Sample records for gabaa receptor-mediated responses

  1. GABAa and GABAc receptor-mediated modulation of responses to color stimuli: electroretinographic study in the turtle Emys orbicularis.

    PubMed

    Kupenova, Petia; Vitanova, Lily; Popova, Elka

    2010-04-01

    GABAergic transmission is involved in color coding in the retina. The specific contribution of different GABA receptors to spectral sensitivity of the retinal responses is not well characterized. We studied GABAa and GABAc receptor-mediated effects on the intensity-response functions of the electroretinographic ON (b-wave) and OFF (d-wave) responses to color stimuli. For this purpose, we compared the effects of GABAa receptor blockade by bicuculline with the effects of GABAa + GABAc receptor blockade by picrotoxin. The blockade of both GABAa and GABAc receptors caused an amplitude increase of the electroretinographic responses, but the effects of the two blockades depended in a specific manner on stimulus intensity and wavelength. The effects of GABAa receptor blockade showed distinct color ON/OFF asymmetry. The absolute and relative sensitivities of the ON responses to blue stimuli and OFF responses to red stimuli were increased to the greatest degree while the sensitivity of the ON responses to red stimuli and OFF responses to blue stimuli was least increased. In contrast, color ON/OFF asymmetry was not typical of the effects of GABAc receptor blockade. The most prominent GABAc effect was the sensitivity increase of the ON and OFF responses to blue stimuli and, to some lesser extent, to green stimuli. The results of this study indicate a specific role of GABAa and GABAc receptor-mediated influences in processing of chromatic information in the distal retina.

  2. Menthol enhances phasic and tonic GABAA receptor-mediated currents in midbrain periaqueductal grey neurons

    PubMed Central

    Lau, Benjamin K; Karim, Shafinaz; Goodchild, Ann K; Vaughan, Christopher W; Drew, Geoffrey M

    2014-01-01

    Background and Purpose Menthol, a naturally occurring compound in the essential oil of mint leaves, is used for its medicinal, sensory and fragrant properties. Menthol acts via transient receptor potential (TRPM8 and TRPA1) channels and as a positive allosteric modulator of recombinant GABAA receptors. Here, we examined the actions of menthol on GABAA receptor-mediated currents in intact midbrain slices. Experimental Approach Whole-cell voltage-clamp recordings were made from periaqueductal grey (PAG) neurons in midbrain slices from rats to determine the effects of menthol on GABAA receptor-mediated phasic IPSCs and tonic currents. Key Results Menthol (150–750 μM) produced a concentration-dependent prolongation of spontaneous GABAA receptor-mediated IPSCs, but not non-NMDA receptor-mediated EPSCs throughout the PAG. Menthol actions were unaffected by TRPM8 and TRPA1 antagonists, tetrodotoxin and the benzodiazepine antagonist, flumazenil. Menthol also enhanced a tonic current, which was sensitive to the GABAA receptor antagonists, picrotoxin (100 μM), bicuculline (30 μM) and Zn2+ (100 μM), but unaffected by gabazine (10 μM) and a GABAC receptor antagonist, 1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid hydrate (TPMPA; 50 μM). In addition, menthol potentiated currents induced by the extrasynaptic GABAA receptor agonist THIP/gaboxadol (10 μM). Conclusions and Implications These results suggest that menthol positively modulates both synaptic and extrasynaptic populations of GABAA receptors in native PAG neurons. The development of agents that potentiate GABAA-mediated tonic currents and phasic IPSCs in a manner similar to menthol could provide a basis for novel GABAA-related pharmacotherapies. PMID:24460753

  3. Cell type specificity of GABA(A) receptor mediated signaling in the hippocampus.

    PubMed

    Semyanov, A

    2003-08-01

    Inhibitory signaling mediated by ionotropic GABA(1) receptors generally acts as a major brake against excessive excitability in the brain. This is especially relevant in epilepsy-prone structures such as the hippocampus, in which GABA(A) receptor mediated inhibition is critical in suppressing epileptiform activity. Indeed, potentiating GABA(A) receptor mediated signaling is an important target for antiepileptic drug therapy. GABA(A) receptor mediated inhibition has different roles in the network dependent on the target neuron. Inhibiting principal cells will thus reduce network excitability, whilst inhibiting interneurons will increase network excitability; GABAergic therapeutic agents do not distinguish between these two alternatives, which may explain why, on occasion, GABAergic antiepileptic drugs can be proconvulsant. The importance of the target-cell for the effect of neuroactive drugs has emerged from a number of recent studies. Immunocytochemical data have suggested non-uniform distribution of GABA(A) receptor subunits among hippocampal interneurons and pyramidal cells. This has been confirmed by subsequent electropharmacological data. These have demonstrated that compounds which act on GABA(A) receptors or the extracellular GABA concentration can have distinct effects in different neuronal populations. Recently, it has also been discovered that presynaptic glutamate heteroreceptors can modulate GABA release in the hippocampus in a postsynaptic cell-specific manner. Since systemically administrated drugs may act on different neuronal subtypes, they can exhibit paradoxical effects. Distinguishing compounds that have target specific effects on GABAergic signaling may lead to novel and more effective treatments against epilepsy.

  4. Insulin-Independent GABAA Receptor-Mediated Response in the Barrel Cortex of Mice with Impaired Met Activity

    PubMed Central

    Lo, Fu-Sun; Erzurumlu, Reha S.

    2016-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder caused by genetic variants, susceptibility alleles, and environmental perturbations. The autism associated gene MET tyrosine kinase has been implicated in many behavioral domains and endophenotypes of autism, including abnormal neural signaling in human sensory cortex. We investigated somatosensory thalamocortical synaptic communication in mice deficient in Met activity in cortical excitatory neurons to gain insights into aberrant somatosensation characteristic of ASD. The ratio of excitation to inhibition is dramatically increased due to decreased postsynaptic GABAA receptor-mediated inhibition in the trigeminal thalamocortical pathway of mice lacking active Met in the cerebral cortex. Furthermore, in contrast to wild-type mice, insulin failed to increase GABAA receptor-mediated response in the barrel cortex of mice with compromised Met signaling. Thus, lacking insulin effects may be a risk factor in ASD pathogenesis. SIGNIFICANCE STATEMENT A proposed common cause of neurodevelopmental disorders is an imbalance in excitatory neural transmission, provided by the glutamatergic neurons, and the inhibitory signals from the GABAergic interneurons. Many genes associated with autism spectrum disorders impair synaptic transmission in the expected cell type. Previously, inactivation of the autism-associated Met tyrosine kinase receptor in GABAergic interneurons led to decreased inhibition. In thus report, decreased Met signaling in glutamatergic neurons had no effect on excitation, but decimated inhibition. Further experiments indicate that loss of Met activity downregulates GABAA receptors on glutamatergic neurons in an insulin independent manner. These data provide a new mechanism for the loss of inhibition and subsequent abnormal excitation/inhibition balance and potential molecular candidates for treatment or prevention. PMID:27030755

  5. GABA(A) receptors mediate orexin-A induced stimulation of food intake.

    PubMed

    Kokare, Dadasaheb M; Patole, Angad M; Carta, Anna; Chopde, Chandrabhan T; Subhedar, Nishikant K

    2006-01-01

    Although the role of orexins in sleep/wake cycle and feeding behavior is well established, underlying mechanisms have not been fully understood. An attempt has been made to investigate the role of GABA(A) receptors and their benzodiazepine site on the orexin-A induced response to feeding. Different groups of rats were food deprived overnight and next day injected intracerebroventricularly (icv) with vehicle (artificial CSF; 5 microl/rat) or orexin-A (20-50 nM/rat) and the animals were given free access to food. Cumulative food intake was measured during light phase of light/dark cycle at 1-, 2-, 4- and 6-h post-injection time points. Orexin-A (30-50 nM/rat, icv) stimulated food intake at all the time points (P < 0.05). Prior administration of GABA(A) receptor agonists muscimol (25 ng/rat, icv) and diazepam (0.5 mg/kg, ip) at subeffective doses significantly potentiated the hyperphagic effect of orexin-A (30 nM/rat, icv). However, the effect was negated by the GABA(A) receptor antagonist bicuculline (1 mg/kg, ip). Interestingly, benzodiazepine receptor antagonist flumazenil (5 ng/rat, icv), augmented the orexin-A (30 nM/rat, icv) induced hyperphagia; the effect may be attributed to the intrinsic activity of the agent. The results suggest that the hyperphagic effect of orexin-A, at least in part, is mediated by enhanced GABA(A) receptor activity.

  6. Methods for recording and measuring tonic GABAA receptor-mediated inhibition

    PubMed Central

    Bright, Damian P.; Smart, Trevor G.

    2013-01-01

    Tonic inhibitory conductances mediated by GABAA receptors have now been identified and characterized in many different brain regions. Most experimental studies of tonic GABAergic inhibition have been carried out using acute brain slice preparations but tonic currents have been recorded under a variety of different conditions. This diversity of recording conditions is likely to impact upon many of the factors responsible for controlling tonic inhibition and can make comparison between different studies difficult. In this review, we will firstly consider how various experimental conditions, including age of animal, recording temperature and solution composition, are likely to influence tonic GABAA conductances. We will then consider some technical considerations related to how the tonic conductance is measured and subsequently analyzed, including how the use of current noise may provide a complementary and reliable method for quantifying changes in tonic current. PMID:24367296

  7. Α2 GABAA receptor sub-units in the ventral hippocampus and α5 GABAA receptor sub-units in the dorsal hippocampus mediate anxiety and fear memory.

    PubMed

    McEown, K; Treit, D

    2013-11-12

    Temporary neuronal inactivation of the ventral hippocampus with the GABAA agonist muscimol suppresses unconditioned fear behavior (anxiety) but inactivation of the dorsal hippocampus does not. On the other hand, inactivating the dorsal hippocampus disrupts fear memory, while inactivating the ventral hippocampus does not. Here we investigate the roles of hippocampal GABAA receptor sub-units in mediating these anxiolytic and amnesic effects of GABAA receptor agonists. We microinfused TPA023 (α2 agonist) or TB-21007 (inverse α5 agonist) into the dorsal or ventral hippocampus prior to testing rats in two animal models of anxiety: the elevated plus-maze and shock-probe burying test. Twenty-four hours later rats were re-tested in the shock-probe chamber with a non-electrified probe to assess their memory of the initial shock-probe experience (i.e., fear memory). We found that TPA023 was anxiolytic in the plus-maze and shock-probe burying tests when microinfused into the ventral hippocampus. However, TPA023 did not affect anxiety-related behavior when infused into the dorsal hippocampus. Conversely, we found that the α5 sub-unit inverse agonist TB-21007 impaired rats' memory of the initial shock-probe experience when infused into the dorsal hippocampus, but not when infused into the ventral hippocampus. This double dissociation suggests that α2 GABAA receptor sub-units in the ventral hippocampus mediate unconditioned fear or anxiety, while α5 GABAA receptor sub-units in the dorsal hippocampus mediate conditioned fear memory. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. 5-HT1A receptor blockade reverses GABAA receptor α3 subunit-mediated anxiolytic effects on stress-induced hyperthermia

    PubMed Central

    van Oorschot, Ruud; Korte, S. Mechiel; Olivier, Berend; Groenink, Lucianne

    2010-01-01

    Rationale Stress-related disorders are associated with dysfunction of both serotonergic and GABAergic pathways, and clinically effective anxiolytics act via both neurotransmitter systems. As there is evidence that the GABAA and the serotonin receptor system interact, a serotonergic component in the anxiolytic actions of benzodiazepines could be present. Objectives The main aim of the present study was to investigate whether the anxiolytic effects of (non-)selective α subunit GABAA receptor agonists could be reversed with 5-HT1A receptor blockade using the stress-induced hyperthermia (SIH) paradigm. Results The 5-HT1A receptor antagonist WAY-100635 (0.1–1 mg/kg) reversed the SIH-reducing effects of the non-α-subunit selective GABAA receptor agonist diazepam (1–4 mg/kg) and the GABAA receptor α3-subunit selective agonist TP003 (1 mg/kg), whereas WAY-100635 alone was without effect on the SIH response or basal body temperature. At the same time, co-administration of WAY-100635 with diazepam or TP003 reduced basal body temperature. WAY-100635 did not affect the SIH response when combined with the preferential α1-subunit GABAA receptor agonist zolpidem (10 mg/kg), although zolpidem markedly reduced basal body temperature. Conclusions The present study suggests an interaction between GABAA receptor α-subunits and 5-HT1A receptor activation in the SIH response. Specifically, our data indicate that benzodiazepines affect serotonergic signaling via GABAA receptor α3-subunits. Further understanding of the interactions between the GABAA and serotonin system in reaction to stress may be valuable in the search for novel anxiolytic drugs. PMID:20535452

  9. Role of GABAA receptors in the physiology and pharmacology of sleep.

    PubMed

    Winsky-Sommerer, Raphaëlle

    2009-05-01

    Most sedative-hypnotics used in insomnia treatment target the gamma-aminobutyric acid (GABA)(A) receptors. A vast repertoire of GABA(A) receptor subtypes has been identified and displays specific electrophysiological and functional properties. GABA(A)-mediated inhibition traditionally refers to 'phasic' inhibition, arising from synaptic GABA(A) receptors which transiently inhibit neurons. However, there is growing evidence that peri- or extra-synaptic GABA(A) receptors are continuously activated by low GABA concentrations and mediate a 'tonic' conductance. This slower type of signaling appears to play a key role in controlling cell excitability. This review aims at summarizing recent knowledge on GABA transmission, including the emergence of tonic conductance, and highlighting the importance of GABA(A) receptor heterogeneity. The mechanism of action of sedative-hypnotic drugs and their effects on sleep and the electroencephalogram will be reported. Furthermore, studies using genetically engineered mice will be emphasized, providing insights into the role of GABA(A) receptors in mechanisms underlying physiological and pharmacological sleep. Finally, we will address the potential of GABA(A) receptor pharmacology for the treatment of insomnia.

  10. α5-GABAA receptors negatively regulate MYC-amplified medulloblastoma growth

    PubMed Central

    Sengupta, Soma; Weeraratne, Shyamal Dilhan; Sun, Hongyu; Phallen, Jillian; Rallapalli, Sundari K.; Teider, Natalia; Kosaras, Bela; Amani, Vladimir; Pierre-Francois, Jessica; Tang, Yujie; Nguyen, Brian; Yu, Furong; Schubert, Simone; Balansay, Brianna; Mathios, Dimitris; Lechpammer, Mirna; Archer, Tenley C.; Tran, Phuoc; Reimer, Richard J.; Cook, James M.; Lim, Michael; Jensen, Frances E.; Pomeroy, Scott L.; Cho, Yoon-Jae

    2013-01-01

    Neural tumors often express neurotransmitter receptors as markers of their developmental lineage. Although these receptors have been well characterized in electrophysiological, developmental and pharmacological settings, their importance in the maintenance and progression of brain tumors, and importantly, the effect of their targeting in brain cancers remains obscure. Here, we demonstrate high levels of GABR5, which encodes the α-subunit of the GABAA receptor complex, in aggressive MYC-driven, “Group 3” medulloblastomas. We hypothesized that modulation of α-GABAA receptors alters medulloblastoma cell survival and monitored biological and electrophysiological responses of GABR5-expressing medulloblastoma cells upon pharmacological targeting of the GABAA receptor. While antagonists, inverse agonists and non-specific positive allosteric modulators had limited effects on medulloblastoma cells, a highly specific and potent α5-GABAA receptor agonist, QHii066, resulted in marked membrane depolarization and a significant decrease in cell survival. This effect was GABR5 dependent and mediated through the induction of apoptosis as well as accumulation of cells in S and G2 phases of the cell cycle. Chemical genomic profiling of QHii066-treated medulloblastoma cells confirmed inhibition of MYC-related transcriptional activity and revealed an enrichment of HOX5 target gene expression. siRNA-mediated knockdown of HOX5 markedly blunted the response of medulloblastoma cells to QHii066. Furthermore, QHii066 sensitized GABR5 positive medulloblastoma cells to radiation and chemotherapy consistent with the role of HOX5 in directly regulating p53 expression and inducing apoptosis. Thus, our results provide novel insights into the synthetic lethal nature of α5-GABAA receptor activation in MYC-driven/Group 3 medulloblastomas and propose its targeting as a novel strategy for the management of this highly aggressive tumor. PMID:24196163

  11. GABA-A Receptors Mediate Tonic Inhibition and Neurosteroid Sensitivity in the Brain.

    PubMed

    Reddy, Doodipala Samba

    2018-01-01

    Neurosteroids like allopregnanolone (AP) are positive allosteric modulators of synaptic and extrasynaptic GABA-A receptors. AP and related neurosteroids exhibit a greater potency for δ-containing extrasynaptic receptors. The δGABA-A receptors, which are expressed extrasynaptically in the dentate gyrus and other regions, contribute to tonic inhibition, promoting network shunting as well as reducing seizure susceptibility. Levels of endogenous neurosteroids fluctuate with ovarian cycle. Natural and synthetic neurosteroids maximally potentiate tonic inhibition in the hippocampus and provide robust protection against a variety of limbic seizures and status epilepticus. Recently, a consensus neurosteroid pharmacophore model has been proposed at extrasynaptic δGABA-A receptors based on structure-activity relationship for functional activation of tonic currents and seizure protection. Aside from anticonvulsant actions, neurosteroids have been found to be powerful anxiolytic and anesthetic agents. Neurosteroids and Zn 2+ have preferential affinity for δ-containing receptors. Thus, Zn 2+ can prevent neurosteroid activation of extrasynaptic δGABA-A receptor-mediated tonic inhibition. Recently, we demonstrated that Zn 2+ selectively inhibits extrasynaptic δGABA-A receptors and thereby fully prevents AP activation of tonic inhibition and seizure protection. We confirmed that neurosteroids exhibit greater sensitivity at extrasynaptic δGABA-A receptors. Overall, extrasynaptic GABA-A receptors are primary mediators of tonic inhibition in the brain and play a key role in the pathophysiology of epilepsy and other neurological disorders. © 2018 Elsevier Inc. All rights reserved.

  12. Estrous Cycle Regulation of Extrasynaptic δ-Containing GABAA Receptor-Mediated Tonic Inhibition and Limbic Epileptogenesis

    PubMed Central

    Wu, Xin; Gangisetty, Omkaram; Carver, Chase Matthew

    2013-01-01

    The ovarian cycle affects susceptibility to behavioral and neurologic conditions. The molecular mechanisms underlying these changes are poorly understood. Deficits in cyclical fluctuations in steroid hormones and receptor plasticity play a central role in physiologic and pathophysiologic menstrual conditions. It has been suggested that synaptic GABAA receptors mediate phasic inhibition in the hippocampus and extrasynaptic receptors mediate tonic inhibition in the dentate gyrus. Here we report a novel role of extrasynaptic δ-containing GABAA receptors as crucial mediators of the estrous cycle–related changes in neuronal excitability in mice, with hippocampus subfield specificity. In molecular and immunofluorescence studies, a significant increase occurred in δ-subunit, but not α4- and γ2-subunits, in the dentate gyrus during diestrus. However, δ-subunit upregulation was not evident in the CA1 region. The δ-subunit expression was undiminished by age and ovariectomy and in mice lacking progesterone receptors, but it was significantly reduced by finasteride, a neurosteroid synthesis inhibitor. Electrophysiologic studies confirmed greater potentiation of GABA currents by progesterone-derived neurosteroid allopregnanolone in dissociated dentate gyrus granule cells in diestrus than in CA1 pyramidal cells. The baseline conductance and allopregnanolone potentiation of tonic currents in dentate granule cells from hippocampal slices were higher than in CA1 pyramidal cells. In behavioral studies, susceptibility to hippocampus kindling epileptogenesis was lower in mice during diestrus. These results demonstrate the estrous cycle–related plasticity of neurosteroid-sensitive, δ-containing GABAA receptors that mediate tonic inhibition and seizure susceptibility. These findings may provide novel insight on molecular cascades of menstrual disorders like catamenial epilepsy, premenstrual syndrome, and migraine. PMID:23667248

  13. Grp94 Protein Delivers γ-Aminobutyric Acid Type A (GABAA) Receptors to Hrd1 Protein-mediated Endoplasmic Reticulum-associated Degradation.

    PubMed

    Di, Xiao-Jing; Wang, Ya-Juan; Han, Dong-Yun; Fu, Yan-Lin; Duerfeldt, Adam S; Blagg, Brian S J; Mu, Ting-Wei

    2016-04-29

    Proteostasis maintenance of γ-aminobutyric acid type A (GABAA) receptors dictates their function in controlling neuronal inhibition in mammalian central nervous systems. However, as a multisubunit, multispan, integral membrane protein, even wild type subunits of GABAA receptors fold and assemble inefficiently in the endoplasmic reticulum (ER). Unassembled and misfolded subunits undergo ER-associated degradation (ERAD), but this degradation process remains poorly understood for GABAA receptors. Here, using the α1 subunits of GABAA receptors as a model substrate, we demonstrated that Grp94, a metazoan-specific Hsp90 in the ER lumen, uses its middle domain to interact with the α1 subunits and positively regulates their ERAD. OS-9, an ER-resident lectin, acts downstream of Grp94 to further recognize misfolded α1 subunits in a glycan-dependent manner. This delivers misfolded α1 subunits to the Hrd1-mediated ubiquitination and the valosin-containing protein-mediated extraction pathway. Repressing the initial ERAD recognition step by inhibiting Grp94 enhances the functional surface expression of misfolding-prone α1(A322D) subunits, which causes autosomal dominant juvenile myoclonic epilepsy. This study clarifies a Grp94-mediated ERAD pathway for GABAA receptors, which provides a novel way to finely tune their function in physiological and pathophysiological conditions. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Fragrances in oolong tea that enhance the response of GABAA receptors.

    PubMed

    Hossain, Sheikh Julfikar; Aoshima, Hitoshi; Koda, Hirofumi; Kiso, Yoshinobu

    2004-09-01

    We electrophysiologically investigated the effect of some fragrant compounds in oolong tea on the response of ionotropic gamma-aminobutyric acid (GABA) receptors (GABAA receptors) which were expressed in Xenopus oocytes. Of the tested fragrances in oolong tea, cis-jasmone, jasmine lactone, linalool oxide and methyl jasmonate significantly potentiated the response. Among these, cis-jasmone and methyl jasmonate potently potentiated the response, having a respective dissociation constant of the compound (Kp) and maximum potentiation (Vm) of 0.49 mM and 322% for cis-jasmone, and 0.84 mM and 450% for methyl jasmonate. Inhalation of 0.1% cis-jasmone or methyl jasmonate significantly increased the sleeping time of mice induced by pentobarbital, suggesting that these fragrant compounds were absorbed by the brain and thereby potentiated the GABAA receptor response. Both of these compounds may therefore have a tranquillizing effect on the brain.

  15. Decrement of GABAA receptor-mediated inhibitory postsynaptic currents in dentate granule cells in epileptic hippocampus.

    PubMed

    Isokawa, M

    1996-05-01

    1. Inhibitory postsynaptic currents (IPSCs) were studied in hippocampal dentate granule cells (DGCs) in the pilocarpine model and human temporal lobe epilepsy, with the use of the whole cell patch-clamp recording technique in slice preparations. 2. In the pilocarpine model, hippocampal slices were prepared from rats that were allowed to experience spontaneous seizures for 2 mo. Human hippocampal specimens were obtained from epileptic patients who underwent surgical treatment for medically intractable seizures. 3. IPSCs were generated by single perforant path stimulation and recorded at a membrane potential (Vm) of 0 mV near the reversal potential of glutamate excitatory postsynaptic currents in the voltage-clamp recording. IPSCs were pharmacologically identified as gamma-aminobutyric acid-A (GABAA) IPSCs by 10 microM bicuculline methiodide. 4. During low-frequency stimulation, IPSCs were not different in amplitude among non-seizure-experienced rat hippocampi, human nonsclerotic hippocampi, seizure-experienced rat hippocampi, and human sclerotic hippocampi. In the last two groups of DGCs, current-clamp recordings indicated the presence of prolonged excitatory postsynaptic potentials (EPSPs) mediated by the N-methyl-D-aspartate (NMDA) receptor. 5. High-frequency stimulation, administered at Vm = -30 mV to activate NMDA currents, reduced GABAA IPSC amplitude specifically in seizure-experienced rat hippocampi (t = 2.5, P < 0.03) and human sclerotic hippocampi (t = 7.7, P < 0.01). This reduction was blocked by an NMDA receptor antagonist, 2-amino-5-phosphonovaleric acid (APV) (50 microM). The time for GABAA IPSCs to recover to their original amplitude was also shortened by the application of APV. 6. I conclude that, when intensively activated, NMDA receptor-mediated excitatory transmission may interact with GABAergic synaptic inhibition in DGCs in seizure-experienced hippocampus to transiently reduce GABA(A) receptor-channel function. Such interactions may contribute to

  16. Multiple Non-Equivalent Interfaces Mediate Direct Activation of GABAA Receptors by Propofol.

    PubMed

    Eaton, Megan M; Germann, Allison L; Arora, Ruby; Cao, Lily Q; Gao, Xiaoyi; Shin, Daniel J; Wu, Albert; Chiara, David C; Cohen, Jonathan B; Steinbach, Joe Henry; Evers, Alex S; Akk, Gustav

    2016-01-01

    Propofol is a sedative agent that at clinical concentrations acts by allosterically activating or potentiating the γ-aminobutyric acid type A (GABAA) receptor. Mutational, modeling, and photolabeling studies with propofol and its analogues have identified potential interaction sites in the transmembrane domain of the receptor. At the &quot;+&quot; of the β subunit, in the β-α interface, meta-azipropofol labels the M286 residue in the third transmembrane domain. Substitution of this residue with tryptophan results in loss of potentiation by propofol. At the &quot;-&quot; side of the β subunit, in the α-β interface (or β-β interface, in the case of homomeric β receptors), ortho-propofol diazirine labels the H267 residue in the second transmembrane domain. Structural modeling indicates that the β(H267) residue lines a cavity that docks propofol with favorable interaction energy. We used two-electrode voltage clamp to determine the functional effects of mutations to the "+" and "-" sides of the β subunit on activation of the α1β3 GABAA receptor by propofol. We found that while the individual mutations had a small effect, the combination of the M286W mutation with tryptophan mutations of selected residues at the α-β interface leads to strong reduction in gating efficacy for propofol. We conclude that α1β3 GABAA receptors can be activated by propofol interactions with the β-β, α-β, and β-α interfaces, where distinct, non-equivalent regions control channel gating. Any interface can mediate activation, hence substitutions at all interfaces are required for loss of activation by propofol.

  17. Multiple Non-Equivalent Interfaces Mediate Direct Activation of GABAA Receptors by Propofol

    PubMed Central

    Eaton, Megan M.; Germann, Allison L.; Arora, Ruby; Cao, Lily Q.; Gao, Xiaoyi; Shin, Daniel J.; Wu, Albert; Chiara, David C.; Cohen, Jonathan B.; Steinbach, Joe Henry; Evers, Alex S.; Akk, Gustav

    2016-01-01

    Abstract: Background Propofol is a sedative agent that at clinical concentrations acts by allosterically activating or potentiating the γ-aminobutyric acid type A (GABAA) receptor. Mutational, modeling, and photolabeling studies with propofol and its analogues have identified potential interaction sites in the transmembrane domain of the receptor. At the “+” of the β subunit, in the β-α interface, meta-azipropofol labels the M286 residue in the third transmembrane domain. Substitution of this residue with tryptophan results in loss of potentiation by propofol. At the “-” side of the β subunit, in the α-β interface (or β-β interface, in the case of homomeric β receptors), ortho-propofol diazirine labels the H267 residue in the second transmembrane domain. Structural modeling indicates that the β(H267) residue lines a cavity that docks propofol with favorable interaction energy. Method We used two-electrode voltage clamp to determine the functional effects of mutations to the 
“+” and “-” sides of the β subunit on activation of the α1β3 GABAA receptor by propofol. Results We found that while the individual mutations had a small effect, the combination of the M286W mutation with tryptophan mutations of selected residues at the α-β interface leads to strong reduction in gating efficacy for propofol. Conclusion We conclude that α1β3 GABAA receptors can be activated by propofol interactions with the β-β, α-β, and β-α interfaces, where distinct, non-equivalent regions control channel gating. Any interface can mediate activation, hence substitutions at all interfaces are required for loss of activation by propofol. PMID:26830963

  18. Interneuron- and GABAA receptor-specific inhibitory synaptic plasticity in cerebellar Purkinje cells

    NASA Astrophysics Data System (ADS)

    He, Qionger; Duguid, Ian; Clark, Beverley; Panzanelli, Patrizia; Patel, Bijal; Thomas, Philip; Fritschy, Jean-Marc; Smart, Trevor G.

    2015-07-01

    Inhibitory synaptic plasticity is important for shaping both neuronal excitability and network activity. Here we investigate the input and GABAA receptor subunit specificity of inhibitory synaptic plasticity by studying cerebellar interneuron-Purkinje cell (PC) synapses. Depolarizing PCs initiated a long-lasting increase in GABA-mediated synaptic currents. By stimulating individual interneurons, this plasticity was observed at somatodendritic basket cell synapses, but not at distal dendritic stellate cell synapses. Basket cell synapses predominantly express β2-subunit-containing GABAA receptors; deletion of the β2-subunit ablates this plasticity, demonstrating its reliance on GABAA receptor subunit composition. The increase in synaptic currents is dependent upon an increase in newly synthesized cell surface synaptic GABAA receptors and is abolished by preventing CaMKII phosphorylation of GABAA receptors. Our results reveal a novel GABAA receptor subunit- and input-specific form of inhibitory synaptic plasticity that regulates the temporal firing pattern of the principal output cells of the cerebellum.

  19. Anxiety and Depression: Mouse Genetics and Pharmacological Approaches to the Role of GABAA Receptor Subtypes

    PubMed Central

    Smith, Kiersten S.; Rudolph, Uwe

    2012-01-01

    GABAA receptors mediate fast synaptic inhibitory neurotransmission throughout the central nervous system. Recent work indicates a role for GABAA receptors in physiologically modulating anxiety and depression levels. In this review, we summarize research that led to the identification of the essential role of GABAA receptors in counteracting trait anxiety and depression-related behaviors, and research aimed at identifying individual GABAA receptor subtypes involved in physiological and pharmacological modulation of emotions. PMID:21810433

  20. Altered GABAA receptor-mediated synaptic transmission disrupts the firing of gonadotropin-releasing hormone neurons in male mice under conditions that mimic steroid abuse

    PubMed Central

    Penatti, Carlos A A; Davis, Matthew C; Porter, Donna M; Henderson, Leslie P

    2010-01-01

    Gonadotropin–releasing hormone (GnRH) neurons are the central regulators of reproduction. GABAergic transmission plays a critical role in pubertal activation of pulsatile GnRH secretion. Self-administration of excessive doses of anabolic androgenic steroids (AAS) disrupts reproductive function and may have critical repercussions for pubertal onset in adolescent users. Here, we demonstrate that chronic treatment of adolescent male mice with the AAS, 17α-methyltestosterone (17αMT), significantly decreased action potential frequency in GnRH neurons, reduced the serum gonadotropin levels, and decreased testes mass. AAS treatment did not induce significant changes in GABAA receptor subunit mRNA levels or alter the amplitude or decay kinetics of GABAA receptor-mediated spontaneous postsynaptic currents (sPSC) or tonic currents in GnRH neurons. However, AAS treatment significantly increased action potential frequency in neighboring medial preoptic area (mPOA) neurons and GABAA receptor-mediated sPSC frequency in GnRH neurons. In addition, physical isolation of the more lateral aspects of the mPOA from the medially-localized GnRH neurons abrogated the AAS-induced increase in GABAA receptor-mediated sPSC frequency and the decrease in action potential firing in the GnRH cells. Our results indicate that AAS act predominantly on steroid-sensitive presynaptic neurons within the mPOA to impart significant increases in GABAA receptor-mediated inhibitory tone onto downstream GnRH neurons resulting in diminished activity of these pivotal mediators of reproductive function. These AAS-induced changes in central GABAergic circuits of the forebrain may significantly contribute to the disruptive actions of these drugs on pubertal maturation and the development of reproductive competence in male steroid abusers. PMID:20463213

  1. The Role of GABAA Receptors in the Development of Alcoholism

    PubMed Central

    Enoch, Mary-Anne

    2008-01-01

    Alcoholism is a common, heritable, chronic relapsing disorder. GABAA receptors undergo allosteric modulation by ethanol, anesthetics, benzodiazepines and neurosteroids and have been implicated in the acute as well as the chronic effects of ethanol including tolerance, dependence and withdrawal. Medications targeting GABAA receptors ameliorate the symptoms of acute withdrawal. Ethanol induces plasticity in GABAA receptors: tolerance is associated with generally decreased GABAA receptor activation and differentially altered subunit expression. The dopamine (DA) mesolimbic reward pathway originating in the ventral tegmental area (VTA), and interacting stress circuitry play an important role in the development of addiction. VTA GABAergic interneurons are the primary inhibitory regulators of DA neurons and a subset of VTA GABAA receptors may be implicated in the switch from heavy drinking to dependence. GABAA receptors modulate anxiety and response to stress; important elements of sustained drinking and relapse. The GABAA receptor subunit genes clustered on chromosome 4 are highly expressed in the reward pathway. Several recent studies have provided strong evidence that one of these genes, GABRA2, is implicated in alcoholism in humans. The influence of the interaction between ethanol and GABAA receptors in the reward pathway on the development of alcoholism together with genetic and epigenetic vulnerabilities will be explored in this review. PMID:18440057

  2. The α5 subunit-containing GABAA receptors contribute to chronic pain

    PubMed Central

    Bravo-Hernández, Mariana; Corleto, José A.; Barragán-Iglesias, Paulino; González-Ramírez, Ricardo; Pineda-Farias, Jorge B.; Felix, Ricardo; Calcutt, Nigel A.; Delgado-Lezama, Rodolfo; Marsala, Martin; Granados-Soto, Vinicio

    2016-01-01

    It has been recently proposed that α5-subunit containing GABAA receptors (α5-GABAA receptors) that mediate tonic inhibition might be involved in pain. The purpose of this study was to investigate the contribution of α5-GABAA receptors in the loss of GABAergic inhibition and in formalin-, Complete Freund’s adjuvant (CFA)- and L5/L6 spinal nerve ligation-induced long-lasting hypersensitivity. Formalin or CFA injection and L5/L6 spinal nerve ligation produced long-lasting allodynia and hyperalgesia. Moreover, formalin injection impaired the rate-dependent depression (RDD) of the Hofmann reflex. Peripheral and intrathecal pre-treatment or post-treatment with the α5-GABAA receptor antagonist, L-655,708 (0.15–15 nmol) prevented and reversed, respectively, these long-lasting behaviors. Formalin injection increased α5-GABAA receptors mRNA expression in the spinal cord and dorsal root ganglia (DRG) mainly at 3 days. α5-GABAA receptors were localized in the dorsal spinal cord and DRG co-labeling with NeuN, CGRP and IB4 suggesting their presence in peptidergic and non-peptidergic neurons. These receptors were found mainly in small- and medium-size neurons. Formalin injection enhanced α5-GABAA receptors fluorescence intensity in spinal cord and DRG at 3 and 6 days. Intrathecal administration of L-655,708 (15 nmol) prevented and reversed formalin-induced impairment of RDD. These results suggest that α5-GABAA receptors play a role in the loss of GABAergic inhibition and contribute to long-lasting secondary allodynia and hyperalgesia. PMID:26545088

  3. Benzodiazepine-induced anxiolysis and reduction of conditioned fear are mediated by distinct GABAA receptor subtypes in mice

    PubMed Central

    Smith, Kiersten S.; Engin, Elif; Meloni, Edward G.; Rudolph, Uwe

    2012-01-01

    GABAA receptor modulating drugs such as benzodiazepines (BZs) have been used to treat anxiety disorders for over five decades. In order to determine whether the same or different GABAA receptor subtypes are necessary for the anxiolytic-like action of BZs in unconditioned anxiety and conditioned fear models, we investigated the role of different GABAA receptor subtypes by challenging wild type, α1(H101R), α2(H101R) and α3(H126R) mice bred on the C57BL/6J background with diazepam or chlordiazepoxide in the elevated plus maze and the fear-potentiated startle paradigms. Both drugs significantly increased open arm exploration in the elevated plus maze in wild type, α1(H101R) and α3(H126R), but this effect was abolished in α2(H101R) mice; these were expected results based on previous published results. In contrast, while administration of diazepam and chlordiazepoxide significantly attenuated fear-potentiated startle (FPS) in wild type mice and α3(H126R) mice, the fear-reducing effects of these drugs were absent in both α1(H101R) and α2(H101R) point mutants, indicating that both α1- and α2-containing GABAA receptors are necessary for BZs to exert their effects on conditioned fear responses.. Our findings illustrate both an overlap and a divergence between the GABAA receptor subtype requirements for the impact of BZs, specifically that both α1- and α2-containing GABAA receptors are necessary for BZs to reduce conditioned fear whereas only α2-containing GABAA receptors are needed for BZ-induced anxiolysis in unconditioned tests of anxiety. This raises the possibility that GABAergic pharmacological interventions for specific anxiety disorders can be differentially tailored. PMID:22465203

  4. Reduced GABAA Receptor α6 Expression in The Trigeminal Ganglion Enhanced Myofascial Nociceptive Response

    PubMed Central

    Kramer, P. R.; Bellinger, L. L.

    2013-01-01

    Activation of the GABAA receptor results in inhibition of neuronal activity. One subunit of this multi-subunit receptor termed alpha 6 (Gabrα6) contributed to inflammatory temporomandibular joint (TMJ) nociception but TMJ disorders often include myofascial pain. To address Gabrα6 role in myofascial pain we hypothesized that Gabrα6 has an inhibitory role in myofascial nociceptive responses similar to inflammatory TMJ arthritis. To test this hypothesis a, myofascial nociceptive response was induced by placing a ligature bilaterally on the tendon attachment of the anterior superficial part of a male rat's masseter muscle. Four days after ligature placement Gabrα6 expression was reduced by infusing the trigeminal ganglia (TG) with small interfering RNA (siRNA) having homology to either the Gabrα6 gene (Gabra6 siRNA) or no known gene (control siRNA). After siRNA infusion nociceptive behavioral responses were measured, i.e., feeding behavior and head withdrawal after pressing upon the region above the ligature with von Frey filaments. Neuronal activity in the TG and trigeminal nucleus caudalis and upper cervical region (Vc–C1) was measured by quantitating the amount of phosphorylated extracellular signalregulated kinase (p-ERK). Total Gabrα6 and GABAA receptor contents in the TG and Vc–C1 were determined. Gabrα6 siRNA infusion reduced Gabrα6 and GABAA receptor expression and significantly increased the nociceptive response in both nociceptive assays. Gabra6 siRNA infusion also significantly increased TG p-ERK expression of the ligated rats. From these results we conclude GABAA receptors consisting of the Gabrα6 subunit inhibit TG nociceptive sensory afferents in the trigeminal pathway and have an important role in the regulation of myofascial nociception. PMID:23602886

  5. The role of GABA(A) receptors in the development of alcoholism.

    PubMed

    Enoch, Mary-Anne

    2008-07-01

    Alcoholism is a common, heritable, chronic relapsing disorder. GABA(A) receptors undergo allosteric modulation by ethanol, anesthetics, benzodiazepines and neurosteroids and have been implicated in the acute as well as the chronic effects of ethanol including tolerance, dependence and withdrawal. Medications targeting GABA(A) receptors ameliorate the symptoms of acute withdrawal. Ethanol induces plasticity in GABA(A) receptors: tolerance is associated with generally decreased GABA(A) receptor activation and differentially altered subunit expression. The dopamine (DA) mesolimbic reward pathway originating in the ventral tegmental area (VTA), and interacting stress circuitry play an important role in the development of addiction. VTA GABAergic interneurons are the primary inhibitory regulators of DA neurons and a subset of VTA GABA(A) receptors may be implicated in the switch from heavy drinking to dependence. GABA(A) receptors modulate anxiety and response to stress; important elements of sustained drinking and relapse. The GABA(A) receptor subunit genes clustered on chromosome 4 are highly expressed in the reward pathway. Several recent studies have provided strong evidence that one of these genes, GABRA2, is implicated in alcoholism in humans. The influence of the interaction between ethanol and GABA(A) receptors in the reward pathway on the development of alcoholism together with genetic and epigenetic vulnerabilities will be explored in this review.

  6. Lipid raft integrity affects GABAA receptor, but not NMDA receptor modulation by psychopharmacological compounds.

    PubMed

    Nothdurfter, Caroline; Tanasic, Sascha; Di Benedetto, Barbara; Uhr, Manfred; Wagner, Eva-Maria; Gilling, Kate E; Parsons, Chris G; Rein, Theo; Holsboer, Florian; Rupprecht, Rainer; Rammes, Gerhard

    2013-07-01

    Lipid rafts have been shown to play an important role for G-protein mediated signal transduction and the function of ligand-gated ion channels including their modulation by psychopharmacological compounds. In this study, we investigated the functional significance of the membrane distribution of NMDA and GABAA receptor subunits in relation to the accumulation of the tricyclic antidepressant desipramine (DMI) and the benzodiazepine diazepam (Diaz). In the presence of Triton X-100, which allowed proper separation of the lipid raft marker proteins caveolin-1 and flotillin-1 from the transferrin receptor, all receptor subunits were shifted to the non-raft fractions. In contrast, under detergent-free conditions, NMDA and GABAA receptor subunits were detected both in raft and non-raft fractions. Diaz was enriched in non-raft fractions without Triton X-100 in contrast to DMI, which preferentially accumulated in lipid rafts. Impairment of lipid raft integrity by methyl-β-cyclodextrine (MβCD)-induced cholesterol depletion did not change the inhibitory effect of DMI at the NMDA receptor, whereas it enhanced the potentiating effect of Diaz at the GABAA receptor at non-saturating concentrations of GABA. These results support the hypothesis that the interaction of benzodiazepines with the GABAA receptor likely occurs outside of lipid rafts while the antidepressant DMI acts on ionotropic receptors both within and outside these membrane microdomains.

  7. Alpha1- and alpha2-containing GABAA receptor modulation is not necessary for benzodiazepine-induced hyperphagia.

    PubMed

    Morris, H V; Nilsson, S; Dixon, C I; Stephens, D N; Clifton, P G

    2009-06-01

    Benzodiazepines increase food intake, an effect attributed to their ability to enhance palatability. We investigated which GABA(A) receptor subtypes may be involved in mediating benzodiazepine-induced hyperphagia. The role of the alpha2 subtype was investigated by observing the effects of midazolam, on the behavioural satiety sequence in mice with targeted deletion of the alpha2 gene (alpha2 knockout). Midazolam (0.125, 0.25 and 0.5mg/kg) increased food intake and the amount of time spent feeding in alpha2 knockout mice, suggesting that BZ-induced hyperphagia does not involve alpha2-containing GABA(A) receptors. We further investigated the roles of alpha1- and alpha3-containing GABA(A) receptors in mediating BZ-induced hyperphagia. We treated alpha2(H101R) mice, in which alpha2-containing receptors are rendered benzodiazepine insensitive, with L-838417, a compound which acts as a partial agonist at alpha2-, alpha3- and alpha5-receptors but is inactive at alpha1-containing receptors. L-838417 (10 and 30 mg/kg) increased food intake and the time spent feeding in both wildtype and alpha2(H101R) mice, demonstrating that benzodiazepine-induced hyperphagia does not require alpha1- and alpha2-containing GABA(A) receptors. These observations, together with evidence against the involvement of alpha5-containing GABA(A) receptors, suggest that alpha3-containing receptors mediate BZ-induced hyperphagia in the mouse.

  8. Modulation of neurosteroid potentiation by protein kinases at synaptic- and extrasynaptic-type GABAA receptors

    PubMed Central

    Adams, Joanna M.; Thomas, Philip; Smart, Trevor G.

    2015-01-01

    GABAA receptors are important for inhibition in the CNS where neurosteroids and protein kinases are potent endogenous modulators. Acting individually, these can either enhance or depress receptor function, dependent upon the type of neurosteroid or kinase and the receptor subunit combination. However, in vivo, these modulators probably act in concert to fine-tune GABAA receptor activity and thus inhibition, although how this is achieved remains unclear. Therefore, we investigated the relationship between these modulators at synaptic-type α1β3γ2L and extrasynaptic-type α4β3δ GABAA receptors using electrophysiology. For α1β3γ2L, potentiation of GABA responses by tetrahydro-deoxycorticosterone was reduced after inhibiting protein kinase C, and enhanced following its activation, suggesting this kinase regulates neurosteroid modulation. In comparison, neurosteroid potentiation was reduced at α1β3S408A,S409Aγ2L receptors, and unaltered by PKC inhibitors or activators, indicating that phosphorylation of β3 subunits is important for regulating neurosteroid activity. To determine whether extrasynaptic-type GABAA receptors were similarly modulated, α4β3δ and α4β3S408A,S409Aδ receptors were investigated. Neurosteroid potentiation was reduced at both receptors by the kinase inhibitor staurosporine. By contrast, neurosteroid-mediated potentiation at α4S443Aβ3S408A,S409Aδ receptors was unaffected by protein kinase inhibition, strongly suggesting that phosphorylation of α4 and β3 subunits is required for regulating neurosteroid activity at extrasynaptic receptors. Western blot analyses revealed that neurosteroids increased phosphorylation of β3S408,S409 implying that a reciprocal pathway exists for neurosteroids to modulate phosphorylation of GABAA receptors. Overall, these findings provide important insight into the regulation of GABAA receptors in vivo, and into the mechanisms by which GABAergic inhibitory transmission may be simultaneously tuned by

  9. GABAA receptor-mediated currents in interneurons and pyramidal cells of rat visual cortex

    PubMed Central

    Xiang, Zixiu; Huguenard, John R; Prince, David A

    1998-01-01

    We compared γ-aminobutyric acid (GABA)-mediated responses of identified pyramidal cells and fast spiking interneurons in layer V of visual cortical slices from young rats (P11-14). The frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) was similar in pyramidal cells and interneurons (1.7 vs. 1.9 Hz). For events with 10-90 % rise times less than 0.9 ms, no significant differences were found in mean amplitude (61 vs. 65 pA), mean rise time (0.58 vs. 0.61 ms), or the first time constant of decay (τ1, 6.4 vs. 6.5 ms) between pyramidal cells and interneurons. The second decay time constant (τ2) was significantly longer in interneurons than in pyramidal cells (49 vs. 22 ms). The difference in sIPSC decay kinetics between two cell types also existed in adult rats (P36-42), suggesting the kinetic difference is not due to differential development of GABAA receptors in these cell types. The decay kinetics of monosynaptic evoked IPSCs were also longer in interneurons. As in the case of sIPSCs, the difference was accounted for by the second decay time constant. τ1 and τ2 were, respectively, 13 and 64 ms for interneurons and 12 and 47 ms for pyramidal cells. Cell-attached patch recordings revealed that the mean open time for single Cl− channels in response to 2 μM GABA was significantly longer in interneurons than pyramidal cells (5.0 vs. 2.8 ms). The chord conductance of these channels in interneurons (12 pS) was significantly smaller than in pyramidal cells (15 pS). Single channel currents reversed polarity when the pipette potential was approximately -10 mV for both cell types. These results show that there is a functional diversity of GABAA receptors in electrophysiologically and morphologically identified cortical pyramidal cells and interneurons. This diversity might derive from the different molecular composition of the receptors in these two cell types. PMID:9503333

  10. Increased GABA(A) inhibition of the RVLM after hindlimb unloading in rats

    NASA Technical Reports Server (NTRS)

    Moffitt, Julia A.; Heesch, Cheryl M.; Hasser, Eileen M.

    2002-01-01

    Attenuated baroreflex-mediated increases in renal sympathetic nerve activity (RSNA) in hindlimb unloaded (HU) rats apparently are due to changes within the central nervous system. We hypothesized that GABA(A) receptor-mediated inhibition of the rostral ventrolateral medulla (RVLM) is increased after hindlimb unloading. Responses to bilateral microinjection of the GABA(A) antagonist (-)-bicuculline methiodide (BIC) into the RVLM were examined before and during caudal ventrolateral medulla (CVLM) inhibition in Inactin-anesthetized control and HU rats. Increases in mean arterial pressure (MAP), heart rate (HR), and RSNA in response to BIC in the RVLM were significantly enhanced in HU rats. Responses to bilateral CVLM blockade were not different. When remaining GABA(A) inhibition in the RVLM was blocked by BIC during CVLM inhibition, the additional increases in MAP and RSNA were significantly greater in HU rats. These data indicate that GABA(A) receptor-mediated inhibition of RVLM neurons is augmented after hindlimb unloading. Effects of input from the CVLM were unaltered. Thus, after cardiovascular deconditioning in rodents, the attenuated increase in sympathetic nerve activity in response to hypotension is associated with greater GABA(A) receptor-mediated inhibition of RVLM neurons originating at least in part from sources other than the CVLM.

  11. Role of α1- and α2-GABAA receptors in mediating the respiratory changes associated with benzodiazepine sedation

    PubMed Central

    Masneuf, S; Buetler, J; Koester, C; Crestani, F

    2012-01-01

    BACKGROUND AND PURPOSE The molecular substrates underlying the respiratory changes associated with benzodiazepine sedation are unknown. We examined the effects of different doses of diazepam and alprazolam on resting breathing in wild-type (WT) mice and clarified the contribution of α1- and α2-GABAA receptors, which mediate the sedative and muscle relaxant action of diazepam, respectively, to these drug effects using point-mutated mice possessing either α1H101R- or α2H101R-GABAA receptors insensitive to benzodiazepine. EXPERIMENTAL APPROACH Room air breathing was monitored using whole-body plethysmography. Different groups of WT mice were injected i.p. with diazepam (1–100 mg·kg−1), alprazolam (0.3, 1 or 3 mg·kg−1) or vehicle. α1H101R and α2H101R mice received 1 or 10 mg·kg−1 diazepam or 0.3 or 3 mg·kg−1 alprazolam. Respiratory frequency, tidal volume, time of expiration and time of inspiration before and 20 min after drug injection were analysed. KEY RESULTS Diazepam (10 mg·kg−1) decreased the time of expiration, thereby increasing the resting respiratory frequency, in WT and α2H101R mice, but not in α1H101R mice. The time of inspiration was shortened in WT and α1H101R mice, but not in α2H101R mice. Alprazolam (1–3 mg·kg−1) stimulated the respiratory frequency by shortening expiration and inspiration duration in WT mice. This tachypnoeic effect was partially conserved in α1H101R mice while absent in α2H101R mice. CONCLUSIONS AND IMPLICATIONS These results identify a specific role for α1-GABAA receptors and α2-GABAA receptors in mediating the shortening by benzodiazepines of the expiratory and inspiratory phase of resting breathing respectively. PMID:22044283

  12. Extrasynaptic αβ subunit GABAA receptors on rat hippocampal pyramidal neurons

    PubMed Central

    Mortensen, Martin; Smart, Trevor G

    2006-01-01

    Extrasynaptic GABAA receptors that are tonically activated by ambient GABA are important for controlling neuronal excitability. In hippocampal pyramidal neurons, the subunit composition of these extrasynaptic receptors may include α5βγ and/or α4βδ subunits. Our present studies reveal that a component of the tonic current in the hippocampus is highly sensitive to inhibition by Zn2+. This component is probably not mediated by either α5βγ or α4βδ receptors, but might be explained by the presence of αβ isoforms. Using patch-clamp recording from pyramidal neurons, a small tonic current measured in the absence of exogenous GABA exhibited both high and low sensitivity to Zn2+ inhibition (IC50 values, 1.89 and 223 μm, respectively). Using low nanomolar and micromolar GABA concentrations to replicate tonic currents, we identified two components that are mediated by benzodiazepine-sensitive and -insensitive receptors. The latter indicated that extrasynaptic GABAA receptors exist that are devoid of γ2 subunits. To distinguish whether the benzodiazepine-insensitive receptors were αβ or αβδ isoforms, we used single-channel recording. Expressing recombinant α1β3γ2, α5β3γ2, α4β3δ and α1β3 receptors in human embryonic kidney (HEK) or mouse fibroblast (Ltk) cells, revealed similar openings with high main conductances (∼25–28 pS) for γ2 or δ subunit-containing receptors whereas αβ receptors were characterized by a lower main conductance state (∼11 pS). Recording from pyramidal cell somata revealed a similar range of channel conductances, indicative of a mixture of GABAA receptors in the extrasynaptic membrane. The lowest conductance state (∼11 pS) was the most sensitive to Zn2+ inhibition in accord with the presence of αβ receptors. This receptor type is estimated to account for up to 10% of all extrasynaptic GABAA receptors on hippocampal pyramidal neurons. PMID:17023503

  13. GABAA-current rundown of temporal lobe epilepsy is associated with repetitive activation of GABAA “phasic” receptors

    PubMed Central

    Palma, Eleonora; Roseti, Cristina; Maiolino, Francesca; Fucile, Sergio; Martinello, Katiuscia; Mazzuferi, Manuela; Aronica, Eleonora; Manfredi, Mario; Esposito, Vincenzo; Cantore, Gianpaolo; Miledi, Ricardo; Simonato, Michele; Eusebi, Fabrizio

    2007-01-01

    A study was made of the “rundown” of GABAA receptors, microtransplanted to Xenopus oocytes from surgically resected brain tissues of patients afflicted with drug-resistant human mesial temporal lobe epilepsy (mTLE). Cell membranes, isolated from mTLE neocortex specimens, were injected into frog oocytes that rapidly incorporated functional GABAA receptors. Upon repetitive activation with GABA (1 mM), “epileptic” GABAA receptors exhibited a GABAA-current (IGABA) rundown that was significantly enhanced by Zn2+ (≤250 μM), and practically abolished by the high-affinity GABAA receptor inverse agonist SR95531 (gabazine; 2.5–25 μM). Conversely, IGABA generated by “control” GABAA receptors microtransplanted from nonepileptic temporal lobe, lesional TLE, or authoptic disease-free tissues remained stable during repetitive stimulation, even in oocytes treated with Zn2+. We conclude that rundown of mTLE epileptic receptors depends on the presence of “phasic GABAA receptors” that have low sensitivity to antagonism by Zn2+. Additionally, we found that GABAA receptors, microtransplanted from the cerebral cortex of adult rats exhibiting recurrent seizures, caused by pilocarpine-induced status epilepticus, showed greater rundown than control tissue, an event also occurring in patch-clamped rat pyramidal neurons. Rundown of epileptic rat receptors resembled that of human mTLE receptors, being enhanced by Zn2+ (40 μM) and sensitive to the antiepileptic agent levetiracetam, the neurotrophin brain-derived neurotrophic factor, and the phosphatase blocker okadaic acid. Our findings point to the rundown of GABAA receptors as a hallmark of TLE and suggest that modulating tonic and phasic mTLE GABAA receptor activity may represent a useful therapeutic approach to the disease. PMID:18083839

  14. Developmental changes in expression of GABAA receptor-channels in rat intrinsic cardiac ganglion neurones

    PubMed Central

    Fischer, Harald; Harper, Alexander A; Anderson, Colin R; Adams, David J

    2005-01-01

    The effects of γ-aminobutyric acid (GABA) on the electrophysiological properties of intracardiac neurones were investigated in the intracardiac ganglion plexus in situ and in dissociated neurones from neonatal, juvenile and adult rat hearts. Focal application of GABA evoked a depolarizing, excitatory response in both intact and dissociated intracardiac ganglion neurones. Under voltage clamp, both GABA and muscimol elicited inward currents at −60 mV in a concentration-dependent manner. The fast, desensitizing currents were mimicked by the GABAA receptor agonists muscimol and taurine, and inhibited by the GABAA receptor antagonists, bicuculline and picrotoxin. The GABAA0 antagonist (1,2,5,6-tetrahydropyridin-4-yl)methyl phosphonic acid (TPMPA), had no effect on GABA-induced currents, suggesting that GABAA receptor-channels mediate the response. The GABA-evoked current amplitude recorded from dissociated neurones was age dependent whereby the peak current density measured at −100 mV was ∼ 20 times higher for intracardiac neurones obtained from neonatal rats (P2–5) compared with adult rats (P45–49). The decrease in GABA sensitivity occurred during the first two postnatal weeks and coincides with maturation of the sympathetic innervation of the rat heart. Immunohistochemical staining using antibodies against GABA demonstrate the presence of GABA in the intracardiac ganglion plexus of the neonatal rat heart. Taken together, these results suggest that GABA and taurine may act as modulators of neurotransmission and cardiac function in the developing mammalian intrinsic cardiac nervous system. PMID:15731187

  15. Mechanisms of anabolic androgenic steroid inhibition of mammalian ɛ-subunit-containing GABAA receptors

    PubMed Central

    Jones, Brian L; Whiting, Paul J; Henderson, Leslie P

    2006-01-01

    GABAergic transmission regulates the activity of gonadotrophin-releasing hormone (GnRH) neurons in the preoptic area/hypothalamus that control the onset of puberty and the expression of reproductive behaviours. One of the hallmarks of illicit use of anabolic androgenic steroids (AAS) is disruption of behaviours under neuroendocrine control. GnRH neurons are among a limited population of cells that express high levels of the ɛ-subunit of the GABAA receptor. To better understand the actions of AAS on neuroendocrine mechanisms, we have characterized modulation of GABAA receptor-mediated currents in mouse native GnRH neurons and in heterologous cells expressing recombinant α2β3ɛ-receptors. GnRH neurons exhibited robust currents in response to millimolar concentrations of GABA and a picrotoxin (PTX)-sensitive, bicuculline-insensitive current that probably arises from spontaneous openings of GABAA receptors. The AAS 17α-methyltestosterone (17α-MeT) inhibited spontaneous and GABA-evoked currents in GnRH neurons. For recombinant α2β3ɛ-receptors, 17α-MeT inhibited phasic and tonic GABA-elicited responses, accelerated desensitization and slowed paired pulse response recovery. Single channel analysis indicated that GABA-evoked events could be described by three open dwell components and that 17α-MeT enhanced residence in the intermediate dwell state. This AAS also inhibited a PTX-sensitive, spontaneous current (open probability, ∼0.15–0.2) in a concentration-dependent fashion (IC50 ≈ 9 μm). Kinetic modelling indicated that the inhibition induced by 17α-MeT occurs by an allosteric block in which the AAS interacts preferentially with a closed state and promotes accumulation in that state. Finally, studies with a G302S mutant ɛ-subunit suggest that this residue within the transmembrane domain TM2 plays a role in mediating AAS binding and modulation. In sum, our results indicate that inclusion of the ɛ-subunit significantly alters the profile of AAS

  16. Modulation of neuronal and recombinant GABAA receptors by redox reagents

    PubMed Central

    Amato, Alessandra; Connolly, Christopher N; Moss, Stephen J; Smart, Trevor G

    1999-01-01

    The functional role played by the postulated disulphide bridge in γ-aminobutyric acid type A (GABAA) receptors and its susceptibility to oxidation and reduction were studied using recombinant (murine receptor subunits expressed in human embryonic kidney cells) and rat neuronal GABAA receptors in conjunction with whole-cell and single channel patch-clamp techniques. The reducing agent dithiothreitol (DTT) reversibly potentiated GABA-activated responses (IGABA) of α1β1 or α1β2 receptors while the oxidizing reagent 5,5′-dithio-bis-(2-nitrobenzoic acid) (DTNB) caused inhibition. Redox modulation of IGABA was independent of GABA concentration, membrane potential and the receptor agonist and did not affect the GABA EC50 or Hill coefficient. The endogenous antioxidant reduced glutathione (GSH) also potentiated IGABA in α1β2 receptors, while both the oxidized form of DTT and glutathione (GSSG) caused small inhibitory effects. Recombinant receptors composed of α1β1γ2S or α1β2γ2S were considerably less sensitive to DTT and DTNB. For neuronal GABAA receptors, IGABA was enhanced by flurazepam and relatively unaffected by redox reagents. However, in cultured sympathetic neurones, nicotinic acetylcholine-activated responses were inhibited by DTT whilst in cerebellar granule neurones, NMDA-activated currents were potentiated by DTT and inhibited by DTNB. Single GABA-activated ion channel currents exhibited a conductance of 16 pS for α1β1 constructs. DTT did not affect the conductance or individual open time constants determined from dwell time histograms, but increased the mean open time by affecting the channel open probability without increasing the number of cell surface receptors. A kinetic model of the effects of DTT and DTNB suggested that the receptor existed in equilibrium between oxidized and reduced forms. DTT increased the rate of entry into reduced receptor forms and also into desensitized states. DTNB reversed these kinetic effects. Our results

  17. Extrasynaptic GABAA receptors in rat pontine reticular formation increase wakefulness.

    PubMed

    Vanini, Giancarlo; Baghdoyan, Helen A

    2013-03-01

    Gamma-aminobutyric acid (GABA) causes phasic inhibition via synaptic GABAA receptors and tonic inhibition via extrasynaptic GABAA receptors. GABA levels in the extracellular space regulate arousal state and cognition by volume transmission via extrasynaptic GABAA receptors. GABAergic transmission in the pontine reticular formation promotes wakefulness. No previous studies have determined whether an agonist at extrasynaptic GABAA receptors administered into the pontine reticular formation alters sleep and wakefulness. Therefore, this study used gaboxadol (THIP; agonist at extrasynaptic GABAA receptors that contain a δ subunit) to test the hypothesis that extrasynaptic GABAA receptors within the pontine reticular formation modulate sleep and wakefulness. Within/between subjects. University of Michigan. Adult male Crl:CD*(SD) (Sprague-Dawley) rats (n = 10). Microinjection of gaboxadol, the nonsubtype selective GABAA receptor agonist muscimol (positive control), and saline (negative control) into the rostral pontine reticular formation. Gaboxadol significantly increased wakefulness and decreased both nonrapid eye movement sleep and rapid eye movement sleep in a concentration-dependent manner. Relative to saline, gaboxadol did not alter electroencephalogram power. Microinjection of muscimol into the pontine reticular formation of the same rats that received gaboxadol increased wakefulness and decreased sleep. Tonic inhibition via extrasynaptic GABAA receptors that contain a δ subunit may be one mechanism by which the extracellular pool of endogenous GABA in the rostral pontine reticular formation promotes wakefulness. Vanini G; Baghdoyan HA. Extrasynaptic GABAA receptors in rat pontine reticular formation increase wakefulness. SLEEP 2013;36(3):337-343.

  18. Responses to GABA(A) receptor activation are altered in NTS neurons isolated from renal-wrap hypertensive rats.

    PubMed

    Tolstykh, Gleb; Belugin, Sergei; Tolstykh, Olga; Mifflin, Steve

    2003-10-01

    The inhibitory amino acid GABA is a potent modulator of the spontaneous discharge and the responses to afferent inputs of neurons in the nucleus of the solitary tract (NTS). To determine if responses to activation of GABA(A) receptors are altered in hypertension, GABA(A) receptor-evoked whole cell currents were measured in enzymatically dispersed NTS neurons from 33 normotensive (NT, 109+/-4 mm Hg, n=7) and 24 hypertensive (HT, 167+/-5 mm Hg, n=24) rats. GABA(A) receptor-evoked currents reversed at the calculated equilibrium potential for chloride and were blocked by bicuculline (n=6). Membrane capacitance was the same in neurons from NT (7.5+/-0.6 pF, n=62) and HT (6.8+/-0.6 pF, n=51) rats. The EC50 for peak GABA-evoked currents cells was significantly greater in neurons from HT (21.0+/-2.6 micromol/L, n=16) compared with NT rats (13.0+/-1.8 micromol/L, n=14, P=0.01). The EC50 of neurons exhibiting DiA labeling of presumptive aortic nerve terminals was no different than that observed in the nonlabeled cells (19.0+/-4.9 micromol/L, n=4). The time constant for desensitization of GABA(A)-evoked currents was the same in neurons from HT (4.5+/-0.3 seconds, n=17) and NT rats (3.8+/-0.3 seconds, n=17, P>0.05). Repetitive pulse application of GABA revealed a more rapid decline in the evoked current in neurons from HT compared with NT rats. The amplitude of the 5th pulse of GABA (5-second duration, 2-second interval) was 21+/-2% the amplitude of the 1st pulse in NT rats (n=10) and 14+/-2% in HT rats (n=11, P<0.05). These alterations in GABAA-receptor evoked currents could render the neurons less sensitive to GABA(A) receptor inhibition and influence afferent integration by NTS neurons in HT.

  19. Extrasynaptic GABAA Receptors in Rat Pontine Reticular Formation Increase Wakefulness

    PubMed Central

    Vanini, Giancarlo; Baghdoyan, Helen A.

    2013-01-01

    Study Objectives: Gamma-aminobutyric acid (GABA) causes phasic inhibition via synaptic GABAA receptors and tonic inhibition via extrasynaptic GABAA receptors. GABA levels in the extracellular space regulate arousal state and cognition by volume transmission via extrasynaptic GABAA receptors. GABAergic transmission in the pontine reticular formation promotes wakefulness. No previous studies have determined whether an agonist at extrasynaptic GABAA receptors administered into the pontine reticular formation alters sleep and wakefulness. Therefore, this study used gaboxadol (THIP; agonist at extrasynaptic GABAA receptors that contain a δ subunit) to test the hypothesis that extrasynaptic GABAA receptors within the pontine reticular formation modulate sleep and wakefulness. Design: Within/between subjects. Setting: University of Michigan. Patients or Participants: Adult male Crl:CD*(SD) (Sprague-Dawley) rats (n = 10). Interventions: Microinjection of gaboxadol, the nonsubtype selective GABAA receptor agonist muscimol (positive control), and saline (negative control) into the rostral pontine reticular formation. Measurements and Results: Gaboxadol significantly increased wakefulness and decreased both nonrapid eye movement sleep and rapid eye movement sleep in a concentration-dependent manner. Relative to saline, gaboxadol did not alter electroencephalogram power. Microinjection of muscimol into the pontine reticular formation of the same rats that received gaboxadol increased wakefulness and decreased sleep. Conclusion: Tonic inhibition via extrasynaptic GABAA receptors that contain a δ subunit may be one mechanism by which the extracellular pool of endogenous GABA in the rostral pontine reticular formation promotes wakefulness. Citation: Vanini G; Baghdoyan HA. Extrasynaptic GABAA receptors in rat pontine reticular formation increase wakefulness. SLEEP 2013;36(3):337-343. PMID:23450652

  20. Proton modulation of recombinant GABAA receptors: influence of GABA concentration and the β subunit TM2–TM3 domain

    PubMed Central

    Wilkins, Megan E; Hosie, Alastair M; Smart, Trevor G

    2005-01-01

    Regulation of GABAA receptors by extracellular pH exhibits a dependence on the receptor subunit composition. To date, the molecular mechanism responsible for the modulation of GABAA receptors at alkaline pH has remained elusive. We report here that the GABA-activated current can be potentiated at pH 8.4 for both αβ and αβγ subunit-containing receptors, but only at GABA concentrations below the EC40. Site-specific mutagenesis revealed that a single lysine residue, K279 in the β subunit TM2–TM3 linker, was critically important for alkaline pH to modulate the function of both α1β2 and α1β2γ2 receptors. The ability of low concentrations of GABA to reveal different pH titration profiles for GABAA receptors was also examined at acidic pH. At pH 6.4, GABA activation of αβγ receptors was enhanced at low GABA concentrations. This effect was ablated by the mutation H267A in the β subunit. Decreasing the pH further to 5.4 inhibited GABA responses via αβγ receptors, whereas those responses recorded from αβ receptors were potentiated. Inserting homologous β subunit residues into the γ2 subunit to recreate, in αβγ receptors, the proton modulatory profile of αβ receptors, established that in the presence of β2H267, the mutation γ2T294K was necessary to potentiate the GABA response at pH 5.4. This residue, T294, is homologous to K279 in the β subunit and suggests that a lysine at this position is an important residue for mediating the allosteric effects of both acidic and alkaline pH changes, rather than forming a direct site for protonation within the GABAA receptor. PMID:15946973

  1. Perimenstrual-Like Hormonal Regulation of Extrasynaptic δ-Containing GABAA Receptors Mediating Tonic Inhibition and Neurosteroid Sensitivity

    PubMed Central

    Carver, Chase Matthew; Wu, Xin; Gangisetty, Omkaram

    2014-01-01

    Neurosteroids are endogenous regulators of neuronal excitability and seizure susceptibility. Neurosteroids, such as allopregnanolone (AP; 3α-hydroxy-5α-pregnan-20-one), exhibit enhanced anticonvulsant activity in perimenstrual catamenial epilepsy, a neuroendocrine condition in which seizures are clustered around the menstrual period associated with neurosteroid withdrawal (NSW). However, the molecular mechanisms underlying such enhanced neurosteroid sensitivity remain unclear. Neurosteroids are allosteric modulators of both synaptic (αβγ2-containing) and extrasynaptic (αβδ-containing) GABAA receptors, but they display greater sensitivity toward δ-subunit receptors in dentate gyrus granule cells (DGGCs). Here we report a novel plasticity of extrasynaptic δ-containing GABAA receptors in the dentate gyrus in a mouse perimenstrual-like model of NSW. In molecular and immunofluorescence studies, a significant increase occurred in δ subunits, but not α1, α2, β2, and γ2 subunits, in the dentate gyrus of NSW mice. Electrophysiological studies confirmed enhanced sensitivity to AP potentiation of GABA-gated currents in DGGCs, but not in CA1 pyramidal cells, in NSW animals. AP produced a greater potentiation of tonic currents in DGGCs of NSW animals, and such enhanced AP sensitivity was not evident in δ-subunit knock-out mice subjected to a similar withdrawal paradigm. In behavioral studies, mice undergoing NSW exhibited enhanced seizure susceptibility to hippocampus kindling. AP has enhanced anticonvulsant effects in fully kindled wild-type mice, but not δ-subunit knock-out mice, undergoing NSW-induced seizures, confirming δ-linked neurosteroid sensitivity. These results indicate that perimenstrual NSW is associated with striking upregulation of extrasynaptic, δ-containing GABAA receptors that mediate tonic inhibition and neurosteroid sensitivity in the dentate gyrus. These findings may represent a molecular rationale for neurosteroid therapy of catamenial

  2. Muscarinic Long-Term Enhancement of Tonic and Phasic GABAA Inhibition in Rat CA1 Pyramidal Neurons

    PubMed Central

    Domínguez, Soledad; Fernández de Sevilla, David; Buño, Washington

    2016-01-01

    Acetylcholine (ACh) regulates network operation in the hippocampus by controlling excitation and inhibition in rat CA1 pyramidal neurons (PCs), the latter through gamma-aminobutyric acid type-A receptors (GABAARs). Although, the enhancing effects of ACh on GABAARs have been reported (Dominguez et al., 2014, 2015), its role in regulating tonic GABAA inhibition has not been explored in depth. Therefore, we aimed at determining the effects of the activation of ACh receptors on responses mediated by synaptic and extrasynaptic GABAARs. Here, we show that under blockade of ionotropic glutamate receptors ACh, acting through muscarinic type 1 receptors, paired with post-synaptic depolarization induced a long-term enhancement of tonic GABAA currents (tGABAA) and puff-evoked GABAA currents (pGABAA). ACh combined with depolarization also potentiated IPSCs (i.e., phasic inhibition) in the same PCs, without signs of interactions of synaptic responses with pGABAA and tGABAA, suggesting the contribution of two different GABAA receptor pools. The long-term enhancement of GABAA currents and IPSCs reduced the excitability of PCs, possibly regulating plasticity and learning in behaving animals. PMID:27833531

  3. The role of GABA-A and mitochondrial diazepam-binding inhibitor receptors on the effects of neurosteroids on food intake in mice.

    PubMed

    Reddy, D S; Kulkarni, S K

    1998-06-01

    The present studies were undertaken to investigate the neuroactive steroidal modulation of feeding behavior and possible involvement of gamma-aminobutyric acid type-A (GABA-A) and mitochondrial diazepam binding inhibitor (DBI) receptors (MDR) in food-deprived male mice. Allopregnanolone (0.5-2 mg/kg), a neurosteroid, progesterone (1-10 mg/kg), a neurosteroid precursor, and 4'-chlordiazepam (0.25-1 mg/kg), a specific high affinity MDR agonist, produced a dose-dependent hyperphagic effects. In contrast, neurosteroids pregnenolone sulfate (PS) (1-10 mg/kg) and dehydroepiandrosterone sulfate (DHEAS) (1-10 mg/kg) produced a hypophagic effect, in a dose-dependent manner. The allopregnanolone-, progesterone- and 4'-chlordiazepam-induced hyperphagic effect was blocked by picrotoxin (1 mg/kg), a GABA-A chloride channel antagonist, but not by flumazenil (2 mg/kg), a benzodiazepine (BZD) antagonist. The 4'-chlordiazepam-induced hyperphagic effect was prevented by pretreatment with PK11195 (2 mg/kg), a selective partial MDR antagonist. The hypophagic effect of DHEAS (10 mg/kg) was reversed by dizocilpine (10 microg/kg), an NMDA receptor antagonist, but resistant to muscimol (0.1 mg/kg), a selective GABA-A receptor agonist. In contrast, the PS (10 mg/kg)-induced hypophagic response was resistant to dizocilpine, but sensitive to muscimol (0.1 mg/kg). Both the sulfated neurosteroids PS and DHEAS also reversed the hyperphagic effect of allopregnanolone. In addition, the BZD agonist triazolam (0.05-0.25 mg/kg) also produced a flumazenil- and picrotoxin-sensitive hyperphagic effects, thereby suggesting the changes in feeding behavior by neurosteroids represent GABA-A receptor mediated hyperphagic action. Although the possible antistress or anxiolytic actions of neurosteroids may confound the hyperphagia, behavioral effects observed were specific to food because the mice were adopted to the test environment and diet, and of a possible variation between various neurosteroids in the

  4. Role of gamma-aminobutyric acid type A (GABAA) receptor subtypes in acute benzodiazepine physical dependence-like effects: evidence from squirrel monkeys responding under a schedule of food presentation

    PubMed Central

    Fischer, Bradford D.; Teixeira, Laura P.; van Linn, Michael L.; Namjoshi, Ojas A.; Cook, James M.; Rowlett, James K.

    2013-01-01

    Rationale Assays of schedule-controlled responding can be used to characterize the pharmacology of benzodiazepines and other GABAA receptor modulators, and are sensitive to changes in drug effects that are related to physical dependence. Objective The present study used this approach to investigate the role of GABAA receptor subtypes in mediating dependence-like effects following benzodiazepine administration. Methods Squirrel monkeys (n=6) were trained on a fixed-ratio schedule of food reinforcement. Initially, the response rate-decreasing effects of chlordiazepoxide (0.1–10 mg/kg; nonselective GABAA receptor agonist), zolpidem (0.032–1.0 mg/kg; α1 subunit-containing GABAA subtype-preferring agonist) and HZ-166 (0.1–10 mg/kg; functionally selective α2 and α3 subunit-containing GABAA receptor agonist) were assessed. Next, acute dependence-like effects following single injections of chlordiazepoxide, zolpidem and HZ-166 were assessed with flumazenil (0.1–3.2 mg/kg; nonselective GABAA receptor antagonist). Finally, acute dependence-like effects following zolpidem administration were assessed with βCCt and 3-PBC (0.1–3.2 mg/kg and 0.32–10 mg/kg, respectively; α1 subunit-containing GABAA receptor antagonists). Results Chlordiazepoxide, zolpidem and HZ-166 produced dose- and time-dependent decreases in response rates, whereas flumazenil, βCCt and 3-PBC were ineffective. After the drug effects waned, flumazenil produced dose-dependent decreases in response rates following administration of 10 mg/kg chlordiazepoxide and 1.0 mg/kg zolpidem, but not following any dose of HZ-166. Further, both βCCt and 3-PBC produced dose-dependent decreases in response rates when administered after 1.0 mg/kg zolpidem. Conclusions These data raise the possibility that α1 subunit-containing GABAA receptors play a major role in physical dependence-related behaviors following a single injection of a benzodiazepine. PMID:23354533

  5. Role of gamma-aminobutyric acid type A (GABAA) receptor subtypes in acute benzodiazepine physical dependence-like effects: evidence from squirrel monkeys responding under a schedule of food presentation.

    PubMed

    Fischer, Bradford D; Teixeira, Laura P; van Linn, Michael L; Namjoshi, Ojas A; Cook, James M; Rowlett, James K

    2013-05-01

    Assays of schedule-controlled responding can be used to characterize the pharmacology of benzodiazepines and other GABAA receptor modulators, and are sensitive to changes in drug effects that are related to physical dependence. The present study used this approach to investigate the role of GABAA receptor subtypes in mediating dependence-like effects following benzodiazepine administration. Squirrel monkeys (n = 6) were trained on a fixed-ratio schedule of food reinforcement. Initially, the response rate-decreasing effects of chlordiazepoxide (0.1-10 mg/kg; nonselective GABAA receptor agonist), zolpidem (0.032-1.0 mg/kg; α1 subunit-containing GABAA subtype-preferring agonist), and HZ-166 (0.1-10 mg/kg; functionally selective α2 and α3 subunit-containing GABAA receptor agonist) were assessed. Next, acute dependence-like effects following single injections of chlordiazepoxide, zolpidem, and HZ-166 were assessed with flumazenil (0.1-3.2 mg/kg; nonselective GABAA receptor antagonist). Finally, acute dependence-like effects following zolpidem administration were assessed with βCCt and 3-PBC (0.1-3.2 mg/kg and 0.32-10 mg/kg, respectively; α1 subunit-containing GABAA receptor antagonists). Chlordiazepoxide, zolpidem, and HZ-166 produced dose- and time-dependent decreases in response rates, whereas flumazenil, βCCT, and 3-PBC were ineffective. After the drug effects waned, flumazenil produced dose-dependent decreases in response rates following administration of 10 mg/kg chlordiazepoxide and 1.0 mg/kg zolpidem, but not following any dose of HZ-166. Further, both βCCT and 3-PBC produced dose-dependent decreases in response rates when administered after 1.0 mg/kg zolpidem. These data raise the possibility that α1 subunit-containing GABAA receptors play a major role in physical dependence-related behaviors following a single injection of a benzodiazepine.

  6. Tobacco smoking interferes with GABAA receptor neuroadaptations during prolonged alcohol withdrawal

    PubMed Central

    Cosgrove, Kelly P.; McKay, Reese; Esterlis, Irina; Kloczynski, Tracy; Perkins, Evgenia; Bois, Frederic; Pittman, Brian; Lancaster, Jack; Glahn, David C.; O’Malley, Stephanie; Carson, Richard E.; Krystal, John H.

    2014-01-01

    Understanding the effects of tobacco smoking on neuroadaptations in GABAA receptor levels over alcohol withdrawal will provide critical insights for the treatment of comorbid alcohol and nicotine dependence. We conducted parallel studies in human subjects and nonhuman primates to investigate the differential effects of tobacco smoking and nicotine on changes in GABAA receptor availability during acute and prolonged alcohol withdrawal. We report that alcohol withdrawal with or without concurrent tobacco smoking/nicotine consumption resulted in significant and robust elevations in GABAA receptor levels over the first week of withdrawal. Over prolonged withdrawal, GABAA receptors returned to control levels in alcohol-dependent nonsmokers, but alcohol-dependent smokers had significant and sustained elevations in GABAA receptors that were associated with craving for alcohol and cigarettes. In nonhuman primates, GABAA receptor levels normalized by 1 mo of abstinence in both groups—that is, those that consumed alcohol alone or the combination of alcohol and nicotine. These data suggest that constituents in tobacco smoke other than nicotine block the recovery of GABAA receptor systems during sustained alcohol abstinence, contributing to alcohol relapse and the perpetuation of smoking. PMID:25453062

  7. Homocysteine alters cerebral microvascular integrity and causes remodeling by antagonizing GABA-A receptor*

    PubMed Central

    Lominadze, David; Tyagi, Neetu; Sen, Utpal; Ovechkin, Alexander; Tyagi, Suresh C.

    2012-01-01

    High levels of homocysteine (Hcy), known as hyperhomocysteinemia (HHcy), are associated with cerebrovascular diseases, such as vascualr dementia, stroke, and Alzheimer's disease. The -amino butyric acid (GABA) is a inhibitory neurotransmitter and a ligand of GABA-A receptor. By inhibiting excitatory response it may decrease complications associated with vascular dementia and stroke. Hcy specifically competes with the GABA-A receptors and acts as an excitotoxic neurotransmitter. Previously we have shown that Hcy increases levels of NADPH oxidase and reactive oxygen species (ROS), and decreases levels of thioredoxin and peroxiredoxin by antagonizing the GABA-A receptor. Hcy treatment leads to activation of matrix metalloproteinases (MMPs) in cerebral circualtion by inducing redox stress and ROS. The hypothesis is that Hcy induces MMPs and suppresses tissue inhibitors of metalloproteinase (TIMPs), in part, by inhibiting the GABA-A receptor. This leads to degradation of the matrix and disruption of the blood brain barrier. The brain cortex of transgenic mouse model of HHcy (cystathionine -synthase, CBS −/+) and GABA-A receptor null mice treated with and without muscimol (GABA-A receptor agonist) was analysed. The mRNA levels were measured by Q-RT-PCR. Levels of MMP-2, -9, -13, and TIMP-1, -2, -3, and -4 were evaluated by in situ labeling and PCR-gene arrays. Pial venular permeability to fluorescence-labeled albumin was assessed with intravital fluorescence microscopy. We found that Hcy increases metalloproteinase activity and decreases TIMP-4 by antagonizing the GABA-A receptor. The results demonstrate a novel mechanism in which brain microvascular permeability changes during HHcy and vascular dementias, and have therapeutic ramifications for microvascular disease in Alzheimer's patients. PMID:22886392

  8. Calcium/calmodulin-dependent kinase II phosphorylation of the GABAA receptor alpha1 subunit modulates benzodiazepine binding.

    PubMed

    Churn, Severn B; Rana, Aniruddha; Lee, Kangmin; Parsons, J Travis; De Blas, Angel; Delorenzo, Robert J

    2002-09-01

    gamma-Aminobutyric acid (GABA) is the primary neurotransmitter that is responsible for the fast inhibitory synaptic transmission in the central nervous system. A major post-translational mechanism that can rapidly regulate GABAAR function is receptor phosphorylation. This study was designed to test the effect of endogenous calcium and calmodulin-dependent kinase II (CaM kinase II) activation on both allosteric modulator binding and GABAA receptor subunit phosphorylation. Endogenous CaM kinase II activity was stimulated, and GABAA receptors were subsequently analyzed for bothallosteric modulator binding properties and immunoprecipitated and analyzed for subunit phosphorylation levels. A significant increase in allosteric-modulator binding of the GABAAR was observed under conditions maximal for CaM kinase II activation. In addition, CaM kinase II activation resulted in a direct increase in phosphorylation of the GABAA receptor alpha1 subunit. The data suggest that the CaM kinase II-dependent phosphorylation of the GABAA receptor alpha1 subunit modulated allosteric modulator binding to the GABAA receptor.

  9. The TM2 6′ Position of GABAA Receptors Mediates Alcohol Inhibition

    PubMed Central

    Howard, Rebecca J.; Trudell, James R.; Harris, R. Adron

    2012-01-01

    Ionotropic GABAA receptors (GABAARs), which mediate inhibitory neurotransmission in the central nervous system, are implicated in the behavioral effects of alcohol and alcoholism. Site-directed mutagenesis studies support the presence of discrete molecular sites involved in alcohol enhancement and, more recently, inhibition of GABAARs. We used Xenopus laevis oocytes to investigate the 6′ position in the second transmembrane region of GABAARs as a site influencing alcohol inhibition. We asked whether modification of the 6′ position by substitution with larger residues or methanethiol labeling [using methyl methanethiosulfonate (MMTS)] of a substituted cysteine, reduced GABA action and/or blocked further inhibition by alcohols. Labeling of the 6′ position in either α2 or β2 subunits reduced responses to GABA. In addition, methanol and ethanol potentiation increased after MMTS labeling or substitution with tryptophan or methionine, consistent with elimination of an inhibitory site for these alcohols. Specific alcohols, but not the anesthetic etomidate, competed with MMTS labeling at the 6′ position. We verified a role for the 6′ position in previously tested α2β2 as well as more physiologically relevant α2β2γ2s GABAARs. Finally, we built a novel molecular model based on the invertebrate glutamate-gated chloride channel receptor, a GABAAR homolog, revealing that the 6′ position residue faces the channel pore, and modification of this residue alters volume and polarity of the pore-facing cavity in this region. These results indicate that the 6′ positions in both α2 and β2 GABAAR subunits mediate inhibition by short-chain alcohols, which is consistent with the presence of multiple counteracting sites of action for alcohols on ligand-gated ion channels. PMID:22072732

  10. Effects of GABAA receptor inhibition on response properties of barrel cortical neurons in C-fiber-depleted rats.

    PubMed

    Farazifard, Rasoul; Kiani, Roozbeh; Esteky, Hossein

    2005-07-19

    C-fiber depletion results in expansion of low threshold somatosensory mechanoreceptive fields. In this study, we investigated the role of intact C-fibers in GABAA-mediated inhibition in barrel cortical neurons. We used electronically controlled mechanical stimulation of whiskers to quantitatively examine the responses of barrel cells to whisker displacements. After systemic injection of picrotoxin neuronal responses were recorded at 5 min intervals for 20 min and then at 10 min intervals for 100 min. Picrotoxin injection caused a 3-fold increase in response magnitude of adjacent whisker stimulation and 1.4-fold increase in response magnitude of principal whisker stimulation with a maximum enhancement 50 min after the injection. There was no significant change in spontaneous activity following picrotoxin injection. The response enhancement and receptive field expansion observed in normal rats were completely absent in the C-fiber-depleted rats. These results suggest that the GABAA-mediated inhibition that modulates the receptive field functional organization of the barrel cortex depends on intact C-fibers.

  11. Aripiprazole Increases the PKA Signalling and Expression of the GABAA Receptor and CREB1 in the Nucleus Accumbens of Rats.

    PubMed

    Pan, Bo; Lian, Jiamei; Huang, Xu-Feng; Deng, Chao

    2016-05-01

    The GABAA receptor is implicated in the pathophysiology of schizophrenia and regulated by PKA signalling. Current antipsychotics bind with D2-like receptors, but not the GABAA receptor. The cAMP-responsive element-binding protein 1 (CREB1) is also associated with PKA signalling and may be related to the positive symptoms of schizophrenia. This study investigated the effects of antipsychotics in modulating D2-mediated PKA signalling and its downstream GABAA receptors and CREB1. Rats were treated orally with aripiprazole (0.75 mg/kg, ter in die (t.i.d.)), bifeprunox (0.8 mg/kg, t.i.d.), haloperidol (0.1 mg/kg, t.i.d.) or vehicle for 1 week. The levels of PKA-Cα and p-PKA in the prefrontal cortex (PFC), nucleus accumbens (NAc) and caudate putamen (CPu) were detected by Western blots. The mRNA levels of Gabrb1, Gabrb2, Gabrb3 and Creb1, and their protein expression were measured by qRT-PCR and Western blots, respectively. Aripiprazole elevated the levels of p-PKA and the ratio of p-PKA/PKA in the NAc, but not the PFC and CPu. Correlated with this elevated PKA signalling, aripiprazole elevated the mRNA and protein expression of the GABAA (β-1) receptor and CREB1 in the NAc. While haloperidol elevated the levels of p-PKA and the ratio of p-PKA/PKA in both NAc and CPu, it only tended to increase the expression of the GABAA (β-1) receptor and CREB1 in the NAc, but not the CPu. Bifeprunox had no effects on PKA signalling in these brain regions. These results suggest that aripiprazole has selective effects on upregulating the GABAA (β-1) receptor and CREB1 in the NAc, probably via activating PKA signalling.

  12. Responses to GABA(A) receptor activation are altered in NTS neurons isolated from chronic hypoxic rats.

    PubMed

    Tolstykh, Gleb; Belugin, Sergei; Mifflin, Steve

    2004-04-23

    The inhibitory amino acid GABA is released within the nucleus of the solitary tract (NTS) during hypoxia and modulates the respiratory response to hypoxia. To determine if responses of NTS neurons to activation of GABA(A) receptors are altered following exposure to chronic hypoxia, GABA(A) receptor-evoked whole cell currents were measured in enzymatically dispersed NTS neurons from normoxic and chronic hypoxic rats. Chronic hypoxic rats were exposed to 10% O(2) for 9-12 days. Membrane capacitance was the same in neurons from normoxic (6.9+/-0.5 pF, n=16) and hypoxic (6.3+/-0.5 pF, n=15) rats. The EC(50) for peak GABA-evoked current density was significantly greater in neurons from hypoxic (21.7+/-2.2 microM) compared to normoxic rats (12.2+/-0.9 microM) (p<0.001). Peak and 5-s adapted GABA currents evoked by 1, 3 and 10 microM were greater in neurons from normoxic compared to hypoxic rats (p<0.05) whereas peak and 5-s adapted responses to 30 and 100 microM GABA were not different comparing normoxic to hypoxic rats. Desensitization of GABA(A)-evoked currents was observed at concentrations greater than 3 microM and, measured as the ratio of the current 5 s after the onset of 100 microM GABA application to the peak GABA current, was the same in neurons from normoxic (0.37+/-0.03) and hypoxic rats (0.33+/-0.04). Reduced sensitivity to GABA(A) receptor-evoked inhibition in chronic hypoxia could influence chemoreceptor afferent integration by NTS neurons.

  13. Characteristics of concatemeric GABAA receptors containing α4/δ subunits expressed in Xenopus oocytes

    PubMed Central

    Shu, Hong-Jin; Bracamontes, John; Taylor, Amanda; Wu, Kyle; Eaton, Megan M; Akk, Gustav; Manion, Brad; Evers, Alex S; Krishnan, Kathiresan; Covey, Douglas F; Zorumski, Charles F; Steinbach, Joe Henry; Mennerick, Steven

    2012-01-01

    BACKGROUND AND PURPOSE GABAA receptors mediate both synaptic and extrasynaptic actions of GABA. In several neuronal populations, α4 and δ subunits are key components of extrasynaptic GABAA receptors that strongly influence neuronal excitability and could mediate the effects of neuroactive agents including neurosteroids and ethanol. However, these receptors can be difficult to study in native cells and recombinant δ subunits can be difficult to express in heterologous systems. EXPERIMENTAL APPROACH We engineered concatemeric (fused) subunits to ensure δ and α4 subunit expression. We tested the pharmacology of the concatemeric receptors, compared with a common synaptic-like receptor subunit combination (α1 +β2 +γ2L), and with free-subunit α4/δ receptors, expressed in Xenopus oocytes. KEY RESULTS δ-β2 −α4 +β2-α4 cRNA co-injected into Xenopus oocytes resulted in GABA-gated currents with the expected pharmacological properties of α4/δ-containing receptors. Criteria included sensitivity to agonists of different efficacy, sensitivity to the allosteric activator pentobarbital, and modulation of agonist responses by DS2 (4-chloro-N-[2-(2-thienyl)imidazo[1,2-a]pyridine-3-yl benzamide; a δ-selective positive modulator), furosemide, and Zn2+. We used the concatemers to examine neurosteroid sensitivity of extrasynaptic-like, δ-containing receptors. We found no qualitative differences between extrasynaptic-like receptors and synaptic-like receptors in the actions of either negative or positive neurosteroid modulators of receptor function. Quantitative differences were explained by the partial agonist effects of the natural agonist GABA and by a mildly increased sensitivity to low steroid concentrations. CONCLUSIONS AND IMPLICATIONS The neurosteroid structure-activity profile for α4/δ-containing extrasynaptic receptors is unlikely to differ from that of synaptic-like receptors such as α1/β2/γ2-containing receptors. PMID:21950777

  14. Involvement of GABAA receptor in Bufo arenarum oocyte maturation.

    PubMed

    Toranzo, G Sánchez; Zelarayán, L; Bonilla, F; Oterino, J; Bühler, M I

    2008-05-01

    Amphibian oocytes meiotic arrest is released under the stimulus of progesterone; this hormone interacts with the oocyte surface and starts a cascade of events leading to the activation of a cytoplasmic maturation promoting factor (MPF) that induces germinal vesicle breakdown (GVBD), chromosome condensation and extrusion of the first polar body. The aim of this work was to determine whether the activation of a GABAA receptor is able to induce GVBD in fully grown denuded oocytes of Bufo arenarum and to analyse its possible participation in progesterone-induced maturation. We also evaluated the role of purines and phospholipids in the maturation process induced by a GABAA receptor agonist such as muscimol. Our results indicated that the activation of the GABAA receptor by muscimol induces maturation in a dose- and time-dependent manner and that this activation is a genuine maturation that enables oocytes to form pronuclei. Assays with a receptor antagonist, picrotoxine, showed that the maturation induced by muscimol was inhibited. Treatment with picrotoxine, however, shows that the participation of GABAA receptor in progesterone-induced maturation is not significant. In addition, our results indicate that high intracellular levels of purines obtained by the use of db-AMPc and theophylline or the inhibition of the phosphatidylinositol 4,5-bisphosphate (PIP2 hydrolysis by neomycin and PIP2 turn over by LiCl, respectively, inhibited the maturation induced by muscimol. Treatment with H-7 indicated, however, that PKC activation is not necessary for GVBD induced by the GABAA receptor agonist. Results suggest that the transduction pathway used by the GABAA receptor to induce maturation is different from those used by progesterone.

  15. GABAA Receptor Regulation of Voluntary Ethanol Drinking Requires PKCε

    PubMed Central

    Besheer, Joyce; Lepoutre, Veronique; Mole, Beth; Hodge, Clyde W.

    2010-01-01

    Protein kinase C (PKC) regulates a variety of neural functions, including ion channel activity, neurotransmitter release, receptor desensitization and differentiation. We have shown previously that mice lacking the ε-isoform of PKC (PKCε) self-administer 75% less ethanol and exhibit supersensitivity to acute ethanol and allosteric positive modulators of GABAA receptors when compared with wild-type controls. The purpose of the present study was to examine involvement of PKCε in GABAA receptor regulation of voluntary ethanol drinking. To address this question, PKCε null-mutant and wild-type control mice were allowed to drink ethanol (10% v/v) vs. water on a two-bottle continuous access protocol. The effects of diazepam (nonselective GABAA BZ positive modulator), zolpidem (GABAA α1 agonist), L-655,708 (BZ-sensitive GABAA α5 inverse agonist), and flumazenil (BZ antagonist) were then tested on ethanol drinking. Ethanol intake (grams/kg/day) by wild-type mice decreased significantly after diazepam or zolpidem but increased after L-655,708 administration. Flumazenil antagonized diazepam-induced reductions in ethanol drinking in wild-type mice. However, ethanol intake by PKCε null mice was not altered by any of the GABAergic compounds even though effects were seen on water drinking in these mice. Increased acute sensitivity to ethanol and diazepam, which was previously reported, was confirmed in PKCε null mice. Thus, results of the present study show that PKCε null mice do not respond to doses of GABAA BZ receptor ligands that regulate ethanol drinking by wild-type control mice. This suggests that PKCε may be required for GABAA receptor regulation of chronic ethanol drinking. PMID:16881070

  16. The effect of age on the discriminative stimulus effects of ethanol and its GABA(A) receptor mediation in cynomolgus monkeys.

    PubMed

    Helms, Christa M; Grant, Kathleen A

    2011-08-01

    Excessive alcohol consumption is less common among aged compared to young adults, with aged adults showing greater sensitivity to many behavioral effects of ethanol. This study compared the discriminative stimulus effects of ethanol in young and middle-aged adult cynomolgus monkeys (Macaca fascicularis) and its γ-aminobutyric acid (GABA)(A) receptor mediation. Two male and two female monkeys trained to discriminate ethanol (1.0 g/kg, i.g.; 60-min pre-treatment interval) from water at 5-6 years of age (Grant et al. in Psychopharmacology 152:181-188, 2000) were re-trained in the current study more than a decade later (19.3 ± 1.0 years of age) for a within-subjects comparison. Also, four experimentally naïve middle-aged (mean ± SEM, 17.0 ± 1.5 years of age) female monkeys were trained to discriminate ethanol for between-subjects comparison with published data from young adult naïve monkeys. Two of the naïve middle-aged monkeys attained criterion performance, with weak stimulus control and few discrimination tests, despite greater blood-ethanol concentration 60 min after 1.0 g/kg ethanol in middle-aged compared to young adult female monkeys (Green et al. in Alcohol Clin Exp Res 23:611-616, 1999). The efficacy of the GABA(A) receptor positive modulators pentobarbital, midazolam, allopregnanolone, pregnanolone, and androsterone to substitute for the discriminative stimulus effects of 1.0 g/kg ethanol was maintained from young adulthood to middle age. The data suggest that 1.0 g/kg ethanol is a weak discriminative stimulus in naive middle-aged monkeys. Nevertheless, the GABA(A) receptor mechanisms mediating the discriminative stimulus effects of ethanol, when learned as a young adult, appear stable across one third of the primate lifespan.

  17. Estrous cycle variations in GABAA receptor phosphorylation enable rapid modulation by anabolic androgenic steroids in the medial preoptic area

    PubMed Central

    Oberlander, JG; Porter, DM; Onakomaiya, MM; Penatti, CAA; Vithlani, M; Moss, SJ; Clark, AS; Henderson, LP

    2012-01-01

    Anabolic androgenic steroids (AAS), synthetic testosterone derivatives that are used for ergogenic purposes, alter neurotransmission and behaviors mediated by GABAA receptors. Some of these effects may reflect direct and rapid action of these synthetic steroids at the receptor. The ability of other natural allosteric steroid modulators to alter GABAA receptor-mediated currents is dependent upon the phosphorylation state of the receptor complex. Here we show that phosphorylation of the GABAA receptor complex immunoprecipitated by β2/β3 subunit-specific antibodies from the medial preoptic area (mPOA) of the mouse varies across the estrous cycle; with levels being significantly lower in estrus. Acute exposure to the AAS, 17α-testosterone (17α-MeT), had no effect on the amplitude or kinetics of inhibitory postsynaptic currents in the mPOA of estrous mice when phosphorylation was low, but increased the amplitude of these currents from mice in diestrus, when it was high. Inclusion of the protein kinase C (PKC) inhibitor, calphostin, in the recording pipette eliminated the ability of 17α-MeT to enhance currents from diestrous animals, suggesting that PKC-receptor phosphorylation is critical for the allosteric modulation elicited by AAS during this phase. In addition, a single injection of 17α-MeT was found to impair an mPOA-mediated behavior (nest-building) in diestrus, but not in estrus. PKC is known to target specific serine residues in the β3 subunit of the GABAA receptor. Although phosphorylation of these β3 serine residues showed a similar profile across the cycle, as did phosphoserine in mPOA lysates immunoprecipitated with β2/β3 antibody (lower in estrus than in diestrus or proestrus), the differences were not significant. These data suggest that the phosphorylation state of the receptor complex regulates both the ability of AAS to modulate receptor function in the mPOA and the expression of a simple mPOA-dependent behavior through PKC-dependent mechanism

  18. GABAA Receptors, Anesthetics and Anticonvulsants in Brain Development

    PubMed Central

    Henschel, Oliver; Gipson, Keith E.; Bordey, Angelique

    2008-01-01

    GABA, acting via GABAA receptors, is well-accepted as the main inhibitory neurotransmitter of the mature brain, where it dampens neuronal excitability. The receptor's properties have been studied extensively, yielding important information about its structure, pharmacology, and regulation that are summarized in this review. Several GABAergic drugs have been commonly used as anesthetics, sedatives, and anticonvulsants for decades. However, findings that GABA has critical functions in brain development, in particular during the late embryonic and neonatal period, raise worthwhile questions regarding the side effects of GABAergic drugs that may lead to long-term cognitive deficits. Here, we will review some of these drugs in parallel with the control of CNS development that GABA exerts via activation of GABAA receptors. This review aims to provide a basic science and clinical perspective on the function of GABA and related pharmaceuticals acting at GABAA receptors. PMID:18537647

  19. Lindane blocks GABAA-mediated inhibition and modulates pyramidal cell excitability in the rat hippocampal slice.

    PubMed

    Joy, R M; Walby, W F; Stark, L G; Albertson, T E

    1995-01-01

    An in vitro paired-pulse orthodromic stimulation technique was used to examine the effects of lindane on excitatory afferent terminals, CA1 pyramidal cells and recurrent collateral evoked inhibition in the rat hippocampal slice. This was done to establish simultaneous effects on a simple neural network and to develop procedures for more detailed analyses of the effects of lindane. Hippocampal slices 400 microns thick were perfused with oxygenated artificial cerebrospinal fluid. Electrodes were placed in the CA1 region to record extracellular population spike (PS) or excitatory postsynaptic potential (EPSP) responses to stimulation of Schaffer collateral/commissural (SC/C) fibers. Gamma-aminobutyric acid (GABA)-mediated recurrent inhibition was measured using a paired-pulse technique. Perfusion with lindane produced both time and dose dependent changes in a number of the responses measured. The most striking effect produced by lindane was the loss of GABAA-mediated recurrent collateral inhibition. This tended to occur rapidly, often before changes in EPSP or PS responses could be detected. With longer exposures to lindane, repetitive discharge of pyramidal cells developed resulting in multiple PSs to single stimuli. Lindane (50 microM) also completely reversed the effects of the injectable anesthetic, propofol, a compound known to potentiate GABAA-mediated inhibition via a direct action on the GABAA receptor-chloride channel complex. An analysis of input/output relationships at varying stimulus intensities showed that lindane increased EPSP and PS response amplitudes at any given stimulus intensity resulting in a leftward shift in the EPSP amplitude/stimulus intensity, PS amplitude/stimulus intensity and PS amplitude/EPSP amplitude relationships. This effect was most noticeable with low intensity stimuli and became progressively less so as stimulus intensities approached those yielding maximal responses. In addition lindane significantly increased paired pulse

  20. Modulation of GABAA receptors by valerian extracts is related to the content of valerenic acid.

    PubMed

    Trauner, Gabriele; Khom, Sophia; Baburin, Igor; Benedek, Birgit; Hering, Steffen; Kopp, Brigitte

    2008-01-01

    Valeriana Officinalis L . is a traditionally used sleep remedy, however, the mechanism of action and the substances responsible for its sedative and sleep-enhancing properties are not fully understood. As we previously identified valerenic acid as a subunit-specific allosteric modulator of GABAA receptors, we now investigated the relation between modulation of GABAA receptors by Valerian extracts of different polarity and the content of sesquiterpenic acids (valerenic acid, acetoxyvalerenic acid). All extracts were analysed by HPLC concerning the content of sesquiterpenic acids. GABAA receptors composed of alpha 1, beta 2 and gamma 2S subunits were expressed in Xenopus laevis oocytes and the modulation of chloride currents through GABAA receptors (IGABA) by Valerian extracts was investigated using the two-microelectrode voltage clamp technique. Apolar extracts induced a significant enhancement of IGABA, whereas polar extracts showed no effect. These results were confirmed by fractionating a highly active ethyl acetate extract: again fractions with high contents of valerenic acid exhibited strong receptor activation. In addition, removal of sesquiterpenic acids from the ethyl acetate extract led to a loss of I (GABA) enhancement. In conclusion, our data show that the extent of GABAA receptor modulation by Valerian extracts is related to the content of valerenic acid.

  1. GABA-independent GABAA Receptor Openings Maintain Tonic Currents

    PubMed Central

    Wlodarczyk, Agnieszka I.; Sylantyev, Sergiy; Herd, Murray B.; Kersanté, Flavie; Lambert, Jeremy J.; Rusakov, Dmitri A.; Linthorst, Astrid C.E.; Semyanov, Alexey; Belelli, Delia; Pavlov, Ivan; Walker, Matthew C.

    2013-01-01

    Activation of GABAA receptors (GABAARs) produces two forms of inhibition: ‘phasic’ inhibition generated by the rapid, transient activation of synaptic GABAARs by presynaptic GABA release, and tonic inhibition generated by the persistent activation of peri- or extrasynaptic GABAARs which can detect extracellular GABA. Such tonic GABAAR-mediated currents are particularly evident in dentate granule cells in which they play a major role in regulating cell excitability. Here we show that in rat dentate granule cells in ex-vivo hippocampal slices, tonic currents are predominantly generated by GABA-independent GABAA receptor openings. This tonic GABAAR conductance is resistant to the competitive GABAAR antagonist SR95531, which at high concentrations acts as a partial agonist, but can be blocked by an open channel blocker picrotoxin. When slices are perfused with 200 nM GABA, a concentration that is comparable to cerebrospinal fluid concentrations but is twice that measured by us in the hippocampus in vivo using zero-net-flux microdialysis, negligible GABA is detected by dentate granule cells. Spontaneously opening GABAARs, therefore, maintain dentate granule cell tonic currents in the face of low extracellular GABA concentrations. PMID:23447601

  2. Expression of specific ionotropic glutamate and GABA-A receptor subunits is decreased in central amygdala of alcoholics.

    PubMed

    Jin, Zhe; Bhandage, Amol K; Bazov, Igor; Kononenko, Olga; Bakalkin, Georgy; Korpi, Esa R; Birnir, Bryndis

    2014-01-01

    The central amygdala (CeA) has a role for mediating fear and anxiety responses. It is also involved in emotional imbalance caused by alcohol abuse and dependence and in regulating relapse to alcohol abuse. Growing evidences suggest that excitatory glutamatergic and inhibitory γ-aminobutyric acid-ergic (GABAergic) transmissions in the CeA are affected by chronic alcohol exposure. Human post-mortem CeA samples from male alcoholics (n = 9) and matched controls (n = 9) were assayed for the expression level of ionotropic glutamate and GABA-A receptors subunit mRNAs using quantitative real-time reverse transcription-PCR (RT-qPCR). Our data revealed that out of the 16 ionotropic glutamate receptor subunits, mRNAs encoding two AMPA [2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid] receptor subunits GluA1 and GluA4; one kainate receptor subunit GluK2; one NMDA (N-methyl-D-aspartate) receptor subunit GluN2D and one delta receptor subunit GluD2 were significantly decreased in the CeA of alcoholics. In contrast, of the 19 GABA-A receptor subunits, only the mRNA encoding the α2 subunit was significantly down-regulated in the CeA of the alcoholics as compared with control subjects. Our findings imply that the down-regulation of specific ionotropic glutamate and GABA-A receptor subunits in the CeA of alcoholics may represent one of the molecular substrates underlying the new balance between excitatory and inhibitory neurotransmission in alcohol dependence.

  3. Expression of specific ionotropic glutamate and GABA-A receptor subunits is decreased in central amygdala of alcoholics

    PubMed Central

    Jin, Zhe; Bhandage, Amol K.; Bazov, Igor; Kononenko, Olga; Bakalkin, Georgy; Korpi, Esa R.; Birnir, Bryndis

    2014-01-01

    The central amygdala (CeA) has a role for mediating fear and anxiety responses. It is also involved in emotional imbalance caused by alcohol abuse and dependence and in regulating relapse to alcohol abuse. Growing evidences suggest that excitatory glutamatergic and inhibitory γ-aminobutyric acid-ergic (GABAergic) transmissions in the CeA are affected by chronic alcohol exposure. Human post-mortem CeA samples from male alcoholics (n = 9) and matched controls (n = 9) were assayed for the expression level of ionotropic glutamate and GABA-A receptors subunit mRNAs using quantitative real-time reverse transcription-PCR (RT-qPCR). Our data revealed that out of the 16 ionotropic glutamate receptor subunits, mRNAs encoding two AMPA [2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid] receptor subunits GluA1 and GluA4; one kainate receptor subunit GluK2; one NMDA (N-methyl-D-aspartate) receptor subunit GluN2D and one delta receptor subunit GluD2 were significantly decreased in the CeA of alcoholics. In contrast, of the 19 GABA-A receptor subunits, only the mRNA encoding the α2 subunit was significantly down-regulated in the CeA of the alcoholics as compared with control subjects. Our findings imply that the down-regulation of specific ionotropic glutamate and GABA-A receptor subunits in the CeA of alcoholics may represent one of the molecular substrates underlying the new balance between excitatory and inhibitory neurotransmission in alcohol dependence. PMID:25278838

  4. Activation of endogenous GABAA channels on airway smooth muscle potentiates isoproterenol-mediated relaxation.

    PubMed

    Gallos, George; Gleason, Neil R; Zhang, Yi; Pak, Sang-Woo; Sonett, J R; Yang, Jay; Emala, Charles W

    2008-12-01

    Reactive airway disease predisposes patients to episodes of acute smooth muscle mediated bronchoconstriction. We have for the first time recently demonstrated the expression and function of endogenous ionotropic GABA(A) channels on airway smooth muscle cells. We questioned whether endogenous GABA(A) channels on airway smooth muscle could augment beta-agonist-mediated relaxation. Guinea pig tracheal rings or human bronchial airway smooth muscles were equilibrated in organ baths with continuous digital tension recordings. After pretreatment with or without the selective GABA(A) antagonist gabazine (100 muM), airway muscle was contracted with acetylcholine or beta-ala neurokinin A, followed by relaxation induced by cumulatively increasing concentrations of isoproterenol (1 nM to 1 muM) in the absence or presence of the selective GABA(A) agonist muscimol (10-100 muM). In separate experiments, guinea pig tracheal rings were pretreated with the large conductance K(Ca) channel blocker iberiotoxin (100 nM) after an EC(50) contraction with acetylcholine but before cumulatively increasing concentrations of isoproterenol (1 nM to 1 uM) in the absence or presence of muscimol (100 uM). GABA(A) activation potentiated the relaxant effects of isoproterenol after an acetylcholine or tachykinin-induced contraction in guinea pig tracheal rings or an acetylcholine-induced contraction in human endobronchial smooth muscle. This muscimol-induced potentiation of relaxation was abolished by gabazine pretreatment but persisted after blockade of the maxi K(Ca) channel. Selective activation of endogenous GABA(A) receptors significantly augments beta-agonist-mediated relaxation of guinea pig and human airway smooth muscle, which may have important therapeutic implications for patients in severe bronchospasm.

  5. Independent of 5-HT1A receptors, neurons in the paraventricular hypothalamus mediate ACTH responses from MDMA

    PubMed Central

    Zaretsky, Dmitry V.; Zaretskaia, Maria V.; DiMicco, Joseph A.; Durant, Pamela J.; Ross, Christian T.; Rusyniak, Daniel E.

    2013-01-01

    Acute and chronic complications from the substituted amphetamine 3,4-methylenedioxymethamphetamine (MDMA) are linked to activation of the hypothalamic-pituitary-adrenal (HPA) axis. How MDMA activates the HPA axis is not known. HPA responses to stress are known to be mediated through the paraventricular (PVH) hypothalamus and to involve serotonin-1a (5-HT1A) receptors. We sought to determine if the PVH and 5-HT1A receptors were also involved in mediating HPA responses to MDMA. Rats were pretreated with either saline or a 5-HT1A antagonist, WAY-100635 (WAY), followed by a systemic dose of MDMA (7.5 mg/kg i.v.). Animals pretreated with WAY had significantly lower plasma ACTH concentrations after MDMA. To determine if neurons in the PVH were involved, and if their involvement was mediated by 5-HT1A receptors, rats implanted with guide cannulas targeting the PVH were microinjected with the GABAA receptor agonist muscimol, aCSF, or WAY followed by MDMA. Compared to aCSF microinjections of muscimol significantly attenuated the MDMA-induced rise in plasma ACTH (126 vs. 588 pg/ml, P=<0.01). WAY had no effect. Our data demonstrates that neurons in the PVH, independent of 5-HT1A receptors, mediate ACTH responses to MDMA. PMID:23933156

  6. Interaction of H+ and Zn2+ on recombinant and native rat neuronal GABAA receptors

    PubMed Central

    Krishek, Belinda J; Moss, Stephen J; Smart, Trevor G

    1998-01-01

    The interaction of Zn2+ and H+ ions with GABAA receptors was examined using Xenopus laevis oocytes expressing recombinant GABAA receptors composed of subunits selected from α1, β1, γ2S and δ types, and by using cultured rat cerebellar granule neurones. The potency of Zn2+ as a non-competitive antagonist of GABA-activated responses on α1β1 receptors was reduced by lowering the external pH from 7.4 to 5.4, increasing the Zn2+ IC50 value from 1.2 to 58.3 μm. Zinc-induced inhibition was largely unaffected by alkaline pH up to pH 9.4. For α1β1δ subunits, concentration-response curves for GABA were displaced laterally by Zn2+ in accordance with a novel mixed/competitive-type inhibition. The Zn2+ IC50 at pH 7.4 was 16.3 μm. Acidification of Ringer solution resulted in a reduced antagonism by Zn2+ (IC50, 49.0 μm) without affecting the type of inhibition. At pH 9.4, Zn2+ inhibition remained unaffected. The addition of the γ2S subunit to the α1β1δ construct caused a marked reduction in the potency of Zn2+ (IC50, 615 μm), comparable to that observed with α1β1γ2S receptors (IC50 639 μm). GABA concentration-response curves were depressed in a mixed/non-competitive fashion. In cultured cerebellar granule neurones, Zn2+ inhibited responses to GABA in a concentration-dependent manner. Lowering external pH from 7.4 to 6.4 increased the IC50 from 139 to 253 μm. The type of inhibition exhibited by Zn2+ on cerebellar granule neurones, previously grown in high K+-containing culture media, was complex, with the GABA concentration-response curves shifting laterally with reduced slopes and similar maxima. The Zn2+-induced shift in the GABA EC50 values was reduced by lowering the external pH from 7.4 to 6.4. The interaction of H+ and Zn2+ ions on GABAA receptors suggests that they share either a common regulatory pathway or coincident binding sites on the receptor protein. The apparent competitive mode of block induced by Zn2+ on α1β1δ receptors is shared by GABAA

  7. Aspects of the homeostaic plasticity of GABAA receptor-mediated inhibition

    PubMed Central

    Mody, Istvan

    2005-01-01

    Plasticity of ligand-gated ion channels plays a critical role in nervous system development, circuit formation and refinement, and pathological processes. Recent advances have mainly focused on the plasticity of channels gated by excitatory amino acids, including their acclaimed role in learning and memory. These receptors, together with voltage-gated ion channels, have also been known to be subjected to a homeostatic form of plasticity that prevents destabilization of the neurone's function and that of the network during various physiological processes. To date, the plasticity of GABAA receptors has been examined mainly from a developmental and a pathological point of view. Little is known about homeostatic mechanisms governing their plasticity. This review summarizes some of the findings on the homeostatic plasticity of tonic and phasic inhibitory activity. PMID:15528237

  8. Effects of Insecticidal Ketones Present in Mint Plants on GABAA Receptor from Mammalian Neurons

    PubMed Central

    Sánchez-Borzone, Mariela Eugenia; Marin, Leticia Delgado; García, Daniel Asmed

    2017-01-01

    Background: The genus Mentha, an important member of the Lamiaceae family, is represented by many species commonly known as mint. The insecticidal activity of Mentha oil and its main components has been tested and established against various insects/pests. Among these, the ketone monoterpenes that are most common in different Mentha species demonstrated insect toxicity, with pulegone being the most active, followed by carvone and menthone. Considering that the GABAA receptor (GABAA-R) is one of the main insecticide targets on neurons, and that pulegone would modulate the insect GABA system, it may be expected that the insecticidal properties of Mentha ketones are mediated by their interaction with this receptor. Objective: In order to discern the pharmacological actions of these products when used as insecticides on mammalian organisms, we evaluated the pharmacologic activity of ketones, commonly present in Mentha plants, on native GABAA-R from rats. Materials and Methods: Determination of ketones effects on allosterically enhanced benzodiazepine binding, using primary cultures of cortical neurons, which express functional receptors and MTT assay to evaluate their cell toxicity. Results: Our results seem to indicate that ketone components of Mentha, with proven repellent or insecticide activity, were able to behave as GABAA-R negative allosteric modulators in murine cells and consequently could exhibit convulsant activity in mammalians. Only pulegone at the highest assayed concentration (2 mM) showed a significant reduction in cell viability after exposure for 24 hr. Conclusion: The present results strongly suggest that the ketone components of Mentha are able to exhibit convulsant activity in mammalian organisms, but functional assays and in vivo experiments would be necessary to corroborate this proposed action. SUMMARY The pharmacological activity of insecticide ketones, commonly present in Mentha plants, was evaluated on native GABAA receptor from mammalian

  9. Increased efficiency of the GABAA and GABAB receptor–mediated neurotransmission in the Ts65Dn mouse model of Down syndrome

    PubMed Central

    Kleschevnikov, Alexander M.; Belichenko, Pavel V.; Gall, Jessica; George, Lizzy; Nosheny, Rachel; Maloney, Michael T.; Salehi, Ahmad; Mobley, William C.

    2011-01-01

    Cognitive impairment in Down syndrome (DS) involves the hippocampus. In the Ts65Dn mouse model of DS, deficits in hippocampus-dependent learning and synaptic plasticity were linked to enhanced inhibition. However, the mechanistic basis of changes in inhibitory efficiency remains largely unexplored, and efficiency of the GABAergic synaptic neurotransmission has not yet been investigated in direct electrophysiological experiments. To investigate this important feature of neurobiology of DS, we examined synaptic and molecular properties of the GABAergic system in the dentate gyrus (DG) of adult Ts65Dn mice. Both GABAA and GABAB receptor-mediated components of evoked inhibitory postsynaptic currents (IPSCs) were significantly increased in Ts65Dn vs. control (2N) DG granule cells. These changes were unaccompanied by alterations in hippocampal levels of GABAA (α1, α2, α3, α5 and γ2) or GABAB (Gbr1a and Gbr1b) receptor subunits. Immunoreactivity for GAD65, a marker for GABAergic terminals, was also unchanged. In contrast, there was a marked change in functional parameters of GABAergic synapses. Paired stimulations showed reduced paired-pulse ratios of both GABAA and GABAB receptor-mediated IPSC components (IPSC2/IPSC1), suggesting an increase in presynaptic release of GABA. Consistent with increased gene dose, the level of the Kir3.2 subunit of potassium channels, effectors for postsynaptic GABAB receptors, was increased. This change was associated with enhanced postsynaptic GABAB/Kir3.2 signaling following application of the GABAB receptor agonist baclofen. Thus, both GABAA and GABAB receptor-mediated synaptic efficiency is increased in the Ts65Dn DG, thus likely contributing to deficient synaptic plasticity and poor learning in DS. PMID:22062771

  10. Role of GABAA receptors in dorsal raphe nucleus in stress-induced reinstatement of morphine-conditioned place preference in rats.

    PubMed

    Li, Chen; Staub, Daniel R; Kirby, Lynn G

    2013-12-01

    The serotonin (5-hydroxytryptamine, 5-HT) system plays an important role in stress-related psychiatric disorders and substance abuse. Our data indicate that stress inhibits the dorsal raphe nucleus (DRN)-5-HT system via stimulation of GABA synaptic activity by the stress neurohormone corticotropin-releasing factor and, more recently, that morphine history sensitizes DRN-5-HT neurons to GABAergic inhibitory effects of stress. We tested the hypothesis that DRN GABAA receptors contribute to stress-induced reinstatement of morphine-conditioned place preference (CPP). First, we tested if activation of GABAA receptors in the DRN would reinstate morphine CPP. Second, we tested if blockade of GABAA receptors in the DRN would attenuate swim stress-induced reinstatement of morphine CPP. CPP was induced by morphine (5 mg/kg) in a 4-day conditioning phase followed by a conditioning test. Upon acquiring conditioning criteria, subjects underwent 4 days of extinction training followed by an extinction test. Upon acquiring extinction criteria, animals underwent a reinstatement test. For the first experiment, the GABAA receptor agonist muscimol (50 ng) or vehicle was injected into the DRN prior to the reinstatement test. For the second experiment, the GABAA receptor antagonist bicuculline (75 ng) or vehicle was injected into the DRN prior to a forced swim stress, and then, animals were tested for reinstatement of CPP. Intraraphe injection of muscimol reinstated morphine CPP, while intraraphe injection of bicuculline attenuated swim stress-induced reinstatement. These data provide evidence that GABAA receptor-mediated inhibition of the serotonergic DRN contributes to stress-induced reinstatement of morphine CPP.

  11. Insulin Regulates GABAA Receptor-Mediated Tonic Currents in the Prefrontal Cortex.

    PubMed

    Trujeque-Ramos, Saraí; Castillo-Rolón, Diego; Galarraga, Elvira; Tapia, Dagoberto; Arenas-López, Gabina; Mihailescu, Stefan; Hernández-López, Salvador

    2018-01-01

    Recent studies, have shown that insulin increases extrasynaptic GABA A receptor-mediated currents in the hippocampus, causing alterations of neuronal excitability. The prefrontal cortex (PFC) is another brain area which is involved in cognition functions and expresses insulin receptors. Here, we used electrophysiological, molecular, and immunocytochemical techniques to examine the effect of insulin on the extrasynaptic GABA A receptor-mediated tonic currents in brain slices. We found that insulin (20-500 nM) increases GABA A -mediated tonic currents. Our results suggest that insulin promotes the trafficking of extrasynaptic GABA A receptors from the cytoplasm to the cell membrane. Western blot analysis and immunocytochemistry showed that PFC extrasynaptic GABA A receptors contain α-5 and δ subunits. Insulin effect on tonic currents decreased the firing rate and neuronal excitability in layer 5-6 PFC cells. These effects of insulin were dependent on the activation of the PI3K enzyme, a key mediator of the insulin response within the brain. Taken together, these results suggest that insulin modulation of the GABA A -mediated tonic currents can modify the activity of neural circuits within the PFC. These actions could help to explain the alterations of cognitive processes associated with changes in insulin signaling.

  12. Regulated lysosomal trafficking as a mechanism for regulating GABAA receptor abundance at synapses in Caenorhabditis elegans.

    PubMed

    Davis, Kathleen M; Sturt, Brianne L; Friedmann, Andrew J; Richmond, Janet E; Bessereau, Jean-Louis; Grant, Barth D; Bamber, Bruce A

    2010-08-01

    GABA(A) receptor plasticity is important for both normal brain function and disease progression. We are studying GABA(A) receptor plasticity in Caenorhabditis elegans using a genetic approach. Acute exposure of worms to the GABA(A) agonist muscimol hyperpolarizes postsynaptic cells, causing paralysis. Worms adapt after several hours, but show uncoordinated locomotion consistent with decreased GABA signaling. Using patch-clamp and immunofluorescence approaches, we show that GABA(A) receptors are selectively removed from synapses during adaptation. Subunit mRNA levels were unchanged, suggesting a post-transcriptional mechanism. Mutants with defective lysosome function (cup-5) show elevated GABA(A) receptor levels at synapses prior to muscimol exposure. During adaptation, these receptors are removed more slowly, and accumulate in intracellular organelles positive for the late endosome marker GFP-RAB-7. These findings suggest that chronic agonist exposure increases endocytosis and lysosomal trafficking of GABA(A) receptors, leading to reduced levels of synaptic GABA(A) receptors and reduced postsynaptic GABA sensitivity.

  13. Inhaled Anesthetic Responses of Recombinant Receptors and Knockin Mice Harboring α2(S270H/L277A) GABAA Receptor Subunits That Are Resistant to Isoflurane

    PubMed Central

    Werner, D. F.; Swihart, A.; Rau, V.; Jia, F.; Borghese, C. M.; McCracken, M. L.; Iyer, S.; Fanselow, M. S.; Oh, I.; Sonner, J. M.; Eger, E. I.; Harrison, N. L.; Harris, R. A.

    2011-01-01

    The mechanism by which the inhaled anesthetic isoflurane produces amnesia and immobility is not understood. Isoflurane modulates GABAA receptors (GABAA-Rs) in a manner that makes them plausible targets. We asked whether GABAA-R α2 subunits contribute to a site of anesthetic action in vivo. Previous studies demonstrated that Ser270 in the second transmembrane domain is involved in the modulation of GABAA-Rs by volatile anesthetics and alcohol, either as a binding site or a critical allosteric residue. We engineered GABAA-Rs with two mutations in the α2 subunit, changing Ser270 to His and Leu277 to Ala. Recombinant receptors with these mutations demonstrated normal affinity for GABA, but substantially reduced responses to isoflurane. We then produced mutant (knockin) mice in which this mutated subunit replaced the wild-type α2 subunit. The adult mutant mice were overtly normal, although there was evidence of enhanced neonatal mortality and fear conditioning. Electrophysiological recordings from dentate granule neurons in brain slices confirmed the decreased actions of isoflurane on mutant receptors contributing to inhibitory synaptic currents. The loss of righting reflex EC50 for isoflurane did not differ between genotypes, but time to regain the righting reflex was increased in N2 generation knockins. This effect was not observed at the N4 generation. Isoflurane produced immobility (as measured by tail clamp) and amnesia (as measured by fear conditioning) in both wild-type and mutant mice, and potencies (EC50) did not differ between the strains for these actions of isoflurane. Thus, immobility or amnesia does not require isoflurane potentiation of the α2 subunit. PMID:20807777

  14. Modulatory Effects of Eschscholzia californica Alkaloids on Recombinant GABAA Receptors

    PubMed Central

    Fedurco, Milan; Gregorová, Jana; Šebrlová, Kristýna; Kantorová, Jana; Peš, Ondřej; Baur, Roland; Sigel, Erwin; Táborská, Eva

    2015-01-01

    The California poppy (Eschscholzia californica Cham.) contains a variety of natural compounds including several alkaloids found exclusively in this plant. Because of the sedative, anxiolytic, and analgesic effects, this herb is currently sold in pharmacies in many countries. However, our understanding of these biological effects at the molecular level is still lacking. Alkaloids detected in E. californica could be hypothesized to act at GABAA receptors, which are widely expressed in the brain mainly at the inhibitory interneurons. Electrophysiological studies on a recombinant α 1 β 2 γ 2 GABAA receptor showed no effect of N-methyllaurotetanine at concentrations lower than 30 μM. However, (S)-reticuline behaved as positive allosteric modulator at the α 3, α 5, and α 6 isoforms of GABAA receptors. The depressant properties of aerial parts of E. californica are assigned to chloride-current modulation by (S)-reticuline at the α 3 β 2 γ 2 and α 5 β 2 γ 2 GABAA receptors. Interestingly, α 1, α 3, and α 5 were not significantly affected by (R)-reticuline, 1,2-tetrahydroreticuline, codeine, and morphine—suspected (S)-reticuline metabolites in the rodent brain. PMID:26509084

  15. Metabotropic Glutamate Receptors in the Trafficking of Ionotropic Glutamate and GABAA Receptors at Central Synapses

    PubMed Central

    Xiao, Min-Yi; Gustafsson, Bengt; Niu, Yin-Ping

    2006-01-01

    The trafficking of ionotropic glutamate (AMPA, NMDA and kainate) and GABAA receptors in and out of, or laterally along, the postsynaptic membrane has recently emerged as an important mechanism in the regulation of synaptic function, both under physiological and pathological conditions, such as information processing, learning and memory formation, neuronal development, and neurodegenerative diseases. Non-ionotropic glutamate receptors, primarily group I metabotropic glutamate receptors (mGluRs), co-exist with the postsynaptic ionotropic glutamate and GABAA receptors. The ability of mGluRs to regulate postsynaptic phosphorylation and Ca2+ concentration, as well as their interactions with postsynaptic scaffolding/signaling proteins, makes them well suited to influence the trafficking of ionotropic glutamate and GABAA receptors. Recent studies have provided insights into how mGluRs may impose such an influence at central synapses, and thus how they may affect synaptic signaling and the maintenance of long-term synaptic plasticity. In this review we will discuss some of the recent progress in this area: i) long-term synaptic plasticity and the involvement of mGluRs; ii) ionotropic glutamate receptor trafficking and long-term synaptic plasticity; iii) the involvement of postsynaptic group I mGluRs in regulating ionotropic glutamate receptor trafficking; iv) involvement of postsynaptic group I mGluRs in regulating GABAA receptor trafficking; v) and the trafficking of postsynaptic group I mGluRs themselves. PMID:18615134

  16. Acutely increasing δGABAA receptor activity impairs memory and inhibits synaptic plasticity in the hippocampus

    PubMed Central

    Whissell, Paul D.; Eng, Dave; Lecker, Irene; Martin, Loren J.; Wang, Dian-Shi; Orser, Beverley A.

    2013-01-01

    Extrasynaptic γ-aminobutyric acid type A (GABAA) receptors that contain the δ subunit (δGABAA receptors) are expressed in several brain regions including the dentate gyrus (DG) and CA1 subfields of the hippocampus. Drugs that increase δGABAA receptor activity have been proposed as treatments for a variety of disorders including insomnia, epilepsy and chronic pain. Also, long-term pretreatment with the δGABAA receptor–preferring agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) enhances discrimination memory and increases neurogenesis in the DG. Despite the potential therapeutic benefits of such treatments, the effects of acutely increasing δGABAA receptor activity on memory behaviors remain unknown. Here, we studied the effects of THIP (4 mg/kg, i.p.) on memory performance in wild-type (WT) and δGABAA receptor null mutant (Gabrd−/−) mice. Additionally, the effects of THIP on long-term potentiation (LTP), a molecular correlate of memory, were studied within the DG and CA1 subfields of the hippocampus using electrophysiological recordings of field potentials in hippocampal slices. The results showed that THIP impaired performance in the Morris water maze, contextual fear conditioning and object recognition tasks in WT mice but not Gabrd−/− mice. Furthermore, THIP inhibited LTP in hippocampal slices from WT but not Gabrd−/− mice, an effect that was blocked by GABAA receptor antagonist bicuculline. Thus, acutely increasing δGABAA receptor activity impairs memory behaviors and inhibits synaptic plasticity. These results have important implications for the development of therapies aimed at increasing δGABAA receptor activity. PMID:24062648

  17. Effects of Chronic Ethanol Consumption on Rat GABAA and Strychnine-sensitive Glycine Receptors Expressed by Lateral/Basolateral Amygdala Neurons

    PubMed Central

    McCool, Brian A.; Frye, Gerald D.; Pulido, Marisa D.; Botting, Shaleen K.

    2010-01-01

    It is well known that the anxiolytic potential of ethanol is maintained during chronic exposure. We have confirmed this using a light-dark box paradigm following chronic ethanol ingestion via a liquid diet. However, cessation from chronic ethanol exposure is known to cause severe withdrawal anxiety. These opposing effects on anxiety likely result from neuro-adaptations of neurotransmitter systems within the brain regions regulating anxiety. Recent work highlights the importance of amygdala ligand-gated chloride channels in the expression of anxiety. We have therefore examined the effects of chronic ethanol exposure on GABAA and strychnine-sensitive glycine receptors expressed by acutely isolated adult rat lateral/basolateral amygdala neurons. Chronic ethanol exposure increased the functional expression of GABAA receptors in acutely isolated basolateral amygdala neurons without altering strychnine-sensitive glycine receptors. Neither the acute ethanol nor benzodiazepine sensitivity of either receptor system was affected. We explored the likelihood that subunit composition might influence each receptor’s response to chronic ethanol. Importantly, when expressed in a mammalian heterologous system, GABAA receptors composed of unique α subunits were differentially sensitive to acute ethanol. Likewise, the presence of the β subunit appeared to influence the acute ethanol sensitivity of glycine receptors containing the α2 subunit. Our results suggest that the facilitation of GABAA receptors during chronic ethanol exposure may help explain the maintenance of ethanol’s anti-anxiety effects during chronic ethanol exposure. Furthermore, the subunit composition of GABAA and strychnine-sensitive glycine receptors may ultimately influence the response of each system to chronic ethanol exposure. PMID:12560122

  18. Novel Fast Adapting Interneurons Mediate Cholinergic-Induced Fast GABAA IPSCs In Striatal Spiny Neurons

    PubMed Central

    Faust, Thomas W.; Assous, Maxime; Shah, Fulva; Tepper, James M.; Koós, Tibor

    2015-01-01

    Previous work suggests that neostriatal cholinergic interneurons control the activity of several classes of GABAergic interneurons through fast nicotinic receptor mediated synaptic inputs. Although indirect evidence has suggested the existence of several classes of interneurons controlled by this mechanism only one such cell type, the neuropeptide-Y expressing neurogliaform neuron, has been identified to date. Here we tested the hypothesis that in addition to the neurogliaform neurons that elicit slow GABAergic inhibitory responses, another interneuron type exists in the striatum that receives strong nicotinic cholinergic input and elicits conventional fast GABAergic synaptic responses in projection neurons. We obtained in vitro slice recordings from double transgenic mice in which Channelrhodopsin-2 was natively expressed in cholinergic neurons and a population of serotonin receptor-3a-Cre expressing GABAergic interneurons were visualized with tdTomato. We show that among the targeted GABAergic interneurons a novel type of interneuron, termed the fast-adapting interneuron, can be identified that is distinct from previously known interneurons based on immunocytochemical and electrophysiological criteria. We show using optogenetic activation of cholinergic inputs that fast-adapting interneurons receive a powerful supra-threshold nicotinic cholinergic input in vitro. Moreover, fast adapting neurons are densely connected to projection neurons and elicit fast, GABAA receptor mediated inhibitory postsynaptic responses. The nicotinic receptor mediated activation of fast-adapting interneurons may constitute an important mechanism through which cholinergic interneurons control the activity of projection neurons and perhaps the plasticity of their synaptic inputs when animals encounter reinforcing or otherwise salient stimuli. PMID:25865337

  19. Effects of central histamine receptors blockade on GABA(A) agonist-induced food intake in broiler cockerels.

    PubMed

    Morteza, Zendehdel; Vahhab, Babapour; Hossein, Jonaidi

    2008-02-01

    In this study, the effect of intracerebroventricular (i.c.v) injection of H1, H2 and H3 antagonists on feed intake induced by GABA(A) agonist was evaluated. In Experiment 1, the animals received chloropheniramine, a H1 antagonist and then muscimol, a GABA(A) agonist. In Experiment 2, chickens received famotidine, a H2 receptor antagonist, prior to injection of muscimol. Finally in Experiment 3, the birds were injected with thioperamide, a H3 receptor antagonist and muscimol. Cumulative food intake was measured 15, 30, 45, 60, 90, 120, 150 and 180 min after injections. The results of this study indicated that effects of muscimol on food intake inhibited by pretreatment with chloropheneramine maleate (p < or = 0.05), significantly, while the famotidine and thioperamide were ineffective. These results suggest the existence of H1-receptor mediated histamine-GABA(A) receptor interaction on food intake in broiler cockerels.

  20. Effects of chronic ethanol consumption on rat GABA(A) and strychnine-sensitive glycine receptors expressed by lateral/basolateral amygdala neurons.

    PubMed

    McCool, Brian A; Frye, Gerald D; Pulido, Marisa D; Botting, Shaleen K

    2003-02-14

    It is well known that the anxiolytic potential of ethanol is maintained during chronic exposure. We have confirmed this using a light-dark box paradigm following chronic ethanol ingestion via a liquid diet. However, cessation from chronic ethanol exposure is known to cause severe withdrawal anxiety. These opposing effects on anxiety likely result from neuro-adaptations of neurotransmitter systems within the brain regions regulating anxiety. Recent work highlights the importance of amygdala ligand-gated chloride channels in the expression of anxiety. We have therefore examined the effects of chronic ethanol exposure on GABA(A) and strychnine-sensitive glycine receptors expressed by acutely isolated adult rat lateral/basolateral amygdala neurons. Chronic ethanol exposure increased the functional expression of GABA(A) receptors in acutely isolated basolateral amygdala neurons without altering strychnine-sensitive glycine receptors. Neither the acute ethanol nor benzodiazepine sensitivity of either receptor system was affected. We explored the likelihood that subunit composition might influence each receptor's response to chronic ethanol. Importantly, when expressed in a mammalian heterologous system, GABA(A) receptors composed of unique alpha subunits were differentially sensitive to acute ethanol. Likewise, the presence of the beta subunit appeared to influence the acute ethanol sensitivity of glycine receptors containing the alpha(2) subunit. Our results suggest that the facilitation of GABA(A) receptors during chronic ethanol exposure may help explain the maintenance of ethanol's anti-anxiety effects during chronic ethanol exposure. Furthermore, the subunit composition of GABA(A) and strychnine-sensitive glycine receptors may ultimately influence the response of each system to chronic ethanol exposure.

  1. Dynamic differentiation of GABAA-sensitive influences on orientation selectivity of complex cells in the cat striate cortex.

    PubMed

    Pfleger, B; Bonds, A B

    1995-01-01

    The influence of GABAA receptors on orientation selectivity of cat complex cells was tested by iontophoresis of the GABAA receptor blockers bicuculline and N-methyl-bicuculline while stimulating with drifting sinusoidal gratings. Reduction of orientation tuning was markedly less than reported in previous studies that used drifting bars as visual stimuli. Only 3/31 cells lost orientation selectivity, with an average increase in bandwidth of 33%, as opposed to half the cells losing selectivity and a bandwidth increase for the remainder of 47% as reported previously. Infusion of GABAA blockers revealed a prominent stimulus onset transient response, lasting about 120 ms, that showed a broadening of orientation selectivity comparable to that found using drifting bars under similar circumstances. We believe that drifting gratings emphasize a steady-state response component that retains, in the presence of GABAA blockers, significant orientation selectivity. Because the onset transient is initially unselective for orientation, we suggest that the steady-state, orientation-selective response component develops from an alternate inhibitory mechanism, possibly mediated by GABAB receptors.

  2. Metabotropic glutamate receptors in the trafficking of ionotropic glutamate and GABA(A) receptors at central synapses.

    PubMed

    Xiao, Min-Yi; Gustafsson, Bengt; Niu, Yin-Ping

    2006-01-01

    The trafficking of ionotropic glutamate (AMPA, NMDA and kainate) and GABA(A) receptors in and out of, or laterally along, the postsynaptic membrane has recently emerged as an important mechanism in the regulation of synaptic function, both under physiological and pathological conditions, such as information processing, learning and memory formation, neuronal development, and neurodegenerative diseases. Non-ionotropic glutamate receptors, primarily group I metabotropic glutamate receptors (mGluRs), co-exist with the postsynaptic ionotropic glutamate and GABA(A) receptors. The ability of mGluRs to regulate postsynaptic phosphorylation and Ca(2+) concentration, as well as their interactions with postsynaptic scaffolding/signaling proteins, makes them well suited to influence the trafficking of ionotropic glutamate and GABA(A) receptors. Recent studies have provided insights into how mGluRs may impose such an influence at central synapses, and thus how they may affect synaptic signaling and the maintenance of long-term synaptic plasticity. In this review we will discuss some of the recent progress in this area: i) long-term synaptic plasticity and the involvement of mGluRs; ii) ionotropic glutamate receptor trafficking and long-term synaptic plasticity; iii) the involvement of postsynaptic group I mGluRs in regulating ionotropic glutamate receptor trafficking; iv) involvement of postsynaptic group I mGluRs in regulating GABA(A) receptor trafficking; v) and the trafficking of postsynaptic group I mGluRs themselves.

  3. Tyrosine Phosphorylation of GABAA Receptor γ2-Subunit Regulates Tonic and Phasic Inhibition in the Thalamus

    PubMed Central

    Nani, Francesca; Bright, Damian P.; Revilla-Sanchez, Raquel; Tretter, Verena; Moss, Stephen J.

    2013-01-01

    GABA-mediated tonic and phasic inhibition of thalamic relay neurons of the dorsal lateral geniculate nucleus (dLGN) was studied after ablating tyrosine (Y) phosphorylation of receptor γ2-subunits. As phosphorylation of γ2 Y365 and Y367 reduces receptor internalization, to understand their importance for inhibition we created a knock-in mouse in which these residues are replaced by phenylalanines. On comparing wild-type (WT) and γ2Y365/367F+/− (HT) animals (homozygotes are not viable in utero), the expression levels of GABAA receptor α4-subunits were increased in the thalamus of female, but not male mice. Raised δ-subunit expression levels were also observed in female γ2Y365/367F +/− thalamus. Electrophysiological analyses revealed no difference in the level of inhibition in male WT and HT dLGN, while both the spontaneous inhibitory postsynaptic activity and the tonic current were significantly augmented in female HT relay cells. The sensitivity of tonic currents to the δ-subunit superagonist THIP, and the blocker Zn2+, were higher in female HT relay cells. This is consistent with upregulation of extrasynaptic GABAA receptors containing α4- and δ-subunits to enhance tonic inhibition. In contrast, the sensitivity of GABAA receptors mediating inhibition in the female γ2Y356/367F +/− to neurosteroids was markedly reduced compared with WT. We conclude that disrupting tyrosine phosphorylation of the γ2-subunit activates a sex-specific increase in tonic inhibition, and this most likely reflects a genomic-based compensation mechanism for the reduced neurosteroid sensitivity of inhibition measured in female HT relay neurons. PMID:23904608

  4. Metabolic products of linalool and modulation of GABAA receptors

    NASA Astrophysics Data System (ADS)

    Milanos, Sinem; Elsharif, Shaimaa A.; Janzen, Dieter; Buettner, Andrea; Villmann, Carmen

    2017-06-01

    Terpenoids are major subcomponents in aroma substances which harbor sedative physiological potential. We have demonstrated that various monoterpenoids such as the acyclic linalool enhance GABAergic currents in an allosteric manner in vitro upon overexpression of inhibitory a1b2 GABAA receptors in various expression systems. However, in plants or humans, i.e. following intake via inhalation or ingestion, linalool undergoes metabolic modifications including oxygenation and acetylation, which may affect the modulatory efficacy of the generated linalool derivatives. Here, we analyzed the modulatory potential of linalool derivatives at a1b2g2 GABAA receptors upon transient overexpression. Following receptor expression control, electrophysiological recordings in a whole cell configuration were used to determine the chloride influx upon co-application of GABA EC5-10 together with the modulatory substance. Our results show that only oxygenated linalool metabolites at carbon 8 positively affect GABAergic currents whereas derivatives hydroxylated or carboxylated at carbon 8 were rather ineffective. Acetylated linalool derivatives resulted in non-significant changes of GABAergic currents. We can conclude that metabolism of linalool reduces its positive allosteric potential at GABAA receptors compared to the significant potentiation effects of the parent molecule linalool itself.

  5. Differential Potency of 2,6-Dimethylcyclohexanol Isomers for Positive Modulation of GABAA Receptor Currents.

    PubMed

    Chowdhury, Luvana; Croft, Celine J; Goel, Shikha; Zaman, Naina; Tai, Angela C-S; Walch, Erin M; Smith, Kelly; Page, Alexandra; Shea, Kevin M; Hall, C Dennis; Jishkariani, D; Pillai, Girinath G; Hall, Adam C

    2016-06-01

    GABAA receptors meet all of the pharmacological requirements necessary to be considered important targets for the action of general anesthetic agents in the mammalian brain. In the following patch-clamp study, the relative modulatory effects of 2,6-dimethylcyclohexanol diastereomers were investigated on human GABAA (α1β3γ2s) receptor currents stably expressed in human embryonic kidney cells. Cis,cis-, trans,trans-, and cis,trans-isomers were isolated from commercially available 2,6-dimethylcyclohexanol and were tested for positive modulation of submaximal GABA responses. For example, the addition of 30 μM cis,cis-isomer resulted in an approximately 2- to 3-fold enhancement of the EC20 GABA current. Coapplications of 30 μM 2,6-dimethylcyclohexanol isomers produced a range of positive enhancements of control GABA responses with a rank order for positive modulation: cis,cis > trans,trans ≥ mixture of isomers > > cis,trans-isomer. In molecular modeling studies, the three cyclohexanol isomers bound with the highest binding energies to a pocket within transmembrane helices M1 and M2 of the β3 subunit through hydrogen-bonding interactions with a glutamine at the 224 position and a tyrosine at the 220 position. The energies for binding to and hydrogen-bond lengths within this pocket corresponded with the relative potencies of the agents for positive modulation of GABAA receptor currents (cis,cis > trans,trans > cis,trans-2,6-dimethylcyclohexanol). In conclusion, the stereochemical configuration within the dimethylcyclohexanols is an important molecular feature in conferring positive modulation of GABAA receptor activity and for binding to the receptor, a consideration that needs to be taken into account when designing novel anesthetics with enhanced therapeutic indices. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  6. Antagonism of the Ethanol-Like Discriminative Stimulus Effects of Ethanol, Pentobarbital, and Midazolam in Cynomolgus Monkeys Reveals Involvement of Specific GABAA Receptor SubtypesS⃞

    PubMed Central

    Rogers, Laura S. M.; Grant, Kathleen A.

    2009-01-01

    The γ-aminobutyric acid (GABA)A receptors mediating the discriminative stimulus effects of ethanol were studied by comparing the potency of ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazol(1,5-a)benzodiazepine-3-carboxylate (Ro15-4513) and ethyl 8-fluoro-5,6-dihydro-5-methyl-6-oxo-4H-imidazol(1,5-a)-benzodiazepine-3-carboxylate (flumazenil, Ro15-1788) to antagonize ethanol, pentobarbital (PB), and midazolam substitution for ethanol. Ro15-4513 has high affinity for receptors containing α4/6 and α5 subunits and lower affinity for α1, α2, and α3 subunits. Flumazenil is nonselective for GABAA receptors containing α1, α2, α3, and α5 subunits and has low affinity for α4/6-containing receptors. Male (n = 9) and female (n = 8) cynomolgus monkeys (Macaca fascicularis) were trained to discriminate ethanol (1.0 or 2.0 g/kg i.g., 30-min pretreatment) from water. Ethanol, PB, and midazolam dose-dependently substituted for ethanol (80% ethanol-appropriate responding). Ro15-4513 (0.003–0.56 mg/kg i.m., 5-min pretreatment) shifted the ethanol, PB, and midazolam dose-response functions rightward in a vast majority of monkeys tested (15/15, 16/17, and 11/12, respectively). In contrast, flumazenil (0.30–10.0 mg/kg i.m., 5-min pretreatment) shifted the ethanol, PB, and midazolam dose-response functions rightward in 9 of 16, 12 of 16, and 7 of 9 monkeys tested, respectively. In the monkeys showing antagonism with both Ro15-4513 and flumazenil, ethanol and PB substitution were antagonized more potently by Ro15-4513 than by flumazenil, whereas midazolam substitution was antagonized with similar potency. There were no sex or training dose differences, with the exception that flumazenil failed to antagonize ethanol substitution in males trained to discriminate 2.0 g/kg ethanol. GABAA receptors with high affinity for Ro15-4513 (i.e., containing α4/6 and α5 subunits) may be particularly important mediators of the multiple discriminative stimulus effects of ethanol

  7. MmTX1 and MmTX2 from coral snake venom potently modulate GABAA receptor activity.

    PubMed

    Rosso, Jean-Pierre; Schwarz, Jürgen R; Diaz-Bustamante, Marcelo; Céard, Brigitte; Gutiérrez, José M; Kneussel, Matthias; Pongs, Olaf; Bosmans, Frank; Bougis, Pierre E

    2015-02-24

    GABAA receptors shape synaptic transmission by modulating Cl(-) conductance across the cell membrane. Remarkably, animal toxins that specifically target GABAA receptors have not been identified. Here, we report the discovery of micrurotoxin1 (MmTX1) and MmTX2, two toxins present in Costa Rican coral snake venom that tightly bind to GABAA receptors at subnanomolar concentrations. Studies with recombinant and synthetic toxin variants on hippocampal neurons and cells expressing common receptor compositions suggest that MmTX1 and MmTX2 allosterically increase GABAA receptor susceptibility to agonist, thereby potentiating receptor opening as well as desensitization, possibly by interacting with the α(+)/β(-) interface. Moreover, hippocampal neuron excitability measurements reveal toxin-induced transitory network inhibition, followed by an increase in spontaneous activity. In concert, toxin injections into mouse brain result in reduced basal activity between intense seizures. Altogether, we characterized two animal toxins that enhance GABAA receptor sensitivity to agonist, thereby establishing a previously unidentified class of tools to study this receptor family.

  8. Astrocytes Modulate a Postsynaptic NMDA–GABAA-Receptor Crosstalk in Hypothalamic Neurosecretory Neurons

    PubMed Central

    Potapenko, Evgeniy S.; Biancardi, Vinicia C.; Zhou, Yiqiang

    2013-01-01

    A dynamic balance between the excitatory and inhibitory neurotransmitters glutamate and GABA is critical for maintaining proper neuronal activity in the brain. This balance is partly achieved via presynaptic interactions between glutamatergic and GABAAergic synapses converging into the same targets. Here, we show that in hypothalamic magnocellular neurosecretory neurons (MNCs), a direct crosstalk between postsynaptic NMDA receptors (NMDARs) and GABAA receptors (GABAARs) contributes to the excitatory/inhibitory balance in this system. We found that activation of NMDARs by endogenous glutamate levels controlled by astrocyte glutamate transporters, evokes a transient and reversible potentiation of postsynaptic GABAARs. This inter-receptor crosstalk is calcium-dependent and involves a kinase-dependent phosphorylation mechanism, but does not require nitric oxide as an intermediary signal. Finally, we found the NMDAR–GABAAR crosstalk to be blunted in rats with heart failure, a pathological condition in which the hypothalamic glutamate–GABA balance is tipped toward an excitatory predominance. Together, our findings support a novel form of glutamate–GABA interactions in MNCs, which involves crosstalk between NMDA and GABAA postsynaptic receptors, whose strength is controlled by the activity of local astrocytes. We propose this inter-receptor crosstalk to act as a compensatory, counterbalancing mechanism to dampen glutamate-mediated overexcitation. Finally, we propose that an uncoupling between NMDARs and GABAARs may contribute to exacerbated neuronal activity and, consequently, sympathohumoral activation in such disease conditions as heart failure. PMID:23303942

  9. Alcohol-induced tolerance and physical dependence in mice with ethanol insensitive α1 GABAA receptors

    PubMed Central

    Werner, David F.; Swihart, Andrew R.; Ferguson, Carolyn; Lariviere, William R.; Harrison, Neil L.; Homanics, Gregg E.

    2009-01-01

    Background Although many people consume alcohol (ethanol), it remains unknown why some become addicted. Elucidating the molecular mechanisms of tolerance and physical dependence (withdrawal) may provide insight into alcohol addiction. While the exact molecular mechanisms of ethanol action are unclear, γ-aminobutyric acid type A receptors (GABAA-Rs) have been extensively implicated in ethanol action. The α1 GABAA-R subunit is associated with tolerance and physical dependence, but its exact role remains unknown. In this report, we tested the hypothesis that α1-GABAA-Rs mediate in part these effects of ethanol. Methods Ethanol-induced behavioral responses related to tolerance and physical dependence were investigated in knockin mice that have ethanol-insensitive α1 GABAA-Rs and wildtype controls. Acute functional tolerance (AFT) was assessed using the stationary dowel and loss of righting reflex assays. Chronic tolerance was assessed on the loss of righting reflex, fixed speed rotarod, hypothermia, and radiant tail flick assays following ten consecutive days of ethanol exposure. Withdrawal-related hyperexcitability was assessed by handling-induced convulsions following 3 cycles of ethanol vapor exposure/withdrawal. Immunoblots were used to assess α1 protein levels. Results Compared to controls, knockin mice displayed decreased AFT and chronic tolerance to ethanol-induced motor ataxia, and also displayed heightened ethanol-withdrawal hyperexcitability. No differences between wildtype and knockin mice were seen in other ethanol-induced behavioral measures. Following chronic exposure to ethanol, control mice displayed reductions in α1 protein levels, but knockins did not. Conclusions We conclude that α1-GABAA-Rs play a role in tolerance to ethanol-induced motor ataxia and withdrawal-related hyperexcitability. However, other aspects of behavioral tolerance and physical dependence do not rely on α1-containing GABAA-Rs. PMID:19032579

  10. The effects of agonists of ionotropic GABA(A) and metabotropic GABA(B) receptors on learning.

    PubMed

    Zyablitseva, Evgeniya A; Kositsyn, Nikolay S; Shul'gina, Galina I

    2009-05-01

    The research described here investigates the role played by inhibitory processes in the discriminations made by the nervous system of humans and animals between familiar and unfamiliar and significant and nonsignificant events. This research compared the effects of two inhibitory mediators of gamma-aminobutyric acid (GABA): 1) phenibut, a nonselective agonist of ionotropic GABA(A) and metabotropic GABA(B) receptors and 2) gaboxadol a selective agonist of ionotropic GABA(A) receptors on the process of developing active defensive and inhibitory conditioned reflexes in alert non-immobilized rabbits. It was found that phenibut, but not gaboxadol, accelerates the development of defensive reflexes at an early stage of conditioning. Both phenibut and gaboxadol facilitate the development of conditioned inhibition, but the effect of gaboxadol occurs at later stages of conditioning and is less stable than that of phenibut. The earlier and more stable effects of phenibut, as compared to gaboxadol, on storage in memory of the inhibitory significance of a stimulus may occur because GABA(B) receptors play the dominant role in the development of internal inhibition during an early stage of conditioning. On the other hand this may occur because the participation of both GABA(A) and GABA(B) receptors are essential to the process. We discuss the polyfunctionality of GABA receptors as a function of their structure and the positions of the relevant neurons in the brain as this factor can affect regulation of various types of psychological processes.

  11. A novel GABA(A) alpha 5 receptor inhibitor with therapeutic potential.

    PubMed

    Ling, István; Mihalik, Balázs; Etherington, Lori-An; Kapus, Gábor; Pálvölgyi, Adrienn; Gigler, Gábor; Kertész, Szabolcs; Gaál, Attila; Pallagi, Katalin; Kiricsi, Péter; Szabó, Éva; Szénási, Gábor; Papp, Lilla; Hársing, László G; Lévay, György; Spedding, Michael; Lambert, Jeremy J; Belelli, Delia; Barkóczy, József; Volk, Balázs; Simig, Gyula; Gacsályi, István; Antoni, Ferenc A

    2015-10-05

    Novel 2,3-benzodiazepine and related isoquinoline derivatives, substituted at position 1 with a 2-benzothiophenyl moiety, were synthesized to produce compounds that potently inhibited the action of GABA on heterologously expressed GABAA receptors containing the alpha 5 subunit (GABAA α5), with no apparent affinity for the benzodiazepine site. Substitutions of the benzothiophene moiety at position 4 led to compounds with drug-like properties that were putative inhibitors of extra-synaptic GABAA α5 receptors and had substantial blood-brain barrier permeability. Initial characterization in vivo showed that 8-methyl-5-[4-(trifluoromethyl)-1-benzothiophen-2-yl]-1,9-dihydro-2H-[1,3]oxazolo[4,5-h][2,3]benzodiazepin-2-one was devoid of sedative, pro-convulsive or motor side-effects, and enhanced the performance of rats in the object recognition test. In summary, we have discovered a first-in-class GABA-site inhibitor of extra-synaptic GABAA α5 receptors that has promising drug-like properties and warrants further development. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. GABA(A) receptors in visual and auditory cortex and neural activity changes during basic visual stimulation.

    PubMed

    Qin, Pengmin; Duncan, Niall W; Wiebking, Christine; Gravel, Paul; Lyttelton, Oliver; Hayes, Dave J; Verhaeghe, Jeroen; Kostikov, Alexey; Schirrmacher, Ralf; Reader, Andrew J; Northoff, Georg

    2012-01-01

    Recent imaging studies have demonstrated that levels of resting γ-aminobutyric acid (GABA) in the visual cortex predict the degree of stimulus-induced activity in the same region. These studies have used the presentation of discrete visual stimulus; the change from closed eyes to open also represents a simple visual stimulus, however, and has been shown to induce changes in local brain activity and in functional connectivity between regions. We thus aimed to investigate the role of the GABA system, specifically GABA(A) receptors, in the changes in brain activity between the eyes closed (EC) and eyes open (EO) state in order to provide detail at the receptor level to complement previous studies of GABA concentrations. We conducted an fMRI study involving two different modes of the change from EC to EO: an EO and EC block design, allowing the modeling of the haemodynamic response, followed by longer periods of EC and EO to allow the measuring of functional connectivity. The same subjects also underwent [(18)F]Flumazenil PET to measure GABA(A) receptor binding potentials. It was demonstrated that the local-to-global ratio of GABA(A) receptor binding potential in the visual cortex predicted the degree of changes in neural activity from EC to EO. This same relationship was also shown in the auditory cortex. Furthermore, the local-to-global ratio of GABA(A) receptor binding potential in the visual cortex also predicted the change in functional connectivity between the visual and auditory cortex from EC to EO. These findings contribute to our understanding of the role of GABA(A) receptors in stimulus-induced neural activity in local regions and in inter-regional functional connectivity.

  13. Extrasynaptic GABAA receptors in the crosshairs of hormones and ethanol

    PubMed Central

    Mody, Istvan

    2008-01-01

    Gamma-aminobutyric acid (GABA) is the main chemical inhibitory neurotransmitter in the brain. In the central nervous system (CNS) it acts on two distinct types of receptor: an ion channel, i.e., an “ionotropic” receptor permeable to Cl− and HCO3− (GABAA receptors) and a G-protein coupled “metabotropic” receptor that is linked to various effector mechanisms (GABAB receptors). This review will summarize novel developments in the physiology and pharmacology of GABAA receptors (GABAARs), specifically those found outside synapses. The focus will be on a particular combination of GABAAR subunits sensitive to ovarian and adrenal cortical steroid hormone metabolites that are synthesized in the brain (neurosteroids) and to sobriety impairing concentrations of ethanol. These receptors may be the final common pathway for interactions between ethanol and ovarian and stress-related neurosteroids. PMID:17714830

  14. Increased GABA-A receptor binding and reduced connectivity at the motor cortex in children with hemiplegic cerebral palsy: a multimodal investigation using 18F-fluoroflumazenil PET, immunohistochemistry, and MR imaging.

    PubMed

    Park, Hae-Jeong; Kim, Chul Hoon; Park, Eun Sook; Park, Bumhee; Oh, So Ra; Oh, Maeng-Keun; Park, Chang Il; Lee, Jong Doo

    2013-08-01

    γ-aminobutyric acid (GABA)-A receptor-mediated neural transmission is important to promote practice-dependent plasticity after brain injury. This study investigated alterations in GABA-A receptor binding and functional and anatomic connectivity within the motor cortex in children with cerebral palsy (CP). We conducted (18)F-fluoroflumazenil PET on children with hemiplegic CP to investigate whether in vivo GABA-A receptor binding is altered in the ipsilateral or contralateral hemisphere of the lesion site. To evaluate changes in the GABA-A receptor subunit after prenatal brain injury, we performed GABA-A receptor immunohistochemistry using rat pups with a diffuse hypoxic ischemic insult. We also performed diffusion tensor MR imaging and resting-state functional MR imaging on the same children with hemiplegic CP to investigate alterations in anatomic and functional connectivity at the motor cortex with increased GABA-A receptor binding. In children with hemiplegic CP, the (18)F-fluoroflumazenil binding potential was increased within the ipsilateral motor cortex. GABA-A receptors with the α1 subunit were highly expressed exclusively within cortical layers III, IV, and VI of the motor cortex in rat pups. The motor cortex with increased GABA-A receptor binding in children with hemiplegic CP had reduced thalamocortical and corticocortical connectivity, which might be linked to increased GABA-A receptor distribution in cortical layers in rats. Increased expression of the GABA-A receptor α1 subunit within the ipsilateral motor cortex may be an important adaptive mechanism after prenatal brain injury in children with CP but may be associated with improper functional connectivity after birth and have adverse effects on the development of motor plasticity.

  15. Mechanism of the cardiovascular effects of the GABAA receptors of the ventral tegmental area of the rat brain.

    PubMed

    Yeganeh, Fahimeh; Ranjbar, Afsaneh; Hatam, Masoumeh; Nasimi, Ali

    2015-07-23

    The ventral tegmental area (VTA) contains GABA terminals involved in the regulation of the cardiovascular system. Previously, we demonstrated that blocking GABAA but not GABAB receptors produced a pressor response accompanied by marked bradycardia. This study was performed to find the possible mechanisms involved in these responses by blocking ganglionic nicotinic receptors, peripheral muscarinic receptors or peripheral V1 vasopressin receptors. Experiments were performed on urethane anesthetized male Wistar rats. Drugs were microinjected unilaterally into the VTA (100 nl). The average changes in mean arterial pressure (MAP) and heart rate (HR) were compared between pre- and post-treatment using paired t-test. Injection of bicuculline methiodide (BMI), a GABAA antagonist, into the VTA caused a significant increase in MAP and a decrease in HR. Administration (i.v.) of the nicotinic receptor blocker, hexamethonium, enhanced the pressor response but abolished the bradycardic response to BMI, which ruled out involvement of the sympathetic nervous system. Blockade of the peripheral muscarinic receptors by homatropine (i.v.) abolished the bradycardic effect of BMI, but had no effect on the pressor response, indicating that bradycardia was produced by the parasympathetic outflow to the heart. Both the pressor and bradycardic responses to BMI were blocked by V1 receptor antagonist (i.v.), indicating that administration of BMI in the VTA disinhibited the release of vasopressin into the circulation. In conclusion, we demonstrated that GABAergic mechanism of the VTA exerts a tonic inhibition on vasopressin release through activation of GABAA receptors. The sympathetic system is not involved in the decrease of blood pressure by GABA of the VTA. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Relative positioning of classical benzodiazepines to the γ2-subunit of GABAA receptors.

    PubMed

    Middendorp, Simon J; Hurni, Evelyn; Schönberger, Matthias; Stein, Marco; Pangerl, Michael; Trauner, Dirk; Sigel, Erwin

    2014-08-15

    GABAA receptors are the major inhibitory neurotransmitter receptors in the brain. Benzodiazepine exert their action via a high affinity-binding site at the α/γ subunit interface on some of these receptors. Diazepam has sedative, hypnotic, anxiolytic, muscle relaxant, and anticonvulsant effects. It acts by potentiating the current evoked by the agonist GABA. Understanding specific interaction of benzodiazepines in the binding pocket of different GABAA receptor isoforms might help to separate these divergent effects. As a first step, we characterized the interaction between diazepam and the major GABAA receptor isoform α1β2γ2. We mutated several amino acid residues on the γ2-subunit assumed to be located near or in the benzodiazepine binding pocket individually to cysteine and studied the interaction with three ligands that are modified with a cysteine-reactive isothiocyanate group (-NCS). When the reactive NCS group is in apposition to the cysteine residue this leads to a covalent reaction. In this way, three amino acid residues, γ2Tyr58, γ2Asn60, and γ2Val190 were located relative to classical benzodiazepines in their binding pocket on GABAA receptors.

  17. Alteration of GABAergic synapses and gephyrin clusters in the thalamic reticular nucleus of GABAA receptor alpha3 subunit-null mice.

    PubMed

    Studer, Remo; von Boehmer, Lotta; Haenggi, Tatjana; Schweizer, Claude; Benke, Dietmar; Rudolph, Uwe; Fritschy, Jean-Marc

    2006-09-01

    Multiple GABAA-receptor subtypes are assembled from alpha, beta and gamma subunit variants. GABAA receptors containing the alpha3 subunit represent a minor population with a restricted distribution in the CNS. In addition, they predominate in monoaminergic neurons and in the nucleus reticularis thalami (nRT), suggesting a role in the regulation of cortical function and sleep. Mice with a targeted deletion of the alpha3 subunit gene (alpha3(0/0)) are viable and exhibit a subtle behavioural phenotype possibly related to dopaminergic hyperfunction. Here, we investigated immunohistochemically the consequences of the loss of alpha3 subunit for maturation of GABAA receptors and formation of GABAergic synapses in the nRT. Throughout postnatal development, the regional distribution of the alpha1, alpha2, or alpha5 subunit was unaltered in alpha3(0/0) mice and the prominent alpha3 subunit staining of nRT neurons in wildtype mice was not replaced. Subcellularly, as seen by double immunofluorescence, the alpha3 and gamma2 subunit were clustered at postsynaptic sites in the nRT of adult wildtype mice along with the scaffolding protein gephyrin. In alpha3(0/0) mice, gamma2 subunit clustering was disrupted and gephyrin formed large aggregates localized at the cell surface, but unrelated to postsynaptic sites, indicating that nRT neurons lack postsynaptic GABAA receptors in mutant mice. Furthermore, GABAergic terminals were enlarged and reduced in number, suggesting a partial deficit of GABAergic synapses. Therefore, GABAA receptors are required for gephyrin clustering and long-term synapse maintenance. The absence of GABAA-mediated transmission in the nRT may have a significant impact on the function of the thalamo-cortical loop of alpha3(0/0) mice.

  18. GABAA receptor-expressing neurons promote consumption in Drosophila melanogaster.

    PubMed

    Cheung, Samantha K; Scott, Kristin

    2017-01-01

    Feeding decisions are highly plastic and bidirectionally regulated by neurons that either promote or inhibit feeding. In Drosophila melanogaster, recent studies have identified four GABAergic interneurons that act as critical brakes to prevent incessant feeding. These GABAergic neurons may inhibit target neurons that drive consumption. Here, we tested this hypothesis by examining GABA receptors and neurons that promote consumption. We find that Resistance to dieldrin (RDL), a GABAA type receptor, is required for proper control of ingestion. Knockdown of Rdl in a subset of neurons causes overconsumption of tastants. Acute activation of these neurons is sufficient to drive consumption of appetitive substances and non-appetitive substances and acute silencing of these neurons decreases consumption. Taken together, these studies identify GABAA receptor-expressing neurons that promote Drosophila ingestive behavior and provide insight into feeding regulation.

  19. A network of autism linked genes stabilizes two pools of synaptic GABAA receptors

    PubMed Central

    Tong, Xia-Jing; Hu, Zhitao; Liu, Yu; Anderson, Dorian; Kaplan, Joshua M

    2015-01-01

    Changing receptor abundance at synapses is an important mechanism for regulating synaptic strength. Synapses contain two pools of receptors, immobilized and diffusing receptors, both of which are confined to post-synaptic elements. Here we show that immobile and diffusing GABAA receptors are stabilized by distinct synaptic scaffolds at C. elegans neuromuscular junctions. Immobilized GABAA receptors are stabilized by binding to FRM-3/EPB4.1 and LIN-2A/CASK. Diffusing GABAA receptors are stabilized by the synaptic adhesion molecules Neurexin and Neuroligin. Inhibitory post-synaptic currents are eliminated in double mutants lacking both scaffolds. Neurexin, Neuroligin, and CASK mutations are all linked to Autism Spectrum Disorders (ASD). Our results suggest that these mutations may directly alter inhibitory transmission, which could contribute to the developmental and cognitive deficits observed in ASD. DOI: http://dx.doi.org/10.7554/eLife.09648.001 PMID:26575289

  20. Benzodiazepine-site pharmacology on GABAA receptors in histaminergic neurons.

    PubMed

    May, A C; Fleischer, W; Kletke, O; Haas, H L; Sergeeva, O A

    2013-09-01

    The histaminergic tuberomamillary nucleus (TMN) of the posterior hypothalamus controls the cognitive aspects of vigilance which is reduced by common sedatives and anxiolytics. The receptors targeted by these drugs in histaminergic neurons are unknown. TMN neurons express nine different subunits of the GABAA receptor (GABAA R) with three α- (α1, α2 and α5) and two γ- (γ1, γ 2) subunits, which confer different pharmacologies of the benzodiazepine-binding site. We investigated the actions of zolpidem, midazolam, diazepam, chlordiazepoxide, flumazenil (Ro15-1788) and methyl-6,7-dimethoxy-4-ethyl-β-carboline-3-carboxylate (DMCM) in TMN neurons using mouse genetics, electrophysiological and molecular biological methods. We find the sensitivity of GABAA R to zolpidem, midazolam and DMCM significantly reduced in TMN neurons from γ2F77I mice, but modulatory activities of diazepam, chlordiazepoxide and flumazenil not affected. Potencies and efficacies of these compounds are in line with the dominance of α2- and α1-subunit containing receptors associated with γ2- or γ1-subunits. Functional expression of the γ1-subunit is supported by siRNA-based knock-down experiments in γ2F77I mice. GABAA R of TMN neurons respond to a variety of common sedatives with a high affinity binding site (γ2F77I) involved. The γ1-subunit likely contributes to the action of common sedatives in TMN neurons. This study is relevant for understanding the role of neuronal histamine and benzodiazepines in disorders of sleep and metabolism. © 2013 The British Pharmacological Society.

  1. SB-205384 Is a Positive Allosteric Modulator of Recombinant GABAA Receptors Containing Rat α3, α5, or α6 Subunit Subtypes Coexpressed with β3 and γ2 Subunits

    PubMed Central

    Heidelberg, Laura S.; Warren, James W.

    2013-01-01

    Many drugs used to treat anxiety are positive modulators of GABAA receptors, which mediate fast inhibitory neurotransmission. The GABAA receptors can be assembled from a combination of at least 16 different subunits. The receptor’s subunit composition determines its pharmacologic and functional properties, and subunit expression varies throughout the brain. A primary goal for new treatments targeting GABAA receptors is the production of subunit-selective modulators acting upon a discrete population of receptors. The anxiolytic 4-amino-7-hydroxy-2-methyl-5,6,7,8,-tetrahydrobenzo[b]thieno[2,3-b]pyridine-3-carboxylic acid, but-2-ynyl ester (SB-205384) is widely considered to be selective for α3-containing GABAA receptors. However, it has been tested only on α1-, α2-, and α3-containing receptors. We examined the activity of SB-205384 at recombinant receptors containing the six different α subunits and found that receptors containing the α3, α5, and α6 subunits were potentiated by SB-205384, with the α6 subunit conferring the greatest responsiveness. Properties associated with chimeric α1/α6 subunits suggested that multiple structural domains influence sensitivity to SB-205384. Point mutations of residues within the extracellular N-terminal domain identified a leucine residue located in loop E of the agonist binding site as an important determinant of high sensitivity to modulation. In the α6 subunit the identity of this residue is species-dependent, with the leucine found in rat subunits but not in human. Our results indicate that SB-205384 is not an α3-selective modulator, and instead acts at several GABAA receptor isoforms. These findings have implications for the side-effect profile of this anxiolytic as well as for its use in neuronal and animal studies as a marker for contribution from α3-containing receptors. PMID:23902941

  2. α2-containing GABAA receptors expressed in hippocampal region CA3 control fast network oscillations

    PubMed Central

    Heistek, Tim S; Ruiperez-Alonso, Marta; Timmerman, A Jaap; Brussaard, Arjen B; Mansvelder, Huibert D

    2013-01-01

    GABAA receptors are critically involved in hippocampal oscillations. GABAA receptor α1 and α2 subunits are differentially expressed throughout the hippocampal circuitry and thereby may have distinct contributions to oscillations. It is unknown which GABAA receptor α subunit controls hippocampal oscillations and where these receptors are expressed. To address these questions we used transgenic mice expressing GABAA receptor α1 and/or α2 subunits with point mutations (H101R) that render these receptors insensitive to allosteric modulation at the benzodiazepine binding site, and tested how increased or decreased function of α subunits affects hippocampal oscillations. Positive allosteric modulation by zolpidem prolonged decay kinetics of hippocampal GABAergic synaptic transmission and reduced the frequency of cholinergically induced oscillations. Allosteric modulation of GABAergic receptors in CA3 altered oscillation frequency in CA1, while modulation of GABA receptors in CA1 did not affect oscillations. In mice having a point mutation (H101R) at the GABAA receptor α2 subunit, zolpidem effects on cholinergically induced oscillations were strongly reduced compared to wild-type animals, while zolpidem modulation was still present in mice with the H101R mutation at the α1 subunit. Furthermore, genetic knockout of α2 subunits strongly reduced oscillations, whereas knockout of α1 subunits had no effect. Allosteric modulation of GABAergic receptors was strongly reduced in unitary connections between fast spiking interneurons and pyramidal neurons in CA3 of α2H101R mice, but not of α1H101R mice, suggesting that fast spiking interneuron to pyramidal neuron synapses in CA3 contain α2 subunits. These findings suggest that α2-containing GABAA receptors expressed in the CA3 region provide the inhibition that controls hippocampal rhythm during cholinergically induced oscillations. PMID:23109109

  3. Fragrant Dioxane Derivatives Identify β1-Subunit-containing GABAA Receptors*

    PubMed Central

    Sergeeva, Olga A.; Kletke, Olaf; Kragler, Andrea; Poppek, Anja; Fleischer, Wiebke; Schubring, Stephan R.; Görg, Boris; Haas, Helmut L.; Zhu, Xin-Ran; Lübbert, Hermann; Gisselmann, Günter; Hatt, Hanns

    2010-01-01

    Nineteen GABAA receptor (GABAAR) subunits are known in mammals with only a restricted number of functionally identified native combinations. The physiological role of β1-subunit-containing GABAARs is unknown. Here we report the discovery of a new structural class of GABAAR positive modulators with unique β1-subunit selectivity: fragrant dioxane derivatives (FDD). At heterologously expressed α1βxγ2L (x-for 1,2,3) GABAAR FDD were 6 times more potent at β1- versus β2- and β3-containing receptors. Serine at position 265 was essential for the high sensitivity of the β1-subunit to FDD and the β1N286W mutation nearly abolished modulation; vice versa the mutation β3N265S shifted FDD sensitivity toward the β1-type. In posterior hypothalamic neurons controlling wakefulness GABA-mediated whole-cell responses and GABAergic synaptic currents were highly sensitive to FDD, in contrast to β1-negative cerebellar Purkinje neurons. Immunostaining for the β1-subunit and the potency of FDD to modulate GABA responses in cultured hypothalamic neurons was drastically diminished by β1-siRNA treatment. In conclusion, with the help of FDDs we reveal a functional expression of β1-containing GABAARs in the hypothalamus, offering a new tool for studies on the functional diversity of native GABAARs. PMID:20511229

  4. Bidirectional control of spike timing by GABA(A) receptor-mediated inhibition during theta oscillation in CA1 pyramidal neurons.

    PubMed

    Kwag, Jeehyun; Paulsen, Ole

    2009-08-26

    Precisely controlled spike times relative to theta-frequency network oscillations play an important role in hippocampal memory processing. Here we study how inhibitory synaptic input during theta oscillation contributes to the control of spike timing. Using whole-cell patch-clamp recordings from CA1 pyramidal cells in vitro with dynamic clamp to simulate theta-frequency oscillation (5 Hz), we show that gamma-aminobutyric acid-A (GABA(A)) receptor-mediated inhibitory postsynaptic potentials (IPSPs) can not only delay but also advance the postsynaptic spike depending on the timing of the inhibition relative to the oscillation. Spike time advancement with IPSP was abolished by the h-channel blocker ZD7288 (10 microM), suggesting that IPSPs can interact with intrinsic membrane conductances to yield bidirectional control of spike timing.

  5. NOVEL POSITIVE ALLOSTERIC MODULATORS OF GABAA RECEPTORS: DO SUBTLE DIFFERENCES IN ACTIVITY AT α1 PLUS α5 VERSUS α2 PLUS α3 SUBUNITS ACCOUNT FOR DISSIMILARITIES IN BEHAVIORAL EFFECTS IN RATS?

    PubMed Central

    Savić, Miroslav M.; Majumder, Samarpan; Huang, Shengming; Edwankar, Rahul V.; Furtmüller, Roman; Joksimović, Srđan; Clayton, Terry; Ramerstorfer, Joachim; Milinković, Marija M.; Roth, Bryan L.; Sieghart, Werner; Cook, James M.

    2010-01-01

    Over the last years, genetic studies have greatly improved our knowledge on the receptor subtypes mediating various pharmacological effects of positive allosteric modulators at GABAA receptors. This stimulated the development of new benzodiazepine (BZ)-like ligands, especially those inactive/low-active at GABAA receptors containing the α1 subunit, with the aim of generating more selective drugs. Hereby, the affinity and efficacy of four recently-synthesized BZ site ligands: SH-053-2’N, SH-053-S-CH3-2’F, SH-053-R-CH3-2’F and JY-XHe-053 were assessed. They were also studied in behavioral tests of spontaneous locomotor activity, elevated plus maze, and water maze in rats, which are considered predictive of, respectively, the sedative, anxiolytic, and amnesic influence of BZs. The novel ligands had moderately low to low affinity and mild to partial agonistic efficacy at GABAA receptors containing the α1 subunit, with variable, but more pronounced efficacy at other BZ-sensitive binding sites. While presumably α1 receptor-mediated sedative effects of GABAA modulation were not fully eliminated with any of the ligands tested, only SH-053-2’N and SH-053-S-CH3-2’F, both dosed at 30 mg/kg, exerted anxiolytic effects. The lack of clear anxiolytic-like activity of JY-XHe-053, despite its efficacy at α2- and α3-GABAA receptors, may have been partly connected with its preferential affinity at α5-GABAA receptors coupled with weak agonist activity at α1-containing subtypes. The memory impairment in water-maze experiments, generally reported with BZ site agonists, was completely circumvented with all four ligands. The results suggest that a substantial amount of activity at α1 GABAA receptors is needed for effecting spatial learning and memory impairments, while much weaker activity at α1- and α5-GABAA receptors is sufficient for eliciting sedation. PMID:20074611

  6. Functional expression of the GABAA receptor α2 and α3 subunits at synapses between intercalated medial paracapsular neurons of mouse amygdala

    PubMed Central

    Geracitano, Raffaella; Fischer, David; Kasugai, Yu; Ferraguti, Francesco; Capogna, Marco

    2012-01-01

    In the amygdala, GABAergic neurons in the intercalated medial paracapsular cluster (Imp) have been suggested to play a key role in fear learning and extinction. These neurons project to the central (CE) amygdaloid nucleus and to other areas within and outside the amygdala. In addition, they give rise to local collaterals that innervate other neurons in the Imp. Several drugs, including benzodiazepines (BZ), are allosteric modulators of GABAA receptors. BZ has both anxiolytic and sedative actions, which are mediated through GABAA receptors containing α2/α3 and α1 subunits, respectively. To establish whether α1 or α2/α3 subunits are expressed at Imp cell synapses, we used paired recordings of anatomically identified Imp neurons and high resolution immunocytochemistry in the mouse. We observed that a selective α3 subunit agonist, TP003 (100 nM), significantly increased the decay time constant of the unitary IPSCs. A similar effect was also induced by zolpidem (10 μM) or by diazepam (1 μM). In contrast, lower doses of zolpidem (0.1–1 μM) did not significantly alter the kinetics of the unitary IPSCs. Accordingly, immunocytochemical experiments established that the α2 and α3, but not the α1 subunits of the GABAA receptors, were present at Imp cell synapses of the mouse amygdala. These results define, for the first time, some of the functional GABAA receptor subunits expressed at synapses of Imp cells. The data also provide an additional rationale to prompt the search of GABAA receptor α3 selective ligands as improved anxiolytic drugs. PMID:22666188

  7. Activation of single heteromeric GABAA receptor ion channels by full and partial agonists

    PubMed Central

    Mortensen, Martin; Kristiansen, Uffe; Ebert, Bjarke; Frølund, Bente; Krogsgaard-Larsen, Povl; Smart, Trevor G

    2004-01-01

    The linkage between agonist binding and the activation of a GABAA receptor ion channel is yet to be resolved. This aspect was examined on human recombinant α1β2γ2S GABAA receptors expressed in human embryonic kidney cells using the following series of receptor agonists: GABA, isoguvacine, 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), isonipecotic acid, piperidine-4-sulphonic acid (P4S), imidazole-4-acetic acid (IAA), 5-(4-piperidyl)-3-isothiazolol (thio-4-PIOL) and 5-(4-piperidyl)-3-isoxazolol (4-PIOL). Whole-cell concentration–response curves enabled the agonists to be categorized into four classes based upon their maximum responses. Single channel analyses revealed that the channel conductance of 25–27 pS was unaffected by the agonists. However, two open states were resolved from the open period distributions with mean open times reduced 5-fold by the weakest partial agonists. Using saturating agonist concentrations, estimates of the channel shutting rate, α, ranged from 200 to 600 s−1. The shut period distributions were described by three or four components and for the weakest partial agonists, the interburst shut periods increased whilst the mean burst durations and longest burst lengths were reduced relative to the full agonists. From the burst analyses, the opening rates for channel activation, β, and the total dissociation rates, k−1, for the agonists leaving the receptor were estimated. The agonist efficacies were larger for the full agonists (E ∼7−9) compared to the weak partial agonists (∼0.4–0.6). Overall, changes in agonist efficacy largely determined the different agonist profiles with contributions from the agonist affinities and the degree of receptor desensitization. From this we conclude that GABAA receptor activation does not occur in a switch-like manner since the agonist recognition sites are flexible, accommodating diverse agonist structures which differentially influence the opening and shutting rates of the ion

  8. Reversal of pathological pain through specific spinal GABAA receptor subtypes.

    PubMed

    Knabl, Julia; Witschi, Robert; Hösl, Katharina; Reinold, Heiko; Zeilhofer, Ulrike B; Ahmadi, Seifollah; Brockhaus, Johannes; Sergejeva, Marina; Hess, Andreas; Brune, Kay; Fritschy, Jean-Marc; Rudolph, Uwe; Möhler, Hanns; Zeilhofer, Hanns Ulrich

    2008-01-17

    Inflammatory diseases and neuropathic insults are frequently accompanied by severe and debilitating pain, which can become chronic and often unresponsive to conventional analgesic treatment. A loss of synaptic inhibition in the spinal dorsal horn is considered to contribute significantly to this pain pathology. Facilitation of spinal gamma-aminobutyric acid (GABA)ergic neurotransmission through modulation of GABA(A) receptors should be able to compensate for this loss. With the use of GABA(A)-receptor point-mutated knock-in mice in which specific GABA(A) receptor subtypes have been selectively rendered insensitive to benzodiazepine-site ligands, we show here that pronounced analgesia can be achieved by specifically targeting spinal GABA(A) receptors containing the alpha2 and/or alpha3 subunits. We show that their selective activation by the non-sedative ('alpha1-sparing') benzodiazepine-site ligand L-838,417 (ref. 13) is highly effective against inflammatory and neuropathic pain yet devoid of unwanted sedation, motor impairment and tolerance development. L-838,417 not only diminished the nociceptive input to the brain but also reduced the activity of brain areas related to the associative-emotional components of pain, as shown by functional magnetic resonance imaging in rats. These results provide a rational basis for the development of subtype-selective GABAergic drugs for the treatment of chronic pain, which is often refractory to classical analgesics.

  9. Association between alcoholism and the genetic polymorphisms of the GABAA receptor genes on chromosome 5q33-34 in Korean population.

    PubMed

    Park, Chul-Soo; Park, So-Young; Lee, Chul-Soon; Sohn, Jin-Wook; Hahn, Gyu-Hee; Kim, Bong-Jo

    2006-06-01

    Family, twin, and adoption studies have demonstrated that genes play an important role in the development of alcoholism. We investigated the association between alcoholism and the genetic polymorphisms of the GABAA receptor genes on chromosome 5q33-34 in Korean population. The genotype of the GABAA receptor gene polymorphisms were determined by performing polymerase chain reaction genotyping for 172 normal controls and 162 male alcoholics who are hospitalized in alcoholism treatment institute. We found a significant association between the genetic polymorphisms of the GABAA alpha1 and GABAA alpha6 receptor gene and alcoholism. The GG genotype of the GABAA alpha1 receptor gene was associated with the onset age of alcoholism and alcohol withdrawal symptoms, and a high score on the Korean version of the ADS. However, there was no association between the genetic polymorphisms of the GABAA beta2 and gamma2 receptor gene and alcoholisms. Our finding suggest that genetic polymorphisms of the GABAA alpha1 and GABAA alpha6 receptor gene may be associated with the development of alcoholism and that the GG genotype of the GABAA alpha1 receptor gene play an important role in the development of the early onset and the severe type of alcoholism.

  10. Quantitative Electroencephalography Within Sleep/Wake States Differentiates GABAA Modulators Eszopiclone and Zolpidem From Dual Orexin Receptor Antagonists in Rats

    PubMed Central

    Fox, Steven V; Gotter, Anthony L; Tye, Spencer J; Garson, Susan L; Savitz, Alan T; Uslaner, Jason M; Brunner, Joseph I; Tannenbaum, Pamela L; McDonald, Terrence P; Hodgson, Robert; Yao, Lihang; Bowlby, Mark R; Kuduk, Scott D; Coleman, Paul J; Hargreaves, Richard; Winrow, Christopher J; Renger, John J

    2013-01-01

    Dual orexin receptor antagonists (DORAs) induce sleep by blocking orexin 1 and orexin 2 receptor-mediated activities responsible for regulating wakefulness. DORAs represent a potential alternative mechanism to the current standard of care that includes the γ-aminobutyric acid (GABA)A receptor-positive allosteric modulators, eszopiclone and zolpidem. This work uses an innovative method to analyze electroencephalogram (EEG) spectral frequencies within sleep/wake states to differentiate the effects of GABAA modulators from DORA-22, an analog of the DORA MK-6096, in Sprague–Dawley rats. The effects of low, intermediate, and high doses of eszopiclone, zolpidem, and DORA-22 were examined after first defining each compound's ability to promote sleep during active-phase dosing. The EEG spectral frequency power within specific sleep stages was calculated in 1-Hz intervals from 1 to 100 Hz within each sleep/wake state for the first 4 h after the dose. Eszopiclone and zolpidem produced marked, dose-responsive disruptions in sleep stage-specific EEG spectral profiles compared with vehicle treatment. In marked contrast, DORA-22 exhibited marginal changes in the spectral profile, observed only during rapid eye movement sleep, and only at the highest dose tested. Moreover, while eszopiclone- and zolpidem-induced changes were evident in the inactive period, the EEG spectral responses to DORA-22 were absent during this phase. These results suggest that DORA-22 differs from eszopiclone and zolpidem whereby DORA-22 promotes somnolence without altering the neuronal network EEG activity observed during normal sleep. PMID:23722242

  11. K+ channel TASK-1 knockout mice show enhanced sensitivities to ataxic and hypnotic effects of GABA(A) receptor ligands.

    PubMed

    Linden, Anni-Maija; Aller, M Isabel; Leppä, Elli; Rosenberg, Per H; Wisden, William; Korpi, Esa R

    2008-10-01

    TASK two-pore-domain leak K(+) channels occur throughout the brain. However, TASK-1 and TASK-3 knockout (KO) mice have few neurological impairments and only mildly reduced sensitivities to inhalational anesthetics, contrasting with the anticipated functions and importance of these channels. TASK-1/-3 channel expression can compensate for the absence of GABA(A) receptors in GABA(A) alpha6 KO mice. To investigate the converse, we analyzed the behavior of TASK-1 and -3 KO mice after administering drugs with preferential efficacies at GABA(A) receptor subtypes: benzodiazepines (diazepam and flurazepam, active at alpha1betagamma2, alpha2betagamma2, alpha3betagamma2, and alpha5betagamma2 subtypes), zolpidem (alpha1betagamma2 subtype), propofol (beta2-3-containing receptors), gaboxadol (alpha4betadelta and alpha6betadelta subtypes), pregnanolone, and pentobarbital (many subtypes). TASK-1 KO mice showed increased motor impairment in rotarod and beam-walking tests after diazepam and flurazepam administration but not after zolpidem. They also showed prolonged loss of righting reflex induced by propofol and pentobarbital. Autoradiography indicated no change in GABA(A) receptor ligand binding levels. These altered behavioral responses to GABAergic drugs suggest functional up-regulation of alpha2beta2/3gamma2 and alpha3beta2/3gamma2 receptor subtypes in TASK-1 KO mice. In addition, female, but not male, TASK-1 KO mice were more sensitive to gaboxadol, suggesting an increased influence of alpha4betadelta or alpha6betadelta subtypes. The benzodiazepine sensitivity of TASK-3 KO mice was marginally increased. Our results underline that TASK-1 channels perform such key functions in the brain that compensation is needed for their absence. Furthermore, because inhalation anesthetics act partially through GABA(A) receptors, the up-regulation of GABA(A) receptor function in TASK-1 KO mice might mask TASK-1 channel's significance as a target for inhalation anesthetics.

  12. Furosemide suppresses ileal and colonic contractility via interactions with GABA-A receptor in mice.

    PubMed

    Kaewsaro, Kannaree; Nualplub, Suparp; Bumrungsri, Sara; Khuituan, Pissared

    2017-11-01

    The loop diuretic furosemide has an action to inhibit Na + -K + -2Cl - co-transporter at the thick ascending limb of Henle's loop resulting in diuresis. Furosemide also has the non-diuretic effects by binding to GABA-A receptor which may involve the gastrointestinal tract. The aim of this study was to investigate the effects of furosemide on smooth muscle contractions in mice ileum and proximal colon. Each intestinal segment suspended in an organ bath was connected to a force transducer. Signal output of mechanical activity was amplified and recorded for analysis using PowerLab System. After equilibration, the intestine was directly exposed to furosemide, GABA, GABA-A receptor agonist (muscimol), or muscarinic receptor antagonist (atropine). Furosemide (50, 100 and 500 μmol L -1 ) acutely reduced the amplitude of ileal and colonic contraction. In the ileum, 1 mmol L -1 GABA and 10-60 μmol L -1 muscimol significantly increased the amplitude, whereas in the colon, 50-100 mmol L -1 GABA and 60 μmol L -1 muscimol decreased the contractions. The contractions were also significantly suppressed by atropine. To investigate the mechanisms underlying the inhibiting effect of furosemide, furosemide was added to the organ bath prior to the addition of muscimol or atropine. A comparison of furosemide combined with muscimol or atropine group and furosemide group showed no significant difference of the ileal contraction, but the amplitude of colonic contraction significantly decreased when compared to adding furosemide alone. These results suggest that furosemide can reduce the ileal and proximal colonic contraction mediated by blocking and supporting of GABA-A receptor, respectively, resulting in decreased acetylcholine release. © 2017 John Wiley & Sons Australia, Ltd.

  13. Antiseizure Activity of Midazolam in Mice Lacking δ-Subunit Extrasynaptic GABAA Receptors

    PubMed Central

    Reddy, Sandesh D.; Younus, Iyan; Clossen, Bryan L.

    2015-01-01

    Midazolam is a benzodiazepine anticonvulsant with rapid onset and short duration of action. Midazolam is the current drug of choice for acute seizures and status epilepticus, including those caused by organophosphate nerve agents. The antiseizure activity of midazolam is thought to result from its allosteric potentiation of synaptic GABAA receptors in the brain. However, there are indications that benzodiazepines promote neurosteroid synthesis via the 18-kDa cholesterol transporter protein (TSPO). Therefore, we investigated the role of neurosteroids and their extrasynaptic GABAA receptor targets in the antiseizure activity of midazolam. Here, we used δ-subunit knockout (DKO) mice bearing a targeted deletion of the extrasynaptic receptors to investigate the contribution of the extrasynaptic receptors to the antiseizure activity of midazolam using the 6-Hz and hippocampus kindling seizure models. In both models, midazolam produced rapid and dose-dependent protection against seizures (ED50, 0.4 mg/kg). Moreover, the antiseizure potency of midazolam was undiminished in DKO mice compared with control mice. Pretreatment with PK11195 [1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide], a TSPO blocker, or finasteride, a 5α-reductase neurosteroid inhibitor, did not affect the antiseizure effect of midazolam. The antiseizure activity of midazolam was significantly reversed by pretreatment with flumazenil, a benzodiazepine antagonist. Plasma and brain levels of the neurosteroid allopregnanolone were not significantly greater in midazolam-treated animals. These studies therefore provide strong evidence that neurosteroids and extrasynaptic GABAA receptors are not involved in the antiseizure activity of midazolam, which mainly occurs through synaptic GABAA receptors via direct binding to benzodiazepine sites. This study reaffirms midazolam’s use for controlling acute seizures and status epilepticus. PMID:25784648

  14. GABA(A) receptor blockade in dorsomedial and ventromedial nuclei of the hypothalamus evokes panic-like elaborated defensive behaviour followed by innate fear-induced antinociception.

    PubMed

    Freitas, Renato Leonardo; Uribe-Mariño, Andrés; Castiblanco-Urbina, Maria Angélica; Elias-Filho, Daoud Hibraim; Coimbra, Norberto Cysne

    2009-12-11

    Dysfunction in the hypothalamic GABAergic system has been implicated in panic syndrome in humans. Furthermore, several studies have implicated the hypothalamus in the elaboration of pain modulation. Panic-prone states are able to be experimentally induced in laboratory animals to study this phenomenon. The aim of the present work was to investigate the involvement of medial hypothalamic nuclei in the organization of panic-like behaviour and the innate fear-induced oscillations of nociceptive thresholds. The blockade of GABA(A) receptors in the neuronal substrates of the ventromedial or dorsomedial hypothalamus was followed by elaborated defensive panic-like reactions. Moreover, innate fear-induced antinociception was consistently elicited after the escape behaviour. The escape responses organized by the dorsomedial and ventromedial hypothalamic nuclei were characteristically more elaborated, and a remarkable exploratory behaviour was recorded during GABA(A) receptor blockade in the medial hypothalamus. The motor characteristic of the elaborated defensive escape behaviour and the patterns of defensive alertness and defensive immobility induced by microinjection of the bicuculline either into the dorsomedial or into the ventromedial hypothalamus were very similar. This was followed by the same pattern of innate fear-induced antinociceptive response that lasted approximately 40 min after the elaborated defensive escape reaction in both cases. These findings suggest that dysfunction of the GABA-mediated neuronal system in the medial hypothalamus causes panic-like responses in laboratory animals, and that the elaborated escape behaviour organized in both dorsomedial and ventromedial hypothalamic nuclei are followed by significant innate-fear-induced antinociception. Our findings indicate that the GABA(A) receptor of dorsomedial and ventromedial hypothalamic nuclei are critically involved in the modulation of panic-like behaviour.

  15. Fragrant dioxane derivatives identify beta1-subunit-containing GABAA receptors.

    PubMed

    Sergeeva, Olga A; Kletke, Olaf; Kragler, Andrea; Poppek, Anja; Fleischer, Wiebke; Schubring, Stephan R; Görg, Boris; Haas, Helmut L; Zhu, Xin-Ran; Lübbert, Hermann; Gisselmann, Günter; Hatt, Hanns

    2010-07-30

    Nineteen GABA(A) receptor (GABA(A)R) subunits are known in mammals with only a restricted number of functionally identified native combinations. The physiological role of beta1-subunit-containing GABA(A)Rs is unknown. Here we report the discovery of a new structural class of GABA(A)R positive modulators with unique beta1-subunit selectivity: fragrant dioxane derivatives (FDD). At heterologously expressed alpha1betaxgamma2L (x-for 1,2,3) GABA(A)R FDD were 6 times more potent at beta1- versus beta2- and beta3-containing receptors. Serine at position 265 was essential for the high sensitivity of the beta1-subunit to FDD and the beta1N286W mutation nearly abolished modulation; vice versa the mutation beta3N265S shifted FDD sensitivity toward the beta1-type. In posterior hypothalamic neurons controlling wakefulness GABA-mediated whole-cell responses and GABAergic synaptic currents were highly sensitive to FDD, in contrast to beta1-negative cerebellar Purkinje neurons. Immunostaining for the beta1-subunit and the potency of FDD to modulate GABA responses in cultured hypothalamic neurons was drastically diminished by beta1-siRNA treatment. In conclusion, with the help of FDDs we reveal a functional expression of beta1-containing GABA(A)Rs in the hypothalamus, offering a new tool for studies on the functional diversity of native GABA(A)Rs.

  16. Dual Modulators of GABA-A and Alpha 7 Nicotinic Receptors for Treating Autism

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0144 TITLE: Dual Modulators of GABA-A and Alpha 7 Nicotinic Receptors for Treating Autism PRINCIPAL INVESTIGATOR...SUBTITLE 5a. CONTRACT NUMBER Dual Modulators of GABA-A and Alpha 7 Nicotinic Receptors for Treating Autism 5b. GRANT NUMBER W81XWH-13-1-0144 5c...ABSTRACT Autism spectrum disorder (ASD) is a polygenic signaling disorder that may result, in part, from an imbalance in excitatory and inhibitory

  17. Context-Dependent Modulation of GABAAR-Mediated Tonic Currents

    PubMed Central

    Patel, Bijal; Bright, Damian P.; Mortensen, Martin; Frølund, Bente

    2016-01-01

    Tonic GABA currents mediated by high-affinity extrasynaptic GABAA receptors, are increasingly recognized as important regulators of cell and neuronal network excitability. Dysfunctional GABAA receptor signaling that results in modified tonic GABA currents is associated with a number of neurological disorders. Consequently, developing compounds to selectively modulate the activity of extrasynaptic GABAA receptors underlying tonic inhibition is likely to prove therapeutically useful. Here, we examine the GABAA receptor subtype selectivity of the weak partial agonist, 5-(4-piperidyl)isoxazol-3-ol (4-PIOL), as a potential mechanism for modulating extrasynaptic GABAA receptor-mediated tonic currents. By using recombinant GABAA receptors expressed in HEK293 cells, and native GABAA receptors of cerebellar granule cells, hippocampal neurons, and thalamic relay neurons, 4-PIOL evidently displayed differential agonist and antagonist-type profiles, depending on the extrasynaptic GABAA receptor isoforms targeted. For neurons, this resulted in differential modulation of GABA tonic currents, depending on the cell type studied, their respective GABAA receptor subunit compositions, and critically, on the ambient GABA levels. Unexpectedly, 4-PIOL revealed a significant population of relatively low-affinity γ2 subunit-containing GABAA receptors in the thalamus, which can contribute to tonic inhibition under specific conditions when GABA levels are raised. Together, these data indicate that partial agonists, such as 4-PIOL, may be useful for modulating GABAA receptor-mediated tonic currents, but the direction and extent of this modulation is strongly dependent on relative expression levels of different extrasynaptic GABAA receptor subtypes, and on the ambient GABA levels. SIGNIFICANCE STATEMENT A background level of inhibition (tonic) is important in the brain for controlling neuronal excitability. Increased levels of tonic inhibition are associated with some neurological disorders

  18. 2-Aminoethyl Methylphosphonate, a Potent and Rapidly Acting Antagonist of GABAA-ρ1 Receptors

    PubMed Central

    Xie, An; Yan, Jun; Yue, Lan; Feng, Feng; Mir, Fozia; Abdel-Halim, Heba; Chebib, Mary; Le Breton, Guy C.; Standaert, Robert F.; Qian, Haohua

    2011-01-01

    2-Aminoethyl methylphosphonate (2-AEMP), an analog of GABA, has been found to exhibit antagonist activity at GABAA-ρ1 (also known as ρ1 GABAC) receptors. The present study was undertaken to elucidate 2-AEMP's action and to test the activities of 2-AEMP analogs. Whole-cell patch-clamp techniques were used to record membrane currents in neuroblastoma cells stably transfected with human GABAA-ρ1 receptors. The action of 2-AEMP was compared with that of 1,2,5,6-tetrahydropyridin-4-yl methylphosphinic acid (TPMPA), a commonly used GABAA-ρ1 antagonist. With 10 μM GABA, 2-AEMP's IC50 (18 μM) differed by less than 2.5-fold from that of TPMPA (7 μM), and results obtained were consistent with a primarily competitive mode of inhibition by 2-AEMP. Terminating the presentation of 2-AEMP or TPMPA in the presence of GABA produced a release from inhibition. However, the rate of inhibition release upon the termination of 2-AEMP considerably exceeded that determined with termination of TPMPA. Moreover, when presented at concentrations near their respective IC50 values, the preincubation period associated with 2-AEMP's onset of inhibition was much shorter than that for TPMPA. Analogs of 2-AEMP possessing a benzyl or n-butyl rather than a methyl substituent at the phosphorus atom, as well as analogs bearing a C-methyl substituent on the aminoethyl side chain, exhibited reduced potency relative to 2-AEMP. Of these analogs, only (R)-2-aminopropyl methylphosphonate significantly diminished the response to 10 μM GABA. Structure-activity relationships are discussed in the context of molecular modeling of ligand binding to the antagonist binding site of the GABAA-ρ1 receptor. PMID:21810922

  19. Novel analogues of chlormethiazole are neuroprotective in four cellular models of neurodegeneration by a mechanism with variable dependence on GABAA receptor potentiation

    PubMed Central

    VandeVrede, Lawren; Tavassoli, Ehsan; Luo, Jia; Qin, Zhihui; Yue, Lan; Pepperberg, David R; Thatcher, Gregory R

    2014-01-01

    Background and Purpose: Chlormethiazole (CMZ), a clinical sedative/anxiolytic agent, did not reach clinical efficacy in stroke trials despite neuroprotection demonstrated in numerous animal models. Using CMZ as a lead compound, neuroprotective methiazole (MZ) analogues were developed, and neuroprotection and GABAA receptor dependence were studied. Experimental Approach: Eight MZs were selected from a novel library, of which two were studied in detail. Neuroprotection, glutamate release, intracellular calcium and response to GABA blockade by picrotoxin were measured in rat primary cortical cultures using four cellular models of neurodegeneration. GABA potentiation was assayed in oocytes expressing the α1β2γ2 GABAA receptor. Key Results: Neuroprotection against a range of insults was retained even with substantial chemical modification. Dependence on GABAA receptor activity was variable: at the extremes, neuroprotection by GN-28 was universally sensitive to picrotoxin, while GN-38 was largely insensitive. In parallel, effects on extracellular glutamate and intracellular calcium were associated with GABAA dependence. Consistent with these findings, GN-28 potentiated α1β2γ2 GABAA function, whereas GN-38 had a weak inhibitory effect. Neuroprotection against moderate dose oligomeric Aβ1–42 was also tolerant to structural changes. Conclusions and Implications: The results support the concept that CMZ does not contain a single pharmacophore, rather that broad-spectrum neuroprotection results from a GABAA-dependent mechanism represented by GN-28, combined with a mechanism represented in GN-38 that shows the least dependence on GABAA receptors. These findings allow further refinement of the neuroprotective pharmacophore and investigation into secondary mechanisms that will assist in identifying MZ-based compounds of use in treating neurodegeneration. PMID:24116891

  20. RDX Binds to the GABAA Receptor–Convulsant Site and Blocks GABAA Receptor–Mediated Currents in the Amygdala: A Mechanism for RDX-Induced Seizures

    PubMed Central

    Williams, Larry R.; Aroniadou-Anderjaska, Vassiliki; Qashu, Felicia; Finne, Huckelberry; Pidoplichko, Volodymyr; Bannon, Desmond I.; Braga, Maria F. M.

    2011-01-01

    Background Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a high-energy, trinitrated cyclic compound that has been used worldwide since World War II as an explosive in both military and civilian applications. RDX can be released in the environment by way of waste streams generated during the manufacture, use, and disposal of RDX-containing munitions and can leach into groundwater from unexploded munitions found on training ranges. For > 60 years, it has been known that exposure to high doses of RDX causes generalized seizures, but the mechanism has remained unknown. Objective We investigated the mechanism by which RDX induces seizures. Methods and results By screening the affinity of RDX for a number of neurotransmitter receptors, we found that RDX binds exclusively to the picrotoxin convulsant site of the γ-aminobutyric acid type A (GABAA) ionophore. Whole-cell in vitro recordings in the rat basolateral amygdala (BLA) showed that RDX reduces the frequency and amplitude of spontaneous GABAA receptor–mediated inhibitory postsynaptic currents and the amplitude of GABA-evoked postsynaptic currents. In extracellular field recordings from the BLA, RDX induced prolonged, seizure-like neuronal discharges. Conclusions These results suggest that binding to the GABAA receptor convulsant site is the primary mechanism of seizure induction by RDX and that reduction of GABAergic inhibitory transmission in the amygdala is involved in the generation of RDX-induced seizures. Knowledge of the molecular site and the mechanism of RDX action with respect to seizure induction can guide therapeutic strategies, allow more accurate development of safe thresholds for exposures, and help prevent the development of new explosives or other munitions that could pose similar health risks. PMID:21362589

  1. GABAA- and glycine-mediated inhibitory modulation of the cough reflex in the caudal nucleus tractus solitarii of the rabbit.

    PubMed

    Cinelli, Elenia; Iovino, Ludovica; Bongianni, Fulvia; Pantaleo, Tito; Mutolo, Donatella

    2016-09-01

    Cough-related sensory inputs from rapidly adapting receptors (RARs) and C fibers are processed by second-order neurons mainly located in the caudal nucleus tractus solitarii (NTS). Both GABAA and glycine receptors have been proven to be involved in the inhibitory control of second-order cells receiving RAR projections. We investigated the role of these receptors within the caudal NTS in the modulation of the cough reflex induced by either mechanical or chemical stimulation of the tracheobronchial tree in pentobarbital sodium-anesthetized, spontaneously breathing rabbits. Bilateral microinjections (30-50 nl) of the receptor antagonists bicuculline and strychnine as well as of the receptor agonists muscimol and glycine were performed. Bicuculline (0.1 mM) and strychnine (1 mM) caused decreases in peak abdominal activity and marked increases in respiratory frequency due to decreases in both inspiratory time (Ti) and expiratory time (Te), without concomitant changes in arterial blood pressure. Noticeably, these microinjections induced potentiation of the cough reflex consisting of increases in the cough number associated with decreases either in cough-related Ti after bicuculline or in both cough-related Ti and Te after strychnine. The effects caused by muscimol (0.1 mM) and glycine (10 mM) were in the opposite direction to those produced by the corresponding antagonists. The results show that both GABAA and glycine receptors within the caudal NTS mediate a potent inhibitory modulation of the pattern of breathing and cough reflex responses. They strongly suggest that disinhibition is one important mechanism underlying cough regulation and possibly provide new hints for novel effective antitussive strategies. Copyright © 2016 the American Physiological Society.

  2. Non-neuronal, slow GABA signalling in the ventrobasal thalamus targets δ-subunit-containing GABAA receptors

    PubMed Central

    Jiménez-González, Cristina; Pirttimaki, Tiina; Cope, David W; Parri, H R

    2011-01-01

    The rodent ventrobasal (VB) thalamus contains a relatively uniform population of thalamocortical (TC) neurons that receive glutamatergic input from the vibrissae and the somatosensory cortex, and inhibitory input from the nucleus reticularis thalami (nRT). In this study we describe γ-aminobutyric acid (GABA)A receptor-dependent slow outward currents (SOCs) in TC neurons that are distinct from fast inhibitory postsynaptic currents (IPSCs) and tonic currents. SOCs occurred spontaneously or could be evoked by hypo-osmotic stimulus, and were not blocked by tetrodotoxin, removal of extracellular Ca2+ or bafilomycin A1, indicating a non-synaptic, non-vesicular GABA origin. SOCs were more common in TC neurons of the VB compared with the dorsal lateral geniculate nucleus, and were rarely observed in nRT neurons, whilst SOC frequency in the VB increased with age. Application of THIP, a selective agonist at δ-subunit-containing GABAA receptors, occluded SOCs, whereas the benzodiazepine site inverse agonist β-CCB had no effect, but did inhibit spontaneous and evoked IPSCs. In addition, the occurrence of SOCs was reduced in mice lacking the δ-subunit, and their kinetics were also altered. The anti-epileptic drug vigabatrin increased SOC frequency in a time-dependent manner, but this effect was not due to reversal of GABA transporters. Together, these data indicate that SOCs in TC neurons arise from astrocytic GABA release, and are mediated by δ-subunit-containing GABAA receptors. Furthermore, these findings suggest that the therapeutic action of vigabatrin may occur through the augmentation of this astrocyte–neuron interaction, and highlight the importance of glial cells in CNS (patho) physiology. PMID:21395866

  3. Lateral Orbitofrontal Cortical Modulation on the Medial Prefrontal Cortex-Amygdala Pathway: Differential Regulation of Intra-Amygdala GABAA and GABAB Receptors.

    PubMed

    Chang, Chun-Hui

    2017-07-01

    The basolateral complex of the amygdala receives inputs from neocortical areas, including the medial prefrontal cortex and lateral orbitofrontal cortex. Earlier studies have shown that lateral orbitofrontal cortex activation exerts an inhibitory gating on medial prefrontal cortex-amygdala information flow. Here we examined the individual role of GABAA and GABAB receptors in this process. In vivo extracellular single-unit recordings were done in anesthetized rats. We searched amygdala neurons that fire in response to medial prefrontal cortex activation, tested lateral orbitofrontal cortex gating at different delays (lateral orbitofrontal cortex-medial prefrontal cortex delays: 25, 50, 100, 250, 500, and 1000 milliseconds), and examined differential contribution of GABAA and GABAB receptors with iontophoresis. Relative to baseline, lateral orbitofrontal cortex stimulation exerted an inhibitory modulatory gating on the medial prefrontal cortex-amygdala pathway and was effective up to a long delay of 500 ms (long-delay latencies at 100, 250, and 500 milliseconds). Moreover, blockade of intra-amygdala GABAA receptors with bicuculline abolished the lateral orbitofrontal cortex inhibitory gating at both short- (25 milliseconds) and long-delay (100 milliseconds) intervals, while blockade of GABAB receptors with saclofen reversed the inhibitory gating at long delay (100 milliseconds) only. Among the majority of the neurons examined (8 of 9), inactivation of either GABAA or GABAB receptors during baseline did not change evoked probability per se, suggesting that local feed-forward inhibitory mechanism is pathway specific. Our results suggest that the effect of lateral orbitofrontal cortex inhibitory modulatory gating was effective up to 500 milliseconds and that intra-amygdala GABAA and GABAB receptors differentially modulate the short- and long-delay lateral orbitofrontal cortex inhibitory gating on the medial prefrontal cortex-amygdala pathway. © The Author 2017

  4. Decreased agonist sensitivity of human GABA(A) receptors by an amino acid variant, isoleucine to valine, in the alpha1 subunit.

    PubMed

    Westh-Hansen, S E; Rasmussen, P B; Hastrup, S; Nabekura, J; Noguchi, K; Akaike, N; Witt, M R; Nielsen, M

    1997-06-25

    Recombinant human GABA(A) receptors were investigated in vitro by coexpression of cDNAs coding for alpha1, beta2, and gamma2 subunits in the baculovirus/Sf-9 insect cell system. We report that a single amino acid exchange (isoleucine 121 to valine 121) in the N-terminal, extracellular part of the alpha1 subunit induces a marked decrease in agonist GABA(A) receptor ligand sensitivity. The potency of muscimol and GABA to inhibit the binding of the GABA(A) receptor antagonist [3H]SR 95531 (2-(3-carboxypropyl)-3-amino-6-(4-methoxyphenyl)pyridazinium bromide) was higher in receptor complexes of alpha1(ile 121) beta2gamma2 than in those of alpha1(val 121) beta2gamma2 (IC50 values were 32-fold and 26-fold lower for muscimol and GABA, respectively). The apparent affinity of the GABA(A) receptor antagonist bicuculline methiodide to inhibit the binding of [3H]SR 95531 did not differ between the two receptor complex variants. Electrophysiological measurements of GABA induced whole-cell Cl- currents showed a ten-fold decrease in the GABA(A) receptor sensitivity of alpha1 (val 121) beta2gamma2 as compared to alpha1(ile 121) beta2gamma2 receptor complexes. Thus, a relatively small change in the primary structure of the alpha1 subunit leads to a decrease selective for GABA(A) receptor sensitivity to agonist ligands, since no changes were observed in a GABA(A) receptor antagonist affinity and benzodiazepine receptor binding.

  5. Superficial NK1 expressing spinal dorsal horn neurones modulate inhibitory neurotransmission mediated by spinal GABA(A) receptors.

    PubMed

    Rahman, Wahida; Sikandar, Shafaq; Sikander, Shafaq; Suzuki, Rie; Hunt, Stephen P; Dickenson, Anthony H

    2007-06-04

    Lamina 1 projection neurones which express the NK1 receptor (NK1R+) drive a descending serotonergic pathway from the brainstem that enhances spinal dorsal horn neuronal activity via the facilitatory spinal 5-HT3 receptor. Selective destruction of these cells via lumbar injection of substance P-saporin (SP-SAP) attenuates pain behaviours, including mechanical and thermal hypersensitivity, which are mirrored by deficits in the evoked responses of lamina V-VI wide dynamic range (WDR) neurones to noxious stimuli. To assess whether removing the origin of this facilitatory spino-bulbo-spinal loop results in alterations in GABAergic spinal inhibitory systems, the effects of spinal bicuculline, a selective GABA(A) receptor antagonist, on the evoked neuronal responses to electrical (Abeta-, Adelta-, C-fibre, post-discharge and Input) and mechanical (brush, prod and von Frey (vF) 8 and 26 g) stimuli were measured in SAP and SP-SAP groups. In the SAP control group, bicuculline produced a significant dose related facilitation of the electrically evoked Adelta-, C-fibre, post-discharge and input neuronal responses. The evoked mechanical (prod, vF8 g and 26 g) responses were also significantly increased. Brush evoked neuronal responses in these animals were enhanced but did not reach significance. This facilitatory effect of bicuculline, however, was lost in the SP-SAP treated group. The generation of intrinsic GABAergic transmission in the spinal cord appears dependent on NK1 bearing neurons, yet despite the loss of GABAergic inhibitory controls after SP-SAP treatment, the net effect is a decrease in spinal cord excitability. Thus activation of these cells predominantly drives facilitation.

  6. Lack of effect of mossy fiber-released zinc on granule cell GABA(A) receptors in the pilocarpine model of epilepsy.

    PubMed

    Molnár, P; Nadler, J V

    2001-05-01

    The recurrent mossy fiber pathway of the dentate gyrus expands dramatically in the epileptic brain and serves as a mechanism for synchronization of granule cell epileptiform activity. It has been suggested that this pathway also promotes epileptiform activity by inhibiting GABA(A) receptor function through release of zinc. Hippocampal slices from pilocarpine-treated rats were used to evaluate this hypothesis. The rats had developed status epilepticus after pilocarpine administration, followed by robust recurrent mossy fiber growth. The ability of exogenously applied zinc to depress GABA(A) receptor function in dentate granule cells depended on removal of polyvalent anions from the superfusion medium. Under these conditions, 200 microM zinc reduced the amplitude of the current evoked by applying muscimol to the proximal portion of the granule cell dendrite (23%). It also reduced the mean amplitude (31%) and frequency (36%) of miniature inhibitory postsynaptic currents. Nevertheless, repetitive mossy fiber stimulation (10 Hz for 1 s, 100 Hz for 1 s, or 10 Hz for 5 min) at maximal intensity did not affect GABA(A) receptor-mediated currents evoked by photorelease of GABA onto the proximal portion of the dendrite, where recurrent mossy fiber synapses were located. These results could not be explained by stimulation-induced depletion of zinc from the recurrent mossy fiber boutons. Negative results were obtained even during exposure to conditions that promoted transmitter release and synchronized granule cell activity (6 mM [K(+)](o), nominally Mg(2+)-free medium, 33 degrees C). These results suggest that zinc released from the recurrent mossy fiber pathway did not reach a concentration at postsynaptic GABA(A) receptors sufficient to inhibit agonist-evoked activation.

  7. Encephalitis with refractory seizures, status epilepticus, and antibodies to the GABAA receptor: a case series, characterisation of the antigen, and analysis of the effects of antibodies.

    PubMed

    Petit-Pedrol, Mar; Armangue, Thaís; Peng, Xiaoyu; Bataller, Luis; Cellucci, Tania; Davis, Rebecca; McCracken, Lindsey; Martinez-Hernandez, Eugenia; Mason, Warren P; Kruer, Michael C; Ritacco, David G; Grisold, Wolfgang; Meaney, Brandon F; Alcalá, Carmen; Sillevis-Smitt, Peter; Titulaer, Maarten J; Balice-Gordon, Rita; Graus, Francesc; Dalmau, Josep

    2014-03-01

    Increasing evidence suggests that seizures and status epilepticus can be immune-mediated. We aimed to describe the clinical features of a new epileptic disorder, and to establish the target antigen and the effects of patients' antibodies on neuronal cultures. In this observational study, we selected serum and CSF samples for antigen characterisation from 140 patients with encephalitis, seizures or status epilepticus, and antibodies to unknown neuropil antigens. The samples were obtained from worldwide referrals of patients with disorders suspected to be autoimmune between April 28, 2006, and April 25, 2013. We used samples from 75 healthy individuals and 416 patients with a range of neurological diseases as controls. We assessed the samples using immunoprecipitation, mass spectrometry, cell-based assay, and analysis of antibody effects in cultured rat hippocampal neurons with confocal microscopy. Neuronal cell-membrane immunoprecipitation with serum of two index patients revealed GABAA receptor sequences. Cell-based assay with HEK293 expressing α1/β3 subunits of the GABAA receptor showed high titre serum antibodies (>1:160) and CSF antibodies in six patients. All six patients (age 3-63 years, median 22 years; five male patients) developed refractory status epilepticus or epilepsia partialis continua along with extensive cortical-subcortical MRI abnormalities; four patients needed pharmacologically induced coma. 12 of 416 control patients with other diseases, but none of the healthy controls, had low-titre GABAA receptor antibodies detectable in only serum samples, five of them also had GAD-65 antibodies. These 12 patients (age 2-74 years, median 26.5 years; seven male patients) developed a broader spectrum of symptoms probably indicative of coexisting autoimmune disorders: six had encephalitis with seizures (one with status epilepticus needing pharmacologically induced coma; one with epilepsia partialis continua), four had stiff-person syndrome (one with seizures

  8. Hippocampal GABAA Receptor and Pain Sensitivity during Estrous Cycle in the Rat

    PubMed Central

    Taherianfard, Mahnaz; Mosavi, Mahnaz

    2011-01-01

    Background: Estradiol and progesterone as well as hippocampal GABAA receptors are believed to play a role in the modulation of pain. The aim of present study was to investigate the effect of intrahippocampal injections of GABAA receptor agonist (muscimol) and GABAA receptor antagonist (picrotoxin) on pain sensitivity during estrous cycle. Methods: Pain sensitivity was evaluated in rats by formalin test during all stages of estrous cycle. Animals were divided into five groups including; 1- control (intact animal); 2- sham 1 receiving 0.75 µl artificial cerebrospinal fluids (ACSF); 3- sham 2 receiving 0.75 µl alcoholic ACSF; 4- experimental 1 receiving 250 or 500 µg/rat of muscimol in 0.75 µl vehicle, and 5- experimental 2 receiving 20 or 30 µg/rat picrotoxin in 0.75 µl vehicle. Data were analyzed by Kruskal-Wallis followed by Tucky's test for pairwise comparisons using a P value of ≤0.50 for statistical significance. Results: Muscimol significantly (P<0.05) decreased pain sensitivity in all stages of estrous cycle, and the analgesic effect was higher during proestrus and estrus stages of estrous cycle than that during metestrus and diestrus stages. Picrotoxin significantly (P<0.05) increased pain sensitivity in all stages of estrous cycle, and such a hyperalgesic effect was lower during proestrus and estrus stages of estrous cycle than that during metestrus and diestrus stages. Conclusion: The findings of the present study indicate that the role of hippocampal GABAA receptor in the control of the pain sensitivity can be modulated by variation in gonadal steroids during different stages of the estrous cycle. PMID:23115414

  9. Dual Modulators of GABA-A and Alpha7 Nicotinic Receptors for Treating Autism

    DTIC Science & Technology

    2014-08-01

    Synthesis of 2-261, AVL-3288 & GRN-529. This task was accomplished in December, 2013. The task was accomplished one month later than predicted in the...approved SOW because of the need to synthesize some of the starting materials that were commercially unavailable for the synthesis of the compounds...Interestingly recent studies with the benzodiazepine agonist clonazepam , a non-selective GABAA receptor PAM, resulted in a bell-shaped dose response

  10. Chronic Exposure to Anabolic Androgenic Steroids Alters Neuronal Function in the Mammalian Forebrain via Androgen Receptor- and Estrogen Receptor-Mediated Mechanisms

    PubMed Central

    Penatti, Carlos A A; Porter, Donna M; Henderson, Leslie P

    2009-01-01

    Anabolic androgenic steroids (AAS) can promote detrimental effects on social behaviors for which γ-aminobutyric acid type A (GABAA) receptor-mediated circuits in the forebrain play a critical role. While all AAS bind to androgen receptors (AR), they may also be aromatized to estrogens and thus potentially impart effects via estrogen receptors (ER). Chronic exposure of wild type male mice to a combination of chemically distinct AAS increased action potential (AP) frequency, selective GABAA receptor subunit mRNAs, and GABAergic synaptic current decay in the medial preoptic area (mPOA). Experiments performed with pharmacological agents and in AR-deficient Tfm mutant mice suggest that the AAS-dependent enhancement of GABAergic transmission in wild type mice is AR-mediated. In AR-deficient mice, the AAS elicited dramatically different effects, decreasing AP frequency, sIPSC amplitude and frequency and the expression of selective GABAA receptor subunit mRNAs. Surprisingly, in the absence of AR signaling, the data indicate that the AAS do not act as ER agonists, but rather suggest a novel in vivo action in which the AAS inhibit aromatase and impair endogenous ER signaling. These results show that the AAS have the capacity to alter neuronal function in the forebrain via multiple steroid signaling mechanisms and suggest that effects of these steroids in the brain will depend not only on the balance of AR- vs. ER-mediated regulation for different target genes, but also on the ability of these drugs to alter steroid metabolism and thus the endogenous steroid milieu. PMID:19812324

  11. Antiseizure Activity of Midazolam in Mice Lacking δ-Subunit Extrasynaptic GABA(A) Receptors.

    PubMed

    Reddy, Sandesh D; Younus, Iyan; Clossen, Bryan L; Reddy, Doodipala Samba

    2015-06-01

    Midazolam is a benzodiazepine anticonvulsant with rapid onset and short duration of action. Midazolam is the current drug of choice for acute seizures and status epilepticus, including those caused by organophosphate nerve agents. The antiseizure activity of midazolam is thought to result from its allosteric potentiation of synaptic GABA(A) receptors in the brain. However, there are indications that benzodiazepines promote neurosteroid synthesis via the 18-kDa cholesterol transporter protein (TSPO). Therefore, we investigated the role of neurosteroids and their extrasynaptic GABA(A) receptor targets in the antiseizure activity of midazolam. Here, we used δ-subunit knockout (DKO) mice bearing a targeted deletion of the extrasynaptic receptors to investigate the contribution of the extrasynaptic receptors to the antiseizure activity of midazolam using the 6-Hz and hippocampus kindling seizure models. In both models, midazolam produced rapid and dose-dependent protection against seizures (ED50, 0.4 mg/kg). Moreover, the antiseizure potency of midazolam was undiminished in DKO mice compared with control mice. Pretreatment with PK11195 [1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide], a TSPO blocker, or finasteride, a 5α-reductase neurosteroid inhibitor, did not affect the antiseizure effect of midazolam. The antiseizure activity of midazolam was significantly reversed by pretreatment with flumazenil, a benzodiazepine antagonist. Plasma and brain levels of the neurosteroid allopregnanolone were not significantly greater in midazolam-treated animals. These studies therefore provide strong evidence that neurosteroids and extrasynaptic GABA(A) receptors are not involved in the antiseizure activity of midazolam, which mainly occurs through synaptic GABA(A) receptors via direct binding to benzodiazepine sites. This study reaffirms midazolam's use for controlling acute seizures and status epilepticus. Copyright © 2015 by The American Society for

  12. Towards functional selectivity for α6β3γ2 GABAA receptors: a series of novel pyrazoloquinolinones

    PubMed Central

    Treven, Marco; Siebert, David C B; Holzinger, Raphael; Bampali, Konstantina; Fabjan, Jure; Varagic, Zdravko; Wimmer, Laurin; Steudle, Friederike; Scholze, Petra; Schnürch, Michael; Mihovilovic, Marko D

    2017-01-01

    Background and Purpose The GABAA receptors are ligand‐gated ion channels, which play an important role in neurotransmission. Their variety of binding sites serves as an appealing target for many clinically relevant drugs. Here, we explored the functional selectivity of modulatory effects at specific extracellular α+/β− interfaces, using a systematically varied series of pyrazoloquinolinones. Experimental Approach Recombinant GABAA receptors were expressed in Xenopus laevis oocytes and modulatory effects on GABA‐elicited currents by the newly synthesized and reference compounds were investigated by the two‐electrode voltage clamp method. Key Results We identified a new compound which, to the best of our knowledge, shows the highest functional selectivity for positive modulation at α6β3γ2 GABAA receptors with nearly no residual activity at the other αxβ3γ2 (x = 1–5) subtypes. This modulation was independent of affinity for α+/γ− interfaces. Furthermore, we demonstrated for the first time a compound that elicits a negative modulation at specific extracellular α+/β− interfaces. Conclusion and Implications These results constitute a major step towards a potential selective positive modulation of certain α6‐containing GABAA receptors, which might be useful to elicit their physiological role. Furthermore, these studies pave the way towards insights into molecular principles that drive positive versus negative allosteric modulation of specific GABAA receptor isoforms. PMID:29127702

  13. GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls

    NASA Technical Reports Server (NTRS)

    Akbarian, S.; Huntsman, M. M.; Kim, J. J.; Tafazzoli, A.; Potkin, S. G.; Bunney, W. E. Jr; Jones, E. G.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The prefrontal cortex of schizophrenics is hypoactive and displays changes related to inhibitory, GABAergic neurons, and GABAergic synapses. These changes include decreased levels of glutamic acid decarboxylase (GAD), the enzyme for GABA synthesis, upregulation of muscimol binding, and downregulation of benzodiazepine binding to GABAA receptors. Studies in the visual cortex of nonhuman primates have demonstrated that gene expression for GAD and for several GABAA receptor subunit polypeptides is under control of neuronal activity, raising the possibility that similar mechanisms in the hypoactive prefrontal cortex of schizophrenics may explain the abnormalities in GAD and in GABAA receptor regulation. In the present study, which is the first of its type on human cerebral cortex, levels of mRNAs for six GABAA receptor subunits (alpha 1, alpha 2, alpha 5, beta 1, beta 2, gamma 2) and their laminar expression patterns were analyzed in the prefrontal cortex of schizophrenics and matched controls, using in situ hybridization histochemistry and densitometry. Three types of laminar expression pattern were observed: mRNAs for the alpha 1, beta 2, and gamma 2 subunits, which are the predominant receptor subunits expressed in the mature cortex, were expressed at comparatively high levels by cells of all six cortical layers, but most intensely by cells in lower layer III and layer IV. mRNAs for the alpha 2, alpha 5, and beta 1 subunits were expressed at lower levels; alpha 2 and beta 1 were expressed predominantly by cells in layers II, III, and IV; alpha 5 was expressed predominantly in layers IV, V, and VI. There were no significant changes in overall mRNA levels for any of the receptor subunits in the prefrontal cortex of schizophrenics, and the laminar expression pattern of all six receptor subunit mRNAs did not differ between schizophrenics and controls. Because gene expression for GABAA receptor subunits is not consistently altered in the prefrontal cortex of

  14. Emamectin is a non-selective allosteric activator of nicotinic acetylcholine receptors and GABAA/C receptors

    PubMed Central

    Xu, Xiaojun; Sepich, Caraline; Lukas, Ronald J; Zhu, Guonian; Chang, Yongchang

    2016-01-01

    Avermectins are a group of compounds isolated from a soil-dwelling bacterium. They have been widely used as parasiticides and insecticides, acting by relatively irreversible activation of invertebrate chloride channels. Emamectin is a soluble derivative of an avermectin. It is an insecticide, which persistently activates glutamate-gated chloride channels. However, its effects on mammalian ligand-gated ion channels are unknown. To this end, we tested the effect of emamectin on two cation selective nicotinic receptors and two GABA-gated chloride channels expressed in Xenopus oocytes using two-electrode voltage clamp. Our results demonstrate that emamectin could directly activate α7 nAChR, α4β2 nAChR, α1β2γ2 GABAA receptor and ρ1 GABAC receptor concentration dependently, with similar potencies for each channel. However, the potencies for it to activate these channels were at least two orders of magnitude lower than its potency of activating invertebrate glutamate-gated chloride channel. In contrast, ivermectin only activated the α1β2γ2 GABAA receptor. PMID:27049309

  15. Emamectin is a non-selective allosteric activator of nicotinic acetylcholine receptors and GABAA/C receptors.

    PubMed

    Xu, Xiaojun; Sepich, Caraline; Lukas, Ronald J; Zhu, Guonian; Chang, Yongchang

    2016-05-13

    Avermectins are a group of compounds isolated from a soil-dwelling bacterium. They have been widely used as parasiticides and insecticides, acting by relatively irreversible activation of invertebrate chloride channels. Emamectin is a soluble derivative of an avermectin. It is an insecticide, which persistently activates glutamate-gated chloride channels. However, its effects on mammalian ligand-gated ion channels are unknown. To this end, we tested the effect of emamectin on two cation selective nicotinic receptors and two GABA-gated chloride channels expressed in Xenopus oocytes using two-electrode voltage clamp. Our results demonstrate that emamectin could directly activate α7 nAChR, α4β2 nAChR, α1β2γ2 GABAA receptor and ρ1 GABAC receptor concentration dependently, with similar potencies for each channel. However, the potencies for it to activate these channels were at least two orders of magnitude lower than its potency of activating invertebrate glutamate-gated chloride channel. In contrast, ivermectin only activated the α1β2γ2 GABAA receptor. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Dose-response approaches for nuclear receptor-mediated ...

    EPA Pesticide Factsheets

    A public workshop, organized by a Steering Committee of scientists from government, industry, universities, and research organizations, was held at the National Institute of Environmental Health Sciences (NIEHS) in September, 2010. The workshop explored the dose-response implications of toxicant modes of action (MOA) mediated by nuclear receptors. The dominant paradigm in human health risk assessment has been linear extrapolation without a threshold for cancer, and estimation of sub-threshold doses for non-cancer and (in appropriate cases) cancer endpoints. However, recent publications question the application of dose-response modeling approaches with a threshold. The growing body of molecular toxicology information and computational toxicology tools has allowed for exploration of the presence or absence of subthreshold doses for a number of receptor-mediated MOPs. The workshop explored the development of dose-response approaches for nuclear receptor-mediated liver cancer, within a MOA Human Relevance framework (HRF). Case studies addressed activation of the AHR; the CAR/PXR, and the PPARa. This paper describes the workshop process, key issues discussed, and conclusions. The value of an interactive workshop approach to apply current MOA/HRF frameworks was demonstrated. The results may help direct research on the MOA and dose-response of receptor-based toxicity, since there are commonalities for many receptors in the basic pathways involved for late steps in the

  17. Context-Dependent Modulation of GABAAR-Mediated Tonic Currents.

    PubMed

    Patel, Bijal; Bright, Damian P; Mortensen, Martin; Frølund, Bente; Smart, Trevor G

    2016-01-13

    Tonic GABA currents mediated by high-affinity extrasynaptic GABAA receptors, are increasingly recognized as important regulators of cell and neuronal network excitability. Dysfunctional GABAA receptor signaling that results in modified tonic GABA currents is associated with a number of neurological disorders. Consequently, developing compounds to selectively modulate the activity of extrasynaptic GABAA receptors underlying tonic inhibition is likely to prove therapeutically useful. Here, we examine the GABAA receptor subtype selectivity of the weak partial agonist, 5-(4-piperidyl)isoxazol-3-ol (4-PIOL), as a potential mechanism for modulating extrasynaptic GABAA receptor-mediated tonic currents. By using recombinant GABAA receptors expressed in HEK293 cells, and native GABAA receptors of cerebellar granule cells, hippocampal neurons, and thalamic relay neurons, 4-PIOL evidently displayed differential agonist and antagonist-type profiles, depending on the extrasynaptic GABAA receptor isoforms targeted. For neurons, this resulted in differential modulation of GABA tonic currents, depending on the cell type studied, their respective GABAA receptor subunit compositions, and critically, on the ambient GABA levels. Unexpectedly, 4-PIOL revealed a significant population of relatively low-affinity γ2 subunit-containing GABAA receptors in the thalamus, which can contribute to tonic inhibition under specific conditions when GABA levels are raised. Together, these data indicate that partial agonists, such as 4-PIOL, may be useful for modulating GABAA receptor-mediated tonic currents, but the direction and extent of this modulation is strongly dependent on relative expression levels of different extrasynaptic GABAA receptor subtypes, and on the ambient GABA levels. A background level of inhibition (tonic) is important in the brain for controlling neuronal excitability. Increased levels of tonic inhibition are associated with some neurological disorders but there are no

  18. GABAA receptor γ2 subunit knockdown mice have enhanced anxiety-like behavior but unaltered hypnotic response to benzodiazepines

    PubMed Central

    Chandra, Dev; Korpi, Esa R; Miralles, Celia P; De Blas, Angel L; Homanics, Gregg E

    2005-01-01

    Background Gamma-aminobutyric acid type A receptors (GABAA-Rs) are the major inhibitory receptors in the mammalian brain and are modulated by a number of sedative/hypnotic drugs including benzodiazepines and anesthetics. The significance of specific GABAA-Rs subunits with respect to behavior and in vivo drug responses is incompletely understood. The γ2 subunit is highly expressed throughout the brain. Global γ2 knockout mice are insensitive to the hypnotic effects of diazepam and die perinatally. Heterozygous γ2 global knockout mice are viable and have increased anxiety-like behaviors. To further investigate the role of the γ2 subunit in behavior and whole animal drug action, we used gene targeting to create a novel mouse line with attenuated γ2 expression, i.e., γ2 knockdown mice. Results Knockdown mice were created by inserting a neomycin resistance cassette into intron 8 of the γ2 gene. Knockdown mice, on average, showed a 65% reduction of γ2 subunit mRNA compared to controls; however γ2 gene expression was highly variable in these mice, ranging from 10–95% of normal. Immunohistochemical studies demonstrated that γ2 protein levels were also variably reduced. Pharmacological studies using autoradiography on frozen brain sections demonstrated that binding of the benzodiazepine site ligand Ro15-4513 was decreased in mutant mice compared to controls. Behaviorally, knockdown mice displayed enhanced anxiety-like behaviors on the elevated plus maze and forced novelty exploration tests. Surprisingly, mutant mice had an unaltered response to hypnotic doses of the benzodiazepine site ligands diazepam, midazolam and zolpidem as well as ethanol and pentobarbital. Lastly, we demonstrated that the γ2 knockdown mouse line can be used to create γ2 global knockout mice by crossing to a general deleter cre-expressing mouse line. Conclusion We conclude that: 1) insertion of a neomycin resistance gene into intron 8 of the γ2 gene variably reduced the amount of γ2

  19. Targeted deletion of the GABRA2 gene encoding alpha2-subunits of GABA(A) receptors facilitates performance of a conditioned emotional response, and abolishes anxiolytic effects of benzodiazepines and barbiturates.

    PubMed

    Dixon, C I; Rosahl, T W; Stephens, D N

    2008-07-01

    Mice with point-mutated alpha2 GABA(A) receptor subunits (rendering them diazepam insensitive) are resistant to the anxiolytic-like effects of benzodiazepines (BZs) in the conditioned emotional response (CER) test, but show normal anxiolytic effects of a barbiturate. We investigated the consequence of deleting the alpha2-subunit on acquisition of the CER with increasing intensity of footshock, and on the anxiolytic efficacy of a benzodiazepine, diazepam, and a barbiturate, pentobarbital. alpha2 knockout (KO) and wildtype (WT) mice were trained in a conditioned emotional response (CER) task, in which lever pressing for food on a variable interval (VI) schedule was suppressed during the presentation of a compound light/tone conditioned stimulus (CS+) that predicted footshock. The ability of diazepam and of pentobarbital to reduce suppression during the CS+ was interpreted as an anxiolytic response. There were no differences between the genotypes in shock sensitivity, as assessed by their flinch responses to increasing levels of shock. However, alpha2 KO mice showed a greater suppression of lever pressing than WT littermates in the presence of a compound cue signalling footshock. Diazepam (0, 0.5, 1 and 2 mg/kg) induced a dose-dependent anxiolytic-like effect in WT mice but no such effect was seen in KO mice. Similarly, although pentobarbital (20 mg/kg) reduced the ability of the CS+ to reduce lever pressing rates in WT mice, this effect was not seen in the KO. These findings suggest that alpha2-containing GABA(A) receptors mediate the anxiolytic effects of barbiturates, as well as benzodiazepines, and that they may be involved in neuronal circuits underlying conditioned anxiety.

  20. Characterization of GABAA receptor ligands with automated patch-clamp using human neurons derived from pluripotent stem cells

    PubMed Central

    Yuan, Nina Y.; Poe, Michael M.; Witzigmann, Christopher; Cook, James M.; Stafford, Douglas; Arnold, Leggy A.

    2016-01-01

    Introduction Automated patch clamp is a recent but widely used technology to assess pre-clinical drug safety. With the availability of human neurons derived from pluripotent stem cells, this technology can be extended to determine CNS effects of drug candidates, especially those acting on the GABAA receptor. Methods iCell Neurons (Cellular Dynamics International, A Fujifilm Company) were cultured for ten days and analyzed by patch clamp in the presence of agonist GABA or in combination with positive allosteric GABAA receptor modulators. Both efficacy and affinity were determined. In addition, mRNA of GABAA receptor subunits were quantified by qRT-PCR. Results We have shown that iCell Neurons are compatible with the IonFlux microfluidic system of the automated patch clamp instrument. Resistance ranging from 15-25 MΩ was achieved for each trap channel of patch clamped cells in a 96-well plate format. GABA induced a robust change of current with an EC50 of 0.43 μM. Positive GABAA receptor modulators diazepam, HZ166, and CW-04-020 exhibited EC50 values of 0.42 μM, 1.56 μM, and 0.23 μM, respectively. The α2/α3/α5 selective compound HZ166-induced the highest potentiation (efficacy) of 810% of the current induced by 100 nM GABA. Quantification of GABAA receptor mRNA in iCell Neurons revealed high levels of α5 and β3 subunits and low levels of α1, which is similar to the configuration in human neonatal brain. Discussion iCell Neurons represent a new cellular model to characterize GABAergic compounds using automated patch clamp. These cells have excellent representation of cellular GABAA receptor distribution that enable determination of total small molecule efficacy and affinity as measured by cell membrane current change. PMID:27544543

  1. Selective antagonism of AMPA receptors unmasks kainate receptor-mediated responses in hippocampal neurons.

    PubMed

    Paternain, A V; Morales, M; Lerma, J

    1995-01-01

    Although both protein and mRNAs for kainate receptor subunits are abundant in several brain regions, the responsiveness of AMPA receptors to kainate has made it difficult to demonstrate the presence of functional kainate-type receptors in native cells. Recently, however, we have shown that many hippocampal neurons in culture express glutamate receptors of the kainate type. The large nondesensitizing response that kainate induces at AMPA receptors precludes detection and analysis of smaller, rapidly desensitizing currents induced by kainate at kainate receptors. Consequently, the functional significance of these strongly desensitizing glutamate receptors remains enigmatic. We report here that the family of new noncompetitive antagonists of AMPA receptors (GYKI 52466 and 53655) minimally affects kainate-induced responses at kainate receptors while completely blocking AMPA receptor-mediated currents, making it possible to separate the responses mediated by each receptor. These compounds will allow determination of the role played by kainate receptors in synaptic transmission and plasticity in the mammalian brain, as well as evaluation of their involvement in neurotoxicity.

  2. An Allosteric Coagonist Model for Propofol Effects on α1β2γ2L γ-Aminobutyric Acid Type A Receptors

    PubMed Central

    Ruesch, Dirk; Neumann, Elena; Wulf, Hinnerk; Forman, Stuart A.

    2011-01-01

    Background Propofol produces its major actions via γ-aminobutyric acid type A (GABAA) receptors. At low concentrations, propofol enhances agonist-stimulated GABAA receptor activity, and high propofol concentrations directly activate receptors. Etomidate produces similar effects, and there is convincing evidence that a single class of etomidate sites mediate both agonist modulation and direct GABAA receptor activation. It is unknown if the propofol binding site(s) on GABAA receptors that modulate agonist-induced activity also mediate direct activation. Methods GABAA α1β2γ2L receptors were heterologously expressed in Xenopus oocytes and activity was quantified using voltage clamp electrophysiology. We tested whether propofol and etomidate display the same linkage between agonist modulation and direct activation of GABAA receptors by identifying equi-efficacious drug solutions for direct activation. We then determined whether these drug solutions produce equal modulation of GABA-induced receptor activity. We also measured propofol-dependent direct activation and modulation of low GABA responses. Allosteric coagonist models similar to that established for etomidate, but with variable numbers of propofol sites, were fitted to combined data. Results Solutions of 19 μM propofol and 10 μM etomidate were found to equally activate GABAA receptors. These two drug solutions also produced indistinguishable modulation of GABA-induced receptor activity. Combined electrophysiological data behaved in a manner consistent with allosteric co-agonist models with more than one propofol site. The best fit was observed when the model assumed three equivalent propofol sites. Conclusions Our results support the hypothesis that propofol, like etomidate, acts at GABAA receptor sites mediating both GABA modulation and direct activation. PMID:22104494

  3. Somato-synaptic variation of GABA(A) receptors in cultured murine cerebellar granule cells: investigation of the role of the alpha6 subunit.

    PubMed

    Mellor, J R; Wisden, W; Randall, A D

    2000-07-10

    Electrophysiological investigation of cultured cerebellar murine granule cells revealed differences between the GABA(A) receptors at inhibitory synapses and those on the cell body. Specifically, mIPSCs decayed more rapidly than cell body receptors deactivated, the mean single channel conductance at the synapse (32 pS) was greater than that at cell body (21 pS) and only cell body receptors were sensitive to Zn(2+) (150 microM), which depressed response amplitude by 82+/-5% and almost doubled the rate of channel deactivation. The GABA(A) receptor alpha6 subunit is selectively expressed in cerebellar granule cells. Although concentrated at synapses, it is also found on extrasynaptic membranes. Using a mouse line (Deltaalpha6lacZ) lacking this subunit, we investigated its role in the somato-synaptic differences in GABA(A) receptor function. All differences between cell body and synaptic GABA(A) receptors observed in wild-type (WT) granule cells persisted in Deltaalpha6lacZ cells, thus demonstrating that they are not specifically due to the cellular distribution of the alpha6 subunit. However, mIPSCs from WT and Deltaalpha6lacZ cells differed in both their kinetics (faster decay in WT cells) and underlying single channel conductance (32 pS WT, 25 pS Deltaalpha6lacZ). This provides good evidence for a functional contribution of the alpha6 subunit to postsynaptic GABA(A) receptors in these cells. Despite this, deactivation kinetics of mIPSCs in WT and Deltaalpha6lacZ granule cells exhibited similar benzodiazepene (BDZ) sensitivity. This suggests that the enhanced BDZ-induced ataxia seen in Deltaalpha6lacZ mice may reflect physiological activity at extrasynaptic receptors which, unlike those at synapses, display differential BDZ-sensitivity in WT and Deltaalpha6lacZ granule cells (Jones, A.M., Korpi, E.R., McKernan, R.M., Nusser, Z., Pelz, R., Makela, R., Mellor, J.R., Pollard, S., Bahn, S., Stephenson, F.A., Randall, A.D., Sieghart, W., Somogyi, P., Smith, A.J.H., Wisden

  4. Protein kinase and phosphatase modulation of quail brain GABA(A) and non-NMDA receptors co-expressed in Xenopus oocytes.

    PubMed

    Moon, C; Fraser, S P; Djamgoz, M B

    2000-02-01

    The GABA(A) receptor and the non-NMDA subtype of the ionotropic glutamate receptor were co-expressed in Xenopus oocytes by injection of quail brain mRNA. The oocytes were treated with various protein kinase (PK) and protein phosphatase (PP) activators and inhibitors and the effects on receptor functioning were monitored. Two phorbol esters, 4-beta-phorbol 12-myristate-13-acetate (PMA) and 4-beta-phorbol 12,13-dibutyrate (PDBu); the cGMP-dependent PK activators sodium nitroprusside (SNP) and S-nitrosoglutathione (SNOG); and the PP inhibitor okadaic acid (OA) reduced the amplitude of the GABA-induced currents, whilst the PK inhibitor staurosporine potentiated it. In addition, PMA, PDBu, SNP, and OA reduced the desensitization of the GABA-induced response. Identical treatments generally had similar but less pronounced effects on responses generated by kainate (KA) but the desensitization characteristic of the non-NMDA receptor was not affected. None of the treatments had any effect on the reversal potentials of the induced currents. Immunoblots revealed that the oocytes express endogenous PKG and guanylate cyclase. The results are discussed in terms of the molecular structures of GABA(A) and non-NMDA receptors and the potential functional consequences of phosphorylation/dephosphorylation.

  5. Radixin regulates synaptic GABAA receptor density and is essential for reversal learning and short-term memory

    PubMed Central

    Hausrat, Torben J.; Muhia, Mary; Gerrow, Kimberly; Thomas, Philip; Hirdes, Wiebke; Tsukita, Sachiko; Heisler, Frank F.; Herich, Lena; Dubroqua, Sylvain; Breiden, Petra; Feldon, Joram; Schwarz, Jürgen R; Yee, Benjamin K.; Smart, Trevor G.; Triller, Antoine; Kneussel, Matthias

    2015-01-01

    Neurotransmitter receptor density is a major variable in regulating synaptic strength. Receptors rapidly exchange between synapses and intracellular storage pools through endocytic recycling. In addition, lateral diffusion and confinement exchanges surface membrane receptors between synaptic and extrasynaptic sites. However, the signals that regulate this transition are currently unknown. GABAA receptors containing α5-subunits (GABAAR-α5) concentrate extrasynaptically through radixin (Rdx)-mediated anchorage at the actin cytoskeleton. Here we report a novel mechanism that regulates adjustable plasma membrane receptor pools in the control of synaptic receptor density. RhoA/ROCK signalling regulates an activity-dependent Rdx phosphorylation switch that uncouples GABAAR-α5 from its extrasynaptic anchor, thereby enriching synaptic receptor numbers. Thus, the unphosphorylated form of Rdx alters mIPSCs. Rdx gene knockout impairs reversal learning and short-term memory, and Rdx phosphorylation in wild-type mice exhibits experience-dependent changes when exposed to novel environments. Our data suggest an additional mode of synaptic plasticity, in which extrasynaptic receptor reservoirs supply synaptic GABAARs. PMID:25891999

  6. SH-I-048A, AN IN VITRO NONSELECTIVE SUPER-AGONIST AT THE BENZODIAZEPINE SITE OF GABAA RECEPTORS: THE APPROXIMATED ACTIVATION OF RECEPTOR SUBTYPES MAY EXPLAIN BEHAVIORAL EFFECTS

    PubMed Central

    Obradović, Aleksandar Lj.; Joksimović, Srđan; Poe, Michael M.; Ramerstorfer, Joachim; Varagic, Zdravko; Namjoshi, Ojas; Batinić, Bojan; Radulović, Tamara; Marković, Bojan; Roth, Brian; Sieghart, Werner; Cook, James M.; Savić, Miroslav M.

    2014-01-01

    Enormous progress in understanding the role of four populations of benzodiazepine-sensitive GABAA receptors was paralleled by the puzzling findings suggesting that substantial separation of behavioral effects may be accomplished by apparently non-selective modulators. We report on SH-I-048A, a newly-synthesized chiral positive modulator of GABAA receptors characterized by exceptional subnanomolar affinity, high efficacy and non-selectivity. Its influence on behavior was assessed in Wistar rats and contrasted to that obtained with 2 mg/kg diazepam. SH-I-048A reached micromolar concentrations in brain tissue, while the unbound fraction in brain homogenate was around 1.5%. The approximated electrophysiological responses, which estimated free concentrations of SH-I-048A or diazepam are able to elicit, suggested a similarity between the 10 mg/kg dose of the novel ligand and 2 mg/kg diazepam; however, SH-I-048A was relatively more active at α1- and α5-containing GABAA receptors. Behaviorally, SH-I-048A induced sedative, muscle relaxant and ataxic effects, reversed mechanical hyperalgesia 24 hours after injury, while it was devoid of clear anxiolytic actions and did not affect water-maze performance. While lack of clear anxiolytic actions may be connected with an enhanced potentiation at α1-containing GABAA receptors, the observed behavior in the rotarod, water maze and peripheral nerve injury tests was possibly affected by its prominent action at receptors containing the α5 subunit. The current results encourage further innovative approaches aimed at linking in vitro and in vivo data in order to help define fine-tuning mechanisms at four sensitive receptor populations that underlie subtle differences in behavioral profiles of benzodiazepine site ligands. PMID:24472579

  7. Unsaturated free fatty acids increase benzodiazepine receptor agonist binding depending on the subunit composition of the GABAA receptor complex.

    PubMed

    Witt, M R; Westh-Hansen, S E; Rasmussen, P B; Hastrup, S; Nielsen, M

    1996-11-01

    It has been shown previously that unsaturated free fatty acids (FFAs) strongly enhance the binding of agonist benzodiazepine receptor ligands and GABAA receptor ligands in the CNS in vitro. To investigate the selectivity of this effect, recombinant human GABAA/benzodiazepine receptor complexes formed by different subunit compositions (alpha x beta y gamma 2, x = 1, 2, 3, and 5; y = 1, 2, and 3) were expressed using the baculovirus-transfected Sf9 insect cell system. At 10(-4) M, unsaturated FFAs, particularly arachidonic (20:4) and docosahexaenoic (22:6) acids, strongly stimulated (> 200% of control values) the binding of [3H]flunitrazepam ([3H]FNM) to the alpha 3 beta 2 gamma 2 receptor combination in whole cell preparations. No effect or small increases in levels of unsaturated FFAs on [3H]FNM binding to alpha 1 beta x gamma 2 and alpha 2 beta x gamma 2 receptor combinations were observed, and weak effects (130% of control values) were detected using the alpha 5 beta 2 gamma 2 receptor combination. The saturated FFAs, stearic and palmitic acids, were without effect on [3H]FNM binding to any combination of receptor complexes. The hydroxylated unsaturated FFAs, ricinoleic and ricinelaidic acids, were shown to decrease the binding of [3H]FNM only if an alpha 1 beta 2 gamma 2 receptor combination was used. Given the heterogeneity of the GABAA/ benzodiazepine receptor subunit distribution in the CNS, the effects of FFAs on the benzodiazepine receptor can be assumed to vary at both cellular and regional levels.

  8. Proton sensitivity of rat cerebellar granule cell GABAA receptors: dependence on neuronal development

    PubMed Central

    Krishek, Belinda J; Smart, Trevor G

    2001-01-01

    The effect of GABAA receptor development in culture on the modulation of GABA-induced currents by external H+ was examined in cerebellar granule cells using whole-cell and single-channel recording. Equilibrium concentration-response curves revealed a lower potency for GABA between 11 and 12 days in vitro (DIV) resulting in a shift of the EC50 from 10.7 to 2.4 μM. For granule cells before 11 DIV, the peak GABA-activated current was inhibited at low external pH and enhanced at high pH with a pKa of 6.65. For the steady-state response, low pH was inhibitory with a pKa of 5.56. After 11 DIV, the peak GABA-activated current was largely pH insensitive; however, the steady-state current was potentiated at low pH with a pKa of 6.84. Single GABA-activated ion channels were recorded from outside-out patches of granule cell bodies. At pH 5.4-9.4, single GABA channels exhibited multiple conductance states occurring at 22-26, 16-17 and 12-14 pS. The conductance levels were not significantly altered over the time period of study, nor by changing the external H+ concentration. Two exponential functions were required to fit the open-time frequency histograms at both early (< 11 DIV) and late (> 11 DIV) development times at each H+ concentration. The short and long open time constants were unaffected either by the extracellular H+ concentration or by neuronal development. The distribution of all shut times was fitted by the sum of three exponentials designated as short, intermediate and long. At acidic pH, the long shut time constant decreased with development as did the relative contribution of these components to the overall distribution. This was concurrent with an increase in the mean probability of channel opening. In conclusion, this study demonstrates in cerebellar granule cells that external pH can either reduce, have no effect on, or enhance GABA-activated responses depending on the stage of development, possibly related to the subunit composition of the GABAA receptors

  9. Role of the amygdala GABA-A receptors in ACPA-induced deficits during conditioned fear learning.

    PubMed

    Nasehi, Mohammad; Roghani, Farnaz; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza

    2017-05-01

    The basolateral amygdala (BLA) is a key structure for the emotional processing and storage of memories associated with emotional events, especially fear. On the other hand, endocannabinoids and CB1 receptors play a key role in learning and memory partly through long-term synaptic depression of GABAergic synapses in the BLA. The aim of this study was to explore the effects of GABA-A receptor agonist and antagonist in the fear-related memory acquisition deficits induced by ACPA (a selective CB1 cannabinoid receptor agonist). This study used context and tone fear conditioning paradigms to assess fear-related memory in male NMRI mice. Our results showed that the pre-training intraperitoneal administration of ACPA (0.5mg/kg) or (0.1 and 0.5mg/kg) decreased the percentage of freezing time in the contextual and tone fear conditioning, respectively. This indicated an impaired context- or tone-dependent fear memory acquisition. Moreover, the pre-training intra-BLA microinjection of GABA-A receptor agonist, muscimol, at 0.05 and 0.5μg/mouse impaired context-dependent fear memory, while the same doses of GABA-A antagonist, bicuculline, impaired tone-dependent fear memory. However, a subthreshold dose of muscimol or bicuculline increased the effect of ACPA at 0.1 and 0.5 or 0.05mg/kg on context- or tone-dependent fear memory, respectively. In addition, bicuculline at the lower dose increased the ACPA response on locomotor activity compared to its respective group. Such findings highlighted an interaction between BLA GABAergic and cannabinoidergic systems during the acquisition phase of conditioned fear memories. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Glycosylation of β2 Subunits Regulates GABAA Receptor Biogenesis and Channel Gating*

    PubMed Central

    Lo, Wen-yi; Lagrange, Andre H.; Hernandez, Ciria C.; Harrison, Rebecca; Dell, Anne; Haslam, Stuart M.; Sheehan, Jonathan H.; Macdonald, Robert L.

    2010-01-01

    γ-Aminobutyric acid type A (GABAA) receptors are heteropentameric glycoproteins. Based on consensus sequences, the GABAA receptor β2 subunit contains three potential N-linked glycosylation sites, Asn-32, Asn-104, and Asn-173. Homology modeling indicates that Asn-32 and Asn-104 are located before the α1 helix and in loop L3, respectively, near the top of the subunit-subunit interface on the minus side, and that Asn-173 is located in the Cys-loop near the bottom of the subunit N-terminal domain. Using site-directed mutagenesis, we demonstrated that all predicted β2 subunit glycosylation sites were glycosylated in transfected HEK293T cells. Glycosylation of each site, however, produced specific changes in α1β2 receptor surface expression and function. Although glycosylation of Asn-173 in the Cys-loop was important for stability of β2 subunits when expressed alone, results obtained with flow cytometry, brefeldin A treatment, and endo-β-N-acetylglucosaminidase H digestion suggested that glycosylation of Asn-104 was required for efficient α1β2 receptor assembly and/or stability in the endoplasmic reticulum. Patch clamp recording revealed that mutation of each site to prevent glycosylation decreased peak α1β2 receptor current amplitudes and altered the gating properties of α1β2 receptor channels by reducing mean open time due to a reduction in the proportion of long open states. In addition to functional heterogeneity, endo-β-N-acetylglucosaminidase H digestion and glycomic profiling revealed that surface β2 subunit N-glycans at Asn-173 were high mannose forms that were different from those of Asn-32 and N104. Using a homology model of the pentameric extracellular domain of α1β2 channel, we propose mechanisms for regulation of GABAA receptors by glycosylation. PMID:20639197

  11. Low concentrations of ethanol do not affect radioligand binding to the delta-subunit-containing GABAA receptors in the rat brain.

    PubMed

    Mehta, Ashok K; Marutha Ravindran, C R; Ticku, Maharaj K

    2007-08-24

    In the present study, we investigated the co-localization pattern of the delta subunit with other subunits of GABA(A) receptors in the rat brain using immunoprecipitation and Western blotting techniques. Furthermore, we investigated whether low concentrations of ethanol affect the delta-subunit-containing GABA(A) receptor assemblies in the rat brain using radioligand binding to the rat brain membrane homogenates as well as to the immunoprecipitated receptor assemblies. Our results revealed that delta subunit is not co-localized with gamma(2) subunit but it is associated with the alpha(1), alpha(4) or alpha(6), beta(2) and/or beta(3) subunit(s) of GABA(A) receptors in the rat brain. Ethanol (1-50 mM) neither affected [(3)H]muscimol (3 nM) binding nor diazepam-insensitive [(3)H]Ro 15-4513 (2 nM) binding in the rat cerebellum and cerebral cortex membranes. However, a higher concentration of ethanol (500 mM) inhibited the binding of these radioligands to the GABA(A) receptors partially in the rat cerebellum and cerebral cortex. Similarly, ethanol (up to 50 mM) did not affect [(3)H]muscimol (15 nM) binding to the immunoprecipitated delta-subunit-containing GABA(A) receptor assemblies in the rat cerebellum and hippocampus but it inhibited the binding partially at a higher concentration (500 mM). These results suggest that the native delta-subunit-containing GABA(A) receptors do not play a major role in the pharmacology of clinically relevant low concentrations of ethanol.

  12. Involvement of the CA1 GABAA receptors in MK-801-induced anxiolytic-like effects: an isobologram analysis.

    PubMed

    Naseri, Mohammad-Hasan; Hesami-Tackallou, Saeed; Torabi-Nami, Mohammad; Zarrindast, Mohammad-Reza; Nasehi, Mohammad

    2014-06-01

    There seems to be a close relationship between hippocampal N-methyl-D-aspartic acid (NMDA) and GABAA receptors with respect to the modulation of behavior that occurs in the CA1 region of the hippocampus. This study investigated the possible involvement of the CA1 GABAA receptors in anxiolytic-like effects induced by (+)-MK-801 (a noncompetitive antagonist of the NMDA subtype of the glutamate receptor). Male Wistar rats were subjected to the elevated plus-maze apparatus and open arm time (%OAT), and open arm entries (%OAE) for anxiety-related behaviors, and closed arm entries that correspond to the locomotor activity were assessed. An intra-CA1 injection of (+)-MK-801 (2 μg/rat) and muscimol (0.5 μg/rat; a GABAA receptor agonist) increased %OAT and %OAE by themselves while not altering the closed arm entries, indicating an anxiolytic-like effect of these drugs. Injection of bicuculline (0.1, 0.25, and 0.5 μg/rat; a GABAA receptor antagonist) did not alter any of the anxiety-related parameters. An intra-CA1 injection of a subthreshold dose of muscimol (0.1 μg/rat) or bicuculline (0.5 μg/rat), 5 min before injection of subthreshold and effective doses of (+)-MK-801 (0.5, 1 and 2 μg/rat), increased and decreased the anxiolytic-like effect of (+)-MK-801, respectively. The isobologram analysis of these findings suggested a synergistic anxiety-like effect of intra-CA1 (+)-MK-801 and muscimol. In conclusion, the CA1 GABAA receptors appear to be involved in anxiolytic-like behaviors induced by (+)-MK-801.

  13. RNAi screening of subtracted transcriptomes reveals tumor suppression by taurine-activated GABAA receptors involved in volume regulation

    PubMed Central

    van Nierop, Pim; Vormer, Tinke L.; Foijer, Floris; Verheij, Joanne; Lodder, Johannes C.; Andersen, Jesper B.; Mansvelder, Huibert D.; te Riele, Hein

    2018-01-01

    To identify coding and non-coding suppressor genes of anchorage-independent proliferation by efficient loss-of-function screening, we have developed a method for enzymatic production of low complexity shRNA libraries from subtracted transcriptomes. We produced and screened two LEGO (Low-complexity by Enrichment for Genes shut Off) shRNA libraries that were enriched for shRNA vectors targeting coding and non-coding polyadenylated transcripts that were reduced in transformed Mouse Embryonic Fibroblasts (MEFs). The LEGO shRNA libraries included ~25 shRNA vectors per transcript which limited off-target artifacts. Our method identified 79 coding and non-coding suppressor transcripts. We found that taurine-responsive GABAA receptor subunits, including GABRA5 and GABRB3, were induced during the arrest of non-transformed anchor-deprived MEFs and prevented anchorless proliferation. We show that taurine activates chloride currents through GABAA receptors on MEFs, causing seclusion of cell volume in large membrane protrusions. Volume seclusion from cells by taurine correlated with reduced proliferation and, conversely, suppression of this pathway allowed anchorage-independent proliferation. In human cholangiocarcinomas, we found that several proteins involved in taurine signaling via GABAA receptors were repressed. Low GABRA5 expression typified hyperproliferative tumors, and loss of taurine signaling correlated with reduced patient survival, suggesting this tumor suppressive mechanism operates in vivo. PMID:29787571

  14. Cyclohexanol analogues are positive modulators of GABAA receptor currents and act as general anaesthetics in vivo

    USDA-ARS?s Scientific Manuscript database

    GABAA receptors meet all the pharmacological criteria required to be considered important general anaesthetic targets. In the following study, the modulatory effects of various commercially available and novel cyclohexanol were investigated on recombinant human '-aminobutyric acid (GABAA, a1ß2'2s) r...

  15. Women with PTSD have a changed sensitivity to GABA-A receptor active substances.

    PubMed

    Möller, Anna Tiihonen; Bäckström, Torbjörn; Nyberg, Sigrid; Söndergaard, Hans Peter; Helström, Lotti

    2016-06-01

    The use of benzodiazepines in treating anxiety symptoms in patients with posttraumatic stress disorder (PTSD) has been debated. Studies on other anxiety disorders have indicated changed sensitivity to GABA-A receptor active substances. In the present study, we investigated the GABA receptor sensitivity in PTSD patients. Injections of allopreganolone, diazepam, and flumazenil were carried out, each on separate occasions, in 10 drug naïve patients with PTSD compared to 10 healthy controls. Effects were measured in saccadic eye velocity (SEV) and in subjective ratings of sedation. The PTSD patients were less sensitive to allopregnanolone compared with healthy controls. This was seen as a significant difference in SEV between the groups (p = 0.047). Further, the patients were less sensitive to diazepam, with a significant less increase in sedation compared to controls (p = 0.027). After flumazenil injection, both patients and controls had a significant agonistic effect on SEV, leading to decreased SEV after injection. The patients also responded with an increase in sedation after flumazenil injection, while this was not seen in the controls. Patients with PTSD have a changed sensitivity to GABA-A receptor active substances. As a consequence of this, benzodiazepines and other GABA-A receptor active compounds such as sleeping pills will be less useful for this group of patients.

  16. HPLC-Based Activity Profiling: Discovery of Piperine as a Positive GABAA Receptor Modulator Targeting a Benzodiazepine-Independent Binding Site

    PubMed Central

    Zaugg, Janine; Baburin, Igor; Strommer, Barbara; Kim, Hyun-Jung; Hering, Steffen; Hamburger, Matthias

    2011-01-01

    A plant extract library was screened for GABAA receptor activity making use of a two-microelectrode voltage clamp assay on Xenopus laevis oocytes. An ethyl acetate extract of black pepper fruits [Piper nigrum L. (Piperaceae) 100 μg/mL] potentiated GABA-induced chloride currents through GABAA receptors (composed of α1, β2, and γ2S subunits) by 169.1 ± 2.4%. With the aid of an HPLC-based activity profiling approach, piperine (5) was identified as the main active compound, together with 12 structurally related less active or inactive piperamides (1–4, 6–13). Identification was achieved by on-line high-resolution mass spectrometry and off-line microprobe 1D and 2D NMR spectroscopy, using only milligram amounts of extract. Compound 5 induced a maximum potentiation of the chloride currents by 301.9 ± 26.5% with an EC50 of 52.4 ± 9.4 μM. A comparison of the modulatory activity of 5 and other naturally occurring piperamides enabled insights into structural features critical for GABAA receptor modulation. The stimulation of chloride currents through GABAA receptors by compound 5 was not antagonized by flumazenil (10 μM). These data show that piperine (5) represents a new scaffold of positive allosteric GABAA receptor modulators targeting a benzodiazepine-independent binding site. PMID:20085307

  17. Opposing roles for GABAA and GABAC receptors in short-term memory formation in young chicks.

    PubMed

    Gibbs, M E; Johnston, G A R

    2005-01-01

    The inhibitory neurotransmitter GABA has both inhibitory and enhancing effects on short-term memory for a bead discrimination task in the young chick. Low doses of GABA (1-3 pmol/hemisphere) injected into the multimodal association area of the chick forebrain, inhibit strongly reinforced memory, whereas higher doses (30-100 pmol/hemisphere) enhance weakly reinforced memory. The effect of both high and low doses of GABA is clearly on short-term memory in terms of both the time of injection and in the time that the memory loss occurs. We argue on the basis of relative sensitivities to GABA and to selective GABA receptor antagonists that low doses of GABA act at GABAC receptors (EC50 approximately 1 microM) and the higher doses of GABA act via GABAA receptors (EC50 approximately 10 microM). The selective GABAA receptor antagonist bicuculline inhibited strongly reinforced memory in a dose and time dependent manner, whereas the selective GABAC receptor antagonists TPMPA and P4MPA enhanced weakly reinforced in a dose and time dependent manner. Confirmation that different levels of GABA affect different receptor subtypes was demonstrated by the shift in the GABA dose-response curves to the selective antagonists. It is clear that GABA is involved in the control of short-term memory formation and its action, enhancing or inhibiting, depends on the level of GABA released at the time of learning.

  18. γ-glutamyl transpeptidase 1 specifically suppresses green-light avoidance via GABAA receptors in Drosophila.

    PubMed

    Liu, Jiangqu; Gong, Zhefeng; Liu, Li

    2014-08-01

    Drosophila larvae innately show light avoidance behavior. Compared with robust blue-light avoidance, larvae exhibit relatively weaker green-light responses. In our previous screening for genes involved in larval light avoidance, compared with control w(1118) larvae, larvae with γ-glutamyl transpeptidase 1 (Ggt-1) knockdown or Ggt-1 mutation were found to exhibit higher percentage of green-light avoidance which was mediated by Rhodopsin6 (Rh6) photoreceptors. However, their responses to blue light did not change significantly. By adjusting the expression level of Ggt-1 in different tissues, we found that Ggt-1 in malpighian tubules was both necessary and sufficient for green-light avoidance. Our results showed that glutamate levels were lower in Ggt-1 null mutants compared with controls. Feeding Ggt-1 null mutants glutamate can normalize green-light avoidance, indicating that high glutamate concentrations suppressed larval green-light avoidance. However, rather than directly, glutamate affected green-light avoidance indirectly through GABA, the level of which was also lower in Ggt-1 mutants compared with controls. Mutants in glutamate decarboxylase 1, which encodes GABA synthase, and knockdown lines of the GABAA receptor, both exhibit elevated levels of green-light avoidance. Thus, our results elucidate the neurobiological mechanisms mediating green-light avoidance, which was inhibited in wild-type larvae. © 2014 International Society for Neurochemistry.

  19. Nicotine and Nicotine Abstinence Do Not Interfere with GABAA Receptor Neuroadaptations During Alcohol Abstinence.

    PubMed

    Hillmer, Ansel T; Kloczynski, Tracy; Sandiego, Christine M; Pittman, Brian; Anderson, Jon M; Labaree, David; Gao, Hong; Huang, Yiyun; Deluliis, Giuseppe; O'Malley, Stephanie S; Carson, Richard E; Cosgrove, Kelly P

    2016-04-01

    Alcohol dependence and tobacco smoking are highly comorbid, and treating both conditions simultaneously is controversial. Previously, we showed that tobacco smoking interferes with GABAA receptor neuroadaptations during alcohol withdrawal in humans, while this effect did not occur with continued nicotine use during alcohol abstinence in nonhuman primates. Here, we extend our previous work by measuring GABAA receptor availability with positron emission tomography (PET) during drug abstinence in nonhuman primates exposed to alcohol alone, nicotine and alcohol together, and alcohol abstinence with continued nicotine exposure. Twenty-four adolescent male rhesus macaques orally self-administered alcohol and nicotine, available separately in water and saccharin, over 20 weeks. The groups included alcohol alone (n = 8); nicotine and alcohol with simultaneous abstinence (n = 8); nicotine and alcohol with alcohol abstinence while nicotine was still available (n = 8); and a pilot group of animals consuming nicotine alone (n = 6). Animals were imaged with [(11)C]flumazenil PET to measure binding potential (BPND), an index of GABAA receptor availability. Imaging occurred at baseline (drug-naíve), and following alcohol and/or nicotine cessation at 1 day, 8 days, and 12 weeks of abstinence. Generalized linear mixed models were used to examine the time course of [(11)C]flumazenil BPND during alcohol abstinence across groups. Animals consumed 3.95 ± 1.22 g/kg/d alcohol and 55.4 ± 35.1 mg/kg/d nicotine. No significant group effects were observed in [(11)C]flumazenil BPND during alcohol abstinence; however, a main effect of time was detected. Post hoc analyses indicated that all groups abstaining from alcohol exhibited significantly increased GABAA receptor availability at 1 day and 8 days (but not 12 weeks) of abstinence relative to baseline, while no changes in [(11)C]flumazenil BPND during nicotine abstinence alone were observed. These data indicate that neither nicotine nor

  20. Neonatal blockade of GABA-A receptors alters behavioral and physiological phenotypes in adult mice.

    PubMed

    Salari, Ali-Akbar; Amani, Mohammad

    2017-04-01

    Gamma-aminobutyric acid (GABA) plays an inhibitory role in the mature brain, and has a complex and bidirectional effect in different parts of the immature brain which affects proliferation, migration and differentiation of neurons during development. There is also increasing evidence suggesting that activation or blockade of the GABA-A receptors during early life can induce brain and behavioral abnormalities in adulthood. We investigated whether neonatal blockade of the GABA-A receptors by bicuculline can alter anxiety- and depression-like behaviors, body weight, food intake, corticosterone and testosterone levels in adult mice (postnatal days 80-95). To this end, neonatal mice were treated with either DMSO or bicuculline (70, 150 and 300μg/kg) during postnatal days 7, 9 and 11. When grown to adulthood, mice were exposed to behavioral tests to measure anxiety- (elevated plus-maze and light-dark box) and depression-like behaviors (tail suspension test and forced swim test). Stress-induced serum corticosterone and testosterone levels, body weight and food intake were also evaluated. Neonatal bicuculline exposure at dose of 300μg/kg decreased anxiety-like behavior, stress-induced corticosterone levels and increased testosterone levels, body weight and food intake, without significantly influencing depression-like behavior in adult male mice. However, no significant changes in these parameters were observed in adult females. These findings suggest that neonatal blockade of GABA-A receptors affects anxiety-like behavior, physiological and hormonal parameters in a sex-dependent manner in mice. Taken together, these data corroborate the concept that GABA-A receptors during early life have an important role in programming neurobehavioral phenotypes in adulthood. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  1. Duration of treatment and activation of α1-containing GABAA receptors variably affect the level of anxiety and seizure susceptibility after diazepam withdrawal in rats

    PubMed Central

    Kovačević, Jovana; Timić, Tamara; Tiruveedhula, Veera V.; Batinić, Bojan; Namjoshi, Ojas A.; Milić, Marija; Joksimović, Srđan; Cook, James M.; Savić, Miroslav M.

    2014-01-01

    Long-term use of benzodiazepine-type drugs may lead to physical dependence, manifested by withdrawal syndrome after abrupt cessation of treatment. The aim of the present study was to investigate the influence of duration of treatment, as well as the role of α1-containing GABAA receptors, in development of physical dependence to diazepam, assessed through the level of anxiety and susceptibility to pentylenetetrazole (PTZ)-induced seizures, 24 h after withdrawal from protracted treatment in rats. Withdrawal of 2 mg/kg diazepam after 28, but not after 14 or 21 days of administration led to an anxiety-like behavior in the elevated plus maze. Antagonism of the diazepam effects at α1-containing GABAA receptors, achieved by daily administration of the neutral modulator βCCt (5 mg/kg), did not affect the anxiety level during withdrawal. An increased susceptibility to PTZ-induced seizures was observed during diazepam withdrawal after 21 and 28 days of treatment. Daily co-administration of βCCt further decreased the PTZ-seizure threshold after 21 days of treatment, whilst it prevented the diazepam withdrawal-elicited decrease of the PTZ threshold after 28 days of treatment. In conclusion, the current study suggests that the role of α1-containing GABAA receptors in mediating the development of physical dependence may vary based on the effect being studied and duration of protracted treatment. Moreover, the present data supports previous findings that the lack of activity at α1-containing GABAA receptors is not sufficient to eliminate physical dependence liability of ligands of the benzodiazepine type. PMID:24695241

  2. Regulation of GABAA receptors by fragile X mental retardation protein

    PubMed Central

    Liu, Baosong; Li, Lijun; Chen, Juan; Wang, Zefen; Li, Zhiqiang; Wan, Qi

    2013-01-01

    Fragile X syndrome (FXS) is caused by the loss of fragile X mental retardation protein (FMRP). The deficiency of GABAA receptors (GABAARs) is implicated in FXS. However, the underlying mechanisms remain unclear. To investigate the effect of FMRP on GABAARs, we transfected FMRP cDNAs in rat cortical neurons. We measured the protein expression of GABAARs and phosphatase PTEN, and recorded GABAAR-mediated whole-cell currents in the transfected neurons. We show that the transfection of FMRP cDNAs causes increased protein expression of GABAARs in cortical neurons, but GABAAR-mediated whole-cell currents are not potentiated by FMRP transfection. These results suggest the possibility that intracellular signaling antagonizing GABAAR activity may play a role in inhibiting GABAAR function in FMRP-transfected neurons. We further show that FMRP transfection results in an enhanced protein expression of PTEN, which contributes to the inhibition of GABAAR function in FMRP-transfected neurons. These results indicate that GABAARs are regulated by FMRP through both an up-regulation of GABAAR expression and a PTEN enhancement-induced inhibition of GABAAR function, suggesting that an abnormal regulation of GABAAR and PTEN by the loss of FMRP underlies the pathogenesis of FXS. PMID:24044036

  3. Long-term administration with levonorgestrel decreases allopregnanolone levels and alters GABA(A) receptor subunit expression and anxiety-like behavior.

    PubMed

    Porcu, Patrizia; Mostallino, Maria Cristina; Sogliano, Cristiana; Santoru, Francesca; Berretti, Roberta; Concas, Alessandra

    2012-08-01

    Fluctuations in the concentrations of the neuroactive steroid allopregnanolone are thought to influence γ-amino-butyric acid type A (GABA(A)) receptor gene expression and function. Long-term treatment with ethinyl estradiol (EE) plus levonorgestrel (LNG), two of the most widely used steroids in the hormonal contraceptive pill, decreases allopregnanolone levels in rat cerebral cortex and plasma, alters GABA(A) receptor expression and induces anxiety-like behavior. We evaluated which component of the hormonal contraceptive pill is responsible for the aforementioned changes. Female rats were injected subcutaneously (s.c.) with EE (0.030 mg) or LNG (0.125 mg) once a day for 4 weeks. Compared to the respective vehicle-treated control groups, EE decreased cerebral cortical levels of allopregnanolone, progesterone and pregnenolone by 76, 72 and 33%, respectively and hippocampal levels by 52, 56 and 50%, respectively. Likewise, LNG decreased cerebral cortical levels of allopregnanolone, progesterone and pregnenolone by 75, 68 and 33%, respectively, and hippocampal levels by 55, 65 and 60%, respectively. Administration of LNG, but not EE, increased the abundance of the γ2 subunit peptide in cerebral cortex and hippocampus by 38 and 59%, respectively. Further, LNG, but not EE, decreased the time spent and the number of entries into the open arms of the elevated plus maze by 56 and 43%, respectively, an index of anxiety-like behavior. These results suggest that alterations in GABA(A) receptor subunit expression and anxiety-like behavior induced by long-term treatment with combined EE/LNG appear to be caused by LNG. Given that both EE and LNG decrease allopregnanolone levels in a similar manner, these results further suggest that changes in allopregnanolone levels are not associated with GABA(A) receptor expression. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Selective labelling of diazepam-insensitive GABAA receptors in vivo using [3H]Ro 15-4513.

    PubMed

    Pym, Luanda J; Cook, Susan M; Rosahl, Thomas; McKernan, Ruth M; Atack, John R

    2005-11-01

    Classical benzodiazepines (BZs), such as diazepam, bind to GABAA receptors containing alpha1, alpha2, alpha3 or alpha5 subunits that are therefore described as diazepam-sensitive (DS) receptors. However, the corresponding binding site of GABAA receptors containing either an alpha4 or alpha6 subunit do not bind the classical BZs and are therefore diazepam-insensitive (DIS) receptors; a difference attributable to a single amino acid (histidine in alpha1, alpha2, alpha3 and alpha5 subunits and arginine in alpha4 and alpha6). Unlike classical BZs, the imidazobenzodiazepines Ro 15-4513 and bretazenil bind to both DS and DIS populations of GABAA receptors. In the present study, an in vivo assay was developed using lorazepam to fully occupy DS receptors such that [3H]Ro 15-4513 was then only able to bind to DIS receptors. When dosed i.v., [3H]Ro 15-4513 rapidly entered and was cleared from the brain, with approximately 70% of brain radioactivity being membrane-bound. Essentially all membrane binding to DS+DIS receptors could be displaced by unlabelled Ro 15-4513 or bretazenil, with respective ID50 values of 0.35 and 1.2 mg kg(-1). A dose of 30 mg kg(-1) lorazepam was used to block all DS receptors in a [3H]Ro 15-1788 in vivo binding assay. When predosed in a [3H]Ro 15-4513 binding assay, lorazepam blocked [3H]Ro 15-4513 binding to DS receptors, with the remaining binding to DIS receptors accounting for 5 and 23% of the total (DS plus DIS) receptors in the forebrain and cerebellum, respectively. The in vivo binding of [3H]Ro 15-4513 to DIS receptors in the presence of lorazepam was confirmed using alpha1H101R knock-in mice, in which alpha1-containing GABAA receptors are rendered diazepam insensitive by mutation of the histidine that confers diazepam sensitivity to arginine. In these mice, and in the presence of lorazepam, there was an increase of in vivo [3H]Ro 15-4513 binding in the forebrain and cerebellum from 4 and 15% to 36 and 59% of the total (i.e. DS plus DIS) [3H

  5. Antagonism of GABA-B but not GABA-A receptors in the VTA prevents stress- and intra-VTA CRF-induced reinstatement of extinguished cocaine seeking in rats

    PubMed Central

    Blacktop, Jordan M.; Vranjkovic, Oliver; Mayer, Matthieu; Van Hoof, Matthew; Baker, David A.; Mantsch, John R.

    2015-01-01

    Stress-induced reinstatement of cocaine seeking requires corticotropin releasing factor (CRF) actions in the ventral tegmental area (VTA). However the mechanisms through which CRF regulates VTA function to promote cocaine use are not fully understood. Here we examined the role of GABAergic neurotransmission in the VTA mediated by GABA-A or GABA-B receptors in the reinstatement of extinguished cocaine seeking by a stressor, uncontrollable intermittent footshock, or bilateral intra-VTA administration of CRF. Rats underwent repeated daily cocaine self-administration (1.0 mg/kg/ing; 14 × 6 hrs/day) and extinction and were tested for reinstatement in response to footshock (0.5 mA, 0.5” duration, average every 40 sec; range 10–70 sec) or intra-VTA CRF delivery (500 ng/side) following intra-VTA pretreatment with the GABA-A antagonist, bicuculline, the GABA-B antagonist, 2-hydroxysaclofen or vehicle. Intra-VTA bicuculline (1, 10 or 20 ng/side) failed to block footshock- or CRF-induced cocaine seeking at either dose tested. By contrast, 2-hydroxysaclofen (0.2 or 2 µg/side) prevented reinstatement by both footshock and intra-VTA CRF at a concentration that failed to attenuate food-reinforced lever pressing (45 mg sucrose-sweetened pellets; FR4 schedule) in a separate group of rats. These data suggest that GABA-B receptor-dependent CRF actions in the VTA mediate stress-induced cocaine seeking and that GABA-B receptor antagonists may have utility for the management of stress-induced relapse in cocaine addicts. PMID:26596556

  6. Control of Inhibition by the Direct Action of Cannabinoids on GABAA Receptors.

    PubMed

    Golovko, Tatiana; Min, Rogier; Lozovaya, Natalia; Falconer, Caroline; Yatsenko, Natalia; Tsintsadze, Timur; Tsintsadze, Vera; Ledent, Catherine; Harvey, Robert J; Belelli, Delia; Lambert, Jeremy J; Rozov, Andrei; Burnashev, Nail

    2015-09-01

    Cannabinoids are known to regulate inhibitory synaptic transmission via activation of presynaptic G protein-coupled cannabinoid CB1 receptors (CB1Rs). Additionally, recent studies suggest that cannabinoids can also directly interact with recombinant GABAA receptors (GABAARs), potentiating currents activated by micromolar concentrations of γ-aminobutyric acid (GABA). However, the impact of this direct interaction on GABAergic inhibition in central nervous system is unknown. Here we report that currents mediated by recombinant GABAARs activated by high (synaptic) concentrations of GABA as well as GABAergic inhibitory postsynaptic currents (IPSCs) at neocortical fast spiking (FS) interneuron to pyramidal neuron synapses are suppressed by exogenous and endogenous cannabinoids in a CB1R-independent manner. This IPSC suppression may account for disruption of inhibitory control of pyramidal neurons by FS interneurons. At FS interneuron to pyramidal neuron synapses, endocannabinoids induce synaptic low-pass filtering of GABAAR-mediated currents evoked by high-frequency stimulation. The CB1R-independent suppression of inhibition is synapse specific. It does not occur in CB1R containing hippocampal cholecystokinin-positive interneuron to pyramidal neuron synapses. Furthermore, in contrast to synaptic receptors, the activity of extrasynaptic GABAARs in neocortical pyramidal neurons is enhanced by cannabinoids in a CB1R-independent manner. Thus, cannabinoids directly interact differentially with synaptic and extrasynaptic GABAARs, providing a potent novel context-dependent mechanism for regulation of inhibition. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. The natural products magnolol and honokiol are positive allosteric modulators of both synaptic and extra-synaptic GABAA receptors

    PubMed Central

    Alexeev, Mikhail; Grosenbaugh, Denise K.; Mott, David D.; Fisher, Janet L.

    2012-01-01

    The National Center for Complementary and Alternative Medicine (NCCAM) estimates that nearly 40% of adults in the United States use alternative medicines, often in the form of an herbal supplement. Extracts from the tree bark of magnolia species have been used for centuries in traditional Chinese and Japanese medicines to treat a variety of neurological diseases, including anxiety, depression, and seizures. The active ingredients in the extracts have been identified as the bi-phenolic isomers magnolol and honokiol. These compounds were shown to enhance the activity of GABAA receptors, consistent with their biological effects. The GABAA receptors exhibit substantial subunit heterogeneity, which influences both their functional and pharmacological properties. We examined the activity of magnolol and honokiol at different populations of both neuronal and recombinant GABAA receptors to characterize their mechanism of action and to determine whether sensitivity to modulation was dependent upon the receptor’s subunit composition. We found that magnolol and honokiol enhanced both phasic and tonic GABAergic neurotransmission in hippocampal dentate granule neurons. In addition, all recombinant receptors examined were sensitive to modulation, regardless of the identity of the α, β, or γ subunit subtype, although the compounds showed particularly high efficacy at δ-containing receptors. This direct positive modulation of both synaptic and extra-synaptic populations of GABAA receptors suggests that supplements containing magnolol and/or honokiol would be effective anxiolytics, sedatives, and anti-convulsants. However, significant side-effects and risk of drug interactions would also be expected. PMID:22445602

  8. Taurine-induced attenuation of MPP+ neurotoxicity in vitro: a possible role for the GABA(A) subclass of GABA receptors.

    PubMed

    O'Byrne, M B; Tipton, K F

    2000-05-01

    Taurine is a sulphur-containing beta-amino acid found in high (millimolar) concentrations in excitable tissues such as brain and heart. Its suggested roles include osmoregulator, thermoregulator, neuromodulator, and potential neurotransmitter. This amino acid has also been shown to be released in large concentrations during ischaemia and excitotoxin-induced neuronal damage. Here we report a protective effect of taurine against MPP(+)-induced neurotoxicity in coronal slices from rat brain. Significant protective effects were observed at taurine concentrations of 20 and 1 mM, suggesting a potential role for taurine in cases of neuronal insult. Studies with the synthetic taurine analogues taurine phosphonate, guanidinoethane sulphonate, and trimethyltaurine suggested the observed effect to be mediated via an extracellular mechanism. The use of GABA receptor ligands muscimol and bicuculline indicated the effect to be mediated through activation of GABA(A) receptors.

  9. GABAB receptor-mediated responses in GABAergic projection neurones of rat nucleus reticularis thalami in vitro.

    PubMed

    Ulrich, D; Huguenard, J R

    1996-06-15

    1. Whole-cell voltage-clamp recordings were obtained from GABAergic neurones of rat nucleus reticularis thalami (NRT) in vitro to assess pre- and postsynaptic GABAB receptor-mediated responses. Presynaptic inhibition of GABA release was studied at terminals on local axon collaterals within NRT as well as on projection fibres in the somatosensory relay nuclei. 2. The GABAB receptor agonist (R)-baclofen (10 microM) reduced monosynaptically evoked GABAA-mediated inhibitory postsynaptic currents (IPSCs) in NRT and somatosensory relay cells to 11 and 12% of control, respectively. 3. Action potential-independent miniature IPSCs (mIPSCs) were observed in both cell types. Mean mIPSC amplitude was 20 pA in both NRT and relay cells at a holding potential of 0 mV. The mean mIPSC frequencies were 0.83 and 2.2 Hz in NRT and relay cells, respectively. Baclofen decreased mIPSP frequency by about half in each cell type without affecting amplitude. 4. Paired-burst inhibition of evoked IPSCs was studied in relay and NRT cells by applying pairs of 100 Hz stimulus bursts separated by 600 ms. The mean ratio of second to first peak IPSC amplitudes was 0.77. 5. In NRT cells baclofen induced a linear postsynaptic conductance increase of 0.82 nS with an associated reversal potential of -121 mV. A small (0.14 nS) GABAB component of the evoked IPSC was detected in only a minority of NRT cells (3 of 18). 6. All pre- and postsynaptic effects of baclofen, as well as PBI, were largely reversed by the specific GABAB receptor antagonist CGP 35348 (0.5 mM). 7. We conclude that activation of GABAB receptors in NRT leads to presynaptic autoinhibition of IPSCs in both NRT and relay cells, and to direct activation of a small linear K+ conductance. In addition our experiments suggest that reciprocal connectivity within NRT can be partially mediated by a small GABAB inhibitory event.

  10. A Residue in Loop 9 of the β2-Subunit Stabilizes the Closed State of the GABAA Receptor*

    PubMed Central

    Williams, Carrie A.; Bell, Shannon V.; Jenkins, Andrew

    2010-01-01

    In γ-aminobutyric acid type A (GABAA) receptors, the structural elements that couple ligand binding to channel opening remain poorly defined. Here, site-directed mutagenesis was used to determine if Loop 9 on the non-GABA binding site interface of the β2-subunit may be involved in GABAA receptor activation. Specifically, residues Gly170-Gln185 of the β2-subunit were mutated to alanine, co-expressed with wild-type α1- and γ2S-subunits in human embryonic kidney (HEK) 293 cells and assayed for their activation by GABA, the intravenous anesthetic propofol and the endogenous neurosteroid pregnanolone using whole cell macroscopic recordings. Three mutants, G170A, V175A, and G177A, produced 2.5-, 6.7-, and 5.6-fold increases in GABA EC50 whereas one mutant, Q185A, produced a 5.2-fold decrease in GABA EC50. None of the mutations affected the ability of propofol or pregnanolone to potentiate a submaximal GABA response, but the Q185A mutant exhibited 8.3- and 3.5-fold increases in the percent direct activation by propofol and pregnanolone, respectively. Mutant Q185A receptors also had an increased leak current that was sensitive to picrotoxin, indicating an increased gating efficiency. Further Q185E, Q185L, and Q185W substitutions revealed a strong correlation between the hydropathy of the amino acid at this position and the GABA EC50. Taken together, these results indicate that β2 Loop 9 is involved in receptor activation by GABA, propofol, and pregnanolone and that β2(Q185) participates in hydrophilic interactions that are important for stabilizing the closed state of the GABAA receptor. PMID:20007704

  11. Magnolol, a major bioactive constituent of the bark of Magnolia officinalis, induces sleep via the benzodiazepine site of GABA(A) receptor in mice.

    PubMed

    Chen, Chang-Rui; Zhou, Xu-Zhao; Luo, Yan-Jia; Huang, Zhi-Li; Urade, Yoshihiro; Qu, Wei-Min

    2012-11-01

    Magnolol (6,6',7,12-tetramethoxy-2,2'-dimethyl-1-beta-berbaman, C(18)H(18)O(2)), an active ingredient of the bark of Magnolia officinalis, has been reported to exert potent anti-epileptic effects via the GABA(A) receptor. The receptor also mediates sleep in humans and animals. The aim of this study was to determine whether magnolol could modulate sleep behaviors by recording EEG and electromyogram in mice. The results showed that magnolol administered i.p. at a dose of 5 or 25 mg/kg could significantly shorten the sleep latency, increase the amount of non-rapid eye movement (non-REM, NREM) and rapid eye movement (REM) sleep for 3 h after administration with an increase in the number of NREM and REM sleep episodes. Magnolol at doses of 5 and 25 mg/kg increased the number of bouts of wakefulness but decreased their duration. On the other hand, magnolol increased the number of state transitions from wakefulness to NREM sleep and subsequently from NREM sleep to wakefulness. Immunohistochemical study showed that magnolol increased c-Fos expression in the neurons of ventrolateral preoptic area, a sleep center in the anterior hypothalamus, and decreased c-Fos expression in the arousal tuberomammillary nucleus, which was located in the caudolateral hypothalamus. The sleep-promoting effects and changes in c-Fos induced by magnolol were reversed by flumazenil, an antagonist at the benzodiazepine site of the GABA(A) receptor. These results indicate that magnolol increased NREM and REM sleep via the GABA(A) receptor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. A Novel Bifunctional Alkylphenol Anesthetic Allows Characterization of γ-Aminobutyric Acid, Type A (GABAA), Receptor Subunit Binding Selectivity in Synaptosomes.

    PubMed

    Woll, Kellie A; Murlidaran, Sruthi; Pinch, Benika J; Hénin, Jérôme; Wang, Xiaoshi; Salari, Reza; Covarrubias, Manuel; Dailey, William P; Brannigan, Grace; Garcia, Benjamin A; Eckenhoff, Roderic G

    2016-09-23

    Propofol, an intravenous anesthetic, is a positive modulator of the GABAA receptor, but the mechanistic details, including the relevant binding sites and alternative targets, remain disputed. Here we undertook an in-depth study of alkylphenol-based anesthetic binding to synaptic membranes. We designed, synthesized, and characterized a chemically active alkylphenol anesthetic (2-((prop-2-yn-1-yloxy)methyl)-5-(3-(trifluoromethyl)-3H-diazirin-3-yl)phenol, AziPm-click (1)), for affinity-based protein profiling (ABPP) of propofol-binding proteins in their native state within mouse synaptosomes. The ABPP strategy captured ∼4% of the synaptosomal proteome, including the unbiased capture of five α or β GABAA receptor subunits. Lack of γ2 subunit capture was not due to low abundance. Consistent with this, independent molecular dynamics simulations with alchemical free energy perturbation calculations predicted selective propofol binding to interfacial sites, with higher affinities for α/β than γ-containing interfaces. The simulations indicated hydrogen bonding is a key component leading to propofol-selective binding within GABAA receptor subunit interfaces, with stable hydrogen bonds observed between propofol and α/β cavity residues but not γ cavity residues. We confirmed this by introducing a hydrogen bond-null propofol analogue as a protecting ligand for targeted-ABPP and observed a lack of GABAA receptor subunit protection. This investigation demonstrates striking interfacial GABAA receptor subunit selectivity in the native milieu, suggesting that asymmetric occupancy of heteropentameric ion channels by alkylphenol-based anesthetics is sufficient to induce modulation of activity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. A Novel Bifunctional Alkylphenol Anesthetic Allows Characterization of γ-Aminobutyric Acid, Type A (GABAA), Receptor Subunit Binding Selectivity in Synaptosomes*

    PubMed Central

    Woll, Kellie A.; Murlidaran, Sruthi; Pinch, Benika J.; Hénin, Jérôme; Wang, Xiaoshi; Salari, Reza; Covarrubias, Manuel; Dailey, William P.; Brannigan, Grace; Garcia, Benjamin A.; Eckenhoff, Roderic G.

    2016-01-01

    Propofol, an intravenous anesthetic, is a positive modulator of the GABAA receptor, but the mechanistic details, including the relevant binding sites and alternative targets, remain disputed. Here we undertook an in-depth study of alkylphenol-based anesthetic binding to synaptic membranes. We designed, synthesized, and characterized a chemically active alkylphenol anesthetic (2-((prop-2-yn-1-yloxy)methyl)-5-(3-(trifluoromethyl)-3H-diazirin-3-yl)phenol, AziPm-click (1)), for affinity-based protein profiling (ABPP) of propofol-binding proteins in their native state within mouse synaptosomes. The ABPP strategy captured ∼4% of the synaptosomal proteome, including the unbiased capture of five α or β GABAA receptor subunits. Lack of γ2 subunit capture was not due to low abundance. Consistent with this, independent molecular dynamics simulations with alchemical free energy perturbation calculations predicted selective propofol binding to interfacial sites, with higher affinities for α/β than γ-containing interfaces. The simulations indicated hydrogen bonding is a key component leading to propofol-selective binding within GABAA receptor subunit interfaces, with stable hydrogen bonds observed between propofol and α/β cavity residues but not γ cavity residues. We confirmed this by introducing a hydrogen bond-null propofol analogue as a protecting ligand for targeted-ABPP and observed a lack of GABAA receptor subunit protection. This investigation demonstrates striking interfacial GABAA receptor subunit selectivity in the native milieu, suggesting that asymmetric occupancy of heteropentameric ion channels by alkylphenol-based anesthetics is sufficient to induce modulation of activity. PMID:27462076

  14. Antagonism of GABA-B but not GABA-A receptors in the VTA prevents stress- and intra-VTA CRF-induced reinstatement of extinguished cocaine seeking in rats.

    PubMed

    Blacktop, Jordan M; Vranjkovic, Oliver; Mayer, Matthieu; Van Hoof, Matthew; Baker, David A; Mantsch, John R

    2016-03-01

    Stress-induced reinstatement of cocaine seeking requires corticotropin releasing factor (CRF) actions in the ventral tegmental area (VTA). However the mechanisms through which CRF regulates VTA function to promote cocaine use are not fully understood. Here we examined the role of GABAergic neurotransmission in the VTA mediated by GABA-A or GABA-B receptors in the reinstatement of extinguished cocaine seeking by a stressor, uncontrollable intermittent footshock, or bilateral intra-VTA administration of CRF. Rats underwent repeated daily cocaine self-administration (1.0 mg/kg/ing; 14 × 6 h/day) and extinction and were tested for reinstatement in response to footshock (0.5 mA, 0.5" duration, average every 40 s; range 10-70 s) or intra-VTA CRF delivery (500 ng/side) following intra-VTA pretreatment with the GABA-A antagonist, bicuculline, the GABA-B antagonist, 2-hydroxysaclofen or vehicle. Intra-VTA bicuculline (1, 10 or 20 ng/side) failed to block footshock- or CRF-induced cocaine seeking at either dose tested. By contrast, 2-hydroxysaclofen (0.2 or 2 μg/side) prevented reinstatement by both footshock and intra-VTA CRF at a concentration that failed to attenuate food-reinforced lever pressing (45 mg sucrose-sweetened pellets; FR4 schedule) in a separate group of rats. These data suggest that GABA-B receptor-dependent CRF actions in the VTA mediate stress-induced cocaine seeking and that GABA-B receptor antagonists may have utility for the management of stress-induced relapse in cocaine addicts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Laminar distribution of GABAA- and glycine-receptor mediated tonic inhibition in the dorsal horn of the rat lumbar spinal cord: effects of picrotoxin and strychnine on expression of Fos-like immunoreactivity.

    PubMed

    Cronin, John N; Bradbury, Elizabeth J; Lidierth, Malcolm

    2004-11-01

    Inhibitory mechanisms are essential in suppressing the development of allodynia and hyperalgesia in the normal animal and there is evidence that loss of inhibition can lead to the development of neuropathic pain. We used Fos expression to map the distribution of tonically inhibited cells in the healthy rat lumbar spinal cord. In a control group, Fos-like immunoreactive (Fos-LI) cells were rare, averaging 7.5+/-2.2 cells (mean+/-SEM; N=13 sections) per 20 microm thick section of dorsal horn. This rose to 103+/-11 (mean+/-SEM; N=20) in picrotoxin-treated rats and to 88+/-11 (mean+/-SEM; N=18) in strychnine-treated rats. These changes were significant (ANOVA; P<0.001). There were marked regional variations in the distribution of Fos-LI cells between picrotoxin- and strychnine-treated animals. Picrotoxin induced a significant increase in the number of Fos-LI cells throughout the dorsal horn (lamina I-VI) while strychnine significantly elevated Fos-like immunoreactivity only in deep laminae (III-VI). For both picrotoxin and strychnine, the increase in Fos-like immunoreactivity peaked in lamina V (at 3579+/-319 and 3649+/-375% of control, respectively; mean+/-SEM) but for picrotoxin an additional peak was observed in the outer part of lamina II (1959+/-196%). Intrathecal administration of both GABAA and glycine receptor antagonists has been shown elsewhere to induce tactile allodynia. The present data suggest that this allodynia could arise due to blockade of tonic GABAA and glycine-receptor mediated inhibition in the deep dorsal horn. GABAA antagonists also induce hypersensitivity to noxious inputs. The blockade of tonic inhibition in the superficial dorsal horn shown here may underlie this hyperalgesia.

  16. No association of the GABAA receptor genes on chromosome 5 with alcoholism in the collaborative study on the genetics of alcoholism sample.

    PubMed

    Dick, Danielle M; Edenberg, Howard J; Xuei, Xiaoling; Goate, Alison; Hesselbrock, Victor; Schuckit, Marc; Crowe, Raymond; Foroud, Tatiana

    2005-01-05

    A substantial body of literature suggests that gamma-aminobutyric acid (GABA) may be involved in the neurochemical pathways contributing to alcohol use and related disorders. Chromosome 5 contains a cluster of GABA(A) receptor genes, GABRA1, GABRA6, GABRB2, and GABRG2, which have been among the most extensively studied in relation to alcohol use. These studies have yielded mixed results. Using data from large, multiplex alcoholic families collected as part of the Collaborative Study on the Genetics of Alcoholism (COGA), we sought to provide more conclusive evidence regarding the role of the GABA(A) receptor genes on chromosome 5. Multiple single nucleotide polymorphisms (SNPs) were tested in each of the four chromosome 5q GABA(A) receptor genes, and we conducted both classic trio-based association analyzes and extended pedigree analyzes. We found no consistent evidence of association with alcohol dependence or alcohol dependence comorbid with antisocial personality disorder (ASPD) for any of the regions tested in the chromosome 5 GABA(A) receptor genes. These analyses suggest that the GABA(A) receptor genes on chromosome 5 do not play a strong role in alcohol dependence. Future studies are planned to test whether these genes are more important in influencing behavioral endophenotypes related to the risk of alcohol dependence. Copyright 2004 Wiley-Liss, Inc.

  17. RNA editing of the GABAA receptor α3 subunit alters the functional properties of recombinant receptors

    PubMed Central

    Nimmich, Mitchell L.; Heidelberg, Laura S.; Fisher, Janet L.

    2009-01-01

    RNA editing provides a post-transcriptional mechanism to increase structural heterogeneity of gene products. Recently, the α3 subunit of the GABAA receptors has been shown to undergo RNA editing. As a result, a highly conserved isoleucine residue in the third transmembrane domain is replaced with a methionine. To determine the effect of this structural change on receptor function, we compared the GABA sensitivity, pharmacological properties and macroscopic kinetics of recombinant receptors containing either the edited or unedited forms of the α3 subunit along with β3 and γ2L. Editing substantially altered the GABA sensitivity and deactivation rate of the receptors, with the unedited form showing a lower GABA EC50 and slower decay. Comparable effects were observed with a mutation at the homologous location in the α1 subunit, suggesting a common role for this site in regulation of channel gating. Except for the response to GABA, the pharmacological properties of the receptor were unaffected by editing, with similar enhancement by a variety of modulators. Since RNA editing of the α3 subunit increases through development, our findings suggest that GABAergic neurotransmission may be more effective early in development, with greater GABA sensitivity and slower decay rates conferred by the unedited α3 subunit. PMID:19367790

  18. Recruitment of GABA(A) receptors and fearfulness in chicks: modulation by systemic insulin and/or epinephrine.

    PubMed

    Cid, Mariana Paula; Toledo, Carolina Maribel; Salvatierra, Nancy Alicia

    2013-02-01

    One-day-old chicks were individually assessed on their latency to peck pebbles, and categorized as low latency (LL) or high latency (HL) according to fear. Interactions between acute stress and systemic insulin and epinephrine on GABA(A) receptor density in the forebrain were studied. At 10 days of life, LL and HL chicks were intraperitoneally injected with insulin, epinephrine or saline, and immediately after stressed by partial water immersion for 15 min and killed by decapitation. Forebrains were dissected and the GABA(A) receptor density was measured ex vivo by the (3)[H]-flunitrazepam binding assay in synaptosomes. In non-stressed chicks, insulin (non-hypoglycemic dose) at 2.50 IU/kg of body weight incremented the Bmax by 40.53% in the HL chicks compared to saline group whereas no significant differences were observed between individuals in the LL subpopulation. Additionally, insulin increased the Bmax (23.48%) in the HL group with respect to the LL ones, indicating that the insulin responses were different according to the anxiety of each category. Epinephrine administration (0.25 and 0.50mg/kg) incremented the Bmax in non-stressed chicks, in the LL group by about 37% and 33%, respectively, compared to ones injected with saline. In the stressed chicks, 0.25mg/kg bw epinephrine increased the Bmax significantly in the HL group by about 24% compared to saline, suggesting that the effect of epinephrine was only observed in the HL group under acute stress conditions. Similarly, the same epinephrine doses co-administered with insulin increased the receptor density in both subpopulations and also showed that the highest dose of epinephrine did not further increase the maximum density of GABA(A)R in HL chicks. These results suggest that systemic epinephrine, perhaps by evoking central norepinephrine release, modulated the increase in the forebrain GABA(A) receptor recruitment induced by both insulin and stress in different ways depending on the subpopulation

  19. Using drug combinations to assess potential contributions of non-GABAA receptors in the discriminative stimulus effects of the neuroactive steroid pregnanolone in rats.

    PubMed

    Eppolito, Amy K; Kodeih, Hanna R; Gerak, Lisa R

    2014-10-01

    Neuroactive steroids are increasingly implicated in the development of depression and anxiety and have been suggested as possible treatments for these disorders. While neuroactive steroids, such as pregnanolone, act primarily at γ-aminobutyric acidA (GABAA) receptors, other mechanisms might contribute to their behavioral effects and could increase their clinical effectiveness, as compared with drugs acting exclusively at GABAA receptors (e.g., benzodiazepines). The current study examined the role of non-GABAA receptors, including N-methyl-d-aspartate (NMDA) and serotonin3 (5-HT3) receptors, in the discriminative stimulus effects of pregnanolone. Separate groups of rats discriminated either 3.2mg/kg pregnanolone from vehicle or 0.32mg/kg of the benzodiazepine midazolam from vehicle while responding under a fixed-ratio 10 schedule for food pellets. When administered alone in both groups, pregnanolone and midazolam produced ≥80% drug-lever responding, the NMDA receptor antagonists dizocilpine and phencyclidine produced ≥60 and ≥30% drug-lever responding, respectively, and the 5-HT3 receptor agonist 1-(m-chlorophenyl)-biguanide (CPBG) and morphine produced <20% drug-lever responding up to doses that markedly decreased response rates. When studied together, neither dizocilpine, phencyclidine, CPBG nor morphine significantly altered the midazolam dose-effect curve in either group. Given that CPBG is without effect, it is unlikely that 5-HT3 receptors contribute substantially to the discriminative stimulus effects of pregnanolone. Similarities across groups in effects of dizocilpine and phencyclidine suggest that NMDA receptors do not differentially contribute to the effects of pregnanolone. Thus, NMDA and 5-HT3 receptors are not involved in the discriminative stimulus effects of pregnanolone. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. CO2-induced ocean acidification increases anxiety in Rockfish via alteration of GABAA receptor functioning

    PubMed Central

    Hamilton, Trevor James; Holcombe, Adam; Tresguerres, Martin

    2014-01-01

    The average surface pH of the ocean is dropping at a rapid rate due to the dissolution of anthropogenic CO2, raising concerns for marine life. Additionally, some coastal areas periodically experience upwelling of CO2-enriched water with reduced pH. Previous research has demonstrated ocean acidification (OA)-induced changes in behavioural and sensory systems including olfaction, which is due to altered function of neural gamma-aminobutyric acid type A (GABAA) receptors. Here, we used a camera-based tracking software system to examine whether OA-dependent changes in GABAA receptors affect anxiety in juvenile Californian rockfish (Sebastes diploproa). Anxiety was estimated using behavioural tests that measure light/dark preference (scototaxis) and proximity to an object. After one week in OA conditions projected for the next century in the California shore (1125 ± 100 µatm, pH 7.75), anxiety was significantly increased relative to controls (483 ± 40 µatm CO2, pH 8.1). The GABAA-receptor agonist muscimol, but not the antagonist gabazine, caused a significant increase in anxiety consistent with altered Cl− flux in OA-exposed fish. OA-exposed fish remained more anxious even after 7 days back in control seawater; however, they resumed their normal behaviour by day 12. These results show that OA could severely alter rockfish behaviour; however, this effect is reversible. PMID:24285203

  1. CO2-induced ocean acidification increases anxiety in rockfish via alteration of GABAA receptor functioning.

    PubMed

    Hamilton, Trevor James; Holcombe, Adam; Tresguerres, Martin

    2014-01-22

    The average surface pH of the ocean is dropping at a rapid rate due to the dissolution of anthropogenic CO2, raising concerns for marine life. Additionally, some coastal areas periodically experience upwelling of CO2-enriched water with reduced pH. Previous research has demonstrated ocean acidification (OA)-induced changes in behavioural and sensory systems including olfaction, which is due to altered function of neural gamma-aminobutyric acid type A (GABAA) receptors. Here, we used a camera-based tracking software system to examine whether OA-dependent changes in GABAA receptors affect anxiety in juvenile Californian rockfish (Sebastes diploproa). Anxiety was estimated using behavioural tests that measure light/dark preference (scototaxis) and proximity to an object. After one week in OA conditions projected for the next century in the California shore (1125 ± 100 µatm, pH 7.75), anxiety was significantly increased relative to controls (483 ± 40 µatm CO2, pH 8.1). The GABAA-receptor agonist muscimol, but not the antagonist gabazine, caused a significant increase in anxiety consistent with altered Cl(-) flux in OA-exposed fish. OA-exposed fish remained more anxious even after 7 days back in control seawater; however, they resumed their normal behaviour by day 12. These results show that OA could severely alter rockfish behaviour; however, this effect is reversible.

  2. Mechanisms Underlying Tolerance after Long-Term Benzodiazepine Use: A Future for Subtype-Selective GABAA Receptor Modulators?

    PubMed Central

    Vinkers, Christiaan H.; Olivier, Berend

    2012-01-01

    Despite decades of basic and clinical research, our understanding of how benzodiazepines tend to lose their efficacy over time (tolerance) is at least incomplete. In appears that tolerance develops relatively quickly for the sedative and anticonvulsant actions of benzodiazepines, whereas tolerance to anxiolytic and amnesic effects probably does not develop at all. In light of this evidence, we review the current evidence for the neuroadaptive mechanisms underlying benzodiazepine tolerance, including changes of (i) the GABAA receptor (subunit expression and receptor coupling), (ii) intracellular changes stemming from transcriptional and neurotrophic factors, (iii) ionotropic glutamate receptors, (iv) other neurotransmitters (serotonin, dopamine, and acetylcholine systems), and (v) the neurosteroid system. From the large variance in the studies, it appears that either different (simultaneous) tolerance mechanisms occur depending on the benzodiazepine effect, or that the tolerance-inducing mechanism depends on the activated GABAA receptor subtypes. Importantly, there is no convincing evidence that tolerance occurs with α subunit subtype-selective compounds acting at the benzodiazepine site. PMID:22536226

  3. GABA-A Receptor Modulation and Anticonvulsant, Anxiolytic, and Antidepressant Activities of Constituents from Artemisia indica Linn

    PubMed Central

    Khan, Imran; Karim, Nasiara; Ahmad, Waqar; Abdelhalim, Abeer; Chebib, Mary

    2016-01-01

    Artemisia indica, also known as “Mugwort,” has been widely used in traditional medicines. However, few studies have investigated the effects of nonvolatile components of Artemisia indica on central nervous system's function. Fractionation of Artemisia indica led to the isolation of carnosol, ursolic acid, and oleanolic acid which were evaluated for their effects on GABA-A receptors in electrophysiological studies in Xenopus oocytes and were subsequently investigated in mouse models of acute toxicity, convulsions (pentylenetetrazole induced seizures), depression (tail suspension and forced swim tests), and anxiety (elevated plus maze and light/dark box paradigms). Carnosol, ursolic acid, and oleanolic acid were found to be positive modulators of α1β2γ2L GABA-A receptors and the modulation was antagonized by flumazenil. Carnosol, ursolic acid, and oleanolic acid were found to be devoid of any signs of acute toxicity (50–200 mg/kg) but elicited anticonvulsant, antidepressant, and anxiolytic activities. Thus carnosol, ursolic acid, and oleanolic acid demonstrated CNS activity in mouse models of anticonvulsant, antidepressant, and anxiolysis. The anxiolytic activity of all three compounds was ameliorated by flumazenil suggesting a mode of action via the benzodiazepine binding site of GABA-A receptors. PMID:27143980

  4. Etomidate blocks LTP and impairs learning but does not enhance tonic inhibition in mice carrying the N265M point mutation in the beta3 subunit of the GABAA receptor

    PubMed Central

    Oh, I; Rau, V; Lor, C; Laha, KT; Jurd, R; Rudolph, U; Eger, EI; Pearce, RA

    2015-01-01

    Enhancement of tonic inhibition mediated by extrasynaptic α5-subunit containing GABAA receptors (GABAARs) has been proposed as the mechanism by which a variety of anesthetics, including the general anesthetic etomidate, impair learning and memory. Since α5 subunits preferentially partner with β3 subunits, we tested the hypothesis that etomidate acts through β3-subunit containing GABAARs to enhance tonic inhibition, block LTP, and impair memory. We measured the effects of etomidate in wild type mice and in mice carrying a point mutation in the GABAAR β3-subunit (β3-N265M) that renders these receptors insensitive to etomidate. Etomidate enhanced tonic inhibition in CA1 pyramidal cells of the hippocampus in wild type but not in mutant mice, demonstrating that tonic inhibition is mediated by β3-subunit containing GABAARs. However, despite its inability to enhance tonic inhibition, etomidate did block LTP in brain slices from mutant mice as well as in those from wild type mice. Etomidate also impaired fear conditioning to context, with no differences between genotypes. In studies of recombinant receptors expressed in HEK293 cells, α5β1γ2L GABAARs were insensitive to amnestic concentrations of etomidate (1 [.proportional]M and below), whereas α5β2γ2L and α5β3γ2L GABAARs were enhanced. We conclude that etomidate enhances tonic inhibition in pyramidal cells through its action on α5β3-containing GABAA receptors, but blocks LTP and impairs learning by other means - most likely by modulating α5β2-containing GABAA receptors. The critical anesthetic targets underlying amnesia might include other forms of inhibition imposed on pyramidal neurons (e.g. slow phasic inhibition), or inhibitory processes on non-pyramidal cells (e.g. interneurons). PMID:25680234

  5. HPLC-based activity profiling for GABAA receptor modulators from the traditional Chinese herbal drug Kushen (Sophora flavescens root)

    PubMed Central

    2011-01-01

    An EtOAc extract from the roots of Sophora flavescens (Kushen) potentiated γ -aminobutyric acid (GABA)-induced chloride influx in Xenopus oocytes transiently expressing GABAA receptors with subunit composition, α1β2γ2S. HPLC-based activity profiling of the extract led to the identification of 8-lavandulyl flavonoids, kushenol I, sophoraflavanone G, (–)-kurarinone, and kuraridine as GABAA receptor modulators. In addition, a series of inactive structurally related flavonoids were characterized. Among these, kushenol Y (4) was identified as a new natural product. The 8-lavandulyl flavonoids are first representatives of a novel scaffold for the target. PMID:21207144

  6. Insulin-Independent GABAA Receptor-Mediated Response in the Barrel Cortex of Mice with Impaired Met Activity.

    PubMed

    Lo, Fu-Sun; Erzurumlu, Reha S; Powell, Elizabeth M

    2016-03-30

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder caused by genetic variants, susceptibility alleles, and environmental perturbations. The autism associated geneMETtyrosine kinase has been implicated in many behavioral domains and endophenotypes of autism, including abnormal neural signaling in human sensory cortex. We investigated somatosensory thalamocortical synaptic communication in mice deficient in Met activity in cortical excitatory neurons to gain insights into aberrant somatosensation characteristic of ASD. The ratio of excitation to inhibition is dramatically increased due to decreased postsynaptic GABAAreceptor-mediated inhibition in the trigeminal thalamocortical pathway of mice lacking active Met in the cerebral cortex. Furthermore, in contrast to wild-type mice, insulin failed to increase GABAAreceptor-mediated response in the barrel cortex of mice with compromised Met signaling. Thus, lacking insulin effects may be a risk factor in ASD pathogenesis. A proposed common cause of neurodevelopmental disorders is an imbalance in excitatory neural transmission, provided by the glutamatergic neurons, and the inhibitory signals from the GABAergic interneurons. Many genes associated with autism spectrum disorders impair synaptic transmission in the expected cell type. Previously, inactivation of the autism-associated Met tyrosine kinase receptor in GABAergic interneurons led to decreased inhibition. In thus report, decreased Met signaling in glutamatergic neurons had no effect on excitation, but decimated inhibition. Further experiments indicate that loss of Met activity downregulates GABAAreceptors on glutamatergic neurons in an insulin independent manner. These data provide a new mechanism for the loss of inhibition and subsequent abnormal excitation/inhibition balance and potential molecular candidates for treatment or prevention. Copyright © 2016 the authors 0270-6474/16/363691-07$15.00/0.

  7. Removal of GABAA Receptor γ2 Subunits from Parvalbumin Neurons Causes Wide-Ranging Behavioral Alterations

    PubMed Central

    Leppä, Elli; Linden, Anni-Maija; Vekovischeva, Olga Y.; Swinny, Jerome D.; Rantanen, Ville; Toppila, Esko; Höger, Harald; Sieghart, Werner; Wulff, Peer; Wisden, William; Korpi, Esa R.

    2011-01-01

    We investigated the behavioral significance of fast synaptic inhibition by αβγ2-type GABAA receptors on parvalbumin (Pv) cells. The GABAA receptor γ2 subunit gene was selectively inactivated in Pv-positive neurons by Cre/loxP recombination. The resulting Pv-Δγ2 mice were relatively healthy in the first postnatal weeks; but then as Cre started to be expressed, the mice progressively developed wide-ranging phenotypic alterations including low body weight, motor deficits and tremor, decreased anxiety levels, decreased pain sensitivity and deficient prepulse inhibition of the acoustic startle reflex and impaired spatial learning. Nevertheless, the deletion was not lethal, and mice did not show increased mortality even after one year. Autoradiography with t-butylbicyclophosphoro[35S]thionate suggested an increased amount of GABAA receptors with only α and β subunits in central nervous system regions that contained high levels of parvalbumin neurons. Using BAC-transgenesis, we reduced some of the Pv-Δγ2 phenotype by selectively re-expressing the wild-type γ2 subunit back into some Pv cells (reticular thalamic neurons and cerebellar Pv-positive neurons). This produced less severe impairments of motor skills and spatial learning compared with Pv-Δγ2 mice, but all other deficits remained. Our results reveal the widespread significance of fast GABAergic inhibition onto Pv-positive neurons for diverse behavioral modalities, such as motor coordination, sensorimotor integration, emotional behavior and nociception. PMID:21912668

  8. Influence of age, body temperature, GABAA receptor inhibition and caffeine on the Hering-Breuer inflation reflex in unanesthetized rat pups

    PubMed Central

    Arnal, Ashley V.; Gore, Julie L.; Rudkin, Alison; Bartlett, Donald; Leiter, J.C.

    2013-01-01

    We measured the duration of apnea induced by sustained end-inspiratory lung inflation (the Hering Breuer Reflex; HBR) in unanesthetized infant rat pups aged 4 days (P4) to P20 at body temperatures of 32°C and 36°C. The expiratory prolongation elicited by the HBR lasted longer in the younger pups and lasted longer at the higher body temperature. Blockade of adenosine receptors by caffeine following injection into the cisterna magna (ICM) significantly blunted the thermal prolongation of the HBR. Blockade of gama-amino-butyric acid A (GABAA) receptors by pre-treatment with ICM bicuculline had no effect on the HBR duration at either body temperature. To test the hypothesis that developmental maturation of GABAergic inhibition of breathing was modifying the response to bicuculline, we pretreated rat pups with systemically administered bumetanide to lower the intracellular chloride concentration, and repeated the bicuculline studies. Bicuculline still did not alter the HBR at either temperature after bumetanide treatment. We administered PSB-36, a selective adenosine A1 receptor antagonist, and this drug treatment did not modify the HBR. We conclude that caffeine blunts the thermal prolongation of the HBR, probably by blocking adenosine A2a receptors. The thermally-sensitive adenosinergic prolongation of the HBR in these intact animals does not seem to depend on GABAA receptors PMID:23318703

  9. Influence of age, body temperature, GABAA receptor inhibition and caffeine on the Hering-Breuer inflation reflex in unanesthetized rat pups.

    PubMed

    Arnal, Ashley V; Gore, Julie L; Rudkin, Alison; Bartlett, Donald; Leiter, J C

    2013-03-01

    We measured the duration of apnea induced by sustained end-inspiratory lung inflation (the Hering Breuer Reflex, HBR) in unanesthetized infant rat pups aged 4 days (P4) to P20 at body temperatures of 32°C and 36°C. The expiratory prolongation elicited by the HBR lasted longer in the younger pups and lasted longer at the higher body temperature. Blockade of adenosine receptors by caffeine following injection into the cisterna magna (ICM) significantly blunted the thermal prolongation of the HBR. Blockade of gama-amino-butyric acid A (GABAA) receptors by pre-treatment with ICM bicuculline had no effect on the HBR duration at either body temperature. To test the hypothesis that developmental maturation of GABAergic inhibition of breathing was modifying the response to bicuculline, we pretreated rat pups with systemically administered bumetanide to lower the intracellular chloride concentration, and repeated the bicuculline studies. Bicuculline still did not alter the HBR at either temperature after bumetanide treatment. We administered PSB-36, a selective adenosine A1 receptor antagonist, and this drug treatment did not modify the HBR. We conclude that caffeine blunts the thermal prolongation of the HBR, probably by blocking adenosine A2a receptors. The thermally sensitive adenosinergic prolongation of the HBR in these intact animals does not seem to depend on GABAA receptors. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Activation of GABA-A receptors during postnatal brain development increases anxiety- and depression-related behaviors in a time- and dose-dependent manner in adult mice.

    PubMed

    Salari, Ali-Akbar; Bakhtiari, Amir; Homberg, Judith R

    2015-08-01

    Disturbances of the gamma-amino butyric acid-ergic (GABAergic) system during postnatal development can have long-lasting consequences for later life behavior, like the individual's response to stress. However, it is unclear which postnatal windows of sensitivity to GABA-ergic modulations are associated with what later-life behavioral outcomes. Therefore, we sought to determine whether neonatal activation of the GABA-A receptor during two postnatal periods, an early window (postnatal day 3-5) and a late window (postnatal day 14-16), can affect anxiety- and depression-related behaviors in male mice in later life. To this end, mice were treated with either saline or muscimol (50, 100, 200, 300 and 500μg/kg) during the early and late postnatal periods. An additional group of mice was treated with the GABA-A receptor antagonist bicuculline+muscimol. When grown to adulthood male mice were exposed to behavioral tests to measure anxiety- and depression-related behaviors. Baseline and stress-induced corticosterone (CORT) levels were also measured. The results indicate that early postnatal and to a lesser extent later postnatal exposure to the GABA-A receptor agonist muscimol increased anxiety-like behavior and stress-induced CORT levels in adults. Moreover, the early postnatal treatment with muscimol increased depression-like behavior with increasing baseline CORT levels. The anxiogenic and depression-like later-life consequences could be antagonized by bicuculline. Our findings suggest that GABA-A receptor signaling during early-life can influence anxiety- and depression-related behaviors in a time- and dose-dependent manner in later life. Our findings help to increase insight in the developmental mechanisms contributing to stress-related disorders. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  11. Differential effects of chronic lorazepam and alprazolam on benzodiazepine binding and GABAA-receptor function.

    PubMed Central

    Galpern, W. R.; Miller, L. G.; Greenblatt, D. J.; Shader, R. I.

    1990-01-01

    1. Chronic benzodiazepine administration has been associated with tolerance and with downregulation of gamma-aminobutyric acidA (GABAA)-receptor binding and function. However, effects of individual benzodiazepines on brain regions have varied. 2. To compare the effects of chronic lorazepam and alprazolam, we have administered these drugs to mice for 1 and 7 days (2 mg kg-1 day-1) and determined benzodiazepine receptor binding in vivo with and without administration of CL 218,872, 25 mg kg-1 i.p., and GABA-dependent chloride uptake in 3 brain regions at these time points. 3. Benzodiazepine binding was decreased in the cortex and hippocampus at day 7 compared to day 1 of lorazepam, with an increase in CL 218,872-resistant (Type 2) sites in both regions. Maximal GABA-dependent chloride uptake was also decreased in the cortex and hippocampus at day 7. 4. Binding was decreased only in the cortex after 7 days of alprazolam, with no significant change in Type 2 binding. Maximal GABA-dependent chloride uptake was also decreased only in the cortex. 5. These data suggest that the effects of chronic benzodiazepine administration on the GABAA-receptor may be both region-specific and receptor subtype-specific. PMID:1964820

  12. Structural determinants for antagonist pharmacology that distinguish the rho1 GABAC receptor from GABAA receptors.

    PubMed

    Zhang, Jianliang; Xue, Fenqin; Chang, Yongchang

    2008-10-01

    GABA receptor (GABAR) types C (GABACR) and A (GABAAR) are both GABA-gated chloride channels that are distinguished by their distinct competitive antagonist properties. The structural mechanism underlying these distinct properties is not well understood. In this study, using previously identified binding residues as a guide, we made individual or combined mutations of nine binding residues in the rho1 GABACR subunit to their counterparts in the alpha1beta2gamma2 GABAAR or reverse mutations in alpha1 or beta2 subunits. The mutants were expressed in Xenopus laevis oocytes and tested for sensitivities of GABA-induced currents to the GABAA and GABAC receptor antagonists. The results revealed that bicuculline insensitivity of the rho1 GABACR was mainly determined by Tyr106, Phe138 and Phe240 residues. Gabazine insensitivity of the rho1 GABACR was highly dependent on Tyr102, Tyr106, and Phe138. The sensitivity of the rho1 GABACR to 3-aminopropyl-phosphonic acid and its analog 3-aminopropyl-(methyl)phosphinic acid mainly depended on residues Tyr102, Val140, FYS240-242, and Phe138. Thus, the residues Tyr102, Tyr106, Phe138, and Phe240 in the rho1 GABACR are major determinants for its antagonist properties distinct from those in the GABAAR. In addition, Val140 in the GABACR contributes to 3-APA binding. In conclusion, we have identified the key structural elements underlying distinct antagonist properties for the GABACR. The mechanistic insights were further extended and discussed in the context of antagonists docking to the homology models of GABAA or GABAC receptors.

  13. The anticonvulsant stiripentol acts directly on the GABAA receptor as a positive allosteric modulator

    PubMed Central

    Fisher, Janet L.

    2009-01-01

    SUMMARY Stiripentol(STP) has been used as co-therapy for treatment of epilepsy for many years. Its mechanism of action has long been considered to be indirect, as it inhibits the enzymes responsible for metabolism of other anticonvulsant agents. However, a recent report suggested that STP might also act at the neuronal level, increasing inhibitory GABAergic neurotransmission. We examined the effect of STP on the functional properties of recombinant GABAA receptors (GABARs) and found that it was a positive allosteric modulator of these ion channels. Its activity showed some dependence on subunit composition, with greater potentiation of α3-containing receptors and reduced potentiation when the β1 or ε subunits were present. STP caused a leftward shift in the GABA concentration-response relationship, but did not increase the peak response of the receptors to a maximal GABA concentration. Although STP shares some functional characteristics with the neurosteroids, its activity was not inhibited by a neurosteroid site antagonist and was unaffected by a mutation in the α3 subunit that reduced positive modulation by neurosteroids. The differential effect of STP on β1- and β2/β3-containing receptors was not altered by mutations within the second transmembrane domain that affect modulation by loreclezole. These findings suggest that STP acts as a direct allosteric modulator of the GABAR at a site distinct from many commonly used anti-convulsant, sedative and anxiolytic drugs. Its higher activity at α3-containing receptors as well as its activity at δ-containing receptors may provide a unique opportunity to target selected populations of GABARs. PMID:18585399

  14. Neurosteroid Modulators of GABAA Receptors Differentially Modulate Ethanol Intake Patterns in Male C57BL/6J Mice

    PubMed Central

    Ford, Matthew M.; Nickel, Jeffrey D.; Phillips, Tamara J.; Finn, Deborah A.

    2006-01-01

    Background Allopregnanolone (ALLO) and structurally related endogenous neurosteroids are potent modulators of GABAA receptor function at physiologically relevant concentrations. Accumulating evidence implicates a modulatory role for ALLO in behavioral processes underlying ethanol self-administration, discrimination and reinstatement. The purpose of this study was to evaluate the impact of exogenous neurosteroid challenges with the agonist ALLO and the partial agonist/antagonist epipregnanolone (EPI) on the microarchitecture of ethanol drinking patterns. Methods Male C57BL/6J mice were initiated to consume an unsweetened 10% v/v ethanol solution (10E) by a saccharin fading procedure during daily 2-hour limited access sessions beginning 1 hour after dark phase onset. Cumulative lick responses were recorded for 10E and water using lickometer circuits. After establishing 10E intake baselines, mice were habituated to vehicle injection (VEH; 20% w/v β-cyclodextrin; i.p.), and then were treated with either VEH or neurosteroid immediately prior to the drinking session. Each mouse received a series of ALLO doses (3.2, 10, 17 and 24 mg/kg) alone and EPI doses (0.15, 1, 3 and 10 mg/kg) alone in a counterbalanced within-group design. Results The GABAA receptor positive modulator, ALLO, dose-dependently modulated overall ethanol intake throughout the 2-hr session with the 3.2 mg/kg dose eliciting a significant increase whereas the 24 mg/kg dose produced a significant suppression of ethanol intake versus vehicle pretreatment. ALLO-evoked alterations in intake corresponded with a significant, dose-dependent alterations in bout frequency and inter-bout interval. ALLO also elicited robust, dose-dependent elevations in 10E licks during the initial 5-minutes of access, but subsequently resulted in a dose-dependent suppression of 10E licks during session minutes 20–80. In contrast, the partial agonist/antagonist neurosteroid, EPI, exhibited no influence on any consumption parameter

  15. Dose-dependent EEG effects of zolpidem provide evidence for GABA(A) receptor subtype selectivity in vivo.

    PubMed

    Visser, S A G; Wolters, F L C; van der Graaf, P H; Peletier, L A; Danhof, M

    2003-03-01

    Zolpidem is a nonbenzodiazepine GABA(A) receptor modulator that binds in vitro with high affinity to GABA(A) receptors expressing alpha(1) subunits but with relatively low affinity to receptors expressing alpha(2), alpha(3), and alpha(5) subunits. In the present study, it was investigated whether this subtype selectivity could be detected and quantified in vivo. Three doses (1.25, 5, and 25 mg) of zolpidem were administered to rats in an intravenous infusion over 5 min. The time course of the plasma concentrations was determined in conjunction with the change in the beta-frequency range of the EEG as pharmacodynamic endpoint. The concentration-effect relationship of the three doses showed a dose-dependent maximum effect and a dose-dependent potency. The data were analyzed for one- or two-site binding using two pharmacodynamic models based on 1) the descriptive model and 2) a novel mechanism-based pharmacokinetic/pharmacodynamic (PK/PD) model for GABA(A) receptor modulators that aims to separates drug- and system-specific properties, thereby allowing the estimation of in vivo affinity and efficacy. The application of two-site models significantly improved the fits compared with one-site models. Furthermore, in contrast to the descriptive model, the mechanism-based PK/PD model yielded dose-independent estimates for affinity (97 +/- 40 and 33,100 +/- 14,800 ng x ml(-1)). In conclusion, the mechanism-based PK/PD model is able to describe and explain the observed dose-dependent EEG effects of zolpidem and suggests the subtype selectivity of zolpidem in vivo.

  16. Population patch-clamp electrophysiology analysis of recombinant GABAA alpha1beta3gamma2 channels expressed in HEK-293 cells.

    PubMed

    Hollands, Emma C; Dale, Tim J; Baxter, Andrew W; Meadows, Helen J; Powell, Andrew J; Clare, Jeff J; Trezise, Derek J

    2009-08-01

    Gamma-amino butyric acid (GABA)-activated Cl- channels are critical mediators of inhibitory postsynaptic potentials in the CNS. To date, rational design efforts to identify potent and selective GABA(A) subtype ligands have been hampered by the absence of suitable high-throughput screening approaches. The authors describe 384-well population patch-clamp (PPC) planar array electrophysiology methods for the study of GABA(A) receptor pharmacology. In HEK293 cells stably expressing human alpha1beta3gamma2 GABA(A) channels, GABA evoked outward currents at 0 mV of 1.05 +/- 0.08 nA, measured 8 s post GABA addition. The I(GABA) was linear and reversed close to the theoretical E(Cl) (-56 mV). Concentration-response curve analysis yielded a mean pEC(50) value of 5.4 and Hill slope of 1.5, and for a series of agonists, the rank order of potency was muscimol > GABA > isoguvacine. A range of known positive modulators, including diazepam and pentobarbital, produced concentration-dependent augmentation of the GABA EC( 20) response (1 microM). The competitive antagonists bicuculline and gabazine produced concentration-dependent, parallel, rightward displacement of GABA curves with pA(2) and slope values of 5.7 and 1.0 and 6.7 and 1.0, respectively. In contrast, picrotoxin (0.2-150 microM) depressed the maximal GABA response, implying a non-competitive antagonism. Overall, the pharmacology of human alpha1beta3gamma2 GABA(A) determined by PPC was highly similar to that obtained by conventional patch-clamp methods. In small-scale single-shot screens, Z' values of >0.5 were obtained in agonist, modulator, and antagonist formats with hit rates of 0% to 3%. The authors conclude that despite the inability of the method to resolve the peak agonist responses, PPC can rapidly and usefully quantify pharmacology for the alpha1beta3gamma2 GABA(A) isoform. These data suggest that PPC may be a valuable approach for a focused set and secondary screening of GABA(A) receptors and other slow ligand

  17. GABAA receptors: Various stoichiometrics of subunit arrangement in α1β3 and α1β3ε receptors.

    PubMed

    Has, Ahmad Tarmizi Che; Chebib, Mary

    2018-05-15

    GABAA receptors (GABAARs) are members of the Cys-loop ligand-gated ion channel (LGIC) superfamily, which includes nicotinic acetylcholine, glycine, and serotonin (5HT3) receptors [1,2,3,4]. LGICs typically mediate fast synaptic transmission via the movement of ions through channels gated by neurotransmitters, such as acetylcholine for nicotinic receptors and GABA for GABAARs [5]. The term Cys-loop receptors originates from the presence of a conserved disulphide bond (or bridge) which holds together two cysteine amino acids of the loop that forms from the structure of polypeptides in the extracellular domain of the receptor's subunit [6]. GABAARs are pentameric transmembrane protein complexes consisting of five subunits from a variety of polypeptide subunits [7,8]. All of these subunits are pseudo-symmetrically organized in the plane of the membrane, with a Cl--selective channel in the middle of the complex. To date, nineteen GABAAR subunits have been identified and categorized into eight classes, α1-6, β1-3, γ1-3, δ, ε, θ, π and ρ1-3, but their variety is further broadened by the existence of several splice forms for certain subunits (e.g., α6, β2 and γ2) [9,10,11,12]. The subunits within each class have an amino acid sequence homology of 70% or more, whereas those with a sequence homology of 30% or less are grouped into different classes [13,14]. A subunit consists of four transmembrane domains (TM1-TM4), each forming an α-helix; a large extracellular N-terminal domain that incorporates part of the orthosteric agonist/antagonist binding site; a large intracellular loop between the TM3 and TM4; a small intracellular loop between TM1 and TM2; a small extracellular loop between TM2 and TM3; and a C-terminal extracellular domain [15,16]. Each subunit is arranged in such a way as to create principal and complementary interfaces with the other subunits, and in a position such that the TM2 of each subunit forms the wall of the channel pore [17,18,19]. The

  18. Weaker control of the electrical properties of cerebellar granule cells by tonically active GABAA receptors in the Ts65Dn mouse model of Down’s syndrome

    PubMed Central

    2013-01-01

    Background Down’s syndrome (DS) is caused by triplication of all or part of human chromosome 21 and is characterized by a decrease in the overall size of the brain. One of the brain regions most affected is the cerebellum, in which the number of granule cells (GCs) is markedly decreased. GCs process sensory information entering the cerebellum via mossy fibres and pass it on to Purkinje cells and inhibitory interneurons. How GCs transform incoming signals depends on their input–output relationship, which is adjusted by tonically active GABAA receptor channels. Results We report that in the Ts65Dn mouse model of DS, in which cerebellar volume and GC number are decreased as in DS, the tonic GABAA receptor current in GCs is smaller than in wild-type mice and is less effective in moderating input resistance and raising the minimum current required for action potential firing. We also find that tonically active GABAA receptors curb the height and broaden the width of action potentials in wild-type GCs but not in Ts65Dn GCs. Single-cell real-time quantitative PCR reveals that these electrical differences are accompanied by decreased expression of the gene encoding the GABAA receptor β3 subunit but not genes coding for some of the other GABAA receptor subunits expressed in GCs (α1, α6, β2 and δ). Conclusions Weaker moderation of excitability and action potential waveform in GCs of the Ts65Dn mouse by tonically active GABAA receptors is likely to contribute to atypical transfer of information through the cerebellum. Similar changes may occur in DS. PMID:23870245

  19. Evidence of two populations of GABA(A) receptors in cerebellar granule cells in culture: different desensitization kinetics, pharmacology, serine/threonine kinase sensitivity, and localization.

    PubMed

    Robello, M; Amico, C; Cupello, A

    1999-12-20

    GABA(A) receptors of rat cerebellar granule cells in culture have been studied by the whole cell patch clamp technique. The biphasic desensitization kinetic observed could be due either to different desensitization mechanisms of a single receptor population or to different receptor populations. The overall data indicate that the latter hypothesis is most probably the correct one. In fact, the fast desensitizing component was selectively potentiated by a benzodiazepine agonist and preferentially down-regulated by activation of the protein serine/threonine kinases A and G, as a consequence of the latter characteristic that receptor population was preferentially down-regulated by previous activation of N-methyl-d-aspartate glutamate receptors, via production of nitric oxide and PKG activation, most probably in dendrites. The other population is benzodiazepine insensitive and not influenced by activation of PKA or PKG. This slowly desensitizing population may correspond to the extrasynaptic delta subunit containing GABA(A) receptors described by other authors. Instead, the rapidly desensitizing population appears to represent dendritic synaptic GABA(A) receptors. Copyright 1999 Academic Press.

  20. Metabotropic glutamate receptor 5 upregulation in children with autism is associated with underexpression of both Fragile X mental retardation protein and GABAA receptor beta 3 in adults with autism

    PubMed Central

    Fatemi, S. Hossein; Folsom, Timothy D.; Kneeland, Rachel E.; Liesch, Stephanie B.

    2011-01-01

    Recent work has demonstrated the impact of dysfunction of the GABAergic signaling system in brain and the resultant behavioral pathologies in subjects with autism. In animal models, altered expression of Fragile X mental retardation protein (FMRP) has been linked to downregulation of GABA receptors. Interestingly, the autistic phenotype is also observed in individuals with Fragile X syndrome. This study was undertaken to test previous theories relating abnormalities in levels of FMRP to GABAA receptor underexpression. We observed a significant reduction in levels of FMRP in the vermis of adults with autism. Additionally, we found that levels of metabotropic glutamate receptor 5 (mGluR5) protein were significantly increased in vermis of children with autism vs. age and postmortem interval (PMI) matched controls. There was also a significant decrease in level of GABAA receptor beta 3 (GABRβ3) protein in vermis of adult subjects with autism. Finally, we found significant increases in glial fibrillary acidic protein (GFAP) in vermis of both children and adults with autism when compared with controls. Taken together, our results provide further evidence that altered FMRP expression and increased mGluR5 protein production potentially leads to altered expression of GABAA receptors. PMID:21901840

  1. GABA(A) receptors in the pontine reticular formation of C57BL/6J mouse modulate neurochemical, electrographic, and behavioral phenotypes of wakefulness.

    PubMed

    Flint, RaShonda R; Chang, Theresa; Lydic, Ralph; Baghdoyan, Helen A

    2010-09-15

    Drugs that potentiate transmission at GABA(A) receptors are widely used to enhance sleep and to cause general anesthesia. The mechanisms underlying these effects are unknown. This study tested the hypothesis that GABA(A) receptors in the pontine reticular nucleus, oral part (PnO) of mouse modulate five phenotypes of arousal: sleep and wakefulness, cortical electroencephalogram (EEG) activity, acetylcholine (ACh) release in the PnO, breathing, and recovery time from general anesthesia. Microinjections into the PnO of saline (vehicle control), the GABA(A) receptor agonist muscimol, muscimol with the GABA(A) receptor antagonist bicuculline, and bicuculline alone were performed in male C57BL/6J mice (n = 33) implanted with EEG recording electrodes. Muscimol caused a significant increase in wakefulness and decrease in rapid eye movement (REM) and non-REM (NREM) sleep. These effects were reversed by coadministration of bicuculline. Bicuculline administered alone caused a significant decrease in wakefulness and increase in NREM sleep and REM sleep. Muscimol significantly increased EEG power in the delta range (0.5-4 Hz) during wakefulness and in the theta range (4-9 Hz) during REM sleep. Dialysis delivery of bicuculline to the PnO of male mice (n = 18) anesthetized with isoflurane significantly increased ACh release in the PnO, decreased breathing rate, and increased anesthesia recovery time. All drug effects were concentration dependent. The effects on phenotypes of arousal support the conclusion that GABA(A) receptors in the PnO promote wakefulness and suggest that increasing GABAergic transmission in the PnO may be one mechanism underlying the phenomenon of paradoxical behavioral activation by some benzodiazepines.

  2. GABA-A receptors in mPOAH simultaneously regulate sleep and body temperature in freely moving rats.

    PubMed

    Jha, S K; Yadav, V; Mallick, B N

    2001-09-01

    Sleep-wakefulness and body temperature are two circadian rhythmic biological phenomena. The role of GABAergic inputs in the medial preoptico-anterior hypothalamus (mPOAH) on simultaneous regulation of those phenomena was investigated in freely moving normally behaving rats. The GABA-A receptors were blocked by microinjecting picrotoxin, and the effects on electrophysiological parameters signifying sleep-wakefulness, rectal temperature and brain temperature were recorded simultaneously. The results suggest that, normally, GABA in the medial preoptic area acts through GABA-A receptor that induces sleep and prevents an excessive rise in body temperature. However, the results do not allow us to comment on the cause and effect relationship, if any, between changes in sleep-wakefulness and body temperature. The changes in brain and rectal temperatures showed a positive correlation, however, the former varied within a narrower range than that of the latter.

  3. GABA(A) receptor antagonism in the ventrocaudal periaqueductal gray increases anxiety in the anxiety-resistant postpartum rat.

    PubMed

    Miller, Stephanie M; Piasecki, Christopher C; Peabody, Mitchell F; Lonstein, Joseph S

    2010-06-01

    Postpartum mammals show suppressed anxiety, which is necessary for their ability to appropriately care for offspring. It is parsimonious to suggest that the neurobiological basis of this reduced anxiety is similar to that of non-parturient animals, involving GABA(A) receptor activity in sites including the midbrain periaqueductal gray (PAG). In Experiment 1, postpartum and diestrous virgin female rats received an intraperitoneal injection of the GABA(A) receptor antagonist (+)-bicuculline (0, 2 and 4 mg/kg) and anxiety-related behavior was assessed with an elevated plus maze. The 4 mg/kg dose of (+)-bicuculline significantly increased anxiety-related behavior, particularly in the postpartum females. Experiment 2 revealed that bicuculline's action was within the central nervous system, because anxiety in neither dams nor virgins was significantly affected by intraperitoneal injection of bicuculline methiodide (0, 2 and 6 mg/kg), which does not readily cross the blood-brain-barrier. In Experiment 3, bicuculline methiodide (2.5 ng/side) was directly infused into the ventrocaudal PAG (cPAGv) and significantly increased dams' anxiety compared to saline-infused controls. These studies expand our knowledge of how GABA(A) receptor modulators affect anxiety behaviors in postpartum rats to the widely-used elevated plus maze, and indicate that the postpartum suppression of anxiety is in part a consequence of elevated GABAergic neurotransmission in the cPAGv. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Modulation by bicuculline and penicillin of the block by t-butyl-bicyclo-phosphorothionate (TBPS) of GABAA-receptor mediated Cl−-current responses in rat striatal neurones

    PubMed Central

    Behrends, Jan C

    2000-01-01

    T-butyl-bicyclo-phosphorothionate (TBPS) is a prototypical representative of the cage-convulsants which act through a use-dependent block of the GABAA-receptor-ionophore complex. Using current recordings from cultured neurones of rat striatum the manner was investigated in which two antagonists, bicuculline and penicillin, presumably acting at the agonist binding site and in the ionic channel, respectively, modify the rate of block by TBPS. Penicillin (5 or 10 mM) did not slow the rate of block by TBPS, but produced a significant enhancement of block rate, which, however, was inversely related to the degree of antagonism by penicillin of the GABA-induced current. Bicuculline (10 μM) reduced the rate of block by TBPS. However, this effect was 3 fold weaker than its GABA-antagonistic action. The slowing of block rate and the current antagonism exhibited a biphasic, positive-negative relationship. Co-application of bicuculline (100 μM) in a concentration that produced nearly complete antagonism and TBPS (10 μM) resulted in a marked (∼40%) reduction of subsequent GABA response amplitudes compatible with a direct, bicuculline-induced conformational change in the receptor required for the binding of and block by TBPS. The lack of protection afforded by the channel blocker penicillin as well as the lack of correlation between bicuculline antagonism of the Cl−-current and its efficiency in protecting against TBPS block is evidence against an open channel blocking mechanism for TBPS. TBPS does, therefore, not appear to gain access to its binding site via the open pore but through alternative routes regulated from the agonist binding site. PMID:10694249

  5. The tuberal lateral hypothalamus is a major target for GABAA--but not GABAB-mediated control of food intake.

    PubMed

    Turenius, Christine I; Charles, Jonathan R; Tsai, Donna H; Ebersole, Priscilla L; Htut, Myat H; Ngo, Phuong T; Lara, Raul N; Stanley, B Glenn

    2009-08-04

    The lateral hypothalamus (LH) is a site of integration for control mechanisms of feeding behavior as it has extensive reciprocal connections with multiple intrahypothalamic and extrahypothalamic brain areas. Evidence suggests that blockade of ionotropric gamma-aminobutyric acid (GABA) receptors in the LH elicits eating in satiated rats. To determine whether this GABA(A) receptor antagonist effect is specific to the LH, the antagonist picrotoxin was injected into one of six nearby sites and food intake was measured. Picrotoxin at 133 pmol elicited eating in the LH, but not in surrounding sites (thalamus, lateral preoptic area, ventral tegmental area, dorsomedial hypothalamus, and entopeduncular nucleus). More specifically, picrotoxin injected into the tuberal LH (tLH) elicited eating, but was ineffective when injected into the anterior or posterior LH. We also investigated whether GABA(B) receptors in the LH participated in the control of food intake and found that neither blockade nor activation of these receptors under multiple conditions changed food intake. Collectively, our findings suggest that GABA(A) but not GABA(B) receptors in the tLH act to suppress feeding behavior.

  6. Insights into structure–activity relationship of GABAA receptor modulating coumarins and furanocoumarins

    PubMed Central

    Singhuber, Judith; Baburin, Igor; Ecker, Gerhard F.; Kopp, Brigitte; Hering, Steffen

    2011-01-01

    The coumarins imperatorin and osthole are known to exert anticonvulsant activity. We have therefore analyzed the modulation of GABA-induced chloride currents (IGABA) by a selection of 18 coumarin derivatives on recombinant α1β2γ2S GABAA receptors expressed in Xenopus laevis oocytes by means of the two-microelectrode voltage clamp technique. Osthole (EC50=14±1 μM) and oxypeucedanin (EC50=25±8 μM) displayed the highest efficiency with IGABA potentiation of 116±4% and 547±56%, respectively. IGABA enhancement by osthole and oxypeucedanin was not inhibited by flumazenil (1 μM) indicating an interaction with a binding site distinct from the benzodiazepine binding site. In general, prenyl residues are essential for the positive modulatory activity, while longer side chains or bulkier residues (e.g. geranyl residues) diminish IGABA modulation. Generation of a binary classification tree revealed the importance of polarisability, which is sufficient to distinguish actives from inactives. A 4-point pharmacophore model based on oxypeucedanin – comprising three hydrophobic and one aromatic feature – identified 6 out of 7 actives as hits. In summary, (oxy-)prenylated coumarin derivatives from natural origin represent new GABAA receptor modulators. PMID:21749864

  7. The effects of serotonin1A receptor on female mice body weight and food intake are associated with the differential expression of hypothalamic neuropeptides and the GABAA receptor.

    PubMed

    Butt, Isma; Hong, Andrew; Di, Jing; Aracena, Sonia; Banerjee, Probal; Shen, Chang-Hui

    2014-10-01

    Both common eating disorders anorexia nervosa and bulimia nervosa are characteristically diseases of women. To characterize the role of the 5-HT1A receptor (5-HT1A-R) in these eating disorders in females, we investigated the effect of saline or 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) treatment on feeding behavior and body weight in adult WT female mice and in adult 5-HT1A-R knockout (KO) female mice. Our results showed that KO female mice have lower food intake and body weight than WT female mice. Administration of 8-OH-DPAT decreased food intake but not body weight in WT female mice. Furthermore, qRT-PCR was employed to analyze the expression levels of neuropeptides, γ-aminobutyric acid A receptor subunit β (GABAA β subunits) and glutamic acid decarboxylase in the hypothalamic area. The results showed the difference in food intake between WT and KO mice was accompanied by differential expression of POMC, CART and GABAA β2, and the difference in body weight between WT and KO mice was associated with significantly different expression levels of CART and GABAA β2. As such, our data provide new insight into the role of 5-HT1A-R in both feeding behavior and the associated expression of neuropeptides and the GABAA receptor. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Angiotensin II and CRF receptors in the central nucleus of the amygdala mediate hemodynamic response variability to cocaine in conscious rats.

    PubMed

    Watanabe, Mari A; Kucenas, Sarah; Bowman, Tamara A; Ruhlman, Melissa; Knuepfer, Mark M

    2010-01-14

    Stress or cocaine evokes either a large increase in systemic vascular resistance (SVR) or a smaller increase in SVR accompanied by an increase in cardiac output (designated vascular and mixed responders, respectively) in Sprague-Dawley rats. We hypothesized that the central nucleus of the amygdala (CeA) mediates this variability. Conscious, freely-moving rats, instrumented for measurement of arterial pressure and cardiac output and for drug delivery into the CeA, were given cocaine (5 mg/kg, iv, 4-6 times) and characterized as vascular (n=15) or mixed responders (n=10). Subsequently, we administered cocaine after bilateral microinjections (100 nl) of saline or selective agents in the CeA. Muscimol (80 pmol), a GABA(A) agonist, or losartan (43.4 pmol), an AT(1) receptor antagonist, attenuated the cocaine-induced increase in SVR in vascular responders, selectively, such that vascular responders were no longer different from mixed responders. The corticotropin releasing factor (CRF) antagonist, alpha-helical CRF(9-41) (15.7 pmol), abolished the difference between cardiac output and SVR in mixed and vascular responders. We conclude that greater increases in SVR observed in vascular responders are dependent on AT(1) receptor activation and, to a lesser extent on CRF receptors. Therefore, AT(1) and CRF receptors in the CeA contribute to hemodynamic response variability to intravenous cocaine.

  9. Angiotensin II and CRF Receptors in the Central Nucleus of the Amygdala Mediate Hemodynamic Response Variability to Cocaine in Conscious Rats

    PubMed Central

    Watanabe, Mari A.; Kucenas, Sarah; Bowman, Tamara A.; Ruhlman, Melissa; Knuepfer, Mark M.

    2009-01-01

    Stress or cocaine evokes either a large increase in systemic vascular resistance (SVR) or a smaller increase in SVR accompanied by an increase in cardiac output (designated vascular and mixed responders, respectively) in Sprague-Dawley rats. We hypothesized that the central nucleus of the amygdala (CeA) mediates this variability. Conscious, freely-moving rats, instrumented for measurement of arterial pressure and cardiac output and for drug delivery into the CeA, were given cocaine (5 mg/kg, iv, 4-6 times) and characterized as vascular (n=15) or mixed responders (n=10). Subsequently, we administered cocaine after bilateral microinjections (100 nl) of saline or selective agents in the CeA. Muscimol (80 pmol), a GABAA agonist, or losartan (43.4 pmol), an AT1 receptor antagonist, attenuated the cocaine-induced increase in SVR in vascular responders, selectively, such that vascular responders were no longer different from mixed responders. The corticotropin releasing factor (CRF) antagonist, α-helical CRF9-41 (15.7 pmol), abolished the difference between cardiac output and SVR in mixed and vascular responders. We conclude that greater increases in SVR observed in vascular responders are dependent on AT1 receptor activation and, to a lesser extent on CRF receptors. Therefore, AT1 and CRF receptors in the CeA contribute to hemodynamic response variability to intravenous cocaine. PMID:19879859

  10. Kampo Medicine: Evaluation of the Pharmacological Activity of 121 Herbal Drugs on GABAA and 5-HT3A Receptors

    PubMed Central

    Hoffmann, Katrin M.; Herbrechter, Robin; Ziemba, Paul M.; Lepke, Peter; Beltrán, Leopoldo; Hatt, Hanns; Werner, Markus; Gisselmann, Günter

    2016-01-01

    Kampo medicine is a form of Japanese phytotherapy originating from traditional Chinese medicine (TCM). During the last several decades, much attention has been paid to the pharmacological effects of these medical plants and their constituents. However, in many cases, a systematic screening of Kampo remedies to determine pharmacologically relevant targets is still lacking. In this study, a broad screening of Kampo remedies was performed to look for pharmacologically relevant 5-HT3A and GABAA receptor ligands. Several of the Kampo remedies are currently used for symptoms such as nausea, emesis, gastrointestinal motility disorders, anxiety, restlessness, or insomnia. Therefore, the pharmacological effects of 121 herbal drugs from Kampo medicine were analyzed as ethanol tinctures on heterologously expressed 5-HT3A and GABAA receptors, due to the involvement of these receptors in such pathophysiological processes. The tinctures of Lindera aggregata (radix) and Leonurus japonicus (herba) were the most effective inhibitory compounds on the 5-HT3A receptor. Further investigation of known ingredients in these compounds led to the identification of leonurine from Leonurus as a new natural 5-HT3A receptor antagonist. Several potentiating herbs (e.g., Magnolia officinalis (cortex), Syzygium aromaticum (flos), and Panax ginseng (radix)) were also identified for the GABAA receptor, which are all traditionally used for their sedative or anxiolytic effects. A variety of tinctures with antagonistic effects Salvia miltiorrhiza (radix) were also detected. Therefore, this study reveals new insights into the pharmacological action of a broad spectrum of herbal drugs from Kampo, allowing for a better understanding of their physiological effects and clinical applications. PMID:27524967

  11. PKCɛ mediates substance P inhibition of GABAA receptors-mediated current in rat dorsal root ganglion.

    PubMed

    Li, Li; Zhao, Lei; Wang, Yang; Ma, Ke-tao; Shi, Wen-yan; Wang, Ying-zi; Si, Jun-qiang

    2015-02-01

    The mechanism underlying the modulatory effect of substance P (SP) on GABA-activated response in rat dorsal root ganglion (DRG) neurons was investigated. In freshly dissociated rat DRG neurons, whole-cell patch-clamp technique was used to record GABA-activated current and sharp electrode intracellular recording technique was used to record GABA-induced membrane depolarization. Application of GABA (1-1000 μmol/L) induced an inward current in a concentration-dependent manner in 114 out of 127 DRG neurons (89.8 %) examined with whole-cell patch-clamp recordings. Bath application of GABA (1-1000 μmol/L) evoked a depolarizing response in 236 out of 257 (91.8%) DRG neurons examined with intracellular recordings. Application of SP (0.001-1 μmol/L) suppressed the GABA-activated inward current and membrane depolarization. The inhibitory effects were concentration-dependent and could be blocked by the selective neurokinin 1 (NK1) receptors antagonist spantide but not by L659187 and SR142801 (1 μmol/L, n=7), selective antagonists of NK2 and NK3. The inhibitory effect of SP was significantly reduced by the calcium chelator BAPTA-AM, phospholipase C (PLC) inhibitor U73122, and PKC inhibitor chelerythrine, respectively. The PKA inhibitor H-89 did not affect the SP effect. Remarkably, the inhibitory effect of SP on GABA-activated current was nearly completely removed by a selective PKCε inhibitor epilon-V1-2 but not by safingol and LY333531, selective inhibitors of PKCα and PKCβ. Our results suggest that NK1 receptor mediates SP-induced inhibition of GABA-activated current and membrane depolarization by activating intracellular PLC-Ca²⁺-PKCε cascade. SP might regulate the excitability of peripheral nociceptors through inhibition of the "pre-synaptic inhibition" evoked by GABA, which may explain its role in pain and neurogenic inflammation.

  12. The differential role of α1- and α5-containing GABAA receptors in mediating diazepam effects on spontaneous locomotor activity and water-maze learning and memory in rats

    PubMed Central

    Savić, Miroslav M.; Milinković, Marija M.; Rallapalli, Sundari; Clayton, Terry; Joksimović, Srðan; Van Linn, Michael; Cook, James M.

    2009-01-01

    The clinical use of benzodiazepines (BZs) is hampered by sedation and cognitive deterioration. Although genetic and pharmacological studies suggest that α1- and α5-containing GABAA receptors mediate and/or modulate these effects, their molecular substrate is not fully elucidated. By the use of two selective ligands : the α1-subunit affinity-selective antagonist β-CCt, and the α5-subunit affinity- and efficacy-selective antagonist XLi093, we examined the mechanisms of behavioural effects of diazepam in the tests of spontaneous locomotor activity and water-maze acquisition and recall, the two paradigms indicative of sedative- and cognition-impairing effects of BZs, respectively. The locomotor-activity decreasing propensity of diazepam (significant at 1.5 and 5 mg/kg) was antagonized by β-CCt (5 and 15 mg/kg), while it tended to be potentiated by XLi093 in doses of 10 mg/kg, and especially 20 mg/kg. Diazepam decreased acquisition and recall in the water maze, with a minimum effective dose of 1.5 mg/kg. Both antagonists reversed the thigmotaxis induced by 2 mg/kg diazepam throughout the test, suggesting that both GABAA receptor subtypes participate in BZ effects on the procedural component of the task. Diazepam-induced impairment in the declarative component of the task, as assessed by path efficiency, the latency and distance before finding the platform across acquisition trials, and also by the spatial parameters in the probe trial, was partially prevented by both, 15 mg/kg β-CCt and 10 mg/kg XLi093. Combining a BZ with β-CCt results in the near to control level of performance of a cognitive task, without sedation, and may be worth testing on human subjects. PMID:19265570

  13. Virus Infection and Death Receptor-Mediated Apoptosis.

    PubMed

    Zhou, Xingchen; Jiang, Wenbo; Liu, Zhongshun; Liu, Shuai; Liang, Xiaozhen

    2017-10-27

    Virus infection can trigger extrinsic apoptosis. Cell-surface death receptors of the tumor necrosis factor family mediate this process. They either assist persistent viral infection or elicit the elimination of infected cells by the host. Death receptor-mediated apoptosis plays an important role in viral pathogenesis and the host antiviral response. Many viruses have acquired the capability to subvert death receptor-mediated apoptosis and evade the host immune response, mainly by virally encoded gene products that suppress death receptor-mediated apoptosis. In this review, we summarize the current information on virus infection and death receptor-mediated apoptosis, particularly focusing on the viral proteins that modulate death receptor-mediated apoptosis.

  14. Virus Infection and Death Receptor-Mediated Apoptosis

    PubMed Central

    Zhou, Xingchen; Jiang, Wenbo; Liu, Zhongshun; Liu, Shuai; Liang, Xiaozhen

    2017-01-01

    Virus infection can trigger extrinsic apoptosis. Cell-surface death receptors of the tumor necrosis factor family mediate this process. They either assist persistent viral infection or elicit the elimination of infected cells by the host. Death receptor-mediated apoptosis plays an important role in viral pathogenesis and the host antiviral response. Many viruses have acquired the capability to subvert death receptor-mediated apoptosis and evade the host immune response, mainly by virally encoded gene products that suppress death receptor-mediated apoptosis. In this review, we summarize the current information on virus infection and death receptor-mediated apoptosis, particularly focusing on the viral proteins that modulate death receptor-mediated apoptosis. PMID:29077026

  15. Negative modulation of the GABAA ρ1 receptor function by l-cysteine.

    PubMed

    Beltrán González, Andrea N; Vicentini, Florencia; Calvo, Daniel J

    2018-01-01

    l-Cysteine is an endogenous sulfur-containing amino acid with multiple and varied roles in the central nervous system, including neuroprotection and the maintenance of the redox balance. However, it was also suggested as an excitotoxic agent implicated in the pathogenesis of neurological disorders such as Parkinson's and Alzheimer's disease. l-Cysteine can modulate the activity of ionic channels, including voltage-gated calcium channels and glutamatergic NMDA receptors, whereas its effects on GABAergic neurotransmission had not been studied before. In the present work, we analyzed the effects of l-cysteine on responses mediated by homomeric GABA A ρ1 receptors, which are known for mediating tonic γ-aminobutyric acid (GABA) responses in retinal neurons. GABA A ρ1 receptors were expressed in Xenopus laevis oocytes and GABA-evoked chloride currents recorded by two-electrode voltage-clamp in the presence or absence of l-cysteine. l-Cysteine antagonized GABA A ρ1 receptor-mediated responses; inhibition was dose-dependent, reversible, voltage independent, and susceptible to GABA concentration. Concentration-response curves for GABA were shifted to the right in the presence of l-cysteine without a substantial change in the maximal response. l-Cysteine inhibition was insensitive to chemical protection of the sulfhydryl groups of the ρ1 subunits by the irreversible alkylating agent N-ethyl maleimide. Our results suggest that redox modulation is not involved during l-cysteine actions and that l-cysteine might be acting as a competitive antagonist of the GABA A ρ1 receptors. © 2017 International Society for Neurochemistry.

  16. Prefrontal gamma-aminobutyric acid type A receptor insertion controls cue-induced relapse to nicotine seeking.

    PubMed

    Lubbers, Bart R; van Mourik, Yvar; Schetters, Dustin; Smit, August B; De Vries, Taco J; Spijker, Sabine

    2014-11-01

    Current smoking cessation therapies offer limited success, as relapse rates remain high. Nicotine, which is the major component of tobacco smoke, is thought to be primarily responsible for the addictive properties of tobacco. However, little is known about the molecular mechanisms underlying nicotine relapse, hampering development of more effective therapies. The objective of this study was to elucidate the role of medial prefrontal cortex (mPFC) glutamatergic and gamma-aminobutyric acid (GABA)ergic receptors in controlling relapse to nicotine seeking. Using an intravenous self-administration model, we studied glutamate and gamma-aminobutyric acid receptor regulation in the synaptic membrane fraction of the rat mPFC following extinction and cue-induced relapse to nicotine seeking. Subsequently, we locally intervened at the level of GABAergic signaling by using a mimetic peptide of the GABA receptor associated protein-interacting domain of GABA type A (GABAA) receptor subunit γ2 (TAT-GABAγ2) and muscimol, a GABAA receptor agonist. Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid and N-methyl-D-aspartate receptors were not regulated after the 30-min relapse test. However, GABAA receptor subunits α1 and γ2 were upregulated, and interference with GABAA receptor insertion in the cell membrane using the TAT-GABAγ2 peptide in the dorsal mPFC, but not the ventral mPFC, significantly increased responding during relapse. Increasing GABAA transmission with muscimol in the dorsal and ventral mPFC attenuated relapse. These data indicate that cue-induced relapse entails a GABAergic plasticity mechanism that limits nicotine seeking by restoring inhibitory control in the dorsal mPFC. GABAA receptor-mediated neurotransmission in the dorsal mPFC constitutes a possible future therapeutic target for maintaining smoking abstinence. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. Of pheromones and kairomones: what receptors mediate innate emotional responses?

    PubMed

    Fortes-Marco, Lluis; Lanuza, Enrique; Martinez-Garcia, Fernando

    2013-09-01

    Some chemicals elicit innate emotionally laden behavioral responses. Pheromones mediate sexual attraction, parental care or agonistic confrontation, whereas predators' kairomones elicit defensive behaviors in their preys. This essay explores the hypothesis that the detection of these semiochemicals relies on highly specific olfactory and/or vomeronasal receptors. The V1R, V2R, and formyl-peptide vomeronasal receptors bind their ligands in highly specific and sensitive way, thus being good candidates for pheromone- or kairomone-detectors (e.g., secreted and excreted proteins, peptides and lipophilic volatiles). The olfactory epithelium also expresses specific receptors, for example trace amine-associated receptors (TAAR) and guanylyl cyclase receptors (GC-D and other types), some of which bind kairomones and putative pheromones. However, most of the olfactory neurons express canonical olfactory receptors (ORs) that bind many ligands with different affinity, being not suitable for mediating responses to pheromones and kairomones. In this respect, trimethylthiazoline (TMT) is considered a fox-derived kairomone for mice and rats, but it seems to be detected by canonical ORs. Therefore, we have reassessed the kairomonal nature of TMT by analyzing the behavioral responses of outbred (CD1) and inbred mice (C57BL/J6) to TMT. Our results confirm that both mouse strains avoid TMT, which increases immobility in C57BL/J6, but not CD1 mice. However, mice of both strains sniff at TMT throughout the test and show no trace of TMT-induced contextual conditioning (immobility or avoidance). This suggests that TMT is not a kairomone but, similar to a loud noise, in high concentrations it induces aversion and stress as unspecific responses to a strong olfactory stimulation. Copyright © 2013 Wiley Periodicals, Inc.

  18. Nootropic α7 nicotinic receptor allosteric modulator derived from GABAA receptor modulators

    PubMed Central

    Ng, Herman J.; Whittemore, Edward R.; Tran, Minhtam B.; Hogenkamp, Derk J.; Broide, Ron S.; Johnstone, Timothy B.; Zheng, Lijun; Stevens, Karen E.; Gee, Kelvin W.

    2007-01-01

    Activation of brain α7 nicotinic acetylcholine receptors (α7 nAChRs) has broad therapeutic potential in CNS diseases related to cognitive dysfunction, including Alzheimer's disease and schizophrenia. In contrast to direct agonist activation, positive allosteric modulation of α7 nAChRs would deliver the clinically validated benefits of allosterism to these indications. We have generated a selective α7 nAChR-positive allosteric modulator (PAM) from a library of GABAA receptor PAMs. Compound 6 (N-(4-chlorophenyl)-α-[[(4-chloro-phenyl)amino]methylene]-3-methyl-5-isoxazoleacet-amide) evokes robust positive modulation of agonist-induced currents at α7 nAChRs, while preserving the rapid native characteristics of desensitization, and has little to no efficacy at other ligand-gated ion channels. In rodent models, it corrects sensory-gating deficits and improves working memory, effects consistent with cognitive enhancement. Compound 6 represents a chemotype for allosteric activation of α7 nAChRs, with therapeutic potential in CNS diseases with cognitive dysfunction. PMID:17470817

  19. A Review of the Updated Pharmacophore for the Alpha 5 GABA(A) Benzodiazepine Receptor Model

    PubMed Central

    Clayton, Terry; Poe, Michael M.; Rallapalli, Sundari; Biawat, Poonam; Savić, Miroslav M.; Rowlett, James K.; Gallos, George; Emala, Charles W.; Kaczorowski, Catherine C.; Stafford, Douglas C.; Arnold, Leggy A.; Cook, James M.

    2015-01-01

    An updated model of the GABA(A) benzodiazepine receptor pharmacophore of the α5-BzR/GABA(A) subtype has been constructed prompted by the synthesis of subtype selective ligands in light of the recent developments in both ligand synthesis, behavioral studies, and molecular modeling studies of the binding site itself. A number of BzR/GABA(A) α5 subtype selective compounds were synthesized, notably α5-subtype selective inverse agonist PWZ-029 (1) which is active in enhancing cognition in both rodents and primates. In addition, a chiral positive allosteric modulator (PAM), SH-053-2′F-R-CH3 (2), has been shown to reverse the deleterious effects in the MAM-model of schizophrenia as well as alleviate constriction in airway smooth muscle. Presented here is an updated model of the pharmacophore for α5β2γ2 Bz/GABA(A) receptors, including a rendering of PWZ-029 docked within the α5-binding pocket showing specific interactions of the molecule with the receptor. Differences in the included volume as compared to α1β2γ2, α2β2γ2, and α3β2γ2 will be illustrated for clarity. These new models enhance the ability to understand structural characteristics of ligands which act as agonists, antagonists, or inverse agonists at the Bz BS of GABA(A) receptors. PMID:26682068

  20. The insecticide fipronil and its metabolite fipronil sulphone inhibit the rat α1β2γ2L GABAA receptor

    PubMed Central

    Li, P; Akk, G

    2008-01-01

    Background and purpose: Fipronil is the active ingredient in a number of widely used insecticides. Human exposure to fipronil leads to symptoms (headache, nausea and seizures) typically associated with the antagonism of GABAA receptors in the brain. In this study, we have examined the modulation of the common brain GABAA receptor subtype by fipronil and its major metabolite, fipronil sulphone. Experimental approach: Whole-cell and single-channel recordings were made from HEK 293 cells transiently expressing rat α1β2γ2L GABAA receptors. Key results: The major effect of fipronil was to increase the rate of current decay in macroscopic recordings. In single-channel recordings, the presence of fipronil resulted in shorter cluster durations without affecting the intracluster open and closed time distributions or the single-channel conductance. The α1V256S mutation, previously shown alleviate channel inhibition by inhibitory steroids and several insecticides, had a relatively small effect on channel block by fipronil. The mode of action of fipronil sulphone was similar to that of its parent compound but the metabolite was less potent at inhibiting the α1β2γ2L receptor. Conclusions and implications: We conclude that exposure to fipronil induces accumulation of receptors in a novel, long-lived blocked state. This process proceeds in parallel with and independently of, channel desensitization. The lower potency of fipronil sulphone indicates that the conversion serves as a detoxifying process in mammalian brain. PMID:18660823

  1. Functional characterization of GABAA receptor-mediated modulation of cortical neuron network activity in microelectrode array recordings.

    PubMed

    Bader, Benjamin M; Steder, Anne; Klein, Anders Bue; Frølund, Bente; Schroeder, Olaf H U; Jensen, Anders A

    2017-01-01

    The numerous γ-aminobutyric acid type A receptor (GABAAR) subtypes are differentially expressed and mediate distinct functions at neuronal level. In this study we have investigated GABAAR-mediated modulation of the spontaneous activity patterns of primary neuronal networks from murine frontal cortex by characterizing the effects induced by a wide selection of pharmacological tools at a plethora of activity parameters in microelectrode array (MEA) recordings. The basic characteristics of the primary cortical neurons used in the recordings were studied in some detail, and the expression levels of various GABAAR subunits were investigated by western blotting and RT-qPCR. In the MEA recordings, the pan-GABAAR agonist muscimol and the GABABR agonist baclofen were observed to mediate phenotypically distinct changes in cortical network activity. Selective augmentation of αβγ GABAAR signaling by diazepam and of δ-containing GABAAR (δ-GABAAR) signaling by DS1 produced pronounced changes in the majority of the activity parameters, both drugs mediating similar patterns of activity changes as muscimol. The apparent importance of δ-GABAAR signaling for network activity was largely corroborated by the effects induced by the functionally selective δ-GABAAR agonists THIP and Thio-THIP, whereas the δ-GABAAR selective potentiator DS2 only mediated modest effects on network activity, even when co-applied with low THIP concentrations. Interestingly, diazepam exhibited dramatically right-shifted concentration-response relationships at many of the activity parameters when co-applied with a trace concentration of DS1 compared to when applied alone. In contrast, the potencies and efficacies displayed by DS1 at the networks were not substantially altered by the concomitant presence of diazepam. In conclusion, the holistic nature of the information extractable from the MEA recordings offers interesting insights into the contributions of various GABAAR subtypes/subgroups to cortical

  2. Comparison of Steroid Modulation of Spontaneous Inhibitory Postsynaptic Currents in Cultured Hippocampal Neurons and Steady-State Single-Channel Currents from Heterologously Expressed α1β2γ2L GABAA Receptors

    PubMed Central

    Chakrabarti, Sampurna; Qian, Mingxing; Krishnan, Kathiresan; Covey, Douglas F.; Mennerick, Steven

    2016-01-01

    Neuroactive steroids are efficacious modulators of γ-aminobutyric acid type A receptor (GABAA) receptor function. The effects of steroids on the GABAA receptor are typically determined by comparing steady-state single-channel open probability or macroscopic peak responses elicited by GABA in the absence and presence of a steroid. Due to differences in activation conditions (exposure duration, concentration of agonist), it is not obvious whether modulation measured using typical experimental protocols can be used to accurately predict the effect of a modulator on native receptors under physiologic conditions. In the present study, we examined the effects of 14 neuroactive steroids and analogs on the properties of spontaneous inhibitory postsynaptic currents (sIPSCs) in cultured rat hippocampal neurons. The goal was to determine whether the magnitude of modulation of the decay time course of sIPSCs correlates with the extent of modulation and kinetic properties of potentiation as determined in previous single-channel studies. The steroids were selected to cover a wide range of efficacy on heterologously expressed rat α1β2γ2L GABAA receptors, ranging from essentially inert to highly efficacious (strong potentiators of single-channel and macroscopic peak responses). The data indicate a strong correlation between prolongation of the decay time course of sIPSCs and potentiation of single-channel open probability. Furthermore, changes in intracluster closed time distributions were the single best predictor of prolongation of sIPSCs. We infer that the information obtained in steady-state single-channel recordings can be used to forecast modulation of synaptic currents. PMID:26769414

  3. Alcohol use disorders and current pharmacological therapies: the role of GABAA receptors

    PubMed Central

    Liang, Jing; Olsen, Richard W

    2014-01-01

    Alcohol use disorders (AUD) are defined as alcohol abuse and alcohol dependence, which create large problems both for society and for the drinkers themselves. To date, no therapeutic can effectively solve these problems. Understanding the underlying mechanisms leading to AUD is critically important for developing effective and safe pharmacological therapies. Benzodiazepines (BZs) are used to reduce the symptoms of alcohol withdrawal syndrome. However, frequent use of BZs causes cross-tolerance, dependence, and cross-addiction to alcohol. The FDA-approved naltrexone and acamprosate have shown mixed results in clinical trials. Naltrexone is effective to treat alcohol dependence (decreased length and frequency of drinking bouts), but its severe side effects, including withdrawal symptoms, are difficult to overcome. Acamprosate showed efficacy for treating alcohol dependence in European trials, but two large US trials have failed to confirm the efficacy. Another FDA-approved medication, disulfiram, does not diminish craving, and it causes a peripheral neuropathy. Kudzu is the only natural medication mentioned by the National Institute on Alcohol Abuse and Alcoholism, but its mechanisms of action are not yet established. It has been recently shown that dihydromyricetin, a flavonoid purified from Hovenia, has unique effects on GABAA receptors and blocks ethanol intoxication and withdrawal in alcoholic animal models. In this article, we review the role of GABAA receptors in the treatment of AUD and currently available and potentially novel pharmacological agents. PMID:25066321

  4. Chronic administration of aripiprazole activates GSK3β-dependent signalling pathways, and up-regulates GABAA receptor expression and CREB1 activity in rats.

    PubMed

    Pan, Bo; Huang, Xu-Feng; Deng, Chao

    2016-07-20

    Aripiprazole is a D2-like receptor (D2R) partial agonist with a favourable clinical profile. Previous investigations indicated that acute and short-term administration of aripiprazole had effects on PKA activity, GSK3β-dependent pathways, GABAA receptors, NMDA receptor and CREB1 in the brain. Since antipsychotics are used chronically in clinics, the present study investigated the long-term effects of chronic oral aripiprazole treatment on these cellular signalling pathways, in comparison with haloperidol (a D2R antagonist) and bifeprunox (a potent D2R partial agonist). We found that the Akt-GSK3β pathway was activated by aripiprazole and bifeprunox in the prefrontal cortex; NMDA NR2A levels were reduced by aripiprazole and haloperidol. In the nucleus accumbens, all three drugs increased Akt-GSK3β signalling; in addition, both aripiprazole and haloperidol, but not bifeprunox, increased the expression of Dvl-3, β-catenin and GABAA receptors, NMDA receptor subunits, as well as CREB1 phosphorylation levels. The results suggest that chronic oral administration of aripiprazole affects schizophrenia-related cellular signalling pathways and markers (including Akt-GSK3β signalling, Dvl-GSK3β-β-catenin signalling, GABAA receptor, NMDA receptor and CREB1) in a brain-region-dependent manner; the selective effects of aripiprazole on these signalling pathways might be associated with its unique clinical effects.

  5. Chronic administration of aripiprazole activates GSK3β-dependent signalling pathways, and up-regulates GABAA receptor expression and CREB1 activity in rats

    PubMed Central

    Pan, Bo; Huang, Xu-Feng; Deng, Chao

    2016-01-01

    Aripiprazole is a D2-like receptor (D2R) partial agonist with a favourable clinical profile. Previous investigations indicated that acute and short-term administration of aripiprazole had effects on PKA activity, GSK3β-dependent pathways, GABAA receptors, NMDA receptor and CREB1 in the brain. Since antipsychotics are used chronically in clinics, the present study investigated the long-term effects of chronic oral aripiprazole treatment on these cellular signalling pathways, in comparison with haloperidol (a D2R antagonist) and bifeprunox (a potent D2R partial agonist). We found that the Akt-GSK3β pathway was activated by aripiprazole and bifeprunox in the prefrontal cortex; NMDA NR2A levels were reduced by aripiprazole and haloperidol. In the nucleus accumbens, all three drugs increased Akt-GSK3β signalling; in addition, both aripiprazole and haloperidol, but not bifeprunox, increased the expression of Dvl-3, β-catenin and GABAA receptors, NMDA receptor subunits, as well as CREB1 phosphorylation levels. The results suggest that chronic oral administration of aripiprazole affects schizophrenia-related cellular signalling pathways and markers (including Akt-GSK3β signalling, Dvl-GSK3β-β-catenin signalling, GABAA receptor, NMDA receptor and CREB1) in a brain-region-dependent manner; the selective effects of aripiprazole on these signalling pathways might be associated with its unique clinical effects. PMID:27435909

  6. Inactivation of GABAA receptor is related to heat shock stress response in organism model Caenorhabditis elegans.

    PubMed

    Camargo, Gabriela; Elizalde, Alejandro; Trujillo, Xochitl; Montoya-Pérez, Rocío; Mendoza-Magaña, María Luisa; Hernandez-Chavez, Abel; Hernandez, Leonardo

    2016-09-01

    The mechanisms underlying oxidative stress (OS) resistance are not completely clear. Caenorhabditis elegans (C. elegans) is a good organism model to study OS because it displays stress responses similar to those in mammals. Among these mechanisms, the insulin/IGF-1 signaling (IIS) pathway is thought to affect GABAergic neurotransmission. The aim of this study was to determine the influence of heat shock stress (HS) on GABAergic activity in C. elegans. For this purpose, we tested the effect of exposure to picrotoxin (PTX), gamma-aminobutyric acid (GABA), hydrogen peroxide, and HS on the occurrence of a shrinking response (SR) after nose touch stimulus in N2 (WT) worms. Moreover, the effect of HS on the expression of UNC-49 (GABAA receptor ortholog) in the EG1653 strain and the effect of GABA and PTX exposure on HSP-16.2 expression in the TJ375 strain were analyzed. PTX 1 mM- or H2O2 0.7 mM-exposed worms displayed a SR in about 80 % of trials. GABA exposure did not cause a SR. HS prompted the occurrence of a SR as did PTX 1 mM or H2O2 0.7 mM exposure. In addition, HS increased UNC-49 expression, and PTX augmented HSP-16.2 expression. Thus, the results of the present study suggest that oxidative stress, through either H2O2 exposure or application of heat shock, inactivates the GABAergic system, which subsequently would affect the oxidative stress response, perhaps by enhancing the activity of transcription factors DAF-16 and HSF-1, both regulated by the IIS pathway and related to hsp-16.2 expression.

  7. Dissociating anxiolytic and sedative effects of GABAAergic drugs using temperature and locomotor responses to acute stress

    PubMed Central

    Klanker, Marianne; Groenink, Lucianne; Korte, S. Mechiel; Cook, James M.; Van Linn, Michael L.; Hopkins, Seth C.; Olivier, Berend

    2009-01-01

    Rationale The stress-induced hyperthermia (SIH) model is an anxiety model that uses the transient rise in body temperature in response to acute stress. Benzodiazepines produce anxiolytic as well as sedative side effects through nonselective binding to GABAA receptor subunits. The GABAA receptor α1 subunit is associated with sedation, whereas the GABAA receptor α2 and α3 subunits are involved in anxiolytic effects. Objectives We therefore examined the effects of (non) subunit-selective GABAA receptor agonists on temperature and locomotor responses to novel cage stress. Results Using telemetric monitoring of temperature and locomotor activity, we found that nonsubunit-selective GABAA receptor agonist diazepam as well as the α3 subunit-selective receptor agonist TP003 dose-dependently attenuated SIH and locomotor responses. Administration of GABAA receptor α1-selective agonist zolpidem resulted in profound hypothermia and locomotor sedation. The GABAA receptor α1-selective antagonist βCCt antagonized the hypothermia, but did not reverse the SIH response attenuation caused by diazepam and zolpidem. These results suggest an important regulating role for the α1 subunit in thermoregulation and sedation. Ligands of extrasynaptic GABAA receptors such as alcohol and nonbenzodiazepine THIP attenuated the SIH response only at high doses. Conclusions The present study confirms a putative role for the GABAA receptor α1 subunit in hypothermia and sedation and supports a role for α2/3 subunit GABAA receptor agonists in anxiety processes. In conclusion, we show that home cage temperature and locomotor responses to novel home cage stress provide an excellent tool to assess both anxiolytic and sedative effects of various (subunit-selective) GABAAergic compounds. PMID:19169673

  8. Neurodevelopmental disorders among individuals with duplication of 4p13 to 4p12 containing a GABAA receptor subunit gene cluster

    PubMed Central

    Polan, Michelle B; Pastore, Matthew T; Steingass, Katherine; Hashimoto, Sayaka; Thrush, Devon L; Pyatt, Robert; Reshmi, Shalini; Gastier-Foster, Julie M; Astbury, Caroline; McBride, Kim L

    2014-01-01

    Recent studies have shown that certain copy number variations (CNV) are associated with a wide range of neurodevelopmental disorders, including autism spectrum disorders (ASD), bipolar disorder and intellectual disabilities. Implicated regions and genes have comprised a variety of post synaptic complex proteins and neurotransmitter receptors, including gamma-amino butyric acid A (GABAA). Clusters of GABAA receptor subunit genes are found on chromosomes 4p12, 5q34, 6q15 and 15q11-13. Maternally inherited 15q11-13 duplications among individuals with neurodevelopmental disorders are well described, but few case reports exist for the other regions. We describe a family with a 2.42 Mb duplication at chromosome 4p13 to 4p12, identified in the index case and other family members by oligonucleotide array comparative genomic hybridization, that contains 13 genes including a cluster of four GABAA receptor subunit genes. Fluorescent in-situ hybridization was used to confirm the duplication. The duplication segregates with a variety of neurodevelopmental disorders in this family, including ASD (index case), developmental delay, dyspraxia and ADHD (brother), global developmental delays (brother), learning disabilities (mother) and bipolar disorder (maternal grandmother). In addition, we identified and describe another individual unrelated to this family, with a similar duplication, who was diagnosed with ASD, ADHD and borderline intellectual disability. The 4p13 to 4p12 duplication appears to confer a susceptibility to a variety of neurodevelopmental disorders in these two families. We hypothesize that the duplication acts through a dosage effect of GABAA receptor subunit genes, adding evidence for alterations in the GABAergic system in the etiology of neurodevelopmental disorders. PMID:23695283

  9. Structural basis for ligand recognition at the benzodiazepine binding site of GABAA alpha 3 receptor, and pharmacophore-based virtual screening approach.

    PubMed

    Vijayan, R S K; Ghoshal, Nanda

    2008-10-01

    Given the heterogeneity of GABA(A) receptor, the pharmacological significance of identifying subtype selective modulators is increasingly being recognized. Thus, drugs selective for GABA(A) alpha(3) receptors are expected to display fewer side effects than the drugs presently in clinical use. Hence we carried out 3D QSAR (three-dimensional quantitative structure-activity relationship) studies on a series of novel GABA(A) alpha(3) subtype selective modulators to gain more insight into subtype affinity. To identify the 3D functional attributes required for subtype selectivity, a chemical feature-based pharmacophore, primarily based on selective ligands representing diverse structural classes was generated. The obtained pseudo receptor model of the benzodiazepine binding site revealed a binding mode akin to "Message-Address" concept. Scaffold hopping was carried out across multi-conformational May Bridge database for the identification of novel chemotypes. Further a focused data reduction approach was employed to choose a subset of enriched compounds based on "Drug likeness" and "Similarity-based" methods. These results taken together could provide impetus for rational design and optimization of more selective and high affinity leads with a potential to have decreased adverse effects.

  10. Decreased hepatocyte membrane potential differences and GABAA-beta3 expression in human hepatocellular carcinoma.

    PubMed

    Minuk, Gerald Y; Zhang, Manna; Gong, Yuewen; Minuk, Leonard; Dienes, Hans; Pettigrew, Norman; Kew, Michael; Lipschitz, Jeremy; Sun, Dongfeng

    2007-03-01

    To determine whether hepatocyte membrane potential differences (PDs) are depolarized in human HCC and whether depolarization is associated with changes in GABAA receptor expression, hepatocyte PDs and gamma-aminobutyric acid (GABA)A receptor messenger RNA (mRNA) and protein expression were documented in HCC tissues via microelectrode impalement, real-time reverse-transcriptase polymerase chain reaction, and Western blot analysis, respectively. HCC tissues were significantly depolarized (-19.8+/-1.3 versus -25.9+/-3.2 mV, respectively [P<0.05]), and GABAA-beta3 expression was down-regulated (GABAA-beta3 mRNA and protein expression in HCC; 5,693+/-1,385 and 0.29+/-0.11 versus 11,046+/-4,979 copies/100 mg RNA and 0.62+/-0.16 optical density in adjacent tumor tissues, respectively [P=0.002 and P<0.0001, respectively]) when compared with adjacent nontumor tissues. To determine the physiological relevance of the down-regulation, human malignant hepatocytes deficient in GABAA-beta3 receptor expression (Huh-7 cells) were transfected with GABAA-beta3 complementary DNA (cDNA) or vector alone and injected into nu/nu nude mice (n=16-17 group). Tumors developed after a mean (+/-SD) of 51+/-6 days (range: 41-60 days) in 7/16 (44%) mice injected with vector-transfected cells and 70+/-12 days (range: 59-86 days) in 4/17 (24%) mice injected with GABAA-beta3 cDNA-transfected cells (P<0.005). The results of this study indicate that (1) human HCC tissues are depolarized compared with adjacent nontumor tissues, (2) hepatic GABAA-beta3 receptor expression is down-regulated in human HCC, and (3) restoration of GABAA-beta3 receptor expression results in attenuated in vivo tumor growth in nude mice.

  11. GABAA Receptors Containing ρ1 Subunits Contribute to In Vivo Effects of Ethanol in Mice

    PubMed Central

    Blednov, Yuri A.; Benavidez, Jillian M.; Black, Mendy; Leiter, Courtney R.; Osterndorff-Kahanek, Elizabeth; Johnson, David; Borghese, Cecilia M.; Hanrahan, Jane R.; Johnston, Graham A. R.; Chebib, Mary; Harris, R. Adron

    2014-01-01

    GABAA receptors consisting of ρ1, ρ2, or ρ3 subunits in homo- or hetero-pentamers have been studied mainly in retina but are detected in many brain regions. Receptors formed from ρ1 are inhibited by low ethanol concentrations, and family-based association analyses have linked ρ subunit genes with alcohol dependence. We determined if genetic deletion of ρ1 in mice altered in vivo ethanol effects. Null mutant male mice showed reduced ethanol consumption and preference in a two-bottle choice test with no differences in preference for saccharin or quinine. Null mutant mice of both sexes demonstrated longer duration of ethanol-induced loss of righting reflex (LORR), and males were more sensitive to ethanol-induced motor sedation. In contrast, ρ1 null mice showed faster recovery from acute motor incoordination produced by ethanol. Null mutant females were less sensitive to ethanol-induced development of conditioned taste aversion. Measurement of mRNA levels in cerebellum showed that deletion of ρ1 did not change expression of ρ2, α2, or α6 GABAA receptor subunits. (S)-4-amino-cyclopent-1-enyl butylphosphinic acid (“ρ1” antagonist), when administered to wild type mice, mimicked the changes that ethanol induced in ρ1 null mice (LORR and rotarod tests), but the ρ1 antagonist did not produce these effects in ρ1 null mice. In contrast, (R)-4-amino-cyclopent-1-enyl butylphosphinic acid (“ρ2” antagonist) did not change ethanol actions in wild type but produced effects in mice lacking ρ1 that were opposite of the effects of deleting (or inhibiting) ρ1. These results suggest that ρ1 has a predominant role in two in vivo effects of ethanol, and a role for ρ2 may be revealed when ρ1 is deleted. We also found that ethanol produces similar inhibition of function of recombinant ρ1 and ρ2 receptors. These data indicate that ethanol action on GABAA receptors containing ρ1/ρ2 subunits may be important for specific effects of ethanol in vivo. PMID:24454882

  12. GABA(B) receptor modulation of feedforward inhibition through hippocampal neurogliaform cells.

    PubMed

    Price, Christopher J; Scott, Ricardo; Rusakov, Dmitri A; Capogna, Marco

    2008-07-02

    Feedforward inhibition of neurons is a fundamental component of information flow control in the brain. We studied the roles played by neurogliaform cells (NGFCs) of stratum lacunosum moleculare of the hippocampus in providing feedforward inhibition to CA1 pyramidal cells. We recorded from synaptically coupled pairs of anatomically identified NGFCs and CA1 pyramidal cells and found that, strikingly, a single presynaptic action potential evoked a biphasic unitary IPSC (uIPSC), consisting of two distinct components mediated by GABA(A) and GABA(B) receptors. A GABA(B) receptor-mediated unitary response has not previously been observed in hippocampal excitatory neurons. The decay of the GABA(A) receptor-mediated response was slow (time constant = 50 ms), and was tightly regulated by presynaptic GABA(B) receptors. Surprisingly, the GABA(B) receptor ligands baclofen and (2S)-3-{[(1S)-1-(3,4-dichlorophenyl)ethyl]amino-2-hydroxypropyl}(phenylmethyl)phosphinic acid (CGP55845), while affecting the NGFC-mediated uIPSCs, had no effect on action potential-evoked presynaptic Ca2+ signals monitored in individual axonal boutons of NGFCs with two-photon microscopy. In contrast, baclofen clearly depressed presynaptic Ca2+ transients in non-NGF interneurons. Changes in extracellular Ca2+ concentration that mimicked the effects of baclofen or CGP55845 on uIPSCs significantly altered presynaptic Ca2+ transients. Electrophysiological data suggest that GABA(B) receptors expressed by NGFCs contribute to the dynamic control of the excitatory input to CA1 pyramidal neurons from the temporoammonic path. The NGFC-CA1 pyramidal cell connection therefore provides a unique and subtle mechanism to shape the integration time domain for signals arriving via a major excitatory input to CA1 pyramidal cells.

  13. GABA(A) receptor modulation during adolescence alters adult ethanol intake and preference in rats.

    PubMed

    Hulin, Mary W; Amato, Russell J; Winsauer, Peter J

    2012-02-01

    To address the hypothesis that GABA(A) receptor modulation during adolescence may alter the abuse liability of ethanol during adulthood, the effects of adolescent administration of both a positive and negative GABA(A) receptor modulator on adult alcohol intake and preference were assessed. Three groups of adolescent male rats received 12 injections of lorazepam (3.2 mg/kg), dehydroepiandrosterone (DHEA, 56 mg/kg), or vehicle on alternate days starting on postnatal day (PD) 35. After this time, the doses were increased to 5.6 and 100 mg/kg, respectively, for 3 more injections on alternate days. Subjects had access to 25 to 30 g of food daily, during the period of the first 6 injections, and 18 to 20 g thereafter. Food intake of each group was measured 60 minutes after food presentation, which occurred immediately after drug administration on injection days or at the same time of day on noninjection days. When subjects reached adulthood (PD 88), ethanol preference was determined on 2 separate occasions, an initial 3-day period and a 12-day period, in which increasing concentrations of ethanol were presented. During each preference test, intake of water, saccharin, and an ethanol/saccharin solution was measured after each 23-hour access period. During adolescence, lorazepam increased 60-minute food intake, and this effect was enhanced under the more restrictive feeding schedule. DHEA had the opposite effect on injection days, decreasing food intake compared with noninjection days. In adulthood, the lorazepam-treated group preferred the 2 lowest concentrations of ethanol/saccharin more than saccharin alone compared with vehicle-treated subjects, which showed no preference for any concentration of ethanol/saccharin over saccharin. DHEA-treated subjects showed no preference among the 3 solutions. These data demonstrate that GABA(A) receptor modulation during adolescence can alter intake and preference for ethanol in adulthood and highlights the importance of drug history

  14. PWZ-029, A COMPOUND WITH MODERATE INVERSE AGONIST FUNCTIONAL SELECTIVITY AT GABAA RECEPTORS CONTAINING α5 SUBUNITS, IMPROVES PASSIVE, BUT NOT ACTIVE, AVOIDANCE LEARNING IN RATS

    PubMed Central

    Savić, Miroslav M.; Clayton, Terry; Furtmüller, Roman; Gavrilović, Ivana; Samardžić, Janko; Savić, Snežana; Huck, Sigismund; Sieghart, Werner; Cook, James M.

    2008-01-01

    Benzodiazepine (BZ) site ligands affect vigilance, anxiety, memory processes, muscle tone and epileptogenic propensity through modulation of neurotransmission at GABAA receptors containing α1, α2, α3 or α5 subunits, and may have numerous experimental and clinical applications. The ability of nonselective BZ site inverse agonists to enhance cognition, documented in animal models and human studies, is clinically not feasible due to potentially unacceptable psychomotor effects. Most investigations to date have proposed the α1 and/or α5 subunit-containing GABAA receptors as comprising the memory-modulating population of these receptors. The novel ligand PWZ-029, which we synthesised and characterized electrophysiologically, possesses in vitro binding selectivity and moderate inverse agonist functional selectivity at α5-containing GABAA receptors. This ligand has also been examined in rats in the passive and active avoidance, spontaneous locomotor activity, elevated plus maze and grip strength tests, primarily predictive of the effects on the memory acquisition, basal locomotor activity, anxiety level and muscle tone, respectively. The improvement of task learning was detected at the dose of 5 mg/kg in the passive, but not active avoidance test. The inverse agonist PWZ-029 had no effect on anxiety or muscle tone, whereas at higher doses (10 and 20 mg/kg) it decreased locomotor activity. This effect was antagonized by flumazenil and also by the lower (but not the higher) dose of an agonist (SH-053-R-CH3-2’F) selective for GABAA receptors containing the α5 subunit. The hypolocomotor effect of PWZ-029 was not antagonized by the antagonist β-CCt exhibiting a preferential affinity for α1-subunit containing receptors. These data suggest that moderate negative modulation at GABAA receptors containing the α5 subunit is a sufficient condition for eliciting enhanced encoding/consolidation of declarative memory, while the influence of higher doses of modulators at

  15. The insecticide fipronil and its metabolite fipronil sulphone inhibit the rat alpha1beta2gamma2L GABA(A) receptor.

    PubMed

    Li, P; Akk, G

    2008-11-01

    Fipronil is the active ingredient in a number of widely used insecticides. Human exposure to fipronil leads to symptoms (headache, nausea and seizures) typically associated with the antagonism of GABA(A) receptors in the brain. In this study, we have examined the modulation of the common brain GABA(A) receptor subtype by fipronil and its major metabolite, fipronil sulphone. Whole-cell and single-channel recordings were made from HEK 293 cells transiently expressing rat alpha1beta2gamma2L GABA(A) receptors. The major effect of fipronil was to increase the rate of current decay in macroscopic recordings. In single-channel recordings, the presence of fipronil resulted in shorter cluster durations without affecting the intracluster open and closed time distributions or the single-channel conductance. The alpha1V256S mutation, previously shown alleviate channel inhibition by inhibitory steroids and several insecticides, had a relatively small effect on channel block by fipronil. The mode of action of fipronil sulphone was similar to that of its parent compound but the metabolite was less potent at inhibiting the alpha1beta2gamma2L receptor. We conclude that exposure to fipronil induces accumulation of receptors in a novel, long-lived blocked state. This process proceeds in parallel with and independently of, channel desensitization. The lower potency of fipronil sulphone indicates that the conversion serves as a detoxifying process in mammalian brain.

  16. Sex-Dependent Anti-Stress Effect of an α5 Subunit Containing GABAA Receptor Positive Allosteric Modulator

    PubMed Central

    Piantadosi, Sean C.; French, Beverly J.; Poe, Michael M.; Timić, Tamara; Marković, Bojan D.; Pabba, Mohan; Seney, Marianne L.; Oh, Hyunjung; Orser, Beverley A.; Savić, Miroslav M.; Cook, James M.; Sibille, Etienne

    2016-01-01

    Rationale: Current first-line treatments for stress-related disorders such as major depressive disorder (MDD) act on monoaminergic systems and take weeks to achieve a therapeutic effect with poor response and low remission rates. Recent research has implicated the GABAergic system in the pathophysiology of depression, including deficits in interneurons targeting the dendritic compartment of cortical pyramidal cells. Objectives: The present study evaluates whether SH-053-2’F-R-CH3 (denoted “α5-PAM”), a positive allosteric modulator selective for α5-subunit containing GABAA receptors found predominantly on cortical pyramidal cell dendrites, has anti-stress effects. Methods: Female and male C57BL6/J mice were exposed to unpredictable chronic mild stress (UCMS) and treated with α5-PAM acutely (30 min prior to assessing behavior) or chronically before being assessed behaviorally. Results: Acute and chronic α5-PAM treatments produce a pattern of decreased stress-induced behaviors (denoted as “behavioral emotionality”) across various tests in female, but not in male mice. Behavioral Z-scores calculated across a panel of tests designed to best model the range and heterogeneity of human symptomatology confirmed that acute and chronic α5-PAM treatments consistently produce significant decreases in behavioral emotionality in several independent cohorts of females. The behavioral responses to α5-PAM could not be completely accounted for by differences in drug brain disposition between female and male mice. In mice exposed to UCMS, expression of the Gabra5 gene was increased in the frontal cortex after acute treatment and in the hippocampus after chronic treatment with α5-PAM in females only, and these expression changes correlated with behavioral emotionality. Conclusion: We showed that acute and chronic positive modulation of α5 subunit-containing GABAA receptors elicit anti-stress effects in a sex-dependent manner, suggesting novel therapeutic modalities

  17. Evidence that GABA ρ subunits contribute to functional ionotropic GABA receptors in mouse cerebellar Purkinje cells

    PubMed Central

    Harvey, Victoria L; Duguid, Ian C; Krasel, Cornelius; Stephens, Gary J

    2006-01-01

    Ionotropic γ-amino butyric acid (GABA) receptors composed of heterogeneous molecular subunits are major mediators of inhibitory responses in the adult CNS. Here, we describe a novel ionotropic GABA receptor in mouse cerebellar Purkinje cells (PCs) using agents reported to have increased affinity for ρ subunit-containing GABAC over other GABA receptors. Exogenous application of the GABAC-preferring agonist cis-4-aminocrotonic acid (CACA) evoked whole-cell currents in PCs, whilst equimolar concentrations of GABA evoked larger currents. CACA-evoked currents had a greater sensitivity to the selective GABAC antagonist (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) than GABA-evoked currents. Focal application of agonists produced a differential response profile; CACA-evoked currents displayed a much more pronounced attenuation with increasing distance from the PC soma, displayed a slower time-to-peak and exhibited less desensitization than GABA-evoked currents. However, CACA-evoked currents were also completely blocked by bicuculline, a selective agent for GABAA receptors. Thus, we describe a population of ionotropic GABA receptors with a mixed GABAA/GABAC pharmacology. TPMPA reduced inhibitory synaptic transmission at interneurone–Purkinje cell (IN–PC) synapses, causing clear reductions in miniature inhibitory postsynaptic current (mIPSC) amplitude and frequency. Combined application of NO-711 (a selective GABA transporter subtype 1 (GAT-1) antagonist) and SNAP-5114 (a GAT-(2)/3/4 antagonist) induced a tonic GABA conductance in PCs; however, TPMPA had no effect on this current. Immunohistochemical studies suggest that ρ subunits are expressed predominantly in PC soma and proximal dendritic compartments with a lower level of expression in more distal dendrites; this selective immunoreactivity contrasted with a more uniform distribution of GABAA α1 subunits in PCs. Finally, co-immunoprecipitation studies suggest that ρ subunits can form complexes

  18. Involvement of prelimbic medial prefrontal cortex in panic-like elaborated defensive behaviour and innate fear-induced antinociception elicited by GABAA receptor blockade in the dorsomedial and ventromedial hypothalamic nuclei: role of the endocannabinoid CB1 receptor.

    PubMed

    Freitas, Renato Leonardo de; Salgado-Rohner, Carlos José; Hallak, Jaime Eduardo Cecílio; Crippa, José Alexandre de Souza; Coimbra, Norberto Cysne

    2013-09-01

    It has been shown that GABAA receptor blockade in the dorsomedial and ventromedial hypothalamic nuclei (DMH and VMH, respectively) induces elaborated defensive behavioural responses accompanied by antinociception, which has been utilized as an experimental model of panic attack. Furthermore, the prelimbic (PL) division of the medial prefrontal cortex (MPFC) has been related to emotional reactions and the processing of nociceptive information. The aim of the present study was to investigate the possible involvement of the PL cortex and the participation of local cannabinoid CB1 receptors in the elaboration of panic-like reactions and in innate fear-induced antinociception. Elaborated fear-induced responses were analysed during a 10-min period in an open-field test arena. Microinjection of the GABAA receptor antagonist bicuculline into the DMH/VMH evoked panic-like behaviour and fear-induced antinociception, which was decreased by microinjection of the non-selective synaptic contact blocker cobalt chloride in the PL cortex. Moreover, microinjection of AM251 (25, 100 or 400 pmol), an endocannabinoid CB1 receptor antagonist, into the PL cortex also attenuated the defensive behavioural responses and the antinociception that follows innate fear behaviour elaborated by DMH/VMH. These data suggest that the PL cortex plays an important role in the organization of elaborated forward escape behaviour and that this cortical area is also involved in the elaboration of innate fear-induced antinociception. Additionally, CB1 receptors in the PL cortex modulate both panic-like behaviours and fear-induced antinociception elicited by disinhibition of the DMH/VMH through microinjection of bicuculline.

  19. Selective GABA(A) α5 positive allosteric modulators improve cognitive function in aged rats with memory impairment.

    PubMed

    Koh, Ming Teng; Rosenzweig-Lipson, Sharon; Gallagher, Michela

    2013-01-01

    A condition of excess activity in the hippocampal formation is observed in the aging brain and in conditions that confer additional risk during aging for Alzheimer's disease. Compounds that act as positive allosteric modulators at GABA(A) α5 receptors might be useful in targeting this condition because GABA(A) α5 receptors mediate tonic inhibition of principal neurons in the affected network. While agents to improve cognitive function in the past focused on inverse agonists, which are negative allosteric modulators at GABA(A) α5 receptors, research supporting that approach used only young animals and predated current evidence for excessive hippocampal activity in age-related conditions of cognitive impairment. Here, we used two compounds, Compound 44 [6,6-dimethyl-3-(3-hydroxypropyl)thio-1-(thiazol-2-yl)-6,7-dihydro-2-benzothiophen-4(5H)-one] and Compound 6 [methyl 3,5-diphenylpyridazine-4-carboxylate], with functional activity as potentiators of γ-aminobutyric acid at GABA(A) α5 receptors, to test their ability to improve hippocampal-dependent memory in aged rats with identified cognitive impairment. Improvement was obtained in aged rats across protocols differing in motivational and performance demands and across varying retention intervals. Significant memory improvement occurred after either intracereboventricular infusion with Compound 44 (100 μg) in a water maze task or systemic administration with Compound 6 (3 mg/kg) in a radial arm maze task. Furthermore, systemic administration improved behavioral performance at dosing shown to provide drug exposure in the brain and in vivo receptor occupancy in the hippocampus. These data suggest a novel approach to improve neural network function in clinical conditions of excess hippocampal activity. This article is part of a Special Issue entitled 'Cognitive Enhancers'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Acute sleep deprivation preconditions the heart against ischemia/ reperfusion injury: the role of central GABA-A receptors

    PubMed Central

    Parsa, Hoda; Imani, Alireza; Faghihi, Mahdieh; Riahi, Esmail; Badavi, Mohammad; Shakoori, Abbas; Rastegar, Tayebeh; Aghajani, Marjan; Rajani, Sulail Fatima

    2017-01-01

    Objective(s): Central γ-aminobutyric acid (GABA) neurotransmission modulates cardiovascular functions and sleep. Acute sleep deprivation (ASD) affects functions of various body organs via different mechanisms. Here, we evaluated the effect of ASD on cardiac ischemia/reperfusion injury (IRI), and studied the role of GABA-A receptor inhibition in central nucleus of amygdala (CeA) by assessing nitric oxide (NO) and oxidative stress. Materials and Methods: The CeA in sixty male Wistar rats was cannulated for saline or bicuculline (GABA-A receptor antagonist) administration. All animals underwent 30 min of coronary occlusion (ischemia), followed by 2 hr reperfusion (IR). The five experimental groups (n=12) included are as follows: IR: received saline; BIC+IR: received Bicuculline; MLP+IR: received saline, followed by the placement of animals in an aquarium with multiple large platforms; ASD+IR: underwent ASD in an aquarium with multiple small platforms; and BIC+ASD+IR: received bicuculline prior to ASD. Results: Bicuculline administration increased the malondialdehyde levels and infarct size, and decreased the NO metabolites levels and endothelial nitric oxide synthase (eNOS) gene expression in infarcted and non-infarcted areas in comparison to IR group. ASD reduced malondialdehyde levels and infarct size and increased NO metabolites, corticosterone levels and eNOS expression in infarcted and non-infarcted areas as compared to the IR group. Levels of malondialdehyde were increased while levels of NO metabolites, corticosterone and eNOS expression in infarcted and non-infarcted areas were reduced in the BIC+ASD+IR as compared to the ASD+IR group. Conclusion: Blockade of GABA-A receptors in the CeA abolishes ASD-induced cardioprotection by suppressing oxidative stress and NO production. PMID:29299201

  1. Acute sleep deprivation preconditions the heart against ischemia/ reperfusion injury: the role of central GABA-A receptors.

    PubMed

    Parsa, Hoda; Imani, Alireza; Faghihi, Mahdieh; Riahi, Esmail; Badavi, Mohammad; Shakoori, Abbas; Rastegar, Tayebeh; Aghajani, Marjan; Rajani, Sulail Fatima

    2017-11-01

    Central γ-aminobutyric acid (GABA) neurotransmission modulates cardiovascular functions and sleep. Acute sleep deprivation (ASD) affects functions of various body organs via different mechanisms. Here, we evaluated the effect of ASD on cardiac ischemia/reperfusion injury (IRI), and studied the role of GABA-A receptor inhibition in central nucleus of amygdala (CeA) by assessing nitric oxide (NO) and oxidative stress. The CeA in sixty male Wistar rats was cannulated for saline or bicuculline (GABA-A receptor antagonist) administration. All animals underwent 30 min of coronary occlusion (ischemia), followed by 2 hr reperfusion (IR). The five experimental groups (n=12) included are as follows: IR: received saline; BIC+IR: received Bicuculline; MLP+IR: received saline, followed by the placement of animals in an aquarium with multiple large platforms; ASD+IR: underwent ASD in an aquarium with multiple small platforms; and BIC+ASD+IR: received bicuculline prior to ASD. Bicuculline administration increased the malondialdehyde levels and infarct size, and decreased the NO metabolites levels and endothelial nitric oxide synthase (eNOS) gene expression in infarcted and non-infarcted areas in comparison to IR group. ASD reduced malondialdehyde levels and infarct size and increased NO metabolites, corticosterone levels and eNOS expression in infarcted and non-infarcted areas as compared to the IR group. Levels of malondialdehyde were increased while levels of NO metabolites, corticosterone and eNOS expression in infarcted and non-infarcted areas were reduced in the BIC+ASD+IR as compared to the ASD+IR group. Blockade of GABA-A receptors in the CeA abolishes ASD-induced cardioprotection by suppressing oxidative stress and NO production.

  2. An Investigation of the Differential Effects of Ursane Triterpenoids from Centella asiatica, and Their Semisynthetic Analogues, on GABAA Receptors.

    PubMed

    Hamid, Kaiser; Ng, Irene; Tallapragada, Vikram J; Váradi, Linda; Hibbs, David E; Hanrahan, Jane; Groundwater, Paul W

    2016-09-01

    The ursane triterpenoids, asiatic acid 1 and madecassic acid 2, are the major pharmacological constituents of Centella asiatica, commonly known as Gotu Kola, which is used traditionally for the treatment of anxiety and for the improvement of cognition and memory. Using the two-electrode voltage-clamp technique, these triterpenes, and some semisynthetic derivatives, were found to exhibit selective negative modulation of different subtypes of the GABAA receptor expressed in Xenopus laevis oocytes. Despite differing by only one hydroxyl group, asiatic acid 1 was found to be a negative modulator of the GABA-induced current at α1 β2 γ2L, α2 β2 γ2L and α5 β3 γ2L GABAA receptors, while madecassic acid 2 was not. Asiatic acid 1 exhibited the greatest effect at α1 β2 γ2L (IC50 37.05 μm), followed by α5 β3 γ2L (IC50 64.05 μm) then α2 β2 γ2L (IC50 427.2 μm) receptors. Conversion of the carboxylic acid group of asiatic acid 1 to a carboxamide group (2α,3β,23-trihydroxy-urs-12-en-28-amide 5) resulted in enhanced inhibition at both the α1 β2 γ2L (IC50 14.07 μm) and α2 β2 γ2L receptor subtypes (IC50 28.41 μm). The results of this study, and the involvement of α5 -containing GABAA receptors in cognition and memory, suggest that asiatic acid 1 may be a lead compound for the enhancement of cognition and memory. © 2016 John Wiley & Sons A/S.

  3. Mannose Receptor Mediates the Immune Response to Ganoderma atrum Polysaccharides in Macrophages.

    PubMed

    Li, Wen-Juan; Tang, Xiao-Fang; Shuai, Xiao-Xue; Jiang, Cheng-Jia; Liu, Xiang; Wang, Le-Feng; Yao, Yu-Fei; Nie, Shao-Ping; Xie, Ming-Yong

    2017-01-18

    The ability of mannose receptor (MR) to recognize the carbohydrate structures is well-established. Here, we reported that MR was crucial for the immune response to a Ganoderma atrum polysaccharide (PSG-1), as evidenced by elevation of MR in association with increase of phagocytosis and concentrations of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in normal macrophages. Elevation of MR triggered by PSG-1 also led to control lipopolysaccharide (LPS)-triggered inflammatory response via the increase of interleukin-10 (IL-10) and inhibition of phagocytosis and IL-1β. Anti-MR antibody partly attenuated PSG-1-mediated anti-inflammatory responses, while it could not affect TNF-α secretion, suggesting that another receptor was involved in PSG-1-triggered immunomodulatory effects. MR and toll-like receptor (TLR)4 coordinated the influences on the TLR4-mediated signaling cascade by the nuclear factor-κB (NF-κB) pathway in LPS-stimulated macrophages subjected to PSG-1. Collectively, immune response to PSG-1 required recognition by MR in macrophages. The NF-κB pathway served as a central role for the coordination of MR and TLR4 to elicit immune response to PSG-1.

  4. Azadirachtin Interacts with Retinoic Acid Receptors and Inhibits Retinoic Acid-mediated Biological Responses*

    PubMed Central

    Thoh, Maikho; Babajan, Banaganapalli; Raghavendra, Pongali B.; Sureshkumar, Chitta; Manna, Sunil K.

    2011-01-01

    Considering the role of retinoids in regulation of more than 500 genes involved in cell cycle and growth arrest, a detailed understanding of the mechanism and its regulation is useful for therapy. The extract of the medicinal plant Neem (Azadirachta indica) is used against several ailments especially for anti-inflammatory, anti-itching, spermicidal, anticancer, and insecticidal activities. In this report we prove the detailed mechanism on the regulation of retinoic acid-mediated cell signaling by azadirachtin, active components of neem extract. Azadirachtin repressed all trans-retinoic acid (ATRA)-mediated nuclear transcription factor κB (NF-κB) activation, not the DNA binding but the NF-κB-dependent gene expression. It did not inhibit IκBα degradation, IκBα kinase activity, or p65 phosphorylation and its nuclear translocation but inhibited NF-κB-dependent reporter gene expression. Azadirachtin inhibited TRAF6-mediated, but not TRAF2-mediated NF-κB activation. It inhibited ATRA-induced Sp1 and CREB (cAMP-response element-binding protein) DNA binding. Azadirachtin inhibited ATRA binding with retinoid receptors, which is supported by biochemical and in silico evidences. Azadirachtin showed strong interaction with retinoid receptors. It suppressed ATRA-mediated removal of retinoid receptors, bound with DNA by inhibiting ATRA binding to its receptors. Overall, our data suggest that azadirachtin interacts with retinoic acid receptors and suppresses ATRA binding, inhibits falling off the receptors, and activates transcription factors like CREB, Sp1, NF-κB, etc. Thus, azadirachtin exerts anti-inflammatory and anti-metastatic responses by a novel pathway that would be beneficial for further anti-inflammatory and anti-cancer therapies. PMID:21127062

  5. Azadirachtin interacts with retinoic acid receptors and inhibits retinoic acid-mediated biological responses.

    PubMed

    Thoh, Maikho; Babajan, Banaganapalli; Raghavendra, Pongali B; Sureshkumar, Chitta; Manna, Sunil K

    2011-02-11

    Considering the role of retinoids in regulation of more than 500 genes involved in cell cycle and growth arrest, a detailed understanding of the mechanism and its regulation is useful for therapy. The extract of the medicinal plant Neem (Azadirachta indica) is used against several ailments especially for anti-inflammatory, anti-itching, spermicidal, anticancer, and insecticidal activities. In this report we prove the detailed mechanism on the regulation of retinoic acid-mediated cell signaling by azadirachtin, active components of neem extract. Azadirachtin repressed all trans-retinoic acid (ATRA)-mediated nuclear transcription factor κB (NF-κB) activation, not the DNA binding but the NF-κB-dependent gene expression. It did not inhibit IκBα degradation, IκBα kinase activity, or p65 phosphorylation and its nuclear translocation but inhibited NF-κB-dependent reporter gene expression. Azadirachtin inhibited TRAF6-mediated, but not TRAF2-mediated NF-κB activation. It inhibited ATRA-induced Sp1 and CREB (cAMP-response element-binding protein) DNA binding. Azadirachtin inhibited ATRA binding with retinoid receptors, which is supported by biochemical and in silico evidences. Azadirachtin showed strong interaction with retinoid receptors. It suppressed ATRA-mediated removal of retinoid receptors, bound with DNA by inhibiting ATRA binding to its receptors. Overall, our data suggest that azadirachtin interacts with retinoic acid receptors and suppresses ATRA binding, inhibits falling off the receptors, and activates transcription factors like CREB, Sp1, NF-κB, etc. Thus, azadirachtin exerts anti-inflammatory and anti-metastatic responses by a novel pathway that would be beneficial for further anti-inflammatory and anti-cancer therapies.

  6. Gamma-aminobutyric acid (GABA) stimulates pancreatic cancer growth through overexpressing GABAA receptor pi subunit.

    PubMed

    Takehara, Akio; Hosokawa, Masayo; Eguchi, Hidetoshi; Ohigashi, Hiroaki; Ishikawa, Osamu; Nakamura, Yusuke; Nakagawa, Hidewaki

    2007-10-15

    Gamma-aminobutyric acid (GABA) functions primarily as an inhibitory neurotransmitter in the mature central nervous system, and GABA/GABA receptors are also present in nonneural tissues, including cancer, but their precise function in nonneuronal or cancerous cells has thus far been poorly defined. Through the genome-wide cDNA microarray analysis of pancreatic ductal adenocarcinoma (PDAC) cells as well as subsequent reverse transcription-PCR and Northern blot analyses, we identified the overexpression of GABA receptor pi subunit (GABRP) in PDAC cells. We also found the expression of this peripheral type GABAA receptor subunit in few adult human organs. Knockdown of endogenous GABRP expression in PDAC cells by small interfering RNA attenuated PDAC cell growth, suggesting its essential role in PDAC cell viability. Notably, the addition of GABA into the cell culture medium promoted the proliferation of GABRP-expressing PDAC cells, but not GABRP-negative cells, and GABAA receptor antagonists inhibited this growth-promoting effect by GABA. The HEK293 cells constitutively expressing exogenous GABRP revealed the growth-promoting effect of GABA treatment. Furthermore, GABA treatment in GABRP-positive cells increased intracellular Ca2+ levels and activated the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/Erk) cascade. Clinical PDAC tissues contained a higher level of GABA than normal pancreas tissues due to the up-regulation of glutamate decarboxylase 1 expression, suggesting their autocrine/paracrine growth-promoting effect in PDACs. These findings imply that GABA and GABRP could play important roles in PDAC development and progression, and that this pathway can be a promising molecular target for the development of new therapeutic strategies for PDAC.

  7. Effects of Antecedent GABAA Activation With Alprazolam on Counterregulatory Responses to Hypoglycemia in Healthy Humans

    PubMed Central

    Hedrington, Maka S.; Farmerie, Stephnie; Ertl, Andrew C.; Wang, Zhihui; Tate, Donna B.; Davis, Stephen N.

    2010-01-01

    OBJECTIVE To date, there are no data investigating the effects of GABAA activation on counterregulatory responses during repeated hypoglycemia in humans. The aim of this study was to determine the effects of prior GABAA activation using the benzodiazepine alprazolam on the neuroendocrine and autonomic nervous system (ANS) and metabolic counterregulatory responses during next-day hypoglycemia in healthy humans. RESEARCH DESIGN AND METHODS Twenty-eight healthy individuals (14 male and 14 female, age 27 ± 6 years, BMI 24 ± 3 kg/m2, and A1C 5.2 ± 0.1%) participated in four randomized, double-blind, 2-day studies. Day 1 consisted of either morning and afternoon 2-h hyperinsulinemic euglycemia or 2-h hyperinsulinemic hypoglycemia (2.9 mmol/l) with either 1 mg alprazolam or placebo administered 30 min before the start of each clamp. Day 2 consisted of a single-step hyperinsulinemic-hypoglycemic clamp of 2.9 mmol/l. RESULTS Despite similar hypoglycemia (2.9 ± 1 mmol/l) and insulinemia (672 ± 108 pmol/l) during day 2 studies, GABAA activation with alprazolam during day 1 euglycemia resulted in significant blunting (P < 0.05) of ANS (epinephrine, norepinephrine, muscle sympathetic nerve activity, and pancreatic polypeptide), neuroendocrine (glucagon and growth hormone), and metabolic (glucose kinetics, lipolysis, and glycogenolysis) counterregulatory responses. GABAA activation with alprazolam during prior hypoglycemia caused further significant (P < 0.05) decrements in subsequent glucagon, growth hormone, pancreatic polypeptide, and muscle sympathetic nerve activity counterregulatory responses. CONCLUSIONS Alprazolam activation of GABAA pathways during day 1 hypoglycemia can play an important role in regulating a spectrum of key physiologic responses during subsequent (day 2) hypoglycemia in healthy man. PMID:20086227

  8. Effects of antecedent GABAA activation with alprazolam on counterregulatory responses to hypoglycemia in healthy humans.

    PubMed

    Hedrington, Maka S; Farmerie, Stephnie; Ertl, Andrew C; Wang, Zhihui; Tate, Donna B; Davis, Stephen N

    2010-04-01

    To date, there are no data investigating the effects of GABA(A) activation on counterregulatory responses during repeated hypoglycemia in humans. The aim of this study was to determine the effects of prior GABA(A) activation using the benzodiazepine alprazolam on the neuroendocrine and autonomic nervous system (ANS) and metabolic counterregulatory responses during next-day hypoglycemia in healthy humans. Twenty-eight healthy individuals (14 male and 14 female, age 27 +/- 6 years, BMI 24 +/- 3 kg/m(2), and A1C 5.2 +/- 0.1%) participated in four randomized, double-blind, 2-day studies. Day 1 consisted of either morning and afternoon 2-h hyperinsulinemic euglycemia or 2-h hyperinsulinemic hypoglycemia (2.9 mmol/l) with either 1 mg alprazolam or placebo administered 30 min before the start of each clamp. Day 2 consisted of a single-step hyperinsulinemic-hypoglycemic clamp of 2.9 mmol/l. Despite similar hypoglycemia (2.9 +/- 1 mmol/l) and insulinemia (672 +/- 108 pmol/l) during day 2 studies, GABA(A) activation with alprazolam during day 1 euglycemia resulted in significant blunting (P < 0.05) of ANS (epinephrine, norepinephrine, muscle sympathetic nerve activity, and pancreatic polypeptide), neuroendocrine (glucagon and growth hormone), and metabolic (glucose kinetics, lipolysis, and glycogenolysis) counterregulatory responses. GABA(A) activation with alprazolam during prior hypoglycemia caused further significant (P < 0.05) decrements in subsequent glucagon, growth hormone, pancreatic polypeptide, and muscle sympathetic nerve activity counterregulatory responses. Alprazolam activation of GABA(A) pathways during day 1 hypoglycemia can play an important role in regulating a spectrum of key physiologic responses during subsequent (day 2) hypoglycemia in healthy man.

  9. Synaptic pruning in the female hippocampus is triggered at puberty by extrasynaptic GABAA receptors on dendritic spines

    PubMed Central

    Afroz, Sonia; Parato, Julie; Shen, Hui; Smith, Sheryl Sue

    2016-01-01

    Adolescent synaptic pruning is thought to enable optimal cognition because it is disrupted in certain neuropathologies, yet the initiator of this process is unknown. One factor not yet considered is the α4βδ GABAA receptor (GABAR), an extrasynaptic inhibitory receptor which first emerges on dendritic spines at puberty in female mice. Here we show that α4βδ GABARs trigger adolescent pruning. Spine density of CA1 hippocampal pyramidal cells decreased by half post-pubertally in female wild-type but not α4 KO mice. This effect was associated with decreased expression of kalirin-7 (Kal7), a spine protein which controls actin cytoskeleton remodeling. Kal7 decreased at puberty as a result of reduced NMDAR activation due to α4βδ-mediated inhibition. In the absence of this inhibition, Kal7 expression was unchanged at puberty. In the unpruned condition, spatial re-learning was impaired. These data suggest that pubertal pruning requires α4βδ GABARs. In their absence, pruning is prevented and cognition is not optimal. DOI: http://dx.doi.org/10.7554/eLife.15106.001 PMID:27136678

  10. Stimulation of accumbal GABAA receptors inhibits delta2-, but not delta1-, opioid receptor-mediated dopamine efflux in the nucleus accumbens of freely moving rats.

    PubMed

    Aono, Yuri; Kiguchi, Yuri; Watanabe, Yuriko; Waddington, John L; Saigusa, Tadashi

    2017-11-15

    The nucleus accumbens contains delta-opioid receptors that may reduce inhibitory neurotransmission. Reduction in GABA A receptor-mediated inhibition of accumbal dopamine release due to delta-opioid receptor activation should be suppressed by stimulating accumbal GABA A receptors. As delta-opioid receptors are divided into delta2- and delta1-opioid receptors, we analysed the effects of the GABA A receptor agonist muscimol on delta2- and delta1-opioid receptor-mediated accumbal dopamine efflux in freely moving rats using in vivo microdialysis. Drugs were administered intracerebrally through the dialysis probe. Doses of compounds indicate total amount administered (mol) during 25-50min infusions. The delta2-opioid receptor agonist deltorphin II (25.0nmol)- and delta1-opioid receptor agonist DPDPE (5.0nmol)-induced increases in dopamine efflux were inhibited by the delta2-opioid receptor antagonist naltriben (1.5nmol) and the delta1-opioid receptor antagonist BNTX (150.0pmol), respectively. Muscimol (250.0pmol) inhibited deltorphin II (25.0nmol)-induced dopamine efflux. The GABA A receptor antagonist bicuculline (50.0pmol), which failed to affect deltorphin II (25.0nmol)-induced dopamine efflux, counteracted the inhibitory effect of muscimol on deltorphin II-induced dopamine efflux. Neither muscimol (250.0pmol) nor bicuculline (50.0 and 500.0pmol) altered DPDPE (5.0nmol)-induced dopamine efflux. The present results show that reduction in accumbal GABA A receptor-mediated inhibition of dopaminergic activity is necessary to produce delta2-opioid receptor-induced increase in accumbal dopamine efflux. This study indicates that activation of delta2- but not delta1-opioid receptors on the cell bodies and/or terminals of accumbal GABAergic interneurons inhibits GABA release and, accordingly, decreases GABA A receptor-mediated inhibition of dopaminergic terminals, resulting in enhanced accumbal dopamine efflux. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. mGluR2/3 agonist LY379268 rescues NMDA and GABAA receptor level deficits induced in a two-hit mouse model of schizophrenia.

    PubMed

    Engel, Martin; Snikeris, Peta; Matosin, Natalie; Newell, Kelly Anne; Huang, Xu-Feng; Frank, Elisabeth

    2016-04-01

    An imbalance of excitatory and inhibitory neurotransmission underlies the glutamate hypothesis of schizophrenia. Agonists of group II metabotropic glutamate receptors, mGluR2/3, have been proposed as novel therapeutic agents to correct this imbalance. However, the influence of mGluR2/3 activity on excitatory and inhibitory neurotransmitter receptors has not been explored. We aimed to investigate the ability of a novel mGluR2/3 agonist, LY379268, to modulate the availability of the excitatory N-methyl-D-aspartate receptor (NMDA-R) and the inhibitory gamma-aminobutyrate-A receptor (GABAA-R), in a two-hit mouse model of schizophrenia. Wild type (WT) and heterozygous neuregulin 1 transmembrane domain mutant mice (NRG1 HET) were treated daily with phencyclidine (10 mg/kg ip) or saline for 14 days. After a 14-day washout, an acute dose of the mGluR2/3 agonist LY379268 (3 mg/kg), olanzapine (antipsychotic drug comparison, 1.5 mg/kg), or saline was administered. NMDA-R and GABAA-R binding densities were examined by receptor autoradiography in several schizophrenia-relevant brain regions. In both WT and NRG1 HET mice, phencyclidine treatment significantly reduced NMDA-R and GABAA-R binding density in the prefrontal cortex, hippocampus, and nucleus accumbens. Acute treatment with LY379268 restored NMDA-R and GABAA-R levels in the two-hit mouse model comparable to olanzapine. We demonstrate that the mGluR2/3 agonist LY379268 restores excitatory and inhibitory deficits with similar efficiency as olanzapine in our two-hit schizophrenia mouse model. This study significantly contributes to our understanding of the mechanisms underlying the therapeutic effects of LY379268 and supports the use of agents aimed at mGluR2/3.

  12. Loss of Ethanol Conditioned Taste Aversion and Motor Stimulation in Knockin Mice with Ethanol-Insensitive α2-Containing GABAA Receptors

    PubMed Central

    Borghese, C. M.; McCracken, M. L.; Benavidez, J. M.; Geil, C. R.; Osterndorff-Kahanek, E.; Werner, D. F.; Iyer, S.; Swihart, A.; Harrison, N. L.; Homanics, G. E.; Harris, R. A.

    2011-01-01

    GABA type A receptors (GABAA-Rs) are potential targets of ethanol. However, there are multiple subtypes of this receptor, and, thus far, individual subunits have not been definitively linked with specific ethanol behavioral actions. Interestingly, though, a chromosomal cluster of four GABAA-R subunit genes, including α2 (Gabra2), was associated with human alcoholism (Am J Hum Genet 74:705–714, 2004; Pharmacol Biochem Behav 90:95–104, 2008; J Psychiatr Res 42:184–191, 2008). The goal of our study was to determine the role of receptors containing this subunit in alcohol action. We designed an α2 subunit with serine 270 to histidine and leucine 277 to alanine mutations that was insensitive to potentiation by ethanol yet retained normal GABA sensitivity in a recombinant expression system. Knockin mice containing this mutant subunit were tested in a range of ethanol behavioral tests. These mutant mice did not develop the typical conditioned taste aversion in response to ethanol and showed complete loss of the motor stimulant effects of ethanol. Conversely, they also demonstrated changes in ethanol intake and preference in multiple tests. The knockin mice showed increased ethanol-induced hypnosis but no difference in anxiolytic effects or recovery from acute ethanol-induced motor incoordination. Overall, these studies demonstrate that the effects of ethanol at GABAergic synapses containing the α2 subunit are important for specific behavioral effects of ethanol that may be relevant to the genetic linkage of this subunit with human alcoholism. PMID:20876231

  13. The effect of propofol on CA1 pyramidal cell excitability and GABAA-mediated inhibition in the rat hippocampal slice.

    PubMed

    Albertson, T E; Walby, W F; Stark, L G; Joy, R M

    1996-05-24

    An in vitro paired-pulse orthodromic stimulation technique was used to examine the effects of propofol on excitatory afferent terminals, CA1 pyramidal cells and recurrent collateral evoked inhibition in the rat hippocampal slice. Hippocampal slices 400 microns thick were perfused with oxygenated artificial cerebrospinal fluid, and electrodes were placed in the CA1 region to record extracellular field population spike (PS) or excitatory postsynaptic potential (EPSP) responses to stimulation of Schaffer collateral/commissural fibers. Gamma-aminobutyric acid (GABA)-mediated recurrent inhibition was measured using a paired-pulse technique. The major effect of propofol (7-28 microM) was a dose and time dependent increase in the intensity and duration of GABA-mediated inhibition. This propofol effect could be rapidly and completely reversed by exposure to known GABAA antagonists, including picrotoxin, bicuculline and pentylenetetrazol. It was also reversed by the chloride channel antagonist, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). It was not antagonized by central (flumazenil) or peripheral (PK11195) benzodiazepine antagonists. Reversal of endogenous inhibition was also noted with the antagonists picrotoxin and pentylenetetrazol. Input/output curves constructed using stimulus propofol caused only a small enhancement of EPSPs at higher stimulus intensities but had no effect on PS amplitudes. These studies are consistent with propofol having a GABAA-chloride channel mechanism causing its effect on recurrent collateral evoked inhibition in the rat hippocampal slice.

  14. Mechanism of action of the hypnotic zolpidem in vivo

    PubMed Central

    Crestani, Florence; Martin, James R; Möhler, Hanns; Rudolph, Uwe

    2000-01-01

    Zolpidem is a widely used hypnotic agent acting at the GABAA receptor benzodiazepine site. On recombinant receptors, zolpidem displays a high affinity to α1-GABAA receptors, an intermediate affinity to α2- and α3-GABAA receptors and fails to bind to α5-GABAA receptors. However, it is not known which receptor subtype is essential for mediating the sedative-hypnotic action in vivo. Studying α1(H101R) mice, which possess zolpidem-insensitive α1-GABAA receptors, we show that the sedative action of zolpidem is exclusively mediated by α1-GABAA receptors. Similarly, the activity of zolpidem against pentylenetetrazole-induced tonic convulsions is also completely mediated by α1-GABAA receptors. These results establish that the sedative-hypnotic and anticonvulsant activities of zolpidem are due to its action on α1-GABAA receptors and not on α2- or α3-GABAA receptors. PMID:11090095

  15. Interactions of L-3,5,3'-Triiodothyronine, Allopregnanolone, and Ivermectin with the GABAA Receptor: Evidence for Overlapping Intersubunit Binding Modes

    PubMed Central

    Westergard, Thomas; Salari, Reza; Martin, Joseph V.; Brannigan, Grace

    2015-01-01

    Structural mechanisms of modulation of γ-aminobutyric acid (GABA) type A receptors by neurosteroids and hormones remain unclear. The thyroid hormone L-3,5,3’-triiodothyronine (T3) inhibits GABAA receptors at micromolar concentrations and has common features with neurosteroids such as allopregnanolone (ALLOP). Here we use functional experiments on α2β1γ2 GABAA receptors expressed in Xenopus oocytes to detect competitive interactions between T3 and an agonist (ivermectin, IVM) with a crystallographically determined binding site at subunit interfaces in the transmembrane domain of a homologous receptor (glutamate-gated chloride channel, GluCl). T3 and ALLOP also show competitive effects, supporting the presence of both a T3 and ALLOP binding site at one or more subunit interfaces. Molecular dynamics (MD) simulations over 200 ns are used to investigate the dynamics and energetics of T3 in the identified intersubunit sites. In these simulations, T3 molecules occupying all intersubunit sites (with the exception of the α-β interface) display numerous energetically favorable conformations with multiple hydrogen bonding partners, including previously implicated polar/acidic sidechains and a structurally conserved deformation in the M1 backbone. PMID:26421724

  16. A tryptic hydrolysate from bovine milk αs1-casein enhances pentobarbital-induced sleep in mice via the GABAA receptor.

    PubMed

    Dela Peña, Irene Joy I; Kim, Hee Jin; de la Peña, June Bryan; Kim, Mikyung; Botanas, Chrislean Jun; You, Kyung Yi; Woo, Taeseon; Lee, Yong Soo; Jung, Jae-Chul; Kim, Kyung-Mi; Cheong, Jae Hoon

    2016-10-15

    Studies have shown that enzymatic hydrolysis of casein, the primary protein component of cow's milk, produces peptides with various biological activities, and some of these peptides may have sleep-promoting effects. In the present study, we evaluated the sedative and sleep-promoting effects of bovine αS1-casein tryptic hydrolysate (CH), containing a decapeptide αS1-casein known as alpha-casozepine. CH was orally administered to ICR mice at various concentrations (75, 150, 300, or 500mg/kg). An hour after administration, assessment of its sedative (open-field and rota-rod tests) and sleep-potentiating effects (pentobarbital-induced sleeping test and EEG monitoring) were conducted. Although a trend can be observed, CH treatment did not significantly alter the spontaneous locomotor activity and motor function of mice in the open-field and rota-rod tests. On the other hand, CH (150mg/kg, respectively) enhanced the sleep induced by pentobarbital sodium in mice. It also promoted slow-wave (delta) EEG activity in rats; a pattern indicative of sleep or relaxation. These behavioral results indicate that CH has sleep-promoting effects, but no or has minimal sedative effects. To elucidate the probable mechanism behind the effects of CH, we examined its action on intracellular chloride ion influx in cultured human neuroblastoma cells. CH dose-dependently increased chloride ion influx, which was blocked by co-administration of bicuculline, a competitive GABAA receptor antagonist. Taken together, the results of the present study suggest that CH has sleep-promoting properties which are probably mediated through the GABAA receptor-chloride ion channel complex. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. The GABAA Receptor RDL Acts in Peptidergic PDF Neurons to Promote Sleep in Drosophila

    PubMed Central

    Chung, Brian Y.; Kilman, Valerie L.; Keath, J. Russel; Pitman, Jena L.; Allada, Ravi

    2011-01-01

    SUMMARY Sleep is regulated by a circadian clock that largely times sleep and wake to occur at specific times of day and a sleep homeostat that drives sleep as a function of duration of prior wakefulness[1]. To better understand the role of the circadian clock in sleep regulation, we have been using the fruit fly Drosophila melanogaster[2]. Fruit flies display all of the core behavioral features of sleep including relative immobility, elevated arousal thresholds and homeostatic regulation[2, 3]. We assessed sleep-wake modulation by a core set of 20 circadian pacemaker neurons that express the neuropeptide PDF. We find that PDF neuron ablation, loss of pdf or its receptor pdfr results in increased sleep during the late night in light:dark (LD) conditions and more prominent increases on the first subjective day of constant darkness (DD). Flies deploy similar genetic and neurotransmitter pathways to regulate sleep as their mammalian counterparts, including GABA[4]. We find that RNAi-mediated knockdown of the GABAA receptor gene, Resistant to dieldrin (Rdl), in PDF neurons, reduced sleep consistent with a role for GABA in inhibiting PDF neuron function. Patch clamp electrophysiology reveals GABA-activated picrotoxin-sensitive chloride currents on PDF+ neurons. In addition, RDL is detectable most strongly on the large subset of PDF+ pacemaker neurons. These results suggest that GABAergic inhibition of arousal promoting PDF neurons is an important mode of sleep-wake regulation in vivo. PMID:19230663

  18. Chronic nicotine treatment differentially modifies acute nicotine and alcohol actions on GABA(A) and glutamate receptors in hippocampal brain slices.

    PubMed

    Proctor, William R; Dobelis, Peter; Moritz, Anna T; Wu, Peter H

    2011-03-01

    Tobacco and alcohol are often co-abused producing interactive effects in the brain. Although nicotine enhances memory while ethanol impairs it, variable cognitive changes have been reported from concomitant use. This study was designed to determine how nicotine and alcohol interact at synaptic sites to modulate neuronal processes. Acute effects of nicotine, ethanol, and both drugs on synaptic excitatory glutamatergic and inhibitory GABAergic transmission were measured using whole-cell recording in hippocampal CA1 pyramidal neurons from brain slices of mice on control or nicotine-containing diets. Acute nicotine (50 nM) enhanced both GABAergic and glutamatergic synaptic transmission; potentiated GABA(A) receptor currents via activation of α7* and α4β2* nAChRs, and increased N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor currents through α7* receptors. While ethanol (80 mM) also increased GABA(A) currents, it inhibited NMDA currents. Although ethanol had no effect on AMPA currents, it blocked nicotine-induced increases in NMDA and AMPA currents. Following chronic nicotine treatment, acute nicotine or ethanol did not affect NMDA currents, while the effects of GABAergic responses were not altered. Acute ethanol ingestion selectively attenuated nicotine enhancement of excitatory glutamatergic NMDA and AMPA receptor function, suggesting an overall reduction in excitatory output from the hippocampus. It also indicated that ethanol could decrease the beneficial effects of nicotine on memory performance. In addition, chronic nicotine treatment produced tolerance to the effects of nicotine and cross-tolerance to the effects of ethanol on glutamatergic activity, leading to a potential increase in the use of these drugs. British Journal of Pharmacology © 2011 The British Pharmacological Society. No claim to original US government works.

  19. The influence of stress at puberty on mood and learning: Role of the α4βδ GABAA receptor

    PubMed Central

    Smith, Sheryl S.

    2012-01-01

    It is well-known that the onset of puberty is associated with changes in mood as well as cognition. Stress can have an impact on these outcomes, which in many cases, can be more influential in females, suggesting that gender differences exist. The adolescent period is a vulnerable time for the onset of certain psychopathologies, including anxiety disorders, depression and eating disorders, which are also more prevalent in females. One factor which may contribute to stress-triggered anxiety at puberty is the GABAA receptor (GABAR), which is known to play a pivotal role in anxiety. Expression of α4βδ GABARs increases on the dendrites of CA1 pyramidal cells at the onset of puberty in the hippocampus, part of the limbic circuitry which governs emotion. This receptor is a sensitive target for the stress steroid THP (3α-OH-5[α]β-pregnan-20-one), which paradoxically reduces inhibition and increases anxiety during the pubertal period (~PND 35–44) of female mice in contrast to its usual effect to enhance inhibition and reduce anxiety. Spatial learning and synaptic plasticity are also adversely impacted at puberty, likely a result of increased expression of α4βδ GABARs on the dendritic spines of CA1 hippocampal pyramidal cells, which are essential for consolidation of memory. This review will focus on the role of these receptors in mediating behavioral changes at puberty. Stress-mediated changes in mood and cognition in early adolescence may have relevance for the expression of psychopathologies in adulthood. PMID:23079628

  20. Differential effects of short- and long-term zolpidem treatment on recombinant α1β2γ2s subtype of GABAA receptors in vitro

    PubMed Central

    Vlainić, Josipa; Jembrek, Maja Jazvinšćak; Vlainić, Toni; Štrac, Dubravka Švob; Peričić, Danka

    2012-01-01

    Aim: Zolpidem is a non-benzodiazepine agonist at benzodiazepine binding site in GABAA receptors, which is increasingly prescribed. Recent studies suggest that prolonged zolpidem treatment induces tolerance. The aim of this study was to explore the adaptive changes in GABAA receptors following short and long-term exposure to zolpidem in vitro. Methods: Human embryonic kidney (HEK) 293 cells stably expressing recombinant α1β2γ2s GABAA receptors were exposed to zolpidem (1 and 10 μmol/L) for short-term (2 h daily for 1, 2, or 3 consecutive days) or long-term (continuously for 48 h). Radioligand binding studies were used to determine the parameters of [3H]flunitrazepam binding sites. Results: A single (2 h) or repeated (2 h daily for 2 or 3 d) short-term exposure to zolpidem affected neither the maximum number of [3H]flunitrazepam binding sites nor the affinity. In both control and short-term zolpidem treated groups, addition of GABA (1 nmol/L–1 mmol/L) enhanced [3H]flunitrazepam binding in a concentration-dependent manner. The maximum enhancement of [3H]flunitrazepam binding in short-term zolpidem treated group was not significantly different from that in the control group. In contrast, long-term exposure to zolpidem resulted in significantly increase in the maximum number of [3H]flunitrazepam binding sites without changing the affinity. Furthermore, long-term exposure to zolpidem significantly decreased the ability of GABA to stimulate [3H]flunitrazepam binding. Conclusion: The results suggest that continuous, but not intermittent and short-term, zolpidem-exposure is able to induce adaptive changes in GABAA receptors that could be related to the development of tolerance and dependence. PMID:22922343

  1. Interactions of L-3,5,3'-Triiodothyronine [corrected], Allopregnanolone, and Ivermectin with the GABAA Receptor: Evidence for Overlapping Intersubunit Binding Modes.

    PubMed

    Westergard, Thomas; Salari, Reza; Martin, Joseph V; Brannigan, Grace

    2015-01-01

    Structural mechanisms of modulation of γ-aminobutyric acid (GABA) type A receptors by neurosteroids and hormones remain unclear. The thyroid hormone L-3,5,3'-triiodothyronine (T3) inhibits GABAA receptors at micromolar concentrations and has common features with neurosteroids such as allopregnanolone (ALLOP). Here we use functional experiments on α2β1γ2 GABAA receptors expressed in Xenopus oocytes to detect competitive interactions between T3 and an agonist (ivermectin, IVM) with a crystallographically determined binding site at subunit interfaces in the transmembrane domain of a homologous receptor (glutamate-gated chloride channel, GluCl). T3 and ALLOP also show competitive effects, supporting the presence of both a T3 and ALLOP binding site at one or more subunit interfaces. Molecular dynamics (MD) simulations over 200 ns are used to investigate the dynamics and energetics of T3 in the identified intersubunit sites. In these simulations, T3 molecules occupying all intersubunit sites (with the exception of the α-β interface) display numerous energetically favorable conformations with multiple hydrogen bonding partners, including previously implicated polar/acidic sidechains and a structurally conserved deformation in the M1 backbone.

  2. GABAA-benzodiazepine receptors in the dorsomedial (Dm) telencephalon modulate restraint-induced antinociception in the fish Leporinus macrocephalus.

    PubMed

    Wolkers, Carla Patricia Bejo; Barbosa Junior, Augusto; Menescal-de-Oliveira, Leda; Hoffmann, Anette

    2015-08-01

    The possibility that fish experience pain has been denied based on the absence of the neural substrates to support this "experience". In this context, the identification of brain regions involved in nociception modulation could provide important insights regarding the processing of nociceptive information in fish. Our study evaluated the participation of the GABAA-benzodiazepine receptor in the dorsomedial (Dm) telencephalon in restraint-induced antinociception in the fish Leporinus macrocephalus through the microinjection of the anxiolytic drug midazolam. The microinjection of midazolam in the Dm did not alter the nocifensive response; however, this drug did block the inhibition of the nocifensive response to formaldehyde promoted by restraint stress. The fish that received midazolam (40nmol) microinjection prior to restraint (3 or 5min), followed by subcutaneous injection with formaldehyde presented a higher distance traveled than the fish that received saline microinjection. This effect might reflect the specific action of midazolam on benzodiazepine receptors in the Dm telencephalon, as pre-treatment with flumazenil, a benzodiazepine receptor antagonist, inhibited the effects of this drug. In the present study, we present the first evidence demonstrating a role for the dorsomedial telencephalic region in the modulation of stress-induced antinociception in fish, revealing new perspectives in the understanding of nociceptive information processing in this group. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Context-Dependent Modulation of αβγ and αβγ GABAA Receptors by Penicillin: Implications for Phasic and Tonic Inhibition

    PubMed Central

    Feng, Hua-Jun; Botzolakis, Emmanuel J.; Macdonald, Robert L.

    2009-01-01

    Summary Penicillin, an open-channel blocker of GABAA receptors, was recently reported to inhibit phasic, but not tonic, currents in hippocampal neurons. To distinguish between isoform-specific and context-dependent modulation as possible explanations for this selectivity, the effects of penicillin were evaluated on recombinant GABAA receptors expressed in HEK293T cells. When co-applied with saturating GABA, penicillin decreased peak amplitude, induced rebound, and prolonged deactivation of currents evoked from both synaptic and extrasynaptic receptor isoforms. However, penicillin had isoform-specific effects on the extent of desensitization, reflecting its ability to differentially modulate peak (non-equilibrium) and residual (near-equilibrium) currents. This suggested that the context of activation could determine the apparent sensitivity of a given receptor isoform to penicillin. To test this hypothesis, we explored the ability of penicillin to modulate synaptic and extrasynaptic isoforms that were activated under more physiologically relevant conditions. Interestingly, while currents evoked from synaptic isoforms under phasic conditions (transient activation by a saturating concentration of GABA) were substantially inhibited by penicillin, currents evoked from extrasynaptic isoforms under tonic conditions (prolonged application by a sub-saturating concentration of GABA) were minimally affected. We therefore concluded that the reported inability of penicillin to modulate tonic currents could not simply be attributed to insensitivity of extrasynaptic receptors, but rather, reflected an inability to modulate these receptors in their native context of activation. PMID:18775733

  4. Alpha-1A Adrenergic receptor activation increases inhibitory tone in CA1 hippocampus

    PubMed Central

    Hillman, Kristin L.; Lei, Saobo; Doze, Van A.

    2009-01-01

    The endogenous catecholamine norepinephrine (NE) exhibits anti-epileptic properties, however it is not well understood which adrenergic receptor (AR) mediates this effect. The aim of this study was to investigate α1-adrenergic receptor (AR) activation in region CA1 of the hippocampus, a subcortical structure often implicated in temporal lobe epilepsies. Using cell-attached and whole-cell recordings in rat hippocampal slices, we confirmed that selective α1-AR activation increases action potential firing in a subpopulation of CA1 interneurons. We found that this response is mediated via the α1A-AR subtype, initiated by sodium influx, and appears independent of second messenger signaling. In CA1 pyramidal cells, α1A-AR activation decreases activity due to increased pre-synaptic GABA and somatostatin release. Examination of post-synaptic receptor involvement revealed that while GABAA receptors mediate the majority of α1A-adrenergic effects on CA1 pyramidal cells, significant contributions are also made by GABAB and somatostatin receptors. Finally, to test whether α1A-AR activation could have potential therapeutic implications, we performed AR agonist challenges using two in vitro epileptiform models. When GABAA receptors were available, α1A-AR activation significantly decreased epileptiform bursting in CA1. Together, our findings directly link stimulation of the α1A-AR subtype to release of GABA and somatostatin at the single cell level and suggest that α1A-AR activation may represent one mechanism by which NE exerts anti-epileptic effects within the hippocampus. PMID:19201164

  5. The orthosteric GABAA receptor ligand Thio-4-PIOL displays distinctly different functional properties at synaptic and extrasynaptic receptors

    PubMed Central

    Hoestgaard-Jensen, K; O'Connor, R M; Dalby, N O; Simonsen, C; Finger, B C; Golubeva, A; Hammer, H; Bergmann, M L; Kristiansen, U; Krogsgaard-Larsen, P; Bräuner-Osborne, H; Ebert, B; Frølund, B; Cryan, J F; Jensen, A A

    2013-01-01

    BACKGROUND AND PURPOSE Explorations into the heterogeneous population of native GABA type A receptors (GABAARs) and the physiological functions governed by the multiple GABAAR subtypes have for decades been hampered by the lack of subtype-selective ligands. EXPERIMENTAL APPROACH The functional properties of the orthosteric GABAA receptor ligand 5-(4-piperidyl)-3-isothiazolol (Thio-4-PIOL) have been investigated in vitro, ex vivo and in vivo. KEY RESULTS Thio-4-PIOL displayed substantial partial agonist activity at the human extrasynaptic GABAAR subtypes expressed in Xenopus oocytes, eliciting maximal responses of up to ∼30% of that of GABA at α5β3γ2S, α4β3δ and α6β3δ and somewhat lower efficacies at the corresponding α5β2γ2S, α4β2δ and α6β2δ subtypes (maximal responses of 4–12%). In contrast, it was an extremely low efficacious agonist at the α1β3γ2S, α1β2γ2S, α2β2γ2S, α2β3γ2S, α3β2γ2S and α3β3γ2S GABAARs (maximal responses of 0–4%). In concordance with its agonism at extrasynaptic GABAARs and its de facto antagonism at the synaptic receptors, Thio-4-PIOL elicited robust tonic currents in electrophysiological recordings on slices from rat CA1 hippocampus and ventrobasal thalamus and antagonized phasic currents in hippocampal neurons. Finally, the observed effects of Thio-4-PIOL in rat tests of anxiety, locomotion, nociception and spatial memory were overall in good agreement with its in vitro and ex vivo properties. CONCLUSION AND IMPLICATIONS The diverse signalling characteristics of Thio-4-PIOL at GABAARs represent one of the few examples of a functionally subtype-selective orthosteric GABAAR ligand reported to date. We propose that Thio-4-PIOL could be a useful pharmacological tool in future studies exploring the physiological roles of native synaptic and extrasynaptic GABAARs. PMID:23957253

  6. The effects of GABAA and NMDA receptors in the shell-accumbens on spatial memory of METH-treated rats.

    PubMed

    Heysieattalab, Soomaayeh; Naghdi, Nasser; Zarrindast, Mohammad-Reza; Haghparast, Abbas; Mehr, Shahram Ejtemaei; Khoshbouei, Habibeh

    2016-03-01

    Methamphetamine (METH) is a highly addictive and neurotoxic psychostimulant. Its use in humans is often associated with neurocognitive impairment and deficits in hippocampal plasticity. Striatal dopamine system is one of the main targets of METH. The dopamine neurons in the striatum directly or indirectly regulate the GABA and glutamatergic signaling in this region and thus their outputs. This is consistent with previous reports showing modification of neuronal activity in the striatum modulates the expression of hippocampal LTP and hippocampal-dependent memory tasks such as Morris water maze (MWM). Therefore, reversing or preventing METH-induced synaptic modifications via pharmacological manipulations of the shell-nucleus accumbens (shell-NAc) may introduce a viable therapeutic target to attenuate the METH-induced memory deficits. This study is designed to investigate the role of intra-shell NAc manipulation of GABAA and NMDA receptors and their interaction with METH on memory performance in MWM task. Pharmacological manipulations were performed in rats received METH or saline. We found systemic saline plus intra-shell NAc infusions of muscimol dose-dependently impaired performance, while bicuculline had no effect. Surprisingly, the intra-NAc infusions of 0.005μg/rat muscimol that has no effect on memory performance (ineffective dose) prevented METH-induced memory impairment. In the contrary, the intra-NAc infusions of bicuculline (0.2μg/rat) increased METH-induced memory impairment. However, pre-training intra-NAc infusions of D-AP5 dose-dependently impaired performance, while NMDA had no effect in rats received systemic saline (control group). The intra-NAc infusions with an ineffective dose of NMDA (0.1μg/rat) increased METH-induced memory impairment. Furthermore, intra-NAc infusions of D-AP5 with an ineffective dose (0.1μg/rat) prevented METH-induced memory impairment. Our result is consistent with the interpretation that METH-mediated learning deficit

  7. LINKING GABAA RECEPTOR SUBUNITS TO ALCOHOL-INDUCED CONDITIONED TASTE AVERSION AND RECOVERY FROM ACUTE ALCOHOL INTOXICATION

    PubMed Central

    Blednov, Y.A.; Benavidez, J.M.; Black, M.; Chandra, D.; Homanics, G.E.; Rudolph, U.; Harris, R.A.

    2012-01-01

    GABA type A receptors (GABAA-R) are important for ethanol actions and it is of interest to link individual subunits with specific ethanol behaviors. We studied null mutant mice for six different GABAA-R subunits (α1, α2, α3, α4, α5 and δ). Only mice lacking the α2 subunit showed reduction of conditioned taste aversion (CTA) to ethanol. These results are in agreement with data from knock-in mice with mutation of the ethanol-sensitive site in the α2-subunit (Blednov et al., 2011) and indicate this aversive property of ethanol is dependent on ethanol action on α2-containing GABAA-R. Deletion of the α2-subunit led to faster recovery whereas absence of the α3-subunit slowed recovery from ethanol-induced incoordination (rotarod). Deletion of the other four subunits did not affect this behavior. Similar changes in this behavior for the α2 and α3 null mutants were found for flurazepam motor-incoordination. However, no differences in recovery were found in motor-incoordinating effects of an α1-selective modulator (zolpidem) or an α4-selective agonist (gaboxadol). Therefore, recovery of rotarod incoordination is under control of two GABAA-R subunits: α2 and α3. For motor activity, α3 null mice demonstrated higher activation by ethanol (1 g/kg) whereas both α2 and α3 (-/-) knockout mice were less sensitive to ethanol-induced reduction of motor activity (1.5 g/kg). These studies demonstrate that the effects of ethanol at GABAergic synapses containing α2 subunit are important for specific behavioral effects of ethanol which may be relevant to the genetic linkage of the α2 subunit with human alcoholism. PMID:23147414

  8. Improvement in verbal memory following SSRI augmentation of antipsychotic treatment is associated with changes in the expression of mRNA encoding for the GABA-A receptor and BDNF in PMC of schizophrenic patients.

    PubMed

    Silver, Henry; Mandiuk, Nina; Einoch, Reef; Susser, Ehud; Danovich, Lena; Bilker, Warren; Youdim, Moussa; Weinreb, Orly

    2015-05-01

    Verbal memory impairment in schizophrenia is associated with abnormalities in gamma-aminobutyric acid (GABA)-ergic and brain-derived neurotrophic factor (BDNF) systems. Recent evidence from animal and clinical studies that adding fluvoxamine to antipsychotics alters the expression of transcripts encoding for the GABA-A receptor and BDNF led us to postulate that fluvoxamine augmentation may improve memory in schizophrenia. To test this, we examined the effect of add-on fluvoxamine on verbal memory and other cognitive functions and related it to the expression of mRNA coding for the GABA-A receptor and BDNF in peripheral mononuclear cells (PMC) of schizophrenic patients. Twenty-nine patients completed a 6-week study in which fluvoxamine (100 mg/day) was added to ongoing antipsychotic treatment. Verbal memory, abstraction working memory, object and face recognition, and psychomotor speed and clinical symptoms were assessed at baseline and after 3 and 6 weeks of treatment. Blood samples were taken at baseline and weeks 1, 3, and 6 and PMC was assayed for the GABA-A beta3 receptor and BDNF mRNA by quantitative real-time reverse transcription-PCR. Associative and logical verbal memory improved significantly and showed a significant correlation with changes in PMC BDNF and GABA-A beta3 receptor mRNA, which increased during treatment. Abstraction and object recognition improved, but this did not correlate with PMC measures. Negative and positive symptoms improved significantly; the latter showed significant correlations with changes in PMC measures. Addition of fluvoxamine to antipsychotics improves verbal memory. It is postulated that the mechanism involves enhanced GABA-A receptor/BDNF-dependent synaptic plasticity in the hippocampus.

  9. Homology Model of the GABAA Receptor Examined Using Brownian Dynamics

    PubMed Central

    O'Mara, Megan; Cromer, Brett; Parker, Michael; Chung, Shin-Ho

    2005-01-01

    We have developed a homology model of the GABAA receptor, using the subunit combination of α1β2γ2, the most prevalent type in the mammalian brain. The model is produced in two parts: the membrane-embedded channel domain and the extracellular N-terminal domain. The pentameric transmembrane domain model is built by modeling each subunit by homology with the equivalent subunit of the heteropentameric acetylcholine receptor transmembrane domain. This segment is then joined with the extracellular domain built by homology with the acetylcholine binding protein. The all-atom model forms a wide extracellular vestibule that is connected to an oval chamber near the external surface of the membrane. A narrow, cylindrical transmembrane channel links the outer segment of the pore to a shallow intracellular vestibule. The physiological properties of the model so constructed are examined using electrostatic calculations and Brownian dynamics simulations. A deep energy well of ∼80 kT accommodates three Cl− ions in the narrow transmembrane channel and seven Cl− ions in the external vestibule. Inward permeation takes place when one of the ions queued in the external vestibule enters the narrow segment and ejects the innermost ion. The model, when incorporated into Brownian dynamics, reproduces key experimental features, such as the single-channel current-voltage-concentration profiles. Finally, we simulate the γ2 K289M epilepsy inducing mutation and examine Cl− ion permeation through the mutant receptor. PMID:15749776

  10. Prodepressant- and anxiogenic-like effects of serotonin-selective, but not noradrenaline-selective, antidepressant agents in mice lacking α2-containing GABAA receptors.

    PubMed

    Benham, Rebecca S; Hewage, Nishani B; Suckow, Raymond F; Engin, Elif; Rudolph, Uwe

    2017-08-14

    Deficits in neuronal inhibition via gamma-aminobutyric acid (GABA) type A receptors (GABAA-Rs) are implicated in the pathophysiology of major depressive disorder and the therapeutic effects of current antidepressant treatments, however, the relevant GABAA-R subtype as defined by its alpha subunit is still unknown. We previously reported anxiety- and depressive-like behavior in alpha2+/- and alpha2-/- mice, respectively (Vollenweider, 2011). We sought to determine whether this phenotype could be reversed by chronic antidepressant treatment. Adult male mice received 4 or 8mg/kg fluoxetine or 53mg/kg desipramine in their drinking water for four weeks before undergoing behavioral testing. In the novelty suppressed feeding test, desipramine had anxiolytic-like effects reducing the latencies to bite and to eat the pellet in both wild-type and alpha2+/- mice. Surprisingly, 4mg/kg fluoxetine had anxiogenic-like effects in alpha2+/- mice increasing latency to bite and to eat while 8mg/kg fluoxetine increased the latency to eat in both wild-type and alpha2+/- mice. In the forced swim and tail suspension tests, chronic desipramine treatment increased latency to immobility in wild-type and alpha2-/- mice. In contrast, chronic fluoxetine treatment increased immobility in alpha2-/- mice in both tasks while generally having no effect in wild-type mice. These findings suggest that in preclinical paradigms of anxiety and behavioral despair the antidepressant-like effects of desipramine are independent of alpha2-containing GABAA-Rs, while a reduction in alpha2 expression leads to an increased sensitivity to anxiogenic- and prodepressant-like effects with chronic fluoxetine treatment, pointing to a potential role of alpha2-containing GABAA-Rs in the response to serotonin-selective antidepressants. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. GABAA receptors involved in sleep and anaesthesia: β1- versus β3-containing assemblies.

    PubMed

    Yanovsky, Yevgenij; Schubring, Stephan; Fleischer, Wiebke; Gisselmann, Günter; Zhu, Xin-Ran; Lübbert, Hermann; Hatt, Hanns; Rudolph, Uwe; Haas, Helmut L; Sergeeva, Olga A

    2012-01-01

    The histaminergic neurons of the posterior hypothalamus (tuberomamillary nucleus-TMN) control wakefulness, and their silencing through activation of GABA(A) receptors (GABA(A)R) induces sleep and is thought to mediate sedation under propofol anaesthesia. We have previously shown that the β1 subunit preferring fragrant dioxane derivatives (FDD) are highly potent modulators of GABA(A)R in TMN neurons. In recombinant receptors containing the β3N265M subunit, FDD action is abolished and GABA potency is reduced. Using rat, wild-type and β3N265M mice, FDD and propofol, we explored the relative contributions of β1- and β3-containing GABA(A)R to synaptic transmission from the GABAergic sleep-on ventrolateral preoptic area neurons to TMN. In β3N265M mice, GABA potency remained unchanged in TMN neurons, but it was decreased in cultured posterior hypothalamic neurons with impaired modulation of GABA(A)R by propofol. Spontaneous and evoked GABAergic synaptic currents (IPSC) showed β1-type pharmacology, with the same effects achieved by 3 μM propofol and 10 μM PI24513. Propofol and the FDD PI24513 suppressed neuronal firing in the majority of neurons at 5 and 100 μM, and in all cells at 10 and 250 μM, respectively. FDD given systemically in mice induced sedation but not anaesthesia. Propofol-induced currents were abolished (1-6 μM) or significantly reduced (12 μM) in β3N265M mice, whereas gating and modulation of GABA(A)R by PI24513 as well as modulation by propofol were unchanged. In conclusion, β1-containing (FDD-sensitive) GABA(A)R represent the major receptor pool in TMN neurons responding to GABA, while β3-containing (FDD-insensitive) receptors are gated by low micromolar doses of propofol. Thus, sleep and anaesthesia depend on different GABA(A)R types.

  12. Recovery from ketamine-induced amnesia by blockade of GABA-A receptor in the medial prefrontal cortex of mice.

    PubMed

    Farahmandfar, Maryam; Akbarabadi, Ardeshir; Bakhtazad, Atefeh; Zarrindast, Mohammad-Reza

    2017-03-06

    Ketamine and other noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonists are known to induce deficits in learning and cognitive performance sensitive to prefrontal cortex (PFC) functions. The interaction of a glutamatergic and GABAergic systems is essential for many cognitive behaviors. In order to understand the effect of γ-aminobutyric acid (GABA)/glutamate interactions on learning and memory, we investigated the effects of intra medial prefrontal cortex (mPFC) injections of GABAergic agents on ketamine-induced amnesia using a one-trial passive avoidance task in mice. Pre-training systemic administration of ketamine (5, 10 and 15mg/kg, i.p.) dose-dependently decreased the memory acquisition of a one-trial passive avoidance task. Pre-training intra-mPFC injection of muscimol, GABAA receptor agonist (0.05, 0.1 and 0.2μg/mouse) and baclofen GABAB receptor agonist (0.05, 0.1, 0.5 and 1μg/mouse), impaired memory acquisition. However, co-pretreatment of different doses of muscimol and baclofen with a lower dose of ketamine (5mg/kg), which did not induce amnesia by itself, caused inhibition of memory formation. Our data showed that sole pre-training administration of bicuculline, GABA-A receptor antagonist and phaclofen GABA-B receptor antagonist into the mPFC, did not affect memory acquisition. In addition, the amnesia induced by pre-training ketamine (15mg/kg) was significantly decreased by the pretreatment of bicuculline (0.005, 0.1 and 0.5μg/mouse). It can be concluded that GABAergic system of the mPFC is involved in the ketamine-induced impairment of memory acquisition. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Attenuating GABAA Receptor Signaling in Dopamine Neurons Selectively Enhances Reward Learning and Alters Risk Preference in Mice

    PubMed Central

    Parker, Jones G.; Wanat, Matthew J.; Soden, Marta E.; Ahmad, Kinza; Zweifel, Larry S.; Bamford, Nigel S.; Palmiter, Richard D.

    2011-01-01

    Phasic dopamine transmission encodes the value of reward-predictive stimuli and influences both learning and decision-making. Altered dopamine signaling is associated with psychiatric conditions characterized by risky choices such as pathological gambling. These observations highlight the importance of understanding how dopamine neuron activity is modulated. While excitatory drive onto dopamine neurons is critical for generating phasic dopamine responses, emerging evidence suggests that inhibitory signaling also modulates these responses. To address the functional importance of inhibitory signaling in dopamine neurons, we generated mice lacking the β3 subunit of the GABAA receptor specifically in dopamine neurons (β3-KO mice) and examined their behavior in tasks that assessed appetitive learning, aversive learning, and risk preference. Dopamine neurons in midbrain slices from β3-KO mice exhibited attenuated GABA-evoked inhibitory post-synaptic currents. Furthermore, electrical stimulation of excitatory afferents to dopamine neurons elicited more dopamine release in the nucleus accumbens of β3-KO mice as measured by fast-scan cyclic voltammetry. β3-KO mice were more active than controls when given morphine, which correlated with potential compensatory upregulation of GABAergic tone onto dopamine neurons. β3-KO mice learned faster in two food-reinforced learning paradigms, but extinguished their learned behavior normally. Enhanced learning was specific for appetitive tasks, as aversive learning was unaffected in β3-KO mice. Finally, we found that β3-KO mice had enhanced risk preference in a probabilistic selection task that required mice to choose between a small certain reward and a larger uncertain reward. Collectively, these findings identify a selective role for GABAA signaling in dopamine neurons in appetitive learning and decision-making. PMID:22114279

  14. Effect of GABA agonists and GABA-A receptor modulators on cocaine- and food-maintained responding and cocaine discrimination in rats.

    PubMed

    Barrett, Andrew C; Negus, S Stevens; Mello, Nancy K; Caine, S Barak

    2005-11-01

    Recent studies indicate that GABAergic ligands modulate abuse-related effects of cocaine. The goal of this study was to evaluate the effects of a mechanistically diverse group of GABAergic ligands on the discriminative stimulus and reinforcing effects of cocaine in rats. One group of rats was trained to discriminate 5.6 mg/kg cocaine from saline in a two-lever, food-reinforced, drug discrimination procedure. In two other groups, responding was maintained by cocaine (0-3.2 mg/kg/injection) or liquid food (0-100%) under a fixed ratio 5 schedule. Six GABA agonists were tested: the GABA-A receptor agonist muscimol, the GABA-B receptor agonist baclofen, the GABA transaminase inhibitor gamma-vinyl-GABA (GVG), and three GABA-A receptor modulators (the barbiturate pentobarbital, the high-efficacy benzodiazepine midazolam, and the low-efficacy benzodiazepine enazenil). When tested alone, none of the compounds substituted fully for the discriminative stimulus effects of cocaine. As acute pretreatments, select doses of midazolam and pentobarbital produced 2.2- to 3.6-fold rightward shifts in the cocaine dose-effect function. In contrast, muscimol, baclofen, GVG, and enazenil failed to alter the discriminative stimulus effects of cocaine. In assays of cocaine- and food-maintained responding, midazolam and pentobarbital decreased cocaine self-administration at doses 9.6- and 3.3-fold lower, respectively, than those that decreased food-maintained responding. In contrast, muscimol, baclofen, and GVG decreased cocaine self-administration at doses that also decreased food-maintained responding. Enazenil failed to alter cocaine self-administration. Together with previous studies, these data suggest that among mechanistically diverse GABA agonists, high-efficacy GABA-A modulators may be the most effective for modifying the abuse-related effects of cocaine.

  15. Metabotropic glutamate receptor-mediated signaling dampens the HPA axis response to restraint stress

    PubMed Central

    Evanson, Nathan K.; Herman, James P.

    2015-01-01

    Glutamate is an important neurotransmitter in regulation of the neural portion of hypothalamus-pituitary-adrenal (HPA) axis activity, and signals through ionotropic and metabotropic receptors. In the current studies we investigated the role of hypothalamic paraventricular group I metabotropic glutamate receptors in regulation of the HPA axis response to restraint stress in rats. Direct injection of the group I metabotropic glutamate receptor agonist 3,5-dihydroxyphenylglycine (DHPG) into the PVN prior to restraint leads to blunting of the HPA axis response in awake animals. Consistent with this result, infusion of the group I receptor antagonist hexyl-homoibotenic acid (HIBO) potentiates the HPA axis response to restraint. The excitatory effect of blocking paraventricular group I metabotropic glutamate signaling is blocked by co-administration of dexamethasone into the PVN. However, the inhibitory effect of DHPG is not affected by co-administration of the cannabinoid CB1 receptor antagonist AM-251 into the PVN. Together, these results suggest that paraventricular group I metabotropic glutamate receptor signaling acts to dampen HPA axis reactivity. This effect appears to be similar to the rapid inhibitory effect of glucocorticoids at the PVN, but is not mediated by endocannabinoid signaling. PMID:25701594

  16. Diversity in GABAergic signaling.

    PubMed

    Vogt, Kaspar

    2015-01-01

    GABA(A) receptor-mediated synaptic transmission is responsible for inhibitory control of neural function in the brain. Recent progress has shown that GABA(A) receptors also provide a wide range of additional functions beyond simple inhibition. This diversity of functions is mediated by a large variety of different interneuron classes acting on a diverse population of receptor subtypes. Here, I will focus on an additional source of GABAergic signaling diversity, caused by the highly variable ion signaling mechanism of GABA(A) receptors. In concert with the other two sources of GABAergic heterogeneity, this variability in signaling allows for a wide array of GABAergic effects that are crucial for the development of the brain and its function. © 2015 Elsevier Inc. All rights reserved.

  17. Multiple functions of GABA A and GABA B receptors during pattern processing in the zebrafish olfactory bulb.

    PubMed

    Tabor, Rico; Yaksi, Emre; Friedrich, Rainer W

    2008-07-01

    gamma-Aminobutyric acid (GABA)ergic synapses are thought to play pivotal roles in the processing of activity patterns in the olfactory bulb (OB), but their functions have been difficult to study during odor responses in the intact system. We pharmacologically manipulated GABA(A) and GABA(B) receptors in the OB of zebrafish and analysed the effects on odor responses of the output neurons, the mitral cells (MCs), by electrophysiological recordings and temporally deconvolved two-photon Ca2+ imaging. The blockade of GABA(B) receptors enhanced presynaptic Ca2+ influx into afferent axon terminals, and changed the amplitude and time course of a subset of MC responses, indicating that GABA(B) receptors have a modulatory influence on OB output activity. The blockade of GABA(A) receptors induced epileptiform firing, enhanced excitatory responses and abolished fast oscillations in the local field potential. Moreover, the topological reorganization and decorrelation of MC activity patterns during the initial phase of the response was perturbed. These results indicate that GABA(A) receptor-containing circuits participate in the balance of excitation and inhibition, the regulation of total OB output activity, the synchronization of odor-dependent neuronal ensembles, and the reorganization of odor-encoding activity patterns. GABA(A) and GABA(B) receptors are therefore differentially involved in multiple functions of neuronal circuits in the OB.

  18. Negative modulation of α5 GABAA receptors in rats may partially prevent memory impairment induced by MK-801, but not amphetamine- or MK-801-elicited hyperlocomotion

    PubMed Central

    Stamenić, Tamara Timić; Joksimović, Srdjan; Biawat, Poonam; Stanković, Tamara; Marković, Bojan; Cook, James M; Savić, Miroslav M

    2016-01-01

    Reportedly, negative modulation of α5 GABAA receptors may improve cognition in normal and pharmacologically-impaired animals, and such modulation has been proposed as an avenue for treatment of cognitive symptoms in schizophrenia. This study assessed the actions of PWZ-029, administered at doses (2, 5 and 10 mg/kg) at which it reached micromolar concentrations in brain tissue with estimated free concentrations adequate for selective modulation of α5 GABAA receptors, in three cognitive tasks in male Wistar rats acutely treated with the noncompetitive N-methyl-D-aspartate – receptor antagonist, MK-801 (0.1 mg/kg), as well in tests of locomotor activity potentiated by MK-801 (0.2 mg/kg) or amphetamine (0.5 mg/kg). In a hormetic-like manner, only 5 mg/kg PWZ-029 reversed MK-801-induced deficits in novel object recognition test (visual recognition memory), whereas in the Morris water maze, the 2 mg/kg dose of PWZ-029 exerted partial beneficial effects on spatial learning impairment. PWZ-029 did not affect recognition memory deficits in social novelty discrimination procedure. Motor hyperactivity induced with MK-801 or amphetamine was not preventable by PWZ-029. Our results show that certain MK-801-induced memory deficits can be ameliorated by negative modulation of α5 GABAA receptors, and point to the need for further elucidation of their translational relevance to cognitive deterioration in schizophrenia. PMID:26105958

  19. Negative modulation of α₅ GABAA receptors in rats may partially prevent memory impairment induced by MK-801, but not amphetamine- or MK-801-elicited hyperlocomotion.

    PubMed

    Timić Stamenić, Tamara; Joksimović, Srdjan; Biawat, Poonam; Stanković, Tamara; Marković, Bojan; Cook, James M; Savić, Miroslav M

    2015-09-01

    Reportedly, negative modulation of α5 GABAA receptors may improve cognition in normal and pharmacologically-impaired animals, and such modulation has been proposed as an avenue for treatment of cognitive symptoms in schizophrenia. This study assessed the actions of PWZ-029, administered at doses (2, 5, and 10 mg/kg) at which it reached micromolar concentrations in brain tissue with estimated free concentrations adequate for selective modulation of α5 GABAA receptors, in three cognitive tasks in male Wistar rats acutely treated with the noncompetitive N-methyl-d-aspartate receptor antagonist, MK-801 (0.1 mg/kg), as well in tests of locomotor activity potentiated by MK-801 (0.2 mg/kg) or amphetamine (0.5 mg/kg). In a hormetic-like manner, only 5 mg/kg PWZ-029 reversed MK-801-induced deficits in novel object recognition test (visual recognition memory), whereas in the Morris water maze, the 2 mg/kg dose of PWZ-029 exerted partial beneficial effects on spatial learning impairment. PWZ-029 did not affect recognition memory deficits in social novelty discrimination procedure. Motor hyperactivity induced with MK-801 or amphetamine was not preventable by PWZ-029. Our results show that certain MK-801-induced memory deficits can be ameliorated by negative modulation of α5 GABAA receptors, and point to the need for further elucidation of their translational relevance to cognitive deterioration in schizophrenia. © The Author(s) 2015.

  20. Residual effect of a 7-amino metabolite of clonazepam on GABAA receptor function in the nucleus reticularis thalami of the rat.

    PubMed

    Munakata, Mitsutoshi; Tsuchiya, Shigeru

    2008-10-01

    A considerable amount of 7-aminoclonazepam (ACZP), a major metabolite of clonazepam (CZP), is present in the brain during CZP treatment, yet the pharmacological properties of ACZP remain unknown. We investigated the effects of ACZP on the GABA(A) receptor-mediated currents (I(GABA)) in neurons from the nucleus reticularis thalami (NRT) of the rat, using a nystatin-perforated patch technique. Neurons in which CZP (10 nM) exerted prominent augmentation (>100% augmentation) of I(GABA), which comprised 32% of the neurons tested, were included for the analysis of ACZP. In these neurons, ACZP augmented I(GABA), which was blocked by 10 microM flumazenil, a benzodiazepine receptor (BZR) antagonist. The half-maximal effective concentration of ACZP was 124 nM, whereas that of CZP was 1.8 nM. The maximal enhancements induced by ACZP and CZP were 38% and 170%, respectively. In neurons from the ventrobasal complex of the thalamus, the effect of ACZP was negligible. Our results suggest that ACZP was a weak partial BZR agonist and that ACZP may competitively modify the effect of CZP, leading to clinical consequences for patients with high levels of ACZP.

  1. The GABA(A) receptor RDL acts in peptidergic PDF neurons to promote sleep in Drosophila.

    PubMed

    Chung, Brian Y; Kilman, Valerie L; Keath, J Russel; Pitman, Jena L; Allada, Ravi

    2009-03-10

    Sleep is regulated by a circadian clock that times sleep and wake to specific times of day and a homeostat that drives sleep as a function of prior wakefulness. To analyze the role of the circadian clock, we have used the fruit fly Drosophila. Flies display the core behavioral features of sleep, including relative immobility, elevated arousal thresholds, and homeostatic regulation. We assessed sleep-wake modulation by a core set of circadian pacemaker neurons that express the neuropeptide PDF. We find that disruption of PDF function increases sleep during the late night in light:dark and the first subjective day of constant darkness. Flies deploy genetic and neurotransmitter pathways to regulate sleep that are similar to those of their mammalian counterparts, including GABA. We find that RNA interference-mediated knockdown of the GABA(A) receptor gene, Resistant to dieldrin (Rdl), in PDF neurons reduces sleep, consistent with a role for GABA in inhibiting PDF neuron function. Patch-clamp electrophysiology reveals GABA-activated picrotoxin-sensitive chloride currents on PDF+ neurons. In addition, RDL is detectable most strongly on the large subset of PDF+ pacemaker neurons. These results suggest that GABAergic inhibition of arousal-promoting PDF neurons is an important mode of sleep-wake regulation in vivo.

  2. Activation of Brain Somatostatin Signaling Suppresses CRF Receptor-Mediated Stress Response.

    PubMed

    Stengel, Andreas; Taché, Yvette F

    2017-01-01

    Corticotropin-releasing factor (CRF) is the hallmark brain peptide triggering the response to stress and mediates-in addition to the stimulation of the hypothalamus-pituitary-adrenal (HPA) axis-other hormonal, behavioral, autonomic and visceral components. Earlier reports indicate that somatostatin-28 injected intracerebroventricularly counteracts the acute stress-induced ACTH and catecholamine release. Mounting evidence now supports that activation of brain somatostatin signaling exerts a broader anti-stress effect by blunting the endocrine, autonomic, behavioral (with a focus on food intake) and visceral gastrointestinal motor responses through the involvement of distinct somatostatin receptor subtypes.

  3. Selective dopamine receptor 4 activation mediates the hippocampal neuronal calcium response via IP3 and ryanodine receptors.

    PubMed

    Wang, Ya-Li; Wang, Jian-Gang; Guo, Fang-Li; Gao, Xia-Huan; Zhao, Dan-Dan; Zhang, Lin; Wang, Jian-Zhi; Lu, Cheng-Biao

    2017-09-01

    Intracellular calcium is a key factor in most cellular processes, including cell growth, differentiation, proliferation and neurotransmitter release. Dopamine (DA) mediates synaptic transmission by regulating the intracellular calcium content. It is not clear, however, which specific subunit of the DA receptor contributes to DA modulation of intracellular calcium content changes. Through the traditional technique of Fura-2 calcium imaging, this study demonstrated that the DA can induce transient calcium in cultured hippocampal neurons and that this response can be mimicked by a selective dopamine receptor 4 (DR4) agonist PD168077 (PD). PD-induced calcium transience can be blocked by a calcium chelator, such as BAPTA-AM, or by pre-treatment of neurons with thapsigargin, a IP 3 receptor antagonist, or a micromolar concentration of ryanodine, a ryanodine receptor (RyR) antagonist. However PD-induced calcium transience cannot be blocked by pre-treatment of neurons with a free-calcium medium or a cocktail of NMDA receptor, L-type calcium channel and alpha7 nicotinic acetylcholine receptor blockers. These results indicate that the calcium response induced by DR4 activation is mainly through activation of IP 3 receptor in internal stores, which is likely to contribute to the DA modulation of synaptic transmission and cognitive function. Copyright © 2017. Published by Elsevier B.V.

  4. Activation of innate antiviral immune response via double-stranded RNA-dependent RLR receptor-mediated necroptosis

    PubMed Central

    Wang, Wei; Wang, Wei-Hua; Azadzoi, Kazem M.; Su, Ning; Dai, Peng; Sun, Jianbin; Wang, Qin; Liang, Ping; Zhang, Wentao; Lei, Xiaoying; Yan, Zhen; Yang, Jing-Hua

    2016-01-01

    Viruses induce double-stranded RNA (dsRNA) in the host cells. The mammalian system has developed dsRNA-dependent recognition receptors such as RLRs that recognize the long stretches of dsRNA as PAMPs to activate interferon-mediated antiviral pathways and apoptosis in severe infection. Here we report an efficient antiviral immune response through dsRNA-dependent RLR receptor-mediated necroptosis against infections from different classes of viruses. We demonstrated that virus-infected A549 cells were efficiently killed in the presence of a chimeric RLR receptor, dsCARE. It measurably suppressed the interferon antiviral pathway but promoted IL-1β production. Canonical cell death analysis by morphologic assessment, phosphatidylserine exposure, caspase cleavage and chemical inhibition excluded the involvement of apoptosis and consistently suggested RLR receptor-mediated necroptosis as the underlying mechanism of infected cell death. The necroptotic pathway was augmented by the formation of RIP1-RIP3 necrosome, recruitment of MLKL protein and the activation of cathepsin D. Contributing roles of RIP1 and RIP3 were confirmed by gene knockdown. Furthermore, the necroptosis inhibitor necrostatin-1 but not the pan-caspase inhibitor zVAD impeded dsCARE-dependent infected cell death. Our data provides compelling evidence that the chimeric RLR receptor shifts the common interferon antiviral responses of infected cells to necroptosis and leads to rapid death of the virus-infected cells. This mechanism could be targeted as an efficient antiviral strategy. PMID:26935990

  5. Receptor-mediated cell mechanosensing

    PubMed Central

    Chen, Yunfeng; Ju, Lining; Rushdi, Muaz; Ge, Chenghao; Zhu, Cheng

    2017-01-01

    Mechanosensing describes the ability of a cell to sense mechanical cues of its microenvironment, including not only all components of force, stress, and strain but also substrate rigidity, topology, and adhesiveness. This ability is crucial for the cell to respond to the surrounding mechanical cues and adapt to the changing environment. Examples of responses and adaptation include (de)activation, proliferation/apoptosis, and (de)differentiation. Receptor-mediated cell mechanosensing is a multistep process that is initiated by binding of cell surface receptors to their ligands on the extracellular matrix or the surface of adjacent cells. Mechanical cues are presented by the ligand and received by the receptor at the binding interface; but their transmission over space and time and their conversion into biochemical signals may involve other domains and additional molecules. In this review, a four-step model is described for the receptor-mediated cell mechanosensing process. Platelet glycoprotein Ib, T-cell receptor, and integrins are used as examples to illustrate the key concepts and players in this process. PMID:28954860

  6. Metabotropic glutamate receptor-mediated signaling dampens the HPA axis response to restraint stress.

    PubMed

    Evanson, Nathan K; Herman, James P

    2015-10-15

    Glutamate is an important neurotransmitter in the regulation of the neural portion of hypothalamus-pituitary-adrenal (HPA) axis activity, and signals through ionotropic and metabotropic receptors. In the current studies we investigated the role of hypothalamic paraventricular group I metabotropic glutamate receptors in the regulation of the HPA axis response to restraint stress in rats. Direct injection of the group I metabotropic glutamate receptor agonist 3,5-dihydroxyphenylglycine (DHPG) into the PVN prior to restraint leads to blunting of the HPA axis response in awake animals. Consistent with this result, infusion of the group I receptor antagonist hexyl-homoibotenic acid (HIBO) potentiates the HPA axis response to restraint. The excitatory effect of blocking paraventricular group I metabotropic glutamate signaling is blocked by co-administration of dexamethasone into the PVN. However, the inhibitory effect of DHPG is not affected by co-administration of the cannabinoid CB1 receptor antagonist AM-251 into the PVN. Together, these results suggest that paraventricular group I metabotropic glutamate receptor signaling acts to dampen HPA axis reactivity. This effect appears to be similar to the rapid inhibitory effect of glucocorticoids at the PVN, but is not mediated by endocannabinoid signaling. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Identification and cloning of a gamma 3 subunit splice variant of the human GABA(A) receptor.

    PubMed

    Poulsen, C F; Christjansen, K N; Hastrup, S; Hartvig, L

    2000-05-31

    cDNA sequences encoding two forms of the GABA(A) gamma 3 receptor subunit were cloned from human hippocampus. The nucleotide sequences differ by the absence (gamma 3S) or presence (gamma 3L) of 18 bp located in the presumed intracellular loop between transmembrane region (TM) III and IV. The extra 18 bp in the gamma 3L subunit generates a consensus site for phosphorylation by protein kinase C (PKC). Analysis of human genomic DNA encoding the gamma 3 subunit reveals that the 18 bp insert is contiguous with the upstream proximal exon.

  8. Mechanism of action of the insecticides, lindane and fipronil, on glycine receptor chloride channels

    PubMed Central

    Islam, Robiul; Lynch, Joseph W

    2012-01-01

    BACKGROUND AND PURPOSE Docking studies predict that the insecticides, lindane and fipronil, block GABAA receptors by binding to 6′ pore-lining residues. However, this has never been tested at any Cys-loop receptor. The neurotoxic effects of these insecticides are also thought to be mediated by GABAA receptors, although a recent morphological study suggested glycine receptors mediated fipronil toxicity in zebrafish. Here we investigated whether human α1, α1β, α2 and α3 glycine receptors were sufficiently sensitive to block by either compound as to represent possible neurotoxicity targets. We also investigated the mechanisms by which lindane and fipronil inhibit α1 glycine receptors. EXPERIMENTAL APPROACH Glycine receptors were recombinantly expressed in HEK293 cells and insecticide effects were studied using patch-clamp electrophysiology. KEY RESULTS Both compounds completely inhibited all tested glycine receptor subtypes with IC50 values ranging from 0.2–2 µM, similar to their potencies at vertebrate GABAA receptors. Consistent with molecular docking predictions, both lindane and fipronil interacted with 6′ threonine residues via hydrophobic interactions and hydrogen bonds. In contrast with predictions, we found no evidence for lindane interacting at the 2′ level. We present evidence for fipronil binding in a non-blocking mode in the anaesthetic binding pocket, and for lindane as an excellent pharmacological tool for identifying the presence of β subunits in αβ heteromeric glycine receptors. CONCLUSIONS AND IMPLICATIONS This study implicates glycine receptors as novel vertebrate toxicity targets for fipronil and lindane. Furthermore, lindane interacted with pore-lining 6′ threonine residues, whereas fipronil may have both pore and non-pore binding sites. PMID:22035056

  9. Mechanism of action of the insecticides, lindane and fipronil, on glycine receptor chloride channels.

    PubMed

    Islam, Robiul; Lynch, Joseph W

    2012-04-01

    Docking studies predict that the insecticides, lindane and fipronil, block GABA(A) receptors by binding to 6' pore-lining residues. However, this has never been tested at any Cys-loop receptor. The neurotoxic effects of these insecticides are also thought to be mediated by GABA(A) receptors, although a recent morphological study suggested glycine receptors mediated fipronil toxicity in zebrafish. Here we investigated whether human α1, α1β, α2 and α3 glycine receptors were sufficiently sensitive to block by either compound as to represent possible neurotoxicity targets. We also investigated the mechanisms by which lindane and fipronil inhibit α1 glycine receptors. Glycine receptors were recombinantly expressed in HEK293 cells and insecticide effects were studied using patch-clamp electrophysiology. Both compounds completely inhibited all tested glycine receptor subtypes with IC(50) values ranging from 0.2-2 µM, similar to their potencies at vertebrate GABA(A) receptors. Consistent with molecular docking predictions, both lindane and fipronil interacted with 6' threonine residues via hydrophobic interactions and hydrogen bonds. In contrast with predictions, we found no evidence for lindane interacting at the 2' level. We present evidence for fipronil binding in a non-blocking mode in the anaesthetic binding pocket, and for lindane as an excellent pharmacological tool for identifying the presence of β subunits in αβ heteromeric glycine receptors. This study implicates glycine receptors as novel vertebrate toxicity targets for fipronil and lindane. Furthermore, lindane interacted with pore-lining 6' threonine residues, whereas fipronil may have both pore and non-pore binding sites. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  10. Nootropic agents enhance the recruitment of fast GABAA inhibition in rat neocortex.

    PubMed

    Ling, Douglas S F; Benardo, Larry S

    2005-07-01

    It is widely believed that nootropic (cognition-enhancing) agents produce their therapeutic effects by augmenting excitatory synaptic transmission in cortical circuits, primarily through positive modulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptors (AMPARs). However, GABA-mediated inhibition is also critical for cognition, and enhanced GABA function may be likewise therapeutic for cognitive disorders. Could nootropics act through such a mechanism as well? To address this question, we examined the effects of nootropic agents on excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs) recorded from layer V pyramidal cells in acute slices of somatosensory cortex. Aniracetam, a positive modulator of AMPA/kainate receptors, increased the peak amplitude of evoked EPSCs and the amplitude and duration of polysynaptic fast IPSCs, manifested as a greater total charge carried by IPSCs. As a result, the EPSC/IPSC ratio of total charge was decreased, representing a shift in the excitation-inhibition balance that favors inhibition. Aniracetam did not affect the magnitude of either monosynaptic IPSCs (mono-IPSCs) recorded in the presence of excitatory amino acid receptor antagonists, or miniature IPSCs (mIPSCs) recorded in the presence of tetrodotoxin. However, the duration of both mono-IPSCs and mIPSCs was prolonged, suggesting that aniracetam also directly modulates GABAergic transmission. Cyclothiazide, a preferential modulator of AMPAR function, enhanced the magnitude and duration of polysynaptic IPSCs, similar to aniracetam, but did not affect mono-IPSCs. Concanavalin A, a kainate receptor modulator, had little effect on EPSCs or IPSCs, suggesting there was no contribution from kainate receptor activity. These findings indicate that AMPAR modulators strengthen inhibition in neocortical pyramidal cells, most likely by altering the kinetics of AMPARs on synaptically connected interneurons and possibly by modulating GABA(A) receptor responses

  11. Region-specificity of GABAA receptor mediated effects on orientation and direction selectivity in cat visual cortical area 18.

    PubMed

    Jirmann, Kay-Uwe; Pernberg, Joachim; Eysel, Ulf T

    2009-01-01

    The role of GABAergic inhibition in orientation and direction selectivity has been investigated with the GABA(A)-Blocker bicuculline in the cat visual cortex, and results indicated a region specific difference of functional contributions of GABAergic inhibition in areas 17 and 18. In area 17 inhibition appeared mainly involved in sculpturing orientation and direction tuning, while in area 18 inhibition seemed more closely associated with temporal receptive field properties. However, different types of stimuli were used to test areas 17 and 18 and further studies performed in area 17 suggested an important influence of the stimulus type (single light bars vs. moving gratings) on the evoked responses (transient vs. sustained) and inhibitory mechanisms (GABA(A) vs. GABA(B)) which in turn might be more decisive for the specific results than the cortical region. To insert the missing link in this chain of arguments it was necessary to study GABAergic inhibition in area 18 with moving light bars, which has not been done so far. Therefore, in the present study we investigated area 18 cells responding to oriented moving light bars with extracellular recordings and reversible microiontophoretic blockade of GABAergig inhibition with bicuculline methiodide. The majority of neurons was characterized by a pronounced orientation specificity and variable degrees of direction selectivity. GABA(A)ergic inhibition significantly influenced preferred orientation and preferred direction in area 18. During the action of bicuculline orientation tuning width increased and orientation and direction selectivity indices decreased. Our results obtained in area 18 with moving bar stimuli, although in the proportion of affected cells similar to those described in area 17, quantitatively matched the findings for direction and orientation specificity obtained with moving gratings in area 18. Accordingly, stimulus type is not decisive in area 18 and the GABA(A) dependent, inhibitory intracortical

  12. Relative Neurotoxicity of Ivermectin and Moxidectin in Mdr1ab (−/−) Mice and Effects on Mammalian GABA(A) Channel Activity

    PubMed Central

    Ménez, Cécile; Sutra, Jean-François; Prichard, Roger; Lespine, Anne

    2012-01-01

    The anthelmintics ivermectin (IVM) and moxidectin (MOX) display differences in toxicity in several host species. Entrance into the brain is restricted by the P-glycoprotein (P-gp) efflux transporter, while toxicity is mediated through the brain GABA(A) receptors. This study compared the toxicity of IVM and MOX in vivo and their interaction with GABA(A) receptors in vitro. Drug toxicity was assessed in Mdr1ab(−/−) mice P-gp-deficient after subcutaneous administration of increasing doses (0.11–2.0 and 0.23–12.9 µmol/kg for IVM and MOX in P-gp-deficient mice and half lethal doses (LD50) in wild-type mice). Survival was evaluated over 14-days. In Mdr1ab(−/−) mice, LD50 was 0.46 and 2.3 µmol/kg for IVM and MOX, respectively, demonstrating that MOX was less toxic than IVM. In P-gp-deficient mice, MOX had a lower brain-to-plasma concentration ratio and entered into the brain more slowly than IVM. The brain sublethal drug concentrations determined after administration of doses close to LD50 were, in Mdr1ab(−/−) and wild-type mice, respectively, 270 and 210 pmol/g for IVM and 830 and 740–1380 pmol/g for MOX, indicating that higher brain concentrations are required for MOX toxicity than IVM. In rat α1β2γ2 GABA channels expressed in Xenopus oocytes, IVM and MOX were both allosteric activators of the GABA-induced response. The Hill coefficient was 1.52±0.45 for IVM and 0.34±0.56 for MOX (p<0.001), while the maximum potentiation caused by IVM and MOX relative to GABA alone was 413.7±66.1 and 257.4±40.6%, respectively (p<0.05), showing that IVM causes a greater potentiation of GABA action on this receptor. Differences in the accumulation of IVM and MOX in the brain and in the interaction of IVM and MOX with GABA(A) receptors account for differences in neurotoxicity seen in intact and Mdr1-deficient animals. These differences in neurotoxicity of IVM and MOX are important in considering their use in humans. PMID:23133688

  13. Tachykinin receptors mediating airway marcomolecular secretion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gentry, S.E.

    1991-01-01

    Three tachykinin receptor types, termed NK1, NK2, and NK3, can be distinguished by the relative potency of various peptides in eliciting tissue responses. Airway macromolecular secretion is stimulated by the tachykinin substance P (SP). The purposes of this study were to determine the tachykinin receptor subtype responsible for this stimulation, and to examine the possible involvement of other neurotransmitters in mediating this effect. Ferret tracheal explants maintained in organ culture were labeled with {sup 3}H-glucosamine, a precursor of high molecular weight glycoconjugates (HMWG) which are released by airway secretory cells. Secretion of labeled HMWG then was determined in the absencemore » and presence of the tachykinins SP, neurokinin A (NKA), neurokinin B (NKB), physalaemin (PHY), and eledoisin (ELE). To evaluate the possible contribution of other mediators, tachykinin stimulation was examined in the presence of several receptor blockers.« less

  14. Absence of γ-aminobutyric acid-a receptor potentiation in central hypersomnolence disorders.

    PubMed

    Dauvilliers, Yves; Evangelista, Elisa; Lopez, Regis; Barateau, Lucie; Jaussent, Isabelle; Cens, Thierry; Rousset, Matthieu; Charnet, Pierre

    2016-08-01

    The pathophysiology of idiopathic hypersomnia (IH) remains unclear. Recently, cerebrospinal fluid (CSF)-induced enhancement of γ-aminobutyric acid (GABA)-A receptor activity was found in patients with IH compared to controls. Fifteen unrelated patients (2 males and 13 females) affected with typical IH, 12 patients (9 males and 3 females) with narcolepsy type 1, and 15 controls (9 males and 6 females) with unspecified hypersomnolence (n = 7) and miscellaneous neurological conditions (n = 8) were included. A lumbar puncture was performed in all participants to measure CSF hypocretin-1 and GABA-A response. We used a voltage-clamp assay on Xenopus oocytes injected with the RNAs that encode the α1 β2 γ2 or the α2 β2 γ2 subunits of the human GABA-A receptor. A sequence of 6 different applications (GABA, GABA/CSF, and CSF alone) with 2 to 4 oocytes per CSF sample was performed in a whole-cell voltage-clamp assay. Representative current traces from oocytes expressing human α1 β2 γ2 or α2 β2 γ2 GABA-A receptors were recorded in response to 6 successive puffs of GABA diluted in the survival medium (SM), showing stable and reliable response. GABA puffs diluted in SM/CSF solution or SM/CSF solution alone showed no significant differences in the CSF of IH, narcolepsy, or control groups. No associations were found between GABA responses, demographic features, disease duration, or disease severity in the whole population or within groups. Using the Xenopus oocyte assay, we found an absence of GABA-A receptor potentiation with CSF from patients with central hypersomnolence disorders, with no significant differences between hypocretin-deficient and non-hypocretin-deficient patients compared to controls. Ann Neurol 2016;80:259-268. © 2016 American Neurological Association.

  15. Olfactory bulb short axon cell release of GABA and dopamine produces a temporally biphasic inhibition-excitation response in external tufted cells.

    PubMed

    Liu, Shaolin; Plachez, Celine; Shao, Zuoyi; Puche, Adam; Shipley, Michael T

    2013-02-13

    Evidence for coexpression of two or more classic neurotransmitters in neurons has increased, but less is known about cotransmission. Ventral tegmental area (VTA) neurons corelease dopamine (DA), the excitatory transmitter glutamate, and the inhibitory transmitter GABA onto target cells in the striatum. Olfactory bulb (OB) short axon cells (SACs) form interglomerular connections and coexpress markers for DA and GABA. Using an optogenetic approach, we provide evidence that mouse OB SACs release both GABA and DA onto external tufted cells (ETCs) in other glomeruli. Optical activation of channelrhodopsin specifically expressed in DAergic SACs produced a GABA(A) receptor-mediated monosynaptic inhibitory response, followed by DA-D(1)-like receptor-mediated excitatory response in ETCs. The GABA(A) receptor-mediated hyperpolarization activates I(h) current in ETCs; synaptically released DA increases I(h), which enhances postinhibitory rebound spiking. Thus, the opposing actions of synaptically released GABA and DA are functionally integrated by I(h) to generate an inhibition-to-excitation "switch" in ETCs. Consistent with the established role of I(h) in ETC burst firing, we show that endogenous DA release increases ETC spontaneous bursting frequency. ETCs transmit sensory signals to mitral/tufted output neurons and drive intraglomerular inhibition to shape glomerulus output to downstream olfactory networks. GABA and DA cotransmission from SACs to ETCs may play a key role in regulating output coding across the glomerular array.

  16. Olfactory bulb short axon cell release of GABA and dopamine produces a temporally biphasic inhibition-excitation response in external tufted cells

    PubMed Central

    Liu, Shaolin; Plachez, Celine; Shao, Zuoyi; Puche, Adam; Shipley, Michael T.

    2013-01-01

    Evidence for co-expression of two or more classic neurotransmitters in neurons has increased but less is known about co-transmission. Ventral tegmental area (VTA) neurons, co-release dopamine (DA), the excitatory transmitter glutamate and the inhibitory transmitter GABA onto target cells in the striatum. Olfactory bulb (OB) short axon cells (SACs) form interglomerular connections and co-express markers for dopamine (DA) and GABA. Using an optogenetic approach we provide evidence that mouse OB SACs release both GABA and DA onto external tufted cells (ETCs) in other glomeruli. Optical activation of channelrhodopsin specifically expressed in DAergic SACs produced a GABAA receptor-mediated monosynaptic inhibitory response followed by DA-D1-like receptor-mediated excitatory response in ETCs. The GABAA receptor-mediated hyperpolarization activates Ih current in ETCs; synaptically released DA increases Ih, which enhances post-inhibitory rebound spiking. Thus, the opposing actions of synaptically released GABA and DA are functionally integrated by Ih to generate an inhibition-to-excitation “switch” in ETCs. Consistent with the established role of Ih in ETC burst firing, we show that endogenous DA release increases ETC spontaneous bursting frequency. ETCs transmit sensory signals to mitral/tufted output neurons and drive intraglomerular inhibition to shape glomerulus output to downstream olfactory networks. GABA and DA co-transmission from SACs to ETCs may play a key role in regulating output coding across the glomerular array. PMID:23407950

  17. Bicuculline, a GABAA-receptor antagonist, blocked HPA axis activation induced by ghrelin under an acute stress.

    PubMed

    Gastón, M S; Cid, M P; Salvatierra, N A

    2017-03-01

    Ghrelin is a peptide of 28 amino acids with a homology between species, which acts on the central nervous system to regulate different actions, including the control of growth hormone secretion and metabolic regulation. It has been suggested that central ghrelin is a mediator of behavior linked to stress responses and induces anxiety in rodents and birds. Previously, we observed that the anxiogenic-like behavior induced by ghrelin injected into the intermediate medial mesopallium (IMM) of the forebrain was blocked by bicuculline (a GABA A receptor competitive antagonist) but not by diazepam (a GABA A receptor allosteric agonist) in neonatal meat-type chicks (Cobb). Numerous studies have indicated that hypothalamic-pituitary-adrenal (HPA) axis activation mediates the response to stress in mammals and birds. However, it is still unclear whether this effect of ghrelin is associated with HPA activation. Therefore, we investigated whether anxiety behavior induced by intra-IMM ghrelin and mediated through GABA A receptors could be associated with HPA axis activation in the neonatal chick. In the present study, in an Open Field test, intraperitoneal bicuculline methiodide blocked anxiogenic-like behavior as well as the increase in plasma ACTH and corticosterone levels induced by ghrelin (30pmol) in neonatal chicks. Moreover, we showed for the first time that a competitive antagonist of GABA A receptor suppressed the HPA axis activation induced by an anxiogenic dose of ghrelin. These results show that the anxiogenic ghrelin action involves the activation of the HPA axis, with a complex functional interaction with the GABA A receptor. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Expression of functional receptors by the human γ-aminobutyric acid A γ2 subunit

    PubMed Central

    Martínez-Torres, Ataúlfo; Miledi, Ricardo

    2004-01-01

    γ-Aminobutyric acid A (GABAA) receptors are heteromeric membrane proteins formed mainly by various combinations of α, β, and γ subunits; and it is commonly thought that the γ2 subunit alone does not form functional receptors. In contrast, we found that cDNA encoding the γ2L subunit of the human GABAA receptor, injected alone into Xenopus oocytes, expressed functional GABA receptors whose properties were investigated by using the two-microelectrode voltage-clamp technique. GABA elicited desensitizing membrane currents that recovered after a few minutes' wash. Repetitive applications of GABA induced a “run-up” of GABA currents that nearly doubled the amplitude of the first response. The GABA currents inverted direction at about -30 mV, indicating that they are carried mainly by Cl- ions. The homomeric γ2L receptors were also activated by β-alanine > taurine > glycine, and, like some types of heteromeric GABAA receptors, the γ2L receptors were blocked by bicuculline and were potentiated by pentobarbital and flunitrazepam. These results indicate that the human γ2L subunit is capable of forming fully functional GABA receptors by itself in Xenopus oocytes and suggest that the roles proposed for the various subunits that make up the heteromeric GABAA receptors in situ require further clarification. PMID:14981251

  19. Modulation of spinal nociception by GluR5 kainate receptor ligands in acute and hyperalgesic states and the role of gabaergic mechanisms.

    PubMed

    Mascias, Paula; Scheede, Manuela; Bloms-Funke, Petra; Chizh, Boris

    2002-09-01

    GluR5 receptors modulate spinal nociception, however, their role in nociceptive hypersensitivity remains unclear. Using behavioural and electrophysiological approaches, we have investigated several GluR5 ligands in acute and hyperalgesic states. Furthermore, as the GABAergic system plays a role in GluR5 mediated effects in the brain, we also analysed the interaction between GluR5 agonists and GABA(A) antagonists in the spinal cord. In young rats in vivo, the GluR5 selective agonist ATPA was antinociceptive and antihyperalgesic in a model of inflammatory hyperalgesia (ED(50) approximately 4.6 and approximately 5.2 mg/kg, respectively), whereas the GluR5/GluR6 agonist SYM2081 was only antihyperalgesic. ATPA, but not SYM2081, was also able to inhibit nociceptive motoneurone responses in anaesthetised adult rats after intrathecal administration. In hemisected spinal cords in vitro, SYM2081 was inactive, whereas ATPA and another GluR5 agonist, (S)-5-iodowillardiine, inhibited nociceptive reflexes (EC(50) 1.1+/-0.4 micro M and 0.36+/-0.05 micro M, respectively). Both GluR5 agonists also inhibited motoneurone responses to repetitive dorsal root stimulation and their cumulative depolarisation, a correlate of wind-up. The GABA(A) antagonists bicuculline (10 micro M) and SR95531 (1 micro M) enhanced polysynaptic responses to single stimuli but abolished the cumulative depolarisation. Both bicuculline and SR95531 significantly attenuated the inhibition of nociceptive responses by 1 micro M ATPA (by approximately 50%). We conclude that selective GluR5 kainate receptor activation inhibits spinal nociception and its sensitisation caused by ongoing peripheral nociceptive drive. GABA(A) receptors are involved in tonic inhibition of segmental responses, but contribute to their sensitisation by repetitive primary afferent stimulation. Furthermore, there is a cross-talk between the two systems, presumably due to GluR5-mediated activation of GABAergic inhibitory interneurones in the

  20. Auditory Thalamic Circuits and GABAA Receptor Function: Putative Mechanisms in Tinnitus Pathology

    PubMed Central

    Caspary, Donald M.; Llano, Daniel A

    2016-01-01

    Tinnitus is defined as a phantom sound (ringing in the ears), and can significantly reduce the quality of life for those who suffer its effects. Ten to fifteen percent of the general adult population report symptoms of tinnitus with 1-2% reporting that tinnitus negatively impacts their quality of life. Noise exposure is the most common cause of tinnitus and the military environment presents many challenging high-noise situations. Military noise levels can be so intense that standard hearing protection is not adequate. Recent studies suggest a role for inhibitory neurotransmitter dysfunction in response to noise-induced peripheral deafferentation as a key element in the pathology of tinnitus. The auditory thalamus, or medial geniculate body (MGB), is an obligate auditory brain center in a unique position to gate the percept of sound as it projects to auditory cortex and to limbic structures. Both areas are thought to be involved in those individuals most impacted by tinnitus. For MGB, opposing hypotheses have posited either a tinnitus-related pathologic decrease or pathologic increase in GABAergic inhibition. In sensory thalamus, GABA mediates fast synaptic inhibition via synaptic GABAA receptors (GABAARs) as well as a persistent tonic inhibition via high-affinity extrasynaptic GABAARs and slow synaptic inhibition via GABABRs. Down-regulation of inhibitory neurotransmission, related to partial peripheral deafferentation, is consistently presented as partially underpinning neuronal hyperactivity seen in animal models of tinnitus. This maladaptive plasticity/Gain Control Theory of tinnitus pathology (see Auerbach et al., 2014; Richardson et al., 2012) is characterized by reduced inhibition associated with increased spontaneous and abnormal neuronal activity, including bursting and increased synchrony throughout much of the central auditory pathway. A competing hypothesis suggests that maladaptive oscillations between the MGB and auditory cortex, thalamocortical

  1. Side chain flexibility and the pore dimensions in the GABAA receptor

    NASA Astrophysics Data System (ADS)

    Rossokhin, Alexey V.; Zhorov, Boris S.

    2016-07-01

    Permeation of ions through open channels and their accessibility to pore-targeting drugs depend on the pore cross-sectional dimensions, which are known only for static X-ray and cryo-EM structures. Here, we have built homology models of the closed, open and desensitized α1β2γ2 GABAA receptor (GABAAR). The models are based, respectively, on the X-ray structure of α3 glycine receptor (α3 GlyR), cryo-EM structure of α1 GlyR and X-ray structure of β3 GABAAR. We employed Monte Carlo energy minimizations to explore how the pore lumen may increase due to repulsions of flexible side chains from a variable-diameter electroneutral atom (an expanding sphere) pulled through the pore. The expanding sphere computations predicted that the pore diameter averaged along the permeation pathway is larger by approximately 3 Å than that computed for the models with fixed sidechains. Our models predict three major pore constrictions located at the levels of -2', 9' and 20' residues. Residues around the -2' and 9' rings are known to form the desensitization and activation gates of GABAAR. Our computations predict that the 20' ring may also serve as GABAAR gate whose physiological role is unclear. The side chain flexibility of residues -2', 9' and 20' and hence the dimensions of the constrictions depend on the GABAAR functional state.

  2. A Transmembrane Amino Acid in the GABAA Receptor β2 Subunit Critical for the Actions of Alcohols and Anesthetics

    PubMed Central

    McCracken, Mandy L.; Borghese, Cecilia M.; Trudell, James R.

    2010-01-01

    Alcohols and inhaled anesthetics enhance the function of GABAA receptors containing α, β, and γ subunits. Molecular analysis has focused on the role of the α subunits; however, there is evidence that the β subunits may also be important. The goal of our study was to determine whether Asn265, which is homologous to the site implicated in the α subunit (Ser270), contributes to an alcohol and volatile anesthetic binding site in the GABAA receptor β2 subunit. We substituted cysteine for Asn265 and exposed the mutant to the sulfhydryl-specific reagent octyl methanethiosulfonate (OMTS). We used two-electrode voltage-clamp electrophysiology in Xenopus laevis oocytes and found that, after OMTS application, GABA-induced currents were irreversibly potentiated in mutant α1β2(N265C)γ2S receptors [but not α1β2(I264C)γ2S], presumably because of the covalent linking of octanethiol to the thiol group in the substituted cysteine. It is noteworthy that this effect was blocked when OMTS was applied in the presence of octanol. We found that potentiation by butanol, octanol, or isoflurane in the N265C mutant was nearly abolished after the application of OMTS, suggesting that an alcohol and volatile anesthetic binding site at position 265 of the β2 subunit was irreversibly occupied by octanethiol and consequently prevented butanol or isoflurane from binding and producing their effects. OMTS did not affect modulation or direct activation by pentobarbital, but there was a partial reduction of allosteric modulation by flunitrazepam and alphaxalone in mutant α1β2(N265C)γ2S receptors after OMTS was applied. Our findings provide evidence that Asn265 may contribute to an alcohol and anesthetic binding site. PMID:20826568

  3. Changes in the sensitivity of GABAA current rundown to drug treatments in a model of temporal lobe epilepsy

    PubMed Central

    Cifelli, Pierangelo; Palma, Eleonora; Roseti, Cristina; Verlengia, Gianluca; Simonato, Michele

    2013-01-01

    The pharmacological treatment of mesial temporal lobe epilepsy (mTLE), the most common epileptic syndrome in adults, is still unsatisfactory, as one-third of the patients are or become refractory to antiepileptic agents. Refractoriness may depend upon drug-induced alterations, but the disease per se may also undergo a progressive evolution that affects the sensitivity to drugs. mTLE has been shown to be associated with a dysfunction of the inhibitory signaling mediated by GABAA receptors. In particular, the repetitive activation of GABAA receptors produces a use-dependent decrease (rundown) of the evoked currents (IGABA), which is markedly enhanced in the hippocampus and cortex of drug-resistant mTLE patients. This phenomenon has been also observed in the pilocarpine model, where the increased IGABA rundown is observed in the hippocampus at the time of the first spontaneous seizure, then extends to the cortex and remains constant in the chronic phase of the disease. Here, we examined the sensitivity of IGABA to pharmacological modulation. We focused on the antiepileptic agent levetiracetam (LEV) and on the neurotrophin brain-derived neurotrophic factor (BDNF), which were previously reported to attenuate mTLE-induced increased rundown in the chronic human tissue. In the pilocarpine model, BDNF displayed a paramount effect, decreasing rundown in the hippocampus at the time of the first seizure, as well as in the hippocampus and cortex in the chronic period. In contrast, LEV did not affect rundown in the hippocampus, but attenuated it in the cortex. Interestingly, this effect of LEV was also observed on the still unaltered rundown observed in the cortex at the time of the first spontaneous seizure. These data suggest that the sensitivity of GABAA receptors to pharmacological interventions undergoes changes during the natural history of mTLE, implicating that the site of seizure initiation and the timing of treatment may highly affect the therapeutic outcome. PMID

  4. Assessment of GABA(A)benzodiazepine receptor (GBzR) sensitivity in patients on benzodiazepines.

    PubMed

    Potokar, J; Coupland, N; Wilson, S; Rich, A; Nutt, D

    1999-09-01

    To measure GABA(A) benzodiazepine receptor sensitivity in patients taking benzodiazepines and compare with matched controls. Seven patients who were on prescribed benzodiazepines for an anxiety disorder or insomnia were recruited from general practice and an adult mental health service outpatient clinic. They were matched with seven volunteers. All subjects received an intravenous injection of midazolam 50 microgram/kg in 10 ml normal saline over 10 min. Objective responses to midazolam were assessed using saccadic eye movement velocity slowing and subjective assessments using visual analogue scales. Measurements were recorded for 120 min and plasma midazolam concentrations obtained at 15-min intervals post-infusion to 120 min. Ratios of pharmacodynamic/pharmacokinetic effects were obtained for each individual to estimate GABA(A) benzodiazepine receptor sensitivity. Patients had an attenuated response to midazolam on both subjective and objective measures. GABA(A) benzodiazepine receptor sensitivity was significantly reduced in the patient group. Chronic treatment with benzodiazepines was associated with reduced effects of midazolam. Saccadic eye movement velocity was especially sensitive as a measure of attenuated response.

  5. Rapid PCR-mediated synthesis of competitor molecules for accurate quantification of beta(2) GABA(A) receptor subunit mRNA.

    PubMed

    Vela, J; Vitorica, J; Ruano, D

    2001-12-01

    We describe a fast and easy method for the synthesis of competitor molecules based on non-specific conditions of PCR. RT-competitive PCR is a sensitive technique that allows quantification of very low quantities of mRNA molecules in small tissue samples. This technique is based on the competition established between the native and standard templates for nucleotides, primers or other factors during PCR. Thus, the most critical parameter is the use of good internal standards to generate a standard curve from which the amount of native sequences can be properly estimated. At the present time different types of internal standards and methods for their synthesis have been described. Normally, most of these methods are time-consuming and require the use of different sets of primers, different rounds of PCR or specific modifications, such as site-directed mutagenesis, that need subsequent analysis of the PCR products. Using our method, we obtained in a single round of PCR and with the same primer pair, competitor molecules that were successfully used in RT-competitive PCR experiments. The principal advantage of this method is high versatility and economy. Theoretically it is possible to synthesize a specific competitor molecule for each primer pair used. Finally, using this method we have been able to quantify the increase in the expression of the beta(2) GABA(A) receptor subunit mRNA that occurs during rat hippocampus development.

  6. Postsynaptic activity reverses the sign of the acetylcholine-induced long-term plasticity of GABAA inhibition

    PubMed Central

    Domínguez, Soledad; Fernández de Sevilla, David; Buño, Washington

    2014-01-01

    Acetylcholine (ACh) regulates forms of plasticity that control cognitive functions but the underlying mechanisms remain largely unknown. ACh controls the intrinsic excitability, as well as the synaptic excitation and inhibition of CA1 hippocampal pyramidal cells (PCs), cells known to participate in circuits involved in cognition and spatial navigation. However, how ACh regulates inhibition in function of postsynaptic activity has not been well studied. Here we show that in rat PCs, a brief pulse of ACh or a brief stimulation of cholinergic septal fibers combined with repeated depolarization induces strong long-term enhancement of GABAA inhibition (GABAA-LTP). Indeed, this enhanced inhibition is due to the increased activation of α5βγ2 subunit-containing GABAA receptors by the GABA released. GABAA-LTP requires the activation of M1-muscarinic receptors and an increase in cytosolic Ca2+. In the absence of PC depolarization ACh triggered a presynaptic depolarization-induced suppression of inhibition (DSI), revealing that postsynaptic activity gates the effects of ACh from presynaptic DSI to postsynaptic LTP. These results provide key insights into mechanisms potentially linked with cognitive functions, spatial navigation, and the homeostatic control of abnormal hyperexcitable states. PMID:24938789

  7. Regulation of N-formyl peptide-mediated degranulation by receptor phosphorylation.

    PubMed

    Vines, Charlotte M; Xue, Mei; Maestas, Diane C; Cimino, Daniel F; Prossnitz, Eric R

    2002-12-15

    One of the major functions of the N-formyl peptide receptor (FPR) is to mediate leukocyte degranulation. Phosphorylation of the C-terminal domain of the FPR is required for receptor internalization and desensitization. Although arrestins mediate phosphorylation-dependent desensitization, internalization, and initiation of novel signaling cascades for a number of G protein-coupled receptors, their roles in FPR regulation and signaling remain unclear. CXCR1-mediated degranulation of RBL-2H3 cells is promoted by arrestin binding. To determine whether receptor phosphorylation or arrestin binding is required to promote FPR-mediated degranulation, we used RBL-2H3 cells stably transfected with either the wild-type FPR or a mutant form, DeltaST, which is incapable of undergoing ligand-stimulated phosphorylation. We observed that stimulation of wild-type FPR resulted in very low levels of degranulation compared with that mediated by cross-linking of the Fc(epsilon)RI receptor. Stimulation of the DeltaST mutant, however, resulted in levels of degranulation comparable to those of the Fc(epsilon)RI receptor, demonstrating that neither receptor phosphorylation nor arrestin binding was necessary to initiate FPR-mediated degranulation. Degranulation initiated by the DeltaST mutant was proportional to the level of active cell surface receptor, suggesting that either receptor internalization or desensitization may be responsible for terminating degranulation of the wild-type FPR. To distinguish between these possibilities, we used a partially phosphorylation-deficient mutant of the FPR that can undergo internalization, but not desensitization. Degranulation by this mutant FPR was indistinguishable from that of the DeltaST mutant, indicating that FPR phosphorylation or binding of arrestin but not internalization terminates the degranulation response.

  8. A multilevel prediction of physiological response to challenge: Interactions among child maltreatment, neighborhood crime, endothelial nitric oxide synthase gene (eNOS), and GABA(A) receptor subunit alpha-6 gene (GABRA6).

    PubMed

    Lynch, Michael; Manly, Jody Todd; Cicchetti, Dante

    2015-11-01

    Physiological response to stress has been linked to a variety of healthy and pathological conditions. The current study conducted a multilevel examination of interactions among environmental toxins (i.e., neighborhood crime and child maltreatment) and specific genetic polymorphisms of the endothelial nitric oxide synthase gene (eNOS) and GABA(A) receptor subunit alpha-6 gene (GABRA6). One hundred eighty-six children were recruited at age 4. The presence or absence of child maltreatment as well as the amount of crime that occurred in their neighborhood during the previous year were determined at that time. At age 9, the children were brought to the lab, where their physiological response to a cognitive challenge (i.e., change in the amplitude of the respiratory sinus arrhythmia) was assessed and DNA samples were collected for subsequent genotyping. The results confirmed that complex Gene × Gene, Environment × Environment, and Gene × Environment interactions were associated with different patterns of respiratory sinus arrhythmia reactivity. The implications for future research and evidence-based intervention are discussed.

  9. Ester to amide substitution improves selectivity, efficacy and kinetic behavior of a benzodiazepine positive modulator of GABAA receptors containing the α5 subunit

    PubMed Central

    Stamenić, Tamara Timić; Poe, Michael M.; Rehman, Sabah; Santrač, Anja; Divović, Branka; Scholze, Petra; Ernst, Margot; Cook, James M.; Savić, Miroslav M.

    2016-01-01

    We have synthesized and characterized MP-III-022 ((R)-8-ethynyl-6-(2-fluorophenyl)-N,4-dimethyl-4H-benzo[f]imidazo[1,5-a][1,4]diazepine-3-carboxamide) in vitro and in vivo as a binding- and efficacy-selective positive allosteric modulator of GABAA receptors containing the α5 subunit (α5GABAARs). By approximation of the electrophysiological responses which the estimated free rat brain concentrations can induce, we demonstrated that convenient systemic administration of MP-III-022 in the dose range 1-10 mg/kg may result in a selective potentiation, over a wide range from mild to moderate to strong, of α5βγ2 GABAA receptors. For eliciting a comparable range of potentiation, the widely studied parent ligand SH-053-2′F-R-CH3 containing an ester moiety needs to be administered over a much wider dose range (10-200 mg/kg), but at the price of activating non-α5 GABAARs as well as the desired α5GABAARs at the highest dose. At the dose of 10 mg/kg, which elicits a strong positive modulation of α5GABAARs, MP-III-022 caused mild, but significant muscle relaxation, while at doses 1-10 mg/kg was devoid of ataxia, sedation or an influence on the anxiety level, characteristic for non-selective benzodiazepines. As an amide compound with improved stability and kinetic properties, MP-III-022 may represent an optimized tool to study the influence of α5GABAARs on the neuronal pathways related to CNS disorders such as schizophrenia, Alzheimer's disease, Down syndrome or autism. PMID:27639297

  10. Bud extracts from Tilia tomentosa Moench inhibit hippocampal neuronal firing through GABAA and benzodiazepine receptors activation.

    PubMed

    Allio, Arianna; Calorio, Chiara; Franchino, Claudio; Gavello, Daniela; Carbone, Emilio; Marcantoni, Andrea

    2015-08-22

    Tilia tomentosa Moench bud extracts (TTBEs) is used in traditional medicine for centuries as sedative compound. Different plants belonging to the Tilia genus have shown their efficacy in the treatment of anxiety but still little is known about the mechanism of action of their bud extracts. To evaluate the action of TTBEs as anxiolytic and sedative compound on in vitro hippocampal neurons. The anxiolytic effect of TTBEs was assayed by testing the effects of these compounds on GABAA receptor-activated chloride current of hippocampal neurons by means of the patch-clamp technique and microelectrode-arrays (MEAs). TTBEs acutely administered on mouse hippocampal neurons, activated a chloride current comparable to that measured in the presence of GABA (100 µM). Bicuculline (100 µM) and picrotoxin (100 µM) blocked about 90% of this current, while the remaining 10% was blocked by adding the benzodiazepine (BDZ) antagonist flumazenil (30 µM). Flumazenil alone blocked nearly 60% of the TTBEs activated current, suggesting that TTBEs binds to both GABAA and BDZ receptor sites. Application of high-doses of TTBEs on spontaneous active hippocampal neurons grown for 3 weeks on MEAs blocked the synchronous activity of these neurons. The effects were mimicked by GABA and prevented by picrotoxin (100µM) and flumazenil (30 µM). At minimal doses, TTBEs reduced the frequency of synchronized bursts and increased the cross-correlation index of synchronized neuronal firing. Our data suggest that TTBEs mimics GABA and BDZ agonists by targeting hippocampal GABAergic synapses and inhibiting network excitability by increasing the strength of inhibitory synaptic outputs. Our results contribute toward the validation of TTBEs as effective sedative and anxiolytic compound. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Differential antagonism of tetramethylenedisulfotetramine-induced seizures by agents acting at NMDA and GABAA receptors

    PubMed Central

    Shakarjian, Michael P.; Velíšková, Jana; Stanton, Patric K.; Velíšek, Libor

    2012-01-01

    Tetramethylenedisulfotetramine (TMDT) is a highly lethal neuroactive rodenticide responsible for many accidental and intentional poisonings in mainland China. Ease of synthesis, water solubility, potency, and difficulty to treat make TMDT a potential weapon for terrorist activity. We characterized TMDT-induced convulsions and mortality in male C57BL/6 mice. TMDT (ip) produced a continuum of twitches, clonic, and tonic-clonic seizures decreasing in onset latency and increasing in severity with increasing dose; 0.4 mg/kg was 100% lethal. The NMDA antagonist, ketamine (35 mg/kg) injected ip immediately after the first TMDT-induced seizure, did not change number of tonic-clonic seizures or lethality, but increased the number of clonic seizures. Doubling the ketamine dose decreased tonic-clonic seizures and eliminated lethality through a 60 min observation period. Treating mice with another NMDA antagonist, MK-801, 0.5 or 1 mg/kg ip, showed similar effects as low and high doses of ketamine, respectively, and prevented lethality, converting status epilepticus EEG activity to isolated interictal discharges. Treatment with these agents 15 min prior to TMDT administration did not increase their effectiveness. Post-treatment with the GABAA receptor allosteric enhancer diazepam (5 mg/kg) greatly reduced seizure manifestations and prevented lethality 60 min post-TMDT, but ictal events were evident in EEG recordings and, hours post-treatment, mice experienced status epilepticus and died. Thus, TMDT is a highly potent and lethal convulsant for which single-dose benzodiazepine treatment is inadequate in managing electrographic seizures or lethality. Repeated benzodiazepine dosing or combined application of benzodiazepines and NMDA receptor antagonists are more likely to be effective in treating TMDT poisoning. PMID:23022509

  12. Metabotropic GABAB receptors mediate GABA inhibition of acetylcholine release in the rat neuromuscular junction.

    PubMed

    Malomouzh, Artem I; Petrov, Konstantin A; Nurullin, Leniz F; Nikolsky, Evgeny E

    2015-12-01

    Gamma-aminobutyric acid (GABA) is an amino acid which acts as a neurotransmitter in the central nervous system. Here, we studied the effects of GABA on non-quantal, spontaneous, and evoked quantal acetylcholine (ACh) release from motor nerve endings. We found that while the application of 10 μM of GABA had no effect on spontaneous quantal ACh release, as detected by the frequency of miniature endplate potentials, GABA reduced the non-quantal ACh release by 57%, as determined by the H-effect value. Finally, the evoked quantal ACh release, estimated by calculating the quantal content of full-sized endplate potentials (EPPs), was reduced by 34%. GABA's inhibitory effect remained unchanged after pre-incubation with picrotoxin, an ionotropic GABAA receptor blocker, but was attenuated following application of the GABAB receptor blocker CGP 55845, which itself had no effect on ACh release. An inhibitor of phospholipase C, U73122, completely prevented the GABA-induced decrease in ACh release. Immunofluorescence demonstrated the presence of both subunits of the GABAB receptor (GABAB R1 and GABAB R2) in the neuromuscular junction. These findings suggest that metabotropic GABAB receptors are expressed in the mammalian neuromuscular synapse and their activation results in a phospholipase C-mediated reduction in the intensity of non-quantal and evoked quantal ACh release. We investigated the effect of gamma-aminobutyric acid (GABA) on neuromuscular transmission. GABA reduced the non-quantal and evoked quantal release of acetylcholine. These effects are mediated by GABAB receptors and are implemented via phospholipase C (PLC) activation. Our findings suggest that in the mammalian neuromuscular synapse, metabotropic GABAB receptors are expressed and their activation results in a reduction in the intensity of acetylcholine release. © 2015 International Society for Neurochemistry.

  13. Ethanol exposure during the third trimester equivalent does not affect GABAA or AMPA receptor-mediated spontaneous synaptic transmission in rat CA3 pyramidal neurons.

    PubMed

    Baculis, Brian Charles; Valenzuela, Carlos Fernando

    2015-12-02

    Ethanol exposure during the rodent equivalent to the 3(rd) trimester of human pregnancy (i.e., first 1-2 weeks of neonatal life) has been shown to produce structural and functional alterations in the CA3 hippocampal sub-region, which is involved in associative memory. Synaptic plasticity mechanisms dependent on retrograde release of brain-derived neurotrophic factor (BDNF) driven by activation of L-type voltage-gated Ca(2+) channels (L-VGCCs) are thought to play a role in stabilization of both GABAergic and glutamatergic synapses in CA3 pyramidal neurons. We previously showed that ethanol exposure during the first week of life blocks BDNF/L-VGCC-dependent long-term potentiation of GABAA receptor-mediated synaptic transmission in these neurons. Here, we tested whether this effect is associated with lasting alterations in GABAergic and glutamatergic transmission. Rats were exposed to air or ethanol for 3 h/day between postnatal days three and five in vapor inhalation chambers, a paradigm that produces peak serum ethanol levels near 0.3 g/dl. Whole-cell patch-clamp electrophysiological recordings of spontaneous inhibitory and excitatory postsynaptic currents (sIPSCs and sEPSCs, respectively) were obtained from CA3 pyramidal neurons in coronal brain slices prepared at postnatal days 13-17. Ethanol exposure did not significantly affect the frequency, amplitude, rise-time and half-width of either sIPSCs or sEPSCs. We show that an ethanol exposure paradigm known to inhibit synaptic plasticity mechanisms that may participate in the stabilization of GABAergic and glutamatergic synapses in CA3 pyramidal neurons does not produce lasting functional alterations in these synapses, suggesting that compensatory mechanisms restored the balance of excitatory and inhibitory synaptic transmission.

  14. Antinociceptive effects of fisetin against diabetic neuropathic pain in mice: Engagement of antioxidant mechanisms and spinal GABAA receptors.

    PubMed

    Zhao, Xin; Li, Xin-Lin; Liu, Xin; Wang, Chuang; Zhou, Dong-Sheng; Ma, Qing; Zhou, Wen-Hua; Hu, Zhen-Yu

    2015-12-01

    Peripheral painful neuropathy is one of the most common complications in diabetes and necessitates improved treatment. Fisetin, a naturally occurring flavonoid, has been reported to exert antidepressant-like effect in previous studies. As antidepressant drugs are employed clinically to treat neuropathic pain, this work aimed to investigate whether fisetin possess beneficial effect on diabetic neuropathic pain and explore the mechanism(s). We subjected mice to diabetes by a single intraperitoneal (i.p.) injection of streptozotocin (200mg/kg), and von Frey test or Hargreaves test was used to assess mechanical allodynia or thermal hyperalgesia, respectively. Chronic treatment of diabetic mice with fisetin not only ameliorated the established symptoms of thermal hyperalgesia and mechanical allodynia, but also arrested the development of neuropathic pain when given at low doses. Although chronic fisetin administration did not impact on the symptom of hyperglycemia in diabetic mice, it reduced exacerbated oxidative stress in tissues of spinal cord, dorsal root ganglion (DRG) and sciatic verve. Furthermore, the analgesic actions of fisetin were abolished by repetitive co-treatment with the reactive oxygen species (ROS) donor tert-butyl hydroperoxide (t-BOOH), but potentiated by the ROS scavenger phenyl-N-tert-butylnitrone (PBN). Finally, acute blockade of spinal GABAA receptors by bicuculline totally counteracted such fisetin analgesia. These findings indicate that chronic fisetin treatment can delay or correct neuropathic hyperalgesia and allodynia in mice with type 1 diabetes. Mechanistically, the present fisetin analgesia may be associated with its antioxidant activity, and spinal GABAA receptors are likely rendered as downstream targets. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Induced ER-chaperones regulate a novel receptor-like kinase to mediate a viral innate immune response

    PubMed Central

    Caplan, Jeffrey L.; Zhu, Xiaohong; Mamillapalli, Padmavathi; Marathe, Rajendra; Anandalakshmi, Radhamani; Dinesh-Kumar, S. P.

    2009-01-01

    Summary The plant innate immune response requires a rapid, global reprogramming of cellular processes. Here we employed two complementary proteomic methods, two-dimensional differential in-gel electrophoresis (2D-DIGE) and iTRAQ, to identify differentially regulated proteins early during a defense response. Besides defense-related proteins, the constituents of the largest category of up-regulated proteins were cytoplasmic- and endoplasmic reticulum (ER)-residing molecular chaperones. Silencing of ER-resident protein disulfide isomerases, NbERp57 and NbP5, and the calreticulins, NbCRT2 and NbCRT3, lead to a partial loss of N immune receptor-mediated defense against Tobacco mosaic virus (TMV). Furthermore, NbCRT2 and NbCRT3 are required for the expression of a novel induced receptor-like kinase (IRK). IRK is a plasma membrane-localized protein required for the N-mediated hypersensitive response programmed cell death (HR-PCD) and resistance to TMV. These data support a model in which ER-resident chaperones are required for the accumulation of membrane bound or secreted proteins that are necessary for innate immunity. PMID:19917500

  16. Prostanoids and their receptors that modulate dendritic cell-mediated immunity.

    PubMed

    Gualde, Norbert; Harizi, Hedi

    2004-08-01

    Dendritic cells (DC) are essential for the initiation of immune responses by capturing, processing and presenting antigens to T cells. In addition to their important role as professional APC, they are able to produce immunosuppressive and pro-inflammatory prostanoids from arachidonic acid (AA) by the action of cyclooxygenase (COX) enzymes. In an autocrine and paracrine fashion, the secreted lipid mediators subsequently modulate the maturation, cytokine production, Th-cell polarizing ability, chemokine receptor expression, migration, and apoptosis of these extremely versatile APC. The biological actions of prostanoids, including their effects on APC-mediated immunity and acute inflammatory responses, are exerted by G protein-coupled receptors on plasma membrane. Some COX metabolites act as anti-inflammatory lipid mediators by binding to nuclear receptors and modulating DC functions. Although the role of cytokines in DC function has been studied extensively, the effects of prostanoids on DC biology have only recently become the focus of investigation. This review summarizes the current knowledge about the role of prostanoids and their receptors in modulating DC function and the subsequent immune responses.

  17. Mapping General Anesthetic Sites in Heteromeric γ-Aminobutyric Acid Type A Receptors Reveals a Potential For Targeting Receptor Subtypes.

    PubMed

    Forman, Stuart A; Miller, Keith W

    2016-11-01

    IV general anesthetics, including propofol, etomidate, alphaxalone, and barbiturates, produce important actions by enhancing γ-aminobutyric acid type A (GABAA) receptor activation. In this article, we review scientific studies that have located and mapped IV anesthetic sites using photoaffinity labeling and substituted cysteine modification protection. These anesthetics bind in transmembrane pockets between subunits of typical synaptic GABAA receptors, and drugs that display stereoselectivity also show remarkably selective interactions with distinct interfacial sites. These results suggest strategies for developing new drugs that selectively modulate distinct GABAA receptor subtypes.

  18. Cholinergic suppression of visual responses in primate V1 is mediated by GABAergic inhibition

    PubMed Central

    Aoki, Chiye; Hawken, Michael J.

    2012-01-01

    Acetylcholine (ACh) has been implicated in selective attention. To understand the local circuit action of ACh, we iontophoresed cholinergic agonists into the primate primary visual cortex (V1) while presenting optimal visual stimuli. Consistent with our previous anatomical studies showing that GABAergic neurons in V1 express ACh receptors to a greater extent than do excitatory neurons, we observed suppressed visual responses in 36% of recorded neurons outside V1's primary thalamorecipient layer (4c). This suppression is blocked by the GABAA receptor antagonist gabazine. Within layer 4c, ACh release produces a response gain enhancement (Disney AA, Aoki C, Hawken MJ. Neuron 56: 701–713, 2007); elsewhere, ACh suppresses response gain by strengthening inhibition. Our finding contrasts with the observation that the dominant mechanism of suppression in the neocortex of rats is reduced glutamate release. We propose that in primates, distinct cholinergic receptor subtypes are recruited on specific cell types and in specific lamina to yield opposing modulatory effects that together increase neurons' responsiveness to optimal stimuli without changing tuning width. PMID:22786955

  19. Cholinergic suppression of visual responses in primate V1 is mediated by GABAergic inhibition.

    PubMed

    Disney, Anita A; Aoki, Chiye; Hawken, Michael J

    2012-10-01

    Acetylcholine (ACh) has been implicated in selective attention. To understand the local circuit action of ACh, we iontophoresed cholinergic agonists into the primate primary visual cortex (V1) while presenting optimal visual stimuli. Consistent with our previous anatomical studies showing that GABAergic neurons in V1 express ACh receptors to a greater extent than do excitatory neurons, we observed suppressed visual responses in 36% of recorded neurons outside V1's primary thalamorecipient layer (4c). This suppression is blocked by the GABA(A) receptor antagonist gabazine. Within layer 4c, ACh release produces a response gain enhancement (Disney AA, Aoki C, Hawken MJ. Neuron 56: 701-713, 2007); elsewhere, ACh suppresses response gain by strengthening inhibition. Our finding contrasts with the observation that the dominant mechanism of suppression in the neocortex of rats is reduced glutamate release. We propose that in primates, distinct cholinergic receptor subtypes are recruited on specific cell types and in specific lamina to yield opposing modulatory effects that together increase neurons' responsiveness to optimal stimuli without changing tuning width.

  20. Tumor necrosis factor regulates NMDA receptor-mediated airway smooth muscle contractile function and airway responsiveness.

    PubMed

    Anaparti, Vidyanand; Pascoe, Christopher D; Jha, Aruni; Mahood, Thomas H; Ilarraza, Ramses; Unruh, Helmut; Moqbel, Redwan; Halayko, Andrew J

    2016-08-01

    We have shown that N-methyl-d-aspartate receptors (NMDA-Rs) are receptor-operated calcium entry channels in human airway smooth muscle (HASM) during contraction. Tumor necrosis factor (TNF) augments smooth muscle contractility by influencing pathways that regulate intracellular calcium flux and can alter NMDA-R expression and activity in cortical neurons and glial cells. We hypothesized that NMDA-R-mediated Ca(2+) and contractile responses of ASM can be altered by inflammatory mediators, including TNF. In cultured HASM cells, we assessed TNF (10 ng/ml, 48 h) effect on NMDA-R subunit abundance by quantitative PCR, confocal imaging, and immunoblotting. We observed dose- and time-dependent changes in NMDA-R composition: increased obligatory NR1 subunit expression and altered regulatory NR2 and inhibitory NR3 subunits. Measuring intracellular Ca(2+) flux in Fura-2-loaded HASM cultures, we observed that TNF exposure enhanced cytosolic Ca(2+) mobilization and changed the temporal pattern of Ca(2+) flux in individual myocytes induced by NMDA, an NMDA-R selective analog of glutamate. We measured airway responses to NMDA in murine thin-cut lung slices (TCLS) from allergen-naive animals and observed significant airway contraction. However, NMDA acted as a bronchodilator in TCLS from house dust mice-challenged mice and in allergen-naive TCLS subjected to TNF exposure. All contractile or bronchodilator responses were blocked by a selective NMDA-R antagonist, (2R)-amino-5-phosphonopentanoate, and bronchodilator responses were prevented by N(G)-nitro-l-arginine methyl ester (nitric oxide synthase inhibitor) or indomethacin (cyclooxygenase inhibitor). Collectively, we show that TNF augments NMDA-R-mediated Ca(2+) mobilization in HASM cells, whereas in multicellular TCLSs allergic inflammation and TNF exposure leads to NMDA-R-mediated bronchodilation. These findings reveal the unique contribution of ionotrophic NMDA-R to airway hyperreactivity. Copyright © 2016 the American

  1. A Study of the Structure-Activity Relationship of GABAA-Benzodiazepine Receptor Bivalent Ligands by Conformational Analysis with Low Temperature NMR and X-ray Analysis

    PubMed Central

    Han, Dongmei; Försterling, F. Holger; Li, Xiaoyan; Deschamps, Jeffrey R.; Parrish, Damon; Cao, Hui; Rallapalli, Sundari; Clayton, Terry; Teng, Yun; Majumder, Samarpan; Sankar, Subramaniam; Roth, Bryan L.; Sieghart, Werner; Furtmuller, Roman; Rowlett, James; Weed, Mike R.; Cook, James M.

    2013-01-01

    The stable conformations of GABAA-benzodiazepine receptor bivalent ligands were determined by low temperature NMR spectroscopy and confirmed by single crystal X-ray analysis. The stable conformations in solution correlated well with those in the solid state. The linear conformation was important for these dimers to access the binding site and exhibit potent in vitro affinity and was illustrated for α5 subtype selective ligands. Bivalent ligands with an oxygen-containing linker folded back upon themselves both in solution and the solid state. Dimers which are folded do not bind to Bz receptors. PMID:18790643

  2. Assessment of Homology Templates and an Anesthetic Binding Site within the γ-Aminobutyric Acid Receptor

    PubMed Central

    Bertaccini, Edward J.; Yoluk, Ozge; Lindahl, Erik R.; Trudell, James R.

    2013-01-01

    Background Anesthetics mediate portions of their activity via modulation of the γ-aminobutyric acid receptor (GABAaR). While its molecular structure remains unknown, significant progress has been made towards understanding its interactions with anesthetics via molecular modeling. Methods The structure of the torpedo acetylcholine receptor (nAChRα), the structures of the α4 and β2 subunits of the human nAChR, the structures of the eukaryotic glutamate-gated chloride channel (GluCl), and the prokaryotic pH sensing channels, from Gloeobacter violaceus and Erwinia chrysanthemi, were aligned with the SAlign and 3DMA algorithms. A multiple sequence alignment from these structures and those of the GABAaR was performed with ClustalW. The Modeler and Rosetta algorithms independently created three-dimensional constructs of the GABAaR from the GluCl template. The CDocker algorithm docked a congeneric series of propofol derivatives into the binding pocket and scored calculated binding affinities for correlation with known GABAaR potentiation EC50’s. Results Multiple structure alignments of templates revealed a clear consensus of residue locations relevant to anesthetic effects except for torpedo nAChR. Within the GABAaR models generated from GluCl, the residues notable for modulating anesthetic action within transmembrane segments 1, 2, and 3 converged on the intersubunit interface between alpha and beta subunits. Docking scores of a propofol derivative series into this binding site showed strong linear correlation with GABAaR potentiation EC50. Conclusion Consensus structural alignment based on homologous templates revealed an intersubunit anesthetic binding cavity within the transmembrane domain of the GABAaR, which showed correlation of ligand docking scores with experimentally measured GABAaR potentiation. PMID:23770602

  3. Assessment of homology templates and an anesthetic binding site within the γ-aminobutyric acid receptor.

    PubMed

    Bertaccini, Edward J; Yoluk, Ozge; Lindahl, Erik R; Trudell, James R

    2013-11-01

    Anesthetics mediate portions of their activity via modulation of the γ-aminobutyric acid receptor (GABAaR). Although its molecular structure remains unknown, significant progress has been made toward understanding its interactions with anesthetics via molecular modeling. The structure of the torpedo acetylcholine receptor (nAChRα), the structures of the α4 and β2 subunits of the human nAChR, the structures of the eukaryotic glutamate-gated chloride channel (GluCl), and the prokaryotic pH-sensing channels, from Gloeobacter violaceus and Erwinia chrysanthemi, were aligned with the SAlign and 3DMA algorithms. A multiple sequence alignment from these structures and those of the GABAaR was performed with ClustalW. The Modeler and Rosetta algorithms independently created three-dimensional constructs of the GABAaR from the GluCl template. The CDocker algorithm docked a congeneric series of propofol derivatives into the binding pocket and scored calculated binding affinities for correlation with known GABAaR potentiation EC50s. Multiple structure alignments of templates revealed a clear consensus of residue locations relevant to anesthetic effects except for torpedo nAChR. Within the GABAaR models generated from GluCl, the residues notable for modulating anesthetic action within transmembrane segments 1, 2, and 3 converged on the intersubunit interface between α and β subunits. Docking scores of a propofol derivative series into this binding site showed strong linear correlation with GABAaR potentiation EC50. Consensus structural alignment based on homologous templates revealed an intersubunit anesthetic binding cavity within the transmembrane domain of the GABAaR, which showed a correlation of ligand docking scores with experimentally measured GABAaR potentiation.

  4. Clobazam and Its Active Metabolite N-desmethylclobazam Display Significantly Greater Affinities for α2- versus α1-GABAA–Receptor Complexes

    PubMed Central

    Jensen, Henrik Sindal; Nichol, Kathryn; Lee, Deborah; Ebert, Bjarke

    2014-01-01

    Clobazam (CLB), a 1,5-benzodiazepine (BZD), was FDA-approved in October 2011 for the adjunctive treatment of seizures associated with Lennox-Gastaut syndrome (LGS) in patients 2 years and older. BZDs exert various CNS effects through allosteric modulation of GABAA receptors. The structurally distinct, 1,4-BZD clonazepam (CLN) is also approved to treat LGS. The precise mechanisms of action and clinical efficacy of both are unknown. Data show that the GABAA α1-subunit–selective compound zolpidem [ZOL] exhibits hypnotic/sedative effects. Conversely, data from knock-in mice carrying BZD binding site mutations suggest that the α2 subunit mediates anticonvulsant effects, without sedative actions. Hence, the specific pattern of interactions across the GABAA receptor complexes of BZDs might be reflected in their clinical efficacies and adverse effect profiles. In this study, GABAA-receptor binding affinities of CLB, N-desmethylclobazam (N-CLB, the major metabolite of CLB), CLN, and ZOL were characterized with native receptors from rat-brain homogenates and on cloned receptors from HEK293 cells transfected with combinations of α (α1, α2, α3, or α5), β2, and γ2 subtypes. Our results demonstrate that CLB and N-CLB have significantly greater binding affinities for α2- vs. α1-receptor complexes, a difference not observed for CLN, for which no distinction between α2 and α1 receptors was observed. Our experiments with ZOL confirmed the high preference for α1 receptors. These results provide potential clues to a new understanding of the pharmacologic modes of action of CLB and N-CLB. PMID:24533090

  5. Separate and combined effects of the GABAA positive allosteric modulator diazepam and Δ⁹-THC in humans discriminating Δ⁹-THC.

    PubMed

    Lile, Joshua A; Kelly, Thomas H; Hays, Lon R

    2014-10-01

    Our previous research suggested the involvement of γ-aminobutyric acid (GABA), in particular the GABAB receptor subtype, in the interoceptive effects of Δ(9)-tetrahydrocannabinol (Δ(9)-THC). The aim of the present study was to determine the potential involvement of the GABAA receptor subtype by assessing the separate and combined effects of the GABAA positive allosteric modulator diazepam and Δ(9)-THC using pharmacologically selective drug-discrimination procedures. Ten cannabis users learned to discriminate 30 mg oral Δ(9)-THC from placebo and then received diazepam (5 and 10mg), Δ(9)-THC (5, 15 and 30 mg) and placebo, alone and in combination. Self-report, task performance and physiological measures were also collected. Δ(9)-THC functioned as a discriminative stimulus, produced subjective effects typically associated with cannabinoids (e.g., High, Stoned, Like Drug) and elevated heart rate. Diazepam alone impaired performance on psychomotor performance tasks and increased ratings on a limited number of self-report questionnaire items (e.g., Any Effect, Sedated), but did not substitute for the Δ(9)-THC discriminative stimulus or alter the Δ(9)-THC discrimination dose-response function. Similarly, diazepam had limited impact on the other behavioral effects of Δ(9)-THC. These results suggest that the GABAA receptor subtype has minimal involvement in the interoceptive effects of Δ(9)-THC, and by extension cannabis, in humans. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. γ-Aminobutyric Acid Type A Receptor Potentiation Inhibits Learning in a Computational Network Model.

    PubMed

    Storer, Kingsley P; Reeke, George N

    2018-04-17

    Propofol produces memory impairment at concentrations well below those abolishing consciousness. Episodic memory, mediated by the hippocampus, is most sensitive. Two potentially overlapping scenarios may explain how γ-aminobutyric acid receptor type A (GABAA) potentiation by propofol disrupts episodic memory-the first mediated by shifting the balance from excitation to inhibition while the second involves disruption of rhythmic oscillations. We use a hippocampal network model to explore these scenarios. The basis for these experiments is the proposal that the brain represents memories as groups of anatomically dispersed strongly connected neurons. A neuronal network with connections modified by synaptic plasticity was exposed to patterned stimuli, after which spiking output demonstrated evidence of stimulus-related neuronal group development analogous to memory formation. The effect of GABAA potentiation on this memory model was studied in 100 unique networks. GABAA potentiation consistent with moderate propofol effects reduced neuronal group size formed in response to a patterned stimulus by around 70%. Concurrently, accuracy of a Bayesian classifier in identifying learned patterns in the network output was reduced. Greater potentiation led to near total failure of group formation. Theta rhythm variations had no effect on group size or classifier accuracy. Memory formation is widely thought to depend on changes in neuronal connection strengths during learning that enable neuronal groups to respond with greater facility to familiar stimuli. This experiment suggests the ability to form such groups is sensitive to alteration in the balance between excitation and inhibition such as that resulting from administration of a γ-aminobutyric acid-mediated anesthetic agent.

  7. Delta-opioid receptor expression in the ventral tegmental area protects against elevated alcohol consumption.

    PubMed

    Margolis, Elyssa B; Fields, Howard L; Hjelmstad, Gregory O; Mitchell, Jennifer M

    2008-11-26

    Alcoholism is a complex and debilitating syndrome affecting approximately 140 million people worldwide. However, not everyone who consumes ethanol develops abuse, raising the possibility that some individuals have a protective mechanism that inhibits elevated alcohol consumption. We tested the hypothesis that the delta-opioid receptor (DOR) plays such a protective role. Here we show that DOR activity in the ventral tegmental area (VTA) robustly decreases ethanol consumption in rats and that these effects depend on baseline ethanol consumption. Intra-VTA microinjection of the DOR agonist DPDPE decreases drinking, particularly in low-drinking animals. Furthermore, VTA microinjection of the DOR selective antagonist TIPP-Psi increases drinking in low, but not high, drinkers and this increase is blocked by comicroinjection of the GABA(A) antagonist bicuculline. Using electrophysiological techniques we found that in VTA brain slices from drinking rats DPDPE presynaptically inhibits GABA(A) receptor mediated IPSCs in low drinkers, but not in high drinkers or naive animals, most likely through activation of DORs on GABA terminals. This DOR-mediated inhibition of IPSCs also correlates inversely with behavioral correlates of anxiety measured in the elevated plus maze. In contrast, presynaptic inhibition of VTA GABA(A) IPSCs by the mu-opioid receptor agonist DAMGO is significantly reduced in both high- and low-drinking rats (<30%) compared with age-matched nondrinking controls (>70%). Together, our findings demonstrate the protective nature of VTA DORs and identify an important new target for therapeutic intervention for alcoholism.

  8. Clobazam and its active metabolite N-desmethylclobazam display significantly greater affinities for α₂- versus α₁-GABA(A)-receptor complexes.

    PubMed

    Jensen, Henrik Sindal; Nichol, Kathryn; Lee, Deborah; Ebert, Bjarke

    2014-01-01

    Clobazam (CLB), a 1,5-benzodiazepine (BZD), was FDA-approved in October 2011 for the adjunctive treatment of seizures associated with Lennox-Gastaut syndrome (LGS) in patients 2 years and older. BZDs exert various CNS effects through allosteric modulation of GABAA receptors. The structurally distinct, 1,4-BZD clonazepam (CLN) is also approved to treat LGS. The precise mechanisms of action and clinical efficacy of both are unknown. Data show that the GABAA α₁-subunit-selective compound zolpidem [ZOL] exhibits hypnotic/sedative effects. Conversely, data from knock-in mice carrying BZD binding site mutations suggest that the α₂ subunit mediates anticonvulsant effects, without sedative actions. Hence, the specific pattern of interactions across the GABAA receptor complexes of BZDs might be reflected in their clinical efficacies and adverse effect profiles. In this study, GABAA-receptor binding affinities of CLB, N-desmethylclobazam (N-CLB, the major metabolite of CLB), CLN, and ZOL were characterized with native receptors from rat-brain homogenates and on cloned receptors from HEK293 cells transfected with combinations of α (α₁, α₂, α₃, or α₅), β₂, and γ₂ subtypes. Our results demonstrate that CLB and N-CLB have significantly greater binding affinities for α₂- vs. α₁-receptor complexes, a difference not observed for CLN, for which no distinction between α₂ and α₁ receptors was observed. Our experiments with ZOL confirmed the high preference for α₁ receptors. These results provide potential clues to a new understanding of the pharmacologic modes of action of CLB and N-CLB.

  9. Honokiol promotes non-rapid eye movement sleep via the benzodiazepine site of the GABA(A) receptor in mice.

    PubMed

    Qu, Wei-Min; Yue, Xiao-Fang; Sun, Yu; Fan, Kun; Chen, Chang-Rui; Hou, Yi-Ping; Urade, Yoshihiro; Huang, Zhi-Li

    2012-10-01

    Decoctions of the Chinese herb houpu contain honokiol and are used to treat a variety of mental disorders, including depression. Depression commonly presents alongside sleep disorders and sleep disturbances, which appear to be a major risk factor for depression. Here, we have evaluated the somnogenic effect of honokiol and the mechanisms involved. Honokiol was administered i.p. at 20:00 h in mice. Flumazenil, an antagonist at the benzodiazepine site of the GABA(A) receptor, was administered i.p. 15 min before honokiol. The effects of honokiol were measured by EEG and electromyogram (EMG), c-Fos expression and in vitro electrophysiology. Honokiol (10 and 20 mg·kg⁻¹) significantly shortened the sleep latency to non-rapid eye movement (non-REM, NREM) sleep and increased the amount of NREM sleep. Honokiol increased the number of state transitions from wakefulness to NREM sleep and, subsequently, from NREM sleep to wakefulness. However, honokiol had no effect on either the amount of REM sleep or EEG power density of both NREM and REM sleep. Honokiol increased c-Fos expression in ventrolateral preoptic area (VLPO) neurons, as examined by immunostaining, and excited sleep-promoting neurons in the VLPO by whole-cell patch clamping in the brain slice. Pretreatment with flumazenil abolished the somnogenic effects and activation of the VLPO neurons by honokiol. Honokiol promoted NREM sleep by modulating the benzodiazepine site of the GABA(A) receptor, suggesting potential applications in the treatment of insomnia, especially for patients who experience difficulty in falling and staying asleep. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  10. Valerian Inhibits Rat Hepatocarcinogenesis by Activating GABA(A) Receptor-Mediated Signaling

    PubMed Central

    Kakehashi, Anna; Kato, Ayumi; Ishii, Naomi; Wei, Min; Morimura, Keiichirou; Fukushima, Shoji; Wanibuchi, Hideki

    2014-01-01

    Valerian is widely used as a traditional medicine to improve the quality of sleep due to interaction of several active components with the γ-aminobutyric acid (GABA) A receptor (GABA(A)R) system. Recently, activation of GABA signaling in stem cells has been reported to suppress cell cycle progression in vivo. Furthermore, possible inhibitory effects of GABA(A)R agonists on hepatocarcinogenesis have been reported. The present study was performed to investigate modulating effects of Valerian on hepatocarcinogenesis using a medium-term rat liver bioassay. Male F344 rats were treated with one of the most powerful Valerian species (Valeriana sitchensis) at doses of 0, 50, 500 and 5000 ppm in their drinking water after initiation of hepatocarcinogenesis with diethylnitrosamine (DEN). Formation of glutathione S-transferase placental form positive (GST-P+) foci was significantly inhibited by Valerian at all applied doses compared with DEN initiation control rats. Generation of 8-hydroxy-2′-deoxyguanosine in the rat liver was significantly suppressed by all doses of Valerian, likely due to suppression of Nrf2, CYP7A1 and induction of catalase expression. Cell proliferation was significantly inhibited, while apoptosis was induced in areas of GST-P+ foci of Valerian groups associated with suppression of c-myc, Mafb, cyclin D1 and induction of p21Waf1/Cip1, p53 and Bax mRNA expression. Interestingly, expression of the GABA(A)R alpha 1 subunit was observed in GST-P+ foci of DEN control rats, with significant elevation associated with Valerian treatment. These results indicate that Valerian exhibits inhibitory effects on rat hepatocarcinogenesis by inhibiting oxidative DNA damage, suppressing cell proliferation and inducing apoptosis in GST-P+ foci by activating GABA(A)R-mediated signaling. PMID:25419570

  11. Zolpidem modulation of phasic and tonic GABA currents in the rat dorsal motor nucleus of the vagus

    PubMed Central

    Gao, Hong; Smith, Bret N.

    2010-01-01

    Zolpidem is a widely prescribed sleep aid with relative selectivity for GABAA receptors containing α1–3 subunits. We examined the effects of zolpidem on the inhibitory currents mediated by GABAA receptors using whole-cell patch-clamp recordings from DMV neurons in transverse brainstem slices from rat. Zolpidem prolonged the decay time of mIPSCs and of muscimol-evoked whole-cell GABAergic currents, and it occasionally enhanced the amplitude of mIPSCs. The effects were blocked by flumazenil, a benzodiazepine antagonist. Zolpidem also hyperpolarized the resting membrane potential, with a concomitant decrease in input resistance and action potential firing activity in a subset of cells. Zolpidem did not clearly alter the GABAA receptor-mediated tonic current (Itonic) under baseline conditions, but after elevating extracellular GABA concentration with nipecotic acid, a non-selective GABA transporter blocker, zolpidem consistently and significantly increased the tonic GABA current. This increase was suppressed by flumazenil and gabazine. These results suggest that α1–3 subunits are expressed in synaptic GABAA receptors on DMV neurons. The baseline tonic GABA current is likely not mediated by these same low affinity, zolpidem-sensitive GABAA receptors. However, when the extracellular GABA concentration is increased, zolpidem-sensitive extrasynaptic GABAA receptors containing α1–3 subunits contribute to the Itonic. PMID:20226798

  12. Mediator-dependent Nuclear Receptor Functions

    PubMed Central

    Chen, Wei; Roeder, Robert

    2011-01-01

    As gene-specific transcription factors, nuclear hormone receptors are broadly involved in many important biological processes. Their function on target genes requires the stepwise assembly of different coactivator complexes that facilitate chromatin remodeling and subsequent preinitiation complex (PIC) formation and function. Mediator has proved to be a crucial, and general, nuclear receptor-interacting coactivator, with demonstrated functions in transcription steps ranging from chromatin remodeling to subsequent PIC formation and function. Here we discuss (i) our current understanding of pathways that nuclear receptors and other interacting cofactors employ to recruit Mediator to target gene enhancers and promoters, including conditional requirements for the strong NR-Mediator interactions mediated by the NR AF2 domain and the MED1 LXXLLL motifs and (ii) mechanisms by which Mediator acts to transmit signals from enhancer-bound nuclear receptors to the general transcription machinery at core promoters to effect PIC formation and function. PMID:21854863

  13. The TAM-family receptor Mer mediates production of HGF through the RhoA-dependent pathway in response to apoptotic cells.

    PubMed

    Park, Hyun-Jung; Baen, Ji-Yeon; Lee, Ye-Ji; Choi, Youn-Hee; Kang, Jihee Lee

    2012-08-01

    The TAM receptor protein tyrosine kinases Tyro3, Axl, and Mer play important roles in macrophage function. We investigated the roles of the TAM receptors in mediating the induction of hepatocyte growth factor (HGF) during the interaction of macrophages with apoptotic cells. Mer-specific neutralizing antibody, small interfering RNA (siRNA), and a recombinant Mer protein (Mer/Fc) inhibited HGF mRNA and protein expression, as well as activation of RhoA, Akt, and specific mitogen-activated protein (MAP) kinases in response to apoptotic cells. Inhibition of Axl or Tyro3 with specific antibodies, siRNA, or Fc-fusion proteins did not prevent apoptotic cell-induced HGF mRNA and protein expression and did not inhibit activation of the postreceptor signaling molecules RhoA and certain MAP kinases, including extracellular signal-regulated protein kinase and c-Jun NH(2)-terminal kinase. However, Axl- and Tyro3-specific blockers did inhibit the activation of Akt and p38 MAP kinase in response to apoptotic cells. In addition, none of the TAM receptors mediated the effects of apoptotic cells on transforming growth factor-β or epidermal growth factor mRNA expression. However, they were involved in the induction of vascular endothelial growth factor mRNA expression. Our data provide evidence that when macrophages interact with apoptotic cells, only Mer of the TAM-family receptors is responsible for mediating transcriptional HGF production through a RhoA-dependent pathway.

  14. Termination of pseudopregnancy in the rat alters the response to progesterone, chlordiazepoxide, and MK-801 in the elevated plus-maze.

    PubMed

    Bitran, Daniel; Solano, Steven M

    2005-07-01

    Allopregnanolone, a neurosteroid-reduced metabolite of progesterone, is a well-documented positive modulator of the gamma-aminobutyric type A (GABA(A)) receptor. As has been reported for other positive modulators of the GABA(A) receptor, chronic exposure to neurosteroids is hypothesized to decrease GABA(A) receptor function. Drawing from the literature on chronic exposure to benzodiazepines or alcohol, putative changes in N-methyl-D-aspartate (NMDA) receptor function are also expected after chronic neurosteroid exposure. To assess the sensitivity of the GABA(A) and NMDA receptors after chronic elevation of neurosteroid produced by termination of pseudopregnancy in behavioral tests of anxiety and sensorimotor coordination. Female rats ovariectomized on day 10 of pseudopregnancy were tested in the elevated plus-maze and on the rotor rod after an acute injection of progesterone (4 mg/0.2 ml, s.c.), chlordiazepoxide (5 or 15 mg/kg, i.p.), or MK-801 (0.025, 0.05, or 0.1 mg/kg, i.p.). Pseudopregnancy termination produced an anxiogenic-like response in the plus-maze; an acute injection of progesterone restored baseline levels of behavior in this test. Pseudopregnancy termination eliminated the anxiolytic-like, sedative, and ataxic effects of chlordiazepoxide. In contrast, pseudopregnancy termination produced an increased sensitivity to the anxiolytic-like and ataxic effects of MK-801. The effects of pseudopregnancy termination on the behavioral response to positive modulators of the GABA(A) receptor are consistent with results from studies in which chronic exposure to neurosteroids decreases the response to acute neurosteroid and benzodiazepine administration. However, unlike the enhanced glutamatergic tone resulting from discontinuation of chronic benzodiazepine or alcohol exposure, the termination of pseudopregnancy apparently decreases NMDA receptor function.

  15. Orexin receptor antagonist-induced sleep does not impair the ability to wake in response to emotionally salient acoustic stimuli in dogs

    PubMed Central

    Tannenbaum, Pamela L.; Stevens, Joanne; Binns, Jacquelyn; Savitz, Alan T.; Garson, Susan L.; Fox, Steven V.; Coleman, Paul; Kuduk, Scott D.; Gotter, Anthony L.; Marino, Michael; Tye, Spencer J.; Uslaner, Jason M.; Winrow, Christopher J.; Renger, John J.

    2014-01-01

    The ability to awaken from sleep in response to important stimuli is a critical feature of normal sleep, as is maintaining sleep continuity in the presence of irrelevant background noise. Dual orexin receptor antagonists (DORAs) effectively promote sleep across species by targeting the evolutionarily conserved wake-promoting orexin signaling pathway. This study in dogs investigated whether DORA-induced sleep preserved the ability to awaken appropriately to salient acoustic stimuli but remain asleep when exposed to irrelevant stimuli. Sleep and wake in response to DORAs, vehicle, GABA-A receptor modulators (diazepam, eszopiclone and zolpidem) and antihistamine (diphenhydramine) administration were evaluated in telemetry-implanted adult dogs with continuous electrocorticogram, electromyogram (EMG), electrooculogram (EOG), and activity recordings. DORAs induced sleep, but GABA-A modulators and antihistamine induced paradoxical hyperarousal. Thus, salience gating studies were conducted during DORA-22 (0.3, 1, and 5 mg/kg; day and night) and vehicle nighttime sleep. The acoustic stimuli were either classically conditioned using food reward and positive attention (salient stimulus) or presented randomly (neutral stimulus). Once conditioned, the tones were presented at sleep times corresponding to maximal DORA-22 exposure. In response to the salient stimuli, dogs woke completely from vehicle and orexin-antagonized sleep across all sleep stages but rarely awoke to neutral stimuli. Notably, acute pharmacological antagonism of orexin receptors paired with emotionally salient anticipation produced wake, not cataplexy, in a species where genetic (chronic) loss of orexin receptor signaling leads to narcolepsy/cataplexy. DORA-induced sleep in the dog thereby retains the desired capacity to awaken to emotionally salient acoustic stimuli while preserving uninterrupted sleep in response to irrelevant stimuli. PMID:24904334

  16. Modification of Male Courtship Motivation by Olfactory Habituation via the GABAA Receptor in Drosophila melanogaster

    PubMed Central

    Tachibana, Shin-Ichiro; Touhara, Kazushige; Ejima, Aki

    2015-01-01

    A male-specific component, 11-cis-vaccenyl acetate (cVA) works as an anti-aphrodisiac pheromone in Drosophila melanogaster. The presence of cVA on a male suppresses the courtship motivation of other males and contributes to suppression of male-male homosexual courtship, while the absence of cVA on a female stimulates the sexual motivation of nearby males and enhances the male-female interaction. However, little is known how a male distinguishes the presence or absence of cVA on a target fly from either self-produced cVA or secondhand cVA from other males in the vicinity. In this study, we demonstrate that male flies have keen sensitivity to cVA; therefore, the presence of another male in the area reduces courtship toward a female. This reduced level of sexual motivation, however, could be overcome by pretest odor exposure via olfactory habituation to cVA. Real-time imaging of cVA-responsive sensory neurons using the neural activity sensor revealed that prolonged exposure to cVA decreased the levels of cVA responses in the primary olfactory center. Pharmacological and genetic screening revealed that signal transduction via GABAA receptors contributed to this olfactory habituation. We also found that the habituation experience increased the copulation success of wild-type males in a group. In contrast, transgenic males, in which GABA input in a small subset of local neurons was blocked by RNAi, failed to acquire the sexual advantage conferred by habituation. Thus, we illustrate a novel phenomenon in which olfactory habituation positively affects sexual capability in a competitive environment. PMID:26252206

  17. Atomic force microscopy of ionotropic receptors bearing subunit-specific tags provides a method for determining receptor architecture

    NASA Astrophysics Data System (ADS)

    Neish, Calum S.; Martin, Ian L.; Davies, Martin; Henderson, Robert M.; Edwardson, J. Michael

    2003-08-01

    We have developed an atomic force microscopy (AFM)-based method for the determination of the subunit architecture of ionotropic receptors, and tested the method using the GABAA receptor as a model system. The most common form of the GABAA receptor probably consists of 2alpha1-, 2beta2- and 1gamma2-subunits. We show here that the arrangement of subunits around the central Cl- ion channel can be deduced by AFM of receptors tagged with subunit-specific antibodies. Transfection of cells with DNA encoding alpha1-, beta2- and gamma2-subunits resulted in the production of receptors containing all three subunits, as judged by both immunoblot analysis and the binding of [3H]-Ro15-1788, a specific radioligand for the GABAA receptor. A His6-tag on the alpha1-subunit was used to purify the receptor from membrane fractions of transfected cells. After incubation with anti-His6 immunoglobulin G, some receptors became tagged with either one or two antibody molecules. AFM analysis of complexes containing two bound antibodies showed that the most common angle between the two tags was 135°, close to the value of 144° expected if the two alpha-subunits are separated by a third subunit. This method is applicable to the complete elucidation of the subunit arrangement around the GABAA receptor rosette, and can also be applied to other ionotropic receptors.

  18. Ionotropic GABA Receptors and Distal Retinal ON and OFF Responses

    PubMed Central

    Popova, E.

    2014-01-01

    In the vertebrate retina, visual signals are segregated into parallel ON and OFF pathways, which provide information for light increments and decrements. The segregation is first evident at the level of the ON and OFF bipolar cells in distal retina. The activity of large populations of ON and OFF bipolar cells is reflected in the b- and d-waves of the diffuse electroretinogram (ERG). The role of gamma-aminobutyric acid (GABA), acting through ionotropic GABA receptors in shaping the ON and OFF responses in distal retina, is a matter of debate. This review summarized current knowledge about the types of the GABAergic neurons and ionotropic GABA receptors in the retina as well as the effects of GABA and specific GABAA and GABAC receptor antagonists on the activity of the ON and OFF bipolar cells in both nonmammalian and mammalian retina. Special emphasis is put on the effects on b- and d-waves of the ERG as a useful tool for assessment of the overall function of distal retinal ON and OFF channels. The role of GABAergic system in establishing the ON-OFF asymmetry concerning the time course and absolute and relative sensitivity of the ERG responses under different conditions of light adaptation in amphibian retina is also discussed. PMID:25143858

  19. Frequency-dependent actions of benzodiazepines on GABAA receptors in cultured murine cerebellar granule cells.

    PubMed Central

    Mellor, J R; Randall, A D

    1997-01-01

    1. Miniature IPSCs recorded from cultured murine cerebellar granule cells increased in half-width and amplitude following application of the benzodiazepine (BDZ) Flunitrazepam (Flu, 1 microM). The increase in the half-width was much greater than that in the amplitude. 2. Five-millisecond applications of 1 mM GABA to nucleated outside-out patches elicited rapidly rising biexponentially decaying responses that resembled IPSCs. Flu had no effect on the amplitude of such responses, but consistently slowed their deactivation by approximately 50%. This effect was reversed by Flu washout or application of the BDZ antagonist Ro15-1788. The partial inverse agonist. Ro15-4513 speeded deactivation and depressed peak current amplitude by 23 +/- 12%. 3. The EC50 for GABA was between 45 and 50 microM. At submaximally effective agonist concentrations, Flu increased response amplitude and slowed response deactivation. Both effects were present in all cells taken from young cultures (4-7 days in vitro) but the latter was absent in 55% of the neurones obtained from older cultures (14-27 days in vitro). 4. With 120 ms applications of 20 microM GABA, responses activated monoexponentially (time constant, 39.8 +/- 2.8 ms) and deactivated biexponentially (time constants, 40.4 +/- 2.1 and 251 +/- 15 ms). Application of Flu slowed both activation and deactivation. The latter effect arose from an increased contribution of the slower component of decay. 5. Desensitization of responses to 1 mM GABA was biexponential, with time constants of 47 +/- 11 and 479 +/- 49 ms. Flu speeded desensitization by decreasing both fast and slow time constants. GABAA receptor desensitization consistently slowed subsequent deactivation. No significant relationship between the level of desensitization and the amount of slowing of deactivation produced by Flu was found. 6. Responses to paired 5 ms applications of 1 mM GABA indicated that the slowing of deactivation and the speeding of desensitization produced by

  20. ( sup 3 H)RO15-4513 binding to cerebellar diazepam-sensitive and insensitive GABAA receptors is unchanged by one week of ethanol intake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, M.W.; Chen, J.P.; Wallis, C.

    1992-02-26

    ({sup 3}H)RO15-4513, a partial inverse agonist at GABAA receptors, binds to two sites in cerebellar membranes, one sensitive (DZ-S) and one insensitive (DZ-IS) to inhibition by diazepam. These binding sites may represent different isoforms of the GABAA receptor and may play a role in ethanol (EtOH) dependence. The authors tested the hypothesis that chronic intake of EtOH induces changes in the binding properties of one or both of these putative GABBA receptors. Rats were fed a liquid diet of 4.5% EtOH for 7 d, gavaged with a 3g/kg dose of EtOH, and then sacrificed after 2 h, 12 h, ormore » 4.5 d. Binding of ({sup 3}H)RO15-4513 to cerebellar membranes was performed in the absence or presence of 10{mu}M diazepam (DZ-IS binding); DZ-S binding was calculated as the difference between total and DZ-IS. Nonlinear regression analysis showed that each class of binding site fit a model of mass action binding to a single, noninteractive population of sites. No significant difference was observed between any of the treatment groups in the apparent affinity (Kd) for ({sup 3}H)RO15-4513 at total, DZ-S, or DZ-IS sites following chronic EtOH intake or withdrawal. In addition, no significant difference was observed in the apparent number of DZ-S or DZ-IS binding sites or the ratio of DZ-S to DZ-IS.« less

  1. Lotus Leaf Alkaloid Extract Displays Sedative-Hypnotic and Anxiolytic Effects through GABAA Receptor.

    PubMed

    Yan, Ming-Zhu; Chang, Qi; Zhong, Yu; Xiao, Bing-Xin; Feng, Li; Cao, Fang-Rui; Pan, Rei-Le; Zhang, Ze-Sheng; Liao, Yong-Hong; Liu, Xin-Min

    2015-10-28

    Lotus leaves have been used traditionally as both food and herbal medicine in Asia. Open-field, sodium pentobarbital-induced sleeping and light/dark box tests were used to evaluate sedative-hypnotic and anxiolytic effects of the total alkaloids (TA) extracted from the herb, and the neurotransmitter levels in the brain were determined by ultrafast liquid chromatography-tandem mass spectrometry. The effects of picrotoxin, flumazenil, and bicuculline on the hypnotic activity of TA, as well as the influence of TA on Cl(-) influx in cerebellar granule cells, were also investigated. TA showed a sedative-hypnotic effect by increasing the brain level of γ-aminobutyric acid (GABA), and the hypnotic effect could be blocked by picrotoxin and bicuculline, but could not be antagonized by flumazenil. Additionally, TA could increase Cl(-) influx in cerebellar granule cells. TA at 20 mg/kg induced anxiolytic-like effects and significantly increased the concentrations of serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), and dopamine (DA). These data demonstrated that TA exerts sedative-hypnotic and anxiolytic effects via binding to the GABAA receptor and activating the monoaminergic system.

  2. Enhanced GABAA-Mediated Tonic Inhibition in Auditory Thalamus of Rats with Behavioral Evidence of Tinnitus.

    PubMed

    Sametsky, Evgeny A; Turner, Jeremy G; Larsen, Deb; Ling, Lynne; Caspary, Donald M

    2015-06-24

    Accumulating evidence suggests a role for inhibitory neurotransmitter dysfunction in the pathology of tinnitus. Opposing hypotheses proposed either a pathologic decrease or increase of GABAergic inhibition in medial geniculate body (MGB). In thalamus, GABA mediates fast synaptic inhibition via synaptic GABAA receptors (GABAARs) and persistent tonic inhibition via high-affinity extrasynaptic GABAARs. Given that extrasynaptic GABAARs control the firing mode of thalamocortical neurons, we examined tonic GABAAR currents in MGB neurons in vitro, using the following three groups of adult rats: unexposed control (Ctrl); sound exposed with behavioral evidence of tinnitus (Tin); and sound exposed with no behavioral evidence of tinnitus (Non-T). Tonic GABAAR currents were evoked using the selective agonist gaboxadol. Months after a tinnitus-inducing sound exposure, gaboxadol-evoked tonic GABAAR currents showed significant tinnitus-related increases contralateral to the sound exposure. In situ hybridization studies found increased mRNA levels for GABAAR δ-subunits contralateral to the sound exposure. Tin rats showed significant increases in the number of spikes per burst evoked using suprathreshold-injected current steps. In summary, we found little evidence of tinnitus-related decreases in GABAergic neurotransmission. Tinnitus and chronic pain may reflect thalamocortical dysrhythmia, which results from abnormal theta-range resonant interactions between thalamus and cortex, due to neuronal hyperpolarization and the initiation of low-threshold calcium spike bursts (Walton and Llinás, 2010). In agreement with this hypothesis, we found tinnitus-related increases in tonic extrasynaptic GABAAR currents, in action potentials/evoked bursts, and in GABAAR δ-subunit gene expression. These tinnitus-related changes in GABAergic function may be markers for tinnitus pathology in the MGB. Copyright © 2015 the authors 0270-6474/15/359369-12$15.00/0.

  3. A novel positive allosteric modulator of the GABAA receptor: the action of (+)-ROD188

    PubMed Central

    Thomet, Urs; Baur, Roland; Razet, Rodolphe; Dodd, Robert H; Furtmüller, Roman; Sieghart, Werner; Sigel, Erwin

    2000-01-01

    (+)-ROD188 was synthesized in the search for novel ligands of the GABA binding site. It shares some structural similarity with bicuculline. (+)-ROD188 failed to displace [3H]-muscimol in binding studies and failed to induce channel opening in recombinant rat α1β2γ2 GABAA receptors functionally expressed in Xenopus oocytes. (+)-ROD188 allosterically stimulated GABA induced currents. Displacement of [3H]-Ro15-1788 indicated a low affinity action at the benzodiazepine binding site. In functional studies, stimulation by (+)-ROD188 was little sensitive to the presence of 1 μM of the benzodiazepine antagonist Ro 15-1788, and (+)-ROD188 also stimulated currents mediated by α1β2, indicating a major mechanism of action different from that of benzodiazepines. Allosteric stimulation by (+)-ROD188 was similar in α1β2N265S as in unmutated α1β2, while that by loreclezole was strongly reduced. (+)-ROD188 also strongly stimulated currents elicited by either pentobarbital or 5α-pregnan-3α-ol-20-one (3α-OH-DHP), in line with a mode of action different from that of barbiturates or neurosteroids as channel agonists. Stimulation by (+)-ROD188 was largest in α6β2γ2 (α6β2γ2>>α1β2γ2=α5β2γ2>α2β2γ2= α3β2γ2), indicating a unique subunit isoform specificity. Miniature inhibitory postsynaptic currents (mIPSC) in cultures of rat hippocampal neurons, caused by spontaneous release of GABA showed a prolonged decay time in the presence of 30 μM (+)-ROD188, indicating an enhanced synaptic inhibitory transmission. PMID:11030736

  4. The role of the GABAergic and dopaminergic systems in the brain response to an intragastric load of alcohol in conscious rats.

    PubMed

    Tsurugizawa, T; Uematsu, A; Uneyama, H; Torii, K

    2010-12-01

    The brain's response to ethanol intake has been extensively investigated using electrophysiological recordings, brain lesion techniques, and c-Fos immunoreactivity. However, few studies have investigated this phenomenon using functional magnetic resonance imaging (fMRI). In the present study, we used fMRI to investigate the blood oxygenation level-dependent (BOLD) signal response to an intragastric (IG) load of ethanol in conscious, ethanol-naive rats. An intragastrically infused 10% ethanol solution induced a significant decrease in the intensity of the BOLD signal in several regions of the brain, including the bilateral amygdala (AMG), nucleus accumbens (NAc), hippocampus, ventral pallidum, insular cortex, and cingulate cortex, and an increase in the BOLD signal in the ventral tegmental area (VTA) and hypothalamic regions. Treatment with bicuculline, which is an antagonist of the gamma-aminobutyric acid A (GABA(A)) receptor, increased the BOLD signal intensity in the regions that had shown decreases in the BOLD signal after the IG infusion of 10% ethanol solution, but it did not affect the BOLD signal increase in the hypothalamus. Treatment with SCH39166, which is an antagonist of D1-like receptors, eliminated the increase in the BOLD signal intensity in the hypothalamic areas but did not affect the BOLD signal decrease following the 10% ethanol infusion. These results indicate that an IG load of ethanol caused both a GABA(A) receptor-mediated BOLD decrease in the limbic system and the cortex and a D1-like receptor-mediated BOLD increase in the hypothalamic regions in ethanol-naive rats. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Increasing spinal 5-HT2A receptor responsiveness mediates anti-allodynic effect and potentiates fluoxetine efficacy in neuropathic rats. Evidence for GABA release.

    PubMed

    Dupuis, Amandine; Wattiez, Anne-Sophie; Pinguet, Jérémy; Richard, Damien; Libert, Frédéric; Chalus, Maryse; Aissouni, Youssef; Sion, Benoit; Ardid, Denis; Marin, Philippe; Eschalier, Alain; Courteix, Christine

    2017-04-01

    Antidepressants are one of the first line treatments for neuropathic pain but their use is limited by the incidence and severity of side effects of tricyclics and the weak effectiveness of selective serotonin reuptake inhibitors (SSRIs). Serotonin type 2A (5-HT 2A ) receptors interact with PDZ proteins that regulate their functionality and SSRI efficacy to alleviate pain. We investigated whether an interfering peptide (TAT-2ASCV) disrupting the interaction between 5-HT 2A receptors and associated PDZ proteins would improve the treatment of traumatic neuropathic allodynia. Tactile allodynia was assessed in spinal nerve ligation-induced neuropathic pain in rats using von Frey filaments after acute treatment with TAT-2ASCV and/or 5-HT 2A receptor agonist, alone or in combination with repeated treatment with fluoxetine. In vivo microdialysis was performed in order to examine the involvement of GABA in TAT-2ASCV/fluoxetine treatment-associated analgesia. TAT-2ASCV (100ng, single i.t. injection) improved SNL-induced tactile allodynia by increasing 5-HT 2A receptor responsiveness to endogenous 5-HT. Fluoxetine alone (10mg/kg, five i.p. injections) slightly increased tactile thresholds and its co-administration with TAT-2ASCV (100ng, single i.t. injection) further enhanced the anti-allodynic effect. This effect depends on the integrity of descending serotonergic bulbospinal pathways and spinal release of GABA. The anti-allodynic effect of fluoxetine can be enhanced by disrupting 5-HT 2A receptor-PDZ protein interactions. This enhancement depends on 5-HT 2A receptor activation, spinal GABA release and GABAA receptor activation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Characterization of prejunctional 5-HT receptors mediating inhibition of sympathetic vasopressor responses in the pithed rat.

    PubMed Central

    Villalón, C. M.; Contreras, J.; Ramírez-San Juan, E.; Castillo, C.; Perusquía, M.; Terrón, J. A.

    1995-01-01

    1. It has recently been shown that continuous infusions of 5-hydroxytryptamine (5-HT) are able to inhibit, in a dose-dependent manner, the pressor responses induced by preganglionic (T7-T9) sympathetic stimulation in pithed rats pretreated with desipramine (50 micrograms kg-1, i.v.). This inhibitory effect, besides being significantly more pronounced at lower frequencies of stimulation (0.03-I Hz) and devoid of tachyphylaxis, is reversible after interrupting the infusions of 5-HT (up to 5.6 micrograms kg-1 min-1). In the present study we have characterized the pharmacological profile of the receptors mediating the above inhibitory effect of 5-HT. 2. The inhibition induced by 5.6 micrograms kg-1 min-1 of 5-HT on sympathetically-induced pressor responses was not blocked after i.v. treatment with physiological saline (1 ml kg-1), ritanserin (0.1 mg kg-1), MDL 72222 (0.15 mg kg-1) or tropisetron (3 mg kg-1), which did not modify the sympathetically-induced pressor responses per se, but was significantly antagonized by the 5-HT1-like and 5-HT2 receptor antagonist, methysergide (0.3 mg kg-1), which also produced a slight attenuation of the pressor responses to 0.03 and 0.1 Hz per se. 3. Unexpectedly and contrasting with methysergide, the 5-HT1-like and 5-HT2 receptor antagonists, methiothepin (0.01, 0.03 and 0.1 mg kg-1) and metergoline (1 and 3 mg kg-1), apparently failed to block the above 5-HT-induced inhibition. Nevertheless, it is noteworthy that these antagonists also blocked the electrically-induced pressor responses per se, presumably by blockade of vascular alpha 1-adrenoceptors and, indeed, this property might have masked their potential antagonism at the inhibitory 5-HT1-like receptors. 4. Consistent with the above findings, 5-carboxamidotryptamine (5-CT, a potent 5-HT1-like receptor agonist), metergoline and methysergide mimicked the inhibitory action of 5-HT with the following rank order of agonist potency: 5CT > > 5-HT > metergoline > or = methysergide. 5

  7. Ventral tegmental area GABA neurons and opiate motivation

    PubMed Central

    Vargas-Perez, Hector; Mabey, Jennifer K.; Shin, Samuel I.; Steffensen, Scott C.; van der Kooy, Derek

    2013-01-01

    Rational Past research has demonstrated that when an animal changes from a previously drug-naive to an opiate-dependent and withdrawn state, morphine’s motivational effects are switched from a tegmental pedunculopontine nucleus (TPP)-dependent to a dopamine-dependent pathway. Interestingly, a corresponding change is observed in ventral tegmental area (VTA) GABAA receptors, which change from mediating hyperpolarization of VTA GABA neurons to mediating depolarization. Objectives The present study investigated whether pharmacological manipulation of VTA GABAA receptor activity could directly influence the mechanisms underlying opiate motivation. Results Using an unbiased place conditioning procedure, we demonstrated that in Wistar rats, intra-VTA administration of furosemide, a Cl− cotransporter inhibitor, was able to promote a switch in the mechanisms underlying morphine’s motivational properties, one which is normally observed only after chronic opiate exposure. This behavioral switch was prevented by intra-VTA administration of acetazolamide, an inhibitor of the bicarbonate ion-producing carbonic anhydrase enzyme. Electrophysiological recordings of mouse VTA showed that furosemide reduced the sensitivity of VTA GABA neurons to inhibition by the GABAA receptor agonist muscimol, instead increasing the firing rate of a significant subset of these GABA neurons. Conclusion Our results suggest that the carbonic anhydrase enzyme may constitute part of a common VTA GABA neuron-based biological pathway responsible for controlling the mechanisms underlying opiate motivation, supporting the hypothesis that VTA GABAA receptor hyperpolarization or depolarization is responsible for selecting TPP- or dopamine-dependent motivational outputs, respectively. PMID:23392354

  8. Building a bridge between neurobiology and mental illness.

    PubMed

    Costa, E

    1992-10-01

    GABA (gamma amino butyric acid) is the most abundant and important inhibitory transmitter in mammalian CNS. It counterbalances the glutamate mediated neuronal excitation. Abnormalities of the interaction of these two transmitters might change the mechanisms of neuronal group selection that according to Edelman [Neural Darwinism. Basic Books, New York] play a role in mediating several brain functions including cognition processes. Indeed imbalances in GABAergic functions were shown to elicit psychoses. They can be obtained by administration of drugs that affect synthesis, metabolism and uptake of GABA and thereby cause a persistent stimulation of GABAA receptors or perhaps by genetic abnormalities in DNA transcription, pre-mRNA splicing, mRNA translation and posttranslation modifications of GABAA receptor subunits. The complexities in the regulation of GABAA receptor subunit structure, synthesis, assembly and the brain location of specific mRNA encoding for these subunits are investigated with in situ mRNA hybridization specific for subunits of GABAA receptors. The role of the variability resulting from the complexities in the regulation of GABAA receptor allosteric modulation by drugs and putative endogenous allosteric modulators of GABA action at GABAA receptors is discussed. This discussion gives relevance to the possibility that genetic abnormalities in the expression of proteins participating in GABAergic function are to be considered as a possible target of the genetic defects operative in psychoses. In line with this thinking, it is suggested that partial allosteric modulators (partial agonists) of GABAA receptors and the phosphothioate or methylphosphonate analogs antisense to specific mRNA oligonucleotides that mediate the expression of genetic information concerning GABAA and glutamate receptor subunits may become valuable tools in psychiatric research. Perhaps in the future these studies might generate new ideas useful in the therapy of genetically

  9. Seizure-Related Regulation of GABAA Receptors in Spontaneously Epileptic Rats

    PubMed Central

    González, Marco I.; Grabenstatter, Heidi L.; del Rio, Christian Cea; Del Angel, Yasmin Cruz; Carlsen, Jessica; Laoprasert, Rick; White, Andrew M.; Huntsman, Molly M.; Brooks-Kayal, Amy

    2015-01-01

    In this study, we analyzed the impact that spontaneous seizures might have on the plasma membrane expression, composition and function of GABAA receptors (GABAARs). For this, tissue of chronically epileptic rats was collected within 3 hours of seizure occurrence (≤3 hours group) or at least 24 hours after seizure occurrence (≥24 hours group). A retrospective analysis of seizure frequency revealed that selecting animals on the bases of seizure proximity also grouped animals in terms of overall seizure burden with a higher seizure burden observed in the ≤3 hours group. A biochemical analysis showed that although animals with more frequent/recent seizures (≤3 hours group) had similar levels of GABAAR at the plasma membrane they showed deficits in inhibitory neurotransmission. In contrast, tissue obtained from animals experiencing infrequent seizures (≥24 hours group) had increased plasma membrane levels of GABAAR and showed no deficit in inhibitory function. Together, our findings offer an initial insight into the molecular changes that might help to explain how alterations in GABAAR function can be associated with differential seizure burden. Our findings also suggest that increased plasma membrane levels of GABAAR might act as a compensatory mechanism to more effectively maintain inhibitory function, repress hyperexcitability and reduce seizure burden. This study is an initial step towards a fuller characterization of the molecular events that trigger alterations in GABAergic neurotransmission during chronic epilepsy. PMID:25769812

  10. α5GABAA Receptors Mediate Tonic Inhibition in the Spinal Cord Dorsal Horn and Contribute to the Resolution Of Hyperalgesia.

    PubMed

    Perez-Sanchez, Jimena; Lorenzo, Louis-Etienne; Lecker, Irene; Zurek, Agnieszka A; Labrakakis, Charalampos; Bridgwater, Erica M; Orser, Beverley A; De Koninck, Yves; Bonin, Robert P

    2017-06-01

    Neuronal inhibition mediated by GABA A receptors constrains nociceptive processing in the spinal cord, and loss of GABAergic inhibition can produce allodynia and hyperalgesia. Extrasynaptic α5 subunit-containing GABA A receptors (α5GABA A Rs) generate a tonic conductance that inhibits neuronal activity and constrains learning and memory; however, it is unclear whether α5GABA A Rs similarly generate a tonic conductance in the spinal cord dorsal horn to constrain nociception. We assessed the distribution of α5GABA A Rs in the spinal cord dorsal horn by immunohistochemical analysis, and the activity and function of α5GABA A Rs in neurons of the superficial dorsal horn using electrophysiological and behavioral approaches in male, null-mutant mice lacking the GABA A R α5 subunit (Gabra5-/-) and wild-type mice (WT). The expression of α5GABA A Rs in the superficial dorsal horn followed a laminar pattern of distribution, with a higher expression in lamina II than lamina I. Similarly, the tonic GABA A current in lamina II neurons had a larger contribution from α5GABA A Rs than in lamina I, with no significant contribution of these receptors to synaptic GABA A current. In behavioural tests, WT and Gabra5-/- mice exhibited similar acute thermal and mechanical nociception, and similar mechanical sensitization immediately following intraplantar capsaicin or Complete Freund's Adjuvant (CFA). However, Gabra5-/- mice showed prolonged recovery from sensitization in these models, and increased responses in the late phase of the formalin test. Overall, our data suggest that tonically-active α5GABA A Rs in the spinal cord dorsal horn accelerate the resolution of hyperalgesia and may therefore serve as a novel therapeutic target to promote recovery from pathological pain. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Inhibitory Network Interactions Shape the Auditory Processing of Natural Communication Signals in the Songbird Auditory Forebrain

    PubMed Central

    Pinaud, Raphael; Terleph, Thomas A.; Tremere, Liisa A.; Phan, Mimi L.; Dagostin, André A.; Leão, Ricardo M.; Mello, Claudio V.; Vicario, David S.

    2008-01-01

    The role of GABA in the central processing of complex auditory signals is not fully understood. We have studied the involvement of GABAA-mediated inhibition in the processing of birdsong, a learned vocal communication signal requiring intact hearing for its development and maintenance. We focused on caudomedial nidopallium (NCM), an area analogous to parts of the mammalian auditory cortex with selective responses to birdsong. We present evidence that GABAA-mediated inhibition plays a pronounced role in NCM's auditory processing of birdsong. Using immunocytochemistry, we show that approximately half of NCM's neurons are GABAergic. Whole cell patch-clamp recordings in a slice preparation demonstrate that, at rest, spontaneously active GABAergic synapses inhibit excitatory inputs onto NCM neurons via GABAA receptors. Multi-electrode electrophysiological recordings in awake birds show that local blockade of GABAA-mediated inhibition in NCM markedly affects the temporal pattern of song-evoked responses in NCM without modifications in frequency tuning. Surprisingly, this blockade increases the phasic and largely suppresses the tonic response component, reflecting dynamic relationships of inhibitory networks that could include disinhibition. Thus processing of learned natural communication sounds in songbirds, and possibly other vocal learners, may depend on complex interactions of inhibitory networks. PMID:18480371

  12. Reduced Chrna7 expression in C3H mice is associated with increases in hippocampal parvalbumin and glutamate decarboxylase-67 (GAD67) as well as altered levels of GABAA receptor subunits

    PubMed Central

    Bates, Ryan C.; Stith, Bradley J.; Stevens, Karen E.; Adams, Catherine E.

    2014-01-01

    Decreased expression of CHRNA7, the gene encoding the α7* subtype of nicotinic receptor, may contribute to the cognitive dysfunction observed in schizophrenia by disrupting the inhibitory/excitatory balance in the hippocampus. C3H mice with reduced Chrna7 expression have significant reductions in hippocampal α7* receptor density, deficits in hippocampal auditory gating, increased hippocampal activity as well as significant decreases in hippocampal glutamate decarboxylase-65 (GAD65) and γ-aminobutyric acid-A (GABAA) receptor levels. The current study investigated whether altered Chrna7 expression is associated with changes in the levels of parvalbumin, GAD67 and/or GABAA receptor subunits in hippocampus from male and female C3H Chrna7 wildtype, C3H Chrna7 heterozygous and C3H Chrna7 knockout mice using quantitative western immunoblotting. Reduced Chrna7 expression was associated with significant increases in hippocampal parvalbumin and GAD67 and with complex alterations in GABAA receptor subunits. A decrease in α3 subunit protein was seen in both female C3H Chrna7 Het and KO mice while a decrease in α4 subunit protein was also detected in C3H Chrna7 KO mice with no sex difference. In contrast, an increase in δ subunit protein was observed in C3H Chrna7 Het mice while a decrease in this subunit was observed in C3H Chrna7 KO mice, with δ subunit protein levels being greater in males than in females. Finally, an increase in γ2 subunit protein was found in C3H Chrna7 KO mice with the levels of this subunit again being greater in males than in females. The increases in hippocampal parvalbumin and GAD67 observed in C3H Chrna7 mice are contrary to reports of reductions in these proteins in postmortem hippocampus from schizophrenic individuals. We hypothesize that the disparate results may occur because of the influence of factors other than CHRNA7 that have been found to be abnormal in schizophrenia. PMID:24836856

  13. Stronger Dopamine D1 Receptor-Mediated Neurotransmission in Dyskinesia.

    PubMed

    Farré, Daniel; Muñoz, Ana; Moreno, Estefanía; Reyes-Resina, Irene; Canet-Pons, Júlia; Dopeso-Reyes, Iria G; Rico, Alberto J; Lluís, Carme; Mallol, Josefa; Navarro, Gemma; Canela, Enric I; Cortés, Antonio; Labandeira-García, José L; Casadó, Vicent; Lanciego, José L; Franco, Rafael

    2015-12-01

    Radioligand binding assays to rat striatal dopamine D1 receptors showed that brain lateralization of the dopaminergic system were not due to changes in expression but in agonist affinity. D1 receptor-mediated striatal imbalance resulted from a significantly higher agonist affinity in the left striatum. D1 receptors heteromerize with dopamine D3 receptors, which are considered therapeutic targets for dyskinesia in parkinsonian patients. Expression of both D3 and D1-D3 receptor heteromers were increased in samples from 6-hydroxy-dopamine-hemilesioned rats rendered dyskinetic by treatment with 3, 4-dihydroxyphenyl-L-alanine (L-DOPA). Similar findings were obtained using striatal samples from primates. Radioligand binding studies in the presence of a D3 agonist led in dyskinetic, but not in lesioned or L-DOPA-treated rats, to a higher dopamine sensitivity. Upon D3-receptor activation, the affinity of agonists for binding to the right striatal D1 receptor increased. Excess dopamine coming from L-DOPA medication likely activates D3 receptors thus making right and left striatal D1 receptors equally responsive to dopamine. These results show that dyskinesia occurs concurrently with a right/left striatal balance in D1 receptor-mediated neurotransmission.

  14. A reduction in hippocampal GABAA receptor alpha5 subunits disrupts the memory for location of objects in mice.

    PubMed

    Prut, L; Prenosil, G; Willadt, S; Vogt, K; Fritschy, J-M; Crestani, F

    2010-07-01

    The memory for location of objects, which binds information about objects to discrete positions or spatial contexts of occurrence, is a form of episodic memory particularly sensitive to hippocampal damage. Its early decline is symptomatic for elderly dementia. Substances that selectively reduce alpha5-GABA(A) receptor function are currently developed as potential cognition enhancers for Alzheimer's syndrome and other dementia, consistent with genetic studies implicating these receptors that are highly expressed in hippocampus in learning performance. Here we explored the consequences of reduced GABA(A)alpha5-subunit contents, as occurring in alpha5(H105R) knock-in mice, on the memory for location of objects. This required the behavioral characterization of alpha5(H105R) and wild-type animals in various tasks examining learning and memory retrieval strategies for objects, locations, contexts and their combinations. In mutants, decreased amounts of alpha5-subunits and retained long-term potentiation in hippocampus were confirmed. They exhibited hyperactivity with conserved circadian rhythm in familiar actimeters, and normal exploration and emotional reactivity in novel places, allocentric spatial guidance, and motor pattern learning acquisition, inhibition and flexibility in T- and eight-arm mazes. Processing of object, position and context memories and object-guided response learning were spared. Genotype difference in object-in-place memory retrieval and in encoding and response learning strategies for object-location combinations manifested as a bias favoring object-based recognition and guidance strategies over spatial processing of objects in the mutants. These findings identify in alpha5(H105R) mice a behavioral-cognitive phenotype affecting basal locomotion and the memory for location of objects indicative of hippocampal dysfunction resulting from moderately decreased alpha5-subunit contents.

  15. 17α-ethinyl estradiol attenuates depressive-like behavior through GABAA receptor activation/nitrergic pathway blockade in ovariectomized mice.

    PubMed

    Saeedi Saravi, Seyed Soheil; Arefidoust, Alireza; Yaftian, Rahele; Saeedi Saravi, Seyed Sobhan; Dehpour, Ahmad Reza

    2016-04-01

    This study was performed to investigate the antidepressant-like effect of 17α-ethinyl estradiol (EE2) in ovariectomized (OVX) mice and the possible role of nitrergic and gamma aminobutyric acid (GABA)ergic pathways in this paradigm. Bilateral ovariectomy was performed in female mice, and different doses of EE2 were intraperitoneally injected either alone or combined with GABAA agonist, diazepam, GABAA antagonist, flumazenil, non-specific nitric oxide synthase (NOS) inhibitor, N(ω)-nitro-L-arginine methyl ester (L-NAME), specific nNOS inhibitor, 7-nitroindazole (7-NI), a nitric oxide (NO) precursor, L-arginine, and selective PDE5I, sildenafil. After locomotion assessment, immobility times were recorded in the forced swimming test (FST) and tail suspension test (TST). Moreover, hippocampal nitrite concentrations were measured in the examined groups. Ten days after ovariectomy, a significant prolonged immobility times were observed. EE2 (0.3 and 1μg/kg and 0.03, 0.1, and 1mg/kg) caused antidepressant-like activity in OVX mice in FST and TST. Diazepam (1 and 5mg/kg), L-NAME (30mg/kg), and 7-NI (100mg/kg) significantly reduced the immobility times. Co-administration of minimal and sub-effective doses of EE2 and diazepam (0.3μg/kg and 0.5mg/kg, respectively) exerted a significant antidepressant-like effect. The same effect was observed in combination of minimal and sub-effective doses of EE2 and either L-NAME or 7-NI. Moreover, combination of minimal and sub-effective doses of EE2, diazepam either L-NAME, or 7-NI emphasized the significant robust antidepressant-like activity. The study has demonstrated that lowest dose of EE2 exerts a significant antidepressant-like behavior. It is suggested that suppression of NO system, as well as GABAA activation, may be responsible for antidepressant-like activity of EE2 in OVX mice. Moreover, GABAA activation may inhibit nitrergic pathway.

  16. CB1 cannabinoid receptor-mediated anandamide signalling reduces the defensive behaviour evoked through GABAA receptor blockade in the dorsomedial division of the ventromedial hypothalamus.

    PubMed

    Dos Anjos-Garcia, Tayllon; Ullah, Farhad; Falconi-Sobrinho, Luiz Luciano; Coimbra, Norberto Cysne

    2017-02-01

    The effects of cannabinoids in brain areas expressing cannabinoid receptors, such as hypothalamic nuclei, are not yet well known. Several studies have demonstrated the role of hypothalamic nuclei in the organisation of behavioural responses induced through innate fear and panic attacks. Panic-prone states are experimentally induced in laboratory animals through a reduction in the GABAergic activity. The aim of the present study was to examine panic-like elaborated defensive behaviour evoked by GABA A receptor blockade with bicuculline (BIC) in the dorsomedial division of the ventromedial hypothalamus (VMHdm). We also aimed to characterise the involvement of endocannabinoids and the CB 1 cannabinoid receptor in the modulation of elaborated defence behavioural responses organised with the VMHdm. The guide-cannula was stereotaxicaly implanted in VMHdm and the animals were treated with anandamide (AEA) at different doses, and the effective dose was used after the pre-treatment with the CB 1 receptor antagonist AM251, followed by GABA A receptor blockade in VMHdm. The results showed that the intra-hypothalamic administration of AEA at an intermediate dose (5 pmol) attenuated defence responses induced through the intra-VMHdm microinjection of bicuculline (40 ng). This effect, however, was inhibited when applied central microinjection of the CB 1 receptor antagonist AM251 in the VMHdm. Moreover, AM251 potentiates de non-oriented escape induced by bicuculline, effect blocked by pre-treatment with the TRPV 1 channel antagonist 6-I-CPS. These results indicate that AEA modulates the pro-aversive effects of intra-VMHdm-bicuculline treatment, recruiting CB 1 cannabinoid receptors and the TRPV1 channel is involved in the AM251-related potentiation of bicuculline effects on non-oriented escape behaviour. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Fluoxetine disrupts motivation and GABAergic signaling in adolescent female hamsters.

    PubMed

    Shannonhouse, John L; DuBois, Dustin W; Fincher, Annette S; Vela, Alejandra M; Henry, Morgan M; Wellman, Paul J; Frye, Gerald D; Morgan, Caurnel

    2016-08-01

    Initial antidepressant treatment can paradoxically worsen symptoms in depressed adolescents by undetermined mechanisms. Interestingly, antidepressants modulate GABAA receptors, which mediate paradoxical effects of other therapeutic drugs, particularly in females. Although the neuroanatomic site of action for this paradox is unknown, elevated GABAA receptor signaling in the nucleus accumbens can disrupt motivation. We assessed fluoxetine's effects on motivated behaviors in pubescent female hamsters - anhedonia in the reward investigational preference (RIP) test as well as anxiety in the anxiety-related feeding/exploration conflict (AFEC) test. We also assessed accumbal signaling by RT-PCR and electrophysiology. Fluoxetine initially worsened motivated behaviors at puberty, relative to adulthood. It also failed to improve these behaviors as pubescent hamsters transitioned into adulthood. Low accumbal mRNA levels of multiple GABAA receptor subunits and GABA-synthesizing enzyme, GAD67, assessed by RT-PCR, suggested low GABAergic tone at puberty. Nonetheless, rapid fluoxetine-induced reductions of α5GABAA receptor and BDNF mRNA levels at puberty were consistent with age-related differences in GABAergic responses to fluoxetine and disruption of the motivational state. Whole-cell patch clamping of accumbal slices also suggested low GABAergic tone by the low amplitude of miniature inhibitory postsynaptic currents (mIPSCs) at puberty. It also confirmed age-related differences in GABAergic responses to fluoxetine. Specifically, fluoxetine potentiated mIPSC amplitude and frequency at puberty, but attenuated the amplitude during adulthood. These results implicate GABAergic tone and GABAA receptor plasticity in adverse motivational responses and resistance to fluoxetine during adolescence. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. The neurosteroid 3 alpha-hydroxy-5 alpha-pregnan-20-one affects dopamine-mediated behavior in rodents.

    PubMed

    Khisti, Rahul T; Deshpande, Laxmikant S; Chopde, Chandrabhan T

    2002-05-01

    The neurosteroid 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha,5alpha-THP) has been previously shown to induce catalepsy in mice that is modified by GABAergic, dopaminergic, adenosinergic and serotonergic agents. In light of the interaction of this endogenous neurosteroid with GABAergic and dopaminergic transmission, there is potential interest in the possible role of 3alpha,5alpha-THP in psychotic disorders. This study assessed the effect of 3alpha,5alpha-THP in certain dopamine-mediated behavioral paradigms that are widely used to predict antipsychotic-like activity. 3alpha,5alpha-THP (1-8 microg per animal, i.c.v.), the classic neuroleptic (dopamine receptor antagonist) haloperidol (0.25 mg/kg, i.p.), and the benzodiazepine diazepam (7 mg/kg, i.p.) were injected into different groups of animals, and their behavior was screened using the following animal tests: conditioned avoidance response, apomorphine-induced climbing, and amphetamine-induced motor hyperactivity. Separate groups of mice that received 3alpha,5alpha-THP (1-8 microg per animal, i.c.v.) were screened for catalepsy. Furthermore, the effect of a sub-cataleptic dose (0.1 microg per mouse, i.c.v.) of 3alpha,5alpha-THP, either alone or in combination with the GABA(A) receptor antagonist picrotoxin (0.8 mg/kg, i.p.) was measured on haloperidol-induced catalepsy. 3alpha,5alpha-THP like haloperidol reduced conditioned avoidance, apomorphine-induced cage climbing and amphetamine-induced motor hyperactivity. Diazepam only affected conditioned avoidance. 3alpha,5alpha-THP also induced dose-dependent catalepsy. Furthermore, sub-cataleptic doses of 3alpha,5alpha-THP potentiated haloperidol-induced catalepsy. This potentiation was blocked by prior treatment with the GABA(A) receptor antagonist picrotoxin. These findings suggest that 3alpha,5alpha-THP, by its action at the GABA(A) receptors, increases GABAergic tone leading to a behavioral profile similar to that of dopamine receptor antagonists.

  19. Bruton's tyrosine kinase regulates B cell antigen receptor-mediated JNK1 response through Rac1 and phospholipase C-gamma2 activation.

    PubMed

    Inabe, Kazunori; Miyawaki, Toshio; Longnecker, Richard; Matsukura, Hiroyoshi; Tsukada, Satoshi; Kurosaki, Tomohiro

    2002-03-13

    Bruton's tyrosine kinase (Btk) is essential for B cell development and B cell antigen receptor (BCR) function. Recent studies have shown that Btk plays an important role in BCR-mediated c-Jun NH(2)-terminal kinase (JNK) 1 activation; however, the mechanism by which Btk participates in the JNK1 response remains elusive. Here we show that the BCR-mediated Rac1 activation is significantly inhibited by loss of Btk, while this Rac1 activation is not affected by loss of phospholipase C-gamma2 (PLC-gamma2). Since PLC-gamma2 is also required for BCR-mediated JNK1 response, our results suggest that Btk regulates Rac1 pathway as well as PLC-gamma2 pathway, both of which contribute to the BCR-mediated JNK1 response.

  20. Virus-mediated swapping of zolpidem-insensitive with zolpidem-sensitive GABA(A) receptors in cortical pyramidal cells.

    PubMed

    Sumegi, Mate; Fukazawa, Yugo; Matsui, Ko; Lorincz, Andrea; Eyre, Mark D; Nusser, Zoltan; Shigemoto, Ryuichi

    2012-04-01

    Recently developed pharmacogenetic and optogenetic approaches, with their own advantages and disadvantages, have become indispensable tools in modern neuroscience. Here, we employed a previously described knock-in mouse line (GABA(A)Rγ2(77I)lox) in which the γ2 subunit of the GABA(A) receptor (GABA(A)R) was mutated to become zolpidem insensitive (γ2(77I)) and used viral vectors to swap γ2(77I) with wild-type, zolpidem-sensitive γ2 subunits (γ2(77F)). The verification of unaltered density and subcellular distribution of the virally introduced γ2 subunits requires their selective labelling. For this we generated six N- and six C-terminal-tagged γ2 subunits, with which cortical cultures of GABA(A)Rγ2(−/−) mice were transduced using lentiviruses. We found that the N-terminal AU1 tag resulted in excellent immunodetection and unimpaired synaptic localization. Unaltered kinetic properties of the AU1-tagged γ2 ((AU1)γ2(77F)) channels were demonstrated with whole-cell patch-clamp recordings of spontaneous IPSCs from cultured cells. Next, we carried out stereotaxic injections of lenti- and adeno-associated viruses containing Cre-recombinase and the (AU1)γ2(77F) subunit (Cre-2A-(AU1)γ2(77F)) into the neocortex of GABA(A)Rγ2(77I)lox mice. Light microscopic immunofluorescence and electron microscopic freeze-fracture replica immunogold labelling demonstrated the efficient immunodetection of the AU1 tag and the normal enrichment of the (AU1)γ2(77F) subunits in perisomatic GABAergic synapses. In line with this,miniature and action potential-evoked IPSCs whole-cell recorded from transduced cells had unaltered amplitudes, kinetics and restored zolpidem sensitivity. Our results obtained with a wide range of structural and functional verification methods reveal unaltered subcellular distributions and functional properties of γ2(77I) and (AU1)γ2(77F) GABA(A)Rs in cortical pyramidal cells. This transgenic–viral pharmacogenetic approach has the advantage that it

  1. Pattern recognition receptor-mediated cytokine response in infants across 4 continents.

    PubMed

    Smolen, Kinga K; Ruck, Candice E; Fortuno, Edgardo S; Ho, Kevin; Dimitriu, Pedro; Mohn, William W; Speert, David P; Cooper, Philip J; Esser, Monika; Goetghebuer, Tessa; Marchant, Arnaud; Kollmann, Tobias R

    2014-03-01

    Susceptibility to infection as well as response to vaccination varies among populations. To date, the underlying mechanisms responsible for these clinical observations have not been fully delineated. Because innate immunity instructs adaptive immunity, we hypothesized that differences between populations in innate immune responses may represent a mechanistic link to variation in susceptibility to infection or response to vaccination. Determine whether differences in innate immune responses exist among infants from different continents of the world. We determined the innate cytokine response following pattern recognition receptor (PRR) stimulation of whole blood from 2-year-old infants across 4 continents (Africa, North America, South America, and Europe). We found that despite the many possible genetic and environmental exposure differences in infants across 4 continents, innate cytokine responses were similar for infants from North America, South America, and Europe. However, cells from South African infants secreted significantly lower levels of cytokines than did cells from infants from the 3 other sites, and did so following stimulation of extracellular and endosomal but not cytosolic PRRs. Substantial differences in innate cytokine responses to PRR stimulation exist among different populations of infants that could not have been predicted. Delineating the underlying mechanism(s) for these differences will not only aid in improving vaccine-mediated protection but possibly also provide clues for the susceptibility to infection in different regions of the world. Copyright © 2013 The Authors. Published by Mosby, Inc. All rights reserved.

  2. Glucose Deprivation Induces ATF4-Mediated Apoptosis through TRAIL Death Receptors

    PubMed Central

    Iurlaro, Raffaella; Püschel, Franziska; León-Annicchiarico, Clara Lucía; O'Connor, Hazel; Martin, Seamus J.; Palou-Gramón, Daniel; Lucendo, Estefanía

    2017-01-01

    ABSTRACT Metabolic stress occurs frequently in tumors and in normal tissues undergoing transient ischemia. Nutrient deprivation triggers, among many potential cell death-inducing pathways, an endoplasmic reticulum (ER) stress response with the induction of the integrated stress response transcription factor ATF4. However, how this results in cell death remains unknown. Here we show that glucose deprivation triggered ER stress and induced the unfolded protein response transcription factors ATF4 and CHOP. This was associated with the nontranscriptional accumulation of TRAIL receptor 1 (TRAIL-R1) (DR4) and with the ATF4-mediated, CHOP-independent induction of TRAIL-R2 (DR5), suggesting that cell death in this context may involve death receptor signaling. Consistent with this, the ablation of TRAIL-R1, TRAIL-R2, FADD, Bid, and caspase-8 attenuated cell death, although the downregulation of TRAIL did not, suggesting ligand-independent activation of TRAIL receptors. These data indicate that stress triggered by glucose deprivation promotes the ATF4-dependent upregulation of TRAIL-R2/DR5 and TRAIL receptor-mediated cell death. PMID:28242652

  3. A stress steroid triggers anxiety via increased expression of α4βδ GABAA receptors in methamphetamine dependence

    PubMed Central

    Shen, Hui; Mohammad, Adeel; Ramroop, Johnny; Smith, Sheryl S.

    2013-01-01

    Methamphetamine (METH) is an addictive stimulant drug. In addition to drug craving and lethargy, METH withdrawal is associated with stress-triggered anxiety. However, the cellular basis for this stress-triggered anxiety is not understood. The present results suggest that during METH withdrawal (24 h) following chronic exposure (3 mg/kg, i.p. for 3-5 weeks) of adult, male mice, the effect of one neurosteroid released by stress, 3α,5α-THP (3α-OH-5α-pregnan-20-one), and its 3α,5β isomer reverse to trigger anxiety assessed by the acoustic startle response (ASR), in contrast to their usual anti-anxiety effects. This novel effect of 3α,5β-THP was due to increased (3-fold) hippocampal expression of α4βδ GABAA receptors (GABARs) during METH withdrawal (24 h – 4 wk) because anxiogenic effects of 3α,5β-THP were not seen in α4−/− mice. 3α,5β-THP reduces current at these receptors when it is hyperpolarizing, as observed during METH withdrawal. As a result, 3α,5β-THP (30 nM) increased neuronal excitability, assessed with current clamp and cell-attached recordings in CA1 hippocampus, one CNS site which regulates anxiety. α4βδ GABARs were first increased 1 h after METH exposure and recovered 6 wk after METH withdrawal. Similar increases in α4βδ GABARs and anxiogenic effects of 3α,5β-THP were noted in rats during METH withdrawal (24 h). In contrast, the ASR was increased by chronic METH treatment in the absence of 3α,5β-THP administration due to its stimulant effect. Although α4βδ GABARs were increased by chronic METH treatment, the GABAergic current recorded from hippocampal neurons at this time was a depolarizing, shunting inhibition, which was potentiated by 3α,5β-THP. This steroid reduced neuronal excitability and anxiety during chronic METH treatment, consistent with its typical effect. Flumazenil (10 mg/kg, i.p., 3x) reduced α4βδ expression and prevented the anxiogenic effect of 3α,5β-THP after METH withdrawal. Our findings suggest

  4. Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock.

    PubMed

    Van Amersfoort, Edwin S; Van Berkel, Theo J C; Kuiper, Johan

    2003-07-01

    Bacterial sepsis and septic shock result from the overproduction of inflammatory mediators as a consequence of the interaction of the immune system with bacteria and bacterial wall constituents in the body. Bacterial cell wall constituents such as lipopolysaccharide, peptidoglycans, and lipoteichoic acid are particularly responsible for the deleterious effects of bacteria. These constituents interact in the body with a large number of proteins and receptors, and this interaction determines the eventual inflammatory effect of the compounds. Within the circulation bacterial constituents interact with proteins such as plasma lipoproteins and lipopolysaccharide binding protein. The interaction of the bacterial constituents with receptors on the surface of mononuclear cells is mainly responsible for the induction of proinflammatory mediators by the bacterial constituents. The role of individual receptors such as the toll-like receptors and CD14 in the induction of proinflammatory cytokines and adhesion molecules is discussed in detail. In addition, the roles of a number of other receptors that bind bacterial compounds such as scavenger receptors and their modulating role in inflammation are described. Finally, the therapies for the treatment of bacterial sepsis and septic shock are discussed in relation to the action of the aforementioned receptors and proteins.

  5. Heterogeneity of prejunctional NPY receptor-mediated inhibition of cardiac neurotransmission

    PubMed Central

    Serone, Adrian P; Wright, Christine E; Angus, James A

    1999-01-01

    Neuropeptide Y (NPY) has been proposed as the candidate inhibitory peptide mediating interactions between sympathetic and vagal neurotransmission in several species, including man. Here, we have defined the NPY receptors involved in modulation of cardiac autonomic neurotransmission using receptor-selective agonists and antagonists in the rabbit and guinea-pig isolated right atria.In isolated atrial preparations, sympathetically-mediated tachycardia (ST; with atropine 1 μM) or vagally-mediated bradycardia (VB; with propranolol 0.1–1 μM) in response to electrical field stimulation (EFS, 1–4 pulses) were tested 0–30 min after incubation with single concentrations of vehicle, NPY (0.01–10 μM), the Y2 receptor agonist N-Acetyl-[Leu28,31]NPY(24–36) (termed N-A[L]NPY(24–36)) or the Y1 receptor agonist [Leu31,Pro34]NPY (LP). The effect of NPY on the concentration-chronotropic response curves to isoprenaline and bethanechol were also assessed.Guinea-pig atria: NPY and N-A[L]NPY(24–36) caused concentration-dependent inhibition of VB and ST to EFS. Both peptides caused maximal inhibition of VB and ST within 10 min incubation and this remained constant. LP caused a concentration-dependent, transient inhibition of ST which was antagonized by the Y1-receptor antagonist GR231118 (0.3 μM), with apparent competitive kinetics. Rabbit atria: NPY (1 or 10 μM) had no effect on VB at any time point, but both NPY and LP caused a transient (∼10 min) inhibition of sympathetic tachycardia. This inhibition could be prevented by 0.3 μM GR231118. N-A[L]NPY(24–36) had no effect on ST. NPY had no effect on the response to β-adrenoceptor stimulation by isoprenaline nor muscarinic-receptor stimulation by bethanechol in either species.Thus, in the guinea-pig, NPY causes a stable inhibition of both VB and ST to EFS via Y2 receptors and transient inhibition of ST via Y1 receptors. In contrast in the rabbit, NPY has no effect on the cardiac vagus and

  6. A Multifaceted GABAA Receptor Modulator: Functional Properties and Mechanism of Action of the Sedative-Hypnotic and Recreational Drug Methaqualone (Quaalude).

    PubMed

    Hammer, Harriet; Bader, Benjamin M; Ehnert, Corina; Bundgaard, Christoffer; Bunch, Lennart; Hoestgaard-Jensen, Kirsten; Schroeder, Olaf H-U; Bastlund, Jesper F; Gramowski-Voß, Alexandra; Jensen, Anders A

    2015-08-01

    In the present study, we have elucidated the functional characteristics and mechanism of action of methaqualone (2-methyl-3-o-tolyl-4(3H)-quinazolinone, Quaalude), an infamous sedative-hypnotic and recreational drug from the 1960s-1970s. Methaqualone was demonstrated to be a positive allosteric modulator at human α1,2,3,5β2,3γ2S GABAA receptors (GABAARs) expressed in Xenopus oocytes, whereas it displayed highly diverse functionalities at the α4,6β1,2,3δ GABAAR subtypes, ranging from inactivity (α4β1δ), through negative (α6β1δ) or positive allosteric modulation (α4β2δ, α6β2,3δ), to superagonism (α4β3δ). Methaqualone did not interact with the benzodiazepine, barbiturate, or neurosteroid binding sites in the GABAAR. Instead, the compound is proposed to act through the transmembrane β((+))/α((-)) subunit interface of the receptor, possibly targeting a site overlapping with that of the general anesthetic etomidate. The negligible activities displayed by methaqualone at numerous neurotransmitter receptors and transporters in an elaborate screening for additional putative central nervous system (CNS) targets suggest that it is a selective GABAAR modulator. The mode of action of methaqualone was further investigated in multichannel recordings from primary frontal cortex networks, where the overall activity changes induced by the compound at 1-100 μM concentrations were quite similar to those mediated by other CNS depressants. Finally, the free methaqualone concentrations in the mouse brain arising from doses producing significant in vivo effects in assays for locomotion and anticonvulsant activity correlated fairly well with its potencies as a modulator at the recombinant GABAARs. Hence, we propose that the multifaceted functional properties exhibited by methaqualone at GABAARs give rise to its effects as a therapeutic and recreational drug. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  7. Reciprocal regulation of platelet responses to P2Y and thromboxane receptor activation.

    PubMed

    Barton, J F; Hardy, A R; Poole, A W; Mundell, S J

    2008-03-01

    Thromboxane A(2) and ADP are two major platelet agonists that stimulate two sets of G protein-coupled receptors to activate platelets. Although aggregation responses to ADP and thromboxane desensitize, there are no reports currently addressing whether activation by one agonist may heterologously desensitize responses to the other. To demonstrate whether responses to ADP or U46619 may be modulated by prior treatment of platelets with the alternate agonist, revealing a level of cross-desensitization between receptor systems. Here we show that pretreatment of platelets with either agonist substantially desensitizes aggregation responses to the other agonist. Calcium responses to thromboxane receptor activation are desensitized by preactivation of P2Y(1) but not P2Y(12) receptors. This heterologous desensitization is mediated by a protein kinase C (PKC)-independent mechanism. Reciprocally, calcium responses to ADP are desensitized by pretreatment of platelets with the thromboxane analogue, U46619, and P2Y(12)-mediated inhibition of adenylate cyclase is also desensitized by pretreatment with U46619. In this direction, desensitization is comprised of two components, a true heterologous component that is PKC-independent, and a homologous component that is mediated through stimulated release of dense granule ADP. This study reveals cross-desensitization between ADP and thromboxane receptor signaling in human platelets. Cross-desensitization is mediated by protein kinases, involving PKC-dependent and independent pathways, and indicates that alterations in the activation state of one receptor may have effects upon the sensitivity of the other receptor system.

  8. Axonal GABAA receptors.

    PubMed

    Trigo, Federico F; Marty, Alain; Stell, Brandon M

    2008-09-01

    Type A GABA receptors (GABA(A)Rs) are well established as the main inhibitory receptors in the mature mammalian forebrain. In recent years, evidence has accumulated showing that GABA(A)Rs are prevalent not only in the somatodendritic compartment of CNS neurons, but also in their axonal compartment. Evidence for axonal GABA(A)Rs includes new immunohistochemical and immunogold data: direct recording from single axonal terminals; and effects of local applications of GABA(A)R modulators on action potential generation, on axonal calcium signalling, and on neurotransmitter release. Strikingly, whereas presynaptic GABA(A)Rs have long been considered inhibitory, the new studies in the mammalian brain mostly indicate an excitatory action. Depending on the neuron that is under study, axonal GABA(A)Rs can be activated by ambient GABA, by GABA spillover, or by an autocrine action, to increase either action potential firing and/or transmitter release. In certain neurons, the excitatory effects of axonal GABA(A)Rs persist into adulthood. Altogether, axonal GABA(A)Rs appear as potent neuronal modulators of the mammalian CNS.

  9. Enhancement of GABA release through endogenous activation of axonal GABA(A) receptors in juvenile cerebellum.

    PubMed

    Trigo, Federico F; Chat, Mireille; Marty, Alain

    2007-11-14

    Recent evidence indicates the presence of presynaptic GABA(A) receptors (GABA(A)Rs) in the axon domain of several classes of central neurons, including cerebellar basket and stellate cells. Here, we investigate the possibility that these receptors could be activated in the absence of electrical or chemical stimulation. We find that low concentrations of GABA increase the frequency of miniature GABAergic synaptic currents. Submaximal concentrations of a GABA(A)R blocker, gabazine, decrease both the miniature current frequency and the probability of evoked GABA release. Zolpidem, an agonist of the benzodiazepine binding site, and NO-711 (1-[2-[[(diphenylmethylene)imino]oxy]ethyl]-1,2,5,6-tetrahydro-3-pyridinecarboxylic acid hydrochloride), a blocker of GABA uptake, both increase the frequency of miniature currents. These effects occur up to postnatal day 14, but not later. Immunohistochemistry indicates the presence of alpha1-containing GABA(A)Rs in interneuron presynaptic terminals with a similar age dependence. We conclude that, under resting conditions, axonal GABA(A)Rs are significantly activated, that this activation results in enhanced GABA release, and that it can be augmented by increasing the affinity of GABA(A)Rs or reducing GABA uptake. Our findings suggest the existence of a positive-feedback mechanism involving presynaptic GABA(A)Rs that maintains a high release rate and a high local GABA concentration in the immature cerebellar network.

  10. DISC1 Protein Regulates γ-Aminobutyric Acid, Type A (GABAA) Receptor Trafficking and Inhibitory Synaptic Transmission in Cortical Neurons.

    PubMed

    Wei, Jing; Graziane, Nicholas M; Gu, Zhenglin; Yan, Zhen

    2015-11-13

    Association studies have suggested that Disrupted-in-Schizophrenia 1 (DISC1) confers a genetic risk at the level of endophenotypes that underlies many major mental disorders. Despite the progress in understanding the significance of DISC1 at neural development, the mechanisms underlying DISC1 regulation of synaptic functions remain elusive. Because alterations in the cortical GABA system have been strongly linked to the pathophysiology of schizophrenia, one potential target of DISC1 that is critically involved in the regulation of cognition and emotion is the GABAA receptor (GABAAR). We found that cellular knockdown of DISC1 significantly reduced GABAAR-mediated synaptic and whole-cell current, whereas overexpression of wild-type DISC1, but not the C-terminal-truncated DISC1 (a schizophrenia-related mutant), significantly increased GABAAR currents in pyramidal neurons of the prefrontal cortex. These effects were accompanied by DISC1-induced changes in surface GABAAR expression. Moreover, the regulation of GABAARs by DISC1 knockdown or overexpression depends on the microtubule motor protein kinesin 1 (KIF5). Our results suggest that DISC1 exerts an important effect on GABAergic inhibitory transmission by regulating KIF5/microtubule-based GABAAR trafficking in the cortex. The knowledge gained from this study would shed light on how DISC1 and the GABA system are linked mechanistically and how their interactions are critical for maintaining a normal mental state. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Comparison of Cell Expression Formats for the Characterization of GABAA Channels Using a Microfluidic Patch Clamp System

    PubMed Central

    Chen, Qin; Yim, Peter D.; Yuan, Nina; Johnson, Juliette; Cook, James M.; Smith, Steve; Ionescu-Zanetti, Cristian; Wang, Zhi-Jian; Arnold, Leggy A.

    2012-01-01

    Abstract Ensemble recording and microfluidic perfusion are recently introduced techniques aimed at removing the laborious nature and low recording success rates of manual patch clamp. Here, we present assay characteristics for these features integrated into one automated electrophysiology platform as applied to the study of GABAA channels. A variety of cell types and methods of GABAA channel expression were successfully studied (defined as IGABA>500 pA), including stably transfected human embryonic kidney (HEK) cells expressing α1β3γ2 GABAA channels, frozen ready-to-assay (RTA) HEK cells expressing α1β3γ2 or α3β3γ2 GABAA channels, transiently transfected HEK293T cells expressing α1β3γ2 GABAA channels, and immortalized cultures of human airway smooth muscle cells endogenously expressing GABAA channels. Current measurements were successfully studied in multiple cell types with multiple modes of channel expression in response to several classic GABAA channel agonists, antagonists, and allosteric modulators. We obtained success rates above 95% for transiently or stably transfected HEK cells and frozen RTA HEK cells expressing GABAA channels. Tissue-derived immortalized cultures of airway smooth muscle cells exhibited a slightly lower recording success rate of 75% using automated patch, which was much higher than the 5% success rate using manual patch clamp technique by the same research group. Responses to agonists, antagonists, and allosteric modulators compared well to previously reported manual patch results. The data demonstrate that both the biophysics and pharmacologic characterization of GABAA channels in a wide variety of cell formats can be performed using this automated patch clamp system. PMID:22574655

  12. Phosphatase inhibitors remove the run-down of γ-aminobutyric acid type A receptors in the human epileptic brain

    PubMed Central

    Palma, E.; Ragozzino, D. A.; Di Angelantonio, S.; Spinelli, G.; Trettel, F.; Martinez-Torres, A.; Torchia, G.; Arcella, A.; Di Gennaro, G.; Quarato, P. P.; Esposito, V.; Cantore, G.; Miledi, R.; Eusebi, F.

    2004-01-01

    The properties of γ-aminobutyric acid (GABA) type A receptors (GABAA receptors) microtransplanted from the human epileptic brain to the plasma membrane of Xenopus oocytes were compared with those recorded directly from neurons, or glial cells, in human brains slices. Cell membranes isolated from brain specimens, surgically obtained from six patients afflicted with drug-resistant temporal lobe epilepsy (TLE) were injected into frog oocytes. Within a few hours, these oocytes acquired GABAA receptors that generated GABA currents with an unusual run-down, which was inhibited by orthovanadate and okadaic acid. In contrast, receptors derived from membranes of a nonepileptic hippocampal uncus, membranes from mouse brain, or recombinant rat α1β2γ2-GABA receptors exhibited a much less pronounced GABA-current run-down. Moreover, the GABAA receptors of pyramidal neurons in temporal neocortex slices from the same six epileptic patients exhibited a stronger run-down than the receptors of rat pyramidal neurons. Interestingly, the GABAA receptors of neighboring glial cells remained substantially stable after repetitive activation. Therefore, the excessive GABA-current run-down observed in the membrane-injected oocytes recapitulates essentially what occurs in neurons, rather than in glial cells. Quantitative RT-PCR analyses from the same TLE neocortex specimens revealed that GABAA-receptor β1, β2, β3, and γ2 subunit mRNAs were significantly overexpressed (8- to 33-fold) compared with control autopsy tissues. Our results suggest that an abnormal GABA-receptor subunit transcription in the TLE brain leads to the expression of run-down-enhanced GABAA receptors. Blockage of phosphatases stabilizes the TLE GABAA receptors and strengthens GABAergic inhibition. It may be that this process can be targeted to develop new treatments for intractable epilepsy. PMID:15218107

  13. A new chromanone derivative isolated from Hypericum lissophloeus (Hypericaceae) potentiates GABAA receptor currents in a subunit specific fashion.

    PubMed

    Crockett, Sara; Baur, Roland; Kunert, Olaf; Belaj, Ferdinand; Sigel, Erwin

    2016-02-15

    A phytochemical investigation of the lipophilic extract of Hypericum lissophloeus (smoothbark St. John's wort, Hypericaceae) was conducted, resulting in the isolation and identification of a new chromanone derivative: 5,7-dihydroxy-2,3-dimethyl-6-(3-methyl-but-2-enyl)-chroman-4-one (1). This compound was demonstrated to act as a potent stimulator of currents elicited by GABA in recombinant α1β2γ2 GABAA receptors, with a half-maximal potentiation observed at a concentration of about 4μM and a maximal potentiation of >4000%. Significant potentiation was already evident at a concentration as low as 0.1μM. Extent of potentiation strongly depends on the type of α subunit, the type of β subunit and the presence of the γ subunit. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Neuroactive Steroids: Receptor Interactions and Responses

    PubMed Central

    Tuem, Kald Beshir; Atey, Tesfay Mehari

    2017-01-01

    Neuroactive steroids (NASs) are naturally occurring steroids, which are synthesized centrally as de novo from cholesterol and are classified as pregnane, androstane, and sulfated neurosteroids (NSs). NASs modulate many processes via interacting with gamma-aminobutyric acid (GABA), N-methyl-d-aspartate, serotonin, voltage-gated calcium channels, voltage-dependent anion channels, α-adrenoreceptors, X-receptors of the liver, transient receptor potential channels, microtubule-associated protein 2, neurotrophin nerve growth factor, and σ1 receptors. Among these, NSs (especially allopregnanolone) have high potency and extensive GABA-A receptors and hence demonstrate anticonvulsant, anesthetic, central cytoprotectant, and baroreflex inhibitory effects. NSs are also involved in mood and learning via serotonin and anti-nociceptive activity via T-type voltage-gated Ca2+ channels. Moreover, they are modulators of mitochondrial function, synaptic plasticity, or regulators of apoptosis, which have a role in neuroprotective via voltage-dependent anion channels receptors. For proper functioning, NASs need to be in their normal level, whereas excess and deficiency may lead to abnormalities. When they are below the normal, NSs could have a part in development of depression, neuro-inflammation, multiple sclerosis, experimental autoimmune encephalitis, epilepsy, and schizophrenia. On the other hand, stress and attention deficit disorder could occur during excessive level. Overall, NASs are very important molecules with major neuropsychiatric activity. PMID:28894435

  15. Particle aggregation during receptor-mediated endocytosis

    NASA Astrophysics Data System (ADS)

    Mao, Sheng; Kosmrlj, Andrej

    Receptor-mediated endocytosis of particles is driven by large binding energy between ligands on particles and receptors on a membrane, which compensates for the membrane bending energy and for the cost due to the mixing entropy of receptors. While the receptor-mediated endocytosis of individual particle is well understood, much less is known about the joint entry of multiple particles. Here, we demonstrate that the endocytosis of multiple particles leads to a kinetically driven entropic attraction, which may cause the aggregation of particles observed in experiments. During the endocytosis particles absorb nearby receptors and thus produce regions, which are depleted of receptors. When such depleted regions start overlapping, the corresponding particles experience osmotic-like attractive entropic force. If the attractive force between particles is large enough to overcome the repulsive interaction due to membrane bending, then particles tend to aggregate provided that they are sufficiently close, such that they are not completely engulfed before they come in contact. We discuss the necessary conditions for the aggregation of cylindrical particles during receptor-mediated endocytosis and comment on the generalization to spherical particles.

  16. Ectopic Expression of α6 and δ GABAA Receptor Subunits in Hilar Somatostatin Neurons Increases Tonic Inhibition and Alters Network Activity in the Dentate Gyrus

    PubMed Central

    Tong, Xiaoping; Peng, Zechun; Zhang, Nianhui; Cetina, Yliana; Huang, Christine S.; Wallner, Martin; Otis, Thomas S.

    2015-01-01

    The role of GABAA receptor (GABAAR)-mediated tonic inhibition in interneurons remains unclear and may vary among subgroups. Somatostatin (SOM) interneurons in the hilus of the dentate gyrus show negligible expression of nonsynaptic GABAAR subunits and very low tonic inhibition. To determine the effects of ectopic expression of tonic GABAAR subtypes in these neurons, Cre-dependent viral vectors were used to express GFP-tagged GABAAR subunits (α6 and δ) selectively in hilar SOM neurons in SOM-Cre mice. In single-transfected animals, immunohistochemistry demonstrated strong expression of either the α6 or δ subunit; in cotransfected animals, both subunits were consistently expressed in the same neurons. Electrophysiology revealed a robust increase of tonic current, with progressively larger increases following transfection of δ, α6, and α6/δ subunits, respectively, indicating formation of functional receptors in all conditions and likely coassembly of the subunits in the same receptor following cotransfection. An in vitro model of repetitive bursting was used to determine the effects of increased tonic inhibition in hilar SOM interneurons on circuit activity in the dentate gyrus. Upon cotransfection, the frequency of GABAAR-mediated bursting in granule cells was reduced, consistent with a reduction in synchronous firing among hilar SOM interneurons. Moreover, in vivo studies of Fos expression demonstrated reduced activation of α6/δ-cotransfected neurons following acute seizure induction by pentylenetetrazole. The findings demonstrate that increasing tonic inhibition in hilar SOM interneurons can alter dentate gyrus circuit activity during strong stimulation and suggest that tonic inhibition of interneurons could play a role in regulating excessive synchrony within the network. SIGNIFICANCE STATEMENT In contrast to many hippocampal interneurons, somatostatin (SOM) neurons in the hilus of the dentate gyrus have very low levels of nonsynaptic GABAARs and exhibit

  17. GABAA overactivation potentiates the effects of NMDA blockade during the brain growth spurt in eliciting locomotor hyperactivity in juvenile mice.

    PubMed

    Oliveira-Pinto, Juliana; Paes-Branco, Danielle; Cristina-Rodrigues, Fabiana; Krahe, Thomas E; Manhães, Alex C; Abreu-Villaça, Yael; Filgueiras, Cláudio C

    2015-01-01

    Both NMDA receptor blockade and GABAA receptor overactivation during the brain growth spurt may contribute to the hyperactivity phenotype reminiscent of attention-deficit/hyperactivity disorder. Here, we evaluated the effects of exposure to MK801 (a NMDA antagonist) and/or to muscimol (a GABAA agonist) during the brain growth spurt on locomotor activity of juvenile Swiss mice. This study was carried out in two separate experiments. In the first experiment, pups received a single i.p. injection of either saline solution (SAL), MK801 (MK, 0.1, 0.3 or 0.5 mg/kg) or muscimol (MU, 0.02, 0.1 or 0.5 mg/kg) at the second postnatal day (PND2), and PNDs 4, 6 and 8. In the second experiment, we investigated the effects of a combined injection of MK (0.1 mg/kg) and MU (doses: 0.02, 0.1 or 0.5 mg/kg) following the same injection schedule of the first experiment. In both experiments, locomotor activity was assessed for 15 min at PND25. While MK promoted a dose-dependent increase in locomotor activity, exposure to MU failed to elicit significant effects. The combined exposure to the highest dose of MU and the lowest dose of MK induced marked hyperactivity. Moreover, the combination of the low dose of MK and the high dose of MU resulted in a reduced activity in the center of the open field, suggesting an increased anxiety-like behavior. These findings suggest that, during the brain growth spurt, the blockade of NMDA receptors induces juvenile locomotor hyperactivity whereas hyperactivation of GABAA receptors does not. However, GABAA overactivation during this period potentiates the effects of NMDA blockade in inducing locomotor hyperactivity. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. The desensitization gate of inhibitory Cys-loop receptors

    NASA Astrophysics Data System (ADS)

    Gielen, Marc; Thomas, Philip; Smart, Trevor G.

    2015-04-01

    Cys-loop neurotransmitter-gated ion channels are vital for communication throughout the nervous system. Following activation, these receptors enter into a desensitized state in which the ion channel shuts even though the neurotransmitter molecules remain bound. To date, the molecular determinants underlying this most fundamental property of Cys-loop receptors have remained elusive. Here we present a generic mechanism for the desensitization of Cys-loop GABAA (GABAARs) and glycine receptors (GlyRs), which both mediate fast inhibitory synaptic transmission. Desensitization is regulated by interactions between the second and third transmembrane segments, which affect the ion channel lumen near its intracellular end. The GABAAR and GlyR pore blocker picrotoxin prevented desensitization, consistent with its deep channel-binding site overlapping a physical desensitization gate.

  19. Milrinone attenuates thromboxane receptor-mediated hyperresponsiveness in hypoxic pulmonary arterial myocytes.

    PubMed

    Santhosh, K T; Elkhateeb, O; Nolette, N; Outbih, O; Halayko, A J; Dakshinamurti, S

    2011-07-01

    Neonatal pulmonary hypertension (PPHN) is characterized by pulmonary vasoconstriction, due in part to dysregulation of the thromboxane prostanoid (TP) receptor. Hypoxia induces TP receptor-mediated hyperresponsiveness, whereas serine phosphorylation mediates desensitization of TP receptors. We hypothesized that prostacyclin (IP) receptor activity induces TP receptor phosphorylation and decreases ligand affinity; that TP receptor sensitization in hypoxic myocytes is due to IP receptor inactivation; and that this would be reversible by the cAMP-specific phosphodiesterase inhibitor milrinone. We examined functional regulation of TP receptors by serine phosphorylation and effects of IP receptor stimulation and protein kinase A (PKA) activity on TP receptor sensitivity in myocytes from neonatal porcine resistance pulmonary arteries after 72 h hypoxia in vitro. Ca(2+) response curves to U46619 (TP receptor agonist) were determined in hypoxic and normoxic myocytes incubated with or without iloprost (IP receptor agonist), forskolin (adenylyl cyclase activator), H8 (PKA inhibitor) or milrinone. TP and IP receptor saturation binding kinetics were measured in presence of iloprost or 8-bromo-cAMP. Ligand affinity for TP receptors was normalized in vitro by IP receptor signalling intermediates. However, IP receptor affinity was compromised in hypoxic myocytes, decreasing cAMP production. Milrinone normalized TP receptor sensitivity in hypoxic myocytes by restoring PKA-mediated regulatory TP receptor phosphorylation. TP receptor sensitivity and EC(50) for TP receptor agonists was regulated by PKA, as TP receptor serine phosphorylation by PKA down-regulated Ca(2+) mobilization. Hypoxia decreased IP receptor activity and cAMP generation, inducing TP receptor hyperresponsiveness, which was reversed by milrinone. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  20. Benzodiazepine temazepam suppresses the transient auditory 40-Hz response amplitude in humans.

    PubMed

    Jääskeläinen, I P; Hirvonen, J; Saher, M; Pekkonen, E; Sillanaukee, P; Näätänen, R; Tiitinen, H

    1999-06-18

    To discern the role of the GABA(A) receptors in the generation and attentive modulation of the transient auditory 40-Hz response, the effects of the benzodiazepine temazepam (10 mg) were studied in 10 healthy social drinkers, using a double-blind placebo-controlled design. Three hundred Hertz standard and 330 Hz rare deviant tones were presented to the left, and 1000 Hz standards and 1100 Hz deviants to the right ear of the subjects. Subjects attended to a designated ear and were to detect deviants therein while ignoring tones to the other. Temazepam significantly suppressed the amplitude of the 40-Hz response, the effect being equal for attended and non-attended tone responses. This suggests involvement of GABA(A) receptors in transient auditory 40-Hz response generation, however, not in the attentive modulation of the 40-Hz response.

  1. Laser photolysis of DPNI-GABA, a tool for investigating the properties and distribution of GABA receptors and for silencing neurons in situ.

    PubMed

    Trigo, Federico F; Papageorgiou, George; Corrie, John E T; Ogden, David

    2009-07-30

    Laser photolysis to release GABA at precisely defined times and locations permits investigation of the distribution of functional GABA(A) receptors in neuronal compartments, the activation kinetics and pharmacology of GABA(A) receptors in situ, and the role of individual neurons in neural circuits by selective silencing with low GABA concentrations. We describe the experimental evaluation and applications of a new nitroindoline-caged GABA, DPNI-GABA, modified to minimize the pharmacological interference commonly found with caged GABA reagents, but retaining the advantages of nitroindoline cages. Unlike the 5-methoxycarbonylmethyl-7-nitroindolinyl-GABA tested previously, DPNI-GABA inhibited GABA(A) receptors with much lower affinity, reducing peak GABA-evoked responses with an IC(50) of approximately 0.5 mM. Most importantly, the kinetics of receptor activation, determined as 10-90% rise-times, were comparable to synaptic events and were little affected by DPNI-GABA present at 1mM concentration, permitting photolysis of DPNI-GABA to mimic synaptic activation of GABA(A) receptors. With a laser spot of 1 microm applied to cerebellar molecular layer interneurons, the spatial resolution of uncaging DPNI-GABA in dendrites was estimated as 2 microm laterally and 7.5 microm focally. Finally, at low DPNI-GABA concentration, photorelease restricted to the area of the soma suppressed spiking in single Purkinje neurons or molecular layer interneurons for periods controlled by the flash intensity and duration. DPNI-GABA has properties better adapted for fast kinetic studies with laser photolysis at GABA(A) receptors than previously reported caged GABA reagents, and can be used in experiments where spatial resolution is determined by the dimensions of the laser light spot.

  2. Milrinone attenuates thromboxane receptor-mediated hyperresponsiveness in hypoxic pulmonary arterial myocytes

    PubMed Central

    Santhosh, KT; Elkhateeb, O; Nolette, N; Outbih, O; Halayko, AJ; Dakshinamurti, S

    2011-01-01

    BACKGROUND AND PURPOSE Neonatal pulmonary hypertension (PPHN) is characterized by pulmonary vasoconstriction, due in part to dysregulation of the thromboxane prostanoid (TP) receptor. Hypoxia induces TP receptor–mediated hyperresponsiveness, whereas serine phosphorylation mediates desensitization of TP receptors. We hypothesized that prostacyclin (IP) receptor activity induces TP receptor phosphorylation and decreases ligand affinity; that TP receptor sensitization in hypoxic myocytes is due to IP receptor inactivation; and that this would be reversible by the cAMP-specific phosphodiesterase inhibitor milrinone. EXPERIMENTAL APPROACH We examined functional regulation of TP receptors by serine phosphorylation and effects of IP receptor stimulation and protein kinase A (PKA) activity on TP receptor sensitivity in myocytes from neonatal porcine resistance pulmonary arteries after 72 h hypoxia in vitro. Ca2+ response curves to U46619 (TP receptor agonist) were determined in hypoxic and normoxic myocytes incubated with or without iloprost (IP receptor agonist), forskolin (adenylyl cyclase activator), H8 (PKA inhibitor) or milrinone. TP and IP receptor saturation binding kinetics were measured in presence of iloprost or 8-bromo-cAMP. KEY RESULTS Ligand affinity for TP receptors was normalized in vitro by IP receptor signalling intermediates. However, IP receptor affinity was compromised in hypoxic myocytes, decreasing cAMP production. Milrinone normalized TP receptor sensitivity in hypoxic myocytes by restoring PKA-mediated regulatory TP receptor phosphorylation. CONCLUSIONS AND IMPLICATIONS TP receptor sensitivity and EC50 for TP receptor agonists was regulated by PKA, as TP receptor serine phosphorylation by PKA down-regulated Ca2+ mobilization. Hypoxia decreased IP receptor activity and cAMP generation, inducing TP receptor hyperresponsiveness, which was reversed by milrinone. PMID:21385177

  3. Direct pyrogenic input from prostaglandin EP3 receptor-expressing preoptic neurons to the dorsomedial hypothalamus

    PubMed Central

    Nakamura, Yoshiko; Nakamura, Kazuhiro; Matsumura, Kiyoshi; Kobayashi, Shigeo; Kaneko, Takeshi; Morrison, Shaun F.

    2008-01-01

    Fever is induced by the neuronal mechanism in the brain. Prostaglandin (PG) E2 acts as a pyrogenic mediator in the preoptic area (POA) probably through the EP3 subtype of PGE receptor expressed on GABAergic neurons, and this PGE2 action triggers neuronal pathways for sympathetic thermogenesis in peripheral effector organs including brown adipose tissue (BAT). To explore pyrogenic efferent pathways from the POA, we here determined projection targets of EP3 receptor-expressing POA neurons with a special focus on rat hypothalamic regions including the dorsomedial hypothalamic nucleus (DMH), which is known as a center for autonomic responses to stress. Among injections of cholera toxin b-subunit (CTb), a retrograde tracer, into hypothalamic regions at the rostrocaudal level of the DMH, injections into the DMH, lateral hypothalamic area (LH), and dorsal hypothalamic area (DH) resulted in EP3 receptor immunolabeling in substantial populations of CTb-labeled neurons in the POA. Bilateral microinjections of muscimol, a GABAA receptor agonist, into the DMH and a ventral region of the DH, but not those into the LH, inhibited thermogenic (BAT sympathetic nerve activity, BAT temperature, core body temperature, and expired CO2) and cardiovascular (arterial pressure and heart rate) responses to an intra-POA PGE2 microinjection. Further immunohistochemical observations revealed close association of POA-derived GABAergic axon swellings with DMH neurons projecting to the medullary raphe regions where sympathetic premotor neurons for febrile and thermoregulatory responses are localized. These results suggest that a direct projection of EP3 receptor-expressing POA neurons to the DMH/DH region mediates febrile responses via a GABAergic mechanism. PMID:16367780

  4. Plant cell surface receptor-mediated signaling - a common theme amid diversity.

    PubMed

    He, Yunxia; Zhou, Jinggeng; Shan, Libo; Meng, Xiangzong

    2018-01-29

    Sessile plants employ a diverse array of plasma membrane-bound receptors to perceive endogenous and exogenous signals for regulation of plant growth, development and immunity. These cell surface receptors include receptor-like kinases (RLKs) and receptor-like proteins (RLPs) that harbor different extracellular domains for perception of distinct ligands. Several RLK and RLP signaling pathways converge at the somatic embryogenesis receptor kinases (SERKs), which function as shared co-receptors. A repertoire of receptor-like cytoplasmic kinases (RLCKs) associate with the receptor complexes to relay intracellular signaling. Downstream of the receptor complexes, mitogen-activated protein kinase (MAPK) cascades are among the key signaling modules at which the signals converge, and these cascades regulate diverse cellular and physiological responses through phosphorylation of different downstream substrates. In this Review, we summarize the emerging common theme that underlies cell surface receptor-mediated signaling pathways in Arabidopsis thaliana : the dynamic association of RLKs and RLPs with specific co-receptors and RLCKs for signal transduction. We further discuss how signaling specificities are maintained through modules at which signals converge, with a focus on SERK-mediated receptor signaling. © 2018. Published by The Company of Biologists Ltd.

  5. Identification of the Muscarinic Acetylcholine Receptor Subtype Mediating Cholinergic Vasodilation in Murine Retinal Arterioles

    PubMed Central

    Sniatecki, Jan J.; Goloborodko, Evgeny; Steege, Andreas; Zavaritskaya, Olga; Vetter, Jan M.; Grus, Franz H.; Patzak, Andreas; Wess, Jürgen; Pfeiffer, Norbert

    2011-01-01

    Purpose. To identify the muscarinic acetylcholine receptor subtype that mediates cholinergic vasodilation in murine retinal arterioles. Methods. Muscarinic receptor gene expression was determined in murine retinal arterioles using real-time PCR. To assess the functional relevance of muscarinic receptors for mediating vascular responses, retinal vascular preparations from muscarinic receptor–deficient mice were studied in vitro. Changes in luminal arteriole diameter in response to muscarinic and nonmuscarinic vasoactive substances were measured by video microscopy. Results. Only mRNA for the M3 receptor was detected in retinal arterioles. Thus, M3 receptor–deficient mice (M3R−/−) and respective wild-type controls were used for functional studies. Acetylcholine concentration-dependently dilated retinal arterioles from wild-type mice. In contrast, vasodilation to acetylcholine was almost completely abolished in retinal arterioles from M3R−/− mice, whereas responses to the nitric oxide (NO) donor nitroprusside were retained. Carbachol, an acetylcholinesterase-resistant analog of acetylcholine, also evoked dilation in retinal arterioles from wild-type, but not from M3R−/−, mice. Vasodilation responses from wild-type mice to acetylcholine were negligible after incubation with the non–subtype-selective muscarinic receptor blocker atropine or the NO synthase inhibitor Nω-nitro-l-arginine methyl ester, and were even reversed to contraction after endothelial damage with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. Conclusions. These findings provide evidence that endothelial M3 receptors mediate cholinergic vasodilation in murine retinal arterioles via activation of NO synthase. PMID:21873683

  6. Lamotrigine and GABAA receptor modulators interact with menstrual cycle phase and oral contraceptives to regulate mood in women with bipolar disorder.

    PubMed

    Robakis, Thalia K; Holtzman, Jessie; Stemmle, Pascale G; Reynolds-May, Margaret F; Kenna, Heather A; Rasgon, Natalie L

    2015-04-01

    To examine the occurrence of menstrually-entrained mood cycling in women with treated bipolar disorder as compared to healthy controls, and to explore whether there is a specific effect of lamotrigine in dampening menstrually-entrained cyclicity of mood. Observational comparison study of daily self-ratings of mood, sleep, and insomnia obtained over a mean of four menstrual cycles in 42 women with bipolar disorder taking lamotrigine as part of their treatment, 30 women with bipolar disorder receiving mood stabilizing regimens without lamotrigine, and 13 healthy controls, all with physiological menstrual cycles. Additional exploratory analysis of interactions between psychopharmacological regimen and hormonal contraceptive use in the group of women with bipolar disorder, with the addition of 19 women with bipolar disorder who were using hormonal contraceptives. Women treated for bipolar disorder manifested lower average mood, longer average nightly sleep duration, and greater fluctuations in mood and sleep across menstrual cycle phases than healthy controls. Women with bipolar disorder who were taking lamotrigine had less fluctuation in mood both within and across menstrual cycle phases, and were more similar to the control group than to women with bipolar disorder who were not taking lamotrigine in this respect. In addition, medications with GABA-A receptor modulating effects were found to result in improved mood ratings when combined with hormonal contraceptives. Menstrually-entrained mood fluctuation is present in women treated for bipolar disorder to a greater degree than in healthy controls. Lamotrigine may be of use in mitigating this fluctuation. GABA-A receptor modulators in general may act synergistically with hormonal contraceptives to enhance mood in women with bipolar disorder; this hypothesis merits further study. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Potentiation of NMDA receptor-mediated transmission in striatal cholinergic interneurons

    PubMed Central

    Oswald, Manfred J.; Schulz, Jan M.; Kelsch, Wolfgang; Oorschot, Dorothy E.; Reynolds, John N. J.

    2015-01-01

    Pauses in the tonic firing of striatal cholinergic interneurons (CINs) emerge during reward-related learning in response to conditioning of a neutral cue. We have previously reported that augmenting the postsynaptic response to cortical afferents in CINs is coupled to the emergence of a cell-intrinsic afterhyperpolarization (AHP) underlying pauses in tonic activity. Here we investigated in a bihemispheric rat-brain slice preparation the mechanisms of synaptic plasticity of excitatory afferents to CINs and the association with changes in the AHP. We found that high frequency stimulation (HFS) of commissural corticostriatal afferents from the contralateral hemisphere induced a robust long-term depression (LTD) of postsynaptic potentials (PSP) in CINs. Depression of the PSP of smaller magnitude and duration was observed in response to HFS of the ipsilateral white matter or cerebral cortex. In Mg2+-free solution HFS induced NMDA receptor-dependent potentiation of the PSP, evident in both the maximal slope and amplitude of the PSP. The increase in maximal slope corroborates previous findings, and was blocked by antagonism of either D1-like dopamine receptors with SCH23390 or D2-like dopamine receptors with sulpiride during HFS in Mg2+-free solution. Potentiation of the slower PSP amplitude component was due to augmentation of the NMDA receptor-mediated potential as this was completely reversed on subsequent application of the NMDA receptor antagonist AP5. HFS similarly potentiated NMDA receptor currents isolated by blockade of AMPA/kainate receptors with CNQX. The plasticity-induced increase in the slow PSP component was directly associated with an increase in the subsequent AHP. Thus plasticity of cortical afferent synapses is ideally suited to influence the cue-induced firing dynamics of CINs, particularly through potentiation of NMDA receptor-mediated synaptic transmission. PMID:25914618

  8. Potentiation of NMDA receptor-mediated transmission in striatal cholinergic interneurons.

    PubMed

    Oswald, Manfred J; Schulz, Jan M; Kelsch, Wolfgang; Oorschot, Dorothy E; Reynolds, John N J

    2015-01-01

    Pauses in the tonic firing of striatal cholinergic interneurons (CINs) emerge during reward-related learning in response to conditioning of a neutral cue. We have previously reported that augmenting the postsynaptic response to cortical afferents in CINs is coupled to the emergence of a cell-intrinsic afterhyperpolarization (AHP) underlying pauses in tonic activity. Here we investigated in a bihemispheric rat-brain slice preparation the mechanisms of synaptic plasticity of excitatory afferents to CINs and the association with changes in the AHP. We found that high frequency stimulation (HFS) of commissural corticostriatal afferents from the contralateral hemisphere induced a robust long-term depression (LTD) of postsynaptic potentials (PSP) in CINs. Depression of the PSP of smaller magnitude and duration was observed in response to HFS of the ipsilateral white matter or cerebral cortex. In Mg(2+)-free solution HFS induced NMDA receptor-dependent potentiation of the PSP, evident in both the maximal slope and amplitude of the PSP. The increase in maximal slope corroborates previous findings, and was blocked by antagonism of either D1-like dopamine receptors with SCH23390 or D2-like dopamine receptors with sulpiride during HFS in Mg(2+)-free solution. Potentiation of the slower PSP amplitude component was due to augmentation of the NMDA receptor-mediated potential as this was completely reversed on subsequent application of the NMDA receptor antagonist AP5. HFS similarly potentiated NMDA receptor currents isolated by blockade of AMPA/kainate receptors with CNQX. The plasticity-induced increase in the slow PSP component was directly associated with an increase in the subsequent AHP. Thus plasticity of cortical afferent synapses is ideally suited to influence the cue-induced firing dynamics of CINs, particularly through potentiation of NMDA receptor-mediated synaptic transmission.

  9. Increased regional cerebral blood flow but normal distribution of GABAA receptor in the visual cortex of subjects with early-onset blindness.

    PubMed

    Mishina, Masahiro; Senda, Michio; Kiyosawa, Motohiro; Ishiwata, Kiichi; De Volder, Anne G; Nakano, Hideki; Toyama, Hinako; Oda, Kei-ichi; Kimura, Yuichi; Ishii, Kenji; Sasaki, Touru; Ohyama, Masashi; Komaba, Yuichi; Kobayashi, Shirou; Kitamura, Shin; Katayama, Yasuo

    2003-05-01

    Before the completion of visual development, visual deprivation impairs synaptic elimination in the visual cortex. The purpose of this study was to determine whether the distribution of central benzodiazepine receptor (BZR) is also altered in the visual cortex in subjects with early-onset blindness. Positron emission tomography was carried out with [(15)O]water and [(11)C]flumazenil on six blind subjects and seven sighted controls at rest. We found that the CBF was significantly higher in the visual cortex for the early-onset blind subjects than for the sighted control subjects. However, there was no significant difference in the BZR distribution in the visual cortex for the subject with early-onset blindness than for the sighted control subjects. These results demonstrated that early visual deprivation does not affect the distribution of GABA(A) receptors in the visual cortex with the sensitivity of our measurements. Synaptic elimination may be independent of visual experience in the GABAergic system of the human visual cortex during visual development.

  10. Evidence for motivational effects elicited by activation of GABA-A or dopamine receptors in the nucleus accumbens shell

    PubMed Central

    Wirtshafter, David; Stratford, Thomas R.

    2011-01-01

    Microinjections of the inhibitory GABA-A receptor agonist muscimol into the shell region of the nucleus accumbens (AcbSh) have been reported to induce large increases in food intake, but the effect of these injections on motivational processes is less clear. In the current study, bilateral injections of saline, muscimol (50 ng/side) or D-amphetamine (10 μg/side) were made into the AcbSh of rats trained to lever press on a progressive ratio schedule for food reward. Injections of both muscimol and amphetamine were found to produce a large increase in the breaking point relative to saline injections. This result suggests that inactivation of the AcbSh does not simply drive ingestive behavior, but also affects motivational processes assessed by the progressive ratio schedule. Breaking points were also increased by injections of amphetamine into the AcbSh. PMID:20598739

  11. Toll-like receptor-mediated responses of primary intestinal epithelial cells during the development of colitis.

    PubMed

    Singh, Joy Carmelina Indira; Cruickshank, Sheena Margaret; Newton, Darren James; Wakenshaw, Louise; Graham, Anne; Lan, Jinggang; Lodge, Jeremy Peter Alan; Felsburg, Peter John; Carding, Simon Richard

    2005-03-01

    The interleukin-2-deficient (IL-2(-/-)) mouse model of ulcerative colitis was used to test the hypothesis that colonic epithelial cells (CEC) directly respond to bacterial antigens and that alterations in Toll-like receptor (TLR)-mediated signaling may occur during the development of colitis. TLR expression and activation of TLR-mediated signaling pathways in primary CEC of healthy animals was compared with CEC in IL-2(-/-) mice during the development of colitis. In healthy animals, CEC expressed functional TLR, and in response to the TLR4 ligand LPS, proliferated and secreted the cytokines IL-6 and monocyte chemoattractant protein-1 (MCP-1). However, the TLR-responsiveness of CEC in IL-2(-/-) mice was different with decreased TLR4 responsiveness and augmented TLR2 responses that result in IL-6 and MCP-1 secretion. TLR signaling in CEC did not involve NF-kappaB (p65) activation with the inhibitory p50 form of NF-kappaB predominating in CEC in both the healthy and inflamed colon. Development of colitis was, however, associated with the activation of MAPK family members and upregulation of MyD88-independent signaling pathways characterized by increased caspase-1 activity and IL-18 production. These findings identify changes in TLR expression and signaling during the development of colitis that may contribute to changes in the host response to bacterial antigens seen in colitis.

  12. Artemisinin disrupts androgen responsiveness of human prostate cancer cells by stimulating the 26S proteasome-mediated degradation of the androgen receptor protein.

    PubMed

    Steely, Andrea M; Willoughby, Jamin A; Sundar, Shyam N; Aivaliotis, Vasiliki I; Firestone, Gary L

    2017-10-01

    Androgen receptor (AR) expression and activity is highly linked to the development and progression of prostate cancer and is a target of therapeutic strategies for this disease. We investigated whether the antimalarial drug artemisinin, which is a sesquiterpene lactone isolated from the sweet wormwood plant Artemisia annua, could alter AR expression and responsiveness in cultured human prostate cancer cell lines. Artemisinin treatment induced the 26S proteasome-mediated degradation of the receptor protein, without altering AR transcript levels, in androgen-responsive LNCaP prostate cancer cells or PC-3 prostate cancer cells expressing exogenous wild-type AR. Furthermore, artemisinin stimulated AR ubiquitination and AR receptor interactions with the E3 ubiquitin ligase MDM2 in LNCaP cells. The artemisinin-induced loss of AR protein prevented androgen-responsive cell proliferation and ablated total AR transcriptional activity. The serine/threonine protein kinase AKT-1 was shown to be highly associated with artemisinin-induced proteasome-mediated degradation of AR protein. Artemisinin treatment activated AKT-1 enzymatic activity, enhanced receptor association with AKT-1, and induced AR serine phosphorylation. Treatment of LNCaP cells with the PI3-kinase inhibitor LY294002, which inhibits the PI3-kinase-dependent activation of AKT-1, prevented the artemisinin-induced AR degradation. Furthermore, in transfected receptor-negative PC-3 cells, artemisinin failed to stimulate the degradation of an altered receptor protein (S215A/S792A) with mutations in its two consensus AKT-1 serine phosphorylation sites. Taken together, our results indicate that artemisinin induces the degradation of AR protein and disrupts androgen responsiveness of human prostate cancer cells, suggesting that this natural compound represents a new potential therapeutic molecule that selectively targets AR levels.

  13. AMPA Receptors Mediate Acetylcholine Release from Starburst Amacrine Cells in the Rabbit Retina

    PubMed Central

    FIRTH, SALLY I.; LI, WEI; MASSEY, STEPHEN C.; MARSHAK, DAVID W.

    2012-01-01

    The light response of starburst amacrine cells is initiated by glutamate released from bipolar cells. To identify the receptors that mediate this response, we used a combination of anatomical and physiological techniques. An in vivo, rabbit eyecup was preloaded with [3H]-choline, and the [3H]-acetylcholine (ACh) released into the superfusate was monitored. A photopic, 3 Hz flashing light increased ACh release, and the selective AMPA receptor antagonist, GYKI 53655, blocked this light-evoked response. Nonselective AMPA/kainate agonists increased the release of ACh, but the specific kainate receptor agonist, SYM 2081, did not increase ACh release. Selective AMPA receptor antagonists, GYKI 53655 or GYKI 52466, also blocked the responses to agonists. We conclude that the predominant excitatory input to starburst amacrine cells is mediated by AMPA receptors. We also labeled lightly fixed rabbit retinas with antisera to choline acetyltransferase (ChAT), AMPA receptor subunits GluR1, GluR2/3, or GluR4, and kainate receptor subunits GluR6/7 and KA2. Labeled puncta were observed in the inner plexiform layer with each of these antisera to glutamate receptors, but only GluR2/3-IR puncta and GluR4-IR puncta were found on the ChAT-IR processes. The same was true of starburst cells injected intracellularly with Neurobiotin, and these AMPA receptor subunits were localized to two populations of puncta. The AMPA receptors are expected to desensitize rapidly, enhancing the sensitivity of starburst amacrine cells to moving or other rapidly changing stimuli. PMID:14515241

  14. L-type Calcium Channel Blockers Enhance Trafficking and Function of Epilepsy-associated α1(D219N) Subunits of GABA(A) Receptors.

    PubMed

    Han, Dong-Yun; Guan, Bo-Jhih; Wang, Ya-Juan; Hatzoglou, Maria; Mu, Ting-Wei

    2015-09-18

    Gamma-aminobutyric acid type A (GABAA) receptors are the primary inhibitory ion channels in the mammalian central nervous system and play an essential role in regulating inhibition-excitation balance in neural circuits. The α1 subunit harboring the D219N mutation of GABAA receptors was reported to be retained in the endoplasmic reticulum (ER) and traffic inefficiently to the plasma membrane, leading to a loss of function of α1(D219N) subunits and thus idiopathic generalized epilepsy (IGE). We present the use of small molecule proteostasis regulators to enhance the forward trafficking of α1(D219N) subunits to restore their function. We showed that treatment with verapamil (4 μM, 24 h), an L-type calcium channel blocker, substantially increases the α1(D219N) subunit cell surface level in both HEK293 cells and neuronal SH-SY5Y cells and remarkably restores the GABA-induced maximal chloride current in HEK293 cells expressing α1(D219N)β2γ2 receptors to a level that is comparable to wild type receptors. Our drug mechanism study revealed that verapamil treatment promotes the ER to Golgi trafficking of the α1(D219N) subunits post-translationally. To achieve that, verapamil treatment enhances the interaction between the α1(D219N) subunit and β2 subunit and prevents the aggregation of the mutant protein by shifting the protein from the detergent-insoluble fractions to detergent-soluble fractions. By combining (35)S pulse-chase labeling and MG-132 inhibition experiments, we demonstrated that verapamil treatment does not inhibit the ER-associated degradation of the α1(D219N) subunit. In addition, its effect does not involve a dynamin-1 dependent endocytosis. To gain further mechanistic insight, we showed that verapamil increases the interaction between the mutant protein and calnexin and calreticulin, two major lectin chaperones in the ER. Moreover, calnexin binding promotes the forward trafficking of the mutant subunit. Taken together, our data indicate that

  15. Insights into GABA receptor signalling in TM3 Leydig cells.

    PubMed

    Doepner, Richard F G; Geigerseder, Christof; Frungieri, Monica B; Gonzalez-Calvar, Silvia I; Calandra, Ricardo S; Raemsch, Romi; Fohr, Karl; Kunz, Lars; Mayerhofer, Artur

    2005-01-01

    Gamma-aminobutyric acid (GABA) is an emerging signalling molecule in endocrine organs, since it is produced by endocrine cells and acts via GABA(A) receptors in a paracrine/autocrine fashion. Testicular Leydig cells are producers and targets for GABA. These cells express GABA(A) receptor subunits and in the murine Leydig cell line TM3 pharmacological activation leads to increased proliferation. The signalling pathway of GABA in these cells is not known in this study. We therefore attempted to elucidate details of GABA(A) signalling in TM3 and adult mouse Leydig cells using several experimental approaches. TM3 cells not only express GABA(A )receptor subunits, but also bind the GABA agonist [(3)H]muscimol with a binding affinity in the range reported for other endocrine cells (K(d) = 2.740 +/- 0.721 nM). However, they exhibit a low B(max) value of 28.08 fmol/mg protein. Typical GABA(A) receptor-associated events, including Cl(-) currents, changes in resting membrane potential, intracellular Ca(2+) or cAMP, were not measurable with the methods employed in TM3 cells, or, as studied in part, in primary mouse Leydig cells. GABA or GABA(A) agonist isoguvacine treatment resulted in increased or decreased levels of several mRNAs, including transcription factors (c-fos, hsf-1, egr-1) and cell cycle-associated genes (Cdk2, cyclin D1). In an attempt to verify the cDNA array results and because egr-1 was recently implied in Leydig cell development, we further studied this factor. RT-PCR and Western blotting confirmed a time-dependent regulation of egr-1 in TM3. In the postnatal testis egr-1 was seen in cytoplasmic and nuclear locations of developing Leydig cells, which bear GABA(A) receptors and correspond well to TM3 cells. Thus, GABA acts via an atypical novel signalling pathway in TM3 cells. Further details of this pathway remain to be elucidated. Copyright (c) 2005 S. Karger AG, Basel.

  16. GABAA receptor: Positive and negative allosteric modulators.

    PubMed

    Olsen, Richard W

    2018-01-31

    gamma-Aminobutyric acid (GABA)-mediated inhibitory neurotransmission and the gene products involved were discovered during the mid-twentieth century. Historically, myriad existing nervous system drugs act as positive and negative allosteric modulators of these proteins, making GABA a major component of modern neuropharmacology, and suggesting that many potential drugs will be found that share these targets. Although some of these drugs act on proteins involved in synthesis, degradation, and membrane transport of GABA, the GABA receptors Type A (GABA A R) and Type B (GABA B R) are the targets of the great majority of GABAergic drugs. This discovery is due in no small part to Professor Norman Bowery. Whereas the topic of GABA B R is appropriately emphasized in this special issue, Norman Bowery also made many insights into GABA A R pharmacology, the topic of this article. GABA A R are members of the ligand-gated ion channel receptor superfamily, a chloride channel family of a dozen or more heteropentameric subtypes containing 19 possible different subunits. These subtypes show different brain regional and subcellular localization, age-dependent expression, and potential for plastic changes with experience including drug exposure. Not only are GABA A R the targets of agonist depressants and antagonist convulsants, but most GABA A R drugs act at other (allosteric) binding sites on the GABA A R proteins. Some anxiolytic and sedative drugs, like benzodiazepine and related drugs, act on GABA A R subtype-dependent extracellular domain sites. General anesthetics including alcohols and neurosteroids act at GABA A R subunit-interface trans-membrane sites. Ethanol at high anesthetic doses acts on GABA A R subtype-dependent trans-membrane domain sites. Ethanol at low intoxicating doses acts at GABA A R subtype-dependent extracellular domain sites. Thus GABA A R subtypes possess pharmacologically specific receptor binding sites for a large group of different chemical classes of

  17. Perinatal intermittent hypoxia alters γ-aminobutyric acid: a receptor levels in rat cerebellum.

    PubMed

    Pae, Eung-Kwon; Yoon, Audrey J; Ahuja, Bhoomika; Lau, Gary W; Nguyen, Daniel D; Kim, Yong; Harper, Ronald M

    2011-12-01

    Perinatal hypoxia commonly causes brain injury in infants, but the time course and mechanisms underlying the preferential male injury are unclear. Intermittent hypoxia disturbs cerebellar γ-aminobutyric (GABA)-A receptor profiles during the perinatal period, possibly responding to transient excitatory processes associated with GABA(A) receptors. We examined whether hypoxic insults were particularly damaging to the male rodent cerebellum during a specific developmental time window. We evaluated cerebellar injury and GABA(A) receptor profiles following 5-h intermittent hypoxia (IH: 20.8% and 10.3% ambient oxygen, switched every 240s) or room-air control in groups of male and female rat pups on postnatal d 1-2, wk 1, or wk 3. The cerebella were harvested and compared between groups. The mRNA levels of GABA(A) receptors α6, normalized to a house-keeping gene GAPDH, and assessed using real-time reverse-transcriptase PCR assays were up-regulated by IH at wk 1, more extensively in male rats, with sex influencing the regulatory time-course. In contrast, GABA(A) α6 receptor protein expression levels, assessed using Western blot assays, reached a nadir at wk 1 in both male and female rats, possibly indicating involvement of a post-transcriptional mechanism. The extent of cerebellar damage and level of apoptosis, assessed by DNA fragmentation, were greatest in the wk 3 IH-exposed group. The findings suggest partial protection for female rats against early hypoxic insult in the cerebellum, and that down-regulation of GABA(A) receptors, rather than direct neural injury assessed by DNA fragmentation may modify cerebellar function, with potential later motor and other deficits. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.

  18. Disinhibition of perifornical hypothalamic neurones activates noradrenergic neurones and blocks pontine carbachol-induced REM sleep-like episodes in rats

    PubMed Central

    Lu, Jackie W; Fenik, Victor B; Branconi, Jennifer L; Mann, Graziella L; Rukhadze, Irma; Kubin, Leszek

    2007-01-01

    Studies in behaving animals suggest that neurones located in the perifornical (PF) region of the posterior hypothalamus promote wakefulness and suppress sleep. Among such cells are those that synthesize the excitatory peptides, orexins (ORX). Lack of ORX, or their receptors, is associated with narcolepsy/cataplexy, a disorder characterized by an increased pressure for rapid eye movement (REM) sleep. We used anaesthetized rats in which pontine microinjections of a cholinergic agonist, carbachol, can repeatedly elicit REM sleep-like episodes to test whether activation of PF cells induced by antagonism of endogenous, GABAA receptor-mediated, inhibition suppresses the ability of the brainstem to generate REM sleep-like state. Microinjections of the GABAA receptor antagonist, bicuculline (20 nl, 1 mm), into the PF region elicited cortical and hippocampal activation, increased the respiratory rate and hypoglossal nerve activity, induced c-fos expression in ORX and other PF neurones, and increased c-fos expression in pontine A7 and other noradrenergic neurones. The ability of pontine carbachol to elicit any cortical, hippocampal or brainstem component of the REM sleep-like response was abolished during the period of bicuculline-induced activation. The activating and REM sleep-suppressing effect of PF bicuculline was not attenuated by systemic administration of the ORX type 1 receptor antagonist, SB334867. Thus, activation of PF neurones that are endogenously inhibited by GABAA receptors is sufficient to turn off the brainstem REM sleep-generating network; the effect is, at least in part, due to activation of pontine noradrenergic neurones, but is not mediated by ORX type 1 receptors. A malfunction of the pathway that originates in GABAA receptor-expressing PF neurones may cause narcolepsy/cataplexy. PMID:17495048

  19. GABRG2, rs211037 is associated with epilepsy susceptibility, but not with antiepileptic drug resistance and febrile seizures.

    PubMed

    Balan, Shabeesh; Sathyan, Sanish; Radha, Saradalekshmi K; Joseph, Vijai; Radhakrishnan, Kurupath; Banerjee, Moinak

    2013-11-01

    Several antiepileptic drugs (AEDs) are known to target the GABA(A) receptor through positive allosteric modulation of the receptors, thereby enhancing GABA(A) receptor-mediated inhibition. The large diversity of GABA(A) receptors has been reported in the central nervous system; some of these have been implicated in epilepsy susceptibility and AED resistance, which we aimed to examine. We investigated the association of single-nucleotide polymorphisms in GABA(A) receptor subunit subtype genes namely; rs2279020 (GABRA1), rs3219151 (GABRA6), rs2229944 (GABRB2), and rs211037 (GABRG2) with predisposition to epilepsy and AED resistance. This was assessed in three cohorts of ethnically matched South Indian ancestry: mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) (prototype of AED-resistant epilepsy syndrome), juvenile myoclonic epilepsy (prototype of AED-responsive epilepsy syndrome), and nonepilepsy controls. A significant allelic (P=0.0006, odds ratio=1.6, 95% confidence interval=1.22-2.08) and genotypic (P=0.001) association of a synonymous variant in GABRG2, rs211037 (Asn196Asn) was observed with epilepsy irrespective of its phenotype, that is, MTLE-HS or juvenile myoclonic epilepsy. However, this association was not retained in epilepsy patients with a history of febrile seizures. The GABA(A) receptor subunit subtype genes were not found to have any association with AED resistance. In-silico analysis indicated that rs211037 plays a significant role in the transcriptional regulation and splicing regulation. We could substantiate that among the GABA(A) receptor subunit gene cluster polymorphisms, the GABRG2, rs211037 predisposes susceptibility to epilepsy, irrespective of its phenotype, but not to AED resistance.

  20. Contribution of Resting Conductance, GABAA-Receptor Mediated Miniature Synaptic Currents and Neurosteroid to Chloride Homeostasis in Central Neurons.

    PubMed

    Yelhekar, Tushar D; Druzin, Michael; Johansson, Staffan

    2017-01-01

    Maintenance of a low intraneuronal Cl - concentration, [Cl - ] i , is critical for inhibition in the CNS. Here, the contribution of passive, conductive Cl - flux to recovery of [Cl - ] i after a high load was analyzed in mature central neurons from rat. A novel method for quantifying the resting Cl - conductance, important for [Cl - ] i recovery, was developed and the possible contribution of GABA A and glycine receptors and of ClC-2 channels to this conductance was analyzed. The hypothesis that spontaneous, action potential-independent release of GABA is important for [Cl - ] i recovery was tested. [Cl - ] i was examined by gramicidin-perforated patch recordings in medial preoptic neurons. Cells were loaded with Cl - by combining GABA or glycine application with a depolarized voltage, and the time course of [Cl - ] i was followed by measurements of the Cl - equilibrium potential , as obtained from the current recorded during voltage ramps combined with GABA or glycine application. The results show that passive Cl - flux contributes significantly, in the same order of magnitude as does K + -Cl - cotransporter 2 (KCC2), to [Cl - ] i recovery and that Cl - conductance accounts for ∼ 6% of the total resting conductance. A major fraction of this resting Cl - conductance is picrotoxin (PTX)-sensitive and likely due to open GABA A receptors, but ClC-2 channels do not contribute. The results also show that when the decay of GABA A receptor-mediated miniature postsynaptic currents (minis) is slowed by the neurosteroid allopregnanolone, such minis may significantly quicken [Cl - ] i recovery, suggesting a possible steroid-regulated role for minis in the control of Cl - homeostasis.

  1. The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry.

    PubMed

    Meertens, Laurent; Carnec, Xavier; Lecoin, Manuel Perera; Ramdasi, Rasika; Guivel-Benhassine, Florence; Lew, Erin; Lemke, Greg; Schwartz, Olivier; Amara, Ali

    2012-10-18

    Dengue viruses (DVs) are responsible for the most medically relevant arboviral diseases. However, the molecular interactions mediating DV entry are poorly understood. We determined that TIM and TAM proteins, two receptor families that mediate the phosphatidylserine (PtdSer)-dependent phagocytic removal of apoptotic cells, serve as DV entry factors. Cells poorly susceptible to DV are robustly infected after ectopic expression of TIM or TAM receptors. Conversely, DV infection of susceptible cells is inhibited by anti-TIM or anti-TAM antibodies or knockdown of TIM and TAM expression. TIM receptors facilitate DV entry by directly interacting with virion-associated PtdSer. TAM-mediated infection relies on indirect DV recognition, in which the TAM ligand Gas6 acts as a bridging molecule by binding to PtdSer within the virion. This dual mode of virus recognition by TIM and TAM receptors reveals how DVs usurp the apoptotic cell clearance pathway for infectious entry. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Effect of GABA receptor agonists or antagonists injected spinally on the blood glucose level in mice.

    PubMed

    Sim, Yun-Beom; Park, Soo-Hyun; Kang, Yu-Jung; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi; Suh, Hong-Won

    2013-05-01

    The possible roles of gamma-amino butyric acid (GABA) receptors located in the spinal cord for the regulation of the blood glucose level were studied in ICR mice. We found in the present study that intrathecal (i.t.) injection with baclofen (a GABAB receptor agonist; 1-10 μg/5 μl) or bicuculline (a GABAA receptor antagonist; 1-10 μg/5 μl) caused an elevation of the blood glucose level in a dose-dependent manner. The hyperglycemic effect induced by baclofen was more pronounced than that induced by bicuculline. However, muscimol (a GABAA receptor agonist; 1-5 μg/5 μl) or phaclofen (a GABAB receptor antagonist; 5-10 μg/5 μl) administered i.t. did not affect the blood glucose level. Baclofen-induced elevation of the blood glucose was dose-dependently attenuated by phaclofen. Furthermore, i.t. pretreatment with pertussis toxin (PTX; 0.05 or 0.1 μg/5 μl) for 6 days dose-dependently reduced the hyperglycemic effect induced by baclofen. Our results suggest that GABAB receptors located in the spinal cord play important roles for the elevation of the blood glucose level. Spinally located PTX-sensitive G-proteins appear to be involved in hyperglycemic effect induced by baclofen. Furthermore, inactivation of GABAA receptors located in the spinal cord appears to be responsible for tonic up-regulation of the blood glucose level.

  3. Effect of progesterone on the expression of GABA(A) receptor subunits in the prefrontal cortex of rats: implications of sex differences and brain hemisphere.

    PubMed

    Andrade, Susie; Arbo, Bruno D; Batista, Bruna A M; Neves, Alice M; Branchini, Gisele; Brum, Ilma S; Barros, Helena M T; Gomez, Rosane; Ribeiro, Maria Flavia M

    2012-12-01

    Progesterone is a neuroactive hormone with non-genomic effects on GABA(A) receptors (GABA(A)R). Changes in the expression of GABA(A)R subunits are related to depressive-like behaviors in rats. Moreover, sex differences and depressive behaviors have been associated with prefrontal brain asymmetry in rodents and humans. Thus, our objective was to investigate the effect of progesterone on the GABA(A)R α1 and γ2 subunits mRNA expression in the right and left prefrontal cortex of diestrus female and male rats exposed to the forced swimming test (FST). Male and female rats (n = 8/group) were randomly selected to receive a daily dose of progesterone (0·4 mg·kg⁻¹) or vehicle, during two complete female estrous cycles (8-10 days). On the experiment day, male rats or diestrus female rats were euthanized 30 min after the FST. Our results showed that progesterone significantly increased the α1 subunit mRNA in both hemispheres of male and female rats. Moreover, there was an inverse correlation between depressive-like behaviors and GABA(A)R α1 subunit mRNA expression in the right hemisphere in female rats. Progesterone decreased the GABA(A)R γ2 mRNA expression only in the left hemisphere of male rats. Therefore, we conclude that the GABA(A) system displays an asymmetric distribution according to sex and that progesterone, at lower doses, presents an antidepressant effect after increasing the GABA(A) R α1 subunit expression in the right prefrontal cortex of female rats. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Evidence for motivational effects elicited by activation of GABA-A or dopamine receptors in the nucleus accumbens shell.

    PubMed

    Wirtshafter, David; Stratford, Thomas R

    2010-09-01

    Microinjections of the inhibitory GABA-A receptor agonist muscimol into the shell region of the nucleus accumbens (AcbSh) have been reported to induce large increases in food intake, but the effect of these injections on motivational processes is less clear. In the current study, bilateral injections of saline, muscimol (50ng/side) or d-amphetamine (10mug/side) were made into the AcbSh of rats trained to lever press on a progressive ratio schedule for food reward. Injections of both muscimol and amphetamine were found to produce a large increase in the breaking point relative to saline injections. This result suggests that inactivation of the AcbSh does not simply drive ingestive behavior, but also affects motivational processes assessed by the progressive ratio schedule. Breaking points were also increased by injections of amphetamine into the AcbSh. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Multiple receptor subtypes mediate the effects of serotonin on rat subfornical organ neurons

    NASA Technical Reports Server (NTRS)

    Scrogin, K. E.; Johnson, A. K.; Schmid, H. A.

    1998-01-01

    The subfornical organ (SFO) receives significant serotonergic innervation. However, few reports have examined the functional effects of serotonin on SFO neurons. This study characterized the effects of serotonin on spontaneously firing SFO neurons in the rat brain slice. Of 31 neurons tested, 80% responded to serotonin (1-100 microM) with either an increase (n = 15) or decrease (n = 10) in spontaneous activity. Responses to serotonin were dose dependent and persisted after synaptic blockade. Excitatory responses could also be mimicked by the 5-hydroxytryptamine (5-HT)2A/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI; 1-10 microM) and could be blocked by the 5-HT2A/2C-receptor antagonist LY-53,857 (10 microM). LY-53,857 unmasked inhibitory responses to serotonin in 56% of serotonin-excited cells tested. Serotonin-inhibited cells were also inhibited by the 5-HT1A-receptor agonist 8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT; 1-10 microM; n = 7). The data indicate that SFO neurons are responsive to serotonin via postsynaptic activation of multiple receptor subtypes. The results suggest that excitatory responses to serotonin are mediated by 5-HT2A or 5-HT2C receptors and that inhibitory responses may be mediated by 5-HT1A receptors. In addition, similar percentages of serotonin-excited and -inhibited cells were also sensitive to ANG II. As such the functional relationship between serotonin and ANG II in the SFO remains unclear.

  6. Multiple receptor subtypes mediate the effects of serotonin on rat subfornical organ neurons.

    PubMed

    Scrogin, K E; Johnson, A K; Schmid, H A

    1998-12-01

    The subfornical organ (SFO) receives significant serotonergic innervation. However, few reports have examined the functional effects of serotonin on SFO neurons. This study characterized the effects of serotonin on spontaneously firing SFO neurons in the rat brain slice. Of 31 neurons tested, 80% responded to serotonin (1-100 microM) with either an increase (n = 15) or decrease (n = 10) in spontaneous activity. Responses to serotonin were dose dependent and persisted after synaptic blockade. Excitatory responses could also be mimicked by the 5-hydroxytryptamine (5-HT)2A/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI; 1-10 microM) and could be blocked by the 5-HT2A/2C-receptor antagonist LY-53,857 (10 microM). LY-53,857 unmasked inhibitory responses to serotonin in 56% of serotonin-excited cells tested. Serotonin-inhibited cells were also inhibited by the 5-HT1A-receptor agonist 8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT; 1-10 microM; n = 7). The data indicate that SFO neurons are responsive to serotonin via postsynaptic activation of multiple receptor subtypes. The results suggest that excitatory responses to serotonin are mediated by 5-HT2A or 5-HT2C receptors and that inhibitory responses may be mediated by 5-HT1A receptors. In addition, similar percentages of serotonin-excited and -inhibited cells were also sensitive to ANG II. As such the functional relationship between serotonin and ANG II in the SFO remains unclear.

  7. Defects in dendrite and spine maturation and synaptogenesis associated with an anxious-depressive-like phenotype of GABAA receptor-deficient mice.

    PubMed

    Ren, Zhen; Sahir, Nadia; Murakami, Shoko; Luellen, Beth A; Earnheart, John C; Lal, Rachnanjali; Kim, Ju Young; Song, Hongjun; Luscher, Bernhard

    2015-01-01

    Mice that were rendered heterozygous for the γ2 subunit of GABAA receptors (γ2(+/-) mice) have been characterized extensively as a model for major depressive disorder. The phenotype of these mice includes behavior indicative of heightened anxiety, despair, and anhedonia, as well as defects in hippocampus-dependent pattern separation, HPA axis hyperactivity and increased responsiveness to antidepressant drugs. The γ2(+/-) model thereby provides strong support for the GABAergic deficit hypothesis of major depressive disorder. Here we show that γ2(+/-) mice additionally exhibit specific defects in late stage survival of adult-born hippocampal granule cells, including reduced complexity of dendritic arbors and impaired maturation of synaptic spines. Moreover, cortical γ2(+/-) neurons cultured in vitro show marked deficits in GABAergic innervation selectively when grown under competitive conditions that may mimic the environment of adult-born hippocampal granule cells. Finally, brain extracts of γ2(+/-) mice show a numerical but insignificant trend (p = 0.06) for transiently reduced expression of brain derived neurotrophic factor (BDNF) at three weeks of age, which might contribute to the previously reported developmental origin of the behavioral phenotype of γ2(+/-) mice. The data indicate increasing congruence of the GABAergic, glutamatergic, stress-based and neurotrophic deficit hypotheses of major depressive disorder. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Zolpidem generalization and antagonism in male and female cynomolgus monkeys trained to discriminate 1.0 or 2.0 g/kg ethanol.

    PubMed

    Helms, Christa M; Rogers, Laura S M; Waters, Courtney A; Grant, Kathleen A

    2008-07-01

    The subtypes of gamma-aminobutyric acid (GABA)(A) receptors mediating the discriminative stimulus effects of ethanol in nonhuman primates are not completely identified. The GABA(A) receptor positive modulator zolpidem has high, intermediate, and low activity at receptors containing alpha(1), alpha(2/3), and alpha(5) subunits, respectively, and partially generalizes from ethanol in several species. The partial inverse agonist Ro15-4513 has the greatest affinity for alpha(4/6)-containing receptors, higher affinity for alpha(5)- and lower, but equal, affinity for alpha(1)- and alpha(2/3)-, containing GABA(A) receptors, and antagonizes the discriminative stimulus effects of ethanol. This study assessed Ro15-4513 antagonism of the generalization of zolpidem from ethanol in male (n = 9) and female (n = 8) cynomolgus monkeys (Macaca fascicularis) trained to discriminate 1.0 g/kg (n = 10) or 2.0 g/kg (n = 7) ethanol (i.g.) from water with a 30-minute pretreatment interval. Zolpidem (0.017 to 5.6 mg/kg, i.m.) completely generalized from ethanol (>or=80% of total session responses on the ethanol-appropriate lever) for 6/7 monkeys trained to discriminate 2.0 g/kg and 4/10 monkeys trained to discriminate 1.0 g/kg ethanol. Zolpidem partially generalized from 1.0 or 2.0 g/kg ethanol in 6/7 remaining monkeys. Ro15-4513 (0.003 to 0.30 mg/kg, i.m., 5-minute pretreatment) shifted the zolpidem dose-response curve to the right in all monkeys showing generalization. Analysis of apparent pK(B) from antagonism tests suggested that the discriminative stimulus effects of ethanol common with zolpidem are mediated by low-affinity Ro15-4513 binding sites. Main effects of sex and training dose indicated greater potency of Ro15-4513 in males and in monkeys trained to discriminate 1.0 g/kg ethanol. Ethanol and zolpidem share similar discriminative stimulus effects most likely through GABA(A) receptors that contain alpha(1) subunits, however, antagonism by Ro15-4513 of zolpidem generalization

  9. Epidermal growth factor receptor signaling mediates aldosterone-induced profibrotic responses in kidney

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Lili; Yang, Min; Ding, Wei

    Aldosterone has been recognized as a risk factor for the development of chronic kidney disease (CKD). Studies have indicated that enhanced activation of epidermal growth factor receptor (EGFR) is associated with the development and progression of renal fibrosis. But if EGFR is involved in aldosterone-induced renal fibrosis is less investigated. In the present study, we examined the effect of erlotinib, an inhibitor of EGFR tyrosine kinase activity, on the progression of aldosterone-induced renal profibrotic responses in a murine model underwent uninephrectomy. Erlotinib-treated rats exhibited relieved structural lesion comparing with rats treated with aldosterone alone, as characterized by glomerular hypertrophy, mesangialmore » cell proliferation and expansion. Also, erlotinib inhibited the expression of TGF-β, α-SMA and mesangial matrix proteins such as collagen Ⅳ and fibronectin. In cultured mesangial cells, inhibition of EGFR also abrogated aldosterone-induced expression of extracellular matrix proteins, cell proliferation and migration. We also demonstrated that aldosterone induced the phosphorylation of EGFR through generation of ROS. And the activation of EGFR resulted in the phosphorylation of ERK1/2, leading to the activation of profibrotic pathways. Taken together, we concluded that aldosterone-mediated tissue fibrosis relies on ROS induced EGFR/ERK activation, highlighting EGFR as a potential therapeutic target for modulating renal fibrosis. - Highlights: • EGFR was involved in aldosterone-induced renal profibrotic responses. • Aldosterone-induced EGFR activation was mediated by MR-dependent ROS generation. • EGFR activated the MAPK/ERK1/2 signaling to promote renal fibrosis.« less

  10. The Ionotropic Receptors IR21a and IR25a mediate cool sensing in Drosophila.

    PubMed

    Ni, Lina; Klein, Mason; Svec, Kathryn V; Budelli, Gonzalo; Chang, Elaine C; Ferrer, Anggie J; Benton, Richard; Samuel, Aravinthan Dt; Garrity, Paul A

    2016-04-29

    Animals rely on highly sensitive thermoreceptors to seek out optimal temperatures, but the molecular mechanisms of thermosensing are not well understood. The Dorsal Organ Cool Cells (DOCCs) of the Drosophila larva are a set of exceptionally thermosensitive neurons critical for larval cool avoidance. Here, we show that DOCC cool-sensing is mediated by Ionotropic Receptors (IRs), a family of sensory receptors widely studied in invertebrate chemical sensing. We find that two IRs, IR21a and IR25a, are required to mediate DOCC responses to cooling and are required for cool avoidance behavior. Furthermore, we find that ectopic expression of IR21a can confer cool-responsiveness in an Ir25a-dependent manner, suggesting an instructive role for IR21a in thermosensing. Together, these data show that IR family receptors can function together to mediate thermosensation of exquisite sensitivity.

  11. Selectivity and specificity of sphingosine-1-phosphate receptor ligands: caveats and critical thinking in characterizing receptor-mediated effects.

    PubMed

    Salomone, Salvatore; Waeber, Christian

    2011-01-01

    Receptors for sphingosine-1-phosphate (S1P) have been identified only recently. Their medicinal chemistry is therefore still in its infancy, and few selective agonists or antagonists are available. Furthermore, the selectivity of S1P receptor agonists or antagonists is not well established. JTE-013 and BML-241 (also known as CAY10444), used extensively as specific S1P(2) and S1P(3) receptors antagonists respectively, are cases in point. When analyzing S1P-induced vasoconstriction in mouse basilar artery, we observed that JTE-013 inhibited not only the effect of S1P, but also the effect of U46619, endothelin-1 or high KCl; JTE-013 strongly inhibited responses to S1P in S1P(2) receptor knockout mice. Similarly, BML-241 has been shown to inhibit increases in intracellular Ca(2+) concentration via P(2) receptor or α(1A)-adrenoceptor stimulation and α(1A)-adrenoceptor-mediated contraction of rat mesenteric artery, while it did not affect S1P(3)-mediated decrease of forskolin-induced cyclic AMP accumulation. Another putative S1P(1/3) receptor antagonist, VPC23019, does not inhibit S1P(3)-mediated vasoconstriction. With these examples in mind, we discuss caveats about relying on available pharmacological tools to characterize receptor subtypes.

  12. Muscarinic acetylcholine receptor in cerebellar cortex participates in acetylcholine-mediated blood depressor response in rats.

    PubMed

    Zhou, Peiling; Zhu, Qingfeng; Liu, Ming; Li, Jing; Wang, Yong; Zhang, Changzheng; Hua, Tianmiao

    2015-04-23

    Our previous investigations have revealed that cerebellar cholinergic innervation is involved in cardiovascular regulation. This study was performed to examine the effects of the muscarinic cholinergic receptor (mAChR) in the cerebellar cortex on blood pressure (BP) modulation in rats. Acetylcholine (ACh, 100mM), nonselective mAChR agonist (oxotremorine M; Oxo-M, 10, 30 and 100mM) and 100mM ACh mixed with nonselective mAChR antagonist atropine (1, 3 and 10mM) were microinjected into the cerebellar cortex of anesthetized rats. Mean arterial pressure (MAP), maximal decreased MAP (MDMAP), and reaction time (duration required for BP to return to basal values) were measured and analyzed. The results showed that Oxo-M dose-dependently decreased MAP, increased MDMAP, and prolonged reaction time, which displayed a homodromous effect of ACh-mediated blood depressor response; meanwhile, atropine concentration-dependently blocked the effect of ACh on the BP regulation. In conclusion, the present study showed for the first time that mAChRs in cerebellar cortex could modulate somatic BP by participation in ACh-mediated depressor response. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Key Role of the Scavenger Receptor MARCO in Mediating Adenovirus Infection and Subsequent Innate Responses of Macrophages.

    PubMed

    Maler, Mareike D; Nielsen, Peter J; Stichling, Nicole; Cohen, Idan; Ruzsics, Zsolt; Wood, Connor; Engelhard, Peggy; Suomalainen, Maarit; Gyory, Ildiko; Huber, Michael; Müller-Quernheim, Joachim; Schamel, Wolfgang W A; Gordon, Siamon; Jakob, Thilo; Martin, Stefan F; Jahnen-Dechent, Willi; Greber, Urs F; Freudenberg, Marina A; Fejer, György

    2017-08-01

    The scavenger receptor MARCO is expressed in several subsets of naive tissue-resident macrophages and has been shown to participate in the recognition of various bacterial pathogens. However, the role of MARCO in antiviral defense is largely unexplored. Here, we investigated whether MARCO might be involved in the innate sensing of infection with adenovirus and recombinant adenoviral vectors by macrophages, which elicit vigorous immune responses in vivo Using cells derived from mice, we show that adenovirus infection is significantly more efficient in MARCO-positive alveolar macrophages (AMs) and in AM-like primary macrophage lines (Max Planck Institute cells) than in MARCO-negative bone marrow-derived macrophages. Using antibodies blocking ligand binding to MARCO, as well as gene-deficient and MARCO-transfected cells, we show that MARCO mediates the rapid adenovirus transduction of macrophages. By enhancing adenovirus infection, MARCO contributes to efficient innate virus recognition through the cytoplasmic DNA sensor cGAS. This leads to strong proinflammatory responses, including the production of interleukin-6 (IL-6), alpha/beta interferon, and mature IL-1α. These findings contribute to the understanding of viral pathogenesis in macrophages and may open new possibilities for the development of tools to influence the outcome of infection with adenovirus or adenovirus vectors. IMPORTANCE Macrophages play crucial roles in inflammation and defense against infection. Several macrophage subtypes have been identified with differing abilities to respond to infection with both natural adenoviruses and recombinant adenoviral vectors. Adenoviruses are important respiratory pathogens that elicit vigorous innate responses in vitro and in vivo The cell surface receptors mediating macrophage type-specific adenovirus sensing are largely unknown. The scavenger receptor MARCO is expressed on some subsets of naive tissue-resident macrophages, including lung alveolar macrophages

  14. Endogenous Positive Allosteric Modulation of GABAA Receptors by Diazepam binding inhibitor

    PubMed Central

    Christian, Catherine A.; Herbert, Anne G.; Holt, Rebecca L.; Peng, Kathy; Sherwood, Kyla D.; Pangratz-Fuehrer, Susanne; Rudolph, Uwe; Huguenard, John R.

    2014-01-01

    Summary Benzodiazepines (BZs) allosterically modulate γ-aminobutyric acid type-A receptors (GABAARs) to increase inhibitory synaptic strength. Diazepam binding inhibitor (DBI) protein is a BZ site ligand expressed endogenously in the brain, but functional evidence for BZ-mimicking positive modulatory actions has been elusive. We demonstrate an endogenous potentiation of GABAergic synaptic transmission and responses to GABA uncaging in the thalamic reticular nucleus (nRT) that is absent in both nm1054 mice, in which the Dbi gene is deleted, and mice in which BZ binding to α3 subunit-containing GABAARs is disrupted. Viral transduction of DBI into nRT is sufficient to rescue the endogenous potentiation of GABAergic transmission in nm1054 mice. Both mutations enhance thalamocortical spike-and-wave discharges characteristic of absence epilepsy. Together these results indicate that DBI mediates endogenous nucleus-specific BZ-mimicking (“endozepine”) roles to modulate nRT function and suppress thalamocortical oscillations. Enhanced DBI signaling might serve as a novel therapy for epilepsy and other neurological disorders. PMID:23727119

  15. Origin and Properties of Striatal Local Field Potential Responses to Cortical Stimulation: Temporal Regulation by Fast Inhibitory Connections

    PubMed Central

    Galiñanes, Gregorio L.; Braz, Barbara Y.; Murer, Mario Gustavo

    2011-01-01

    Evoked striatal field potentials are seldom used to study corticostriatal communication in vivo because little is known about their origin and significance. Here we show that striatal field responses evoked by stimulating the prelimbic cortex in mice are reduced by more than 90% after infusing the AMPA receptor antagonist CNQX close to the recording electrode. Moreover, the amplitude of local field responses and dPSPs recorded in striatal medium spiny neurons increase in parallel with increasing stimulating current intensity. Finally, the evoked striatal fields show several of the basic known properties of corticostriatal transmission, including paired pulse facilitation and topographical organization. As a case study, we characterized the effect of local GABAA receptor blockade on striatal field and multiunitary action potential responses to prelimbic cortex stimulation. Striatal activity was recorded through a 24 channel silicon probe at about 600 µm from a microdialysis probe. Intrastriatal administration of the GABAA receptor antagonist bicuculline increased by 65±7% the duration of the evoked field responses. Moreover, the associated action potential responses were markedly enhanced during bicuculline infusion. Bicuculline enhancement took place at all the striatal sites that showed a response to cortical stimulation before drug infusion, but sites showing no field response before bicuculline remained unresponsive during GABAA receptor blockade. Thus, the data demonstrate that fast inhibitory connections exert a marked temporal regulation of input-output transformations within spatially delimited striatal networks responding to a cortical input. Overall, we propose that evoked striatal fields may be a useful tool to study corticostriatal synaptic connectivity in relation to behavior. PMID:22163020

  16. Expression of GABA receptor subunits in the hippocampus and thalamus after experimental traumatic brain injury

    PubMed Central

    Drexel, Meinrad; Puhakka, Noora; Kirchmair, Elke; Hörtnagl, Heide; Pitkänen, Asla; Sperk, Günther

    2015-01-01

    Traumatic brain injury is a major cause of death and disability worldwide and often associated with post-traumatic epilepsy. We recently demonstrated that TBI induces acquired GABAA receptors channelopathy that associates with hyperexcitability in granule cell layer (GCL). We now assessed the expression of GABAA and GABAB receptor subunit mRNAs between 6 h and 6 months post-TBI in the hippocampus and thalamus. The expression of major GABAA receptor subunit mRNAs (α1, α2, α5, β2, β3, γ2 and δ) was, often bilaterally, down-regulated in the GCL and in the CA3 pyramidal cells. Instead, expression of α4 (GCL, CA3, CA1), α5 (CA1) and γ2 (GCL, CA3, CA1) mRNA was up-regulated after 10 d and/or 4 months. Many of these changes were reversible. In the thalamus, we found decreases in α1, α4, β2, γ2 and δ mRNAs in the laterodorsal thalamus and in the area combining the posterior thalamic nuclear group, ventroposterolateral and ventroposteromedial complex at 6 h to 4 months post-TBI. Unlike in the hippocampus, thalamic subunit down-regulations were irreversible and limited to the ipsilateral side. However, contralaterally there was up-regulation of the subunits δ and α4 6 h and 4 months after TBI, respectively. PCR array analysis suggested a mild long-lasting GABAA receptor channelopathy in the GCL and thalamus after TBI. Whereas TBI induces transient changes in the expression of GABAA receptor subunits in the hippocampus (presumably representing compensatory mechanisms), alterations of GABAA receptor subunit mRNAs in the thalamus are long-lasting and related to degeneration of receptor-containing neurons in thalamo-cortical relay nuclei. This article is part of the Special Issue entitled ‘GABAergic Signaling in Health and Disease’. PMID:25229716

  17. Expression of GABA receptor subunits in the hippocampus and thalamus after experimental traumatic brain injury.

    PubMed

    Drexel, Meinrad; Puhakka, Noora; Kirchmair, Elke; Hörtnagl, Heide; Pitkänen, Asla; Sperk, Günther

    2015-01-01

    Traumatic brain injury is a major cause of death and disability worldwide and often associated with post-traumatic epilepsy. We recently demonstrated that TBI induces acquired GABAA receptors channelopathy that associates with hyperexcitability in granule cell layer (GCL). We now assessed the expression of GABAA and GABAB receptor subunit mRNAs between 6 h and 6 months post-TBI in the hippocampus and thalamus. The expression of major GABAA receptor subunit mRNAs (α1, α2, α5, β2, β3, γ2 and δ) was, often bilaterally, down-regulated in the GCL and in the CA3 pyramidal cells. Instead, expression of α4 (GCL, CA3, CA1), α5 (CA1) and γ2 (GCL, CA3, CA1) mRNA was up-regulated after 10 d and/or 4 months. Many of these changes were reversible. In the thalamus, we found decreases in α1, α4, β2, γ2 and δ mRNAs in the laterodorsal thalamus and in the area combining the posterior thalamic nuclear group, ventroposterolateral and ventroposteromedial complex at 6 h to 4 months post-TBI. Unlike in the hippocampus, thalamic subunit down-regulations were irreversible and limited to the ipsilateral side. However, contralaterally there was up-regulation of the subunits δ and α4 6 h and 4 months after TBI, respectively. PCR array analysis suggested a mild long-lasting GABAA receptor channelopathy in the GCL and thalamus after TBI. Whereas TBI induces transient changes in the expression of GABAA receptor subunits in the hippocampus (presumably representing compensatory mechanisms), alterations of GABAA receptor subunit mRNAs in the thalamus are long-lasting and related to degeneration of receptor-containing neurons in thalamo-cortical relay nuclei. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. The role of gamma-aminobutyric acid/glycinergic synaptic transmission in mediating bilirubin-induced hyperexcitation in developing auditory neurons.

    PubMed

    Yin, Xin-Lu; Liang, Min; Shi, Hai-Bo; Wang, Lu-Yang; Li, Chun-Yan; Yin, Shan-Kai

    2016-01-05

    Hyperbilirubinemia is a common clinical phenomenon observed in human newborns. A high level of bilirubin can result in severe jaundice and bilirubin encephalopathy. However, the cellular mechanisms underlying bilirubin excitotoxicity are unclear. Our previous studies showed the action of gamma-aminobutyric acid (GABA)/glycine switches from excitatory to inhibitory during development in the ventral cochlear nucleus (VCN), one of the most sensitive auditory nuclei to bilirubin toxicity. In the present study, we investigated the roles of GABAA/glycine receptors in the induction of bilirubin hyperexcitation in early developing neurons. Using the patch clamp technique, GABAA/glycine receptor-mediated spontaneous inhibitory synaptic currents (sIPSCs) were recorded from bushy and stellate cells in acute brainstem slices from young mice (postnatal day 2-6). Bilirubin significantly increased the frequency of sIPSCs, and this effect was prevented by pretreatments of slices with either fast or slow Ca(2+) chelators BAPTA-AM and EGTA-AM suggesting that bilirubin can increase the release of GABA/glycine via Ca(2+)-dependent mechanisms. Using cell-attached recording configuration, we found that antagonists of GABAA and glycine receptors strongly attenuated spontaneous spiking firings in P2-6 neurons but produced opposite effect in P15-19 neurons. Furthermore, these antagonists reversed bilirubin-evoked hyperexcitability in P2-6 neurons, indicating that excitatory action of GABA/glycinergic transmission specifically contribute to bilirubin-induced hyperexcitability in the early stage of development. Our results suggest that bilirubin-induced enhancement of presynaptic release GABA/Glycine via Ca(2+)-dependent mechanisms may play a critical role in mediating neuronal hyperexcitation associated with jaundice, implicating potential new strategies for predicting, preventing, and treating bilirubin neurotoxicity. Copyright © 2015. Published by Elsevier Ireland Ltd.

  19. Ethanol Reduces Neuronal Excitability of Lateral Orbitofrontal Cortex Neurons Via a Glycine Receptor Dependent Mechanism

    PubMed Central

    Badanich, Kimberly A; Mulholland, Patrick J; Beckley, Jacob T; Trantham-Davidson, Heather; Woodward, John J

    2013-01-01

    Trauma-induced damage to the orbitofrontal cortex (OFC) often results in behavioral inflexibility and impaired judgment. Human alcoholics exhibit similar cognitive deficits suggesting that OFC neurons are susceptible to alcohol-induced dysfunction. A previous study from this laboratory examined OFC mediated cognitive behaviors in mice and showed that behavioral flexibility during a reversal learning discrimination task was reduced in alcohol-dependent mice. Despite these intriguing findings, the actions of alcohol on OFC neuron function are unknown. To address this issue, slices containing the lateral OFC (lOFC) were prepared from adult C57BL/6J mice and whole-cell patch clamp electrophysiology was used to characterize the effects of ethanol (EtOH) on neuronal function. EtOH (66 mM) had no effect on AMPA-mediated EPSCs but decreased those mediated by NMDA receptors. EtOH (11–66 mM) also decreased current-evoked spike firing and this was accompanied by a decrease in input resistance and a modest hyperpolarization. EtOH inhibition of spike firing was prevented by the GABAA antagonist picrotoxin, but EtOH had no effect on evoked or spontaneous GABA IPSCs. EtOH increased the holding current of voltage-clamped neurons and this action was blocked by picrotoxin but not the more selective GABAA antagonist biccuculine. The glycine receptor antagonist strychnine also prevented EtOH's effect on holding current and spike firing, and western blotting revealed the presence of glycine receptors in lOFC. Overall, these results suggest that acutely, EtOH may reduce lOFC function via a glycine receptor dependent process and this may trigger neuroadaptive mechanisms that contribute to the impairment of OFC-dependent behaviors in alcohol-dependent subjects. PMID:23314219

  20. Molecular size of the gamma-aminobutyric acidA receptor purified from mammalian cerebral cortex.

    PubMed

    Mamalaki, C; Barnard, E A; Stephenson, F A

    1989-01-01

    The hydrodynamic behaviour of both the soluble and purified gamma-aminobutyric acidA (GABAA) receptor of bovine or rat cerebral cortex has been investigated in solution in Triton X-100 or in 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulphonate (CHAPS). In all the hydrodynamic separations made, it was found that the binding activities for GABA, benzodiazepine, and (where detectable) t-butylbicyclophosphorothionate comigrated. Conditions were established for gel exclusion chromatography and for sucrose density gradient velocity sedimentation that maintain the GABAA receptor in a nonaggregated form. Using these conditions, the molecular weight of the bovine GABAA receptor in the above-mentioned detergents was calculated using the H2O/2H2O method. A value of Mr 230,000-240,000 was calculated for the bovine pure GABAA receptor purified in sodium deoxycholate/Triton X-100 media. A value of Mr 284,000-290,000 was calculated for the nonaggregated bovine or rat cortex receptor in CHAPS, but the Stokes radius is smaller in the latter than in the former medium and the detergent binding in CHAPS is underestimated. Thus the deduced Mr, 240,000, is the best estimate by this method.

  1. Arsenic as an endocrine disruptor: arsenic disrupts retinoic acid receptor-and thyroid hormone receptor-mediated gene regulation and thyroid hormone-mediated amphibian tail metamorphosis.

    PubMed

    Davey, Jennifer C; Nomikos, Athena P; Wungjiranirun, Manida; Sherman, Jenna R; Ingram, Liam; Batki, Cavus; Lariviere, Jean P; Hamilton, Joshua W

    2008-02-01

    Chronic exposure to excess arsenic in drinking water has been strongly associated with increased risks of multiple cancers, diabetes, heart disease, and reproductive and developmental problems in humans. We previously demonstrated that As, a potent endocrine disruptor at low, environmentally relevant levels, alters steroid signaling at the level of receptor-mediated gene regulation for all five steroid receptors. The goal of this study was to determine whether As can also disrupt gene regulation via the retinoic acid (RA) receptor (RAR) and/or the thyroid hormone (TH) receptor (TR) and whether these effects are similar to previously observed effects on steroid regulation. Human embryonic NT2 or rat pituitary GH3 cells were treated with 0.01-5 microM sodium arsenite for 24 hr, with or without RA or TH, respectively, to examine effects of As on receptor-mediated gene transcription. At low, noncytotoxic doses, As significantly altered RAR-dependent gene transcription of a transfected RAR response element-luciferase construct and the native RA-inducible cytochrome P450 CYP26A gene in NT2 cells. Likewise, low-dose As significantly altered expression of a transfected TR response element-luciferase construct and the endogenous TR-regulated type I deiodinase (DIO1) gene in a similar manner in GH3 cells. An amphibian ex vivo tail metamorphosis assay was used to examine whether endocrine disruption by low-dose As could have specific pathophysiologic consequences, because tail metamorphosis is tightly controlled by TH through TR. TH-dependent tail shrinkage was inhibited in a dose-dependent manner by 0.1- 4.0 microM As. As had similar effects on RAR- and TR-mediated gene regulation as those previously observed for the steroid receptors, suggesting a common mechanism or action. Arsenic also profoundly affected a TR-dependent developmental process in a model animal system at very low concentrations. Because RAR and TH are critical for both normal human development and adult

  2. Bombesin receptor-mediated imaging and cytotoxicity: review and current status

    PubMed Central

    Sancho, Veronica; Di Florio, Alessia; Moody, Terry W.; Jensen, Robert T.

    2010-01-01

    The three mammalian bombesin (Bn) receptors (gastrin-releasing peptide [GRP] receptor, neuromedin B [NMB] receptor, BRS-3) are one of the classes of G protein-coupled receptors that are most frequently over-express/ectopically expressed by common, important malignancies. Because of the clinical success of somatostatin receptor-mediated imaging and cytotoxicity with neuroendocrine tumors, there is now increasing interest in pursuing a similar approach with Bn receptors. In the last few years then have been more than 200 studies in this area. In the present paper, the in vitro and in vivo results, as well as results of human studies from many of these studies are reviewed and the current state of Bn receptor-mediated imaging or cytotoxicity is discussed. Both Bn receptor-mediated imaging studies as well as Bn receptor-mediated tumoral cytotoxic studies using radioactive and non-radioactive Bn-based ligands are covered. PMID:21034419

  3. Negative perceived paternal parenting is associated with dopamine D2 receptor exon 8 and GABA(A) alpha 6 receptor variants: an explorative study.

    PubMed

    Lucht, Michael; Barnow, Sven; Schroeder, Winnie; Grabe, Hans Joergen; Finckh, Ulrich; John, Ulrich; Freyberger, Harald J; Herrmann, Falko H

    2006-03-05

    Twin studies suggest a genetic influence upon perceived parenting. The D(2) dopaminergic receptor is involved in the modulation of social behaviors, and might influence parenting and its perception. A polymorphism (E8) in exon 8 of the D(2) receptor gene (DRD2) has been previously associated with alcoholism-related phenotypes. Similarly, the Pro385Ser variant of GABRA6, the polymorphic gene for GABA(A) receptor alpha6 subunit, has been associated with alcohol- and depression-related traits; and rat pups maintained a more immature GABAR phenotype after brief separation distress. The relationships among DRD2 (E8) and GABRA6 (Pro385Ser) polymorphisms, and perceived parenting were studied here. The association of DRD2 (E8) and GABRA6 (Pro385Ser) genotypes and perceived parental rearing behavior (short-EMBU; questionnaire concerning own memories concerning upbringing) were determined in 207 unrelated adults using multivariate analysis of variance. Temperaments (Temperament and Character Inventory; TCI) were included as covariates. Probands with DRD2 (E8) A/A genotype showed higher scores for father rejection (P = 0.011), parents overprotection (P = 0.021), and father overprotection (P = 0.016) in the total group. An interaction between DRD2 and GABRA6 genotypes on father rejection (P = 0.010) and parents rejection (P = 0.030) was also observed. Further analyses showed that these associations were restricted to the female subgroup only; however, secondary gender-specific analyses were not corrected for multiple testing. Our findings support a role for DRD2 (E8) and GABRA6 (Pro385Ser) in perceived parenting. (c) 2006 Wiley-Liss, Inc.

  4. Influence of ER leak on resting cytoplasmic Ca2+ and receptor-mediated Ca2+ signalling in human macrophage.

    PubMed

    Layhadi, Janice A; Fountain, Samuel J

    2017-06-03

    Mechanisms controlling endoplasmic reticulum (ER) Ca 2+ homeostasis are important regulators of resting cytoplasmic Ca 2+ concentration ([Ca 2+ ] cyto ) and receptor-mediated Ca 2+ signalling. Here we investigate channels responsible for ER Ca 2+ leak in THP-1 macrophage and human primary macrophage. In the absence of extracellular Ca 2+ we employ ionomycin action at the plasma membrane to stimulate ER Ca 2+ leak. Under these conditions ionomycin elevates [Ca 2+ ] cyto revealing a Ca 2+ leak response which is abolished by thapsigargin. IP 3 receptors (Xestospongin C, 2-APB), ryanodine receptors (dantrolene), and translocon (anisomycin) inhibition facilitated ER Ca 2+ leak in model macrophage, with translocon inhibition also reducing resting [Ca 2+ ] cyto . In primary macrophage, translocon inhibition blocks Ca 2+ leak but does not influence resting [Ca 2+ ] cyto . We identify a role for translocon-mediated ER Ca 2+ leak in receptor-mediated Ca 2+ signalling in both model and primary human macrophage, whereby the Ca 2+ response to ADP (P2Y receptor agonist) is augmented following anisomycin treatment. In conclusion, we demonstrate a role of ER Ca 2+ leak via the translocon in controlling resting cytoplasmic Ca 2+ in model macrophage and receptor-mediated Ca 2+ signalling in model macrophage and primary macrophage. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Unique allosteric regulation of 5-hydroxytryptamine receptor-mediated signal transduction by oleamide

    PubMed Central

    Thomas, Elizabeth A.; Carson, Monica J.; Neal, Michael J.; Sutcliffe, J. Gregor

    1997-01-01

    The effects of oleamide, an amidated lipid isolated from the cerebrospinal fluid of sleep-deprived cats, on serotonin receptor-mediated responses were investigated in cultured mammalian cells. In rat P11 cells, which endogenously express the 5-hydroxytryptamine2A (5HT2A) receptor, oleamide significantly potentiated 5HT-induced phosphoinositide hydrolysis. In HeLa cells expressing the 5HT7 receptor subtype, oleamide caused a concentration-dependent increase in cAMP accumulation but with lower efficacy than that observed by 5HT. This effect was not observed in untransfected HeLa cells. Clozapine did not prevent the increase in cAMP elicited by oleamide, and ketanserin caused an ≈65% decrease. In the presence of 5HT, oleamide had the opposite effect on cAMP, causing insurmountable antagonism of the concentration-effect curve to 5HT, but had no effect on cAMP levels elicited by isoproterenol or forskolin. These results indicate that oleamide can modulate 5HT-mediated signal transduction at different subtypes of mammalian 5HT receptors. Additionally, our data indicate that oleamide acts at an apparent allosteric site on the 5HT7 receptor and elicits functional responses via activation of this site. This represents a unique mechanism of activation for 5HT G protein-coupled receptors and suggests that G protein-coupled neurotransmitter receptors may act like their iontropic counterparts (i.e., γ-aminobutyric acid type A receptors) in that there may be several binding sites on the receptor that regulate functional activity with varying efficacies. PMID:9391162

  6. The CRF Family of Neuropeptides and their Receptors - Mediators of the Central Stress Response

    PubMed Central

    Dedic, Nina; Chen, Alon; Deussing, Jan M.

    2018-01-01

    Background: Dysregulated stress neurocircuits, caused by genetic and/or environmental changes, underlie the development of many neuropsychiatric disorders. Corticotropin-releasing factor (CRF) is the major physiological activator of the hypothalamic-pituitary-adrenal (HPA) axis and conse-quently a primary regulator of the mammalian stress response. Together with its three family members, urocortins (UCNs) 1, 2, and 3, CRF integrates the neuroendocrine, autonomic, metabolic and behavioral responses to stress by activating its cognate receptors CRFR1 and CRFR2. Objective: Here we review the past and current state of the CRF/CRFR field, ranging from pharmacologi-cal studies to genetic mouse models and virus-mediated manipulations. Results: Although it is well established that CRF/CRFR1 signaling mediates aversive responses, includ-ing anxiety and depression-like behaviors, a number of recent studies have challenged this viewpoint by revealing anxiolytic and appetitive properties of specific CRF/CRFR1 circuits. In contrast, the UCN/CRFR2 system is less well understood and may possibly also exert divergent functions on physiol-ogy and behavior depending on the brain region, underlying circuit, and/or experienced stress conditions. Conclusion: A plethora of available genetic tools, including conventional and conditional mouse mutants targeting CRF system components, has greatly advanced our understanding about the endogenous mecha-nisms underlying HPA system regulation and CRF/UCN-related neuronal circuits involved in stress-related behaviors. Yet, the detailed pathways and molecular mechanisms by which the CRF/UCN-system translates negative or positive stimuli into the final, integrated biological response are not completely un-derstood. The utilization of future complementary methodologies, such as cell-type specific Cre-driver lines, viral and optogenetic tools will help to further dissect the function of genetically defined CRF/UCN neurocircuits in the context of

  7. Estrogen-mediated inactivation of FOXO3a by the G protein-coupled estrogen receptor GPER.

    PubMed

    Zekas, Erin; Prossnitz, Eric R

    2015-10-15

    Estrogen (17β-estradiol) promotes the survival and proliferation of breast cancer cells and its receptors represent important therapeutic targets. The cellular actions of estrogen are mediated by the nuclear estrogen receptors ERα and ERβ as well as the 7-transmembrane spanning G protein-coupled estrogen receptor (GPER). We previously reported that estrogen activates the phosphoinositide 3-kinase (PI3Kinase) pathway via GPER, resulting in phosphatidylinositol (3,4,5)-trisphosphate (PIP3) production within the nucleus of breast cancer cells; however, the mechanisms and consequences of this activity remained unclear. MCF7 breast cancer cells were transfected with GFP-fused Forkhead box O3 (FOXO3) as a reporter to assess localization in response to estrogen stimulation. Inhibitors of PI3Kinases and EGFR were employed to determine the mechanisms of estrogen-mediated FOXO3a inactivation. Receptor knockdown with siRNA and the selective GPER agonist G-1 elucidated the estrogen receptor(s) responsible for estrogen-mediated FOXO3a inactivation. The effects of selective estrogen receptor modulators and downregulators (SERMs and SERDs) on FOXO3a in MCF7 cells were also determined. Cell survival (inhibition of apoptosis) was assessed by caspase activation. In the estrogen-responsive breast cancer cell line MCF7, FOXO3a inactivation occurs on a rapid time scale as a result of GPER, but not ERα, stimulation by estrogen, established by the GPER-selective agonist G-1 and knockdown of GPER and ERα. GPER-mediated inactivation of FOXO3a is effected by the p110α catalytic subunit of PI3Kinase as a result of transactivation of the EGFR. The SERMs tamoxifen and raloxifene, as well as the SERD ICI182,780, were active in mediating FOXO3a inactivation in a GPER-dependent manner. Additionally, estrogen-and G-1-mediated stimulation of MCF7 cells results in a decrease in caspase activation under proapoptotic conditions. Our results suggest that non-genomic signaling by GPER contributes

  8. The Ionotropic Receptors IR21a and IR25a mediate cool sensing in Drosophila

    PubMed Central

    Ni, Lina; Klein, Mason; Svec, Kathryn V; Budelli, Gonzalo; Chang, Elaine C; Ferrer, Anggie J; Benton, Richard; Samuel, Aravinthan DT; Garrity, Paul A

    2016-01-01

    Animals rely on highly sensitive thermoreceptors to seek out optimal temperatures, but the molecular mechanisms of thermosensing are not well understood. The Dorsal Organ Cool Cells (DOCCs) of the Drosophila larva are a set of exceptionally thermosensitive neurons critical for larval cool avoidance. Here, we show that DOCC cool-sensing is mediated by Ionotropic Receptors (IRs), a family of sensory receptors widely studied in invertebrate chemical sensing. We find that two IRs, IR21a and IR25a, are required to mediate DOCC responses to cooling and are required for cool avoidance behavior. Furthermore, we find that ectopic expression of IR21a can confer cool-responsiveness in an Ir25a-dependent manner, suggesting an instructive role for IR21a in thermosensing. Together, these data show that IR family receptors can function together to mediate thermosensation of exquisite sensitivity. DOI: http://dx.doi.org/10.7554/eLife.13254.001 PMID:27126188

  9. A new meaning for “Gin & Tonic”

    PubMed Central

    Mody, Istvan; Glykys, Joseph; Wei, Weizheng

    2007-01-01

    Gamma-aminobutyric acid (GABA) is the main chemical inhibitory neurotransmitter in the brain. In the central nervous system (CNS) it acts on two distinct types of receptor: an ion channel, i.e., an “ionotropic” receptor permeable to Cl- and HCO3- (GABAA receptors) and a G-protein coupled “metabotropic” receptor that is linked to various effector mechanisms (GABAB receptors). This review will summarize novel developments in the physiology and pharmacology of GABAA receptors (GABAARs), specifically those found outside synapses. The focus will be on a particular combination of GABAAR subunits responsible for mediating tonic inhibition and sensitive to concentrations of ethanol legally considered to be sobriety impairing. Since the same receptors are also a preferred target for the metabolites of steroid hormones synthesized in the brain (neurosteroids), the ethanol-sensitive tonic inhibition may be a common pathway for interactions between the effects of alcohol and those of ovarian and stress-related neurosteroids. PMID:17521846

  10. K-Cl Cotransporter 2-mediated Cl- Extrusion Determines Developmental Stage-dependent Impact of Propofol Anesthesia on Dendritic Spines.

    PubMed

    Puskarjov, Martin; Fiumelli, Hubert; Briner, Adrian; Bodogan, Timea; Demeter, Kornel; Lacoh, Claudia-Marvine; Mavrovic, Martina; Blaesse, Peter; Kaila, Kai; Vutskits, Laszlo

    2017-05-01

    General anesthetics potentiating γ-aminobutyric acid (GABA)-mediated signaling are known to induce a persistent decrement in excitatory synapse number in the cerebral cortex when applied during early postnatal development, while an opposite action is produced at later stages. Here, the authors test the hypothesis that the effect of general anesthetics on synaptogenesis depends upon the efficacy of GABA receptor type A (GABAA)-mediated inhibition controlled by the developmental up-regulation of the potassium-chloride (K-Cl) cotransporter 2 (KCC2). In utero electroporation of KCC2 was used to prematurely increase the efficacy of (GABAA)-mediated inhibition in layer 2/3 pyramidal neurons in the immature rat somatosensory cortex. Parallel experiments with expression of the inward-rectifier potassium channel Kir2.1 were done to reduce intrinsic neuronal excitability. The effects of these genetic manipulations (n = 3 to 4 animals per experimental group) were evaluated using iontophoretic injection of Lucifer Yellow (n = 8 to 12 cells per animal). The total number of spines analyzed per group ranged between 907 and 3,371. The authors found a robust effect of the developmental up-regulation of KCC2-mediated Cl transport on the age-dependent action of propofol on dendritic spines. Premature expression of KCC2, unlike expression of a transport-inactive KCC2 variant, prevented a propofol-induced decrease in spine density. In line with a reduction in neuronal excitability, the above result was qualitatively replicated by overexpression of Kir2.1. The KCC2-dependent developmental increase in the efficacy of GABAA-mediated inhibition is a major determinant of the age-dependent actions of propofol on dendritic spinogenesis.

  11. M2 and M3 muscarinic receptors are involved in enteric nerve-mediated contraction of the mouse ileum: Findings obtained with muscarinic-receptor knockout mouse.

    PubMed

    Takeuchi, Tadayoshi; Tanaka, Keisuke; Nakajima, Hidemitsu; Matsui, Minoru; Azuma, Yasu-Taka

    2007-01-01

    The involvement of muscarinic receptors in neurogenic responses of the ileum was studied in wild-type and muscarinic-receptor (M-receptor) knockout (KO) mice. Electrical field stimulation to the wild-type mouse ileum induced a biphasic response, a phasic and sustained contraction that was abolished by tetrodotoxin. The sustained contraction was prolonged for an extended period after the termination of electrical field stimulation. The phasic contraction was completely inhibited by atropine. In contrast, the sustained contraction was enhanced by atropine. Ileal strips prepared from M2-receptor KO mice exhibited a phasic contraction similar to that seen in wild-type mice and a sustained contraction that was larger than that in wild-type mice. In M3-receptor KO mice, the phasic contraction was smaller than that observed in wild-type mice. Acetylcholine exogenously administrated induced concentration-dependent contractions in strips isolated from wild-type, M2- and M3-receptor KO mice. However, contractions in M3-receptor KO mice shifted to the right. The sustained contraction was inhibited by capsaicin and neurokinin NK2 receptor antagonist, suggesting that it is mediated by substance P (SP). SP-induced contraction of M2-receptor KO mice did not differ from that of wild-type mice. SP immunoreactivity was located in enteric neurons, colocalized with M2 receptor immunoreactivity. These results suggest that atropine-sensitive phasic contraction is mainly mediated via the M3 receptor, and SP-mediated sustained contraction is negatively regulated by the M2 receptor at a presynaptic level.

  12. Reduced GABAA receptor α6 expression in the trigeminal ganglion alters inflammatory TMJ hypersensitivity

    PubMed Central

    Puri, Jyoti; Vinothini, Priya; Reuben, Jayne; Bellinger, Larry L.; Ailing, Li; Peng, Yuan B.; Kramer, Phillip R.

    2012-01-01

    Trigeminal ganglia neurons express the GABAA receptor subunit alpha 6 (Gabrα6) but the role of this particular subunit in orofacial hypersensitivity is unknown. In this report the function of Gabrα6 was tested by reducing its expression in the trigeminal ganglia and measuring the effect of this reduction on inflammatory temporomandibular joint (TMJ) hypersensitivity. Gabrα6 expression was reduced by infusing the trigeminal ganglia of male Sprague Dawley rats with small interfering RNA (siRNA) having homology to either the Gabrα6 gene (Gabrα6 siRNA) or no known gene (control siRNA). Sixty hours after siRNA infusion the rats received a bilateral TMJ injection of complete Freund’s adjuvant to induce an inflammatory response. Hypersensitivity was then quantitated by measuring meal duration, which lengthens when hypersensitivity increases. Neuronal activity in the trigeminal ganglia was also measured by quantitating the amount of phosphorylated ERK. Rats in a different group that did not have TMJ inflammation had an electrode placed in the spinal cord at the level of C1 sixty hours after siRNA infusion to record extracellular electrical activity of neurons that responded to TMJ stimulation. Our results show that Gabrα6 was expressed in both neurons and satellite glia of the trigeminal ganglia and that Gabrα6 positive neurons within the trigeminal ganglia have afferents in the TMJ. Gabrα6 siRNA infusion reduced Gabrα6 gene expression by 30% and significantly lengthened meal duration in rats with TMJ inflammation. Gabrα6 siRNA infusion also significantly increased p-ERK expression in the trigeminal ganglia of rats with TMJ inflammation and increased electrical activity in the spinal cord of rats without TMJ inflammation. These results suggest that maintaining Gabrα6 expression was necessary to inhibit primary sensory afferents in the trigeminal pathway and reduce inflammatory orofacial nociception. PMID:22521829

  13. GABA, its receptors, and GABAergic inhibition in mouse taste buds.

    PubMed

    Dvoryanchikov, Gennady; Huang, Yijen A; Barro-Soria, Rene; Chaudhari, Nirupa; Roper, Stephen D

    2011-04-13

    Taste buds consist of at least three principal cell types that have different functions in processing gustatory signals: glial-like (type I) cells, receptor (type II) cells, and presynaptic (type III) cells. Using a combination of Ca2+ imaging, single-cell reverse transcriptase-PCR and immunostaining, we show that GABA is an inhibitory transmitter in mouse taste buds, acting on GABA(A) and GABA(B) receptors to suppress transmitter (ATP) secretion from receptor cells during taste stimulation. Specifically, receptor cells express GABA(A) receptor subunits β2, δ, and π, as well as GABA(B) receptors. In contrast, presynaptic cells express the GABA(A) β3 subunit and only occasionally GABA(B) receptors. In keeping with the distinct expression pattern of GABA receptors in presynaptic cells, we detected no GABAergic suppression of transmitter release from presynaptic cells. We suggest that GABA may serve function(s) in taste buds in addition to synaptic inhibition. Finally, we also defined the source of GABA in taste buds: GABA is synthesized by GAD65 in type I taste cells as well as by GAD67 in presynaptic (type III) taste cells and is stored in both those two cell types. We conclude that GABA is an inhibitory transmitter released during taste stimulation and possibly also during growth and differentiation of taste buds.

  14. Receptor-Mediated Drug Delivery Systems Targeting to Glioma

    PubMed Central

    Wang, Shanshan; Meng, Ying; Li, Chengyi; Qian, Min; Huang, Rongqin

    2015-01-01

    Glioma has been considered to be the most frequent primary tumor within the central nervous system (CNS). The complexity of glioma, especially the existence of the blood-brain barrier (BBB), makes the survival and prognosis of glioma remain poor even after a standard treatment based on surgery, radiotherapy, and chemotherapy. This provides a rationale for the development of some novel therapeutic strategies. Among them, receptor-mediated drug delivery is a specific pattern taking advantage of differential expression of receptors between tumors and normal tissues. The strategy can actively transport drugs, such as small molecular drugs, gene medicines, and therapeutic proteins to glioma while minimizing adverse reactions. This review will summarize recent progress on receptor-mediated drug delivery systems targeting to glioma, and conclude the challenges and prospects of receptor-mediated glioma-targeted therapy for future applications. PMID:28344260

  15. Effects of GABA receptor antagonists on thresholds of P23H rat retinal ganglion cells to electrical stimulation of the retina

    NASA Astrophysics Data System (ADS)

    Jensen, Ralph J.; Rizzo, Joseph F., III

    2011-06-01

    An electronic retinal prosthesis may provide useful vision for patients suffering from retinitis pigmentosa (RP). In animal models of RP, the amount of current needed to activate retinal ganglion cells (RGCs) is higher than in normal, healthy retinas. In this study, we sought to reduce the stimulation thresholds of RGCs in a degenerate rat model (P23H-line 1) by blocking GABA receptor mediated inhibition in the retina. We examined the effects of TPMPA, a GABAC receptor antagonist, and SR95531, a GABAA receptor antagonist, on the electrically evoked responses of RGCs to biphasic current pulses delivered to the subretinal surface through a 400 µm diameter electrode. Both TPMPA and SR95531 reduced the stimulation thresholds of ON-center RGCs on average by 15% and 20% respectively. Co-application of the two GABA receptor antagonists had the greatest effect, on average reducing stimulation thresholds by 32%. In addition, co-application of the two GABA receptor antagonists increased the magnitude of the electrically evoked responses on average three-fold. Neither TPMPA nor SR95531, applied alone or in combination, had consistent effects on the stimulation thresholds of OFF-center RGCs. We suggest that the effects of the GABA receptor antagonists on ON-center RGCs may be attributable to blockage of GABA receptors on the axon terminals of ON bipolar cells.

  16. Mitochondrial reactive oxygen species regulate the strength of inhibitory GABA-mediated synaptic transmission

    NASA Astrophysics Data System (ADS)

    Accardi, Michael V.; Daniels, Bryan A.; Brown, Patricia M. G. E.; Fritschy, Jean-Marc; Tyagarajan, Shiva K.; Bowie, Derek

    2014-01-01

    Neuronal communication imposes a heavy metabolic burden in maintaining ionic gradients essential for action potential firing and synaptic signalling. Although cellular metabolism is known to regulate excitatory neurotransmission, it is still unclear whether the brain’s energy supply affects inhibitory signalling. Here we show that mitochondrial-derived reactive oxygen species (mROS) regulate the strength of postsynaptic GABAA receptors at inhibitory synapses of cerebellar stellate cells. Inhibition is strengthened through a mechanism that selectively recruits α3-containing GABAA receptors into synapses with no discernible effect on resident α1-containing receptors. Since mROS promotes the emergence of postsynaptic events with unique kinetic properties, we conclude that newly recruited α3-containing GABAA receptors are activated by neurotransmitter released onto discrete postsynaptic sites. Although traditionally associated with oxidative stress in neurodegenerative disease, our data identify mROS as a putative homeostatic signalling molecule coupling cellular metabolism to the strength of inhibitory transmission.

  17. Extracellular pH modulates GABAergic neurotransmission in rat hypothalamus.

    PubMed

    Chen, Z L; Huang, R Q

    2014-06-20

    Changes in extracellular pH have a modulatory effect on GABAA receptor function. It has been reported that pH sensitivity of the GABA receptor is dependent on subunit composition and GABA concentration. Most of previous investigations focused on GABA-evoked currents, which only reflect the postsynaptic receptors. The physiological relevance of pH modulation of GABAergic neurotransmission is not fully elucidated. In the present studies, we examined the influence of extracellular pH on the GABAA receptor-mediated inhibitory neurotransmission in rat hypothalamic neurons. The inhibitory postsynaptic currents (IPSCs), tonic currents, and the GABA-evoked currents were recorded with whole-cell patch techniques on the hypothalamic slices from Sprague-Dawley rats at 15-26 postnatal days. The amplitude and frequency of spontaneous GABA IPSCs were significantly increased while the external pH was changed from 7.3 to 8.4. In the acidic pH (6.4), the spontaneous GABA IPSCs were reduced in amplitude and frequency. The pH induced changes in miniature GABA IPSCs (mIPSCs) similar to that in spontaneous IPSCs. The pH effect on the postsynaptic GABA receptors was assessed with exogenously applied varying concentrations of GABA. The tonic currents and the currents evoked by sub-saturating concentration of GABA ([GABA]) (10 μM) were inhibited by acidic pH and potentiated by alkaline pH. In contrast, the currents evoked by saturating [GABA] (1mM) were not affected by pH changes. We also investigated the influence of pH buffers and buffering capacity on pH sensitivity of GABAA receptors on human recombinant α1β2γ2 GABAA receptors stably expressed in HEK 293 cells. The pH influence on GABAA receptors was similar in HEPES- and MES-buffered media, and not dependent on protonated buffers, suggesting that the observed pH effect on GABA response is a specific consequence of changes in extracellular protons. Our data suggest that the hydrogen ions suppress the GABAergic neurotransmission

  18. Amyloid-beta mediates the receptor of advanced glycation end product-induced pro-inflammatory response via toll-like receptor 4 signaling pathway in retinal ganglion cell line RGC-5.

    PubMed

    Lee, Jong-Jer; Wang, Pei-Wen; Yang, I-Hui; Wu, Chia-Lin; Chuang, Jiin-Haur

    2015-07-01

    Patients with diabetes mellitus have an increased risk of developing Alzheimer's disease. Amyloid-β, a product of amyloid precursor protein, is associated with neuro-inflammation in patients with Alzheimer's diseases. The correlation between amyloid-beta and advanced glycation end products, which accumulate in tissue of diabetic patients, is not clear. The aims of this study were to determine the effect of advanced glycation end product on the expression of amyloid precursor protein/amyloid-beta and associated pro-inflammatory responses in retinal ganglion cell line RGC-5. Treatment with advanced glycation end product produced upregulation of amyloid precursor protein and increased secretion of amyloid-β(1-40). Additionally, amyloid-β(1-40) induced toll-like receptor 4-dependent phosphorylation of tyrosine in myeloid differentiation primary response gene (88). We found that N-[N-(3,5-Difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester, a γ-secretase inhibitor, reduced the secretion of amyloid-β(1-40) and inhibited the advanced glycation end product-induced activation of myeloid differentiation primary response gene (88). Amyloid-β(1-40) induced the activation of NF-κB and the expression of TNFα mRNA. Knockdown of toll-like receptor 4 inhibited the amyloid-β(1-40)-induced phosphorylation of p65 in NF-κB. Additionally, the nuclear translocation of p65 and transcriptions of TNFα were inhibited by siRNA knockdown of receptor of advanced glycation end product or toll-like receptor 4. The advanced glycation end product-induced secretion of VEGF-A was also reduced by knockdown of toll-like receptor 4. Taken together, our data suggested that amyloid-β(1-40) mediates the interaction between receptor of advanced glycation end product and toll-like receptor 4. Inhibition of the toll-like receptor 4 is an effective method for suppressing the amyloid-β(1-40)-induced pro-inflammatory responses in RGC-5 cells. Copyright © 2015 Elsevier Ltd. All rights

  19. Variation in GABA-A subunit gene copy number in an autistic patient with mosaic 4 p duplication (p12p16).

    PubMed

    Kakinuma, Hiroaki; Ozaki, Mamoru; Sato, Hitoshi; Takahashi, Hiroaki

    2008-09-05

    Autism has been associated with chromosomal aberrations, including duplications at chromosome 4, and the identification of genetic factors contributing to the etiology of this disease is the focus of much research. Here we report a Japanese girl with mosaic of chromosome 4p duplication, mos 46,XX,dup(4)(p12p16)[54]/46,XX[6], who was diagnosed with autism at 3 years of age. Fluorescence in situ hybridization (FISH) with probes covering the region spanning a cluster of the gamma aminobutyric acid A (GABA-A) receptor subunit genes in the proximal short arm of chromosome 4 demonstrated total three signals for the GABRG1, GABRA4, and GABRA2 genes, but only two signals for GABRB1. This suggests that aberrant copy number of the GABA-A receptor subunit genes may contribute to the etiology of autism in this patient. 2007 Wiley-Liss, Inc.

  20. Urothelial/lamina propria spontaneous activity and the role of M3 muscarinic receptors in mediating rate responses to stretch and carbachol.

    PubMed

    Moro, Christian; Uchiyama, Jumpei; Chess-Williams, Russ

    2011-12-01

    To investigate the effects of tissue stretch and muscarinic receptor stimulation on the spontaneous activity of the urothelium/lamina propria and identify the specific receptor subtype mediating these responses. Isolated strips of porcine urothelium with lamina propria were set up for in vitro recording of contractile activity. Muscarinic receptor subtype-selective antagonists were used to identify the receptors influencing the contractile rate responses to stretch and stimulation with carbachol. Isolated strips of urothelium with lamina propria developed spontaneous contractions (3.7 cycles/min) that were unaffected by tetrodotoxin, Nω-nitro-L-arginine, or indomethacin. Carbachol (1 μM) increased the spontaneous contractile rate of these tissue strips by 122% ± 27% (P < .001). These responses were significantly depressed in the presence of the M3-selective muscarinic antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide (10-30 nM) but were not affected by the M1-selective antagonist pirenzepine (30-100 nM) or the M2-selective antagonist methoctramine (0.1-1 μM). Stretching of the tissue also caused an increase in the spontaneous contractile rate, and these responses were abolished by atropine (1 μM) and low concentrations of 4-diphenylacetoxy-N-methylpiperidine methiodide (10 nM). Darifenacin, oxybutynin, tolterodine, and solifenacin (1 μM) all significantly depressed the frequency responses to carbachol (1 μM). The urothelium with the lamina propria exhibits a spontaneous contractile activity that is increased during stretch. The mechanism appears to involve endogenous acetylcholine release acting on M3 muscarinic receptors. Anticholinergic drugs used clinically depress the responses of these tissues, and this mechanism might represent an additional site of action for these drugs in the treatment of bladder overactivity. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Cross-talk between an activator of nuclear receptors-mediated transcription and the D1 dopamine receptor signaling pathway.

    PubMed

    Schmidt, Azriel; Vogel, Robert; Rutledge, Su Jane; Opas, Evan E; Rodan, Gideon A; Friedman, Eitan

    2005-03-01

    Nuclear receptors are transcription factors that usually interact, in a ligand-dependent manner, with specific DNA sequences located within promoters of target genes. The nuclear receptors can also be controlled in a ligand-independent manner via the action of membrane receptors and cellular signaling pathways. 5-Tetradecyloxy-2-furancarboxylic acid (TOFA) was shown to stimulate transcription from the MMTV promoter via chimeric receptors that consist of the DNA binding domain of GR and the ligand binding regions of the PPARbeta or LXRbeta nuclear receptors (GR/PPARbeta and GR/LXRbeta). TOFA and hydroxycholesterols also modulate transcription from NF-kappaB- and AP-1-controlled reporter genes and induce neurite differentiation in PC12 cells. In CV-1 cells that express D(1) dopamine receptors, D(1) dopamine receptor stimulation was found to inhibit TOFA-stimulated transcription from the MMTV promoter that is under the control of chimeric GR/PPARbeta and GR/LXRbeta receptors. Treatment with the D(1) dopamine receptor antagonist, SCH23390, prevented dopamine-mediated suppression of transcription, and by itself increased transcription controlled by GR/LXRbeta. Furthermore, combined treatment of CV-1 cells with TOFA and SCH23390 increased transcription controlled by the GR/LXRbeta chimeric receptor synergistically. The significance of this in vitro synergy was demonstrated in vivo, by the observation that SCH23390 (but not haloperidol)-mediated catalepsy in rats was potentiated by TOFA, thus showing that an agent that mimics the in vitro activities of compounds that activate members of the LXR and PPAR receptor families can influence D1 dopamine receptor elicited responses.

  2. Association between GABA-A receptor alpha 5 subunit gene locus and schizophrenia of a later age of onset.

    PubMed

    Papadimitriou, G; Dikeos, D; Daskalopoulou, E; Karadima, G; Avramopoulos, D; Contis, C; Stefanis, C

    2001-01-01

    Heritability is considered to be a major etiologic factor for schizophrenia. Among the genes considered as candidates for the disease, are those related to GABAergic neurotransmission. Our aim was to test for a genetic association between GABA-A receptor alpha 5 subunit gene locus (GABRA(5)) and schizophrenia. Genotyping of the GABRA(5) locus was performed by the use of a dinucleotide (CA) repeat marker in 46 schizophrenic patients and 50 healthy individuals, all unrelated Greeks. Eight alleles were identified, 276-290 bp long. A nonsignificant excess of the 282-bp allele, which was found in a previous study in a Greek population to be associated with bipolar affective disorder, was observed in schizophrenic patients (33.8 vs. 23.9% in the controls). The frequency of this allele was 43.3% among patients with a later age of onset (over 25 years), differing at a statistically significant level from the controls (p < 0.05). These results suggest that common pathophysiological mechanisms may possibly underlie affective disorders and schizophrenia, at least in a subgroup of patients. Copyright 2001 S. Karger AG, Basel

  3. Tachykinin-induced contraction of the guinea-pig isolated oesophageal mucosa is mediated by NK2 receptors

    PubMed Central

    Kerr, Karen P; Thai, Binh; Coupar, Ian M

    2000-01-01

    The tachykinin receptor present in the guinea-pig oesophageal mucosa that mediates contractile responses of the muscularis mucosae has been characterized, using functional in vitro experiments. The NK1 receptor-selective agonist, [Sar9(O2)Met11]SP and the NK3 receptor-selective agonists, [MePhe7]-NKB and senktide, produced no response at submicromolar concentrations. The NK2 receptor-selective agonists, [Nle10]-NKA(4–10), and GR 64,349 produced concentration-dependent contractile effects with pD2 values of 8.20±0.16 and 8.30±0.15, respectively. The concentration-response curve to the non-selective agonist, NKA (pD2=8.13±0.04) was shifted significantly rightwards only by the NK2 receptor-selective antagonist, GR 159,897 and was unaffected by the NK1 receptor-selective antagonist, SR 140,333 and the NK3 receptor-selective antagonist, SB 222,200. The NK2 receptor-selective antagonist, GR 159,897, exhibited an apparent competitive antagonism against the NK2 receptor-selective agonist, GR 64,349 (apparent pKB value=9.29±0.16) and against the non-selective agonist, NKA (apparent pKB value=8.71±0.19). The NK2 receptor-selective antagonist, SR 48,968 exhibited a non-competitive antagonism against the NK2 receptor-selective agonist, [Nle10]-NKA(4–10). The pKB value was 10.84±0.19. It is concluded that the guinea-pig isolated oesophageal mucosa is a useful preparation for studying the effects of NK2 receptor-selective agonists and antagonists as the contractile responses to various tachykinins are mediated solely by NK2 receptors. PMID:11090121

  4. Stereoselective modulatory actions of oleamide on GABAA receptors and voltage-gated Na+ channels in vitro: a putative endogenous ligand for depressant drug sites in CNS

    PubMed Central

    Verdon, Bernard; Zheng, Jian; Nicholson, Russell A; Ganelli, C Robin; Lees, George

    2000-01-01

    cis-9,10-octadecenoamide (‘oleamide') accumulates in CSF on sleep deprivation. It induces sleep in animals (the trans form is inactive) but its cellular actions are poorly characterized. We have used electrophysiology in cultures from embryonic rat cortex and biochemical studies in mouse nerve preparations to address these issues. Twenty μM cis-oleamide (but not trans) reversibly enhanced GABAA currents and depressed the frequency of spontaneous excitatory and inhibitory synaptic activity in cultured networks. cis-oleamide stereoselectively blocked veratridine-induced (but not K+-induced) depolarisation of mouse synaptoneurosomes (IC50, 13.9 μM). The cis isomer stereoselectively blocked veratridine-induced (but not K+-induced) [3H]-GABA release from mouse synaptosomes (IC50, 4.6 μM). At 20 μM cis-oleamide, but not trans, produced a marked inhibition of Na+ channel-dependent rises in intrasynaptosomal Ca2+. The physiological significance of these observations was examined by isolating Na+ spikes in cultured pyramidal neurones. Sixty-four μM cis-oleamide did not significantly alter the amplitude, rate of rise or duration of unitary action potentials (1 Hz). cis-Oleamide stereoselectively suppressed sustained repetitive firing (SRF) in these cells with an EC50 of 4.1 μM suggesting a frequency- or state-dependent block of voltage-gated Na+ channels. Oleamide is a stereoselective modulator of both postsynaptic GABAA receptors and presynaptic or somatic voltage-gated Na+ channels which are crucial for synaptic inhibition and conduction. The modulatory actions are strikingly similar to those displayed by sedative or anticonvulsant barbiturates and a variety of general anaesthetics. Oleamide may represent an endogenous modulator for drug receptors and an important regulator of arousal. PMID:10694234

  5. Noradrenaline Triggers GABAA Inhibition of Bed Nucleus of the Stria Terminalis Neurons Projecting to the Ventral Tegmental Area

    PubMed Central

    Dumont, Éric C.; Williams, John T.

    2014-01-01

    The lateral part of the ventral bed nucleus of the stria terminalis (vlBNST) is a critical site for the antiaversive effects of noradrenergic drugs during opioid withdrawal. The objective of the present study is to identify the cellular action(s) of noradrenaline in the vlBNST after withdrawal from a 5 d treatment with morphine. The vlBNST is a heterogeneous cell group with multiple efferent projections. Therefore, neurons projecting to the midbrain were identified by retrograde transport of fluorescent microspheres injected in the ventral tegmental area (VTA). Whole-cell voltage clamp recordings of these neurons and of those sharing physiological properties were done in brain slices. Noradrenaline activated α1-adrenergic receptors to increase GABAA-IPSC frequency. Noradrenaline produced a similar increase in GABAA-IPSCs during acute opioid withdrawal, but this increase resulted from activation of β-adrenergic receptors, adenylyl cyclase, and protein kinase A, as well as α1-adrenergic receptors. Given that neurons in the vlBNST send an excitatory projection to the VTA, noradrenaline may reduce excitatory drive to mesolimbic dopamine cells. This mechanism might contribute to the withdrawal-induced inhibition of dopamine neurons and explain how noradrenergic drugs microinjected into the vlBNST reduce aversive aspects of opioid withdrawal. PMID:15385602

  6. In vitro binding and receptor-mediated activity of terlipressin at vasopressin receptors V1 and V2

    PubMed Central

    Jamil, Khurram; Pappas, Stephen Chris; Devarakonda, Krishna R

    2018-01-01

    Terlipressin, a synthetic, systemic vasoconstrictor with selective activity at vasopressin-1 (V1) receptors, is a pro-drug for the endogenous/natural porcine hormone [Lys8]-vasopressin (LVP). We investigated binding and receptor-mediated cellular activities of terlipressin, LVP, and endogenous human hormone [Arg8]-vasopressin (AVP) at V1 and vasopressin-2 (V2) receptors. Cell membrane homogenates of Chinese hamster ovary cells expressing human V1 and V2 receptors were used in competitive binding assays to measure receptor-binding activity. These cells were used in functional assays to measure receptor-mediated cellular activity of terlipressin, LVP, and AVP. Binding was measured by [3H]AVP counts, and the activity was measured by fluorometric detection of intracellular calcium mobilization (V1) and cyclic adenosine monophosphate (V2). Binding potency at V1 and V2 was AVP>LVP>>terlipressin. LVP and terlipressin had approximately sixfold higher affinity for V1 than for V2. Cellular activity potency was also AVP>LVP>>terlipressin. Terlipressin was a partial agonist at V1 and a full agonist at V2; LVP was a full agonist at both V1 and V2. The in vivo response to terlipressin is likely due to the partial V1 agonist activity of terlipressin and full V1 agonist activity of its metabolite, LVP. These results provide supportive evidence for previous findings and further establish terlipressin pharmacology for vasopressin receptors. PMID:29302194

  7. In vitro binding and receptor-mediated activity of terlipressin at vasopressin receptors V1 and V2.

    PubMed

    Jamil, Khurram; Pappas, Stephen Chris; Devarakonda, Krishna R

    2018-01-01

    Terlipressin, a synthetic, systemic vasoconstrictor with selective activity at vasopressin-1 (V 1 ) receptors, is a pro-drug for the endogenous/natural porcine hormone [Lys 8 ]-vasopressin (LVP). We investigated binding and receptor-mediated cellular activities of terlipressin, LVP, and endogenous human hormone [Arg 8 ]-vasopressin (AVP) at V 1 and vasopressin-2 (V 2 ) receptors. Cell membrane homogenates of Chinese hamster ovary cells expressing human V 1 and V 2 receptors were used in competitive binding assays to measure receptor-binding activity. These cells were used in functional assays to measure receptor-mediated cellular activity of terlipressin, LVP, and AVP. Binding was measured by [ 3 H]AVP counts, and the activity was measured by fluorometric detection of intracellular calcium mobilization (V 1 ) and cyclic adenosine monophosphate (V 2 ). Binding potency at V 1 and V 2 was AVP>LVP>terlipressin. LVP and terlipressin had approximately sixfold higher affinity for V 1 than for V 2 . Cellular activity potency was also AVP>LVP>terlipressin. Terlipressin was a partial agonist at V 1 and a full agonist at V 2 ; LVP was a full agonist at both V 1 and V 2 . The in vivo response to terlipressin is likely due to the partial V 1 agonist activity of terlipressin and full V 1 agonist activity of its metabolite, LVP. These results provide supportive evidence for previous findings and further establish terlipressin pharmacology for vasopressin receptors.

  8. GABAA receptor subtype involvement in addictive behaviour.

    PubMed

    Stephens, D N; King, S L; Lambert, J J; Belelli, D; Duka, T

    2017-01-01

    GABA A receptors form the major class of inhibitory neurotransmitter receptors in the mammalian brain. This review sets out to summarize the evidence that variations in genes encoding GABA A receptor isoforms are associated with aspects of addictive behaviour in humans, while animal models of addictive behaviour also implicate certain subtypes of GABA A receptor. In addition to outlining the evidence for the involvement of specific subtypes in addiction, we summarize the particular contributions of these isoforms in control over the functioning of brain circuits, especially the mesolimbic system, and make a first attempt to bring together evidence from several fields to understanding potential involvement of GABA A receptor subtypes in addictive behaviour. While the weight of the published literature is on alcohol dependency, the underlying principles outlined are relevant across a number of different aspects of addictive behaviour. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  9. Association between the GABA(A) receptor alpha5 subunit gene locus (GABRA5) and bipolar affective disorder.

    PubMed

    Papadimitriou, G N; Dikeos, D G; Karadima, G; Avramopoulos, D; Daskalopoulou, E G; Vassilopoulos, D; Stefanis, C N

    1998-02-07

    Genetic factors seem to play an important role in the pathogenesis of affective disorder. The candidate gene strategies are being used, among others, to identify the genes conferring vulnerability to the disease. The genes coding for the receptors of gamma-aminobutyric acid (GABA) have been proposed as candidates for affective disorder, since the GABA neurotransmitter system has been implicated in the pathogenesis of the illness. We examined the possible genetic association between the GABA(A) receptor alpha5 subunit gene locus (GABRA5) on chromosome 15 and affective disorder, in 48 bipolar patients (BP), 40 unipolar patients (UP), and 50 healthy individuals, age- and sex-matched to the patients. All patients and controls were unrelated Greeks. Diagnoses were made after direct interviews according to the DSM-IV and ICD-10 criteria. For the genotyping, a dinucleotide (CA) repeat marker was used. The polymerase chain reaction (PCR) products found were nine alleles with lengths between 272 and 290 base pairs (bp). The distribution of allelic frequencies of the GABRA5 locus differed significantly between BP patients and controls with the 282-bp allele found to be associated with BP affective disorder, while no such difference was observed between the groups of UP patients and controls nor between the two patient groups. The presence or absence of the 282-bp allele in the genotype of BP patients was not shown to influence the age of onset and the overall clinical severity, but was found to be associated with a preponderance of manic over depressive episodes in the course of the illness.

  10. Glutamate Receptors within the Mesolimbic Dopamine System Mediate Alcohol Relapse Behavior.

    PubMed

    Eisenhardt, Manuela; Leixner, Sarah; Luján, Rafael; Spanagel, Rainer; Bilbao, Ainhoa

    2015-11-25

    Glutamatergic input within the mesolimbic dopamine (DA) pathway plays a critical role in the development of addictive behavior. Although this is well established for some drugs of abuse, it is not known whether glutamate receptors within the mesolimbic system are involved in mediating the addictive properties of chronic alcohol use. Here we evaluated the contribution of mesolimbic NMDARs and AMPARs in mediating alcohol-seeking responses induced by environmental stimuli and relapse behavior using four inducible mutant mouse lines lacking the glutamate receptor genes Grin1 or Gria1 in either DA transporter (DAT) or D1R-expressing neurons. We first demonstrate the lack of GluN1 or GluA1 in either DAT- or D1R-expressing neurons in our mutant mouse lines by colocalization studies. We then show that GluN1 and GluA1 receptor subunits within these neuronal subpopulations mediate the alcohol deprivation effect, while having no impact on context- plus cue-induced reinstatement of alcohol-seeking behavior. We further validated these results pharmacologically by demonstrating similar reductions in the alcohol deprivation effect after infusion of the NMDAR antagonist memantine into the nucleus accumbens and ventral tegmental area of control mice, and a rescue of the mutant phenotype via pharmacological potentiation of AMPAR activity using aniracetam. In conclusion, dopamine neurons as well as D1R-expressing medium spiny neurons and their glutamatergic inputs via NMDARs and AMPARs act in concert to influence relapse responses. These results provide a neuroanatomical and molecular substrate for relapse behavior and emphasize the importance of glutamatergic drugs in modulating relapse behavior. Here we provide genetic and pharmacological evidence that glutamate receptors within the mesolimbic dopamine system play an essential role in alcohol relapse. Using various inducible and site-specific transgenic mouse models and pharmacological validation experiments, we show that critical

  11. Muscimol increases acetylcholine release by directly stimulating adult striatal cholinergic interneurons.

    PubMed

    Login, I S; Pal, S N; Adams, D T; Gold, P E

    1998-01-01

    Because GabaA ligands increase acetylcholine (ACh) release from adult striatal slices, we hypothesized that activation of GabaA receptors on striatal cholinergic interneurons directly stimulates ACh secretion. Fractional [3H]ACh release was recorded during perifusion of acutely dissociated, [3H]choline-labeled, adult male rat striata. The GabaA agonist, muscimol, immediately stimulated release maximally approximately 300% with EC50 = approximately 1 microM. This action was enhanced by the allosteric GabaA receptor modulators, diazepam and secobarbital, and inhibited by the GabaA antagonist, bicuculline, by ligands for D2 or muscarinic cholinergic receptors or by low calcium buffer, tetrodotoxin or vesamicol. Membrane depolarization inversely regulated muscimol-stimulated secretion. Release of endogenous and newly synthesized ACh was stimulated in parallel by muscimol without changing choline release. Muscimol pretreatment inhibited release evoked by K+ depolarization or by receptor-mediated stimulation with glutamate. Thus, GabaA receptors on adult striatal cholinergic interneurons directly stimulate voltage- and calcium-dependent exocytosis of ACh stored in vesamicol-sensitive synaptic vesicles. The action depends on the state of membrane polarization and apparently depolarizes the membrane in turn. This functional assay demonstrates that excitatory GabaA actions are not limited to neonatal tissues. GabaA-stimulated ACh release may be prevented in situ by normal tonic dopaminergic and muscarinic input to cholinergic neurons.

  12. Distinct kinetics of inhibitory currents in thalamocortical neurons that arise from dendritic or axonal origin.

    PubMed

    Yang, Sunggu; Govindaiah, Gubbi; Lee, Sang-Hun; Yang, Sungchil; Cox, Charles L

    2017-01-01

    Thalamocortical neurons in the dorsal lateral geniculate nucleus (dLGN) transfer visual information from retina to primary visual cortex. This information is modulated by inhibitory input arising from local interneurons and thalamic reticular nucleus (TRN) neurons, leading to alterations of receptive field properties of thalamocortical neurons. Local GABAergic interneurons provide two distinct synaptic outputs: axonal (F1 terminals) and dendritic (F2 terminals) onto dLGN thalamocortical neurons. By contrast, TRN neurons provide only axonal output (F1 terminals) onto dLGN thalamocortical neurons. It is unclear if GABAA receptor-mediated currents originating from F1 and F2 terminals have different characteristics. In the present study, we examined multiple characteristics (rise time, slope, halfwidth and decay τ) of GABAA receptor-mediated miniature inhibitory postsynaptic synaptic currents (mIPSCs) originating from F1 and F2 terminals. The mIPSCs arising from F2 terminals showed slower kinetics relative to those from F1 terminals. Such differential kinetics of GABAAR-mediated responses could be an important role in temporal coding of visual signals.

  13. Distinct combinations of variant ionotropic glutamate receptors mediate thermosensation and hygrosensation in Drosophila.

    PubMed

    Knecht, Zachary A; Silbering, Ana F; Ni, Lina; Klein, Mason; Budelli, Gonzalo; Bell, Rati; Abuin, Liliane; Ferrer, Anggie J; Samuel, Aravinthan Dt; Benton, Richard; Garrity, Paul A

    2016-09-22

    Ionotropic Receptors (IRs) are a large subfamily of variant ionotropic glutamate receptors present across Protostomia. While these receptors are most extensively studied for their roles in chemosensory detection, recent work has implicated two family members, IR21a and IR25a, in thermosensation in Drosophila . Here we characterize one of the most evolutionarily deeply conserved receptors, IR93a, and show that it is co-expressed and functions with IR21a and IR25a to mediate physiological and behavioral responses to cool temperatures. IR93a is also co-expressed with IR25a and a distinct receptor, IR40a, in a discrete population of sensory neurons in the sacculus, a multi-chambered pocket within the antenna. We demonstrate that this combination of receptors is required for neuronal responses to dry air and behavioral discrimination of humidity differences. Our results identify IR93a as a common component of molecularly and cellularly distinct IR pathways important for thermosensation and hygrosensation in insects.

  14. Mutation of the inhibitory ethanol site in GABAA ρ1 receptors promotes tolerance to ethanol-induced motor incoordination.

    PubMed

    Blednov, Yuri A; Borghese, Cecilia M; Ruiz, Carlos I; Cullins, Madeline A; Da Costa, Adriana; Osterndorff-Kahanek, Elizabeth A; Homanics, Gregg E; Harris, R Adron

    2017-09-01

    Genes encoding the ρ1/2 subunits of GABA A receptors have been associated with alcohol (ethanol) dependence in humans, and ρ1 was also shown to regulate some of the behavioral effects of ethanol in animal models. Ethanol inhibits GABA-mediated responses in wild-type (WT) ρ1, but not ρ1(T6'Y) mutant receptors expressed in Xenopus laevis oocytes, indicating the presence of an inhibitory site for ethanol in the second transmembrane helix. In this study, we found that ρ1(T6'Y) receptors expressed in oocytes display overall normal responses to GABA, the endogenous GABA modulator (zinc), and partial agonists (β-alanine and taurine). We generated ρ1 (T6'Y) knockin (KI) mice using CRISPR/Cas9 to test the behavioral importance of the inhibitory actions of ethanol on this receptor. Both ρ1 KI and knockout (KO) mice showed faster recovery from acute ethanol-induced motor incoordination compared to WT mice. Both KI and KO mutant strains also showed increased tolerance to motor impairment produced by ethanol. The KI mice did not differ from WT mice in other behavioral actions, including ethanol intake and preference, conditioned taste aversion to ethanol, and duration of ethanol-induced loss of righting reflex. WT and KI mice did not differ in levels of ρ1 or ρ2 mRNA in cerebellum or in ethanol clearance. Our findings indicate that the inhibitory site for ethanol in GABA A ρ1 receptors regulates acute functional tolerance to moderate ethanol intoxication. We note that low sensitivity to alcohol intoxication has been linked to risk for development of alcohol dependence in humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. CD3ζ-based chimeric antigen receptors mediate T cell activation via cis- and trans-signalling mechanisms: implications for optimization of receptor structure for adoptive cell therapy

    PubMed Central

    Bridgeman, J S; Ladell, K; Sheard, V E; Miners, K; Hawkins, R E; Price, D A; Gilham, D E

    2014-01-01

    Chimeric antigen receptors (CARs) can mediate redirected lysis of tumour cells in a major histocompatibility complex (MHC)-independent manner, thereby enabling autologous adoptive T cell therapy for a variety of malignant neoplasms. Currently, most CARs incorporate the T cell receptor (TCR) CD3ζ signalling chain; however, the precise mechanisms responsible for CAR-mediated T cell activation are unclear. In this study, we used a series of immunoreceptor tyrosine-based activation motif (ITAM)-mutant and transmembrane-modified receptors to demonstrate that CARs activate T cells both directly via the antigen-ligated signalling chain and indirectly via associated chains within the TCR complex. These observations allowed us to generate new receptors capable of eliciting polyfunctional responses in primary human T cells. This work increases our understanding of CAR function and identifies new avenues for the optimization of CAR-based therapeutic interventions. PMID:24116999

  16. Modulation of sweet responses of taste receptor cells.

    PubMed

    Yoshida, Ryusuke; Niki, Mayu; Jyotaki, Masafumi; Sanematsu, Keisuke; Shigemura, Noriatsu; Ninomiya, Yuzo

    2013-03-01

    Taste receptor cells play a major role in detection of chemical compounds in the oral cavity. Information derived from taste receptor cells, such as sweet, bitter, salty, sour and umami is important for evaluating the quality of food components. Among five basic taste qualities, sweet taste is very attractive for animals and influences food intake. Recent studies have demonstrated that sweet taste sensitivity in taste receptor cells would be affected by leptin and endocannabinoids. Leptin is an anorexigenic mediator that reduces food intake by acting on leptin receptor Ob-Rb in the hypothalamus. Endocannabinoids such as anandamide [N-arachidonoylethanolamine (AEA)] and 2-arachidonoyl glycerol (2-AG) are known as orexigenic mediators that act via cannabinoid receptor 1 (CB1) in the hypothalamus and limbic forebrain to induce appetite and stimulate food intake. At the peripheral gustatory organs, leptin selectively suppresses and endocannabinoids selectively enhance sweet taste sensitivity via Ob-Rb and CB1 expressed in sweet sensitive taste cells. Thus leptin and endocannabinoids not only regulate food intake via central nervous systems but also modulate palatability of foods by altering peripheral sweet taste responses. Such reciprocal modulation of leptin and endocannabinoids on peripheral sweet sensitivity may play an important role in regulating energy homeostasis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. SLP-76 is required for high-affinity IgE receptor- and IL-3 receptor-mediated activation of basophils.

    PubMed

    Hidano, Shinya; Kitamura, Daisuke; Kumar, Lalit; Geha, Raif S; Goitsuka, Ryo

    2012-11-01

    Basophils have been reported to play a critical role in allergic inflammation by secreting IL-4 in response to IL-3 or high-affinity IgE receptor (FcεRI)-cross-linking. However, the signaling pathways downstream of FcεRI and the IL-3 receptor in basophils have yet to be determined. In the present study, we used mice deficient in SLP-76 (Src homology 2 domain-containing leukocyte phosphoprotein of 76kDa) to demonstrate critical functions of this adaptor molecule in transducing FcεRI- and IL-3 receptor-mediated signals that induce basophil activation. Although SLP-76 was dispensable for in vivo differentiation, as well as IL-3-induced in vitro proliferation of basophils, IL-4 production induced by both stimuli was completely ablated by SLP-76 deficiency. Biochemical analyses revealed that IL-3-induced phosphorylation of phospholipase C (PLC) γ2 and Akt, but not STAT5, was severely reduced in SLP-76-deficient basophils, whereas FcεRI cross-linking phosphorylation of PLCγ2, but not Akt, was abrogated by SLP-76 deficiency, suggesting important differences in the requirement of SLP-76 for Akt activation between FcεRI- and IL-3 receptor-mediated signaling pathways in basophils. Because IL-3-induced IL-4 production was sensitive to calcineurin inhibitors and an intracellular calcium chelator, in addition to PI3K inhibitors, SLP-76 appears to regulate FcεRI- and IL-3 receptor-induced IL-4 production via mediating PLCγ2 activation in basophils. Taken together, these findings indicate that SLP-76 is an essential signaling component for basophil activation downstream of both FcεRI and the IL-3 receptor.

  18. Early continuous white noise exposure alters l-alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunit glutamate receptor 2 and gamma-aminobutyric acid type a receptor subunit beta3 protein expression in rat auditory cortex.

    PubMed

    Xu, Jinghong; Yu, Liping; Zhang, Jiping; Cai, Rui; Sun, Xinde

    2010-02-15

    Auditory experience during the postnatal critical period is essential for the normal maturation of auditory function. Previous studies have shown that rearing infant rat pups under conditions of continuous moderate-level noise delayed the emergence of adult-like topographic representational order and the refinement of response selectivity in the primary auditory cortex (A1) beyond normal developmental benchmarks and indefinitely blocked the closure of a brief, critical-period window. To gain insight into the molecular mechanisms of these physiological changes after noise rearing, we studied expression of the AMPA receptor subunit GluR2 and GABA(A) receptor subunit beta3 in the auditory cortex after noise rearing. Our results show that continuous moderate-level noise rearing during the early stages of development decreases the expression levels of GluR2 and GABA(A)beta3. Furthermore, noise rearing also induced a significant decrease in the level of GABA(A) receptors relative to AMPA receptors. However, in adult rats, noise rearing did not have significant effects on GluR2 and GABA(A)beta3 expression or the ratio between the two units. These changes could have a role in the cellular mechanisms involved in the delayed maturation of auditory receptive field structure and topographic organization of A1 after noise rearing. Copyright 2009 Wiley-Liss, Inc.

  19. Characterization of the EP receptor types that mediate longitudinal smooth muscle contraction of human colon, mouse colon and mouse ileum.

    PubMed

    Fairbrother, S E; Smith, J E; Borman, R A; Cox, H M

    2011-08-01

    Prostaglandin E(2) (PGE(2) ) is an inflammatory mediator implicated in several gastrointestinal pathologies that affect normal intestinal transit. The aim was to establish the contribution of the four EP receptor types (EP(1-4) ), in human colon, that mediate PGE(2) -induced longitudinal smooth muscle contraction. Changes in isometric muscle tension of human colon, mouse colon and mouse ileum were measured in organ baths in response to receptor-specific agonists and antagonists. In addition, lidocaine was used to block neurogenic activity to investigate whether EP receptors were pre- or post-junctional. PGE(2) contracted longitudinal muscle from human and mouse colon and mouse ileum. These contractions were inhibited by the EP(1) receptor antagonist, EP(1) A in human colon, whereas a combination of EP(1) A and the EP(3) antagonist, L798106 inhibited agonist responses in both mouse preparations. The EP(3) agonist, sulprostone also increased muscle tension in both mouse tissues, and these responses were inhibited by lidocaine in the colon but not in the ileum. Although PGE(2) consistently contracted all three muscle preparations, butaprost decreased tension by activating smooth muscle EP(2) receptors in both colonic tissues. Alternatively, in mouse ileum, butaprost responses were lidocaine-sensitive, suggesting that it was activating prejunctional EP(2) receptors on inhibitory motor neurons. Conversely, EP(4) receptors were not functional in all the intestinal muscle preparations tested. PGE(2) -induced contraction of longitudinal smooth muscle is mediated by EP(1) receptors in human colon and by a combination of EP(1) and EP(3) receptors in mouse intestine, whereas EP(2) receptors modulate relaxation in all three preparations. © 2011 Blackwell Publishing Ltd.

  20. Relationship between a GABAA alpha 6 Pro385Ser substitution and benzodiazepine sensitivity.

    PubMed

    Iwata, N; Cowley, D S; Radel, M; Roy-Byrne, P P; Goldman, D

    1999-09-01

    In humans, interindividual variation in sensitivity to benzodiazepine drugs may correlate with behavioral variation, including vulnerability to disease states such as alcoholism. In the rat, variation in alcohol and benzodiazepine sensitivity has been correlated with an inherited variant of the GABAA alpha 6 receptor. The authors detected a Pro385Ser [1236C > T] amino acid substitution in the human GABAA alpha 6 that may influence alcohol sensitivity. In this pilot study, they evaluated the contribution of this polymorphism to benzodiazepine sensitivity. Sensitivity to diazepam was assessed in 51 children of alcoholics by using two eye movement measures: peak saccadic velocity and average smooth pursuit gain. Association analysis was performed with saccadic velocity and smooth pursuit gain as dependent variables and comparing Pro385/Ser385 heterozygotes and Pro385/Pro385 homozygotes. The Pro385Ser genotype was associated with less diazepam-induced impairment of saccadic velocity but not with smooth pursuit gain. The Pro385Ser genotype may play a role in benzodiazepine sensitivity and conditions, such as alcoholism, that may be correlated with this trait.

  1. Neuropeptide Y restores non-receptor-mediated vasoconstrictive action in superior mesenteric arteries in portal hypertension.

    PubMed

    Hartl, Johannes; Dietrich, Peter; Moleda, Lukas; Müller-Schilling, Martina; Wiest, Reiner

    2015-12-01

    Vascular hyporeactivity to vasoconstrictors contributes to splanchnic arterial vasodilatation and hemodynamic dysregulation in portal hypertension. Neuropeptide Y (NPY), a sympathetic cotransmitter, has been shown to improve adrenergic vascular contractility in portal hypertensive rats and markedly attenuate hyperdynamic circulation. To further characterize the NPY-effects in portal hypertension, we investigated its role for non-receptor-mediated vasoconstriction in the superior mesenteric artery (SMA) of portal vein ligated (PVL) and sham-operated rats. Ex vivo SMA perfusion of PVL and sham rats was used to analyse the effects of NPY on pressure response to non-receptor-mediated vasoconstriction. Dose-response curves to KCl (30-300 mM) were used to bypass G protein-coupled receptor mechanisms. Potential involvement of the cyclooxygenase-pathway was tested by non-selective cyclooxygenase-inhibition using indomethacin. KCl-induced vascular contractility but not vascular sensitivity was significantly attenuated in PVL rats as compared with sham rats. Administration of NPY resulted in an augmentation of KCl-evoked vascular sensitivity being not different between study groups. However, KCl-induced vascular contractility was markedly more enhanced in PVL rats, thus, vascular response was no more significantly different between PVL and sham rats after addition of NPY. Administration of indomethacin abolished the NPY-induced enhancement of vasoconstriction. Receptor-independent vascular contractility is impaired in mesenteric arteries in portal hypertension. NPY improves non-receptor mediated mesenteric vasoconstriction more effective in portal hypertension than in healthy conditions correcting splanchnic vascular hyporesponsiveness. This beneficial vasoactive action of NPY adds to its well known more pronounced effects on adrenergic vasoconstriction in portal hypertension making it a promising therapeutic agent in portal hypertension. © 2015 John Wiley & Sons A

  2. Thrombin Induces Inositol Trisphosphate-Mediated Spatially Extensive Responses in Lung Microvessels.

    PubMed

    Escue, Rachel; Kandasamy, Kathirvel; Parthasarathi, Kaushik

    2017-04-01

    Activation of plasma membrane receptors initiates compartmentalized second messenger signaling. Whether this compartmentalization facilitates the preferential intercellular diffusion of specific second messengers is unclear. Toward this, the receptor-mediated agonist, thrombin, was instilled into microvessels in a restricted region of isolated blood-perfused mouse lungs. Subsequently, the thrombin-induced increase in endothelial F-actin was determined using confocal fluorescence microscopy. Increased F-actin was evident in microvessels directly treated with thrombin and in those located in adjoining thrombin-free regions. This increase was abrogated by inhibiting inositol trisphosphate-mediated calcium release with Xestospongin C (XeC). XeC also inhibited the thrombin-induced increase in the amplitude of endothelial cytosolic Ca 2+ oscillations. Instillation of thrombin and XeC into adjacent restricted regions increased F-actin in microvessels in the thrombin-treated and adjacent regions but not in those in the XeC-treated region. Thus, inositol trisphosphate, and not calcium, diffused interendothelially to the spatially remote thrombin-free microvessels. Thus, activation of plasma membrane receptors increased the ambit of inflammatory responses via a second messenger different from that used by stimuli that induce cell-wide increases in second messengers. Thrombin however failed to induce the spatially extensive response in microvessels of mice lacking endothelial connexin43, suggesting a role for connexin43 gap junctions. Compartmental second messenger signaling and interendothelial communication define the specific second messenger involved in exacerbating proinflammatory responses to receptor-mediated agonists. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  3. A Novel Soluble Immune-Type Receptor (SITR) in Teleost Fish: Carp SITR Is Involved in the Nitric Oxide-Mediated Response to a Protozoan Parasite

    PubMed Central

    Ribeiro, Carla M. S.; Bird, Steve; Raes, Geert; Ghassabeh, Gholamreza H.; Schijns, Virgil E. J. C.; Pontes, Maria J. S. L.; Savelkoul, Huub F. J.; Wiegertjes, Geert F.

    2011-01-01

    Background The innate immune system relies upon a wide range of germ-line encoded receptors including a large number of immunoglobulin superfamily (IgSF) receptors. Different Ig-like immune receptor families have been reported in mammals, birds, amphibians and fish. Most innate immune receptors of the IgSF are type I transmembrane proteins containing one or more extracellular Ig-like domains and their regulation of effector functions is mediated intracellularly by distinct stimulatory or inhibitory pathways. Methodology/Principal Findings Carp SITR was found in a substracted cDNA repertoire from carp macrophages, enriched for genes up-regulated in response to the protozoan parasite Trypanoplasma borreli. Carp SITR is a type I protein with two extracellular Ig domains in a unique organisation of a N-proximal V/C2 (or I-) type and a C-proximal V-type Ig domain, devoid of a transmembrane domain or any intracytoplasmic signalling motif. The carp SITR C-proximal V-type Ig domain, in particular, has a close sequence similarity and conserved structural characteristics to the mammalian CD300 molecules. By generating an anti-SITR antibody we could show that SITR protein expression was restricted to cells of the myeloid lineage. Carp SITR is abundantly expressed in macrophages and is secreted upon in vitro stimulation with the protozoan parasite T. borreli. Secretion of SITR protein during in vivo T. borreli infection suggests a role for this IgSF receptor in the host response to this protozoan parasite. Overexpression of carp SITR in mouse macrophages and knock-down of SITR protein expression in carp macrophages, using morpholino antisense technology, provided evidence for the involvement of carp SITR in the parasite-induced NO production. Conclusion/Significance We report the structural and functional characterization of a novel soluble immune-type receptor (SITR) in a teleost fish and propose a role for carp SITR in the NO-mediated response to a protozoan parasite. PMID

  4. Postsynaptic Synaptotagmins Mediate AMPA Receptor Exocytosis During LTP

    PubMed Central

    Wu, Dick; Bacaj, Taulant; Morishita, Wade; Goswami, Debanjan; Arendt, Kristin L.; Xu, Wei; Chen, Lu; Malenka, Robert C.; Südhof, Thomas C.

    2017-01-01

    Strengthening of synaptic connections by NMDA-receptor-dependent long-term potentiation (LTP) shapes neural circuits and mediates learning and memory. During NMDA-receptor-dependent LTP induction, Ca2+-influx stimulates recruitment of synaptic AMPA-receptors, thereby strengthening synapses. How Ca2+ induces AMPA-receptor recruitment, however, remains unclear. Here we show that, in pyramidal neurons of the hippocampal CA1-region, blocking postsynaptic expression of both synaptotagmin-1 and synaptotagmin-7, but not of synaptotagmin-1 or synaptotagmin-7 alone, abolished LTP. LTP was rescued by wild-type but not by Ca2+-binding-deficient mutant synaptotagmin-7. Blocking postsynaptic synaptotagmin-1/7 expression did not impair basal synaptic transmission, synaptic or extrasynaptic AMPA-receptor levels, or other AMPA-receptor trafficking events. Moreover, expression of dominant-negative mutant synaptotagmin-1 that inhibited Ca2+-dependent presynaptic vesicle exocytosis also blocked Ca2+-dependent postsynaptic AMPA-receptor exocytosis, thereby abolishing LTP. Our results suggest that postsynaptic synaptotagmin-1 and synaptotagmin-7 act as redundant Ca2+-sensors for Ca2+-dependent exocytosis of AMPA-receptors during LTP, thus delineating a simple mechanism for the recruitment of AMPA-receptors that mediates LTP. PMID:28355182

  5. γ-Aminobutyric Acid Type A α4, β2, and δ Subunits Assemble to Produce More Than One Functionally Distinct Receptor Type

    PubMed Central

    Eaton, Megan M.; Bracamontes, John; Shu, Hong-Jin; Li, Ping; Mennerick, Steven; Steinbach, Joe Henry

    2014-01-01

    Native γ-aminobutyric acid (GABA)A receptors consisting of α4, β1–3, and δ subunits mediate responses to the low, tonic concentration of GABA present in the extracellular milieu. Previous studies on heterologously expressed α4βδ receptors have shown a large degree of variability in functional properties, including sensitivity to the transmitter. We studied properties of α4β2δ receptors employing free subunits and concatemeric constructs, expressed in Xenopus oocytes, HEK 293 cells, and cultured hippocampal neurons. The expression system had a strong effect on the properties of receptors containing free subunits. The midpoint of GABA activation curve was 10 nM for receptors in oocytes versus 2300 nM in HEK cells. Receptors activated by the steroid alfaxalone had an estimated maximal open probability of 0.6 in oocytes and 0.01 in HEK cells. Irrespective of the expression system, receptors resulting from combining the tandem construct β2-δ and a free α4 subunit exhibited large steroid responses. We propose that free α4, β2, and δ subunits assemble in different configurations with distinct properties in oocytes and HEK cells, and that subunit linkage can overcome the expression system-dependent preferential assembly of free subunits. Hippocampal neurons transfected with α4 and the picrotoxin-resistant δ(T269Y) subunit showed large responses to alfaxalone in the presence of picrotoxin, suggesting that α4βδ receptors may assemble in a similar configuration in neurons and oocytes. PMID:25238745

  6. Mechanics of receptor-mediated endocytosis

    NASA Astrophysics Data System (ADS)

    Gao, Huajian; Shi, Wendong; Freund, Lambert B.

    2005-07-01

    Most viruses and bioparticles endocytosed by cells have characteristic sizes in the range of tens to hundreds of nanometers. The process of viruses entering and leaving animal cells is mediated by the binding interaction between ligand molecules on the viral capid and their receptor molecules on the cell membrane. How does the size of a bioparticle affect receptor-mediated endocytosis? Here, we study how a cell membrane containing diffusive mobile receptors wraps around a ligand-coated cylindrical or spherical particle. It is shown that particles in the size range of tens to hundreds of nanometers can enter or exit cells via wrapping even in the absence of clathrin or caveolin coats, and an optimal particles size exists for the smallest wrapping time. This model can also be extended to include the effect of clathrin coat. The results seem to show broad agreement with experimental observations. Author contributions: H.G. and L.B.F. designed research; H.G., W.S., and L.B.F. performed research; and H.G., W.S., and L.B.F. wrote the paper.Abbreviations: CNT, carbon nanotube; SWNT, single-walled nanotube.

  7. Ionotropic and metabotropic receptor mediated airway sensory nerve activation.

    PubMed

    Lee, Min-Goo; Kollarik, Marian; Chuaychoo, Benjamas; Undem, Bradley J

    2004-01-01

    There are several receptors capable of inducing activating generator potentials in cough-associated afferent terminals in the airways. The chemical receptors leading to generator potentials can be subclassified into ionotropic and metabotropic types. An ionotropic receptor has an agonist-binding domain, and also serves directly as an ion channel that is opened upon binding of the agonist. Examples of ionotropic receptors found in airway sensory nerve terminals include receptors for serotonin (5-HT3 receptors), ATP (P2X receptors), acetylcholine (nicotinic receptors), receptors for capsaicin and related vanilloids (TRPV1 receptors), and acid receptors (acid sensing ion channels). Afferent nerve terminals can also be depolarized via activation of metabotropic or G-protein coupled receptors (GPCRs). Among the GPCRs that can lead to activation of airway afferent fibers include bradykinin B2 and adenosine A1 receptors. The signaling events leading to GPCR-mediated membrane depolarization are more complex than that seen with ionotropic receptors. The GPCR-mediated effects are thought to occur through classical second messenger systems such as activation of phospholipase C. This may lead to membrane depolarization through interaction with specific ionotropic receptors (such as TRPV1) and/or various types of calcium activated channels.

  8. Receptor-like cytoplasmic kinases are pivotal components in pattern recognition receptor-mediated signaling in plant immunity.

    PubMed

    Yamaguchi, Koji; Yamada, Kenta; Kawasaki, Tsutomu

    2013-10-01

    Innate immunity is generally initiated with recognition of conserved pathogen-associated molecular patterns (PAMPs). PAMPs are perceived by pattern recognition receptors (PRRs), leading to activation of a series of immune responses, including the expression of defense genes, ROS production and activation of MAP kinase. Recent progress has indicated that receptor-like cytoplasmic kinases (RLCKs) are directly activated by ligand-activated PRRs and initiate pattern-triggered immunity (PTI) in both Arabidopsis and rice. To suppress PTI, pathogens inhibit the RLCKs by many types of effectors, including AvrAC, AvrPphB and Xoo1488. In this review, we summarize recent advances in RLCK-mediated PTI in plants.

  9. In vitro blood-brain barrier permeability predictions for GABAA receptor modulating piperine analogs.

    PubMed

    Eigenmann, Daniela Elisabeth; Dürig, Carmen; Jähne, Evelyn Andrea; Smieško, Martin; Culot, Maxime; Gosselet, Fabien; Cecchelli, Romeo; Helms, Hans Christian Cederberg; Brodin, Birger; Wimmer, Laurin; Mihovilovic, Marko D; Hamburger, Matthias; Oufir, Mouhssin

    2016-06-01

    The alkaloid piperine from black pepper (Piper nigrum L.) and several synthetic piperine analogs were recently identified as positive allosteric modulators of γ-aminobutyric acid type A (GABAA) receptors. In order to reach their target sites of action, these compounds need to enter the brain by crossing the blood-brain barrier (BBB). We here evaluated piperine and five selected analogs (SCT-66, SCT-64, SCT-29, LAU397, and LAU399) regarding their BBB permeability. Data were obtained in three in vitro BBB models, namely a recently established human model with immortalized hBMEC cells, a human brain-like endothelial cells (BLEC) model, and a primary animal (bovine endothelial/rat astrocytes co-culture) model. For each compound, quantitative UHPLC-MS/MS methods in the range of 5.00-500ng/mL in the corresponding matrix were developed, and permeability coefficients in the three BBB models were determined. In vitro predictions from the two human BBB models were in good agreement, while permeability data from the animal model differed to some extent, possibly due to protein binding of the screened compounds. In all three BBB models, piperine and SCT-64 displayed the highest BBB permeation potential. This was corroborated by data from in silico prediction. For the other piperine analogs (SCT-66, SCT-29, LAU397, and LAU399), BBB permeability was low to moderate in the two human BBB models, and moderate to high in the animal BBB model. Efflux ratios (ER) calculated from bidirectional permeability experiments indicated that the compounds were likely not substrates of active efflux transporters. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yuan, E-mail: yuan.xu@ki.se; Cardell, Lars-Olaf

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B{sub 2} receptor agonist) and des-Arg{sup 9}-bradykinin-more » (selective B{sub 1} receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE{sub 2}. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg{sup 9}-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B{sub 2} receptors, but not those on B{sub 1}. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance

  11. Modulation of GABAergic receptor binding by activation of calcium and calmodulin-dependent kinase II membrane phosphorylation.

    PubMed

    Churn, S B; DeLorenzo, R J

    1998-10-26

    gamma-Aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system (CNS). Because of the important role that GABA plays in the CNS, alteration of GABAA receptor function would significantly affect neuronal excitability. Protein phosphorylation is a major mechanism for regulating receptor function in the brain and has been implicated in modulating GABAA receptor function. Therefore, this study was initiated to determine the role of calmodulin-dependent kinase II (CaM kinase II) membrane phosphorylation on GABAA receptor binding. Synaptosomal membrane fractions were tested for CaM kinase II activity towards endogenous substrates. In addition, muscimol binding was evaluated under equilibrium conditions in synaptosomal membrane fractions subjected to either basal (Mg2+ alone) or maximal CaM kinase II-dependent phosphorylation. Activation of endogenous CaM kinase II-dependent phosphorylation resulted in a significant enhancement of the apparent Bmax for muscimol binding without significantly altering the apparent binding affinity. The enhanced muscimol binding could be increased further by the addition of exogenous CaM kinase II to synaptosomal membrane fractions. Co-incubation with inhibitors of kinase activity during the phosphorylation reactions blocked the CaM kinase II-dependent increase in muscimol binding. The data support the hypothesis that activation of CaM kinase II-dependent phosphorylation caused an increased GABAA receptor binding and may play an important role in modulating the function of this inhibitory receptor/chloride ion channel complex. Copyright 1998 Elsevier Science B.V.

  12. Trace and contextual fear conditioning require neural activity and NMDA receptor-dependent transmission in the medial prefrontal cortex

    PubMed Central

    Gilmartin, Marieke R.; Helmstetter, Fred J.

    2010-01-01

    The contribution of the medial prefrontal cortex (mPFC) to the formation of memory is a subject of considerable recent interest. Notably, the mechanisms supporting memory acquisition in this structure are poorly understood. The mPFC has been implicated in the acquisition of trace fear conditioning, a task that requires the association of a conditional stimulus (CS) and an aversive unconditional stimulus (UCS) across a temporal gap. In both rat and human subjects, frontal regions show increased activity during the trace interval separating the CS and UCS. We investigated the contribution of prefrontal neural activity in the rat to the acquisition of trace fear conditioning using microinfusions of the γ-aminobutyric acid type A (GABAA) receptor agonist muscimol. We also investigated the role of prefrontal N-methyl-d-aspartate (NMDA) receptor-mediated signaling in trace fear conditioning using the NMDA receptor antagonist 2-amino-5-phosphonovaleric acid (APV). Temporary inactivation of prefrontal activity with muscimol or blockade of NMDA receptor-dependent transmission in mPFC impaired the acquisition of trace, but not delay, conditional fear responses. Simultaneously acquired contextual fear responses were also impaired in drug-treated rats exposed to trace or delay, but not unpaired, training protocols. Our results support the idea that synaptic plasticity within the mPFC is critical for the long-term storage of memory in trace fear conditioning. PMID:20504949

  13. The CB1 receptor antagonist AM251 impairs reconsolidation of pavlovian fear memory in the rat basolateral amygdala.

    PubMed

    Ratano, Patrizia; Everitt, Barry J; Milton, Amy L

    2014-10-01

    We have investigated the requirement for signaling at CB1 receptors in the reconsolidation of a previously consolidated auditory fear memory, by infusing the CB1 receptor antagonist AM251, or the FAAH inhibitor URB597, directly into the basolateral amygdala (BLA) in conjunction with memory reactivation. AM251 disrupted memory restabilization, but only when administered after reactivation. URB597 produced a small, transient enhancement of memory restabilization when administered after reactivation. The amnestic effect of AM251 was rescued by coadministration of the GABAA receptor antagonist bicuculline at reactivation, indicating that the disruption of reconsolidation was mediated by altered GABAergic transmission in the BLA. These data show that the endocannabinoid system in the BLA is an important modulator of fear memory reconsolidation and that its effects on memory are mediated by an interaction with the GABAergic system. Thus, targeting the endocannabinoid system may have therapeutic potential to reduce the impact of maladaptive memories in neuropsychiatric disorders such as posttraumatic stress disorder.

  14. ARF6 and GASP-1 are post-endocytic sorting proteins selectively involved in the intracellular trafficking of dopamine D2 receptors mediated by GRK and PKC in transfected cells

    PubMed Central

    Cho, DI; Zheng, M; Min, C; Kwon, KJ; Shin, CY; Choi, HK; Kim, KM

    2013-01-01

    Background and Purpose GPCRs undergo both homologous and heterologous regulatory processes in which receptor phosphorylation plays a critical role. The protein kinases responsible for each pathway are well established; however, other molecular details that characterize each pathway remain unclear. In this study, the molecular mechanisms that determine the differences in the functional roles and intracellular trafficking between homologous and PKC-mediated heterologous internalization pathways for the dopamine D2 receptor were investigated. Experimental Approach All of the S/T residues located within the intracellular loops of D2 receptor were mutated, and the residues responsible for GRK- and PKC-mediated internalization were determined in HEK-293 cells and SH-SY5Y cells. The functional role of receptor internalization and the cellular components that determine the post-endocytic fate of internalized D2 receptors were investigated in the transfected cells. Key Results T134, T225/S228/S229 and S325 were involved in PKC-mediated D2 receptor desensitization. S229 and adjacent S/T residues mediated the PKC-dependent internalization of D2 receptors, which induced down-regulation and desensitization. S/T residues within the second intracellular loop and T225 were the major residues involved in GRK-mediated internalization of D2 receptors, which induced receptor resensitization. ARF6 mediated the recycling of D2 receptors internalized in response to agonist stimulation. In contrast, GASP-1 mediated the down-regulation of D2 receptors internalized in a PKC-dependent manner. Conclusions and Implications GRK- and PKC-mediated internalizations of D2 receptors occur through different intracellular trafficking pathways and mediate distinct functional roles. Distinct S/T residues within D2 receptors and different sorting proteins are involved in the dissimilar regulation of D2 receptors by GRK2 and PKC. PMID:23082996

  15. Topology characterization of a benzodiazepine-binding beta-rich domain of the GABAA receptor alpha1 subunit.

    PubMed

    Xu, Zhiwen; Fang, Shisong; Shi, Haifeng; Li, Hoiming; Deng, Yiqun; Liao, Yinglei; Wu, Jiun-Ming; Zheng, Hui; Zhu, Huaimin; Chen, Hueih-Min; Tsang, Shui Ying; Xue, Hong

    2005-10-01

    Structural investigation of GABAA receptors has been limited by difficulties imposed by its trans-membrane-complex nature. In the present study, the topology of a membrane-proximal beta-rich (MPB) domain in the C139-L269 segment of the receptor alpha1 subunit was probed by mapping the benzodiazepine (BZ)-binding and epitopic sites, as well as fluorescence resonance energy transfer (FRET) analysis. Ala-scanning and semiconservative substitutions within this segment revealed the contribution of the phenyl rings of Y160 and Y210, the hydroxy group of S186 and the positive charge on R187 to BZ-binding. FRET with the bound BZ ligand indicated the proximity of Y160, S186, R187, and S206 to the BZ-binding site. On the other hand, epitope-mapping using the monoclonal antibodies (mAbs) against the MPB domain established a clustering of T172, R173, E174, Q196, and T197. Based on the lack of FRET between Trp substitutionally placed at R173 or V198 and bound BZ, this epitope-mapped cluster is located on a separate end of the folded protein from the BZ-binding site. Mutations of the five conserved Cys and Trp residues in the MPB domain gave rise to synergistic and rescuing effects on protein secondary structures and unfolding stability that point to a CCWCW-pentad, reminiscent to the CWC-triad "pin" of immunoglobulin (Ig)-like domains, important for the structural maintenance. These findings, together with secondary structure and fold predictions suggest an anti-parallel beta-strand topology with resemblance to Ig-like fold, having the BZ-binding and the epitopic residues being clustered at two different ends of the fold.

  16. Decreased GABA-A binding on FMZ-PET in succinic semialdehyde dehydrogenase deficiency.

    PubMed

    Pearl, P L; Gibson, K M; Quezado, Z; Dustin, I; Taylor, J; Trzcinski, S; Schreiber, J; Forester, K; Reeves-Tyer, P; Liew, C; Shamim, S; Herscovitch, P; Carson, R; Butman, J; Jakobs, C; Theodore, W

    2009-08-11

    Succinic semialdehyde dehydrogenase (SSADH) deficiency is an autosomal recessive disorder of GABA metabolism characterized by elevated levels of GABA and gamma-hydroxybutyric acid. Clinical findings include intellectual impairment, hypotonia, hyporeflexia, hallucinations, autistic behaviors, and seizures. Autoradiographic labeling and slice electrophysiology studies in the murine model demonstrate use-dependent downregulation of GABA(A) receptors. We studied GABA(A) receptor activity in human SSADH deficiency utilizing [(11)C]-flumazenil (FMZ)-PET. FMZ binding was measured in 7 patients, 10 unaffected parents, and 8 healthy controls. Data analysis was performed using a reference region compartmental model, with time-activity curve from pons as the input function. Relative parametric binding potential (BP(ND)) was derived, with MRI-based pixel by pixel partial volume correction, in regions of interest drawn on coregistered MRI. In amygdala, hippocampus, cerebellar vermis, frontal, parietal, and occipital cortex, patients with SSADH deficiency had significant reductions in FMZ BP(ND) compared to parents and controls. Mean cortical values were 6.96 +/- 0.79 (controls), 6.89 +/- 0.71 (parents), and 4.88 +/- 0.77 (patients) (F ratio 16.1; p < 0.001). There were no differences between controls and parents in any cortical region. Succinic semialdehyde dehydrogenase (SSADH) deficient patients show widespread reduction in BZPR binding on [(11)C]-flumazenil-PET. Our results suggest that high endogenous brain GABA levels in SSADH deficiency downregulate GABA(A)-BZPR binding site availability. This finding suggests a potential mechanism for neurologic dysfunction in a serious neurodevelopmental disorder, and suggests that PET may be useful to translate studies in animal models to human disease.

  17. GABAA receptor dependent synaptic inhibition rapidly tunes KCC2 activity via the Cl--sensitive WNK1 kinase.

    PubMed

    Heubl, Martin; Zhang, Jinwei; Pressey, Jessica C; Al Awabdh, Sana; Renner, Marianne; Gomez-Castro, Ferran; Moutkine, Imane; Eugène, Emmanuel; Russeau, Marion; Kahle, Kristopher T; Poncer, Jean Christophe; Lévi, Sabine

    2017-11-24

    The K + -Cl - co-transporter KCC2 (SLC12A5) tunes the efficacy of GABA A receptor-mediated transmission by regulating the intraneuronal chloride concentration [Cl - ] i . KCC2 undergoes activity-dependent regulation in both physiological and pathological conditions. The regulation of KCC2 by synaptic excitation is well documented; however, whether the transporter is regulated by synaptic inhibition is unknown. Here we report a mechanism of KCC2 regulation by GABA A receptor (GABA A R)-mediated transmission in mature hippocampal neurons. Enhancing GABA A R-mediated inhibition confines KCC2 to the plasma membrane, while antagonizing inhibition reduces KCC2 surface expression by increasing the lateral diffusion and endocytosis of the transporter. This mechanism utilizes Cl - as an intracellular secondary messenger and is dependent on phosphorylation of KCC2 at threonines 906 and 1007 by the Cl - -sensing kinase WNK1. We propose this mechanism contributes to the homeostasis of synaptic inhibition by rapidly adjusting neuronal [Cl - ] i to GABA A R activity.

  18. Dopamine D3 Receptors Mediate the Discriminative Stimulus Effects of Quinpirole in Free-Feeding Rats

    PubMed Central

    Baladi, Michelle G.; Newman, Amy H.

    2010-01-01

    The discriminative stimulus effects of dopamine (DA) D3/D2 receptor agonists are thought to be mediated by D2 receptors. To maintain responding, access to food is often restricted, which can alter neurochemical and behavioral effects of drugs acting on DA systems. This study established stimulus control with quinpirole in free-feeding rats and tested the ability of agonists to mimic and antagonists to attenuate the effects of quinpirole. The same antagonists were studied for their ability to attenuate quinpirole-induced yawning and hypothermia. DA receptor agonists apomorphine and lisuride, but not amphetamine and morphine, occasioned responding on the quinpirole lever. The discriminative stimulus effects of quinpirole were attenuated by the D3 receptor-selective antagonist N-{4-[4-(2,3-dichlorophenyl)-piperazin-1-yl]-trans-but-2-enyl}-4-pyridine-2-yl-benzamide HCl (PG01037) and the nonselective D3/D2 receptor antagonist raclopride, but not by the D2 receptor-selective antagonist 3-[4-(4-chlorophenyl)-4-hydroxypiperidin-1-yl]methyl-1H-indole (L-741,626); the potencies of PG01037 and raclopride to antagonize this effect of quinpirole paralleled their potencies to antagonize the ascending limb of the quinpirole yawning dose-response curve (thought to be mediated by D3 receptors). L-741,626 selectively antagonized the descending limb of the quinpirole yawning dose-response curve, and both L-741,626 and raclopride, but not PG01037, antagonized the hypothermic effects of quinpirole (thought to be mediated by D2 receptors). Food restriction (10 g/day/7 days) significantly decreased quinpirole-induced yawning without affecting the quinpirole discrimination. Many discrimination studies on DA receptor agonists use food-restricted rats; together with those studies, the current experiment using free-feeding rats suggests that feeding conditions affecting the behavioral effects of direct-acting DA receptor agonists might also have an impact on the effects of indirect

  19. Dopamine D3 receptors mediate the discriminative stimulus effects of quinpirole in free-feeding rats.

    PubMed

    Baladi, Michelle G; Newman, Amy H; France, Charles P

    2010-01-01

    The discriminative stimulus effects of dopamine (DA) D3/D2 receptor agonists are thought to be mediated by D2 receptors. To maintain responding, access to food is often restricted, which can alter neurochemical and behavioral effects of drugs acting on DA systems. This study established stimulus control with quinpirole in free-feeding rats and tested the ability of agonists to mimic and antagonists to attenuate the effects of quinpirole. The same antagonists were studied for their ability to attenuate quinpirole-induced yawning and hypothermia. DA receptor agonists apomorphine and lisuride, but not amphetamine and morphine, occasioned responding on the quinpirole lever. The discriminative stimulus effects of quinpirole were attenuated by the D3 receptor-selective antagonist N-{4-[4-(2,3-dichlorophenyl)-piperazin-1-yl]-trans-but-2-enyl}-4-pyridine-2-yl-benzamide HCl (PG01037) and the nonselective D3/D2 receptor antagonist raclopride, but not by the D2 receptor-selective antagonist 3-[4-(4-chlorophenyl)-4-hydroxypiperidin-1-yl]methyl-1H-indole (L-741,626); the potencies of PG01037 and raclopride to antagonize this effect of quinpirole paralleled their potencies to antagonize the ascending limb of the quinpirole yawning dose-response curve (thought to be mediated by D3 receptors). L-741,626 selectively antagonized the descending limb of the quinpirole yawning dose-response curve, and both L-741,626 and raclopride, but not PG01037, antagonized the hypothermic effects of quinpirole (thought to be mediated by D2 receptors). Food restriction (10 g/day/7 days) significantly decreased quinpirole-induced yawning without affecting the quinpirole discrimination. Many discrimination studies on DA receptor agonists use food-restricted rats; together with those studies, the current experiment using free-feeding rats suggests that feeding conditions affecting the behavioral effects of direct-acting DA receptor agonists might also have an impact on the effects of indirect

  20. Virally mediated increased neurotensin 1 receptor in the nucleus accumbens decreases behavioral effects of mesolimbic system activation.

    PubMed

    Cáceda, Ricardo; Kinkead, Becky; Owens, Michael J; Nemeroff, Charles B

    2005-12-14

    Dopamine receptor agonist and NMDA receptor antagonist activation of the mesolimbic dopamine system increases locomotion and disrupts prepulse inhibition of the acoustic startle response (PPI), paradigms frequently used to study both the pharmacology of antipsychotic drugs and drugs of abuse. In rats, virally mediated overexpression of the neurotensin 1 (NT1) receptor in the nucleus accumbens antagonized d-amphetamine- and dizocilpine-induced PPI disruption, hyperlocomotion, and D-amphetamine-induced rearing. The NT receptor antagonist SR 142948A [2-[[5-(2,6-dimethoxyphenyl)-1-(4-N-(3-dimethylaminopropyl)-N-methylcarbamoyl)-2-isopropylphenyl)-1H-pyrazole-3-carbonyl]amino] adamantane-2-carboxylic acid, hydrochloride] blocked inhibition of dizocilpine-induced hyperlocomotion mediated by overexpression of the NT1 receptor. Together, these results suggest that increased nucleus accumbens NT neurotransmission, via the NT1 receptor, can decrease the effects of activation of the mesolimbic dopamine system and disruption of the glutamatergic input from limbic cortices, resembling the action of the atypical antipsychotic drug clozapine. In contrast to clozapine, virally mediated overexpression of the NT1 receptor in the nucleus accumbens had prolonged protective effects (up to 4 weeks after viral injection) without perturbing baseline PPI and locomotor behaviors. These data further confirm the NT1 receptor as the receptor mediating the antistimulant- and antipsychotic-like properties of NT and provide rationale for the development of NT1 receptor agonists as novel antipsychotic drugs. In addition, the NT1 receptor vector might be a valuable tool for understanding the mechanism of action of antipsychotic drugs and drugs of abuse and may have potential therapeutic applications.

  1. Distinct combinations of variant ionotropic glutamate receptors mediate thermosensation and hygrosensation in Drosophila

    PubMed Central

    Knecht, Zachary A; Silbering, Ana F; Ni, Lina; Klein, Mason; Budelli, Gonzalo; Bell, Rati; Abuin, Liliane; Ferrer, Anggie J; Samuel, Aravinthan DT; Benton, Richard; Garrity, Paul A

    2016-01-01

    Ionotropic Receptors (IRs) are a large subfamily of variant ionotropic glutamate receptors present across Protostomia. While these receptors are most extensively studied for their roles in chemosensory detection, recent work has implicated two family members, IR21a and IR25a, in thermosensation in Drosophila. Here we characterize one of the most evolutionarily deeply conserved receptors, IR93a, and show that it is co-expressed and functions with IR21a and IR25a to mediate physiological and behavioral responses to cool temperatures. IR93a is also co-expressed with IR25a and a distinct receptor, IR40a, in a discrete population of sensory neurons in the sacculus, a multi-chambered pocket within the antenna. We demonstrate that this combination of receptors is required for neuronal responses to dry air and behavioral discrimination of humidity differences. Our results identify IR93a as a common component of molecularly and cellularly distinct IR pathways important for thermosensation and hygrosensation in insects. DOI: http://dx.doi.org/10.7554/eLife.17879.001 PMID:27656904

  2. Gonadotrophin-releasing activity of neurohypophysial hormones: II. The pituitary oxytocin receptor mediating gonadotrophin release differs from that of corticotrophs.

    PubMed

    Evans, J J; Catt, K J

    1989-07-01

    Neurohypophysial hormones stimulate gonadotrophin release from dispersed rat anterior pituitary cells in vitro, acting through receptors distinct from those which mediate the secretory response to gonadotrophin-releasing hormone (GnRH). The LH response to oxytocin was not affected by the presence of the phosphodiesterase inhibitor, methyl isobutylxanthine, but was diminished in the absence of extracellular calcium and was progressively increased as the calcium concentration in the medium was raised to normal. In addition, the calcium channel antagonist, nifedipine, suppressed oxytocin-stimulated secretion of LH. It is likely that the mechanisms of LH release induced by GnRH and neurohypophysial hormones are similar, although stimulation of gonadotrophin secretion is mediated by separate receptor systems. Oxytocin was more active than vasopressin in releasing LH, but less active in releasing ACTH. The highly selective oxytocin agonist, [Thr4,Gly7]oxytocin, elicited concentration-dependent secretion of LH but had little effect on corticotrophin secretion. The neurohypophysial hormone antagonist analogues, [d(CH2)5Tyr(Me)2]vasopressin, [d(CH2)5Tyr(Me)2,Orn8]vasotocin and [d(CH2)5D-Tyr(Et)2Val4,Cit8]vasopressin, inhibited the LH response to both oxytocin and vasopressin. However, [d(CH2)5Tyr(Me)2]vasopressin was much less effective in inhibiting the ACTH response to the neurohypophysial hormones, and [d(CH2)5Tyr-(Me)2,Orn8]vasotocin and [d(CH2)5D-Tyr(Et)2,Val4,Cit8]vasopressin exhibited no inhibitory activity against ACTH release. Thus, agonist and antagonist analogues of neurohypophysial hormones display divergent activities with regard to LH and ACTH responses, and the neuropeptide receptor mediating gonadotroph activation is clearly different from that on the corticotroph. Whereas the corticotroph receptor is a vasopressin-type receptor an oxytocin-type receptor is responsible for gonadotrophin release by neurohypophysial hormones.

  3. Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances

    PubMed Central

    Xu, Shi; Olenyuk, Bogdan Z.; Okamoto, Curtis T.; Hamm-Alvarez, Sarah F.

    2012-01-01

    Targeting of drugs and their carrier systems by using receptor-mediated endocytotic pathways was in its nascent stages 25 years ago. In the intervening years, an explosion of knowledge focused on design and synthesis of nanoparticulate delivery systems as well as elucidation of the cellular complexity of what was previously-termed receptor-mediated endocytosis has now created a situation when it has become possible to design and test the feasibility of delivery of highly specific nanoparticle drug carriers to specific cells and tissue. This review outlines the mechanisms governing the major modes of receptor-mediated endocytosis used in drug delivery and highlights recent approaches using these as targets for in vivo drug delivery of nanoparticles. The review also discusses some of the inherent complexity associated with the simple shift from a ligand-drug conjugate versus a ligand-nanoparticle conjugate, in terms of ligand valency and its relationship to the mode of receptor-mediated internalization. PMID:23026636

  4. Induction of θ-frequency oscillations in the rat medial septal diagonal band slice by metabotropic glutamate receptor agonists.

    PubMed

    Lu, C B; Ouyang, G; Henderson, Z; Li, X

    2011-03-17

    The aim of this study was to examine the role of metabotropic glutamate receptors (mGluR) in the generation of oscillatory field activity at theta frequency (4-12 Hz) in the medial septal slice prepared from rat brain. Bath application of mGluR agonists and antagonists showed that activation of mGluR1-type receptors produces persistent theta frequency oscillations in a dose-responsive manner. This activity, induced by the group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine (DHPG), was reduced by ionotropic glutamate receptor antagonists and abolished by further addition of a GABAA receptor antagonist. However, addition of a GABAA receptor antagonist on its own converted the DHPG-induced oscillations to intermittent episodes of accentuated theta frequency activity following a burst. In a proportion of slices, DHPG induced large amplitude field population spiking activity (100-300 μV) which is correlated linearly with the field theta oscillations and is sensitive to glutamate receptor antagonists, suggesting a role of this type of spikes in theta generation induced by DHPG. These data demonstrate that DHPG-sensitive neuronal networks within medial septum generate theta rhythmic activity and are differentially modulated by excitatory and inhibitory ionotropic neurotransmissions. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Reconstruction of Toll-like receptor 9-mediated responses in HEK-Blue hTLR9 cells by transfection of human macrophage scavenger receptor 1 gene.

    PubMed

    Ohtsuki, Shozo; Takahashi, Yuki; Inoue, Takao; Takakura, Yoshinobu; Nishikawa, Makiya

    2017-10-20

    We used human Toll-like receptor 9 (hTLR9)-expressing HEK-Blue hTLR9 cells, which release secreted embryonic alkaline phosphatase (SEAP) upon response to CpG DNA, to evaluate the immunological properties of nucleic acid drug candidates. Our preliminary studies showed that phosphodiester CpG DNA hardly induced any SEAP secretion in HEK-Blue hTLR9 cells. In the current study, therefore, we developed HEK-Blue hTLR9 cells transduced with human macrophage scavenger receptor-1 (hMSR1), a cell-surface DNA receptor, and determined whether HEK-Blue hTLR9/hMSR1 cells respond to phosphorothioate (PS) CpG DNA and phosphodiester (PO) CpG DNA. We selected PS CpG2006, a single-stranded PO CpG DNA (ssCpG), and a tetrapod-like structured DNA (tetrapodna) containing ssCpG (tetraCpG) as model TLR9 ligands. Alexa Fluor 488-labeled ligands were used for flow cytometry. Unlike the mock-transfected HEK-Blue hTLR9 cells, the HEK-Blue hTLR9/hMSR1 cells efficiently took up all three CpG DNAs. SEAP release was almost proportional to the uptake. Treatment of HEK-Blue hTLR9/hMSR1 cells with an anti-hMSR1 antibody significantly reduced the uptake of ssCpG and tetraCpG. Collectively, reconstruction of TLR9-mediated responses to CpG DNA in HEK-Blue hTLR9 cells can be used to evaluate the toxicity of nucleic acid drug candidates with diverse physicochemical properties.

  6. Characterization of GABA/sub A/ receptor-mediated /sup 36/chloride uptake in rat brain synaptoneurosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luu, M.D.; Morrow, A.L.; Paul, S.M.

    1987-09-07

    ..gamma..-Aminobutyric acid (GABA) receptor-mediated /sup 36/chloride (/sup 36/Cl/sup -/) uptake was measured in synaptoneurosomes from rat brain. GABA and GABA agonists stimulated /sup 36/Cl/sup -/ uptake in a concentration-dependent manner with the following order of potency: Muscimol>GABA>piperidine-4-sulfonic acid (P4S)>4,5,6,7-tetrahydroisoxazolo-(5,4-c)pyridin-3-ol (THIP)=3-aminopropanesulfonic acid (3APS)>>taurine. Both P4S and 3APS behaved as partial agonists, while the GABA/sub B/ agonist, baclofen, was ineffective. The response to muscimol was inhibited by bicuculline and picrotoxin in a mixed competitive/non-competitive manner. Other inhibitors of GABA receptor-opened channels or non-neuronal anion channels such as penicillin, picrate, furosemide and disulfonic acid stilbenes also inhibited the response to muscimol. A regionalmore » variation in muscimol-stimulated /sup 36/Cl/sup -/ uptake was observed; the largest responses were observed in the cerebral cortex, cerebellum and hippocampus, moderate responses were obtained in the striatum and hypothalamus and the smallest response was observed in the pons-medulla. GABA receptor-mediated /sup 36/Cl/sup -/ uptake was also dependent on the anion present in the media. The muscinol response varied in media containing the following anions: Br/sup -/>Cl/sup -/greater than or equal toNO/sub 3//sup -/>I/sup -/greater than or equal toSCN/sup -/>>C/sub 3/H/sub 5/OO/sup -/greater than or equal toClO/sub 4//sup -/>F/sup -/, consistent with the relative anion permeability through GABA receptor-gated anion channels and the enhancement of convulsant binding to the GABA receptor-gated Cl/sup -/ channel. 43 references, 4 figures, 3 tables.« less

  7. Extrasynaptic localization of glycine receptors in the rat supraoptic nucleus: further evidence for their involvement in glia-to-neuron communication.

    PubMed

    Deleuze, C; Alonso, G; Lefevre, I A; Duvoid-Guillou, A; Hussy, N

    2005-01-01

    Neurons of the rat supraoptic nucleus (SON) express glycine receptors (GlyRs), which are implicated in the osmoregulation of neuronal activity. The endogenous agonist of the receptors has been postulated to be taurine, shown to be released from astrocytes. We here provide additional pieces of evidence supporting the absence of functional glycinergic synapses in the SON. First, we show that blockade of GlyRs with strychnine has no effect on either the amplitude or frequency of miniature inhibitory postsynaptic currents recorded in SON neurons, whereas they were all suppressed by the GABA(A) antagonist gabazine. Then, double immunostaining of sections with presynaptic markers and either GlyR or GABA(A) receptor (GABA(A)R) antibodies indicates that, in contrast with GABA(A)Rs, most GlyR membrane clusters are not localized facing presynaptic terminals, indicative of their extrasynaptic localization. Moreover, we found a striking anatomical association between SON GlyR clusters and glial fibrillary acidic protein (GFAP)-positive astroglial processes, which contain high levels of taurine. This type of correlation is specific to GlyRs, since GABA(A)R clusters show no association with GFAP-positive structures. These results substantiate and strengthen the concept of extrasynaptic GlyRs mediating a paracrine communication between astrocytes and neurons in the SON.

  8. Tachykinin NK2 receptors predominantly mediate tachykinin-induced contractions in ovine trachea.

    PubMed

    Reynolds, A M; Reynolds, P; Holmes, M; Scicchitano, R

    1998-01-12

    In vitro studies were conducted to characterize the contractile effects of tachykinins in normal ovine trachea with a view in the future to compare tachykinin contractile responses in allergic tissue. Tracheal smooth muscle strips were prepared for in vitro studies of isometric contraction in response to cumulative addition of carbachol, acetylcholine, histamine, neuropeptide gamma, substance P, neurokinin A, neurokinin B, [Sar9, Met(O2)11]substance P, [Nle10]neurokinin A-(4-10), and [Succinyl-Asp6, Me-Phe8]substance P-(6-11) (senktide). The rank order of potency was neuropeptide gamma > carbachol > neurokinin A > or = [Nle10]neurokinin A-(4-10) > acetylcholine > or = histamine. Phosphoramidon enhanced the contractile response to neurokinin A and substance P, but not to neuropeptide gamma, [Sar9, Met(O2)11]substance P or senktide. Repeated cumulative concentration responses for acetylcholine, substance P, neurokinin A, [Sar9, Met(O2)11]substance P and histamine were also conducted to test for tachyphylaxis. No tachyphylaxis to acetylcholine, substance P, or neurokinin A was observed, however, [Sar9, Met(O2)11]substance P and histamine did exhibit tachyphylaxis. Atropine had no effect on tracheal contractions to neurokinin A and substance P, while [Sar9, Met(O2)11]substance P contractions were atropine sensitive. Pyrilamine did not affect substance P-induced tracheal smooth muscle contractions, indicating that the response to substance P was not mediated by histamine release. These results show that, in vitro, natural tachykinins induce tracheal smooth muscle contraction predominantly by a direct effect mediated by tachykinin NK2 receptors, and a small tachykinin NK1 receptor mediated cholinergic mechanism.

  9. Glucocorticoid Receptor-Mediated Repression of Pro-Inflammatory Genes in Rheumatoid Arthritis

    DTIC Science & Technology

    2015-10-01

    1 AWARD NUMBER: W81XWH-14-1-0314 TITLE: Glucocorticoid Receptor-Mediated Repression of Pro-Inflammatory Genes in Rheumatoid Arthritis ...19 Sep 2015 4. TITLE AND SUBTITLE Glucocorticoid Receptor-Mediated Repression of Pro- Inflammatory Genes in Rheumatoid Arthritis 5a. CONTRACT NUMBER...SUBJECT TERMS Rheumatoid arthritis , inflammation and autoimmunity, macrophages, glucocorticoid receptor, transcriptional regulation, coactivators and

  10. The main source of ambient GABA responsible for tonic inhibition in the mouse hippocampus

    PubMed Central

    Glykys, Joseph; Mody, Istvan

    2007-01-01

    The extracellular space of the brain contains γ-aminobutyric acid (GABA) that activates extrasynaptic GABAA receptors mediating tonic inhibition. The source of this GABA is uncertain: it could be overspill of vesicular release, non-vesicular leakage, reverse transport, dying cells or glia. Using a novel approach, we simultaneously measured phasic and tonic inhibitory currents and assessed their correlation. Enhancing or diminishing vesicular GABA release in hippocampal neurons caused highly correlated changes in the two inhibitions. During high-frequency phasic inhibitory bursts, tonic current was also enhanced as shown by simulating the summation of IPSCs and by recordings in knockout mice devoid of tonic inhibitory current. When vesicular release was reduced by blocking action potentials or the vesicular GABA transporter, phasic and tonic currents decreased in a correlated fashion. Our results are consistent with most of hippocampal tonic inhibitory current being mediated by GABA released from the very vesicles responsible for activating phasic inhibition. PMID:17525114

  11. The main source of ambient GABA responsible for tonic inhibition in the mouse hippocampus.

    PubMed

    Glykys, Joseph; Mody, Istvan

    2007-08-01

    The extracellular space of the brain contains gamma-aminobutyric acid (GABA) that activates extrasynaptic GABA(A) receptors mediating tonic inhibition. The source of this GABA is uncertain: it could be overspill of vesicular release, non-vesicular leakage, reverse transport, dying cells or glia. Using a novel approach, we simultaneously measured phasic and tonic inhibitory currents and assessed their correlation. Enhancing or diminishing vesicular GABA release in hippocampal neurons caused highly correlated changes in the two inhibitions. During high-frequency phasic inhibitory bursts, tonic current was also enhanced as shown by simulating the summation of IPSCs and by recordings in knockout mice devoid of tonic inhibitory current. When vesicular release was reduced by blocking action potentials or the vesicular GABA transporter, phasic and tonic currents decreased in a correlated fashion. Our results are consistent with most of hippocampal tonic inhibitory current being mediated by GABA released from the very vesicles responsible for activating phasic inhibition.

  12. Toll Receptor-Mediated Hippo Signaling Controls Innate Immunity in Drosophila.

    PubMed

    Liu, Bo; Zheng, Yonggang; Yin, Feng; Yu, Jianzhong; Silverman, Neal; Pan, Duojia

    2016-01-28

    The Hippo signaling pathway functions through Yorkie to control tissue growth and homeostasis. How this pathway regulates non-developmental processes remains largely unexplored. Here, we report an essential role for Hippo signaling in innate immunity whereby Yorkie directly regulates the transcription of the Drosophila IκB homolog, Cactus, in Toll receptor-mediated antimicrobial response. Loss of Hippo pathway tumor suppressors or activation of Yorkie in fat bodies, the Drosophila immune organ, leads to elevated cactus mRNA levels, decreased expression of antimicrobial peptides, and vulnerability to infection by Gram-positive bacteria. Furthermore, Gram-positive bacteria acutely activate Hippo-Yorkie signaling in fat bodies via the Toll-Myd88-Pelle cascade through Pelle-mediated phosphorylation and degradation of the Cka subunit of the Hippo-inhibitory STRIPAK PP2A complex. Our studies elucidate a Toll-mediated Hippo signaling pathway in antimicrobial response, highlight the importance of regulating IκB/Cactus transcription in innate immunity, and identify Gram-positive bacteria as extracellular stimuli of Hippo signaling under physiological settings. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Posttranslational Modification of HOIP Blocks Toll-Like Receptor 4-Mediated Linear-Ubiquitin-Chain Formation

    PubMed Central

    Bowman, James; Rodgers, Mary A.; Shi, Mude; Amatya, Rina; Hostager, Bruce; Iwai, Kazuhiro; Gao, Shou-Jiang

    2015-01-01

    ABSTRACT Linear ubiquitination is an atypical posttranslational modification catalyzed by the linear-ubiquitin-chain assembly complex (LUBAC), containing HOIP, HOIL-1L, and Sharpin. LUBAC facilitates NF-κB activation and inflammation upon receptor stimulation by ligating linear ubiquitin chains to critical signaling molecules. Indeed, linear-ubiquitination-dependent signaling is essential to prevent pyogenic bacterial infections that can lead to death. While linear ubiquitination is essential for intracellular receptor signaling upon microbial infection, this response must be measured and stopped to avoid tissue damage and autoimmunity. While LUBAC is activated upon bacterial stimulation, the mechanisms regulating LUBAC activity in response to bacterial stimuli have remained elusive. We demonstrate that LUBAC activity itself is downregulated through ubiquitination, specifically, ubiquitination of the catalytic subunit HOIP at the carboxyl-terminal lysine 1056. Ubiquitination of Lys1056 dynamically altered HOIP conformation, resulting in the suppression of its catalytic activity. Consequently, HOIP Lys1056-to-Arg mutation led not only to persistent LUBAC activity but also to prolonged NF-κB activation induced by bacterial lipopolysaccharide-mediated Toll-like receptor 4 (TLR4) stimulation, whereas it showed no effect on NF-κB activation induced by CD40 stimulation. This study describes a novel posttranslational regulation of LUBAC-mediated linear ubiquitination that is critical for specifically directing TLR4-mediated NF-κB activation. PMID:26578682

  14. Serotonin 2B Receptors in Mesoaccumbens Dopamine Pathway Regulate Cocaine Responses.

    PubMed

    Doly, Stéphane; Quentin, Emily; Eddine, Raphaël; Tolu, Stefania; Fernandez, Sebastian P; Bertran-Gonzalez, Jesus; Valjent, Emmanuel; Belmer, Arnauld; Viñals, Xavier; Callebert, Jacques; Faure, Philippe; Meye, Frank J; Hervé, Denis; Robledo, Patricia; Mameli, Manuel; Launay, Jean-Marie; Maldonado, Rafael; Maroteaux, Luc

    2017-10-25

    Addiction is a maladaptive pattern of behavior following repeated use of reinforcing drugs in predisposed individuals, leading to lifelong changes. Common among these changes are alterations of neurons releasing dopamine in the ventral and dorsal territories of the striatum. The serotonin 5-HT 2B receptor has been involved in various behaviors, including impulsivity, response to antidepressants, and response to psychostimulants, pointing toward putative interactions with the dopamine system. Despite these findings, it remains unknown whether 5-HT 2B receptors directly modulate dopaminergic activity and the possible mechanisms involved. To answer these questions, we investigated the contribution of 5-HT 2B receptors to cocaine-dependent behavioral responses. Male mice permanently lacking 5-HT 2B receptors, even restricted to dopamine neurons, developed heightened cocaine-induced locomotor responses. Retrograde tracing combined with single-cell mRNA amplification indicated that 5-HT 2B receptors are expressed by mesolimbic dopamine neurons. In vivo and ex vivo electrophysiological recordings showed that 5-HT 2B -receptor inactivation in dopamine neurons affects their neuronal activity and increases AMPA-mediated over NMDA-mediated excitatory synaptic currents. These changes are associated with lower ventral striatum dopamine activity and blunted cocaine self-administration. These data identify the 5-HT 2B receptor as a pharmacological intermediate and provide mechanistic insight into attenuated dopamine tone following exposure to drugs of abuse. SIGNIFICANCE STATEMENT Here we report that mice lacking 5-HT 2B receptors totally or exclusively in dopamine neurons exhibit heightened cocaine-induced locomotor responses. Despite the sensitized state of these mice, we found that associated changes include lower ventral striatum dopamine activity and lower cocaine operant self-administration. We described the selective expression of 5-HT 2B receptors in a subpopulation of

  15. Coordinate regulation of estrogen-mediated fibronectin matrix assembly and epidermal growth factor receptor transactivation by the G protein-coupled receptor, GPR30.

    PubMed

    Quinn, Jeffrey A; Graeber, C Thomas; Frackelton, A Raymond; Kim, Minsoo; Schwarzbauer, Jean E; Filardo, Edward J

    2009-07-01

    Estrogen promotes changes in cytoskeletal architecture not easily attributed to the biological action of estrogen receptors, ERalpha and ERbeta. The Gs protein-coupled transmembrane receptor, GPR30, is linked to specific estrogen binding and rapid estrogen-mediated release of heparin-bound epidermal growth factor. Using marker rescue and dominant interfering mutant strategies, we show that estrogen action via GPR30 promotes fibronectin (FN) matrix assembly by human breast cancer cells. Stimulation with 17beta-estradiol or the ER antagonist, ICI 182, 780, results in the recruitment of FN-engaged integrin alpha5beta1 conformers to fibrillar adhesions and the synthesis of FN fibrils. Concurrent with this cellular response, GPR30 promotes the formation of Src-dependent, Shc-integrin alpha5beta1 complexes. Function-blocking antibodies directed against integrin alpha5beta1 or soluble Arg-Gly-Asp peptide fragments derived from FN specifically inhibited GPR30-mediated epidermal growth factor receptor transactivation. Estrogen-mediated FN matrix assembly and epidermal growth factor receptor transactivation were similarly disrupted in integrin beta1-deficient GE11 cells, whereas reintroduction of integrin beta1 into GE11 cells restored these responses. Mutant Shc (317Y/F) blocked GPR30-induced FN matrix assembly and tyrosyl phosphorylation of erbB1. Interestingly, relative to recombinant wild-type Shc, 317Y/F Shc was more readily retained in GPR30-induced integrin alpha5beta1 complexes, yet this mutant did not prevent endogenous Shc-integrin alpha5beta1 complex formation. Our results suggest that GPR30 coordinates estrogen-mediated FN matrix assembly and growth factor release in human breast cancer cells via a Shc-dependent signaling mechanism that activates integrin alpha5beta1.

  16. Non-conventional apoptotic response to ionising radiation mediated by N-methyl D-aspartate receptors in immature neuronal cells

    PubMed Central

    SAMARI, NADA; DE SAINT-GEORGES, LOUIS; PANI, GIUSEPPE; BAATOUT, SARAH; LEYNS, LUC; BENOTMANE, MOHAMMED ABDERRAFI

    2013-01-01

    During cortical development, N-methyl D-aspartate (NMDA) receptors are highly involved in neuronal maturation and synapse establishment. Their implication in the phenomenon of excitotoxicity has been extensively described in several neurodegenerative diseases due to the permissive entry of Ca2+ ions and massive accumulation in the intracellular compartment, which is highly toxic to cells. Ionising radiation is also a source of stress to the cells, particularly immature neurons. Their capacity to induce cell death has been described for various cell types either by directly damaging the DNA or indirectly through the generation of reactive oxygen species responsible for the activation of a battery of stress response effectors leading in certain cases, to cell death. In this study, in order to determine whether a link exists between NMDA receptors-mediated excitotoxicity and radiation-induced cell death, we evaluated radiation-induced cell death in vitro and in vivo in maturing neurons during the fetal period. Cell death induction was assessed by TUNEL, caspase-3 activity and DNA ladder assays, with or without the administration of dizocilpine (MK-801), a non-competitive NMDA receptor antagonist which blocks neuronal Ca2+ influx. To further investigate the possible involvement of Ca2+-dependent enzyme activation, known to occur at high Ca2+ concentrations, we examined the protective effect of a calpain inhibitor on cell death induced by radiation. Doses ranging from 0.2 to 0.6 Gy of X-rays elicited a clear apoptotic response that was prevented by the injection of dizocilpine (MK-801) or calpain inhibitor. These data demonstrate the involvement of NMDA receptors in radiation-induced neuronal death by the activation of downstream effectors, including calpain-related pathways. An increased apoptotic process elicited by radiation, occurring independently of the normal developmental scheme, may eliminate post-mitotic but immature neuronal cells and deeply impair the

  17. A Novel Ecdysone Receptor Mediates Steroid-Regulated Developmental Events during the Mid-Third Instar of Drosophila

    PubMed Central

    Costantino, Benjamin F. B.; Bricker, Daniel K.; Alexandre, Kelly; Shen, Kate; Merriam, John R.; Antoniewski, Christophe; Callender, Jenna L.; Henrich, Vincent C.; Presente, Asaf; Andres, Andrew J.

    2008-01-01

    The larval salivary gland of Drosophila melanogaster synthesizes and secretes glue glycoproteins that cement developing animals to a solid surface during metamorphosis. The steroid hormone 20-hydroxyecdysone (20E) is an essential signaling molecule that modulates most of the physiological functions of the larval gland. At the end of larval development, it is known that 20E—signaling through a nuclear receptor heterodimer consisting of EcR and USP—induces the early and late puffing cascade of the polytene chromosomes and causes the exocytosis of stored glue granules into the lumen of the gland. It has also been reported that an earlier pulse of hormone induces the temporally and spatially specific transcriptional activation of the glue genes; however, the receptor responsible for triggering this response has not been characterized. Here we show that the coordinated expression of the glue genes midway through the third instar is mediated by 20E acting to induce genes of the Broad Complex (BRC) through a receptor that is not an EcR/USP heterodimer. This result is novel because it demonstrates for the first time that at least some 20E-mediated, mid-larval, developmental responses are controlled by an uncharacterized receptor that does not contain an RXR-like component. PMID:18566664

  18. The role of dorsomedial hypotalamus ionotropic glutamate receptors in the hypertensive and tachycardic responses evoked by Tityustoxin intracerebroventricular injection.

    PubMed

    Silva, F C; Guidine, Patrícia Alves Maia; Machado, Natalia Lima; Xavier, Carlos Henrique; de Menezes, R C; Moraes-Santos, Tasso; Moraes, Márcio Flávio; Chianca, Deoclécio Alves

    2015-03-01

    The scorpion envenoming syndrome is an important worldwide public health problem due to its high incidence and potential severity of symptoms. Some studies address the high sensitivity of the central nervous system to this toxin action. It is known that cardiorespiratory manifestations involve the activation of the autonomic nervous system. However, the origin of this modulation remains unclear. Considering the important participation of the dorsomedial hypotalamus (DMH) in the cardiovascular responses during emergencial situations, the aim of this work is to investigate the involvement of the DMH on cardiovascular responses induced by intracerebroventricular (icv) injection of Tityustoxin (TsTX, a α-type toxin extracted from the Tityus serrulatus scorpion venom). Urethane-anaesthetized male Wistar rats (n=30) were treated with PBS, muscimol or ionotropic glutamate receptor antagonists, bilaterally in DMH and later, with an icv injection of TsTX, or treated only with PBS in both regions. TsTX evoked a marked increase in mean arterial pressure and heart rate in all control rats. Interestingly, injection of muscimol, a GABAA receptor agonist, did not change the pressor and tachycardic responses evoked by TsTX. Remarkably, the injection ionotropic glutamate receptors antagonists in DMH abolished the pressor and the tachycardic response evoked by TsTX. Our data suggest that the central circuit recruited by TsTX, whose activation results in an array of physiological and behavioral alterations, depend on the activation of DMH ionotropic glutamate receptors. Moreover, our data provide new insights on the central mechanisms involved in the development of symptoms in the severe scorpion envenomation syndrome. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Seeking potential anticonvulsant agents that target GABAA receptors using experimental and theoretical procedures

    NASA Astrophysics Data System (ADS)

    Saavedra-Vélez, Margarita Virginia; Correa-Basurto, José; Matus, Myrna H.; Gasca-Pérez, Eloy; Bello, Martiniano; Cuevas-Hernández, Roberto; García-Rodríguez, Rosa Virginia; Trujillo-Ferrara, José; Ramos-Morales, Fernando Rafael

    2014-12-01

    The aim of this study was to identify compounds that possess anticonvulsant activity by using a pentylenetetrazol (PTZ)-induced seizure model. Theoretical studies of a set of ligands, explored the binding affinities of the ligands for the GABAA receptor (GABAAR), including some benzodiazepines. The ligands satisfy the Lipinski rules and contain a pharmacophore core that has been previously reported to be a GABAAR activator. To select the ligands with the best physicochemical properties, all of the compounds were analyzed by quantum mechanics and the energies of the highest occupied molecular orbital and lowest unoccupied molecular orbital were determined. Docking calculations between the ligands and the GABAAR were used to identify the complexes with the highest Gibbs binding energies. The identified compound D1 (dibenzo( b,f)(1,4)diazocine-6,11(5H,12H)-dione) was synthesized, experimentally tested, and the GABAAR-D1 complex was submitted to 12-ns-long molecular dynamics (MD) simulations to corroborate the binding conformation obtained by docking techniques. MD simulations were also used to analyze the decomposition of the Gibbs binding energy of the residues involved in the stabilization of the complex. To validate our theoretical results, molecular docking and MD simulations were also performed for three reference compounds that are currently in commercial use: clonazepam (CLZ), zolpidem and eszopiclone. The theoretical results show that the GABAAR-D1, and GABAAR-CLZ complexes bind to the benzodiazepine binding site, share a similar map of binding residues, and have similar Gibbs binding energies and entropic components. Experimental studies using a PTZ-induced seizure model showed that D1 possesses similar activity to CLZ, which corroborates the predicted binding free energy identified by theoretical calculations.

  20. Evidence That GABA Mediates Dopaminergic and Serotonergic Pathways Associated with Locomotor Activity in Juvenile Chinook Salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Clements, S.; Schreck, C.B.

    2004-01-01

    The authors examined the control of locomotor activity in juvenile salmon (Oncorhynchus tshawytscha) by manipulating 3 neurotransmitter systems-gamma-amino-n-butyric acid (GABA), dopamine, and serotonin-as well as the neuropeptide corticotropin releasing hormone (CRH). Intracerebroventricular (ICV) injections of CRH and the GABAAagonist muscimol stimulated locomotor activity. The effect of muscimol was attenuated by administration of a dopamine receptor antagonist, haloperidol. Conversely, the administration of a dopamine uptake inhibitor (4???,4??? -difluoro-3-alpha-[diphenylmethoxy] tropane hydrochloride [DUI]) potentiated the effect of muscimol. They found no evidence that CRH-induced hyperactivity is mediated by dopaminergic systems following concurrent injections of haloperidol or DUI with CRH. Administration of muscimol either had no effect or attenuated the locomotor response to concurrent injections of CRH and fluoxetine, whereas the GABAA antagonist bicuculline methiodide potentiated the effect of CRH and fluoxetine.