated currents with the expected pharmacological properties of α4/δ-containing receptors. Criteria included sensitivity to agonists of different efficacy, sensitivity to the allosteric activator pentobarbital, and modulation of agonist responses by DS2 (4-chloro-N-[2-(2-thienyl)imidazo[1,2-a]pyridine-3-yl benzamide; a δ-selective positive modulator), furosemide, and Zn2+. We used the concatemers to examine neurosteroid sensitivity of extrasynaptic-like, δ-containing receptors. We found no qualitative differences between extrasynaptic-like receptors and synaptic-like receptors in the actions of either negative or positive neurosteroid modulators of receptor function. Quantitative differences were explained by the partial agonist effects of the natural agonist GABA and by a mildly increased sensitivity to low steroid concentrations. CONCLUSIONS AND IMPLICATIONS The neurosteroid structure-activity profile for α4/δ-containing extrasynaptic receptors is unlikely to differ from that of synaptic-like receptors such as α1/β2/γ2-containing receptors. PMID:21950777

  9. Differential effects of chronic lorazepam and alprazolam on benzodiazepine binding and GABAA-receptor function.

    PubMed Central

    Galpern, W. R.; Miller, L. G.; Greenblatt, D. J.; Shader, R. I.

    1990-01-01

    1. Chronic benzodiazepine administration has been associated with tolerance and with downregulation of gamma-aminobutyric acidA (GABAA)-receptor binding and function. However, effects of individual benzodiazepines on brain regions have varied. 2. To compare the effects of chronic lorazepam and alprazolam, we have administered these drugs to mice for 1 and 7 days (2 mg kg-1 day-1) and determined benzodiazepine receptor binding in vivo with and without administration of CL 218,872, 25 mg kg-1 i.p., and GABA-dependent chloride uptake in 3 brain regions at these time points. 3. Benzodiazepine binding was decreased in the cortex and hippocampus at day 7 compared to day 1 of lorazepam, with an increase in CL 218,872-resistant (Type 2) sites in both regions. Maximal GABA-dependent chloride uptake was also decreased in the cortex and hippocampus at day 7. 4. Binding was decreased only in the cortex after 7 days of alprazolam, with no significant change in Type 2 binding. Maximal GABA-dependent chloride uptake was also decreased only in the cortex. 5. These data suggest that the effects of chronic benzodiazepine administration on the GABAA-receptor may be both region-specific and receptor subtype-specific. PMID:1964820

  10. Role of the amygdala GABA-A receptors in ACPA-induced deficits during conditioned fear learning.

    PubMed

    Nasehi, Mohammad; Roghani, Farnaz; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza

    2017-05-01

    The basolateral amygdala (BLA) is a key structure for the emotional processing and storage of memories associated with emotional events, especially fear. On the other hand, endocannabinoids and CB1 receptors play a key role in learning and memory partly through long-term synaptic depression of GABAergic synapses in the BLA. The aim of this study was to explore the effects of GABA-A receptor agonist and antagonist in the fear-related memory acquisition deficits induced by ACPA (a selective CB1 cannabinoid receptor agonist). This study used context and tone fear conditioning paradigms to assess fear-related memory in male NMRI mice. Our results showed that the pre-training intraperitoneal administration of ACPA (0.5mg/kg) or (0.1 and 0.5mg/kg) decreased the percentage of freezing time in the contextual and tone fear conditioning, respectively. This indicated an impaired context- or tone-dependent fear memory acquisition. Moreover, the pre-training intra-BLA microinjection of GABA-A receptor agonist, muscimol, at 0.05 and 0.5μg/mouse impaired context-dependent fear memory, while the same doses of GABA-A antagonist, bicuculline, impaired tone-dependent fear memory. However, a subthreshold dose of muscimol or bicuculline increased the effect of ACPA at 0.1 and 0.5 or 0.05mg/kg on context- or tone-dependent fear memory, respectively. In addition, bicuculline at the lower dose increased the ACPA response on locomotor activity compared to its respective group. Such findings highlighted an interaction between BLA GABAergic and cannabinoidergic systems during the acquisition phase of conditioned fear memories. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Tyrosine Phosphorylation of GABAA Receptor γ2-Subunit Regulates Tonic and Phasic Inhibition in the Thalamus

    PubMed Central

    Nani, Francesca; Bright, Damian P.; Revilla-Sanchez, Raquel; Tretter, Verena; Moss, Stephen J.

    2013-01-01

    GABA-mediated tonic and phasic inhibition of thalamic relay neurons of the dorsal lateral geniculate nucleus (dLGN) was studied after ablating tyrosine (Y) phosphorylation of receptor γ2-subunits. As phosphorylation of γ2 Y365 and Y367 reduces receptor internalization, to understand their importance for inhibition we created a knock-in mouse in which these residues are replaced by phenylalanines. On comparing wild-type (WT) and γ2Y365/367F+/− (HT) animals (homozygotes are not viable in utero), the expression levels of GABAA receptor α4-subunits were increased in the thalamus of female, but not male mice. Raised δ-subunit expression levels were also observed in female γ2Y365/367F +/− thalamus. Electrophysiological analyses revealed no difference in the level of inhibition in male WT and HT dLGN, while both the spontaneous inhibitory postsynaptic activity and the tonic current were significantly augmented in female HT relay cells. The sensitivity of tonic currents to the δ-subunit superagonist THIP, and the blocker Zn2+, were higher in female HT relay cells. This is consistent with upregulation of extrasynaptic GABAA receptors containing α4- and δ-subunits to enhance tonic inhibition. In contrast, the sensitivity of GABAA receptors mediating inhibition in the female γ2Y356/367F +/− to neurosteroids was markedly reduced compared with WT. We conclude that disrupting tyrosine phosphorylation of the γ2-subunit activates a sex-specific increase in tonic inhibition, and this most likely reflects a genomic-based compensation mechanism for the reduced neurosteroid sensitivity of inhibition measured in female HT relay neurons. PMID:23904608

  12. Mechanism of the cardiovascular effects of the GABAA receptors of the ventral tegmental area of the rat brain.

    PubMed

    Yeganeh, Fahimeh; Ranjbar, Afsaneh; Hatam, Masoumeh; Nasimi, Ali

    2015-07-23

    The ventral tegmental area (VTA) contains GABA terminals involved in the regulation of the cardiovascular system. Previously, we demonstrated that blocking GABAA but not GABAB receptors produced a pressor response accompanied by marked bradycardia. This study was performed to find the possible mechanisms involved in these responses by blocking ganglionic nicotinic receptors, peripheral muscarinic receptors or peripheral V1 vasopressin receptors. Experiments were performed on urethane anesthetized male Wistar rats. Drugs were microinjected unilaterally into the VTA (100 nl). The average changes in mean arterial pressure (MAP) and heart rate (HR) were compared between pre- and post-treatment using paired t-test. Injection of bicuculline methiodide (BMI), a GABAA antagonist, into the VTA caused a significant increase in MAP and a decrease in HR. Administration (i.v.) of the nicotinic receptor blocker, hexamethonium, enhanced the pressor response but abolished the bradycardic response to BMI, which ruled out involvement of the sympathetic nervous system. Blockade of the peripheral muscarinic receptors by homatropine (i.v.) abolished the bradycardic effect of BMI, but had no effect on the pressor response, indicating that bradycardia was produced by the parasympathetic outflow to the heart. Both the pressor and bradycardic responses to BMI were blocked by V1 receptor antagonist (i.v.), indicating that administration of BMI in the VTA disinhibited the release of vasopressin into the circulation. In conclusion, we demonstrated that GABAergic mechanism of the VTA exerts a tonic inhibition on vasopressin release through activation of GABAA receptors. The sympathetic system is not involved in the decrease of blood pressure by GABA of the VTA. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Insulin-Independent GABAA Receptor-Mediated Response in the Barrel Cortex of Mice with Impaired Met Activity

    PubMed Central

    Lo, Fu-Sun; Erzurumlu, Reha S.

    2016-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder caused by genetic variants, susceptibility alleles, and environmental perturbations. The autism associated gene MET tyrosine kinase has been implicated in many behavioral domains and endophenotypes of autism, including abnormal neural signaling in human sensory cortex. We investigated somatosensory thalamocortical synaptic communication in mice deficient in Met activity in cortical excitatory neurons to gain insights into aberrant somatosensation characteristic of ASD. The ratio of excitation to inhibition is dramatically increased due to decreased postsynaptic GABAA receptor-mediated inhibition in the trigeminal thalamocortical pathway of mice lacking active Met in the cerebral cortex. Furthermore, in contrast to wild-type mice, insulin failed to increase GABAA receptor-mediated response in the barrel cortex of mice with compromised Met signaling. Thus, lacking insulin effects may be a risk factor in ASD pathogenesis. SIGNIFICANCE STATEMENT A proposed common cause of neurodevelopmental disorders is an imbalance in excitatory neural transmission, provided by the glutamatergic neurons, and the inhibitory signals from the GABAergic interneurons. Many genes associated with autism spectrum disorders impair synaptic transmission in the expected cell type. Previously, inactivation of the autism-associated Met tyrosine kinase receptor in GABAergic interneurons led to decreased inhibition. In thus report, decreased Met signaling in glutamatergic neurons had no effect on excitation, but decimated inhibition. Further experiments indicate that loss of Met activity downregulates GABAA receptors on glutamatergic neurons in an insulin independent manner. These data provide a new mechanism for the loss of inhibition and subsequent abnormal excitation/inhibition balance and potential molecular candidates for treatment or prevention. PMID:27030755

  14. Dose-dependent EEG effects of zolpidem provide evidence for GABA(A) receptor subtype selectivity in vivo.

    PubMed

    Visser, S A G; Wolters, F L C; van der Graaf, P H; Peletier, L A; Danhof, M

    2003-03-01

    Zolpidem is a nonbenzodiazepine GABA(A) receptor modulator that binds in vitro with high affinity to GABA(A) receptors expressing alpha(1) subunits but with relatively low affinity to receptors expressing alpha(2), alpha(3), and alpha(5) subunits. In the present study, it was investigated whether this subtype selectivity could be detected and quantified in vivo. Three doses (1.25, 5, and 25 mg) of zolpidem were administered to rats in an intravenous infusion over 5 min. The time course of the plasma concentrations was determined in conjunction with the change in the beta-frequency range of the EEG as pharmacodynamic endpoint. The concentration-effect relationship of the three doses showed a dose-dependent maximum effect and a dose-dependent potency. The data were analyzed for one- or two-site binding using two pharmacodynamic models based on 1) the descriptive model and 2) a novel mechanism-based pharmacokinetic/pharmacodynamic (PK/PD) model for GABA(A) receptor modulators that aims to separates drug- and system-specific properties, thereby allowing the estimation of in vivo affinity and efficacy. The application of two-site models significantly improved the fits compared with one-site models. Furthermore, in contrast to the descriptive model, the mechanism-based PK/PD model yielded dose-independent estimates for affinity (97 +/- 40 and 33,100 +/- 14,800 ng x ml(-1)). In conclusion, the mechanism-based PK/PD model is able to describe and explain the observed dose-dependent EEG effects of zolpidem and suggests the subtype selectivity of zolpidem in vivo.

  15. Weaker control of the electrical properties of cerebellar granule cells by tonically active GABAA receptors in the Ts65Dn mouse model of Down’s syndrome

    PubMed Central

    2013-01-01

    Background Down’s syndrome (DS) is caused by triplication of all or part of human chromosome 21 and is characterized by a decrease in the overall size of the brain. One of the brain regions most affected is the cerebellum, in which the number of granule cells (GCs) is markedly decreased. GCs process sensory information entering the cerebellum via mossy fibres and pass it on to Purkinje cells and inhibitory interneurons. How GCs transform incoming signals depends on their input–output relationship, which is adjusted by tonically active GABAA receptor channels. Results We report that in the Ts65Dn mouse model of DS, in which cerebellar volume and GC number are decreased as in DS, the tonic GABAA receptor current in GCs is smaller than in wild-type mice and is less effective in moderating input resistance and raising the minimum current required for action potential firing. We also find that tonically active GABAA receptors curb the height and broaden the width of action potentials in wild-type GCs but not in Ts65Dn GCs. Single-cell real-time quantitative PCR reveals that these electrical differences are accompanied by decreased expression of the gene encoding the GABAA receptor β3 subunit but not genes coding for some of the other GABAA receptor subunits expressed in GCs (α1, α6, β2 and δ). Conclusions Weaker moderation of excitability and action potential waveform in GCs of the Ts65Dn mouse by tonically active GABAA receptors is likely to contribute to atypical transfer of information through the cerebellum. Similar changes may occur in DS. PMID:23870245

  16. Evidence of two populations of GABA(A) receptors in cerebellar granule cells in culture: different desensitization kinetics, pharmacology, serine/threonine kinase sensitivity, and localization.

    PubMed

    Robello, M; Amico, C; Cupello, A

    1999-12-20

    GABA(A) receptors of rat cerebellar granule cells in culture have been studied by the whole cell patch clamp technique. The biphasic desensitization kinetic observed could be due either to different desensitization mechanisms of a single receptor population or to different receptor populations. The overall data indicate that the latter hypothesis is most probably the correct one. In fact, the fast desensitizing component was selectively potentiated by a benzodiazepine agonist and preferentially down-regulated by activation of the protein serine/threonine kinases A and G, as a consequence of the latter characteristic that receptor population was preferentially down-regulated by previous activation of N-methyl-d-aspartate glutamate receptors, via production of nitric oxide and PKG activation, most probably in dendrites. The other population is benzodiazepine insensitive and not influenced by activation of PKA or PKG. This slowly desensitizing population may correspond to the extrasynaptic delta subunit containing GABA(A) receptors described by other authors. Instead, the rapidly desensitizing population appears to represent dendritic synaptic GABA(A) receptors. Copyright 1999 Academic Press.

  17. Metabotropic glutamate receptor 5 upregulation in children with autism is associated with underexpression of both Fragile X mental retardation protein and GABAA receptor beta 3 in adults with autism

    PubMed Central

    Fatemi, S. Hossein; Folsom, Timothy D.; Kneeland, Rachel E.; Liesch, Stephanie B.

    2011-01-01

    Recent work has demonstrated the impact of dysfunction of the GABAergic signaling system in brain and the resultant behavioral pathologies in subjects with autism. In animal models, altered expression of Fragile X mental retardation protein (FMRP) has been linked to downregulation of GABA receptors. Interestingly, the autistic phenotype is also observed in individuals with Fragile X syndrome. This study was undertaken to test previous theories relating abnormalities in levels of FMRP to GABAA receptor underexpression. We observed a significant reduction in levels of FMRP in the vermis of adults with autism. Additionally, we found that levels of metabotropic glutamate receptor 5 (mGluR5) protein were significantly increased in vermis of children with autism vs. age and postmortem interval (PMI) matched controls. There was also a significant decrease in level of GABAA receptor beta 3 (GABRβ3) protein in vermis of adult subjects with autism. Finally, we found significant increases in glial fibrillary acidic protein (GFAP) in vermis of both children and adults with autism when compared with controls. Taken together, our results provide further evidence that altered FMRP expression and increased mGluR5 protein production potentially leads to altered expression of GABAA receptors. PMID:21901840

  18. Altered GABAA receptor-mediated synaptic transmission disrupts the firing of gonadotropin-releasing hormone neurons in male mice under conditions that mimic steroid abuse

    PubMed Central

    Penatti, Carlos A A; Davis, Matthew C; Porter, Donna M; Henderson, Leslie P

    2010-01-01

    Gonadotropin–releasing hormone (GnRH) neurons are the central regulators of reproduction. GABAergic transmission plays a critical role in pubertal activation of pulsatile GnRH secretion. Self-administration of excessive doses of anabolic androgenic steroids (AAS) disrupts reproductive function and may have critical repercussions for pubertal onset in adolescent users. Here, we demonstrate that chronic treatment of adolescent male mice with the AAS, 17α-methyltestosterone (17αMT), significantly decreased action potential frequency in GnRH neurons, reduced the serum gonadotropin levels, and decreased testes mass. AAS treatment did not induce significant changes in GABAA receptor subunit mRNA levels or alter the amplitude or decay kinetics of GABAA receptor-mediated spontaneous postsynaptic currents (sPSC) or tonic currents in GnRH neurons. However, AAS treatment significantly increased action potential frequency in neighboring medial preoptic area (mPOA) neurons and GABAA receptor-mediated sPSC frequency in GnRH neurons. In addition, physical isolation of the more lateral aspects of the mPOA from the medially-localized GnRH neurons abrogated the AAS-induced increase in GABAA receptor-mediated sPSC frequency and the decrease in action potential firing in the GnRH cells. Our results indicate that AAS act predominantly on steroid-sensitive presynaptic neurons within the mPOA to impart significant increases in GABAA receptor-mediated inhibitory tone onto downstream GnRH neurons resulting in diminished activity of these pivotal mediators of reproductive function. These AAS-induced changes in central GABAergic circuits of the forebrain may significantly contribute to the disruptive actions of these drugs on pubertal maturation and the development of reproductive competence in male steroid abusers. PMID:20463213

  19. GABA(A) receptors in the pontine reticular formation of C57BL/6J mouse modulate neurochemical, electrographic, and behavioral phenotypes of wakefulness.

    PubMed

    Flint, RaShonda R; Chang, Theresa; Lydic, Ralph; Baghdoyan, Helen A

    2010-09-15

    Drugs that potentiate transmission at GABA(A) receptors are widely used to enhance sleep and to cause general anesthesia. The mechanisms underlying these effects are unknown. This study tested the hypothesis that GABA(A) receptors in the pontine reticular nucleus, oral part (PnO) of mouse modulate five phenotypes of arousal: sleep and wakefulness, cortical electroencephalogram (EEG) activity, acetylcholine (ACh) release in the PnO, breathing, and recovery time from general anesthesia. Microinjections into the PnO of saline (vehicle control), the GABA(A) receptor agonist muscimol, muscimol with the GABA(A) receptor antagonist bicuculline, and bicuculline alone were performed in male C57BL/6J mice (n = 33) implanted with EEG recording electrodes. Muscimol caused a significant increase in wakefulness and decrease in rapid eye movement (REM) and non-REM (NREM) sleep. These effects were reversed by coadministration of bicuculline. Bicuculline administered alone caused a significant decrease in wakefulness and increase in NREM sleep and REM sleep. Muscimol significantly increased EEG power in the delta range (0.5-4 Hz) during wakefulness and in the theta range (4-9 Hz) during REM sleep. Dialysis delivery of bicuculline to the PnO of male mice (n = 18) anesthetized with isoflurane significantly increased ACh release in the PnO, decreased breathing rate, and increased anesthesia recovery time. All drug effects were concentration dependent. The effects on phenotypes of arousal support the conclusion that GABA(A) receptors in the PnO promote wakefulness and suggest that increasing GABAergic transmission in the PnO may be one mechanism underlying the phenomenon of paradoxical behavioral activation by some benzodiazepines.

  20. GABA-A receptors in mPOAH simultaneously regulate sleep and body temperature in freely moving rats.

    PubMed

    Jha, S K; Yadav, V; Mallick, B N

    2001-09-01

    Sleep-wakefulness and body temperature are two circadian rhythmic biological phenomena. The role of GABAergic inputs in the medial preoptico-anterior hypothalamus (mPOAH) on simultaneous regulation of those phenomena was investigated in freely moving normally behaving rats. The GABA-A receptors were blocked by microinjecting picrotoxin, and the effects on electrophysiological parameters signifying sleep-wakefulness, rectal temperature and brain temperature were recorded simultaneously. The results suggest that, normally, GABA in the medial preoptic area acts through GABA-A receptor that induces sleep and prevents an excessive rise in body temperature. However, the results do not allow us to comment on the cause and effect relationship, if any, between changes in sleep-wakefulness and body temperature. The changes in brain and rectal temperatures showed a positive correlation, however, the former varied within a narrower range than that of the latter.

  1. GABA(A) receptor antagonism in the ventrocaudal periaqueductal gray increases anxiety in the anxiety-resistant postpartum rat.

    PubMed

    Miller, Stephanie M; Piasecki, Christopher C; Peabody, Mitchell F; Lonstein, Joseph S

    2010-06-01

    Postpartum mammals show suppressed anxiety, which is necessary for their ability to appropriately care for offspring. It is parsimonious to suggest that the neurobiological basis of this reduced anxiety is similar to that of non-parturient animals, involving GABA(A) receptor activity in sites including the midbrain periaqueductal gray (PAG). In Experiment 1, postpartum and diestrous virgin female rats received an intraperitoneal injection of the GABA(A) receptor antagonist (+)-bicuculline (0, 2 and 4 mg/kg) and anxiety-related behavior was assessed with an elevated plus maze. The 4 mg/kg dose of (+)-bicuculline significantly increased anxiety-related behavior, particularly in the postpartum females. Experiment 2 revealed that bicuculline's action was within the central nervous system, because anxiety in neither dams nor virgins was significantly affected by intraperitoneal injection of bicuculline methiodide (0, 2 and 6 mg/kg), which does not readily cross the blood-brain-barrier. In Experiment 3, bicuculline methiodide (2.5 ng/side) was directly infused into the ventrocaudal PAG (cPAGv) and significantly increased dams' anxiety compared to saline-infused controls. These studies expand our knowledge of how GABA(A) receptor modulators affect anxiety behaviors in postpartum rats to the widely-used elevated plus maze, and indicate that the postpartum suppression of anxiety is in part a consequence of elevated GABAergic neurotransmission in the cPAGv. Copyright 2010 Elsevier Inc. All rights reserved.

  2. RNAi screening of subtracted transcriptomes reveals tumor suppression by taurine-activated GABAA receptors involved in volume regulation

    PubMed Central

    van Nierop, Pim; Vormer, Tinke L.; Foijer, Floris; Verheij, Joanne; Lodder, Johannes C.; Andersen, Jesper B.; Mansvelder, Huibert D.; te Riele, Hein

    2018-01-01

    To identify coding and non-coding suppressor genes of anchorage-independent proliferation by efficient loss-of-function screening, we have developed a method for enzymatic production of low complexity shRNA libraries from subtracted transcriptomes. We produced and screened two LEGO (Low-complexity by Enrichment for Genes shut Off) shRNA libraries that were enriched for shRNA vectors targeting coding and non-coding polyadenylated transcripts that were reduced in transformed Mouse Embryonic Fibroblasts (MEFs). The LEGO shRNA libraries included ~25 shRNA vectors per transcript which limited off-target artifacts. Our method identified 79 coding and non-coding suppressor transcripts. We found that taurine-responsive GABAA receptor subunits, including GABRA5 and GABRB3, were induced during the arrest of non-transformed anchor-deprived MEFs and prevented anchorless proliferation. We show that taurine activates chloride currents through GABAA receptors on MEFs, causing seclusion of cell volume in large membrane protrusions. Volume seclusion from cells by taurine correlated with reduced proliferation and, conversely, suppression of this pathway allowed anchorage-independent proliferation. In human cholangiocarcinomas, we found that several proteins involved in taurine signaling via GABAA receptors were repressed. Low GABRA5 expression typified hyperproliferative tumors, and loss of taurine signaling correlated with reduced patient survival, suggesting this tumor suppressive mechanism operates in vivo. PMID:29787571

  3. Aspects of the homeostaic plasticity of GABAA receptor-mediated inhibition

    PubMed Central

    Mody, Istvan

    2005-01-01

    Plasticity of ligand-gated ion channels plays a critical role in nervous system development, circuit formation and refinement, and pathological processes. Recent advances have mainly focused on the plasticity of channels gated by excitatory amino acids, including their acclaimed role in learning and memory. These receptors, together with voltage-gated ion channels, have also been known to be subjected to a homeostatic form of plasticity that prevents destabilization of the neurone's function and that of the network during various physiological processes. To date, the plasticity of GABAA receptors has been examined mainly from a developmental and a pathological point of view. Little is known about homeostatic mechanisms governing their plasticity. This review summarizes some of the findings on the homeostatic plasticity of tonic and phasic inhibitory activity. PMID:15528237

  4. Insights into structure–activity relationship of GABAA receptor modulating coumarins and furanocoumarins

    PubMed Central

    Singhuber, Judith; Baburin, Igor; Ecker, Gerhard F.; Kopp, Brigitte; Hering, Steffen

    2011-01-01

    The coumarins imperatorin and osthole are known to exert anticonvulsant activity. We have therefore analyzed the modulation of GABA-induced chloride currents (IGABA) by a selection of 18 coumarin derivatives on recombinant α1β2γ2S GABAA receptors expressed in Xenopus laevis oocytes by means of the two-microelectrode voltage clamp technique. Osthole (EC50=14±1 μM) and oxypeucedanin (EC50=25±8 μM) displayed the highest efficiency with IGABA potentiation of 116±4% and 547±56%, respectively. IGABA enhancement by osthole and oxypeucedanin was not inhibited by flumazenil (1 μM) indicating an interaction with a binding site distinct from the benzodiazepine binding site. In general, prenyl residues are essential for the positive modulatory activity, while longer side chains or bulkier residues (e.g. geranyl residues) diminish IGABA modulation. Generation of a binary classification tree revealed the importance of polarisability, which is sufficient to distinguish actives from inactives. A 4-point pharmacophore model based on oxypeucedanin – comprising three hydrophobic and one aromatic feature – identified 6 out of 7 actives as hits. In summary, (oxy-)prenylated coumarin derivatives from natural origin represent new GABAA receptor modulators. PMID:21749864

  5. The effects of serotonin1A receptor on female mice body weight and food intake are associated with the differential expression of hypothalamic neuropeptides and the GABAA receptor.

    PubMed

    Butt, Isma; Hong, Andrew; Di, Jing; Aracena, Sonia; Banerjee, Probal; Shen, Chang-Hui

    2014-10-01

    Both common eating disorders anorexia nervosa and bulimia nervosa are characteristically diseases of women. To characterize the role of the 5-HT1A receptor (5-HT1A-R) in these eating disorders in females, we investigated the effect of saline or 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) treatment on feeding behavior and body weight in adult WT female mice and in adult 5-HT1A-R knockout (KO) female mice. Our results showed that KO female mice have lower food intake and body weight than WT female mice. Administration of 8-OH-DPAT decreased food intake but not body weight in WT female mice. Furthermore, qRT-PCR was employed to analyze the expression levels of neuropeptides, γ-aminobutyric acid A receptor subunit β (GABAA β subunits) and glutamic acid decarboxylase in the hypothalamic area. The results showed the difference in food intake between WT and KO mice was accompanied by differential expression of POMC, CART and GABAA β2, and the difference in body weight between WT and KO mice was associated with significantly different expression levels of CART and GABAA β2. As such, our data provide new insight into the role of 5-HT1A-R in both feeding behavior and the associated expression of neuropeptides and the GABAA receptor. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Kampo Medicine: Evaluation of the Pharmacological Activity of 121 Herbal Drugs on GABAA and 5-HT3A Receptors

    PubMed Central

    Hoffmann, Katrin M.; Herbrechter, Robin; Ziemba, Paul M.; Lepke, Peter; Beltrán, Leopoldo; Hatt, Hanns; Werner, Markus; Gisselmann, Günter

    2016-01-01

    Kampo medicine is a form of Japanese phytotherapy originating from traditional Chinese medicine (TCM). During the last several decades, much attention has been paid to the pharmacological effects of these medical plants and their constituents. However, in many cases, a systematic screening of Kampo remedies to determine pharmacologically relevant targets is still lacking. In this study, a broad screening of Kampo remedies was performed to look for pharmacologically relevant 5-HT3A and GABAA receptor ligands. Several of the Kampo remedies are currently used for symptoms such as nausea, emesis, gastrointestinal motility disorders, anxiety, restlessness, or insomnia. Therefore, the pharmacological effects of 121 herbal drugs from Kampo medicine were analyzed as ethanol tinctures on heterologously expressed 5-HT3A and GABAA receptors, due to the involvement of these receptors in such pathophysiological processes. The tinctures of Lindera aggregata (radix) and Leonurus japonicus (herba) were the most effective inhibitory compounds on the 5-HT3A receptor. Further investigation of known ingredients in these compounds led to the identification of leonurine from Leonurus as a new natural 5-HT3A receptor antagonist. Several potentiating herbs (e.g., Magnolia officinalis (cortex), Syzygium aromaticum (flos), and Panax ginseng (radix)) were also identified for the GABAA receptor, which are all traditionally used for their sedative or anxiolytic effects. A variety of tinctures with antagonistic effects Salvia miltiorrhiza (radix) were also detected. Therefore, this study reveals new insights into the pharmacological action of a broad spectrum of herbal drugs from Kampo, allowing for a better understanding of their physiological effects and clinical applications. PMID:27524967

  7. Opposing roles for GABAA and GABAC receptors in short-term memory formation in young chicks.

    PubMed

    Gibbs, M E; Johnston, G A R

    2005-01-01

    The inhibitory neurotransmitter GABA has both inhibitory and enhancing effects on short-term memory for a bead discrimination task in the young chick. Low doses of GABA (1-3 pmol/hemisphere) injected into the multimodal association area of the chick forebrain, inhibit strongly reinforced memory, whereas higher doses (30-100 pmol/hemisphere) enhance weakly reinforced memory. The effect of both high and low doses of GABA is clearly on short-term memory in terms of both the time of injection and in the time that the memory loss occurs. We argue on the basis of relative sensitivities to GABA and to selective GABA receptor antagonists that low doses of GABA act at GABAC receptors (EC50 approximately 1 microM) and the higher doses of GABA act via GABAA receptors (EC50 approximately 10 microM). The selective GABAA receptor antagonist bicuculline inhibited strongly reinforced memory in a dose and time dependent manner, whereas the selective GABAC receptor antagonists TPMPA and P4MPA enhanced weakly reinforced in a dose and time dependent manner. Confirmation that different levels of GABA affect different receptor subtypes was demonstrated by the shift in the GABA dose-response curves to the selective antagonists. It is clear that GABA is involved in the control of short-term memory formation and its action, enhancing or inhibiting, depends on the level of GABA released at the time of learning.

  8. Non-neuronal, slow GABA signalling in the ventrobasal thalamus targets δ-subunit-containing GABAA receptors

    PubMed Central

    Jiménez-González, Cristina; Pirttimaki, Tiina; Cope, David W; Parri, H R

    2011-01-01

    The rodent ventrobasal (VB) thalamus contains a relatively uniform population of thalamocortical (TC) neurons that receive glutamatergic input from the vibrissae and the somatosensory cortex, and inhibitory input from the nucleus reticularis thalami (nRT). In this study we describe γ-aminobutyric acid (GABA)A receptor-dependent slow outward currents (SOCs) in TC neurons that are distinct from fast inhibitory postsynaptic currents (IPSCs) and tonic currents. SOCs occurred spontaneously or could be evoked by hypo-osmotic stimulus, and were not blocked by tetrodotoxin, removal of extracellular Ca2+ or bafilomycin A1, indicating a non-synaptic, non-vesicular GABA origin. SOCs were more common in TC neurons of the VB compared with the dorsal lateral geniculate nucleus, and were rarely observed in nRT neurons, whilst SOC frequency in the VB increased with age. Application of THIP, a selective agonist at δ-subunit-containing GABAA receptors, occluded SOCs, whereas the benzodiazepine site inverse agonist β-CCB had no effect, but did inhibit spontaneous and evoked IPSCs. In addition, the occurrence of SOCs was reduced in mice lacking the δ-subunit, and their kinetics were also altered. The anti-epileptic drug vigabatrin increased SOC frequency in a time-dependent manner, but this effect was not due to reversal of GABA transporters. Together, these data indicate that SOCs in TC neurons arise from astrocytic GABA release, and are mediated by δ-subunit-containing GABAA receptors. Furthermore, these findings suggest that the therapeutic action of vigabatrin may occur through the augmentation of this astrocyte–neuron interaction, and highlight the importance of glial cells in CNS (patho) physiology. PMID:21395866

  9. Long-term administration with levonorgestrel decreases allopregnanolone levels and alters GABA(A) receptor subunit expression and anxiety-like behavior.

    PubMed

    Porcu, Patrizia; Mostallino, Maria Cristina; Sogliano, Cristiana; Santoru, Francesca; Berretti, Roberta; Concas, Alessandra

    2012-08-01

    Fluctuations in the concentrations of the neuroactive steroid allopregnanolone are thought to influence γ-amino-butyric acid type A (GABA(A)) receptor gene expression and function. Long-term treatment with ethinyl estradiol (EE) plus levonorgestrel (LNG), two of the most widely used steroids in the hormonal contraceptive pill, decreases allopregnanolone levels in rat cerebral cortex and plasma, alters GABA(A) receptor expression and induces anxiety-like behavior. We evaluated which component of the hormonal contraceptive pill is responsible for the aforementioned changes. Female rats were injected subcutaneously (s.c.) with EE (0.030 mg) or LNG (0.125 mg) once a day for 4 weeks. Compared to the respective vehicle-treated control groups, EE decreased cerebral cortical levels of allopregnanolone, progesterone and pregnenolone by 76, 72 and 33%, respectively and hippocampal levels by 52, 56 and 50%, respectively. Likewise, LNG decreased cerebral cortical levels of allopregnanolone, progesterone and pregnenolone by 75, 68 and 33%, respectively, and hippocampal levels by 55, 65 and 60%, respectively. Administration of LNG, but not EE, increased the abundance of the γ2 subunit peptide in cerebral cortex and hippocampus by 38 and 59%, respectively. Further, LNG, but not EE, decreased the time spent and the number of entries into the open arms of the elevated plus maze by 56 and 43%, respectively, an index of anxiety-like behavior. These results suggest that alterations in GABA(A) receptor subunit expression and anxiety-like behavior induced by long-term treatment with combined EE/LNG appear to be caused by LNG. Given that both EE and LNG decrease allopregnanolone levels in a similar manner, these results further suggest that changes in allopregnanolone levels are not associated with GABA(A) receptor expression. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Fast non-genomic effects of progesterone-derived neurosteroids on nociceptive thresholds and pain symptoms.

    PubMed

    Charlet, Alexandre; Lasbennes, François; Darbon, Pascal; Poisbeau, Pierrick

    2008-10-31

    Fast Inhibitory controls mediated by glycine (GlyRs) and GABAA receptors (GABAARs) play an important role to prevent the apparition of pathological pain symptoms of allodynia and hyperalgesia. The use of positive allosteric modulators of these receptors, specifically expressed in the spinal cord, may represent an interesting strategy to limit or block pain expression. In this study, we have used stereoisomers of progesterone metabolites, acting only via non-genomic effects, in order to evaluate the contribution of GlyRs and GABAARs for the reduction of mechanical and thermal heat hypernociception. We show that 3alpha neurosteroids were particularly efficient to elevate nociceptive thresholds in naive animal. It also reduced mechanical allodynia and thermal heat hyperalgesia in the carrageenan model of inflammatory pain. This effect is likely to be mediated by GABAA receptors since 3beta isomer was inefficient. More interestingly, 3alpha5beta neurosteroid was only efficient on mechanical allodynia while having no effect on thermal heat hyperalgesia. We characterized these paradoxical effects of 3alpha5beta neurosteroid using the strychnine and bicuculline models of allodynia. We clearly show that 3alpha5beta neurosteroid exerts an antinociceptive effect via a positive allosteric modulation of GABAARs but, at the same time, is pronociceptive by reducing GlyR function. This illustrates the importance of the inhibitory amino acid receptor channels and their allosteric modulators in spinal pain processing. Moreover, our results indicate that neurosteroids, which are synthesized in the dorsal horn of the spinal cord and have limited side effects, may be of significant interest in order to treat pathological pain symptoms.

  11. Lack of effect of mossy fiber-released zinc on granule cell GABA(A) receptors in the pilocarpine model of epilepsy.

    PubMed

    Molnár, P; Nadler, J V

    2001-05-01

    The recurrent mossy fiber pathway of the dentate gyrus expands dramatically in the epileptic brain and serves as a mechanism for synchronization of granule cell epileptiform activity. It has been suggested that this pathway also promotes epileptiform activity by inhibiting GABA(A) receptor function through release of zinc. Hippocampal slices from pilocarpine-treated rats were used to evaluate this hypothesis. The rats had developed status epilepticus after pilocarpine administration, followed by robust recurrent mossy fiber growth. The ability of exogenously applied zinc to depress GABA(A) receptor function in dentate granule cells depended on removal of polyvalent anions from the superfusion medium. Under these conditions, 200 microM zinc reduced the amplitude of the current evoked by applying muscimol to the proximal portion of the granule cell dendrite (23%). It also reduced the mean amplitude (31%) and frequency (36%) of miniature inhibitory postsynaptic currents. Nevertheless, repetitive mossy fiber stimulation (10 Hz for 1 s, 100 Hz for 1 s, or 10 Hz for 5 min) at maximal intensity did not affect GABA(A) receptor-mediated currents evoked by photorelease of GABA onto the proximal portion of the dendrite, where recurrent mossy fiber synapses were located. These results could not be explained by stimulation-induced depletion of zinc from the recurrent mossy fiber boutons. Negative results were obtained even during exposure to conditions that promoted transmitter release and synchronized granule cell activity (6 mM [K(+)](o), nominally Mg(2+)-free medium, 33 degrees C). These results suggest that zinc released from the recurrent mossy fiber pathway did not reach a concentration at postsynaptic GABA(A) receptors sufficient to inhibit agonist-evoked activation.

  12. Perimenstrual-Like Hormonal Regulation of Extrasynaptic δ-Containing GABAA Receptors Mediating Tonic Inhibition and Neurosteroid Sensitivity

    PubMed Central

    Carver, Chase Matthew; Wu, Xin; Gangisetty, Omkaram

    2014-01-01

    Neurosteroids are endogenous regulators of neuronal excitability and seizure susceptibility. Neurosteroids, such as allopregnanolone (AP; 3α-hydroxy-5α-pregnan-20-one), exhibit enhanced anticonvulsant activity in perimenstrual catamenial epilepsy, a neuroendocrine condition in which seizures are clustered around the menstrual period associated with neurosteroid withdrawal (NSW). However, the molecular mechanisms underlying such enhanced neurosteroid sensitivity remain unclear. Neurosteroids are allosteric modulators of both synaptic (αβγ2-containing) and extrasynaptic (αβδ-containing) GABAA receptors, but they display greater sensitivity toward δ-subunit receptors in dentate gyrus granule cells (DGGCs). Here we report a novel plasticity of extrasynaptic δ-containing GABAA receptors in the dentate gyrus in a mouse perimenstrual-like model of NSW. In molecular and immunofluorescence studies, a significant increase occurred in δ subunits, but not α1, α2, β2, and γ2 subunits, in the dentate gyrus of NSW mice. Electrophysiological studies confirmed enhanced sensitivity to AP potentiation of GABA-gated currents in DGGCs, but not in CA1 pyramidal cells, in NSW animals. AP produced a greater potentiation of tonic currents in DGGCs of NSW animals, and such enhanced AP sensitivity was not evident in δ-subunit knock-out mice subjected to a similar withdrawal paradigm. In behavioral studies, mice undergoing NSW exhibited enhanced seizure susceptibility to hippocampus kindling. AP has enhanced anticonvulsant effects in fully kindled wild-type mice, but not δ-subunit knock-out mice, undergoing NSW-induced seizures, confirming δ-linked neurosteroid sensitivity. These results indicate that perimenstrual NSW is associated with striking upregulation of extrasynaptic, δ-containing GABAA receptors that mediate tonic inhibition and neurosteroid sensitivity in the dentate gyrus. These findings may represent a molecular rationale for neurosteroid therapy of catamenial

  13. Dual Modulators of GABA-A and Alpha7 Nicotinic Receptors for Treating Autism

    DTIC Science & Technology

    2014-08-01

    Synthesis of 2-261, AVL-3288 & GRN-529. This task was accomplished in December, 2013. The task was accomplished one month later than predicted in the...approved SOW because of the need to synthesize some of the starting materials that were commercially unavailable for the synthesis of the compounds...Interestingly recent studies with the benzodiazepine agonist clonazepam , a non-selective GABAA receptor PAM, resulted in a bell-shaped dose response

  14. Role of α1- and α2-GABAA receptors in mediating the respiratory changes associated with benzodiazepine sedation

    PubMed Central

    Masneuf, S; Buetler, J; Koester, C; Crestani, F

    2012-01-01

    BACKGROUND AND PURPOSE The molecular substrates underlying the respiratory changes associated with benzodiazepine sedation are unknown. We examined the effects of different doses of diazepam and alprazolam on resting breathing in wild-type (WT) mice and clarified the contribution of α1- and α2-GABAA receptors, which mediate the sedative and muscle relaxant action of diazepam, respectively, to these drug effects using point-mutated mice possessing either α1H101R- or α2H101R-GABAA receptors insensitive to benzodiazepine. EXPERIMENTAL APPROACH Room air breathing was monitored using whole-body plethysmography. Different groups of WT mice were injected i.p. with diazepam (1–100 mg·kg−1), alprazolam (0.3, 1 or 3 mg·kg−1) or vehicle. α1H101R and α2H101R mice received 1 or 10 mg·kg−1 diazepam or 0.3 or 3 mg·kg−1 alprazolam. Respiratory frequency, tidal volume, time of expiration and time of inspiration before and 20 min after drug injection were analysed. KEY RESULTS Diazepam (10 mg·kg−1) decreased the time of expiration, thereby increasing the resting respiratory frequency, in WT and α2H101R mice, but not in α1H101R mice. The time of inspiration was shortened in WT and α1H101R mice, but not in α2H101R mice. Alprazolam (1–3 mg·kg−1) stimulated the respiratory frequency by shortening expiration and inspiration duration in WT mice. This tachypnoeic effect was partially conserved in α1H101R mice while absent in α2H101R mice. CONCLUSIONS AND IMPLICATIONS These results identify a specific role for α1-GABAA receptors and α2-GABAA receptors in mediating the shortening by benzodiazepines of the expiratory and inspiratory phase of resting breathing respectively. PMID:22044283

  15. Nootropic α7 nicotinic receptor allosteric modulator derived from GABAA receptor modulators

    PubMed Central

    Ng, Herman J.; Whittemore, Edward R.; Tran, Minhtam B.; Hogenkamp, Derk J.; Broide, Ron S.; Johnstone, Timothy B.; Zheng, Lijun; Stevens, Karen E.; Gee, Kelvin W.

    2007-01-01

    Activation of brain α7 nicotinic acetylcholine receptors (α7 nAChRs) has broad therapeutic potential in CNS diseases related to cognitive dysfunction, including Alzheimer's disease and schizophrenia. In contrast to direct agonist activation, positive allosteric modulation of α7 nAChRs would deliver the clinically validated benefits of allosterism to these indications. We have generated a selective α7 nAChR-positive allosteric modulator (PAM) from a library of GABAA receptor PAMs. Compound 6 (N-(4-chlorophenyl)-α-[[(4-chloro-phenyl)amino]methylene]-3-methyl-5-isoxazoleacet-amide) evokes robust positive modulation of agonist-induced currents at α7 nAChRs, while preserving the rapid native characteristics of desensitization, and has little to no efficacy at other ligand-gated ion channels. In rodent models, it corrects sensory-gating deficits and improves working memory, effects consistent with cognitive enhancement. Compound 6 represents a chemotype for allosteric activation of α7 nAChRs, with therapeutic potential in CNS diseases with cognitive dysfunction. PMID:17470817

  16. NOVEL POSITIVE ALLOSTERIC MODULATORS OF GABAA RECEPTORS: DO SUBTLE DIFFERENCES IN ACTIVITY AT α1 PLUS α5 VERSUS α2 PLUS α3 SUBUNITS ACCOUNT FOR DISSIMILARITIES IN BEHAVIORAL EFFECTS IN RATS?

    PubMed Central

    Savić, Miroslav M.; Majumder, Samarpan; Huang, Shengming; Edwankar, Rahul V.; Furtmüller, Roman; Joksimović, Srđan; Clayton, Terry; Ramerstorfer, Joachim; Milinković, Marija M.; Roth, Bryan L.; Sieghart, Werner; Cook, James M.

    2010-01-01

    Over the last years, genetic studies have greatly improved our knowledge on the receptor subtypes mediating various pharmacological effects of positive allosteric modulators at GABAA receptors. This stimulated the development of new benzodiazepine (BZ)-like ligands, especially those inactive/low-active at GABAA receptors containing the α1 subunit, with the aim of generating more selective drugs. Hereby, the affinity and efficacy of four recently-synthesized BZ site ligands: SH-053-2’N, SH-053-S-CH3-2’F, SH-053-R-CH3-2’F and JY-XHe-053 were assessed. They were also studied in behavioral tests of spontaneous locomotor activity, elevated plus maze, and water maze in rats, which are considered predictive of, respectively, the sedative, anxiolytic, and amnesic influence of BZs. The novel ligands had moderately low to low affinity and mild to partial agonistic efficacy at GABAA receptors containing the α1 subunit, with variable, but more pronounced efficacy at other BZ-sensitive binding sites. While presumably α1 receptor-mediated sedative effects of GABAA modulation were not fully eliminated with any of the ligands tested, only SH-053-2’N and SH-053-S-CH3-2’F, both dosed at 30 mg/kg, exerted anxiolytic effects. The lack of clear anxiolytic-like activity of JY-XHe-053, despite its efficacy at α2- and α3-GABAA receptors, may have been partly connected with its preferential affinity at α5-GABAA receptors coupled with weak agonist activity at α1-containing subtypes. The memory impairment in water-maze experiments, generally reported with BZ site agonists, was completely circumvented with all four ligands. The results suggest that a substantial amount of activity at α1 GABAA receptors is needed for effecting spatial learning and memory impairments, while much weaker activity at α1- and α5-GABAA receptors is sufficient for eliciting sedation. PMID:20074611

  17. A Review of the Updated Pharmacophore for the Alpha 5 GABA(A) Benzodiazepine Receptor Model

    PubMed Central

    Clayton, Terry; Poe, Michael M.; Rallapalli, Sundari; Biawat, Poonam; Savić, Miroslav M.; Rowlett, James K.; Gallos, George; Emala, Charles W.; Kaczorowski, Catherine C.; Stafford, Douglas C.; Arnold, Leggy A.; Cook, James M.

    2015-01-01

    An updated model of the GABA(A) benzodiazepine receptor pharmacophore of the α5-BzR/GABA(A) subtype has been constructed prompted by the synthesis of subtype selective ligands in light of the recent developments in both ligand synthesis, behavioral studies, and molecular modeling studies of the binding site itself. A number of BzR/GABA(A) α5 subtype selective compounds were synthesized, notably α5-subtype selective inverse agonist PWZ-029 (1) which is active in enhancing cognition in both rodents and primates. In addition, a chiral positive allosteric modulator (PAM), SH-053-2′F-R-CH3 (2), has been shown to reverse the deleterious effects in the MAM-model of schizophrenia as well as alleviate constriction in airway smooth muscle. Presented here is an updated model of the pharmacophore for α5β2γ2 Bz/GABA(A) receptors, including a rendering of PWZ-029 docked within the α5-binding pocket showing specific interactions of the molecule with the receptor. Differences in the included volume as compared to α1β2γ2, α2β2γ2, and α3β2γ2 will be illustrated for clarity. These new models enhance the ability to understand structural characteristics of ligands which act as agonists, antagonists, or inverse agonists at the Bz BS of GABA(A) receptors. PMID:26682068

  18. The insecticide fipronil and its metabolite fipronil sulphone inhibit the rat α1β2γ2L GABAA receptor

    PubMed Central

    Li, P; Akk, G

    2008-01-01

    Background and purpose: Fipronil is the active ingredient in a number of widely used insecticides. Human exposure to fipronil leads to symptoms (headache, nausea and seizures) typically associated with the antagonism of GABAA receptors in the brain. In this study, we have examined the modulation of the common brain GABAA receptor subtype by fipronil and its major metabolite, fipronil sulphone. Experimental approach: Whole-cell and single-channel recordings were made from HEK 293 cells transiently expressing rat α1β2γ2L GABAA receptors. Key results: The major effect of fipronil was to increase the rate of current decay in macroscopic recordings. In single-channel recordings, the presence of fipronil resulted in shorter cluster durations without affecting the intracluster open and closed time distributions or the single-channel conductance. The α1V256S mutation, previously shown alleviate channel inhibition by inhibitory steroids and several insecticides, had a relatively small effect on channel block by fipronil. The mode of action of fipronil sulphone was similar to that of its parent compound but the metabolite was less potent at inhibiting the α1β2γ2L receptor. Conclusions and implications: We conclude that exposure to fipronil induces accumulation of receptors in a novel, long-lived blocked state. This process proceeds in parallel with and independently of, channel desensitization. The lower potency of fipronil sulphone indicates that the conversion serves as a detoxifying process in mammalian brain. PMID:18660823

  19. Alcohol use disorders and current pharmacological therapies: the role of GABAA receptors

    PubMed Central

    Liang, Jing; Olsen, Richard W

    2014-01-01

    Alcohol use disorders (AUD) are defined as alcohol abuse and alcohol dependence, which create large problems both for society and for the drinkers themselves. To date, no therapeutic can effectively solve these problems. Understanding the underlying mechanisms leading to AUD is critically important for developing effective and safe pharmacological therapies. Benzodiazepines (BZs) are used to reduce the symptoms of alcohol withdrawal syndrome. However, frequent use of BZs causes cross-tolerance, dependence, and cross-addiction to alcohol. The FDA-approved naltrexone and acamprosate have shown mixed results in clinical trials. Naltrexone is effective to treat alcohol dependence (decreased length and frequency of drinking bouts), but its severe side effects, including withdrawal symptoms, are difficult to overcome. Acamprosate showed efficacy for treating alcohol dependence in European trials, but two large US trials have failed to confirm the efficacy. Another FDA-approved medication, disulfiram, does not diminish craving, and it causes a peripheral neuropathy. Kudzu is the only natural medication mentioned by the National Institute on Alcohol Abuse and Alcoholism, but its mechanisms of action are not yet established. It has been recently shown that dihydromyricetin, a flavonoid purified from Hovenia, has unique effects on GABAA receptors and blocks ethanol intoxication and withdrawal in alcoholic animal models. In this article, we review the role of GABAA receptors in the treatment of AUD and currently available and potentially novel pharmacological agents. PMID:25066321

  20. Chronic administration of aripiprazole activates GSK3β-dependent signalling pathways, and up-regulates GABAA receptor expression and CREB1 activity in rats.

    PubMed

    Pan, Bo; Huang, Xu-Feng; Deng, Chao

    2016-07-20

    Aripiprazole is a D2-like receptor (D2R) partial agonist with a favourable clinical profile. Previous investigations indicated that acute and short-term administration of aripiprazole had effects on PKA activity, GSK3β-dependent pathways, GABAA receptors, NMDA receptor and CREB1 in the brain. Since antipsychotics are used chronically in clinics, the present study investigated the long-term effects of chronic oral aripiprazole treatment on these cellular signalling pathways, in comparison with haloperidol (a D2R antagonist) and bifeprunox (a potent D2R partial agonist). We found that the Akt-GSK3β pathway was activated by aripiprazole and bifeprunox in the prefrontal cortex; NMDA NR2A levels were reduced by aripiprazole and haloperidol. In the nucleus accumbens, all three drugs increased Akt-GSK3β signalling; in addition, both aripiprazole and haloperidol, but not bifeprunox, increased the expression of Dvl-3, β-catenin and GABAA receptors, NMDA receptor subunits, as well as CREB1 phosphorylation levels. The results suggest that chronic oral administration of aripiprazole affects schizophrenia-related cellular signalling pathways and markers (including Akt-GSK3β signalling, Dvl-GSK3β-β-catenin signalling, GABAA receptor, NMDA receptor and CREB1) in a brain-region-dependent manner; the selective effects of aripiprazole on these signalling pathways might be associated with its unique clinical effects.

  1. Chronic administration of aripiprazole activates GSK3β-dependent signalling pathways, and up-regulates GABAA receptor expression and CREB1 activity in rats

    PubMed Central

    Pan, Bo; Huang, Xu-Feng; Deng, Chao

    2016-01-01

    Aripiprazole is a D2-like receptor (D2R) partial agonist with a favourable clinical profile. Previous investigations indicated that acute and short-term administration of aripiprazole had effects on PKA activity, GSK3β-dependent pathways, GABAA receptors, NMDA receptor and CREB1 in the brain. Since antipsychotics are used chronically in clinics, the present study investigated the long-term effects of chronic oral aripiprazole treatment on these cellular signalling pathways, in comparison with haloperidol (a D2R antagonist) and bifeprunox (a potent D2R partial agonist). We found that the Akt-GSK3β pathway was activated by aripiprazole and bifeprunox in the prefrontal cortex; NMDA NR2A levels were reduced by aripiprazole and haloperidol. In the nucleus accumbens, all three drugs increased Akt-GSK3β signalling; in addition, both aripiprazole and haloperidol, but not bifeprunox, increased the expression of Dvl-3, β-catenin and GABAA receptors, NMDA receptor subunits, as well as CREB1 phosphorylation levels. The results suggest that chronic oral administration of aripiprazole affects schizophrenia-related cellular signalling pathways and markers (including Akt-GSK3β signalling, Dvl-GSK3β-β-catenin signalling, GABAA receptor, NMDA receptor and CREB1) in a brain-region-dependent manner; the selective effects of aripiprazole on these signalling pathways might be associated with its unique clinical effects. PMID:27435909

  2. Neurodevelopmental disorders among individuals with duplication of 4p13 to 4p12 containing a GABAA receptor subunit gene cluster

    PubMed Central

    Polan, Michelle B; Pastore, Matthew T; Steingass, Katherine; Hashimoto, Sayaka; Thrush, Devon L; Pyatt, Robert; Reshmi, Shalini; Gastier-Foster, Julie M; Astbury, Caroline; McBride, Kim L

    2014-01-01

    Recent studies have shown that certain copy number variations (CNV) are associated with a wide range of neurodevelopmental disorders, including autism spectrum disorders (ASD), bipolar disorder and intellectual disabilities. Implicated regions and genes have comprised a variety of post synaptic complex proteins and neurotransmitter receptors, including gamma-amino butyric acid A (GABAA). Clusters of GABAA receptor subunit genes are found on chromosomes 4p12, 5q34, 6q15 and 15q11-13. Maternally inherited 15q11-13 duplications among individuals with neurodevelopmental disorders are well described, but few case reports exist for the other regions. We describe a family with a 2.42 Mb duplication at chromosome 4p13 to 4p12, identified in the index case and other family members by oligonucleotide array comparative genomic hybridization, that contains 13 genes including a cluster of four GABAA receptor subunit genes. Fluorescent in-situ hybridization was used to confirm the duplication. The duplication segregates with a variety of neurodevelopmental disorders in this family, including ASD (index case), developmental delay, dyspraxia and ADHD (brother), global developmental delays (brother), learning disabilities (mother) and bipolar disorder (maternal grandmother). In addition, we identified and describe another individual unrelated to this family, with a similar duplication, who was diagnosed with ASD, ADHD and borderline intellectual disability. The 4p13 to 4p12 duplication appears to confer a susceptibility to a variety of neurodevelopmental disorders in these two families. We hypothesize that the duplication acts through a dosage effect of GABAA receptor subunit genes, adding evidence for alterations in the GABAergic system in the etiology of neurodevelopmental disorders. PMID:23695283

  3. Structural basis for ligand recognition at the benzodiazepine binding site of GABAA alpha 3 receptor, and pharmacophore-based virtual screening approach.

    PubMed

    Vijayan, R S K; Ghoshal, Nanda

    2008-10-01

    Given the heterogeneity of GABA(A) receptor, the pharmacological significance of identifying subtype selective modulators is increasingly being recognized. Thus, drugs selective for GABA(A) alpha(3) receptors are expected to display fewer side effects than the drugs presently in clinical use. Hence we carried out 3D QSAR (three-dimensional quantitative structure-activity relationship) studies on a series of novel GABA(A) alpha(3) subtype selective modulators to gain more insight into subtype affinity. To identify the 3D functional attributes required for subtype selectivity, a chemical feature-based pharmacophore, primarily based on selective ligands representing diverse structural classes was generated. The obtained pseudo receptor model of the benzodiazepine binding site revealed a binding mode akin to "Message-Address" concept. Scaffold hopping was carried out across multi-conformational May Bridge database for the identification of novel chemotypes. Further a focused data reduction approach was employed to choose a subset of enriched compounds based on "Drug likeness" and "Similarity-based" methods. These results taken together could provide impetus for rational design and optimization of more selective and high affinity leads with a potential to have decreased adverse effects.

  4. Responses to GABA(A) receptor activation are altered in NTS neurons isolated from chronic hypoxic rats.

    PubMed

    Tolstykh, Gleb; Belugin, Sergei; Mifflin, Steve

    2004-04-23

    The inhibitory amino acid GABA is released within the nucleus of the solitary tract (NTS) during hypoxia and modulates the respiratory response to hypoxia. To determine if responses of NTS neurons to activation of GABA(A) receptors are altered following exposure to chronic hypoxia, GABA(A) receptor-evoked whole cell currents were measured in enzymatically dispersed NTS neurons from normoxic and chronic hypoxic rats. Chronic hypoxic rats were exposed to 10% O(2) for 9-12 days. Membrane capacitance was the same in neurons from normoxic (6.9+/-0.5 pF, n=16) and hypoxic (6.3+/-0.5 pF, n=15) rats. The EC(50) for peak GABA-evoked current density was significantly greater in neurons from hypoxic (21.7+/-2.2 microM) compared to normoxic rats (12.2+/-0.9 microM) (p<0.001). Peak and 5-s adapted GABA currents evoked by 1, 3 and 10 microM were greater in neurons from normoxic compared to hypoxic rats (p<0.05) whereas peak and 5-s adapted responses to 30 and 100 microM GABA were not different comparing normoxic to hypoxic rats. Desensitization of GABA(A)-evoked currents was observed at concentrations greater than 3 microM and, measured as the ratio of the current 5 s after the onset of 100 microM GABA application to the peak GABA current, was the same in neurons from normoxic (0.37+/-0.03) and hypoxic rats (0.33+/-0.04). Reduced sensitivity to GABA(A) receptor-evoked inhibition in chronic hypoxia could influence chemoreceptor afferent integration by NTS neurons.

  5. Decreased hepatocyte membrane potential differences and GABAA-beta3 expression in human hepatocellular carcinoma.

    PubMed

    Minuk, Gerald Y; Zhang, Manna; Gong, Yuewen; Minuk, Leonard; Dienes, Hans; Pettigrew, Norman; Kew, Michael; Lipschitz, Jeremy; Sun, Dongfeng

    2007-03-01

    To determine whether hepatocyte membrane potential differences (PDs) are depolarized in human HCC and whether depolarization is associated with changes in GABAA receptor expression, hepatocyte PDs and gamma-aminobutyric acid (GABA)A receptor messenger RNA (mRNA) and protein expression were documented in HCC tissues via microelectrode impalement, real-time reverse-transcriptase polymerase chain reaction, and Western blot analysis, respectively. HCC tissues were significantly depolarized (-19.8+/-1.3 versus -25.9+/-3.2 mV, respectively [P<0.05]), and GABAA-beta3 expression was down-regulated (GABAA-beta3 mRNA and protein expression in HCC; 5,693+/-1,385 and 0.29+/-0.11 versus 11,046+/-4,979 copies/100 mg RNA and 0.62+/-0.16 optical density in adjacent tumor tissues, respectively [P=0.002 and P<0.0001, respectively]) when compared with adjacent nontumor tissues. To determine the physiological relevance of the down-regulation, human malignant hepatocytes deficient in GABAA-beta3 receptor expression (Huh-7 cells) were transfected with GABAA-beta3 complementary DNA (cDNA) or vector alone and injected into nu/nu nude mice (n=16-17 group). Tumors developed after a mean (+/-SD) of 51+/-6 days (range: 41-60 days) in 7/16 (44%) mice injected with vector-transfected cells and 70+/-12 days (range: 59-86 days) in 4/17 (24%) mice injected with GABAA-beta3 cDNA-transfected cells (P<0.005). The results of this study indicate that (1) human HCC tissues are depolarized compared with adjacent nontumor tissues, (2) hepatic GABAA-beta3 receptor expression is down-regulated in human HCC, and (3) restoration of GABAA-beta3 receptor expression results in attenuated in vivo tumor growth in nude mice.

  6. GABAA Receptors Containing ρ1 Subunits Contribute to In Vivo Effects of Ethanol in Mice

    PubMed Central

    Blednov, Yuri A.; Benavidez, Jillian M.; Black, Mendy; Leiter, Courtney R.; Osterndorff-Kahanek, Elizabeth; Johnson, David; Borghese, Cecilia M.; Hanrahan, Jane R.; Johnston, Graham A. R.; Chebib, Mary; Harris, R. Adron

    2014-01-01

    GABAA receptors consisting of ρ1, ρ2, or ρ3 subunits in homo- or hetero-pentamers have been studied mainly in retina but are detected in many brain regions. Receptors formed from ρ1 are inhibited by low ethanol concentrations, and family-based association analyses have linked ρ subunit genes with alcohol dependence. We determined if genetic deletion of ρ1 in mice altered in vivo ethanol effects. Null mutant male mice showed reduced ethanol consumption and preference in a two-bottle choice test with no differences in preference for saccharin or quinine. Null mutant mice of both sexes demonstrated longer duration of ethanol-induced loss of righting reflex (LORR), and males were more sensitive to ethanol-induced motor sedation. In contrast, ρ1 null mice showed faster recovery from acute motor incoordination produced by ethanol. Null mutant females were less sensitive to ethanol-induced development of conditioned taste aversion. Measurement of mRNA levels in cerebellum showed that deletion of ρ1 did not change expression of ρ2, α2, or α6 GABAA receptor subunits. (S)-4-amino-cyclopent-1-enyl butylphosphinic acid (“ρ1” antagonist), when administered to wild type mice, mimicked the changes that ethanol induced in ρ1 null mice (LORR and rotarod tests), but the ρ1 antagonist did not produce these effects in ρ1 null mice. In contrast, (R)-4-amino-cyclopent-1-enyl butylphosphinic acid (“ρ2” antagonist) did not change ethanol actions in wild type but produced effects in mice lacking ρ1 that were opposite of the effects of deleting (or inhibiting) ρ1. These results suggest that ρ1 has a predominant role in two in vivo effects of ethanol, and a role for ρ2 may be revealed when ρ1 is deleted. We also found that ethanol produces similar inhibition of function of recombinant ρ1 and ρ2 receptors. These data indicate that ethanol action on GABAA receptors containing ρ1/ρ2 subunits may be important for specific effects of ethanol in vivo. PMID:24454882

  7. A Residue in Loop 9 of the β2-Subunit Stabilizes the Closed State of the GABAA Receptor*

    PubMed Central

    Williams, Carrie A.; Bell, Shannon V.; Jenkins, Andrew

    2010-01-01

    In γ-aminobutyric acid type A (GABAA) receptors, the structural elements that couple ligand binding to channel opening remain poorly defined. Here, site-directed mutagenesis was used to determine if Loop 9 on the non-GABA binding site interface of the β2-subunit may be involved in GABAA receptor activation. Specifically, residues Gly170-Gln185 of the β2-subunit were mutated to alanine, co-expressed with wild-type α1- and γ2S-subunits in human embryonic kidney (HEK) 293 cells and assayed for their activation by GABA, the intravenous anesthetic propofol and the endogenous neurosteroid pregnanolone using whole cell macroscopic recordings. Three mutants, G170A, V175A, and G177A, produced 2.5-, 6.7-, and 5.6-fold increases in GABA EC50 whereas one mutant, Q185A, produced a 5.2-fold decrease in GABA EC50. None of the mutations affected the ability of propofol or pregnanolone to potentiate a submaximal GABA response, but the Q185A mutant exhibited 8.3- and 3.5-fold increases in the percent direct activation by propofol and pregnanolone, respectively. Mutant Q185A receptors also had an increased leak current that was sensitive to picrotoxin, indicating an increased gating efficiency. Further Q185E, Q185L, and Q185W substitutions revealed a strong correlation between the hydropathy of the amino acid at this position and the GABA EC50. Taken together, these results indicate that β2 Loop 9 is involved in receptor activation by GABA, propofol, and pregnanolone and that β2(Q185) participates in hydrophilic interactions that are important for stabilizing the closed state of the GABAA receptor. PMID:20007704

  8. GABA(A) receptor modulation during adolescence alters adult ethanol intake and preference in rats.

    PubMed

    Hulin, Mary W; Amato, Russell J; Winsauer, Peter J

    2012-02-01

    To address the hypothesis that GABA(A) receptor modulation during adolescence may alter the abuse liability of ethanol during adulthood, the effects of adolescent administration of both a positive and negative GABA(A) receptor modulator on adult alcohol intake and preference were assessed. Three groups of adolescent male rats received 12 injections of lorazepam (3.2 mg/kg), dehydroepiandrosterone (DHEA, 56 mg/kg), or vehicle on alternate days starting on postnatal day (PD) 35. After this time, the doses were increased to 5.6 and 100 mg/kg, respectively, for 3 more injections on alternate days. Subjects had access to 25 to 30 g of food daily, during the period of the first 6 injections, and 18 to 20 g thereafter. Food intake of each group was measured 60 minutes after food presentation, which occurred immediately after drug administration on injection days or at the same time of day on noninjection days. When subjects reached adulthood (PD 88), ethanol preference was determined on 2 separate occasions, an initial 3-day period and a 12-day period, in which increasing concentrations of ethanol were presented. During each preference test, intake of water, saccharin, and an ethanol/saccharin solution was measured after each 23-hour access period. During adolescence, lorazepam increased 60-minute food intake, and this effect was enhanced under the more restrictive feeding schedule. DHEA had the opposite effect on injection days, decreasing food intake compared with noninjection days. In adulthood, the lorazepam-treated group preferred the 2 lowest concentrations of ethanol/saccharin more than saccharin alone compared with vehicle-treated subjects, which showed no preference for any concentration of ethanol/saccharin over saccharin. DHEA-treated subjects showed no preference among the 3 solutions. These data demonstrate that GABA(A) receptor modulation during adolescence can alter intake and preference for ethanol in adulthood and highlights the importance of drug history

  9. PWZ-029, A COMPOUND WITH MODERATE INVERSE AGONIST FUNCTIONAL SELECTIVITY AT GABAA RECEPTORS CONTAINING α5 SUBUNITS, IMPROVES PASSIVE, BUT NOT ACTIVE, AVOIDANCE LEARNING IN RATS

    PubMed Central

    Savić, Miroslav M.; Clayton, Terry; Furtmüller, Roman; Gavrilović, Ivana; Samardžić, Janko; Savić, Snežana; Huck, Sigismund; Sieghart, Werner; Cook, James M.

    2008-01-01

    Benzodiazepine (BZ) site ligands affect vigilance, anxiety, memory processes, muscle tone and epileptogenic propensity through modulation of neurotransmission at GABAA receptors containing α1, α2, α3 or α5 subunits, and may have numerous experimental and clinical applications. The ability of nonselective BZ site inverse agonists to enhance cognition, documented in animal models and human studies, is clinically not feasible due to potentially unacceptable psychomotor effects. Most investigations to date have proposed the α1 and/or α5 subunit-containing GABAA receptors as comprising the memory-modulating population of these receptors. The novel ligand PWZ-029, which we synthesised and characterized electrophysiologically, possesses in vitro binding selectivity and moderate inverse agonist functional selectivity at α5-containing GABAA receptors. This ligand has also been examined in rats in the passive and active avoidance, spontaneous locomotor activity, elevated plus maze and grip strength tests, primarily predictive of the effects on the memory acquisition, basal locomotor activity, anxiety level and muscle tone, respectively. The improvement of task learning was detected at the dose of 5 mg/kg in the passive, but not active avoidance test. The inverse agonist PWZ-029 had no effect on anxiety or muscle tone, whereas at higher doses (10 and 20 mg/kg) it decreased locomotor activity. This effect was antagonized by flumazenil and also by the lower (but not the higher) dose of an agonist (SH-053-R-CH3-2’F) selective for GABAA receptors containing the α5 subunit. The hypolocomotor effect of PWZ-029 was not antagonized by the antagonist β-CCt exhibiting a preferential affinity for α1-subunit containing receptors. These data suggest that moderate negative modulation at GABAA receptors containing the α5 subunit is a sufficient condition for eliciting enhanced encoding/consolidation of declarative memory, while the influence of higher doses of modulators at

  10. Loss of ethanol conditioned taste aversion and motor stimulation in knockin mice with ethanol-insensitive α2-containing GABA(A) receptors.

    PubMed

    Blednov, Y A; Borghese, C M; McCracken, M L; Benavidez, J M; Geil, C R; Osterndorff-Kahanek, E; Werner, D F; Iyer, S; Swihart, A; Harrison, N L; Homanics, G E; Harris, R A

    2011-01-01

    GABA type A receptors (GABA(A)-Rs) are potential targets of ethanol. However, there are multiple subtypes of this receptor, and, thus far, individual subunits have not been definitively linked with specific ethanol behavioral actions. Interestingly, though, a chromosomal cluster of four GABA(A)-R subunit genes, including α2 (Gabra2), was associated with human alcoholism (Am J Hum Genet 74:705-714, 2004; Pharmacol Biochem Behav 90:95-104, 2008; J Psychiatr Res 42:184-191, 2008). The goal of our study was to determine the role of receptors containing this subunit in alcohol action. We designed an α2 subunit with serine 270 to histidine and leucine 277 to alanine mutations that was insensitive to potentiation by ethanol yet retained normal GABA sensitivity in a recombinant expression system. Knockin mice containing this mutant subunit were tested in a range of ethanol behavioral tests. These mutant mice did not develop the typical conditioned taste aversion in response to ethanol and showed complete loss of the motor stimulant effects of ethanol. Conversely, they also demonstrated changes in ethanol intake and preference in multiple tests. The knockin mice showed increased ethanol-induced hypnosis but no difference in anxiolytic effects or recovery from acute ethanol-induced motor incoordination. Overall, these studies demonstrate that the effects of ethanol at GABAergic synapses containing the α2 subunit are important for specific behavioral effects of ethanol that may be relevant to the genetic linkage of this subunit with human alcoholism.

  11. The insecticide fipronil and its metabolite fipronil sulphone inhibit the rat alpha1beta2gamma2L GABA(A) receptor.

    PubMed

    Li, P; Akk, G

    2008-11-01

    Fipronil is the active ingredient in a number of widely used insecticides. Human exposure to fipronil leads to symptoms (headache, nausea and seizures) typically associated with the antagonism of GABA(A) receptors in the brain. In this study, we have examined the modulation of the common brain GABA(A) receptor subtype by fipronil and its major metabolite, fipronil sulphone. Whole-cell and single-channel recordings were made from HEK 293 cells transiently expressing rat alpha1beta2gamma2L GABA(A) receptors. The major effect of fipronil was to increase the rate of current decay in macroscopic recordings. In single-channel recordings, the presence of fipronil resulted in shorter cluster durations without affecting the intracluster open and closed time distributions or the single-channel conductance. The alpha1V256S mutation, previously shown alleviate channel inhibition by inhibitory steroids and several insecticides, had a relatively small effect on channel block by fipronil. The mode of action of fipronil sulphone was similar to that of its parent compound but the metabolite was less potent at inhibiting the alpha1beta2gamma2L receptor. We conclude that exposure to fipronil induces accumulation of receptors in a novel, long-lived blocked state. This process proceeds in parallel with and independently of, channel desensitization. The lower potency of fipronil sulphone indicates that the conversion serves as a detoxifying process in mammalian brain.

  12. Proton sensitivity of rat cerebellar granule cell GABAA receptors: dependence on neuronal development

    PubMed Central

    Krishek, Belinda J; Smart, Trevor G

    2001-01-01

    The effect of GABAA receptor development in culture on the modulation of GABA-induced currents by external H+ was examined in cerebellar granule cells using whole-cell and single-channel recording. Equilibrium concentration-response curves revealed a lower potency for GABA between 11 and 12 days in vitro (DIV) resulting in a shift of the EC50 from 10.7 to 2.4 μM. For granule cells before 11 DIV, the peak GABA-activated current was inhibited at low external pH and enhanced at high pH with a pKa of 6.65. For the steady-state response, low pH was inhibitory with a pKa of 5.56. After 11 DIV, the peak GABA-activated current was largely pH insensitive; however, the steady-state current was potentiated at low pH with a pKa of 6.84. Single GABA-activated ion channels were recorded from outside-out patches of granule cell bodies. At pH 5.4-9.4, single GABA channels exhibited multiple conductance states occurring at 22-26, 16-17 and 12-14 pS. The conductance levels were not significantly altered over the time period of study, nor by changing the external H+ concentration. Two exponential functions were required to fit the open-time frequency histograms at both early (< 11 DIV) and late (> 11 DIV) development times at each H+ concentration. The short and long open time constants were unaffected either by the extracellular H+ concentration or by neuronal development. The distribution of all shut times was fitted by the sum of three exponentials designated as short, intermediate and long. At acidic pH, the long shut time constant decreased with development as did the relative contribution of these components to the overall distribution. This was concurrent with an increase in the mean probability of channel opening. In conclusion, this study demonstrates in cerebellar granule cells that external pH can either reduce, have no effect on, or enhance GABA-activated responses depending on the stage of development, possibly related to the subunit composition of the GABAA receptors

  13. Protein kinase and phosphatase modulation of quail brain GABA(A) and non-NMDA receptors co-expressed in Xenopus oocytes.

    PubMed

    Moon, C; Fraser, S P; Djamgoz, M B

    2000-02-01

    The GABA(A) receptor and the non-NMDA subtype of the ionotropic glutamate receptor were co-expressed in Xenopus oocytes by injection of quail brain mRNA. The oocytes were treated with various protein kinase (PK) and protein phosphatase (PP) activators and inhibitors and the effects on receptor functioning were monitored. Two phorbol esters, 4-beta-phorbol 12-myristate-13-acetate (PMA) and 4-beta-phorbol 12,13-dibutyrate (PDBu); the cGMP-dependent PK activators sodium nitroprusside (SNP) and S-nitrosoglutathione (SNOG); and the PP inhibitor okadaic acid (OA) reduced the amplitude of the GABA-induced currents, whilst the PK inhibitor staurosporine potentiated it. In addition, PMA, PDBu, SNP, and OA reduced the desensitization of the GABA-induced response. Identical treatments generally had similar but less pronounced effects on responses generated by kainate (KA) but the desensitization characteristic of the non-NMDA receptor was not affected. None of the treatments had any effect on the reversal potentials of the induced currents. Immunoblots revealed that the oocytes express endogenous PKG and guanylate cyclase. The results are discussed in terms of the molecular structures of GABA(A) and non-NMDA receptors and the potential functional consequences of phosphorylation/dephosphorylation.

  14. SB-205384 Is a Positive Allosteric Modulator of Recombinant GABAA Receptors Containing Rat α3, α5, or α6 Subunit Subtypes Coexpressed with β3 and γ2 Subunits

    PubMed Central

    Heidelberg, Laura S.; Warren, James W.

    2013-01-01

    Many drugs used to treat anxiety are positive modulators of GABAA receptors, which mediate fast inhibitory neurotransmission. The GABAA receptors can be assembled from a combination of at least 16 different subunits. The receptor’s subunit composition determines its pharmacologic and functional properties, and subunit expression varies throughout the brain. A primary goal for new treatments targeting GABAA receptors is the production of subunit-selective modulators acting upon a discrete population of receptors. The anxiolytic 4-amino-7-hydroxy-2-methyl-5,6,7,8,-tetrahydrobenzo[b]thieno[2,3-b]pyridine-3-carboxylic acid, but-2-ynyl ester (SB-205384) is widely considered to be selective for α3-containing GABAA receptors. However, it has been tested only on α1-, α2-, and α3-containing receptors. We examined the activity of SB-205384 at recombinant receptors containing the six different α subunits and found that receptors containing the α3, α5, and α6 subunits were potentiated by SB-205384, with the α6 subunit conferring the greatest responsiveness. Properties associated with chimeric α1/α6 subunits suggested that multiple structural domains influence sensitivity to SB-205384. Point mutations of residues within the extracellular N-terminal domain identified a leucine residue located in loop E of the agonist binding site as an important determinant of high sensitivity to modulation. In the α6 subunit the identity of this residue is species-dependent, with the leucine found in rat subunits but not in human. Our results indicate that SB-205384 is not an α3-selective modulator, and instead acts at several GABAA receptor isoforms. These findings have implications for the side-effect profile of this anxiolytic as well as for its use in neuronal and animal studies as a marker for contribution from α3-containing receptors. PMID:23902941

  15. Acute sleep deprivation preconditions the heart against ischemia/ reperfusion injury: the role of central GABA-A receptors

    PubMed Central

    Parsa, Hoda; Imani, Alireza; Faghihi, Mahdieh; Riahi, Esmail; Badavi, Mohammad; Shakoori, Abbas; Rastegar, Tayebeh; Aghajani, Marjan; Rajani, Sulail Fatima

    2017-01-01

    Objective(s): Central γ-aminobutyric acid (GABA) neurotransmission modulates cardiovascular functions and sleep. Acute sleep deprivation (ASD) affects functions of various body organs via different mechanisms. Here, we evaluated the effect of ASD on cardiac ischemia/reperfusion injury (IRI), and studied the role of GABA-A receptor inhibition in central nucleus of amygdala (CeA) by assessing nitric oxide (NO) and oxidative stress. Materials and Methods: The CeA in sixty male Wistar rats was cannulated for saline or bicuculline (GABA-A receptor antagonist) administration. All animals underwent 30 min of coronary occlusion (ischemia), followed by 2 hr reperfusion (IR). The five experimental groups (n=12) included are as follows: IR: received saline; BIC+IR: received Bicuculline; MLP+IR: received saline, followed by the placement of animals in an aquarium with multiple large platforms; ASD+IR: underwent ASD in an aquarium with multiple small platforms; and BIC+ASD+IR: received bicuculline prior to ASD. Results: Bicuculline administration increased the malondialdehyde levels and infarct size, and decreased the NO metabolites levels and endothelial nitric oxide synthase (eNOS) gene expression in infarcted and non-infarcted areas in comparison to IR group. ASD reduced malondialdehyde levels and infarct size and increased NO metabolites, corticosterone levels and eNOS expression in infarcted and non-infarcted areas as compared to the IR group. Levels of malondialdehyde were increased while levels of NO metabolites, corticosterone and eNOS expression in infarcted and non-infarcted areas were reduced in the BIC+ASD+IR as compared to the ASD+IR group. Conclusion: Blockade of GABA-A receptors in the CeA abolishes ASD-induced cardioprotection by suppressing oxidative stress and NO production. PMID:29299201

  16. Acute sleep deprivation preconditions the heart against ischemia/ reperfusion injury: the role of central GABA-A receptors.

    PubMed

    Parsa, Hoda; Imani, Alireza; Faghihi, Mahdieh; Riahi, Esmail; Badavi, Mohammad; Shakoori, Abbas; Rastegar, Tayebeh; Aghajani, Marjan; Rajani, Sulail Fatima

    2017-11-01

    Central γ-aminobutyric acid (GABA) neurotransmission modulates cardiovascular functions and sleep. Acute sleep deprivation (ASD) affects functions of various body organs via different mechanisms. Here, we evaluated the effect of ASD on cardiac ischemia/reperfusion injury (IRI), and studied the role of GABA-A receptor inhibition in central nucleus of amygdala (CeA) by assessing nitric oxide (NO) and oxidative stress. The CeA in sixty male Wistar rats was cannulated for saline or bicuculline (GABA-A receptor antagonist) administration. All animals underwent 30 min of coronary occlusion (ischemia), followed by 2 hr reperfusion (IR). The five experimental groups (n=12) included are as follows: IR: received saline; BIC+IR: received Bicuculline; MLP+IR: received saline, followed by the placement of animals in an aquarium with multiple large platforms; ASD+IR: underwent ASD in an aquarium with multiple small platforms; and BIC+ASD+IR: received bicuculline prior to ASD. Bicuculline administration increased the malondialdehyde levels and infarct size, and decreased the NO metabolites levels and endothelial nitric oxide synthase (eNOS) gene expression in infarcted and non-infarcted areas in comparison to IR group. ASD reduced malondialdehyde levels and infarct size and increased NO metabolites, corticosterone levels and eNOS expression in infarcted and non-infarcted areas as compared to the IR group. Levels of malondialdehyde were increased while levels of NO metabolites, corticosterone and eNOS expression in infarcted and non-infarcted areas were reduced in the BIC+ASD+IR as compared to the ASD+IR group. Blockade of GABA-A receptors in the CeA abolishes ASD-induced cardioprotection by suppressing oxidative stress and NO production.

  17. Encephalitis with refractory seizures, status epilepticus, and antibodies to the GABAA receptor: a case series, characterisation of the antigen, and analysis of the effects of antibodies.

    PubMed

    Petit-Pedrol, Mar; Armangue, Thaís; Peng, Xiaoyu; Bataller, Luis; Cellucci, Tania; Davis, Rebecca; McCracken, Lindsey; Martinez-Hernandez, Eugenia; Mason, Warren P; Kruer, Michael C; Ritacco, David G; Grisold, Wolfgang; Meaney, Brandon F; Alcalá, Carmen; Sillevis-Smitt, Peter; Titulaer, Maarten J; Balice-Gordon, Rita; Graus, Francesc; Dalmau, Josep

    2014-03-01

    Increasing evidence suggests that seizures and status epilepticus can be immune-mediated. We aimed to describe the clinical features of a new epileptic disorder, and to establish the target antigen and the effects of patients' antibodies on neuronal cultures. In this observational study, we selected serum and CSF samples for antigen characterisation from 140 patients with encephalitis, seizures or status epilepticus, and antibodies to unknown neuropil antigens. The samples were obtained from worldwide referrals of patients with disorders suspected to be autoimmune between April 28, 2006, and April 25, 2013. We used samples from 75 healthy individuals and 416 patients with a range of neurological diseases as controls. We assessed the samples using immunoprecipitation, mass spectrometry, cell-based assay, and analysis of antibody effects in cultured rat hippocampal neurons with confocal microscopy. Neuronal cell-membrane immunoprecipitation with serum of two index patients revealed GABAA receptor sequences. Cell-based assay with HEK293 expressing α1/β3 subunits of the GABAA receptor showed high titre serum antibodies (>1:160) and CSF antibodies in six patients. All six patients (age 3-63 years, median 22 years; five male patients) developed refractory status epilepticus or epilepsia partialis continua along with extensive cortical-subcortical MRI abnormalities; four patients needed pharmacologically induced coma. 12 of 416 control patients with other diseases, but none of the healthy controls, had low-titre GABAA receptor antibodies detectable in only serum samples, five of them also had GAD-65 antibodies. These 12 patients (age 2-74 years, median 26.5 years; seven male patients) developed a broader spectrum of symptoms probably indicative of coexisting autoimmune disorders: six had encephalitis with seizures (one with status epilepticus needing pharmacologically induced coma; one with epilepsia partialis continua), four had stiff-person syndrome (one with seizures

  18. An Investigation of the Differential Effects of Ursane Triterpenoids from Centella asiatica, and Their Semisynthetic Analogues, on GABAA Receptors.

    PubMed

    Hamid, Kaiser; Ng, Irene; Tallapragada, Vikram J; Váradi, Linda; Hibbs, David E; Hanrahan, Jane; Groundwater, Paul W

    2016-09-01

    The ursane triterpenoids, asiatic acid 1 and madecassic acid 2, are the major pharmacological constituents of Centella asiatica, commonly known as Gotu Kola, which is used traditionally for the treatment of anxiety and for the improvement of cognition and memory. Using the two-electrode voltage-clamp technique, these triterpenes, and some semisynthetic derivatives, were found to exhibit selective negative modulation of different subtypes of the GABAA receptor expressed in Xenopus laevis oocytes. Despite differing by only one hydroxyl group, asiatic acid 1 was found to be a negative modulator of the GABA-induced current at α1 β2 γ2L, α2 β2 γ2L and α5 β3 γ2L GABAA receptors, while madecassic acid 2 was not. Asiatic acid 1 exhibited the greatest effect at α1 β2 γ2L (IC50 37.05 μm), followed by α5 β3 γ2L (IC50 64.05 μm) then α2 β2 γ2L (IC50 427.2 μm) receptors. Conversion of the carboxylic acid group of asiatic acid 1 to a carboxamide group (2α,3β,23-trihydroxy-urs-12-en-28-amide 5) resulted in enhanced inhibition at both the α1 β2 γ2L (IC50 14.07 μm) and α2 β2 γ2L receptor subtypes (IC50 28.41 μm). The results of this study, and the involvement of α5 -containing GABAA receptors in cognition and memory, suggest that asiatic acid 1 may be a lead compound for the enhancement of cognition and memory. © 2016 John Wiley & Sons A/S.

  19. Gamma-aminobutyric acid (GABA) stimulates pancreatic cancer growth through overexpressing GABAA receptor pi subunit.

    PubMed

    Takehara, Akio; Hosokawa, Masayo; Eguchi, Hidetoshi; Ohigashi, Hiroaki; Ishikawa, Osamu; Nakamura, Yusuke; Nakagawa, Hidewaki

    2007-10-15

    Gamma-aminobutyric acid (GABA) functions primarily as an inhibitory neurotransmitter in the mature central nervous system, and GABA/GABA receptors are also present in nonneural tissues, including cancer, but their precise function in nonneuronal or cancerous cells has thus far been poorly defined. Through the genome-wide cDNA microarray analysis of pancreatic ductal adenocarcinoma (PDAC) cells as well as subsequent reverse transcription-PCR and Northern blot analyses, we identified the overexpression of GABA receptor pi subunit (GABRP) in PDAC cells. We also found the expression of this peripheral type GABAA receptor subunit in few adult human organs. Knockdown of endogenous GABRP expression in PDAC cells by small interfering RNA attenuated PDAC cell growth, suggesting its essential role in PDAC cell viability. Notably, the addition of GABA into the cell culture medium promoted the proliferation of GABRP-expressing PDAC cells, but not GABRP-negative cells, and GABAA receptor antagonists inhibited this growth-promoting effect by GABA. The HEK293 cells constitutively expressing exogenous GABRP revealed the growth-promoting effect of GABA treatment. Furthermore, GABA treatment in GABRP-positive cells increased intracellular Ca2+ levels and activated the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/Erk) cascade. Clinical PDAC tissues contained a higher level of GABA than normal pancreas tissues due to the up-regulation of glutamate decarboxylase 1 expression, suggesting their autocrine/paracrine growth-promoting effect in PDACs. These findings imply that GABA and GABRP could play important roles in PDAC development and progression, and that this pathway can be a promising molecular target for the development of new therapeutic strategies for PDAC.

  20. Using drug combinations to assess potential contributions of non-GABAA receptors in the discriminative stimulus effects of the neuroactive steroid pregnanolone in rats.

    PubMed

    Eppolito, Amy K; Kodeih, Hanna R; Gerak, Lisa R

    2014-10-01

    Neuroactive steroids are increasingly implicated in the development of depression and anxiety and have been suggested as possible treatments for these disorders. While neuroactive steroids, such as pregnanolone, act primarily at γ-aminobutyric acidA (GABAA) receptors, other mechanisms might contribute to their behavioral effects and could increase their clinical effectiveness, as compared with drugs acting exclusively at GABAA receptors (e.g., benzodiazepines). The current study examined the role of non-GABAA receptors, including N-methyl-d-aspartate (NMDA) and serotonin3 (5-HT3) receptors, in the discriminative stimulus effects of pregnanolone. Separate groups of rats discriminated either 3.2mg/kg pregnanolone from vehicle or 0.32mg/kg of the benzodiazepine midazolam from vehicle while responding under a fixed-ratio 10 schedule for food pellets. When administered alone in both groups, pregnanolone and midazolam produced ≥80% drug-lever responding, the NMDA receptor antagonists dizocilpine and phencyclidine produced ≥60 and ≥30% drug-lever responding, respectively, and the 5-HT3 receptor agonist 1-(m-chlorophenyl)-biguanide (CPBG) and morphine produced <20% drug-lever responding up to doses that markedly decreased response rates. When studied together, neither dizocilpine, phencyclidine, CPBG nor morphine significantly altered the midazolam dose-effect curve in either group. Given that CPBG is without effect, it is unlikely that 5-HT3 receptors contribute substantially to the discriminative stimulus effects of pregnanolone. Similarities across groups in effects of dizocilpine and phencyclidine suggest that NMDA receptors do not differentially contribute to the effects of pregnanolone. Thus, NMDA and 5-HT3 receptors are not involved in the discriminative stimulus effects of pregnanolone. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Is GABA neurotransmission enhanced in auditory thalamus relative to inferior colliculus?

    PubMed Central

    Cai, Rui; Kalappa, Bopanna I.; Brozoski, Thomas J.; Ling, Lynne L.

    2013-01-01

    Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central auditory system. Sensory thalamic structures show high levels of non-desensitizing extrasynaptic GABAA receptors (GABAARs) and a reduction in the redundancy of coded information. The present study compared the inhibitory potency of GABA acting at GABAARs between the inferior colliculus (IC) and the medial geniculate body (MGB) using quantitative in vivo, in vitro, and ex vivo experimental approaches. In vivo single unit studies compared the ability of half maximal inhibitory concentrations of GABA to inhibit sound-evoked temporal responses, and found that GABA was two to three times (P < 0.01) more potent at suppressing MGB single unit responses than IC unit responses. In vitro whole cell patch-clamp slice recordings were used to demonstrate that gaboxadol, a δ-subunit selective GABAAR agonist, was significantly more potent at evoking tonic inhibitory currents from MGB neurons than IC neurons (P < 0.01). These electrophysiological findings were supported by an in vitro receptor binding assay which used the picrotoxin analog [3H]TBOB to assess binding in the GABAAR chloride channel. MGB GABAARs had significantly greater total open chloride channel capacity relative to GABAARs in IC (P < 0.05) as shown by increased total [3H]TBOB binding. Finally, a comparative ex vivo measurement compared endogenous GABA levels and suggested a trend towards higher GABA concentrations in MGB than in IC. Collectively, these studies suggest that, per unit GABA, high affinity extrasynaptic and synaptic GABAARs confer a significant inhibitory GABAAR advantage to MGB neurons relative to IC neurons. This increased GABA sensitivity likely underpins the vital filtering role of auditory thalamus. PMID:24155003

  2. RNA editing of the GABAA receptor α3 subunit alters the functional properties of recombinant receptors

    PubMed Central

    Nimmich, Mitchell L.; Heidelberg, Laura S.; Fisher, Janet L.

    2009-01-01

    RNA editing provides a post-transcriptional mechanism to increase structural heterogeneity of gene products. Recently, the α3 subunit of the GABAA receptors has been shown to undergo RNA editing. As a result, a highly conserved isoleucine residue in the third transmembrane domain is replaced with a methionine. To determine the effect of this structural change on receptor function, we compared the GABA sensitivity, pharmacological properties and macroscopic kinetics of recombinant receptors containing either the edited or unedited forms of the α3 subunit along with β3 and γ2L. Editing substantially altered the GABA sensitivity and deactivation rate of the receptors, with the unedited form showing a lower GABA EC50 and slower decay. Comparable effects were observed with a mutation at the homologous location in the α1 subunit, suggesting a common role for this site in regulation of channel gating. Except for the response to GABA, the pharmacological properties of the receptor were unaffected by editing, with similar enhancement by a variety of modulators. Since RNA editing of the α3 subunit increases through development, our findings suggest that GABAergic neurotransmission may be more effective early in development, with greater GABA sensitivity and slower decay rates conferred by the unedited α3 subunit. PMID:19367790

  3. Age- and sex-related characteristics of tonic GABA currents in the rat substantia nigra pars reticulata.

    PubMed

    Chudomel, O; Hasson, H; Bojar, M; Moshé, S L; Galanopoulou, A S

    2015-04-01

    Previous studies have shown that the pharmacologic effects of GABAergic drugs and the postsynaptic phasic GABAAergic inhibitory responses in the anterior part of the rat substantia nigra pars reticulata (SNRA) are age- and sex-specific. Here, we investigate whether there are age- and sex-related differences in the expression of the δ GABAA receptor (GABAAR) subunit and GABAAR mediated tonic currents. We have used δ-specific immunochemistry and whole cell patch clamp to study GABAAR mediated tonic currents in the SNRA of male and female postnatal day (PN) PN5-9, PN11-16, and PN25-32 rats. We observed age-related decline, but no sex-specific changes, in bicuculline (BIM) sensitive GABAAR tonic current density, which correlated with the decline in δ subunit in the SNRA between PN15 and 30. Furthermore, we show that the GABAAR tonic currents can be modified by muscimol (GABAAR agonist; partial GABACR agonist), THIP (4,5,6,7-tetrahydroisoxazolo (5,4-c)pyridin-3-ol: α4β3δ GABAARs agonist and GABACR antagonist), and zolpidem (α1-subunit selective GABAAR agonist) in age- and sex-dependent manner specific for each drug. We propose that the emergence of the GABAAR-sensitive anticonvulsant effects of the rat SNRA during development may depend upon the developmental decline in tonic GABAergic inhibition of the activity of rat SNRA neurons, although other sex-specific factors are also involved.

  4. Increased GABA(A) inhibition of the RVLM after hindlimb unloading in rats

    NASA Technical Reports Server (NTRS)

    Moffitt, Julia A.; Heesch, Cheryl M.; Hasser, Eileen M.

    2002-01-01

    Attenuated baroreflex-mediated increases in renal sympathetic nerve activity (RSNA) in hindlimb unloaded (HU) rats apparently are due to changes within the central nervous system. We hypothesized that GABA(A) receptor-mediated inhibition of the rostral ventrolateral medulla (RVLM) is increased after hindlimb unloading. Responses to bilateral microinjection of the GABA(A) antagonist (-)-bicuculline methiodide (BIC) into the RVLM were examined before and during caudal ventrolateral medulla (CVLM) inhibition in Inactin-anesthetized control and HU rats. Increases in mean arterial pressure (MAP), heart rate (HR), and RSNA in response to BIC in the RVLM were significantly enhanced in HU rats. Responses to bilateral CVLM blockade were not different. When remaining GABA(A) inhibition in the RVLM was blocked by BIC during CVLM inhibition, the additional increases in MAP and RSNA were significantly greater in HU rats. These data indicate that GABA(A) receptor-mediated inhibition of RVLM neurons is augmented after hindlimb unloading. Effects of input from the CVLM were unaltered. Thus, after cardiovascular deconditioning in rodents, the attenuated increase in sympathetic nerve activity in response to hypotension is associated with greater GABA(A) receptor-mediated inhibition of RVLM neurons originating at least in part from sources other than the CVLM.

  5. Duration of treatment and activation of α1-containing GABAA receptors variably affect the level of anxiety and seizure susceptibility after diazepam withdrawal in rats

    PubMed Central

    Kovačević, Jovana; Timić, Tamara; Tiruveedhula, Veera V.; Batinić, Bojan; Namjoshi, Ojas A.; Milić, Marija; Joksimović, Srđan; Cook, James M.; Savić, Miroslav M.

    2014-01-01

    Long-term use of benzodiazepine-type drugs may lead to physical dependence, manifested by withdrawal syndrome after abrupt cessation of treatment. The aim of the present study was to investigate the influence of duration of treatment, as well as the role of α1-containing GABAA receptors, in development of physical dependence to diazepam, assessed through the level of anxiety and susceptibility to pentylenetetrazole (PTZ)-induced seizures, 24 h after withdrawal from protracted treatment in rats. Withdrawal of 2 mg/kg diazepam after 28, but not after 14 or 21 days of administration led to an anxiety-like behavior in the elevated plus maze. Antagonism of the diazepam effects at α1-containing GABAA receptors, achieved by daily administration of the neutral modulator βCCt (5 mg/kg), did not affect the anxiety level during withdrawal. An increased susceptibility to PTZ-induced seizures was observed during diazepam withdrawal after 21 and 28 days of treatment. Daily co-administration of βCCt further decreased the PTZ-seizure threshold after 21 days of treatment, whilst it prevented the diazepam withdrawal-elicited decrease of the PTZ threshold after 28 days of treatment. In conclusion, the current study suggests that the role of α1-containing GABAA receptors in mediating the development of physical dependence may vary based on the effect being studied and duration of protracted treatment. Moreover, the present data supports previous findings that the lack of activity at α1-containing GABAA receptors is not sufficient to eliminate physical dependence liability of ligands of the benzodiazepine type. PMID:24695241

  6. Neurosteroid Modulators of GABAA Receptors Differentially Modulate Ethanol Intake Patterns in Male C57BL/6J Mice

    PubMed Central

    Ford, Matthew M.; Nickel, Jeffrey D.; Phillips, Tamara J.; Finn, Deborah A.

    2006-01-01

    Background Allopregnanolone (ALLO) and structurally related endogenous neurosteroids are potent modulators of GABAA receptor function at physiologically relevant concentrations. Accumulating evidence implicates a modulatory role for ALLO in behavioral processes underlying ethanol self-administration, discrimination and reinstatement. The purpose of this study was to evaluate the impact of exogenous neurosteroid challenges with the agonist ALLO and the partial agonist/antagonist epipregnanolone (EPI) on the microarchitecture of ethanol drinking patterns. Methods Male C57BL/6J mice were initiated to consume an unsweetened 10% v/v ethanol solution (10E) by a saccharin fading procedure during daily 2-hour limited access sessions beginning 1 hour after dark phase onset. Cumulative lick responses were recorded for 10E and water using lickometer circuits. After establishing 10E intake baselines, mice were habituated to vehicle injection (VEH; 20% w/v β-cyclodextrin; i.p.), and then were treated with either VEH or neurosteroid immediately prior to the drinking session. Each mouse received a series of ALLO doses (3.2, 10, 17 and 24 mg/kg) alone and EPI doses (0.15, 1, 3 and 10 mg/kg) alone in a counterbalanced within-group design. Results The GABAA receptor positive modulator, ALLO, dose-dependently modulated overall ethanol intake throughout the 2-hr session with the 3.2 mg/kg dose eliciting a significant increase whereas the 24 mg/kg dose produced a significant suppression of ethanol intake versus vehicle pretreatment. ALLO-evoked alterations in intake corresponded with a significant, dose-dependent alterations in bout frequency and inter-bout interval. ALLO also elicited robust, dose-dependent elevations in 10E licks during the initial 5-minutes of access, but subsequently resulted in a dose-dependent suppression of 10E licks during session minutes 20–80. In contrast, the partial agonist/antagonist neurosteroid, EPI, exhibited no influence on any consumption parameter

  7. Interactions of L-3,5,3'-Triiodothyronine, Allopregnanolone, and Ivermectin with the GABAA Receptor: Evidence for Overlapping Intersubunit Binding Modes

    PubMed Central

    Westergard, Thomas; Salari, Reza; Martin, Joseph V.; Brannigan, Grace

    2015-01-01

    Structural mechanisms of modulation of γ-aminobutyric acid (GABA) type A receptors by neurosteroids and hormones remain unclear. The thyroid hormone L-3,5,3’-triiodothyronine (T3) inhibits GABAA receptors at micromolar concentrations and has common features with neurosteroids such as allopregnanolone (ALLOP). Here we use functional experiments on α2β1γ2 GABAA receptors expressed in Xenopus oocytes to detect competitive interactions between T3 and an agonist (ivermectin, IVM) with a crystallographically determined binding site at subunit interfaces in the transmembrane domain of a homologous receptor (glutamate-gated chloride channel, GluCl). T3 and ALLOP also show competitive effects, supporting the presence of both a T3 and ALLOP binding site at one or more subunit interfaces. Molecular dynamics (MD) simulations over 200 ns are used to investigate the dynamics and energetics of T3 in the identified intersubunit sites. In these simulations, T3 molecules occupying all intersubunit sites (with the exception of the α-β interface) display numerous energetically favorable conformations with multiple hydrogen bonding partners, including previously implicated polar/acidic sidechains and a structurally conserved deformation in the M1 backbone. PMID:26421724

  8. Homeostatic Changes in GABA and Acetylcholine Muscarinic Receptors on GABAergic Neurons in the Mesencephalic Reticular Formation following Sleep Deprivation

    PubMed Central

    2017-01-01

    Abstract We have examined whether GABAergic neurons in the mesencephalic reticular formation (RFMes), which are believed to inhibit the neurons in the pons that generate paradoxical sleep (PS or REMS), are submitted to homeostatic regulation under conditions of sleep deprivation (SD) by enforced waking during the day in mice. Using immunofluorescence, we investigated first, by staining for c-Fos, whether GABAergic RFMes neurons are active during SD and then, by staining for receptors, whether their activity is associated with homeostatic changes in GABAA or acetylcholine muscarinic type 2 (AChM2) receptors (Rs), which evoke inhibition. We found that a significantly greater proportion of the GABAergic neurons were positively stained for c-Fos after SD (∼27%) as compared to sleep control (SC; ∼1%) and sleep recovery (SR; ∼6%), suggesting that they were more active during waking with SD and less active or inactive during sleep with SC and SR. The density of GABAARs and AChM2Rs on the plasma membrane of the GABAergic neurons was significantly increased after SD and restored to control levels after SR. We conclude that the density of these receptors is increased on RFMes GABAergic neurons during presumed enhanced activity with SD and is restored to control levels during presumed lesser or inactivity with SR. Such increases in GABAAR and AChM2R with sleep deficits would be associated with increased susceptibility of the wake-active GABAergic neurons to inhibition from GABAergic and cholinergic sleep-active neurons and to thus permitting the onset of sleep and PS with muscle atonia. PMID:29302615

  9. Activation of GABA-A receptors during postnatal brain development increases anxiety- and depression-related behaviors in a time- and dose-dependent manner in adult mice.

    PubMed

    Salari, Ali-Akbar; Bakhtiari, Amir; Homberg, Judith R

    2015-08-01

    Disturbances of the gamma-amino butyric acid-ergic (GABAergic) system during postnatal development can have long-lasting consequences for later life behavior, like the individual's response to stress. However, it is unclear which postnatal windows of sensitivity to GABA-ergic modulations are associated with what later-life behavioral outcomes. Therefore, we sought to determine whether neonatal activation of the GABA-A receptor during two postnatal periods, an early window (postnatal day 3-5) and a late window (postnatal day 14-16), can affect anxiety- and depression-related behaviors in male mice in later life. To this end, mice were treated with either saline or muscimol (50, 100, 200, 300 and 500μg/kg) during the early and late postnatal periods. An additional group of mice was treated with the GABA-A receptor antagonist bicuculline+muscimol. When grown to adulthood male mice were exposed to behavioral tests to measure anxiety- and depression-related behaviors. Baseline and stress-induced corticosterone (CORT) levels were also measured. The results indicate that early postnatal and to a lesser extent later postnatal exposure to the GABA-A receptor agonist muscimol increased anxiety-like behavior and stress-induced CORT levels in adults. Moreover, the early postnatal treatment with muscimol increased depression-like behavior with increasing baseline CORT levels. The anxiogenic and depression-like later-life consequences could be antagonized by bicuculline. Our findings suggest that GABA-A receptor signaling during early-life can influence anxiety- and depression-related behaviors in a time- and dose-dependent manner in later life. Our findings help to increase insight in the developmental mechanisms contributing to stress-related disorders. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  10. Differential effects of short- and long-term zolpidem treatment on recombinant α1β2γ2s subtype of GABAA receptors in vitro

    PubMed Central

    Vlainić, Josipa; Jembrek, Maja Jazvinšćak; Vlainić, Toni; Štrac, Dubravka Švob; Peričić, Danka

    2012-01-01

    Aim: Zolpidem is a non-benzodiazepine agonist at benzodiazepine binding site in GABAA receptors, which is increasingly prescribed. Recent studies suggest that prolonged zolpidem treatment induces tolerance. The aim of this study was to explore the adaptive changes in GABAA receptors following short and long-term exposure to zolpidem in vitro. Methods: Human embryonic kidney (HEK) 293 cells stably expressing recombinant α1β2γ2s GABAA receptors were exposed to zolpidem (1 and 10 μmol/L) for short-term (2 h daily for 1, 2, or 3 consecutive days) or long-term (continuously for 48 h). Radioligand binding studies were used to determine the parameters of [3H]flunitrazepam binding sites. Results: A single (2 h) or repeated (2 h daily for 2 or 3 d) short-term exposure to zolpidem affected neither the maximum number of [3H]flunitrazepam binding sites nor the affinity. In both control and short-term zolpidem treated groups, addition of GABA (1 nmol/L–1 mmol/L) enhanced [3H]flunitrazepam binding in a concentration-dependent manner. The maximum enhancement of [3H]flunitrazepam binding in short-term zolpidem treated group was not significantly different from that in the control group. In contrast, long-term exposure to zolpidem resulted in significantly increase in the maximum number of [3H]flunitrazepam binding sites without changing the affinity. Furthermore, long-term exposure to zolpidem significantly decreased the ability of GABA to stimulate [3H]flunitrazepam binding. Conclusion: The results suggest that continuous, but not intermittent and short-term, zolpidem-exposure is able to induce adaptive changes in GABAA receptors that could be related to the development of tolerance and dependence. PMID:22922343

  11. Refractory status epilepticus and autoimmune encephalitis with GABAAR and GAD65 antibodies: A case report.

    PubMed

    Gagnon, Maude-Marie; Savard, Martin; Mourabit Amari, Karim

    2016-04-01

    Autoimmune encephalitis is an inflammatory disorder of the brain that may be associated with different neuronal antibodies. Recently, an increasing number of valuable autoantibodies have been identified, including GABAAR antibodies, which appear to be associated with a severe form of encephalitis with refractory status epilepticus. We report here on a patient with encephalitis associated with GAD65 and GABAAR antibodies, an entity that remains an understudied topic, with an unanticipated clinical presentation and we describe the longitudinal follow-up. We report a case of encephalitis associated with GAD65 and GABAAR antibodies; we describe clinical and paraclinical features and the longitudinal follow-up. Our case presented with dysgueusia, dysosmia and episodes of hyperventilation that evolved into a refractory status epilepticus. Multiple anticonvulsant drugs were required. An aggressive immunotherapy was associated with a relative favorable outcome, in regard of epilepsy and cognitive functions. However, a relapse occurred and a full recovery was not observed at the last follow-up visit. There was no correlation between GAD65 antibodies titers and disease activity. Autoimmune encephalitis associated with GABAAR and GAD65 antibodies might be a severe and refractory disease. The appropriate treatment is currently unknown for those patients. Copyright © 2016 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  12. Interactions of L-3,5,3'-Triiodothyronine [corrected], Allopregnanolone, and Ivermectin with the GABAA Receptor: Evidence for Overlapping Intersubunit Binding Modes.

    PubMed

    Westergard, Thomas; Salari, Reza; Martin, Joseph V; Brannigan, Grace

    2015-01-01

    Structural mechanisms of modulation of γ-aminobutyric acid (GABA) type A receptors by neurosteroids and hormones remain unclear. The thyroid hormone L-3,5,3'-triiodothyronine (T3) inhibits GABAA receptors at micromolar concentrations and has common features with neurosteroids such as allopregnanolone (ALLOP). Here we use functional experiments on α2β1γ2 GABAA receptors expressed in Xenopus oocytes to detect competitive interactions between T3 and an agonist (ivermectin, IVM) with a crystallographically determined binding site at subunit interfaces in the transmembrane domain of a homologous receptor (glutamate-gated chloride channel, GluCl). T3 and ALLOP also show competitive effects, supporting the presence of both a T3 and ALLOP binding site at one or more subunit interfaces. Molecular dynamics (MD) simulations over 200 ns are used to investigate the dynamics and energetics of T3 in the identified intersubunit sites. In these simulations, T3 molecules occupying all intersubunit sites (with the exception of the α-β interface) display numerous energetically favorable conformations with multiple hydrogen bonding partners, including previously implicated polar/acidic sidechains and a structurally conserved deformation in the M1 backbone.

  13. Influence of age, body temperature, GABAA receptor inhibition and caffeine on the Hering-Breuer inflation reflex in unanesthetized rat pups

    PubMed Central

    Arnal, Ashley V.; Gore, Julie L.; Rudkin, Alison; Bartlett, Donald; Leiter, J.C.

    2013-01-01

    We measured the duration of apnea induced by sustained end-inspiratory lung inflation (the Hering Breuer Reflex; HBR) in unanesthetized infant rat pups aged 4 days (P4) to P20 at body temperatures of 32°C and 36°C. The expiratory prolongation elicited by the HBR lasted longer in the younger pups and lasted longer at the higher body temperature. Blockade of adenosine receptors by caffeine following injection into the cisterna magna (ICM) significantly blunted the thermal prolongation of the HBR. Blockade of gama-amino-butyric acid A (GABAA) receptors by pre-treatment with ICM bicuculline had no effect on the HBR duration at either body temperature. To test the hypothesis that developmental maturation of GABAergic inhibition of breathing was modifying the response to bicuculline, we pretreated rat pups with systemically administered bumetanide to lower the intracellular chloride concentration, and repeated the bicuculline studies. Bicuculline still did not alter the HBR at either temperature after bumetanide treatment. We administered PSB-36, a selective adenosine A1 receptor antagonist, and this drug treatment did not modify the HBR. We conclude that caffeine blunts the thermal prolongation of the HBR, probably by blocking adenosine A2a receptors. The thermally-sensitive adenosinergic prolongation of the HBR in these intact animals does not seem to depend on GABAA receptors PMID:23318703

  14. Influence of age, body temperature, GABAA receptor inhibition and caffeine on the Hering-Breuer inflation reflex in unanesthetized rat pups.

    PubMed

    Arnal, Ashley V; Gore, Julie L; Rudkin, Alison; Bartlett, Donald; Leiter, J C

    2013-03-01

    We measured the duration of apnea induced by sustained end-inspiratory lung inflation (the Hering Breuer Reflex, HBR) in unanesthetized infant rat pups aged 4 days (P4) to P20 at body temperatures of 32°C and 36°C. The expiratory prolongation elicited by the HBR lasted longer in the younger pups and lasted longer at the higher body temperature. Blockade of adenosine receptors by caffeine following injection into the cisterna magna (ICM) significantly blunted the thermal prolongation of the HBR. Blockade of gama-amino-butyric acid A (GABAA) receptors by pre-treatment with ICM bicuculline had no effect on the HBR duration at either body temperature. To test the hypothesis that developmental maturation of GABAergic inhibition of breathing was modifying the response to bicuculline, we pretreated rat pups with systemically administered bumetanide to lower the intracellular chloride concentration, and repeated the bicuculline studies. Bicuculline still did not alter the HBR at either temperature after bumetanide treatment. We administered PSB-36, a selective adenosine A1 receptor antagonist, and this drug treatment did not modify the HBR. We conclude that caffeine blunts the thermal prolongation of the HBR, probably by blocking adenosine A2a receptors. The thermally sensitive adenosinergic prolongation of the HBR in these intact animals does not seem to depend on GABAA receptors. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Context-Dependent Modulation of αβγ and αβγ GABAA Receptors by Penicillin: Implications for Phasic and Tonic Inhibition

    PubMed Central

    Feng, Hua-Jun; Botzolakis, Emmanuel J.; Macdonald, Robert L.

    2009-01-01

    Summary Penicillin, an open-channel blocker of GABAA receptors, was recently reported to inhibit phasic, but not tonic, currents in hippocampal neurons. To distinguish between isoform-specific and context-dependent modulation as possible explanations for this selectivity, the effects of penicillin were evaluated on recombinant GABAA receptors expressed in HEK293T cells. When co-applied with saturating GABA, penicillin decreased peak amplitude, induced rebound, and prolonged deactivation of currents evoked from both synaptic and extrasynaptic receptor isoforms. However, penicillin had isoform-specific effects on the extent of desensitization, reflecting its ability to differentially modulate peak (non-equilibrium) and residual (near-equilibrium) currents. This suggested that the context of activation could determine the apparent sensitivity of a given receptor isoform to penicillin. To test this hypothesis, we explored the ability of penicillin to modulate synaptic and extrasynaptic isoforms that were activated under more physiologically relevant conditions. Interestingly, while currents evoked from synaptic isoforms under phasic conditions (transient activation by a saturating concentration of GABA) were substantially inhibited by penicillin, currents evoked from extrasynaptic isoforms under tonic conditions (prolonged application by a sub-saturating concentration of GABA) were minimally affected. We therefore concluded that the reported inability of penicillin to modulate tonic currents could not simply be attributed to insensitivity of extrasynaptic receptors, but rather, reflected an inability to modulate these receptors in their native context of activation. PMID:18775733

  16. Antagonism of the Ethanol-Like Discriminative Stimulus Effects of Ethanol, Pentobarbital, and Midazolam in Cynomolgus Monkeys Reveals Involvement of Specific GABAA Receptor SubtypesS⃞

    PubMed Central

    Rogers, Laura S. M.; Grant, Kathleen A.

    2009-01-01

    The γ-aminobutyric acid (GABA)A receptors mediating the discriminative stimulus effects of ethanol were studied by comparing the potency of ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazol(1,5-a)benzodiazepine-3-carboxylate (Ro15-4513) and ethyl 8-fluoro-5,6-dihydro-5-methyl-6-oxo-4H-imidazol(1,5-a)-benzodiazepine-3-carboxylate (flumazenil, Ro15-1788) to antagonize ethanol, pentobarbital (PB), and midazolam substitution for ethanol. Ro15-4513 has high affinity for receptors containing α4/6 and α5 subunits and lower affinity for α1, α2, and α3 subunits. Flumazenil is nonselective for GABAA receptors containing α1, α2, α3, and α5 subunits and has low affinity for α4/6-containing receptors. Male (n = 9) and female (n = 8) cynomolgus monkeys (Macaca fascicularis) were trained to discriminate ethanol (1.0 or 2.0 g/kg i.g., 30-min pretreatment) from water. Ethanol, PB, and midazolam dose-dependently substituted for ethanol (80% ethanol-appropriate responding). Ro15-4513 (0.003–0.56 mg/kg i.m., 5-min pretreatment) shifted the ethanol, PB, and midazolam dose-response functions rightward in a vast majority of monkeys tested (15/15, 16/17, and 11/12, respectively). In contrast, flumazenil (0.30–10.0 mg/kg i.m., 5-min pretreatment) shifted the ethanol, PB, and midazolam dose-response functions rightward in 9 of 16, 12 of 16, and 7 of 9 monkeys tested, respectively. In the monkeys showing antagonism with both Ro15-4513 and flumazenil, ethanol and PB substitution were antagonized more potently by Ro15-4513 than by flumazenil, whereas midazolam substitution was antagonized with similar potency. There were no sex or training dose differences, with the exception that flumazenil failed to antagonize ethanol substitution in males trained to discriminate 2.0 g/kg ethanol. GABAA receptors with high affinity for Ro15-4513 (i.e., containing α4/6 and α5 subunits) may be particularly important mediators of the multiple discriminative stimulus effects of ethanol

  17. Magnolol, a major bioactive constituent of the bark of Magnolia officinalis, induces sleep via the benzodiazepine site of GABA(A) receptor in mice.

    PubMed

    Chen, Chang-Rui; Zhou, Xu-Zhao; Luo, Yan-Jia; Huang, Zhi-Li; Urade, Yoshihiro; Qu, Wei-Min

    2012-11-01

    Magnolol (6,6',7,12-tetramethoxy-2,2'-dimethyl-1-beta-berbaman, C(18)H(18)O(2)), an active ingredient of the bark of Magnolia officinalis, has been reported to exert potent anti-epileptic effects via the GABA(A) receptor. The receptor also mediates sleep in humans and animals. The aim of this study was to determine whether magnolol could modulate sleep behaviors by recording EEG and electromyogram in mice. The results showed that magnolol administered i.p. at a dose of 5 or 25 mg/kg could significantly shorten the sleep latency, increase the amount of non-rapid eye movement (non-REM, NREM) and rapid eye movement (REM) sleep for 3 h after administration with an increase in the number of NREM and REM sleep episodes. Magnolol at doses of 5 and 25 mg/kg increased the number of bouts of wakefulness but decreased their duration. On the other hand, magnolol increased the number of state transitions from wakefulness to NREM sleep and subsequently from NREM sleep to wakefulness. Immunohistochemical study showed that magnolol increased c-Fos expression in the neurons of ventrolateral preoptic area, a sleep center in the anterior hypothalamus, and decreased c-Fos expression in the arousal tuberomammillary nucleus, which was located in the caudolateral hypothalamus. The sleep-promoting effects and changes in c-Fos induced by magnolol were reversed by flumazenil, an antagonist at the benzodiazepine site of the GABA(A) receptor. These results indicate that magnolol increased NREM and REM sleep via the GABA(A) receptor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Differences in cortical vs. subcortical GABAergic signaling: a candidate mechanism of electroclinical dissociation of neonatal seizures

    PubMed Central

    Glykys, J.; Dzhala, V.I.; Kuchibhotla, K.V.; Feng, G.; Kuner, T.; Augustine, G.; Bacskai, BJ.; Staley, KJ.

    2010-01-01

    Electroclinical dissociation of neonatal seizures refers to electrographic seizure activity that is not clinically manifest. Dissociation increases after treatment with Phenobarbital, which increases the GABAA receptor (GABAAR) conductance. The effects of GABAAR activation depend on the intracellular Cl− concentration ([Cl−]i) that is determined by the inward Cl− transporter NKCC1 and the outward Cl− transporter KCC2. Differential maturation of Cl− transport observed in cortical vs. subcortical regions should alter the efficacy of GABA-mediated inhibition. In perinatal rat pups, most thalamic neurons maintained low [Cl−]i, and were inhibited by GABA. Phenobarbital suppressed thalamic seizure activity. Most neocortical neurons maintained higher [Cl−]i, and were excited by GABAAR activation. Phenobarbital had insignificant anticonvulsant responses in the neocortex until NKCC1 was blocked. Regional differences in the ontogeny of Cl− transport may thus explain why seizure activity in the cortex is not suppressed by anticonvulsants that block the transmission of seizure activity through subcortical networks. PMID:19755108

  19. GABAA receptor-mediated currents in interneurons and pyramidal cells of rat visual cortex

    PubMed Central

    Xiang, Zixiu; Huguenard, John R; Prince, David A

    1998-01-01

    We compared γ-aminobutyric acid (GABA)-mediated responses of identified pyramidal cells and fast spiking interneurons in layer V of visual cortical slices from young rats (P11-14). The frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) was similar in pyramidal cells and interneurons (1.7 vs. 1.9 Hz). For events with 10-90 % rise times less than 0.9 ms, no significant differences were found in mean amplitude (61 vs. 65 pA), mean rise time (0.58 vs. 0.61 ms), or the first time constant of decay (τ1, 6.4 vs. 6.5 ms) between pyramidal cells and interneurons. The second decay time constant (τ2) was significantly longer in interneurons than in pyramidal cells (49 vs. 22 ms). The difference in sIPSC decay kinetics between two cell types also existed in adult rats (P36-42), suggesting the kinetic difference is not due to differential development of GABAA receptors in these cell types. The decay kinetics of monosynaptic evoked IPSCs were also longer in interneurons. As in the case of sIPSCs, the difference was accounted for by the second decay time constant. τ1 and τ2 were, respectively, 13 and 64 ms for interneurons and 12 and 47 ms for pyramidal cells. Cell-attached patch recordings revealed that the mean open time for single Cl− channels in response to 2 μM GABA was significantly longer in interneurons than pyramidal cells (5.0 vs. 2.8 ms). The chord conductance of these channels in interneurons (12 pS) was significantly smaller than in pyramidal cells (15 pS). Single channel currents reversed polarity when the pipette potential was approximately -10 mV for both cell types. These results show that there is a functional diversity of GABAA receptors in electrophysiologically and morphologically identified cortical pyramidal cells and interneurons. This diversity might derive from the different molecular composition of the receptors in these two cell types. PMID:9503333

  20. Improvement in verbal memory following SSRI augmentation of antipsychotic treatment is associated with changes in the expression of mRNA encoding for the GABA-A receptor and BDNF in PMC of schizophrenic patients.

    PubMed

    Silver, Henry; Mandiuk, Nina; Einoch, Reef; Susser, Ehud; Danovich, Lena; Bilker, Warren; Youdim, Moussa; Weinreb, Orly

    2015-05-01

    Verbal memory impairment in schizophrenia is associated with abnormalities in gamma-aminobutyric acid (GABA)-ergic and brain-derived neurotrophic factor (BDNF) systems. Recent evidence from animal and clinical studies that adding fluvoxamine to antipsychotics alters the expression of transcripts encoding for the GABA-A receptor and BDNF led us to postulate that fluvoxamine augmentation may improve memory in schizophrenia. To test this, we examined the effect of add-on fluvoxamine on verbal memory and other cognitive functions and related it to the expression of mRNA coding for the GABA-A receptor and BDNF in peripheral mononuclear cells (PMC) of schizophrenic patients. Twenty-nine patients completed a 6-week study in which fluvoxamine (100 mg/day) was added to ongoing antipsychotic treatment. Verbal memory, abstraction working memory, object and face recognition, and psychomotor speed and clinical symptoms were assessed at baseline and after 3 and 6 weeks of treatment. Blood samples were taken at baseline and weeks 1, 3, and 6 and PMC was assayed for the GABA-A beta3 receptor and BDNF mRNA by quantitative real-time reverse transcription-PCR. Associative and logical verbal memory improved significantly and showed a significant correlation with changes in PMC BDNF and GABA-A beta3 receptor mRNA, which increased during treatment. Abstraction and object recognition improved, but this did not correlate with PMC measures. Negative and positive symptoms improved significantly; the latter showed significant correlations with changes in PMC measures. Addition of fluvoxamine to antipsychotics improves verbal memory. It is postulated that the mechanism involves enhanced GABA-A receptor/BDNF-dependent synaptic plasticity in the hippocampus.

  1. Homology Model of the GABAA Receptor Examined Using Brownian Dynamics

    PubMed Central

    O'Mara, Megan; Cromer, Brett; Parker, Michael; Chung, Shin-Ho

    2005-01-01

    We have developed a homology model of the GABAA receptor, using the subunit combination of α1β2γ2, the most prevalent type in the mammalian brain. The model is produced in two parts: the membrane-embedded channel domain and the extracellular N-terminal domain. The pentameric transmembrane domain model is built by modeling each subunit by homology with the equivalent subunit of the heteropentameric acetylcholine receptor transmembrane domain. This segment is then joined with the extracellular domain built by homology with the acetylcholine binding protein. The all-atom model forms a wide extracellular vestibule that is connected to an oval chamber near the external surface of the membrane. A narrow, cylindrical transmembrane channel links the outer segment of the pore to a shallow intracellular vestibule. The physiological properties of the model so constructed are examined using electrostatic calculations and Brownian dynamics simulations. A deep energy well of ∼80 kT accommodates three Cl− ions in the narrow transmembrane channel and seven Cl− ions in the external vestibule. Inward permeation takes place when one of the ions queued in the external vestibule enters the narrow segment and ejects the innermost ion. The model, when incorporated into Brownian dynamics, reproduces key experimental features, such as the single-channel current-voltage-concentration profiles. Finally, we simulate the γ2 K289M epilepsy inducing mutation and examine Cl− ion permeation through the mutant receptor. PMID:15749776

  2. Recovery from ketamine-induced amnesia by blockade of GABA-A receptor in the medial prefrontal cortex of mice.

    PubMed

    Farahmandfar, Maryam; Akbarabadi, Ardeshir; Bakhtazad, Atefeh; Zarrindast, Mohammad-Reza

    2017-03-06

    Ketamine and other noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonists are known to induce deficits in learning and cognitive performance sensitive to prefrontal cortex (PFC) functions. The interaction of a glutamatergic and GABAergic systems is essential for many cognitive behaviors. In order to understand the effect of γ-aminobutyric acid (GABA)/glutamate interactions on learning and memory, we investigated the effects of intra medial prefrontal cortex (mPFC) injections of GABAergic agents on ketamine-induced amnesia using a one-trial passive avoidance task in mice. Pre-training systemic administration of ketamine (5, 10 and 15mg/kg, i.p.) dose-dependently decreased the memory acquisition of a one-trial passive avoidance task. Pre-training intra-mPFC injection of muscimol, GABAA receptor agonist (0.05, 0.1 and 0.2μg/mouse) and baclofen GABAB receptor agonist (0.05, 0.1, 0.5 and 1μg/mouse), impaired memory acquisition. However, co-pretreatment of different doses of muscimol and baclofen with a lower dose of ketamine (5mg/kg), which did not induce amnesia by itself, caused inhibition of memory formation. Our data showed that sole pre-training administration of bicuculline, GABA-A receptor antagonist and phaclofen GABA-B receptor antagonist into the mPFC, did not affect memory acquisition. In addition, the amnesia induced by pre-training ketamine (15mg/kg) was significantly decreased by the pretreatment of bicuculline (0.005, 0.1 and 0.5μg/mouse). It can be concluded that GABAergic system of the mPFC is involved in the ketamine-induced impairment of memory acquisition. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Positive and Negative Allosteric Modulation of an α1β3γ2 γ-Aminobutyric Acid Type A (GABAA) Receptor by Binding to a Site in the Transmembrane Domain at the γ+-β− Interface*

    PubMed Central

    Jayakar, Selwyn S.; Zhou, Xiaojuan; Savechenkov, Pavel Y.; Chiara, David C.; Desai, Rooma; Bruzik, Karol S.; Miller, Keith W.; Cohen, Jonathan B.

    2015-01-01

    In the process of developing safer general anesthetics, isomers of anesthetic ethers and barbiturates have been discovered that act as convulsants and inhibitors of γ-aminobutyric acid type A receptors (GABAARs) rather than potentiators. It is unknown whether these convulsants act as negative allosteric modulators by binding to the intersubunit anesthetic-binding sites in the GABAAR transmembrane domain (Chiara, D. C., Jayakar, S. S., Zhou, X., Zhang, X., Savechenkov, P. Y., Bruzik, K. S., Miller, K. W., and Cohen, J. B. (2013) J. Biol. Chem. 288, 19343–19357) or to known convulsant sites in the ion channel or extracellular domains. Here, we show that S-1-methyl-5-propyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid (S-mTFD-MPPB), a photoreactive analog of the convulsant barbiturate S-MPPB, inhibits α1β3γ2 but potentiates α1β3 GABAAR responses. In the α1β3γ2 GABAAR, S-mTFD-MPPB binds in the transmembrane domain with high affinity to the γ+-β− subunit interface site with negative energetic coupling to GABA binding in the extracellular domain at the β+-α− subunit interfaces. GABA inhibits S-[3H]mTFD-MPPB photolabeling of γ2Ser-280 (γM2–15′) in this site. In contrast, within the same site GABA enhances photolabeling of β3Met-227 in βM1 by an anesthetic barbiturate, R-[3H]methyl-5-allyl-5-(m-trifluoromethyl-diazirynylphenyl)barbituric acid (mTFD-MPAB), which differs from S-mTFD-MPPB in structure only by chirality and two hydrogens (propyl versus allyl). S-mTFD-MPPB and R-mTFD-MPAB are predicted to bind in different orientations at the γ+-β− site, based upon the distance in GABAAR homology models between γ2Ser-280 and β3Met-227. These results provide an explanation for S-mTFD-MPPB inhibition of α1β3γ2 GABAAR function and provide a first demonstration that an intersubunit-binding site in the GABAAR transmembrane domain binds negative and positive allosteric modulators. PMID:26229099

  4. Effect of GABA agonists and GABA-A receptor modulators on cocaine- and food-maintained responding and cocaine discrimination in rats.

    PubMed

    Barrett, Andrew C; Negus, S Stevens; Mello, Nancy K; Caine, S Barak

    2005-11-01

    Recent studies indicate that GABAergic ligands modulate abuse-related effects of cocaine. The goal of this study was to evaluate the effects of a mechanistically diverse group of GABAergic ligands on the discriminative stimulus and reinforcing effects of cocaine in rats. One group of rats was trained to discriminate 5.6 mg/kg cocaine from saline in a two-lever, food-reinforced, drug discrimination procedure. In two other groups, responding was maintained by cocaine (0-3.2 mg/kg/injection) or liquid food (0-100%) under a fixed ratio 5 schedule. Six GABA agonists were tested: the GABA-A receptor agonist muscimol, the GABA-B receptor agonist baclofen, the GABA transaminase inhibitor gamma-vinyl-GABA (GVG), and three GABA-A receptor modulators (the barbiturate pentobarbital, the high-efficacy benzodiazepine midazolam, and the low-efficacy benzodiazepine enazenil). When tested alone, none of the compounds substituted fully for the discriminative stimulus effects of cocaine. As acute pretreatments, select doses of midazolam and pentobarbital produced 2.2- to 3.6-fold rightward shifts in the cocaine dose-effect function. In contrast, muscimol, baclofen, GVG, and enazenil failed to alter the discriminative stimulus effects of cocaine. In assays of cocaine- and food-maintained responding, midazolam and pentobarbital decreased cocaine self-administration at doses 9.6- and 3.3-fold lower, respectively, than those that decreased food-maintained responding. In contrast, muscimol, baclofen, and GVG decreased cocaine self-administration at doses that also decreased food-maintained responding. Enazenil failed to alter cocaine self-administration. Together with previous studies, these data suggest that among mechanistically diverse GABA agonists, high-efficacy GABA-A modulators may be the most effective for modifying the abuse-related effects of cocaine.

  5. The effect of age on the discriminative stimulus effects of ethanol and its GABA(A) receptor mediation in cynomolgus monkeys.

    PubMed

    Helms, Christa M; Grant, Kathleen A

    2011-08-01

    Excessive alcohol consumption is less common among aged compared to young adults, with aged adults showing greater sensitivity to many behavioral effects of ethanol. This study compared the discriminative stimulus effects of ethanol in young and middle-aged adult cynomolgus monkeys (Macaca fascicularis) and its γ-aminobutyric acid (GABA)(A) receptor mediation. Two male and two female monkeys trained to discriminate ethanol (1.0 g/kg, i.g.; 60-min pre-treatment interval) from water at 5-6 years of age (Grant et al. in Psychopharmacology 152:181-188, 2000) were re-trained in the current study more than a decade later (19.3 ± 1.0 years of age) for a within-subjects comparison. Also, four experimentally naïve middle-aged (mean ± SEM, 17.0 ± 1.5 years of age) female monkeys were trained to discriminate ethanol for between-subjects comparison with published data from young adult naïve monkeys. Two of the naïve middle-aged monkeys attained criterion performance, with weak stimulus control and few discrimination tests, despite greater blood-ethanol concentration 60 min after 1.0 g/kg ethanol in middle-aged compared to young adult female monkeys (Green et al. in Alcohol Clin Exp Res 23:611-616, 1999). The efficacy of the GABA(A) receptor positive modulators pentobarbital, midazolam, allopregnanolone, pregnanolone, and androsterone to substitute for the discriminative stimulus effects of 1.0 g/kg ethanol was maintained from young adulthood to middle age. The data suggest that 1.0 g/kg ethanol is a weak discriminative stimulus in naive middle-aged monkeys. Nevertheless, the GABA(A) receptor mechanisms mediating the discriminative stimulus effects of ethanol, when learned as a young adult, appear stable across one third of the primate lifespan.

  6. Negative modulation of α5 GABAA receptors in rats may partially prevent memory impairment induced by MK-801, but not amphetamine- or MK-801-elicited hyperlocomotion

    PubMed Central

    Stamenić, Tamara Timić; Joksimović, Srdjan; Biawat, Poonam; Stanković, Tamara; Marković, Bojan; Cook, James M; Savić, Miroslav M

    2016-01-01

    Reportedly, negative modulation of α5 GABAA receptors may improve cognition in normal and pharmacologically-impaired animals, and such modulation has been proposed as an avenue for treatment of cognitive symptoms in schizophrenia. This study assessed the actions of PWZ-029, administered at doses (2, 5 and 10 mg/kg) at which it reached micromolar concentrations in brain tissue with estimated free concentrations adequate for selective modulation of α5 GABAA receptors, in three cognitive tasks in male Wistar rats acutely treated with the noncompetitive N-methyl-D-aspartate – receptor antagonist, MK-801 (0.1 mg/kg), as well in tests of locomotor activity potentiated by MK-801 (0.2 mg/kg) or amphetamine (0.5 mg/kg). In a hormetic-like manner, only 5 mg/kg PWZ-029 reversed MK-801-induced deficits in novel object recognition test (visual recognition memory), whereas in the Morris water maze, the 2 mg/kg dose of PWZ-029 exerted partial beneficial effects on spatial learning impairment. PWZ-029 did not affect recognition memory deficits in social novelty discrimination procedure. Motor hyperactivity induced with MK-801 or amphetamine was not preventable by PWZ-029. Our results show that certain MK-801-induced memory deficits can be ameliorated by negative modulation of α5 GABAA receptors, and point to the need for further elucidation of their translational relevance to cognitive deterioration in schizophrenia. PMID:26105958

  7. Negative modulation of α₅ GABAA receptors in rats may partially prevent memory impairment induced by MK-801, but not amphetamine- or MK-801-elicited hyperlocomotion.

    PubMed

    Timić Stamenić, Tamara; Joksimović, Srdjan; Biawat, Poonam; Stanković, Tamara; Marković, Bojan; Cook, James M; Savić, Miroslav M

    2015-09-01

    Reportedly, negative modulation of α5 GABAA receptors may improve cognition in normal and pharmacologically-impaired animals, and such modulation has been proposed as an avenue for treatment of cognitive symptoms in schizophrenia. This study assessed the actions of PWZ-029, administered at doses (2, 5, and 10 mg/kg) at which it reached micromolar concentrations in brain tissue with estimated free concentrations adequate for selective modulation of α5 GABAA receptors, in three cognitive tasks in male Wistar rats acutely treated with the noncompetitive N-methyl-d-aspartate receptor antagonist, MK-801 (0.1 mg/kg), as well in tests of locomotor activity potentiated by MK-801 (0.2 mg/kg) or amphetamine (0.5 mg/kg). In a hormetic-like manner, only 5 mg/kg PWZ-029 reversed MK-801-induced deficits in novel object recognition test (visual recognition memory), whereas in the Morris water maze, the 2 mg/kg dose of PWZ-029 exerted partial beneficial effects on spatial learning impairment. PWZ-029 did not affect recognition memory deficits in social novelty discrimination procedure. Motor hyperactivity induced with MK-801 or amphetamine was not preventable by PWZ-029. Our results show that certain MK-801-induced memory deficits can be ameliorated by negative modulation of α5 GABAA receptors, and point to the need for further elucidation of their translational relevance to cognitive deterioration in schizophrenia. © The Author(s) 2015.

  8. Identification and cloning of a gamma 3 subunit splice variant of the human GABA(A) receptor.

    PubMed

    Poulsen, C F; Christjansen, K N; Hastrup, S; Hartvig, L

    2000-05-31

    cDNA sequences encoding two forms of the GABA(A) gamma 3 receptor subunit were cloned from human hippocampus. The nucleotide sequences differ by the absence (gamma 3S) or presence (gamma 3L) of 18 bp located in the presumed intracellular loop between transmembrane region (TM) III and IV. The extra 18 bp in the gamma 3L subunit generates a consensus site for phosphorylation by protein kinase C (PKC). Analysis of human genomic DNA encoding the gamma 3 subunit reveals that the 18 bp insert is contiguous with the upstream proximal exon.

  9. Linking γ-aminobutyric acid A receptor to epidermal growth factor receptor pathways activation in human prostate cancer.

    PubMed

    Wu, Weijuan; Yang, Qing; Fung, Kar-Ming; Humphreys, Mitchell R; Brame, Lacy S; Cao, Amy; Fang, Yu-Ting; Shih, Pin-Tsen; Kropp, Bradley P; Lin, Hsueh-Kung

    2014-03-05

    Neuroendocrine (NE) differentiation has been attributed to the progression of castration-resistant prostate cancer (CRPC). Growth factor pathways including the epidermal growth factor receptor (EGFR) signaling have been implicated in the development of NE features and progression to a castration-resistant phenotype. However, upstream molecules that regulate the growth factor pathway remain largely unknown. Using androgen-insensitive bone metastasis PC-3 cells and androgen-sensitive lymph node metastasis LNCaP cells derived from human prostate cancer (PCa) patients, we demonstrated that γ-aminobutyric acid A receptor (GABA(A)R) ligand (GABA) and agonist (isoguvacine) stimulate cell proliferation, enhance EGF family members expression, and activate EGFR and a downstream signaling molecule, Src, in both PC-3 and LNCaP cells. Inclusion of a GABA(A)R antagonist, picrotoxin, or an EGFR tyrosine kinase inhibitor, Gefitinib (ZD1839 or Iressa), blocked isoguvacine and GABA-stimulated cell growth, trans-phospohorylation of EGFR, and tyrosyl phosphorylation of Src in both PCa cell lines. Spatial distributions of GABAAR α₁ and phosphorylated Src (Tyr416) were studied in human prostate tissues by immunohistochemistry. In contrast to extremely low or absence of GABA(A)R α₁-positive immunoreactivity in normal prostate epithelium, elevated GABA(A)R α₁ immunoreactivity was detected in prostate carcinomatous glands. Similarly, immunoreactivity of phospho-Src (Tyr416) was specifically localized and limited to the nucleoli of all invasive prostate carcinoma cells, but negative in normal tissues. Strong GABAAR α₁ immunoreactivity was spatially adjacent to the neoplastic glands where strong phospho-Src (Tyr416)-positive immunoreactivity was demonstrated, but not in adjacent to normal glands. These results suggest that the GABA signaling is linked to the EGFR pathway and may work through autocrine or paracine mechanism to promote CRPC progression. Copyright © 2013 Elsevier

  10. Dynamic differentiation of GABAA-sensitive influences on orientation selectivity of complex cells in the cat striate cortex.

    PubMed

    Pfleger, B; Bonds, A B

    1995-01-01

    The influence of GABAA receptors on orientation selectivity of cat complex cells was tested by iontophoresis of the GABAA receptor blockers bicuculline and N-methyl-bicuculline while stimulating with drifting sinusoidal gratings. Reduction of orientation tuning was markedly less than reported in previous studies that used drifting bars as visual stimuli. Only 3/31 cells lost orientation selectivity, with an average increase in bandwidth of 33%, as opposed to half the cells losing selectivity and a bandwidth increase for the remainder of 47% as reported previously. Infusion of GABAA blockers revealed a prominent stimulus onset transient response, lasting about 120 ms, that showed a broadening of orientation selectivity comparable to that found using drifting bars under similar circumstances. We believe that drifting gratings emphasize a steady-state response component that retains, in the presence of GABAA blockers, significant orientation selectivity. Because the onset transient is initially unselective for orientation, we suggest that the steady-state, orientation-selective response component develops from an alternate inhibitory mechanism, possibly mediated by GABAB receptors.

  11. Surface active benzodiazepine-bromo-alkyl conjugate for potential GABAA-receptor purification.

    PubMed

    Turina, A V; Quinteros, G J; Caruso, B; Moyano, E L; Perillo, M A

    2011-08-21

    A conjugable analogue of the benzodiazepine 5-(2-hydroxyphenyl)-7-nitro-benzo[e][1,4]diazepin-2(3H)-one containing a bromide C(12)-aliphatic chain (BDC) at nitrogen N1 was synthesized. One-pot preparation of this benzodiazepine derivative was achieved using microwave irradiation giving 49% yield of the desired product. BDC inhibited FNZ binding to GABA(A)-R with an inhibition binding constant K(i) = 0.89 μM and expanded a model membrane packed up to 35 mN m(-1) when penetrating in it from the aqueous phase. BDC exhibited surface activity, with a collapse pressure π = 9.8 mN m(-1) and minimal molecular area A(min) = 52 Å(2)/molecule at the closest molecular packing, resulted fully and non-ideally mixed with a phospholipid in a monolayer up to a molar fraction x≅ 0.1. A geometrical-thermodynamic analysis along the π-A phase diagram predicted that at low x(BDC) (<0.1) and at all π, including the equilibrium surface pressures of bilayers, dpPC-BDC mixtures dispersed in water were compatible with the formation of planar-like structures. These findings suggest that, in a potential surface grafted BDC, this compound could be stabilize though London-type interactions within a phospholipidic coating layer and/or through halogen bonding with an electron-donor surface via its terminal bromine atom while GABA(A)-R might be recognized through the CNZ moiety.

  12. GABAergic excitation after febrile seizures induces ectopic granule cells and adult epilepsy.

    PubMed

    Koyama, Ryuta; Tao, Kentaro; Sasaki, Takuya; Ichikawa, Junya; Miyamoto, Daisuke; Muramatsu, Rieko; Matsuki, Norio; Ikegaya, Yuji

    2012-08-01

    Temporal lobe epilepsy (TLE) is accompanied by an abnormal location of granule cells in the dentate gyrus. Using a rat model of complex febrile seizures, which are thought to be a precipitating insult of TLE later in life, we report that aberrant migration of neonatal-generated granule cells results in granule cell ectopia that persists into adulthood. Febrile seizures induced an upregulation of GABA(A) receptors (GABA(A)-Rs) in neonatally generated granule cells, and hyperactivation of excitatory GABA(A)-Rs caused a reversal in the direction of granule cell migration. This abnormal migration was prevented by RNAi-mediated knockdown of the Na(+)K(+)2Cl(-) co-transporter (NKCC1), which regulates the excitatory action of GABA. NKCC1 inhibition with bumetanide after febrile seizures rescued the granule cell ectopia, susceptibility to limbic seizures and development of epilepsy. Thus, this work identifies a previously unknown pathogenic role of excitatory GABA(A)-R signaling and highlights NKCC1 as a potential therapeutic target for preventing granule cell ectopia and the development of epilepsy after febrile seizures.

  13. Reducing excessive GABAergic tonic inhibition promotes post-stroke functional recovery

    PubMed Central

    Clarkson, Andrew N.; Huang, Ben S.; MacIsaac, Sarah E.; Mody, Istvan; Carmichael, S. Thomas

    2010-01-01

    Stroke is a leading cause of disability; but no pharmacological therapy is currently available for promoting recovery. The brain region adjacent to stroke damage, the peri-infarct zone, is critical for rehabilitation, as it exhibits heightened neuroplasticity, allowing sensorimotor functions to re-map from damaged areas1–3. Thus, understanding the neuronal properties constraining this plasticity is important to developing new treatments. Here we show that after a stroke in mice, tonic neuronal inhibition is increased in the peri-infarct zone. This increased tonic inhibition is mediated by extrasynaptic GABAA receptors (GABAARs) and is caused by an impairment in GABA transporter (GAT-3/4) function. To counteract the heightened inhibition, we administered in vivo a benzodiazepine inverse agonist specific for the α5-subunit-containing extrasynaptic GABAARs at a delay after stroke. This treatment produced an early and sustained recovery of motor function. Genetically lowering the number of α5 or δ-subunit-containing GABAARs responsible for tonic inhibition also proved beneficial for post-stroke recovery, consistent with the therapeutic potential of diminishing extrasynaptic GABAAR function. Together, our results identify new pharmacological targets and provide the rationale for a novel strategy to promote recovery after stroke and possibly other brain injuries. PMID:21048709

  14. GABA(A) receptor blockade in dorsomedial and ventromedial nuclei of the hypothalamus evokes panic-like elaborated defensive behaviour followed by innate fear-induced antinociception.

    PubMed

    Freitas, Renato Leonardo; Uribe-Mariño, Andrés; Castiblanco-Urbina, Maria Angélica; Elias-Filho, Daoud Hibraim; Coimbra, Norberto Cysne

    2009-12-11

    Dysfunction in the hypothalamic GABAergic system has been implicated in panic syndrome in humans. Furthermore, several studies have implicated the hypothalamus in the elaboration of pain modulation. Panic-prone states are able to be experimentally induced in laboratory animals to study this phenomenon. The aim of the present work was to investigate the involvement of medial hypothalamic nuclei in the organization of panic-like behaviour and the innate fear-induced oscillations of nociceptive thresholds. The blockade of GABA(A) receptors in the neuronal substrates of the ventromedial or dorsomedial hypothalamus was followed by elaborated defensive panic-like reactions. Moreover, innate fear-induced antinociception was consistently elicited after the escape behaviour. The escape responses organized by the dorsomedial and ventromedial hypothalamic nuclei were characteristically more elaborated, and a remarkable exploratory behaviour was recorded during GABA(A) receptor blockade in the medial hypothalamus. The motor characteristic of the elaborated defensive escape behaviour and the patterns of defensive alertness and defensive immobility induced by microinjection of the bicuculline either into the dorsomedial or into the ventromedial hypothalamus were very similar. This was followed by the same pattern of innate fear-induced antinociceptive response that lasted approximately 40 min after the elaborated defensive escape reaction in both cases. These findings suggest that dysfunction of the GABA-mediated neuronal system in the medial hypothalamus causes panic-like responses in laboratory animals, and that the elaborated escape behaviour organized in both dorsomedial and ventromedial hypothalamic nuclei are followed by significant innate-fear-induced antinociception. Our findings indicate that the GABA(A) receptor of dorsomedial and ventromedial hypothalamic nuclei are critically involved in the modulation of panic-like behaviour.

  15. Quantitative Electroencephalography Within Sleep/Wake States Differentiates GABAA Modulators Eszopiclone and Zolpidem From Dual Orexin Receptor Antagonists in Rats

    PubMed Central

    Fox, Steven V; Gotter, Anthony L; Tye, Spencer J; Garson, Susan L; Savitz, Alan T; Uslaner, Jason M; Brunner, Joseph I; Tannenbaum, Pamela L; McDonald, Terrence P; Hodgson, Robert; Yao, Lihang; Bowlby, Mark R; Kuduk, Scott D; Coleman, Paul J; Hargreaves, Richard; Winrow, Christopher J; Renger, John J

    2013-01-01

    Dual orexin receptor antagonists (DORAs) induce sleep by blocking orexin 1 and orexin 2 receptor-mediated activities responsible for regulating wakefulness. DORAs represent a potential alternative mechanism to the current standard of care that includes the γ-aminobutyric acid (GABA)A receptor-positive allosteric modulators, eszopiclone and zolpidem. This work uses an innovative method to analyze electroencephalogram (EEG) spectral frequencies within sleep/wake states to differentiate the effects of GABAA modulators from DORA-22, an analog of the DORA MK-6096, in Sprague–Dawley rats. The effects of low, intermediate, and high doses of eszopiclone, zolpidem, and DORA-22 were examined after first defining each compound's ability to promote sleep during active-phase dosing. The EEG spectral frequency power within specific sleep stages was calculated in 1-Hz intervals from 1 to 100 Hz within each sleep/wake state for the first 4 h after the dose. Eszopiclone and zolpidem produced marked, dose-responsive disruptions in sleep stage-specific EEG spectral profiles compared with vehicle treatment. In marked contrast, DORA-22 exhibited marginal changes in the spectral profile, observed only during rapid eye movement sleep, and only at the highest dose tested. Moreover, while eszopiclone- and zolpidem-induced changes were evident in the inactive period, the EEG spectral responses to DORA-22 were absent during this phase. These results suggest that DORA-22 differs from eszopiclone and zolpidem whereby DORA-22 promotes somnolence without altering the neuronal network EEG activity observed during normal sleep. PMID:23722242

  16. Altered inhibition in Tuberous Sclerosis and Type IIb cortical dysplasia

    PubMed Central

    Talos, Delia M.; Sun, Hongyu; Kosaras, Bela; Joseph, Annelise; Folkerth, Rebecca D.; Poduri, Annapurna; Madsen, Joseph R.; Black, Peter M.; Jensen, Frances E.

    2012-01-01

    Objective The most common neurological symptom of tuberous sclerosis complex (TSC) and focal cortical dysplasia (FCD) is early-life refractory epilepsy. As previous studies have shown enhanced excitatory glutamatergic neurotransmission in TSC and FCD brains, we hypothesized that neurons associated with these lesions may also express altered GABAA receptor (GABAAR)-mediated inhibition. Methods Expression of the GABAAR subunitsα1 and α4, the Na+-K+-2Cl− (NKCC1), and the K+−Cl− (KCC2) transporters in human TSC and FCD Type II specimens were analyzed by Western blot and double label immunocytochemistry. GABAAR responses in dysplastic neurons from a single case of TSC were measured by perforated-patch recording and compared to normal-appearing cortical neurons from a non-TSC epilepsy case. Results TSC and FCD Type IIb lesions demonstrated decreased expression of the GABAAR α1, increased NKCC1 and decreased KCC2 levels. In contrast, FCD Type IIa lesions showed decreased α4, and increased expression of both NKCC1 and KCC2 transporters. Patch clamp recordings from dysplastic neurons in acute slices from TSC tubers demonstrated excitatory GABAAR responses that were significantly attenuated by the NKCC1 inhibitor bumetanide, in contrast to hyperpolarizing GABAAR-mediated currents in normal neurons from non-TSC cortical slices. Interpretation Expression and function of GABAARs in TSC and FCD IIb suggests the relative benzodiazepine insensitivity and more excitatory action of GABA compared to FCD IIa. These factors may contribute to resistance of seizure activity to anticonvulsants that increase GABAergic function, and may justify add-on trials of the NKCC1 inhibitor bumetanide for the treatment of TSC and FCD Type IIb related epilepsy. PMID:22447678

  17. The anticonvulsant stiripentol acts directly on the GABAA receptor as a positive allosteric modulator

    PubMed Central

    Fisher, Janet L.

    2009-01-01

    SUMMARY Stiripentol(STP) has been used as co-therapy for treatment of epilepsy for many years. Its mechanism of action has long been considered to be indirect, as it inhibits the enzymes responsible for metabolism of other anticonvulsant agents. However, a recent report suggested that STP might also act at the neuronal level, increasing inhibitory GABAergic neurotransmission. We examined the effect of STP on the functional properties of recombinant GABAA receptors (GABARs) and found that it was a positive allosteric modulator of these ion channels. Its activity showed some dependence on subunit composition, with greater potentiation of α3-containing receptors and reduced potentiation when the β1 or ε subunits were present. STP caused a leftward shift in the GABA concentration-response relationship, but did not increase the peak response of the receptors to a maximal GABA concentration. Although STP shares some functional characteristics with the neurosteroids, its activity was not inhibited by a neurosteroid site antagonist and was unaffected by a mutation in the α3 subunit that reduced positive modulation by neurosteroids. The differential effect of STP on β1- and β2/β3-containing receptors was not altered by mutations within the second transmembrane domain that affect modulation by loreclezole. These findings suggest that STP acts as a direct allosteric modulator of the GABAR at a site distinct from many commonly used anti-convulsant, sedative and anxiolytic drugs. Its higher activity at α3-containing receptors as well as its activity at δ-containing receptors may provide a unique opportunity to target selected populations of GABARs. PMID:18585399

  18. A Transmembrane Amino Acid in the GABAA Receptor β2 Subunit Critical for the Actions of Alcohols and Anesthetics

    PubMed Central

    McCracken, Mandy L.; Borghese, Cecilia M.; Trudell, James R.

    2010-01-01

    Alcohols and inhaled anesthetics enhance the function of GABAA receptors containing α, β, and γ subunits. Molecular analysis has focused on the role of the α subunits; however, there is evidence that the β subunits may also be important. The goal of our study was to determine whether Asn265, which is homologous to the site implicated in the α subunit (Ser270), contributes to an alcohol and volatile anesthetic binding site in the GABAA receptor β2 subunit. We substituted cysteine for Asn265 and exposed the mutant to the sulfhydryl-specific reagent octyl methanethiosulfonate (OMTS). We used two-electrode voltage-clamp electrophysiology in Xenopus laevis oocytes and found that, after OMTS application, GABA-induced currents were irreversibly potentiated in mutant α1β2(N265C)γ2S receptors [but not α1β2(I264C)γ2S], presumably because of the covalent linking of octanethiol to the thiol group in the substituted cysteine. It is noteworthy that this effect was blocked when OMTS was applied in the presence of octanol. We found that potentiation by butanol, octanol, or isoflurane in the N265C mutant was nearly abolished after the application of OMTS, suggesting that an alcohol and volatile anesthetic binding site at position 265 of the β2 subunit was irreversibly occupied by octanethiol and consequently prevented butanol or isoflurane from binding and producing their effects. OMTS did not affect modulation or direct activation by pentobarbital, but there was a partial reduction of allosteric modulation by flunitrazepam and alphaxalone in mutant α1β2(N265C)γ2S receptors after OMTS was applied. Our findings provide evidence that Asn265 may contribute to an alcohol and anesthetic binding site. PMID:20826568

  19. Modulation of anxiety and fear via distinct intrahippocampal circuits.

    PubMed

    Engin, Elif; Smith, Kiersten S; Gao, Yudong; Nagy, David; Foster, Rachel A; Tsvetkov, Evgeny; Keist, Ruth; Crestani, Florence; Fritschy, Jean-Marc; Bolshakov, Vadim Y; Hajos, Mihaly; Heldt, Scott A; Rudolph, Uwe

    2016-03-14

    Recent findings indicate a high level of specialization at the level of microcircuits and cell populations within brain structures with regards to the control of fear and anxiety. The hippocampus, however, has been treated as a unitary structure in anxiety and fear research despite mounting evidence that different hippocampal subregions have specialized roles in other cognitive domains. Using novel cell-type- and region-specific conditional knockouts of the GABAA receptor α2 subunit, we demonstrate that inhibition of the principal neurons of the dentate gyrus or CA3 via α2-containing GABAA receptors (α2GABAARs) is required to suppress anxiety, while the inhibition of CA1 pyramidal neurons is required to suppress fear responses. We further show that the diazepam-modulation of hippocampal theta activity shows certain parallels with our behavioral findings, suggesting a possible mechanism for the observed behavioral effects. Thus, our findings demonstrate a double dissociation in the regulation of anxiety versus fear by hippocampal microcircuitry.

  20. The Effect of Midazolam and Propranolol on Fear Memory Reconsolidation in Ethanol-Withdrawn Rats: Influence of D-Cycloserine

    PubMed Central

    Ortiz, Vanesa; Giachero, Marcelo; Espejo, Pablo Javier; Molina, Víctor Alejandro

    2015-01-01

    Background: Withdrawal from chronic ethanol facilitates the formation of contextual fear memory and delays the onset to extinction, with its retrieval promoting an increase in ethanol consumption. Consequently, manipulations aimed to reduce these aversive memories, may be beneficial in the treatment of alcohol discontinuation symptoms. Related to this, pharmacological memory reconsolidation blockade has received greater attention due to its therapeutic potential. Methods: Here, we examined the effect of post-reactivation amnestic treatments such as Midazolam (MDZ, 3 mg/kg i.p) and Propranolol (PROP, 5 mg/kg i.p) on contextual fear memory reconsolidation in ethanol- withdrawn (ETOH) rats. Next, we examined whether the activation of N-methyl-D-aspartate (NMDA) receptors induced by d-cycloserine (DCS, 5 mg/kg i.p., a NMDA partial agonist) before memory reactivation can facilitate the disruptive effect of PROP and MDZ on fear memory in ETOH rats. Results: We observed a resistance to the disruptive effect of both MDZ and PROP following memory reactivation. Although intra-basolateral amygdala (BLA; 1.25 ug/side) and systemic PROP administration attenuated fear memory in DCS pre-treated ETOH rats, DCS/MDZ treatment did not affect memory in these animals. Finally, a decrease of both total and surface protein expression of the α1 GABAA receptor (GABAA-R) subunit in BLA was found in the ETOH rats. Conclusions: Ethanol withdrawal facilitated the formation of fear memory resistant to labilization post-reactivation. DCS administration promoted the disruptive effect of PROP on memory reconsolidation in ETOH rats. The resistance to MDZ’s disruptive effect on fear memory reconsolidation may be, at least in part, associated with changes in the GABAA-R composition induced by chronic ethanol administration/withdrawal. PMID:25617327

  1. Evidence for effective structure-based neuromodulatory effects of new analogues of neurosteroid allopregnanolone.

    PubMed

    Taleb, O; Patte-Mensah, C; Meyer, L; Kemmel, V; Geoffroy, P; Miesch, M; Mensah-Nyagan, A-G

    2018-02-01

    The neurosteroid allopregnanolone (AP) modulates neuroendocrine/neurobiological processes, including hypothalamic-pituitary-adrenocortical activities, pain, anxiety, neurogenesis and neuroprotection. These observations raised the hope of developing AP-based therapies against neuroendocrine and/or neurodegenerative disorders. However, the pleiotropic actions of AP, particularly its cell-proliferation-promoting effects, hamper the development of selective/targeted therapies. For example, although AP-induced neurogenesis may serve to compensate neuronal loss in degenerative brains, AP-evoked cell-proliferation is contraindicated for steroid-sensitive cancer patients. To foster progress, we synthesised 4 novel AP analogues of neurosteroids (ANS) designated BR053 (12-oxo-epi-AP), BR297 (O-allyl-epi-AP), BR351 (O-allyl-AP) and BR338 (12-oxo-AP). First, because AP is well-known as allosteric modulator of GABAA receptors (GABAA-R), we used the electrophysiological patch-clamp technique to determine the structure-activity relationship of our ANS on GABAA-activated current in NCB20 cells expressing functional GABAA-R. We found that the addition of 12-oxo-group did not significantly change the respective positive or negative allosteric effects of 3α-AP or 3β-(epi)-AP analogues. Importantly, substitution of the 3α-hydroxyl-group by 3α-O-allyl highly modified the ANS activities. Unlike AP, BR351 induced a long-lasting desensitisation/inhibition of GABAA-R. Interestingly, replacement of the 3β-hydroxyl by 3β-O-allyl (BR297) completely reversed the activity from negative to positive allosteric action. In a second step, we compared the actions of AP and ANS on SH-SY5Y neuronal cell viability/proliferation using MTT-reduction assays. Different dose-response curves were demonstrated for AP and the ANS. By contrast to AP, BR297 was totally devoid of cell-proliferative effect. Finally, we compared AP and ANS abilities to protect against oxidative stress-induced neuronal death

  2. Postsynaptic activity reverses the sign of the acetylcholine-induced long-term plasticity of GABAA inhibition

    PubMed Central

    Domínguez, Soledad; Fernández de Sevilla, David; Buño, Washington

    2014-01-01

    Acetylcholine (ACh) regulates forms of plasticity that control cognitive functions but the underlying mechanisms remain largely unknown. ACh controls the intrinsic excitability, as well as the synaptic excitation and inhibition of CA1 hippocampal pyramidal cells (PCs), cells known to participate in circuits involved in cognition and spatial navigation. However, how ACh regulates inhibition in function of postsynaptic activity has not been well studied. Here we show that in rat PCs, a brief pulse of ACh or a brief stimulation of cholinergic septal fibers combined with repeated depolarization induces strong long-term enhancement of GABAA inhibition (GABAA-LTP). Indeed, this enhanced inhibition is due to the increased activation of α5βγ2 subunit-containing GABAA receptors by the GABA released. GABAA-LTP requires the activation of M1-muscarinic receptors and an increase in cytosolic Ca2+. In the absence of PC depolarization ACh triggered a presynaptic depolarization-induced suppression of inhibition (DSI), revealing that postsynaptic activity gates the effects of ACh from presynaptic DSI to postsynaptic LTP. These results provide key insights into mechanisms potentially linked with cognitive functions, spatial navigation, and the homeostatic control of abnormal hyperexcitable states. PMID:24938789

  3. Spontaneous Release Regulates Synaptic Scaling in the Embryonic Spinal Network In Vivo

    PubMed Central

    Garcia-Bereguiain, Miguel Angel; Gonzalez-Islas, Carlos; Lindsly, Casie

    2016-01-01

    Homeostatic plasticity mechanisms maintain cellular or network spiking activity within a physiologically functional range through compensatory changes in synaptic strength or intrinsic cellular excitability. Synaptic scaling is one form of homeostatic plasticity that is triggered after blockade of spiking or neurotransmission in which the strengths of all synaptic inputs to a cell are multiplicatively scaled upward or downward in a compensatory fashion. We have shown previously that synaptic upscaling could be triggered in chick embryo spinal motoneurons by complete blockade of spiking or GABAA receptor (GABAAR) activation for 2 d in vivo. Here, we alter GABAAR activation in a more physiologically relevant manner by chronically adjusting presynaptic GABA release in vivo using nicotinic modulators or an mGluR2 agonist. Manipulating GABAAR activation in this way triggered scaling in a mechanistically similar manner to scaling induced by complete blockade of GABAARs. Remarkably, we find that altering action-potential (AP)-independent spontaneous release was able to fully account for the observed bidirectional scaling, whereas dramatic changes in spiking activity associated with spontaneous network activity had little effect on quantal amplitude. The reliance of scaling on an AP-independent process challenges the plasticity's relatedness to spiking in the living embryonic spinal network. Our findings have implications for the trigger and function of synaptic scaling and suggest that spontaneous release functions to regulate synaptic strength homeostatically in vivo. SIGNIFICANCE STATEMENT Homeostatic synaptic scaling is thought to prevent inappropriate levels of spiking activity through compensatory adjustments in the strength of synaptic inputs. Therefore, it is thought that perturbations in spike rate trigger scaling. Here, we find that dramatic changes in spiking activity in the embryonic spinal cord have little effect on synaptic scaling; conversely, alterations in

  4. Comparison of Steroid Modulation of Spontaneous Inhibitory Postsynaptic Currents in Cultured Hippocampal Neurons and Steady-State Single-Channel Currents from Heterologously Expressed α1β2γ2L GABAA Receptors

    PubMed Central

    Chakrabarti, Sampurna; Qian, Mingxing; Krishnan, Kathiresan; Covey, Douglas F.; Mennerick, Steven

    2016-01-01

    Neuroactive steroids are efficacious modulators of γ-aminobutyric acid type A receptor (GABAA) receptor function. The effects of steroids on the GABAA receptor are typically determined by comparing steady-state single-channel open probability or macroscopic peak responses elicited by GABA in the absence and presence of a steroid. Due to differences in activation conditions (exposure duration, concentration of agonist), it is not obvious whether modulation measured using typical experimental protocols can be used to accurately predict the effect of a modulator on native receptors under physiologic conditions. In the present study, we examined the effects of 14 neuroactive steroids and analogs on the properties of spontaneous inhibitory postsynaptic currents (sIPSCs) in cultured rat hippocampal neurons. The goal was to determine whether the magnitude of modulation of the decay time course of sIPSCs correlates with the extent of modulation and kinetic properties of potentiation as determined in previous single-channel studies. The steroids were selected to cover a wide range of efficacy on heterologously expressed rat α1β2γ2L GABAA receptors, ranging from essentially inert to highly efficacious (strong potentiators of single-channel and macroscopic peak responses). The data indicate a strong correlation between prolongation of the decay time course of sIPSCs and potentiation of single-channel open probability. Furthermore, changes in intracluster closed time distributions were the single best predictor of prolongation of sIPSCs. We infer that the information obtained in steady-state single-channel recordings can be used to forecast modulation of synaptic currents. PMID:26769414

  5. Chronic nicotine treatment differentially modifies acute nicotine and alcohol actions on GABA(A) and glutamate receptors in hippocampal brain slices.

    PubMed

    Proctor, William R; Dobelis, Peter; Moritz, Anna T; Wu, Peter H

    2011-03-01

    Tobacco and alcohol are often co-abused producing interactive effects in the brain. Although nicotine enhances memory while ethanol impairs it, variable cognitive changes have been reported from concomitant use. This study was designed to determine how nicotine and alcohol interact at synaptic sites to modulate neuronal processes. Acute effects of nicotine, ethanol, and both drugs on synaptic excitatory glutamatergic and inhibitory GABAergic transmission were measured using whole-cell recording in hippocampal CA1 pyramidal neurons from brain slices of mice on control or nicotine-containing diets. Acute nicotine (50 nM) enhanced both GABAergic and glutamatergic synaptic transmission; potentiated GABA(A) receptor currents via activation of α7* and α4β2* nAChRs, and increased N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor currents through α7* receptors. While ethanol (80 mM) also increased GABA(A) currents, it inhibited NMDA currents. Although ethanol had no effect on AMPA currents, it blocked nicotine-induced increases in NMDA and AMPA currents. Following chronic nicotine treatment, acute nicotine or ethanol did not affect NMDA currents, while the effects of GABAergic responses were not altered. Acute ethanol ingestion selectively attenuated nicotine enhancement of excitatory glutamatergic NMDA and AMPA receptor function, suggesting an overall reduction in excitatory output from the hippocampus. It also indicated that ethanol could decrease the beneficial effects of nicotine on memory performance. In addition, chronic nicotine treatment produced tolerance to the effects of nicotine and cross-tolerance to the effects of ethanol on glutamatergic activity, leading to a potential increase in the use of these drugs. British Journal of Pharmacology © 2011 The British Pharmacological Society. No claim to original US government works.

  6. Sex-Dependent Anti-Stress Effect of an α5 Subunit Containing GABAA Receptor Positive Allosteric Modulator

    PubMed Central

    Piantadosi, Sean C.; French, Beverly J.; Poe, Michael M.; Timić, Tamara; Marković, Bojan D.; Pabba, Mohan; Seney, Marianne L.; Oh, Hyunjung; Orser, Beverley A.; Savić, Miroslav M.; Cook, James M.; Sibille, Etienne

    2016-01-01

    Rationale: Current first-line treatments for stress-related disorders such as major depressive disorder (MDD) act on monoaminergic systems and take weeks to achieve a therapeutic effect with poor response and low remission rates. Recent research has implicated the GABAergic system in the pathophysiology of depression, including deficits in interneurons targeting the dendritic compartment of cortical pyramidal cells. Objectives: The present study evaluates whether SH-053-2’F-R-CH3 (denoted “α5-PAM”), a positive allosteric modulator selective for α5-subunit containing GABAA receptors found predominantly on cortical pyramidal cell dendrites, has anti-stress effects. Methods: Female and male C57BL6/J mice were exposed to unpredictable chronic mild stress (UCMS) and treated with α5-PAM acutely (30 min prior to assessing behavior) or chronically before being assessed behaviorally. Results: Acute and chronic α5-PAM treatments produce a pattern of decreased stress-induced behaviors (denoted as “behavioral emotionality”) across various tests in female, but not in male mice. Behavioral Z-scores calculated across a panel of tests designed to best model the range and heterogeneity of human symptomatology confirmed that acute and chronic α5-PAM treatments consistently produce significant decreases in behavioral emotionality in several independent cohorts of females. The behavioral responses to α5-PAM could not be completely accounted for by differences in drug brain disposition between female and male mice. In mice exposed to UCMS, expression of the Gabra5 gene was increased in the frontal cortex after acute treatment and in the hippocampus after chronic treatment with α5-PAM in females only, and these expression changes correlated with behavioral emotionality. Conclusion: We showed that acute and chronic positive modulation of α5 subunit-containing GABAA receptors elicit anti-stress effects in a sex-dependent manner, suggesting novel therapeutic modalities

  7. Bud extracts from Tilia tomentosa Moench inhibit hippocampal neuronal firing through GABAA and benzodiazepine receptors activation.

    PubMed

    Allio, Arianna; Calorio, Chiara; Franchino, Claudio; Gavello, Daniela; Carbone, Emilio; Marcantoni, Andrea

    2015-08-22

    Tilia tomentosa Moench bud extracts (TTBEs) is used in traditional medicine for centuries as sedative compound. Different plants belonging to the Tilia genus have shown their efficacy in the treatment of anxiety but still little is known about the mechanism of action of their bud extracts. To evaluate the action of TTBEs as anxiolytic and sedative compound on in vitro hippocampal neurons. The anxiolytic effect of TTBEs was assayed by testing the effects of these compounds on GABAA receptor-activated chloride current of hippocampal neurons by means of the patch-clamp technique and microelectrode-arrays (MEAs). TTBEs acutely administered on mouse hippocampal neurons, activated a chloride current comparable to that measured in the presence of GABA (100 µM). Bicuculline (100 µM) and picrotoxin (100 µM) blocked about 90% of this current, while the remaining 10% was blocked by adding the benzodiazepine (BDZ) antagonist flumazenil (30 µM). Flumazenil alone blocked nearly 60% of the TTBEs activated current, suggesting that TTBEs binds to both GABAA and BDZ receptor sites. Application of high-doses of TTBEs on spontaneous active hippocampal neurons grown for 3 weeks on MEAs blocked the synchronous activity of these neurons. The effects were mimicked by GABA and prevented by picrotoxin (100µM) and flumazenil (30 µM). At minimal doses, TTBEs reduced the frequency of synchronized bursts and increased the cross-correlation index of synchronized neuronal firing. Our data suggest that TTBEs mimics GABA and BDZ agonists by targeting hippocampal GABAergic synapses and inhibiting network excitability by increasing the strength of inhibitory synaptic outputs. Our results contribute toward the validation of TTBEs as effective sedative and anxiolytic compound. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Antinociceptive effects of fisetin against diabetic neuropathic pain in mice: Engagement of antioxidant mechanisms and spinal GABAA receptors.

    PubMed

    Zhao, Xin; Li, Xin-Lin; Liu, Xin; Wang, Chuang; Zhou, Dong-Sheng; Ma, Qing; Zhou, Wen-Hua; Hu, Zhen-Yu

    2015-12-01

    Peripheral painful neuropathy is one of the most common complications in diabetes and necessitates improved treatment. Fisetin, a naturally occurring flavonoid, has been reported to exert antidepressant-like effect in previous studies. As antidepressant drugs are employed clinically to treat neuropathic pain, this work aimed to investigate whether fisetin possess beneficial effect on diabetic neuropathic pain and explore the mechanism(s). We subjected mice to diabetes by a single intraperitoneal (i.p.) injection of streptozotocin (200mg/kg), and von Frey test or Hargreaves test was used to assess mechanical allodynia or thermal hyperalgesia, respectively. Chronic treatment of diabetic mice with fisetin not only ameliorated the established symptoms of thermal hyperalgesia and mechanical allodynia, but also arrested the development of neuropathic pain when given at low doses. Although chronic fisetin administration did not impact on the symptom of hyperglycemia in diabetic mice, it reduced exacerbated oxidative stress in tissues of spinal cord, dorsal root ganglion (DRG) and sciatic verve. Furthermore, the analgesic actions of fisetin were abolished by repetitive co-treatment with the reactive oxygen species (ROS) donor tert-butyl hydroperoxide (t-BOOH), but potentiated by the ROS scavenger phenyl-N-tert-butylnitrone (PBN). Finally, acute blockade of spinal GABAA receptors by bicuculline totally counteracted such fisetin analgesia. These findings indicate that chronic fisetin treatment can delay or correct neuropathic hyperalgesia and allodynia in mice with type 1 diabetes. Mechanistically, the present fisetin analgesia may be associated with its antioxidant activity, and spinal GABAA receptors are likely rendered as downstream targets. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Mapping General Anesthetic Sites in Heteromeric γ-Aminobutyric Acid Type A Receptors Reveals a Potential For Targeting Receptor Subtypes.

    PubMed

    Forman, Stuart A; Miller, Keith W

    2016-11-01

    IV general anesthetics, including propofol, etomidate, alphaxalone, and barbiturates, produce important actions by enhancing γ-aminobutyric acid type A (GABAA) receptor activation. In this article, we review scientific studies that have located and mapped IV anesthetic sites using photoaffinity labeling and substituted cysteine modification protection. These anesthetics bind in transmembrane pockets between subunits of typical synaptic GABAA receptors, and drugs that display stereoselectivity also show remarkably selective interactions with distinct interfacial sites. These results suggest strategies for developing new drugs that selectively modulate distinct GABAA receptor subtypes.

  10. A Study of the Structure-Activity Relationship of GABAA-Benzodiazepine Receptor Bivalent Ligands by Conformational Analysis with Low Temperature NMR and X-ray Analysis

    PubMed Central

    Han, Dongmei; Försterling, F. Holger; Li, Xiaoyan; Deschamps, Jeffrey R.; Parrish, Damon; Cao, Hui; Rallapalli, Sundari; Clayton, Terry; Teng, Yun; Majumder, Samarpan; Sankar, Subramaniam; Roth, Bryan L.; Sieghart, Werner; Furtmuller, Roman; Rowlett, James; Weed, Mike R.; Cook, James M.

    2013-01-01

    The stable conformations of GABAA-benzodiazepine receptor bivalent ligands were determined by low temperature NMR spectroscopy and confirmed by single crystal X-ray analysis. The stable conformations in solution correlated well with those in the solid state. The linear conformation was important for these dimers to access the binding site and exhibit potent in vitro affinity and was illustrated for α5 subtype selective ligands. Bivalent ligands with an oxygen-containing linker folded back upon themselves both in solution and the solid state. Dimers which are folded do not bind to Bz receptors. PMID:18790643

  11. The ly-6 protein, lynx1, is an endogenous inhibitor of nicotinic signaling in airway epithelium.

    PubMed

    Fu, Xiao Wen; Rekow, Stephen S; Spindel, Eliot R

    2012-10-15

    Our laboratory has previously reported that bronchial epithelial cells (BEC) express a regulatory cascade of classic neurotransmitters and receptors that communicate in an almost neuronal-like manner to achieve physiological regulation. In this paper we show that the similarity between neurotransmitter signaling in neurons and BEC extends to the level of transmitter receptor allosteric modulators. Lynx1 is a member of the ly-6/three-finger superfamily of proteins, many of which modulate receptor signaling activity. Lynx1 specifically has been shown to modulate nicotinic acetylcholine receptor (nAChR) function in neurons by altering receptor sensitivity and desensitization. We now report that lynx1 forms a complex with α7 nAChR in BEC and serves to negatively regulate α7 downstream signaling events. Treatment of primary cultures of BEC with nicotine increased levels of nAChR subunits and that increase was potentiated by lynx1 knockdown. Lynx1 knockdown also potentiated the nicotine-induced increase in GABA(A) receptors (GABA(A)R) and MUC5AC mRNA expression, and that effect was blocked by α7 antagonists and α7 knockdown. In parallel with the increases in nAChR, GABA(A)R, and mucin mRNA levels, lynx1 knockdown also increased levels of p-Src. Consistent with this, inhibition of Src signaling blocked the ability of the lynx1 knockdown to increase basal and nicotine-stimulated GABA(A)R and mucin mRNA expression. Thus lynx1 appears to act as a negative modulator of α7 nAChR-induced events by inhibiting Src activation. This suggests that lynx1 agonists or mimetics are a potentially important therapeutic target to develop new therapies for smoking-related diseases characterized by increased mucin expression.

  12. Selective GABA(A) α5 positive allosteric modulators improve cognitive function in aged rats with memory impairment.

    PubMed

    Koh, Ming Teng; Rosenzweig-Lipson, Sharon; Gallagher, Michela

    2013-01-01

    A condition of excess activity in the hippocampal formation is observed in the aging brain and in conditions that confer additional risk during aging for Alzheimer's disease. Compounds that act as positive allosteric modulators at GABA(A) α5 receptors might be useful in targeting this condition because GABA(A) α5 receptors mediate tonic inhibition of principal neurons in the affected network. While agents to improve cognitive function in the past focused on inverse agonists, which are negative allosteric modulators at GABA(A) α5 receptors, research supporting that approach used only young animals and predated current evidence for excessive hippocampal activity in age-related conditions of cognitive impairment. Here, we used two compounds, Compound 44 [6,6-dimethyl-3-(3-hydroxypropyl)thio-1-(thiazol-2-yl)-6,7-dihydro-2-benzothiophen-4(5H)-one] and Compound 6 [methyl 3,5-diphenylpyridazine-4-carboxylate], with functional activity as potentiators of γ-aminobutyric acid at GABA(A) α5 receptors, to test their ability to improve hippocampal-dependent memory in aged rats with identified cognitive impairment. Improvement was obtained in aged rats across protocols differing in motivational and performance demands and across varying retention intervals. Significant memory improvement occurred after either intracereboventricular infusion with Compound 44 (100 μg) in a water maze task or systemic administration with Compound 6 (3 mg/kg) in a radial arm maze task. Furthermore, systemic administration improved behavioral performance at dosing shown to provide drug exposure in the brain and in vivo receptor occupancy in the hippocampus. These data suggest a novel approach to improve neural network function in clinical conditions of excess hippocampal activity. This article is part of a Special Issue entitled 'Cognitive Enhancers'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Honokiol promotes non-rapid eye movement sleep via the benzodiazepine site of the GABA(A) receptor in mice.

    PubMed

    Qu, Wei-Min; Yue, Xiao-Fang; Sun, Yu; Fan, Kun; Chen, Chang-Rui; Hou, Yi-Ping; Urade, Yoshihiro; Huang, Zhi-Li

    2012-10-01

    Decoctions of the Chinese herb houpu contain honokiol and are used to treat a variety of mental disorders, including depression. Depression commonly presents alongside sleep disorders and sleep disturbances, which appear to be a major risk factor for depression. Here, we have evaluated the somnogenic effect of honokiol and the mechanisms involved. Honokiol was administered i.p. at 20:00 h in mice. Flumazenil, an antagonist at the benzodiazepine site of the GABA(A) receptor, was administered i.p. 15 min before honokiol. The effects of honokiol were measured by EEG and electromyogram (EMG), c-Fos expression and in vitro electrophysiology. Honokiol (10 and 20 mg·kg⁻¹) significantly shortened the sleep latency to non-rapid eye movement (non-REM, NREM) sleep and increased the amount of NREM sleep. Honokiol increased the number of state transitions from wakefulness to NREM sleep and, subsequently, from NREM sleep to wakefulness. However, honokiol had no effect on either the amount of REM sleep or EEG power density of both NREM and REM sleep. Honokiol increased c-Fos expression in ventrolateral preoptic area (VLPO) neurons, as examined by immunostaining, and excited sleep-promoting neurons in the VLPO by whole-cell patch clamping in the brain slice. Pretreatment with flumazenil abolished the somnogenic effects and activation of the VLPO neurons by honokiol. Honokiol promoted NREM sleep by modulating the benzodiazepine site of the GABA(A) receptor, suggesting potential applications in the treatment of insomnia, especially for patients who experience difficulty in falling and staying asleep. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  14. Increased efficiency of the GABAA and GABAB receptor–mediated neurotransmission in the Ts65Dn mouse model of Down syndrome

    PubMed Central

    Kleschevnikov, Alexander M.; Belichenko, Pavel V.; Gall, Jessica; George, Lizzy; Nosheny, Rachel; Maloney, Michael T.; Salehi, Ahmad; Mobley, William C.

    2011-01-01

    Cognitive impairment in Down syndrome (DS) involves the hippocampus. In the Ts65Dn mouse model of DS, deficits in hippocampus-dependent learning and synaptic plasticity were linked to enhanced inhibition. However, the mechanistic basis of changes in inhibitory efficiency remains largely unexplored, and efficiency of the GABAergic synaptic neurotransmission has not yet been investigated in direct electrophysiological experiments. To investigate this important feature of neurobiology of DS, we examined synaptic and molecular properties of the GABAergic system in the dentate gyrus (DG) of adult Ts65Dn mice. Both GABAA and GABAB receptor-mediated components of evoked inhibitory postsynaptic currents (IPSCs) were significantly increased in Ts65Dn vs. control (2N) DG granule cells. These changes were unaccompanied by alterations in hippocampal levels of GABAA (α1, α2, α3, α5 and γ2) or GABAB (Gbr1a and Gbr1b) receptor subunits. Immunoreactivity for GAD65, a marker for GABAergic terminals, was also unchanged. In contrast, there was a marked change in functional parameters of GABAergic synapses. Paired stimulations showed reduced paired-pulse ratios of both GABAA and GABAB receptor-mediated IPSC components (IPSC2/IPSC1), suggesting an increase in presynaptic release of GABA. Consistent with increased gene dose, the level of the Kir3.2 subunit of potassium channels, effectors for postsynaptic GABAB receptors, was increased. This change was associated with enhanced postsynaptic GABAB/Kir3.2 signaling following application of the GABAB receptor agonist baclofen. Thus, both GABAA and GABAB receptor-mediated synaptic efficiency is increased in the Ts65Dn DG, thus likely contributing to deficient synaptic plasticity and poor learning in DS. PMID:22062771

  15. Effect of Jian-Pi-Zhi-Dong Decoction on striatal glutamate and γ-aminobutyric acid levels detected using microdialysis in a rat model of Tourette syndrome

    PubMed Central

    Zhang, Wen; Wei, Li; Yu, Wenjing; Cui, Xia; Liu, Xiaofang; Wang, Qian; Wang, Sumei

    2016-01-01

    Background Jian-Pi-Zhi-Dong Decoction (JPZDD) is a dedicated treatment of Tourette syndrome (TS). The balance of neurotransmitters in the cortico-striato-pallido-thalamo-cortical network is crucial to the occurrence of TS and related to its severity. This study evaluated the effect of JPZDD on glutamate (Glu) and γ-aminobutyric acid (GABA) and their receptors in a TS rat model. Materials and methods Rats were divided into four groups (n=12 each). TS was induced in three of the groups by injecting them with 3,3′-iminodipropionitrile for 7 consecutive days. Two model groups were treated with tiapride (Tia) or JPZDD, while the control and the remaining model group were gavaged with saline. Behavior was assessed by stereotypic score and autonomic activity. Striatal Glu and GABA contents were detected using microdialysis. Expressions of N-methyl-D-aspartate receptor 1 and GABAA receptor (GABAAR) were observed using Western blot and real-time polymerase chain reaction. Results Tia and JPZDD groups had decreased stereotypy compared with model rats; however, the JPZDD group showed a larger decrease in stereotypy than the Tia group at a 4-week time point. In a spontaneous activity test, the total distance of the JPZDD and Tia groups was significantly decreased compared with the model group. The Glu levels of the model group were higher than the control group and decreased with Tia or JPZDD treatment. The GABA level was higher in the model group than the control group. Expressions of GABAAR protein in the model group were higher than in the control group. Treatment with Tia or JPZDD reduced the expression of GABAAR protein. In the case of the mRNA expression, only Tia reduced the expression of N-methyl-D-aspartate receptor 1, compared with the model group. Conclusion JPZDD could alleviate impairments in behavior and dysfunctional signaling by downregulating GABAAR in the striatum. We suggest that this acts to maintain the balance of Glu and GABA. PMID:27279743

  16. Taurine-induced attenuation of MPP+ neurotoxicity in vitro: a possible role for the GABA(A) subclass of GABA receptors.

    PubMed

    O'Byrne, M B; Tipton, K F

    2000-05-01

    Taurine is a sulphur-containing beta-amino acid found in high (millimolar) concentrations in excitable tissues such as brain and heart. Its suggested roles include osmoregulator, thermoregulator, neuromodulator, and potential neurotransmitter. This amino acid has also been shown to be released in large concentrations during ischaemia and excitotoxin-induced neuronal damage. Here we report a protective effect of taurine against MPP(+)-induced neurotoxicity in coronal slices from rat brain. Significant protective effects were observed at taurine concentrations of 20 and 1 mM, suggesting a potential role for taurine in cases of neuronal insult. Studies with the synthetic taurine analogues taurine phosphonate, guanidinoethane sulphonate, and trimethyltaurine suggested the observed effect to be mediated via an extracellular mechanism. The use of GABA receptor ligands muscimol and bicuculline indicated the effect to be mediated through activation of GABA(A) receptors.

  17. Modulation of anxiety and fear via distinct intrahippocampal circuits

    PubMed Central

    Engin, Elif; Smith, Kiersten S; Gao, Yudong; Nagy, David; Foster, Rachel A; Tsvetkov, Evgeny; Keist, Ruth; Crestani, Florence; Fritschy, Jean-Marc; Bolshakov, Vadim Y; Hajos, Mihaly; Heldt, Scott A; Rudolph, Uwe

    2016-01-01

    Recent findings indicate a high level of specialization at the level of microcircuits and cell populations within brain structures with regards to the control of fear and anxiety. The hippocampus, however, has been treated as a unitary structure in anxiety and fear research despite mounting evidence that different hippocampal subregions have specialized roles in other cognitive domains. Using novel cell-type- and region-specific conditional knockouts of the GABAA receptor α2 subunit, we demonstrate that inhibition of the principal neurons of the dentate gyrus and CA3 via α2-containing GABAA receptors (α2GABAARs) is required to suppress anxiety, while the inhibition of CA1 pyramidal neurons is required to suppress fear responses. We further show that the diazepam-modulation of hippocampal theta activity shows certain parallels with our behavioral findings, suggesting a possible mechanism for the observed behavioral effects. Thus, our findings demonstrate a double dissociation in the regulation of anxiety versus fear by hippocampal microcircuitry. DOI: http://dx.doi.org/10.7554/eLife.14120.001 PMID:26971710

  18. Distinct kinetics of inhibitory currents in thalamocortical neurons that arise from dendritic or axonal origin.

    PubMed

    Yang, Sunggu; Govindaiah, Gubbi; Lee, Sang-Hun; Yang, Sungchil; Cox, Charles L

    2017-01-01

    Thalamocortical neurons in the dorsal lateral geniculate nucleus (dLGN) transfer visual information from retina to primary visual cortex. This information is modulated by inhibitory input arising from local interneurons and thalamic reticular nucleus (TRN) neurons, leading to alterations of receptive field properties of thalamocortical neurons. Local GABAergic interneurons provide two distinct synaptic outputs: axonal (F1 terminals) and dendritic (F2 terminals) onto dLGN thalamocortical neurons. By contrast, TRN neurons provide only axonal output (F1 terminals) onto dLGN thalamocortical neurons. It is unclear if GABAA receptor-mediated currents originating from F1 and F2 terminals have different characteristics. In the present study, we examined multiple characteristics (rise time, slope, halfwidth and decay τ) of GABAA receptor-mediated miniature inhibitory postsynaptic synaptic currents (mIPSCs) originating from F1 and F2 terminals. The mIPSCs arising from F2 terminals showed slower kinetics relative to those from F1 terminals. Such differential kinetics of GABAAR-mediated responses could be an important role in temporal coding of visual signals.

  19. Atomic force microscopy of ionotropic receptors bearing subunit-specific tags provides a method for determining receptor architecture

    NASA Astrophysics Data System (ADS)

    Neish, Calum S.; Martin, Ian L.; Davies, Martin; Henderson, Robert M.; Edwardson, J. Michael

    2003-08-01

    We have developed an atomic force microscopy (AFM)-based method for the determination of the subunit architecture of ionotropic receptors, and tested the method using the GABAA receptor as a model system. The most common form of the GABAA receptor probably consists of 2alpha1-, 2beta2- and 1gamma2-subunits. We show here that the arrangement of subunits around the central Cl- ion channel can be deduced by AFM of receptors tagged with subunit-specific antibodies. Transfection of cells with DNA encoding alpha1-, beta2- and gamma2-subunits resulted in the production of receptors containing all three subunits, as judged by both immunoblot analysis and the binding of [3H]-Ro15-1788, a specific radioligand for the GABAA receptor. A His6-tag on the alpha1-subunit was used to purify the receptor from membrane fractions of transfected cells. After incubation with anti-His6 immunoglobulin G, some receptors became tagged with either one or two antibody molecules. AFM analysis of complexes containing two bound antibodies showed that the most common angle between the two tags was 135°, close to the value of 144° expected if the two alpha-subunits are separated by a third subunit. This method is applicable to the complete elucidation of the subunit arrangement around the GABAA receptor rosette, and can also be applied to other ionotropic receptors.

  20. Involvement of prelimbic medial prefrontal cortex in panic-like elaborated defensive behaviour and innate fear-induced antinociception elicited by GABAA receptor blockade in the dorsomedial and ventromedial hypothalamic nuclei: role of the endocannabinoid CB1 receptor.

    PubMed

    Freitas, Renato Leonardo de; Salgado-Rohner, Carlos José; Hallak, Jaime Eduardo Cecílio; Crippa, José Alexandre de Souza; Coimbra, Norberto Cysne

    2013-09-01

    It has been shown that GABAA receptor blockade in the dorsomedial and ventromedial hypothalamic nuclei (DMH and VMH, respectively) induces elaborated defensive behavioural responses accompanied by antinociception, which has been utilized as an experimental model of panic attack. Furthermore, the prelimbic (PL) division of the medial prefrontal cortex (MPFC) has been related to emotional reactions and the processing of nociceptive information. The aim of the present study was to investigate the possible involvement of the PL cortex and the participation of local cannabinoid CB1 receptors in the elaboration of panic-like reactions and in innate fear-induced antinociception. Elaborated fear-induced responses were analysed during a 10-min period in an open-field test arena. Microinjection of the GABAA receptor antagonist bicuculline into the DMH/VMH evoked panic-like behaviour and fear-induced antinociception, which was decreased by microinjection of the non-selective synaptic contact blocker cobalt chloride in the PL cortex. Moreover, microinjection of AM251 (25, 100 or 400 pmol), an endocannabinoid CB1 receptor antagonist, into the PL cortex also attenuated the defensive behavioural responses and the antinociception that follows innate fear behaviour elaborated by DMH/VMH. These data suggest that the PL cortex plays an important role in the organization of elaborated forward escape behaviour and that this cortical area is also involved in the elaboration of innate fear-induced antinociception. Additionally, CB1 receptors in the PL cortex modulate both panic-like behaviours and fear-induced antinociception elicited by disinhibition of the DMH/VMH through microinjection of bicuculline.

  1. ( sup 3 H)RO15-4513 binding to cerebellar diazepam-sensitive and insensitive GABAA receptors is unchanged by one week of ethanol intake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, M.W.; Chen, J.P.; Wallis, C.

    1992-02-26

    ({sup 3}H)RO15-4513, a partial inverse agonist at GABAA receptors, binds to two sites in cerebellar membranes, one sensitive (DZ-S) and one insensitive (DZ-IS) to inhibition by diazepam. These binding sites may represent different isoforms of the GABAA receptor and may play a role in ethanol (EtOH) dependence. The authors tested the hypothesis that chronic intake of EtOH induces changes in the binding properties of one or both of these putative GABBA receptors. Rats were fed a liquid diet of 4.5% EtOH for 7 d, gavaged with a 3g/kg dose of EtOH, and then sacrificed after 2 h, 12 h, ormore » 4.5 d. Binding of ({sup 3}H)RO15-4513 to cerebellar membranes was performed in the absence or presence of 10{mu}M diazepam (DZ-IS binding); DZ-S binding was calculated as the difference between total and DZ-IS. Nonlinear regression analysis showed that each class of binding site fit a model of mass action binding to a single, noninteractive population of sites. No significant difference was observed between any of the treatment groups in the apparent affinity (Kd) for ({sup 3}H)RO15-4513 at total, DZ-S, or DZ-IS sites following chronic EtOH intake or withdrawal. In addition, no significant difference was observed in the apparent number of DZ-S or DZ-IS binding sites or the ratio of DZ-S to DZ-IS.« less

  2. RDX Binds to the GABAA Receptor–Convulsant Site and Blocks GABAA Receptor–Mediated Currents in the Amygdala: A Mechanism for RDX-Induced Seizures

    PubMed Central

    Williams, Larry R.; Aroniadou-Anderjaska, Vassiliki; Qashu, Felicia; Finne, Huckelberry; Pidoplichko, Volodymyr; Bannon, Desmond I.; Braga, Maria F. M.

    2011-01-01

    Background Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a high-energy, trinitrated cyclic compound that has been used worldwide since World War II as an explosive in both military and civilian applications. RDX can be released in the environment by way of waste streams generated during the manufacture, use, and disposal of RDX-containing munitions and can leach into groundwater from unexploded munitions found on training ranges. For > 60 years, it has been known that exposure to high doses of RDX causes generalized seizures, but the mechanism has remained unknown. Objective We investigated the mechanism by which RDX induces seizures. Methods and results By screening the affinity of RDX for a number of neurotransmitter receptors, we found that RDX binds exclusively to the picrotoxin convulsant site of the γ-aminobutyric acid type A (GABAA) ionophore. Whole-cell in vitro recordings in the rat basolateral amygdala (BLA) showed that RDX reduces the frequency and amplitude of spontaneous GABAA receptor–mediated inhibitory postsynaptic currents and the amplitude of GABA-evoked postsynaptic currents. In extracellular field recordings from the BLA, RDX induced prolonged, seizure-like neuronal discharges. Conclusions These results suggest that binding to the GABAA receptor convulsant site is the primary mechanism of seizure induction by RDX and that reduction of GABAergic inhibitory transmission in the amygdala is involved in the generation of RDX-induced seizures. Knowledge of the molecular site and the mechanism of RDX action with respect to seizure induction can guide therapeutic strategies, allow more accurate development of safe thresholds for exposures, and help prevent the development of new explosives or other munitions that could pose similar health risks. PMID:21362589

  3. Lotus Leaf Alkaloid Extract Displays Sedative-Hypnotic and Anxiolytic Effects through GABAA Receptor.

    PubMed

    Yan, Ming-Zhu; Chang, Qi; Zhong, Yu; Xiao, Bing-Xin; Feng, Li; Cao, Fang-Rui; Pan, Rei-Le; Zhang, Ze-Sheng; Liao, Yong-Hong; Liu, Xin-Min

    2015-10-28

    Lotus leaves have been used traditionally as both food and herbal medicine in Asia. Open-field, sodium pentobarbital-induced sleeping and light/dark box tests were used to evaluate sedative-hypnotic and anxiolytic effects of the total alkaloids (TA) extracted from the herb, and the neurotransmitter levels in the brain were determined by ultrafast liquid chromatography-tandem mass spectrometry. The effects of picrotoxin, flumazenil, and bicuculline on the hypnotic activity of TA, as well as the influence of TA on Cl(-) influx in cerebellar granule cells, were also investigated. TA showed a sedative-hypnotic effect by increasing the brain level of γ-aminobutyric acid (GABA), and the hypnotic effect could be blocked by picrotoxin and bicuculline, but could not be antagonized by flumazenil. Additionally, TA could increase Cl(-) influx in cerebellar granule cells. TA at 20 mg/kg induced anxiolytic-like effects and significantly increased the concentrations of serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), and dopamine (DA). These data demonstrated that TA exerts sedative-hypnotic and anxiolytic effects via binding to the GABAA receptor and activating the monoaminergic system.

  4. Synthesis and pharmacological evaluation of neurosteroid photoaffinity ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savechenkov, Pavel Y.; Chiara, David C.; Desai, Rooma

    2017-08-01

    Neuroactive steroids are potent positive allosteric modulators of GABAA receptors (GABAAR), but the locations of their GABAAR binding sites remain poorly defined. To discover these sites, we synthesized two photoreactive analogs of alphaxalone, an anesthetic neurosteroid targeting GABAAR, 11β-(4-azido-2,3,5,6-tetrafluorobenzoyloxy)allopregnanolone, (F4N3Bzoxy-AP) and 11-aziallopregnanolone (11-AziAP). Both photoprobes acted with equal or higher potency than alphaxalone as general anesthetics and potentiators of GABAAR responses, left-shifting the GABA concentration – response curve for human α1β3γ2 GABAARs expressed in Xenopus oocytes, and enhancing [3H]muscimol binding to α1β3γ2 GABAARs expressed in HEK293 cells. With EC50 of 110 nM, 11-AziAP is one the most potent general anestheticsmore » reported. [3H]F4N3Bzoxy-AP and [3H]11-AziAP, at anesthetic concentrations, photoincorporated into α- and β-subunits of purified α1β3γ2 GABAARs, but labeling at the subunit level was not inhibited by alphaxalone (30 μM). The enhancement of photolabeling by 3H-azietomidate and 3H-mTFD-MPAB in the presence of either of the two steroid photoprobes indicates the neurosteroid binding site is different from, but allosterically related to, the etomidate and barbiturate sites. Our observations are consistent with two hypotheses. First, F4N3Bzoxy-AP and 11-aziAP bind to a high affinity site in such a pose that the 11-photoactivatable moiety, that is rigidly attached to the steroid backbone, points away from the protein. Second, F4N3Bzoxy-AP, 11-aziAP and other steroid anesthetics, which are present at very high concentration at the lipid-protein interface due to their high lipophilicity, act via low affinity sites, as proposed by Akk et al. (Psychoneuroendocrinology 2009, 34S1, S59-S66).« less

  5. Reduced Chrna7 expression in C3H mice is associated with increases in hippocampal parvalbumin and glutamate decarboxylase-67 (GAD67) as well as altered levels of GABAA receptor subunits

    PubMed Central

    Bates, Ryan C.; Stith, Bradley J.; Stevens, Karen E.; Adams, Catherine E.

    2014-01-01

    Decreased expression of CHRNA7, the gene encoding the α7* subtype of nicotinic receptor, may contribute to the cognitive dysfunction observed in schizophrenia by disrupting the inhibitory/excitatory balance in the hippocampus. C3H mice with reduced Chrna7 expression have significant reductions in hippocampal α7* receptor density, deficits in hippocampal auditory gating, increased hippocampal activity as well as significant decreases in hippocampal glutamate decarboxylase-65 (GAD65) and γ-aminobutyric acid-A (GABAA) receptor levels. The current study investigated whether altered Chrna7 expression is associated with changes in the levels of parvalbumin, GAD67 and/or GABAA receptor subunits in hippocampus from male and female C3H Chrna7 wildtype, C3H Chrna7 heterozygous and C3H Chrna7 knockout mice using quantitative western immunoblotting. Reduced Chrna7 expression was associated with significant increases in hippocampal parvalbumin and GAD67 and with complex alterations in GABAA receptor subunits. A decrease in α3 subunit protein was seen in both female C3H Chrna7 Het and KO mice while a decrease in α4 subunit protein was also detected in C3H Chrna7 KO mice with no sex difference. In contrast, an increase in δ subunit protein was observed in C3H Chrna7 Het mice while a decrease in this subunit was observed in C3H Chrna7 KO mice, with δ subunit protein levels being greater in males than in females. Finally, an increase in γ2 subunit protein was found in C3H Chrna7 KO mice with the levels of this subunit again being greater in males than in females. The increases in hippocampal parvalbumin and GAD67 observed in C3H Chrna7 mice are contrary to reports of reductions in these proteins in postmortem hippocampus from schizophrenic individuals. We hypothesize that the disparate results may occur because of the influence of factors other than CHRNA7 that have been found to be abnormal in schizophrenia. PMID:24836856

  6. Activation of endogenous GABAA channels on airway smooth muscle potentiates isoproterenol-mediated relaxation.

    PubMed

    Gallos, George; Gleason, Neil R; Zhang, Yi; Pak, Sang-Woo; Sonett, J R; Yang, Jay; Emala, Charles W

    2008-12-01

    Reactive airway disease predisposes patients to episodes of acute smooth muscle mediated bronchoconstriction. We have for the first time recently demonstrated the expression and function of endogenous ionotropic GABA(A) channels on airway smooth muscle cells. We questioned whether endogenous GABA(A) channels on airway smooth muscle could augment beta-agonist-mediated relaxation. Guinea pig tracheal rings or human bronchial airway smooth muscles were equilibrated in organ baths with continuous digital tension recordings. After pretreatment with or without the selective GABA(A) antagonist gabazine (100 muM), airway muscle was contracted with acetylcholine or beta-ala neurokinin A, followed by relaxation induced by cumulatively increasing concentrations of isoproterenol (1 nM to 1 muM) in the absence or presence of the selective GABA(A) agonist muscimol (10-100 muM). In separate experiments, guinea pig tracheal rings were pretreated with the large conductance K(Ca) channel blocker iberiotoxin (100 nM) after an EC(50) contraction with acetylcholine but before cumulatively increasing concentrations of isoproterenol (1 nM to 1 uM) in the absence or presence of muscimol (100 uM). GABA(A) activation potentiated the relaxant effects of isoproterenol after an acetylcholine or tachykinin-induced contraction in guinea pig tracheal rings or an acetylcholine-induced contraction in human endobronchial smooth muscle. This muscimol-induced potentiation of relaxation was abolished by gabazine pretreatment but persisted after blockade of the maxi K(Ca) channel. Selective activation of endogenous GABA(A) receptors significantly augments beta-agonist-mediated relaxation of guinea pig and human airway smooth muscle, which may have important therapeutic implications for patients in severe bronchospasm.

  7. A tryptic hydrolysate from bovine milk αs1-casein enhances pentobarbital-induced sleep in mice via the GABAA receptor.

    PubMed

    Dela Peña, Irene Joy I; Kim, Hee Jin; de la Peña, June Bryan; Kim, Mikyung; Botanas, Chrislean Jun; You, Kyung Yi; Woo, Taeseon; Lee, Yong Soo; Jung, Jae-Chul; Kim, Kyung-Mi; Cheong, Jae Hoon

    2016-10-15

    Studies have shown that enzymatic hydrolysis of casein, the primary protein component of cow's milk, produces peptides with various biological activities, and some of these peptides may have sleep-promoting effects. In the present study, we evaluated the sedative and sleep-promoting effects of bovine αS1-casein tryptic hydrolysate (CH), containing a decapeptide αS1-casein known as alpha-casozepine. CH was orally administered to ICR mice at various concentrations (75, 150, 300, or 500mg/kg). An hour after administration, assessment of its sedative (open-field and rota-rod tests) and sleep-potentiating effects (pentobarbital-induced sleeping test and EEG monitoring) were conducted. Although a trend can be observed, CH treatment did not significantly alter the spontaneous locomotor activity and motor function of mice in the open-field and rota-rod tests. On the other hand, CH (150mg/kg, respectively) enhanced the sleep induced by pentobarbital sodium in mice. It also promoted slow-wave (delta) EEG activity in rats; a pattern indicative of sleep or relaxation. These behavioral results indicate that CH has sleep-promoting effects, but no or has minimal sedative effects. To elucidate the probable mechanism behind the effects of CH, we examined its action on intracellular chloride ion influx in cultured human neuroblastoma cells. CH dose-dependently increased chloride ion influx, which was blocked by co-administration of bicuculline, a competitive GABAA receptor antagonist. Taken together, the results of the present study suggest that CH has sleep-promoting properties which are probably mediated through the GABAA receptor-chloride ion channel complex. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. HCN1 Channels as Targets for Anesthetic and Nonanesthetic Propofol Analogs in the Amelioration of Mechanical and Thermal Hyperalgesia in a Mouse Model of Neuropathic Pain

    PubMed Central

    Tibbs, Gareth R.; Rowley, Thomas J.; Sanford, R. Lea; Herold, Karl F.; Proekt, Alex; Hemmings, Hugh C.; Andersen, Olaf S.; Flood, Pamela D.

    2013-01-01

    Chronic pain after peripheral nerve injury is associated with afferent hyperexcitability and upregulation of hyperpolarization-activated, cyclic nucleotide-regulated (HCN)–mediated IH pacemaker currents in sensory neurons. HCN channels thus constitute an attractive target for treating chronic pain. HCN channels are ubiquitously expressed; analgesics targeting HCN1-rich cells in the peripheral nervous system must spare the cardiac pacemaker current (carried mostly by HCN2 and HCN4) and the central nervous system (where all four isoforms are expressed). The alkylphenol general anesthetic propofol (2,6-di-iso-propylphenol) selectively inhibits HCN1 channels versus HCN2–HCN4 and exhibits a modest pharmacokinetic preference for the periphery. Consequently, we hypothesized that propofol, and congeners, should be antihyperalgesic. Alkyl-substituted propofol analogs have different rank-order potencies with respect to HCN1 inhibition, GABAA receptor (GABAA-R) potentiation, and general anesthesia. Thus, 2,6- and 2,4-di-tertbutylphenol (2,6- and 2,4-DTBP, respectively) are more potent HCN1 antagonists than propofol, whereas 2,6- and 2,4-di-sec-butylphenol (2,6- and 2,4-DSBP, respectively) are less potent. In contrast, DSBPs, but not DTBPs, enhance GABAA-R function and are general anesthetics. 2,6-DTBP retained propofol’s selectivity for HCN1 over HCN2–HCN4. In a peripheral nerve ligation model of neuropathic pain, 2,6-DTBP and subhypnotic propofol are antihyperalgesic. The findings are consistent with these alkylphenols exerting analgesia via non-GABAA-R targets and suggest that antagonism of central HCN1 channels may be of limited importance to general anesthesia. Alkylphenols are hydrophobic, and thus potential modifiers of lipid bilayers, but their effects on HCN channels are due to direct drug-channel interactions because they have little bilayer-modifying effect at therapeutic concentrations. The alkylphenol antihyperalgesic target may be HCN1 channels in the

  9. The tuberal lateral hypothalamus is a major target for GABAA--but not GABAB-mediated control of food intake.

    PubMed

    Turenius, Christine I; Charles, Jonathan R; Tsai, Donna H; Ebersole, Priscilla L; Htut, Myat H; Ngo, Phuong T; Lara, Raul N; Stanley, B Glenn

    2009-08-04

    The lateral hypothalamus (LH) is a site of integration for control mechanisms of feeding behavior as it has extensive reciprocal connections with multiple intrahypothalamic and extrahypothalamic brain areas. Evidence suggests that blockade of ionotropric gamma-aminobutyric acid (GABA) receptors in the LH elicits eating in satiated rats. To determine whether this GABA(A) receptor antagonist effect is specific to the LH, the antagonist picrotoxin was injected into one of six nearby sites and food intake was measured. Picrotoxin at 133 pmol elicited eating in the LH, but not in surrounding sites (thalamus, lateral preoptic area, ventral tegmental area, dorsomedial hypothalamus, and entopeduncular nucleus). More specifically, picrotoxin injected into the tuberal LH (tLH) elicited eating, but was ineffective when injected into the anterior or posterior LH. We also investigated whether GABA(B) receptors in the LH participated in the control of food intake and found that neither blockade nor activation of these receptors under multiple conditions changed food intake. Collectively, our findings suggest that GABA(A) but not GABA(B) receptors in the tLH act to suppress feeding behavior.

  10. Synthesis and biological evaluation of novel 2,3-disubstituted benzofuran analogues of GABA as neurotropic agents.

    PubMed

    Coaviche-Yoval, Arturo; Luna, Hector; Tovar-Miranda, Ricardo; Soriano-Ursua, Marvin Antonio; Trujillo-Ferrara, Jose G

    2018-05-23

    Benzofurans are heterocyclic compounds with neurotropic activity. Some have been developed for the treatment of acute and degenerative neuronal injuries. To evaluate the in silico binding of some promising benzofurans on the GABA receptors, and the in vivo neurotropic activity of benzofuran analogues (BZF 6-10) of gamma-aminobutyric acid (GABA) on a seizure model. The ligands with the best physicochemical attributes were docked on two GABA receptors (the alpha-1 subunit of GABAA-R and GBR1 subunit of GABAB-R). Selected benzofuran derivatives were synthesized by a multistep procedure and characterized. To examine the neurotropic effects, mice were pretreated with different concentrations of the compounds prior to PTZ- or 4-AP-induced seizures. We assessed acute toxicity, motor behavior, and the effects on seizures. The tested ligands that complied with Lipinski's rule of five were tested in silico with GABAA-R (ΔG = -5.51 to -5.84 kcal/mol) at the allosteric site for benzodiazepines. They bound to a similar cluster of residues as the reference compound (gaboxadol, ΔG = -5.51 kcal/mol). Synthesis was achieved with good overall yields (42-9.7%). Two compounds were selected for biological tests (BZF-7 and rac-BZF-10) on a mouse model of seizures, induced by pentylenetetrazol (PTZ) or 4-aminopyridine (4-AP). PTZ-induced seizures are associated with GABA receptors, and those 4-AP-induced with the blockage of the delayed rectifier-type potassium channel, which promotes the release of the NMDA-sensitive glutamatergic ionotropic receptor and other neurotransmitters. The biological assays demonstrated that BZF-7 and rac-BZF-10 do not protect against seizures. Indeed, BZF-7 increased the number of PTZ-induced seizures and decreased latency time. The 4-AP model apparently showed a potentiation of seizure effects after administration of the BZF-analogues, evidenced by the incidence and severity of the seizures and reduced latency time. The results suggest that the test

  11. Voluntary Ethanol Consumption Induced by Social Isolation Reverses the Increase of α4/δ GABAA Receptor Gene Expression and Function in the Hippocampus of C57BL/6J Mice

    PubMed Central

    Sanna, Enrico; Talani, Giuseppe; Obili, Nicola; Mascia, Maria Paola; Mostallino, Maria Cristina; Secci, Pietro Paolo; Pisu, Maria Giuseppina; Biggio, Francesca; Utzeri, Cinzia; Olla, Pierluigi; Biggio, Giovanni; Follesa, Paolo

    2011-01-01

    Post-weaning social isolation (SI) is a model of prolonged mild stress characterized by behavioral and neurochemical alterations. We used SI in C57BL/6J mice to investigate the effects of ethanol (EtOH) in the free-choice drinking paradigm on gene expression and function of γ-aminobutyric acid type A receptors (GABAARs) and the role of neuroactive steroids in the actions of EtOH in the hippocampus. SI stress induced a marked reduction in hippocampal 3α-hydroxy-5α-pregnan-20-one (3α,5α-TH PROG) and was associated with molecular and functional changes of the GABAAR. The gene expression of the α4 and δ subunits was increased in the hippocampus of SI C57BL/6J mice; the expression of the γ2 subunit was decreased whereas that of the α1 did not change. Patch-clamp recordings in dentate gyrus (DG) granule cells obtained from SI C57BL/6J mice revealed a greater enhancement of tonic currents induced by α-(4,5,6,7-tetrahydroisoxazolo[5,4-c] pyridin-3-ol (THIP) compared to that in control C57BL/6J mice. These neurochemical, molecular and functional changes observed in SI C57BL/6J mice were associated with an increased EtOH intake and EtOH preference. Nevertheless, the increase in EtOH consumption did not restore the reduction in hippocampal 3α,5α-TH PROG induced by SI. EtOH self-administration blocked the changes in gene expression of the α4 subunit but not those of the δ and γ2 subunits induced by SI. In addition, EtOH self-administration did not block the SI-induced changes in GABAAR-mediated tonic inhibition in hippocampal granule cells but increased the frequency of basal GABAergic sIPSCs in DG granule cells. We conclude that self-administration of EtOH selectively abolishes the increase of α4 subunit but not other neurochemical, molecular, and functional modifications induced by SI prolonged mild stress. PMID:21347217

  12. [Post partum depression: future perspectives].

    PubMed

    Pinna, Martina; Zompo, Maria Del

    2012-01-01

    Post partum depression (PPD) is a psychiatric illness approximately affecting 10-20% of women after childbirth. The objective of this work is to update our knowledge of PPD giving particular emphasis to etiopathogenetic hypotheses. An accurate search of the literature on this topic was conducted using free dedicated websites such as PubMed. The most recent studies reveal that PPD is a complex disease, whose pathogenesis is not yet clarified, determined by a mix of genetic, biological and environmental factors. Genetic studies have shown a possible involvement of polymorphisms of genes coding for serotonin transporter, 5HT2A and 5HT2C receptors, HMCN1 and METTL13 genes, D2 receptor and GABAA receptor (GABAAR). The involvement of these systems might provide an explanation of the relations among genetic alterations, hormonal fluctuations in the post partum, changes in neurotransmission and mood fluctuations typical of PPD. The results obtained so far are not exhaustive. However, there is a substantial evidence showing that patients with PPD may have a high genetic vulnerability, although we have not been able yet to pinpoint a specific biological marker of the disease. Recent research is focusing on the δ subunit of GABAAR and the possible role of selective agonists of this subunit, such as gaboxadol, in the treatment of PPD.

  13. An Allosteric Coagonist Model for Propofol Effects on α1β2γ2L γ-Aminobutyric Acid Type A Receptors

    PubMed Central

    Ruesch, Dirk; Neumann, Elena; Wulf, Hinnerk; Forman, Stuart A.

    2011-01-01

    Background Propofol produces its major actions via γ-aminobutyric acid type A (GABAA) receptors. At low concentrations, propofol enhances agonist-stimulated GABAA receptor activity, and high propofol concentrations directly activate receptors. Etomidate produces similar effects, and there is convincing evidence that a single class of etomidate sites mediate both agonist modulation and direct GABAA receptor activation. It is unknown if the propofol binding site(s) on GABAA receptors that modulate agonist-induced activity also mediate direct activation. Methods GABAA α1β2γ2L receptors were heterologously expressed in Xenopus oocytes and activity was quantified using voltage clamp electrophysiology. We tested whether propofol and etomidate display the same linkage between agonist modulation and direct activation of GABAA receptors by identifying equi-efficacious drug solutions for direct activation. We then determined whether these drug solutions produce equal modulation of GABA-induced receptor activity. We also measured propofol-dependent direct activation and modulation of low GABA responses. Allosteric coagonist models similar to that established for etomidate, but with variable numbers of propofol sites, were fitted to combined data. Results Solutions of 19 μM propofol and 10 μM etomidate were found to equally activate GABAA receptors. These two drug solutions also produced indistinguishable modulation of GABA-induced receptor activity. Combined electrophysiological data behaved in a manner consistent with allosteric co-agonist models with more than one propofol site. The best fit was observed when the model assumed three equivalent propofol sites. Conclusions Our results support the hypothesis that propofol, like etomidate, acts at GABAA receptor sites mediating both GABA modulation and direct activation. PMID:22104494

  14. GABAA-benzodiazepine receptors in the dorsomedial (Dm) telencephalon modulate restraint-induced antinociception in the fish Leporinus macrocephalus.

    PubMed

    Wolkers, Carla Patricia Bejo; Barbosa Junior, Augusto; Menescal-de-Oliveira, Leda; Hoffmann, Anette

    2015-08-01

    The possibility that fish experience pain has been denied based on the absence of the neural substrates to support this "experience". In this context, the identification of brain regions involved in nociception modulation could provide important insights regarding the processing of nociceptive information in fish. Our study evaluated the participation of the GABAA-benzodiazepine receptor in the dorsomedial (Dm) telencephalon in restraint-induced antinociception in the fish Leporinus macrocephalus through the microinjection of the anxiolytic drug midazolam. The microinjection of midazolam in the Dm did not alter the nocifensive response; however, this drug did block the inhibition of the nocifensive response to formaldehyde promoted by restraint stress. The fish that received midazolam (40nmol) microinjection prior to restraint (3 or 5min), followed by subcutaneous injection with formaldehyde presented a higher distance traveled than the fish that received saline microinjection. This effect might reflect the specific action of midazolam on benzodiazepine receptors in the Dm telencephalon, as pre-treatment with flumazenil, a benzodiazepine receptor antagonist, inhibited the effects of this drug. In the present study, we present the first evidence demonstrating a role for the dorsomedial telencephalic region in the modulation of stress-induced antinociception in fish, revealing new perspectives in the understanding of nociceptive information processing in this group. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Synaptic pruning in the female hippocampus is triggered at puberty by extrasynaptic GABAA receptors on dendritic spines

    PubMed Central

    Afroz, Sonia; Parato, Julie; Shen, Hui; Smith, Sheryl Sue

    2016-01-01

    Adolescent synaptic pruning is thought to enable optimal cognition because it is disrupted in certain neuropathologies, yet the initiator of this process is unknown. One factor not yet considered is the α4βδ GABAA receptor (GABAR), an extrasynaptic inhibitory receptor which first emerges on dendritic spines at puberty in female mice. Here we show that α4βδ GABARs trigger adolescent pruning. Spine density of CA1 hippocampal pyramidal cells decreased by half post-pubertally in female wild-type but not α4 KO mice. This effect was associated with decreased expression of kalirin-7 (Kal7), a spine protein which controls actin cytoskeleton remodeling. Kal7 decreased at puberty as a result of reduced NMDAR activation due to α4βδ-mediated inhibition. In the absence of this inhibition, Kal7 expression was unchanged at puberty. In the unpruned condition, spatial re-learning was impaired. These data suggest that pubertal pruning requires α4βδ GABARs. In their absence, pruning is prevented and cognition is not optimal. DOI: http://dx.doi.org/10.7554/eLife.15106.001 PMID:27136678

  16. Efficacy of Synaptic Inhibition Depends on Multiple, Dynamically Interacting Mechanisms Implicated in Chloride Homeostasis

    PubMed Central

    Doyon, Nicolas; Prescott, Steven A.; Castonguay, Annie; Godin, Antoine G.; Kröger, Helmut; De Koninck, Yves

    2011-01-01

    Chloride homeostasis is a critical determinant of the strength and robustness of inhibition mediated by GABAA receptors (GABAARs). The impact of changes in steady state Cl− gradient is relatively straightforward to understand, but how dynamic interplay between Cl− influx, diffusion, extrusion and interaction with other ion species affects synaptic signaling remains uncertain. Here we used electrodiffusion modeling to investigate the nonlinear interactions between these processes. Results demonstrate that diffusion is crucial for redistributing intracellular Cl− load on a fast time scale, whereas Cl−extrusion controls steady state levels. Interaction between diffusion and extrusion can result in a somato-dendritic Cl− gradient even when KCC2 is distributed uniformly across the cell. Reducing KCC2 activity led to decreased efficacy of GABAAR-mediated inhibition, but increasing GABAAR input failed to fully compensate for this form of disinhibition because of activity-dependent accumulation of Cl−. Furthermore, if spiking persisted despite the presence of GABAAR input, Cl− accumulation became accelerated because of the large Cl− driving force that occurs during spikes. The resulting positive feedback loop caused catastrophic failure of inhibition. Simulations also revealed other feedback loops, such as competition between Cl− and pH regulation. Several model predictions were tested and confirmed by [Cl−]i imaging experiments. Our study has thus uncovered how Cl− regulation depends on a multiplicity of dynamically interacting mechanisms. Furthermore, the model revealed that enhancing KCC2 activity beyond normal levels did not negatively impact firing frequency or cause overt extracellular K− accumulation, demonstrating that enhancing KCC2 activity is a valid strategy for therapeutic intervention. PMID:21931544

  17. The GABAA Receptor RDL Acts in Peptidergic PDF Neurons to Promote Sleep in Drosophila

    PubMed Central

    Chung, Brian Y.; Kilman, Valerie L.; Keath, J. Russel; Pitman, Jena L.; Allada, Ravi

    2011-01-01

    SUMMARY Sleep is regulated by a circadian clock that largely times sleep and wake to occur at specific times of day and a sleep homeostat that drives sleep as a function of duration of prior wakefulness[1]. To better understand the role of the circadian clock in sleep regulation, we have been using the fruit fly Drosophila melanogaster[2]. Fruit flies display all of the core behavioral features of sleep including relative immobility, elevated arousal thresholds and homeostatic regulation[2, 3]. We assessed sleep-wake modulation by a core set of 20 circadian pacemaker neurons that express the neuropeptide PDF. We find that PDF neuron ablation, loss of pdf or its receptor pdfr results in increased sleep during the late night in light:dark (LD) conditions and more prominent increases on the first subjective day of constant darkness (DD). Flies deploy similar genetic and neurotransmitter pathways to regulate sleep as their mammalian counterparts, including GABA[4]. We find that RNAi-mediated knockdown of the GABAA receptor gene, Resistant to dieldrin (Rdl), in PDF neurons, reduced sleep consistent with a role for GABA in inhibiting PDF neuron function. Patch clamp electrophysiology reveals GABA-activated picrotoxin-sensitive chloride currents on PDF+ neurons. In addition, RDL is detectable most strongly on the large subset of PDF+ pacemaker neurons. These results suggest that GABAergic inhibition of arousal promoting PDF neurons is an important mode of sleep-wake regulation in vivo. PMID:19230663

  18. The effects of GABAA and NMDA receptors in the shell-accumbens on spatial memory of METH-treated rats.

    PubMed

    Heysieattalab, Soomaayeh; Naghdi, Nasser; Zarrindast, Mohammad-Reza; Haghparast, Abbas; Mehr, Shahram Ejtemaei; Khoshbouei, Habibeh

    2016-03-01

    Methamphetamine (METH) is a highly addictive and neurotoxic psychostimulant. Its use in humans is often associated with neurocognitive impairment and deficits in hippocampal plasticity. Striatal dopamine system is one of the main targets of METH. The dopamine neurons in the striatum directly or indirectly regulate the GABA and glutamatergic signaling in this region and thus their outputs. This is consistent with previous reports showing modification of neuronal activity in the striatum modulates the expression of hippocampal LTP and hippocampal-dependent memory tasks such as Morris water maze (MWM). Therefore, reversing or preventing METH-induced synaptic modifications via pharmacological manipulations of the shell-nucleus accumbens (shell-NAc) may introduce a viable therapeutic target to attenuate the METH-induced memory deficits. This study is designed to investigate the role of intra-shell NAc manipulation of GABAA and NMDA receptors and their interaction with METH on memory performance in MWM task. Pharmacological manipulations were performed in rats received METH or saline. We found systemic saline plus intra-shell NAc infusions of muscimol dose-dependently impaired performance, while bicuculline had no effect. Surprisingly, the intra-NAc infusions of 0.005μg/rat muscimol that has no effect on memory performance (ineffective dose) prevented METH-induced memory impairment. In the contrary, the intra-NAc infusions of bicuculline (0.2μg/rat) increased METH-induced memory impairment. However, pre-training intra-NAc infusions of D-AP5 dose-dependently impaired performance, while NMDA had no effect in rats received systemic saline (control group). The intra-NAc infusions with an ineffective dose of NMDA (0.1μg/rat) increased METH-induced memory impairment. Furthermore, intra-NAc infusions of D-AP5 with an ineffective dose (0.1μg/rat) prevented METH-induced memory impairment. Our result is consistent with the interpretation that METH-mediated learning deficit

  19. Phosphatase inhibitors remove the run-down of γ-aminobutyric acid type A receptors in the human epileptic brain

    PubMed Central

    Palma, E.; Ragozzino, D. A.; Di Angelantonio, S.; Spinelli, G.; Trettel, F.; Martinez-Torres, A.; Torchia, G.; Arcella, A.; Di Gennaro, G.; Quarato, P. P.; Esposito, V.; Cantore, G.; Miledi, R.; Eusebi, F.

    2004-01-01

    The properties of γ-aminobutyric acid (GABA) type A receptors (GABAA receptors) microtransplanted from the human epileptic brain to the plasma membrane of Xenopus oocytes were compared with those recorded directly from neurons, or glial cells, in human brains slices. Cell membranes isolated from brain specimens, surgically obtained from six patients afflicted with drug-resistant temporal lobe epilepsy (TLE) were injected into frog oocytes. Within a few hours, these oocytes acquired GABAA receptors that generated GABA currents with an unusual run-down, which was inhibited by orthovanadate and okadaic acid. In contrast, receptors derived from membranes of a nonepileptic hippocampal uncus, membranes from mouse brain, or recombinant rat α1β2γ2-GABA receptors exhibited a much less pronounced GABA-current run-down. Moreover, the GABAA receptors of pyramidal neurons in temporal neocortex slices from the same six epileptic patients exhibited a stronger run-down than the receptors of rat pyramidal neurons. Interestingly, the GABAA receptors of neighboring glial cells remained substantially stable after repetitive activation. Therefore, the excessive GABA-current run-down observed in the membrane-injected oocytes recapitulates essentially what occurs in neurons, rather than in glial cells. Quantitative RT-PCR analyses from the same TLE neocortex specimens revealed that GABAA-receptor β1, β2, β3, and γ2 subunit mRNAs were significantly overexpressed (8- to 33-fold) compared with control autopsy tissues. Our results suggest that an abnormal GABA-receptor subunit transcription in the TLE brain leads to the expression of run-down-enhanced GABAA receptors. Blockage of phosphatases stabilizes the TLE GABAA receptors and strengthens GABAergic inhibition. It may be that this process can be targeted to develop new treatments for intractable epilepsy. PMID:15218107

  20. A new chromanone derivative isolated from Hypericum lissophloeus (Hypericaceae) potentiates GABAA receptor currents in a subunit specific fashion.

    PubMed

    Crockett, Sara; Baur, Roland; Kunert, Olaf; Belaj, Ferdinand; Sigel, Erwin

    2016-02-15

    A phytochemical investigation of the lipophilic extract of Hypericum lissophloeus (smoothbark St. John's wort, Hypericaceae) was conducted, resulting in the isolation and identification of a new chromanone derivative: 5,7-dihydroxy-2,3-dimethyl-6-(3-methyl-but-2-enyl)-chroman-4-one (1). This compound was demonstrated to act as a potent stimulator of currents elicited by GABA in recombinant α1β2γ2 GABAA receptors, with a half-maximal potentiation observed at a concentration of about 4μM and a maximal potentiation of >4000%. Significant potentiation was already evident at a concentration as low as 0.1μM. Extent of potentiation strongly depends on the type of α subunit, the type of β subunit and the presence of the γ subunit. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. GABAA overactivation potentiates the effects of NMDA blockade during the brain growth spurt in eliciting locomotor hyperactivity in juvenile mice.

    PubMed

    Oliveira-Pinto, Juliana; Paes-Branco, Danielle; Cristina-Rodrigues, Fabiana; Krahe, Thomas E; Manhães, Alex C; Abreu-Villaça, Yael; Filgueiras, Cláudio C

    2015-01-01

    Both NMDA receptor blockade and GABAA receptor overactivation during the brain growth spurt may contribute to the hyperactivity phenotype reminiscent of attention-deficit/hyperactivity disorder. Here, we evaluated the effects of exposure to MK801 (a NMDA antagonist) and/or to muscimol (a GABAA agonist) during the brain growth spurt on locomotor activity of juvenile Swiss mice. This study was carried out in two separate experiments. In the first experiment, pups received a single i.p. injection of either saline solution (SAL), MK801 (MK, 0.1, 0.3 or 0.5 mg/kg) or muscimol (MU, 0.02, 0.1 or 0.5 mg/kg) at the second postnatal day (PND2), and PNDs 4, 6 and 8. In the second experiment, we investigated the effects of a combined injection of MK (0.1 mg/kg) and MU (doses: 0.02, 0.1 or 0.5 mg/kg) following the same injection schedule of the first experiment. In both experiments, locomotor activity was assessed for 15 min at PND25. While MK promoted a dose-dependent increase in locomotor activity, exposure to MU failed to elicit significant effects. The combined exposure to the highest dose of MU and the lowest dose of MK induced marked hyperactivity. Moreover, the combination of the low dose of MK and the high dose of MU resulted in a reduced activity in the center of the open field, suggesting an increased anxiety-like behavior. These findings suggest that, during the brain growth spurt, the blockade of NMDA receptors induces juvenile locomotor hyperactivity whereas hyperactivation of GABAA receptors does not. However, GABAA overactivation during this period potentiates the effects of NMDA blockade in inducing locomotor hyperactivity. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Bidirectional control of spike timing by GABA(A) receptor-mediated inhibition during theta oscillation in CA1 pyramidal neurons.

    PubMed

    Kwag, Jeehyun; Paulsen, Ole

    2009-08-26

    Precisely controlled spike times relative to theta-frequency network oscillations play an important role in hippocampal memory processing. Here we study how inhibitory synaptic input during theta oscillation contributes to the control of spike timing. Using whole-cell patch-clamp recordings from CA1 pyramidal cells in vitro with dynamic clamp to simulate theta-frequency oscillation (5 Hz), we show that gamma-aminobutyric acid-A (GABA(A)) receptor-mediated inhibitory postsynaptic potentials (IPSPs) can not only delay but also advance the postsynaptic spike depending on the timing of the inhibition relative to the oscillation. Spike time advancement with IPSP was abolished by the h-channel blocker ZD7288 (10 microM), suggesting that IPSPs can interact with intrinsic membrane conductances to yield bidirectional control of spike timing.

  3. Antagonism of GABA-B but not GABA-A receptors in the VTA prevents stress- and intra-VTA CRF-induced reinstatement of extinguished cocaine seeking in rats

    PubMed Central

    Blacktop, Jordan M.; Vranjkovic, Oliver; Mayer, Matthieu; Van Hoof, Matthew; Baker, David A.; Mantsch, John R.

    2015-01-01

    Stress-induced reinstatement of cocaine seeking requires corticotropin releasing factor (CRF) actions in the ventral tegmental area (VTA). However the mechanisms through which CRF regulates VTA function to promote cocaine use are not fully understood. Here we examined the role of GABAergic neurotransmission in the VTA mediated by GABA-A or GABA-B receptors in the reinstatement of extinguished cocaine seeking by a stressor, uncontrollable intermittent footshock, or bilateral intra-VTA administration of CRF. Rats underwent repeated daily cocaine self-administration (1.0 mg/kg/ing; 14 × 6 hrs/day) and extinction and were tested for reinstatement in response to footshock (0.5 mA, 0.5” duration, average every 40 sec; range 10–70 sec) or intra-VTA CRF delivery (500 ng/side) following intra-VTA pretreatment with the GABA-A antagonist, bicuculline, the GABA-B antagonist, 2-hydroxysaclofen or vehicle. Intra-VTA bicuculline (1, 10 or 20 ng/side) failed to block footshock- or CRF-induced cocaine seeking at either dose tested. By contrast, 2-hydroxysaclofen (0.2 or 2 µg/side) prevented reinstatement by both footshock and intra-VTA CRF at a concentration that failed to attenuate food-reinforced lever pressing (45 mg sucrose-sweetened pellets; FR4 schedule) in a separate group of rats. These data suggest that GABA-B receptor-dependent CRF actions in the VTA mediate stress-induced cocaine seeking and that GABA-B receptor antagonists may have utility for the management of stress-induced relapse in cocaine addicts. PMID:26596556

  4. Attenuating GABAA Receptor Signaling in Dopamine Neurons Selectively Enhances Reward Learning and Alters Risk Preference in Mice

    PubMed Central

    Parker, Jones G.; Wanat, Matthew J.; Soden, Marta E.; Ahmad, Kinza; Zweifel, Larry S.; Bamford, Nigel S.; Palmiter, Richard D.

    2011-01-01

    Phasic dopamine transmission encodes the value of reward-predictive stimuli and influences both learning and decision-making. Altered dopamine signaling is associated with psychiatric conditions characterized by risky choices such as pathological gambling. These observations highlight the importance of understanding how dopamine neuron activity is modulated. While excitatory drive onto dopamine neurons is critical for generating phasic dopamine responses, emerging evidence suggests that inhibitory signaling also modulates these responses. To address the functional importance of inhibitory signaling in dopamine neurons, we generated mice lacking the β3 subunit of the GABAA receptor specifically in dopamine neurons (β3-KO mice) and examined their behavior in tasks that assessed appetitive learning, aversive learning, and risk preference. Dopamine neurons in midbrain slices from β3-KO mice exhibited attenuated GABA-evoked inhibitory post-synaptic currents. Furthermore, electrical stimulation of excitatory afferents to dopamine neurons elicited more dopamine release in the nucleus accumbens of β3-KO mice as measured by fast-scan cyclic voltammetry. β3-KO mice were more active than controls when given morphine, which correlated with potential compensatory upregulation of GABAergic tone onto dopamine neurons. β3-KO mice learned faster in two food-reinforced learning paradigms, but extinguished their learned behavior normally. Enhanced learning was specific for appetitive tasks, as aversive learning was unaffected in β3-KO mice. Finally, we found that β3-KO mice had enhanced risk preference in a probabilistic selection task that required mice to choose between a small certain reward and a larger uncertain reward. Collectively, these findings identify a selective role for GABAA signaling in dopamine neurons in appetitive learning and decision-making. PMID:22114279

  5. Lamotrigine and GABAA receptor modulators interact with menstrual cycle phase and oral contraceptives to regulate mood in women with bipolar disorder.

    PubMed

    Robakis, Thalia K; Holtzman, Jessie; Stemmle, Pascale G; Reynolds-May, Margaret F; Kenna, Heather A; Rasgon, Natalie L

    2015-04-01

    To examine the occurrence of menstrually-entrained mood cycling in women with treated bipolar disorder as compared to healthy controls, and to explore whether there is a specific effect of lamotrigine in dampening menstrually-entrained cyclicity of mood. Observational comparison study of daily self-ratings of mood, sleep, and insomnia obtained over a mean of four menstrual cycles in 42 women with bipolar disorder taking lamotrigine as part of their treatment, 30 women with bipolar disorder receiving mood stabilizing regimens without lamotrigine, and 13 healthy controls, all with physiological menstrual cycles. Additional exploratory analysis of interactions between psychopharmacological regimen and hormonal contraceptive use in the group of women with bipolar disorder, with the addition of 19 women with bipolar disorder who were using hormonal contraceptives. Women treated for bipolar disorder manifested lower average mood, longer average nightly sleep duration, and greater fluctuations in mood and sleep across menstrual cycle phases than healthy controls. Women with bipolar disorder who were taking lamotrigine had less fluctuation in mood both within and across menstrual cycle phases, and were more similar to the control group than to women with bipolar disorder who were not taking lamotrigine in this respect. In addition, medications with GABA-A receptor modulating effects were found to result in improved mood ratings when combined with hormonal contraceptives. Menstrually-entrained mood fluctuation is present in women treated for bipolar disorder to a greater degree than in healthy controls. Lamotrigine may be of use in mitigating this fluctuation. GABA-A receptor modulators in general may act synergistically with hormonal contraceptives to enhance mood in women with bipolar disorder; this hypothesis merits further study. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Increased regional cerebral blood flow but normal distribution of GABAA receptor in the visual cortex of subjects with early-onset blindness.

    PubMed

    Mishina, Masahiro; Senda, Michio; Kiyosawa, Motohiro; Ishiwata, Kiichi; De Volder, Anne G; Nakano, Hideki; Toyama, Hinako; Oda, Kei-ichi; Kimura, Yuichi; Ishii, Kenji; Sasaki, Touru; Ohyama, Masashi; Komaba, Yuichi; Kobayashi, Shirou; Kitamura, Shin; Katayama, Yasuo

    2003-05-01

    Before the completion of visual development, visual deprivation impairs synaptic elimination in the visual cortex. The purpose of this study was to determine whether the distribution of central benzodiazepine receptor (BZR) is also altered in the visual cortex in subjects with early-onset blindness. Positron emission tomography was carried out with [(15)O]water and [(11)C]flumazenil on six blind subjects and seven sighted controls at rest. We found that the CBF was significantly higher in the visual cortex for the early-onset blind subjects than for the sighted control subjects. However, there was no significant difference in the BZR distribution in the visual cortex for the subject with early-onset blindness than for the sighted control subjects. These results demonstrated that early visual deprivation does not affect the distribution of GABA(A) receptors in the visual cortex with the sensitivity of our measurements. Synaptic elimination may be independent of visual experience in the GABAergic system of the human visual cortex during visual development.

  7. Evidence for motivational effects elicited by activation of GABA-A or dopamine receptors in the nucleus accumbens shell

    PubMed Central

    Wirtshafter, David; Stratford, Thomas R.

    2011-01-01

    Microinjections of the inhibitory GABA-A receptor agonist muscimol into the shell region of the nucleus accumbens (AcbSh) have been reported to induce large increases in food intake, but the effect of these injections on motivational processes is less clear. In the current study, bilateral injections of saline, muscimol (50 ng/side) or D-amphetamine (10 μg/side) were made into the AcbSh of rats trained to lever press on a progressive ratio schedule for food reward. Injections of both muscimol and amphetamine were found to produce a large increase in the breaking point relative to saline injections. This result suggests that inactivation of the AcbSh does not simply drive ingestive behavior, but also affects motivational processes assessed by the progressive ratio schedule. Breaking points were also increased by injections of amphetamine into the AcbSh. PMID:20598739

  8. L-type Calcium Channel Blockers Enhance Trafficking and Function of Epilepsy-associated α1(D219N) Subunits of GABA(A) Receptors.

    PubMed

    Han, Dong-Yun; Guan, Bo-Jhih; Wang, Ya-Juan; Hatzoglou, Maria; Mu, Ting-Wei

    2015-09-18

    Gamma-aminobutyric acid type A (GABAA) receptors are the primary inhibitory ion channels in the mammalian central nervous system and play an essential role in regulating inhibition-excitation balance in neural circuits. The α1 subunit harboring the D219N mutation of GABAA receptors was reported to be retained in the endoplasmic reticulum (ER) and traffic inefficiently to the plasma membrane, leading to a loss of function of α1(D219N) subunits and thus idiopathic generalized epilepsy (IGE). We present the use of small molecule proteostasis regulators to enhance the forward trafficking of α1(D219N) subunits to restore their function. We showed that treatment with verapamil (4 μM, 24 h), an L-type calcium channel blocker, substantially increases the α1(D219N) subunit cell surface level in both HEK293 cells and neuronal SH-SY5Y cells and remarkably restores the GABA-induced maximal chloride current in HEK293 cells expressing α1(D219N)β2γ2 receptors to a level that is comparable to wild type receptors. Our drug mechanism study revealed that verapamil treatment promotes the ER to Golgi trafficking of the α1(D219N) subunits post-translationally. To achieve that, verapamil treatment enhances the interaction between the α1(D219N) subunit and β2 subunit and prevents the aggregation of the mutant protein by shifting the protein from the detergent-insoluble fractions to detergent-soluble fractions. By combining (35)S pulse-chase labeling and MG-132 inhibition experiments, we demonstrated that verapamil treatment does not inhibit the ER-associated degradation of the α1(D219N) subunit. In addition, its effect does not involve a dynamin-1 dependent endocytosis. To gain further mechanistic insight, we showed that verapamil increases the interaction between the mutant protein and calnexin and calreticulin, two major lectin chaperones in the ER. Moreover, calnexin binding promotes the forward trafficking of the mutant subunit. Taken together, our data indicate that

  9. Insights into GABA receptor signalling in TM3 Leydig cells.

    PubMed

    Doepner, Richard F G; Geigerseder, Christof; Frungieri, Monica B; Gonzalez-Calvar, Silvia I; Calandra, Ricardo S; Raemsch, Romi; Fohr, Karl; Kunz, Lars; Mayerhofer, Artur

    2005-01-01

    Gamma-aminobutyric acid (GABA) is an emerging signalling molecule in endocrine organs, since it is produced by endocrine cells and acts via GABA(A) receptors in a paracrine/autocrine fashion. Testicular Leydig cells are producers and targets for GABA. These cells express GABA(A) receptor subunits and in the murine Leydig cell line TM3 pharmacological activation leads to increased proliferation. The signalling pathway of GABA in these cells is not known in this study. We therefore attempted to elucidate details of GABA(A) signalling in TM3 and adult mouse Leydig cells using several experimental approaches. TM3 cells not only express GABA(A )receptor subunits, but also bind the GABA agonist [(3)H]muscimol with a binding affinity in the range reported for other endocrine cells (K(d) = 2.740 +/- 0.721 nM). However, they exhibit a low B(max) value of 28.08 fmol/mg protein. Typical GABA(A) receptor-associated events, including Cl(-) currents, changes in resting membrane potential, intracellular Ca(2+) or cAMP, were not measurable with the methods employed in TM3 cells, or, as studied in part, in primary mouse Leydig cells. GABA or GABA(A) agonist isoguvacine treatment resulted in increased or decreased levels of several mRNAs, including transcription factors (c-fos, hsf-1, egr-1) and cell cycle-associated genes (Cdk2, cyclin D1). In an attempt to verify the cDNA array results and because egr-1 was recently implied in Leydig cell development, we further studied this factor. RT-PCR and Western blotting confirmed a time-dependent regulation of egr-1 in TM3. In the postnatal testis egr-1 was seen in cytoplasmic and nuclear locations of developing Leydig cells, which bear GABA(A) receptors and correspond well to TM3 cells. Thus, GABA acts via an atypical novel signalling pathway in TM3 cells. Further details of this pathway remain to be elucidated. Copyright (c) 2005 S. Karger AG, Basel.

  10. Prefrontal gamma-aminobutyric acid type A receptor insertion controls cue-induced relapse to nicotine seeking.

    PubMed

    Lubbers, Bart R; van Mourik, Yvar; Schetters, Dustin; Smit, August B; De Vries, Taco J; Spijker, Sabine

    2014-11-01

    Current smoking cessation therapies offer limited success, as relapse rates remain high. Nicotine, which is the major component of tobacco smoke, is thought to be primarily responsible for the addictive properties of tobacco. However, little is known about the molecular mechanisms underlying nicotine relapse, hampering development of more effective therapies. The objective of this study was to elucidate the role of medial prefrontal cortex (mPFC) glutamatergic and gamma-aminobutyric acid (GABA)ergic receptors in controlling relapse to nicotine seeking. Using an intravenous self-administration model, we studied glutamate and gamma-aminobutyric acid receptor regulation in the synaptic membrane fraction of the rat mPFC following extinction and cue-induced relapse to nicotine seeking. Subsequently, we locally intervened at the level of GABAergic signaling by using a mimetic peptide of the GABA receptor associated protein-interacting domain of GABA type A (GABAA) receptor subunit γ2 (TAT-GABAγ2) and muscimol, a GABAA receptor agonist. Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid and N-methyl-D-aspartate receptors were not regulated after the 30-min relapse test. However, GABAA receptor subunits α1 and γ2 were upregulated, and interference with GABAA receptor insertion in the cell membrane using the TAT-GABAγ2 peptide in the dorsal mPFC, but not the ventral mPFC, significantly increased responding during relapse. Increasing GABAA transmission with muscimol in the dorsal and ventral mPFC attenuated relapse. These data indicate that cue-induced relapse entails a GABAergic plasticity mechanism that limits nicotine seeking by restoring inhibitory control in the dorsal mPFC. GABAA receptor-mediated neurotransmission in the dorsal mPFC constitutes a possible future therapeutic target for maintaining smoking abstinence. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. Expression of functional receptors by the human γ-aminobutyric acid A γ2 subunit

    PubMed Central

    Martínez-Torres, Ataúlfo; Miledi, Ricardo

    2004-01-01

    γ-Aminobutyric acid A (GABAA) receptors are heteromeric membrane proteins formed mainly by various combinations of α, β, and γ subunits; and it is commonly thought that the γ2 subunit alone does not form functional receptors. In contrast, we found that cDNA encoding the γ2L subunit of the human GABAA receptor, injected alone into Xenopus oocytes, expressed functional GABA receptors whose properties were investigated by using the two-microelectrode voltage-clamp technique. GABA elicited desensitizing membrane currents that recovered after a few minutes' wash. Repetitive applications of GABA induced a “run-up” of GABA currents that nearly doubled the amplitude of the first response. The GABA currents inverted direction at about -30 mV, indicating that they are carried mainly by Cl- ions. The homomeric γ2L receptors were also activated by β-alanine > taurine > glycine, and, like some types of heteromeric GABAA receptors, the γ2L receptors were blocked by bicuculline and were potentiated by pentobarbital and flunitrazepam. These results indicate that the human γ2L subunit is capable of forming fully functional GABA receptors by itself in Xenopus oocytes and suggest that the roles proposed for the various subunits that make up the heteromeric GABAA receptors in situ require further clarification. PMID:14981251

  12. Perinatal intermittent hypoxia alters γ-aminobutyric acid: a receptor levels in rat cerebellum.

    PubMed

    Pae, Eung-Kwon; Yoon, Audrey J; Ahuja, Bhoomika; Lau, Gary W; Nguyen, Daniel D; Kim, Yong; Harper, Ronald M

    2011-12-01

    Perinatal hypoxia commonly causes brain injury in infants, but the time course and mechanisms underlying the preferential male injury are unclear. Intermittent hypoxia disturbs cerebellar γ-aminobutyric (GABA)-A receptor profiles during the perinatal period, possibly responding to transient excitatory processes associated with GABA(A) receptors. We examined whether hypoxic insults were particularly damaging to the male rodent cerebellum during a specific developmental time window. We evaluated cerebellar injury and GABA(A) receptor profiles following 5-h intermittent hypoxia (IH: 20.8% and 10.3% ambient oxygen, switched every 240s) or room-air control in groups of male and female rat pups on postnatal d 1-2, wk 1, or wk 3. The cerebella were harvested and compared between groups. The mRNA levels of GABA(A) receptors α6, normalized to a house-keeping gene GAPDH, and assessed using real-time reverse-transcriptase PCR assays were up-regulated by IH at wk 1, more extensively in male rats, with sex influencing the regulatory time-course. In contrast, GABA(A) α6 receptor protein expression levels, assessed using Western blot assays, reached a nadir at wk 1 in both male and female rats, possibly indicating involvement of a post-transcriptional mechanism. The extent of cerebellar damage and level of apoptosis, assessed by DNA fragmentation, were greatest in the wk 3 IH-exposed group. The findings suggest partial protection for female rats against early hypoxic insult in the cerebellum, and that down-regulation of GABA(A) receptors, rather than direct neural injury assessed by DNA fragmentation may modify cerebellar function, with potential later motor and other deficits. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.

  13. Sniffer patch laser uncaging response (SPLURgE): an assay of regional differences in allosteric receptor modulation and neurotransmitter clearance

    PubMed Central

    Christian, Catherine A.

    2013-01-01

    Allosteric modulators exert actions on neurotransmitter receptors by positively or negatively altering the effective response of these receptors to their respective neurotransmitter. γ-Aminobutyric acid (GABA) type A ionotropic receptors (GABAARs) are major targets for allosteric modulators such as benzodiazepines, neurosteroids, and barbiturates. Analysis of substances that produce similar effects has been hampered by the lack of techniques to assess the localization and function of such agents in brain slices. Here we describe measurement of the sniffer patch laser uncaging response (SPLURgE), which combines the sniffer patch recording configuration with laser photolysis of caged GABA. This methodology enables the detection of allosteric GABAAR modulators endogenously present in discrete areas of the brain slice and allows for the application of exogenous GABA with spatiotemporal control without altering the release and localization of endogenous modulators within the slice. Here we demonstrate the development and use of this technique for the measurement of allosteric modulation in different areas of the thalamus. Application of this technique will be useful in determining whether a lack of modulatory effect on a particular category of neurons or receptors is due to insensitivity to allosteric modulation or a lack of local release of endogenous ligand. We also demonstrate that this technique can be used to investigate GABA diffusion and uptake. This method thus provides a biosensor assay for rapid detection of endogenous GABAAR modulators and has the potential to aid studies of allosteric modulators that exert effects on other classes of neurotransmitter receptors, such as glutamate, acetylcholine, or glycine receptors. PMID:23843428

  14. Sniffer patch laser uncaging response (SPLURgE): an assay of regional differences in allosteric receptor modulation and neurotransmitter clearance.

    PubMed

    Christian, Catherine A; Huguenard, John R

    2013-10-01

    Allosteric modulators exert actions on neurotransmitter receptors by positively or negatively altering the effective response of these receptors to their respective neurotransmitter. γ-Aminobutyric acid (GABA) type A ionotropic receptors (GABAARs) are major targets for allosteric modulators such as benzodiazepines, neurosteroids, and barbiturates. Analysis of substances that produce similar effects has been hampered by the lack of techniques to assess the localization and function of such agents in brain slices. Here we describe measurement of the sniffer patch laser uncaging response (SPLURgE), which combines the sniffer patch recording configuration with laser photolysis of caged GABA. This methodology enables the detection of allosteric GABAAR modulators endogenously present in discrete areas of the brain slice and allows for the application of exogenous GABA with spatiotemporal control without altering the release and localization of endogenous modulators within the slice. Here we demonstrate the development and use of this technique for the measurement of allosteric modulation in different areas of the thalamus. Application of this technique will be useful in determining whether a lack of modulatory effect on a particular category of neurons or receptors is due to insensitivity to allosteric modulation or a lack of local release of endogenous ligand. We also demonstrate that this technique can be used to investigate GABA diffusion and uptake. This method thus provides a biosensor assay for rapid detection of endogenous GABAAR modulators and has the potential to aid studies of allosteric modulators that exert effects on other classes of neurotransmitter receptors, such as glutamate, acetylcholine, or glycine receptors.

  15. Antagonism of GABA-B but not GABA-A receptors in the VTA prevents stress- and intra-VTA CRF-induced reinstatement of extinguished cocaine seeking in rats.

    PubMed

    Blacktop, Jordan M; Vranjkovic, Oliver; Mayer, Matthieu; Van Hoof, Matthew; Baker, David A; Mantsch, John R

    2016-03-01

    Stress-induced reinstatement of cocaine seeking requires corticotropin releasing factor (CRF) actions in the ventral tegmental area (VTA). However the mechanisms through which CRF regulates VTA function to promote cocaine use are not fully understood. Here we examined the role of GABAergic neurotransmission in the VTA mediated by GABA-A or GABA-B receptors in the reinstatement of extinguished cocaine seeking by a stressor, uncontrollable intermittent footshock, or bilateral intra-VTA administration of CRF. Rats underwent repeated daily cocaine self-administration (1.0 mg/kg/ing; 14 × 6 h/day) and extinction and were tested for reinstatement in response to footshock (0.5 mA, 0.5" duration, average every 40 s; range 10-70 s) or intra-VTA CRF delivery (500 ng/side) following intra-VTA pretreatment with the GABA-A antagonist, bicuculline, the GABA-B antagonist, 2-hydroxysaclofen or vehicle. Intra-VTA bicuculline (1, 10 or 20 ng/side) failed to block footshock- or CRF-induced cocaine seeking at either dose tested. By contrast, 2-hydroxysaclofen (0.2 or 2 μg/side) prevented reinstatement by both footshock and intra-VTA CRF at a concentration that failed to attenuate food-reinforced lever pressing (45 mg sucrose-sweetened pellets; FR4 schedule) in a separate group of rats. These data suggest that GABA-B receptor-dependent CRF actions in the VTA mediate stress-induced cocaine seeking and that GABA-B receptor antagonists may have utility for the management of stress-induced relapse in cocaine addicts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Laminar distribution of GABAA- and glycine-receptor mediated tonic inhibition in the dorsal horn of the rat lumbar spinal cord: effects of picrotoxin and strychnine on expression of Fos-like immunoreactivity.

    PubMed

    Cronin, John N; Bradbury, Elizabeth J; Lidierth, Malcolm

    2004-11-01

    Inhibitory mechanisms are essential in suppressing the development of allodynia and hyperalgesia in the normal animal and there is evidence that loss of inhibition can lead to the development of neuropathic pain. We used Fos expression to map the distribution of tonically inhibited cells in the healthy rat lumbar spinal cord. In a control group, Fos-like immunoreactive (Fos-LI) cells were rare, averaging 7.5+/-2.2 cells (mean+/-SEM; N=13 sections) per 20 microm thick section of dorsal horn. This rose to 103+/-11 (mean+/-SEM; N=20) in picrotoxin-treated rats and to 88+/-11 (mean+/-SEM; N=18) in strychnine-treated rats. These changes were significant (ANOVA; P<0.001). There were marked regional variations in the distribution of Fos-LI cells between picrotoxin- and strychnine-treated animals. Picrotoxin induced a significant increase in the number of Fos-LI cells throughout the dorsal horn (lamina I-VI) while strychnine significantly elevated Fos-like immunoreactivity only in deep laminae (III-VI). For both picrotoxin and strychnine, the increase in Fos-like immunoreactivity peaked in lamina V (at 3579+/-319 and 3649+/-375% of control, respectively; mean+/-SEM) but for picrotoxin an additional peak was observed in the outer part of lamina II (1959+/-196%). Intrathecal administration of both GABAA and glycine receptor antagonists has been shown elsewhere to induce tactile allodynia. The present data suggest that this allodynia could arise due to blockade of tonic GABAA and glycine-receptor mediated inhibition in the deep dorsal horn. GABAA antagonists also induce hypersensitivity to noxious inputs. The blockade of tonic inhibition in the superficial dorsal horn shown here may underlie this hyperalgesia.

  17. Evidence for motivational effects elicited by activation of GABA-A or dopamine receptors in the nucleus accumbens shell.

    PubMed

    Wirtshafter, David; Stratford, Thomas R

    2010-09-01

    Microinjections of the inhibitory GABA-A receptor agonist muscimol into the shell region of the nucleus accumbens (AcbSh) have been reported to induce large increases in food intake, but the effect of these injections on motivational processes is less clear. In the current study, bilateral injections of saline, muscimol (50ng/side) or d-amphetamine (10mug/side) were made into the AcbSh of rats trained to lever press on a progressive ratio schedule for food reward. Injections of both muscimol and amphetamine were found to produce a large increase in the breaking point relative to saline injections. This result suggests that inactivation of the AcbSh does not simply drive ingestive behavior, but also affects motivational processes assessed by the progressive ratio schedule. Breaking points were also increased by injections of amphetamine into the AcbSh. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Differential antagonism of tetramethylenedisulfotetramine-induced seizures by agents acting at NMDA and GABAA receptors

    PubMed Central

    Shakarjian, Michael P.; Velíšková, Jana; Stanton, Patric K.; Velíšek, Libor

    2012-01-01

    Tetramethylenedisulfotetramine (TMDT) is a highly lethal neuroactive rodenticide responsible for many accidental and intentional poisonings in mainland China. Ease of synthesis, water solubility, potency, and difficulty to treat make TMDT a potential weapon for terrorist activity. We characterized TMDT-induced convulsions and mortality in male C57BL/6 mice. TMDT (ip) produced a continuum of twitches, clonic, and tonic-clonic seizures decreasing in onset latency and increasing in severity with increasing dose; 0.4 mg/kg was 100% lethal. The NMDA antagonist, ketamine (35 mg/kg) injected ip immediately after the first TMDT-induced seizure, did not change number of tonic-clonic seizures or lethality, but increased the number of clonic seizures. Doubling the ketamine dose decreased tonic-clonic seizures and eliminated lethality through a 60 min observation period. Treating mice with another NMDA antagonist, MK-801, 0.5 or 1 mg/kg ip, showed similar effects as low and high doses of ketamine, respectively, and prevented lethality, converting status epilepticus EEG activity to isolated interictal discharges. Treatment with these agents 15 min prior to TMDT administration did not increase their effectiveness. Post-treatment with the GABAA receptor allosteric enhancer diazepam (5 mg/kg) greatly reduced seizure manifestations and prevented lethality 60 min post-TMDT, but ictal events were evident in EEG recordings and, hours post-treatment, mice experienced status epilepticus and died. Thus, TMDT is a highly potent and lethal convulsant for which single-dose benzodiazepine treatment is inadequate in managing electrographic seizures or lethality. Repeated benzodiazepine dosing or combined application of benzodiazepines and NMDA receptor antagonists are more likely to be effective in treating TMDT poisoning. PMID:23022509

  19. Expression of GABA receptor subunits in the hippocampus and thalamus after experimental traumatic brain injury

    PubMed Central

    Drexel, Meinrad; Puhakka, Noora; Kirchmair, Elke; Hörtnagl, Heide; Pitkänen, Asla; Sperk, Günther

    2015-01-01

    Traumatic brain injury is a major cause of death and disability worldwide and often associated with post-traumatic epilepsy. We recently demonstrated that TBI induces acquired GABAA receptors channelopathy that associates with hyperexcitability in granule cell layer (GCL). We now assessed the expression of GABAA and GABAB receptor subunit mRNAs between 6 h and 6 months post-TBI in the hippocampus and thalamus. The expression of major GABAA receptor subunit mRNAs (α1, α2, α5, β2, β3, γ2 and δ) was, often bilaterally, down-regulated in the GCL and in the CA3 pyramidal cells. Instead, expression of α4 (GCL, CA3, CA1), α5 (CA1) and γ2 (GCL, CA3, CA1) mRNA was up-regulated after 10 d and/or 4 months. Many of these changes were reversible. In the thalamus, we found decreases in α1, α4, β2, γ2 and δ mRNAs in the laterodorsal thalamus and in the area combining the posterior thalamic nuclear group, ventroposterolateral and ventroposteromedial complex at 6 h to 4 months post-TBI. Unlike in the hippocampus, thalamic subunit down-regulations were irreversible and limited to the ipsilateral side. However, contralaterally there was up-regulation of the subunits δ and α4 6 h and 4 months after TBI, respectively. PCR array analysis suggested a mild long-lasting GABAA receptor channelopathy in the GCL and thalamus after TBI. Whereas TBI induces transient changes in the expression of GABAA receptor subunits in the hippocampus (presumably representing compensatory mechanisms), alterations of GABAA receptor subunit mRNAs in the thalamus are long-lasting and related to degeneration of receptor-containing neurons in thalamo-cortical relay nuclei. This article is part of the Special Issue entitled ‘GABAergic Signaling in Health and Disease’. PMID:25229716

  20. Expression of GABA receptor subunits in the hippocampus and thalamus after experimental traumatic brain injury.

    PubMed

    Drexel, Meinrad; Puhakka, Noora; Kirchmair, Elke; Hörtnagl, Heide; Pitkänen, Asla; Sperk, Günther

    2015-01-01

    Traumatic brain injury is a major cause of death and disability worldwide and often associated with post-traumatic epilepsy. We recently demonstrated that TBI induces acquired GABAA receptors channelopathy that associates with hyperexcitability in granule cell layer (GCL). We now assessed the expression of GABAA and GABAB receptor subunit mRNAs between 6 h and 6 months post-TBI in the hippocampus and thalamus. The expression of major GABAA receptor subunit mRNAs (α1, α2, α5, β2, β3, γ2 and δ) was, often bilaterally, down-regulated in the GCL and in the CA3 pyramidal cells. Instead, expression of α4 (GCL, CA3, CA1), α5 (CA1) and γ2 (GCL, CA3, CA1) mRNA was up-regulated after 10 d and/or 4 months. Many of these changes were reversible. In the thalamus, we found decreases in α1, α4, β2, γ2 and δ mRNAs in the laterodorsal thalamus and in the area combining the posterior thalamic nuclear group, ventroposterolateral and ventroposteromedial complex at 6 h to 4 months post-TBI. Unlike in the hippocampus, thalamic subunit down-regulations were irreversible and limited to the ipsilateral side. However, contralaterally there was up-regulation of the subunits δ and α4 6 h and 4 months after TBI, respectively. PCR array analysis suggested a mild long-lasting GABAA receptor channelopathy in the GCL and thalamus after TBI. Whereas TBI induces transient changes in the expression of GABAA receptor subunits in the hippocampus (presumably representing compensatory mechanisms), alterations of GABAA receptor subunit mRNAs in the thalamus are long-lasting and related to degeneration of receptor-containing neurons in thalamo-cortical relay nuclei. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Exogenous progesterone exacerbates running response of adolescent female mice to repeated food restriction stress by changing α4-GABAA receptor activity of hippocampal pyramidal cells.

    PubMed

    Wable, G S; Chen, Y-W; Rashid, S; Aoki, C

    2015-12-03

    Adolescent females are particularly vulnerable to mental illnesses with co-morbidity of anxiety, such as anorexia nervosa (AN). We used an animal model of AN, called activity-based anorexia (ABA), to investigate the neurobiological basis of vulnerability to repeated, food restriction (FR) stress-evoked anxiety. Twenty-one of 23 adolescent female mice responded to the 1st FR with increased wheel-running activity (WRA), even during the limited period of food access, thereby capturing AN's symptoms of voluntary FR and over-exercise. Baseline WRA was an excellent predictor of FR-elicited WRA (severity of ABA, SOA), with high baseline runners responding to FR with minimal SOA (i.e., negative correlation). Nine gained resistance to ABA following the 1st FR. Even though allopregnanolone (3α-OH-5α-pregnan-20-one, THP), the metabolite of progesterone (P4), is a well-recognized anxiolytic agent, subcutaneous P4 to these ABA-resistant animals during the 2nd FR was exacerbative, evoking greater WRA than the counterpart resistant group that received oil vehicle, only. Moreover, P4 had no WRA-reducing effect on animals that remained ABA-vulnerable. To explain the sensitizing effect of P4 upon the resistant mice, we examined the relationship between P4 treatment and levels of the α4 subunit of GABAARs at spines of pyramidal cells of the hippocampal CA1, a parameter previously shown to correlate with resistance to ABA. α4 levels at spine membrane correlated strongly and negatively with SOA during the 1st ABA (prior to P4 injection), confirming previous findings. α4 levels were greater among P4-treated animals that had gained resistance than of vehicle-treated resistant animals or of the vulnerable animals with or without P4. We propose that α4-GABAARs play a protective role by counterbalancing the ABA-induced increase in excitability of CA1 pyramidal neurons, and although exogenous P4's metabolite, THP, enhances α4 expression, especially among those that can gain resistance

  2. Molecular size of the gamma-aminobutyric acidA receptor purified from mammalian cerebral cortex.

    PubMed

    Mamalaki, C; Barnard, E A; Stephenson, F A

    1989-01-01

    The hydrodynamic behaviour of both the soluble and purified gamma-aminobutyric acidA (GABAA) receptor of bovine or rat cerebral cortex has been investigated in solution in Triton X-100 or in 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulphonate (CHAPS). In all the hydrodynamic separations made, it was found that the binding activities for GABA, benzodiazepine, and (where detectable) t-butylbicyclophosphorothionate comigrated. Conditions were established for gel exclusion chromatography and for sucrose density gradient velocity sedimentation that maintain the GABAA receptor in a nonaggregated form. Using these conditions, the molecular weight of the bovine GABAA receptor in the above-mentioned detergents was calculated using the H2O/2H2O method. A value of Mr 230,000-240,000 was calculated for the bovine pure GABAA receptor purified in sodium deoxycholate/Triton X-100 media. A value of Mr 284,000-290,000 was calculated for the nonaggregated bovine or rat cortex receptor in CHAPS, but the Stokes radius is smaller in the latter than in the former medium and the detergent binding in CHAPS is underestimated. Thus the deduced Mr, 240,000, is the best estimate by this method.

  3. Negative perceived paternal parenting is associated with dopamine D2 receptor exon 8 and GABA(A) alpha 6 receptor variants: an explorative study.

    PubMed

    Lucht, Michael; Barnow, Sven; Schroeder, Winnie; Grabe, Hans Joergen; Finckh, Ulrich; John, Ulrich; Freyberger, Harald J; Herrmann, Falko H

    2006-03-05

    Twin studies suggest a genetic influence upon perceived parenting. The D(2) dopaminergic receptor is involved in the modulation of social behaviors, and might influence parenting and its perception. A polymorphism (E8) in exon 8 of the D(2) receptor gene (DRD2) has been previously associated with alcoholism-related phenotypes. Similarly, the Pro385Ser variant of GABRA6, the polymorphic gene for GABA(A) receptor alpha6 subunit, has been associated with alcohol- and depression-related traits; and rat pups maintained a more immature GABAR phenotype after brief separation distress. The relationships among DRD2 (E8) and GABRA6 (Pro385Ser) polymorphisms, and perceived parenting were studied here. The association of DRD2 (E8) and GABRA6 (Pro385Ser) genotypes and perceived parental rearing behavior (short-EMBU; questionnaire concerning own memories concerning upbringing) were determined in 207 unrelated adults using multivariate analysis of variance. Temperaments (Temperament and Character Inventory; TCI) were included as covariates. Probands with DRD2 (E8) A/A genotype showed higher scores for father rejection (P = 0.011), parents overprotection (P = 0.021), and father overprotection (P = 0.016) in the total group. An interaction between DRD2 and GABRA6 genotypes on father rejection (P = 0.010) and parents rejection (P = 0.030) was also observed. Further analyses showed that these associations were restricted to the female subgroup only; however, secondary gender-specific analyses were not corrected for multiple testing. Our findings support a role for DRD2 (E8) and GABRA6 (Pro385Ser) in perceived parenting. (c) 2006 Wiley-Liss, Inc.

  4. Superficial NK1 expressing spinal dorsal horn neurones modulate inhibitory neurotransmission mediated by spinal GABA(A) receptors.

    PubMed

    Rahman, Wahida; Sikandar, Shafaq; Sikander, Shafaq; Suzuki, Rie; Hunt, Stephen P; Dickenson, Anthony H

    2007-06-04

    Lamina 1 projection neurones which express the NK1 receptor (NK1R+) drive a descending serotonergic pathway from the brainstem that enhances spinal dorsal horn neuronal activity via the facilitatory spinal 5-HT3 receptor. Selective destruction of these cells via lumbar injection of substance P-saporin (SP-SAP) attenuates pain behaviours, including mechanical and thermal hypersensitivity, which are mirrored by deficits in the evoked responses of lamina V-VI wide dynamic range (WDR) neurones to noxious stimuli. To assess whether removing the origin of this facilitatory spino-bulbo-spinal loop results in alterations in GABAergic spinal inhibitory systems, the effects of spinal bicuculline, a selective GABA(A) receptor antagonist, on the evoked neuronal responses to electrical (Abeta-, Adelta-, C-fibre, post-discharge and Input) and mechanical (brush, prod and von Frey (vF) 8 and 26 g) stimuli were measured in SAP and SP-SAP groups. In the SAP control group, bicuculline produced a significant dose related facilitation of the electrically evoked Adelta-, C-fibre, post-discharge and input neuronal responses. The evoked mechanical (prod, vF8 g and 26 g) responses were also significantly increased. Brush evoked neuronal responses in these animals were enhanced but did not reach significance. This facilitatory effect of bicuculline, however, was lost in the SP-SAP treated group. The generation of intrinsic GABAergic transmission in the spinal cord appears dependent on NK1 bearing neurons, yet despite the loss of GABAergic inhibitory controls after SP-SAP treatment, the net effect is a decrease in spinal cord excitability. Thus activation of these cells predominantly drives facilitation.

  5. Population patch-clamp electrophysiology analysis of recombinant GABAA alpha1beta3gamma2 channels expressed in HEK-293 cells.

    PubMed

    Hollands, Emma C; Dale, Tim J; Baxter, Andrew W; Meadows, Helen J; Powell, Andrew J; Clare, Jeff J; Trezise, Derek J

    2009-08-01

    Gamma-amino butyric acid (GABA)-activated Cl- channels are critical mediators of inhibitory postsynaptic potentials in the CNS. To date, rational design efforts to identify potent and selective GABA(A) subtype ligands have been hampered by the absence of suitable high-throughput screening approaches. The authors describe 384-well population patch-clamp (PPC) planar array electrophysiology methods for the study of GABA(A) receptor pharmacology. In HEK293 cells stably expressing human alpha1beta3gamma2 GABA(A) channels, GABA evoked outward currents at 0 mV of 1.05 +/- 0.08 nA, measured 8 s post GABA addition. The I(GABA) was linear and reversed close to the theoretical E(Cl) (-56 mV). Concentration-response curve analysis yielded a mean pEC(50) value of 5.4 and Hill slope of 1.5, and for a series of agonists, the rank order of potency was muscimol > GABA > isoguvacine. A range of known positive modulators, including diazepam and pentobarbital, produced concentration-dependent augmentation of the GABA EC( 20) response (1 microM). The competitive antagonists bicuculline and gabazine produced concentration-dependent, parallel, rightward displacement of GABA curves with pA(2) and slope values of 5.7 and 1.0 and 6.7 and 1.0, respectively. In contrast, picrotoxin (0.2-150 microM) depressed the maximal GABA response, implying a non-competitive antagonism. Overall, the pharmacology of human alpha1beta3gamma2 GABA(A) determined by PPC was highly similar to that obtained by conventional patch-clamp methods. In small-scale single-shot screens, Z' values of >0.5 were obtained in agonist, modulator, and antagonist formats with hit rates of 0% to 3%. The authors conclude that despite the inability of the method to resolve the peak agonist responses, PPC can rapidly and usefully quantify pharmacology for the alpha1beta3gamma2 GABA(A) isoform. These data suggest that PPC may be a valuable approach for a focused set and secondary screening of GABA(A) receptors and other slow ligand

  6. Separate and combined effects of the GABAA positive allosteric modulator diazepam and Δ⁹-THC in humans discriminating Δ⁹-THC.

    PubMed

    Lile, Joshua A; Kelly, Thomas H; Hays, Lon R

    2014-10-01

    Our previous research suggested the involvement of γ-aminobutyric acid (GABA), in particular the GABAB receptor subtype, in the interoceptive effects of Δ(9)-tetrahydrocannabinol (Δ(9)-THC). The aim of the present study was to determine the potential involvement of the GABAA receptor subtype by assessing the separate and combined effects of the GABAA positive allosteric modulator diazepam and Δ(9)-THC using pharmacologically selective drug-discrimination procedures. Ten cannabis users learned to discriminate 30 mg oral Δ(9)-THC from placebo and then received diazepam (5 and 10mg), Δ(9)-THC (5, 15 and 30 mg) and placebo, alone and in combination. Self-report, task performance and physiological measures were also collected. Δ(9)-THC functioned as a discriminative stimulus, produced subjective effects typically associated with cannabinoids (e.g., High, Stoned, Like Drug) and elevated heart rate. Diazepam alone impaired performance on psychomotor performance tasks and increased ratings on a limited number of self-report questionnaire items (e.g., Any Effect, Sedated), but did not substitute for the Δ(9)-THC discriminative stimulus or alter the Δ(9)-THC discrimination dose-response function. Similarly, diazepam had limited impact on the other behavioral effects of Δ(9)-THC. These results suggest that the GABAA receptor subtype has minimal involvement in the interoceptive effects of Δ(9)-THC, and by extension cannabis, in humans. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. γ-glutamyl transpeptidase 1 specifically suppresses green-light avoidance via GABAA receptors in Drosophila.

    PubMed

    Liu, Jiangqu; Gong, Zhefeng; Liu, Li

    2014-08-01

    Drosophila larvae innately show light avoidance behavior. Compared with robust blue-light avoidance, larvae exhibit relatively weaker green-light responses. In our previous screening for genes involved in larval light avoidance, compared with control w(1118) larvae, larvae with γ-glutamyl transpeptidase 1 (Ggt-1) knockdown or Ggt-1 mutation were found to exhibit higher percentage of green-light avoidance which was mediated by Rhodopsin6 (Rh6) photoreceptors. However, their responses to blue light did not change significantly. By adjusting the expression level of Ggt-1 in different tissues, we found that Ggt-1 in malpighian tubules was both necessary and sufficient for green-light avoidance. Our results showed that glutamate levels were lower in Ggt-1 null mutants compared with controls. Feeding Ggt-1 null mutants glutamate can normalize green-light avoidance, indicating that high glutamate concentrations suppressed larval green-light avoidance. However, rather than directly, glutamate affected green-light avoidance indirectly through GABA, the level of which was also lower in Ggt-1 mutants compared with controls. Mutants in glutamate decarboxylase 1, which encodes GABA synthase, and knockdown lines of the GABAA receptor, both exhibit elevated levels of green-light avoidance. Thus, our results elucidate the neurobiological mechanisms mediating green-light avoidance, which was inhibited in wild-type larvae. © 2014 International Society for Neurochemistry.

  8. The GABA(A) receptor RDL acts in peptidergic PDF neurons to promote sleep in Drosophila.

    PubMed

    Chung, Brian Y; Kilman, Valerie L; Keath, J Russel; Pitman, Jena L; Allada, Ravi

    2009-03-10

    Sleep is regulated by a circadian clock that times sleep and wake to specific times of day and a homeostat that drives sleep as a function of prior wakefulness. To analyze the role of the circadian clock, we have used the fruit fly Drosophila. Flies display the core behavioral features of sleep, including relative immobility, elevated arousal thresholds, and homeostatic regulation. We assessed sleep-wake modulation by a core set of circadian pacemaker neurons that express the neuropeptide PDF. We find that disruption of PDF function increases sleep during the late night in light:dark and the first subjective day of constant darkness. Flies deploy genetic and neurotransmitter pathways to regulate sleep that are similar to those of their mammalian counterparts, including GABA. We find that RNA interference-mediated knockdown of the GABA(A) receptor gene, Resistant to dieldrin (Rdl), in PDF neurons reduces sleep, consistent with a role for GABA in inhibiting PDF neuron function. Patch-clamp electrophysiology reveals GABA-activated picrotoxin-sensitive chloride currents on PDF+ neurons. In addition, RDL is detectable most strongly on the large subset of PDF+ pacemaker neurons. These results suggest that GABAergic inhibition of arousal-promoting PDF neurons is an important mode of sleep-wake regulation in vivo.

  9. High-level production and purification in a functional state of an extrasynaptic gamma-aminobutyric acid type A receptor containing α4β3δ subunits.

    PubMed

    Zhou, Xiaojuan; Desai, Rooma; Zhang, Yinghui; Stec, Wojciech J; Miller, Keith W; Jounaidi, Youssef

    2018-01-01

    The inhibitory γ-aminobutyric acid type A receptors are implicated in numerous physiological processes, including cognition and inhibition of neurotransmission, rendering them important molecular targets for many classes of drugs. Functionally, the entire GABAAR family of receptors can be subdivided into phasic, fast acting synaptic receptors, composed of α-, β- and γ-subunits, and tonic extrasynaptic receptors, many of which contain the δ-subunit in addition to α- and β-subunits. Whereas the subunit arrangement of the former group is agreed upon, that of the αβδ GABAARs remains unresolved by electrophysiological and pharmacological research. To resolve such issues will require biophysical techniques that demand quantities of receptor that have been previously unavailable. Therefore, we have engineered a stable cell line with tetracycline inducible expression of human α4-, β3- and N-terminally Flag-tagged δ-subunits. This cell line achieved a specific activity between 15 and 20 pmol [3H]muscimol sites/mg of membrane protein, making it possible to obtain 1 nmole of purified α4β3δ GABAAR from sixty 15-cm culture dishes. When induced, these cells exhibited agonist-induced currents with characteristics comparable to those previously reported for this receptor and a pharmacology that included strong modulation by etomidate and the δ-subunit-specific ligand, DS2. Immunoaffinity purification and reconstitution in CHAPS/asolectin micelles resulted in the retention of equilibrium allosteric interactions between the separate agonist, anesthetic and DS2 sites. Moreover, all three subunits retained glycosylation. The establishment of this well-characterized cell line will allow molecular level studies of tonic receptors to be undertaken.

  10. GABA, its receptors, and GABAergic inhibition in mouse taste buds.

    PubMed

    Dvoryanchikov, Gennady; Huang, Yijen A; Barro-Soria, Rene; Chaudhari, Nirupa; Roper, Stephen D

    2011-04-13

    Taste buds consist of at least three principal cell types that have different functions in processing gustatory signals: glial-like (type I) cells, receptor (type II) cells, and presynaptic (type III) cells. Using a combination of Ca2+ imaging, single-cell reverse transcriptase-PCR and immunostaining, we show that GABA is an inhibitory transmitter in mouse taste buds, acting on GABA(A) and GABA(B) receptors to suppress transmitter (ATP) secretion from receptor cells during taste stimulation. Specifically, receptor cells express GABA(A) receptor subunits β2, δ, and π, as well as GABA(B) receptors. In contrast, presynaptic cells express the GABA(A) β3 subunit and only occasionally GABA(B) receptors. In keeping with the distinct expression pattern of GABA receptors in presynaptic cells, we detected no GABAergic suppression of transmitter release from presynaptic cells. We suggest that GABA may serve function(s) in taste buds in addition to synaptic inhibition. Finally, we also defined the source of GABA in taste buds: GABA is synthesized by GAD65 in type I taste cells as well as by GAD67 in presynaptic (type III) taste cells and is stored in both those two cell types. We conclude that GABA is an inhibitory transmitter released during taste stimulation and possibly also during growth and differentiation of taste buds.

  11. Residual effect of a 7-amino metabolite of clonazepam on GABAA receptor function in the nucleus reticularis thalami of the rat.

    PubMed

    Munakata, Mitsutoshi; Tsuchiya, Shigeru

    2008-10-01

    A considerable amount of 7-aminoclonazepam (ACZP), a major metabolite of clonazepam (CZP), is present in the brain during CZP treatment, yet the pharmacological properties of ACZP remain unknown. We investigated the effects of ACZP on the GABA(A) receptor-mediated currents (I(GABA)) in neurons from the nucleus reticularis thalami (NRT) of the rat, using a nystatin-perforated patch technique. Neurons in which CZP (10 nM) exerted prominent augmentation (>100% augmentation) of I(GABA), which comprised 32% of the neurons tested, were included for the analysis of ACZP. In these neurons, ACZP augmented I(GABA), which was blocked by 10 microM flumazenil, a benzodiazepine receptor (BZR) antagonist. The half-maximal effective concentration of ACZP was 124 nM, whereas that of CZP was 1.8 nM. The maximal enhancements induced by ACZP and CZP were 38% and 170%, respectively. In neurons from the ventrobasal complex of the thalamus, the effect of ACZP was negligible. Our results suggest that ACZP was a weak partial BZR agonist and that ACZP may competitively modify the effect of CZP, leading to clinical consequences for patients with high levels of ACZP.

  12. Functional aspects of early brain development are preserved in tuberous sclerosis complex (TSC) epileptogenic lesions.

    PubMed

    Ruffolo, Gabriele; Iyer, Anand; Cifelli, Pierangelo; Roseti, Cristina; Mühlebner, Angelika; van Scheppingen, Jackelien; Scholl, Theresa; Hainfellner, Johannes A; Feucht, Martha; Krsek, Pavel; Zamecnik, Josef; Jansen, Floor E; Spliet, Wim G M; Limatola, Cristina; Aronica, Eleonora; Palma, Eleonora

    2016-11-01

    Tuberous sclerosis complex (TSC) is a rare multi-system genetic disease characterized by several neurological disorders, the most common of which is the refractory epilepsy caused by highly epileptogenic cortical lesions. Previous studies suggest an alteration of GABAergic and glutamatergic transmission in TSC brain indicating an unbalance of excitation/inhibition that can explain, at least in part, the high incidence of epilepsy in these patients. Here we investigate whether TSC cortical tissues could retain GABAA and AMPA receptors at early stages of human brain development thus contributing to the generation and recurrence of seizures. Given the limited availability of pediatric human brain specimens, we used the microtransplantation method of injecting Xenopus oocytes with membranes from TSC cortical tubers and control brain tissues. Moreover, qPCR was performed to investigate the expression of GABAA and AMPA receptor subunits (GABAA α1-5, β3, γ2, δ; GluA1, GluA2) and cation chloride co-transporters NKCC1 and KCC2. The evaluation of nine human cortical brain samples, from 15 gestation weeks to 15years old, showed a progressive shift towards more hyperpolarized GABAA reversal potential (EGABA). This shift was associated with a differential expression of the chloride cotransporters NKCC1 and KCC2. Furthermore, the GluA1/GluA2 mRNA ratio of expression paralleled the development process. On the contrary, in oocytes micro-transplanted with epileptic TSC tuber tissue from seven patients, neither the GABAA reversal potential nor the GluA1/GluA2 expression showed similar developmental changes. Our data indicate for the first time, that in the same cohort of TSC patients, the pattern of both GABAAR and GluA1/GluA2 functions retains features that are typical of an immature brain. These observations support the potential contribution of altered receptor function to the epileptic disorder of TSC and may suggest novel therapeutic approaches. Furthermore, our findings

  13. Variation in GABA-A subunit gene copy number in an autistic patient with mosaic 4 p duplication (p12p16).

    PubMed

    Kakinuma, Hiroaki; Ozaki, Mamoru; Sato, Hitoshi; Takahashi, Hiroaki

    2008-09-05

    Autism has been associated with chromosomal aberrations, including duplications at chromosome 4, and the identification of genetic factors contributing to the etiology of this disease is the focus of much research. Here we report a Japanese girl with mosaic of chromosome 4p duplication, mos 46,XX,dup(4)(p12p16)[54]/46,XX[6], who was diagnosed with autism at 3 years of age. Fluorescence in situ hybridization (FISH) with probes covering the region spanning a cluster of the gamma aminobutyric acid A (GABA-A) receptor subunit genes in the proximal short arm of chromosome 4 demonstrated total three signals for the GABRG1, GABRA4, and GABRA2 genes, but only two signals for GABRB1. This suggests that aberrant copy number of the GABA-A receptor subunit genes may contribute to the etiology of autism in this patient. 2007 Wiley-Liss, Inc.

  14. The influence of stress at puberty on mood and learning: Role of the α4βδ GABAA receptor

    PubMed Central

    Smith, Sheryl S.

    2012-01-01

    It is well-known that the onset of puberty is associated with changes in mood as well as cognition. Stress can have an impact on these outcomes, which in many cases, can be more influential in females, suggesting that gender differences exist. The adolescent period is a vulnerable time for the onset of certain psychopathologies, including anxiety disorders, depression and eating disorders, which are also more prevalent in females. One factor which may contribute to stress-triggered anxiety at puberty is the GABAA receptor (GABAR), which is known to play a pivotal role in anxiety. Expression of α4βδ GABARs increases on the dendrites of CA1 pyramidal cells at the onset of puberty in the hippocampus, part of the limbic circuitry which governs emotion. This receptor is a sensitive target for the stress steroid THP (3α-OH-5[α]β-pregnan-20-one), which paradoxically reduces inhibition and increases anxiety during the pubertal period (~PND 35–44) of female mice in contrast to its usual effect to enhance inhibition and reduce anxiety. Spatial learning and synaptic plasticity are also adversely impacted at puberty, likely a result of increased expression of α4βδ GABARs on the dendritic spines of CA1 hippocampal pyramidal cells, which are essential for consolidation of memory. This review will focus on the role of these receptors in mediating behavioral changes at puberty. Stress-mediated changes in mood and cognition in early adolescence may have relevance for the expression of psychopathologies in adulthood. PMID:23079628

  15. Association between GABA-A receptor alpha 5 subunit gene locus and schizophrenia of a later age of onset.

    PubMed

    Papadimitriou, G; Dikeos, D; Daskalopoulou, E; Karadima, G; Avramopoulos, D; Contis, C; Stefanis, C

    2001-01-01

    Heritability is considered to be a major etiologic factor for schizophrenia. Among the genes considered as candidates for the disease, are those related to GABAergic neurotransmission. Our aim was to test for a genetic association between GABA-A receptor alpha 5 subunit gene locus (GABRA(5)) and schizophrenia. Genotyping of the GABRA(5) locus was performed by the use of a dinucleotide (CA) repeat marker in 46 schizophrenic patients and 50 healthy individuals, all unrelated Greeks. Eight alleles were identified, 276-290 bp long. A nonsignificant excess of the 282-bp allele, which was found in a previous study in a Greek population to be associated with bipolar affective disorder, was observed in schizophrenic patients (33.8 vs. 23.9% in the controls). The frequency of this allele was 43.3% among patients with a later age of onset (over 25 years), differing at a statistically significant level from the controls (p < 0.05). These results suggest that common pathophysiological mechanisms may possibly underlie affective disorders and schizophrenia, at least in a subgroup of patients. Copyright 2001 S. Karger AG, Basel

  16. Changes in the sensitivity of GABAA current rundown to drug treatments in a model of temporal lobe epilepsy

    PubMed Central

    Cifelli, Pierangelo; Palma, Eleonora; Roseti, Cristina; Verlengia, Gianluca; Simonato, Michele

    2013-01-01

    The pharmacological treatment of mesial temporal lobe epilepsy (mTLE), the most common epileptic syndrome in adults, is still unsatisfactory, as one-third of the patients are or become refractory to antiepileptic agents. Refractoriness may depend upon drug-induced alterations, but the disease per se may also undergo a progressive evolution that affects the sensitivity to drugs. mTLE has been shown to be associated with a dysfunction of the inhibitory signaling mediated by GABAA receptors. In particular, the repetitive activation of GABAA receptors produces a use-dependent decrease (rundown) of the evoked currents (IGABA), which is markedly enhanced in the hippocampus and cortex of drug-resistant mTLE patients. This phenomenon has been also observed in the pilocarpine model, where the increased IGABA rundown is observed in the hippocampus at the time of the first spontaneous seizure, then extends to the cortex and remains constant in the chronic phase of the disease. Here, we examined the sensitivity of IGABA to pharmacological modulation. We focused on the antiepileptic agent levetiracetam (LEV) and on the neurotrophin brain-derived neurotrophic factor (BDNF), which were previously reported to attenuate mTLE-induced increased rundown in the chronic human tissue. In the pilocarpine model, BDNF displayed a paramount effect, decreasing rundown in the hippocampus at the time of the first seizure, as well as in the hippocampus and cortex in the chronic period. In contrast, LEV did not affect rundown in the hippocampus, but attenuated it in the cortex. Interestingly, this effect of LEV was also observed on the still unaltered rundown observed in the cortex at the time of the first spontaneous seizure. These data suggest that the sensitivity of GABAA receptors to pharmacological interventions undergoes changes during the natural history of mTLE, implicating that the site of seizure initiation and the timing of treatment may highly affect the therapeutic outcome. PMID

  17. Stereoselective modulatory actions of oleamide on GABAA receptors and voltage-gated Na+ channels in vitro: a putative endogenous ligand for depressant drug sites in CNS

    PubMed Central

    Verdon, Bernard; Zheng, Jian; Nicholson, Russell A; Ganelli, C Robin; Lees, George

    2000-01-01

    cis-9,10-octadecenoamide (‘oleamide') accumulates in CSF on sleep deprivation. It induces sleep in animals (the trans form is inactive) but its cellular actions are poorly characterized. We have used electrophysiology in cultures from embryonic rat cortex and biochemical studies in mouse nerve preparations to address these issues. Twenty μM cis-oleamide (but not trans) reversibly enhanced GABAA currents and depressed the frequency of spontaneous excitatory and inhibitory synaptic activity in cultured networks. cis-oleamide stereoselectively blocked veratridine-induced (but not K+-induced) depolarisation of mouse synaptoneurosomes (IC50, 13.9 μM). The cis isomer stereoselectively blocked veratridine-induced (but not K+-induced) [3H]-GABA release from mouse synaptosomes (IC50, 4.6 μM). At 20 μM cis-oleamide, but not trans, produced a marked inhibition of Na+ channel-dependent rises in intrasynaptosomal Ca2+. The physiological significance of these observations was examined by isolating Na+ spikes in cultured pyramidal neurones. Sixty-four μM cis-oleamide did not significantly alter the amplitude, rate of rise or duration of unitary action potentials (1 Hz). cis-Oleamide stereoselectively suppressed sustained repetitive firing (SRF) in these cells with an EC50 of 4.1 μM suggesting a frequency- or state-dependent block of voltage-gated Na+ channels. Oleamide is a stereoselective modulator of both postsynaptic GABAA receptors and presynaptic or somatic voltage-gated Na+ channels which are crucial for synaptic inhibition and conduction. The modulatory actions are strikingly similar to those displayed by sedative or anticonvulsant barbiturates and a variety of general anaesthetics. Oleamide may represent an endogenous modulator for drug receptors and an important regulator of arousal. PMID:10694234

  18. Noradrenaline Triggers GABAA Inhibition of Bed Nucleus of the Stria Terminalis Neurons Projecting to the Ventral Tegmental Area

    PubMed Central

    Dumont, Éric C.; Williams, John T.

    2014-01-01

    The lateral part of the ventral bed nucleus of the stria terminalis (vlBNST) is a critical site for the antiaversive effects of noradrenergic drugs during opioid withdrawal. The objective of the present study is to identify the cellular action(s) of noradrenaline in the vlBNST after withdrawal from a 5 d treatment with morphine. The vlBNST is a heterogeneous cell group with multiple efferent projections. Therefore, neurons projecting to the midbrain were identified by retrograde transport of fluorescent microspheres injected in the ventral tegmental area (VTA). Whole-cell voltage clamp recordings of these neurons and of those sharing physiological properties were done in brain slices. Noradrenaline activated α1-adrenergic receptors to increase GABAA-IPSC frequency. Noradrenaline produced a similar increase in GABAA-IPSCs during acute opioid withdrawal, but this increase resulted from activation of β-adrenergic receptors, adenylyl cyclase, and protein kinase A, as well as α1-adrenergic receptors. Given that neurons in the vlBNST send an excitatory projection to the VTA, noradrenaline may reduce excitatory drive to mesolimbic dopamine cells. This mechanism might contribute to the withdrawal-induced inhibition of dopamine neurons and explain how noradrenergic drugs microinjected into the vlBNST reduce aversive aspects of opioid withdrawal. PMID:15385602

  19. GABAA receptor subtype involvement in addictive behaviour.

    PubMed

    Stephens, D N; King, S L; Lambert, J J; Belelli, D; Duka, T

    2017-01-01

    GABA A receptors form the major class of inhibitory neurotransmitter receptors in the mammalian brain. This review sets out to summarize the evidence that variations in genes encoding GABA A receptor isoforms are associated with aspects of addictive behaviour in humans, while animal models of addictive behaviour also implicate certain subtypes of GABA A receptor. In addition to outlining the evidence for the involvement of specific subtypes in addiction, we summarize the particular contributions of these isoforms in control over the functioning of brain circuits, especially the mesolimbic system, and make a first attempt to bring together evidence from several fields to understanding potential involvement of GABA A receptor subtypes in addictive behaviour. While the weight of the published literature is on alcohol dependency, the underlying principles outlined are relevant across a number of different aspects of addictive behaviour. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  20. Association between the GABA(A) receptor alpha5 subunit gene locus (GABRA5) and bipolar affective disorder.

    PubMed

    Papadimitriou, G N; Dikeos, D G; Karadima, G; Avramopoulos, D; Daskalopoulou, E G; Vassilopoulos, D; Stefanis, C N

    1998-02-07

    Genetic factors seem to play an important role in the pathogenesis of affective disorder. The candidate gene strategies are being used, among others, to identify the genes conferring vulnerability to the disease. The genes coding for the receptors of gamma-aminobutyric acid (GABA) have been proposed as candidates for affective disorder, since the GABA neurotransmitter system has been implicated in the pathogenesis of the illness. We examined the possible genetic association between the GABA(A) receptor alpha5 subunit gene locus (GABRA5) on chromosome 15 and affective disorder, in 48 bipolar patients (BP), 40 unipolar patients (UP), and 50 healthy individuals, age- and sex-matched to the patients. All patients and controls were unrelated Greeks. Diagnoses were made after direct interviews according to the DSM-IV and ICD-10 criteria. For the genotyping, a dinucleotide (CA) repeat marker was used. The polymerase chain reaction (PCR) products found were nine alleles with lengths between 272 and 290 base pairs (bp). The distribution of allelic frequencies of the GABRA5 locus differed significantly between BP patients and controls with the 282-bp allele found to be associated with BP affective disorder, while no such difference was observed between the groups of UP patients and controls nor between the two patient groups. The presence or absence of the 282-bp allele in the genotype of BP patients was not shown to influence the age of onset and the overall clinical severity, but was found to be associated with a preponderance of manic over depressive episodes in the course of the illness.

  1. 17α-ethinyl estradiol attenuates depressive-like behavior through GABAA receptor activation/nitrergic pathway blockade in ovariectomized mice.

    PubMed

    Saeedi Saravi, Seyed Soheil; Arefidoust, Alireza; Yaftian, Rahele; Saeedi Saravi, Seyed Sobhan; Dehpour, Ahmad Reza

    2016-04-01

    This study was performed to investigate the antidepressant-like effect of 17α-ethinyl estradiol (EE2) in ovariectomized (OVX) mice and the possible role of nitrergic and gamma aminobutyric acid (GABA)ergic pathways in this paradigm. Bilateral ovariectomy was performed in female mice, and different doses of EE2 were intraperitoneally injected either alone or combined with GABAA agonist, diazepam, GABAA antagonist, flumazenil, non-specific nitric oxide synthase (NOS) inhibitor, N(ω)-nitro-L-arginine methyl ester (L-NAME), specific nNOS inhibitor, 7-nitroindazole (7-NI), a nitric oxide (NO) precursor, L-arginine, and selective PDE5I, sildenafil. After locomotion assessment, immobility times were recorded in the forced swimming test (FST) and tail suspension test (TST). Moreover, hippocampal nitrite concentrations were measured in the examined groups. Ten days after ovariectomy, a significant prolonged immobility times were observed. EE2 (0.3 and 1μg/kg and 0.03, 0.1, and 1mg/kg) caused antidepressant-like activity in OVX mice in FST and TST. Diazepam (1 and 5mg/kg), L-NAME (30mg/kg), and 7-NI (100mg/kg) significantly reduced the immobility times. Co-administration of minimal and sub-effective doses of EE2 and diazepam (0.3μg/kg and 0.5mg/kg, respectively) exerted a significant antidepressant-like effect. The same effect was observed in combination of minimal and sub-effective doses of EE2 and either L-NAME or 7-NI. Moreover, combination of minimal and sub-effective doses of EE2, diazepam either L-NAME, or 7-NI emphasized the significant robust antidepressant-like activity. The study has demonstrated that lowest dose of EE2 exerts a significant antidepressant-like behavior. It is suggested that suppression of NO system, as well as GABAA activation, may be responsible for antidepressant-like activity of EE2 in OVX mice. Moreover, GABAA activation may inhibit nitrergic pathway.

  2. Neonatal allopregnanolone or finasteride administration modifies hippocampal K(+) Cl(-) co-transporter expression during early development in male rats.

    PubMed

    Mòdol, Laura; Casas, Caty; Llidó, Anna; Navarro, Xavier; Pallarès, Marc; Darbra, Sònia

    2014-09-01

    The maintenance of levels of endogenous neurosteroids (NS) across early postnatal development of the brain, particularly to the hippocampus, is crucial for their maturation. Allopregnanolone (Allop) is a NS that exerts its effect mainly through the modulation of the GABAA receptor (GABAAR). During early development, GABA, acting through GABAAR, that predominantly produces depolarization shifts to hyperpolarization in mature neurons, around the second postnatal week in rats. Several factors contribute to this change including the progressive increase of the neuron-specific K(+)/Cl(-) co-transporter 2 (KCC2) (a chloride exporter) levels. Thus, we aimed to analyze whether a different profile of NS levels during development is critical and can alter this natural progression of KCC2 stages. We administrated sustained Allop (20mg/kg) or Finasteride (5α-reductase inhibitor, 50mg/kg) from the 5th postnatal day (PD5) to PD9 and assessed changes in the hippocampal expression of KCC2 at transcript and protein levels as well as its active phosphorylated state in male rats. Taken together data indicated that manipulation of NS levels during early development influence KCC2 levels and point out the importance of neonatal NS levels for the hippocampal development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Daily isoflurane exposure increases barbiturate insensitivity in medullary respiratory and cortical neurons via expression of ε-subunit containing GABA ARs.

    PubMed

    Hengen, Keith B; Nelson, Nathan R; Stang, Kyle M; Johnson, Stephen M; Smith, Stephanie M; Watters, Jyoti J; Mitchell, Gordon S; Behan, Mary

    2015-01-01

    The parameters governing GABAA receptor subtype expression patterns are not well understood, although significant shifts in subunit expression may support key physiological events. For example, the respiratory control network in pregnant rats becomes relatively insensitive to barbiturates due to increased expression of ε-subunit-containing GABAARs in the ventral respiratory column. We hypothesized that this plasticity may be a compensatory response to a chronic increase in inhibitory tone caused by increased central neurosteroid levels. Thus, we tested whether increased inhibitory tone was sufficient to induce ε-subunit upregulation on respiratory and cortical neurons in adult rats. Chronic intermittent increases in inhibitory tone in male and female rats was induced via daily 5-min exposures to 3% isoflurane. After 7d of treatment, phrenic burst frequency was less sensitive to barbiturate in isoflurane-treated male and female rats in vivo. Neurons in the ventral respiratory group and cortex were less sensitive to pentobarbital in vitro following 7d and 30d of intermittent isoflurane-exposure in both male and female rats. The pentobarbital insensitivity in 7d isoflurane-treated rats was reversible after another 7d. We hypothesize that increased inhibitory tone in the respiratory control network and cortex causes a compensatory increase in ε-subunit-containing GABAARs.

  4. Multiple functions of GABA A and GABA B receptors during pattern processing in the zebrafish olfactory bulb.

    PubMed

    Tabor, Rico; Yaksi, Emre; Friedrich, Rainer W

    2008-07-01

    gamma-Aminobutyric acid (GABA)ergic synapses are thought to play pivotal roles in the processing of activity patterns in the olfactory bulb (OB), but their functions have been difficult to study during odor responses in the intact system. We pharmacologically manipulated GABA(A) and GABA(B) receptors in the OB of zebrafish and analysed the effects on odor responses of the output neurons, the mitral cells (MCs), by electrophysiological recordings and temporally deconvolved two-photon Ca2+ imaging. The blockade of GABA(B) receptors enhanced presynaptic Ca2+ influx into afferent axon terminals, and changed the amplitude and time course of a subset of MC responses, indicating that GABA(B) receptors have a modulatory influence on OB output activity. The blockade of GABA(A) receptors induced epileptiform firing, enhanced excitatory responses and abolished fast oscillations in the local field potential. Moreover, the topological reorganization and decorrelation of MC activity patterns during the initial phase of the response was perturbed. These results indicate that GABA(A) receptor-containing circuits participate in the balance of excitation and inhibition, the regulation of total OB output activity, the synchronization of odor-dependent neuronal ensembles, and the reorganization of odor-encoding activity patterns. GABA(A) and GABA(B) receptors are therefore differentially involved in multiple functions of neuronal circuits in the OB.

  5. Relationship between a GABAA alpha 6 Pro385Ser substitution and benzodiazepine sensitivity.

    PubMed

    Iwata, N; Cowley, D S; Radel, M; Roy-Byrne, P P; Goldman, D

    1999-09-01

    In humans, interindividual variation in sensitivity to benzodiazepine drugs may correlate with behavioral variation, including vulnerability to disease states such as alcoholism. In the rat, variation in alcohol and benzodiazepine sensitivity has been correlated with an inherited variant of the GABAA alpha 6 receptor. The authors detected a Pro385Ser [1236C > T] amino acid substitution in the human GABAA alpha 6 that may influence alcohol sensitivity. In this pilot study, they evaluated the contribution of this polymorphism to benzodiazepine sensitivity. Sensitivity to diazepam was assessed in 51 children of alcoholics by using two eye movement measures: peak saccadic velocity and average smooth pursuit gain. Association analysis was performed with saccadic velocity and smooth pursuit gain as dependent variables and comparing Pro385/Ser385 heterozygotes and Pro385/Pro385 homozygotes. The Pro385Ser genotype was associated with less diazepam-induced impairment of saccadic velocity but not with smooth pursuit gain. The Pro385Ser genotype may play a role in benzodiazepine sensitivity and conditions, such as alcoholism, that may be correlated with this trait.

  6. Effects of GABAA receptor inhibition on response properties of barrel cortical neurons in C-fiber-depleted rats.

    PubMed

    Farazifard, Rasoul; Kiani, Roozbeh; Esteky, Hossein

    2005-07-19

    C-fiber depletion results in expansion of low threshold somatosensory mechanoreceptive fields. In this study, we investigated the role of intact C-fibers in GABAA-mediated inhibition in barrel cortical neurons. We used electronically controlled mechanical stimulation of whiskers to quantitatively examine the responses of barrel cells to whisker displacements. After systemic injection of picrotoxin neuronal responses were recorded at 5 min intervals for 20 min and then at 10 min intervals for 100 min. Picrotoxin injection caused a 3-fold increase in response magnitude of adjacent whisker stimulation and 1.4-fold increase in response magnitude of principal whisker stimulation with a maximum enhancement 50 min after the injection. There was no significant change in spontaneous activity following picrotoxin injection. The response enhancement and receptive field expansion observed in normal rats were completely absent in the C-fiber-depleted rats. These results suggest that the GABAA-mediated inhibition that modulates the receptive field functional organization of the barrel cortex depends on intact C-fibers.

  7. In vitro blood-brain barrier permeability predictions for GABAA receptor modulating piperine analogs.

    PubMed

    Eigenmann, Daniela Elisabeth; Dürig, Carmen; Jähne, Evelyn Andrea; Smieško, Martin; Culot, Maxime; Gosselet, Fabien; Cecchelli, Romeo; Helms, Hans Christian Cederberg; Brodin, Birger; Wimmer, Laurin; Mihovilovic, Marko D; Hamburger, Matthias; Oufir, Mouhssin

    2016-06-01

    The alkaloid piperine from black pepper (Piper nigrum L.) and several synthetic piperine analogs were recently identified as positive allosteric modulators of γ-aminobutyric acid type A (GABAA) receptors. In order to reach their target sites of action, these compounds need to enter the brain by crossing the blood-brain barrier (BBB). We here evaluated piperine and five selected analogs (SCT-66, SCT-64, SCT-29, LAU397, and LAU399) regarding their BBB permeability. Data were obtained in three in vitro BBB models, namely a recently established human model with immortalized hBMEC cells, a human brain-like endothelial cells (BLEC) model, and a primary animal (bovine endothelial/rat astrocytes co-culture) model. For each compound, quantitative UHPLC-MS/MS methods in the range of 5.00-500ng/mL in the corresponding matrix were developed, and permeability coefficients in the three BBB models were determined. In vitro predictions from the two human BBB models were in good agreement, while permeability data from the animal model differed to some extent, possibly due to protein binding of the screened compounds. In all three BBB models, piperine and SCT-64 displayed the highest BBB permeation potential. This was corroborated by data from in silico prediction. For the other piperine analogs (SCT-66, SCT-29, LAU397, and LAU399), BBB permeability was low to moderate in the two human BBB models, and moderate to high in the animal BBB model. Efflux ratios (ER) calculated from bidirectional permeability experiments indicated that the compounds were likely not substrates of active efflux transporters. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Modulation of GABAergic receptor binding by activation of calcium and calmodulin-dependent kinase II membrane phosphorylation.

    PubMed

    Churn, S B; DeLorenzo, R J

    1998-10-26

    gamma-Aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system (CNS). Because of the important role that GABA plays in the CNS, alteration of GABAA receptor function would significantly affect neuronal excitability. Protein phosphorylation is a major mechanism for regulating receptor function in the brain and has been implicated in modulating GABAA receptor function. Therefore, this study was initiated to determine the role of calmodulin-dependent kinase II (CaM kinase II) membrane phosphorylation on GABAA receptor binding. Synaptosomal membrane fractions were tested for CaM kinase II activity towards endogenous substrates. In addition, muscimol binding was evaluated under equilibrium conditions in synaptosomal membrane fractions subjected to either basal (Mg2+ alone) or maximal CaM kinase II-dependent phosphorylation. Activation of endogenous CaM kinase II-dependent phosphorylation resulted in a significant enhancement of the apparent Bmax for muscimol binding without significantly altering the apparent binding affinity. The enhanced muscimol binding could be increased further by the addition of exogenous CaM kinase II to synaptosomal membrane fractions. Co-incubation with inhibitors of kinase activity during the phosphorylation reactions blocked the CaM kinase II-dependent increase in muscimol binding. The data support the hypothesis that activation of CaM kinase II-dependent phosphorylation caused an increased GABAA receptor binding and may play an important role in modulating the function of this inhibitory receptor/chloride ion channel complex. Copyright 1998 Elsevier Science B.V.

  9. Topology characterization of a benzodiazepine-binding beta-rich domain of the GABAA receptor alpha1 subunit.

    PubMed

    Xu, Zhiwen; Fang, Shisong; Shi, Haifeng; Li, Hoiming; Deng, Yiqun; Liao, Yinglei; Wu, Jiun-Ming; Zheng, Hui; Zhu, Huaimin; Chen, Hueih-Min; Tsang, Shui Ying; Xue, Hong

    2005-10-01

    Structural investigation of GABAA receptors has been limited by difficulties imposed by its trans-membrane-complex nature. In the present study, the topology of a membrane-proximal beta-rich (MPB) domain in the C139-L269 segment of the receptor alpha1 subunit was probed by mapping the benzodiazepine (BZ)-binding and epitopic sites, as well as fluorescence resonance energy transfer (FRET) analysis. Ala-scanning and semiconservative substitutions within this segment revealed the contribution of the phenyl rings of Y160 and Y210, the hydroxy group of S186 and the positive charge on R187 to BZ-binding. FRET with the bound BZ ligand indicated the proximity of Y160, S186, R187, and S206 to the BZ-binding site. On the other hand, epitope-mapping using the monoclonal antibodies (mAbs) against the MPB domain established a clustering of T172, R173, E174, Q196, and T197. Based on the lack of FRET between Trp substitutionally placed at R173 or V198 and bound BZ, this epitope-mapped cluster is located on a separate end of the folded protein from the BZ-binding site. Mutations of the five conserved Cys and Trp residues in the MPB domain gave rise to synergistic and rescuing effects on protein secondary structures and unfolding stability that point to a CCWCW-pentad, reminiscent to the CWC-triad "pin" of immunoglobulin (Ig)-like domains, important for the structural maintenance. These findings, together with secondary structure and fold predictions suggest an anti-parallel beta-strand topology with resemblance to Ig-like fold, having the BZ-binding and the epitopic residues being clustered at two different ends of the fold.

  10. Absence of γ-aminobutyric acid-a receptor potentiation in central hypersomnolence disorders.

    PubMed

    Dauvilliers, Yves; Evangelista, Elisa; Lopez, Regis; Barateau, Lucie; Jaussent, Isabelle; Cens, Thierry; Rousset, Matthieu; Charnet, Pierre

    2016-08-01

    The pathophysiology of idiopathic hypersomnia (IH) remains unclear. Recently, cerebrospinal fluid (CSF)-induced enhancement of γ-aminobutyric acid (GABA)-A receptor activity was found in patients with IH compared to controls. Fifteen unrelated patients (2 males and 13 females) affected with typical IH, 12 patients (9 males and 3 females) with narcolepsy type 1, and 15 controls (9 males and 6 females) with unspecified hypersomnolence (n = 7) and miscellaneous neurological conditions (n = 8) were included. A lumbar puncture was performed in all participants to measure CSF hypocretin-1 and GABA-A response. We used a voltage-clamp assay on Xenopus oocytes injected with the RNAs that encode the α1 β2 γ2 or the α2 β2 γ2 subunits of the human GABA-A receptor. A sequence of 6 different applications (GABA, GABA/CSF, and CSF alone) with 2 to 4 oocytes per CSF sample was performed in a whole-cell voltage-clamp assay. Representative current traces from oocytes expressing human α1 β2 γ2 or α2 β2 γ2 GABA-A receptors were recorded in response to 6 successive puffs of GABA diluted in the survival medium (SM), showing stable and reliable response. GABA puffs diluted in SM/CSF solution or SM/CSF solution alone showed no significant differences in the CSF of IH, narcolepsy, or control groups. No associations were found between GABA responses, demographic features, disease duration, or disease severity in the whole population or within groups. Using the Xenopus oocyte assay, we found an absence of GABA-A receptor potentiation with CSF from patients with central hypersomnolence disorders, with no significant differences between hypocretin-deficient and non-hypocretin-deficient patients compared to controls. Ann Neurol 2016;80:259-268. © 2016 American Neurological Association.

  11. Decreased GABA-A binding on FMZ-PET in succinic semialdehyde dehydrogenase deficiency.

    PubMed

    Pearl, P L; Gibson, K M; Quezado, Z; Dustin, I; Taylor, J; Trzcinski, S; Schreiber, J; Forester, K; Reeves-Tyer, P; Liew, C; Shamim, S; Herscovitch, P; Carson, R; Butman, J; Jakobs, C; Theodore, W

    2009-08-11

    Succinic semialdehyde dehydrogenase (SSADH) deficiency is an autosomal recessive disorder of GABA metabolism characterized by elevated levels of GABA and gamma-hydroxybutyric acid. Clinical findings include intellectual impairment, hypotonia, hyporeflexia, hallucinations, autistic behaviors, and seizures. Autoradiographic labeling and slice electrophysiology studies in the murine model demonstrate use-dependent downregulation of GABA(A) receptors. We studied GABA(A) receptor activity in human SSADH deficiency utilizing [(11)C]-flumazenil (FMZ)-PET. FMZ binding was measured in 7 patients, 10 unaffected parents, and 8 healthy controls. Data analysis was performed using a reference region compartmental model, with time-activity curve from pons as the input function. Relative parametric binding potential (BP(ND)) was derived, with MRI-based pixel by pixel partial volume correction, in regions of interest drawn on coregistered MRI. In amygdala, hippocampus, cerebellar vermis, frontal, parietal, and occipital cortex, patients with SSADH deficiency had significant reductions in FMZ BP(ND) compared to parents and controls. Mean cortical values were 6.96 +/- 0.79 (controls), 6.89 +/- 0.71 (parents), and 4.88 +/- 0.77 (patients) (F ratio 16.1; p < 0.001). There were no differences between controls and parents in any cortical region. Succinic semialdehyde dehydrogenase (SSADH) deficient patients show widespread reduction in BZPR binding on [(11)C]-flumazenil-PET. Our results suggest that high endogenous brain GABA levels in SSADH deficiency downregulate GABA(A)-BZPR binding site availability. This finding suggests a potential mechanism for neurologic dysfunction in a serious neurodevelopmental disorder, and suggests that PET may be useful to translate studies in animal models to human disease.

  12. GABAA- and glycine-mediated inhibitory modulation of the cough reflex in the caudal nucleus tractus solitarii of the rabbit.

    PubMed

    Cinelli, Elenia; Iovino, Ludovica; Bongianni, Fulvia; Pantaleo, Tito; Mutolo, Donatella

    2016-09-01

    Cough-related sensory inputs from rapidly adapting receptors (RARs) and C fibers are processed by second-order neurons mainly located in the caudal nucleus tractus solitarii (NTS). Both GABAA and glycine receptors have been proven to be involved in the inhibitory control of second-order cells receiving RAR projections. We investigated the role of these receptors within the caudal NTS in the modulation of the cough reflex induced by either mechanical or chemical stimulation of the tracheobronchial tree in pentobarbital sodium-anesthetized, spontaneously breathing rabbits. Bilateral microinjections (30-50 nl) of the receptor antagonists bicuculline and strychnine as well as of the receptor agonists muscimol and glycine were performed. Bicuculline (0.1 mM) and strychnine (1 mM) caused decreases in peak abdominal activity and marked increases in respiratory frequency due to decreases in both inspiratory time (Ti) and expiratory time (Te), without concomitant changes in arterial blood pressure. Noticeably, these microinjections induced potentiation of the cough reflex consisting of increases in the cough number associated with decreases either in cough-related Ti after bicuculline or in both cough-related Ti and Te after strychnine. The effects caused by muscimol (0.1 mM) and glycine (10 mM) were in the opposite direction to those produced by the corresponding antagonists. The results show that both GABAA and glycine receptors within the caudal NTS mediate a potent inhibitory modulation of the pattern of breathing and cough reflex responses. They strongly suggest that disinhibition is one important mechanism underlying cough regulation and possibly provide new hints for novel effective antitussive strategies. Copyright © 2016 the American Physiological Society.

  13. Astrocytes potentiate GABAergic transmission in the thalamic reticular nucleus via endozepine signaling.

    PubMed

    Christian, Catherine A; Huguenard, John R

    2013-12-10

    Emerging evidence indicates that diazepam-binding inhibitor (DBI) mediates an endogenous benzodiazepine-mimicking (endozepine) effect on synaptic inhibition in the thalamic reticular nucleus (nRT). Here we demonstrate that DBI peptide colocalizes with both astrocytic and neuronal markers in mouse nRT, and investigate the role of astrocytic function in endozepine modulation in this nucleus by testing the effects of the gliotoxin fluorocitrate (FC) on synaptic inhibition and endozepine signaling in the nRT using patch-clamp recordings. FC treatment reduced the effective inhibitory charge of GABAA receptor (GABAAR)-mediated spontaneous inhibitory postsynaptic currents in WT mice, indicating that astrocytes enhance GABAAR responses in the nRT. This effect was abolished by both a point mutation that inhibits classical benzodiazepine binding to GABAARs containing the α3 subunit (predominant in the nRT) and a chromosomal deletion that removes the Dbi gene. Thus, astrocytes are required for positive allosteric modulation via the α3 subunit benzodiazepine-binding site by DBI peptide family endozepines. Outside-out sniffer patches pulled from neurons in the adjacent ventrobasal nucleus, which does not contain endozepines, show a potentiated response to laser photostimulation of caged GABA when placed in the nRT. FC treatment blocked the nRT-dependent potentiation of this response, as did the benzodiazepine site antagonist flumazenil. When sniffer patches were placed in the ventrobasal nucleus, however, subsequent treatment with FC led to potentiation of the uncaged GABA response, suggesting nucleus-specific roles for thalamic astrocytes in regulating inhibition. Taken together, these results suggest that astrocytes are required for endozepine actions in the nRT, and as such can be positive modulators of synaptic inhibition.

  14. Astrocytes potentiate GABAergic transmission in the thalamic reticular nucleus via endozepine signaling

    PubMed Central

    Christian, Catherine A.; Huguenard, John R.

    2013-01-01

    Emerging evidence indicates that diazepam-binding inhibitor (DBI) mediates an endogenous benzodiazepine-mimicking (endozepine) effect on synaptic inhibition in the thalamic reticular nucleus (nRT). Here we demonstrate that DBI peptide colocalizes with both astrocytic and neuronal markers in mouse nRT, and investigate the role of astrocytic function in endozepine modulation in this nucleus by testing the effects of the gliotoxin fluorocitrate (FC) on synaptic inhibition and endozepine signaling in the nRT using patch-clamp recordings. FC treatment reduced the effective inhibitory charge of GABAA receptor (GABAAR)-mediated spontaneous inhibitory postsynaptic currents in WT mice, indicating that astrocytes enhance GABAAR responses in the nRT. This effect was abolished by both a point mutation that inhibits classical benzodiazepine binding to GABAARs containing the α3 subunit (predominant in the nRT) and a chromosomal deletion that removes the Dbi gene. Thus, astrocytes are required for positive allosteric modulation via the α3 subunit benzodiazepine-binding site by DBI peptide family endozepines. Outside-out sniffer patches pulled from neurons in the adjacent ventrobasal nucleus, which does not contain endozepines, show a potentiated response to laser photostimulation of caged GABA when placed in the nRT. FC treatment blocked the nRT-dependent potentiation of this response, as did the benzodiazepine site antagonist flumazenil. When sniffer patches were placed in the ventrobasal nucleus, however, subsequent treatment with FC led to potentiation of the uncaged GABA response, suggesting nucleus-specific roles for thalamic astrocytes in regulating inhibition. Taken together, these results suggest that astrocytes are required for endozepine actions in the nRT, and as such can be positive modulators of synaptic inhibition. PMID:24262146

  15. Effects of Traumatic Stress Induced in the Juvenile Period on the Expression of Gamma-Aminobutyric Acid Receptor Type A Subunits in Adult Rat Brain

    PubMed Central

    Lu, Cui Yan; Liu, De Xiang; Jiang, Hong; Ho, Cyrus S. H.; Ho, Roger C. M.

    2017-01-01

    Studies have found that early traumatic experience significantly increases the risk of posttraumatic stress disorder (PTSD). Gamma-aminobutyric acid (GABA) deficits were proposed to be implicated in development of PTSD, but the alterations of GABA receptor A (GABAAR) subunits induced by early traumatic stress have not been fully elucidated. Furthermore, previous studies suggested that exercise could be more effective than medications in reducing severity of anxiety and depression but the mechanism is unclear. This study used inescapable foot-shock to induce PTSD in juvenile rats and examined their emotional changes using open-field test and elevated plus maze, memory changes using Morris water maze, and the expression of GABAAR subunits (γ2, α2, and α5) in subregions of the brain in the adulthood using western blotting and immunohistochemistry. We aimed to observe the role of GABAAR subunits changes induced by juvenile trauma in the pathogenesis of subsequent PTSD in adulthood. In addition, we investigated the protective effects of exercise for 6 weeks and benzodiazepine (clonazepam) for 2 weeks. This study found that juvenile traumatic stress induced chronic anxiety and spatial memory loss and reduced expression of GABAAR subunits in the adult rat brains. Furthermore, exercise led to significant improvement as compared to short-term BZ treatment. PMID:28352479

  16. Chronic Exposure to Anabolic Androgenic Steroids Alters Neuronal Function in the Mammalian Forebrain via Androgen Receptor- and Estrogen Receptor-Mediated Mechanisms

    PubMed Central

    Penatti, Carlos A A; Porter, Donna M; Henderson, Leslie P

    2009-01-01

    Anabolic androgenic steroids (AAS) can promote detrimental effects on social behaviors for which γ-aminobutyric acid type A (GABAA) receptor-mediated circuits in the forebrain play a critical role. While all AAS bind to androgen receptors (AR), they may also be aromatized to estrogens and thus potentially impart effects via estrogen receptors (ER). Chronic exposure of wild type male mice to a combination of chemically distinct AAS increased action potential (AP) frequency, selective GABAA receptor subunit mRNAs, and GABAergic synaptic current decay in the medial preoptic area (mPOA). Experiments performed with pharmacological agents and in AR-deficient Tfm mutant mice suggest that the AAS-dependent enhancement of GABAergic transmission in wild type mice is AR-mediated. In AR-deficient mice, the AAS elicited dramatically different effects, decreasing AP frequency, sIPSC amplitude and frequency and the expression of selective GABAA receptor subunit mRNAs. Surprisingly, in the absence of AR signaling, the data indicate that the AAS do not act as ER agonists, but rather suggest a novel in vivo action in which the AAS inhibit aromatase and impair endogenous ER signaling. These results show that the AAS have the capacity to alter neuronal function in the forebrain via multiple steroid signaling mechanisms and suggest that effects of these steroids in the brain will depend not only on the balance of AR- vs. ER-mediated regulation for different target genes, but also on the ability of these drugs to alter steroid metabolism and thus the endogenous steroid milieu. PMID:19812324

  17. The differential role of α1- and α5-containing GABAA receptors in mediating diazepam effects on spontaneous locomotor activity and water-maze learning and memory in rats

    PubMed Central

    Savić, Miroslav M.; Milinković, Marija M.; Rallapalli, Sundari; Clayton, Terry; Joksimović, Srðan; Van Linn, Michael; Cook, James M.

    2009-01-01

    The clinical use of benzodiazepines (BZs) is hampered by sedation and cognitive deterioration. Although genetic and pharmacological studies suggest that α1- and α5-containing GABAA receptors mediate and/or modulate these effects, their molecular substrate is not fully elucidated. By the use of two selective ligands : the α1-subunit affinity-selective antagonist β-CCt, and the α5-subunit affinity- and efficacy-selective antagonist XLi093, we examined the mechanisms of behavioural effects of diazepam in the tests of spontaneous locomotor activity and water-maze acquisition and recall, the two paradigms indicative of sedative- and cognition-impairing effects of BZs, respectively. The locomotor-activity decreasing propensity of diazepam (significant at 1.5 and 5 mg/kg) was antagonized by β-CCt (5 and 15 mg/kg), while it tended to be potentiated by XLi093 in doses of 10 mg/kg, and especially 20 mg/kg. Diazepam decreased acquisition and recall in the water maze, with a minimum effective dose of 1.5 mg/kg. Both antagonists reversed the thigmotaxis induced by 2 mg/kg diazepam throughout the test, suggesting that both GABAA receptor subtypes participate in BZ effects on the procedural component of the task. Diazepam-induced impairment in the declarative component of the task, as assessed by path efficiency, the latency and distance before finding the platform across acquisition trials, and also by the spatial parameters in the probe trial, was partially prevented by both, 15 mg/kg β-CCt and 10 mg/kg XLi093. Combining a BZ with β-CCt results in the near to control level of performance of a cognitive task, without sedation, and may be worth testing on human subjects. PMID:19265570

  18. Clobazam and Its Active Metabolite N-desmethylclobazam Display Significantly Greater Affinities for α2- versus α1-GABAA–Receptor Complexes

    PubMed Central

    Jensen, Henrik Sindal; Nichol, Kathryn; Lee, Deborah; Ebert, Bjarke

    2014-01-01

    Clobazam (CLB), a 1,5-benzodiazepine (BZD), was FDA-approved in October 2011 for the adjunctive treatment of seizures associated with Lennox-Gastaut syndrome (LGS) in patients 2 years and older. BZDs exert various CNS effects through allosteric modulation of GABAA receptors. The structurally distinct, 1,4-BZD clonazepam (CLN) is also approved to treat LGS. The precise mechanisms of action and clinical efficacy of both are unknown. Data show that the GABAA α1-subunit–selective compound zolpidem [ZOL] exhibits hypnotic/sedative effects. Conversely, data from knock-in mice carrying BZD binding site mutations suggest that the α2 subunit mediates anticonvulsant effects, without sedative actions. Hence, the specific pattern of interactions across the GABAA receptor complexes of BZDs might be reflected in their clinical efficacies and adverse effect profiles. In this study, GABAA-receptor binding affinities of CLB, N-desmethylclobazam (N-CLB, the major metabolite of CLB), CLN, and ZOL were characterized with native receptors from rat-brain homogenates and on cloned receptors from HEK293 cells transfected with combinations of α (α1, α2, α3, or α5), β2, and γ2 subtypes. Our results demonstrate that CLB and N-CLB have significantly greater binding affinities for α2- vs. α1-receptor complexes, a difference not observed for CLN, for which no distinction between α2 and α1 receptors was observed. Our experiments with ZOL confirmed the high preference for α1 receptors. These results provide potential clues to a new understanding of the pharmacologic modes of action of CLB and N-CLB. PMID:24533090

  19. Assessment of GABA(A)benzodiazepine receptor (GBzR) sensitivity in patients on benzodiazepines.

    PubMed

    Potokar, J; Coupland, N; Wilson, S; Rich, A; Nutt, D

    1999-09-01

    To measure GABA(A) benzodiazepine receptor sensitivity in patients taking benzodiazepines and compare with matched controls. Seven patients who were on prescribed benzodiazepines for an anxiety disorder or insomnia were recruited from general practice and an adult mental health service outpatient clinic. They were matched with seven volunteers. All subjects received an intravenous injection of midazolam 50 microgram/kg in 10 ml normal saline over 10 min. Objective responses to midazolam were assessed using saccadic eye movement velocity slowing and subjective assessments using visual analogue scales. Measurements were recorded for 120 min and plasma midazolam concentrations obtained at 15-min intervals post-infusion to 120 min. Ratios of pharmacodynamic/pharmacokinetic effects were obtained for each individual to estimate GABA(A) benzodiazepine receptor sensitivity. Patients had an attenuated response to midazolam on both subjective and objective measures. GABA(A) benzodiazepine receptor sensitivity was significantly reduced in the patient group. Chronic treatment with benzodiazepines was associated with reduced effects of midazolam. Saccadic eye movement velocity was especially sensitive as a measure of attenuated response.

  20. Laser photolysis of DPNI-GABA, a tool for investigating the properties and distribution of GABA receptors and for silencing neurons in situ.

    PubMed

    Trigo, Federico F; Papageorgiou, George; Corrie, John E T; Ogden, David

    2009-07-30

    Laser photolysis to release GABA at precisely defined times and locations permits investigation of the distribution of functional GABA(A) receptors in neuronal compartments, the activation kinetics and pharmacology of GABA(A) receptors in situ, and the role of individual neurons in neural circuits by selective silencing with low GABA concentrations. We describe the experimental evaluation and applications of a new nitroindoline-caged GABA, DPNI-GABA, modified to minimize the pharmacological interference commonly found with caged GABA reagents, but retaining the advantages of nitroindoline cages. Unlike the 5-methoxycarbonylmethyl-7-nitroindolinyl-GABA tested previously, DPNI-GABA inhibited GABA(A) receptors with much lower affinity, reducing peak GABA-evoked responses with an IC(50) of approximately 0.5 mM. Most importantly, the kinetics of receptor activation, determined as 10-90% rise-times, were comparable to synaptic events and were little affected by DPNI-GABA present at 1mM concentration, permitting photolysis of DPNI-GABA to mimic synaptic activation of GABA(A) receptors. With a laser spot of 1 microm applied to cerebellar molecular layer interneurons, the spatial resolution of uncaging DPNI-GABA in dendrites was estimated as 2 microm laterally and 7.5 microm focally. Finally, at low DPNI-GABA concentration, photorelease restricted to the area of the soma suppressed spiking in single Purkinje neurons or molecular layer interneurons for periods controlled by the flash intensity and duration. DPNI-GABA has properties better adapted for fast kinetic studies with laser photolysis at GABA(A) receptors than previously reported caged GABA reagents, and can be used in experiments where spatial resolution is determined by the dimensions of the laser light spot.

  1. Targeted deletion of the GABRA2 gene encoding alpha2-subunits of GABA(A) receptors facilitates performance of a conditioned emotional response, and abolishes anxiolytic effects of benzodiazepines and barbiturates.

    PubMed

    Dixon, C I; Rosahl, T W; Stephens, D N

    2008-07-01

    Mice with point-mutated alpha2 GABA(A) receptor subunits (rendering them diazepam insensitive) are resistant to the anxiolytic-like effects of benzodiazepines (BZs) in the conditioned emotional response (CER) test, but show normal anxiolytic effects of a barbiturate. We investigated the consequence of deleting the alpha2-subunit on acquisition of the CER with increasing intensity of footshock, and on the anxiolytic efficacy of a benzodiazepine, diazepam, and a barbiturate, pentobarbital. alpha2 knockout (KO) and wildtype (WT) mice were trained in a conditioned emotional response (CER) task, in which lever pressing for food on a variable interval (VI) schedule was suppressed during the presentation of a compound light/tone conditioned stimulus (CS+) that predicted footshock. The ability of diazepam and of pentobarbital to reduce suppression during the CS+ was interpreted as an anxiolytic response. There were no differences between the genotypes in shock sensitivity, as assessed by their flinch responses to increasing levels of shock. However, alpha2 KO mice showed a greater suppression of lever pressing than WT littermates in the presence of a compound cue signalling footshock. Diazepam (0, 0.5, 1 and 2 mg/kg) induced a dose-dependent anxiolytic-like effect in WT mice but no such effect was seen in KO mice. Similarly, although pentobarbital (20 mg/kg) reduced the ability of the CS+ to reduce lever pressing rates in WT mice, this effect was not seen in the KO. These findings suggest that alpha2-containing GABA(A) receptors mediate the anxiolytic effects of barbiturates, as well as benzodiazepines, and that they may be involved in neuronal circuits underlying conditioned anxiety.

  2. Affective and cognitive effects of global deletion of alpha3-containing gamma-aminobutyric acid-A receptors.

    PubMed

    Fiorelli, Roberto; Rudolph, Uwe; Straub, Carolin J; Feldon, Joram; Yee, Benjamin K

    2008-09-01

    Gamma-aminobutyric acid (GABA)A receptors characterized by the presence of the alpha3 subunit are the major GABAA receptor subtype expressed in brain stem monoaminergic nuclei. These alpha3-GABAA receptors are therefore in a unique position to regulate monoaminergic functions. To characterize the functional properties of alpha3-GABAA receptors, we present a preliminary assessment of the expression of affective and cognitive behaviour in male mice with a targeted deletion of the Gabra3 gene encoding the alpha3 subunit [alpha3 knockout (KO) mice] on a C57BL/6Jx129X1/SvJ F1 hybrid genetic background. The alpha3 KO mice did not exhibit any gross change of anxiety-like behaviour or spontaneous locomotor behaviour. In the Porsolt forced swim test for potential antidepressant activity, alpha3 KO mice exhibited reduced floating and enhanced swimming behaviour relative to wild-type controls. Performance on a two-choice sucrose preference test, however, revealed no evidence for an increase in sucrose preference in the alpha3 KO mice that would have substantiated a potential phenotype for depression-related behaviour. In contrast, a suggestion of an enhanced negative contrast effect was revealed in a one-bottle sucrose consumption test across different sucrose concentrations. These affective phenotypes were accompanied by alterations in the balance between conditioned responding to the discrete conditioned stimulus and to the context, and a suggestion of faster extinction, in the Pavlovian conditioned freezing paradigm. Spatial learning in the water maze reference memory test, however, was largely unchanged in the alpha3 KO mice, except for a trend of preservation during reversal learning. The novel phenotypes following global deletion of the GABAA receptor alpha3 subunit identified here provided relevant insights, in addition to our earlier study, into the potential behavioural relevance of this specific receptor subtypes in the modulation of both affective and cognitive

  3. Clobazam and its active metabolite N-desmethylclobazam display significantly greater affinities for α₂- versus α₁-GABA(A)-receptor complexes.

    PubMed

    Jensen, Henrik Sindal; Nichol, Kathryn; Lee, Deborah; Ebert, Bjarke

    2014-01-01

    Clobazam (CLB), a 1,5-benzodiazepine (BZD), was FDA-approved in October 2011 for the adjunctive treatment of seizures associated with Lennox-Gastaut syndrome (LGS) in patients 2 years and older. BZDs exert various CNS effects through allosteric modulation of GABAA receptors. The structurally distinct, 1,4-BZD clonazepam (CLN) is also approved to treat LGS. The precise mechanisms of action and clinical efficacy of both are unknown. Data show that the GABAA α₁-subunit-selective compound zolpidem [ZOL] exhibits hypnotic/sedative effects. Conversely, data from knock-in mice carrying BZD binding site mutations suggest that the α₂ subunit mediates anticonvulsant effects, without sedative actions. Hence, the specific pattern of interactions across the GABAA receptor complexes of BZDs might be reflected in their clinical efficacies and adverse effect profiles. In this study, GABAA-receptor binding affinities of CLB, N-desmethylclobazam (N-CLB, the major metabolite of CLB), CLN, and ZOL were characterized with native receptors from rat-brain homogenates and on cloned receptors from HEK293 cells transfected with combinations of α (α₁, α₂, α₃, or α₅), β₂, and γ₂ subtypes. Our results demonstrate that CLB and N-CLB have significantly greater binding affinities for α₂- vs. α₁-receptor complexes, a difference not observed for CLN, for which no distinction between α₂ and α₁ receptors was observed. Our experiments with ZOL confirmed the high preference for α₁ receptors. These results provide potential clues to a new understanding of the pharmacologic modes of action of CLB and N-CLB.

  4. Desensitization of GABAergic receptors as a mechanism of zolpidem-induced somnambulism.

    PubMed

    Juszczak, Grzegorz R

    2011-08-01

    Sleepwalking is a frequently reported side effect of zolpidem which is a short-acting hypnotic drug potentiating activity of GABA(A) receptors. Paradoxically, the most commonly used medications for somnambulism are benzodiazepines, especially clonazepam, which also potentiate activity of GABA(A) receptors. It is proposed that zolpidem-induced sleepwalking can be explained by the desensitization of GABAergic receptors located on serotonergic neurons. According to the proposed model, the delay between desensitization of GABA receptors and a compensatory decrease in serotonin release constitutes the time window for parasomnias. The occurrence of sleepwalking depends on individual differences in receptor desensitization, autoregulation of serotonin release and drug pharmacokinetics. The proposed mechanism of interaction between GABAergic and serotonergic systems can be also relevant for zolpidem abuse and zolpidem-induced hallucinations. It is therefore suggested that special care should be taken when zolpidem is used in patients taking at the same time selective serotonin reuptake inhibitors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Modification of Male Courtship Motivation by Olfactory Habituation via the GABAA Receptor in Drosophila melanogaster

    PubMed Central

    Tachibana, Shin-Ichiro; Touhara, Kazushige; Ejima, Aki

    2015-01-01

    A male-specific component, 11-cis-vaccenyl acetate (cVA) works as an anti-aphrodisiac pheromone in Drosophila melanogaster. The presence of cVA on a male suppresses the courtship motivation of other males and contributes to suppression of male-male homosexual courtship, while the absence of cVA on a female stimulates the sexual motivation of nearby males and enhances the male-female interaction. However, little is known how a male distinguishes the presence or absence of cVA on a target fly from either self-produced cVA or secondhand cVA from other males in the vicinity. In this study, we demonstrate that male flies have keen sensitivity to cVA; therefore, the presence of another male in the area reduces courtship toward a female. This reduced level of sexual motivation, however, could be overcome by pretest odor exposure via olfactory habituation to cVA. Real-time imaging of cVA-responsive sensory neurons using the neural activity sensor revealed that prolonged exposure to cVA decreased the levels of cVA responses in the primary olfactory center. Pharmacological and genetic screening revealed that signal transduction via GABAA receptors contributed to this olfactory habituation. We also found that the habituation experience increased the copulation success of wild-type males in a group. In contrast, transgenic males, in which GABA input in a small subset of local neurons was blocked by RNAi, failed to acquire the sexual advantage conferred by habituation. Thus, we illustrate a novel phenomenon in which olfactory habituation positively affects sexual capability in a competitive environment. PMID:26252206

  6. Learning-Dependent Plasticity of the Barrel Cortex Is Impaired by Restricting GABA-Ergic Transmission.

    PubMed

    Posluszny, Anna; Liguz-Lecznar, Monika; Turzynska, Danuta; Zakrzewska, Renata; Bielecki, Maksymilian; Kossut, Malgorzata

    2015-01-01

    Experience-induced plastic changes in the cerebral cortex are accompanied by alterations in excitatory and inhibitory transmission. Increased excitatory drive, necessary for plasticity, precedes the occurrence of plastic change, while decreased inhibitory signaling often facilitates plasticity. However, an increase of inhibitory interactions was noted in some instances of experience-dependent changes. We previously reported an increase in the number of inhibitory markers in the barrel cortex of mice after fear conditioning engaging vibrissae, observed concurrently with enlargement of the cortical representational area of the row of vibrissae receiving conditioned stimulus (CS). We also observed that an increase of GABA level accompanied the conditioning. Here, to find whether unaltered GABAergic signaling is necessary for learning-dependent rewiring in the murine barrel cortex, we locally decreased GABA production in the barrel cortex or reduced transmission through GABAA receptors (GABAARs) at the time of the conditioning. Injections of 3-mercaptopropionic acid (3-MPA), an inhibitor of glutamic acid decarboxylase (GAD), into the barrel cortex prevented learning-induced enlargement of the conditioned vibrissae representation. A similar effect was observed after injection of gabazine, an antagonist of GABAARs. At the behavioral level, consistent conditioned response (cessation of head movements in response to CS) was impaired. These results show that appropriate functioning of the GABAergic system is required for both manifestation of functional cortical representation plasticity and for the development of a conditioned response.

  7. Mechanism of action of the insecticides, lindane and fipronil, on glycine receptor chloride channels

    PubMed Central

    Islam, Robiul; Lynch, Joseph W

    2012-01-01

    BACKGROUND AND PURPOSE Docking studies predict that the insecticides, lindane and fipronil, block GABAA receptors by binding to 6′ pore-lining residues. However, this has never been tested at any Cys-loop receptor. The neurotoxic effects of these insecticides are also thought to be mediated by GABAA receptors, although a recent morphological study suggested glycine receptors mediated fipronil toxicity in zebrafish. Here we investigated whether human α1, α1β, α2 and α3 glycine receptors were sufficiently sensitive to block by either compound as to represent possible neurotoxicity targets. We also investigated the mechanisms by which lindane and fipronil inhibit α1 glycine receptors. EXPERIMENTAL APPROACH Glycine receptors were recombinantly expressed in HEK293 cells and insecticide effects were studied using patch-clamp electrophysiology. KEY RESULTS Both compounds completely inhibited all tested glycine receptor subtypes with IC50 values ranging from 0.2–2 µM, similar to their potencies at vertebrate GABAA receptors. Consistent with molecular docking predictions, both lindane and fipronil interacted with 6′ threonine residues via hydrophobic interactions and hydrogen bonds. In contrast with predictions, we found no evidence for lindane interacting at the 2′ level. We present evidence for fipronil binding in a non-blocking mode in the anaesthetic binding pocket, and for lindane as an excellent pharmacological tool for identifying the presence of β subunits in αβ heteromeric glycine receptors. CONCLUSIONS AND IMPLICATIONS This study implicates glycine receptors as novel vertebrate toxicity targets for fipronil and lindane. Furthermore, lindane interacted with pore-lining 6′ threonine residues, whereas fipronil may have both pore and non-pore binding sites. PMID:22035056

  8. Mechanism of action of the insecticides, lindane and fipronil, on glycine receptor chloride channels.

    PubMed

    Islam, Robiul; Lynch, Joseph W

    2012-04-01

    Docking studies predict that the insecticides, lindane and fipronil, block GABA(A) receptors by binding to 6' pore-lining residues. However, this has never been tested at any Cys-loop receptor. The neurotoxic effects of these insecticides are also thought to be mediated by GABA(A) receptors, although a recent morphological study suggested glycine receptors mediated fipronil toxicity in zebrafish. Here we investigated whether human α1, α1β, α2 and α3 glycine receptors were sufficiently sensitive to block by either compound as to represent possible neurotoxicity targets. We also investigated the mechanisms by which lindane and fipronil inhibit α1 glycine receptors. Glycine receptors were recombinantly expressed in HEK293 cells and insecticide effects were studied using patch-clamp electrophysiology. Both compounds completely inhibited all tested glycine receptor subtypes with IC(50) values ranging from 0.2-2 µM, similar to their potencies at vertebrate GABA(A) receptors. Consistent with molecular docking predictions, both lindane and fipronil interacted with 6' threonine residues via hydrophobic interactions and hydrogen bonds. In contrast with predictions, we found no evidence for lindane interacting at the 2' level. We present evidence for fipronil binding in a non-blocking mode in the anaesthetic binding pocket, and for lindane as an excellent pharmacological tool for identifying the presence of β subunits in αβ heteromeric glycine receptors. This study implicates glycine receptors as novel vertebrate toxicity targets for fipronil and lindane. Furthermore, lindane interacted with pore-lining 6' threonine residues, whereas fipronil may have both pore and non-pore binding sites. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  9. A novel positive allosteric modulator of the GABAA receptor: the action of (+)-ROD188

    PubMed Central

    Thomet, Urs; Baur, Roland; Razet, Rodolphe; Dodd, Robert H; Furtmüller, Roman; Sieghart, Werner; Sigel, Erwin

    2000-01-01

    (+)-ROD188 was synthesized in the search for novel ligands of the GABA binding site. It shares some structural similarity with bicuculline. (+)-ROD188 failed to displace [3H]-muscimol in binding studies and failed to induce channel opening in recombinant rat α1β2γ2 GABAA receptors functionally expressed in Xenopus oocytes. (+)-ROD188 allosterically stimulated GABA induced currents. Displacement of [3H]-Ro15-1788 indicated a low affinity action at the benzodiazepine binding site. In functional studies, stimulation by (+)-ROD188 was little sensitive to the presence of 1 μM of the benzodiazepine antagonist Ro 15-1788, and (+)-ROD188 also stimulated currents mediated by α1β2, indicating a major mechanism of action different from that of benzodiazepines. Allosteric stimulation by (+)-ROD188 was similar in α1β2N265S as in unmutated α1β2, while that by loreclezole was strongly reduced. (+)-ROD188 also strongly stimulated currents elicited by either pentobarbital or 5α-pregnan-3α-ol-20-one (3α-OH-DHP), in line with a mode of action different from that of barbiturates or neurosteroids as channel agonists. Stimulation by (+)-ROD188 was largest in α6β2γ2 (α6β2γ2>>α1β2γ2=α5β2γ2>α2β2γ2= α3β2γ2), indicating a unique subunit isoform specificity. Miniature inhibitory postsynaptic currents (mIPSC) in cultures of rat hippocampal neurons, caused by spontaneous release of GABA showed a prolonged decay time in the presence of 30 μM (+)-ROD188, indicating an enhanced synaptic inhibitory transmission. PMID:11030736

  10. Role of nicotinic receptors and acetylcholine in mucous cell metaplasia, hyperplasia and airway mucus formation in vitro and in vivo

    PubMed Central

    Gundavarapu, Sravanthi; Wilder, Julie A.; Mishra, Neerad C.; Rir-sima-ah, Jules; Langley, Raymond J.; Singh, Shashi P.; Saeed, Ali Imran; Jaramillo, Richard J.; Gott, Katherine M.; Peña-Philippides, Juan Carlos; Harrod, Kevin S.; McIntosh, J. Michael; Buch, Shilpa; Sopori, Mohan L.

    2012-01-01

    Background Airway mucus hypersecretion is a key pathophysiological feature in number of lung diseases. Cigarette smoke/nicotine and allergens are strong stimulators of airway mucus; however, the mechanism of mucus modulation is unclear. Objectives Characterize the pathway by which cigarette smoke/nicotine regulates airway mucus and identify agents that decrease airway mucus. Methods IL-13 and gamma-aminobutyric acid receptors (GABAARs) are implicated in airway mucus. We examined the role of IL-13 and GABAARs in nicotine-induced mucus formation in normal human bronchial epithelial (NHBE) and A549 cells, and secondhand cigarette smoke and/or ovalbumin-induced mucus formation in vivo. Results Nicotine promotes mucus formation in NHBE cells; however, the nicotine-induced mucus formation is independent of IL-13 but sensitive to the GABAAR antagonist picrotoxin (PIC). Airway epithelial cells express α7/α9/α10 nicotinic acetylcholine receptors (nAChRs) and specific inhibition or knockdown of α7- but not α9/α10-nAChRs abrogates mucus formation in response to nicotine and IL-13. Moreover, addition of acetylcholine or inhibition of its degradation increases mucus in NHBE cells. Nicotinic but not muscarinic receptor antagonists block allergen or nicotine/cigarette smoke-induced airway mucus formation in NHBE cells and/or in mouse airways. Conclusions Nicotine-induced airway mucus formation is independent of IL-13 and α7-nAChRs are critical in airway mucous cell metaplasia/hyperplasia and mucus production in response to various pro-mucoid agents, including IL-13. In the absence of nicotine, acetylcholine may be the biological ligand for α7-nAChRs to trigger airway mucus formation. α7-nAChRs are downstream of IL-13 but upstream of GABAARα2 in the MUC5AC pathway. Acetylcholine and α-7-nAChRs may serve as therapeutic targets to control airway mucus. PMID:22578901

  11. A reduction in hippocampal GABAA receptor alpha5 subunits disrupts the memory for location of objects in mice.

    PubMed

    Prut, L; Prenosil, G; Willadt, S; Vogt, K; Fritschy, J-M; Crestani, F

    2010-07-01

    The memory for location of objects, which binds information about objects to discrete positions or spatial contexts of occurrence, is a form of episodic memory particularly sensitive to hippocampal damage. Its early decline is symptomatic for elderly dementia. Substances that selectively reduce alpha5-GABA(A) receptor function are currently developed as potential cognition enhancers for Alzheimer's syndrome and other dementia, consistent with genetic studies implicating these receptors that are highly expressed in hippocampus in learning performance. Here we explored the consequences of reduced GABA(A)alpha5-subunit contents, as occurring in alpha5(H105R) knock-in mice, on the memory for location of objects. This required the behavioral characterization of alpha5(H105R) and wild-type animals in various tasks examining learning and memory retrieval strategies for objects, locations, contexts and their combinations. In mutants, decreased amounts of alpha5-subunits and retained long-term potentiation in hippocampus were confirmed. They exhibited hyperactivity with conserved circadian rhythm in familiar actimeters, and normal exploration and emotional reactivity in novel places, allocentric spatial guidance, and motor pattern learning acquisition, inhibition and flexibility in T- and eight-arm mazes. Processing of object, position and context memories and object-guided response learning were spared. Genotype difference in object-in-place memory retrieval and in encoding and response learning strategies for object-location combinations manifested as a bias favoring object-based recognition and guidance strategies over spatial processing of objects in the mutants. These findings identify in alpha5(H105R) mice a behavioral-cognitive phenotype affecting basal locomotion and the memory for location of objects indicative of hippocampal dysfunction resulting from moderately decreased alpha5-subunit contents.

  12. Relative Neurotoxicity of Ivermectin and Moxidectin in Mdr1ab (−/−) Mice and Effects on Mammalian GABA(A) Channel Activity

    PubMed Central

    Ménez, Cécile; Sutra, Jean-François; Prichard, Roger; Lespine, Anne

    2012-01-01

    The anthelmintics ivermectin (IVM) and moxidectin (MOX) display differences in toxicity in several host species. Entrance into the brain is restricted by the P-glycoprotein (P-gp) efflux transporter, while toxicity is mediated through the brain GABA(A) receptors. This study compared the toxicity of IVM and MOX in vivo and their interaction with GABA(A) receptors in vitro. Drug toxicity was assessed in Mdr1ab(−/−) mice P-gp-deficient after subcutaneous administration of increasing doses (0.11–2.0 and 0.23–12.9 µmol/kg for IVM and MOX in P-gp-deficient mice and half lethal doses (LD50) in wild-type mice). Survival was evaluated over 14-days. In Mdr1ab(−/−) mice, LD50 was 0.46 and 2.3 µmol/kg for IVM and MOX, respectively, demonstrating that MOX was less toxic than IVM. In P-gp-deficient mice, MOX had a lower brain-to-plasma concentration ratio and entered into the brain more slowly than IVM. The brain sublethal drug concentrations determined after administration of doses close to LD50 were, in Mdr1ab(−/−) and wild-type mice, respectively, 270 and 210 pmol/g for IVM and 830 and 740–1380 pmol/g for MOX, indicating that higher brain concentrations are required for MOX toxicity than IVM. In rat α1β2γ2 GABA channels expressed in Xenopus oocytes, IVM and MOX were both allosteric activators of the GABA-induced response. The Hill coefficient was 1.52±0.45 for IVM and 0.34±0.56 for MOX (p<0.001), while the maximum potentiation caused by IVM and MOX relative to GABA alone was 413.7±66.1 and 257.4±40.6%, respectively (p<0.05), showing that IVM causes a greater potentiation of GABA action on this receptor. Differences in the accumulation of IVM and MOX in the brain and in the interaction of IVM and MOX with GABA(A) receptors account for differences in neurotoxicity seen in intact and Mdr1-deficient animals. These differences in neurotoxicity of IVM and MOX are important in considering their use in humans. PMID:23133688

  13. Mechanism of action of the hypnotic zolpidem in vivo

    PubMed Central

    Crestani, Florence; Martin, James R; Möhler, Hanns; Rudolph, Uwe

    2000-01-01

    Zolpidem is a widely used hypnotic agent acting at the GABAA receptor benzodiazepine site. On recombinant receptors, zolpidem displays a high affinity to α1-GABAA receptors, an intermediate affinity to α2- and α3-GABAA receptors and fails to bind to α5-GABAA receptors. However, it is not known which receptor subtype is essential for mediating the sedative-hypnotic action in vivo. Studying α1(H101R) mice, which possess zolpidem-insensitive α1-GABAA receptors, we show that the sedative action of zolpidem is exclusively mediated by α1-GABAA receptors. Similarly, the activity of zolpidem against pentylenetetrazole-induced tonic convulsions is also completely mediated by α1-GABAA receptors. These results establish that the sedative-hypnotic and anticonvulsant activities of zolpidem are due to its action on α1-GABAA receptors and not on α2- or α3-GABAA receptors. PMID:11090095

  14. Effect of GABA receptor agonists or antagonists injected spinally on the blood glucose level in mice.

    PubMed

    Sim, Yun-Beom; Park, Soo-Hyun; Kang, Yu-Jung; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi; Suh, Hong-Won

    2013-05-01

    The possible roles of gamma-amino butyric acid (GABA) receptors located in the spinal cord for the regulation of the blood glucose level were studied in ICR mice. We found in the present study that intrathecal (i.t.) injection with baclofen (a GABAB receptor agonist; 1-10 μg/5 μl) or bicuculline (a GABAA receptor antagonist; 1-10 μg/5 μl) caused an elevation of the blood glucose level in a dose-dependent manner. The hyperglycemic effect induced by baclofen was more pronounced than that induced by bicuculline. However, muscimol (a GABAA receptor agonist; 1-5 μg/5 μl) or phaclofen (a GABAB receptor antagonist; 5-10 μg/5 μl) administered i.t. did not affect the blood glucose level. Baclofen-induced elevation of the blood glucose was dose-dependently attenuated by phaclofen. Furthermore, i.t. pretreatment with pertussis toxin (PTX; 0.05 or 0.1 μg/5 μl) for 6 days dose-dependently reduced the hyperglycemic effect induced by baclofen. Our results suggest that GABAB receptors located in the spinal cord play important roles for the elevation of the blood glucose level. Spinally located PTX-sensitive G-proteins appear to be involved in hyperglycemic effect induced by baclofen. Furthermore, inactivation of GABAA receptors located in the spinal cord appears to be responsible for tonic up-regulation of the blood glucose level.

  15. Rescue of deficient amygdala tonic γ-aminobutyric acidergic currents in the Fmr-/y mouse model of fragile X syndrome by a novel γ-aminobutyric acid type A receptor-positive allosteric modulator.

    PubMed

    Martin, Brandon S; Martinez-Botella, Gabriel; Loya, Carlos M; Salituro, Francesco G; Robichaud, Albert J; Huntsman, Molly M; Ackley, Mike A; Doherty, James J; Corbin, Joshua G

    2016-06-01

    Alterations in the ratio of excitatory to inhibitory transmission are emerging as a common component of many nervous system disorders, including autism spectrum disorders (ASDs). Tonic γ-aminobutyric acidergic (GABAergic) transmission provided by peri- and extrasynaptic GABA type A (GABAA ) receptors powerfully controls neuronal excitability and plasticity and, therefore, provides a rational therapeutic target for normalizing hyperexcitable networks across a variety of disorders, including ASDs. Our previous studies revealed tonic GABAergic deficits in principal excitatory neurons in the basolateral amygdala (BLA) in the Fmr1(-/y) knockout (KO) mouse model fragile X syndrome. To correct amygdala deficits in tonic GABAergic neurotransmission in Fmr1(-/y) KO mice, we developed a novel positive allosteric modulator of GABAA receptors, SGE-872, based on endogenously active neurosteroids. This study shows that SGE-872 is nearly as potent and twice as efficacious for positively modulating GABAA receptors as its parent molecule, allopregnanolone. Furthermore, at submicromolar concentrations (≤1 μM), SGE-872 is selective for tonic, extrasynaptic α4β3δ-containing GABAA receptors over typical synaptic α1β2γ2 receptors. We further find that SGE-872 strikingly rescues the tonic GABAergic transmission deficit in principal excitatory neurons in the Fmr1(-/y) KO BLA, a structure heavily implicated in the neuropathology of ASDs. Therefore, the potent and selective action of SGE-872 on tonic GABAA receptors containing α4 subunits may represent a novel and highly useful therapeutic avenue for ASDs and related disorders involving hyperexcitability of neuronal networks. © 2015 Wiley Periodicals, Inc.

  16. Short-term memory impairment after isoflurane in mice is prevented by the α5 γ-aminobutyric acid type A receptor inverse agonist L-655,708.

    PubMed

    Saab, Bechara J; Maclean, Ashley J B; Kanisek, Marijana; Zurek, Agnieszka A; Martin, Loren J; Roder, John C; Orser, Beverley A

    2010-11-01

    Memory blockade is an essential component of the anesthetic state. However, postanesthesia memory deficits represent an undesirable and poorly understood adverse effect. Inhibitory α5 subunit-containing γ-aminobutyric acid subtype A receptors (α5GABAA) are known to play a critical role in memory processes and are highly sensitive to positive modulation by anesthetics. We postulated that inhibiting the activity of α5GABAA receptors during isoflurane anesthesia would prevent memory deficits in the early postanesthesia period. Mice were pretreated with L-655,708, an α5GABAA receptor-selective inverse agonist, or vehicle. They were then exposed to isoflurane for 1 h (1.3%, or 1 minimum alveolar concentration, or air-oxygen control). Then, either 1 or 24 h later, mice were conditioned in fear-associated contextual and cued learning paradigms. In addition, the effect of L-655,708 on the immobilizing dose of isoflurane was studied. Motor coordination, sedation, anxiety, and the concentration of isoflurane in the brain at 5 min, 1 h, and 24 h after isoflurane were also examined. Motor and sensory function recovered within minutes after termination of isoflurane administration. In contrast, a robust deficit in contextual fear memory persisted for at least 24 h. The α5GABAA receptor inverse agonist, L-655,708, completely prevented memory deficits without changing the immobilizing dose of isoflurane. Trace concentrations of isoflurane were measured in the brain 24 h after treatment. Memory deficits occurred long after the sedative, analgesic, and anxiolytic effects of isoflurane subsided. L-655,708 prevented memory deficit, suggesting that an isoflurane interaction at α5GABAA receptors contributes to memory impairment during the early postanesthesia period.

  17. Evidence that GABA ρ subunits contribute to functional ionotropic GABA receptors in mouse cerebellar Purkinje cells

    PubMed Central

    Harvey, Victoria L; Duguid, Ian C; Krasel, Cornelius; Stephens, Gary J

    2006-01-01

    Ionotropic γ-amino butyric acid (GABA) receptors composed of heterogeneous molecular subunits are major mediators of inhibitory responses in the adult CNS. Here, we describe a novel ionotropic GABA receptor in mouse cerebellar Purkinje cells (PCs) using agents reported to have increased affinity for ρ subunit-containing GABAC over other GABA receptors. Exogenous application of the GABAC-preferring agonist cis-4-aminocrotonic acid (CACA) evoked whole-cell currents in PCs, whilst equimolar concentrations of GABA evoked larger currents. CACA-evoked currents had a greater sensitivity to the selective GABAC antagonist (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) than GABA-evoked currents. Focal application of agonists produced a differential response profile; CACA-evoked currents displayed a much more pronounced attenuation with increasing distance from the PC soma, displayed a slower time-to-peak and exhibited less desensitization than GABA-evoked currents. However, CACA-evoked currents were also completely blocked by bicuculline, a selective agent for GABAA receptors. Thus, we describe a population of ionotropic GABA receptors with a mixed GABAA/GABAC pharmacology. TPMPA reduced inhibitory synaptic transmission at interneurone–Purkinje cell (IN–PC) synapses, causing clear reductions in miniature inhibitory postsynaptic current (mIPSC) amplitude and frequency. Combined application of NO-711 (a selective GABA transporter subtype 1 (GAT-1) antagonist) and SNAP-5114 (a GAT-(2)/3/4 antagonist) induced a tonic GABA conductance in PCs; however, TPMPA had no effect on this current. Immunohistochemical studies suggest that ρ subunits are expressed predominantly in PC soma and proximal dendritic compartments with a lower level of expression in more distal dendrites; this selective immunoreactivity contrasted with a more uniform distribution of GABAA α1 subunits in PCs. Finally, co-immunoprecipitation studies suggest that ρ subunits can form complexes

  18. Missense Gamma-Aminobutyric Acid Receptor Polymorphisms Are Associated with Reaction Time, Motor Time, and Ethanol Effects in Vivo.

    PubMed

    García-Martín, Elena; Ramos, María I; Cornejo-García, José A; Galván, Segismundo; Perkins, James R; Rodríguez-Santos, Laura; Alonso-Navarro, Hortensia; Jiménez-Jiménez, Félix J; Agúndez, José A G

    2018-01-01

    Background: The Gamma-aminobutyric acid type A receptor (GABA-A receptor) is affected by ethanol concentrations equivalent to those reached during social drinking. At these concentrations, ethanol usually causes impairment in reaction and motor times in most, but not all, individuals. Objectives: To study the effect of GABA-A receptor variability in motor and reaction times, and the effect of low ethanol doses. Methods: Two hundred and fifty healthy subjects received one single dose of 0.5 g/Kg ethanol per os . Reaction and motor times were determined before ethanol challenge (basal), and when participants reached peak ethanol concentrations. We analyzed all common missense polymorphisms described in the 19 genes coding for the GABA-A receptor subunits by using TaqMan probes. Results: The GABRA6 rs4454083 T/C polymorphisms were related to motor times, with individuals carrying the C/C genotype having faster motor times, both, at basal and at peak ethanol concentrations. The GABRA4 rs2229940 T/T genotype was associated to faster reaction times and with lower ethanol effects, determined as the difference between basal reaction time and reaction time at peak concentrations. All these associations remained significant after correction for multiple comparisons. No significant associations were observed for the common missense SNPs GABRB3 rs12910925, GABRG2 rs211035, GABRE rs1139916, GABRP rs1063310, GABRQ rs3810651, GABRR1 rs12200969 or rs1186902, GABRR2 rs282129, and GABRR3 rs832032. Conclusions: This study provides novel information supporting a role of missense GABA-A receptor polymorphisms in reaction time, motor time and effects of low ethanol doses in vivo .

  19. Defects in dendrite and spine maturation and synaptogenesis associated with an anxious-depressive-like phenotype of GABAA receptor-deficient mice.

    PubMed

    Ren, Zhen; Sahir, Nadia; Murakami, Shoko; Luellen, Beth A; Earnheart, John C; Lal, Rachnanjali; Kim, Ju Young; Song, Hongjun; Luscher, Bernhard

    2015-01-01

    Mice that were rendered heterozygous for the γ2 subunit of GABAA receptors (γ2(+/-) mice) have been characterized extensively as a model for major depressive disorder. The phenotype of these mice includes behavior indicative of heightened anxiety, despair, and anhedonia, as well as defects in hippocampus-dependent pattern separation, HPA axis hyperactivity and increased responsiveness to antidepressant drugs. The γ2(+/-) model thereby provides strong support for the GABAergic deficit hypothesis of major depressive disorder. Here we show that γ2(+/-) mice additionally exhibit specific defects in late stage survival of adult-born hippocampal granule cells, including reduced complexity of dendritic arbors and impaired maturation of synaptic spines. Moreover, cortical γ2(+/-) neurons cultured in vitro show marked deficits in GABAergic innervation selectively when grown under competitive conditions that may mimic the environment of adult-born hippocampal granule cells. Finally, brain extracts of γ2(+/-) mice show a numerical but insignificant trend (p = 0.06) for transiently reduced expression of brain derived neurotrophic factor (BDNF) at three weeks of age, which might contribute to the previously reported developmental origin of the behavioral phenotype of γ2(+/-) mice. The data indicate increasing congruence of the GABAergic, glutamatergic, stress-based and neurotrophic deficit hypotheses of major depressive disorder. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Comparison of Cell Expression Formats for the Characterization of GABAA Channels Using a Microfluidic Patch Clamp System

    PubMed Central

    Chen, Qin; Yim, Peter D.; Yuan, Nina; Johnson, Juliette; Cook, James M.; Smith, Steve; Ionescu-Zanetti, Cristian; Wang, Zhi-Jian; Arnold, Leggy A.

    2012-01-01

    Abstract Ensemble recording and microfluidic perfusion are recently introduced techniques aimed at removing the laborious nature and low recording success rates of manual patch clamp. Here, we present assay characteristics for these features integrated into one automated electrophysiology platform as applied to the study of GABAA channels. A variety of cell types and methods of GABAA channel expression were successfully studied (defined as IGABA>500 pA), including stably transfected human embryonic kidney (HEK) cells expressing α1β3γ2 GABAA channels, frozen ready-to-assay (RTA) HEK cells expressing α1β3γ2 or α3β3γ2 GABAA channels, transiently transfected HEK293T cells expressing α1β3γ2 GABAA channels, and immortalized cultures of human airway smooth muscle cells endogenously expressing GABAA channels. Current measurements were successfully studied in multiple cell types with multiple modes of channel expression in response to several classic GABAA channel agonists, antagonists, and allosteric modulators. We obtained success rates above 95% for transiently or stably transfected HEK cells and frozen RTA HEK cells expressing GABAA channels. Tissue-derived immortalized cultures of airway smooth muscle cells exhibited a slightly lower recording success rate of 75% using automated patch, which was much higher than the 5% success rate using manual patch clamp technique by the same research group. Responses to agonists, antagonists, and allosteric modulators compared well to previously reported manual patch results. The data demonstrate that both the biophysics and pharmacologic characterization of GABAA channels in a wide variety of cell formats can be performed using this automated patch clamp system. PMID:22574655

  1. GABA, its receptors, and GABAergic inhibition in mouse taste buds

    PubMed Central

    Dvoryanchikov, Gennady; Huang, Yijen A; Barro-Soria, Rene; Chaudhari, Nirupa; Roper, Stephen D.

    2012-01-01

    Taste buds consist of at least three principal cell types that have different functions in processing gustatory signals — glial-like Type I cells, Receptor (Type II) cells, and Presynaptic (Type III) cells. Using a combination of Ca2+ imaging, single cell RT-PCR, and immunostaining, we show that γ-amino butyric acid (GABA) is an inhibitory transmitter in mouse taste buds, acting on GABA-A and GABA-B receptors to suppress transmitter (ATP) secretion from Receptor cells during taste stimulation. Specifically, Receptor cells express GABA-A receptor subunits β2, δ, π, as well as GABA-B receptors. In contrast, Presynaptic cells express the GABA-Aβ3 subunit and only occasionally GABA-B receptors. In keeping with the distinct expression pattern of GABA receptors in Presynaptic cells, we detected no GABAergic suppression of transmitter release from Presynaptic cells. We suggest that GABA may serve function(s) in taste buds in addition to synaptic inhibition. Finally, we also defined the source of GABA in taste buds: GABA is synthesized by GAD65 in Type I taste cells as well as by GAD67 in Presynaptic (Type III) taste cells and is stored in both those two cell types. We conclude that GABA is released during taste stimulation and possibly also during growth and differentiation of taste buds. PMID:21490220

  2. Inactivation of GABAA receptor is related to heat shock stress response in organism model Caenorhabditis elegans.

    PubMed

    Camargo, Gabriela; Elizalde, Alejandro; Trujillo, Xochitl; Montoya-Pérez, Rocío; Mendoza-Magaña, María Luisa; Hernandez-Chavez, Abel; Hernandez, Leonardo

    2016-09-01

    The mechanisms underlying oxidative stress (OS) resistance are not completely clear. Caenorhabditis elegans (C. elegans) is a good organism model to study OS because it displays stress responses similar to those in mammals. Among these mechanisms, the insulin/IGF-1 signaling (IIS) pathway is thought to affect GABAergic neurotransmission. The aim of this study was to determine the influence of heat shock stress (HS) on GABAergic activity in C. elegans. For this purpose, we tested the effect of exposure to picrotoxin (PTX), gamma-aminobutyric acid (GABA), hydrogen peroxide, and HS on the occurrence of a shrinking response (SR) after nose touch stimulus in N2 (WT) worms. Moreover, the effect of HS on the expression of UNC-49 (GABAA receptor ortholog) in the EG1653 strain and the effect of GABA and PTX exposure on HSP-16.2 expression in the TJ375 strain were analyzed. PTX 1 mM- or H2O2 0.7 mM-exposed worms displayed a SR in about 80 % of trials. GABA exposure did not cause a SR. HS prompted the occurrence of a SR as did PTX 1 mM or H2O2 0.7 mM exposure. In addition, HS increased UNC-49 expression, and PTX augmented HSP-16.2 expression. Thus, the results of the present study suggest that oxidative stress, through either H2O2 exposure or application of heat shock, inactivates the GABAergic system, which subsequently would affect the oxidative stress response, perhaps by enhancing the activity of transcription factors DAF-16 and HSF-1, both regulated by the IIS pathway and related to hsp-16.2 expression.

  3. Rapid PCR-mediated synthesis of competitor molecules for accurate quantification of beta(2) GABA(A) receptor subunit mRNA.

    PubMed

    Vela, J; Vitorica, J; Ruano, D

    2001-12-01

    We describe a fast and easy method for the synthesis of competitor molecules based on non-specific conditions of PCR. RT-competitive PCR is a sensitive technique that allows quantification of very low quantities of mRNA molecules in small tissue samples. This technique is based on the competition established between the native and standard templates for nucleotides, primers or other factors during PCR. Thus, the most critical parameter is the use of good internal standards to generate a standard curve from which the amount of native sequences can be properly estimated. At the present time different types of internal standards and methods for their synthesis have been described. Normally, most of these methods are time-consuming and require the use of different sets of primers, different rounds of PCR or specific modifications, such as site-directed mutagenesis, that need subsequent analysis of the PCR products. Using our method, we obtained in a single round of PCR and with the same primer pair, competitor molecules that were successfully used in RT-competitive PCR experiments. The principal advantage of this method is high versatility and economy. Theoretically it is possible to synthesize a specific competitor molecule for each primer pair used. Finally, using this method we have been able to quantify the increase in the expression of the beta(2) GABA(A) receptor subunit mRNA that occurs during rat hippocampus development.

  4. A role for progesterone and α4-containing GABAA receptors of hippocampal pyramidal cells in the exacerbated running response of adolescent female mice to repeated food restriction stress

    PubMed Central

    Wable, Gauri; Chen, Yi-Wen; Rashid, Shannon; Aoki, Chiye

    2015-01-01

    Adolescent females are particularly vulnerable to mental illnesses with comorbidity of anxiety, such as anorexia nervosa (AN). We used an animal model of AN, called activity-based anorexia (ABA), to investigate the neurobiological basis of vulnerability to repeated, food restriction (FR) stress-evoked anxiety. Twenty-one of 23 adolescent female mice responded to the 1st FR with increased wheel running activity (WRA), even during the limited period of food access, thereby capturing AN's symptoms of voluntary FR and over-exercise. Baseline WRA was an excellent predictor of FR-elicited WRA (severity of ABA, SOA), with high baseline-runners responding to FR with minimal SOA (i.e., negative correlation). Nine gained resistance to ABA following the 1st FR. Even though allopregnanolone (3α-OH-5α-pregnan-20-one, THP), the metabolite of progesterone (P4), is a well-recognized anxiolytic agent, subcutaneous P4 to these ABA-resistant animals during the 2nd FR was exacerbative, evoking greater WRA than the counterpart resistant group that received oil vehicle, only. Moreover, P4 had no WRA-reducing effect on animals that remained ABA-vulnerable. To explain the sensitizing effect of P4 upon the resistant mice, we examined the relationship between P4 treatment and levels of the α4 subunit of GABAARs at spines of pyramidal cells of the hippocampal CA1, a parameter previously shown to correlate with resistance to ABA. α4 levels at spine membrane correlated strongly and negatively with SOA during the 1st ABA (prior to P4 injection), confirming previous findings. α4 expression levels were greater among P4-treated animals that had gained resistance than of vehicle-treated resistant animals or of the vulnerable animals with or without P4. We propose that α4-GABAARs play a protective role by counterbalancing the ABA-induced increase in excitability of CA1 pyramidal neurons, and although exogenous P4's metabolite, THP, enhances α4 expression, especially among those that can gain

  5. Lindane blocks GABAA-mediated inhibition and modulates pyramidal cell excitability in the rat hippocampal slice.

    PubMed

    Joy, R M; Walby, W F; Stark, L G; Albertson, T E

    1995-01-01

    An in vitro paired-pulse orthodromic stimulation technique was used to examine the effects of lindane on excitatory afferent terminals, CA1 pyramidal cells and recurrent collateral evoked inhibition in the rat hippocampal slice. This was done to establish simultaneous effects on a simple neural network and to develop procedures for more detailed analyses of the effects of lindane. Hippocampal slices 400 microns thick were perfused with oxygenated artificial cerebrospinal fluid. Electrodes were placed in the CA1 region to record extracellular population spike (PS) or excitatory postsynaptic potential (EPSP) responses to stimulation of Schaffer collateral/commissural (SC/C) fibers. Gamma-aminobutyric acid (GABA)-mediated recurrent inhibition was measured using a paired-pulse technique. Perfusion with lindane produced both time and dose dependent changes in a number of the responses measured. The most striking effect produced by lindane was the loss of GABAA-mediated recurrent collateral inhibition. This tended to occur rapidly, often before changes in EPSP or PS responses could be detected. With longer exposures to lindane, repetitive discharge of pyramidal cells developed resulting in multiple PSs to single stimuli. Lindane (50 microM) also completely reversed the effects of the injectable anesthetic, propofol, a compound known to potentiate GABAA-mediated inhibition via a direct action on the GABAA receptor-chloride channel complex. An analysis of input/output relationships at varying stimulus intensities showed that lindane increased EPSP and PS response amplitudes at any given stimulus intensity resulting in a leftward shift in the EPSP amplitude/stimulus intensity, PS amplitude/stimulus intensity and PS amplitude/EPSP amplitude relationships. This effect was most noticeable with low intensity stimuli and became progressively less so as stimulus intensities approached those yielding maximal responses. In addition lindane significantly increased paired pulse

  6. Reduced GABAA receptor α6 expression in the trigeminal ganglion alters inflammatory TMJ hypersensitivity

    PubMed Central

    Puri, Jyoti; Vinothini, Priya; Reuben, Jayne; Bellinger, Larry L.; Ailing, Li; Peng, Yuan B.; Kramer, Phillip R.

    2012-01-01

    Trigeminal ganglia neurons express the GABAA receptor subunit alpha 6 (Gabrα6) but the role of this particular subunit in orofacial hypersensitivity is unknown. In this report the function of Gabrα6 was tested by reducing its expression in the trigeminal ganglia and measuring the effect of this reduction on inflammatory temporomandibular joint (TMJ) hypersensitivity. Gabrα6 expression was reduced by infusing the trigeminal ganglia of male Sprague Dawley rats with small interfering RNA (siRNA) having homology to either the Gabrα6 gene (Gabrα6 siRNA) or no known gene (control siRNA). Sixty hours after siRNA infusion the rats received a bilateral TMJ injection of complete Freund’s adjuvant to induce an inflammatory response. Hypersensitivity was then quantitated by measuring meal duration, which lengthens when hypersensitivity increases. Neuronal activity in the trigeminal ganglia was also measured by quantitating the amount of phosphorylated ERK. Rats in a different group that did not have TMJ inflammation had an electrode placed in the spinal cord at the level of C1 sixty hours after siRNA infusion to record extracellular electrical activity of neurons that responded to TMJ stimulation. Our results show that Gabrα6 was expressed in both neurons and satellite glia of the trigeminal ganglia and that Gabrα6 positive neurons within the trigeminal ganglia have afferents in the TMJ. Gabrα6 siRNA infusion reduced Gabrα6 gene expression by 30% and significantly lengthened meal duration in rats with TMJ inflammation. Gabrα6 siRNA infusion also significantly increased p-ERK expression in the trigeminal ganglia of rats with TMJ inflammation and increased electrical activity in the spinal cord of rats without TMJ inflammation. These results suggest that maintaining Gabrα6 expression was necessary to inhibit primary sensory afferents in the trigeminal pathway and reduce inflammatory orofacial nociception. PMID:22521829

  7. GABAB receptor modulation of the release of substance P from capsaicin-sensitive neurones in the rat trachea in vitro.

    PubMed Central

    Ray, N. J.; Jones, A. J.; Keen, P.

    1991-01-01

    1. The role of gamma-aminobutyric acid (GABA) as an inhibitory transmitter in the central nervous system is well documented. Recently, GABAA and GABAB receptors have been identified in the peripheral nervous system, notably on primary afferent neurones (PAN). We have utilised a multi-superfusion system to investigate the effect of selective GABA receptor agonists and antagonists on the release of substance P (SP) from the rat trachea in vitro. 2. GABA (1-100 microM) did not affect spontaneous release of SP-like immunoreactivity (LI) but caused dose-related inhibition of calcium-dependent potassium (60 mM)-stimulated SP-LI release. The greatest inhibition of 77.7 +/- 18.8% was observed at 100 microM. 3. The inhibitory effect of GABA was mimicked by the GABAB receptor agonist, (+/-)-baclofen (1-100 microM), but not the GABAA receptor agonist, 3-amino-1-propane-sulphonic acid (3-APS, 1-100 microM). Baclofen (100 microM) had no effect on SP-LI release stimulated by capsaicin (1 microM). 4. The inhibitory effect of baclofen (30 microM) was significantly reduced by prior and concomitant exposure to the GABAB receptor antagonist, phacolofen (100 microM) but not the GABAA receptor antagonist, bicuculline (10 microM). Neither antagonist, alone, affected spontaneous or potassium-stimulated SP-LI release. 5. We conclude that activation of pre-synaptic GABAB receptors on the peripheral termini of PANs in the rat trachea inhibits SP-LI release and suggest that GABAB receptor agonists may be of value in the therapeutic treatment of asthma. PMID:1713105

  8. Behavioural pharmacology of the α5-GABAA receptor antagonist S44819: Enhancement and remediation of cognitive performance in preclinical models.

    PubMed

    Gacsályi, István; Móricz, Krisztina; Gigler, Gábor; Wellmann, János; Nagy, Katalin; Ling, István; Barkóczy, József; Haller, József; Lambert, Jeremy J; Szénási, Gábor; Spedding, Michael; Antoni, Ferenc A

    2017-10-01

    Previous work has shown that S44819 is a novel GABAA receptor (GABA A R) antagonist, which is selective for extrasynaptic GABA A Rs incorporating the α5 subunit (α5-GABA A Rs). The present study reports on the preclinical neuropsychopharmacological profile of S44819. Significantly, no sedative or pro-convulsive side effects of S44819 were found at doses up to 30 mg/kg i.p. Object recognition (OR) memory in intact mice was enhanced by S44819 (0.3 mg/kg p.o.) given before the acquisition trial. Mice treated with phencyclidine for two weeks and tested six days after the cessation of treatment failed to show OR memory. This deficit was corrected by a single administration of S44819 (0.1, 0.3 or 1 mg/kg p.o.) prior to the acquisition trial. The amnestic effect of ketamine in rats tested in the eight-arm radial maze (reference and working memory versions) was blocked by S44819 (3 mg/kg p.o.). Extinction of cued fear was preserved during treatment with S44819 (3 mg/kg/diem i.p.). Administration of S44819 had no significant effect in the Vogel-conflict test, the elevated plus maze, the forced swim, the marble-burying and the tail-suspension tests. In contrast, anxiolytic/antidepressant-like effects of the compound were found in paradigms that have mnemonic components, such as social interaction, fear-potentiated startle and social avoidance induced by negative life experience. In summary, S44819 enhanced intact recognition memory and ameliorated memory deficits induced by inhibition of NMDA receptors. Anxiolytic/antidepressant efficacy was limited to paradigms involving cognitive function. In conclusion, S44819 is a novel psychoactive pro-cognitive compound with potential as a therapeutic agent in dementia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Regulation of GABAA and Glutamate Receptor Expression, Synaptic Facilitation and Long-Term Potentiation in the Hippocampus of Prion Mutant Mice

    PubMed Central

    Rangel, Alejandra; Madroñal, Noelia; Massó, Agnès Gruart i.; Gavín, Rosalina; Llorens, Franc; Sumoy, Lauro; Torres, Juan María; Delgado-García, José María; Río, José Antonio Del

    2009-01-01

    Background Prionopathies are characterized by spongiform brain degeneration, myoclonia, dementia, and periodic electroencephalographic (EEG) disturbances. The hallmark of prioniopathies is the presence of an abnormal conformational isoform (PrPsc) of the natural cellular prion protein (PrPc) encoded by the Prnp gene. Although several roles have been attributed to PrPc, its putative functions in neuronal excitability are unknown. Although early studies of the behavior of Prnp knockout mice described minor changes, later studies report altered behavior. To date, most functional PrPc studies on synaptic plasticity have been performed in vitro. To our knowledge, only one electrophysiological study has been performed in vivo in anesthetized mice, by Curtis and coworkers. They reported no significant differences in paired-pulse facilitation or LTP in the CA1 region after Schaffer collateral/commissural pathway stimulation. Methodology/Principal Findings Here we explore the role of PrPc expression in neurotransmission and neural excitability using wild-type, Prnp −/− and PrPc-overexpressing mice (Tg20 strain). By correlating histopathology with electrophysiology in living behaving mice, we demonstrate that both Prnp −/− mice but, more relevantly Tg20 mice show increased susceptibility to KA, leading to significant cell death in the hippocampus. This finding correlates with enhanced synaptic facilitation in paired-pulse experiments and hippocampal LTP in living behaving mutant mice. Gene expression profiling using Illumina™ microarrays and Ingenuity pathways analysis showed that 129 genes involved in canonical pathways such as Ubiquitination or Neurotransmission were co-regulated in Prnp −/− and Tg20 mice. Lastly, RT-qPCR of neurotransmission-related genes indicated that subunits of GABAA and AMPA-kainate receptors are co-regulated in both Prnp −/− and Tg20 mice. Conclusions/Significance Present results demonstrate that PrPc is necessary for the proper

  10. GABAergic miniature postsynaptic currents in septal neurons show differential allosteric sensitivity after binge-like ethanol exposure.

    PubMed

    DuBois, Dustin W; Trzeciakowski, Jerome P; Parrish, Alan R; Frye, Gerald D

    2006-05-17

    Binge-like ethanol treatment of septal neurons blunts GABAAR-mediated miniature postsynaptic currents (mPSCs), suggesting it arrests synaptic development. Ethanol may disrupt postsynaptic maturation by blunting feedback signaling through immature GABAARs. Here, the impact of ethanol on the sensitivity of mPSCs to zolpidem, zinc and 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha-OH-DHP) was tested. The decay phase of mPSCs showed concentration-dependent potentiation by zolpidem (0.03-100 microM), which was substantially blunted after ethanol exposure. Since zolpidem potentiation exhibited a substantial age-dependent increase in untreated neurons, this finding supported the idea that ethanol arrests synaptic development. GABAAR alpha1 subunit protein also increased with age in untreated neurons, paralleling enhanced sensitivity to zolpidem. Surprisingly, alpha1 levels were not reduced by binge ethanol even though mPSCs were relatively zolpidem-insensitive. Zinc (3-30 microM) decreased mPSC parameters in a concentration- and age-related manner with older untreated cells showing less inhibition. However, there was no increase in mPSC zinc sensitivity after binge ethanol as would be expected if a general arrest of synaptic maturation had occurred. 3alpha-OH-DHP (3-1000 nM) induced concentration-dependent potentiation of mPSC decay. Although potentiation was age-independent, binge ethanol treatment exaggerated sensitivity to this neurosteroid. Finally, chronic picrotoxin pretreatment (100 microM) intended to mimic GABAAR inhibition from ethanol pretreatment did not significantly change mPSC modulation by zolpidem, zinc or 3alpha-OH-DHP. These results suggest that binge ethanol treatment selectively arrests a subset of processes important for maturation of postsynaptic GABAA Rs. However, it is unlikely that ethanol causes a broad arrest of postsynaptic development through a direct inhibition of GABAAR signaling.

  11. GABAA receptor: Positive and negative allosteric modulators.

    PubMed

    Olsen, Richard W

    2018-01-31

    gamma-Aminobutyric acid (GABA)-mediated inhibitory neurotransmission and the gene products involved were discovered during the mid-twentieth century. Historically, myriad existing nervous system drugs act as positive and negative allosteric modulators of these proteins, making GABA a major component of modern neuropharmacology, and suggesting that many potential drugs will be found that share these targets. Although some of these drugs act on proteins involved in synthesis, degradation, and membrane transport of GABA, the GABA receptors Type A (GABA A R) and Type B (GABA B R) are the targets of the great majority of GABAergic drugs. This discovery is due in no small part to Professor Norman Bowery. Whereas the topic of GABA B R is appropriately emphasized in this special issue, Norman Bowery also made many insights into GABA A R pharmacology, the topic of this article. GABA A R are members of the ligand-gated ion channel receptor superfamily, a chloride channel family of a dozen or more heteropentameric subtypes containing 19 possible different subunits. These subtypes show different brain regional and subcellular localization, age-dependent expression, and potential for plastic changes with experience including drug exposure. Not only are GABA A R the targets of agonist depressants and antagonist convulsants, but most GABA A R drugs act at other (allosteric) binding sites on the GABA A R proteins. Some anxiolytic and sedative drugs, like benzodiazepine and related drugs, act on GABA A R subtype-dependent extracellular domain sites. General anesthetics including alcohols and neurosteroids act at GABA A R subunit-interface trans-membrane sites. Ethanol at high anesthetic doses acts on GABA A R subtype-dependent trans-membrane domain sites. Ethanol at low intoxicating doses acts at GABA A R subtype-dependent extracellular domain sites. Thus GABA A R subtypes possess pharmacologically specific receptor binding sites for a large group of different chemical classes of

  12. GABA-A receptor beta3 and alpha5 subunit gene cluster on chromosome 15q11-q13 and bipolar disorder: a genetic association study.

    PubMed

    Papadimitriou, G N; Dikeos, D G; Karadima, G; Avramopoulos, D; Daskalopoulou, E G; Stefanis, C N

    2001-05-08

    There is accumulated evidence that the genes coding for the receptor of gamma aminobutyric acid (GABA), the most important inhibitory neurotransmitter in the CNS, may be involved in the pathogenesis of affective disorders. In a previous study, we have found a genetic association between the GABA-A receptor alpha5 subunit gene locus (GABRA5) on chromosome 15q11-of 13 and bipolar affective disorder. The aim of the present study was to examine the same subjects to see if there exists a genetic association between bipolar affective disorder and the GABA receptor beta3 subunit gene (GABRB3), which is located within 100 kb from GABRA5. The sample consisted of 48 bipolar patients compared to 44 controls (blood donors). All subjects were Greek, unrelated, and personally interviewed. Diagnosis was based on DSM-IV and ICD-10 criteria. The marker used was a dinucleotide (CA) repeat polymorphism with 12 alleles 179 to 201 bp long; genotyping was successful in all patients and 43 controls. The distribution of GABRB3 genotypes among the controls did not deviate significantly from the Hardy-Weinberg equilibrium. No differences in allelic frequencies between bipolar patients and controls were found for GABRB3, while this locus and GABRA5 did not seem to be in significant linkage disequilibrium. In conclusion, the GABRB3 CA-repeat polymorphism we investigated does not present the observed association between bipolar affective illness and GABRA5. This could be due to higher mutation rate in the GABRB3 CA-repeat polymorphism, but it might also signify that GABRA5 is the gene actually associated with the disease. Copyright 2001 Wiley-Liss, Inc.

  13. Frequency-dependent actions of benzodiazepines on GABAA receptors in cultured murine cerebellar granule cells.

    PubMed Central

    Mellor, J R; Randall, A D

    1997-01-01

    1. Miniature IPSCs recorded from cultured murine cerebellar granule cells increased in half-width and amplitude following application of the benzodiazepine (BDZ) Flunitrazepam (Flu, 1 microM). The increase in the half-width was much greater than that in the amplitude. 2. Five-millisecond applications of 1 mM GABA to nucleated outside-out patches elicited rapidly rising biexponentially decaying responses that resembled IPSCs. Flu had no effect on the amplitude of such responses, but consistently slowed their deactivation by approximately 50%. This effect was reversed by Flu washout or application of the BDZ antagonist Ro15-1788. The partial inverse agonist. Ro15-4513 speeded deactivation and depressed peak current amplitude by 23 +/- 12%. 3. The EC50 for GABA was between 45 and 50 microM. At submaximally effective agonist concentrations, Flu increased response amplitude and slowed response deactivation. Both effects were present in all cells taken from young cultures (4-7 days in vitro) but the latter was absent in 55% of the neurones obtained from older cultures (14-27 days in vitro). 4. With 120 ms applications of 20 microM GABA, responses activated monoexponentially (time constant, 39.8 +/- 2.8 ms) and deactivated biexponentially (time constants, 40.4 +/- 2.1 and 251 +/- 15 ms). Application of Flu slowed both activation and deactivation. The latter effect arose from an increased contribution of the slower component of decay. 5. Desensitization of responses to 1 mM GABA was biexponential, with time constants of 47 +/- 11 and 479 +/- 49 ms. Flu speeded desensitization by decreasing both fast and slow time constants. GABAA receptor desensitization consistently slowed subsequent deactivation. No significant relationship between the level of desensitization and the amount of slowing of deactivation produced by Flu was found. 6. Responses to paired 5 ms applications of 1 mM GABA indicated that the slowing of deactivation and the speeding of desensitization produced by

  14. Combined Changes in Chloride Regulation and Neuronal Excitability Enable Primary Afferent Depolarization to Elicit Spiking without Compromising its Inhibitory Effects

    PubMed Central

    2016-01-01

    The central terminals of primary afferent fibers experience depolarization upon activation of GABAA receptors (GABAAR) because their intracellular chloride concentration is maintained above electrochemical equilibrium. Primary afferent depolarization (PAD) normally mediates inhibition via sodium channel inactivation and shunting but can evoke spikes under certain conditions. Antidromic (centrifugal) conduction of these spikes may contribute to neurogenic inflammation while orthodromic (centripetal) conduction could contribute to pain in the case of nociceptive fibers. PAD-induced spiking is assumed to override presynaptic inhibition. Using computer simulations and dynamic clamp experiments, we sought to identify which biophysical changes are required to enable PAD-induced spiking and whether those changes necessarily compromise PAD-mediated inhibition. According to computational modeling, a depolarizing shift in GABA reversal potential (EGABA) and increased intrinsic excitability (manifest as altered spike initiation properties) were necessary for PAD-induced spiking, whereas increased GABAAR conductance density (ḡGABA) had mixed effects. We tested our predictions experimentally by using dynamic clamp to insert virtual GABAAR conductances with different EGABA and kinetics into acutely dissociated dorsal root ganglion (DRG) neuron somata. Comparable experiments in central axon terminals are prohibitively difficult but the biophysical requirements for PAD-induced spiking are arguably similar in soma and axon. Neurons from naïve (i.e. uninjured) rats were compared before and after pharmacological manipulation of intrinsic excitability, and against neurons from nerve-injured rats. Experimental data confirmed that, in most neurons, both predicted changes were necessary to yield PAD-induced spiking. Importantly, such changes did not prevent PAD from inhibiting other spiking or from blocking spike propagation. In fact, since the high value of ḡGABA required for PAD

  15. The morphological and chemical characteristics of striatal neurons immunoreactive for the alpha1-subunit of the GABA(A) receptor in the rat.

    PubMed

    Waldvogel, H J; Kubota, Y; Trevallyan, S C; Kawaguchi, Y; Fritschy, J M; Mohler, H; Faull, R L

    1997-10-01

    The distribution, morphology and chemical characteristics of neurons immunoreactive for the alpha1-subunit of the GABA(A) receptor in the striatum of the basal ganglia in the rat brain were investigated at the light, confocal and electron microscope levels using single, double and triple immunohistochemical labelling techniques. The results showed that alpha1-subunit immunoreactive neurons were sparsely distributed throughout the rat striatum. Double and triple labelling results showed that all the alpha1-subunit-immunoreactive neurons were positive for glutamate decarboxylase and immunoreactive for the beta2,3 and gamma2 subunits of the GABA(A) receptor. Three types of alpha1-subunit-immunoreactive neurons were identified in the striatum on the basis of cellular morphology and chemical characteristics. The most numerous alpha1-subunit-immunoreactive neurons were medium-sized, aspiny neurons with a widely branching dendritic tree. They were parvalbumin-negative and were located mainly in the dorsolateral regions of the striatum. Electron microscopy showed that these neurons had an indented nuclear membrane, typical of striatal interneurons, and were surrounded by small numbers of axon terminals which established alpha1-subunit-immunoreactive synaptic contacts with the soma and dendrites. These cells were classified as type 1 alpha1-subunit-immunoreactive neurons and comprised 75% of the total population of alpha1-subunit-immunoreactive neurons in the striatum. The remaining alpha1-subunit-immunoreactive neurons comprised of a heterogeneous population of large-sized neurons localized in the ventral and medial regions of the striatum. The most numerous large-sized cells were parvalbumin-negative, had two to three relatively short branching dendrites and were designated type 2 alpha1-subunit-immunoreactive neurons. Electron microscopy showed that the type 2 neurons were characterized by a highly convoluted nuclear membrane and were sparsely covered with small axon

  16. Dissociating anxiolytic and sedative effects of GABAAergic drugs using temperature and locomotor responses to acute stress

    PubMed Central

    Klanker, Marianne; Groenink, Lucianne; Korte, S. Mechiel; Cook, James M.; Van Linn, Michael L.; Hopkins, Seth C.; Olivier, Berend

    2009-01-01

    Rationale The stress-induced hyperthermia (SIH) model is an anxiety model that uses the transient rise in body temperature in response to acute stress. Benzodiazepines produce anxiolytic as well as sedative side effects through nonselective binding to GABAA receptor subunits. The GABAA receptor α1 subunit is associated with sedation, whereas the GABAA receptor α2 and α3 subunits are involved in anxiolytic effects. Objectives We therefore examined the effects of (non) subunit-selective GABAA receptor agonists on temperature and locomotor responses to novel cage stress. Results Using telemetric monitoring of temperature and locomotor activity, we found that nonsubunit-selective GABAA receptor agonist diazepam as well as the α3 subunit-selective receptor agonist TP003 dose-dependently attenuated SIH and locomotor responses. Administration of GABAA receptor α1-selective agonist zolpidem resulted in profound hypothermia and locomotor sedation. The GABAA receptor α1-selective antagonist βCCt antagonized the hypothermia, but did not reverse the SIH response attenuation caused by diazepam and zolpidem. These results suggest an important regulating role for the α1 subunit in thermoregulation and sedation. Ligands of extrasynaptic GABAA receptors such as alcohol and nonbenzodiazepine THIP attenuated the SIH response only at high doses. Conclusions The present study confirms a putative role for the GABAA receptor α1 subunit in hypothermia and sedation and supports a role for α2/3 subunit GABAA receptor agonists in anxiety processes. In conclusion, we show that home cage temperature and locomotor responses to novel home cage stress provide an excellent tool to assess both anxiolytic and sedative effects of various (subunit-selective) GABAAergic compounds. PMID:19169673

  17. Delta-opioid receptor expression in the ventral tegmental area protects against elevated alcohol consumption.

    PubMed

    Margolis, Elyssa B; Fields, Howard L; Hjelmstad, Gregory O; Mitchell, Jennifer M

    2008-11-26

    Alcoholism is a complex and debilitating syndrome affecting approximately 140 million people worldwide. However, not everyone who consumes ethanol develops abuse, raising the possibility that some individuals have a protective mechanism that inhibits elevated alcohol consumption. We tested the hypothesis that the delta-opioid receptor (DOR) plays such a protective role. Here we show that DOR activity in the ventral tegmental area (VTA) robustly decreases ethanol consumption in rats and that these effects depend on baseline ethanol consumption. Intra-VTA microinjection of the DOR agonist DPDPE decreases drinking, particularly in low-drinking animals. Furthermore, VTA microinjection of the DOR selective antagonist TIPP-Psi increases drinking in low, but not high, drinkers and this increase is blocked by comicroinjection of the GABA(A) antagonist bicuculline. Using electrophysiological techniques we found that in VTA brain slices from drinking rats DPDPE presynaptically inhibits GABA(A) receptor mediated IPSCs in low drinkers, but not in high drinkers or naive animals, most likely through activation of DORs on GABA terminals. This DOR-mediated inhibition of IPSCs also correlates inversely with behavioral correlates of anxiety measured in the elevated plus maze. In contrast, presynaptic inhibition of VTA GABA(A) IPSCs by the mu-opioid receptor agonist DAMGO is significantly reduced in both high- and low-drinking rats (<30%) compared with age-matched nondrinking controls (>70%). Together, our findings demonstrate the protective nature of VTA DORs and identify an important new target for therapeutic intervention for alcoholism.

  18. Impact of single-site axonal GABAergic synaptic events on cerebellar interneuron activity.

    PubMed

    de San Martin, Javier Zorrilla; Jalil, Abdelali; Trigo, Federico F

    2015-12-01

    Axonal ionotropic receptors are present in a variety of neuronal types, and their function has largely been associated with the modulation of axonal activity and synaptic release. It is usually assumed that activation of axonal GABA(A)Rs comes from spillover, but in cerebellar molecular layer interneurons (MLIs) the GABA source is different: in these cells, GABA release activates presynaptic GABA(A) autoreceptors (autoRs) together with postsynaptic targets, producing an autoR-mediated synaptic event. The frequency of presynaptic, autoR-mediated miniature currents is twice that of their somatodendritic counterparts, suggesting that autoR-mediated responses have an important effect on interneuron activity. Here, we used local Ca(2+) photolysis in MLI axons of juvenile rats to evoke GABA release from individual varicosities to study the activation of axonal autoRs in single release sites. Our data show that single-site autoR conductances are similar to postsynaptic dendritic conductances. In conditions of high [Cl(-)](i), autoR-mediated conductances range from 1 to 5 nS; this corresponds to ∼30-150 GABA(A) channels per presynaptic varicosity, a value close to the number of channels in postsynaptic densities. Voltage responses produced by the activation of autoRs in single varicosities are amplified by a Na(v)-dependent mechanism and propagate along the axon with a length constant of 91 µm. Immunolabeling determination of synapse location shows that on average, one third of the synapses produce autoR-mediated signals that are large enough to reach the axon initial segment. Finally, we show that single-site activation of presynaptic GABA(A) autoRs leads to an increase in MLI excitability and thus conveys a strong feedback signal that contributes to spiking activity. © 2015 Zorrilla de San Martin et al.

  19. Impact of single-site axonal GABAergic synaptic events on cerebellar interneuron activity

    PubMed Central

    Zorrilla de San Martin, Javier; Jalil, Abdelali

    2015-01-01

    Axonal ionotropic receptors are present in a variety of neuronal types, and their function has largely been associated with the modulation of axonal activity and synaptic release. It is usually assumed that activation of axonal GABAARs comes from spillover, but in cerebellar molecular layer interneurons (MLIs) the GABA source is different: in these cells, GABA release activates presynaptic GABAA autoreceptors (autoRs) together with postsynaptic targets, producing an autoR-mediated synaptic event. The frequency of presynaptic, autoR-mediated miniature currents is twice that of their somatodendritic counterparts, suggesting that autoR-mediated responses have an important effect on interneuron activity. Here, we used local Ca2+ photolysis in MLI axons of juvenile rats to evoke GABA release from individual varicosities to study the activation of axonal autoRs in single release sites. Our data show that single-site autoR conductances are similar to postsynaptic dendritic conductances. In conditions of high [Cl−]i, autoR-mediated conductances range from 1 to 5 nS; this corresponds to ∼30–150 GABAA channels per presynaptic varicosity, a value close to the number of channels in postsynaptic densities. Voltage responses produced by the activation of autoRs in single varicosities are amplified by a Nav-dependent mechanism and propagate along the axon with a length constant of 91 µm. Immunolabeling determination of synapse location shows that on average, one third of the synapses produce autoR-mediated signals that are large enough to reach the axon initial segment. Finally, we show that single-site activation of presynaptic GABAA autoRs leads to an increase in MLI excitability and thus conveys a strong feedback signal that contributes to spiking activity. PMID:26621773

  20. Early continuous white noise exposure alters l-alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunit glutamate receptor 2 and gamma-aminobutyric acid type a receptor subunit beta3 protein expression in rat auditory cortex.

    PubMed

    Xu, Jinghong; Yu, Liping; Zhang, Jiping; Cai, Rui; Sun, Xinde

    2010-02-15

    Auditory experience during the postnatal critical period is essential for the normal maturation of auditory function. Previous studies have shown that rearing infant rat pups under conditions of continuous moderate-level noise delayed the emergence of adult-like topographic representational order and the refinement of response selectivity in the primary auditory cortex (A1) beyond normal developmental benchmarks and indefinitely blocked the closure of a brief, critical-period window. To gain insight into the molecular mechanisms of these physiological changes after noise rearing, we studied expression of the AMPA receptor subunit GluR2 and GABA(A) receptor subunit beta3 in the auditory cortex after noise rearing. Our results show that continuous moderate-level noise rearing during the early stages of development decreases the expression levels of GluR2 and GABA(A)beta3. Furthermore, noise rearing also induced a significant decrease in the level of GABA(A) receptors relative to AMPA receptors. However, in adult rats, noise rearing did not have significant effects on GluR2 and GABA(A)beta3 expression or the ratio between the two units. These changes could have a role in the cellular mechanisms involved in the delayed maturation of auditory receptive field structure and topographic organization of A1 after noise rearing. Copyright 2009 Wiley-Liss, Inc.

  1. Ipsilateral feeding-specific circuits between the nucleus accumbens shell and the lateral hypothalamus: regulation by glutamate and GABA receptor subtypes.

    PubMed

    Urstadt, Kevin R; Kally, Peter; Zaidi, Sana F; Stanley, B Glenn

    2013-04-01

    The nucleus accumbens shell (AcbSh) and the lateral hypothalamus (LH) are both involved in the control of food intake. Activation of GABA(A) receptors or blockade of AMPA and kainate receptors within the AcbSh induces feeding, as does blockade of GABA(A) receptors or activation of NMDA receptors in the LH. Further, evidence suggests that feeding induced via the AcbSh can be suppressed by LH inhibition. However, it is unclear if this suppression is specific to feeding. Adult male Sprague-Dawley rats with 3 intracranial guide cannulas, one unilaterally into the AcbSh and two bilaterally into the LH, were used to explore this issue. DNQX (1.25 μg) or muscimol (100 ng) infused into the AcbSh unilaterally elicited feeding, and this elicited intake was suppressed by bilateral LH injection of d-AP5 (2 μg) or muscimol (25 ng). The effectiveness of d-AP5 or muscimol infusion into either the LH site ipsilateral or contralateral to the AcbSh injection was compared. Ipsilateral LH injection of d-AP5 or muscimol was significantly more effective than contralateral injection in suppressing food intake initiated by AcbSh injection of DNQX or muscimol. These results add to the prior evidence that inhibition of the LH through pharmacological modulation of NMDA or GABA(A) receptors specifically suppresses feeding initiated by AcbSh inhibition, and that these two regions communicate via an ipsilateral circuit to specifically regulate feeding. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Pharmacology of Ramelteon, a Selective MT1/MT2 Receptor Agonist: A Novel Therapeutic Drug for Sleep Disorders

    PubMed Central

    Miyamoto, Masaomi

    2009-01-01

    An estimated one-third of the general population is affected by insomnia, and this number is increasing due to more stressful working conditions and the progressive aging of society. However, current treatment of insomnia with hypnotics, gamma-aminobutyric acid A (GABAA) receptor modulators, induces various side effects, including cognitive impairment, motor disturbance, dependence, tolerance, hangover, and rebound insomnia. Ramelteon (Rozerem; Takeda Pharmaceutical Company Limited, Osaka, Japan) is an orally active, highly selective melatonin MT1/MT2 receptor agonist. Unlike the sedative hypnotics that target GABAA receptor complexes, ramelteon is a chronohypnotic that acts on the melatonin MT1 and MT2 receptors, which are primarily located in the suprachiasmatic nucleus, the body's “master clock.” As such, ramelteon possesses the first new therapeutic mechanism of action for a prescription insomnia medication in over three decades. Ramelteon has demonstrated sleep-promoting effects in clinical trials, and coupled with its favorable safety profile and lack of abuse potential or dependence, this chronohypnotic provides an important treatment option for insomnia. PMID:19228178

  3. Nootropic agents enhance the recruitment of fast GABAA inhibition in rat neocortex.

    PubMed

    Ling, Douglas S F; Benardo, Larry S

    2005-07-01

    It is widely believed that nootropic (cognition-enhancing) agents produce their therapeutic effects by augmenting excitatory synaptic transmission in cortical circuits, primarily through positive modulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptors (AMPARs). However, GABA-mediated inhibition is also critical for cognition, and enhanced GABA function may be likewise therapeutic for cognitive disorders. Could nootropics act through such a mechanism as well? To address this question, we examined the effects of nootropic agents on excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs) recorded from layer V pyramidal cells in acute slices of somatosensory cortex. Aniracetam, a positive modulator of AMPA/kainate receptors, increased the peak amplitude of evoked EPSCs and the amplitude and duration of polysynaptic fast IPSCs, manifested as a greater total charge carried by IPSCs. As a result, the EPSC/IPSC ratio of total charge was decreased, representing a shift in the excitation-inhibition balance that favors inhibition. Aniracetam did not affect the magnitude of either monosynaptic IPSCs (mono-IPSCs) recorded in the presence of excitatory amino acid receptor antagonists, or miniature IPSCs (mIPSCs) recorded in the presence of tetrodotoxin. However, the duration of both mono-IPSCs and mIPSCs was prolonged, suggesting that aniracetam also directly modulates GABAergic transmission. Cyclothiazide, a preferential modulator of AMPAR function, enhanced the magnitude and duration of polysynaptic IPSCs, similar to aniracetam, but did not affect mono-IPSCs. Concanavalin A, a kainate receptor modulator, had little effect on EPSCs or IPSCs, suggesting there was no contribution from kainate receptor activity. These findings indicate that AMPAR modulators strengthen inhibition in neocortical pyramidal cells, most likely by altering the kinetics of AMPARs on synaptically connected interneurons and possibly by modulating GABA(A) receptor responses

  4. Ethanol-induced dopamine elevation in the rat--modulatory effects by subchronic treatment with nicotinic drugs.

    PubMed

    Löf, Elin; Chau, Pei Pei; Stomberg, Rosita; Söderpalm, Bo

    2007-01-26

    Chronic nicotine administration is associated with increased ethanol consumption in laboratory animals and in humans. Some smokers report less sedation during acute ethanol intoxication after nicotine administration and the sedative effects from ethanol are mediated by inhibitory GABA(A)-receptors. In a series of in vivo microdialysis experiments we investigated whether subchronic pre-treatment with nicotinic drugs known to enhance ethanol consumption in the rat (nicotine or the peripheral nicotinic antagonist hexamethonium) could modulate the alterations in extracellular dopamine observed in response to administration of ethanol or the sedative GABA(A)-agonist diazepam. In the nucleus accumbens and the dorsal striatum, systemic and/or local ethanol administration resulted in transient increases in extracellular dopamine levels that returned to baseline before the local levels of ethanol started to decline. In hexamethonium pre-treated rats, however, the nucleus accumbens dopamine levels were time-locked to the ethanol levels in the same area after systemic or local ethanol administration. Perfusion of diazepam into the nucleus accumbens produced a significant reduction in nucleus accumbens dopamine in controls. Prior subchronic treatment with nicotine or hexamethonium abolished this effect. The present results suggest that subchronic treatment with the nicotinic acetylcholine receptor antagonist hexamethonium reduces a GABA(A)-R mediated counteraction of the nucleus accumbens dopamine response to ethanol. Additionally, we demonstrate that modulation of nicotinic receptors may reduce the sensitivity of GABA(A) receptors to benzodiazepines. These phenomena may offer a novel explanation to why nicotine and alcohol are often co-abused.

  5. A stress steroid triggers anxiety via increased expression of α4βδ GABAA receptors in methamphetamine dependence

    PubMed Central

    Shen, Hui; Mohammad, Adeel; Ramroop, Johnny; Smith, Sheryl S.

    2013-01-01

    Methamphetamine (METH) is an addictive stimulant drug. In addition to drug craving and lethargy, METH withdrawal is associated with stress-triggered anxiety. However, the cellular basis for this stress-triggered anxiety is not understood. The present results suggest that during METH withdrawal (24 h) following chronic exposure (3 mg/kg, i.p. for 3-5 weeks) of adult, male mice, the effect of one neurosteroid released by stress, 3α,5α-THP (3α-OH-5α-pregnan-20-one), and its 3α,5β isomer reverse to trigger anxiety assessed by the acoustic startle response (ASR), in contrast to their usual anti-anxiety effects. This novel effect of 3α,5β-THP was due to increased (3-fold) hippocampal expression of α4βδ GABAA receptors (GABARs) during METH withdrawal (24 h – 4 wk) because anxiogenic effects of 3α,5β-THP were not seen in α4−/− mice. 3α,5β-THP reduces current at these receptors when it is hyperpolarizing, as observed during METH withdrawal. As a result, 3α,5β-THP (30 nM) increased neuronal excitability, assessed with current clamp and cell-attached recordings in CA1 hippocampus, one CNS site which regulates anxiety. α4βδ GABARs were first increased 1 h after METH exposure and recovered 6 wk after METH withdrawal. Similar increases in α4βδ GABARs and anxiogenic effects of 3α,5β-THP were noted in rats during METH withdrawal (24 h). In contrast, the ASR was increased by chronic METH treatment in the absence of 3α,5β-THP administration due to its stimulant effect. Although α4βδ GABARs were increased by chronic METH treatment, the GABAergic current recorded from hippocampal neurons at this time was a depolarizing, shunting inhibition, which was potentiated by 3α,5β-THP. This steroid reduced neuronal excitability and anxiety during chronic METH treatment, consistent with its typical effect. Flumazenil (10 mg/kg, i.p., 3x) reduced α4βδ expression and prevented the anxiogenic effect of 3α,5β-THP after METH withdrawal. Our findings suggest

  6. Insulin Regulates GABAA Receptor-Mediated Tonic Currents in the Prefrontal Cortex.

    PubMed

    Trujeque-Ramos, Saraí; Castillo-Rolón, Diego; Galarraga, Elvira; Tapia, Dagoberto; Arenas-López, Gabina; Mihailescu, Stefan; Hernández-López, Salvador

    2018-01-01

    Recent studies, have shown that insulin increases extrasynaptic GABA A receptor-mediated currents in the hippocampus, causing alterations of neuronal excitability. The prefrontal cortex (PFC) is another brain area which is involved in cognition functions and expresses insulin receptors. Here, we used electrophysiological, molecular, and immunocytochemical techniques to examine the effect of insulin on the extrasynaptic GABA A receptor-mediated tonic currents in brain slices. We found that insulin (20-500 nM) increases GABA A -mediated tonic currents. Our results suggest that insulin promotes the trafficking of extrasynaptic GABA A receptors from the cytoplasm to the cell membrane. Western blot analysis and immunocytochemistry showed that PFC extrasynaptic GABA A receptors contain α-5 and δ subunits. Insulin effect on tonic currents decreased the firing rate and neuronal excitability in layer 5-6 PFC cells. These effects of insulin were dependent on the activation of the PI3K enzyme, a key mediator of the insulin response within the brain. Taken together, these results suggest that insulin modulation of the GABA A -mediated tonic currents can modify the activity of neural circuits within the PFC. These actions could help to explain the alterations of cognitive processes associated with changes in insulin signaling.

  7. Effects of Antecedent GABAA Activation With Alprazolam on Counterregulatory Responses to Hypoglycemia in Healthy Humans

    PubMed Central

    Hedrington, Maka S.; Farmerie, Stephnie; Ertl, Andrew C.; Wang, Zhihui; Tate, Donna B.; Davis, Stephen N.

    2010-01-01

    OBJECTIVE To date, there are no data investigating the effects of GABAA activation on counterregulatory responses during repeated hypoglycemia in humans. The aim of this study was to determine the effects of prior GABAA activation using the benzodiazepine alprazolam on the neuroendocrine and autonomic nervous system (ANS) and metabolic counterregulatory responses during next-day hypoglycemia in healthy humans. RESEARCH DESIGN AND METHODS Twenty-eight healthy individuals (14 male and 14 female, age 27 ± 6 years, BMI 24 ± 3 kg/m2, and A1C 5.2 ± 0.1%) participated in four randomized, double-blind, 2-day studies. Day 1 consisted of either morning and afternoon 2-h hyperinsulinemic euglycemia or 2-h hyperinsulinemic hypoglycemia (2.9 mmol/l) with either 1 mg alprazolam or placebo administered 30 min before the start of each clamp. Day 2 consisted of a single-step hyperinsulinemic-hypoglycemic clamp of 2.9 mmol/l. RESULTS Despite similar hypoglycemia (2.9 ± 1 mmol/l) and insulinemia (672 ± 108 pmol/l) during day 2 studies, GABAA activation with alprazolam during day 1 euglycemia resulted in significant blunting (P < 0.05) of ANS (epinephrine, norepinephrine, muscle sympathetic nerve activity, and pancreatic polypeptide), neuroendocrine (glucagon and growth hormone), and metabolic (glucose kinetics, lipolysis, and glycogenolysis) counterregulatory responses. GABAA activation with alprazolam during prior hypoglycemia caused further significant (P < 0.05) decrements in subsequent glucagon, growth hormone, pancreatic polypeptide, and muscle sympathetic nerve activity counterregulatory responses. CONCLUSIONS Alprazolam activation of GABAA pathways during day 1 hypoglycemia can play an important role in regulating a spectrum of key physiologic responses during subsequent (day 2) hypoglycemia in healthy man. PMID:20086227

  8. Effects of antecedent GABAA activation with alprazolam on counterregulatory responses to hypoglycemia in healthy humans.

    PubMed

    Hedrington, Maka S; Farmerie, Stephnie; Ertl, Andrew C; Wang, Zhihui; Tate, Donna B; Davis, Stephen N

    2010-04-01

    To date, there are no data investigating the effects of GABA(A) activation on counterregulatory responses during repeated hypoglycemia in humans. The aim of this study was to determine the effects of prior GABA(A) activation using the benzodiazepine alprazolam on the neuroendocrine and autonomic nervous system (ANS) and metabolic counterregulatory responses during next-day hypoglycemia in healthy humans. Twenty-eight healthy individuals (14 male and 14 female, age 27 +/- 6 years, BMI 24 +/- 3 kg/m(2), and A1C 5.2 +/- 0.1%) participated in four randomized, double-blind, 2-day studies. Day 1 consisted of either morning and afternoon 2-h hyperinsulinemic euglycemia or 2-h hyperinsulinemic hypoglycemia (2.9 mmol/l) with either 1 mg alprazolam or placebo administered 30 min before the start of each clamp. Day 2 consisted of a single-step hyperinsulinemic-hypoglycemic clamp of 2.9 mmol/l. Despite similar hypoglycemia (2.9 +/- 1 mmol/l) and insulinemia (672 +/- 108 pmol/l) during day 2 studies, GABA(A) activation with alprazolam during day 1 euglycemia resulted in significant blunting (P < 0.05) of ANS (epinephrine, norepinephrine, muscle sympathetic nerve activity, and pancreatic polypeptide), neuroendocrine (glucagon and growth hormone), and metabolic (glucose kinetics, lipolysis, and glycogenolysis) counterregulatory responses. GABA(A) activation with alprazolam during prior hypoglycemia caused further significant (P < 0.05) decrements in subsequent glucagon, growth hormone, pancreatic polypeptide, and muscle sympathetic nerve activity counterregulatory responses. Alprazolam activation of GABA(A) pathways during day 1 hypoglycemia can play an important role in regulating a spectrum of key physiologic responses during subsequent (day 2) hypoglycemia in healthy man.

  9. Novel Fast Adapting Interneurons Mediate Cholinergic-Induced Fast GABAA IPSCs In Striatal Spiny Neurons

    PubMed Central

    Faust, Thomas W.; Assous, Maxime; Shah, Fulva; Tepper, James M.; Koós, Tibor

    2015-01-01

    Previous work suggests that neostriatal cholinergic interneurons control the activity of several classes of GABAergic interneurons through fast nicotinic receptor mediated synaptic inputs. Although indirect evidence has suggested the existence of several classes of interneurons controlled by this mechanism only one such cell type, the neuropeptide-Y expressing neurogliaform neuron, has been identified to date. Here we tested the hypothesis that in addition to the neurogliaform neurons that elicit slow GABAergic inhibitory responses, another interneuron type exists in the striatum that receives strong nicotinic cholinergic input and elicits conventional fast GABAergic synaptic responses in projection neurons. We obtained in vitro slice recordings from double transgenic mice in which Channelrhodopsin-2 was natively expressed in cholinergic neurons and a population of serotonin receptor-3a-Cre expressing GABAergic interneurons were visualized with tdTomato. We show that among the targeted GABAergic interneurons a novel type of interneuron, termed the fast-adapting interneuron, can be identified that is distinct from previously known interneurons based on immunocytochemical and electrophysiological criteria. We show using optogenetic activation of cholinergic inputs that fast-adapting interneurons receive a powerful supra-threshold nicotinic cholinergic input in vitro. Moreover, fast adapting neurons are densely connected to projection neurons and elicit fast, GABAA receptor mediated inhibitory postsynaptic responses. The nicotinic receptor mediated activation of fast-adapting interneurons may constitute an important mechanism through which cholinergic interneurons control the activity of projection neurons and perhaps the plasticity of their synaptic inputs when animals encounter reinforcing or otherwise salient stimuli. PMID:25865337

  10. Induction of θ-frequency oscillations in the rat medial septal diagonal band slice by metabotropic glutamate receptor agonists.

    PubMed

    Lu, C B; Ouyang, G; Henderson, Z; Li, X

    2011-03-17

    The aim of this study was to examine the role of metabotropic glutamate receptors (mGluR) in the generation of oscillatory field activity at theta frequency (4-12 Hz) in the medial septal slice prepared from rat brain. Bath application of mGluR agonists and antagonists showed that activation of mGluR1-type receptors produces persistent theta frequency oscillations in a dose-responsive manner. This activity, induced by the group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine (DHPG), was reduced by ionotropic glutamate receptor antagonists and abolished by further addition of a GABAA receptor antagonist. However, addition of a GABAA receptor antagonist on its own converted the DHPG-induced oscillations to intermittent episodes of accentuated theta frequency activity following a burst. In a proportion of slices, DHPG induced large amplitude field population spiking activity (100-300 μV) which is correlated linearly with the field theta oscillations and is sensitive to glutamate receptor antagonists, suggesting a role of this type of spikes in theta generation induced by DHPG. These data demonstrate that DHPG-sensitive neuronal networks within medial septum generate theta rhythmic activity and are differentially modulated by excitatory and inhibitory ionotropic neurotransmissions. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Modulation by bicuculline and penicillin of the block by t-butyl-bicyclo-phosphorothionate (TBPS) of GABAA-receptor mediated Cl−-current responses in rat striatal neurones

    PubMed Central

    Behrends, Jan C

    2000-01-01

    T-butyl-bicyclo-phosphorothionate (TBPS) is a prototypical representative of the cage-convulsants which act through a use-dependent block of the GABAA-receptor-ionophore complex. Using current recordings from cultured neurones of rat striatum the manner was investigated in which two antagonists, bicuculline and penicillin, presumably acting at the agonist binding site and in the ionic channel, respectively, modify the rate of block by TBPS. Penicillin (5 or 10 mM) did not slow the rate of block by TBPS, but produced a significant enhancement of block rate, which, however, was inversely related to the degree of antagonism by penicillin of the GABA-induced current. Bicuculline (10 μM) reduced the rate of block by TBPS. However, this effect was 3 fold weaker than its GABA-antagonistic action. The slowing of block rate and the current antagonism exhibited a biphasic, positive-negative relationship. Co-application of bicuculline (100 μM) in a concentration that produced nearly complete antagonism and TBPS (10 μM) resulted in a marked (∼40%) reduction of subsequent GABA response amplitudes compatible with a direct, bicuculline-induced conformational change in the receptor required for the binding of and block by TBPS. The lack of protection afforded by the channel blocker penicillin as well as the lack of correlation between bicuculline antagonism of the Cl−-current and its efficiency in protecting against TBPS block is evidence against an open channel blocking mechanism for TBPS. TBPS does, therefore, not appear to gain access to its binding site via the open pore but through alternative routes regulated from the agonist binding site. PMID:10694249

  12. GABAB receptor attenuation of GABAA currents in neurons of the mammalian central nervous system.

    PubMed

    Shen, Wen; Nan, Changlong; Nelson, Peter T; Ripps, Harris; Slaughter, Malcolm M

    2017-03-01

    Ionotropic receptors are tightly regulated by second messenger systems and are often present along with their metabotropic counterparts on a neuron's plasma membrane. This leads to the hypothesis that the two receptor subtypes can interact, and indeed this has been observed in excitatory glutamate and inhibitory GABA receptors. In both systems the metabotropic pathway augments the ionotropic receptor response. However, we have found that the metabotropic GABA B receptor can suppress the ionotropic GABA A receptor current, in both the in vitro mouse retina and in human amygdala membrane fractions. Expression of amygdala membrane microdomains in Xenopus oocytes by microtransplantation produced functional ionotropic and metabotropic GABA receptors. Most GABA A receptors had properties of α -subunit containing receptors, with ~5% having ρ -subunit properties. Only GABA A receptors with α -subunit-like properties were regulated by GABA B receptors. In mouse retinal ganglion cells, where only α -subunit-containing GABA A receptors are expressed, GABA B receptors suppressed GABA A receptor currents. This suppression was blocked by GABA B receptor antagonists, G-protein inhibitors, and GABA B receptor antibodies. Based on the kinetic differences between metabotropic and ionotropic receptors, their interaction would suppress repeated, rapid GABAergic inhibition. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  13. BENZODIAZEPINE-INDUCED SPATIAL LEARNING DEFICITS IN RATS ARE REGULATED BY THE DEGREE OF MODULATION OF α1 GABAA RECEPTORS

    PubMed Central

    Joksimović, Srđan; Divljaković, Jovana; Van Linn, Michael L.; Varagic, Zdravko; Brajković, Gordana; Milinković, Marija M.; Yin, Wenyuan; Timić, Tamara; Sieghart, Werner; Cook, James M.; Savić, Miroslav M.

    2012-01-01

    Despite significant advances in understanding the role of benzodiazepine (BZ)-sensitive populations of GABAA receptors, containing the α1, α2, α3 or α5 subunit, factual substrates of BZ-induced learning and memory deficits are not yet fully elucidated. It was shown that α1-subunit affinity-selective antagonist β-CCt almost completely abolished spatial learning deficits induced by diazepam (DZP) in the Morris water maze. We examined a novel, highly (105 fold) α1-subunit selective ligand - WYS8 (0.2, 1 and 10 mg/kg), on its own and in combination with the non-selective agonist DZP (2 mg/kg) or β-CCt (5 mg/kg) in the water maze in rats. The in vitro efficacy study revealed that WYS8 acts as α1-subtype selective weak partial positive modulator (40% potentiation at 100 nM). Measurement of concentrations of WYS8 and DZP in rat serum and brain tissues suggested that they did not substantially cross-influence the respective disposition. In the water maze, DZP impaired spatial learning (acquisition trials) and memory (probe trial). WYS8 caused no effect per se, did not affect the overall influence of DZP on the water-maze performance and was devoid of any activity in this task when combined with β-CCt. Nonetheless, an additional analysis of the latency to reach the platform and the total distance swam suggested that WYS8 addition attenuated the run-down of the spatial impairment induced by DZP at the end of acquisition trials. These results demonstrate a clear difference in the influence of an α1 subtype-selective antagonist and a partial agonist on the effects of DZP on the water-maze acquisition. PMID:22633616

  14. Acutely increasing δGABA(A) receptor activity impairs memory and inhibits synaptic plasticity in the hippocampus.

    PubMed

    Whissell, Paul D; Eng, Dave; Lecker, Irene; Martin, Loren J; Wang, Dian-Shi; Orser, Beverley A

    2013-01-01

    Extrasynaptic γ-aminobutyric acid type A (GABA(A)) receptors that contain the δ subunit (δGABA(A) receptors) are expressed in several brain regions including the dentate gyrus (DG) and CA1 subfields of the hippocampus. Drugs that increase δGABA(A) receptor activity have been proposed as treatments for a variety of disorders including insomnia, epilepsy and chronic pain. Also, long-term pretreatment with the δGABA(A) receptor-preferring agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) enhances discrimination memory and increases neurogenesis in the DG. Despite the potential therapeutic benefits of such treatments, the effects of acutely increasing δGABA(A) receptor activity on memory behaviors remain unknown. Here, we studied the effects of THIP (4 mg/kg, i.p.) on memory performance in wild-type (WT) and δGABA(A) receptor null mutant (Gabrd(-/-)) mice. Additionally, the effects of THIP on long-term potentiation (LTP), a molecular correlate of memory, were studied within the DG and CA1 subfields of the hippocampus using electrophysiological recordings of field potentials in hippocampal slices. The results showed that THIP impaired performance in the Morris water maze, contextual fear conditioning and object recognition tasks in WT mice but not Gabrd(-/-) mice. Furthermore, THIP inhibited LTP in hippocampal slices from WT but not Gabrd(-/-) mice, an effect that was blocked by GABA(A) receptor antagonist bicuculline. Thus, acutely increasing δGABA(A) receptor activity impairs memory behaviors and inhibits synaptic plasticity. These results have important implications for the development of therapies aimed at increasing δGABA(A) receptor activity.

  15. GABA(C) receptors: a molecular view.

    PubMed

    Enz, R

    2001-08-01

    In the central nervous system inhibitory neurotransmission is primarily achieved through activation of receptors for gamma-aminobutyric acid (GABA). Three types of GABA receptors have been identified on the basis of their pharmacological and electrophysiological properties. The predominant type, termed GABA(A), and a recently identified GABA(C) type, form ligand-gated chloride channels, whereas GABA(B) receptors activate separate cation channels via G proteins. Based on their homology to nicotinic acetylcholine receptors, GABA(C) receptors are believed to be oligomeric protein complexes composed of five subunits in a pentameric arrangement. To date up to five different GABA(C) receptors subunits have been identified in various species. Recent studies have shed new light on the biological characteristics of GABA(C) receptors, including the chromosomal localization of its subunit genes and resulting links to deseases, the cloning of new splice variants, the identification of GABA(C) receptor-associated proteins, the identification of domains involved in subunit assembly, and finally structure/function studies examining functional consequences of introduced mutations. This review summarizes recent data in view of the molecular structure of GABA(C) receptors and presents new insights into the biological function of this protein in the retina.

  16. GABA(B) receptor modulation of feedforward inhibition through hippocampal neurogliaform cells.

    PubMed

    Price, Christopher J; Scott, Ricardo; Rusakov, Dmitri A; Capogna, Marco

    2008-07-02

    Feedforward inhibition of neurons is a fundamental component of information flow control in the brain. We studied the roles played by neurogliaform cells (NGFCs) of stratum lacunosum moleculare of the hippocampus in providing feedforward inhibition to CA1 pyramidal cells. We recorded from synaptically coupled pairs of anatomically identified NGFCs and CA1 pyramidal cells and found that, strikingly, a single presynaptic action potential evoked a biphasic unitary IPSC (uIPSC), consisting of two distinct components mediated by GABA(A) and GABA(B) receptors. A GABA(B) receptor-mediated unitary response has not previously been observed in hippocampal excitatory neurons. The decay of the GABA(A) receptor-mediated response was slow (time constant = 50 ms), and was tightly regulated by presynaptic GABA(B) receptors. Surprisingly, the GABA(B) receptor ligands baclofen and (2S)-3-{[(1S)-1-(3,4-dichlorophenyl)ethyl]amino-2-hydroxypropyl}(phenylmethyl)phosphinic acid (CGP55845), while affecting the NGFC-mediated uIPSCs, had no effect on action potential-evoked presynaptic Ca2+ signals monitored in individual axonal boutons of NGFCs with two-photon microscopy. In contrast, baclofen clearly depressed presynaptic Ca2+ transients in non-NGF interneurons. Changes in extracellular Ca2+ concentration that mimicked the effects of baclofen or CGP55845 on uIPSCs significantly altered presynaptic Ca2+ transients. Electrophysiological data suggest that GABA(B) receptors expressed by NGFCs contribute to the dynamic control of the excitatory input to CA1 pyramidal neurons from the temporoammonic path. The NGFC-CA1 pyramidal cell connection therefore provides a unique and subtle mechanism to shape the integration time domain for signals arriving via a major excitatory input to CA1 pyramidal cells.

  17. Alpha-1A Adrenergic receptor activation increases inhibitory tone in CA1 hippocampus

    PubMed Central

    Hillman, Kristin L.; Lei, Saobo; Doze, Van A.

    2009-01-01

    The endogenous catecholamine norepinephrine (NE) exhibits anti-epileptic properties, however it is not well understood which adrenergic receptor (AR) mediates this effect. The aim of this study was to investigate α1-adrenergic receptor (AR) activation in region CA1 of the hippocampus, a subcortical structure often implicated in temporal lobe epilepsies. Using cell-attached and whole-cell recordings in rat hippocampal slices, we confirmed that selective α1-AR activation increases action potential firing in a subpopulation of CA1 interneurons. We found that this response is mediated via the α1A-AR subtype, initiated by sodium influx, and appears independent of second messenger signaling. In CA1 pyramidal cells, α1A-AR activation decreases activity due to increased pre-synaptic GABA and somatostatin release. Examination of post-synaptic receptor involvement revealed that while GABAA receptors mediate the majority of α1A-adrenergic effects on CA1 pyramidal cells, significant contributions are also made by GABAB and somatostatin receptors. Finally, to test whether α1A-AR activation could have potential therapeutic implications, we performed AR agonist challenges using two in vitro epileptiform models. When GABAA receptors were available, α1A-AR activation significantly decreased epileptiform bursting in CA1. Together, our findings directly link stimulation of the α1A-AR subtype to release of GABA and somatostatin at the single cell level and suggest that α1A-AR activation may represent one mechanism by which NE exerts anti-epileptic effects within the hippocampus. PMID:19201164

  18. Can a Positive Allosteric Modulation of GABAergic Receptors Improve Motor Symptoms in Patients with Parkinson's Disease? The Potential Role of Zolpidem in the Treatment of Parkinson's Disease

    PubMed Central

    Daniele, Antonio; Panza, Francesco; Greco, Antonio; Logroscino, Giancarlo; Seripa, Davide

    2016-01-01

    At present, patients with advanced Parkinson's disease (PD) are unsatisfactorily controlled by currently used anti-Parkinsonian dopaminergic drugs. Various studies suggest that therapeutic strategies based on nondopaminergic drugs might be helpful in PD. Zolpidem, an imidazopyridine widely used as sleep inducer, shows high affinity only for GABAA receptors containing the α-1 subunit and facilitates GABAergic neurotransmission through a positive allosteric modulation of GABAA receptors. Various observations, although preliminary, consistently suggest that in PD patients zolpidem may induce beneficial (and sometimes remarkable) effects on motor symptoms even after single doses and may also improve dyskinesias. Since a high density of zolpidem binding sites is in the two main output structures of the basal ganglia which are abnormally overactive in PD (internal globus pallidus, GPi, and substantia nigra pars reticulata, SNr), it was hypothesized that in PD patients zolpidem may induce through GABAA receptors an inhibition of GPi and SNr (and, possibly, of the subthalamic nucleus also), resulting in an increased activity of motor cortical areas (such as supplementary motor area), which may give rise to improvement of motor symptoms of PD. Randomized clinical trials are needed in order to assess the efficacy, safety, and tolerability of zolpidem in treating motor symptoms of PD. PMID:27293955

  19. Context-dependent modulation of alphabetagamma and alphabetadelta GABA A receptors by penicillin: implications for phasic and tonic inhibition.

    PubMed

    Feng, Hua-Jun; Botzolakis, Emmanuel J; Macdonald, Robert L

    2009-01-01

    Penicillin, an open-channel blocker of GABA(A) receptors, was recently reported to inhibit phasic, but not tonic, currents in hippocampal neurons. To distinguish between isoform-specific and context-dependent modulation as possible explanations for this selectivity, the effects of penicillin were evaluated on recombinant GABA(A) receptors expressed in HEK293T cells. When co-applied with saturating GABA, penicillin decreased peak amplitude, induced rebound, and prolonged deactivation of currents evoked from both synaptic and extrasynaptic receptor isoforms. However, penicillin had isoform-specific effects on the extent of desensitization, reflecting its ability to differentially modulate peak (non-equilibrium) and residual (near-equilibrium) currents. This suggested that the context of activation could determine the apparent sensitivity of a given receptor isoform to penicillin. To test this hypothesis, we explored the ability of penicillin to modulate synaptic and extrasynaptic isoform currents that were activated under more physiologically relevant conditions. Interestingly, while currents evoked from synaptic isoforms under phasic conditions (transient activation by a saturating concentration of GABA) were substantially inhibited by penicillin, currents evoked from extrasynaptic isoforms under tonic conditions (prolonged application by a sub-saturating concentration of GABA) were minimally affected. We therefore concluded that the reported inability of penicillin to modulate tonic currents could not simply be attributed to insensitivity of extrasynaptic receptors, but rather, reflected an inability to modulate these receptors in their native context of activation.

  20. Functional reorganization of visual cortex maps after ischemic lesions is accompanied by changes in expression of cytoskeletal proteins and NMDA and GABA(A) receptor subunits.

    PubMed

    Zepeda, Angelica; Sengpiel, Frank; Guagnelli, Miguel Angel; Vaca, Luis; Arias, Clorinda

    2004-02-25

    Reorganization of cortical representations after focal visual cortex lesions has been documented. It has been suggested that functional reorganization may rely on cellular mechanisms involving modifications in the excitatory/inhibitory neurotransmission balance and on morphological changes of neurons peripheral to the lesion. We explored functional reorganization of cortical retinotopic maps after a focal ischemic lesion in primary visual cortex of kittens using optical imaging of intrinsic signals. After 1, 2, and 5 weeks postlesion (wPL), we addressed whether functional reorganization correlated in time with changes in the expression of MAP-2, GAP-43, GFAP, GABA(A) receptor subunit alpha1 (GABA(A)alpha1), subunit 1 of the NMDA receptor (NMDAR1), and in neurotransmitter levels at the border of the lesion. Our results show that: (1) retinotopic maps reorganize with time after an ischemic lesion; (2) MAP-2 levels increase gradually from 1wPL to 5wPL; (3) MAP-2 upregulation is associated with an increase in dendritic-like structures surrounding the lesion and a decrease in GFAP-positive cells; (4) GAP-43 levels reach the highest point at 2wPL; (5) NMDAR1 and glutamate contents increase in parallel from 1wPL to 5wPL; (6) GABA(A)alpha1 levels increase from 1wPL to 2wPL but do not change after this time point; and (7) GABA contents remain low from 1wPL to 5wPL. This is a comprehensive study showing for the first time that functional reorganization correlates in time with dendritic sprouting and with changes in the excitatory/inhibitory neurotransmission systems previously proposed to participate in cortical remodeling and suggests mechanisms by which plasticity of cortical representations may occur.

  1. Region-specificity of GABAA receptor mediated effects on orientation and direction selectivity in cat visual cortical area 18.

    PubMed

    Jirmann, Kay-Uwe; Pernberg, Joachim; Eysel, Ulf T

    2009-01-01

    The role of GABAergic inhibition in orientation and direction selectivity has been investigated with the GABA(A)-Blocker bicuculline in the cat visual cortex, and results indicated a region specific difference of functional contributions of GABAergic inhibition in areas 17 and 18. In area 17 inhibition appeared mainly involved in sculpturing orientation and direction tuning, while in area 18 inhibition seemed more closely associated with temporal receptive field properties. However, different types of stimuli were used to test areas 17 and 18 and further studies performed in area 17 suggested an important influence of the stimulus type (single light bars vs. moving gratings) on the evoked responses (transient vs. sustained) and inhibitory mechanisms (GABA(A) vs. GABA(B)) which in turn might be more decisive for the specific results than the cortical region. To insert the missing link in this chain of arguments it was necessary to study GABAergic inhibition in area 18 with moving light bars, which has not been done so far. Therefore, in the present study we investigated area 18 cells responding to oriented moving light bars with extracellular recordings and reversible microiontophoretic blockade of GABAergig inhibition with bicuculline methiodide. The majority of neurons was characterized by a pronounced orientation specificity and variable degrees of direction selectivity. GABA(A)ergic inhibition significantly influenced preferred orientation and preferred direction in area 18. During the action of bicuculline orientation tuning width increased and orientation and direction selectivity indices decreased. Our results obtained in area 18 with moving bar stimuli, although in the proportion of affected cells similar to those described in area 17, quantitatively matched the findings for direction and orientation specificity obtained with moving gratings in area 18. Accordingly, stimulus type is not decisive in area 18 and the GABA(A) dependent, inhibitory intracortical

  2. Blockade of GABA, type A, receptors in the rat pontine reticular formation induces rapid eye movement sleep that is dependent upon the cholinergic system.

    PubMed

    Marks, G A; Sachs, O W; Birabil, C G

    2008-09-22

    The brainstem reticular formation is an area important to the control of rapid eye movement (REM) sleep. The antagonist of GABA-type A (GABA(A)) receptors, bicuculline methiodide (BMI), injected into the rat nucleus pontis oralis (PnO) of the reticular formation resulted in a long-lasting increase in REM sleep. Thus, one factor controlling REM sleep appears to be the number of functional GABA(A) receptors in the PnO. The long-lasting effect produced by BMI may result from secondary influences on other neurotransmitter systems known to have long-lasting effects. To study this question, rats were surgically prepared for chronic sleep recording and additionally implanted with guide cannulas aimed at sites in the PnO. Multiple, 60 nl, unilateral injections were made either singly or in combination. GABA(A) receptor antagonists, BMI and gabazine (GBZ), produced dose-dependent increases in REM sleep with GBZ being approximately 35 times more potent than BMI. GBZ and the cholinergic agonist, carbachol, produced very similar results, both increasing REM sleep for about 8 h, mainly through increased period frequency, with little reduction in REM latency. Pre-injection of the muscarinic antagonist, atropine, completely blocked the REM sleep-increase by GBZ. GABAergic control of REM sleep in the PnO requires the cholinergic system and may be acting through presynaptic modulation of acetylcholine release.

  3. Gene Expression Analysis of CL-20-induced Reversible Neurotoxicity Reveals GABAA Receptors as Potential Target in the Earthworm Eisenia fetida

    PubMed Central

    Gong, Ping; Guan, Xin; Pirooznia, Mehdi; Liang, Chun; Perkins, Edward J.

    2012-01-01

    The earthworm Eisenia fetida is one of the most used species in standardized soil ecotoxicity tests. Endpoints such as survival, growth and reproduction are eco-toxicologically relevant but provide little mechanistic insight into toxicity pathways, especially at the molecular level. Here we applied a toxicogenomic approach to investigate the mode of action underlying the reversible neurotoxicity of hexanitrohexaazaisowurtzitane (CL-20), a cyclic nitroamine explosives compound. We developed an E. fetida-specific shotgun microarray targeting 15119 unique E. fetida transcripts. Using this array we profiled gene expression in E. fetida in response to exposure to CL-20. Eighteen earthworms were exposed for 6 days to 0.2 μg/cm2 of CL-20 on filter paper, half of which were allowed to recover in a clean environment for 7 days. Nine vehicle control earthworms were sacrificed at day 6 and 13, separately. Electrophysiological measurements indicated that the conduction velocity of earthworm medial giant nerve fiber decreased significantly after 6-day exposure to CL-20, but was restored after 7 days of recovery. Total RNA was isolated from the four treatment groups including 6-day control, 6-day exposed, 13-day control and 13-day exposed (i.e. 6-day exposure followed by 7-day recovery), and was hybridized to the 15K shot-gun oligo array. Statistical and bioinformatic analyses suggest that CL-20 initiated neurotoxicity by non-competitively blocking the ligand-gated GABAA receptor ion channel, leading to altered expression of genes involved in GABAergic, cholinergic, and Agrin-MuSK pathways. In the recovery phase, expression of affected genes returned to normality, possibly as a result of autophagy and CL-20 dissociation/metabolism. This study provides significant insights into potential mechanisms of CL-20-induced neurotoxicity and the recovery of earthworms from transient neurotoxicity stress. PMID:22191394

  4. Garcinol Upregulates GABAA and GAD65 Expression, Modulates BDNF-TrkB Pathway to Reduce Seizures in Pentylenetetrazole (PTZ)-Induced Epilepsy

    PubMed Central

    Hao, Fang; Jia, Li-Hua; Li, Xiao-Wan; Zhang, Ying-Rui; Liu, Xue-Wu

    2016-01-01

    Background Epilepsy is the most predominant neurological disorder characterized by recurrent seizures. Despite treatment with antiepileptic drugs, epilepsy still is a challenge to treat, due to the associated adverse effects of the drugs. Previous investigations have shown critical roles of BDNF-TrkB signalling and expression of glutamic acid decarboxylase 65 (GAD65) and GABAA in the brain during epilepsy. Thus, drugs that could modulate BDNF-TrkB signal and expression of GAD65 and GABAA could aid in therapy. Recent experimental data have focussed on plant-derived compounds in treatments. Garcinol (camboginol), is a polyisoprenylated benzophenone derived from the fruit of Garcinia indica. We investigated the effects of garcinol in pentylenetetrazole (PTZ)-induced epileptic models. Material/Methods Seizure scores were measured in epilepsy kindled mice. Neuronal degeneration and apoptosis were assessed by Nissl staining, TUNEL assay, and Fluoro-Jade B staining. Immunohistochemistry was performed to evaluate cleaved caspase-3 expressions. Expression of BDNF, TrkB, GABAA, GAD65, Bad, Bcl-2, Bcl-xL, and Bax were determined by western blots. Results Significantly reduced seizure scores and mortality rates were observed with pretreatment with garcinol. Elevated expression of apoptotic proteins and caspase-3 in kindled mice were effectively downregulated by garcinol. Epileptogenic mice presented increased BDNF and TrkB with considerably decreased GABAA and GAD65 expression. Garcinol significantly enhanced GABAA and GAD65 while it suppressed BDNF and TrkB. Garcinol enhanced the performance of mice in Morris water maze tests. Conclusions Garcinol exerts neuroprotective effects via supressing apoptosis and modulating BDNF-TrkB signalling and GAD65/GABAA expressions and also enhanced cognition and memory of the mice. PMID:27855137

  5. A multilevel prediction of physiological response to challenge: Interactions among child maltreatment, neighborhood crime, endothelial nitric oxide synthase gene (eNOS), and GABA(A) receptor subunit alpha-6 gene (GABRA6).

    PubMed

    Lynch, Michael; Manly, Jody Todd; Cicchetti, Dante

    2015-11-01

    Physiological response to stress has been linked to a variety of healthy and pathological conditions. The current study conducted a multilevel examination of interactions among environmental toxins (i.e., neighborhood crime and child maltreatment) and specific genetic polymorphisms of the endothelial nitric oxide synthase gene (eNOS) and GABA(A) receptor subunit alpha-6 gene (GABRA6). One hundred eighty-six children were recruited at age 4. The presence or absence of child maltreatment as well as the amount of crime that occurred in their neighborhood during the previous year were determined at that time. At age 9, the children were brought to the lab, where their physiological response to a cognitive challenge (i.e., change in the amplitude of the respiratory sinus arrhythmia) was assessed and DNA samples were collected for subsequent genotyping. The results confirmed that complex Gene × Gene, Environment × Environment, and Gene × Environment interactions were associated with different patterns of respiratory sinus arrhythmia reactivity. The implications for future research and evidence-based intervention are discussed.

  6. Kappa Opioid Receptors Mediate Heterosynaptic Suppression of Hippocampal Inputs in the Rat Ventral Striatum

    PubMed Central

    2017-01-01

    Kappa opioid receptors (KORs) are highly enriched within the ventral striatum (VS) and are thought to modulate striatal neurotransmission. This includes presynaptic inhibition of local glutamatergic release from excitatory inputs to the VS. However, it is not known which inputs drive this modulation and what impact they have on the local circuit dynamics within the VS. Individual medium spiny neurons (MSNs) within the VS serve as a site of convergence for glutamatergic inputs arising from the PFC and limbic regions, such as the hippocampus (HP). Recent data suggest that competition can arise between these inputs with robust cortical activation leading to a reduction in ongoing HP-evoked MSN responses. Here, we investigated the contribution of KOR signaling in PFC-driven heterosynaptic suppression of HP inputs onto MSNs using whole-cell patch-clamp recordings in slices from adult rats. Optogenetically evoked HP EPSPs were greatly attenuated after a short latency (50 ms) following burst-like PFC electrical stimulation, and the magnitude of this suppression was partially reversed following blockade of GABAARs (GABA Type A receptors), but not GABABRs (GABA Type B receptors). A similar reduction in suppression was observed in the presence of the KOR antagonist, norBNI. Combined blockade of local GABAARs and KORs resulted in complete blockade of PFC-induced heterosynaptic suppression of less salient HP inputs. These findings highlight a mechanism by which strong, transient PFC activity can take precedence over other excitatory inputs to the VS. SIGNIFICANCE STATEMENT Emerging evidence suggests that kappa opioid receptor (KOR) activation can selectively modulate striatal glutamatergic inputs onto medium spiny neurons (MSNs). In this study, we found that robust cortical stimulation leads to a reduction in ongoing hippocampal-evoked MSNs responses through the combined recruitment of local inhibitory mechanisms and activation of presynaptic KORs in the ventral striatum (VS

  7. Permeability and single channel conductance of human homomeric ρ1 GABAC receptors

    PubMed Central

    Wotring, Virginia E; Chang, Yongchang; Weiss, David S

    1999-01-01

    Homomeric human ρ1 GABAC receptors were expressed in Xenopus oocytes and in human embryonic kidney cells (HEK293) in order to examine their conductance and permeability. Reversal potentials of currents elicited by γ-aminobutyric acid (GABA) were measured in extracellular solutions of various ionic composition to determine relative permeability of homomeric ρ1 receptors. The rank order of anionic permeability was: SCN− > I− > NO3− > Br− > Cl− > formate (For−) > HCO3− > acetate (Ac−) ≈ proprionate (Prop−) ≈ isethionate (Ise−) ≈ F−≈ PO4−. In the oocyte expression system, relative permeabilities to SCN−, I−, NO3−, Br− and HCO3− were higher for ρ1 GABAC receptors than α1β2γ2L GABAA receptors. Expression of ρ1 GABAC receptors in Xenopus oocytes and in HEK293 cells gave similar relative permeabilities for selected anions, suggesting that the expression system does not significantly alter permeation properties. The pore diameter of the homomeric ρ1 GABAC receptor expressed in oocytes was estimated to be 0.61 nm, which is somewhat larger than the 0.56 nm pore diameter estimated for α1β2γ2L GABAA receptors. Homomeric ρ1 GABA receptors expressed in oocytes had a single channel chord conductance of 0.65 ± 0.04 pS (mean ±s.e.m.s) when the internal chloride concentration ([Cl−]i) was 20 mm. With a [Cl−]i of 100 mm, the single channel chord conductance was 1.59 ± 0.24 pS. The mean open time directly measured from 43 GABA-induced channel openings in six patches was 3.2 ± 0.8 s. The mean open time in the presence of 100 μm picrotoxin was 0.07 ± 0.01 s (77 openings from 3 patches). The differences observed in ionic permeabilities, pore size, single channel conductance and mean open time suggest that the ρ1 homomeric receptor may not be the native retinal GABAC receptor reported previously. PMID:10581305

  8. GABRA2 Alcohol Dependence Risk Allele is Associated with Reduced Expression of Chromosome 4p12 GABAA Subunit Genes in Human Neural Cultures.

    PubMed

    Lieberman, Richard; Kranzler, Henry R; Joshi, Pujan; Shin, Dong-Guk; Covault, Jonathan

    2015-09-01

    Genetic variation in a region of chromosome 4p12 that includes the GABAA subunit gene GABRA2 has been reproducibly associated with alcohol dependence (AD). However, the molecular mechanisms underlying the association are unknown. This study examined correlates of in vitro gene expression of the AD-associated GABRA2 rs279858*C-allele in human neural cells using an induced pluripotent stem cell (iPSC) model system. We examined mRNA expression of chromosome 4p12 GABAA subunit genes (GABRG1, GABRA2, GABRA4, and GABRB1) in 36 human neural cell lines differentiated from iPSCs using quantitative polymerase chain reaction and next-generation RNA sequencing. mRNA expression in adult human brain was examined using the BrainCloud and BRAINEAC data sets. We found significantly lower levels of GABRA2 mRNA in neural cell cultures derived from rs279858*C-allele carriers. Levels of GABRA2 RNA were correlated with those of the other 3 chromosome 4p12 GABAA genes, but not other neural genes. Cluster analysis based on the relative RNA levels of the 4 chromosome 4p12 GABAA genes identified 2 distinct clusters of cell lines, a low-expression cluster associated with rs279858*C-allele carriers and a high-expression cluster enriched for the rs279858*T/T genotype. In contrast, there was no association of genotype with chromosome 4p12 GABAA gene expression in postmortem adult cortex in either the BrainCloud or BRAINEAC data sets. AD-associated variation in GABRA2 is associated with differential expression of the entire cluster of GABAA subunit genes on chromosome 4p12 in human iPSC-derived neural cell cultures. The absence of a parallel effect in postmortem human adult brain samples suggests that AD-associated genotype effects on GABAA expression, although not present in mature cortex, could have effects on regulation of the chromosome 4p12 GABAA cluster during neural development. Copyright © 2015 by the Research Society on Alcoholism.

  9. Building a bridge between neurobiology and mental illness.

    PubMed

    Costa, E

    1992-10-01

    GABA (gamma amino butyric acid) is the most abundant and important inhibitory transmitter in mammalian CNS. It counterbalances the glutamate mediated neuronal excitation. Abnormalities of the interaction of these two transmitters might change the mechanisms of neuronal group selection that according to Edelman [Neural Darwinism. Basic Books, New York] play a role in mediating several brain functions including cognition processes. Indeed imbalances in GABAergic functions were shown to elicit psychoses. They can be obtained by administration of drugs that affect synthesis, metabolism and uptake of GABA and thereby cause a persistent stimulation of GABAA receptors or perhaps by genetic abnormalities in DNA transcription, pre-mRNA splicing, mRNA translation and posttranslation modifications of GABAA receptor subunits. The complexities in the regulation of GABAA receptor subunit structure, synthesis, assembly and the brain location of specific mRNA encoding for these subunits are investigated with in situ mRNA hybridization specific for subunits of GABAA receptors. The role of the variability resulting from the complexities in the regulation of GABAA receptor allosteric modulation by drugs and putative endogenous allosteric modulators of GABA action at GABAA receptors is discussed. This discussion gives relevance to the possibility that genetic abnormalities in the expression of proteins participating in GABAergic function are to be considered as a possible target of the genetic defects operative in psychoses. In line with this thinking, it is suggested that partial allosteric modulators (partial agonists) of GABAA receptors and the phosphothioate or methylphosphonate analogs antisense to specific mRNA oligonucleotides that mediate the expression of genetic information concerning GABAA and glutamate receptor subunits may become valuable tools in psychiatric research. Perhaps in the future these studies might generate new ideas useful in the therapy of genetically

  10. Negative modulation of the GABAA ρ1 receptor function by l-cysteine.

    PubMed

    Beltrán González, Andrea N; Vicentini, Florencia; Calvo, Daniel J

    2018-01-01

    l-Cysteine is an endogenous sulfur-containing amino acid with multiple and varied roles in the central nervous system, including neuroprotection and the maintenance of the redox balance. However, it was also suggested as an excitotoxic agent implicated in the pathogenesis of neurological disorders such as Parkinson's and Alzheimer's disease. l-Cysteine can modulate the activity of ionic channels, including voltage-gated calcium channels and glutamatergic NMDA receptors, whereas its effects on GABAergic neurotransmission had not been studied before. In the present work, we analyzed the effects of l-cysteine on responses mediated by homomeric GABA A ρ1 receptors, which are known for mediating tonic γ-aminobutyric acid (GABA) responses in retinal neurons. GABA A ρ1 receptors were expressed in Xenopus laevis oocytes and GABA-evoked chloride currents recorded by two-electrode voltage-clamp in the presence or absence of l-cysteine. l-Cysteine antagonized GABA A ρ1 receptor-mediated responses; inhibition was dose-dependent, reversible, voltage independent, and susceptible to GABA concentration. Concentration-response curves for GABA were shifted to the right in the presence of l-cysteine without a substantial change in the maximal response. l-Cysteine inhibition was insensitive to chemical protection of the sulfhydryl groups of the ρ1 subunits by the irreversible alkylating agent N-ethyl maleimide. Our results suggest that redox modulation is not involved during l-cysteine actions and that l-cysteine might be acting as a competitive antagonist of the GABA A ρ1 receptors. © 2017 International Society for Neurochemistry.

  11. Zolpidem modulation of phasic and tonic GABA currents in the rat dorsal motor nucleus of the vagus

    PubMed Central

    Gao, Hong; Smith, Bret N.

    2010-01-01

    Zolpidem is a widely prescribed sleep aid with relative selectivity for GABAA receptors containing α1–3 subunits. We examined the effects of zolpidem on the inhibitory currents mediated by GABAA receptors using whole-cell patch-clamp recordings from DMV neurons in transverse brainstem slices from rat. Zolpidem prolonged the decay time of mIPSCs and of muscimol-evoked whole-cell GABAergic currents, and it occasionally enhanced the amplitude of mIPSCs. The effects were blocked by flumazenil, a benzodiazepine antagonist. Zolpidem also hyperpolarized the resting membrane potential, with a concomitant decrease in input resistance and action potential firing activity in a subset of cells. Zolpidem did not clearly alter the GABAA receptor-mediated tonic current (Itonic) under baseline conditions, but after elevating extracellular GABA concentration with nipecotic acid, a non-selective GABA transporter blocker, zolpidem consistently and significantly increased the tonic GABA current. This increase was suppressed by flumazenil and gabazine. These results suggest that α1–3 subunits are expressed in synaptic GABAA receptors on DMV neurons. The baseline tonic GABA current is likely not mediated by these same low affinity, zolpidem-sensitive GABAA receptors. However, when the extracellular GABA concentration is increased, zolpidem-sensitive extrasynaptic GABAA receptors containing α1–3 subunits contribute to the Itonic. PMID:20226798

  12. Avermectins differentially affect ethanol intake and receptor function: implications for developing new therapeutics for alcohol use disorders.

    PubMed

    Asatryan, Liana; Yardley, Megan M; Khoja, Sheraz; Trudell, James R; Hyunh, Nhat; Louie, Stan G; Petasis, Nicos A; Alkana, Ronald L; Davies, Daryl L

    2014-06-01

    Our laboratory is investigating ivermectin (IVM) and other members of the avermectin family as new pharmaco-therapeutics to prevent and/or treat alcohol use disorders (AUDs). Earlier work found that IVM significantly reduced ethanol intake in mice and that this effect likely reflects IVM's ability to modulate ligand-gated ion channels. We hypothesized that structural modifications that enhance IVM's effects on key receptors and/or increase its brain concentration should improve its anti-alcohol efficacy. We tested this hypothesis by comparing the abilities of IVM and two other avermectins, abamectin (ABM) and selamectin (SEL), to reduce ethanol intake in mice, to alter modulation of GABAARs and P2X4Rs expressed in Xenopus oocytes and to increase their ability to penetrate the brain. IVM and ABM significantly reduced ethanol intake and antagonized the inhibitory effects of ethanol on P2X4R function. In contrast, SEL did not affect either measure, despite achieving higher brain concentrations than IVM and ABM. All three potentiated GABAAR function. These findings suggest that chemical structure and effects on receptor function play key roles in the ability of avermectins to reduce ethanol intake and that these factors are more important than brain penetration alone. The direct relationship between the effect of these avermectins on P2X4R function and ethanol intake suggest that the ability to antagonize ethanol-mediated inhibition of P2X4R function may be a good predictor of the potential of an avermectin to reduce ethanol intake and support the use of avermectins as a platform for developing novel drugs to prevent and/or treat AUDs.

  13. Gi-Coupled γ-Aminobutyric Acid–B Receptors Cross-Regulate Phospholipase C and Calcium in Airway Smooth Muscle

    PubMed Central

    Mizuta, Kentaro; Mizuta, Fumiko; Xu, Dingbang; Masaki, Eiji; Panettieri, Reynold A.

    2011-01-01

    γ-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian central nervous system, and exerts its actions via both ionotropic (GABAA) and metabotropic (GABAB) receptors. Although the functional expression of GABAB receptors coupled to the Gi protein was reported for airway smooth muscle, the role of GABAB receptors in airway responsiveness remains unclear. We investigated whether Gi-coupled GABAB receptors cross-regulate phospholipase C (PLC), an enzyme classically regulated by Gq-coupled receptors in human airway smooth muscle cells. Both the GABAB-selective agonist baclofen and the endogenous ligand GABA significantly increased the synthesis of inositol phosphate, whereas GABAA receptor agonists, muscimol, and 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol exerted no effect. The baclofen-induced synthesis of inositol phosphate and transient increases in [Ca2+]i were blocked by CGP35348 and CGP55845 (selective GABAB antagonists), pertussis toxin (PTX, which inactivates the Gi protein), gallein (a Gβγ signaling inhibitor), U73122 (an inhibitor of PLC-β), and xestospongin C, an inositol 1,4,5-triphosphate receptor blocker. Baclofen also potentiated the bradykinin-induced synthesis of inositol phosphate and transient increases in [Ca2+]i, which were blocked by CGP35348 or PTX. Moreover, baclofen potentiated the substance P–induced contraction of airway smooth muscle in isolated guinea pig tracheal rings. In conclusion, the stimulation of GABAB receptors in human airway smooth muscle cells rapidly mobilizes intracellular Ca2+ stores by the synthesis of inositol phosphate via the activation of PLC-β, which is stimulated by Gβγ protein liberated from Gi proteins coupled to GABAB receptors. Furthermore, crosstalk between GABAB receptors and Gq-coupled receptors potentiates the synthesis of inositol phosphate, transient increases in [Ca2+]i, and smooth muscle contraction through Gi proteins. PMID:21719794

  14. Functional Validation of Virtual Screening for Novel Agents with General Anesthetic Action at Ligand-Gated Ion Channels

    PubMed Central

    Heusser, Stephanie A.; Howard, Rebecca J.; Borghese, Cecilia M.; Cullins, Madeline A.; Broemstrup, Torben; Lee, Ui S.; Lindahl, Erik; Carlsson, Jens

    2013-01-01

    GABAA receptors play a crucial role in the actions of general anesthetics. The recently published crystal structure of the general anesthetic propofol bound to Gloeobacter violaceus ligand-gated ion channel (GLIC), a bacterial homolog of GABAA receptors, provided an opportunity to explore structure-based ligand discovery for pentameric ligand-gated ion channels (pLGICs). We used molecular docking of 153,000 commercially available compounds to identify molecules that interact with the propofol binding site in GLIC. In total, 29 compounds were selected for functional testing on recombinant GLIC, and 16 of these compounds modulated GLIC function. Active compounds were also tested on recombinant GABAA receptors, and point mutations around the presumed binding pocket were introduced into GLIC and GABAA receptors to test for binding specificity. The potency of active compounds was only weakly correlated with properties such as lipophilicity or molecular weight. One compound was found to mimic the actions of propofol on GLIC and GABAA, and to be sensitive to mutations that reduce the action of propofol in both receptors. Mutant receptors also provided insight about the position of the binding sites and the relevance of the receptor’s conformation for anesthetic actions. Overall, the findings support the feasibility of the use of virtual screening to discover allosteric modulators of pLGICs, and suggest that GLIC is a valid model system to identify novel GABAA receptor ligands. PMID:23950219

  15. Driving Human Motor Cortical Oscillations Leads to Behaviorally Relevant Changes in Local GABAA Inhibition: A tACS-TMS Study

    PubMed Central

    van Ede, Freek

    2017-01-01

    Beta and gamma oscillations are the dominant oscillatory activity in the human motor cortex (M1). However, their physiological basis and precise functional significance remain poorly understood. Here, we used transcranial magnetic stimulation (TMS) to examine the physiological basis and behavioral relevance of driving beta and gamma oscillatory activity in the human M1 using transcranial alternating current stimulation (tACS). tACS was applied using a sham-controlled crossover design at individualized intensity for 20 min and TMS was performed at rest (before, during, and after tACS) and during movement preparation (before and after tACS). We demonstrated that driving gamma frequency oscillations using tACS led to a significant, duration-dependent decrease in local resting-state GABAA inhibition, as quantified by short interval intracortical inhibition. The magnitude of this effect was positively correlated with the magnitude of GABAA decrease during movement preparation, when gamma activity in motor circuitry is known to increase. In addition, gamma tACS-induced change in GABAA inhibition was closely related to performance in a motor learning task such that subjects who demonstrated a greater increase in GABAA inhibition also showed faster short-term learning. The findings presented here contribute to our understanding of the neurophysiological basis of motor rhythms and suggest that tACS may have similar physiological effects to endogenously driven local oscillatory activity. Moreover, the ability to modulate local interneuronal circuits by tACS in a behaviorally relevant manner provides a basis for tACS as a putative therapeutic intervention. SIGNIFICANCE STATEMENT Gamma oscillations have a vital role in motor control. Using a combined tACS-TMS approach, we demonstrate that driving gamma frequency oscillations modulates GABAA inhibition in the human motor cortex. Moreover, there is a clear relationship between the change in magnitude of GABAA inhibition induced

  16. Selectivity of antagonists for the Cys-loop native receptors for ACh, 5-HT and GABA in guinea-pig myenteric neurons.

    PubMed

    Juárez, E H; Ochoa-Cortés, F; Miranda-Morales, M; Espinosa-Luna, R; Montaño, L M; Barajas-López, C

    2014-01-01

    The three most common Cys-loop receptors expressed by myenteric neurons are nACh, 5-HT3 and GABAA . To investigate the function of these proteins researchers have used channel inhibitors such as hexamethonium (antagonist of nACh receptors), ondansetron (antagonist of 5-HT3 receptors), picrotoxin and bicuculline (both antagonists of GABAA receptors). The aim of this study was to investigate the specificity of these inhibitors on Cys-loop receptors of primary cultured neurons obtained from the guinea-pig small intestine. The whole-cell configuration of the patch clamp techniques was used to record membrane currents induced by ACh (IACh ), 5-HT (I5-HT ) and GABA (IGABA ) in the absence and the presence of various concentrations of hexamethonium, ondansetron, picrotoxin or bicuculline. The three Cys-loop receptors present in enteric neurons are expressed independently and they do not cross-desensitized. Hexamethonium inhibited IACh without affecting I5-HT and IGABA . Ondansetron inhibited I5-HT and also IACh but did not affect IGABA . Picrotoxin and bicuculline inhibited I5-HT , IACh and IGABA with different potency, being the lowest potency on 5-HT3 receptors. All these inhibitory effects were concentration dependent and reversible. Our observations showed that except for hexamethonium, all other inhibitors used here show different degrees of selectivity, which has to be considered when these antagonists are used in experimental studies aimed to investigate the functions of these receptors. In particular, in tissues expressing nACh receptors because these are the targets of all other inhibitors used here. The low potency of picrotoxin and bicuculline to inhibit 5-HT3 receptors suggests that these receptors are heteromeric proteins. © 2013 John Wiley & Sons Ltd.

  17. Muscimol increases acetylcholine release by directly stimulating adult striatal cholinergic interneurons.

    PubMed

    Login, I S; Pal, S N; Adams, D T; Gold, P E

    1998-01-01

    Because GabaA ligands increase acetylcholine (ACh) release from adult striatal slices, we hypothesized that activation of GabaA receptors on striatal cholinergic interneurons directly stimulates ACh secretion. Fractional [3H]ACh release was recorded during perifusion of acutely dissociated, [3H]choline-labeled, adult male rat striata. The GabaA agonist, muscimol, immediately stimulated release maximally approximately 300% with EC50 = approximately 1 microM. This action was enhanced by the allosteric GabaA receptor modulators, diazepam and secobarbital, and inhibited by the GabaA antagonist, bicuculline, by ligands for D2 or muscarinic cholinergic receptors or by low calcium buffer, tetrodotoxin or vesamicol. Membrane depolarization inversely regulated muscimol-stimulated secretion. Release of endogenous and newly synthesized ACh was stimulated in parallel by muscimol without changing choline release. Muscimol pretreatment inhibited release evoked by K+ depolarization or by receptor-mediated stimulation with glutamate. Thus, GabaA receptors on adult striatal cholinergic interneurons directly stimulate voltage- and calcium-dependent exocytosis of ACh stored in vesamicol-sensitive synaptic vesicles. The action depends on the state of membrane polarization and apparently depolarizes the membrane in turn. This functional assay demonstrates that excitatory GabaA actions are not limited to neonatal tissues. GabaA-stimulated ACh release may be prevented in situ by normal tonic dopaminergic and muscarinic input to cholinergic neurons.

  18. The vigilance promoting drug modafinil increases extracellular glutamate levels in the medial preoptic area and the posterior hypothalamus of the conscious rat: prevention by local GABAA receptor blockade.

    PubMed

    Ferraro, L; Antonelli, T; Tanganelli, S; O'Connor, W T; Perez de la Mora, M; Mendez-Franco, J; Rambert, F A; Fuxe, K

    1999-04-01

    The effects of modafinil on glutamatergic and GABAergic transmission in the rat medial preoptic area (MPA) and posterior hypothalamus (PH), are analysed. Modafinil (30-300 mg/kg) increased glutamate and decreased GABA levels in the MPA and PH. Local perfusion with the GABAA agonist muscimol (10 microM), reduced, while the GABAA antagonist bicuculline (1 microM and 10 microM) increased glutamate levels. The modafinil (100 mg/kg)-induced increase of glutamate levels was antagonized by local perfusion with bicuculline (1 microM). When glutamate levels were increased by the local perfusion with the glutamate uptake inhibitor L-trans-PDC (0.5 mM), modafinil produced an additional enhancement of glutamate levels. Modafinil (1-33 microM) failed to affect [3H]glutamate uptake in hypothalamic synaptosomes and slices. These findings show that modafinil increases glutamate and decreases GABA levels in MPA and PH. The evidence that bicuculline counteracts the modafinil-induced increase of glutamate levels strengthens the evidence for an inhibitory GABA/glutamate interaction in the above regions controlling the sleep-wakefulness cycle.

  19. GABAa excitation and synaptogenesis after Status Epilepticus - A computational study.

    PubMed

    França, Keite Lira de Almeida; de Almeida, Antônio-Carlos Guimarães; Saddow, Stephen E; Santos, Luiz Eduardo Canton; Scorza, Carla Alessandra; Scorza, Fulvio Alexandre; Rodrigues, Antônio Márcio

    2018-03-08

    The role of GABAergic neurotransmission on epileptogenesis has been the subject of speculation according to different approaches. However, it is a very complex task to specifically consider the action of the GABAa neurotransmitter, which, in its dependence on the intracellular level of Cl - , can change its effect from inhibitory to excitatory. We have developed a computational model that represents the dentate gyrus and is composed of three different populations of neurons (granule cells, interneurons and mossy cells) that are mutually interconnected. The interconnections of the neurons were based on compensation theory with Hebbian and anti-Hebbian rules. The model also incorporates non-synaptic mechanisms to control the ionic homeostasis and was able to reproduce ictal discharges. The goal of the work was to investigate the hypothesis that the observed aberrant sprouting is promoted by GABAa excitatory action. Conjointly with the abnormal sprouting of the mossy fibres, the simulations show a reduction of the mossy cells connections in the network and an increased inhibition of the interneurons as a response of the neuronal network to control the activity. This finding contributes to increasing the changes in the connectivity of the neuronal circuitry and to increasing the epileptiform activity occurrences.

  20. Anesthetic sites and allosteric mechanisms of action on Cys-loop ligand-gated ion channels.

    PubMed

    Forman, Stuart A; Miller, Keith W

    2011-02-01

    The Cys-loop ligand-gated ion channel superfamily is a major group of neurotransmitter-activated receptors in the central and peripheral nervous system. The superfamily includes inhibitory receptors stimulated by γ-aminobutyric acid (GABA) and glycine and excitatory receptors stimulated by acetylcholine and serotonin. The first part of this review presents current evidence on the location of the anesthetic binding sites on these channels and the mechanism by which binding to these sites alters their function. The second part of the review addresses the basis for this selectivity, and the third part describes the predictive power of a quantitative allosteric model showing the actions of etomidate on γ-aminobutyric acid type A receptors (GABA(A)Rs). General anesthetics at clinical concentrations inhibit the excitatory receptors and enhance the inhibitory receptors. The location of general anesthetic binding sites on these receptors is being defined by photoactivable analogues of general anesthetics. The receptor studied most extensively is the muscle-type nicotinic acetylcholine receptor (nAChR), and progress is now being made with GABA(A)Rs. There are three categories of sites that are all in the transmembrane domain: 1) within a single subunit's four-helix bundle (intrasubunit site; halothane and etomidate on the δ subunit of AChRs); 2) between five subunits in the transmembrane conduction pore (channel lumen sites; etomidate and alcohols on nAChR); and 3) between two subunits (subunit interface sites; etomidate between the α1 and β2/3 subunits of the GABA(A)R). These binding sites function allosterically. Certain conformations of a receptor bind the anesthetic with greater affinity than others. Time-resolved photolabelling of some sites occurs within milliseconds of channel opening on the nAChR but not before. In GABA(A)Rs, electrophysiological data fit an allosteric model in which etomidate binds to and stabilizes the open state, increasing both the fraction

  1. Midazolam inhibits hippocampal long-term potentiation and learning through dual central and peripheral benzodiazepine receptor activation and neurosteroidogenesis

    PubMed Central

    Tokuda, Kazuhiro; O’Dell, Kazuko A.; Izumi, Yukitoshi; Zorumski, Charles F.

    2010-01-01

    Benzodiazepines (BDZs) enhance γ-aminobutyric acid-A (GABAA) receptor inhibition by direct actions on central BDZ receptors (CBRs). Although some BDZs also bind mitochondrial receptors (translocator protein 18kDa, TSPO) and promote the synthesis of GABA-enhancing neurosteroids, the role of neurosteroids in the clinical effects of BDZs is unknown. In rat hippocampal slices, we compared midazolam, an anesthetic BDZ with clonazepam, an anticonvulsant/anxiolytic BDZ that activates CBRs selectively. Midazolam, but not clonazepam, increased neurosteroid levels in CA1 pyramidal neurons without changing TSPO immunostaining. Midazolam, but not clonazepam, also augmented a form of spike inhibition following stimulation adjacent to the pyramidal cell layer and inhibited induction of long-term potentiation. These effects were prevented by finasteride, an inhibitor of neurosteroid synthesis, or 17PA (17-phenyl-(3α, 5α)-androst-16-en-3-ol), a blocker of neurosteroid effects on GABAA receptors. Moreover, the synaptic effects were mimicked by a combination of clonazepam with FGIN, a selective TSPO agonist, or a combination of clonazepam with exogenous allopregnanolone. Consistent with these in vitro results, finasteride abolished the effects of midazolam on contextual fear learning when administrated one day prior to midazolam injection. Thus, dual activation of CBRs and TSPO appears to result in unique actions of clinically-important BDZs. Furthermore, endogenous neurosteroids are shown to be important regulators of pyramidal neuron function and synaptic plasticity. PMID:21159950

  2. Identification of an Inhibitory Alcohol Binding Site in GABAA ρ1 Receptors

    PubMed Central

    Borghese, Cecilia M.; Ruiz, Carlos I.; Lee, Ui S.; Cullins, Madeline A.; Bertaccini, Edward J.; Trudell, James R.; Harris, R. Adron

    2016-01-01

    Alcohols inhibit γ-aminobutyric acid type A ρ1 receptor function. After introducing mutations in several positions of the second transmembrane helix in ρ1, we studied the effects of ethanol and hexanol on GABA responses using two-electrode voltage clamp electrophysiology in Xenopus laevis oocytes. The 6′ mutations produced the following effects on ethanol and hexanol responses: small increase or no change (T6′M), increased inhibition (T6′V) and small potentiation (T6′Y and T6′F). The 5′ mutations produced mainly increases in hexanol inhibition. Other mutations produced small (3′ and 9′) or no changes (2′ and L277 in the first transmembrane domain) in alcohol effects. These results suggest an inhibitory alcohol binding site near the 6′ position. Homology models of ρ1 receptors based on the X-ray structure of GluCl showed that the 2′, 5′, 6’ and 9′ residues were easily accessible from the ion pore, with 5′ and 6′ residues from neighboring subunits facing each other; L3′ and L277 also faced the neighboring subunit. We tested ethanol through octanol on single and double mutated ρ1 receptors [ρ1(I15′S), ρ1(T6′Y) and ρ1(T6′Y,I15′S)] to further characterize the inhibitory alcohol pocket in the wild-type ρ1 receptor. The pocket can only bind relatively short-chain alcohols and is eliminated by introducing Y in the 6’ position. Replacing the bulky 15′ residue with a smaller side chain introduced a potentiating binding site, more sensitive to long-chain than to short-chain alcohols. In conclusion, the net alcohol effect on the ρ1 receptor is determined by the sum of its actions on inhibitory and potentiating sites. PMID:26571107

  3. Effect of “Jian-Pi-Zhi-Dong Decoction” on Gamma-Aminobutyric Acid in a Mouse Model of Tourette Syndrome

    PubMed Central

    Zhang, Wen; Yu, Wenjing; Wei, Li; Lee, Minkyoung; Wang, Sumei

    2014-01-01

    The purpose of this study was to explore the positive effects of Jian-Pi-Zhi-Dong Decoction (JPZDD) on Tourette syndrome (TS) by investigating the expression of gamma-aminobutyric acid (GABA) and its type A receptor (GABAAR) in the striatum of a TS mice model. The model was induced by 3,3′-iminodipropionitrile (IDPN) treatment; then mice were divided into 4 groups (n=22, each); control and IDPN groups were gavaged with saline and the remaining 2 groups were gavaged with tiapride and JPZDD. We recorded the stereotypic behaviors of TS mice and measured the content of GABA in striatum by HPLC and GABAAR expression by immunohistochemistry and real-time PCR. Our results showed that JPZDD inhibited the abnormal behaviors of TS model mice and decreased GABA levels and GABAAR protein and mRNA expression in the striatum of TS model mice. In brief, the mechanism by which JPZDD alleviates TS symptoms may be associated with GABAAR expression downregulation in striatum which may regulate GABA metabolism. PMID:24812567

  4. Does Aging Alter the Molecular Substrate of Ionotropic Neurotransmitter Receptors in the Rostral Ventral Lateral Medulla? - A Short Communication

    PubMed Central

    Pawar, Hitesh N.; Balivada, Sivasai; Kenney, Michael J.

    2017-01-01

    Aging alters sympathetic nervous system (SNS) regulation, although central mechanisms are not well understood. In young rats the rostral ventral lateral medulla (RVLM) is critically involved in central SNS regulation and RVLM neuronal activity is mediated by a balance of excitatory and inhibitory ionotropic neurotransmitters and receptors, providing the foundation for hypothesizing that with advanced age the molecular substrate of RVLM ionotropic receptors is characterized by upregulated excitatory and downregulated inhibitory receptor subunits. This hypothesis was tested by comparing the relative mRNA expression and protein concentration of RVLM excitatory (NMDA and AMPA) and inhibitory (GABA and glycinergic) ionotropic neurotransmitter receptor subunits in young and aged Fischer (F344) rats. Brains were removed from anesthetized rats and the RVLM-containing area was micropunched and extracted RNA and protein were subsequently used for TaqMan qRT-PCR gene expression and quantitative ELISA analyses. Bilateral chemical inactivation of RVLM neurons and peripheral ganglionic blockade on visceral sympathetic nerve discharge (SND) was determined in additional experiments. The relative gene expression of RVLM NMDA and AMPA glutamate-gated receptor subunits and protein concentration of select receptor subunits did not differ between young and aged rats, and there were no age-related differences in the expression of RVLM ionotropic GABAA and Gly receptors, or of protein concentration of select GABAA subunits. RVLM muscimol microinjections significantly reduced visceral SND by 70±2% in aged F344 rats. Collectively these findings from this short communication support a functional role for the RVLM in regulation of sympathetic nerve outflow in aged rats, but provide no evidence for an ionotropic RVLM receptor-centric framework explaining age-associated changes in SNS regulation. PMID:28263869

  5. Systematic study of association of four GABAergic genes: glutamic acid decarboxylase 1 gene, glutamic acid decarboxylase 2 gene, GABA(B) receptor 1 gene and GABA(A) receptor subunit beta2 gene, with schizophrenia using a universal DNA microarray.

    PubMed

    Zhao, Xu; Qin, Shengying; Shi, Yongyong; Zhang, Aiping; Zhang, Jing; Bian, Li; Wan, Chunling; Feng, Guoyin; Gu, Niufan; Zhang, Guangqi; He, Guang; He, Lin

    2007-07-01

    Several studies have suggested the dysfunction of the GABAergic system as a risk factor in the pathogenesis of schizophrenia. In the present study, case-control association analysis was conducted in four GABAergic genes: two glutamic acid decarboxylase genes (GAD1 and GAD2), a GABA(A) receptor subunit beta2 gene (GABRB2) and a GABA(B) receptor 1 gene (GABBR1). Using a universal DNA microarray procedure we genotyped a total of 20 SNPs on the above four genes in a study involving 292 patients and 286 controls of Chinese descent. Statistically significant differences were observed in the allelic frequencies of the rs187269C/T polymorphism in the GABRB2 gene (P=0.0450, chi(2)=12.40, OR=1.65) and the -292A/C polymorphism in the GAD1 gene (P=0.0450, chi(2)=14.64 OR=1.77). In addition, using an electrophoretic mobility shift assay (EMSA), we discovered differences in the U251 nuclear protein binding to oligonucleotides representing the -292 SNP on the GAD1 gene, which suggests that the -292C allele has reduced transcription factor binding efficiency compared with the 292A allele. Using the multifactor-dimensionality reduction method (MDR), we found that the interactions among the rs187269C/T polymorphism in the GABRB2 gene, the -243A/G polymorphism in the GAD2 gene and the 27379C/T and 661C/T polymorphisms in the GAD1 gene revealed a significant association with schizophrenia (P<0.001). These findings suggest that the GABRB2 and GAD1 genes alone and the combined effects of the polymorphisms in the four GABAergic system genes may confer susceptibility to the development of schizophrenia in the Chinese population.

  6. How theories evolved concerning the mechanism of action of barbiturates.

    PubMed

    Löscher, Wolfgang; Rogawski, Michael A

    2012-12-01

    The barbiturate phenobarbital has been in use in the treatment of epilepsy for 100 years. It has long been recognized that barbiturates act by prolonging and potentiating the action of γ-aminobutyric acid (GABA) on GABA(A) receptors and at higher concentrations directly activating the receptors. A large body of data supports the concept that GABA(A) receptors are the primary central nervous system target for barbiturates, including the finding that transgenic mice with a point mutation in the β3 GABA(A) -receptor subunit exhibit diminished sensitivity to the sedative and immobilizing actions of the anesthetic barbiturate pentobarbital. Although phenobarbital is only modestly less potent as a GABA(A) -receptor modulator than pentobarbital, phenobarbital is minimally sedating at effective anticonvulsant doses. Possible explanations for the reduced sedative effect of phenobarbital include more regionally restricted action; partial agonist activity; reduced propensity to directly activate GABA(A) receptors (possibly including extrasynaptic receptors containing δ subunits); and reduced activity at other ion channel targets, including voltage-gated calcium channels. In recent years, substantial progress has been made in defining the structural features of GABA(A) receptors responsible for gating and allosteric modulation by drugs. Although the precise sites of action of barbiturates have not yet been defined, the second and third transmembrane domains of the β subunit appear to be critical; binding may involve a pocket formed by β-subunit methionine 286 as well as α-subunit methionine 236. In addition to effects on GABA(A) receptors, barbiturates block AMPA/kainate receptors, and they inhibit glutamate release through an effect on P/Q-type high-voltage activated calcium channels. The combination of these various actions likely accounts for their diverse clinical activities. Despite the remarkable progress of the last century, there is still much to learn about the

  7. Behavioral deficit and decreased GABA receptor functional regulation in the hippocampus of epileptic rats: effect of Bacopa monnieri.

    PubMed

    Mathew, Jobin; Gangadharan, Gireesh; Kuruvilla, Korah P; Paulose, C S

    2011-01-01

    In the present study, alterations of the General GABA and GABA(A) receptors in the hippocampus of pilocarpine-induced temporal lobe epileptic rats and the therapeutic application of Bacopa monnieri and its active component Bacoside-A were investigated. Bacopa monnieri (Linn.) is a herbaceous plant belonging to the family Scrophulariaceae. Hippocampus is the major region of the brain belonging to the limbic system and plays an important role in epileptogenesis, memory and learning. Scatchard analysis of [³H]GABA and [³H]bicuculline in the hippocampus of the epileptic rat showed significant decrease in B(max) (P < 0.001) compared to control. Real Time PCR amplification of GABA(A) receptor sub-units such as GABA(Aά₁), GABA(Aά₅) GABA(Aδ), and GAD were down regulated (P < 0.001) in the hippocampus of the epileptic rats compared to control. GABA(Aγ) subunit was up regulated. Epileptic rats have deficit in the radial arm and Y maze performance. Bacopa monnieri and Bacoside-A treatment reverses all these changes near to control. Our results suggest that decreased GABA receptors in the hippocampus have an important role in epilepsy associated behavioral deficit, Bacopa monnieri and Bacoside-A have clinical significance in the management of epilepsy.

  8. A Cysteine Substitution Probes β3H267 Interactions with Propofol and Other Potent Anesthetics in α1β3γ2L Gamma-Aminobutyric Acid Type A Receptors

    PubMed Central

    Stern, Alex T.; Forman, Stuart A.

    2015-01-01

    Background Anesthetic contact residues in γ-aminobutyric acid type A (GABAA) receptors have been identified using photolabels, including two propofol derivatives. O-propofol-diazirine labels H267 in β3 and α1β3 receptors, while m-azi-propofol labels other residues in intersubunit clefts of α1β3. Neither label has been studied in αβγ receptors, the most common isoform in mammalian brain. In αβγ receptors, other anesthetic derivatives photolabel m-azi-propofol labeled residues, but not βH267. Our structural homology model of α1β3γ2L receptors suggests that β3H267 may abut some of these sites. Methods Substituted cysteine modification-protection was used to test β3H267C interactions with four potent anesthetics: propofol, etomidate, alphaxalone, and R-5-allyl-1-methyl-5-(m-trifluoromethyl-diazirinylphenyl) barbituric acid (mTFD-MPAB). We expressed α1β3γ2L or α1β3H267Cγ2L GABAA receptors in Xenopus oocytes. We used voltage clamp electrophysiology to assess receptor sensitivity to GABA and anesthetics, and to compare para-chloromercuribenzenesulfonate (pCMBS) modification rates with GABA versus GABA plus anesthetics. Results Enhancement of GABA EC5 responses by equi-hypnotic concentrations of all four anesthetics was similar in α1β3γ2L and α1β3H267Cγ2L receptors (n ≥ 3). Direct activation of α1β3H267Cγ2L receptors, but not α1β3γ2L, by mTFD-MPAB and propofol was significantly greater than the other anesthetics. Modification of β3H267C by pCMBS (n ≥ 4) was rapid and accelerated by GABA. Only mTFD-MPAB slowed β3H267C modification (~2-fold; p = 0.011). Conclusions β3H267 in α1β3γ2L GABAA receptors contacts mTFD-MPAB, but not propofol. Our results suggest that β3H267 is near the periphery of one or both transmembrane inter-subunit (α+/β− and γ+/β−) pockets where both mTFD-MPAB and propofol bind. PMID:26569173

  9. Effects of electroacupuncture on the levels of retinal gamma-aminobutyric acid and its receptors in a guinea pig model of lens-induced myopia.

    PubMed

    Sha, F; Ye, X; Zhao, W; Xu, C-L; Wang, L; Ding, M-H; Bi, A-L; Wu, J-F; Jiang, W-J; Guo, D-D; Guo, J-G; Bi, H-S

    2015-02-26

    Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter of the retina and affects myopic development. Electroacupuncture (EA) is widely utilized to treat myopia in clinical settings. However, there are few reports on whether EA affects the level of retinal GABA during myopic development. To study this issue, in the present study, we explored the changes of retinal GABA content and the expression of its receptor subtypes, and the effects of EA stimulation on them in a guinea pig model with lens-induced myopia (LIM). Our results showed that the content of GABA and the expression of GABAA and GABAC receptors of retina were up-regulated during the development of myopia, and this up-regulation was inhibited by applying EA to Hegu (LI4) and Taiyang (EX-HN5) acupoints. Moreover, these effects of EA show a positional specificity. While applying EA at a sham acupoint, no apparent change of myopic retinal GABA and its receptor subtypes was observed. Taken together, our findings suggest that LIM is effective to up-regulate the level of retinal GABA, GABAA and GABAC receptors in guinea pigs and the effect may be inhibited by EA stimulation at LI4 and EX-HN5 acupoints. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Pharmacodynamic and pharmacokinetic effects of MK-0343, a GABA(A) alpha2,3 subtype selective agonist, compared to lorazepam and placebo in healthy male volunteers.

    PubMed

    de Haas, S L; de Visser, S J; van der Post, J P; Schoemaker, R C; van Dyck, K; Murphy, M G; de Smet, M; Vessey, L K; Ramakrishnan, R; Xue, L; Cohen, A F; van Gerven, J M A

    2008-01-01

    The use of non-selective gamma-aminobutyric acid (GABA) enhancers, such as benzodiazepines in the treatment of anxiety disorders is still widespread but hampered by unfavourable side effects. some of these may be associated with binding properties to certain subtypes of the GABA(A) receptor that are unnecessary for therapeutic effects. MK-0343 was designed to be a less sedating anxiolytic, based on reduced efficacy at the alpha1 subtype and significant efficacy at alpha2 and alpha3 subtypes of the GABA(A) receptor. This paper is a double-blind, four-way cross-over (n = 12) study to investigate the effects of MK-0343 (0.25 and 0.75 mg) in comparison to placebo and an anxiolytic dose (2 mg) of the non-selective agonist lorazepam. Effects were measured by eye movements, body sway, Visual Analogue scales (VAS) and memory tests. Lorazepam impaired saccadic peak velocity (SPV), VAs alertness scores, postural stability and memory and increased saccadic latency and inaccuracy. MK-0343 0.75 mg was equipotent with lorazepam as indicated by SPV (-42.4 deg/s), saccadic latency (0.02 s) and VAS alertness scores (1.50 ln mm), while effects on memory and postural stability were smaller. MK-0343 0.25 mg only affected postural stability to a similar extent as MK-0343 0.75 mg. The effect profile of MK-0343 0.75 mg is different from the full agonist lorazepam, which could reflect the selective actions of this compound. Although less effect on VAS alertness was expected, diminished effects on memory and postural stability were present. Clinical studies in anxiety patients should show whether this dose of MK-0343 is therapeutically effective with a different side-effect profile.

  11. Role of brain allopregnanolone in the plasticity of γ-aminobutyric acid type A receptor in rat brain during pregnancy and after delivery

    PubMed Central

    Concas, A.; Mostallino, M. C.; Porcu, P.; Follesa, P.; Barbaccia, M. L.; Trabucchi, M.; Purdy, R. H.; Grisenti, P.; Biggio, G.

    1998-01-01

    The relation between changes in brain and plasma concentrations of neurosteroids and the function and structure of γ-aminobutyric acid type A (GABAA) receptors in the brain during pregnancy and after delivery was investigated in rats. In contrast with plasma, where all steroids increased in parallel, the kinetics of changes in the cerebrocortical concentrations of progesterone, allopregnanolone (AP), and allotetrahydrodeoxycorticosterone (THDOC) diverged during pregnancy. Progesterone was already maximally increased between days 10 and 15, whereas AP and allotetrahydrodeoxycorticosterone peaked around day 19. The stimulatory effect of muscimol on 36Cl− uptake by cerebrocortical membrane vesicles was decreased on days 15 and 19 of pregnancy and increased 2 days after delivery. Moreover, the expression in cerebral cortex and hippocampus of the mRNA encoding for γ2L GABAA receptor subunit decreased during pregnancy and had returned to control values 2 days after delivery. Also α1,α2, α3, α4, β1, β2, β3, and γ2S mRNAs were measured and failed to change during pregnancy. Subchronic administration of finasteride, a 5α-reductase inhibitor, to pregnant rats reduced the concentrations of AP more in brain than in plasma as well as prevented the decreases in both the stimulatory effect of muscimol on 36Cl− uptake and the decrease of γ2L mRNA observed during pregnancy. These results indicate that the plasticity of GABAA receptors during pregnancy and after delivery is functionally related to fluctuations in endogenous brain concentrations of AP whose rate of synthesis/metabolism appears to differ in the brain, compared with plasma, in pregnant rats. PMID:9789080

  12. Cyclodextrins sequester neuroactive steroids and differentiate mechanisms that rate limit steroid actions

    PubMed Central

    Shu, H-J; Zeng, C-M; Wang, C; Covey, D F; Zorumski, C F; Mennerick, S

    2006-01-01

    Background and purpose: Neuroactive steroids are potent modulators of GABAA receptors and are thus of interest for their sedative, anxiolytic, anticonvulsant and anaesthetic properties. Cyclodextrins may be useful tools to manipulate neuroactive effects of steroids on GABAA receptors because cyclodextrins form inclusion complexes with at least some steroids that are active at the GABAA receptor, such as (3α,5α)-3-hydroxypregnan-20-one (3α5αP, allopregnanolone). Experimental approach: To assess the versatility of cyclodextrins as steroid modulators, we investigated interactions between γ-cyclodextrin and neuroactive steroids of different structural classes. Key results: Both a bioassay based on electrophysiological assessment of GABAA receptor function and optical measurements of cellular accumulation of a fluorescent steroid analogue suggest that γ-cyclodextrin sequesters steroids rather than directly influencing GABAA receptor function. Neither a 5β-reduced A/B ring fusion nor a sulphate group at carbon 3 affected the presumed inclusion complex formation between steroid and γ-cyclodextrin. Apparent dissociation constants for interactions between natural steroids and γ-cyclodexrin ranged from 10-60 μM. Although γ-cyclodextrin accommodates a range of natural and synthetic steroids, C11 substitutions reduced inclusion complex formation. Using γ-cyclodextrin to remove steroid not directly bound to GABAA receptors, we found that cellular retention of receptor-unbound steroid rate limits potentiation by 3α- hydroxysteroids but not inhibition by sulphated steroids. Conclusions and implications: We conclude that γ-cyclodextrins can be useful, albeit non-specific, tools for terminating the actions of multiple classes of naturally occurring neuroactive steroids. PMID:17160009

  13. Gi-coupled γ-aminobutyric acid-B receptors cross-regulate phospholipase C and calcium in airway smooth muscle.

    PubMed

    Mizuta, Kentaro; Mizuta, Fumiko; Xu, Dingbang; Masaki, Eiji; Panettieri, Reynold A; Emala, Charles W

    2011-12-01

    γ-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian central nervous system, and exerts its actions via both ionotropic (GABA(A)) and metabotropic (GABA(B)) receptors. Although the functional expression of GABA(B) receptors coupled to the G(i) protein was reported for airway smooth muscle, the role of GABA(B) receptors in airway responsiveness remains unclear. We investigated whether G(i)-coupled GABA(B) receptors cross-regulate phospholipase C (PLC), an enzyme classically regulated by G(q)-coupled receptors in human airway smooth muscle cells. Both the GABA(B)-selective agonist baclofen and the endogenous ligand GABA significantly increased the synthesis of inositol phosphate, whereas GABA(A) receptor agonists, muscimol, and 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol exerted no effect. The baclofen-induced synthesis of inositol phosphate and transient increases in [Ca(2+)](i) were blocked by CGP35348 and CGP55845 (selective GABA(B) antagonists), pertussis toxin (PTX, which inactivates the G(i) protein), gallein (a G(βγ) signaling inhibitor), U73122 (an inhibitor of PLC-β), and xestospongin C, an inositol 1,4,5-triphosphate receptor blocker. Baclofen also potentiated the bradykinin-induced synthesis of inositol phosphate and transient increases in [Ca(2+)](i), which were blocked by CGP35348 or PTX. Moreover, baclofen potentiated the substance P-induced contraction of airway smooth muscle in isolated guinea pig tracheal rings. In conclusion, the stimulation of GABA(B) receptors in human airway smooth muscle cells rapidly mobilizes intracellular Ca(2+) stores by the synthesis of inositol phosphate via the activation of PLC-β, which is stimulated by G(βγ) protein liberated from G(i) proteins coupled to GABA(B) receptors. Furthermore, crosstalk between GABA(B) receptors and G(q)-coupled receptors potentiates the synthesis of inositol phosphate, transient increases in [Ca(2+)](i), and smooth muscle contraction through G

  14. Decreased GABA receptor in the striatum and spatial recognition memory deficit in epileptic rats: effect of Bacopa monnieri and bacoside-A.

    PubMed

    Mathew, Jobin; Soman, Smijin; Sadanandan, Jayanarayanan; Paulose, Cheramadathikudyil Skaria

    2010-07-20

    Gamma-aminobutyric acid A receptors are the principal mediators of synaptic inhibition in striatal neurons and play an important role in preventing the spreading of seizures through the striatum. In the present study, effect of Bacopa monnieri (L.) Pennel and its active component bacoside-A on spatial recognition memory deficit and alterations of GABA receptor in the striatum of epileptic rats were investigated. Total GABA and GABA(A) receptor numbers in the control and epileptic rats were evaluated using [(3)H]GABA and [(3)H]bicuculline binding. GABA(Aalpha1,) GABA(Aalpha5,) GABA(Agamma3) and GABA(Adelta) gene expressions were studied. Behavioral performance was assed using Y-maze. Scatchard analysis of [(3)H]GABA and [(3)H]bicuculline in the striatum of epileptic rats showed significant decrease in B(max) compared to control. Real-Time PCR amplification of GABA(A) receptor subunits such as GABA(Aalpha1,) GABA(Aalpha5) and GABA(Adelta), were down regulated (p<0.001) in the striatum of epileptic rats compared to control. Epileptic rats have deficit in Y-maze performance. Bacopa monnieri and bacoside-A treatment reversed these changes to near control. Our results suggest that decreased GABA receptors in the striatum have an important role in epilepsy associated motor learning deficits and Bacopa monnieri and bacoside-A has a beneficial effect in the management of epilepsy. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  15. Neuroactive Steroids: Receptor Interactions and Responses

    PubMed Central

    Tuem, Kald Beshir; Atey, Tesfay Mehari

    2017-01-01

    Neuroactive steroids (NASs) are naturally occurring steroids, which are synthesized centrally as de novo from cholesterol and are classified as pregnane, androstane, and sulfated neurosteroids (NSs). NASs modulate many processes via interacting with gamma-aminobutyric acid (GABA), N-methyl-d-aspartate, serotonin, voltage-gated calcium channels, voltage-dependent anion channels, α-adrenoreceptors, X-receptors of the liver, transient receptor potential channels, microtubule-associated protein 2, neurotrophin nerve growth factor, and σ1 receptors. Among these, NSs (especially allopregnanolone) have high potency and extensive GABA-A receptors and hence demonstrate anticonvulsant, anesthetic, central cytoprotectant, and baroreflex inhibitory effects. NSs are also involved in mood and learning via serotonin and anti-nociceptive activity via T-type voltage-gated Ca2+ channels. Moreover, they are modulators of mitochondrial function, synaptic plasticity, or regulators of apoptosis, which have a role in neuroprotective via voltage-dependent anion channels receptors. For proper functioning, NASs need to be in their normal level, whereas excess and deficiency may lead to abnormalities. When they are below the normal, NSs could have a part in development of depression, neuro-inflammation, multiple sclerosis, experimental autoimmune encephalitis, epilepsy, and schizophrenia. On the other hand, stress and attention deficit disorder could occur during excessive level. Overall, NASs are very important molecules with major neuropsychiatric activity. PMID:28894435

  16. GABAA-benzodiazepine-chloride receptor-targeted therapy for tinnitus control: preliminary report.

    PubMed

    Shulman, Abraham; Strashun, Arnold M; Goldstein, Barbara A

    2002-01-01

    Our goal was to attempt to establish neuropharmacological tinnitus control (i.e., relief) with medication directed to restoration of a deficiency in the gamma-aminobutyric acid-benzodiazepine-chloride receptor in tinnitus patients with a diagnosis of a predominantly central type tinnitus. Thirty tinnitus patients completed a medical audiological tinnitus patient protocol and brain magnetic resonance imaging and single-photon emission computed tomography of brain. Treatment with GABAergic and benzodiazepine medication continued for 4-6 weeks. A maintenance dose was continued when tinnitus control was positive. Intake and outcome questionnaires were completed. Of 30 patients, 21 completed the trial (70%). Tinnitus control lasting from 4-6 weeks to 3 years was reported by 19 of the 21 (90%). The trial was not completed by 9 of the 30 (30%). No patient experienced an increase in tinnitus intensity or annoyance. Sequential brain single-photon emission computed tomography in 10 patients revealed objective evidence of increased brain perfusion. Patients with a predominantly central type tinnitus experience significant tinnitus control with medication directed to the gamma-aminobutyric acid-benzodiazepine-chloride receptor.

  17. Midazolam inhibits hippocampal long-term potentiation and learning through dual central and peripheral benzodiazepine receptor activation and neurosteroidogenesis.

    PubMed

    Tokuda, Kazuhiro; O'Dell, Kazuko A; Izumi, Yukitoshi; Zorumski, Charles F

    2010-12-15

    Benzodiazepines (BDZs) enhance GABA(A) receptor inhibition by direct actions on central BDZ receptors (CBRs). Although some BDZs also bind mitochondrial receptors [translocator protein (18 kDa) (TSPO)] and promote the synthesis of GABA-enhancing neurosteroids, the role of neurosteroids in the clinical effects of BDZs is unknown. In rat hippocampal slices, we compared midazolam, an anesthetic BDZ, with clonazepam, an anticonvulsant/anxiolytic BDZ that activates CBRs selectively. Midazolam, but not clonazepam, increased neurosteroid levels in CA1 pyramidal neurons without changing TSPO immunostaining. Midazolam, but not clonazepam, also augmented a form of spike inhibition after stimulation adjacent to the pyramidal cell layer and inhibited induction of long-term potentiation. These effects were prevented by finasteride, an inhibitor of neurosteroid synthesis, or 17PA [17-phenyl-(3α,5α)-androst-16-en-3-ol], a blocker of neurosteroid effects on GABA(A) receptors. Moreover, the synaptic effects were mimicked by a combination of clonazepam with FGIN (2-[2-(4-fluorophenyl)-1H-indol-3-yl]-N,N-dihexylacetamide), a selective TSPO agonist, or a combination of clonazepam with exogenous allopregnanolone. Consistent with these in vitro results, finasteride abolished the effects of midazolam on contextual fear learning when administrated 1 d before midazolam injection. Thus, dual activation of CBRs and TSPO appears to result in unique actions of clinically important BDZs. Furthermore, endogenous neurosteroids are shown to be important regulators of pyramidal neuron function and synaptic plasticity.

  18. Anxiolytic-like actions of the hexane extract from leaves of Annona cherimolia in two anxiety paradigms: possible involvement of the GABA/benzodiazepine receptor complex.

    PubMed

    López-Rubalcava, C; Piña-Medina, B; Estrada-Reyes, R; Heinze, G; Martínez-Vázquez, M

    2006-01-11

    A hexane extract of leaves of Annona cherimolia produced anxiolytic-like actions when administered to mice and tested in two animal models of anxiety: the mouse avoidance exploratory behavior and the burying behavior tests. In order to discard unspecific drug-actions on general activity, all treatments studied in the anxiety paradigms were also analyzed in the open field test. Results showed that A. cherimolia induced anxiolytic-like actions at the doses of 6.25, 12.5, 25.0 and 50.0 mg/kg. Picrotoxin (0.25 mg/kg), a GABA-gated chloride ion channel blocker, antagonized the anxiolytic-like actions of A. cherimolia, while a sub-effective dose of muscimol (0.5 mg/kg), a selective GABA(A) receptor agonist, facilitated the effects of a sub-optimal dose of A. cherimolia (3.12 mg/kg). Thus, the involvement of the GABA(A) receptor complex in the anxiolytic-like actions of A. cherimolia hexane extract is suggested. In addition the extract was also able to enhance the duration of sodium pentobarbital induced sleeping time. Taken together, results indicate that the hexane extract of A. cherimolia has depressant activity on the Central Nervous System and could interact with the GABA(A) receptor complex. On the other hand, the chromatographic separation of this extract led to the isolation of palmitone, and beta-sitosterol as major constituents. In addition a GC-MS study of some fractions revealed the presence of several compounds such beta-cariophyllene, beta-selinene, alpha-cubebene, and linalool that have been reported to show effects on behavior that could explain some of the extract effects.

  19. Density and distribution of hippocampal neurotransmitter receptors in autism: an autoradiographic study.

    PubMed

    Blatt, G J; Fitzgerald, C M; Guptill, J T; Booker, A B; Kemper, T L; Bauman, M L

    2001-12-01

    Neuropathological studies in autistic brains have shown small neuronal size and increased cell packing density in a variety of limbic system structures including the hippocampus, a change consistent with curtailment of normal development. Based on these observations in the hippocampus, a series of quantitative receptor autoradiographic studies were undertaken to determine the density and distribution of eight types of neurotransmitter receptors from four neurotransmitter systems (GABAergic, serotoninergic [5-HT], cholinergic, and glutamatergic). Data from these single concentration ligand binding studies indicate that the GABAergic receptor system (3[H]-flunitrazepam labeled benzodiazepine binding sites and 3[H]-muscimol labeled GABA(A) receptors) is significantly reduced in high binding regions, marking for the first time an abnormality in the GABA system in autism. In contrast, the density and distribution of the other six receptors studied (3[H]-80H-DPAT labeled 5-HT1A receptors, 3[H]-ketanserin labeled 5-HT2 receptors, 3[H]-pirenzepine labled M1 receptors, 3[H]-hemicholinium labeled high affinity choline uptake sites, 3[H]-MK801 labeled NMDA receptors, and 3[H]-kainate labeled kainate receptors) in the hippocampus did not demonstrate any statistically significant differences in binding.

  20. Effects of neurosteroid actions at N-methyl-D-aspartate and GABAA receptors in the midbrain ventral tegmental area for anxiety-like and mating behavior of female rats

    PubMed Central

    Paris, Jason J.

    2013-01-01

    Rationale In the midbrain ventral tegmental area (VTA), actions of neurosteroids, such as the progesterone metabolite, 5α-pregnan-3α-ol-20-one (3α,5α-THP), can facilitate mating and influence stress-related processes. Some actions of 3α,5α-THP may occur via positive modulation of GABAA receptors (GBRs), or negative modulation of N-methyl-D-aspartate receptors (NMDARs), to influence anxiety-like behavior; but this is not known. Objectives We aimed to assess the role that neurosteroids and stress factors play on intra-VTA NMDAR- and/or GBR-mediated anxiety-like and mating behavior. Methods Estradiol-primed, ovariectomized rats, which were partially or completely adrenalectomized (ADX), received infusions of vehicle, an NMDAR blocker (MK-801; 200 ng), or a GBR antagonist (bicuculline, 100 ng) to the VTA. Rats then received intra-VTA vehicle or a neurosteroidogenesis enhancer (N,N-Dihexyl-2-(4-fluorophenyl)indole-3-acetamide, FGIN 1-27, 5 μg) and anxiety-like and sexual behavior was assessed. Results Complete, compared to partial, ADX significantly reduced open arm exploration on an elevated plus maze, the proportion of females that engaged in mating, lordosis quotients, pacing of sexual contacts, and defensive aggression towards a sexually vigorous male. Intra-VTA MK-801 enhanced open arm investigation and the proportion of females that engaged in mating. Infusions of either, MK-801 or FGIN 1-27, enhanced lordosis and, when co-administered, FGIN 1-27 attenuated MK-801’s lordosis-enhancing effects. Intra-VTA infusions of bicuculline, prior to FGIN 1-27, blocked FGIN 1-27’s effects to enhance lordosis. Conclusions Together, these data suggest that reduced NMDAR activity in the VTA may influence motivation to explore and engage in sexual behavior. These data suggest that neurosteroid actions at NMDARs and GBRs in the VTA are important for exploration and/or sexual behavior. PMID:20878318

  1. GABRG2, rs211037 is associated with epilepsy susceptibility, but not with antiepileptic drug resistance and febrile seizures.

    PubMed

    Balan, Shabeesh; Sathyan, Sanish; Radha, Saradalekshmi K; Joseph, Vijai; Radhakrishnan, Kurupath; Banerjee, Moinak

    2013-11-01

    Several antiepileptic drugs (AEDs) are known to target the GABA(A) receptor through positive allosteric modulation of the receptors, thereby enhancing GABA(A) receptor-mediated inhibition. The large diversity of GABA(A) receptors has been reported in the central nervous system; some of these have been implicated in epilepsy susceptibility and AED resistance, which we aimed to examine. We investigated the association of single-nucleotide polymorphisms in GABA(A) receptor subunit subtype genes namely; rs2279020 (GABRA1), rs3219151 (GABRA6), rs2229944 (GABRB2), and rs211037 (GABRG2) with predisposition to epilepsy and AED resistance. This was assessed in three cohorts of ethnically matched South Indian ancestry: mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) (prototype of AED-resistant epilepsy syndrome), juvenile myoclonic epilepsy (prototype of AED-responsive epilepsy syndrome), and nonepilepsy controls. A significant allelic (P=0.0006, odds ratio=1.6, 95% confidence interval=1.22-2.08) and genotypic (P=0.001) association of a synonymous variant in GABRG2, rs211037 (Asn196Asn) was observed with epilepsy irrespective of its phenotype, that is, MTLE-HS or juvenile myoclonic epilepsy. However, this association was not retained in epilepsy patients with a history of febrile seizures. The GABA(A) receptor subunit subtype genes were not found to have any association with AED resistance. In-silico analysis indicated that rs211037 plays a significant role in the transcriptional regulation and splicing regulation. We could substantiate that among the GABA(A) receptor subunit gene cluster polymorphisms, the GABRG2, rs211037 predisposes susceptibility to epilepsy, irrespective of its phenotype, but not to AED resistance.

  2. General Anesthetics Have Additive Actions on Three Ligand-Gated Ion Channels

    PubMed Central

    Jenkins, Andrew; Lobo, Ingrid A.; Gong, Diane; Trudell, James R.; Solt, Ken; Harris, R. Adron; Eger, Edmond I

    2008-01-01

    Background The purpose of this study was to determine whether pairs of compounds, including general anesthetics, could simultaneously modulate receptor function in a synergistic manner, thus demonstrating the existence of multiple intra-protein anesthetic binding sites. Methods Using standard electrophysiologic methods, we measured the effects of at least one combination of benzene, isoflurane, halothane, chloroform, flunitrazepam, zinc and pentobarbital on at least one of the following ligand gated ion channels: N-methyl-D-aspartate receptors (NMDARs), glycine receptors (GlyRs) and γ-aminobutyric acid type A receptors (GABAARs). Results All drug-drug-receptor combinations were found to exhibit additive, not synergistic modulation. Isoflurane with benzene additively depressed NMDAR function. Isoflurane with halothane additively enhanced GlyR function, as did isoflurane with zinc. Isoflurane with halothane additively enhanced GABAAR function as did all of the following: halothane with chloroform, pentobarbital with isoflurane, and flunitrazepam with isoflurane. Conclusions The simultaneous allosteric modulation of ligand gated ion channels by general anesthetics is entirely additive. Where pairs of general anesthetic drugs interact synergistically to produce general anesthesia, they must do so on systems more complex than a single receptor. PMID:18633027

  3. Possible effects of depolarizing GABAA conductance on the neuronal input-output relationship: a modeling study.

    PubMed

    Morita, Kenji; Tsumoto, Kunichika; Aihara, Kazuyuki

    2005-06-01

    Recent in vitro experiments revealed that the GABAA reversal potential is about 10 mV higher than the resting potential in mature mammalian neocortical pyramidal cells; thus GABAergic inputs could have facilitatory, rather than inhibitory, effects on action potential generation under certain conditions. However, how the relationship between excitatory input conductances and the output firing rate is modulated by such depolarizing GABAergic inputs under in vivo circumstances has not yet been understood. We examine herewith the input-output relationship in a simple conductance-based model of cortical neurons with the depolarized GABAA reversal potential, and show that a tonic depolarizing GABAergic conductance up to a certain amount does not change the relationship between a tonic glutamatergic driving conductance and the output firing rate, whereas a higher GABAergic conductance prevents spike generation. When the tonic glutamatergic and GABAergic conductances are replaced by in vivo-like highly fluctuating inputs, on the other hand, the effect of depolarizing GABAergic inputs on the input-output relationship critically depends on the degree of coincidence between glutamatergic input events and GABAergic ones. Although a wide range of depolarizing GABAergic inputs hardly changes the firing rate of a neuron driven by noncoincident glutamatergic inputs, a certain range of these inputs considerably decreases the firing rate if a large number of driving glutamatergic inputs are coincident with them. These results raise the possibility that the depolarized GABAA reversal potential is not a paradoxical mystery, but is instead a sophisticated device for discriminative firing rate modulation.

  4. Immunochemical Localization of GABAA Receptor Subunits in the Freshwater Polyp Hydra vulgaris (Cnidaria, Hydrozoa).

    PubMed

    Concas, A; Imperatore, R; Santoru, F; Locci, A; Porcu, P; Cristino, L; Pierobon, P

    2016-11-01

    γ-aminobutyric acid (GABA) receptors, responding to GABA positive allosteric modulators, are present in the freshwater polyp Hydra vulgaris (Cnidaria, Hydrozoa), one of the most primitive metazoans to develop a nervous system. We examined the occurrence and distribution of GABA A receptor subunits in Hydra tissues by western blot and immunohistochemistry. Antibodies against different GABA A receptor subunits were used in Hydra membrane preparations. Unique protein bands, inhibited by the specific peptide, appeared at 35, 60, ∼50 and ∼52 kDa in membranes incubated with α3, β1, γ3 or δ antibodies, respectively. Immunohistochemical screening of whole mount Hydra preparations revealed diffuse immunoreactivity to α3, β1 or γ3 antibodies in tentacles, hypostome, and upper part of the gastric region; immunoreactive fibers were also present in the lower peduncle. By contrast, δ antibodies revealed a strong labeling in the lower gastric region and peduncle, as well as in tentacles. Double labeling showed colocalization of α3/β1, α3/γ3 and α3/δ immunoreactivity in granules or cells in tentacles and gastric region. In the peduncle, colocalization of both α3/β1 and α3/γ3 immunoreactivity was found in fibers running horizontally above the foot. These data indicate that specific GABA A receptor subunits are present and differentially distributed in Hydra body regions. Subunit colocalization suggests that Hydra GABA receptors are heterologous multimers, possibly sub-serving different physiological activities.

  5. Treatment of Fragile X Syndrome with a Neuroactive Steroid

    DTIC Science & Technology

    2015-08-01

    in the fragile X mouse model and the Drosophila (fruit fly) models of FXS that the GABAA system, including multiple receptors, is dramatically down... Drosophila (fruit fly) models of FXS that the GABAA system, including multiple receptors, is dramatically down-regulated. Ganaxolone is a drug that

  6. Ethanol exposure during the third trimester equivalent does not affect GABAA or AMPA receptor-mediated spontaneous synaptic transmission in rat CA3 pyramidal neurons.

    PubMed

    Baculis, Brian Charles; Valenzuela, Carlos Fernando

    2015-12-02

    Ethanol exposure during the rodent equivalent to the 3(rd) trimester of human pregnancy (i.e., first 1-2 weeks of neonatal life) has been shown to produce structural and functional alterations in the CA3 hippocampal sub-region, which is involved in associative memory. Synaptic plasticity mechanisms dependent on retrograde release of brain-derived neurotrophic factor (BDNF) driven by activation of L-type voltage-gated Ca(2+) channels (L-VGCCs) are thought to play a role in stabilization of both GABAergic and glutamatergic synapses in CA3 pyramidal neurons. We previously showed that ethanol exposure during the first week of life blocks BDNF/L-VGCC-dependent long-term potentiation of GABAA receptor-mediated synaptic transmission in these neurons. Here, we tested whether this effect is associated with lasting alterations in GABAergic and glutamatergic transmission. Rats were exposed to air or ethanol for 3 h/day between postnatal days three and five in vapor inhalation chambers, a paradigm that produces peak serum ethanol levels near 0.3 g/dl. Whole-cell patch-clamp electrophysiological recordings of spontaneous inhibitory and excitatory postsynaptic currents (sIPSCs and sEPSCs, respectively) were obtained from CA3 pyramidal neurons in coronal brain slices prepared at postnatal days 13-17. Ethanol exposure did not significantly affect the frequency, amplitude, rise-time and half-width of either sIPSCs or sEPSCs. We show that an ethanol exposure paradigm known to inhibit synaptic plasticity mechanisms that may participate in the stabilization of GABAergic and glutamatergic synapses in CA3 pyramidal neurons does not produce lasting functional alterations in these synapses, suggesting that compensatory mechanisms restored the balance of excitatory and inhibitory synaptic transmission.

  7. GABA(A) and dopamine receptors in the nucleus accumbens shell differentially influence performance of a water-reinforced progressive ratio task.

    PubMed

    Covelo, Ignacio R; Wirtshafter, David; Stratford, Thomas R

    2012-03-01

    Several authors have shown that injections of the GABA(A) agonist muscimol into the medial shell region of the nucleus accumbens (AcbSh) result in large increases in food, but not water, intake. In previous studies we demonstrated that intra-AcbSh injections of either muscimol or of the indirect dopamine agonist amphetamine increase response output on a food-reinforced progressive ratio schedule. In the current experiment we extended these observations by examining the effects of muscimol and amphetamine injections on the performance of a water-reinforced progressive ratio task in mildly deprived animals. We found that muscimol did not affect the number of responses made in the water-reinforced task, even though a marked increase in responding was observed after amphetamine. Muscimol did, however, significantly increase food intake in the same animals. The results suggest that the enhancing effects of intra-AcbSh muscimol differ from those of amphetamine in that they are selective for food-reinforced behaviors. Copyright © 2011. Published by Elsevier Inc.

  8. Contribution of GABAA, Glycine, and Opioid Receptors to Sacral Neuromodulation of Bladder Overactivity in Cats.

    PubMed

    Jiang, Xuewen; Fuller, Thomas W; Bandari, Jathin; Bansal, Utsav; Zhang, Zhaocun; Shen, Bing; Wang, Jicheng; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2016-12-01

    In α-chloralose-anesthetized cats, we examined the role of GABA A , glycine, and opioid receptors in sacral neuromodulation-induced inhibition of bladder overactivity elicited by intravesical infusion of 0.5% acetic acid (AA). AA irritation significantly (P < 0.01) reduced bladder capacity to 59.5 ± 4.8% of saline control. S1 or S2 dorsal root stimulation at threshold intensity for inducing reflex twitching of the anal sphincter or toe significantly (P < 0.01) increased bladder capacity to 105.3 ± 9.0% and 134.8 ± 8.9% of saline control, respectively. Picrotoxin, a GABA A receptor antagonist administered i.v., blocked S1 inhibition at 0.3 mg/kg and blocked S2 inhibition at 1.0 mg/kg. Picrotoxin (0.4 mg, i.t.) did not alter the inhibition induced during S1 or S2 stimulation, but unmasked a significant (P < 0.05) poststimulation inhibition that persisted after termination of stimulation. Naloxone, an opioid receptor antagonist (0.3 mg, i.t.), significantly (P < 0.05) reduced prestimulation bladder capacity and removed the poststimulation inhibition. Strychnine, a glycine receptor antagonist (0.03-0.3 mg/kg, i.v.), significantly (P < 0.05) increased prestimulation bladder capacity but did not reduce sacral S1 or S2 inhibition. After strychnine (0.3 mg/kg, i.v.), picrotoxin (0.3 mg/kg, i.v.) further (P < 0.05) increased prestimulation bladder capacity and completely blocked both S1 and S2 inhibition. These results indicate that supraspinal GABA A receptors play an important role in sacral neuromodulation of bladder overactivity, whereas glycine receptors only play a minor role to facilitate the GABA A inhibitory mechanism. The poststimulation inhibition unmasked by blocking spinal GABA A receptors was mediated by an opioid mechanism. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  9. α4βδ GABAA Receptors Reduce Dendritic Spine Density In CA1 Hippocampus And Impair Relearning Ability Of Adolescent Female Mice: Effects Of A GABA Agonist And A Stress Steroid

    PubMed Central

    Afroz, Sonia; Shen, Hui; Smith, Sheryl S.

    2017-01-01

    Synaptic pruning underlies the transition from an immature to an adult CNS through refinements of neuronal circuits. Our recent study indicates that pubertal synaptic pruning is triggered by the inhibition generated by extrasynaptic α4βδ GABAA receptors (GABARs) which are increased for 10 d on dendritic spines of CA1 pyramidal cells at the onset of puberty (PND 35–44) in the female mouse, suggesting α4βδ GABARs as a novel target for the regulation of adolescent synaptic pruning. In the present study we used a pharmacological approach to further examine the role of these receptors in altering spine density during puberty of female mice and the impact of these changes on spatial learning, assessed in adulthood. Two drugs were chronically administered during the pubertal period (PND 35–44): the GABA agonist gaboxadol (GBX, 0.1 mg/kg, i.p.), to enhance current gated by α4βδ GABARs and the neurosteroid/stress steroid THP (3α-OH-5β-pregnan-20-one, 10 mg/kg, i.p.) to decrease expression of α4βδ. Spine density was determined on PND 56 with Golgi staining. Spatial learning and relearning were assessed using the multiple object relocation task (MPORT) and an active place avoidance task (APA) on PND 56. Pubertal GBX decreased spine density post-pubertally by 70% (P<0.05), while decreasing α4βδ expression with THP increased spine density by two-fold (P<0.05), in both cases, with greatest effects on the mushroom spines. Adult relearning ability was compromised in both hippocampus-dependent tasks after pubertal administration of either drug. These findings suggest that an optimal spine density produced by α4βδ GABARs is necessary for optimal cognition in adults. PMID:28189613

  10. Diversity in GABAergic signaling.

    PubMed

    Vogt, Kaspar

    2015-01-01

    GABA(A) receptor-mediated synaptic transmission is responsible for inhibitory control of neural function in the brain. Recent progress has shown that GABA(A) receptors also provide a wide range of additional functions beyond simple inhibition. This diversity of functions is mediated by a large variety of different interneuron classes acting on a diverse population of receptor subtypes. Here, I will focus on an additional source of GABAergic signaling diversity, caused by the highly variable ion signaling mechanism of GABA(A) receptors. In concert with the other two sources of GABAergic heterogeneity, this variability in signaling allows for a wide array of GABAergic effects that are crucial for the development of the brain and its function. © 2015 Elsevier Inc. All rights reserved.

  11. Modulation of postsynaptic potentials in rat cortical neurons by valerian extracts macerated with different alcohols: involvement of adenosine A(1)- and GABA(A)-receptors.

    PubMed

    Sichardt, K; Vissiennon, Z; Koetter, U; Brattström, A; Nieber, K

    2007-10-01

    Valeriana officinalis (valerian) is used traditionally as a mild sedative. Research into valerian is sparse, and studies differ greatly with respect to design, measures and preparations used. This study compares the action of a methanol (M-E), ethanol (E-E) and an extract macerated with ethylacetate (EA-E) from roots of valerian (Valeriana officinalis L., Valerianaceae) on postsynaptic potentials (PSPs) in cortical neurons. Intracellular recordings were performed in rat brain slice preparations containing pyramidal cells of the cingulate cortex. PSPs were induced by electrical field stimulation. The M-E induced strong inhibition in the concentration range 0.1-15 mg/mL, whereas the E-E (1-10 mg/mL) did not influence significantly the PSPs. The maximum inhibition induced by the M-E was completely antagonized by 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 0.1 microm), an antagonist on the adenosine A(1) receptor. Contrary to the M-E, the EA-E (10 mg/mL) induced an increase of the PSPs, which was completely blocked by the GABA(A) receptor antagonist picrotoxin (100 microm). The data suggest that activation of adenosine A(1) and GABA(A) receptors is mediated by different components within the valerian extract. The two mechanisms may contribute independently to the sleep-inducing effect of valerian.

  12. Mechanism of RDX-Induced Seizures in Rats

    DTIC Science & Technology

    2009-09-01

    acetylcholine receptors , the glycine receptor , the site 2 sodium channel, and the family of GABAA ligand sites, as well as several others. A complete list...acetylchohnesterase was also measured. Also. RDX was screened for affinity to a library of brain receptors to determine if RDX affected any seizure-related...site on the GABAa receptor with an IC 50 of 22 uM. The mechanism of RDX-induced seizure is likely due to dis-inhibition of excitatory neuioas by

  13. Cockroach GABAB receptor subtypes: molecular characterization, pharmacological properties and tissue distribution.

    PubMed

    Blankenburg, S; Balfanz, S; Hayashi, Y; Shigenobu, S; Miura, T; Baumann, O; Baumann, A; Blenau, W

    2015-01-01

    γ-aminobutyric acid (GABA) is the predominant inhibitory neurotransmitter in the central nervous system (CNS). Its effects are mediated by either ionotropic GABAA receptors or metabotropic GABAB receptors. GABAB receptors regulate, via Gi/o G-proteins, ion channels, and adenylyl cyclases. In humans, GABAB receptor subtypes are involved in the etiology of neurologic and psychiatric disorders. In arthropods, however, these members of the G-protein-coupled receptor family are only inadequately characterized. Interestingly, physiological data have revealed important functions of GABAB receptors in the American cockroach, Periplaneta americana. We have cloned cDNAs coding for putative GABAB receptor subtypes 1 and 2 of P. americana (PeaGB1 and PeaGB2). When both receptor proteins are co-expressed in mammalian cells, activation of the receptor heteromer with GABA leads to a dose-dependent decrease in cAMP production. The pharmacological profile differs from that of mammalian and Drosophila GABAB receptors. Western blot analyses with polyclonal antibodies have revealed the expression of PeaGB1 and PeaGB2 in the CNS of the American cockroach. In addition to the widespread distribution in the brain, PeaGB1 is expressed in salivary glands and male accessory glands. Notably, PeaGB1-like immunoreactivity has been detected in the GABAergic salivary neuron 2, suggesting that GABAB receptors act as autoreceptors in this neuron. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. GABA receptor subunit distribution and FMRP-mGluR5 signaling abnormalities in the cerebellum of subjects with schizophrenia, mood disorders, and autism

    PubMed Central

    Fatemi, S. Hossein; Folsom, Timothy D.

    2016-01-01

    Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain. GABAergic receptor abnormalities have been documented in several major psychiatric disorders including schizophrenia, mood disorders, and autism. Abnormal expression of mRNA and protein for multiple GABA receptors has also been observed in multiple brain regions leading to alterations in the balance between excitatory/inhibitory signaling in the brain with potential profound consequences for normal cognition and maintenance of mood and perception. Altered expression of GABAA receptor subunits has been documented in Fragile X mental retardation 1 (FMR1) knockout mice, suggesting that loss of its protein product, fragile X mental retardation protein (FMRP), impacts GABAA subunit expression. Recent postmortem studies from our laboratory have shown reduced expression of FMRP in brains of subjects with schizophrenia, bipolar disorder, major depression, and autism. FMRP acts as a translational repressor and, under normal conditions, inhibits metabotropic glutamate receptor 5 (mGluR5)-mediated signaling. In fragile X syndrome (FXS), absence of FMRP is hypothesized to lead to unregulated mGluR5 signaling, ultimately resulting in the behavioral and intellectual impairments associated with this disorder. Our laboratory has identified changes in mGluR5 expression in autism, schizophrenia, and mood disorders. In the current review article, we discuss our postmortem data on GABA receptors, FMRP, and mGluR5 levels and compare our results with other laboratories. Finally, we discuss the interactions between these molecules and the potential for new therapeutic interventions that target these interconnected signaling systems. PMID:25432637

  15. GABA receptor subunit distribution and FMRP-mGluR5 signaling abnormalities in the cerebellum of subjects with schizophrenia, mood disorders, and autism.

    PubMed

    Fatemi, S Hossein; Folsom, Timothy D

    2015-09-01

    Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain. GABAergic receptor abnormalities have been documented in several major psychiatric disorders including schizophrenia, mood disorders, and autism. Abnormal expression of mRNA and protein for multiple GABA receptors has also been observed in multiple brain regions leading to alterations in the balance between excitatory/inhibitory signaling in the brain with potential profound consequences for normal cognition and maintenance of mood and perception. Altered expression of GABAA receptor subunits has been documented in fragile X mental retardation 1 (FMR1) knockout mice, suggesting that loss of its protein product, fragile X mental retardation protein (FMRP), impacts GABAA subunit expression. Recent postmortem studies from our laboratory have shown reduced expression of FMRP in the brains of subjects with schizophrenia, bipolar disorder, major depression, and autism. FMRP acts as a translational repressor and, under normal conditions, inhibits metabotropic glutamate receptor 5 (mGluR5)-mediated signaling. In fragile X syndrome (FXS), the absence of FMRP is hypothesized to lead to unregulated mGluR5 signaling, ultimately resulting in the behavioral and intellectual impairments associated with this disorder. Our laboratory has identified changes in mGluR5 expression in autism, schizophrenia, and mood disorders. In the current review article, we discuss our postmortem data on GABA receptors, FMRP, and mGluR5 levels and compare our results with other laboratories. Finally, we discuss the interactions between these molecules and the potential for new therapeutic interventions that target these interconnected signaling systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Pharmacodynamic and pharmacokinetic effects of TPA023, a GABA(A) alpha(2,3) subtype-selective agonist, compared to lorazepam and placebo in healthy volunteers.

    PubMed

    de Haas, S L; de Visser, S J; van der Post, J P; de Smet, M; Schoemaker, R C; Rijnbeek, B; Cohen, A F; Vega, J M; Agrawal, N G B; Goel, T V; Simpson, R C; Pearson, L K; Li, S; Hesney, M; Murphy, M G; van Gerven, J M A

    2007-06-01

    TPA023, a GABA(A) alpha2,3 alphasubtype-selective partial agonist, is expected to have comparable anxiolytic efficacy as benzodiazepines with reduced sedating effects. The compound lacks efficacy at the alpha1 subtype, which is believed to mediate these effects. This study investigated the effects of 0.5 and 1.5 mg TPA023 and compared them with placebo and lorazepam 2 mg (therapeutic anxiolytic dose). Twelve healthy male volunteers participated in this placebo-controlled, double-blind, double-dummy, four-way, cross-over study. Saccadic eye movements and visual analogue scales (VAS) were used to assess the sedative properties of TPA023. The effects on posturaL stability and cognition were assessed using body sway and a standardized battery of neurophysiological memory tests. Lorazepam caused a significant reduction in saccadic peak velocity, the VAS alertness score and impairment of memory and body sway. TPA023 had significant dose dependent effects on saccadic peak velocity (85 deg/sec maximum reduction at the higher dose) that approximated the effects of lorazepam. In contrast to lorazepam, TPA023 had no detectabLe effects on saccadic latency or inaccuracy. Also unlike lorazepam, TPA023 did not affect VAS alertness, memory or body sway. These results show that the effect profile of TPA023 differs markedly from that of lorazepam, at doses that were equipotent with regard to effects on saccadic peak veLocity. Contrary to lorazepam, TPA023 caused no detectable memory impairment or postural imbalance. These differences reflect the selectivity of TPA023 for different GABA(A) receptor subtypes.

  17. Zolpidem, a clinical hypnotic that affects electronic transfer, alters synaptic activity through potential GABA receptors in the nervous system without significant free radical generation.

    PubMed

    Kovacic, Peter; Somanathan, Ratnasamy

    2009-01-01

    receptors in the central nervous system. The drug acts at the GABA(A) receptor benzodiazepine site, displaying high and intermediate affinities to various receptor regions. Structural features for tight binding were determined. The sedative and anticonvulsant activities are due to its action on the alpha-1-GABA(A) receptors. One of the common adverse responses to zolpidem is hallucinations. Proposed mechanisms comprise changes in the GABA(A) receptor, pharmacodynamic interactions involving serotonin and neuronal-weak photon emission processes entailing redox phenomena. Reports cite cases of abuse with cravings based on anxiolytic and stimulating actions. It is important to recognize that insight concerning processes at the fundamental, molecular level can translate into beneficial results involving both positive and adverse side effects. In order for this to occur, interdisciplinary interaction is necessary. Suggestions are made for future research aimed at testing the various hypotheses.

  18. Ethanol Reduces Neuronal Excitability of Lateral Orbitofrontal Cortex Neurons Via a Glycine Receptor Dependent Mechanism

    PubMed Central

    Badanich, Kimberly A; Mulholland, Patrick J; Beckley, Jacob T; Trantham-Davidson, Heather; Woodward, John J

    2013-01-01

    Trauma-induced damage to the orbitofrontal cortex (OFC) often results in behavioral inflexibility and impaired judgment. Human alcoholics exhibit similar cognitive deficits suggesting that OFC neurons are susceptible to alcohol-induced dysfunction. A previous study from this laboratory examined OFC mediated cognitive behaviors in mice and showed that behavioral flexibility during a reversal learning discrimination task was reduced in alcohol-dependent mice. Despite these intriguing findings, the actions of alcohol on OFC neuron function are unknown. To address this issue, slices containing the lateral OFC (lOFC) were prepared from adult C57BL/6J mice and whole-cell patch clamp electrophysiology was used to characterize the effects of ethanol (EtOH) on neuronal function. EtOH (66 mM) had no effect on AMPA-mediated EPSCs but decreased those mediated by NMDA receptors. EtOH (11–66 mM) also decreased current-evoked spike firing and this was accompanied by a decrease in input resistance and a modest hyperpolarization. EtOH inhibition of spike firing was prevented by the GABAA antagonist picrotoxin, but EtOH had no effect on evoked or spontaneous GABA IPSCs. EtOH increased the holding current of voltage-clamped neurons and this action was blocked by picrotoxin but not the more selective GABAA antagonist biccuculine. The glycine receptor antagonist strychnine also prevented EtOH's effect on holding current and spike firing, and western blotting revealed the presence of glycine receptors in lOFC. Overall, these results suggest that acutely, EtOH may reduce lOFC function via a glycine receptor dependent process and this may trigger neuroadaptive mechanisms that contribute to the impairment of OFC-dependent behaviors in alcohol-dependent subjects. PMID:23314219

  19. Stimulation of accumbal GABAA receptors inhibits delta2-, but not delta1-, opioid receptor-mediated dopamine efflux in the nucleus accumbens of freely moving rats.

    PubMed

    Aono, Yuri; Kiguchi, Yuri; Watanabe, Yuriko; Waddington, John L; Saigusa, Tadashi

    2017-11-15

    The nucleus accumbens contains delta-opioid receptors that may reduce inhibitory neurotransmission. Reduction in GABA A receptor-mediated inhibition of accumbal dopamine release due to delta-opioid receptor activation should be suppressed by stimulating accumbal GABA A receptors. As delta-opioid receptors are divided into delta2- and delta1-opioid receptors, we analysed the effects of the GABA A receptor agonist muscimol on delta2- and delta1-opioid receptor-mediated accumbal dopamine efflux in freely moving rats using in vivo microdialysis. Drugs were administered intracerebrally through the dialysis probe. Doses of compounds indicate total amount administered (mol) during 25-50min infusions. The delta2-opioid receptor agonist deltorphin II (25.0nmol)- and delta1-opioid receptor agonist DPDPE (5.0nmol)-induced increases in dopamine efflux were inhibited by the delta2-opioid receptor antagonist naltriben (1.5nmol) and the delta1-opioid receptor antagonist BNTX (150.0pmol), respectively. Muscimol (250.0pmol) inhibited deltorphin II (25.0nmol)-induced dopamine efflux. The GABA A receptor antagonist bicuculline (50.0pmol), which failed to affect deltorphin II (25.0nmol)-induced dopamine efflux, counteracted the inhibitory effect of muscimol on deltorphin II-induced dopamine efflux. Neither muscimol (250.0pmol) nor bicuculline (50.0 and 500.0pmol) altered DPDPE (5.0nmol)-induced dopamine efflux. The present results show that reduction in accumbal GABA A receptor-mediated inhibition of dopaminergic activity is necessary to produce delta2-opioid receptor-induced increase in accumbal dopamine efflux. This study indicates that activation of delta2- but not delta1-opioid receptors on the cell bodies and/or terminals of accumbal GABAergic interneurons inhibits GABA release and, accordingly, decreases GABA A receptor-mediated inhibition of dopaminergic terminals, resulting in enhanced accumbal dopamine efflux. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Role of ionotropic GABA, glutamate and glycine receptors in the tonic and reflex control of cardiac vagal outflow in the rat

    PubMed Central

    2010-01-01

    Background Cardiac vagal preganglionic neurons (CVPN) are responsible for the tonic, reflex and respiratory modulation of heart rate (HR). Although CVPN receive GABAergic and glutamatergic inputs, likely involved in respiratory and reflex modulation of HR respectively, little else is known regarding the functions controlled by ionotropic inputs. Activation of g-protein coupled receptors (GPCR) alters these inputs, but the functional consequence is largely unknown. The present study aimed to delineate how ionotropic GABAergic, glycinergic and glutamatergic inputs contribute to the tonic and reflex control of HR and in particular determine which receptor subtypes were involved. Furthermore, we wished to establish how activation of the 5-HT1A GPCR affects tonic and reflex control of HR and what ionotropic interactions this might involve. Results Microinjection of the GABAA antagonist picrotoxin into CVPN decreased HR but did not affect baroreflex bradycardia. The glycine antagonist strychnine did not alter HR or baroreflex bradycardia. Combined microinjection of the NMDA antagonist, MK801, and AMPA antagonist, CNQX, into CVPN evoked a small bradycardia and abolished baroreflex bradycardia. MK801 attenuated whereas CNQX abolished baroreceptor bradycardia. Control intravenous injections of the 5-HT1A agonist 8-OH-DPAT evoked a small bradycardia and potentiated baroreflex bradycardia. These effects were still observed following microinjection of picrotoxin but not strychnine into CVPN. Conclusions We conclude that activation of GABAA receptors set the level of HR whereas AMPA to a greater extent than NMDA receptors elicit baroreflex changes in HR. Furthermore, activation of 5-HT1A receptors evokes bradycardia and enhances baroreflex changes in HR due to interactions with glycinergic neurons involving strychnine receptors. This study provides reference for future studies investigating how diseases alter neurochemical inputs to CVPN. PMID:20939929