Sample records for gadolinia-doped ceria gdc

  1. The Sulphur Poisoning Behaviour of Gadolinia Doped Ceria Model Systems in Reducing Atmospheres

    PubMed Central

    Gerstl, Matthias; Nenning, Andreas; Iskandar, Riza; Rojek-Wöckner, Veronika; Bram, Martin; Hutter, Herbert; Opitz, Alexander Karl

    2016-01-01

    An array of analytical methods including surface area determination by gas adsorption using the Brunauer, Emmett, Teller (BET) method, combustion analysis, XRD, ToF-SIMS, TEM and impedance spectroscopy has been used to investigate the interaction of gadolinia doped ceria (GDC) with hydrogen sulphide containing reducing atmospheres. It is shown that sulphur is incorporated into the GDC bulk and might lead to phase changes. Additionally, high concentrations of silicon are found on the surface of model composite microelectrodes. Based on these data, a model is proposed to explain the multi-facetted electrochemical degradation behaviour encountered during long term electrochemical measurements. While electrochemical bulk properties of GDC stay largely unaffected, the surface polarisation resistance is dramatically changed, due to silicon segregation and reaction with adsorbed sulphur. PMID:28773771

  2. Gadolinia-Doped Ceria Cathodes for Electrolysis of CO2

    NASA Technical Reports Server (NTRS)

    Adler, Stuart B.

    2009-01-01

    Gadolinia-doped ceria, or GDC, (Gd(0.4)Ce(0.6)O(2-delta), where the value of delta in this material varies, depending on the temperature and oxygen concentration in the atmosphere in which it is being used) has shown promise as a cathode material for high-temperature electrolysis of carbon dioxide in solid oxide electrolysis cells. The polarization resistance of a GDC electrode is significantly less than that of an otherwise equivalent electrode made of any of several other materials that are now in use or under consideration for use as cathodes for reduction of carbon dioxide. In addition, GDC shows no sign of deterioration under typical temperature and gas-mixture operating conditions of a high-temperature electrolyzer. Electrolysis of CO2 is of interest to NASA as a way of generating O2 from the CO2 in the Martian atmosphere. On Earth, a combination of electrolysis of CO2 and electrolysis of H2O might prove useful as a means of generating synthesis gas (syngas) from the exhaust gas of a coal- or natural-gas-fired power plant, thereby reducing the emission of CO2 into the atmosphere. The syngas a mixture of CO and H2 could be used as a raw material in the manufacture, via the Fisher-Tropsch process, of synthetic fuels, lubrication oils, and other hydrocarbon prod

  3. Slurry spin coating of thin film yttria stabilized zirconia/gadolinia doped ceria bi-layer electrolytes for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Joong; Kim, Manjin; Neoh, Ke Chean; Han, Gwon Deok; Bae, Kiho; Shin, Jong Mok; Kim, Gyu-Tae; Shim, Joon Hyung

    2016-09-01

    Thin ceramic bi-layered membrane comprising yttria-stabilized zirconia (YSZ) and gadolinia-doped ceria (GDC) is fabricated by the cost-effective slurry spin coating technique, and it is evaluated as an electrolyte of solid oxide fuel cells (SOFCs). It is demonstrated that the slurry spin coating method is capable of fabricating porous ceramic films by adjusting the content of ethyl-cellulose binders in the source slurry. The porous GDC layer deposited by spin coating under an optimal condition functions satisfactorily as a cathode-electrolyte interlayer in the test SOFC stack. A 2-μm-thick electrolyte membrane of the spin-coated YSZ/GDC bi-layer is successfully deposited as a dense and stable film directly on a porous NiO-YSZ anode support without any interlayers, and the SOFC produces power output over 200 mW cm-2 at 600 °C, with an open circuit voltage close to 1 V. Electrochemical impedance spectra analysis is conducted to evaluate the performance of the fuel cell components in relation with the microstructure of the spin-coated layers.

  4. Direct hydrothermal growth of GDC nanorods for low temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Hong, Soonwook; Lee, Dohaeng; Yang, Hwichul; Kim, Young-Beom

    2018-06-01

    We report a novel synthesis technique of gadolinia-doped ceria (GDC) nano-rod (NRs) via direct hydrothermal process to enhance performance of low temperature solid oxide fuel cell by increasing active reaction area and ionic conductivity at interface between cathode and electrolyte. The cerium nitrate hexahydrate, gadolinium nitrate hexahydrate and urea were used to synthesis GDC NRs for growth on diverse substrate. The directly grown GDC NRs on substrate had a width from 819 to 490 nm and height about 2200 nm with a varied urea concentration. Under the optimized urea concentration of 40 mMol, we confirmed that GDC NRs able to fully cover the substrate by enlarging active reaction area. To maximize ionic conductivity of GDC NRs, we synthesis varied GDC NRs with different ratio of gadolinium and cerium precursor. Electrochemical analysis revealed a significant enhanced performance of fuel cells applying synthesized GDC NRs with a ratio of 2:8 gadolinium and cerium precursor by reducing polarization resistance, which was chiefly attributed to the enlarged active reaction area and enhanced ionic conductivity of GDC NRs. This method of direct hydrothermal growth of GDC NRs enhancing fuel cell performance was considered to apply other types of catalyzing application using nano-structure such as gas sensing and electrolysis fields.

  5. Anisotropic vacancy-mediated phonon mode softening in Sm and Gd doped ceria.

    PubMed

    Jung, Dong-Hyuk; Lee, Ji-Hwan; Kilic, Mehmet Emin; Soon, Aloysius

    2018-04-18

    Ceria doped with Sm and Gd (SDC and GDC) has been suggested as a promising candidate for the electrolyte used in solid oxide fuel cells (SOFCs), since it has relatively high oxygen ion conductivity at intermediate temperature. There have been many previous experimental and computational studies to investigate the properties, structure, and effect of vacancies, etc. for SDC and GDC. However, in these previous studies, it is commonly assumed that the interaction between oxygen vacancies is negligible and many focus only on the mono-vacancy system. In addition, the possibility of anisotropic vibrational motion of the oxygen ions around vacancies is often neglected. In this paper, using both first-principle density-functional theory and classical molecular dynamics calculations, we investigate the structural and vibrational properties of the optimized SDC and GDC structures, such as bonding analysis, phonon density-of-state and mean-square-displacement of the oxygen ions. Also, we report the direction-dependent vibrations at the specific frequency of the oxygen ions near the vacancies, activation energies, and diffusion coefficients of SDC and GDC which can extend our understanding of diffusion dynamics in doped ceria-based electrolytes for SOFC applications.

  6. Proton-conducting Micro-solid Oxide Fuel Cells with Improved Cathode Reactions by a Nanoscale Thin Film Gadolinium-doped Ceria Interlayer

    PubMed Central

    Li, Yong; Wang, Shijie; Su, Pei-Chen

    2016-01-01

    An 8 nm-thick gadolinium-doped ceria (GDC) layer was inserted as a cathodic interlayer between the nanoscale proton-conducting yttrium-doped barium zirconate (BZY) electrolyte and the porous platinum cathode of a micro-solid oxide fuel cell (μ-SOFC), which has effectively improved the cathode reaction kinetics and rendered high cell power density. The addition of the GDC interlayer significantly reduced the cathodic activation loss and increased the peak power density of the μ-SOFC by 33% at 400 °C. The peak power density reached 445 mW/cm2 at 425 °C, which is the highest among the reported μ-SOFCs using proton-conducting electrolytes. The impressive performance was attributed to the mixed protonic and oxygen ionic conducting properties of the nano-granular GDC, and also to the high densities of grain boundaries and lattice defects in GDC interlayer that favored the oxygen incorporation and transportation during the oxygen reduction reaction (ORR) and the water evolution reaction at cathode. PMID:26928192

  7. High performance of SDC and GDC core shell type composite electrolytes using methane as a fuel for low temperature SOFC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irshad, Muneeb; Siraj, Khurram, E-mail: razahussaini786@gmail.com, E-mail: khurram.uet@gmail.com; Javed, Fayyaz

    Nanocomposites Samarium doped Ceria (SDC), Gadolinium doped Ceria (GDC), core shell SDC amorphous Na{sub 2}CO{sub 3} (SDCC) and GDC amorphous Na{sub 2}CO{sub 3} (GDCC) were synthesized using co-precipitation method and then compared to obtain better solid oxide electrolytes materials for low temperature Solid Oxide Fuel Cell (SOFCs). The comparison is done in terms of structure, crystallanity, thermal stability, conductivity and cell performance. In present work, XRD analysis confirmed proper doping of Sm and Gd in both single phase (SDC, GDC) and dual phase core shell (SDCC, GDCC) electrolyte materials. EDX analysis validated the presence of Sm and Gd in bothmore » single and dual phase electrolyte materials; also confirming the presence of amorphous Na{sub 2}CO{sub 3} in SDCC and GDCC. From TGA analysis a steep weight loss is observed in case of SDCC and GDCC when temperature rises above 725 °C while SDC and GDC do not show any loss. The ionic conductivity and cell performance of single phase SDC and GDC nanocomposite were compared with core shell GDC/amorphous Na{sub 2}CO{sub 3} and SDC/ amorphous Na{sub 2}CO{sub 3} nanocomposites using methane fuel. It is observed that dual phase core shell electrolytes materials (SDCC, GDCC) show better performance in low temperature range than their corresponding single phase electrolyte materials (SDC, GDC) with methane fuel.« less

  8. Fabrication and electrochemical performance of nickel- and gadolinium-doped ceria-infiltrated La0·2Sr0·8TiO3 anodes for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Lee, Min-Jin; Shin, Jae-Hwa; Ji, Mi-Jung; Hwang, Hae-Jin

    2018-01-01

    In this work, nickel and gadolinium-doped ceria (GDC)-infiltrated lanthanum strontium titanate (LST) anodes are fabricated, and their electrode performances under a hydrogen atmosphere is investigated in terms of the Ni:GDC ratios and cell operating temperature. The Ni/GDC-infiltrated LST anode exhibits excellent electrode performance in comparison with the Ni- or GDC-infiltrated anodes, which is attributed to the synergistic effect of an extended triple-phase boundary length by GDC and good catalytic activity for hydrogen oxidation because of the Ni particles. The polarization resistances (Rp) of Ni/GDC-infiltrated LST are 0.07, 0.08, and 0.12 Ω cm2 at 800, 750, and 700 °C, respectively, which are approximately three orders of magnitude lower than that of the LST anode (68.5 Ω cm2 at 700 °C). The effect of Ni and GDC on the electrochemical performance of LST was also investigated by using electrochemical impedance spectroscopy (EIS). The anode polarization resistance (Rp) is confirmed to be dependent on the content and dispersion state (microstructure) of the Ni and GDC nanoparticles.

  9. Performance evaluation of Mn and Fe doped SrCo0.9Nb0.1O3-δ cathode for IT-SOFC application

    NASA Astrophysics Data System (ADS)

    Bele, Lokesh; Lenka, R. K.; Patro, P. K.; Muhmood, L.; Mahata, T.; Sinha, P. K.

    2018-02-01

    Cathode materials of Mn and Fe doped SrCo0.9Nb0.1O3-δ, are synthesized by solid state route for intermediate temperature fuel cell applications. Phase pure material is obtained after calcining the precursors at 1100 °C. Phase compatibility is observed between this novel cathode material with gadolinia doped ceria (GDC) electrolyte material as reflected in the diffraction pattern. The state of art YSZ electrolyte is not compatible with this cathode material. Average thermal expansion coefficient of the material varies between 17 to 22 X 10-6 K-1 on doping, from room temperature to 800 °C. Increase in thermal expansion coefficient is observed with Mn and Fe doping associated with the loss of oxygen from the crystal. The electrical conductivity of the cathode material decreases with Fe and Mn doping. Mn doped samples show lowest conductivity. From the symmetric cell measurement lower area specific resistance (0.16 Ω-cm2) is obtained for un-doped samples, at 850 °C. From the initial results it can be inferred that Mn/Fe doping improves neither the thermal expansion co-efficient nor the electrochemical activity.

  10. Enhancing Sulfur Tolerance of Ni-Based Cermet Anodes of Solid Oxide Fuel Cells by Ytterbium-Doped Barium Cerate Infiltration.

    PubMed

    Li, Meng; Hua, Bin; Luo, Jing-Li; Jiang, San Ping; Pu, Jian; Chi, Bo; Li, Jian

    2016-04-27

    Conventional anode materials for solid oxide fuel cells (SOFCs) are Ni-based cermets, which are highly susceptible to deactivation by contaminants in hydrocarbon fuels. Hydrogen sulfide is one of the commonly existed contaminants in readily available natural gas and gasification product gases of pyrolysis of biomasses. Development of sulfur tolerant anode materials is thus one of the critical challenges for commercial viability and practical application of SOFC technologies. Here we report a viable approach to enhance substantially the sulfur poisoning resistance of a Ni-gadolinia-doped ceria (Ni-GDC) anode through impregnation of proton conducting perovskite BaCe0.9Yb0.1O3-δ (BCYb). The impregnation of BCYb nanoparticles improves the electrochemical performance of the Ni-GDC anode in both H2 and H2S containing fuels. Moreover, more importantly, the enhanced stability is observed in 500 ppm of H2S/H2. The SEM and XPS analysis indicate that the infiltrated BCYb fine particles inhibit the adsorption of sulfur and facilitate sulfur removal from active sites, thus preventing the detrimental interaction between sulfur and Ni-GDC and the formation of cerium sulfide. The preliminary results of the cell with the BCYb+Ni-GDC anode in methane fuel containing 5000 ppm of H2S show the promising potential of the BCYb infiltration approach in the development of highly active and stable Ni-GDC-based anodes fed with hydrocarbon fuels containing a high concentration of sulfur compounds.

  11. Disinfection effects of undoped and silver-doped ceria powders of nanometer crystallite size

    PubMed Central

    Tsai, Dah-Shyang; Yang, Tzu-Sen; Huang, Yu-Sheng; Peng, Pei-Wen; Ou, Keng-Liang

    2016-01-01

    Being endowed with an ability of capturing and releasing oxygen, the ceria surface conventionally assumes the role of catalyzing redox reactions in chemistry. This catalytic effect also makes possible its cytotoxicity toward microorganisms at room temperature. To study this cytotoxicity, we synthesized the doped and undoped ceria particles of 8–9 nm in size using an inexpensive precipitation method and evaluated their disinfecting aptitudes with the turbidimetric and plate count methods. Among the samples being analyzed, the silver-doped ceria exhibits the highest sterilization ability, yet the undoped ceria is the most intriguing. The disinfection effect of undoped ceria is moderate in magnitude, demanding a physical contact between the ceria surface and bacteria cell wall, or the redox catalysis that can damage the cell wall and result in the cell killing. Evidently, this effect is short-range and depends strongly on dispersion of the nanoparticles. In contrast, the disinfection effects of silver-doped ceria reach out several millimeters since it releases silver ions to poison the surrounding microorganisms. Additionally, the aliovalent silver substitution creates more ceria defects. The synergetic combination, silver poisoning and heterogeneous redox catalysis, lifts and extends the disinfecting capability of silver-doped ceria to a superior level. PMID:27330294

  12. Atomic layer deposition of ultrathin blocking layer for low-temperature solid oxide fuel cell on nanoporous substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Wonjong; Cho, Gu Young; Noh, Seungtak

    2015-01-15

    An ultrathin yttria-stabilized zirconia (YSZ) blocking layer deposited by atomic layer deposition (ALD) was utilized for improving the performance and reliability of low-temperature solid oxide fuel cells (SOFCs) supported by an anodic aluminum oxide substrate. Physical vapor-deposited YSZ and gadolinia-doped ceria (GDC) electrolyte layers were deposited by a sputtering method. The ultrathin ALD YSZ blocking layer was inserted between the YSZ and GDC sputtered layers. To investigate the effects of an inserted ultrathin ALD blocking layer, SOFCs with and without an ultrathin ALD blocking layer were electrochemically characterized. The open circuit voltage (1.14 V) of the ALD blocking-layered SOFC was visiblymore » higher than that (1.05 V) of the other cell. Furthermore, the ALD blocking layer augmented the power density and improved the reproducibility.« less

  13. High performance novel gadolinium doped ceria/yttria stabilized zirconia/nickel layered and hybrid thin film anodes for application in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Garcia-Garcia, F. J.; Beltrán, A. M.; Yubero, F.; González-Elipe, A. R.; Lambert, R. M.

    2017-09-01

    Magnetron sputtering under oblique angle deposition was used to produce Ni-containing ultra thin film anodes comprising alternating layers of gadolinium doped ceria (GDC) and yttria stabilized zirconia (YSZ) of either 200 nm or 1000 nm thickness. The evolution of film structure from initial deposition, through calcination and final reduction was examined by XRD, SEM, TEM and TOF-SIMS. After subsequent fuel cell usage, the porous columnar architecture of the two-component layered thin film anodes was maintained and their resistance to delamination from the underlying YSZ electrolyte was superior to that of corresponding single component Ni-YSZ and Ni-GDC thin films. Moreover, the fuel cell performance of the 200 nm layered anodes compared favorably with conventional commercially available thick anodes. The observed dependence of fuel cell performance on individual layer thicknesses prompted study of equivalent but more easily fabricated hybrid anodes consisting of simultaneously deposited Ni-GDC and Ni-YSZ, which procedure resulted in exceptionally intimate mixing and interaction of the components. The hybrids exhibited very unusual and favorable Isbnd V characteristics, along with exceptionally high power densities at high currents. Their discovery is the principal contribution of the present work.

  14. Genetic algorithm based approach to investigate doped metal oxide materials: Application to lanthanide-doped ceria

    NASA Astrophysics Data System (ADS)

    Hooper, James; Ismail, Arif; Giorgi, Javier B.; Woo, Tom K.

    2010-06-01

    A genetic algorithm (GA)-inspired method to effectively map out low-energy configurations of doped metal oxide materials is presented. Specialized mating and mutation operations that do not alter the identity of the parent metal oxide have been incorporated to efficiently sample the metal dopant and oxygen vacancy sites. The search algorithms have been tested on lanthanide-doped ceria (L=Sm,Gd,Lu) with various dopant concentrations. Using both classical and first-principles density-functional-theory (DFT) potentials, we have shown the methodology reproduces the results of recent systematic searches of doped ceria at low concentrations (3.2% L2O3 ) and identifies low-energy structures of concentrated samarium-doped ceria (3.8% and 6.6% L2O3 ) which relate to the experimental and theoretical findings published thus far. We introduce a tandem classical/DFT GA algorithm in which an inexpensive classical potential is first used to generate a fit gene pool of structures to enhance the overall efficiency of the computationally demanding DFT-based GA search.

  15. Gadolinium doped ceria interlayers for Solid Oxide Fuel Cells cathodes: Enhanced reactivity with sintering aids (Li, Cu, Zn), and improved densification by infiltration

    NASA Astrophysics Data System (ADS)

    Nicollet, Clement; Waxin, Jenny; Dupeyron, Thomas; Flura, Aurélien; Heintz, Jean-Marc; Ouweltjes, Jan Pieter; Piccardo, Paolo; Rougier, Aline; Grenier, Jean-Claude; Bassat, Jean-Marc

    2017-12-01

    This paper reports the study of the densification of 20% Gd doped ceria (Ce0.8Gd0.2O1.9 (GDC)) interlayers in SOFC cathodes through two different routes: the well-known addition of sintering elements, and an innovative densification process by infiltration. First, Li, Cu, and Zn nitrates were added to GDC powders. The effect of these additives on the densification was studied by dilatometry on pellets, and show a large decrease of the sintering temperature from 1330 °C (pure GDC), down to 1080 °C, 950 °C, and 930 °C for Zn, Cu, and Li addition, respectively. However, this promising result does not apply to screen-printed layers, which are more porous than pellets and in which the shrinkage is constrained by the substrate. The second approach consists in preparing a pre-sintered GDC layer, which is subsequently infiltrated with Ce and Gd nitrates and sintered at 1250 °C to increase its density. Such an approach results in highly dense GDC interlayers. Using La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) as electrode, the influence of the interlayers on the cathode performance was studied. The addition of sintering aids dramatically increases the cell resistances, most likely because the additives increase the reactivity between GDC and either Yttria Stabilized Zirconia (YSZ) or LSCF, thus losing the expected benefit related to the decrease of sintering temperatures. The interlayers prepared by infiltration do not induce additional resistances in the cell, which results in power densities of single cells 40-50% higher than those of cells prepared with commercial GDC interlayers, making this approach a valuable alternative to sintering aids.

  16. Cobalt-doping-induced synthesis of ceria nanodisks and their significantly enhanced catalytic activity.

    PubMed

    Guo, Xiao-Hui; Mao, Chao-Chao; Zhang, Ji; Huang, Jun; Wang, Wa-Nv; Deng, Yong-Hui; Wang, Yao-Yu; Cao, Yong; Huang, Wei-Xin; Yu, Shu-Hong

    2012-05-21

    High-quality cobalt-doped ceria nanostructures with triangular column, triangular slab, and disklike shapes are synthesized by tuning the doping amount of cobalt nitrate in a facile hydrothermal reaction. The cobalt-doped ceria nanodisks display significantly enhanced catalytic activity in CO oxidation due to exposed highly active crystal planes and the presence of numerous surface defects. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Thickness Dependency of Thin Film Samaria Doped Ceria for Oxygen Sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanghavi, Rahul P.; Nandasiri, Manjula I.; Kuchibhatla, Satyanarayana V N T

    High temperature oxygen sensors are widely used for exhaust gas monitoring in automobiles. This particular study explores the use of thin film single crystalline samaria doped ceria as the oxygen sensing material. Desired signal to noise ratio can be achieved in a material system with high conductivity. From previous studies it is established that 6 atomic percent samarium doping is the optimum concentration for thin film samaria doped ceria to achieve high ionic conductivity. In this study, the conductivity of the 6 atomic percent samaria doped ceria thin film is measured as a function of the sensing film thickness. Hysteresismore » and dynamic response of this sensing platform is tested for a range of oxygen pressures from 0.001 Torr to 100 Torr for temperatures above 673 K. An attempt has been made to understand the physics behind the thickness dependent conductivity behavior of this sensing platform by developing a hypothetical operating model and through COMSOL simulations. This study can be used to identify the parameters required to construct a fast, reliable and compact high temperature oxygen sensor.« less

  18. Optimization of ionic conductivity in doped ceria

    PubMed Central

    Andersson, David A.; Simak, Sergei I.; Skorodumova, Natalia V.; Abrikosov, Igor A.; Johansson, Börje

    2006-01-01

    Oxides with the cubic fluorite structure, e.g., ceria (CeO2), are known to be good solid electrolytes when they are doped with cations of lower valence than the host cations. The high ionic conductivity of doped ceria makes it an attractive electrolyte for solid oxide fuel cells, whose prospects as an environmentally friendly power source are very promising. In these electrolytes, the current is carried by oxygen ions that are transported by oxygen vacancies, present to compensate for the lower charge of the dopant cations. Ionic conductivity in ceria is closely related to oxygen-vacancy formation and migration properties. A clear physical picture of the connection between the choice of a dopant and the improvement of ionic conductivity in ceria is still lacking. Here we present a quantum-mechanical first-principles study of the influence of different trivalent impurities on these properties. Our results reveal a remarkable correspondence between vacancy properties at the atomic level and the macroscopic ionic conductivity. The key parameters comprise migration barriers for bulk diffusion and vacancy–dopant interactions, represented by association (binding) energies of vacancy–dopant clusters. The interactions can be divided into repulsive elastic and attractive electronic parts. In the optimal electrolyte, these parts should balance. This finding offers a simple and clear way to narrow the search for superior dopants and combinations of dopants. The ideal dopant should have an effective atomic number between 61 (Pm) and 62 (Sm), and we elaborate that combinations of Nd/Sm and Pr/Gd show enhanced ionic conductivity, as compared with that for each element separately. PMID:16478802

  19. Optimization of ionic conductivity in doped ceria.

    PubMed

    Andersson, David A; Simak, Sergei I; Skorodumova, Natalia V; Abrikosov, Igor A; Johansson, Börje

    2006-03-07

    Oxides with the cubic fluorite structure, e.g., ceria (CeO2), are known to be good solid electrolytes when they are doped with cations of lower valence than the host cations. The high ionic conductivity of doped ceria makes it an attractive electrolyte for solid oxide fuel cells, whose prospects as an environmentally friendly power source are very promising. In these electrolytes, the current is carried by oxygen ions that are transported by oxygen vacancies, present to compensate for the lower charge of the dopant cations. Ionic conductivity in ceria is closely related to oxygen-vacancy formation and migration properties. A clear physical picture of the connection between the choice of a dopant and the improvement of ionic conductivity in ceria is still lacking. Here we present a quantum-mechanical first-principles study of the influence of different trivalent impurities on these properties. Our results reveal a remarkable correspondence between vacancy properties at the atomic level and the macroscopic ionic conductivity. The key parameters comprise migration barriers for bulk diffusion and vacancy-dopant interactions, represented by association (binding) energies of vacancy-dopant clusters. The interactions can be divided into repulsive elastic and attractive electronic parts. In the optimal electrolyte, these parts should balance. This finding offers a simple and clear way to narrow the search for superior dopants and combinations of dopants. The ideal dopant should have an effective atomic number between 61 (Pm) and 62 (Sm), and we elaborate that combinations of Nd/Sm and Pr/Gd show enhanced ionic conductivity, as compared with that for each element separately.

  20. In situ fabrication of high-performance Ni-GDC-nanocube core-shell anode for low-temperature solid-oxide fuel cells

    PubMed Central

    Yamamoto, Kazuhiro; Qiu, Nan; Ohara, Satoshi

    2015-01-01

    A core–shell anode consisting of nickel–gadolinium-doped-ceria (Ni–GDC) nanocubes was directly fabricated by a chemical process in a solution containing a nickel source and GDC nanocubes covered with highly reactive {001} facets. The cermet anode effectively generated a Ni metal framework even at 500 °C with the growth of the Ni spheres. Anode fabrication at such a low temperature without any sintering could insert a finely nanostructured layer close to the interface between the electrolyte and the anode. The maximum power density of the attractive anode was 97 mW cm–2, which is higher than that of a conventional NiO–GDC anode prepared by an aerosol process at 55 mW cm–2 and 600 °C, followed by sintering at 1300 °C. Furthermore, the macro- and microstructure of the Ni–GDC-nanocube anode were preserved before and after the power-generation test at 700 °C. Especially, the reactive {001} facets were stabled even after generation test, which served to reduce the activation energy for fuel oxidation successfully. PMID:26615816

  1. Alkaline earth metal and samarium co-doped ceria as efficient electrolytes

    NASA Astrophysics Data System (ADS)

    Ali, Amjad; Raza, Rizwan; Kaleem Ullah, M.; Rafique, Asia; Wang, Baoyuan; Zhu, Bin

    2018-01-01

    Co-doped ceramic electrolytes M0.1Sm0.1Ce0.8O2-δ (M = Ba, Ca, Mg, and Sr) were synthesized via co-precipitation. The focus of this study was to highlight the effects of alkaline earth metals in doped ceria on the microstructure, densification, conductivity, and performance. The ionic conductivity comparisons of prepared electrolytes in the air atmosphere were studied. It has been observed that Ca0.1Sm0.1Ce0.8O2-δ shows the highest conductivity of 0.124 Scm-1 at 650 °C and a lower activation energy of 0.48 eV. The cell shows a maximum power density of 630 mW cm-2 at 650 °C using hydrogen fuel. The enhancement in conductivity and performance was due to increasing the oxygen vacancies in the ceria lattice with the increasing dopant concentration. The bandgap was calculated from UV-Vis data, which shows a red shift when compared with pure ceria. The average crystallite size is in the range of 37-49 nm. DFT was used to analyze the co-doping structure, and the calculated lattice parameter was compared with the experimental lattice parameter.

  2. Effect of 1 MeV electrons on ceria-doped solar cell cover glass

    NASA Technical Reports Server (NTRS)

    Haynes, G. A.

    1973-01-01

    The effect of 1 MeV electrons on the transmission properties of 1.5-percent ceria-doped solar cell cover glass was studied. Samples of doped and undoped cover glass and synthetic fused silica were irradiated with a total integrated flux of 10 to the 15th power e/sq cm. Wideband transmission and spectral transmission measurements were made before and after irradiation. The results indicate that 1.5-percent ceria-doped cover glass is much less sensitive to radiation induced discoloration than undoped cover glass. Consequently, the glass is comparable to synthetic fused silica when used as a radiation resistant solar cell cover for many space missions.

  3. Superionic Conductivity of Sm3+, Pr3+, and Nd3+ Triple-Doped Ceria through Bulk and Surface Two-Step Doping Approach.

    PubMed

    Liu, Yanyan; Fan, Liangdong; Cai, Yixiao; Zhang, Wei; Wang, Baoyuan; Zhu, Bin

    2017-07-19

    Sufficiently high oxygen ion conductivity of electrolyte is critical for good performance of low-temperature solid oxide fuel cells (LT-SOFCs). Notably, material conductivity, reliability, and manufacturing cost are the major barriers hindering LT-SOFC commercialization. Generally, surface properties control the physical and chemical functionalities of materials. Hereby, we report a Sm 3+ , Pr 3+ , and Nd 3+ triple-doped ceria, exhibiting the highest ionic conductivity among reported doped-ceria oxides, 0.125 S cm -1 at 600 °C. It was designed using a two-step wet-chemical coprecipitation method to realize a desired doping for Sm 3+ at the bulk and Pr 3+ /Nd 3+ at surface domains (abbreviated as PNSDC). The redox couple Pr 3+ /Pr 4+ contributes to the extraordinary ionic conductivity. Moreover, the mechanism for ionic conductivity enhancement is demonstrated. The above findings reveal that a joint bulk and surface doping methodology for ceria is a feasible approach to develop new oxide-ion conductors with high impacts on advanced LT-SOFCs.

  4. Lanthanide-Doped Ceria Nanoparticles as Backside Coaters to Improve Silicon Solar Cell Efficiency.

    PubMed

    Hajjiah, Ali; Samir, Effat; Shehata, Nader; Salah, Mohamed

    2018-05-23

    This paper introduces lanthanide-doped ceria nanoparticles as silicon solar cell back-side coaters, showing their influence on the solar cell efficiency. Ceria nanoparticles can be synthesized to have formed oxygen vacancies (O-vacancies), which are associated with converting cerium ions from the Ce 4+ state ions to the Ce 3+ ones. These O-vacancies follow the rule of improving silicon solar cell conductivity through a hopping mechanism. Besides, under near-ultra violet (near-UV) excitation, the reduced trivalent cerium Ce 3+ ions are directly responsible for down converting the un-absorbed UV wavelengths to a resultant green photo-luminescence emission at ~520 nm, which is absorbed through the silicon solar cell’s active layer. Adding lanthanide elements such as Neodymium “Nd” as ceria nanoparticle dopants helps in forming extra oxygen vacancies (O-vacancies), followed by an increase in the number of Ce 4+ to Ce 3+ ion reductions, thus enhancing the conductivity and photoluminescence down conversion mechanisms. After introducing lanthanide-doped ceria nanoparticles on a silicon solar cell surface, a promising enhancement in the behavior of the solar cell current-voltage curve is observed, and the efficiency is improved by about 25% of its initial value due to the mutual impact of improving both electric conductivity and optical conversions.

  5. Sub-nanometer surface chemistry and orbital hybridization in lanthanum-doped ceria nano-catalysts revealed by 3D electron microscopy.

    PubMed

    Collins, Sean M; Fernandez-Garcia, Susana; Calvino, José J; Midgley, Paul A

    2017-07-14

    Surface chemical composition, electronic structure, and bonding characteristics determine catalytic activity but are not resolved for individual catalyst particles by conventional spectroscopy. In particular, the nano-scale three-dimensional distribution of aliovalent lanthanide dopants in ceria catalysts and their effect on the surface electronic structure remains unclear. Here, we reveal the surface segregation of dopant cations and oxygen vacancies and observe bonding changes in lanthanum-doped ceria catalyst particle aggregates with sub-nanometer precision using a new model-based spectroscopic tomography approach. These findings refine our understanding of the spatially varying electronic structure and bonding in ceria-based nanoparticle aggregates with aliovalent cation concentrations and identify new strategies for advancing high efficiency doped ceria nano-catalysts.

  6. Gadolinia doped hafnia (Gd2O3- HfO 2) thermal barrier coatings for gas turbine applications

    NASA Astrophysics Data System (ADS)

    Gullapalli, Satya Kiran

    Thermal efficiency of the gas turbines is influenced by the operating temperature of the hot gas path components. The material used for the hot gas path components can only withstand temperature up to a certain limit. Thermal barrier coatings (TBC) provide the additional thermal protection for these components and help the gas turbine achieve higher firing temperatures. Traditionally available yttria stabilized zirconia (YSZ) TBCs have a limitation up to 1200 C due to their phase transformation. The present work focuses on gadolinia based hafnia (GSH) TBCs to study their potential to replace the YSZ coatings. Different compositions of gadolinia doped hafnia coatings have been deposited using electron beam physical vapor deposition (EB-PVD) technique and characterized using x-ray diffraction (XRD) and scanning electron microscope (SEM). The crystal structure analysis performed using XRD confirmed the stabilization of the high temperature cubic phase of hafnia. Cross sectional analysis confirmed the presence of columnar structure in the coatings which is a signature of the EB-PVD coatings. Mechanical properties of the coatings were investigated using nanoindentation and nano impact testing at both room temperature and high temperature. Indentation tests indicate a reduction in hardness with an increase in temperature and gadolinia content in hafnia. Impact testing reveals the fracture resistance of the coatings as a function of stabilizer content and heat treatment. Thermal measurements and impedance testing was performed on the bulk material to study the effect of gadolinia content. Thermal cycling was performed to study the spallation behavior of the as deposited and aged samples. Finite element models were developed to study the interfacial stress development in the coatings subjected to thermal cycling.

  7. Correlative tomography at the cathode/electrolyte interfaces of solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Wankmüller, Florian; Szász, Julian; Joos, Jochen; Wilde, Virginia; Störmer, Heike; Gerthsen, Dagmar; Ivers-Tiffée, Ellen

    2017-08-01

    This paper introduces a correlative tomography technique. It visualizes the spatial organization of primary and secondary phases at the interface of La0.58Sr0.4Co0.2Fe0.8O3-δ cathode/10 mol% Gadolinia doped Ceria/8 mol% Yttria stabilized Zirconia electrolyte. It uses focused ion beam/scanning electron microscope tomography (FIB/SEM), and combines data sets from Everhart-Thornley and Inlens detector differentiating four primary and two secondary material phases. In addition, grayscale information is correlated to elemental distribution gained by energy dispersive X-ray spectroscopy in a scanning transmission electron microscope. Interdiffusion of GDC into YSZ and SrZrO3 as secondary phases depend (in both amount and spatial organization) on the varied co-sintering temperature of the GDC/YSZ electrolyte. The ion-blocking SrZrO3 forms a continuous layer on top of the temperature-dependent GDC/YSZ interdiffusion zone (ID) at and below a co-sintering temperature of 1200 °C; above it becomes intermittent. 2D FIB/SEM images of primary and secondary phases at 1100, 1200, 1300 and 1400 °C were combined with a 3D FIB/SEM reconstruction (1300 °C). This reveals that ;preferred; oxygen ion transport pathways from the LSCF cathode through GDC and the ID into the YSZ electrolyte only exist in samples sintered above 1200 °C. The applied correlative technique expands our understanding of this multiphase cathode/electrolyte interface region.

  8. Lattice thermal expansion and solubility limits of neodymium-doped ceria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jinhua, E-mail: jhzhang1212@126.com; State Key laboratory of Geological Process and Mineral Resources, China University of Geosciences, Wuhan 430074; Ke, Changming

    2016-11-15

    Nd{sub x}Ce{sub 1−x}O{sub 2−0.5x} (x=0–1.0) powders were prepared by reverse coprecipitation-calcination method and characterized by XRD. The crystal structure of product powders transformed from single fluorite structure to the complex of fluorite and C-type cubic structure, and finally to trigonal structure with the increase of x-value. An empirical equation simulating the lattice parameter of neodymium doped ceria was established based on the experimental data. The lattice parameters of the fluorite structure solid solutions increased with extensive adoption of Nd{sup 3+}, and the heating temperature going up. The average thermal expansion coefficients of neodymium doped ceria with fluorite structure are highermore » than 13.5×10{sup −6} °C{sup −1} from room temperature to 1200 °C. - Graphical abstract: The crystal structure of Nd{sub x}Ce{sub 1−x}O{sub 2−0.5x} (x=0–1.0) powders transformed from single fluorite structure to the complex of fluorite and C-type cubic structure, and finally to trigonal structure with the increase of x-value.« less

  9. Ceria-Based Anodes for Next Generation Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Mirfakhraei, Behzad

    Mixed ionic and electronic conducting materials (MIECs) have been suggested to represent the next generation of solid oxide fuel cell (SOFC) anodes, primarily due to their significantly enhanced active surface area and their tolerance to fuel components. In this thesis, the main focus has been on determining and tuning the physicochemical and electrochemical properties of ceria-based MIECs in the versatile perovskite or fluorite crystal structures. In one direction, BaZr0.1Ce0.7Y0.1 M0.1O3-delta (M = Fe, Ni, Co and Yb) (BZCY-M) perovskites were synthesized using solid-state or wet citric acid combustion methods and the effect of various transition metal dopants on the sintering behavior, crystal structure, chemical stability under CO2 and H 2S, and electrical conductivity, was investigated. BZCY-Ni, synthesized using the wet combustion method, was the best performing anode, giving a polarization resistance (RP) of 0.4 O.cm2 at 800 °C. Scanning electron microscopy and X-ray diffraction analysis showed that this was due to the exsolution of catalytic Ni nanoparticles onto the oxide surface. Evolving from this promising result, the effect of Mo-doped CeO 2 (nCMO) or Ni nanoparticle infiltration into a porous Gd-doped CeO 2 (GDC) anode (in the fluorite structure) was studied. While 3 wt. % Ni infiltration lowered RP by up to 90 %, giving 0.09 O.cm2 at 800 °C and exhibiting a ca. 5 times higher tolerance towards 10 ppm H2, nCMO infiltration enhanced the H2 stability by ca. 3 times, but had no influence on RP. In parallel work, a first-time study of the Ce3+ and Ce 4+ redox process (pseudocapacitance) within GDC anode materials was carried out using cyclic voltammetry (CV) in wet H2 at high temperatures. It was concluded that, at 500-600 °C, the Ce3+/Ce 4+ reaction is diffusion controlled, probably due to O2- transport limitations in the outer 5-10 layers of the GDC particles, giving a very high capacitance of ca. 70 F/g. Increasing the temperature ultimately

  10. Energetics of Intermediate Temperature Solid Oxide Fuel Cell Electrolytes: Singly and Doubly doped Ceria Systems

    NASA Astrophysics Data System (ADS)

    Buyukkilic, Salih

    Solid oxide fuel cells (SOFCs) have potential to convert chemical energy directly to electrical energy with high efficiency, with only water vapor as a by-product. However, the requirement of extremely high operating temperatures (~1000 °C) limits the use of SOFCs to only in large scale stationary applications. In order to make SOFCs a viable energy solution, enormous effort has been focused on lowering the operating temperatures below 700 °C. A low temperature operation would reduce manufacturing costs by slowing component degradation, lessening thermal mismatch problems, and sharply reducing costs of operation. In order to optimize SOFC applications, it is critical to understand the thermodynamic stabilities of electrolytes since they directly influence device stability, sustainability and performance. Rare-earth doped ceria electrolytes have emerged as promising materials for SOFC applications due to their high ionic conductivity at the intermediate temperatures (500--700 °C). However there is a fundamental lack of understanding regarding their structure, thermodynamic stability and properties. Therefore, the enthalpies of formation from constituent oxides and ionic conductivities were determined to investigate a relationship between the stability, composition, structural defects and ionic conductivity in rare earth doped ceria systems. For singly doped ceria electrolytes, we investigated the solid solution phase of bulk Ce1-xLnxO2-0.5x where Ln = Sm and Nd (0 ≤ x ≤ 0.30) and analyzed their enthalpies of formation, mixing and association, and bulk ionic conductivities while considering cation size mismatch and defect associations. It was shown that for ambient temperatures in the dilute dopant region, the positive heat of formation reaches a maximum as the system becomes increasingly less stable due to size mismatch. In concentrated region, stabilization to a certain solubility limit was observed probably due to the defect association of trivalent cations

  11. Performance Evaluation of an Oxygen Sensor as a Function of the Samaria Doped Ceria Film Thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanghavi, Rahul P.; Nandasiri, Manjula I.; Kuchibhatla, Satyanarayana V N T

    The current demand in the automobile industry is in the control of air-fuel mixture in the combustion engine of automobiles. Oxygen partial pressure can be used as an input parameter for regulating or controlling systems in order to optimize the combustion process. Our goal is to identify and optimize the material system that would potentially function as the active sensing material for such a device that monitors oxygen partial pressure in these systems. We have used thin film samaria doped ceria (SDC) as the sensing material for the sensor operation, exploiting the fact that at high temperatures, oxygen vacancies generatedmore » due to samarium doping act as conducting medium for oxygen ions which hop through the vacancies from one side to the other contributing to an electrical signal. We have recently established that 6 atom % Sm doping in ceria films has optimum conductivity. Based on this observation, we have studied the variation in the overall conductivity of 6 atom % samaria doped ceria thin films as a function of thickness in the range of 50 nm to 300 nm at a fixed bias voltage of 2 volts. A direct proportionality in the increase in the overall conductivity is observed with the increase in sensing film thickness. For a range of oxygen pressure values from 1 mTorr to 100 Torr, a tolerable hysteresis error, good dynamic response and a response time of less than 10 seconds was observed« less

  12. Mechanical characterization of hydroxyapatite, thermoelectric materials and doped ceria

    NASA Astrophysics Data System (ADS)

    Fan, Xiaofeng

    For a variety of applications of brittle ceramic materials, porosity plays a critical role structurally and/or functionally, such as in engineered bone scaffolds, thermoelectric materials and in solid oxide fuel cells. The presence of porosity will affect the mechanical properties, which are essential to the design and application of porous brittle materials. In this study, the mechanical property versus microstructure relations for bioceramics, thermoelectric (TE) materials and solid oxide fuel cells were investigated. For the bioceramic material hydroxyapatite (HA), the Young's modulus was measured using resonant ultrasound spectroscopy (RUS) as a function of (i) porosity and (ii) microcracking damage state. The fracture strength was measured as a function of porosity using biaxial flexure testing, and the distribution of the fracture strength was studied by Weibull analysis. For the natural mineral tetrahedrite based solid solution thermoelectric material (Cu10Zn2As4S13 - Cu 12Sb4S13), the elastic moduli, hardness and fracture toughness were studied as a function of (i) composition and (ii) ball milling time. For ZiNiSn, a thermoelectric half-Heusler compound, the elastic modulus---porosity and hardness---porosity relations were examined. For the solid oxide fuel cell material, gadolina doped ceria (GDC), the elastic moduli including Young's modulus, shear modulus, bulk modulus and Poisson's ratio were measured by RUS as a function of porosity. The hardness was evaluated by Vickers indentation technique as a function of porosity. The results of the mechanical property versus microstructure relations obtained in this study are of great importance for the design and fabrication of reliable components with service life and a safety factor. The Weibull modulus, which is a measure of the scatter in fracture strength, is the gauge of the mechanical reliability. The elastic moduli and Poisson's ratio are needed in analytical or numerical models of the thermal and

  13. XPS studies of Mg doped GDC (Ce0.8Gd0.2O2-δ) for IT-SOFC

    NASA Astrophysics Data System (ADS)

    Tyagi, Deepak; Rao, P. Koteswara; Wani, B. N.

    2018-04-01

    Fuel Cells have gained much attention as efficient and environment friendly device for both stationary as well as mobile applications. For intermediate temperature SOFC (IT-SOFC), ceria based electrolytes are the most promising one, due to their higher ionic conductivity at relatively lower temperatures. Gd doped ceria is reported to be having the highest ionic conductivity. In the present work, Mg is codoped along with Gd and the electronic structure of the constituents is studied by XPS. XPS confirm that the Cerium is present in +4 oxidation state only which indicates that electronic conduction can be completely avoided.

  14. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.

    PubMed

    Laycock, Christian J; Staniforth, John Z; Ormerod, R Mark

    2011-05-28

    Numerous investigations have been carried out into the conversion of biogas into synthesis gas (a mixture of H(2) + CO) over Ni/YSZ anode cermet catalysts. Biogas is a variable mixture of gases consisting predominantly of methane and carbon dioxide (usually in a 2 : 1 ratio, but variable with source), with other constituents including sulfur-containing gases such as hydrogen sulfide, which can cause sulfur poisoning of nickel catalysts. The effect of temperature on carbon deposition and sulfur poisoning of 90 : 10 mol% Ni/YSZ under biogas conversion conditions has been investigated by carrying out a series of catalytic reactions of methane-rich (2 : 1) CH(4)/CO(2) mixtures in the absence and presence of H(2)S over the temperature range 750-1000 °C. The effect of ceria-doping on carbon dioxide reforming, carbon deposition and sulfur tolerance has also been investigated by carrying out a similar series of reactions over ceria-doped Ni/YSZ. Ceria was doped at 5 mol% of the nickel content to give an anode catalyst composition of 85.5 : 4.5 : 10 mol% Ni/CeO(2)/YSZ. Reactions were followed using quadrupolar mass spectrometry (QMS) and the amount of carbon deposition was analysed by subjecting the reacted catalyst samples to a post-reaction temperature programmed oxidation (TPO). On undoped Ni/YSZ, carbon deposition occurred predominantly through thermal decomposition of methane. Ceria-doping significantly suppressed methane decomposition and at high temperatures simultaneously promoted the reverse Boudouard reaction, significantly lowering carbon deposition. Sulfur poisoning of Ni/YSZ occurred in two phases, the first of which caused the most activity loss and was accelerated on increasing the reaction temperature, while the second phase had greater stability and became more favourable with increasing reaction temperature. Adding H(2)S significantly inhibited methane decomposition, resulting in much less carbon deposition. Ceria-doping significantly increased the sulfur

  15. Gadolinia fuel performance in BWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, W.E.; Crowther, R.L.

    1985-11-01

    Gadolinia has the unique property of having a high neutron absorption cross section coupled with a burnup rate that can approximately match the uranium 235 depletion. These qualities and others make gadolinia an ideal burnable absorber, and it has been used in all General Electric-designed boiling water reactors. Fabrication corrosion properties, and performance of gadolinia-containing fuel elements are discussed. Development of a reliable and efficient set of local and global gadolinia-urania design methods has been an arduous process that has taken approx.15 years to accomplish.

  16. Detonation nanodiamond introduced into samarium doped ceria electrolyte improving performance of solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Pei, Kai; Li, Hongdong; Zou, Guangtian; Yu, Richeng; Zhao, Haofei; Shen, Xi; Wang, Liying; Song, Yanpeng; Qiu, Dongchao

    2017-02-01

    A novel electrolyte materials of introducing detonation nanodiamond (DNDs) into samarium doped ceria (SDC) is reported here. 1%wt. DNDs doping SDC (named SDC/ND) can enlarge the electrotyle grain size and change the valence of partial ceria. DNDs provide the widen channel to accelerate the mobility of oxygen ions in electrolyte. Larger grain size means that oxygen ions move easier in electrolyte, it can also reduce the alternating current (AC) impedance spectra of internal grains. The lower valence of partial Ce provides more oxygen vacancies to enhance mobility rate of oxygen ions. Hence all of them enhance the transportation of oxygen ions in SDC/ND electrolyte and the OCV. Ultimately the power density of SOFC can reach 762 mw cm-2 at 800 °C (twice higher than pure SDC, which is 319 mw cm-2 at 800 °C), and it remains high power density in the intermediate temperature (600-800 °C). It is relatively high for the electrolyte supported (300 μm) cells.

  17. Improved perturbation method for gadolinia worth calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, R.T.; Congdon, S.P.

    1986-01-01

    Gadolinia is utilized in light water power reactors as burnable poison for reserving excess reactivity. Good gadolinia worth estimation is useful for evaluating fuel bundle designs, core operating strategies, and fuel cycle economics. The authors have developed an improved perturbation method based on exact perturbation theory for gadolinia worth calculations in fuel bundles. The method predicts much more accurate gadolinia worth than the first-order perturbation method (commonly used to estimate nuclide worths) for bundles containing fresh or partly burned gadolinia.

  18. Calcium-doped ceria/titanate tabular functional nanocomposite by layer-by-layer coating method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiang W., E-mail: lxwluck@gmail.co; Devaraju, M.K.; Yin, Shu

    2010-07-15

    Ca-doped ceria (CDC)/tabular titanate (K{sub 0.8}Li{sub 0.27}Ti{sub 1.73}O{sub 4}, TT) UV-shielding functional nanocomposite with fairly uniform CDC coating layers was prepared through a polyelectrolyte-associated layer-by-layer (LbL) coating method. TT with lepidocrocite-like layered structure was used as the substrate, poly (diallyldimethylammonium chloride) (PDDA) was used as a coupling agent, CDC nanoparticles were used as the main UV-shielding component. CDC/TT nanocomposites with various coating layers of CDC were obtained through a multistep coating process. The phases were studied by X-ray diffraction. The morphology and coating quality were studied by scanning electron microscopy and element mapping of energy dispersive X-ray analysis. The oxidationmore » catalytic activity, UV-shielding ability and using comfort were characterized by Rancimat test, UV-vis spectra and dynamic friction test, respectively. CDC/TT nanocomposites with low oxidation catalytic activity, high UV-shielding ability and good using comfort were finally obtained. - Graphical abstract: Through the control of surface charge of particles calcium-doped ceria/titanate composites with low oxidation catalytic activity, higher UV-shielding ability and excellent comfort was obtained by a facile layer-by-layer coating method.« less

  19. On direct internal methane steam reforming kinetics in operating solid oxide fuel cells with nickel-ceria anodes

    NASA Astrophysics Data System (ADS)

    Thallam Thattai, A.; van Biert, L.; Aravind, P. V.

    2017-12-01

    Major operating challenges remain to safely operate methane fuelled solid oxide fuel cells due to undesirable temperature gradients across the porous anode and carbon deposition. This article presents an experimental study on methane steam reforming (MSR) global kinetics for single operating SOFCs with Ni-GDC (gadolinium doped ceria) anodes for low steam to carbon (S/C) ratios and moderate current densities. The study points out the hitherto insufficient research on MSR global and intrinsic kinetics for operating SOFCs with complete Ni-ceria anodes. Further, it emphasizes the need to develop readily applicable global kinetic models as a subsequent step from previously reported state-of-art and complex intrinsic models. Two rate expressions of the Power law (PL) and Langmuir-Hinshelwood (LH) type have been compared and based on the analysis, limitations of using previously proposed rate expressions for Ni catalytic beds to study MSR kinetics for complete cermet anodes have been identified. Firstly, it has been shown that methane reforming on metallic (Ni) current collectors may not be always negligible, contrary to literature reports. Both PL and LH kinetic models predict significantly different local MSR reaction rate and species partial pressure distributions along the normalized reactor length, indicating a strong need for further experimental verifications.

  20. Preparation and characterization of Pd doped ceria-ZnO nanocomposite catalyst for methyl tert-butyl ether (MTBE) photodegradation.

    PubMed

    Seddigi, Zaki S; Bumajdad, Ali; Ansari, Shahid P; Ahmed, Saleh A; Danish, Ekram Y; Yarkandi, Naeema H; Ahmed, Shakeel

    2014-01-15

    A series of binary oxide catalysts (ceria-ZnO) were prepared and doped with different amounts of palladium in the range of 0.5%-1.5%. The prepared catalysts were characterized by SEM, TEM, XRD and XPS, as well as by N2 sorptiometry study. The XPS results confirmed the structure of the Pd CeO2-x-ZnO. The photocatalytic activity of these catalysts was evaluated for degradation of MTBE in water. These photocatalyst efficiently degrade a 100ppm aqueous solution of MTBE upon UV irradiation for 5h in the presence of 100mg of each of these photocatalysts. The removal of 99.6% of the MTBE was achieved with the ceria-ZnO catalyst doped with 1% Pd. In addition to the Pd loading, the N2 sorptiometry study introduced other factors that might affect the catalytic efficiency is the catalyst average pore sizes. The photoreaction was determined to be a first order reaction. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Polycrystalline nanowires of gadolinium-doped ceria via random alignment mediated by supercritical carbon dioxide

    PubMed Central

    Kim, Sang Woo; Ahn, Jae-Pyoung

    2013-01-01

    This study proposes a seed/template-free method that affords high-purity semiconducting nanowires from nanoclusters, which act as basic building blocks for nanomaterials, under supercritical CO2 fluid. Polycrystalline nanowires of Gd-doped ceria (Gd-CeO2) were formed by CO2-mediated non-oriented attachment of the nanoclusters resulting from the dissociation of single-crystalline aggregates. The unique formation mechanism underlying this morphological transition may be exploited for the facile growth of high-purity polycrystalline nanowires. PMID:23572061

  2. Converting ceria polyhedral nanoparticles into single-crystal nanospheres.

    PubMed

    Feng, Xiangdong; Sayle, Dean C; Wang, Zhong Lin; Paras, M Sharon; Santora, Brian; Sutorik, Anthony C; Sayle, Thi X T; Yang, Yi; Ding, Yong; Wang, Xudong; Her, Yie-Shein

    2006-06-09

    Ceria nanoparticles are one of the key abrasive materials for chemical-mechanical planarization of advanced integrated circuits. However, ceria nanoparticles synthesized by existing techniques are irregularly faceted, and they scratch the silicon wafers and increase defect concentrations. We developed an approach for large-scale synthesis of single-crystal ceria nanospheres that can reduce the polishing defects by 80% and increase the silica removal rate by 50%, facilitating precise and reliable mass-manufacturing of chips for nanoelectronics. We doped the ceria system with titanium, using flame temperatures that facilitate crystallization of the ceria yet retain the titania in a molten state. In conjunction with molecular dynamics simulation, we show that under these conditions, the inner ceria core evolves in a single-crystal spherical shape without faceting, because throughout the crystallization it is completely encapsulated by a molten 1- to 2-nanometer shell of titania that, in liquid state, minimizes the surface energy. The principle demonstrated here could be applied to other oxide systems.

  3. Reduction Dynamics of Doped Ceria, Nickel Oxide, and Cermet Composites Probed Using In Situ Raman Spectroscopy

    PubMed Central

    Shearing, Paul R.; Brightman, Edward; Brett, Dan J. L.; Brandon, Nigel P.; Cohen, Lesley F.

    2016-01-01

    The redox properties of gadolinium doped ceria (CGO) and nickel oxide (NiO) composite cermets underpin the operation of solid oxide electrochemical cells. Although these systems have been widely studied, a full comprehension of the reaction dynamics at the interface of these materials is lacking. Here, in situ Raman spectroscopic monitoring of the redox cycle is used to investigate the interplay between the dynamic and competing processes of hydrogen spillover and water dissociation on the doped ceria surface. In order to elucidate these mechanisms, the redox process in pure CGO and NiO is studied when exposed to wet and dry hydrogen and is compared to the cermet behavior. In dry hydrogen, CGO reduces relatively rapidly via a series of intermediate phases, while NiO reduces via a single‐step process. In wet reducing atmospheres, however, the oxidation state of pure CGO is initially stabilized due to the dissociation of water by reduced Ce(III) and subsequent incorporation of oxygen into the structure. In the reduction process involving the composite cermet, the close proximity of the NiO improves the efficiency and speed of the composite reduction process. Although NiO is already incorporated into working cells, these observations suggest direct routes to further improve cell performance. PMID:27595058

  4. Reduction Dynamics of Doped Ceria, Nickel Oxide, and Cermet Composites Probed Using In Situ Raman Spectroscopy.

    PubMed

    Maher, Robert C; Shearing, Paul R; Brightman, Edward; Brett, Dan J L; Brandon, Nigel P; Cohen, Lesley F

    2016-01-01

    The redox properties of gadolinium doped ceria (CGO) and nickel oxide (NiO) composite cermets underpin the operation of solid oxide electrochemical cells. Although these systems have been widely studied, a full comprehension of the reaction dynamics at the interface of these materials is lacking. Here, in situ Raman spectroscopic monitoring of the redox cycle is used to investigate the interplay between the dynamic and competing processes of hydrogen spillover and water dissociation on the doped ceria surface. In order to elucidate these mechanisms, the redox process in pure CGO and NiO is studied when exposed to wet and dry hydrogen and is compared to the cermet behavior. In dry hydrogen, CGO reduces relatively rapidly via a series of intermediate phases, while NiO reduces via a single-step process. In wet reducing atmospheres, however, the oxidation state of pure CGO is initially stabilized due to the dissociation of water by reduced Ce(III) and subsequent incorporation of oxygen into the structure. In the reduction process involving the composite cermet, the close proximity of the NiO improves the efficiency and speed of the composite reduction process. Although NiO is already incorporated into working cells, these observations suggest direct routes to further improve cell performance.

  5. Thickness effects of yttria-doped ceria interlayers on solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Fan, Zeng; An, Jihwan; Iancu, Andrei; Prinz, Fritz B.

    2012-11-01

    Determining the optimal thickness range of the interlayed yttria-doped ceria (YDC) films promises to further enhance the performance of solid oxide fuel cells (SOFCs) at low operating temperatures. The YDC interlayers are fabricated by the atomic layer deposition (ALD) method with one super cycle of the YDC deposition consisting of 6 ceria deposition cycles and one yttria deposition cycle. YDC films of various numbers of ALD super cycles, ranging from 2 to 35, are interlayered into bulk fuel cells with a 200 um thick yttria-stabilized zirconia (YSZ) electrolyte. Measurements and analysis of the linear sweep voltammetry of these fuel cells reveal that the performance of the given cells is maximized at 10 super cycles. Auger elemental mapping and X-ray photoelectron spectroscopy (XPS) techniques are employed to determine the film completeness, and they verify 10 super cycles of YDC to be the critical thickness point. This optimal YDC interlayer condition (6Ce1Y × 10 super cycles) is applied to the case of micro fuel cells as well, and the average performance enhancement factor is 1.4 at operating temperatures of 400 and 450 °C. A power density of 1.04 W cm-2 at 500 °C is also achieved with the optimal YDC recipe.

  6. Fabrication of low-temperature solid oxide fuel cells with a nanothin protective layer by atomic layer deposition

    PubMed Central

    2013-01-01

    Anode aluminum oxide-supported thin-film fuel cells having a sub-500-nm-thick bilayered electrolyte comprising a gadolinium-doped ceria (GDC) layer and an yttria-stabilized zirconia (YSZ) layer were fabricated and electrochemically characterized in order to investigate the effect of the YSZ protective layer. The highly dense and thin YSZ layer acted as a blockage against electron and oxygen permeation between the anode and GDC electrolyte. Dense GDC and YSZ thin films were fabricated using radio frequency sputtering and atomic layer deposition techniques, respectively. The resulting bilayered thin-film fuel cell generated a significantly higher open circuit voltage of approximately 1.07 V compared with a thin-film fuel cell with a single-layered GDC electrolyte (approximately 0.3 V). PMID:23342963

  7. Role of associated defects in oxygen ion conduction and surface exchange reaction for epitaxial samaria-doped ceria thin films as catalytic coatings

    DOE PAGES

    Yang, Nan; Shi, Yanuo; Schweiger, Sebastian; ...

    2016-05-18

    Samaria-doped ceria (SDC) thin films are particularly important for energy and electronic applications such as micro-solid oxide fuel cells, electrolysers, sensors and memristors. In this paper we report a comparative study investigating ionic conductivity and surface reactions for well-grown epitaxial SDC films varying the samaria doping concentration. With increasing doping above 20 mol% of samaria, an enhancement in the defect association was observed by Raman spectroscopy. The role of such defect associates on the films` oxygen ion transport and exchange was investigated by electrochemical impedance spectroscopy and electrochemical strain microscopy (ESM). The measurements reveal that the ionic transport has amore » sharp maximum in ionic conductivity and drop in its activation energy down to 0.6 eV for 20 mol% doping. Increasing the doping concentration further up to 40 mol%, raises the activation energy substantially by a factor of two. We ascribe the sluggish transport kinetics to the "bulk" ionic-near ordering in case of the heavily doped epitaxial films. Analysis of the ESM first order reversal curve measurements indicate that these associated defects may have a beneficial role by lowering the activation of the oxygen exchange "surface" reaction for heavily doped 40 mol% of samaria. We reveal in a model experiment through a solid solution series of samaria doped ceria epitaxial films that the occurrence of associate defects in the bulk affects the surface charging state of the films to increase the exchange rates. Lastly, the implication of these findings are the design of coatings with tuned oxygen surface exchange by control of bulk associate clusters for future electro-catalytic applications.« less

  8. Cause for concern: BDA v GDC.

    PubMed

    Baker, R A

    2018-05-25

    In this Opinion article I will discuss the relationship between the BDA and the GDC, the nature of the BDA's and dentists' language when communicating with the GDC and when discussing the GDC in public forums, such as this journal. I also suggest ways this relationship can be improved for the benefit of dentists and the GDC.

  9. Synthesis and Phase Stability of Scandia, Gadolinia, and Ytterbia Co-doped Zirconia for Thermal Barrier Coating Application

    NASA Astrophysics Data System (ADS)

    Li, Qi-Lian; Cui, Xiang-Zhong; Li, Shu-Qing; Yang, Wei-Hua; Wang, Chun; Cao, Qian

    2015-01-01

    Scandia, gadolinia, and ytterbia co-doped zirconia (SGYZ) ceramic powder was synthesized by chemical co-precipitation and calcination processes for application in thermal barrier coatings to promote the durability of gas turbines. The ceramic powder was agglomerated and sintered at 1150 °C for 2 h, and the powder exhibited good flowability and apparent density to be suitable for plasma spraying process. The microstructure, morphology and phase stability of the powder and plasma-sprayed SGYZ coatings were analyzed by means of scanning electron microscope and x-ray diffraction. Thermal conductivity of plasma-sprayed SGYZ coatings was measured. The results indicated that the SGYZ ceramic powder and the coating exhibit excellent stability to retain single non-transformable tetragonal zirconia even after high temperature (1400 °C) exposure for 500 h and do not undergo a tetragonal-to-monoclinic phase transition upon cooling. Furthermore, the plasma-sprayed SGYZ coating also exhibits lower thermal conductivity than yttria stabilized zirconia coating currently used in gas turbine engine industry. SGYZ can be explored as a candidate material of ultra-high temperature thermal barrier coating for advanced gas turbine engines.

  10. Incorporating Rich Mesoporosity into a Ceria-Based Catalyst via Mechanochemistry

    DOE PAGES

    Zhan, Wangcheng; Yang, Shize; Zhang, Pengfei; ...

    2017-08-15

    Ceria-based materials possessing mesoporous structures afford higher activity than the corresponding bulk materials in CO oxidation and other catalytic applications, because of the wide pore channel and high surface area. The development of a direct, template-free, and scalable technology for directing porosity inside ceriabased materials is highly welcome. Here in this paper, a family of mesoporous transition-metaldoped ceria catalysts with specific surface areas up to 122 m 2 g -1 is constructed by mechanochemical grinding. No templates, additives, or solvents are needed in this process, while the mechanochemistry-mediated restructuring and the decomposing of the organic group led to plentiful mesopores.more » Interestingly, the copper species are evenly dispersed in the ceria matrix at the atomic scale, as observed in high resolution scanning transmission electron microscopy in high angle annular dark field. The copper-doped ceria materials show good activity in the CO oxidation.« less

  11. Ga and In modified ceria as supports for cobalt-catalyzed Fischer-Tropsch synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gnanamani, Muthu Kumaran; Jacobs, Gary; Shafer, Wilson D.

    Ga- and In-modified ceria (Ce 0.8Ga 0.2O 2, Ce 0.8In 0.2O 2) materials were used as supports for cobalt-catalyzed Fischer-Tropsch synthesis (FTS). The addition of Ga to ceria was found to improve CO conversion for cobalt-catalyzed FTS, while the addition of In tended to decrease it. A similar trend was observed with the Ag-promoted cobalt/ceria catalysts. Doping of ceria with Ga or In decreased methane and increased the selectivity to olefins and alcohols for Ag-promoted cobalt/ceria. The sum of the products of olefins and alcohols for various catalysts exhibited a decreasing trend as follows: Ag-Co/Ce-Ga > Ag-Co/Ce-In > Ag-Co/Ce. Resultsmore » of H 2-TPR-XANES showed that adding of Ga or In to ceria increases the fraction of Ce 3+ in the surface shell for both unpromoted and Ag-promoted catalysts in the range of temperature typical of catalyst activation. In conclusion, this partially reduced ceria plays an important role in controlling the product selectivity of cobalt-catalyzed FT synthesis.« less

  12. Ga and In modified ceria as supports for cobalt-catalyzed Fischer-Tropsch synthesis

    DOE PAGES

    Gnanamani, Muthu Kumaran; Jacobs, Gary; Shafer, Wilson D.; ...

    2017-08-24

    Ga- and In-modified ceria (Ce 0.8Ga 0.2O 2, Ce 0.8In 0.2O 2) materials were used as supports for cobalt-catalyzed Fischer-Tropsch synthesis (FTS). The addition of Ga to ceria was found to improve CO conversion for cobalt-catalyzed FTS, while the addition of In tended to decrease it. A similar trend was observed with the Ag-promoted cobalt/ceria catalysts. Doping of ceria with Ga or In decreased methane and increased the selectivity to olefins and alcohols for Ag-promoted cobalt/ceria. The sum of the products of olefins and alcohols for various catalysts exhibited a decreasing trend as follows: Ag-Co/Ce-Ga > Ag-Co/Ce-In > Ag-Co/Ce. Resultsmore » of H 2-TPR-XANES showed that adding of Ga or In to ceria increases the fraction of Ce 3+ in the surface shell for both unpromoted and Ag-promoted catalysts in the range of temperature typical of catalyst activation. In conclusion, this partially reduced ceria plays an important role in controlling the product selectivity of cobalt-catalyzed FT synthesis.« less

  13. A palladium-doped ceria@carbon core-sheath nanowire network: a promising catalyst support for alcohol electrooxidation reactions

    NASA Astrophysics Data System (ADS)

    Tan, Qiang; Du, Chunyu; Sun, Yongrong; Du, Lei; Yin, Geping; Gao, Yunzhi

    2015-08-01

    A novel palladium-doped ceria and carbon core-sheath nanowire network (Pd-CeO2@C CSNWN) is synthesized by a template-free and surfactant-free solvothermal process, followed by high temperature carbonization. This hierarchical network serves as a new class of catalyst support to enhance the activity and durability of noble metal catalysts for alcohol oxidation reactions. Its supported Pd nanoparticles, Pd/(Pd-CeO2@C CSNWN), exhibit >9 fold increase in activity toward the ethanol oxidation over the state-of-the-art Pd/C catalyst, which is the highest among the reported Pd systems. Moreover, stability tests show a virtually unchanged activity after 1000 cycles. The high activity is mainly attributed to the superior oxygen-species releasing capability of Pd-doped CeO2 nanowires by accelerating the removal of the poisoning intermediate. The unique interconnected one-dimensional core-sheath structure is revealed to facilitate immobilization of the metal catalysts, leading to the improved durability. This core-sheath nanowire network opens up a new strategy for catalyst performance optimization for next-generation fuel cells.A novel palladium-doped ceria and carbon core-sheath nanowire network (Pd-CeO2@C CSNWN) is synthesized by a template-free and surfactant-free solvothermal process, followed by high temperature carbonization. This hierarchical network serves as a new class of catalyst support to enhance the activity and durability of noble metal catalysts for alcohol oxidation reactions. Its supported Pd nanoparticles, Pd/(Pd-CeO2@C CSNWN), exhibit >9 fold increase in activity toward the ethanol oxidation over the state-of-the-art Pd/C catalyst, which is the highest among the reported Pd systems. Moreover, stability tests show a virtually unchanged activity after 1000 cycles. The high activity is mainly attributed to the superior oxygen-species releasing capability of Pd-doped CeO2 nanowires by accelerating the removal of the poisoning intermediate. The unique

  14. Fe-doping effects on the structural, vibrational, magnetic, and electronic properties of ceria nanoparticles

    NASA Astrophysics Data System (ADS)

    Aragón, Fermin F. H.; Aquino, Juan C. R.; Ramos, Jesus E.; Coaquira, José A. H.; Gonzalez, Ismael; Macedo, Waldemar A. A.; da Silva, Sebastião W.; Morais, Paulo C.

    2017-11-01

    In this work, we report on a single-pot synthesis route based on a polymeric precursor method used for successfully producing undoped and iron-doped CeO2 nanoparticles with iron contents up to 10.0 mol. %. The formation of high-crystalline nanoparticles with a cubic fluorite structure is determined for all the studied samples. Meanwhile, the magnetic measurements of the undoped ceria nanoparticles revealed the occurrence of ferromagnetism of bound magnetic polarons of a fraction of Ce3+ at room temperature, and only a paramagnetic behavior of Fe3+ ions was determined for Fe-doped ceria nanoparticles. A monotonous reduction of the effective magnetic moment of the Fe3+ ions was determined. It suggests a change from a high-spin to low-spin state of Fe ions as the Fe content is increased. The 3+ valence state of the iron ions has been confirmed by the Fe K-edge X-ray absorption near-edge structure (XANES) and Mössbauer spectroscopy measurements. X-ray photoelectron spectroscopy data analysis evidenced a coexistence of Ce3+ and Ce4+ ions and a decreasing tendency of the relative fraction of Ce3+ ions in the surface region of the particles as the iron content is increased. Although the coexistence of Ce3+ and Ce4+ is confirmed by results obtained via Ce L3-edge XANES measurements, any clear dependence of the relative relation of Ce3+ ions on the iron content is determined, suggesting a homogeneous distribution of Ce3+ and Ce4+-ions in the whole volume of the particles. Ce L3-edge extended X-ray absorption fine structure revealed that the Ce-O bond distance shows a monotonous decrease as the Fe content is increased, which is in good agreement with the shrinking of the unit cell volume with the iron content determined from XRD data analysis, reinforcing the substitutional solution of Ce and Fe ions in the CeO2 matrix.

  15. Carbonate-mediated Mars-van Krevelen mechanism for CO oxidation on cobalt-doped ceria catalysts: facet-dependence and coordination-dependence.

    PubMed

    Liu, Bing; Li, Wenping; Song, Weiyu; Liu, Jian

    2018-06-13

    Carbonate intermediates have been reported to play an active role in CO oxidation over ceria-based catalysts in recent experimental studies. However, the detailed CO oxidation mechanism involving carbonate intermediates over ceria-based catalysts remains obscure. In this work, we carried out systematic density functional theory calculations corrected by on-site Coulomb interactions (DFT+U) to investigate the complete CO oxidation mechanism involving carbonate intermediates over cobalt-doped CeO2 catalysts, aiming to unravel how the carbonate participates in CO oxidation and shed light on the underlying factors that control the carbonate-mediated reaction mechanism. A novel carbonate-mediated Mars-van Krevelen (M-vK) mechanism was proposed, in which the carbonate acts as an active intermediate rather than a spectator and can react with CO to form CO2. This carbonate-mediated M-vK mechanism is facet-dependent because it is predominant on the (110) surface whereas the conventional M-vK mechanism is more favorable on (111) and (100) surfaces. The origin of facet-dependence was discussed by analyzing the geometric and electronic structures. It is found that the negatively charged bent CO2- intermediate formed on the (110) surface plays a critical role in the carbonate-mediated M-vK mechanism, whereas the formation of a neutral linear CO2 intermediate on (111) and (100) surfaces hinders the carbonate-mediated M-vK mechanism. The surface oxygen vacancy hinders the formation of carbonate intermediates, indicating that the carbonate-mediated M-vK mechanism is also vacancy-dependent. The formation of carbonate intermediates on different metal (Ti, V, W, Mo and Re) doped CeO2(110) surfaces was studied and the results indicate that the coordination environment of the dopant species is a key factor that determines the carbonate-mediated M-vK mechanism. This study provides atomic-scale insights into the reaction mechanism involving carbonate intermediates and the structure

  16. Solid oxide fuel cell electrolytes produced via very low pressure suspension plasma spray and electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Fleetwood, James D.

    Solid oxide fuel cells (SOFCs) are a promising element of comprehensive energy policies due to their direct mechanism for converting the oxidization of fuel, such as hydrogen, into electrical energy. Both very low pressure plasma spray and electrophoretic deposition allow working with high melting temperature SOFC suspension based feedstock on complex surfaces, such as in non-planar SOFC designs. Dense, thin electrolytes of ideal composition for SOFCs can be fabricated with each of these processes, while compositional control is achieved with dissolved dopant compounds that are incorporated into the coating during deposition. In the work reported, sub-micron 8 mole % Y2O3-ZrO2 (YSZ) and gadolinia-doped ceria (GDC), powders, including those in suspension with scandium-nitrate dopants, were deposited on NiO-YSZ anodes, via very low pressure suspension plasma spray (VLPSPS) at Sandia National Laboratories' Thermal Spray Research Laboratory and electrophoretic deposition (EPD) at Purdue University. Plasma spray was carried out in a chamber held at 320 - 1300 Pa, with the plasma composed of argon, hydrogen, and helium. EPD was characterized utilizing constant current deposition at 10 mm electrode separation, with deposits sintered from 1300 -- 1500 °C for 2 hours. The role of suspension constituents in EPD was analyzed based on a parametric study of powder loading, powder specific surface area, polyvinyl butyral (PVB) content, polyethyleneimine (PEI) content, and acetic acid content. Increasing PVB content and reduction of particle specific surface area were found to eliminate the formation of cracks when drying. PEI and acetic acid content were used to control suspension stability and the adhesion of deposits. Additionally, EPD was used to fabricate YSZ/GDC bilayer electrolyte systems. The resultant YSZ electrolytes were 2-27 microns thick and up to 97% dense. Electrolyte performance as part of a SOFC system with screen printed LSCF cathodes was evaluated with peak

  17. Structure, morphology and reducibility of ceria-doped zirconia

    NASA Astrophysics Data System (ADS)

    Aribi, Koubra; Soltani, Zohra; Ghelamallah, Madani; Granger, Pascal

    2018-03-01

    Zr1-xCexOx has been prepared by hydrolysis, in neutral medium, starting from rough ZrO2 and CeO2 materials as simple and cheaper synthesis method compared to sol-gel routes. The oxy-hydroxide precursors thus obtained were calcined under air at 450 °C, 900 °C and 1200 °C. The impact of those thermal treatments on the structure, texture and related redox properties has been investigated. Higher specific surface area than those observed on ceria were observed after calcination at low temperature, i.e., 450 °C. Above that temperature thermal sintering occurs having a detrimental effect on the specific surface area related to crystal growth more accentuated on CeO2. The formation of several Zrsbnd Ce mixed oxide phases formed by incorporation and substitution of Zr in the structure of ceria was characterized. A complete loss of specific surface area is noticeable after calcination at 1200 °C. XRD and SEM analysis revealed the formation of two mixed oxides structure, i.e. Ce2Zr2O7.04 and Ce2Zr2O7 corresponding to different redox behavior evidenced from H2-TPR experiments.

  18. Photoluminescent properties of spider silk coated with Eu-doped nanoceria

    NASA Astrophysics Data System (ADS)

    Dmitrović, Svetlana; Nikolić, Marko G.; Jelenković, Branislav; Prekajski, Marija; Rabasović, Mihailo; Zarubica, Aleksandra; Branković, Goran; Matović, Branko

    2017-02-01

    Spider dragline silk was coated with pure as well as Eu-doped ceria nanopowders at the room temperature. The treatment was done by immersion of the spider silk mesh into aqueous solutions of cerium nitrate (Ce(NO3)3) and ammonium hydroxide (NH4OH). Depending on the relationship between Ce3+ ion and ammonium hydroxide concentration, coated fibers exhibited a different thickness. Obtained materials were studied by means of FESEM. It was found that ceria nanoparticles of average size of 3 nm were coated along spider thread. X-ray diffraction (XRD) and selected-area electron diffraction (SAED) confirmed crystal nature of nanoparticle coating of spider silk. By using Williamson-Hall plots, crystallite size and strain were estimated. EDS measurement confirmed the presence of Eu in spider-Eu-doped ceria composite, and according to FTIR analysis, the interaction between CeO2 and spider silk was proposed. The morphology of obtained composite was observed by TEM. The photoluminescence emission spectra of spider silk coated with Eu-doped ceria were measured with two different excitations of 385 and 466 nm. The two-photon excited auto-fluorescence of spider silk coated with Eu-doped ceria was detected using a nonlinear laser scanning microscope. Obtained composite has a potential as a fluorescent labeling material in diverse applications.

  19. Catalytic oxidation of soot on mesoporous ceria-based mixed oxides with cetyltrimethyl ammonium bromide (CTAB)-assisted synthesis.

    PubMed

    Zhu, Hongjian; Xu, Jing; Yichuan, Yuge; Wang, Zhongpeng; Gao, Yibo; Liu, Wei; Yin, Henan

    2017-12-15

    Mesoporous ceria and transition metal-doped ceria (M 0.1 Ce 0.9 O 2 (M=Mn, Fe, Co, Cu)) catalysts were synthesized via CTAB-assisted method. The physicochemical properties of the prepared catalysts were characterized by XRD, DLS analysis, SEM, BET, Raman, H 2 -TPR and in situ DRIFT techniques. The catalytic activity tests for soot oxidation were performed under tight contact of soot/catalyst mixtures in the presence of O 2 and NO+O 2 , respectively. The obtained results show that mesoporous ceria-based solid solutions can be formed with large surface areas and small crystallite size. Transition metals doping enhances the oxygen vacancies and improves redox properties of the solids, resulting in the increased NO oxidation capacity and NO x adsorption capacity. The soot oxidation activity in the presence of O 2 is enhanced by doping transition metal, which may be related to their high surface area, increased oxygen vacancies and improved redox properties. The soot combustion is accelerated by the NO 2 -assisted mechanism under NO+O 2 atmosphere, facilitating an intimate contact between the soot and the catalyst. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. A palladium-doped ceria@carbon core-sheath nanowire network: a promising catalyst support for alcohol electrooxidation reactions.

    PubMed

    Tan, Qiang; Du, Chunyu; Sun, Yongrong; Du, Lei; Yin, Geping; Gao, Yunzhi

    2015-08-28

    A novel palladium-doped ceria and carbon core-sheath nanowire network (Pd-CeO2@C CSNWN) is synthesized by a template-free and surfactant-free solvothermal process, followed by high temperature carbonization. This hierarchical network serves as a new class of catalyst support to enhance the activity and durability of noble metal catalysts for alcohol oxidation reactions. Its supported Pd nanoparticles, Pd/(Pd-CeO2@C CSNWN), exhibit >9 fold increase in activity toward the ethanol oxidation over the state-of-the-art Pd/C catalyst, which is the highest among the reported Pd systems. Moreover, stability tests show a virtually unchanged activity after 1000 cycles. The high activity is mainly attributed to the superior oxygen-species releasing capability of Pd-doped CeO2 nanowires by accelerating the removal of the poisoning intermediate. The unique interconnected one-dimensional core-sheath structure is revealed to facilitate immobilization of the metal catalysts, leading to the improved durability. This core-sheath nanowire network opens up a new strategy for catalyst performance optimization for next-generation fuel cells.

  1. Aluminum-doped ceria-zirconia solid solutions with enhanced thermal stability and high oxygen storage capacity.

    PubMed

    Dong, Qiang; Yin, Shu; Guo, Chongshen; Sato, Tsugio

    2012-10-01

    A facile solvothermal method to synthesize aluminum-doped ceria-zirconia (Ce0.5Zr0.5-xAlxO2-x/2, x = 0.1 to 0.4) solid solutions was carried out using Ce(NH4)2(NO3)6, Zr(NO3)3·2H2O Al(NO3)3·9H2O, and NH4OH as the starting materials at 200°C for 24 h. The obtained solid solutions from the solvothermal reaction were calcined at 1,000°C for 20 h in air atmosphere to evaluate the thermal stability. The synthesized Ce0.5Zr0.3Al0.2O1.9 particle was characterized for the oxygen storage capacity (OSC) in automotive catalysis. For the characterization, X-ray diffraction, transmission electron microscopy, and the Brunauer-Emmet-Teller (BET) technique were employed. The OSC values of all samples were measured at 600°C using thermogravimetric-differential thermal analysis. Ce0.5Zr0.3Al0.2O1.9 solid solutions calcined at 1,000°C for 20 h with a BET surface area of 18 m2 g-1 exhibited a considerably high OSC of 427 μmol-O g-1 and good OSC performance stability. The same synthesis route was employed for the preparation of the CeO2 and Ce0.5Zr0.5O2. The incorporation of aluminum ion in the lattice of ceria-based catalyst greatly enhanced the thermal stability and OSC.

  2. Nanoparticle Precipitation in Irradiated and Annealed Ceria Doped with Metals for Emulation of Spent Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Weilin; Conroy, Michele A.; Kruska, Karen

    Epsilon alloy precipitates have been observed with varied compositions and sizes in spent nuclear fuels, such as UO2. Presence of the inclusions, along with other oxide precipitates, gas bubbles and irradiation-induced structural defects, can significantly degrade the physical properties of the fuel. To predict fuel performance, a fundamental study of the precipitation processes is needed. This study uses ceria (CeO2) as a surrogate for UO2. Polycrystalline CeO2 films doped with Mo, Ru, Rh, Pd and Re (surrogate for Tc) were grown at 823 K using pulsed laser deposition, irradiated at 673 K with He+ ions, and subsequently annealed at highermore » temperatures. A number of methods, including transmission electron microscopy and atom probe tomography, were applied to characterize the samples. The results indicate that there is a uniform distribution of the doped metals in the as-grown CeO2 film. Pd particles of ~3 nm in size appear near dislocation edges after He+ ion irradiation to ~13 dpa. Thermal annealing at 1073 K in air leads to formation of precipitates with Mo and Pd around grain boundaries. Further annealing at 1373 K produces 70 nm sized precipitates with small grains at cavities.« less

  3. Improvement of performance in low temperature solid oxide fuel cells operated on ethanol and air mixtures using Cu-ZnO-Al2O3 catalyst layer

    NASA Astrophysics Data System (ADS)

    Morales, M.; Espiell, F.; Segarra, M.

    2015-10-01

    Anode-supported single-chamber solid oxide fuel cells with and without Cu-ZnO-Al2O3 catalyst layers deposited on the anode support have been operated on ethanol and air mixtures. The cells consist of gadolinia-doped ceria electrolyte, Ni-doped ceria anode, and La0.6Sr0.4CoO3-δ-doped ceria cathode. Catalyst layers with different Cu-ZnO-Al2O3 ratios are deposited and sintered at several temperatures. Since the performance of single-chamber fuel cells strongly depends on catalytic properties of electrodes for partial oxidation of ethanol, the cells are electrochemically characterized as a function of the temperature, ethanol-air molar ratio and gas flow rate. In addition, catalytic activities of supported anode, catalytic layer-supported anode and cathode for partial oxidation of ethanol are analysed. Afterwards, the effect of composition and sintering temperature of catalyst layer on the cell performance are determined. The results indicate that the cell performance can be significantly enhanced using catalyst layers of 30:35:35 and 40:30:30 wt.% Cu-ZnO-Al2O3 sintered at 1100 °C, achieving power densities above 50 mW cm-2 under 0.45 ethanol-air ratio at temperatures as low as 450 °C. After testing for 15 h, all cells present a gradual loss of power density, without carbon deposition, which is mainly attributed to the partial re-oxidation of Ni at the anode.

  4. Transfer hydrogenation over sodium-modified ceria: Enrichment of redox sites active for alcohol dehydrogenation

    DOE PAGES

    Nelson, Nicholas C.; Boote, Brett W.; Naik, Pranjali; ...

    2017-01-17

    Ceria (CeO 2) and sodium-modified ceria (Ce-Na) were prepared through combustion synthesis. Palladium was deposited onto the supports (Pd/CeO 2 and Pd/Ce-Na) and their activity for the aqueous-phase transfer hydrogenation of phenol using 2-propanol under liquid flow conditions was studied. Pd/Ce-Na showed a marked increase (6×) in transfer hydrogenation activity over Pd/CeO 2. Material characterization indicated that water-stable sodium species were not doped into the ceria lattice, but rather existed as subsurface carbonates. Modification of ceria by sodium provided more adsorption and redox active sites (i.e. defects) for 2-propanol dehydrogenation. This effect was an intrinsic property of the Ce-Na supportmore » and independent of Pd. The redox sites active for 2-propanol dehydrogenation were thermodynamically equivalent on both supports/catalysts. At high phenol concentrations, the reaction was limited by 2-propanol adsorption. Furthermore, the difference in catalytic activity was attributed to the different numbers of 2-propanol adsorption and redox active sites on each catalyst.« less

  5. PK-PD modeling of combination efficacy effect from administration of the MEK inhibitor GDC-0973 and PI3K inhibitor GDC-0941 in A2058 xenografts.

    PubMed

    Choo, Edna F; Ng, Chee M; Berry, Leanne; Belvin, Marcia; Lewin-Koh, Nicholas; Merchant, Mark; Salphati, Laurent

    2013-01-01

    Mutations and activations of the MEK and PI3K pathways are associated with the development of many cancers. GDC-0973 and GDC-0941 are inhibitors of MEK and PI3K, respectively, currently being evaluated clinically in combination as anti-cancer treatment. The objective of these studies was to characterize the relationship between the plasma concentrations of GDC-0973 and GDC-0941 administered in combination and efficacy in A2058 melanoma xenograft. GDC-0973 and GDC-0941 were administered to A2058 tumor-bearing mice daily (QD) or every third day (Q3D) either as single agents or in combination. A semi-mechanistic population anti-cancer model was developed to simultaneously describe the tumor growth following QD/Q3D single-agent and QD combination treatments. The interaction terms ψ included in the model were used to assess whether the combination was additive. Using this model, data from the Q3D combination regimen were simulated and compared with the observed tumor volumes. The model consisting of saturable tumor growth provided the best fit of the data. The estimates for ψ were not significantly different from 1, suggesting an additive effect of GDC-0973 and GDC-0941 on tumor growth inhibition. The population rate constants associated with tumor growth inhibition for GDC-0973 and GDC-0941 were 0.00102 and 0000651 μM(-1) h(-1), respectively. Using the model based on single-agent and QD combination efficacy data, simulations adequately described the tumor growth from the Q3D combination regimen. These findings suggest that, based on minimal data, it is possible to predict the effects of various combinations preclinically and also assess the potential clinical efficacy of combinations using human pharmacokinetic inputs.

  6. Kinetics of CO2 Reduction over Nonstoichiometric Ceria

    PubMed Central

    2015-01-01

    The kinetics of CO2 reduction over nonstoichimetric ceria, CeO2−δ, a material of high potential for thermochemical conversion of sunlight to fuel, has been investigated for a wide range of nonstoichiometries (0.02 ≤ δ ≤ 0.25), temperatures (693 ≤ T ≤ 1273 K), and CO2 concentrations (0.005 ≤ pCO2 ≤ 0.4 atm). Samples were reduced thermally at 1773 K to probe low nonstoichiometries (δ < 0.05) and chemically at lower temperatures in a H2 atmosphere to prevent particle sintering and probe the effect of higher nonstoichiometries (δ < 0.25). For extents greater than δ = 0.2, oxidation rates at a given nonstoichiometry are hindered for the duration of the reaction, presumably because of near-order changes, such as lattice compression, as confirmed via Raman Spectroscopy. Importantly, this behavior is reversible and oxidation rates are not affected at lower δ. Following thermal reduction at very low δ, however, oxidation rates are an order of magnitude slower than those of chemically reduced samples, and rates monotonically increase with the initial nonstoichiometry (up to δ = 0.05). This dependence may be attributed to the formation of stable defect complexes formed between oxygen vacancies and polarons. When the same experiments are performed with 10 mol % Gd3+ doped ceria, in which defect complexes are less prevalent than in pure ceria, this dependence is not observed. PMID:26693270

  7. Ceria Doped Zinc Oxide Nanoflowers Enhanced Luminol-Based Electrochemiluminescence Immunosensor for Amyloid-β Detection.

    PubMed

    Wang, Jing-Xi; Zhuo, Ying; Zhou, Ying; Wang, Hai-Jun; Yuan, Ruo; Chai, Ya-Qin

    2016-05-25

    In this work, ceria doped ZnO nanomaterials with flower-structure (Ce:ZONFs) were prepared to construct a luminol-based electrochemiluminescence (ECL) immunosensor for amyloid-β protein (Aβ) detection. Herein, carboxyl groups (-COOH) covered Ce:ZONFs were synthesized by a green method with lysine as reductant. After that, Ce:ZONFs-based ECL nanocomposite was prepared by combining the luminophore of luminol and Ce:ZONFs via amidation and physical absorption. Luminol modified on Ce:ZONFs surface could generate a strong ECL signal under the assistance of reactive oxygen species (ROSs) (such as OH(•) and O2(•-)), which were produced by a catalytic reaction between Ce:ZONFs and H2O2. It was worth noticing that a quick Ce(4+) ↔ Ce(3+) reaction in this doped material could increase the rate of electron transfer to realize the signal amplification. Subsequently, the luminol functionalized Ce:ZONFs (Ce:ZONFs-Lum) were covered by secondary antibody (Ab2) and glucose oxidase (GOD), respectively, to construct a novel Ab2 bioconjugate (Ab2-GOD@Ce:ZONFs-Lum). The wire-structured silver-cysteine complex (AgCys NWs) with a large number of -COOH, which was synthesized by AgNO3 and l-cysteine, was used as substrate of the immunosensor to capture the primary antibody (Ab1). Under the optimal conditions, this proposed ECL immunosensor had exhibited high sensitivity for Aβ detection with a wide linear range from 80 fg/mL to 100 ng/mL and an ultralow detection limit of 52 fg/mL. Meanwhile, this biosensor had good specificity for Aβ, indicating that the provided strategy had a promising potential in the detection of Aβ.

  8. Investigation of low temperature solid oxide fuel cells for air-independent UUV applications

    NASA Astrophysics Data System (ADS)

    Moton, Jennie Mariko

    Unmanned underwater vehicles (UUVs) will benefit greatly from high energy density (> 500 Wh/L) power systems utilizing high-energy-density fuels and air-independent oxidizers. Current battery-based systems have limited energy densities (< 400 Wh/L), which motivate development of alternative power systems such as solid oxide fuel cells (SOFCs). SOFC-based power systems have the potential to achieve the required UUV energy densities, and the current study explores how SOFCs based on gadolinia-doped ceria (GDC) electrolytes with operating temperatures of 650°C and lower may operate in the unique environments of a promising UUV power plant. The plant would contain a H 2O2 decomposition reactor to supply humidified O2 to the SOFC cathode and exothermic aluminum/H2O combustor to provide heated humidified H2 fuel to the anode. To characterize low-temperature SOFC performance with these unique O2 and H2 source, SOFC button cells based on nickel/GDC (Gd0.1Ce0.9O 1.95) anodes, GDC electrolytes, and lanthanum strontium cobalt ferrite (La0.6Sr0.4Co0.2Fe0.8O3-δ or LSCF)/GDC cathodes were fabricated and tested for performance and stability with humidity on both the anode and the cathode. Cells were also tested with various reactant concentrations of H2 and O2 to simulate gas depletion down the channel of an SOFC stack. Results showed that anode performance depended primarily on fuel concentration and less on the concentration of the associated increase in product H2O. O 2 depletion with humidified cathode flows also caused significant loss in cell current density at a given voltage. With the humidified flows in either the anode or cathode, stability tests of the button cells at 650 °C showed stable voltage is maintained at low operating current (0.17 A/cm2) at up to 50 % by mole H2O, but at higher current densities (0.34 A/cm2), irreversible voltage degradation occurred at rates of 0.8-3.7 mV/hour depending on exposure time. From these button cell results, estimated average

  9. Intermittent administration of MEK inhibitor GDC-0973 plus PI3K inhibitor GDC-0941 triggers robust apoptosis and tumor growth inhibition.

    PubMed

    Hoeflich, Klaus P; Merchant, Mark; Orr, Christine; Chan, Jocelyn; Den Otter, Doug; Berry, Leanne; Kasman, Ian; Koeppen, Hartmut; Rice, Ken; Yang, Nai-Ying; Engst, Stefan; Johnston, Stuart; Friedman, Lori S; Belvin, Marcia

    2012-01-01

    Combinations of MAP/ERK kinase (MEK) and phosphoinositide 3-kinase (PI3K) inhibitors have shown promise in preclinical cancer models, leading to the initiation of clinical trials cotargeting these two key cancer signaling pathways. GDC-0973, a novel selective MEK inhibitor, and GDC-0941, a class I PI3K inhibitor, are in early stage clinical trials as both single agents and in combination. The discovery of these selective inhibitors has allowed investigation into the precise effects of combining inhibitors of two major signaling branches downstream of RAS. Here, we investigated multiple biomarkers in the mitogen-activated protein kinase (MAPK) and PI3K pathway to search for points of convergence that explain the increased apoptosis seen in combination. Using washout studies in vitro and alternate dosing schedules in mice, we showed that intermittent inhibition of the PI3K and MAPK pathway is sufficient for efficacy in BRAF and KRAS mutant cancer cells. The combination of GDC-0973 with the PI3K inhibitor GDC-0941 resulted in combination efficacy in vitro and in vivo via induction of biomarkers associated with apoptosis, including Bcl-2 family proapoptotic regulators. Therefore, these data suggest that continuous exposure of MEK and PI3K inhibitors in combination is not required for efficacy in preclinical cancer models and that sustained effects on downstream apoptosis biomarkers can be observed in response to intermittent dosing. ©2011 AACR.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuart Adler; L. Dunyushkina; S. Huff

    The goal of this project was to develop an improved understanding of factors governing performance and degradation of mixed-conducting SOFC cathodes. Two new diagnostic tools were developed to help achieve this goal: (1) microelectrode half-cells for improved isolation of cathode impedance on thin electrolytes, and (2) nonlinear electrochemical impedance spectroscopy (NLEIS), a variant of traditional impedance that allows workers to probe nonlinear rates as a function of frequency. After reporting on the development and efficacy of these tools, this document reports on the use of these and other tools to better understand performance and degradation of cathodes based on themore » mixed conductor La{sub 1-x}Sr{sub x}CoO{sub 3-{delta}} (LSC) on gadolinia or samaria-doped ceria (GDC or SDC). We describe the use of NLEIS to measure O{sub 2} exchange on thin-film LSC electrodes, and show that O{sub 2} exchange is most likely governed by dissociative adsorption. We also describe parametric studies of porous LSC electrodes using impedance and NLEIS. Our results suggest that O{sub 2} exchange and ion transport co-limit performance under most relevant conditions, but it is O{sub 2} exchange that is most sensitive to processing, and subject to the greatest degradation and sample-to-sample variation. We recommend further work that focuses on electrodes of well-defined or characterized geometry, and probes the details of surface structure, composition, and impurities. Parallel work on primarily electronic conductors (LSM) would also be of benefit to developers, and to improved understanding of surface vs. bulk diffusion.« less

  11. Enhanced stability of solid oxide fuel cells by employing a modified cathode-interlayer interface with a dense La0.6Sr0.4Co0.2Fe0.8O3-δ thin film

    NASA Astrophysics Data System (ADS)

    De Vero, Jeffrey C.; Develos-Bagarinao, Katherine; Kishimoto, Haruo; Ishiyama, Tomohiro; Yamaji, Katsuhiko; Horita, Teruhisa; Yokokawa, Harumi

    2018-02-01

    In La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode/Gd-doped ceria (GDC)/yttria-stabilized zirconia (YSZ)-electrolyte based solid oxide fuel cells (SOFCs), one of the key issues affecting performance and long-term stability is the apparent deactivation of LSCF cathode by the presence of secondary phases such as SrZrO3 at the interfaces. Herein, we report that by modifying the cathode-interlayer interface with a dense LSCF thin film, the severe cation interdiffusion is suppressed especially the fast gas or surface diffusion of Sr into adjacent GDC-interlayer/YSZ-electrolyte resulting in the significant reduction of SrZrO3 formation at the interfaces improving cell stability. In order to understand the present results, the interface chemistry is carefully considered and discussed. The results show that modification of cathode-interlayer interfaces is an important strategy for improving the lifetime of SOFCs.

  12. Synthesis and characterization of mesoporous ceria/alumina nanocomposite materials via mixing of the corresponding ceria and alumina gel precursors.

    PubMed

    Khalil, Kamal M S

    2007-03-01

    Mesoporous ceria/alumina, CeO(2)/Al(2)O(3), composites containing 10, 20 and 30% (w/w) ceria were prepared by a novel gel mixing method. In the method, ceria gel (formed via hydrolysis of ammonium cerium(IV) nitrate by aqueous ammonium carbonate solution) and alumina gel (formed via controlled hydrolysis of aluminum tri-isopropoxide) were mixed together. The mixed gel was subjected to subsequent drying and calcination for 3 h at 400, 600, 800 and 1000 degrees C. The uncalcined (dried at 110 degrees C) and the calcined composites were investigated by different techniques including TGA, DSC, FTIR, XRD, SEM and nitrogen adsorption/desorption isotherms. Results indicated that composites calcined for 3 h at 800 degrees C mainly kept amorphous alumina structure and gamma-alumina formed only upon calcinations at 1000 degrees C. On the other hand, CeO(2) was found to crystallize in the common ceria, cerinite, phase and it kept this structure over the entire calcination range (400-1000 degrees C). Therefore, high surface areas, stable surface textures, and non-aggregated nano-sized ceria dispersions were obtained. A systematic texture change based on ceria ratio was observed, however in all cases mesoporous composite materials exposing thermally stable texture and structure were obtained. The presented method produces composite ceria/alumina materials that suit different applications in the field of catalysis and membranes technology, and throw some light on physicochemical factors that determine textural morphology and thermal stability of such important composite.

  13. Methane Oxidation on Pd-Ceria. A DFT Study of the Combustion Mechanism over Pd, PdO and Pd-ceria Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayernick, Adam D.; Janik, Michael J.

    2010-12-24

    Palladium/ceria exhibits unique catalytic activity for hydrocarbon oxidation; however, the chemical and structural properties of active sites on the palladium–ceria surface are difficult to characterize. Strong interactions between palladium and the ceria support stabilize oxidized Pd δ+ species, which may contribute to the significant activity of Pd/ceria for methane oxidation. We present a density functional theory (DFT + U) investigation into methane oxidation over Pd/ceria and quantify the activity of the Pd xCe 1-xO 2(1 1 1) mixed oxide surface in comparison with the PdO(1 0 0) and Pd(1 1 1) surfaces. The methane activation barrier is lowest over themore » Pd xCe 1-xO 2(1 1 1) surface, even lower than over the Pd(1 1 1) surface or low coordinated stepped or kinked Pd sites. Subsequent reaction steps in complete oxidation, including product desorption and vacancy refilling, are considered to substantiate that methane activation remains the rate-limiting step despite the low barrier over Pd xCe 1-xO 2(1 1 1). The low barrier over the Pd xCe 1-xO 2(1 1 1) surface demonstrates that mixed ceria-noble metal oxides offer the potential for improved hydrocarbon oxidation performance with respect to dispersed noble metal particles on ceria.« less

  14. Targeting activated Akt with GDC-0068, a novel selective Akt inhibitor that is efficacious in multiple tumor models.

    PubMed

    Lin, Jie; Sampath, Deepak; Nannini, Michelle A; Lee, Brian B; Degtyarev, Michael; Oeh, Jason; Savage, Heidi; Guan, Zhengyu; Hong, Rebecca; Kassees, Robert; Lee, Leslie B; Risom, Tyler; Gross, Stefan; Liederer, Bianca M; Koeppen, Hartmut; Skelton, Nicholas J; Wallin, Jeffrey J; Belvin, Marcia; Punnoose, Elizabeth; Friedman, Lori S; Lin, Kui

    2013-04-01

    We describe the preclinical pharmacology and antitumor activity of GDC-0068, a novel highly selective ATP-competitive pan-Akt inhibitor currently in clinical trials for the treatment of human cancers. The effect of GDC-0068 on Akt signaling was characterized using specific biomarkers of the Akt pathway, and response to GDC-0068 was evaluated in human cancer cell lines and xenograft models with various genetic backgrounds, either as a single agent or in combination with chemotherapeutic agents. GDC-0068 blocked Akt signaling both in cultured human cancer cell lines and in tumor xenograft models as evidenced by dose-dependent decrease in phosphorylation of downstream targets. Inhibition of Akt activity by GDC-0068 resulted in blockade of cell-cycle progression and reduced viability of cancer cell lines. Markers of Akt activation, including high-basal phospho-Akt levels, PTEN loss, and PIK3CA kinase domain mutations, correlate with sensitivity to GDC-0068. Isogenic PTEN knockout also sensitized MCF10A cells to GDC-0068. In multiple tumor xenograft models, oral administration of GDC-0068 resulted in antitumor activity ranging from tumor growth delay to regression. Consistent with the role of Akt in a survival pathway, GDC-0068 also enhanced antitumor activity of classic chemotherapeutic agents. GDC-0068 is a highly selective, orally bioavailable Akt kinase inhibitor that shows pharmacodynamic inhibition of Akt signaling and robust antitumor activity in human cancer cells in vitro and in vivo. Our preclinical data provide a strong mechanistic rationale to evaluate GDC-0068 in cancers with activated Akt signaling. ©2012 AACR.

  15. Composite ceria-coated aerogels and methods of making the same

    DOEpatents

    Eyring, Edward M; Ernst, Richard D; Turpin, Gregory C; Dunn, Brian C

    2013-05-07

    Ceria-coated aerogels can include an aerogel support material having a stabilized ceria coating thereon. The ceria coating can be formed by solution or vapor deposition of alcogels or aerogels. Additional catalytic metal species can also be incorporated into the coating to form multi-metallic compounds having improved catalytic activity. Further, the ceria coated aerogels retain high surface areas at elevated temperatures. Thus, improvements in catalytic activity and thermal stability can be achieved using these ceria-coated composite aerogels.

  16. Biosafety assessment of Gd@C82(OH)22 nanoparticles on Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Zhang, Wendi; Sun, Baoyun; Zhang, Longze; Zhao, Baolu; Nie, Guangjun; Zhao, Yuliang

    2011-06-01

    Gd@C82(OH)22, a water-soluble endohedral metallofullerene derivative, has been proven to possess significant antineoplastic activity in mice. Toxicity studies of the nanoparticle have shown some evidence of low or non toxicity in mice and cell models. Here we employed Caenorhabditis elegans (C. elegans) as a model organism to further evaluate the short- and long-term toxicity of Gd@C82(OH)22 and possible behavior changes under normal and stress culture conditions. With treatment of Gd@C82(OH)22 at 0.01, 0.1, 1.0 and 10 μg ml-1 within one generation (short-term), C. elegans showed no significant decrease in longevity or thermotolerance compared to the controls. Furthermore, when Gd@C82(OH)22 treatment was extended up to six generations (long-term), non-toxic effects to the nematodes were found. In addition, data from body length measurement, feeding rate and egg-laying assays with short-term treatment demonstrated that the nanoparticles have no significant impact on the individual growth, feeding behavior and reproductive ability, respectively. In summary, this work has shown that Gd@C82(OH)22 is tolerated well by worms and it has no apparent toxic effects on longevity, stress resistance, growth and behaviors that were observed in both adult and young worms. Our work lays the foundations for further developments of this anti-neoplastic agent for clinical applications.

  17. Characterization of ceria electrolyte in solid oxide fuel cell applications

    NASA Astrophysics Data System (ADS)

    Milliken, Christopher Edward

    The goal of this research effort is to characterize cation doped cerium dioxide for use as an electrolyte material in solid oxide fuel cell applications. A variety of analytical techniques including thermogravimetric analysis, controlled atmosphere dilatometry, and AC/DC electronic measurements on single cells and stacks have been coupled with thermodynamic calculations to evaluate the suitability of several doping schemes. The results of this analysis indicate that doping CeOsb2 with 20% SmOsb{1.5} or codoping with 19% GdOsb{1.5} + 1% PrOsb{1.83} provides the best combination of stability and performance. Under dual atmosphere fuel cell conditions, these dopants do not provide sufficient stabilization energy to prevent the reduction of ceria. A significant oxygen leakage current can be expected, particularly near open circuit conditions. Incorporation of 10% SrO provides similar short-term advantages to the lanthanide doped system but this electrolyte material undergoes an irreversible degradation mechanism that results in cell failure within 1500 hours of test. Under fuel cell conditions, the maximum efficiency of such systems in stacks will be below 40% at 200 mW/cmsp2 when operated on humidified hydrogen fuels. This compares to an expected efficiency of 45-50% at a similar power density for nonmixed conducting electrolyte (e.g., YSZ).

  18. Evaluation of the Effect of Sulfur on the Performance of Nickel/Gadolinium‐Doped Ceria Based Solid Oxide Fuel Cell Anodes

    PubMed Central

    Yurkiv, Vitaliy; Costa, Rémi; Schiller, Günter; Friedrich, K. Andreas

    2016-01-01

    Abstract The focus of this study is the measurement and understanding of the sulfur poisoning phenomena of Ni/gadolinium‐doped ceria (CGO) based solid oxide fuel cells (SOFC). Cells with Ni/CGO10 and NiCu5/CGO40 anodes were characterized by using impedance spectroscopy at different temperatures and H2/H2O fuel ratios. The short‐term sulfur poisoning behavior was investigated systematically at temperatures of 800–950 °C, current densities of 0–0.75 A cm−2, and H2S concentrations of 1–20 ppm. A sulfur poisoning mitigation effect was observed at high current loads and temperatures. The poisoning behavior was reversible for short exposure times. It was observed that the sulfur‐affected processes exhibited significantly different relaxation times that depend on the Gd content in the CGO phase. Moreover, it was demonstrated that the capacitance of Ni/CGO10 anodes is strongly dependent on the temperature and gas‐phase composition, which reflects a changing Ce3+/Ce4+ ratio. PMID:27863123

  19. UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions.

    PubMed

    Zholobak, N M; Ivanov, V K; Shcherbakov, A B; Shaporev, A S; Polezhaeva, O S; Baranchikov, A Ye; Spivak, N Ya; Tretyakov, Yu D

    2011-01-10

    UV-shielding property, photocatalytic activity and cytotoxicity (including photocytotoxicity) of citrate-stabilized ceria colloid solutions were studied. It was established that UV-shielding property (namely, the sun protection factor, the critical absorption wavelength and the UVA/UVB-ratio) of ceria nanoparticles are as good as those of titanium dioxide and zinc oxide nanoparticles. It was further demonstrated that ceria nanoparticles possesses substantially lower photocatalytic activity, which additionally decreases upon decrease in ceria particle size. It was found that colloid ceria solutions are non-toxic to mouse fibroblasts (L929) and fibroblast-like cells of African Green monkey (VERO). Moreover, ceria nanoparticles are capable to protect these cells from UV-irradiation-induced damage. It was proposed that nanocrystalline ceria could be used not only as UV-blocking material, but also as prophylactic and even therapeutic compound for sunburns treatment. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Effect of Dopants and Sintering Method on the Properties of Ceria-Based Electrolytes for IT-SOFCs Applications

    NASA Astrophysics Data System (ADS)

    Sharma, Payal; Sharma, Chetan; Singh, Kanchan L.; Singh, Anirudh P.

    2018-05-01

    Doped and co-doped ceria ceramics are used as electrolyte materials in solid oxide fuel cells. In this work, ceria-based oxides, Ce0.90Gd0.06Y0.02M0.02O2-δ (M = Ca, Fe, La, and Sr) were prepared by conventional as well as microwave processing from the precursors prepared by the mixed oxide method. The consolidated calcined powders in pellet form were sintered in microwave energy at 1400°C for 20 min and in an electric furnace of IR radiation at 1400°C for 6 h. The x-ray diffraction analysis confirmed that all the compositions were crystallized into a cubic fluorite structure. Surface morphology of the sintered products was studied using scanning electron microscopy and the microhardness was investigated using the Vickers hardness test. The comparative results analysis shows that the microwave-sintered samples have uniform grain growth, higher density and higher microhardness than the corresponding conventionally sintered products. The microwave-sintered sample of composition Ce0.90Gd0.06Y0.02Sr0.02O2-δ was found to have the highest microhardness among the four compositions due to its high density and smallest grain size.

  1. Pt/Ceria-based Catalysts for Small Alcohol Electrooxidation

    NASA Astrophysics Data System (ADS)

    Menendez-Mora, Christian L.

    High emissions of fossil-based energy sources have led to scientists around the world to develop new alternatives for the future. In this sense, fuel cells are a remarkable and promising energy option with less environmental impact. The most used fuels for this technology are hydrogen and small chain alcohols, which can be oxidized to transform their chemical energy into electrical power. To do this, fuel cells need catalysts that will act as an active surface where the oxidation can take place. The problem with platinum catalysts is its possible CO poisoning with intermediates that are produced before the complete oxidation of alcohol to CO2. Different approaches have been taken to try to resolve this issue. In this case, cerium oxide (ceria) was selected as a co-catalyst to mitigate the effect of CO poisoning of platinum. Ceria is a compound that has the ability to work as an "oxygen tank" and can donate oxygen to carbon monoxide that is strongly adsorbed at platinum surface to produce CO2 (carbon dioxide), regenerating the Pt surface for further alcohol oxidation. Therefore, enhancing the current density as well as the power output of a fuel cell. First, an occlusion deposition technique was used to prepare platinum/ceria composite electrodes and tested them towards small chain alcohol oxidation such as methanol oxidation reaction in acidic and alkaline media. The preliminary results demonstrated that the Pt/ceria electrodes were more efficient towards methanol electrooxidation when compared to Pt electrodes. This enhancement was attributed to the presence of ceria. A second preparation method was selected for the synthesis of ceria/Pt catalysts. In this case, a hydrothermal method was used and the catalysis were studied for the effect of MeOH, EtOH and n-BuOH oxidation. The observed effect was that electrodes made of Pt/Pt:CeO2-x showed better catalytic effect than Pt/ceria and platinum electrodes. Moreover, a comparison between ceria nanorods versus

  2. Deep eutectic-solvothermal synthesis of nanostructured ceria

    PubMed Central

    Hammond, Oliver S.; Edler, Karen J.; Bowron, Daniel T.; Torrente-Murciano, Laura

    2017-01-01

    Ceria is a technologically important material with applications in catalysis, emissions control and solid-oxide fuel cells. Nanostructured ceria becomes profoundly more active due to its enhanced surface area to volume ratio, reactive surface oxygen vacancy concentration and superior oxygen storage capacity. Here we report the synthesis of nanostructured ceria using the green Deep Eutectic Solvent reline, which allows morphology and porosity control in one of the less energy-intensive routes reported to date. Using wide Q-range liquid-phase neutron diffraction, we elucidate the mechanism of reaction at a molecular scale at considerably milder conditions than the conventional hydrothermal synthetic routes. The reline solvent plays the role of a latent supramolecular catalyst where the increase in reaction rate from solvent-driven pre-organization of the reactants is most significant. This fundamental understanding of deep eutectic-solvothermal methodology will enable future developments in low-temperature synthesis of nanostructured ceria, facilitating its large-scale manufacturing using green, economic, non-toxic solvents. PMID:28120829

  3. Sulfation of ceria-zirconia model automotive emissions control catalysts

    NASA Astrophysics Data System (ADS)

    Nelson, Alan Edwin

    Cerium-zirconium mixed metal oxides are used in automotive emissions control catalysts to regulate the partial pressure of oxygen near the catalyst surface. The near surface oxygen partial pressure is regulated through transfer of atomic oxygen from the ceria-zirconia solid matrix to the platinum group metals to form metal oxides capable of oxidizing carbon monoxide and unburned hydrocarbons. Although the addition of zirconium in the cubic lattice of ceria increases the oxygen storage capacity and thermal stability of the ceria matrix, the cerium-zirconium oxide system remains particularly susceptible to deactivation from sulfur compounds. While the overall effect of sulfur on these systems is understood (partially irreversible deactivation), the fundamental and molecular interaction of sulfur with ceria-zirconia remains a challenging problem. Ceria-zirconia metal oxide solid solutions have been prepared through co-precipitation with nitrate precursors. The prepared powders were calcined and subsequently formed into planer wafers and characterized for chemical and physical attributes. The prepared samples were subsequently exposed to a sulfur dioxide based environment and characterized with spectroscopic techniques to characterize the extent of sulfation and the nature of surface sulfur species. The extent of sulfation of the model ceria-zirconia systems was characterized with Auger electron spectroscopy (AES) prior to and after treatment in a microreactor. Strong dependencies were observed between the atomic ratio of ceria to zirconia and the extent of sulfation. In addition, the partial pressure of sulfur dioxide during treatments also correlated to the extent of sulfation, while temperature only slightly effected the extent of sulfation. The AES data suggests the gas phase sulfur dioxide preferentially chemisorbs on surface ceria atoms and the extent of sulfation is heavily dependent on sulfur dioxide concentrations and only slightly dependent on catalyst

  4. Application of infiltrated LSCM-GDC oxide anode in direct carbon/coal fuel cells.

    PubMed

    Yue, Xiangling; Arenillas, Ana; Irvine, John T S

    2016-08-15

    Hybrid direct carbon/coal fuel cells (HDCFCs) utilise an anode based upon a molten carbonate salt with an oxide conducting solid electrolyte for direct carbon/coal conversion. They can be fuelled by a wide range of carbon sources, and offer higher potential chemical to electrical energy conversion efficiency and have the potential to decrease CO2 emissions compared to coal-fired power plants. In this study, the application of (La, Sr)(Cr, Mn)O3 (LSCM) and (Gd, Ce)O2 (GDC) oxide anodes was explored in a HDCFC system running with two different carbon fuels, an organic xerogel and a raw bituminous coal. The electrochemical performance of the HDCFC based on a 1-2 mm thick 8 mol% yttria stabilised zirconia (YSZ) electrolyte and the GDC-LSCM anode fabricated by wet impregnation procedures was characterized and discussed. The infiltrated oxide anode showed a significantly higher performance than the conventional Ni-YSZ anode, without suffering from impurity formation under HDCFC operation conditions. Total polarisation resistance (Rp) reached 0.8-0.9 Ω cm(2) from DCFC with an oxide anode on xerogel and bituminous coal at 750 °C, with open circuit voltage (OCV) values in the range 1.1-1.2 V on both carbon forms. These indicated the potential application of LSCM-GDC oxide anode in HDCFCs. The chemical compatibility of LSCM/GDC with carbon/carbonate investigation revealed the emergence of an A2BO4 type oxide in place of an ABO3 perovskite structure in the LSCM in a reducing environment, due to Li attack as a result of intimate contact between the LSCM and Li2CO3, with GDC being stable under identical conditions. Such reaction between LSCM and Li2CO3 was not observed on a LSCM-YSZ pellet treated with Li-K carbonate in 5% H2/Ar at 700 °C, nor on a GDC-LSCM anode after HDCFC operation. The HDCFC durability tests of GDC-LSCM oxide on a xerogel and on raw bituminous coal were performed under potentiostatic operation at 0.7 V at 750 °C. The degradation mechanisms were

  5. Impacts of a Nanosized Ceria Additive on Diesel Engine Emissions of Particulate and Gaseous Pollutants

    PubMed Central

    Zhang, Junfeng; Nazarenko, Yevgen; Zhang, Lin; Calderon, Leonardo; Lee, Ki-Bum; Garfunkel, Eric; Schwander, Stephan; Tetley, Teresa D.; Chung, Kian Fan; Porter, Alexandra E.; Ryan, Mary; Kipen, Howard; Lioy, Paul J.; Mainelis, Gediminas

    2014-01-01

    Fuel additives incorporating nanosized ceria have been increasingly used in diesel engines as combustion promoters. However, few studies have assessed the impact of these nanotechnology-based additives on pollutant emissions. Here, we systematically compare emission rates of particulate and gaseous pollutants from a single-cylinder, four-cycle diesel engine using fuel mixes containing nanoceria of varying concentrations. The test fuels were made by adding different amounts of a commercial fuel additive Envirox into an ultralow-sulfur diesel fuel at 0 (base fuel), 0.1-, 1-, and 10-fold the manufacturer-recommended concentration of 0.5 mL Envirox per liter of fuel. The addition of Envirox resulted in ceria-concentration-dependent emission reductions of CO2, CO, total particulate mass, formaldehyde, acetaldehyde, acrolein, and several polycyclic aromatic hydrocarbons. These reductions at the manufacturer-recommended doping concentration, however, were accompanied by a substantial increase of certain other air pollutants, specifically the number of ultrafine particles (+32%), NOx (+9.3%), and the particle-phase benzo[a]pyrene toxic equivalence quotient (+35%). Increasing fuel ceria concentrations also led to decreases in the size of emitted particles. Given health concerns related to ultrafine particles and NOx, our findings call for additional studies to further evaluate health risks associated with the use of nanoceria additives in various engines under various operating conditions. PMID:24144266

  6. Relationship Between Particle and Plasma Properties and Coating Characteristics of Samaria-Doped Ceria Prepared by Atmospheric Plasma Spraying for Use in Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Cuglietta, Mark; Kesler, Olivera

    2012-06-01

    Samaria-doped ceria (SDC) has become a promising material for the fabrication of high-performance, intermediate-temperature solid oxide fuel cells (SOFCs). In this study, the in-flight characteristics, such as particle velocity and surface temperature, of spray-dried SDC agglomerates were measured and correlated to the resulting microstructures of SDC coatings fabricated using atmospheric plasma spraying, a manufacturing technique with the capability of producing full cells in minutes. Plasmas containing argon, nitrogen and hydrogen led to particle surface temperatures higher than those in plasmas containing only argon and nitrogen. A threshold temperature for the successful deposition of SDC on porous stainless steel substrates was calculated to be 2570 °C. Coating porosity was found to be linked to average particle temperature, suggesting that plasma conditions leading to lower particle temperatures may be most suitable for fabricating porous SOFC electrode layers.

  7. Preparation and properties of plate-like titanate (PLT)/calcia-doped ceria (CDC) composites by sol-gel coating method.

    PubMed

    Liu, Xiangwen; Liu, Jingxiao; Dong, Xiaoli; Yin, Shu; Sato, Tsugio

    2009-08-01

    In order to obtain UV-shielding materials with good comfort, higher safety and effective UV-shielding ability, lepidocrocite type plate-like titanate (K(0.8)Li(0.27)Ti(1.73)O(4), donated as: PLT)/calcia-doped ceria (donated as: CDC) composites were synthesized by a sol-gel method. After dissolving Ce(NO(3))(3).6H(2)O and Ca(NO(3))(2).4H(2)O into absolute ethanol at 40 degrees C, glacial acetic acid (HAc) and PLT particles dispersed into absolute ethanol were added. Then, the solution was heated at 60 degrees C to get gel-like substance. This gel was dried in a vacuum oven at 333 K for 5 h, and then, the product was collected and ground in an agate mortar followed by calcination at 1073 K for 2 h to form PLT/CDC composites. By optimization, 20 mass% of CDC was coated by one operation. PLT/CDC composites with higher CDC content were obtained by repeating the coating process. The morphology, catalytic activity for the oxidation of organic material, UV-shielding ability and dynamic friction coefficient of as-obtained PLT/CDC composites were characterized. As a result, broad-spectrum UV-shielding composite materials with good comfort and low oxidation catalytic activity were successfully synthesized.

  8. Zr-doped ceria additives for enhanced PEM fuel cell durability and radical scavenger stability

    DOE PAGES

    Baker, Andrew M.; Williams, Stefan Thurston DuBard; Mukundan, Rangachary; ...

    2017-06-06

    Doped ceria compounds demonstrate excellent radical scavenging abilities and are promising additives to improve the chemical durability of polymer electrolyte membrane (PEM) fuel cells. Here in this paper, Ce 0.85Zr 0.15O 2 (CZO) nanoparticles were incorporated into the cathode catalyst layers (CLs) of PEM fuel cells (based on Nafion XL membranes containing 6.0 μg cm -2 ion-exchanged Ce) at loadings of 10 and 55 μg cm -2. When compared to a CZO-free baseline, CZO-containing membrane electrode assemblies (MEAs) demonstrated extended lifetimes during PEM chemical stability accelerated stress tests (ASTs), exhibiting reduced electrochemical gas crossover, open circuit voltage decay, and fluoridemore » emission rates. The MEA with high CZO loading (55 μg cm -2) demonstrated performance losses, which are attributed to Ce poisoning of the PEM and CL ionomer regions, which is supported by X-ray fluorescence (XRF) analysis. In the MEA with the low CZO loading (10 μg cm -2), both the beginning of life (BOL) performance and the performance after 500 hours of ASTs were nearly identical to the BOL performance of the CZO-free baseline MEA. XRF analysis of the MEA with low CZO loading reveals that the BOL PEM Ce concentrations are preserved after 1408 hours of ASTs and that Ce contents in the cathode CL are not significant enough to reduce performance. Therefore, employing a highly effective radical scavenger such as CZO, at a loading of 10 μg cm -2 in the cathode CL, dramatically mitigates degradation effects, which improves MEA chemical durability and minimizes performance losses.« less

  9. Zr-doped ceria additives for enhanced PEM fuel cell durability and radical scavenger stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Andrew M.; Williams, Stefan Thurston DuBard; Mukundan, Rangachary

    Doped ceria compounds demonstrate excellent radical scavenging abilities and are promising additives to improve the chemical durability of polymer electrolyte membrane (PEM) fuel cells. Here in this paper, Ce 0.85Zr 0.15O 2 (CZO) nanoparticles were incorporated into the cathode catalyst layers (CLs) of PEM fuel cells (based on Nafion XL membranes containing 6.0 μg cm -2 ion-exchanged Ce) at loadings of 10 and 55 μg cm -2. When compared to a CZO-free baseline, CZO-containing membrane electrode assemblies (MEAs) demonstrated extended lifetimes during PEM chemical stability accelerated stress tests (ASTs), exhibiting reduced electrochemical gas crossover, open circuit voltage decay, and fluoridemore » emission rates. The MEA with high CZO loading (55 μg cm -2) demonstrated performance losses, which are attributed to Ce poisoning of the PEM and CL ionomer regions, which is supported by X-ray fluorescence (XRF) analysis. In the MEA with the low CZO loading (10 μg cm -2), both the beginning of life (BOL) performance and the performance after 500 hours of ASTs were nearly identical to the BOL performance of the CZO-free baseline MEA. XRF analysis of the MEA with low CZO loading reveals that the BOL PEM Ce concentrations are preserved after 1408 hours of ASTs and that Ce contents in the cathode CL are not significant enough to reduce performance. Therefore, employing a highly effective radical scavenger such as CZO, at a loading of 10 μg cm -2 in the cathode CL, dramatically mitigates degradation effects, which improves MEA chemical durability and minimizes performance losses.« less

  10. Oxidation-induced water-solubilization and chemical functionalization of fullerenes C60, Gd@C60 and Gd@C82: atomistic insights into the formation mechanisms and structures of fullerenols synthesized by different methods.

    PubMed

    Wang, Zhenzhen; Lu, Zhanghui; Zhao, Yuliang; Gao, Xingfa

    2015-02-21

    Water-solubilization is the prerequisite to endow the pristinely hydrophobic fullerenes with biocompatibility and biofunctionality, which has been widely applied to derive fullerene-based nanomaterials for biomedical applications. Oxidation reactions using O2 and H2O2 are the most commonly used approaches to this end, through which fullerenols with different structural features can be obtained. Despite the progress in the syntheses and bioapplications of fullerenols, their formation mechanisms and structures at the atomic level, which substantialize their physical properties and biofunctions, have been little understood. Using density functional theory calculations, we comparatively study the mechanisms and product structures for the oxidations of C60, Gd@C60 and Gd@C82 using both O2 and H2O2 as oxidizing agents under both neutral and alkaline aqueous conditions. We predict the formation mechanisms and product structures corresponding to the different synthetic conditions. Briefly, the H2O2 oxidations of C60, Gd@C60 and Gd@C82 under neutral conditions do not occur readily at room temperature because of the high energy barriers, whereas the H2O2 oxidations can readily proceed under alkaline conditions. The oxygen-containing groups of the fullerenols obtained under these conditions include hydroxyl, carbonyl, hemiacetal and deprotonated vic-diol. In contrast, through O2 oxidation under alkaline conditions, the most probable oxygen-containing groups for C60 fullerenols are epoxide and deprotonated vic-diol, and those for Gd@C60 and Gd@C82 fullerenols are hydroxyls and carbonyls. The results explain a wide range of experimental findings reported before. More importantly, they provide atomistic-level insights into the formation mechanisms and structures for various fullerenols, which are of fundamental interest for understanding their biomedical applications in the future.

  11. Lung deposition and extrapulmonary translocation of nano-ceria after intratracheal instillation

    NASA Astrophysics Data System (ADS)

    He, Xiao; Zhang, Haifeng; Ma, Yuhui; Bai, Wei; Zhang, Zhiyong; Lu, Kai; Ding, Yayun; Zhao, Yuliang; Chai, Zhifang

    2010-07-01

    The broad potential applications of manufactured nanomaterials call for urgent assessment of their environmental and biological safety. However, most of the previous work focused on the cell level performance; little was known about the consequences of nanomaterial exposure at the whole-body and organ levels. In the present paper, the radiotracer technique was employed to study the pulmonary deposition and the translocation to secondary target organs after ceria nanoparticles (nano-ceria) were intratracheally instilled into Wistar rats. It was found that 63.9 ± 8.2% of the instilled nano-ceria remained in the lung by 28 d postexposure and the elimination half-life was 103 d. At the end of the test period, only 1/8-1/3 of the daily elimination of nano-ceria from the lung was cleared via the gastrointestinal tract, suggesting that phagocytosis by alveolar macrophages (AMs) with subsequent removal towards the larynx was no longer the predominant route for the elimination of nano-ceria from the lung. The whole-body redistribution of nano-ceria demonstrated that the deposited nano-ceria could penetrate through the alveolar wall into the systemic circulation and accumulate in the extrapulmonary organs. In vitro study suggested that nano-ceria would agglomerate and form sediments in the bronchoalveolar aqueous surrounding while binding to protein would be conducive to the redispersion of nano-ceria. The decrease in the size of agglomerates might enhance the penetration of nano-ceria into the systemic circulation. Our findings suggested that the effect of nanomaterial exposure, even at low concentration, should be assessed because of the potential lung and systemic cumulative toxicity of the nanomaterials.

  12. GDC-0941 enhances the lysosomal compartment via TFEB and primes glioblastoma cells to lysosomal membrane permeabilization and cell death.

    PubMed

    Enzenmüller, Stefanie; Gonzalez, Patrick; Karpel-Massler, Georg; Debatin, Klaus-Michael; Fulda, Simone

    2013-02-01

    Since phosphatidylinositol-3-kinase (PI3K) inhibitors are primarily cytostatic against glioblastoma, we searched for new drug combinations. Here, we discover that the PI3K inhibitor GDC-0941 acts in concert with the natural compound B10, a glycosylated derivative of betulinic acid, to induce cell death in glioblastoma cells. Importantly, parallel experiments in primary glioblastoma cultures similarly show that GDC-0941 and B10 cooperate to trigger cell death, underscoring the clinical relevance of this finding. Molecular studies revealed that treatment with GDC-0941 stimulates the expression and nuclear translocation of Transcription Factor EB (TFEB), a master regulator of lysosomal biogenesis, the lysosomal membrane marker LAMP-1 and the mature form of cathepsin B. Also, GDC-0941 triggers a time-dependent increase of the lysosomal compartment in a TFEB-dependent manner, since knockdown of TFEB significantly reduces this GDC-0941-stimulated lysosomal enhancement. Importantly, GDC-0941 cooperates with B10 to trigger lysosomal membrane permeabilization, leading to increased activation of Bax, loss of mitochondrial membrane potential (MMP), caspase-3 activation and cell death. Addition of the cathepsin B inhibitor CA-074me reduces Bax activation, loss of MMP, caspase-3 activation and cell death upon treatment with GDC-0941/B10. By comparison, knockdown of caspase-3 or the broad-range caspase inhibitor zVAD.fmk inhibits GDC-0941/B10-induced DNA fragmentation, but does not prevent cell death, thus pointing to both caspase-dependent and -independent pathways. By identifying the combination of GDC-0941 and B10 as a new, potent strategy to trigger cell death in glioblastoma cells, our findings have important implications for the development of novel treatment approaches for glioblastoma. Copyright © 2012. Published by Elsevier Ireland Ltd.

  13. Gadolinia depletion analysis by CASMO-4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Y.; Saji, E.; Toba, A.

    1993-01-01

    CASMO-4 is the most recent version of the lattice physics code CASMO introduced by Studsvik. The principal aspects of the CASMO-4 model that differ from the models in previous CASMO versions are as follows: (1) heterogeneous model for two-dimensional transport theory calculations; and (2) microregion depletion model for burnable absorbers, such as gadolinia. Of these aspects, the first has previously been benchmarked against measured data of critical experiments and Monte Carlo calculations, verifying the high degree of accuracy. To proceed with CASMO-4 benchmarking, it is desirable to benchmark the microregion depletion model, which enables CASMO-4 to calculate gadolinium depletion directlymore » without the need for precalculated MICBURN cross-section data. This paper presents the benchmarking results for the microregion depletion model in CASMO-4 using the measured data of depleted gadolinium rods.« less

  14. Materials system for intermediate temperature solid oxide fuel cells based on doped lanthanum-gallate electrolyte

    NASA Astrophysics Data System (ADS)

    Gong, Wenquan

    2005-07-01

    The objective of this work was to identify a materials system for intermediate temperature solid oxide fuel cells (IT-SOFCs). Towards this goal, alternating current complex impedance spectroscopy was employed as a tool to study electrode polarization effects in symmetrical cells employing strontium and magnesium doped lanthanum gallate (LSGM) electrolyte. Several cathode materials were investigated including strontium doped lanthanum manganite (LSM), Strontium and iron doped lanthanum cobaltate (LSCF), LSM-LSGM, and LSCF-LSGM composites. Investigated Anode materials included nickel-gadolinium or lanthanum doped cerium oxide (Ni-GDC, or Ni-LDC) composites. The ohmic and the polarization resistances of the symmetrical cells were obtained as a function of temperature, time, thickness, and the composition of the electrodes. Based on these studies, the single phase LSM electrode had the highest polarization resistance among the cathode materials. The mixed-conducting LSCF electrode had polarization resistance orders of magnitude lower than that of the LSM-LSGM composite electrodes. Although incorporating LSGM in the LSCF electrode did not reduce the cell polarization resistance significantly, it could reduce the thermal expansion coefficient mismatch between the LSCF electrodes and LSGM electrolyte. Moreover, the polarization resistance of the LSCF electrode decreased asymptotically as the electrode thickness was increased thus suggesting that the electrode thickness needed not be thicker than this asymptotic limit. On the anode side of the IT-SOFC, Ni reacted with LSGM electrolyte, and lanthanum diffusion occurred from the LSGM electrolyte to the GDC barrier layer, which was between the LSGM electrolyte and the Ni-composite anode. However, LDC served as an effective barrier layer. Ni-LDC (70 v% Ni) anode had the largest polarization resistance, while all other anode materials, i.e. Ni-LDC (50 v% Ni), Ni-GDC (70 v% NO, and Ni-GDC (50 v% Ni), had similar polarization

  15. Surface coating of ceria nanostructures for high-temperature oxidation protection

    NASA Astrophysics Data System (ADS)

    Aadhavan, R.; Bhanuchandar, S.; Babu, K. Suresh

    2018-04-01

    Stainless steels are used in high-temperature structural applications but suffer from degradation at an elevated temperature of operation due to thermal stress which leads to spallation. Ceria coating over chromium containing alloys induces protective chromia layer formation at alloy/ceria interface thereby preventing oxidative degradation. In the present work, three metals of differing elemental composition, namely, AISI 304, AISI 410, and Inconel 600 were tested for high-temperature stability in the presence and absence of ceria coating. Nanoceria was used as the target to deposit the coating through electron beam physical vapor deposition method. After isothermal oxidation at 1243 K for 24 h, Ceria coated AISI 304 and Inconel 600 exhibited a reduced rate of oxidation by 4 and 1 orders, respectively, in comparison with the base alloy. The formation of spinel structure was found to be lowered in the presence of ceria due to the reduced migration of cations from the alloy.

  16. GDC-0941 sensitizes breast cancer to ABT-737 in vitro and in vivo through promoting the degradation of Mcl-1.

    PubMed

    Zheng, Lin; Yang, Wei; Zhang, Chong; Ding, Wan-jing; Zhu, Hong; Lin, Neng-ming; Wu, Hong-hai; He, Qiao-jun; Yang, Bo

    2011-10-01

    The present study showed that GDC-0941 potently sensitized breast cancer to ABT-737 in vitro and in vivo. ABT-737 exhibited limited lethality in breast cancer cells; however, when combined with GDC-0941, it displayed strong synergistic cytotoxicity and enhanced caspase-mediated apoptosis. GDC-0941 promoted proteasomal degradation of Mcl-1, of which the overexpression has been validated to confer ABT-737 resistance, thereby enhanced the anticancer efficacy of ABT-737. Furthermore, the combination of GDC-0941 and ABT-737 exerted increased anti-tumor efficacy on MDA-MB-231 xenograft models. Overall, our data described unprecedentedly the promising therapeutic potential and underlying mechanisms of combining GDC-0941 with ABT-737 in treating breast cancer. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Two types of diffusions at the cathode/electrolyte interface in IT-SOFCs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Zhipeng, E-mail: LI.Zhipeng@nims.go.jp; Mori, Toshiyuki; Auchterlonie, Graeme John

    2011-09-15

    Analytical transmission electron microscopy, in particular with the combination of energy dispersive X-ray spectroscopy (EDX) and electron energy-loss spectroscopy (EELS), has been performed to investigate the microstructure and microchemistry of the interfacial region between the cathode (La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3}, LSCF) and the electrolyte (Gd-doped ceria, GDC). Two types of diffusions, mutual diffusion between cathode and electrolyte as well as the diffusion along grain boundaries, have been clarified. These diffusions suggest that the chemical stability of LSCF and GDC are not as good as previously reported. The results are more noteworthy if we take into consideration the factmore » that such interdiffusions occur even during the sintering process of cell preparation. - Graphical Abstract: Two types of diffusions, the mutual diffusion and the diffusion along grain boundaries, occurred at the cathode/electrolyte interface of intermediate temperature solid state fuel cells, during cell preparation. The mutual diffusion is denoted by black arrows and the diffusion along grain boundaries assigned by pink arrows. Highlights: > All the cations in cathode (LSCF) and electrolyte (GDC) can mutually diffuse into each other. > Diffusing elements will segregate at grain boundaries or triple junctions around the cathode/electrolyte interface. > Two types of diffusions, the mutual diffusion and diffusion along grain boundaries, have been clarified thereafter.« less

  18. The antitumor effect of GDC-0941 alone and in combination with rapamycin in breast cancer cells.

    PubMed

    Zheng, Jie; Zou, Xianjin; Yao, Jia

    2012-01-01

    The phosphatidylinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway is a key potential target in breast cancer therapy. Because some cancer cell lines are resistant to mTOR inhibition, we combined the mTOR inhibitor with the PI3K inhibitor and assayed the inhibitory effect of this combination versus that of a single inhibitor. The proliferation of MCF7, SK-BR-3, T-47D, and MDA-MB-231 cells was measured by MTT assay in the presence of GDC-0941 and/or rapamycin. Afterwards, we determined the visible changes in signaling in the PI3K/AKT/mTOR pathway by Western blotting. GDC-0941 exhibited excellent inhibition on MCF7, T-47D and SK-BR-3 cells with different characteristics. In addition, GDC-0941 blocked the feedback of PI3K/Akt through S6K1, resulting in decreased Akt activity by rapamycin activation. The combination of GDC-0941 and rapamycin downregulated the key components of the cell cycle machinery, such as cyclin D1 and upregulated the apoptotic markers. Our findings suggest that GDC-0941, either alone or in combination with rapamycin, may serve as a new, promising approach for breast cancer treatment. Copyright © 2012 S. Karger AG, Basel.

  19. Nanoparticles, [Gd@C82(OH)22]n, induces dendritic cell maturation and activates Th1 immune responses

    PubMed Central

    Yang, De; Zhao, Yuliang; Guo, Hua; Li, Yana; Tewary, Poonam; Xing, Gengmei; Hou, Wei; Oppenheim, Joost J.; Zhang, Ning

    2010-01-01

    Dendritic cells play a pivotal role in host immune defense, such as elimination of foreign pathogen and inhibition of tumorigenesis. In this paper, we report that [Gd@C82(OH)22]n could induce phenotypic maturation of dendritic cells by stimulating DC production of cytokines including IL-12p70, upregulating DC costimulatory (CD80, CD83, and CD86) and MHC (HLA-A,B,C and HLA-DR) molecules, and switching DCs from a CCL5-responsive to a CCL19-responsive phenotype. We found that [Gd@C82(OH)22]n can induce dendritic cells to become functionally mature as illustrated by their capacity to activate allogeneic T cells. Mice immunized with ovalbumin in the presence of [Gd@C82(OH)22]n exhibit enhanced ovalbumin-specific Th1-polarized immune response as evidenced by the predominantly increased production of IFNγ, IL-1β, and IL-2. The [Gd@C82(OH)22]n nanoparticle is a potent activator of dendritic cells and Th1 immune responses. These new findings also provide a rational understanding of the potent anticancer activities of [Gd@C82(OH)22]n nanoparticles reported previously. PMID:20121217

  20. Fuel cells with doped lanthanum gallate electrolyte

    NASA Astrophysics Data System (ADS)

    Feng, Man; Goodenough, John B.; Huang, Keqin; Milliken, Christopher

    Single cells with doped lanthanum gallate electrolyte material were constructed and tested from 600 to 800°C. Both ceria and the electrolyte material were mixed with NiO powder respectively to form composite anodes. Doped lanthanum cobaltite was used exclusively as the cathode material. While high power density from the solid oxide fuel cells at 800°C was achieved. our results clearly indicate that anode overpotential is the dominant factor in the power loss of the cells. Better anode materials and anode processing methods need to be found to fully utilize the high ionic conductivity of the doped lanthanum galiate and achieve higher power density at 800°C from solid oxide fuel cells.

  1. Oxygen Generation from Carbon Dioxide for Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Bishop, Sean; Duncan, Keith; Hagelin-Weaver, Helena; Neal, Luke; Sanchez, Jose; Paul, Heather L.; Wachsman, Eric

    2007-01-01

    The partial electrochemical reduction of carbon dioxide (CO2) using ceramic oxygen generators (COGs) is well known and widely studied. However, complete reduction of metabolically produced CO2 (into carbon and oxygen) has the potential of reducing oxygen storage weight for life support if the oxygen can be recovered. Recently, the University of Florida devel- oped novel ceramic oxygen generators employing a bilayer elec- trolyte of gadolinia-doped ceria and erbia-stabilized bismuth ox- ide (ESB) for NASA's future exploration of Mars. The results showed that oxygen could be reliably produced from CO2 at temperatures as low as 400 C. The strategy discussed here for advanced life support systems employs a catalytic layer com- bined with a COG cell so that CO2 is reduced all the way to solid carbon and oxygen without carbon buildup on the COG cell and subsequent deactivation.

  2. Surface structure of coherently strained ceria ultrathin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Yezhou; Stone, Kevin H.; Guan, Zixuan

    2016-11-14

    Cerium oxide, or ceria, is an important material for solid oxide fuel cells and water splitting devices. Although the ceria surface is active in catalytic and electrochemical reactions, how its catalytic properties are affected by the surface structure under operating conditions is far from understood. We investigate the structure of the coherently strained CeO 2 ultrathin films on yttria-stabilized zirconia (001) single crystals by specular synchrotron x-ray diffraction (XRD) under oxidizing conditions as a first step to study the surface structure in situ. An excellent agreement between the experiment data and the model is achieved by using a “stacks andmore » islands” model that has a two-component roughness. One component is due to the tiny clusters of nanometer scale in lateral dimensions on each terrace, while the other component is due to slightly different CeO 2 thickness that span over hundreds of nanometers on neighboring terraces. We attribute the nonuniform thickness to step depairing during the thin film deposition that is supported by the surface morphology results on the microscopic level. Importantly, our model also shows that the polarity of the ceria surface is removed by a half monolayer surface coverage of oxygen. In conclusion, the successful resolution of the ceria surface structure using in situ specular synchrotron XRD paves the way to study the structural evolution of ceria as a fuel cell electrode under catalytically relevant temperatures and gas pressures.« less

  3. Shaped Ceria Nanocrystals Catalyze Efficient and Selective Para-Hydrogen-Enhanced Polarization.

    PubMed

    Zhao, Evan W; Zheng, Haibin; Zhou, Ronghui; Hagelin-Weaver, Helena E; Bowers, Clifford R

    2015-11-23

    Intense para-hydrogen-enhanced NMR signals are observed in the hydrogenation of propene and propyne over ceria nanocubes, nano-octahedra, and nanorods. The well-defined ceria shapes, synthesized by a hydrothermal method, expose different crystalline facets with various oxygen vacancy densities, which are known to play a role in hydrogenation and oxidation catalysis. While the catalytic activity of the hydrogenation of propene over ceria is strongly facet-dependent, the pairwise selectivity is low (2.4% at 375 °C), which is consistent with stepwise H atom transfer, and it is the same for all three nanocrystal shapes. Selective semi-hydrogenation of propyne over ceria nanocubes yields hyperpolarized propene with a similar pairwise selectivity of (2.7% at 300 °C), indicating product formation predominantly by a non-pairwise addition. Ceria is also shown to be an efficient pairwise replacement catalyst for propene. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The reduction and oxidation of ceria: A natural abundance triple oxygen isotope perspective

    NASA Astrophysics Data System (ADS)

    Hayles, Justin; Bao, Huiming

    2015-06-01

    Ceria (CeO2) is a heavily studied material in catalytic chemistry for use as an oxygen storage medium, oxygen partial pressure regulator, fuel additive, and for the production of syngas, among other applications. Ceria powders are readily reduced and lose structural oxygen when subjected to low pO2 and/or high temperature conditions. Such dis-stoichiometric ceria can then re-oxidize under higher pO2 and/or lower temperature by incorporating new oxygen into the previously formed oxygen site vacancies. Despite extensive studies on ceria, the mechanisms for oxygen adsorption-desorption, dissociation-association, and diffusion of oxygen species on ceria surface and within the crystal structure are not well known. We predict that a large kinetic oxygen isotope effect should accompany the release and incorporation of ceria oxygen. As the first attempt to determine the existence and the degree of the isotope effect, this study focuses on a set of simple room-temperature re-oxidation experiments that are also relevant to a laboratory procedure using ceria to measure the triple oxygen isotope composition of CO2. Triple-oxygen-isotope labeled ceria powders are heated at 700 °C and cooled under vacuum prior to exposure to air. By combining results from independent experimental sets with different initial oxygen isotope labels and using a combined mass-balance and triangulation approach, we have determined the isotope fractionation factors for both high temperature reduction in vacuum (⩽10-4 mbar) and room temperature re-oxidation in air. Results indicate that there is a 1.5‰ ± 0.8‰ increase in the δ18O value of ceria after being heated in vacuum at 700 °C for 1 h. When the vacuum is broken at room temperature, the previously heated ceria incorporates 3-19% of its final structural oxygen from air, with a δ18O value of 2.1-4.1+7.7 ‰ for the incorporated oxygen. The substantial incorporation of oxygen from air supports that oxygen mobility is high in vacancy

  5. Modifying ceria (111) with a TiO2 nanocluster for enhanced reactivity.

    PubMed

    Nolan, Michael

    2013-11-14

    Modification of ceria catalysts is of great interest for oxidation reactions such as oxidative dehydrogenation of alcohols. Improving the reactivity of ceria based catalysts for these reactions means that they can be run at lower temperatures and density functional theory (DFT) simulations of new structures and compositions are proving valuable in the development of these catalysts. In this paper, we have used DFT+U (DFT corrected for on-site Coulomb interactions) to examine the reactivity of a novel modification of ceria, namely, modifying with TiO2, using the example of a Ti2O4 species adsorbed on the ceria (111) surface. The oxygen vacancy formation energy in the Ti2O4-CeO2 system is significantly reduced over the bare ceria surfaces, which together with previous work on ceria-titania indicates that the presence of the interface favours oxygen vacancy formation. The energy gain upon hydrogenation of the catalyst, which is the rate determining step in oxidative dehydrogenation, further points to the improved oxidation power of this catalyst structure.

  6. STRUCTURAL ANALYSIS OF THE COMBUSTION SYNTHESIZED Y3+ DOPED CERIA (Ce0.9Y0.1O1.95)

    NASA Astrophysics Data System (ADS)

    Jeyanthi, C. Esther; Siddheswaran, R.; Kumar, Pushpendra; Mangalaraja, R. V.; Siva Shankar, V.; Rajarajan, K.

    2013-07-01

    Y3+ doped CeO2 nanopowders (Ce0.9Y0.1O1.95, abbreviated as YDC) were synthesized by citrate-nitrate-auto combustion process using cerium nitrate hexahydrate, yttrium nitrate hexahydrate and citric acid. The as-synthesized powders were calcined at 700°C and converted into dense bodies followed by sintering at 1200°C. The microstructure of the synthesized powders and sintered bodies were examined by scanning electron microscopy (SEM). The surface morphology of the nanoparticles and clusters were also analysed by transmission electron microscopy (TEM). The particles size of the YDC was found to be in the range from 10 to 30 nm, which is in good agreement with the crystallite size calculated from X-ray peak broadening method. Also, the X-ray diffraction confirmed that the Ce0.9Y0.1O1.95 crystallizes as the cubic fluorite structure of pure ceria. The optical absorption by functional molecules, impurities and oxygen vacancies were analysed by FTIR and Raman spectroscopic studies. From the FTIR spectrum, the absorption peak found at 530 cm-1 is attributed to the vibrations of metal-oxygen bonds. The characteristic Raman peak was found to be 468 cm-1, and the minute absorption of oxygen vacancies were observed in the region 500-640 cm-1.

  7. Sulfur poisoning of Ni/Gadolinium-doped ceria anodes: A long-term study outlining stable solid oxide fuel cell operation

    NASA Astrophysics Data System (ADS)

    Riegraf, Matthias; Zekri, Atef; Knipper, Martin; Costa, Rémi; Schiller, Günter; Friedrich, K. Andreas

    2018-03-01

    This work presents an analysis of the long-term behavior of nickel/gadolinium-doped ceria (CGO) anode-based solid oxide fuel cells (SOFC) under sulfur poisoning conditions. A parameter study of sulfur-induced irreversible long-term degradation of commercial, high-performance single cells was carried out at 900 °C for different H2/N2/H2S fuel gas atmospheres, current densities and Ni/CGO anodes. The poisoning periods of the cells varied from 200 to 1500 h. The possibility of stable long-term Ni/CGO anode operation under sulfur exposure is established and the critical operating regime is outlined. Depending on the operating conditions, two degradation phenomena can be observed. Small degradation of the ohmic resistance was witnessed for sulfur exposure times of approximately 1000 h. Moreover, degradation of the anode charge transfer resistance was observed to be triggered by the combination of a small anodic potential step and high sulfur coverage on Ni. The microstructural evolution of altered Ni/CGO anodes was examined post-mortem by means of SEM and FIB/SEM, and is correlated to the anode performance degradation under critical operating conditions, establishing Ni depletion, porosity increase and a tripe phase boundary density decrease in the anode functional layer. It is shown that short-term sulfur poisoning behavior can be used to assess long-term stability.

  8. A Novel Hybrid Axial-Radial Atmospheric Plasma Spraying Technique for the Fabrication of Solid Oxide Fuel Cell Anodes Containing Cu, Co, Ni, and Samaria-Doped Ceria

    NASA Astrophysics Data System (ADS)

    Cuglietta, Mark; Kuhn, Joel; Kesler, Olivera

    2013-06-01

    Composite coatings containing Cu, Co, Ni, and samaria-doped ceria (SDC) have been fabricated using a novel hybrid atmospheric plasma spraying technique, in which a multi-component aqueous suspension of CuO, Co3O4, and NiO was injected axially simultaneously with SDC injected radially in a dry powder form. Coatings were characterized for their microstructure, permeability, porosity, and composition over a range of plasma spray conditions. Deposition efficiency of the metal oxides and SDC was also estimated. Depending on the conditions, coatings displayed either layering or high levels of mixing between the SDC and metal phases. The deposition efficiencies of both feedstock types were strongly dependent on the nozzle diameter. Plasma-sprayed metal-supported solid oxide fuel cells utilizing anodes fabricated with this technique demonstrated power densities at 0.7 V as high as 366 and 113 mW/cm2 in humidified hydrogen and methane, respectively, at 800 °C.

  9. Ameliorative role of nano-ceria against amine coated Ag-NP induced toxicity in Labeo rohita

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Saleem; Qureshi, Naureen Aziz; Jabeen, Farhat

    2018-03-01

    Silver nanoparticles (Ag-NPs) and its byproducts can spread pollution in aquatic habitat. Liver and gills are key target for toxicity. Oxidative stress, tissue alterations, and hemotoxicity are assumed to be associated with Ag-NPs in target animals. Cerium oxide nanoparticles (nano-ceria) show antioxidant potential in scavenging the free radicals generated in Ag-NP-induced oxidative stress. We determined ameliorated role of nano-ceria against Ag-NP-induced toxicity in fresh water Labeo rohita (L. rohita). Four groups were used in study including control, nano-ceria, Ag-NPs, and Ag-NPs + nano-ceria. Ag-NPs (30 mg l-1) and nano-ceria (50 µg kg-1) were given through water and prepared feed, respectively. The samples were taken after 28 days. Results demonstrated that pre-treatment of nano-ceria recovered L. rohita from Ag-NP-induced toxicity and oxidative stress. Nano-ceria pre-treatment actively mimics the activity of GST, GSH, CAT, and SOD. Furthermore, Ag-NPs' treatment caused severe inflammation and necrosis in hepatic parenchyma which leaded to congestion of blood in hepatic tissues. Accumulation of a yellow pigment in hepatic tissue was also seen due to necrosis of affected cells. In nano-ceria pre-treatment, there was no congestion in hepatic tissue. Vacuolization of cells and necrosis in some area was recorded in nano-ceria pre-treated group, but the gill and hepatic tissue showed improvement against Ag-NP-induced damage. Nano-ceria pre-treatment also improved hematological parameters in Ag-NP-treated fish. This study concluded that Ag-NP-induced toxicity in treated fish and pre-treatment of nano-ceria show ameliorative role.

  10. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, John; Xiong, Haifeng; DelaRiva, Andrew

    2016-07-08

    Catalysts based on single atoms of scarce precious metals can lead to more efficient use through enhanced reactivity and selectivity. However, single atoms on catalyst supports can be mobile and aggregate into nanoparticles when heated at elevated temperatures. High temperatures are detrimental to catalyst performance unless these mobile atoms can be trapped. We used ceria powders having similar surface areas but different exposed surface facets. When mixed with a platinum/ aluminum oxide catalyst and aged in air at 800°C, the platinum transferred to the ceria and was trapped. Polyhedral ceria and nanorods were more effective than ceria cubes at anchoringmore » the platinum. Performing synthesis at high temperatures ensures that only the most stable binding sites are occupied, yielding a sinter-resistant, atomically dispersed catalyst.« less

  11. The PI3K inhibitor GDC-0941 displays promising in vitro and in vivo efficacy for targeted medulloblastoma therapy.

    PubMed

    Ehrhardt, Michael; Craveiro, Rogerio B; Holst, Martin I; Pietsch, Torsten; Dilloo, Dagmar

    2015-01-20

    Deregulation of the Phosphoinositide 3-kinase (PI3K)/AKT signalling network is a hallmark of oncogenesis. Also medulloblastoma, the most common malignant brain tumor in children, is characterized by high levels of AKT phosphorylation and activated PI3K signalling in medulloblastoma is associated with enhanced cellular motility, survival and chemoresistency underscoring its role of as a potential therapeutic target. Here we demonstrate that GDC-0941, a highly specific PI3K inhibitor with good clinical tolerability and promising anti-neoplastic activity in adult cancer, also displays anti-proliferative and pro-apoptotic effects in pediatric human medulloblastoma cell lines. Loss in cell viability is accompanied by reduced phosphorylation of AKT, a downstream target of PI3K. Furthermore, we show that GDC-0941 attenuates the migratory capacity of medulloblastoma cells and targets subpopulations expressing the stem cell marker CD133. GDC-0941 also synergizes with the standard medulloblastoma chemotherapeutic etoposide. In an orthotopic xenograft model of the most aggressive human medulloblastoma variant we document that oral adminstration of GDC-0941 impairs tumor growth and significantly prolongs survival. These findings provide a rational to further investigate GDC-0941 alone and in combination with standard chemotherapeutics for medulloblastoma treatment.

  12. Chemical reaction mechanisms between Y2O3 stabilized ZrO2 and Gd doped CeO2 with PH3 in coal syngas

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Kishimoto, Haruo; Yamaji, Katsuhiko; Kuramoto, Koji; Gong, Mingyang; Liu, Xingbo; Hackett, Gregory; Gerdes, Kirk; Horita, Teruhisa

    2014-12-01

    To clarify the chemical stability of the key materials exposed to coal syngas (CSG) containing PH3 contaminant atmosphere, exposure tests of Y2O3 8 mol.% stabilized ZrO2 (YSZ) and Gd doped CeO2 (GDC) are carried out in simulated CSG with different concentrations of PH3. Significant reaction between YSZ and 10 ppm PH3 in CSG atmosphere is confirmed, and no obvious reaction is detected on the surface of YSZ after exposed in CSG with 1 ppm PH3. YPO4, Zr2.25(PO4)3 and monoclinic Y partial stabilized ZrO2 (m-PSZ) are identified on the YSZ pellet surface after exposed in CSG with 10 ppm PH3. GDC reacted with PH3 even at 1 ppm concentration. A (Ce0.9Gd0.1)PO4 layer is formed on the surface of GDC pellet after exposure in CSG with 10 ppm PH3. Possible reaction mechanisms between YSZ and GDC with PH3 in CSG are clarified. Compared with GDC, YSZ exhibits sufficient phosphorus resistance for devices directly exposed to a coal syngas atmosphere containing low concentration of PH3.

  13. Wall conditioning by ECRH discharges and He-GDC in the limiter phase of Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Wauters, T.; Brakel, R.; Brezinsek, S.; Dinklage, A.; Goriaev, A.; Laqua, H. P.; Marsen, S.; Moseev, D.; Stange, T.; Schlisio, G.; Pedersen, T. Sunn; Volzke, O.; Wenzel, U.; the W7-X Team

    2018-06-01

    Wendelstein 7-X (W7-X) relies on wall conditioning to control the density and the impurity content of the plasma. Wall conditioning in the first operation campaign of W7-X consisted of baking at 150 °C during 1 week prior to operation, glow discharge conditioning (GDC) in helium (He) and electron cyclotron resonance heating (ECRH) discharges. Additionally, the usage of He-GDC was limited to avoid sputtering and migration of metallic plasma facing components. This presented a unique opportunity for studying the applicability of ECRH discharges for initial wall conditioning on a stellarator, albeit in the carbon limiter configuration. A single envelope curve is observed in the normalised outgassing data that takes into account all ECRH discharges. This illustrates that the majority of discharges operates at the limits of a radiative collapse. Hydrogen recycling dominated the fuelling of ECRH discharges throughout while CO outgassing was found strongest at the start of the campaign. A reduction of recycling was observed throughout the campaign. Temporarily depleting the walls from H and impurities was possible by He-GDC. It was shown that the recycling coefficient in -ECRH plasmas could be reduced and the pulse duration significantly extended by He-’recovery’ ECRH plasmas. Good wall conditions were defined by normalised outgassing values below mbar kJ‑1. In absence of -GDC, more than 311 cumulated discharge seconds of ECRH discharges are needed for obtaining lasting low outgassing levels. A release model with two trapping reservoirs could reproduce the normalised outgassing trend, including ECRH and GDC plasma wall interactions.

  14. The PI3K inhibitor GDC-0941 combines with existing clinical regimens for superior activity in multiple myeloma.

    PubMed

    Munugalavadla, V; Mariathasan, S; Slaga, D; Du, C; Berry, L; Del Rosario, G; Yan, Y; Boe, M; Sun, L; Friedman, L S; Chesi, M; Leif Bergsagel, P; Ebens, A

    2014-01-16

    The phosphatidylinositol 3'-kinase (PI3K) pathway is dysregulated in multiple myeloma (MM); we therefore tested a highly selective class I PI3K inhibitor, GDC-0941, for anti-myeloma activity. Functional and mechanistic studies were first performed in MM cell lines, then extended to primary MM patient samples cultured in vitro. GDC-0941 was then assessed as a single agent and in various combinations in myeloma tumor xenograft models. We show p110 α and β are the predominant PI3K catalytic subunits in MM and that a highly selective class I PI3K inhibitor, GDC-0941, has robust activity as a single agent to induce cell cycle arrest and apoptosis of both MM cell lines and patient myeloma cells. Mechanistic studies revealed an induction of cell cycle arrest at G0/G1, with decreased phospho-FoxO1/3a levels, decreased cyclin D1 and c-myc expression, and an increase in the cell cycle inhibitor, p27kip. Induction of apoptosis correlated with increased expression of the pro-apoptotic BH3-only protein BIM, cleaved caspase 3 and cleaved poly (ADP-ribose) polymerase (PARP). In vitro, GDC-0941 synergized with dexamethasone (Dex) and lenalidomide (combination index values of 0.3-0.4 and 0.4-0.8, respectively); in vivo GDC-0941 has anti-myeloma activity and significantly increases the activity of the standard of care agents in several murine xenograft tumor models (additional tumor growth inhibition of 37-53% (Dex) and 22-72% (lenalidomide)). These data provide a clear therapeutic hypothesis for the inhibition of PI3K and provide a rationale for clinical development of GDC-0941 in myeloma.

  15. Adhesion and Atomic Structures of Gold on Ceria Nanostructures:The Role of Surface Structure and Oxidation State of Ceria Supports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yuyuan; Wu, Zili; Wen, Jianguo

    2015-01-01

    Recent advances in heterogeneous catalysis have demonstrated that oxides supports with the same material but different shapes can result in metal catalysts with distinct catalytic properties. The shape-dependent catalysis was not well-understood owing to the lack of direct visualization of the atomic structures at metal-oxide interface. Herein, we utilized aberration-corrected electron microscopy and revealed the atomic structures of gold particles deposited on ceria nanocubes and nanorods with {100} or {111} facets exposed. For the ceria nanocube support, gold nanoparticles have extended atom layers at the metal-support interface. In contrast, regular gold nanoparticles and rafts are present on the ceria nanorodmore » support. After hours of water gas shift reaction, the extended gold atom layers and rafts vanish, which is associated with the decrease of the catalytic activities. By understanding the atomic structures of the support surfaces, metal-support interfaces, and morphologies of the gold particles, a direct structure-property relationship is established.« less

  16. Social media and professionalism: a retrospective content analysis of Fitness to Practise cases heard by the GDC concerning social media complaints.

    PubMed

    Neville, P

    2017-09-08

    Introduction Since 2013, all General Dental Council (GDC) registrants' online activities have been regulated by the GDC's social media guidelines. Failure to comply with these guidelines results in a Fitness to Practise (FtP) complaint being investigated.Aims This study explores the prevalence of social media related FtP cases investigated by the GDC from 1 September 2013 to 21 June 2016.Method Documentary analysis of social media related FtP cases published on the GDC's website was undertaken. All cases that met the study's inclusion criteria were analysed using a quantitative content analysis framework.Findings It was found that 2.4% of FtP cases published on the GDC website during that period were related to breaches of the social media guidelines. All of the cases investigated were proven and upheld. Most of those named in the complaints were dental nurses and the most common type of complaint was inappropriate Facebook comments.Conclusions The low incidence rate should be interpreted with caution, being illustrative of the types of issues that might arise rather than the volume. The GDC will need to remain vigilant in this area and ensure that social media awareness training is an active part of CPD for all the dental team.

  17. Partial oxidation of liquid hydrocarbons in the presence of oxygen-conducting supports: Effect of catalyst layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M.; Berry, D.; Shekhawt, D.

    2010-01-01

    Ni-substituted barium hexaaluminate (BNHA) catalysts supported onto gadolinium-doped ceria (GDC), an oxygen-conductor, were prepared using two different methods: (1) conventional incipient wetness impregnation (IWI), in which a non-porous GDC support was impregnated in the conventional manner with aqueous precursors, then dried and calcined to form a supported hexaaluminate, and (2) solid-state mixing (SSM), in which solid hexaaluminate and GDC particles were mechanically ground together and thermally treated to produce a final catalyst. These catalysts were compared to bulk, unsupported BNHA; 3 wt% Ni/alumina; and 3 wt% Ni/GDC (the latter two prepared by conventional impregnation) for the partial oxidation (POX) ofmore » n-tetradecane. The reaction studies included examining the effect of 50 ppm S as dibenzothiophene (DBT) and 5 wt% 1-methylnaphthalene (MN) on the product yield under POX conditions. Temperature programmed oxidation (TPO) was used to characterize carbon formation in the reactor. The materials were characterized by BET, ICP-OES, XRD, and SEM/EDS prior to the reaction tests. Characterization of the two GDC-supported BNHA catalysts prior to the reaction studies indicated no significant differences in the bulk composition, surface area, and crystal structure. However, SEM images showed a larger amount of exposed GDC support surface area for the material prepared by IWI. Both of the GDC-supported BNHA materials demonstrated greatly reduced deactivation, with significantly reduced carbon formation compared to bulk BNHA. This was attributed to the oxygen-conducting property of the GDC, which reduced the rate of deactivation of the reaction sites by DBT and MN. The material prepared by IWI demonstrated more stable hydrogen and carbon monoxide yield than the material prepared by SSM. Although both catalysts deactivated in the presence of DBT and MN, the activity of the catalyst prepared by IWI recovered activity more quickly after the contaminants were

  18. The PI3K inhibitor GDC-0941 displays promising in vitro and in vivo efficacy for targeted medulloblastoma therapy

    PubMed Central

    Holst, Martin I.; Pietsch, Torsten; Dilloo, Dagmar

    2015-01-01

    Deregulation of the Phosphoinositide 3-kinase (PI3K)/AKT signalling network is a hallmark of oncogenesis. Also medulloblastoma, the most common malignant brain tumor in children, is characterized by high levels of AKT phosphorylation and activated PI3K signalling in medulloblastoma is associated with enhanced cellular motility, survival and chemoresistency underscoring its role of as a potential therapeutic target. Here we demonstrate that GDC-0941, a highly specific PI3K inhibitor with good clinical tolerability and promising anti-neoplastic activity in adult cancer, also displays anti-proliferative and pro-apoptotic effects in pediatric human medulloblastoma cell lines. Loss in cell viability is accompanied by reduced phosphorylation of AKT, a downstream target of PI3K. Furthermore, we show that GDC-0941 attenuates the migratory capacity of medulloblastoma cells and targets subpopulations expressing the stem cell marker CD133. GDC-0941 also synergizes with the standard medulloblastoma chemotherapeutic etoposide. In an orthotopic xenograft model of the most aggressive human medulloblastoma variant we document that oral adminstration of GDC-0941 impairs tumor growth and significantly prolongs survival. These findings provide a rational to further investigate GDC-0941 alone and in combination with standard chemotherapeutics for medulloblastoma treatment. PMID:25596739

  19. Simultaneous NOx and Particulate Matter Removal from Diesel Exhaust by Hierarchical Fe-Doped Ce–Zr Oxide

    PubMed Central

    2017-01-01

    Particulate matter and NOx emissions from diesel exhaust remains one of the most pressing environmental problems. We explore the use of hierarchically ordered mixed Fe–Ce–Zr oxides for the simultaneous capture and oxidation of soot and reduction of NOx by ammonia in a single step. The optimized material can effectively trap the model soot particles in its open macroporous structure and oxidize the soot below 400 °C while completely removing NO in the 285–420 °C range. Surface characterization and DFT calculations emphasize the defective nature of Fe-doped ceria. The isolated Fe ions and associated oxygen vacancies catalyze facile NO reduction to N2. A mechanism for the reduction of NO with NH3 on Fe-doped ceria is proposed involving adsorbed O2. Such adsorbed O2 species will also contribute to the oxidation of soot. PMID:28603656

  20. Preclinical pharmacokinetics of the novel PI3K inhibitor GDC-0941 and prediction of its pharmacokinetics and efficacy in human.

    PubMed

    Salphati, Laurent; Pang, Jodie; Plise, Emile G; Chou, Bilin; Halladay, Jason S; Olivero, Alan G; Rudewicz, Patrick J; Tian, Qingping; Wong, Susan; Zhang, Xiaolin

    2011-12-01

    The phosphatidylinositol 3-kinase (PI3K) pathway is a major determinant of cell cycling and proliferation. Its deregulation is associated with the development of many cancers. GDC-0941, a potent and selective inhibitor of PI3K, was characterised preclinically in in vitro and in vivo studies. Plasma protein binding was extensive, with free fraction less than 7%, and blood-to-plasma ratio ranged from 0.6 to 1.2 among the species tested. GDC-0941 human hepatic clearance was predicted to be moderate by liver microsomal incubations. GDC-0941 had high permeability in Madin-Darby canine kidney cells. The clearance of GDC-0941 was high in mouse (63.7 mL/min/kg), rat (49.3 mL/min/kg) and cynomolgus monkey (58.6 mL/min/kg), and moderate in dog (11.9 mL/min/kg). The volume of distribution ranged from 2.52 L/kg in rat to 2.94 L/kg in monkey. Oral bioavailability ranged from 18.6% in monkey to 77.9% in mouse. Predicted human clearance and volume of distribution using allometry were 6 mL/min/kg and 2.9 L/kg, respectively. The human efficacious doses were predicted based on results from preclinical pharmacokinetic studies and xenograft models. GDC-0941 preclinical characterisation and predictions of its properties in human supported its progression towards clinical development. GDC-0941 is currently in phase II clinical trials.

  1. A potent combination of the novel PI3K Inhibitor, GDC-0941, with imatinib in gastrointestinal stromal tumor xenografts: long-lasting responses after treatment withdrawal.

    PubMed

    Floris, Giuseppe; Wozniak, Agnieszka; Sciot, Raf; Li, Haifu; Friedman, Lori; Van Looy, Thomas; Wellens, Jasmien; Vermaelen, Peter; Deroose, Christophe M; Fletcher, Jonathan A; Debiec-Rychter, Maria; Schöffski, Patrick

    2013-02-01

    Oncogenic signaling in gastrointestinal stromal tumors (GIST) is sustained via PI3K/AKT pathway. We used a panel of six GIST xenograft models to assess efficacy of GDC-0941 as single agent or in combination with imatinib (IMA). Nude mice (n = 136) were grafted bilaterally with human GIST carrying diverse KIT mutations. Mice were orally dosed over four weeks, grouped as follows: (A) control; (B) GDC-0941; (C) imatinib, and (D) GDC+IMA treatments. Xenografts regrowth after treatment discontinuation was assessed in groups C and D for an additional four weeks. Tumor response was assessed by volume measurements, micro-PET imaging, histopathology, and immunoblotting. Moreover, genomic alterations in PTEN/PI3K/AKT pathway were evaluated. In all models, GDC-0941 caused tumor growth stabilization, inhibiting tumor cell proliferation, but did not induce apoptosis. Under GDC+IMA, profound tumor regression, superior to either treatment alone, was observed. This effect was associated with the best histologic response, a nearly complete proliferation arrest and increased apoptosis. Tumor regrowth assays confirmed superior activity of GDC+IMA over imatinib; in three of six models, tumor volume remained reduced and stable even after treatment discontinuation. A positive correlation between response to GDC+IMA and PTEN loss, both on gene and protein levels, was found. GDC+IMA has significant antitumor efficacy in GIST xenografts, inducing more substantial tumor regression, apoptosis, and durable effects than imatinib. Notably, after treatment withdrawal, tumor regression was sustained in tumors exposed to GDC+IMA, which was not observed under imatinib. Assessment of PTEN status may represent a useful predictive biomarker for patient selection.

  2. The PI3K inhibitor GDC-0941 enhances radiosensitization and reduces chemoresistance to temozolomide in GBM cell lines.

    PubMed

    Shi, Fei; Guo, Hongchuan; Zhang, Rong; Liu, Hongyu; Wu, Liangliang; Wu, Qiyan; Liu, Jialin; Liu, Tianyi; Zhang, Qiuhang

    2017-03-27

    Glioblastoma multiforme (GBM) is among the most lethal of all human tumors. It is the most frequently occurring malignant primary brain tumor in adults. The current standard of care (SOC) for GBM is initial surgical resection followed by treatment with a combination of temozolomide (TMZ) and ionizing radiation (IR). However, GBM has a dismal prognosis, and survivors have compromised quality of life owing to the adverse effects of radiation. GBM is characterized by overt activity of the phosphoinositide 3-kinase (PI3K) signaling pathway. GDC-0941 is a highly specific PI3K inhibitor with promising anti-tumor activity in human solid tumors. It is being evaluated in Phase II clinical trials for the treatment of breast and non-squamous cell lung cancer. We hypothesized that GDC-0941 may act as an antitumor agent and potentiate the effects of TMZ and IR. In this study, GDC-0941 alone induced cytotoxicity and pro-apoptotic effects. Moreover, combined with the standard GBM therapy (TMZ and IR), it suppressed cell viability, showed enhanced pro-apoptotic effects, augmented autophagy response, and attenuated migratory/invasive capacity in three glioma cell lines. Protein microarray analyses showed that treatment with TMZ+GDC-0941+IR induced higher levels of p53 and glycogen synthase kinase 3-beta (GSK3-β) expression in SHG44GBM cells than those induced by other treatments. This was verified in all cell lines by western blot analysis. Furthermore, the combination of TMZ and GDC-0941 with or without IR reduced the levels of p-AKT and O 6 -methylguanine DNA methyltransferase (MGMT) in T98G cells. The results of this study suggest that the combination of TMZ, IR, and GDC-0941 is a promising choice for future treatments of GBM. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Space charge induced surface stresses: implications in ceria and other ionic solids.

    PubMed

    Sheldon, Brian W; Shenoy, Vivek B

    2011-05-27

    Volume changes associated with point defects in space charge layers can produce strains that substantially alter thermodynamic equilibrium near surfaces in ionic solids. For example, near-surface compressive stresses exceeding -10 GPa are predicted for ceria. The magnitude of this effect is consistent with anomalous lattice parameter increases that occur in ceria nanoparticles. These stresses should significantly alter defect concentrations and key transport properties in a wide range of materials (e.g., ceria electrolytes in fuel cells). © 2011 American Physical Society

  4. A potent combination of the novel PI3K inhibitor, GDC-0941, with imatinib in gastrointestinal stromal tumor xenografts: long-lasting responses after treatment withdrawal

    PubMed Central

    Floris, Giuseppe; Wozniak, Agnieszka; Sciot, Raf; Li, Haifu; Friedman, Lori; Van Looy, Thomas; Wellens, Jasmien; Vermaelen, Peter; Deroose, Christophe M.; Fletcher, Jonathan A.; Debiec-Rychter, Maria; Schöffski, Patrick

    2015-01-01

    Introduction Oncogenic signaling in gastrointestinal stromal tumors (GIST) is sustained via PI3K/AKT pathway. We used a panel of six GIST xenograft models to assess efficacy of GDC-0941 as single agent or in combination with imatinib (IMA). Experimental design Nude mice (n=136) were grafted bilaterally with human GIST carrying divers KIT mutations. Mice were orally dosed over four weeks, grouped as follows: A) control; B) GDC-0941; C) IMA and D) GDC+IMA treatments. Xenografts re-growth after treatment discontinuation was assessed in group C and D for additional four weeks. Tumor response was assessed by volume measurements, micro-PET imaging, histopathology and immunoblotting. Moreover genomic alterations in PTEN/PI3K/AKT pathway were evaluated. Results In all models, GDC-0941 caused tumor growth stabilization, inhibiting tumor cells proliferation but did not induce apoptosis. Under GDC+IMA, profound tumor regression, superior to either treatment alone, was observed. This effect was associated with the best histologic response, a nearly complete proliferation arrest and increased apoptosis. Tumor re-growth assays confirmed superior activity of GDC+IMA over IMA; in three out of six models tumor volume remained reduced and stable even after treatment discontinuation. A positive correlation between response to GDC+IMA and PTEN loss, both on gene and protein levels, was found. Conclusion GDC+IMA has significant antitumor efficacy in GIST xenografts, inducing more substantial tumor regression, apoptosis and durable effects than IMA. Notably, after treatment withdrawal, tumor regression was sustained in tumors exposed to GDC+IMA, which was not observed under IMA. Assessment of PTEN status may represent a useful predictive biomarker for patient selection. PMID:23231951

  5. Effect of Microenvironmental pH Modulation on the Dissolution Rate and Oral Absorption of the Salt of a Weak Acid - Case Study of GDC-0810.

    PubMed

    Hou, Hao Helen; Jia, Wei; Liu, Lichuan; Cheeti, Sravanthi; Li, Jane; Nauka, Ewa; Nagapudi, Karthik

    2018-01-29

    The purpose of this work is to investigate the effect of microenvironmental pH modulation on the in vitro dissolution rate and oral absorption of GDC-0810, an oral anti-cancer drug, in human. The pH-solubility profile of GDC-0810 free acid and pH max of its N-Methyl-D-glucamine (NMG) salt were determined. Precipitation studies were conducted for GDC-0810 NMG salt at different pH values. GDC-0810 200-mg dose NMG salt tablet formulations containing different levels of sodium bicarbonate as the pH modifier were tested for dissolution under the dual pH-dilution scheme. Three tablet formulations were evaluated in human as a part of a relative bioavailability study. A 200-mg dose of GDC-0810 was administered QD with low fat food. Intrinsic solubility of GDC-0810 free acid was found to be extremely low. The pH max of the NMG salt suggested a strong tendency for form conversion to the free acid under GI conditions. In vitro dissolution profiles showed that the dissolution rate and extent of GDC-0810 increased with increasing the level of sodium bicarbonate in the formulation. The human PK data showed a similar trend for the geometric mean of C max and AUC 0-t for formulations containing 5%, 10%, and 15% sodium bicarbonate, but the difference is not statistically significant. Incorporation of a basic pH modifier, sodium bicarbonate, in GDC-0810 NMG salt tablet formulations enhanced in vitro dissolution rate of GDC-0810 via microenvironmental pH modulation. The human PK data showed no statistically significant difference in drug exposure from tablets containing 5%, 10%, and 15% sodium bicarbonate.

  6. First-in-human phase 1 study of the BTK inhibitor GDC-0853 in relapsed or refractory B-cell NHL and CLL.

    PubMed

    Byrd, John C; Smith, Stephen; Wagner-Johnston, Nina; Sharman, Jeff; Chen, Andy I; Advani, Ranjana; Augustson, Bradley; Marlton, Paula; Renee Commerford, S; Okrah, Kwame; Liu, Lichuan; Murray, Elaine; Penuel, Elicia; Ward, Ashley F; Flinn, Ian W

    2018-02-27

    GDC-0853 is a selective, reversible, and non-covalent inhibitor of Bruton's tyrosine kinase (BTK) that does not require interaction with the Cys481 residue for activity. In this first-in-human phase 1 study we evaluated safety, tolerability, pharmacokinetics, and activity of GDC-0853 in patients with relapsed or refractory non-Hodgkin lymphoma (NHL) or chronic lymphocytic leukemia (CLL). Twenty-four patients, enrolled into 3 cohorts, including 6 patients who were positive for the C481S mutation, received GDC-0853 at 100, 200, or 400 mg once daily, orally. There were no dose limiting toxicities. GDC-0853 was well tolerated and the maximum tolerated dose (MTD) was not reached due to premature study closure. Common adverse events (AEs) in ≥ 15% of patients regardless of causality included fatigue (37%), nausea (33%), diarrhea (29%), thrombocytopenia (25%), headache (20%), and abdominal pain, cough, and dizziness (16%, each). Nine serious AEs were reported in 5 patients of whom 2 had fatal outcomes (confirmed H1N1 influenza and influenza pneumonia). A third death was due to progressive disease. Eight of 24 patients responded to GDC-0853: 1 complete response, 4 partial responses, and 3 partial responses with lymphocytosis, including 1 patient with the C481S mutation. Two additional C481S mutation patients had a decrease in size of target tumors (-23% and -44%). These data demonstrate GDC-0853 was generally well-tolerated with antitumor activity.

  7. Pyrolysis result of polyethylene waste as fuel for solid oxide fuel cell with samarium doped-ceria (SDC)-carbonate as electrolyte

    NASA Astrophysics Data System (ADS)

    Syahputra, R. J. E.; Rahmawati, F.; Prameswari, A. P.; Saktian, R.

    2017-02-01

    In this research, the result of pyrolysis on polyethylene was used as fuel for a solid oxide fuel cell (SOFC). The pyrolysis result is a liquid which consists of hydrocarbon chains. According to GC-MS analysis, the hydrocarbons mainly consist of C7 to C20 hydrocarbon chain. Then, the liquid was applied to a single cell of NSDC-L | NSDC | NSDC-L. NSDC is a composite SDC (samarium doped-ceria) with sodium carbonate. Meanwhile, NSDC-L is a composite of NSDC with LiNiCuO (LNC). NSDC and LNC were analyzed by X-ray diffraction to understand their crystal structure. The result shows that presence of carbonate did not change the crystal structure of SDC. SEM EDX analysis for fuel cell before and after being loaded with polyethylene oil to get information of element diffusion to the electrolyte. Meanwhile, the conductivity properties were investigated through impedance measurement. The presence of carbonate even increases the electrical conductivity. The single cell test with the pyrolysis result of polyethylene at 300 - 600 °C, found that the highest power density is at 600 °C with the maximum power density of 0.14 mW/cm2 and open circuit voltage of 0.4 Volt. Elemental analysis at three point spots of single cell NDSC-L |NSDC|NSDC-L found that a migration of ions was occurred during fuel operation at 300 - 600 °C.

  8. Molten carbonate fuel cell cathode with mixed oxide coating

    DOEpatents

    Hilmi, Abdelkader; Yuh, Chao-Yi

    2013-05-07

    A molten carbonate fuel cell cathode having a cathode body and a coating of a mixed oxygen ion conductor materials. The mixed oxygen ion conductor materials are formed from ceria or doped ceria, such as gadolinium doped ceria or yttrium doped ceria. The coating is deposited on the cathode body using a sol-gel process, which utilizes as precursors organometallic compounds, organic and inorganic salts, hydroxides or alkoxides and which uses as the solvent water, organic solvent or a mixture of same.

  9. Pharmacokinetic-pharmacodynamic modeling of tumor growth inhibition and biomarker modulation by the novel phosphatidylinositol 3-kinase inhibitor GDC-0941.

    PubMed

    Salphati, Laurent; Wong, Harvey; Belvin, Marcia; Bradford, Delia; Edgar, Kyle A; Prior, Wei Wei; Sampath, Deepak; Wallin, Jeffrey J

    2010-09-01

    The phosphatidylinositol 3-kinase (PI3K) pathway is a major determinant of cell cycling and proliferation. Its deregulation, by activation or transforming mutations of the p110alpha subunit, is associated with the development of many cancers. 2-(1H-Indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) is a novel small molecule inhibitor of PI3K currently being evaluated in the clinic as an anticancer agent. The objectives of these studies were to characterize the relationships between GDC-0941 plasma concentrations and tumor reduction in MCF7.1 breast cancer xenografts and to evaluate the association between the tumor pharmacodynamic biomarker [phosphorylated (p) Akt and phosphorylated proline-rich Akt substrate of 40 kDa (pPRAS40)] responses and antitumor efficacy. MCF7.1 tumor-bearing mice were treated for up to 3 weeks with GDC-0941 at various doses (12.5-200 mg/kg) and dosing schedules (daily to weekly). An indirect response model fitted to tumor growth data indicated that the GDC-0941 plasma concentration required for tumor stasis was approximately 0.3 muM. The relationship between GDC-0941 plasma concentrations and inhibition of pAkt and pPRAS40 in tumor was also investigated after a single oral dose of 12.5, 50, or 150 mg/kg. An indirect response model was fitted to the inhibition of Akt and PRAS40 phosphorylation data and provided IC(50) estimates of 0.36 and 0.29 muM for pAkt and pPRAS40, respectively. The relationship between pAkt inhibition and tumor volume was further explored using an integrated pharmacokinetic biomarker tumor growth model, which showed that a pAkt inhibition of at least 30% was required to achieve stasis after GDC-0941 treatment of the MCF7.1 xenograft.

  10. Soot Combustion over Nanostructured Ceria with Different Morphologies

    PubMed Central

    Zhang, Wen; Niu, Xiaoyu; Chen, Liqiang; Yuan, Fulong; Zhu, Yujun

    2016-01-01

    In this study, nano-structure ceria with three different morphologies (nanorod, nanoparticle and flake) have been prepared by hydrothermal and solvothermal methods. The ceria samples were deeply characterized by XRD, SEM, TEM, H2-TPR, XPS and in-situ DRIFTS, and tested for soot combustion in absence/presence NO atmospheres under loose and tight contact conditions. The prepared ceria samples exhibit excellent catalytic activities, especially, the CeO2 with nanorod (Ce-R) shows the best catalytic activity, for which the peak temperature of soot combustion (Tm) is about 500 and 368 °C in loose and tight contact conditions, respectively. The catalytic activity for Ce-R is higher than that of the reported CeO2 catalysts and reaches a level that of precious metals. The characterization results reveal that the maximal amounts of adsorbed oxygen species on the surface of the nanostructure Ce-R catalyst should be the crucial role to decide the catalytic soot performance. High BET surface area may also be a positive effect on soot oxidation activity under loose contact conditions. PMID:27353143

  11. Adsorption and desorption characteristics of arsenic onto ceria nanoparticles

    PubMed Central

    2012-01-01

    The rapid increase in the use of engineered nanoparticles [ENPs] has resulted in an increasing concern over the potential impacts of ENPs on the environmental and human health. ENPs tend to adsorb a large variety of toxic chemicals when they are emitted into the environment, which may enhance the toxicity of ENPs and/or adsorbed chemicals. The study was aimed to investigate the adsorption and desorption behaviors of arsenic on ceria NPs in aqueous solution using batch technique. Results show that the adsorption behavior of arsenic on ceria NPs was strongly dependent on pH and independent of ionic strength, indicating that the electrostatic effect on the adsorption of these elements was relatively not important compared to surface chemical reactions. The adsorption isotherms fitted very well to both the Langmuir and Freundlich models. The thermodynamic parameters (ΔH0, ΔS0, and ΔG0) for the adsorption of arsenic were determined at three different temperatures of 283, 303, and 323 K. The adsorption reaction was endothermic, and the process of adsorption was favored at high temperature. The desorption data showed that desorption hysteresis occurred at the initial concentration studied. High adsorption capacity of arsenic on ceria NPs suggests that the synergistic effects of ceria NPs and arsenic on the environmental systems may exist when they are released into the environment. PMID:22269298

  12. A basic plasma test for gyrokinetics: GDC turbulence in LAPD

    NASA Astrophysics Data System (ADS)

    Pueschel, M. J.; Rossi, G.; Told, D.; Terry, P. W.; Jenko, F.; Carter, T. A.

    2017-02-01

    Providing an important step towards validating gyrokinetics under comparatively little-explored conditions, simulations of pressure-gradient-driven plasma turbulence in the Large Plasma Device (LAPD) are compared with experimental observations. The corresponding signatures confirm the existence of a novel regime of turbulence, based on the recently-discovered gradient-driven drift coupling (GDC) instability, which is thus confirmed as a candidate mechanism for turbulence in basic, space and astrophysical plasmas. Despite the limitations of flux-tube gyrokinetics for this scenario, when accounting for box size scaling by applying a scalar factor η =6, agreement between simulations and experiment improves to within a factor of two for key observables: compressional magnetic, density, and temperature fluctuations, both in amplitude and structure. Thus, a first, strong indication is presented that the GDC instability seen in gyrokinetics appears to operate in the experiment and that the essential instability physics is present in the numerical model. Overall, the gyrokinetic framework and its numerical implementation in the Gene code therefore perform well for LAPD plasmas very different from their brethren in fusion experiments.

  13. On the growth mechanisms of polar (100) surfaces of ceria on copper (100)

    NASA Astrophysics Data System (ADS)

    Hackl, Johanna; Duchoň, Tomáš; Gottlob, Daniel M.; Cramm, Stefan; Veltruská, Kateřina; Matolín, Vladimír; Nemšák, Slavomír; Schneider, Claus M.

    2018-05-01

    We present a study of temperature dependent growth of nano-sized ceria islands on a Cu (100) substrate. Low-energy electron microscopy, micro-electron diffraction, X-ray absorption spectroscopy, and photoemission electron microscopy are used to determine the morphology, shape, chemical state, and crystal structure of the grown islands. Utilizing real-time observation capabilities, we reveal a three-way interaction between the ceria, substrate, and local oxygen chemical potential. The interaction manifests in the reorientation of terrace boundaries on the Cu (100) substrate, characteristic of the transition between oxidized and metallic surface. The reorientation is initiated at nucleation sites of ceria islands, whose growth direction is influenced by the proximity of the terrace boundaries. The grown ceria islands were identified as fully stoichiometric CeO2 (100) surfaces with a (2 × 2) reconstruction.

  14. Ceria-based model catalysts: fundamental studies on the importance of the metal–ceria interface in CO oxidation, the water–gas shift, CO 2 hydrogenation, and methane and alcohol reforming

    DOE PAGES

    Rodriguez, José A.; Grinter, David C.; Liu, Zongyuan; ...

    2017-02-17

    Model metal/ceria and ceria/metal catalysts have been shown to be excellent systems for studying fundamental phenomena linked to the operation of technical catalysts. In the last fifteen years, many combinations of well-defined systems involving different kinds of metals and ceria have been prepared and characterized using the modern techniques of surface science. So far most of the catalytic studies have been centered on a few reactions: CO oxidation, the hydrogenation of CO 2, and the production of hydrogen through the water–gas shift reaction and the reforming of methane or alcohols. By using model catalysts it is been possible to examinemore » in detail correlations between the structural, electronic and catalytic properties of ceria–metal interfaces. In situ techniques (X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, infrared spectroscopy, scanning tunneling microscopy) have been combined to study the morphological changes under reaction conditions and investigate the evolution of active phases involved in the cleavage of C–O, C–H and C–C bonds. Several studies with model ceria catalysts have shown the importance of strong metal–support interactions. Generally, a substantial body of knowledge has been acquired and concepts have been developed for a more rational approach to the design of novel technical catalysts containing ceria.« less

  15. Suppression of HER2/HER3-mediated growth of breast cancer cells with combinations of GDC-0941 PI3K inhibitor, trastuzumab, and pertuzumab.

    PubMed

    Yao, Evelyn; Zhou, Wei; Lee-Hoeflich, Si Tuen; Truong, Tom; Haverty, Peter M; Eastham-Anderson, Jeffrey; Lewin-Koh, Nicholas; Gunter, Bert; Belvin, Marcia; Murray, Lesley J; Friedman, Lori S; Sliwkowski, Mark X; Hoeflich, Klaus P

    2009-06-15

    Oncogenic activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway is prevalent in breast cancer and has been associated with resistance to HER2 inhibitors in the clinic. We therefore investigated the combinatorial activity of GDC-0941, a novel class I PI3K inhibitor, with standard-of-care therapies for HER2-amplified breast cancer. Three-dimensional laminin-rich extracellular matrix cultures of human breast cancer cells were utilized to provide a physiologically relevant approach to analyze the efficacy and molecular mechanism of combination therapies ex vivo. Combination studies were done using GDC-0941 with trastuzumab (Herceptin), pertuzumab, lapatinib (Tykerb), and docetaxel, the principal therapeutic agents that are either approved or being evaluated for treatment of early HER2-positive breast cancer. Significant GDC-0941 activity (EC(50) <1 micromol/L) was observed for >70% of breast cancer cell lines that were examined in three-dimensional laminin-rich extracellular matrix culture. Differential responsiveness to GDC-0941 as a single agent was observed for luminal breast cancer cells upon stimulation with the HER3 ligand, heregulin. Combined treatment of GDC-0941, trastuzumab, and pertuzumab resulted in growth inhibition, altered acinar morphology, and suppression of AKT mitogen-activated protein kinase (MAPK) / extracellular signed-regulated kinase (ERK) kinase and MEK effector signaling pathways for HER2-amplified cells in both normal and heregulin-supplemented media. The GDC-0941 and lapatinib combination further showed that inhibition of HER2 activity was essential for maximum combinatorial efficacy. PI3K inhibition also rendered HER2-amplified BT-474M1 cells and tumor xenografts more sensitive to docetaxel. GDC-0941 is efficacious in preclinical models of breast cancer. The addition of GDC-0941 to HER2-directed treatment could augment clinical benefit in breast cancer patients.

  16. Phosphate modified ceria as a Brønsted acidic/redox multifunctional catalyst

    DOE PAGES

    Nelson, Nicholas C.; Wang, Zhuoran; Naik, Pranjali; ...

    2017-01-06

    Deposition of trimethylphosphate onto ceria followed by thermal treatment resulted in the formation of surface phosphates with retention of the ceria fluorite structure. The structural and chemical properties of the phosphate-functionalized ceria were studied using 31P solid-state NMR, XPS, zeta titration, ammonia thermal desorption, pyridine adsorption, and model reactions. The introduction of phosphates generated Brønsted acid sites and decreased the number of Lewis acid sites on the surface. The relative amount of Lewis and Brønsted acids can be controlled by the amount of trimethylphosphate used in the synthesis. Upon deposition of Pd, the multifunctional material showed enhanced activity for themore » hydrogenolysis of eugenol and guaiacol compared to Pd on the unmodified ceria support. As a result, this was attributed to the cooperativity between the Lewis acid sites, which activate the substrate for dearomatization, and the redox/Brønsted acid properties, which catalyze hydrogenolysis.« less

  17. Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@C 82(OH) 22 and its implication for de novo design of nanomedicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, S. -g.; Zhou, G.; Yang, P.

    2012-09-18

    Pancreatic adenocarcinoma is the most lethal of the solid tumors and the fourth-leading cause of cancer-related death in North America. Matrix metalloproteinases (MMPs) have long been targeted as a potential anticancer therapy because of their seminal role in angiogenesis and extracellular matrix (ECM) degradation of tumor survival and invasion. However, the inhibition specificity to MMPs and the molecular-level understanding of the inhibition mechanism remain largely unresolved. Here, we found that endohedral metallofullerenol Gd@C 82(OH) 22 can successfully inhibit the neoplastic activity with experiments at animal, tissue, and cellular levels. Gd@C 82(OH) 22 effectively blocks tumor growth in human pancreatic cancermore » xenografts in a nude mouse model. Enzyme activity assays also show Gd@C 82(OH) 22 not only suppresses the expression of MMPs but also significantly reduces their activities. We then applied large-scale molecular-dynamics simulations to illustrate the molecular mechanism by studying the Gd@C 82(OH) 22–MMP-9 interactions in atomic detail. Our data demonstrated that Gd@C 82(OH) 22 inhibits MMP-9 mainly via an exocite interaction, whereas the well-known zinc catalytic site only plays a minimal role. Steered by nonspecific electrostatic, hydrophobic, and specific hydrogen-bonding interactions, Gd@C 82(OH) 22 exhibits specific binding modes near the ligand-specificity loop S1', thereby inhibiting MMP-9 activity. Both the suppression of MMP expression and specific binding mode make Gd@C 82(OH) 22 a potentially more effective nanomedicine for pancreatic cancer than traditional medicines, which usually target the proteolytic sites directly but fail in selective inhibition. Finally, our findings provide insights for de novo design of nanomedicines for fatal diseases such as pancreatic cancer.« less

  18. Metallofullerenol Gd@C82(OH)22 distracts the proline-rich-motif from putative binding on the SH3 domain

    NASA Astrophysics Data System (ADS)

    Kang, Seung-Gu; Huynh, Tien; Zhou, Ruhong

    2013-03-01

    Biocompatibility is often regarded as one important aspect of de novo designed nanomaterials for biosafety. However, the toxicological effect, appearing along with its latency, is much more difficult to address by linearly mapping physicochemical properties of related nanomaterials with biological effects such as immune or cellular regulatory responses due to the complicated protein-protein interactions. Here, we investigate a potential interference of a metallofullerenol, Gd@C82(OH)22, on the function of SH3 domain, a highly promiscuous protein-protein interaction mediator involved in signaling and regulatory pathways through its binding with the proline-rich motif (PRM) peptides, using the atomistic molecular dynamics simulation. Our study shows that when only Gd@C82(OH)22 and the SH3 domain are present (without the PRM ligand), Gd@C82(OH)22 can interact with the SH3 domain by either directly blocking the hydrophobic active site or binding with a hydrophilic off-site with almost equal probability, which can be understood from its intrinsic amphiphilic nature. In a binding competition with the PRM onto the SH3 domain, however, the on-site binding mode is depleted while Gd@C82(OH)22 effectively intercepts the PRM from the putative binding site of the SH3 domain, implying that Gd@C82(OH)22 can disturb protein-protein interactions mediated by the SH3 domain. Despite a successful surface modification in an aqueous biological medium and a more recent demonstration as potential de novo cancer therapeutics, our study indicates that greater attention is needed in assessing the potential cytotoxicity of these nanomaterials.Biocompatibility is often regarded as one important aspect of de novo designed nanomaterials for biosafety. However, the toxicological effect, appearing along with its latency, is much more difficult to address by linearly mapping physicochemical properties of related nanomaterials with biological effects such as immune or cellular regulatory responses

  19. Impact of food and the proton pump inhibitor rabeprazole on the pharmacokinetics of GDC-0941 in healthy volunteers: bench to bedside investigation of pH-dependent solubility.

    PubMed

    Ware, Joseph A; Dalziel, Gena; Jin, Jin Y; Pellett, Jackson D; Smelick, Gillian S; West, David A; Salphati, Laurent; Ding, Xiao; Sutton, Rebecca; Fridyland, Jane; Dresser, Mark J; Morrisson, Glenn; Holden, Scott N

    2013-11-04

    GDC-0941 is an orally administered potent, selective pan-inhibitor of phosphatidylinositol 3-kinases (PI3Ks) with good preclinical antitumor activity in xenograft models and favorable pharmacokinetics and tolerability in phase 1 trials, and it is currently being investigated in phase II clinical trials as an anti-cancer agent. In vitro solubility and dissolution studies suggested that GDC-0941, a weak base, displays significant pH-dependent solubility. Moreover, preclinical studies conducted in famotidine-induced hypochlorhydric dog suggested that the pharmacokinetics of GDC-0941 may be sensitive to pharmacologically induced hypochlorhydria. To investigate the clinical significance of food and pH-dependent solubility on GDC-0941 pharmacokinetics a four-period, two-sequence, open-label, randomized, crossover study was conducted in healthy volunteers. During the fasting state, GDC-0941 was rapidly absorbed with a median Tmax of 2 h. The presence of a high-fat meal delayed the absorption of GDC-0941, with a median Tmax of 4 h and a modest increase in AUC relative to the fasted state, with an estimated geometric mean ratio (GMR, 90% CI) of fed/fasted of 1.28 (1.08, 1.51) for AUC0-∞ and 0.87 (0.70, 1.06) for Cmax. The effect of rabeprazole (model PPI) coadministration on the pharmacokinetics of GDC-0941 was evaluated in the fasted and fed state. When comparing the effect of rabeprazole + GDC-0941 (fasted) to baseline GDC-0941 absorption in a fasted state, GDC-0941 median Tmax was unchanged, however, both Cmax and AUC0-∞ decreased significantly after pretreatment with rabeprazole, with an estimated GMR (90% CI) of 0.31 (0.21, 0.46) and 0.46 (0.35, 0.61), respectively for both parameters. When rabeprazole was administered in the presence of the high-fat meal, the impact of food did not fully reverse the pH effect; the overall effect of rabeprazole on AUC0-∞ was somewhat attenuated by the high-fat meal (estimate GMR of 0.57, with 90% CI, 0.50, 0.65) but unchanged for

  20. Samaria-doped Ceria Modified Ni/YSZ Anode for Direct Methane Fuel in Tubular Solid Oxide Fuel Cells by Impregnation Method

    NASA Astrophysics Data System (ADS)

    Zhang, Long-shan; Gao, Jian-feng; Tian, Rui-fen; Xia, Chang-rong

    2009-08-01

    A porous NiO/yttria-stabilized zirconia anode substrate for tubular solid oxide fuel cells was prepared by gel casting technique. Nano-scale samaria-doped ceria (SDC) particles were formed onto the anode substrate to modify the anode microstructure by the impregnation of solution of Sm(NO3)3 and Ce(NO3)3. Electrochemical impedance spectroscopy, current-voltage and current-powder curves of the cells were measured using an electrochemical workstation. Scanning electron microcopy was used to observe the microstructure. The results indicate that the stability of the performance of the cell operated on humidified methane can be significantly improved by incorporating the nano-structured SDC particles, compared with the unmodified cell. This verifies that the coated SDC electrodes are very effective in suppressing catalytic carbon formation by blocking methane from approaching the Ni, which is catalytically active towards methane pyrolysis. In addition, it was found that a small amount of deposited carbon is beneficial to the performance of the anode. The cell showed a peak power density of 225 mW/cm2 when it was fed with H2 fuel at 700 °C, but the power density increased to 400 mW/cm2 when the fuel was switched from hydrogen to methane at the same flow rate. Methane conversion achieved about 90%, measured by gas chromatogram with a 10.0 mL/min flow rate of fuel at 700 °C. Although the carbon deposition was not suppressed absolutely, some deposited carbon was beneficial for performance improvement.

  1. More antitumor efficacy of the PI3K inhibitor GDC-0941 in breast cancer with PIK3CA mutation or HER2 amplification status in vitro.

    PubMed

    Zheng, Jie; Wang, Huan; Yao, Jia; Zou, Xianjin

    2014-01-01

    PIK3CA is probably the most commonly mutated kinase in several malignant tumors. Activation of class I phosphatidylinositol 3' kinase (PI3K) regulates tumor proliferation, survival, etc. This study sought to identify whether the pan-inhibitor has more antitumor efficacy in breast cancer cells with PIK3CA Mutation or HER2 amplification than basal-like cancer cells. The proliferation of breast cancer cells was measured by MTT assay in the presence of GDC-0941. Afterwards, we determined the visible changes in signaling in the PI3K/AKT/mTOR pathway. Finally, we examined GDC-0941 effects on cell cycle, apoptosis and motility. GDC-0941 exhibited excellent inhibition on three cell lines with PIK3CA mutation or HER2 amplification. In addition, GDC-0941 resulted in decreased Akt activity. GDC-0941 downregulated the key components of the cell cycle machinery, such as cyclin D1, upregulated the apoptotic markers and inhibited cell motility on three cell lines with PIK3CA Mutation or HER2 amplification. Antitumor activity of GDC-0941 treatment amongst tumor cell lines with PIK3CA mutation and HER2 amplification may have clinical utility in patients with these oncogenic alterations.

  2. Ceria-based electrospun fibers for renewable fuel production via two-step thermal redox cycles for carbon dioxide splitting.

    PubMed

    Gibbons, William T; Venstrom, Luke J; De Smith, Robert M; Davidson, Jane H; Jackson, Gregory S

    2014-07-21

    Zirconium-doped ceria (Ce(1-x)Zr(x)O2) was synthesized through a controlled electrospinning process as a promising approach to cost-effective, sinter-resistant material structures for high-temperature, solar-driven thermochemical redox cycles. To approximate a two-step redox cycle for solar fuel production, fibrous Ce(1-x)Zr(x)O2 with relatively low levels of Zr-doping (0 < x < 0.1) were cycled in an infrared-imaging furnace with high-temperature (up to 1500 °C) partial reduction and lower-temperature (∼800 °C) reoxidation via CO2 splitting to produce CO. Increases in Zr content improve reducibility and sintering resistance, and, for x≤ 0.05, do not significantly slow reoxidation kinetics for CO production. Cycle stability of the fibrous Ce(1-x)Zr(x)O2 (with x = 0.025) was assessed for a range of conditions by measuring rates of O2 release during reduction and CO production during reoxidation and by assessing post-cycling fiber crystallite sizes and surface areas. Sintering increases with reduction temperature but occurs primarily along the fiber axes. Even after 108 redox cycles with reduction at 1400 °C and oxidation with CO2 at 800 °C, the fibers maintain their structure with surface areas of ∼0.3 m(2) g(-1), higher than those observed in the literature for other ceria-based structures operating at similarly high temperature conditions. Total CO production and peak production rate stabilize above 3.0 mL g(-1) and 13.0 mL min(-1) g(-1), respectively. The results show the potential for electrospun oxides as sinter-resistant material structures with adequate surface area to support rapid CO2 splitting in solar thermochemical redox cycles.

  3. The pan-PI3K inhibitor GDC-0941 activates canonical WNT signaling to confer resistance in TNBC cells: resistance reversal with WNT inhibitor.

    PubMed

    Tzeng, Huey-En; Yang, Lixin; Chen, Kemin; Wang, Yafan; Liu, Yun-Ru; Pan, Shiow-Lin; Gaur, Shikha; Hu, Shuya; Yen, Yun

    2015-05-10

    The pan-PI3K inhibitors are one treatment option for triple-negative breast cancer (TNBC). However, this treatment is ineffective for unknown reasons. Here, we report that aberrant expression of wingless-type MMTV integration site family (WNT) and activated WNT signals, which crosstalk with the PI3K-AKT-mTOR signaling pathway through GSK3β, plays the most critical role in resistance to pan-PI3K inhibitors in TNBC cells. GDC-0941 is a pan-PI3K inhibitor that activates the WNT/beta-catenin pathway in TNBC cells through stimulation of WNT secretion. GDC-0941-triggered WNT/beta-catenin pathway activation was observed in MDA-MB-231 and HCC1937 cells, which are TNBC cell lines showing aberrant WNT/beta-catenin activation, and not in SKBR3 and MCF7 cells. This observation is further investigated in vivo. GDC-0941 exhibited minimal tumor inhibition in MDA-MB-231 cells, but it significantly suppressed tumor growth in HER-positive SK-BR3 cells. In vivo mechanism study revealed the activation of WNT/beta-catenin pathway by GDC-0941. A synergistic effect was observed when combined treatment with GDC-0941 and the WNT inhibitor LGK974 at low concentrations in MDA-MB-231 cells. These findings indicated that WNT pathway activation conferred resistance in TNBC cells treated with GDC-0941. This resistance may be further circumvented through combined treatment with pan-PI3K and WNT inhibitors. Future clinical trials of these two inhibitors are warranted.

  4. The pan-PI3K inhibitor GDC-0941 activates canonical WNT signaling to confer resistance in TNBC cells: resistance reversal with WNT inhibitor

    PubMed Central

    Tzeng, Huey-En; Yang, Lixin; Chen, Kemin; Wang, Yafan; Liu, Yun-Ru; Pan, Shiow-Lin; Gaur, Shikha; Hu, Shuya; Yen, Yun

    2015-01-01

    The pan-PI3K inhibitors are one treatment option for triple-negative breast cancer (TNBC). However, this treatment is ineffective for unknown reasons. Here, we report that aberrant expression of wingless-type MMTV integration site family (WNT) and activated WNT signals, which crosstalk with the PI3K-AKT-mTOR signaling pathway through GSK3β, plays the most critical role in resistance to pan-PI3K inhibitors in TNBC cells. GDC-0941 is a pan-PI3K inhibitor that activates the WNT/beta-catenin pathway in TNBC cells through stimulation of WNT secretion. GDC-0941-triggered WNT/beta-catenin pathway activation was observed in MDA-MB-231 and HCC1937 cells, which are TNBC cell lines showing aberrant WNT/beta-catenin activation, and not in SKBR3 and MCF7 cells. This observation is further investigated in vivo. GDC-0941 exhibited minimal tumor inhibition in MDA-MB-231 cells, but it significantly suppressed tumor growth in HER-positive SK-BR3 cells. In vivo mechanism study revealed the activation of WNT/beta-catenin pathway by GDC-0941. A synergistic effect was observed when combined treatment with GDC-0941 and the WNT inhibitor LGK974 at low concentrations in MDA-MB-231 cells. These findings indicated that WNT pathway activation conferred resistance in TNBC cells treated with GDC-0941. This resistance may be further circumvented through combined treatment with pan-PI3K and WNT inhibitors. Future clinical trials of these two inhibitors are warranted. PMID:25857298

  5. Ellagic Acid Enhances the Efficacy of PI3K Inhibitor GDC-0941 in Breast Cancer Cells.

    PubMed

    Shi, L; Gao, X; Li, X; Jiang, N; Luo, F; Gu, C; Chen, M; Cheng, H; Liu, P

    2015-01-01

    The fact that the phosphatidylinositol 3 kinase (PI3K) signaling pathway is one of the most frequently deregulated signaling networks has triggered intensive efforts in the development of PI3K pathway inhibitors. However, recent clinical trial data have shown only limited activity of PI3K inhibitors at tolerated doses. Thus, there is an urgent need to identify rational combination therapy to improve the efficacy of PI3K-targeted cancer treatment. In this study, we investigated if dietary compound ellagic acid (EA) could improve the therapeutic efficacy of PI3K inhibitor GDC-0941 in breast cancer. Specifically, using a panel of breast cancer cell lines, we showed that combined use of EA and GDC-0941 significantly inhibited cell growth under attached and detached conditions, blocked migration and invasion in vitro as well as tumor initiation and metastasis in vivo. Furthermore, we found that EA promoted apoptosis and further reduced AKT/mTOR activation in GDC-0941- treated breast cancer cells. Together, our data suggest that EA may be a safe and effective agent to boost the efficacy of PI3K-directed breast cancer therapy and that such drug combination may merit further clinical investigation.

  6. Predictive biomarkers of sensitivity to the phosphatidylinositol 3' kinase inhibitor GDC-0941 in breast cancer preclinical models.

    PubMed

    O'Brien, Carol; Wallin, Jeffrey J; Sampath, Deepak; GuhaThakurta, Debraj; Savage, Heidi; Punnoose, Elizabeth A; Guan, Jane; Berry, Leanne; Prior, Wei Wei; Amler, Lukas C; Belvin, Marcia; Friedman, Lori S; Lackner, Mark R

    2010-07-15

    The class I phosphatidylinositol 3' kinase (PI3K) plays a major role in proliferation and survival in a wide variety of human cancers. A key factor in successful development of drugs targeting this pathway is likely to be the identification of responsive patient populations with predictive diagnostic biomarkers. This study sought to identify candidate biomarkers of response to the selective PI3K inhibitor GDC-0941. We used a large panel of breast cancer cell lines and in vivo xenograft models to identify candidate predictive biomarkers for a selective inhibitor of class I PI3K that is currently in clinical development. The approach involved pharmacogenomic profiling as well as analysis of gene expression data sets from cells profiled at baseline or after GDC-0941 treatment. We found that models harboring mutations in PIK3CA, amplification of human epidermal growth factor receptor 2, or dual alterations in two pathway components were exquisitely sensitive to the antitumor effects of GDC-0941. We found that several models that do not harbor these alterations also showed sensitivity, suggesting a need for additional diagnostic markers. Gene expression studies identified a collection of genes whose expression was associated with in vitro sensitivity to GDC-0941, and expression of a subset of these genes was found to be intimately linked to signaling through the pathway. Pathway focused biomarkers and the gene expression signature described in this study may have utility in the identification of patients likely to benefit from therapy with a selective PI3K inhibitor. Copyright 2010 AACR.

  7. Controlled Growth of Ceria Nanoarrays on Anatase Titania Powder: A Bottom-up Physical Picture.

    PubMed

    Kim, Hyun You; Hybertsen, Mark S; Liu, Ping

    2017-01-11

    The leading edge of catalysis research motivates physical understanding of the growth of nanoscale oxide structures on different supporting oxide materials that are themselves also nanostructured. This research opens up for consideration a diverse range of facets on the support material, versus the single facet typically involved in wide-area growth of thin films. Here, we study the growth of ceria nanoarchitectures on practical anatase titania powders as a showcase inspired by recent experiments. Density functional theory (DFT)-based methods are employed to characterize and rationalize the broad array of low energy nanostructures that emerge. Using a bottom-up approach, we are able to identify and characterize the underlying mechanisms for the facet-dependent growth of various ceria motifs on anatase titania based on formation energy. These motifs include 0D clusters, 1D chains, 2D plates, and 3D nanoparticles. The ceria growth mode and morphology are determined by the interplay of several factors including the role of the common cation valence, the interface template effect for different facets of the anatase support, enhanced ionic binding for more compact ceria motifs, and the local structural flexibility of oxygen ions in bridging the interface between anatase and ceria structures.

  8. Controlled Growth of Ceria Nanoarrays on Anatase Titania Powder: A Bottom-up Physical Picture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyun You; Hybertsen, Mark S.; Liu, Ping

    The leading edge of catalysis research motivates physical understanding of the growth of nanoscale oxide structures on different supporting oxide materials that are themselves also nanostructured. This research opens up for consideration a diverse range of facets on the support material, versus the single facet typically involved in wide-area growth of thin films. In this paper, we study the growth of ceria nanoarchitectures on practical anatase titania powders as a showcase inspired by recent experiments. Density functional theory (DFT)-based methods are employed to characterize and rationalize the broad array of low energy nanostructures that emerge. Using a bottom-up approach, wemore » are able to identify and characterize the underlying mechanisms for the facet-dependent growth of various ceria motifs on anatase titania based on formation energy. These motifs include 0D clusters, 1D chains, 2D plates, and 3D nanoparticles. Finally, the ceria growth mode and morphology are determined by the interplay of several factors including the role of the common cation valence, the interface template effect for different facets of the anatase support, enhanced ionic binding for more compact ceria motifs, and the local structural flexibility of oxygen ions in bridging the interface between anatase and ceria structures.« less

  9. Controlled Growth of Ceria Nanoarrays on Anatase Titania Powder: A Bottom-up Physical Picture

    DOE PAGES

    Kim, Hyun You; Hybertsen, Mark S.; Liu, Ping

    2016-12-05

    The leading edge of catalysis research motivates physical understanding of the growth of nanoscale oxide structures on different supporting oxide materials that are themselves also nanostructured. This research opens up for consideration a diverse range of facets on the support material, versus the single facet typically involved in wide-area growth of thin films. In this paper, we study the growth of ceria nanoarchitectures on practical anatase titania powders as a showcase inspired by recent experiments. Density functional theory (DFT)-based methods are employed to characterize and rationalize the broad array of low energy nanostructures that emerge. Using a bottom-up approach, wemore » are able to identify and characterize the underlying mechanisms for the facet-dependent growth of various ceria motifs on anatase titania based on formation energy. These motifs include 0D clusters, 1D chains, 2D plates, and 3D nanoparticles. Finally, the ceria growth mode and morphology are determined by the interplay of several factors including the role of the common cation valence, the interface template effect for different facets of the anatase support, enhanced ionic binding for more compact ceria motifs, and the local structural flexibility of oxygen ions in bridging the interface between anatase and ceria structures.« less

  10. Rare-earth doped gadolinia based phosphors for potential multicolor and white light emitting deep UV LEDs.

    PubMed

    Bedekar, Vinila; Dutta, Dimple P; Mohapatra, M; Godbole, S V; Ghildiyal, R; Tyagi, A K

    2009-03-25

    Gadolinium oxide host and europium/dysprosium/terbium doped gadolinium oxide nanoparticles were synthesized using the sonochemical technique. Gadolinium oxide nanocrystals were also co-doped with total 2 mol% of Eu(3+)/Dy(3+),Eu(3+)/Tb(3+),Dy(3+)/Tb(3+), and also Eu(3+)/Dy(3+)/Tb(3+) ions, by the same method. The nanoparticles obtained were characterized using powder x-ray diffraction (XRD), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) techniques. The size of the particles ranged from 15 to 30 nm. The triple doped samples showed multicolor emission on single wavelength excitation. The photoluminescence results were correlated with the lifetime data to get an insight into the luminescence and energy transfer processes taking place in the system. On excitation at 247 nm, the novel nanocrystalline Gd(2)O(3):RE (RE = Dy, Tb) phosphor resulted in having very impressive CIE chromaticity coordinates of x = 0.315 and y = 0.316, and a correlated color temperature of 6508 K, which is very close to standard daylight.

  11. The anti-ErbB2 antibody H2-18 and the pan-PI3K inhibitor GDC-0941 effectively inhibit trastuzumab-resistant ErbB2-overexpressing breast cancer.

    PubMed

    Wang, Lingfei; Yu, Xiaojie; Wang, Chao; Pan, Shujun; Liang, Beibei; Zhang, Yajun; Chong, Xiaodan; Meng, Yanchun; Dong, Jian; Zhao, Yirong; Yang, Yang; Wang, Huajing; Gao, Jie; Wei, Huafeng; Zhao, Jian; Wang, Hao; Hu, Chaohua; Xiao, Wenze; Li, Bohua

    2017-08-08

    Trastuzumab, an anti-ErbB2 humanized antibody, brings benefit to patients with ErbB2-amplified metastatic breast cancers. However, the resistance to trastuzumab is common. Our previously reported H2-18, an anti-ErbB2 antibody, potently induced programmed cell death in trastuzumab-resistant breast cancer cells. Here, we aim to investigate the antitumor efficacy of H2-18 in combination with the pan-PI3K inhibitor GDC-0941 in trastuzumab-resistant breast cancer cell lines. The results showed that H2-18 and GDC-0941 synergistically inhibited the in vitro proliferation of BT-474, SKBR-3, HCC-1954 and HCC-1419 breast cancer cells. H2-18 plus GDC-0941 showed significantly enhanced programmed cell death-inducing activity compared with each drug used alone. The combination of H2-18 and GDC-0941 did not increase the effect of single agent on ROS production, cell cycle and ErbB2 signaling. Importantly, the in vivo antitumor efficacy of H2-18 plus GDC-0941 was superior to that of single agent. Thus, the enhanced in vivo antitumor efficacy of H2-18 plus GDC-0941 may mainly be attributable to its increased programmed cell death-inducing activity. Collectively, H2-18 plus GDC-0941 could effectively inhibit tumor growth, suggesting the potential to be translated into clinic as an efficient strategy for ErbB2-overexpressing breast cancers.

  12. The anti-ErbB2 antibody H2-18 and the pan-PI3K inhibitor GDC-0941 effectively inhibit trastuzumab-resistant ErbB2-overexpressing breast cancer

    PubMed Central

    Liang, Beibei; Zhang, Yajun; Chong, Xiaodan; Meng, Yanchun; Dong, Jian; Zhao, Yirong; Yang, Yang; Wang, Huajing; Gao, Jie; Wei, Huafeng; Zhao, Jian; Wang, Hao; Hu, Chaohua; Xiao, Wenze; Li, Bohua

    2017-01-01

    Trastuzumab, an anti-ErbB2 humanized antibody, brings benefit to patients with ErbB2-amplified metastatic breast cancers. However, the resistance to trastuzumab is common. Our previously reported H2-18, an anti-ErbB2 antibody, potently induced programmed cell death in trastuzumab-resistant breast cancer cells. Here, we aim to investigate the antitumor efficacy of H2-18 in combination with the pan-PI3K inhibitor GDC-0941 in trastuzumab-resistant breast cancer cell lines. The results showed that H2-18 and GDC-0941 synergistically inhibited the in vitro proliferation of BT-474, SKBR-3, HCC-1954 and HCC-1419 breast cancer cells. H2-18 plus GDC-0941 showed significantly enhanced programmed cell death-inducing activity compared with each drug used alone. The combination of H2-18 and GDC-0941 did not increase the effect of single agent on ROS production, cell cycle and ErbB2 signaling. Importantly, the in vivo antitumor efficacy of H2-18 plus GDC-0941 was superior to that of single agent. Thus, the enhanced in vivo antitumor efficacy of H2-18 plus GDC-0941 may mainly be attributable to its increased programmed cell death-inducing activity. Collectively, H2-18 plus GDC-0941 could effectively inhibit tumor growth, suggesting the potential to be translated into clinic as an efficient strategy for ErbB2-overexpressing breast cancers. PMID:28881779

  13. Ceria nanoclusters on graphene/Ru(0001): A new model catalyst system

    DOE PAGES

    Novotny, Z.; Netzer, F. P.; Dohnalek, Z.

    2016-03-22

    In this study, the growth of ceria nanoclusters on single-layer graphene on Ru(0001) has been examined, with a view towards fabricating a stable system for model catalysis studies. The surface morphology and cluster distribution as a function of oxide coverage and substrate temperature has been monitored by scanning tunneling microscopy (STM), whereas the chemical composition of the cluster deposits has been determined by Auger electron spectroscopy (AES). The ceria nanoparticles are of the CeO 2(111)-type and are anchored at the intrinsic defects of the graphene surface, resulting in a variation of the cluster densities across the macroscopic sample surface. Themore » ceria clusters on graphene display a remarkable stability against reduction in ultrahigh vacuum up to 900 K, but some sintering of clusters is observed for temperatures > 450 K. The evolution of the cluster size distribution suggests that the sintering proceeds via a Smoluchowski ripening mechanism, i.e. diffusion and aggregation of entire clusters.« less

  14. A method to explore the quantitative interactions between metal and ceria for M/CeO2 catalysts

    NASA Astrophysics Data System (ADS)

    Zhu, Kong-Jie; Liu, Jie; Yang, Yan-Ju; Xu, Yu-Xing; Teng, Bo-Tao; Wen, Xiao-Dong; Fan, Maohong

    2018-03-01

    To explore the quantitative relationship of metal interaction with ceria plays a key role in the theoretical design of M/CeO2 catalysts, especially for the new hot topic of atomically dispersed catalysts. A method to quantitatively explore the interactions between metal and ceria is proposed in the present work on the basis of the qualitative analysis of the effects of different factors on metal adsorption at different ceria surfaces by using Ag/CeO2 as a case. Two parameters are firstly presented, Ep which converts the total adsorption energy into the interaction energy per Agsbnd O bond, and θdiff which measures the deviation of Agsbnd Osbnd Ce bond angle from the angle of the sp3 orbital hybridization of O atom. Using the two parameters, the quantitative relationship of the interaction energy between Ag and ceria is established. There is a linear correlation between Ep and dAgsbndO with θdiff. The higher θdiff, the weaker Ep, and the longer Agsbnd O bond. This method is also suitable for other metals (Cu, Ni, Pd, and Rh, etc.) on ceria. It is the first time to establish the quantitative relationship for the interaction between metal and ceria, and sheds light into the theoretical design of M/CeO2 catalysts.

  15. Study of ceria-carbonate nanocomposite electrolytes for low-temperature solid oxide fuel cells.

    PubMed

    Fan, L; Wang, C; Di, J; Chen, M; Zheng, J; Zhu, B

    2012-06-01

    Composite and nanocomposite samarium doped ceria-carbonates powders were prepared by solid-state reaction, citric acid-nitrate combustion and modified nanocomposite approaches and used as electrolytes for low temperature solid oxide fuel cells. X-ray Diffraction, Scanning Electron Microscope, low-temperature Nitrogen Adsorption/desorption Experiments, Electrochemical Impedance Spectroscopy and fuel cell performance test were employed in characterization of these materials. All powders are nano-size particles with slight aggregation and carbonates are amorphous in composites. Nanocomposite electrolyte exhibits much lower impedance resistance and higher ionic conductivity than those of the other electrolytes at lower temperature. Fuel cell using the electrolyte prepared by modified nanocomposite approach exhibits the best performance in the whole operation temperature range and achieves a maximum power density of 839 mW cm(-2) at 600 degrees C with H2 as fuel. The excellent physical and electrochemical performances of nanocomposite electrolyte make it a promising candidate for low-temperature solid oxide fuel cells.

  16. GDC-0941 inhibits metastatic characteristics of thyroid carcinomas by targeting both the phosphoinositide-3 kinase (PI3K) and hypoxia-inducible factor-1α (HIF-1α) pathways.

    PubMed

    Burrows, Natalie; Babur, Muhammad; Resch, Julia; Ridsdale, Sophie; Mejin, Melissa; Rowling, Emily J; Brabant, Georg; Williams, Kaye J

    2011-12-01

    Phosphoinositide 3-kinase (PI3K) regulates the transcription factor hypoxia-inducible factor-1 (HIF-1) in thyroid carcinoma cells. Both pathways are associated with aggressive phenotype in thyroid carcinomas. Our objective was to assess the effects of the clinical PI3K inhibitor GDC-0941 and genetic inhibition of PI3K and HIF on metastatic behavior of thyroid carcinoma cells in vitro and in vivo. Vascular endothelial growth factor ELISA, HIF activity assays, proliferation studies, and scratch-wound migration and cell spreading assays were performed under various O(2) tensions [normoxia, hypoxia (1 and 0.1% O(2)), and anoxia] with or without GDC-0941 in a panel of four thyroid carcinoma cell lines (BcPAP, WRO, FTC133, and 8505c). Genetic inhibition was achieved by overexpressing phosphatase and tensin homolog (PTEN) into PTEN-null cells and by using a dominant-negative variant of HIF-1α (dnHIF). In vivo, human enhanced green fluorescence protein-expressing follicular thyroid carcinomas (FTC) were treated with GDC-0941 (orally). Spontaneous lung metastasis was confirmed by viewing enhanced green fluorescence protein-positive colonies cultured from lung tissue. GDC-0941 inhibited hypoxia/anoxia-induced HIF-1α and HIF-2α expression and HIF activity in thyroid carcinoma cells. Basal (three of four cell lines) and/or hypoxia-induced (four of four) secreted vascular endothelial growth factor was inhibited by GDC-0941, whereas selective HIF targeting predominantly affected hypoxia/anoxia-mediated secretion (P < 0.05-0.0001). Antiproliferative effects of GDC-0941 were more pronounced in PTEN mutant compared with PTEN-restored cells (P < 0.05). Hypoxia increased migration in papillary cells and cell spreading/migration in FTC cells (P < 0.01). GDC-0941 reduced spreading and migration in all O(2) conditions, whereas dnHIF had an impact only on hypoxia-induced migration (P < 0.001). In vivo, GDC-0941 reduced expression of HIF-1α, phospho-AKT, GLUT-1, and lactate

  17. Eco-friendly Synthesis of Ceria Foam via Carboxymethylcellulose Gelation: Application for the Epoxidation of Chalcone

    EPA Science Inventory

    A simple and innovative process is described for the eco-friendly preparation of ceria foams via the carboxymethylcellulose gelation by Ce4+ cations; heat treatment of the ensuing xerogels produces ceria foams. The influence of the concentration of cerium and of the calcination t...

  18. Compliance of NHS dental practice websites in Wales before and after the introduction of the GDC document 'Principles of ethical advertising'.

    PubMed

    Budd, M L; Davies, M; Dewhurst, R; Atkin, P A

    2016-06-10

    Objectives To evaluate the compliance of NHS dental practice websites in Wales, UK, with the 2012 GDC document Principles of ethical advertising, before its introduction (2011) and again after its introduction (2014).Methods All practices in Wales with an NHS contract and dental practice website were identified. The content of the website was evaluated to determine if it complied with the principles outlined in the 2012 GDC document Principles of Ethical Advertising.Results Twenty-five percent of the 446 practices sampled in 2011 had a website, compared to 44% of the 436 practices sampled in 2014. The principles best complied with were; displaying the name, geographic address, and telephone number of the practice (100% for both years). None of the websites compared the qualifications or skills of its practitioners to others, therefore 100% complied with this principle. Displaying team members' professional qualification and the country from which this is obtained was fairly well represented; 92% and 61% respectively in 2014; an improvement from only 50% and 49% respectively in 2011. Principles worst complied with were displaying the GDC's address (3% 2011; 9% 2014) or link to the GDC website (11% 2011; 7% 2014) and details of the practice complaints procedure (1% 2011; 5% 2014). Overall, no practice complied with all of the compulsory principles.Conclusion In both 2011 and 2014 no practice website was compliant with all the principles outlined in the 2012 GDC document Principles of ethical advertising. Reflecting results from previous studies, this study showed that compliance is slowly improving, yet over 4 years after the introduction of the mandatory principles, it remains that no practice website is 100% compliant.

  19. Hydrodeoxygenation of Guaiacol over Ceria-Zirconia Catalysts.

    PubMed

    Schimming, Sarah M; LaMont, Onaje D; König, Michael; Rogers, Allyson K; D'Amico, Andrew D; Yung, Matthew M; Sievers, Carsten

    2015-06-22

    The hydrodeoxygenation of guaiacol is investigated over bulk ceria and ceria-zirconia catalysts with different elemental compositions. The reactions are performed in a flow reactor at 1 atm and 275-400 °C. The primary products are phenol and catechol, whereas cresol and benzene are formed as secondary products. No products with hydrogenated rings are formed. The highest conversion of guaiacol is achieved over a catalyst containing 60 mol % CeO2 and 40 mol % ZrO2 . Pseudo-first-order activation energies of 97-114 kJ mol(-1) are observed over the mixed metal oxide catalysts. None of the catalysts show significant deactivation during 72 h on stream. The important physicochemical properties of the catalysts are characterized by X-ray diffraction (XRD), temperature-programmed reduction, titration of oxygen vacancies, and temperature-programmed desorption of ammonia. On the basis of these experimental results, the reasons for the observed reactivity trends are identified. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Anisotropic chemical strain in cubic ceria due to oxygen-vacancy-induced elastic dipoles.

    PubMed

    Das, Tridip; Nicholas, Jason D; Sheldon, Brian W; Qi, Yue

    2018-06-06

    Accurate characterization of chemical strain is required to study a broad range of chemical-mechanical coupling phenomena. One of the most studied mechano-chemically active oxides, nonstoichiometric ceria (CeO2-δ), has only been described by a scalar chemical strain assuming isotropic deformation. However, combined density functional theory (DFT) calculations and elastic dipole tensor theory reveal that both the short-range bond distortions surrounding an oxygen-vacancy and the long-range chemical strain are anisotropic in cubic CeO2-δ. The origin of this anisotropy is the charge disproportionation between the four cerium atoms around each oxygen-vacancy (two become Ce3+ and two become Ce4+) when a neutral oxygen-vacancy is formed. Around the oxygen-vacancy, six of the Ce3+-O bonds elongate, one of the Ce3+-O bond shorten, and all seven of the Ce4+-O bonds shorten. Further, the average and maximum chemical strain values obtained through tensor analysis successfully bound the various experimental data. Lastly, the anisotropic, oxygen-vacancy-elastic-dipole induced chemical strain is polarizable, which provides a physical model for the giant electrostriction recently discovered in doped and non-doped CeO2-δ. Together, this work highlights the need to consider anisotropic tensors when calculating the chemical strain induced by dilute point defects in all materials, regardless of their symmetry.

  1. Investigations of oxidative stress effects and their mechanisms in rat brain after systemic administration of ceria engineered nanomaterials

    NASA Astrophysics Data System (ADS)

    Hardas, Sarita S.

    Advancing applications of engineered nanomaterials (ENM) in various fields create the opportunity for intended (e.g. drug and gene delivery) or unintended (e.g. occupational and environmental) exposure to ENM. However, the knowledge of ENM-toxicity is lagging behind their application development. Understanding the ENM hazard can help us to avoid potential human health problems associated with ENM applications as well as to increase their public acceptance. Ceria (cerium [Ce] oxide) ENM have many current and potential commercial applications. Beyond the traditional use of ceria as an abrasive, the scope of ceria ENM applications now extends into fuel cell manufacturing, diesel fuel additives and for therapeutic intervention as a putative antioxidant. However, the biological effects of ceria ENM exposure have yet to be fully defined. Both pro-and anti-oxidative effects of ceria ENM exposure are repeatedly reported in literature. EPA, NIEHS and OECD organizations have nominated ceria for its toxicological evaluation. All these together gave us the impetus to examine the oxidative stress effects of ceria ENM after systemic administration. Induction of oxidative stress is one of the primary mechanisms of ENM toxicity. Oxidative stress plays an important role in maintaining the redox homeostasis in the biological system. Increased oxidative stress, due to depletion of antioxidant enzymes or molecules and / or due to increased production of reactive oxygen (ROS) or nitrogen (RNS) species may lead to protein oxidation, lipid peroxidation and/or DNA damage. Increased protein oxidation or lipid peroxidation together with antioxidant protein levels and activity can serve as markers of oxidative stress. To investigate the oxidative stress effects and the mechanisms of ceria-ENM toxicity, fully characterized ceria ENM of different sizes (˜ 5nm, 15nm, 30nm, 55nm and nanorods) were systematically injected into rats intravenously in separate experiments. Three brain regions

  2. Plasma sprayed ceria-containing interlayer

    DOEpatents

    Schmidt, Douglas S.; Folser, George R.

    2006-01-10

    A plasma sprayed ceria-containing interlayer is provided. The interlayer has particular application in connection with a solid oxide fuel cell used within a power generation system. The fuel cell advantageously comprises an air electrode, a plasma sprayed interlayer disposed on at least a portion of the air electrode, a plasma sprayed electrolyte disposed on at least a portion of the interlayer, and a fuel electrode applied on at least a portion of the electrolyte.

  3. [18F]-FLT Positron Emission Tomography can be used to image the response of sensitive tumors to PI3-Kinase inhibition with the novel agent GDC-0941

    PubMed Central

    Cawthorne, Christopher; Burrows, Natalie; Gieling, Roben G.; Morrow, Christopher J; Forster, Duncan; Gregory, Jamil; Radigois, Marc; Smigova, Alison; Babur, Muhammad; Simpson, Kathryn; Hodgkinson, Cassandra; Brown, Gavin; McMahon, Adam; Dive, Caroline; Hiscock, Duncan; Wilson, Ian; Williams, Kaye J

    2013-01-01

    The Phosphatidylinositide 3-kinase (PI3-K) pathway is deregulated in a range of cancers, and several targeted inhibitors are entering the clinic. This study aimed to investigate whether the PET tracer 3′-Deoxy-3′-[18F]fluorothymidine ([18F]-FLT) is suitable to mark the effect of the novel PI-3K inhibitor GDC-0941 which has entered phase II clinical trial. CBA nude mice bearing U87 glioma and HCT116 colorectal xenografts were imaged at baseline with [18F]-FLT and at acute (18h) and chronic (186h) timepoints after twice-daily administration of GDC-0941 (50mg/kg) or vehicle. Tumor uptake normalized to blood pool was calculated, and tissue was analyzed at sacrifice for PI3-K pathway inhibition and thymidine kinase (TK1) expression. Uptake of [18F]-FLT was also assessed in tumors inducibly overexpressing a dominant-negative form of the PI3-K p85 subunit Δp85α, as well as HCT116 liver metastases after GDC-0941 therapy. GDC-0941 treatment induced tumor stasis in U87 xenografts, whereas inhibition of HCT116 tumors was more variable. Tumor uptake of [18F]-FLT was significantly reduced following GDC-0941 dosing in responsive tumors at the acute timepoint, and correlated with pharmacodynamic markers of PI3-K signaling inhibition and significant reduction in TK1 expression in U87, but not HCT116, tumors. Reduction of PI3-K signaling via expression of Δp85α significantly reduced tumor growth and [18F]-FLT uptake, as did treatment of HCT116 liver metastases with GDC-0941. These results indicate that [18F]-FLT is a strong candidate for the non-invasive measurement of GDC-0941 action. PMID:23427298

  4. [18F]-FLT positron emission tomography can be used to image the response of sensitive tumors to PI3-kinase inhibition with the novel agent GDC-0941.

    PubMed

    Cawthorne, Christopher; Burrows, Natalie; Gieling, Roben G; Morrow, Christopher J; Forster, Duncan; Gregory, Jamil; Radigois, Marc; Smigova, Alison; Babur, Muhammad; Simpson, Kathryn; Hodgkinson, Cassandra; Brown, Gavin; McMahon, Adam; Dive, Caroline; Hiscock, Duncan; Wilson, Ian; Williams, Kaye J

    2013-05-01

    The phosphoinositide 3-kinase (PI3K) pathway is deregulated in a range of cancers, and several targeted inhibitors are entering the clinic. This study aimed to investigate whether the positron emission tomography tracer 3'-deoxy-3'-[(18)F]fluorothymidine ([(18)F]-FLT) is suitable to mark the effect of the novel PI3K inhibitor GDC-0941, which has entered phase II clinical trial. CBA nude mice bearing U87 glioma and HCT116 colorectal xenografts were imaged at baseline with [(18)F]-FLT and at acute (18 hours) and chronic (186 hours) time points after twice-daily administration of GDC-0941 (50 mg/kg) or vehicle. Tumor uptake normalized to blood pool was calculated, and tissue was analyzed at sacrifice for PI3K pathway inhibition and thymidine kinase (TK1) expression. Uptake of [(18)F]-FLT was also assessed in tumors inducibly overexpressing a dominant-negative form of the PI3K p85 subunit p85α, as well as HCT116 liver metastases after GDC-0941 therapy. GDC-0941 treatment induced tumor stasis in U87 xenografts, whereas inhibition of HCT116 tumors was more variable. Tumor uptake of [(18)F]-FLT was significantly reduced following GDC-0941 dosing in responsive tumors at the acute time point and correlated with pharmacodynamic markers of PI3K signaling inhibition and significant reduction in TK1 expression in U87, but not HCT116, tumors. Reduction of PI3K signaling via expression of Δp85α significantly reduced tumor growth and [(18)F]-FLT uptake, as did treatment of HCT116 liver metastases with GDC-0941. These results indicate that [(18)F]-FLT is a strong candidate for the noninvasive measurement of GDC-0941 action. ©2013 AACR

  5. First principles study of vibrational dynamics of ceria-titania hybrid clusters

    NASA Astrophysics Data System (ADS)

    Majid, Abdul; Bibi, Maryam

    2017-04-01

    Density functional theory based calculations were performed to study vibrational properties of ceria, titania, and ceria-titania hybrid clusters. The findings revealed the dominance of vibrations related to oxygen when compared to those of metallic atoms in the clusters. In case of hybrid cluster, the softening of normal modes related to exterior oxygen atoms in ceria and softening/hardening of high/low frequency modes related to titania dimmers are observed. The results calculated for monomers conform to symmetry predictions according to which three IR and three Raman active modes were detected for TiO2, whereas two IR active and one Raman active modes were observed for CeO2. The comparative analysis indicates that the hybrid cluster CeTiO4 contains simultaneous vibrational fingerprints of the component dimmers. The symmetry, nature of vibrations, IR and Raman activity, intensities, and atomic involvement in different modes of the clusters are described in detail. The study points to engineering of CeTiO4 to tailor its properties for technological visible region applications in photocatalytic and electrochemical devices.

  6. Safety, Pharmacokinetics, and Pharmacodynamics in Healthy Volunteers Treated With GDC-0853, a Selective Reversible Bruton's Tyrosine Kinase Inhibitor.

    PubMed

    Herman, Ann E; Chinn, Leslie W; Kotwal, Shweta G; Murray, Elaine R; Zhao, Rui; Florero, Marilyn; Lin, Alyse; Moein, Anita; Wang, Rena; Bremer, Meire; Kokubu, Serika; Serone, Adrian P; Hanze, Eva L; Viberg, Anders; Morimoto, Alyssa M; Winter, Helen R; Katsumoto, Tamiko R

    2018-06-01

    GDC-0853 is a small molecule inhibitor of Bruton's tyrosine kinase (BTK) that is highly selective and noncovalent, leading to reversible binding. In double-blind, randomized, and placebo-controlled phase I healthy volunteer studies, GDC-0853 was well tolerated, with no dose-limiting adverse events (AEs) or serious AEs. The maximum tolerated dose was not reached during dose escalation (≤600 mg, single ascending dose (SAD) study; ≤250 mg twice daily (b.i.d.) and ≤500 mg once daily, 14-day multiple ascending dose (MAD) study). Plasma concentrations peaked 1-3 hours after oral administration and declined thereafter, with a steady-state half-life ranging from 4.2-9.9 hours. Independent assays demonstrated dose-dependent BTK target engagement. Based on pharmacokinetic/pharmacodynamic (PK/PD) simulations, a once-daily dosing regimen (e.g., 100 mg, q.d.) is expected to maintain a high level of BTK inhibition over the dosing interval. Taken together, the safety and PK/PD data support GDC-0853 evaluation in rheumatoid arthritis, lupus, and other autoimmune or inflammatory indications. © 2018 American Society for Clinical Pharmacology and Therapeutics.

  7. Gyrokinetic GDC turbulence simulations: confirming a new instability regime in LAPD plasmas

    NASA Astrophysics Data System (ADS)

    Pueschel, M. J.; Rossi, G.; Told, D.; Terry, P. W.; Jenko, F.; Carter, T. A.

    2016-10-01

    Recent high-beta experiments at the LArge Plasma Device have found significant parallel magnetic fluctuations in the region of large pressure gradients. Linear gyrokinetic simulations show the dominant instability at these radii to be the gradient-driven drift coupling (GDC) mode, a non-textbook mode driven by pressure gradients and destabilized by the coupling of ExB and grad-B∥ drifts. Unlike in previous studies, the large parallel extent of the device allows for finite-kz versions of this instability in addition to kz = 0 . The locations of maximum linear growth match very well with experimentally observed peaks of B∥ fluctuations. Local nonlinear simulations reproduce many features of the observations fairly well, with the exception of Bperp fluctuations, for which experimental profiles suggest a source unrelated to pressure gradients. In toto, the results presented here show that turbulence and transport in these experiments are driven by the GDC instability, that important characteristics of the linear instability carry over to nonlinear simulations, and - in the context of validation - that the gyrokinetic framework performs surprisingly well far outside its typical area of application, increasing confidence in its predictive abilities. Supported by U.S. DOE.

  8. Effective Heat and Mass Transport Properties of Anisotropic Porous Ceria for Solar Thermochemical Fuel Generation

    PubMed Central

    Haussener, Sophia; Steinfeld, Aldo

    2012-01-01

    High-resolution X-ray computed tomography is employed to obtain the exact 3D geometrical configuration of porous anisotropic ceria applied in solar-driven thermochemical cycles for splitting H2O and CO2. The tomography data are, in turn, used in direct pore-level numerical simulations for determining the morphological and effective heat/mass transport properties of porous ceria, namely: porosity, specific surface area, pore size distribution, extinction coefficient, thermal conductivity, convective heat transfer coefficient, permeability, Dupuit-Forchheimer coefficient, and tortuosity and residence time distributions. Tailored foam designs for enhanced transport properties are examined by means of adjusting morphologies of artificial ceria samples composed of bimodal distributed overlapping transparent spheres in an opaque medium. PMID:28817039

  9. The GDC - lifting the lid. Part 4: fitness to practise.

    PubMed

    Mathewson, H; Rudkin, D

    2008-07-26

    As an organisation whose function is to protect the public, the General Dental Council's role in investigating complaints about dentists and dental care professionals dealing suitably with those who have been shown to practise in an unprofessional or dangerous manner is obviously of paramount importance. This article looks at the GDC's fitness to practise procedures - the system that looks into complaints and allegations of malpractice about dental practitioners. It outlines the different stages in the process and introduces some of the many people involved with the efficient running of this vital service.

  10. Role of P-glycoprotein and breast cancer resistance protein-1 in the brain penetration and brain pharmacodynamic activity of the novel phosphatidylinositol 3-kinase inhibitor GDC-0941.

    PubMed

    Salphati, Laurent; Lee, Leslie B; Pang, Jodie; Plise, Emile G; Zhang, Xiaolin

    2010-09-01

    2-(1H-Indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) is a novel small molecule inhibitor of the phosphatidylinositol 3-kinase (PI3K) pathway currently evaluated in the clinic as an anticancer agent. The objectives of this study were to determine in vitro whether GDC-0941 was a substrate of P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp1) and to investigate the impact of these transporters on the pharmacokinetics, brain penetration, and activity of GDC-0941 in FVBn mice (wild-type) and Mdr1a/b(-/-), Bcrp1(-/-), and Mdr1a/b(-/-)/Bcrp1(-/-) knockout mice. Studies with Madin-Darby canine kidney cells transfected with P-gp or Bcrp1 established that this compound was a substrate of both transporters. After administrations to mice, GDC-0941 brain-to-plasma ratio ranged from 0.02 to 0.06 in the wild-type and Bcrp1(-/-) mice and was modestly higher in the Mdr1a/b(-/-) mice, ranging from 0.08 to 0.11. In contrast, GDC-0941 brain-to-plasma ratio in Mdr1a/b(-/-)/Bcrp1(-/-) triple knockout mice was 30-fold higher than in the wild-type mice. The plasma clearance of GDC-0941 was similar in wild-type and all knockout mice, ranging from 15 to 25 ml/(min . kg) in the wild-type mice and from 18 to 35 ml/(min . kg) in the knockout mice. Exposure after oral administration was comparable in the four strains of mice. The PI3K pathway was markedly inhibited in the brain of Mdr1a/b(-/-)/Bcrp1(-/-) mice for up to 6 h postdose, as evidenced by a 60% suppression of the phosphorylated Akt signal, whereas no inhibition was detected in the brain of wild-type mice. The concerted effects of P-gp and Bcrp1 in restricting GDC-0941 access and pathway modulation in mouse brain may have implications for the treatment of patients with brain tumors.

  11. GDC-0449-a potent inhibitor of the hedgehog pathway.

    PubMed

    Robarge, Kirk D; Brunton, Shirley A; Castanedo, Georgette M; Cui, Yong; Dina, Michael S; Goldsmith, Richard; Gould, Stephen E; Guichert, Oivin; Gunzner, Janet L; Halladay, Jason; Jia, Wei; Khojasteh, Cyrus; Koehler, Michael F T; Kotkow, Karen; La, Hank; Lalonde, Rebecca L; Lau, Kevin; Lee, Leslie; Marshall, Derek; Marsters, James C; Murray, Lesley J; Qian, Changgeng; Rubin, Lee L; Salphati, Laurent; Stanley, Mark S; Stibbard, John H A; Sutherlin, Daniel P; Ubhayaker, Savita; Wang, Shumei; Wong, Susan; Xie, Minli

    2009-10-01

    SAR for a wide variety of heterocyclic replacements for a benzimidazole led to the discovery of functionalized 2-pyridyl amides as novel inhibitors of the hedgehog pathway. The 2-pyridyl amides were optimized for potency, PK, and drug-like properties by modifications to the amide portion of the molecule resulting in 31 (GDC-0449). Amide 31 produced complete tumor regression at doses as low as 12.5mg/kg BID in a medulloblastoma allograft mouse model that is wholly dependent on the Hh pathway for growth and is currently in human clinical trials, where it is initially being evaluated for the treatment of BCC.

  12. GDC-0941, a novel class I selective PI3K inhibitor, enhances the efficacy of docetaxel in human breast cancer models by increasing cell death in vitro and in vivo.

    PubMed

    Wallin, Jeffrey J; Guan, Jane; Prior, Wei Wei; Lee, Leslie B; Berry, Leanne; Belmont, Lisa D; Koeppen, Hartmut; Belvin, Marcia; Friedman, Lori S; Sampath, Deepak

    2012-07-15

    Docetaxel is a front-line standard-of-care chemotherapeutic drug for the treatment of breast cancer. Phosphoinositide 3-kinases (PI3K) are lipid kinases that regulate breast tumor cell growth, migration, and survival. The current study was intended to determine whether GDC-0941, an orally bioavailable class I selective PI3K inhibitor, enhances the antitumor activity of docetaxel in human breast cancer models in vitro and in vivo. A panel of 25 breast tumor cell lines representing HER2+, luminal, and basal subtypes were treated with GDC-0941, docetaxel, or the combination of both drugs and assayed for cellular viability, modulation of PI3K pathway markers, and apoptosis induction. Drug combination effects on cellular viability were also assessed in nontransformed MCF10A human mammary epithelial cells. Human xenografts of breast cancer cell lines and patient-derived tumors were used to assess efficacy of GDC-0941 and docetaxel in vivo. Combination of GDC-0941 and docetaxel decreased the cellular viability of breast tumor cell lines in vitro but to variable degrees of drug synergy. Compared with nontransformed MCF10A cells, the addition of both drugs resulted in stronger synergistic effects in a subset of tumor cell lines that were not predicted by breast cancer subtype. In xenograft models, GDC-0941 enhanced the antitumor activity of docetaxel with maximum combination efficacy observed within 1 hour of administering both drugs. GDC-0941 increased the rate of apoptosis in cells arrested in mitosis upon cotreatment with docetaxel. GDC-0941 augments the efficacy of docetaxel by increasing drug-induced apoptosis in breast cancer models.

  13. Fast MAS 1H NMR Study of Water Adsorption and Dissociation on the (100) Surface of Ceria Nanocubes: A Fully Hydroxylated, Hydrophobic Ceria Surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, Lance; Beste, Ariana; Chen, Banghao

    1H nuclear magnetic resonance (NMR) spectroscopy was used to study hydroxylic surface species on ceria nanocubes, a crystalline, high-surface-area CeO 2 that presents mostly (100) facets. Water adsorption and desorption experiments in combination with fast magic angle spinning (MAS, 20–40 kHz) 1H NMR provide high-resolution 1H spectra that allow the observation of ten resonance bands (water or hydroxyl) on or under the (100) surface. Assignments were made using a combination of adsorption and temperature-programmed desorption, quantitative spin counting, deuterium exchange, spin–lattice (T 1) and spin–spin (T 2) relaxation, and DFT calculations. In air, the (100) surface exists as a fullymore » hydroxylated surface. Water adsorption and dissociation on dry ceria surfaces occur first at oxygen vacancies, but Ce 3+ centers are not required since water dissociation is barrier-less on the fully oxidized surface. Surface $-$OH functionality occurs in two resolved bands representing isolated $-$OH (1 ppm) and hydrogen-bonded $-$OH (9 ppm), the latter being dominant. Deuterium exchange of surface hydroxyls with D 2O does not occur under mild or forcing conditions. Despite large differences in the T 1 of surface hydroxyls and physisorbed water, surface hydroxyl T 1 values are independent of the presence or absence of physisorbed water, demonstrating that the protons within these two functional group pools are not in intimate contact. These observations show that, once hydroxylated, the surface $-$OH functionality preferentially forms hydrogen bonds with surface lattice oxygen, i.e., the hydroxylated (100) surface of ceria is hydrophobic. Near this surface it is energetically more favorable for physisorbed water to hydrogen bond to itself rather than to the surface. DFT calculations support this notion. Impurity Na + remaining in incompletely washed ceria nanocubes increases the surface hydrophilicity. In conclusion, sharp, low-field resonances observed in spectra

  14. Fast MAS 1H NMR Study of Water Adsorption and Dissociation on the (100) Surface of Ceria Nanocubes: A Fully Hydroxylated, Hydrophobic Ceria Surface

    DOE PAGES

    Gill, Lance; Beste, Ariana; Chen, Banghao; ...

    2017-03-22

    1H nuclear magnetic resonance (NMR) spectroscopy was used to study hydroxylic surface species on ceria nanocubes, a crystalline, high-surface-area CeO 2 that presents mostly (100) facets. Water adsorption and desorption experiments in combination with fast magic angle spinning (MAS, 20–40 kHz) 1H NMR provide high-resolution 1H spectra that allow the observation of ten resonance bands (water or hydroxyl) on or under the (100) surface. Assignments were made using a combination of adsorption and temperature-programmed desorption, quantitative spin counting, deuterium exchange, spin–lattice (T 1) and spin–spin (T 2) relaxation, and DFT calculations. In air, the (100) surface exists as a fullymore » hydroxylated surface. Water adsorption and dissociation on dry ceria surfaces occur first at oxygen vacancies, but Ce 3+ centers are not required since water dissociation is barrier-less on the fully oxidized surface. Surface $-$OH functionality occurs in two resolved bands representing isolated $-$OH (1 ppm) and hydrogen-bonded $-$OH (9 ppm), the latter being dominant. Deuterium exchange of surface hydroxyls with D 2O does not occur under mild or forcing conditions. Despite large differences in the T 1 of surface hydroxyls and physisorbed water, surface hydroxyl T 1 values are independent of the presence or absence of physisorbed water, demonstrating that the protons within these two functional group pools are not in intimate contact. These observations show that, once hydroxylated, the surface $-$OH functionality preferentially forms hydrogen bonds with surface lattice oxygen, i.e., the hydroxylated (100) surface of ceria is hydrophobic. Near this surface it is energetically more favorable for physisorbed water to hydrogen bond to itself rather than to the surface. DFT calculations support this notion. Impurity Na + remaining in incompletely washed ceria nanocubes increases the surface hydrophilicity. In conclusion, sharp, low-field resonances observed in spectra

  15. A facile synthesis of high quality nanostructured CeO2 and Gd2O3-doped CeO2 solid electrolytes for improved electrochemical performance.

    PubMed

    Kuo, Yu-Lin; Su, Yu-Ming; Chou, Hung-Lung

    2015-06-07

    This study describes the use of a composite nitrate salt solution as a precursor to synthesize CeO2 and Gd2O3-doped CeO2 (GDC) nanoparticles (NPs) using an atmospheric pressure plasma jet (APPJ). The microstructures of CeO2 and GDC NPs were found to be cubical and spherical shaped nanocrystallites with average particle sizes of 10.5 and 6.7 nm, respectively. Reactive oxygen species, detected by optical emission spectroscopy (OES), are believed to be the major oxidative agents for the formation of oxide materials in the APPJ process. Based on the material characterization and OES observations, the study effectively demonstrated the feasibility of preparing well-crystallized GDC NPs by the APPJ system as well as the gas-to-particle mechanism. Notably, the Bader charge of CeO2 and Ce0.9Gd0.1O2 characterized by density function theory (DFT) simulation and AC impedance measurements shows that Gd helps in increasing the charge on Ce0.9Gd0.1O2 NPs, thus improving their conductivity and making them candidate materials for electrolytes in solid oxide fuel cells.

  16. Charge distribution and transport properties in reduced ceria phases: A review

    NASA Astrophysics Data System (ADS)

    Shoko, E.; Smith, M. F.; McKenzie, Ross H.

    2011-12-01

    The question of the charge distribution in reduced ceria phases (CeO2-x) is important for understanding the microscopic physics of oxygen storage capacity, and the electronic and ionic conductivities in these materials. All these are key properties in the application of these materials in catalysis and electrochemical devices. Several approaches have been applied to study this problem, including ab initio methods. Recently [1], we applied the bond valence model (BVM) to discuss the charge distribution in several different crystallographic phases of reduced ceria. Here, we compare the BVM results to those from atomistic simulations to determine if there is consistency in the predictions of the two approaches. Our analysis shows that the two methods give a consistent picture of the charge distribution around oxygen vacancies in bulk reduced ceria phases. We then review the transport theory applicable to reduced ceria phases, providing useful relationships which enable comparison of experimental results obtained by different techniques. In particular, we compare transport parameters obtained from the observed optical absorption spectrum, α(ω), dc electrical conductivity with those predicted by small polaron theory and the Harrison method. The small polaron energy is comparable to that estimated from α(ω). However, we found a discrepancy between the value of the electron hopping matrix element, t, estimated from the Marcus-Hush formula and that obtained by the Harrison method. Part of this discrepancy could be attributed to the system lying in the crossover region between adiabatic and nonadiabatic whereas our calculations assumed the system to be nonadiabatic. Finally, by considering the relationship between the charge distribution and electronic conductivity, we suggest the possibility of low temperature metallic conductivity for intermediate phases, i.e., x˜0.3. This has not yet been experimentally observed.

  17. Extended x-ray absorption fine structure spectroscopy and x-ray absorption near edge spectroscopy study of aliovalent doped ceria to correlate local structural changes with oxygen vacancies clustering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirbhate, S. C.; Acharya, S. A., E-mail: saha275@yahoo.com; Yadav, A. K.

    2016-04-04

    This study provides atomic scale insight to understand the role of aliovalent dopants on oxygen vacancies clustering and dissociation mechanism in ceria system in order to enhance the performance of oxy-ion conductor. Dopants induced microscale changes in ceria are probed by extended X-ray absorption fine structure spectroscopy, X-ray absorption near edge spectra, and Raman spectroscopy. The results are explored to establish a correlation between atomic level structural changes (coordination number, interatomic spacing) → formation of dimer and trimer type cation-oxygen vacancies defect complex (intrinsic and extrinsic) → dissociation of oxygen vacancies from defect cluster → ionic conductivity temperature. It ismore » a strategic approach to understand key physics of ionic conductivity mechanism in order to reduce operating temperature of electrolytes for intermediate temperature (300–450 °C) electrochemical devices for the first time.« less

  18. Methane oxidation on Pd–Ceria: A DFT study of the mechanism over PdxCe1-xO2, Pd, and PdO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayernick, Adam D.; Janik, Michael J.

    2011-02-14

    Palladium/ceria exhibits unique catalytic activity for hydrocarbon oxidation; however, the chemical and structural properties of active sites on the palladium–ceria surface are difficult to characterize. Strong interactions between palladium and the ceria support stabilize oxidized Pdδ+ species, which may contribute to the significant activity of Pd/ceria for methane oxidation. We present a density functional theory (DFT + U) investigation into methane oxidation over Pd/ceria and quantify the activity of the Pd xCe 1-xO 2(1 1 1) mixed oxide surface in comparison with the PdO(1 0 0) and Pd(1 1 1) surfaces. The methane activation barrier is lowest over the Pdmore » xCe 1-xO 2(1 1 1) surface, even lower than over the Pd(1 1 1) surface or low coordinated stepped or kinked Pd sites. Subsequent reaction steps in complete oxidation, including product desorption and vacancy refilling, are considered to substantiate that methane activation remains the rate-limiting step despite the low barrier over Pd xCe 1-xO 2(1 1 1). The low barrier over the Pd xCe 1-xO 2(1 1 1) surface demonstrates that mixed ceria-noble metal oxides offer the potential for improved hydrocarbon oxidation performance with respect to dispersed noble metal particles on ceria.« less

  19. Temperature Dependence Discontinuity in the Stability of Manganese doped Ceria Nanocrystals

    DOE PAGES

    Wu, Longjia; Dholabhai, Pratik; Uberuaga, Blas P.; ...

    2017-01-05

    CeO 2 has strong potential for chemical-looping water splitting. It has been shown that manganese doping decreases interface energies of CeO 2, allowing increased stability of high surface areas in this oxygen carrier oxide. The phenomenon is related to the segregation of Mn3+ at interfaces, which causes a measurable decrease in excess energy. Here in the present work, it is shown that, despite the stability of nanocrystals of manganese-doped CeO 2 with relation to undoped CeO 2, the effect is strongly dependent on the oxidation state of manganese, i.e., on the temperature. At temperatures below 800 °C, Mn is inmore » the 3+ valence state, and coarsening is hindered by the reduced interface energetics, showing smaller crystal sizes with increasing Mn content. At temperatures above 800 °C, Mn is reduced to its 2+ valence state, and coarsening is enhanced with increasing Mn content. Atomistic simulations show the segregation of Mn to grain boundaries is relatively insensitive to the charge state of the dopant. However, point defect modeling finds that the reduced state causes a decrease in cation vacancy concentration and an increase in cation interstitials, reducing drag forces for grain boundary mobility and increasing growth rates.« less

  20. Experimental Demonstration of the Thermochemical Reduction of Ceria in a Solar Aerosol Reactor

    PubMed Central

    2016-01-01

    We report on the experimental demonstration of an aerosol solar reactor for the thermal reduction of ceria, as part of a thermochemical redox cycle for splitting H2O and CO2. The concept utilizes a cavity-receiver enclosing an array of alumina tubes, each containing a downward gravity-driven aerosol flow of ceria particles countercurrent to an inert sweep gas flow for intrinsic separation of reduced ceria and oxygen. A 2 kWth lab-scale prototype with a single tube was tested under radiative fluxes approaching 4000 suns, yielding reaction extents of up to 53% of the thermodynamic equilibrium at 1919 K within residence times below 1 s. Upon thermal redox cycling, fresh primary particles of 2.44 μm mean size initially formed large agglomerates of 1000 μm mean size, then sintered into stable particles of 150 μm mean size. The reaction extent was primarily limited by heat transfer for large particles/agglomerates (mean size > 200 μm) and by the gas phase advection of product O2 for smaller particles. PMID:27853339

  1. Experimental Demonstration of the Thermochemical Reduction of Ceria in a Solar Aerosol Reactor.

    PubMed

    Welte, Michael; Barhoumi, Rafik; Zbinden, Adrian; Scheffe, Jonathan R; Steinfeld, Aldo

    2016-10-12

    We report on the experimental demonstration of an aerosol solar reactor for the thermal reduction of ceria, as part of a thermochemical redox cycle for splitting H 2 O and CO 2 . The concept utilizes a cavity-receiver enclosing an array of alumina tubes, each containing a downward gravity-driven aerosol flow of ceria particles countercurrent to an inert sweep gas flow for intrinsic separation of reduced ceria and oxygen. A 2 kW th lab-scale prototype with a single tube was tested under radiative fluxes approaching 4000 suns, yielding reaction extents of up to 53% of the thermodynamic equilibrium at 1919 K within residence times below 1 s. Upon thermal redox cycling, fresh primary particles of 2.44 μm mean size initially formed large agglomerates of 1000 μm mean size, then sintered into stable particles of 150 μm mean size. The reaction extent was primarily limited by heat transfer for large particles/agglomerates (mean size > 200 μm) and by the gas phase advection of product O 2 for smaller particles.

  2. Preparation of Carbon-Platinum-Ceria and Carbon-Platinum-Cerium catalysts and its application in Polymer Electrolyte Fuel Cell: Hydrogen, Methanol, and Ethanol

    NASA Astrophysics Data System (ADS)

    Guzman Blas, Rolando Pedro

    This thesis is focused on fuel cells using hydrogen, methanol and ethanol as fuel. Also, in the method of preparation of catalytic material for the anode: Supercritical Fluid Deposition (SFD) and impregnation method using ethylenediaminetetraacetic acid (EDTA) as a chelating agent. The first part of the thesis describes the general knowledge about Hydrogen Polymer Exchange Membrane Fuel Cell (HPEMFC),Direct Methanol Fuel Cell (DMFC) and Direct Ethanol Fuel Cell (DEFC), as well as the properties of Cerium and CeO2 (Ceria). The second part of the thesis describes the preparation of catalytic material by Supercritical Fluid Deposition (SFD). SFD was utilized to deposit Pt and ceria simultaneously onto gas diffusion layers. The Pt-ceria catalyst deposited by SFD exhibited higher methanol oxidation activity compared to the platinum catalyst alone. The linear sweep traces of the cathode made for the methanol cross over study indicate that Pt-Ceria/C as the anode catalyst, due to its better activity for methanol, improves the fuel utilization, minimizing the methanol permeation from anode to cathode compartment. The third and fourth parts of the thesis describe the preparation of material catalytic material Carbon-Platinum-Cerium by a simple and cheap impregnation method using EDTA as a chelating agent to form a complex with cerium (III). This preparation method allows the mass production of the material catalysts without additional significant cost. Fuel cell polarization and power curves experiments showed that the Carbon-Platinum-Cerium anode materials exhibited better catalytic activity than the only Vulcan-Pt catalysts for DMFC, DEFC and HPEMFC. In the case of Vulcan-20%Pt-5%w Cerium, this material exhibits better catalytic activity than the Vulcan-20%Pt in DMFC. In the case of Vulcan-40% Pt-doped Cerium, this material exhibits better catalytic activity than the Vulcan-40% Pt in DMFC, DEFC and HPEMFC. Finally, I propose a theory that explains the reason why the

  3. Carbon deposition behaviour in metal-infiltrated gadolinia doped ceria electrodes for simulated biogas upgrading in solid oxide electrolysis cells

    NASA Astrophysics Data System (ADS)

    Duboviks, V.; Lomberg, M.; Maher, R. C.; Cohen, L. F.; Brandon, N. P.; Offer, G. J.

    2015-10-01

    One of the attractive applications for reversible Solid Oxide Cells (SOCs) is to convert CO2 into CO via high temperature electrolysis, which is particularly important for biogas upgrading. To improve biogas utility, the CO2 component can be converted into fuel via electrolysis. A significant issue for SOC operation on biogas is carbon-induced catalyst deactivation. Nickel is widely used in SOC electrodes for reasons of cost and performance, but it has a low tolerance to carbon deposition. Two different modes of carbon formation on Ni-based electrodes are proposed in the present work based on ex-situ Raman measurements which are in agreement with previous studies. While copper is known to be resistant towards carbon formation, two significant issues have prevented its application in SOC electrodes - namely its relatively low melting temperature, inhibiting high temperature sintering, and low catalytic activity for hydrogen oxidation. In this study, the electrodes were prepared through a low temperature metal infiltration technique. Since the metal infiltration technique avoids high sintering temperatures, Cu-Ce0.9Gd0.1O2-δ (Cu-CGO) electrodes were fabricated and tested as an alternative to Ni-CGO electrodes. We demonstrate that the performance of Cu-CGO electrodes is equivalent to Ni-CGO electrodes, whilst carbon formation is fully suppressed when operated on biogas mixture.

  4. Impact of structure and morphology of nanostructured ceria coating on AISI 304 oxidation kinetics

    NASA Astrophysics Data System (ADS)

    Aadhavan, R.; Suresh Babu, K.

    2017-07-01

    Nanostructured ceria-based coatings are shown to be protective against high-temperature oxidation of AISI 304 due to the dynamics of oxidation state and associated defects. However, the processing parameters of deposition have a strong influence in determining the structural and morphological aspects of ceria. The present work focuses on the effect of variation in substrate temperature (50-300 °C) and deposition rate (0.1-50 Å/s) of ceria in electron beam physical vapour evaporation method and correlates the changes in structure and morphology to high-temperature oxidation protection. Unlike deposition rate, substrate temperature exhibited a profound influence on crystallite size (7-18 nm) and oxygen vacancy concentration. Upon isothermal oxidation at 1243 K for 24 h, bare AISI 304 exhibited a linear mass gain with a rate constant of 3.0 ± 0.03 × 10-3 kg2 m-4 s-1 while ceria coating lowered the kinetics by 3-4 orders. Though the thickness of the coating was kept constant at 2 μm, higher deposition rate offered one order lower protection due to the porous nature of the coating. Variation in the substrate temperature modulated the porosity as well as oxygen vacancy concentration and displayed the best protection for coatings deposited at moderate substrate temperature. The present work demonstrates the significance of selecting appropriate processing parameters to obtain the required morphology for efficient high-temperature oxidation protection.

  5. A novel design of anode-supported solid oxide fuel cells with Y 2O 3-doped Bi 2O 3, LaGaO 3 and La-doped CeO 2 trilayer electrolyte

    NASA Astrophysics Data System (ADS)

    Guo, Weimin; Liu, Jiang

    Anode-supported solid oxide fuel cells (SOFCs) with a trilayered yttria-doped bismuth oxide (YDB), strontium- and magnesium-doped lanthanum gallate (LSGM) and lanthanum-doped ceria (LDC) composite electrolyte film are developed. The cell with a YDB (18 μm)/LSGM (19 μm)/LDC (13 μm) composite electrolyte film (designated as cell-A) shows the open-circuit voltages (OCVs) slightly higher than that of a cell with an LSGM (31 μm)/LDC (17 μm) electrolyte film (designated as cell-B) in the operating temperature range of 500-700 °C. The cell-A using Ag-YDB composition as cathode exhibits lower polarization resistance and ohmic resistance than those of a cell-B at 700 °C. The results show that the introduction of YDB to an anode-supported SOFC with a LSGM/LDC composite electrolyte film can effectively block electronic transport through the cell and thus increased the OCVs, and can help the cell to achieve higher power output.

  6. Giant onsite electronic entropy enhances the performance of ceria for water splitting.

    PubMed

    Naghavi, S Shahab; Emery, Antoine A; Hansen, Heine A; Zhou, Fei; Ozolins, Vidvuds; Wolverton, Chris

    2017-08-18

    Previous studies have shown that a large solid-state entropy of reduction increases the thermodynamic efficiency of metal oxides, such as ceria, for two-step thermochemical water splitting cycles. In this context, the configurational entropy arising from oxygen off-stoichiometry in the oxide, has been the focus of most previous work. Here we report a different source of entropy, the onsite electronic configurational entropy, arising from coupling between orbital and spin angular momenta in lanthanide f orbitals. We find that onsite electronic configurational entropy is sizable in all lanthanides, and reaches a maximum value of ≈4.7 k B per oxygen vacancy for Ce 4+ /Ce 3+ reduction. This unique and large positive entropy source in ceria explains its excellent performance for high-temperature catalytic redox reactions such as water splitting. Our calculations also show that terbium dioxide has a high electronic entropy and thus could also be a potential candidate for solar thermochemical reactions.Solid-state entropy of reduction increases the thermodynamic efficiency of ceria for two-step thermochemical water splitting. Here, the authors report a large and different source of entropy, the onsite electronic configurational entropy arising from coupling between orbital and spin angular momenta in f orbitals.

  7. The Role of Dextran Coatings on the Cytotoxicity Properties of Ceria Nanoparticles Toward Bone Cancer Cells

    NASA Astrophysics Data System (ADS)

    Yazici, Hilal; Alpaslan, Ece; Webster, Thomas J.

    2015-04-01

    Cerium oxide nanoparticles have demonstrated great potential as antioxidant and radioprotective agents for nanomedicine applications especially for cancer therapy. The surface chemistry of nanoparticles is an important property that has a significant effect on their performance in biological applications including cancer diagnosis, cancer treatment, and bacterial infection. Recently, various nanosized cerium oxide particles with different types of polymer coatings have been developed to improve aqueous solubility and allow for surface functionalization for distinct applications. In this study, the role of ceria nanoparticles coated with dextran on the cytotoxicity properties of bone cancer cells was shown. Specifically, 0.1 M and 0.01 M dextran-coated, <5-nm ceria nanoparticles, were synthesized. The cytotoxicity of 0.1 M and 0.01 M dextran-coated ceria nanoparticles was evaluated against osteosarcoma cells. A change in cell viability was observed when treating osteosarcoma cells with 0.1 M dextran-coated ceria nanoparticles in the 250 -1000 μg/mL concentration range. In contrast, minimal toxicity to bone cancer cells was observed for the 0.01 M dextran coating after 3 days compared with the 0.1 M dextran coating. These results indicated that surface dextran functionalization had a positive impact on the cytotoxicity of cerium oxide nanoparticles against osteosarcoma cells.

  8. Gyrokinetic theory of slab universal modes and the non-existence of the gradient drift coupling (GDC) instability

    NASA Astrophysics Data System (ADS)

    Rogers, Barrett N.; Zhu, Ben; Francisquez, Manaure

    2018-05-01

    A gyrokinetic linear stability analysis of a collisionless slab geometry in the local approximation is presented. We focus on k∥=0 universal (or entropy) modes driven by plasma gradients at small and large plasma β. These are small scale non-MHD instabilities with growth rates that typically peak near k⊥ρi˜1 and vanish in the long wavelength k⊥→0 limit. This work also discusses a mode known as the Gradient Drift Coupling (GDC) instability previously reported in the gyrokinetic literature, which has a finite growth rate γ=√{β/[2 (1 +β)] }Cs/|Lp| with Cs2=p0/ρ0 for k⊥→0 and is universally unstable for 1 /Lp≠0 . We show that the GDC instability is a spurious, unphysical artifact that erroneously arises due to the failure to respect the total equilibrium pressure balance p0+B02/(8 π)=constant , which renders the assumption B0'=0 inconsistent if p0'≠0 .

  9. Practical strategies when using a stable isotope labeled microtracer for absolute bioavailability assessment: A case study of a high oral dose clinical candidate GDC-0810.

    PubMed

    Chen, Buyun; Lu, Pingping; Freeman, Dugan; Gao, Yang; Choo, Edna; DeMent, Kevin; Savage, Scott; Zhang, Kelly; Milanwoski, Dennis; Liu, Lichuan; Dean, Brian; Deng, Yuzhong

    2018-05-30

    The pH labile metabolite, hydrophobicity, high oral dose and systematic exposure of GDC-0810 posed tremendous challenges to develop a LC-MS method for a stable isotope labeled aBA study. In this study, we explored practical solutions to balance stability and sensitivity and to cope with the impact of high C p.o. to C i.v. ratio on the labeling selection and assay dynamic range. A [ 13 C 9 ] GDC-0810 was synthesized to minimize the isotopic interference between PO dose, internal standard and I.V. microtracer. A highly sensitive LC-MS assay was validated for quantitation of [ 13 C 9 ] GDC-0810 from 5 to 1250 pg/mL. The optimized method was applied to a proof of concept cynomolgus monkey aBA study and the bioavailability calculated using microtracer dosing and regular dosing were similar to each other. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Characterization of swift heavy ion irradiation damage in ceria

    DOE PAGES

    Yablinsky, Clarissa A.; Devanathan, Ram; Pakarinen, Janne; ...

    2015-03-04

    Swift heavy ion induced radiation damage is investigated for ceria (CeO 2), which serves as a UO 2 fuel surrogate. Microstructural changes resulting from an irradiation with 940 MeV gold ions of 42 keV/nm electronic energy loss are investigated by means of electron microscopy accompanied by electron energy loss spectroscopy showing that there exists a small density reduction in the ion track core. While chemical changes in the ion track are not precluded, evidence of them was not observed. Classical molecular dynamics simulations of thermal spikes in CeO 2 with an energy deposition of 12 and 36 keV/nm show damagemore » consisting of isolated point defects at 12 keV/nm, and defect clusters at 36 keV/nm, with no amorphization at either energy. Furthermore, inferences are drawn from modeling about density changes in the ion track and the formation of interstitial loops that shed light on features observed by electron microscopy of swift heavy ion irradiated ceria.« less

  11. Partial Oxidation of Hydrocarbons in a Segmented Bed Using Oxide-based Catalysts and Oxygen-conducting Supports

    NASA Astrophysics Data System (ADS)

    Smith, Mark W.

    Two objectives for the catalytic reforming of hydrocarbons to produce synthesis gas are investigated herein: (1) the effect of oxygen-conducting supports with partially substituted mixed-metal oxide catalysts, and (2) a segmented bed approach using different catalyst configurations. Excess carbon deposition was the primary cause of catalyst deactivation, and was the focus of the experiments for both objectives. The formation and characterization of deposited carbon was examined after reaction for one of the selected catalysts to determine the quantity and location of the carbon on the catalyst surface leading to deactivation. A nickel-substituted barium hexaaluminate (BNHA), with the formula BaAl 11.6Ni0.4O18.8, and a Rh-substituted lanthanum zirconate pyrochlore (LCZR) with the formula La1.89Ca0.11 Zr1.89Rh0.11, were combined with two different doped ceria supports. These supports were gadolinium-doped ceria (GDC) and zirconium-doped ceria (ZDC). The active catalyst phases were combined with the supports in different ratios using different synthesis techniques. The catalysts were characterized using several different techniques and were tested under partial oxidation (POX) of n-tetradecane (TD), a diesel fuel surrogate. It was found that the presence of GDC and ZDC reduced the formation of carbon for both catalysts; the optimal ratio of catalyst to support was different for the hexaaluminate and the pyrochlore; a loading of 20 wt% of the pyrochlore with ZDC produced the most stable performance in the presence of common fuel contaminants (>50 h); and, the incipient wetness impregnation synthesis method of applying the active catalyst to the support produced more stable product yields than the catalyst prepared by a solid-state mixing technique. Different hexaaluminate and pyrochlore catalysts were used in different configurations in a segmented bed approach. The first strategy was to promote the indirect reforming mechanism by placing a combustion catalyst in the

  12. PI3K inhibitor GDC-0941 enhances apoptotic effects of BH-3 mimetic ABT-737 in AML cells in the hypoxic bone marrow microenvironment

    PubMed Central

    Kojima, Kensuke; Shikami, Masato; Benito, Julina; Ruvolo, Vivian; Wang, Rui-Yu; McQueen, Teresa; Ciurea, Stefan O.; Miida, Takashi; Andreeff, Michael; Konopleva, Marina

    2013-01-01

    Both phosphatidylinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling and antiapoptotic Bcl-2 family members are critical for survival of acute myeloid leukemia (AML) cells. Here we demonstrate the antileukemic effects of simultaneous inhibition of PI3K by the selective class I PI3K inhibitor GDC-0941 and of Bcl-2 family members by the BH3 mimetic ABT-737 in the context of the bone marrow microenvironment, where hypoxia and interactions with bone marrow stromal cells promote AML cell survival and chemoresistance. The combination of GDC-0941 and ABT-737 profoundly downregulated antiapoptotic Mcl-1 expression levels, activated BAX, and induced mitochondrial apoptosis in AML cells co-cultured with bone marrow stromal cells under hypoxic conditions. Hypoxia caused degradation of Mcl-1 and rendered Mcl-1-overexpressing OCI-AML3 cells sensitive to ABT-737. Our findings suggest that pharmacologic PI3K inhibition by GDC-0941 enhances ABT-737–induced leukemia cell death even under the protective conditions afforded by the bone marrow microenvironment. PMID:23955073

  13. The novel dual PI3K/mTOR inhibitor GDC-0941 synergizes with the MEK inhibitor U0126 in non-small cell lung cancer cells.

    PubMed

    Zou, Zu-Quan; Zhang, Li-Na; Wang, Feng; Bellenger, Jérôme; Shen, Yin-Zhuo; Zhang, Xiao-Hong

    2012-02-01

    Lung cancer is a malignant disease with poor outcome, which has led to a search for new therapeutics. The PI3K/Akt/mTOR and Ras/raf/Erk pathways are key regulators of tumor growth and survival. In the present study, their roles were evaluated by MTT assay, flow cytometry and Western blotting in lung cancer cells. We found that a high efficacy of antitumor activity was shown with GDC-0941 treatment in two gefitinib-resistant non-small cell lung cancer (NSCLC) cell lines, A549 and H460. In addition, H460 cells with activating mutations of PIK3CA were relatively more sensitive to GDC-0941 than A549 cells with wild-type PIK3CA. Furthermore, GDC-0941 was highly efficacious in combination with U0126 in inducing cell growth inhibition, G0-G1 arrest and cell apoptosis. These antitumor activities of combined treatment may be attributed to the alterations of G0-G1 phase regulators, apoptosis-related proteins and eukaryotic translation initiation factor 4B (eIF4B), induced by concomitant blockade of the PI3K/Akt/mTOR and Ras/raf/Erk pathways. In conclusion, this study suggests that multi‑targeted intervention is the most effective treatment for tumors. Additionally, the blockade of PI3K, mTOR and Erk with GDC-0941 and MEK inhibitors shows promise for treating gefitinib-resistant NSCLC.

  14. Charge transfer and formation of reduced Ce3+ upon adsorption of metal atoms at the ceria (110) surface.

    PubMed

    Nolan, Michael

    2012-04-07

    The modification of cerium dioxide with nanoscale metal clusters is intensely researched for catalysis applications, with gold, silver, and copper having been particularly well studied. The interaction of the metal cluster with ceria is driven principally by a localised interaction between a small number of metal atoms (as small as one) and the surface and understanding the fundamentals of the interaction of metal atoms with ceria surfaces is therefore of great interest. Much attention has been focused on the interaction of metals with the (111) surface of ceria, since this is the most stable surface and can be grown as films, which are probed experimentally. However, nanostructures exposing other surfaces such as (110) show high activity for reactions including CO oxidation and require further study; these nanostructures could be modified by deposition of metal atoms or small clusters, but there is no information to date on the atomic level details of metal-ceria interactions involving the (110) surface. This paper presents the results of density functional theory (DFT) corrected for on-site Coulomb interactions (DFT+U) calculations of the adsorption of a number of different metal atoms at an extended ceria (110) surface; the metals are Au, Ag, Cu, Al, Ga, In, La, Ce, V, Cr, and Fe. Upon adsorption all metals are oxidised, transferring electron(s) to the surface, resulting in localised surface distortions. The precise details depend on the identity of the metal atom. Au, Ag, Cu each transfer one electron to the surface, reducing one Ce ion to Ce(3+), while of the trivalent metals, Al and La are fully oxidised, but Ga and In are only partially oxidised. Ce and the transition metals are also partially oxidised, with the number of reduced Ce ions possible in this surface no more than three per adsorbed metal atom. The predicted oxidation states of the adsorbed metal atoms should be testable in experiments on ceria nanostructures modified with metal atoms.

  15. Induction of apoptosis through ER stress and TP53 in MCF-7 cells by the nanoparticle [Gd@C82(OH)22]n: A systems biology study.

    PubMed

    Wang, Lin; Meng, Jie; Cao, Weipeng; Li, Qizhai; Qiu, Yuqing; Sun, Baoyun; Li, Lei M

    2014-06-01

    The nanoparticle gadolinium endohedral metallofullerenol [Gd@C82(OH)22]n is a new candidate for cancer treatment with low toxicity. However, its anti-cancer mechanisms remain mostly unknown. In this study, we took a systems biology view of the gene expression profiles of human breast cancer cells (MCF-7) and human umbilical vein endothelial cells (ECV304) treated with and without [Gd@C82(OH)22]n, respectively, measured by the Agilent Gene Chip G4112F. To properly analyze these data, we modified a suit of statistical methods we developed. For the first time we applied the sub-sub normalization to Agilent two-color microarrays. Instead of a simple linear regression, we proposed to use a one-knot SPLINE model in the sub-sub normalization to account for nonlinear spatial effects. The parameters estimated by least trimmed squares- and S-estimators show similar normalization results. We made several kinds of inferences by integrating the expression profiles with the bioinformatic knowledge in KEGG pathways, Gene Ontology, JASPAR, and TRANSFAC. In the transcriptional inference, we proposed the BASE2.0 method to infer a transcription factor's up-regulation and down-regulation activities separately. Overall, [Gd@C82(OH)22]n induces more differentiation in MCF-7 cells than in ECV304 cells, particularly in the reduction of protein processing such as protein glucosylation, folding, targeting, exporting, and transporting. Among the KEGG pathways, the ErbB signaling pathway is up-regulated, whereas protein processing in endoplasmic reticulum (ER) is down-regulated. CHOP, a key pro-apoptotic gene downstream of the ER stress pathway, increases to nine folds in MCF-7 cells after treatment. These findings indicate that ER stress may be one important factor that induces apoptosis in MCF-7 cells after [Gd@C82(OH)22]n treatment. The expression profiles of genes associated with ER stress and apoptosis are statistically consistent with other profiles reported in the literature, such as

  16. Oncogenic PIK3CA gene mutations and HER2/neu gene amplifications determine the sensitivity of uterine serous carcinoma cell lines to GDC-0980, a selective inhibitor of Class I PI3 kinase and mTOR kinase (TORC1/2).

    PubMed

    English, Diana P; Bellone, Stefania; Cocco, Emiliano; Bortolomai, Ileana; Pecorelli, Sergio; Lopez, Salvatore; Silasi, Dan-Arin; Schwartz, Peter E; Rutherford, Thomas; Santin, Alessandro D

    2013-11-01

    To evaluate PIK3CA mutational status and c-erbB2 gene amplification in a series of primary uterine serous carcinomas (USC) cell lines. To assess the efficacy of GDC-0980, a potent inhibitor of Class I PI3 kinase and mTOR kinase (TORC1/2), against primary USC harboring HER2/neu gene amplification and/or PIK3CA mutations. Twenty-two primary USC cell lines were evaluated for c-erbB2 oncogene amplification by fluorescence in situ hybridization (FISH) assays and for PIK3CA gene mutations by direct DNA sequencing of exons 9 and 20. In vitro sensitivity to GDC-0980 was evaluated by flow-cytometry-based viability and proliferation assays. Downstream cellular responses to GDC-0980 were assessed by measuring phosphorylation of the 4-EBP1 protein by flow-cytometry. Five of 22 (22.7%) USC cell lines contained oncogenic PIK3CA mutations although 9 (40.9%) harbored c-erbB2 gene amplification by FISH. GDC-0980 caused a strong differential growth inhibition in FISH+ USC when compared with FISH- (GDC-0980 IC50 mean ± SEM = 0.29 ± 0.05 μM in FISH+ vs 1.09 ± 0.20 μM in FISH- tumors, P = .02). FISH+ USC harboring PIK3CA mutations were significantly more sensitive to GDC-0980 exposure when compared with USC cell lines harboring wild-type PIK3CA (P = .03). GDC-0980 growth-inhibition was associated with a significant and dose-dependent decline in phosphorylated 4-EBP1 levels. Oncogenic PIK3CA mutations and c-erbB2 gene amplification may represent biomarkers to identify patients harboring USC who may benefit most from the use of GDC-0980. Copyright © 2013 Mosby, Inc. All rights reserved.

  17. Performance of colloidal silica and ceria based slurries on CMP of Si-face 6H-SiC substrates

    NASA Astrophysics Data System (ADS)

    Chen, Guomei; Ni, Zifeng; Xu, Laijun; Li, Qingzhong; Zhao, Yongwu

    2015-12-01

    Colloidal silica and ceria based slurries, both using KMnO4 as an oxidizer, for chemical mechanical polishing (CMP) of Si-face (0 0 0 1) 6H-SiC substrate, were investigated to obtain higher material removal rate (MRR) and ultra-smooth surface. The results indicate that there was a significant difference in the CMP performance of 6H-SiC between silica and ceria based slurries. For the ceria based slurries, a higher MRR was obtained, especially in strong acid KMnO4 environment, and the maximum MRR (1089 nm/h) and a smoother surface with an average roughness Ra of 0.11 nm was achieved using slurries containing 2 wt% colloidal ceria, 0.05 M KMnO4 at pH 2. In contrast, due to the attraction between negative charged silica particles and positive charged SiC surface below pH 5, the maximum MRR of silica based slurry was only 185 nm/h with surface roughness Ra of 0.254 nm using slurries containing 6 wt% colloidal silica, 0.05 M KMnO4 at pH 6. The polishing mechanism was discussed based on the zeta potential measurements of the abrasives and the X-ray photoelectron spectroscopy (XPS) analysis of the polished SiC surfaces.

  18. Performance evaluation of GDC-SrMoO4-YSZ SOFCs prepared with different pore formers

    NASA Astrophysics Data System (ADS)

    Hongxin, You; Lian, Peng; Xiaojuan, Wang; Cong, Zhao; Yajun, Guan; Tao, Yu; Lijun, Xu; Abuliti

    2018-04-01

    The paper aims to evaluate the performance of anodes prepared with different pore formers. Anodic precursor material SrMoO4 was prepared by hard template method. Gd0.2Ce0.8O1.9 (GDC) was introduced to the precursor to prepare composite anode material GDC-SrMoO4-YSZ by wet impregnation method. Cotton-fibers, graphite powder, flour and activated carbon fibers (ACF) were added as pore formers to the anode to prepare the corresponding solid oxide fuel cell (SOFC), respectively. The electrical performance testing was conducted under the methane environment at 800°C. The result showed that the single cell with 5wt% cotton-fibers as anode pore-former performed best with the maximum power density (464.49 mW.cm2). The cross section samples of the test cells indicated that the anode was left with a plenty of continuous long channels because of the burning of cotton-fibers. Thus, the influence of the amount of cotton-fibers (2wt%, 4wt%, 5wt%, 7wt%, 10wt%) of the anode on the performance of SOFC was tested and further analyzed by the scanning electron microscope (SEM). It was indicated that the optimum adding amount of cotton-fibers was 5wt%.

  19. Water–gas shift reaction over gold nanoparticles dispersed on nanostructured CeO x–TiO 2(110) surfaces: Effects of high ceria coverage

    DOE PAGES

    Grinter, D. C.; Park, J. B.; Agnoli, S.; ...

    2016-08-01

    We used scanning tunnelling microscopy to study the morphology of an overlayer of ceria in contact with a TiO 2(110) substrate. Two types of domains were observed after ceria deposition. An ordered ceria film covered half of the surface and high-resolution imaging suggested a near-c(6 × 2) relationship to the underlying TiO 2(110)-(1 × 1). For the other half of the surface, it comprised CeO x nanoparticles and reconstructed TiOx supported on TiO 2(110)-(1 × 1). Exposure to a small amount of gold resulted in the formation of isolated gold atoms and small clusters on the ordered ceria film andmore » TiO 2(110)-(1 × 1) areas, which exhibited significant sintering at 500 K and showed strong interaction between the sintered gold clusters and the domain boundaries of the ceria film. The Au/CeO x/TiO 2(110) model system proved to be a good catalyst for the water–gas shift (WGS) exhibiting much higher turnover frequencies (TOFs) than Cu(111) and Pt(111) benchmarks, or the individual Au/TiO 2(110) and Au/CeO 2(111) systems. Finally, for Au/CeO x/TiO 2(110) catalysts, there was a decrease in catalytic activity with increasing ceria coverage that correlates with a reduction in the concentration of Ce 3 + formed during WGS reaction conditions.« less

  20. Water–gas shift reaction over gold nanoparticles dispersed on nanostructured CeO x–TiO 2(110) surfaces: Effects of high ceria coverage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grinter, D. C.; Park, J. B.; Agnoli, S.

    We used scanning tunnelling microscopy to study the morphology of an overlayer of ceria in contact with a TiO 2(110) substrate. Two types of domains were observed after ceria deposition. An ordered ceria film covered half of the surface and high-resolution imaging suggested a near-c(6 × 2) relationship to the underlying TiO 2(110)-(1 × 1). For the other half of the surface, it comprised CeO x nanoparticles and reconstructed TiOx supported on TiO 2(110)-(1 × 1). Exposure to a small amount of gold resulted in the formation of isolated gold atoms and small clusters on the ordered ceria film andmore » TiO 2(110)-(1 × 1) areas, which exhibited significant sintering at 500 K and showed strong interaction between the sintered gold clusters and the domain boundaries of the ceria film. The Au/CeO x/TiO 2(110) model system proved to be a good catalyst for the water–gas shift (WGS) exhibiting much higher turnover frequencies (TOFs) than Cu(111) and Pt(111) benchmarks, or the individual Au/TiO 2(110) and Au/CeO 2(111) systems. Finally, for Au/CeO x/TiO 2(110) catalysts, there was a decrease in catalytic activity with increasing ceria coverage that correlates with a reduction in the concentration of Ce 3 + formed during WGS reaction conditions.« less

  1. Dehydrogenation of methanol to formaldehyde catalyzed by pristine and defective ceria surfaces.

    PubMed

    Beste, Ariana; Overbury, Steven H

    2016-04-21

    We have explored the dehydrogenation of methoxy on pristine and defective (111), (100), and (110) ceria surfaces with density functional methods. Methanol conversion is used as a probe reaction to understand structure sensitivity of the oxide catalysis. Differences in reaction selectivity have been observed experimentally as a function of crystallographically exposed faces and degree of reduction. We find that the barrier for carbon-hydrogen cleavage in methoxy is similar for the pristine and defective (111), (100), and (110) surfaces. However, there are large differences in the stability of the surface intermediates on the different surfaces. The variations in experimentally observed product selectivities are a consequence of the interplay between barrier controlled bond cleavage and desorption processes. Subtle differences in activation energies for carbon-hydrogen cleavage on the different crystallographic faces of ceria could not be correlated with structural or electronic descriptors.

  2. Highly Stable Sr-Free Cobaltite-Based Perovskite Cathodes Directly Assembled on a Barrier-Layer-Free Y2 O3 -ZrO2 Electrolyte of Solid Oxide Fuel Cells.

    PubMed

    Ai, Na; Li, Na; Rickard, William D A; Cheng, Yi; Chen, Kongfa; Jiang, San Ping

    2017-03-09

    Direct assembly is a newly developed technique in which a cobaltite-based perovskite (CBP) cathode can be directly applied to a barrier-layer-free Y 2 O 3 -ZrO 2 (YSZ) electrolyte with no high-temperature pre-sintering steps. Solid oxide fuel cells (SOFCs) based on directly assembled CBPs such as La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ show high performance initially but degrade rapidly under SOFC operation conditions at 750 °C owing to Sr segregation and accumulation at the electrode/electrolyte interface. Herein, the performance and interface of Sr-free CBPs such as LaCoO 3-δ (LC) and Sm 0.95 CoO 3-δ (SmC) and their composite cathodes directly assembled on YSZ electrolyte was studied systematically. The LC electrode underwent performance degradation, most likely owing to cation demixing and accumulation of La on the YSZ electrolyte under polarization at 500 mA cm -2 and 750 °C. However, the performance and stability of LC electrodes could be substantially enhanced by the formation of LC-gadolinium-doped ceria (GDC) composite cathodes. Replacement of La by Sm increased the cell stability, and doping of 5 % Pd to form Sm 0.95 Co 0.95 Pd 0.05 O 3-δ (SmCPd) significantly improved the electrode activity. An anode-supported YSZ-electrolyte cell with a directly assembled SmCPd-GDC composite electrode exhibited a peak power density of 1.4 W cm -2 at 750 °C, and an excellent stability at 750 °C for over 240 h. The higher stability of SmC as compared to that of LC is most likely a result of the lower reactivity of SmC with YSZ. This study demonstrates the new opportunities in the design and development of intermediate-temperature SOFCs based on the directly assembled high-performance and durable Sr-free CBP cathodes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Segregation and Migration of the Oxygen Vacancies in the 3 (111) Tilt Grain Boundaries of Ceria

    DOE PAGES

    Yuan, Fenglin; Liu, Bin; Zhang, Yanwen; ...

    2016-03-01

    In nanocrystalline materials, defect-grain boundary (GB) interaction plays a key role in determining the structure stability, as well as size-dependent ionic, electronic, magnetic and chemical properties. In this study, we systematically investigated using density functional theory segregation and migration of oxygen vacancies at the Σ3 [110] / (111) grain boundary of ceria. Three oxygen layers near the GB are predicted to be segregation sites for oxygen vacancies. Moreover, the presence of oxygen vacancies stabilizes this tilt GB at a low Fermi level and/or oxygen poor conditions. An atomic strain model was proposed to rationalize layer dependency of the relaxation energymore » for +2 charged oxygen vacancy. The structural origin of large relaxation energies at layers 1 and 2 was determined to be free-volume space that induces ion relaxation towards the GB. Our results not only pave the way for improving the oxygen transport near GBs of ceria, but also provide important insights into engineering the GB structure for better ionic, magnetic and chemical properties of nanocrystalline ceria.« less

  4. Visible-light driven nitrogen-doped petal-morphological ceria nanosheets for water splitting

    NASA Astrophysics Data System (ADS)

    Qian, Junchao; Zhang, Wenya; Wang, Yaping; Chen, Zhigang; Chen, Feng; Liu, Chengbao; Lu, Xiaowang; Li, Ping; Wang, Kaiyuan; Chen, Ailian

    2018-06-01

    Water splitting is a promising sustainable technology for solar-to-chemical energy conversion. Herein, we successfully fabricated nitrogen-doped ultrathin CeO2 nanosheets by using field poppy petals as templates, which exhibit an efficiently catalytic activity for water splitting. Abundant oxygen vacancies and substitutional N atoms were experimentally observed in the film due to its unique biomorphic texture. In view of high efficiency and long durability of the as-prepared photocatalyst, this biotemplate method may provide an alternative technique for using biomolecules to assemble 2D nanomaterials.

  5. Greener iodination of arenes using sulphated ceria-zirconia catalysts in polyethylene glycol

    EPA Science Inventory

    An environmentally benign method for the selective monoiodination of diverse aromatic compounds has been developed using reusable sulphated ceria-zirconia under mild conditions. The protocol provides moderate to good yields of aryl iodides in PEG-200 as a greener solvent. The cat...

  6. Dehydrogenation of methanol to formaldehyde catalyzed by pristine and defective ceria surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beste, Ariana; Overbury, Steven H.

    We have explored the dehydrogenation of methoxy on pristine and defective (111), (100), and (110) ceria surfaces with density functional methods. Methanol conversion is used as a probe reaction to understand structure sensitivity of the oxide catalysis. Differences in reaction selectivity have been observed experimentally as a function of crystallographically exposed faces and degree of reduction. We find that the barrier for carbon-hydrogen cleavage in methoxy is similar for the pristine and defective (111), (100), and (110) surfaces. However, there are large differences in the stability of the surface intermediates on the different surfaces. The variations in experimentally observed productmore » selectivities are a consequence of the interplay between barrier controlled bond cleavage and desorption processes. Ultimately, subtle differences in activation energies for carbon-hydrogen cleavage on the different crystallographic faces of ceria could not be correlated with structural or electronic descriptors.« less

  7. Dehydrogenation of methanol to formaldehyde catalyzed by pristine and defective ceria surfaces

    DOE PAGES

    Beste, Ariana; Overbury, Steven H.

    2016-03-09

    We have explored the dehydrogenation of methoxy on pristine and defective (111), (100), and (110) ceria surfaces with density functional methods. Methanol conversion is used as a probe reaction to understand structure sensitivity of the oxide catalysis. Differences in reaction selectivity have been observed experimentally as a function of crystallographically exposed faces and degree of reduction. We find that the barrier for carbon-hydrogen cleavage in methoxy is similar for the pristine and defective (111), (100), and (110) surfaces. However, there are large differences in the stability of the surface intermediates on the different surfaces. The variations in experimentally observed productmore » selectivities are a consequence of the interplay between barrier controlled bond cleavage and desorption processes. Ultimately, subtle differences in activation energies for carbon-hydrogen cleavage on the different crystallographic faces of ceria could not be correlated with structural or electronic descriptors.« less

  8. Deactivation of Ceria Supported Palladium through C–C Scission during Transfer Hydrogenation of Phenol with Alcohols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Nicholas C.; Manzano, J. Sebastián; Slowing, Igor I.

    The stability of palladium supported on ceria (Pd/CeO 2) was studied during liquid flow transfer hydrogenation using primary and secondary alcohols as hydrogen donors. For primary alcohols, the ceria support was reduced to cerium hydroxy carbonate within 14 h and was a contributing factor toward catalyst deactivation. For secondary alcohols, cerium hydroxy carbonate was not observed during the same time period and the catalyst was stable upon prolonged reaction. Regeneration through oxidation/reduction does not restore initial activity likely due to irreversible catalyst restructuring. Lastly, a deactivation mechanism involving C–C scission of acyl and carboxylate intermediates is proposed.

  9. Deactivation of Ceria Supported Palladium through C–C Scission during Transfer Hydrogenation of Phenol with Alcohols

    DOE PAGES

    Nelson, Nicholas C.; Manzano, J. Sebastián; Slowing, Igor I.

    2016-11-21

    The stability of palladium supported on ceria (Pd/CeO 2) was studied during liquid flow transfer hydrogenation using primary and secondary alcohols as hydrogen donors. For primary alcohols, the ceria support was reduced to cerium hydroxy carbonate within 14 h and was a contributing factor toward catalyst deactivation. For secondary alcohols, cerium hydroxy carbonate was not observed during the same time period and the catalyst was stable upon prolonged reaction. Regeneration through oxidation/reduction does not restore initial activity likely due to irreversible catalyst restructuring. Lastly, a deactivation mechanism involving C–C scission of acyl and carboxylate intermediates is proposed.

  10. Formation of N3(-) during interaction of NO with reduced ceria.

    PubMed

    Mihaylov, Mihail Y; Ivanova, Elena Z; Aleksandrov, Hristiyan A; St Petkov, Petko; Vayssilov, Georgi N; Hadjiivanov, Konstantin I

    2015-04-04

    We show that the first stages of interaction between NO and reduced ceria comprise the formation of azides, N3(-), with simultaneous oxidation of Ce(3+) to Ce(4+). This finding imposes revision on some current views of catalytic NO conversion and may contribute to design of new deNOx materials and processes.

  11. A solid phase extraction-liquid chromatographic-tandem mass spectrometry method for determination of concentrations of GDC-0941, a small molecule class I phosphatidylinositide 3-kinase inhibitor, to support clinical development.

    PubMed

    Ding, X; Morrison, G; Dean, B; Hop, C E C A; Tobler, L; Percey, S; Meng, M; Reuschel, S; West, D A; Holden, S; Ware, J A

    2012-03-05

    A solid phase extraction (SPE) liquid chromatographic-tandem mass spectrometry (LC-MS/MS) method for the determination of GDC-0941 concentrations in human plasma has been developed and validated to support clinical development. An Oasis MCX 10mg 96-well SPE plate was used to extract plasma samples (50 μL) and the resulting extracts were analyzed using reverse-phase chromatography and mass spectrometer coupled with a turbo-ionspray interface. The method was validated over the calibration curve range 0.500-500 ng/mL with linear regression and 1/x(2) weighting. Within-run relative standard deviation (%RSD) ranged from 1.5 to 11.5%, while the between-run %RSD varied from 0.0 to 4.4%. The accuracy ranged from 96.0% to 110.0% of nominal for within-run and 98.0% to 108.0% of nominal for between-run at all concentrations including the LLOQ quality control at 0.500 ng/mL. Extraction recovery of GDC-0941 was between 79.0% and 86.2%. Stability of GDC-0941 was established in human plasma for 602 days at -70 °C and 598 days at -20°C, respectively, and established in reconstituted sample extracts for 167 h when stored at room temperature. Internal standard normalized matrix factor was 1.1, demonstrating that the use of the stable-labeled internal standard GDC-0941-d(8) effectively compensated observed matrix effect and resulting in no adverse impact on the quality of the data produced. This assay was used for the determination of GDC-0941 human plasma concentrations over a sufficient time period to determine pharmacokinetic parameters at relevant clinical doses. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Increased viability of fibroblasts when pretreated with ceria nanoparticles during serum deprivation.

    PubMed

    Genier, Francielli S; Bizanek, Maximilian; Webster, Thomas J; Roy, Amit K

    2018-01-01

    Conditions of cellular stress are often the cause of cell death or dysfunction. Sustained cell stress can lead to several health complications, such as extensive inflammatory responses, tumor growth, and necrosis. To prevent disease and protect human tissue during these conditions and to avoid medication side effects, nanomaterials with unique characteristics have been applied to biological systems. This paper introduces the pretreatment in human dermal fibroblasts with cerium oxide nanoparticles during nutritional stress. For this purpose, human dermal fibroblast cells received cell culture media with concentrations of 250 µg/mL and 500 µg/mL of nano-cerium oxide before being exposed to 24, 48, and 72 hours of serum starvation. Contrast images demonstrated higher cell confluence and cell integrity in cells pretreated with ceria nanoparticles compared to untreated cells. It was confirmed by MTS assay after 72 hours of serum starvation that higher cell viability was achieved with ceria nanoparticles. The results demonstrate the potential of cerium oxide nanoparticles as protective agents during cellular starvation.

  13. Giant onsite electronic entropy enhances the performance of ceria for water splitting

    DOE PAGES

    Naghavi, S. Shahab; Emery, Antoine A.; Hansen, Heine A.; ...

    2017-08-18

    Previous studies have shown that a large solid-state entropy of reduction increases the thermodynamic efficiency of metal oxides, such as ceria, for two-step thermochemical water splitting cycles. In this context, the configurational entropy arising from oxygen off-stoichiometry in the oxide, has been the focus of most previous work. Here we report a different source of entropy, the onsite electronic configurational entropy, arising from coupling between orbital and spin angular momenta in lanthanide f orbitals. We find that onsite electronic configurational entropy is sizable in all lanthanides, and reaches a maximum value of ≈4.7 k B per oxygen vacancy for Cemore » 4+/Ce 3+ reduction. This unique and large positive entropy source in ceria explains its excellent performance for high-temperature catalytic redox reactions such as water splitting. Our calculations also show that terbium dioxide has a high electronic entropy and thus could also be a potential candidate for solar thermochemical reactions.« less

  14. Ceria-thoria pellet manufacturing in preparation for plutonia-thoria LWR fuel production

    NASA Astrophysics Data System (ADS)

    Drera, Saleem S.; Björk, Klara Insulander; Sobieska, Matylda

    2016-10-01

    Thorium dioxide (thoria) has potential to assist in niche roles as fuel for light water reactors (LWRs). One such application for thoria is its use as the fertile component to burn plutonium in a mixed oxide fuel (MOX). Thor Energy and an international consortium are currently irradiating plutonia-thoria (Th-MOX) fuel in an effort to produce data for its licensing basis. During fuel-manufacturing research and development (R&D), surrogate materials were utilized to highlight procedures and build experience. Cerium dioxide (ceria) provides a good surrogate platform to replicate the chemical nature of plutonium dioxide. The project's fuel manufacturing R&D focused on powder metallurgical techniques to ensure manufacturability with the current commercial MOX fuel production infrastructure. The following paper highlights basics of the ceria-thoria fuel production including powder milling, pellet pressing and pellet sintering. Green pellets and sintered pellets were manufactured with average densities of 67.0% and 95.5% that of theoretical density respectively.

  15. Near-Road Modeling and Measurement of Particles Generated by Nanoparticle Diesel Fuel Additive Use

    EPA Science Inventory

    Cerium oxide (ceria) nanoparticles (n-Ce) are used as a fuel-borne catalyst in diesel engines to reduce particulate emissions, yet the environmental and human health impacts of the ceria-doped diesel exhaust aerosols are not well understood. To bridge the gap between emission mea...

  16. Biological properties of potent inhibitors of class I phosphatidylinositide 3-kinases: from PI-103 through PI-540, PI-620 to the oral agent GDC-0941.

    PubMed

    Raynaud, Florence I; Eccles, Suzanne A; Patel, Sonal; Alix, Sonia; Box, Gary; Chuckowree, Irina; Folkes, Adrian; Gowan, Sharon; De Haven Brandon, Alexis; Di Stefano, Francesca; Hayes, Angela; Henley, Alan T; Lensun, Letitia; Pergl-Wilson, Giles; Robson, Anthony; Saghir, Nahid; Zhyvoloup, Alexander; McDonald, Edward; Sheldrake, Peter; Shuttleworth, Stephen; Valenti, Melanie; Wan, Nan Chi; Clarke, Paul A; Workman, Paul

    2009-07-01

    The phosphatidylinositide 3-kinase pathway is frequently deregulated in human cancers and inhibitors offer considerable therapeutic potential. We previously described the promising tricyclic pyridofuropyrimidine lead and chemical tool compound PI-103. We now report the properties of the pharmaceutically optimized bicyclic thienopyrimidine derivatives PI-540 and PI-620 and the resulting clinical development candidate GDC-0941. All four compounds inhibited phosphatidylinositide 3-kinase p110alpha with IC(50) < or = 10 nmol/L. Despite some differences in isoform selectivity, these agents exhibited similar in vitro antiproliferative properties to PI-103 in a panel of human cancer cell lines, with submicromolar potency in PTEN-negative U87MG human glioblastoma cells and comparable phosphatidylinositide 3-kinase pathway modulation. PI-540 and PI-620 exhibited improvements in solubility and metabolism with high tissue distribution in mice. Both compounds gave improved antitumor efficacy over PI-103, following i.p. dosing in U87MG glioblastoma tumor xenografts in athymic mice, with treated/control values of 34% (66% inhibition) and 27% (73% inhibition) for PI-540 (50 mg/kg b.i.d.) and PI-620 (25 mg/kg b.i.d.), respectively. GDC-0941 showed comparable in vitro antitumor activity to PI-103, PI-540, and PI-620 and exhibited 78% oral bioavailability in mice, with tumor exposure above 50% antiproliferative concentrations for >8 hours following 150 mg/kg p.o. and sustained phosphatidylinositide 3-kinase pathway inhibition. These properties led to excellent dose-dependent oral antitumor activity, with daily p.o. dosing at 150 mg/kg achieving 98% and 80% growth inhibition of U87MG glioblastoma and IGROV-1 ovarian cancer xenografts, respectively. Together, these data support the development of GDC-0941 as a potent, orally bioavailable inhibitor of phosphatidylinositide 3-kinase. GDC-0941 has recently entered phase I clinical trials.

  17. Biological properties of potent inhibitors of class I phosphatidylinositide 3-kinases: from PI-103 through PI-540, PI-620 to the oral agent GDC-0941

    PubMed Central

    Raynaud, Florence I.; Eccles, Suzanne A.; Patel, Sonal; Alix, Sonia; Box, Gary; Chuckowree, Irina; Folkes, Adrian; Gowan, Sharon; De Haven Brandon, Alexis; Di Stefano, Francesca; Hayes, Angela; Henley, Alan T.; Lensun, Letitia; Pergl-Wilson, Giles; Robson, Anthony; Saghir, Nahid; Zhyvoloup, Alexander; McDonald, Edward; Sheldrake, Peter; Shuttleworth, Stephen; Valenti, Melanie; Wan, Nan Chi; Clarke, Paul A.; Workman, Paul

    2009-01-01

    The phosphatidylinositide 3-kinase pathway is frequently deregulated in human cancers and inhibitors offer considerable therapeutic potential. We previously described the promising tricyclic pyridofuropyrimidine lead and chemical tool compound PI-103. We now report the properties of the pharmaceutically optimized bicyclic thienopyrimidine derivatives PI-540 and PI-620 and the resulting clinical development candidate GDC-0941. All four compounds inhibited phosphatidylinositide 3-kinase p110α with IC50 ≤ 10 nmol/L. Despite some differences in isoform selectivity, these agents exhibited similar in vitro antiproliferative properties to PI-103 in a panel of human cancer cell lines, with submicromolar potency in PTEN-negative U87MG human glioblastoma cells and comparable phosphatidylinositide 3-kinase pathway modulation. PI-540 and PI-620 exhibited improvements in solubility and metabolism with high tissue distribution in mice. Both compounds gave improved antitumor efficacy over PI-103, following i.p. dosing in U87MG glioblastoma tumor xenografts in athymic mice, with treated/control values of 34% (66% inhibition) and 27% (73% inhibition) for PI-540 (50 mg/kg b.i.d.) and PI-620 (25 mg/kg b.i.d.), respectively. GDC-0941 showed comparable in vitro antitumor activity to PI-103, PI-540, and PI-620 and exhibited 78% oral bioavailability in mice, with tumor exposure above 50% anti-proliferative concentrations for >8 hours following 150 mg/kg p.o. and sustained phosphatidylinositide 3-kinase pathway inhibition. These properties led to excellent dose-dependent oral antitumor activity, with daily p.o. dosing at 150 mg/kg achieving 98% and 80% growth inhibition of U87MG glioblastoma and IGROV-1 ovarian cancer xenografts, respectively. Together, these data support the development of GDC-0941 as a potent, orally bioavailable inhibitor of phosphatidylinositide 3-kinase. GDC-0941 has recently entered phase I clinical trials. PMID:19584227

  18. GDCRNATools: an R/Bioconductor package for integrative analysis of lncRNA, miRNA, and mRNA data in GDC.

    PubMed

    Li, Ruidong; Qu, Han; Wang, Shibo; Wei, Julong; Zhang, Le; Ma, Renyuan; Lu, Jianming; Zhu, Jianguo; Zhong, Wei-De; Jia, Zhenyu

    2018-03-02

    The large-scale multidimensional omics data in the Genomic Data Commons (GDC) provides opportunities to investigate the crosstalk among different RNA species and their regulatory mechanisms in cancers. Easy-to-use bioinformatics pipelines are needed to facilitate such studies. We have developed a user-friendly R/Bioconductor package, named GDCRNATools, for downloading, organizing, and analyzing RNA data in GDC with an emphasis on deciphering the lncRNA-mRNA related competing endogenous RNAs (ceRNAs) regulatory network in cancers. Many widely used bioinformatics tools and databases are utilized in our package. Users can easily pack preferred downstream analysis pipelines or integrate their own pipelines into the workflow. Interactive shiny web apps built in GDCRNATools greatly improve visualization of results from the analysis. GDCRNATools is an R/Bioconductor package that is freely available at Bioconductor (http://bioconductor.org/packages/devel/bioc/html/GDCRNATools.html). Detailed instructions, manual and example code are also available in Github (https://github.com/Jialab-UCR/GDCRNATools). arthur.jia@ucr.edu or zhongwd2009@live.cn or doctorzhujianguo@163.com.

  19. Ceria based inverse opals for thermochemical fuel production: Quantification and prediction of high temperature behavior

    NASA Astrophysics Data System (ADS)

    Casillas, Danielle Courtney

    Solar energy has the potential to supply more than enough energy to meet humanity's energy demands. Here, a method for thermochemical solar energy storage through fuel production is presented. A porous non-stoichiometric oxide, ceria, undergoes partial thermal reduction and oxidation with concentrated solar energy as a heat source, and water as an oxidant. The resulting yields for hydrogen fuel and oxygen are produced in two discrete steps, while the starting material maintains its original phase. Ordered porosity has been shown superior to random porosity for thermochemical fuel production applications, but stability limits for these structures are currently undefined. Ceria-based inverse opals are currently being investigated to assess the architectural influence on thermochemical hydrogen production. Low tortuosity and continuous interconnected pore network allow for facile gas transport and improved reaction kinetics. Ceria-based ordered materials have recently been shown to increase maximum hydrogen production over non-ordered porous ceria. Thermal stability of ordered porosity was quantified using quantitative image analysis. Fourier analysis was applied to SEM images of the material. The algorithm results in an order parameter gamma that describes the degree of long range order maintained by these structures, where gamma>4 signifies ordered porosity. According to this metric, a minimum zirconium content of 20 atomic percent (at%) is necessary for these architectures to survive aggressive annealing up to 1000°C. Zirconium substituted ceria (ZSC) with Zr loadings in excess of 20at% developed undesired tetragonal phases. Through gamma, we were able to find a balance between the benefit of zirconium additions on structural stability and its negative impact on phase. This work demonstrates the stability of seemingly delicate architectures, and the operational limit for ceria based inverse opals to be 1000°C for 1microm pore size. Inverse opals having sub

  20. Water-gas-shift over metal-free nanocrystalline ceria: An experimental and theoretical study

    DOE PAGES

    Guild, Curtis J.; Vovchok, Dimitriy; Kriz, David A.; ...

    2017-01-23

    A tandem experimental and theoretical investigation of a mesoporous ceria catalyst reveals the properties of the metal oxide are conducive for activity typically ascribed to metals, suggesting reduced Ce 3+ and oxygen vacancies are responsible for the inherent bi-functionality of CO oxidation and dissociation of water required for facilitating the production of H 2. The degree of reduction of the ceria, specifically the (1 0 0) face, is found to significantly influence the binding of reagents, suggesting reduced surfaces harbor the necessary reactive sites. The metal-free catalysis of the reaction is significant for catalyst design considerations, and the suite ofmore » in situ analyses provides a comprehensive study of the dynamic nature of the high surface area catalyst system. Finally, this study postulates feasible improvements in catalytic activity may redirect the purpose of the water-gas shift reaction from CO purification to primary hydrogen production.« less

  1. Water-gas-shift over metal-free nanocrystalline ceria: An experimental and theoretical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guild, Curtis J.; Vovchok, Dimitriy; Kriz, David A.

    A tandem experimental and theoretical investigation of a mesoporous ceria catalyst reveals the properties of the metal oxide are conducive for activity typically ascribed to metals, suggesting reduced Ce 3+ and oxygen vacancies are responsible for the inherent bi-functionality of CO oxidation and dissociation of water required for facilitating the production of H 2. The degree of reduction of the ceria, specifically the (1 0 0) face, is found to significantly influence the binding of reagents, suggesting reduced surfaces harbor the necessary reactive sites. The metal-free catalysis of the reaction is significant for catalyst design considerations, and the suite ofmore » in situ analyses provides a comprehensive study of the dynamic nature of the high surface area catalyst system. Finally, this study postulates feasible improvements in catalytic activity may redirect the purpose of the water-gas shift reaction from CO purification to primary hydrogen production.« less

  2. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles

    PubMed Central

    Wang, Yang-Gang; Mei, Donghai; Glezakou, Vassiliki-Alexandra; Li, Jun; Rousseau, Roger

    2015-01-01

    Catalysis by gold supported on reducible oxides has been extensively studied, yet issues such as the nature of the catalytic site and the role of the reducible support remain fiercely debated topics. Here we present ab initio molecular dynamics simulations of an unprecedented dynamic single-atom catalytic mechanism for the oxidation of carbon monoxide by ceria-supported gold clusters. The reported dynamic single-atom catalytic mechanism results from the ability of the gold cation to strongly couple with the redox properties of the ceria in a synergistic manner, thereby lowering the energy of redox reactions. The gold cation can break away from the gold nanoparticle to catalyse carbon monoxide oxidation, adjacent to the metal/oxide interface and subsequently reintegrate back into the nanoparticle after the reaction is completed. Our study highlights the importance of the dynamic creation of active sites under reaction conditions and their essential role in catalysis. PMID:25735407

  3. Portable Oxygen Generation for Medical Applications.

    DTIC Science & Technology

    1997-07-01

    stabilized zirconia; these include scandia- stabilized zirconia, lanthanum gallate , ceria, and bismuth oxide. Scandia-stabilized zirconia [1] exhibits...uncertainty of using doped ceria is its high thermal expansion coefficient (ceria -13-14 ppm/°C, YSZ -10.5 ppm/°C). Lanthanum gallate (LaGa03) [2-4...the conductivity of lanthanum gallate approximately 2-3 times that of YSZ in the 600- 1000°C temperature range. The enhanced conductivity in lanthanum

  4. PI3K inhibitor GDC-0941 enhances apoptotic effects of BH-3 mimetic ABT-737 in AML cells in the hypoxic bone marrow microenvironment.

    PubMed

    Jin, Linhua; Tabe, Yoko; Kojima, Kensuke; Shikami, Masato; Benito, Julina; Ruvolo, Vivian; Wang, Rui-Yu; McQueen, Teresa; Ciurea, Stefan O; Miida, Takashi; Andreeff, Michael; Konopleva, Marina

    2013-12-01

    Both phosphatidylinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin signaling and antiapoptotic Bcl-2 family members are critical for survival of acute myeloid leukemia (AML) cells. Here, we demonstrate the antileukemic effects of simultaneous inhibition of PI3K by the selective class I PI3K inhibitor GDC-0941 and of Bcl-2 family members by the BH3 mimetic ABT-737 in the context of the bone marrow microenvironment, where hypoxia and interactions with bone marrow stromal cells promote AML cell survival and chemoresistance. The combination of GDC-0941 and ABT-737 profoundly downregulated antiapoptotic Mcl-1 expression levels, activated BAX, and induced mitochondrial apoptosis in AML cells co-cultured with bone marrow stromal cells under hypoxic conditions. Hypoxia caused degradation of Mcl-1 and rendered Mcl-1-overexpressing OCI-AML3 cells sensitive to ABT-737. Our findings suggest that pharmacologic PI3K inhibition by GDC-0941 enhances ABT-737-induced leukemia cell death even under the protective conditions afforded by the bone marrow microenvironment. Combined blockade of PI3K and Bcl-2 pathways down-regulates anti-apoptotic Mcl-1 expression PI3K and Bcl-2 induced Mcl-1 down-regulation activates BAX PI3K and Bcl-2 blockage induces apoptosis in AML under hypoxic BM microenvironment.

  5. Water Adsorption and Dissociation on Ceria-Supported Single-Atom Catalysts: A First-Principles DFT+U Investigation.

    PubMed

    Han, Zhong-Kang; Gao, Yi

    2016-02-01

    Single-atom catalysts have attracted wide attention owing to their extremely high atom efficiency and activities. In this paper, we applied density functional theory with the inclusion of the on-site Coulomb interaction (DFT+U) to investigate water adsorption and dissociation on clean CeO 2 (111) surfaces and single transition metal atoms (STMAs) adsorbed on the CeO 2 (111) surface. It is found that the most stable water configuration is molecular adsorption on the clean CeO 2 (111) surface and dissociative adsorption on STMA/CeO 2 (111) surfaces, respectively. In addition, our results indicate that the more the electrons that transfer from STMA to the ceria substrate, the stronger the binding energies between the STMA and ceria surfaces. A linear relationship is identified between the water dissociation barriers and the d band centers of STMA, known as the generalized Brønsted-Evans-Polanyi principle. By combining the oxygen spillovers, single-atom dispersion stabilities, and water dissociation barriers, Zn, Cr, and V are identified as potential candidates for the future design of ceria-supported single-atom catalysts for reactions in which the dissociation of water plays an important role, such as the water-gas shift reaction. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Shape-Dependent Activity of Ceria for Hydrogen Electro-Oxidation in Reduced-Temperature Solid Oxide Fuel Cells.

    PubMed

    Tong, Xiaofeng; Luo, Ting; Meng, Xie; Wu, Hao; Li, Junliang; Liu, Xuejiao; Ji, Xiaona; Wang, Jianqiang; Chen, Chusheng; Zhan, Zhongliang

    2015-11-04

    Single crystalline ceria nanooctahedra, nanocubes, and nanorods are hydrothermally synthesized, colloidally impregnated into the porous La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) scaffolds, and electrochemically evaluated as the anode catalysts for reduced temperature solid oxide fuel cells (SOFCs). Well-defined surface terminations are confirmed by the high-resolution transmission electron microscopy--(111) for nanooctahedra, (100) for nanocubes, and both (110) and (100) for nanorods. Temperature-programmed reduction in H2 shows the highest reducibility for nanorods, followed sequentially by nanocubes and nanooctahedra. Measurements of the anode polarization resistances and the fuel cell power densities reveal different orders of activity of ceria nanocrystals at high and low temperatures for hydrogen electro-oxidation, i.e., nanorods > nanocubes > nanooctahedra at T ≤ 450 °C and nanooctahedra > nanorods > nanocubes at T ≥ 500 °C. Such shape-dependent activities of these ceria nanocrystals have been correlated to their difference in the local structure distortions and thus in the reducibility. These findings will open up a new strategy for design of advanced catalysts for reduced-temperature SOFCs by elaborately engineering the shape of nanocrystals and thus selectively exposing the crystal facets. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Combined Ceria Reduction and Methane Reforming in a Solar-Driven Particle-Transport Reactor.

    PubMed

    Welte, Michael; Warren, Kent; Scheffe, Jonathan R; Steinfeld, Aldo

    2017-09-20

    We report on the experimental performance of a solar aerosol reactor for carrying out the combined thermochemical reduction of CeO 2 and reforming of CH 4 using concentrated radiation as the source of process heat. The 2 kW th solar reactor prototype utilizes a cavity receiver enclosing a vertical Al 2 O 3 tube which contains a downward gravity-driven particle flow of ceria particles, either co-current or counter-current to a CH 4 flow. Experimentation under a peak radiative flux of 2264 suns yielded methane conversions up to 89% at 1300 °C for residence times under 1 s. The maximum extent of ceria reduction, given by the nonstoichiometry δ (CeO 2-δ ), was 0.25. The solar-to-fuel energy conversion efficiency reached 12%. The syngas produced had a H 2 :CO molar ratio of 2, and its calorific value was solar-upgraded by 24% over that of the CH 4 reformed.

  8. Combined Ceria Reduction and Methane Reforming in a Solar-Driven Particle-Transport Reactor

    PubMed Central

    2017-01-01

    We report on the experimental performance of a solar aerosol reactor for carrying out the combined thermochemical reduction of CeO2 and reforming of CH4 using concentrated radiation as the source of process heat. The 2 kWth solar reactor prototype utilizes a cavity receiver enclosing a vertical Al2O3 tube which contains a downward gravity-driven particle flow of ceria particles, either co-current or counter-current to a CH4 flow. Experimentation under a peak radiative flux of 2264 suns yielded methane conversions up to 89% at 1300 °C for residence times under 1 s. The maximum extent of ceria reduction, given by the nonstoichiometry δ (CeO2−δ), was 0.25. The solar-to-fuel energy conversion efficiency reached 12%. The syngas produced had a H2:CO molar ratio of 2, and its calorific value was solar-upgraded by 24% over that of the CH4 reformed. PMID:28966440

  9. Altering properties of cerium oxide thin films by Rh doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ševčíková, Klára, E-mail: klarak.sevcikova@seznam.cz; NIMS Beamline Station at SPring-8, National Institute for Materials Science, Sayo, Hyogo 679-5148; Nehasil, Václav, E-mail: nehasil@mbox.troja.mff.cuni.cz

    2015-07-15

    Highlights: • Thin films of ceria doped by rhodium deposited by RF magnetron sputtering. • Concentration of rhodium has great impact on properties of Rh–CeO{sub x} thin films. • Intensive oxygen migration in films with low concentration of rhodium. • Oxygen migration suppressed in films with high amount of Rh dopants. - Abstract: Ceria containing highly dispersed ions of rhodium is a promising material for catalytic applications. The Rh–CeO{sub x} thin films with different concentrations of rhodium were deposited by RF magnetron sputtering and were studied by soft and hard X-ray photoelectron spectroscopies, Temperature programmed reaction and X-ray powder diffractionmore » techniques. The sputtered films consist of rhodium–cerium mixed oxide where cerium exhibits a mixed valency of Ce{sup 4+} and Ce{sup 3+} and rhodium occurs in two oxidation states, Rh{sup 3+} and Rh{sup n+}. We show that the concentration of rhodium has a great influence on the chemical composition, structure and reducibility of the Rh–CeO{sub x} thin films. The films with low concentrations of rhodium are polycrystalline, while the films with higher amount of Rh dopants are amorphous. The morphology of the films strongly influences the mobility of oxygen in the material. Therefore, varying the concentration of rhodium in Rh–CeO{sub x} thin films leads to preparing materials with different properties.« less

  10. Ceria nanocubic-ultrasonication assisted dispersive liquid-liquid microextraction coupled with matrix assisted laser desorption/ionization mass spectrometry for pathogenic bacteria analysis.

    PubMed

    Abdelhamid, Hani Nasser; Bhaisare, Mukesh L; Wu, Hui-Fen

    2014-03-01

    A new ceria (CeO2) nanocubic modified surfactant is used as the basis of a novel nano-based microextraction technique for highly sensitive detection of pathogenic bacteria (Pseudomonas aeruginosa and Staphylococcus aureus). The technique uses ultrasound enhanced surfactant-assisted dispersive liquid-liquid microextraction (UESA-DLLME) with and without ceria (CeO2) followed by matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS). In order to achieve high separation efficiency, we investigated the influential parameters, including extraction time of ultrasonication, type and volume of the extraction solvent and surfactant. Among various surfactants, the cationic surfactants can selectively offer better extraction efficiency on bacteria analysis than that of the anionic surfactants due to the negative charges of bacteria cell membranes. Extractions of the bacteria lysate from aqueous samples via UESA-DLLME-MALDI-MS were successfully achieved by using cetyltrimethyl ammonium bromide (CTAB, 10.0 µL, 1.0×10(-3) M) as surfactants in chlorobenzene (10.0 µL) and chloroform (10.0 µL) as the optimal extracting solvent for P. aeruginosa and S. aureus, respectively. Ceria nanocubic was synthesized, and functionalized with CTAB (CeO2@CTAB) and then characterized using transmission electron microscopy (TEM) and optical spectroscopy (UV and FTIR). CeO2@CTAB demonstrates high extraction efficiency, improve peaks ionization, and enhance resolution. The prime reasons for these improvements are due to the large surface area of nanoparticles, and its absorption that coincides with the wavelength of MALDI laser (337 nm, N2 laser). CeO2@CTAB-based microextraction offers lowest detectable concentrations tenfold lower than that of without nanoceria. The present approach has been successfully applied to detect pathogenic bacteria at low concentrations of 10(4)-10(5) cfu/mL (without ceria) and at 10(3)-10(4) cfu/mL (with ceria) from bacteria suspensions. Finally, the

  11. Quantitative MRI establishes the efficacy of PI3K inhibitor (GDC-0941) multi-treatments in PTEN-deficient mice lymphoma.

    PubMed

    Wullschleger, Stephan; García-Martínez, Juan M; Duce, Suzanne L

    2012-02-01

    To assess the efficacy of multiple treatment of phosphatidylinositol-3-kinase (PI3K) inhibitor on autochthonous tumours in phosphatase and tensin homologue (Pten)-deficient genetically engineered mouse cancer models using a longitudinal magnetic resonance imaging (MRI) protocol. Using 3D MRI, B-cell follicular lymphoma growth was quantified in a Pten(+/-)Lkb1(+/hypo) mouse line, before, during and after repeated treatments with a PI3K inhibitor GDC-0941 (75 mg/kg). Mean pre-treatment linear tumour growth rate was 16.5±12.8 mm(3)/week. Repeated 28-day GDC-0941 administration, with 21 days 'off-treatment', induced average tumour regression of 41±7%. Upon cessation of the second treatment (which was not permanently cytocidal), tumours re-grew with an average linear growth rate of 40.1±15.5 mm(3)/week. There was no evidence of chemoresistance. This protocol can accommodate complex dosing schedules, as well as combine different cancer therapies. It reduces biological variability problems and resulted in a 10-fold reduction in mouse numbers compared with terminal assessment methods. It is ideal for preclinical efficacy studies and for phenotyping molecularly characterized mouse models when investigating gene function.

  12. The role of CO 2 as a soft oxidant for dehydrogenation of ethylbenzene to styrene over a high-surface-area ceria catalyst

    DOE PAGES

    Zhang, Li; Wu, Zili; Nelson, Nicholas; ...

    2015-09-22

    Catalytic performance and the nature of surface adsorbates were investigated for high-surface-area ceria during ethylbenzene oxidative dehydrogenation (ODH) reaction using CO2 as a soft oxidant. A template assisted method was used to synthesize the high-surface-area ceria. The interactions between ethylbenzene, styrene and CO2 on the surface of ceria and the role of CO2 for the ethylbenzene ODH reaction have been investigated in detail by using activity test, in situ Diffuse Reflectance Infrared and Raman spectroscopy. Not only did CO2 as an oxidant favor the higher yield of styrene, but it also inhibited the deposition of coke during the ethylbenzene ODHmore » reaction. Ethylbenzene ODH reaction over ceria followed a two-step pathway: Ethylbenzene is first dehydrogenated to styrene with H2 formed simultaneously, and then CO2 reacts with H2 via the reverse water gas shift. The styrene produced can easily polymerize to form polystyrene, a key intermediate for coke formation. In the absence of CO2, the polystyrene transforms into graphite-like coke at temperatures above 500 °C, which leads to catalyst deactivation. While in the presence of CO2, the coke deposition can be effectively removed via oxidation with CO2.« less

  13. Ceria-containing uncoated and coated hydroxyapatite-based galantamine nanocomposites for formidable treatment of Alzheimer's disease in ovariectomized albino-rat model.

    PubMed

    Wahba, Sanaa M R; Darwish, Atef S; Kamal, Sara M

    2016-08-01

    This paper upraises delivery and therapeutic actions of galantamine drug (GAL) against Alzheimer's disease (AD) in rat brain through attaching GAL to ceria-containing hydroxyapatite (GAL@Ce-HAp) as well ceria-containing carboxymethyl chitosan-coated hydroxyapatite (GAL@Ce-HAp/CMC) nanocomposites. Physicochemical features of such nanocomposites were analyzed by XRD, FT-IR, Raman spectroscopy, UV-vis spectrophotometer, N2-BET, DLS, zeta-potential measurements, SEM, and HR-TEM. Limited interactions were observed in GAL@Ce-HAp with prevailed existence of dispersed negatively charged rod-like particles conjugated with ceria nanodots. On contrary, GAL@Ce-HAp/CMC was well-structured developing aggregates of uncharged tetragonal-shaped particles laden with accession of ceria quantum dots. Such nanocomposites were i.p. injected into ovariectomized AD albino-rats at galantamine dose of 2.5mg/kg/day for one month, then brain tissues were collected for biochemical and histological tests. GAL@Ce-HAp adopted as a promising candidate for AD curativeness, whereas oxidative stress markers were successfully upregulated, degenerated neurons in hippocampal and cerebral tissues were wholly recovered and Aβ-plaques were vanished. Also, optimizable in-vitro release for GAL and nanoceria were displayed from GAL@Ce-HAp, while delayed in-vitro release for those species were developed from GAL@Ce-HAp/CMC. This proof of concept work allow futuristic omnipotency of rod-like hydroxyapatite particles for selective delivery of GAL and nanoceria to AD affected brain areas. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. GDC 2: Compression of large collections of genomes

    PubMed Central

    Deorowicz, Sebastian; Danek, Agnieszka; Niemiec, Marcin

    2015-01-01

    The fall of prices of the high-throughput genome sequencing changes the landscape of modern genomics. A number of large scale projects aimed at sequencing many human genomes are in progress. Genome sequencing also becomes an important aid in the personalized medicine. One of the significant side effects of this change is a necessity of storage and transfer of huge amounts of genomic data. In this paper we deal with the problem of compression of large collections of complete genomic sequences. We propose an algorithm that is able to compress the collection of 1092 human diploid genomes about 9,500 times. This result is about 4 times better than what is offered by the other existing compressors. Moreover, our algorithm is very fast as it processes the data with speed 200 MB/s on a modern workstation. In a consequence the proposed algorithm allows storing the complete genomic collections at low cost, e.g., the examined collection of 1092 human genomes needs only about 700 MB when compressed, what can be compared to about 6.7 TB of uncompressed FASTA files. The source code is available at http://sun.aei.polsl.pl/REFRESH/index.php?page=projects&project=gdc&subpage=about. PMID:26108279

  15. GDC 2: Compression of large collections of genomes.

    PubMed

    Deorowicz, Sebastian; Danek, Agnieszka; Niemiec, Marcin

    2015-06-25

    The fall of prices of the high-throughput genome sequencing changes the landscape of modern genomics. A number of large scale projects aimed at sequencing many human genomes are in progress. Genome sequencing also becomes an important aid in the personalized medicine. One of the significant side effects of this change is a necessity of storage and transfer of huge amounts of genomic data. In this paper we deal with the problem of compression of large collections of complete genomic sequences. We propose an algorithm that is able to compress the collection of 1092 human diploid genomes about 9,500 times. This result is about 4 times better than what is offered by the other existing compressors. Moreover, our algorithm is very fast as it processes the data with speed 200 MB/s on a modern workstation. In a consequence the proposed algorithm allows storing the complete genomic collections at low cost, e.g., the examined collection of 1092 human genomes needs only about 700 MB when compressed, what can be compared to about 6.7 TB of uncompressed FASTA files. The source code is available at http://sun.aei.polsl.pl/REFRESH/index.php?page=projects&project=gdc&subpage=about.

  16. Strain Engineering Defect Concentrations in Reduced Ceria for Improved Electro-Catalytic Performance

    DTIC Science & Technology

    2014-06-30

    coupling, curvature relaxation, lanthanum strontium ferrite, ceria. oxygen surface exchange 16. SECURITY CLASSIFICATION OF: 17. LlMITATJON OF a. REPORT...Temperature Lanthanum Strontium Ferrite Oxygen Surface Exchange Coefficient Measurements by Curvature Relaxation. 225th Meeting of the Electrochemical...Manuscripts Received Paper TOTAL: Received Paper TOTAL: 06/30/2014 Received Paper 1.00 Qing Yang, Jason Nicholas. Porous Thick Film Lanthanum Strontium

  17. Gd@C82 metallofullerenes for neutron capture therapy—fullerene solubilization by poly(ethylene glycol)-block-poly(2-(N, N-diethylamino)ethyl methacrylate) and resultant efficacy in vitro

    PubMed Central

    Horiguchi, Yukichi; Kudo, Shinpei; Nagasaki, Yukio

    2011-01-01

    Poly(ethylene glycol)-block-poly(2-(N,N-diethylamino)ethyl methacrylate) (PEG-b-PAMA) was found to solubilize fullerenes such as C60, and this technique was applied to metallofullerenes. Gd@C82 was easily dissolved in water in the presence of PEG-b-PAMA without any covalent derivatization, forming a transparent complex about 20–30 nm in diameter. Low cytotoxicity was confirmed in vitro. Neutron irradiation of cultured cells (colon-26 adenocarcinoma) with Gd@C82-PEG-b-PAMA-complexed nanoparticles showed effective cytotoxicity, indicating the effective emission of gamma rays and internal conversion electrons produced from the neutron capture reaction of Gd. This result suggests a potentially valuable approach to gadolinium-based neutron capture therapy. PMID:27877415

  18. Synthesis, characterization and mechanical properties of NiO - GDC20 (Ce{sub 0.8}Gd{sub 0.2}O{sub 1.9}) nano composite anode for solid oxide fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, M. Narsimha, E-mail: mnreddy57@gmail.com; Rao, P. Vijaya Bhaskar; Sharma, R. K.

    2016-05-06

    In the present research work, X (NiO) +1-X(Ce{sub 0.8}Gd{sub 0.2}O{sub 1.9}) where X = 30,40 and 45 wt% Nano Composite Anodes are synthesized for low temperature operating solid oxide fuel cells (SOFC). NiO and Ce{sub 0.8}Gd{sub 0.2}O{sub 1.9} (GDC20) are synthesized by sol-gel citrate method and the nanopowders of NiO, GDC20 were calcined from 650 °c to 750 °c. For anode materials, pelletized the nanocomposites of X(NiO)+ (1-X) GDC20 (X = 30,40,45 wt.%) and sintered at 1200 °c. systematic study of atomic structure, purity, phase and structural parameters such as Lattice parameters, crystallite size of as-synthesized nanopowders and anode materialsmore » were carried out by XRD and SEM. For mechanical strength, Vickers micro-hardness of anode composites were estimated and observed that micro-hardness of composites were increasing with NiO wt.% and the density of sintered samples, which is varying from 4.35 to 5.54 Gpa at 500g load.« less

  19. Cell membrane penetration and mitochondrial targeting by platinum-decorated ceria nanoparticles

    NASA Astrophysics Data System (ADS)

    Torrano, Adriano A.; Herrmann, Rudolf; Strobel, Claudia; Rennhak, Markus; Engelke, Hanna; Reller, Armin; Hilger, Ingrid; Wixforth, Achim; Bräuchle, Christoph

    2016-07-01

    In this work we investigate the interaction between endothelial cells and nanoparticles emitted by catalytic converters. Although catalyst-derived particles are recognized as growing burden added to environmental pollution, very little is known about their health impact. We use platinum-decorated ceria nanoparticles as model compounds for the actual emitted particles and focus on their fast uptake and association with mitochondria, the cell's powerhouse. Using live-cell imaging and electron microscopy we clearly show that 46 nm platinum-decorated ceria nanoparticles can rapidly penetrate cell membranes and reach the cytosol. Moreover, if suitably targeted, these particles are able to selectively attach to mitochondria. These results are complemented by cytotoxicity assays, thus providing insights into the biological effects of these particles on cells. Interestingly, no permanent membrane disruption or any other significant adverse effects on cells were observed. The unusual uptake behavior observed for 46 nm nanoparticles was not observed for equivalent but larger 143 nm and 285 nm platinum-decorated particles. Our results demonstrate a remarkable particle size effect in which particles smaller than ~50-100 nm escape the usual endocytic pathway and translocate directly into the cytosol, while particles larger than ~150 nm are internalized by conventional endocytosis. Since the small particles are able to bypass endocytosis they could be explored as drug and gene delivery vehicles. Platinum-decorated nanoparticles are therefore highly interesting in the fields of nanotoxicology and nanomedicine.In this work we investigate the interaction between endothelial cells and nanoparticles emitted by catalytic converters. Although catalyst-derived particles are recognized as growing burden added to environmental pollution, very little is known about their health impact. We use platinum-decorated ceria nanoparticles as model compounds for the actual emitted particles and

  20. Quantitative MRI Establishes the Efficacy of PI3K Inhibitor (GDC-0941) Multi-Treatments in PTEN-deficient Mice Lymphoma

    PubMed Central

    WULLSCHLEGER, STEPHAN; GARCÍA-MARTÍNEZ, JUAN M.; DUCE, SUZANNE L.

    2012-01-01

    Aim To assess the efficacy of multiple treatment of phosphatidylinositol-3-kinase (PI3K) inhibitor on autochthonous tumours in phosphatase and tensin homologue (Pten)-deficient genetically engineered mouse cancer models using a longitudinal magnetic resonance imaging (MRI) protocol. Materials and Methods Using 3D MRI, B-cell follicular lymphoma growth was quantified in a Pten+/−Lkb1+/hypo mouse line, before, during and after repeated treatments with a PI3K inhibitor GDC-0941 (75 mg/kg). Results Mean pre-treatment linear tumour growth rate was 16.5±12.8 mm3/week. Repeated 28-day GDC-0941 administration, with 21 days “off-treatment”, induced average tumour regression of 41±7%. Upon cessation of the second treatment (which was not permanently cytocidal), tumours re-grew with an average linear growth rate of 40.1±15.5 mm3/week. There was no evidence of chemoresistance. Conclusion This protocol can accommodate complex dosing schedules, as well as combine different cancer therapies. It reduces biological variability problems and resulted in a 10-fold reduction in mouse numbers compared with terminal assessment methods. It is ideal for preclinical efficacy studies and for phenotyping molecularly characterized mouse models when investigating gene function. PMID:22287727

  1. Transient heat and mass transfer analysis in a porous ceria structure of a novel solar redox reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandran, RB; Bader, R; Lipinski, W

    2015-06-01

    Thermal transport processes are numerically analyzed for a porous ceria structure undergoing reduction in a novel redox reactor for solar thermochemical fuel production. The cylindrical reactor cavity is formed by an array of annular reactive elements comprising the porous ceria monolith integrated with gas inlet and outlet channels. Two configurations are considered, with the reactor cavity consisting of 10 and 20 reactive elements, respectively. Temperature dependent boundary heat fluxes are obtained on the irradiated cavity wall by solving for the surface radiative exchange using the net radiation method coupled to the heat and mass transfer model of the reactive element.more » Predicted oxygen production rates are in the range 40-60 mu mol s(-1) for the geometries considered. After an initial rise, the average temperature of the reactive element levels off at 1660 and 1680 K for the two geometries, respectively. For the chosen reduction reaction rate model, oxygen release continues after the temperature has leveled off which indicates that the oxygen release reaction is limited by chemical kinetics and/or mass transfer rather than by the heating rate. For a fixed total mass of ceria, the peak oxygen release rate is doubled for the cavity with 20 reactive elements due to lower local oxygen partial pressure. (C) 2015 Elsevier Masson SAS. All rights reserved.« less

  2. Magnetically recyclable magnetite-ceria (Nanocat-Fe-Ce) nanocatalysts - applications in multicomponent reactions under benign conditions

    EPA Science Inventory

    A novel magnetite nanoparticle-supported ceria catalyst (Nanocat-Fe-Ce) has been successfully prepared by simple impregnation method and was well characterized by XRD, SIMS, FEG-SEM-EDS, and TEM. The exact nature of Nanocat-Fe-Ce was confirmed by X-ray photoelectron spectroscopy ...

  3. Surface characterization of acidic ceria-zirconia prepared by direct sulfation

    NASA Astrophysics Data System (ADS)

    Azambre, B.; Zenboury, L.; Weber, J. V.; Burg, P.

    2010-05-01

    Acidic ceria-zirconia (SCZ) solid acid catalysts with a nominal surface density of ca 2 SO 42-/nm 2 were prepared by a simple route consisting in soaking high specific surface area Ce xZr 1- xO 2 (with x = 0.21 and 0.69) mixed oxides solutions in 0.5 M sulphuric acid. Characterizations by TPD-MS, TP-DRIFTS and FT-Raman revealed that most of surface structures generated by sulfation are stable at least up to 700 °C under inert atmosphere and consist mainly as isolated sulfates located on defects or crystal planes and to a lesser extent as polysulfates. Investigations by pyridine adsorption/desorption have stated that: SCZ possess both strong Brønsted (B) and Lewis (L) acid sites, some of them being presumably superacidic; the B/L site ratio was found to be more dependent on the temperature and hydration degree than on the composition of the ceria-zirconia. By contrast, the reactivity of the parent Ce xZr 1- xO 2 materials towards pyridine is mostly driven by redox properties resulting in the formation of Py-oxide with the participation of Lewis acid sites of moderate strength ( cus Ce x+ and Zr x+ cations). Basicity studies by CO 2 adsorption/desorption reveal that SCZ surfaces are solely acidic whereas the number and strength of Lewis basic sites increases with the Ce content for the parent Ce xZr 1- xO 2 materials.

  4. Nanometer-sized ceria-coated silica-iron oxide for the reagentless microextraction/preconcentration of heavy metals in environmental and biological samples followed by slurry introduction to ICP-OES.

    PubMed

    Dados, A; Paparizou, E; Eleftheriou, P; Papastephanou, C; Stalikas, C D

    2014-04-01

    A slurry suspension sampling technique is developed and optimized for the rapid microextraction of heavy metals and analysis using nanometer-sized ceria-coated silica-iron oxide particles and inductively coupled plasma optical emission spectrometry (ICP-OES). Magnetic-silica material is synthesized by a co-precipitation and sol-gel method followed by ceria coating through a precipitation. The large particles are removed using a sedimentation-fractionation procedure and a magnetic homogeneous colloidal suspension of ceria-modified iron oxide-silica is produced for microextraction. The nanometer-sized particles are separated from the sample solution magnetically and analyzed with ICP-OES using a slurry suspension sampling approach. The ceria-modified iron oxide-silica does not contain any organic matter and this probably justifies the absence of matrix effect on plasma atomization capacity, when increased concentrations of slurries are aspirated. The As, Be, Mo, Cr, Cu, Pb, Hg, Sb, Se and V can be preconcentrated by the proposed method at pH 6.0 while Mn, Cd, Co and Ni require a pH ≥ 8.0. Satisfactory values are obtained for the relative standard deviations (2-6%), recoveries (88-102%), enrichment factors (14-19) and regression correlation coefficients as well as detectability, at sub-μg L(-1) levels. The applicability of magnetic ceria for the microextraction of metal ions in combination with the slurry introduction technique using ICP is substantiated by the analysis of environmental water and urine samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Photosensitizer-Loaded Branched Polyethylenimine-PEGylated Ceria Nanoparticles for Imaging-Guided Synchronous Photochemotherapy.

    PubMed

    Yang, Zhang-You; Li, Hong; Zeng, Yi-Ping; Hao, Yu-Hui; Liu, Cong; Liu, Jing; Wang, Wei-Dong; Li, Rong

    2015-11-04

    A multifunctional theranostic platform based on photosensitizer (chlorin e6, Ce6)-loaded branched polyethylenimine-PEGylated ceria nanoparticles (PPCNPs-Ce6) was created for the development of effective cancer treatments involving the use of imaging-guided synchronous photochemotherapy. PPCNPs-Ce6 with high Ce6 photosensitizer loading (Ce6: cerium ∼40 wt %) significantly enhanced the delivery of Ce6 into cells and its accumulation in lysosomes, remarkably improving photodynamic therapeutic (PDT) efficacy levels compared to those in the administration of free Ce6 at ultralow drug doses (∼200 nM). Interestingly, PPCNPs-Ce6 efficiently induced HeLa cell death even at low concentrations (∼10 μM) without the use of laser irradiation and exhibit chemocytotoxicity. Inductively coupled plasma mass spectrometry (ICP-MS) and biology transmission electron microscopy (Bio-TEM) analyses demonstrated that ceria nanoparticles enter cells abundantly and accumulate in lysosomes or large vesicles. We then evaluated the effects of the different materials on lysosomal integrity and function, which revealed that PPCNPs-Ce6 catastrophically impaired lysosomal function compared to results with PPCNPs and Ce6. Studies of apoptosis revealed greater induction of apoptosis by PPCNPs-Ce6 treatment. This multifunctional nanocarrier also exhibited a high degree of solubility and stability in aqueous solutions, suggesting its applicability for extensive biomedical application.

  6. Nickel Nanocatalyst Ex-Solution from Ceria-Nickel Oxide Solid Solution for Low Temperature CO Oxidation.

    PubMed

    Singhania, Amit; Gupta, Shipra Mital

    2018-07-01

    In this work, in situ growth of Ni nanocatalysts to attach onto the ceria (CeO2) surface through direct Ni ex-solution from the NiO-CeO2 solid solution in a reducing atmosphere at high temperatures with an aim to improve the catalytic activity, and stability for low temperature carbon monoxide (CO) oxidation reaction have been reported. The NiO-CeO2 solid solutions were prepared by solution combustion method, and the results of XRD and RAMAN showed that doping of Ni increases the oxygen vacancies due to charge compensation. Ni is clearly visible in XRD and TEM of Ni ex-solved sample (R-UCe5Ni10) after reduction of NiO-CeO2 (UCe5Ni10) sample by 5% H2/Ar reduction at 1000 °C. TEM analysis revealed a size of 9.2 nm of Ni nanoparticle that is ex-solved on the surface CeO2. This ex-solved sample showed very high catalytic activity (T50 ~ 110 °C), and stability (100 h) for CO oxidation reaction as compared to prepared solid solution samples. This is due to the highly active metallic nano-phase which is ex-solved on the surface of CeO2 and strongly adherent to the support. The apparent activation energy Ni ex-solved sample is found out to be 48.4 kJ mol-1. Thus, the above Ni ex-solved sample shows a practical applicability for the CO reaction.

  7. ROS mediated malignancy cure performance of morphological, optical, and electrically tuned Sn doped CeO2 nanostructures

    NASA Astrophysics Data System (ADS)

    Abbas, Fazal; Iqbal, Javed; Maqbool, Qaisar; Jan, Tariq; Ullah, Muhammad Obaid; Nawaz, Bushra; Nazar, Mudassar; Naqvi, M. S. Hussain; Ahmad, Ishaq

    2017-09-01

    To grapple with cancer, implementation of differentially cytotoxic nanomedicines have gained prime attention of the researchers across the globe. Now, ceria (CeO2) at nanoscale has emerged as a cut out therapeutic agent for malignancy treatment. Keeping this in view, we have fabricated SnxCe1-xO2 nanostructures by facile, eco-friendly, and biocompatible hydrothermal method. Structural examinations via XRD and FT-IR spectroscopy have revealed single phase cubic-fluorite morphology while SEM analysis has depicted particle size ranging 30-50nm for pristine and doped nanostructures. UV-Vis spectroscopy investigation explored that Sn doping significantly tuned the band gap (eV) energies of SnxCe1-xO2 nanostructures which set up the base for tremendous cellular reactive oxygen species (ROS) generations involved in cancer cells' death. To observe cytotoxicity, synthesized nanostructures were found selectively more toxic to neuroblastoma cell lines as compared to HEK-293 healthy cells. This study anticipates that SnxCe1-xO2 nanostructures, in future, might be used as nanomedicine for safer cancer therapy.

  8. The impact of thermal treatment conditions on the formation of crystalline structure of Ce-Zr-oxide composite obtained by a modified sol-gel technique

    NASA Astrophysics Data System (ADS)

    Trusova, E. A.; Khrushcheva, A. A.; Shvorneva, L. I.

    2012-02-01

    We present the results of the modified sol-gel synthesis of ultrafine ceria-doped zirconia powder for medical ceramics (implants) and catalytic purposes (environmental catalysis and petrochemistry). Special attention has been paid to study the influence of thermal treatment on crystallite size and crystal lattice parameters of zirconia doped by ceria. Zirconyl chloride and cerium nitrate were used as metal sources, and tetraethylammonium hydroxide (TEAH) was used as a sol stabilizer at molar ratio TEAH/Σ (Ce + Zr) equal to 0.5. It was proved that zirconium and cerium practically completely were included in the obtained solid solutions, since their phase compositions fully correspond to initial quantities of cerium and zirconium in reaction mixture. It was shown that average crystallite size of the obtained powders did not exceed 75Å, and the powders were resistant to thermal treatment. It was established that stabilization of the crystal lattice of ZrO2 occurs through formation of a cubic ceria sublattice.

  9. Impact of Dynamic Specimen Shape Evolution on the Atom Probe Tomography Results of Doped Epitaxial Oxide Multilayers: Comparison of Experiment and Simulation

    DOE PAGES

    Madaan, Nitesh; Bao, Jie; Nandasiri, Manjula I.; ...

    2015-08-31

    The experimental atom probe tomography results from two different specimen orientations (top-down and side-ways) of a high oxygen ion conducting Samaria-doped-ceria/Scandia-stabilized-zirconia multilayer thin film solid oxide fuel cell electrolyte was correlated with level-set method based field evaporation simulations for the same specimen orientations. This experiment-theory correlation explains the dynamic specimen shape evolution and ion trajectory aberrations that can induce density artifacts in final reconstruction leading to inaccurate estimation of interfacial intermixing. This study highlights the need and importance of correlating experimental results with field evaporation simulations when using atom probe tomography for studying oxide heterostructure interfaces.

  10. Mechanism analysis on finishing of reaction-sintered silicon carbide by combination of water vapor plasma oxidation and ceria slurry polishing

    NASA Astrophysics Data System (ADS)

    Shen, Xinmin; Tu, Qunzhang; Deng, Hui; Jiang, Guoliang; Yamamura, Kazuya

    2015-05-01

    Reaction-sintered silicon carbide (RS-SiC), which is considered as a promising mirror material for space telescope systems, requires a high surface property. An ultrasmooth surface with a Ra surface roughness of 0.480 nm was obtained after water vapor plasma oxidation for 90 min followed by ceria slurry polishing for 40 min. The oxidation process of RS-SiC by water vapor plasma was analyzed based on the Deal-Grove model, and the theoretical calculation results are consistent with the measured data obtained by scanning white light interferometer (SWLI), scanning electron microscopy/energy-dispersive x-ray, and atomic force microscope. The polishing process of oxidized RS-SiC by ceria slurry was investigated according to the Preston equation, which would theoretically forecast the evolutions of RS-SiC surfaces along with the increasing of polishing time, and it was experimentally verified by comparing the surface roughnesses obtained by SWLI and the surface morphologies obtained by SEM. The mechanism analysis on the finishing of RS-SiC would be effective for the optimization of water vapor plasma oxidation parameters and ceria slurry polishing parameters, which will promote the application of RS-SiC substrates by improving the surface property obtained by the oxidation-assisted polishing method.

  11. Quantitative depth profiling of Ce(3+) in Pt/CeO2 by in situ high-energy XPS in a hydrogen atmosphere.

    PubMed

    Kato, Shunsuke; Ammann, Markus; Huthwelker, Thomas; Paun, Cristina; Lampimäki, Markus; Lee, Ming-Tao; Rothensteiner, Matthäus; van Bokhoven, Jeroen A

    2015-02-21

    The redox property of ceria is a key factor in the catalytic activity of ceria-based catalysts. The oxidation state of well-defined ceria nanocubes in gas environments was analysed in situ by a novel combination of near-ambient pressure X-ray Photoelectron Spectroscopy (XPS) and high-energy XPS at a synchrotron X-ray source. In situ high-energy XPS is a promising new tool to determine the electronic structure of matter under defined conditions. The aim was to quantitatively determine the degree of cerium reduction in a nano-structured ceria-supported platinum catalyst as a function of the gas environment. To obtain a non-destructive depth profile at near-ambient pressure, in situ high-energy XPS analysis was performed by varying the kinetic energy of photoelectrons from 1 to 5 keV, and, thus, the probing depth. In ceria nanocubes doped with platinum, oxygen vacancies formed only in the uppermost layers of ceria in an atmosphere of 1 mbar hydrogen and 403 K. For pristine ceria nanocubes, no change in the cerium oxidation state in various hydrogen or oxygen atmospheres was observed as a function of probing depth. In the absence of platinum, hydrogen does not dissociate and, thus, does not lead to reduction of ceria.

  12. Effect of ca+2 addition on the properties of ce0.8gd0.2o2-δ for it-sofc

    NASA Astrophysics Data System (ADS)

    Koteswararao, P.; Buchi Suresh, M.; Wani, B. N.; Bhaskara Rao, P. V.; Varalaxmi, P.

    2018-03-01

    This paper reports the effect of Ca2+ addition on the structural and electrical properties of Ce0.8Gd0.2O2-δ(GDC) electrolyte for low temperature solid oxide fuel cell application. The Ca (0, 0.5, 1 and 2 mol %) doped GDC solid electrolytes have been prepared by solid state method. The sintered densities of the samples are greater than 95%. XRD study reveals the cubic fluorite structure. The microstructure of the samples sintered at 1400°C resulted into grain sizes in the range of 1.72 to 10.20 μm. Raman spectra show the presence of GDC single phase. AC impedance analysis is used to measure the ionic conductivity of the electrolyte. Among all the compositions, the highest conductivity is observed in the GDC sample with 0.5 mol% Ca addition. Nyquist plots resulted in multiple redoxation process such as grain and grain boundary conductions to final conductivity. Estimated blocking factor is lower for the GDC electrolyte with 0.5mol% Ca, indicating that Ca addition was promoted grain boundary conduction. Activation energies were calculated from Arrhenius plot and are found in the range of 1eV.

  13. Continuous Precipitation of Ceria Nanoparticles from a Continuous Flow Micromixer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tseng, Chih Heng; Paul, Brian; Chang, Chih-hung

    2013-01-01

    Cerium oxide nanoparticles were continuously precipitated from a solution of cerium(III) nitrate and ammonium hydroxide using a micro-scale T-mixer. Findings show that the method of mixing is important in the ceria precipitation process. In batch mixing and deposition, disintegration and agglomeration dominates the deposited film. In T-mixing and deposition, more uniform nanorod particles are attainable. In addition, it was found that the micromixing approach reduced the exposure of the Ce(OH)3 precipates to oxygen, yielding hydroxide precipates in place of CeO2 precipitates. Advantages of the micro-scale T-mixing approach include shorter mixing times, better control of nanoparticle shape and less agglomeration.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dholabhai, Pratik P., E-mail: pratik.dholabhai@asu.ed; Anwar, Shahriar, E-mail: anwar@asu.ed; Adams, James B., E-mail: jim.adams@asu.ed

    Kinetic lattice Monte Carlo (KLMC) model is developed for investigating oxygen vacancy diffusion in praseodymium-doped ceria. The current approach uses a database of activation energies for oxygen vacancy migration, calculated using first-principles, for various migration pathways in praseodymium-doped ceria. Since the first-principles calculations revealed significant vacancy-vacancy repulsion, we investigate the importance of that effect by conducting simulations with and without a repulsive interaction. Initially, as dopant concentrations increase, vacancy concentration and thus conductivity increases. However, at higher concentrations, vacancies interfere and repel one another, and dopants trap vacancies, creating a 'traffic jam' that decreases conductivity, which is consistent with themore » experimental findings. The modeled effective activation energy for vacancy migration slightly increased with increasing dopant concentration in qualitative agreement with the experiment. The current methodology comprising a blend of first-principle calculations and KLMC model provides a very powerful fundamental tool for predicting the optimal dopant concentration in ceria related materials. -- graphical abstract: Ionic conductivity in praseodymium doped ceria as a function of dopant concentration calculated using the kinetic lattice Monte Carlo vacancy-repelling model, which predicts the optimal composition for achieving maximum conductivity. Display Omitted Research highlights: {yields} KLMC method calculates the accurate time-dependent diffusion of oxygen vacancies. {yields} KLMC-VR model predicts a dopant concentration of {approx}15-20% to be optimal in PDC. {yields} At higher dopant concentration, vacancies interfere and repel one another, and dopants trap vacancies. {yields} Activation energy for vacancy migration increases as a function of dopant content« less

  15. Evolutionary differences in chromosomal locations of four early genes of the tryptophan pathway in fluorescent pseudomonads: DNA sequences and characterization of Pseudomonas putida trpE and trpGDC.

    PubMed

    Essar, D W; Eberly, L; Crawford, I P

    1990-02-01

    Pseudomonas putida possesses seven structural genes for enzymes of the tryptophan pathway. All but one, trpG, which encodes the small (beta) subunit of anthranilate synthase, have been mapped on the circular chromosome. This report describes the cloning and sequencing of P. putida trpE, trpG, trpD, and trpC. In P. putida and Pseudomonas aeruginosa, DNA sequence analysis as well as growth and enzyme assays of insertionally inactivated strains indicated that trpG is the first gene in a three-gene operon that also contains trpD and trpC. In P. putida, trpE is 2.2 kilobases upstream from the trpGDC cluster, whereas in P. aeruginosa, they are separated by at least 25 kilobases (T. Shinomiya, S. Shiga, and M. Kageyama, Mol. Gen. Genet., 189:382-389, 1983). The DNA sequence in P. putida shows an open reading frame on the opposite strand between trpE and trpGDC; this putative gene was not characterized. Evidence is also presented for sequence similarities in the 5' untranslated regions of trpE and trpGDC in both pseudomonads; the function of these regions is unknown, but it is possible that they play some role in regulation of these genes, since all the genes respond to repression by tryptophan. The sequences of the anthranilate synthase genes in the fluorescent pseudomonads resemble those of p-aminobenzoate synthase genes of the enteric bacteria more closely than the anthranilate synthase genes of those organisms; however, no requirement for p-aminobenzoate was found in the Pseudomonas mutants created in this study.

  16. Synthesis of nanocrystalline Ni/Ce-YSZ powder via a polymerization route

    NASA Astrophysics Data System (ADS)

    Abolghasemi, Z.; Tamizifar, M.; Arzani, K.; Nemati, A.; Khanfekr, A.; Bolandi, M.

    2013-08-01

    Pechini process was used for preparation of three kinds of nanocrystalline powders of yttria-stabilized zirconia (YSZ): doped with 1.5 mol% nickel oxide, doped with 15 mol% ceria, and doped with 1.5 mol% nickel oxide plus 15 mol% ceria. Zirconium chloride, yttrium nitrate, cerium nitrate, nickel nitrate, citric acid and ethylene glycol were polymerized at 80 °C to produce a gel. XRD, SEM and TEM analyses were used to investigate the crystalline phases and microstructures of obtained compounds. The results of XRD revealed the formation of nanocrystalline powder at 900 °C. Morphology of the powder calcined at 900 °C, examined with a scanning electron microscope, showed that the presence of nickel and cerium inhibited the grain growth in the system. The average crystallite size of the material doped with nickel oxide (9.33 nm) was bigger than the one doped with cerium oxide (9.29 nm), while the YSZ doping with the two oxides simultaneously promoted the grain growth with crystallite size of 11.37 nm. Yttria-stabilized zirconia powder with a mean crystallite size of 9.997 nm was prepared successfully by this method.

  17. Controlling Heteroepitaxy by Oxygen Chemical Potential: Exclusive Growth of (100) Oriented Ceria Nanostructures on Cu(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Höcker, Jan; Duchoň, Tomáš; Veltruská, Kateřina

    2016-01-06

    We present a novel and simple method for the preparation of a well-defined CeO 2(100) model system on Cu(111) based on the adjustment of the Ce/O ratio during growth. The method yields micrometer-sized, several nanometers high, single-phase CeO 2(100) islands with controllable size and surface termination that can be benchmarked against the known (111) nanostructured islands on Cu(111). We also demonstrate the ability to adjust the Ce to O stoichiometry from CeO 2(100) (100% Ce 4+) to c-Ce 2O 3(100) (100% Ce 3+), which can be readily recognized by characteristic surface reconstructions observed by low-energy electron diffraction. Finally, the discoverymore » of the highly stable CeO x(100) phase on a hexagonally close packed metal surface represents an unexpected growth mechanism of ceria on Cu(111), and it provides novel opportunities to prepare more elaborate models, benchmark surface chemical reactivity, and thus gain valuable insights into the redox chemistry of ceria in catalytic processes.« less

  18. In-situ Characterization of Cu/CeO 2 Nanocatalysts during CO 2 Hydrogenation: Morphological Effects of Nanostructured Ceria on the Catalytic Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Lili; Yao, Siyu; Liu, Zongyuan

    Here, a combination of time-resolved X-ray diffraction (TR-XRD), ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was used to carry out an in-situ characterization of Cu/CeO 2 nanocatalysts during the hydrogenation of CO 2. Morphological effects of the ceria supports on the catalytic performances were investigated by examining the behavior of copper/ceria-nanorods (NR) and nanospheres (NS). At atmospheric pressures, the hydrogenation of CO 2 on the copper-ceria catalysts produced mainly CO through the reverse-water gas shift reaction (RWGS) and a negligible amount of methanol. The Cu/CeO 2-NR catalyst displayed the higher activity, which demonstrates thatmore » the RWGS is a structure sensitive reaction. In-situ TR-XRD and AP-XPS characterization showed significant changes in the chemical state of the catalysts under reaction conditions with the copper being fully reduced and a partial Ce 4+ to Ce 3+ transformation occurring. A more effective CO 2 dissociative activation at high temperature and a preferential formation of active bidentate carbonate and formate intermediates over CeO 2(110) terminations are probably the main reasons for the better performance of the Cu/CeO 2-NR catalyst in the RWGS reaction.« less

  19. In-situ Characterization of Cu/CeO 2 Nanocatalysts during CO 2 Hydrogenation: Morphological Effects of Nanostructured Ceria on the Catalytic Activity

    DOE PAGES

    Lin, Lili; Yao, Siyu; Liu, Zongyuan; ...

    2018-05-28

    Here, a combination of time-resolved X-ray diffraction (TR-XRD), ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was used to carry out an in-situ characterization of Cu/CeO 2 nanocatalysts during the hydrogenation of CO 2. Morphological effects of the ceria supports on the catalytic performances were investigated by examining the behavior of copper/ceria-nanorods (NR) and nanospheres (NS). At atmospheric pressures, the hydrogenation of CO 2 on the copper-ceria catalysts produced mainly CO through the reverse-water gas shift reaction (RWGS) and a negligible amount of methanol. The Cu/CeO 2-NR catalyst displayed the higher activity, which demonstrates thatmore » the RWGS is a structure sensitive reaction. In-situ TR-XRD and AP-XPS characterization showed significant changes in the chemical state of the catalysts under reaction conditions with the copper being fully reduced and a partial Ce 4+ to Ce 3+ transformation occurring. A more effective CO 2 dissociative activation at high temperature and a preferential formation of active bidentate carbonate and formate intermediates over CeO 2(110) terminations are probably the main reasons for the better performance of the Cu/CeO 2-NR catalyst in the RWGS reaction.« less

  20. An open circuit voltage equation enabling separation of cathode and anode polarization resistances of ceria electrolyte based solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Yanxiang; Chen, Yu; Yan, Mufu

    2017-07-01

    The open circuit voltage (OCV) of solid oxide fuel cells is generally overestimated by the Nernst equation and the Wagner equation, due to the polarization losses at electrodes. Considering both the electronic conduction of electrolyte and the electrode polarization losses, we express the OCV as an implicit function of the characteristic oxygen pressure of electrolyte (p* [atm], at which the electronic and ionic conductivities are the same), and the relative polarization resistance of electrodes (rc = Rc/Ri and ra = Ra/Ri, where Ri/c/a [Ωcm2] denotes the ionic resistance of electrolyte, and the polarization resistances of cathode and anode, respectively). This equation approaches to the Wagner equation when the electrodes are highly active (rc and ra → 0), and approaches to the Nernst equation when the electrolyte is a purely ionic conductor (p* → 0). For the fuel cells whose OCV is well below the prediction of the Wagner equation, for example with thin doped ceria electrolyte, it is demonstrated that the combination of OCV and impedance spectroscopy measurements allows the determination of p*, Rc and Ra. This equation can serve as a simple yet powerful tool to study the internal losses in the cell under open circuit condition.

  1. Splitting CO2 with a ceria‐based redox cycle in a solar‐driven thermogravimetric analyzer

    PubMed Central

    Takacs, M.; Ackermann, S.; Bonk, A.; Neises‐von Puttkamer, M.; Haueter, Ph.; Scheffe, J. R.; Vogt, U. F.

    2016-01-01

    Thermochemical splitting of CO2 via a ceria‐based redox cycle was performed in a solar‐driven thermogravimetric analyzer. Overall reaction rates, including heat and mass transport, were determined under concentrated irradiation mimicking realistic operation of solar reactors. Reticulated porous ceramic (RPC) structures and fibers made of undoped and Zr4+‐doped CeO2, were endothermally reduced under radiative fluxes of 1280 suns in the temperature range 1200–1950 K and subsequently re‐oxidized with CO2 at 950–1400 K. Rapid and uniform heating was observed for 8 ppi ceria RPC with mm‐sized porosity due to its low optical thickness and volumetric radiative absorption, while ceria fibers with μm‐sized porosity performed poorly due to its opacity to incident irradiation. The 10 ppi RPC exhibited higher fuel yield because of its higher sample density. Zr4+‐doped ceria showed increasing reduction extents with dopant concentration but decreasing specific CO yield due to unfavorable oxidation thermodynamics and slower kinetics. © 2016 American Institute of Chemical Engineers AIChE J, 63: 1263–1271, 2017 PMID:28405030

  2. Investigation on Sr0.2Na0.8Nb1-xVxO3 (x=0.1, 0.2, 0.3) as new ceramic anode materials for low-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Pan, Ke-Ji; Hussain, A. Mohammed; Wachsman, Eric D.

    2017-04-01

    Variants of SNNV (Sr0.2Na0.8Nb1-xVxO3, X = 0.1-0.3) ceramic oxides were synthesized via wet chemical method. SNNVs show high electronic conductivity of >100 S/cm when reduced in hydrogen at a relatively low temperature of 650 °C. In particular, 30% V-doped SNNV exhibited the highest conductivity of 300 S/cm at 450 °C. In order to investigate the fuel cell performance, Gd0.1Ce0.9O2-δ (GDC) based electrolyte-supported fuel cells were prepared to study the anode characteristics. Sr0.2Na0.8Nb0.9V0.1O3 (SNNV10)-GDC composite was used as an anode and La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF)-GDC as a cathode. Both electrodes were porous and sintered at 1050 °C for 2 h in air. The anode side of the fuel cell was infiltrated with 10 wt% GDC/Ni-GDC precursor to activate the anode for fuel oxidation. I-V characteristics were determined in gas conditions such as dry/humidified hydrogen and methane at 650 °C. With the infiltration Ni-GDC, peak power density (PPD) of 280 mW/cm2 and 220 mW/cm2 in dry H2 and CH4, respectively, were obtained at 650 °C, which is higher than GDC alone as infiltrate. The high resistances in the humidified conditions are attributed to the lower conductivity of SNNV10 in high PO2 atmospheres.

  3. Pharmacokinetics and absorption of the anticancer agents dasatinib and GDC-0941 under various gastric conditions in dogs--reversing the effect of elevated gastric pH with betaine HCl.

    PubMed

    Pang, Jodie; Dalziel, Gena; Dean, Brian; Ware, Joseph A; Salphati, Laurent

    2013-11-04

    Changes in gastric pH can impact the dissolution and absorption of compounds presenting pH-dependent solubility. We assessed, in dogs, the effects of gastric pH-modifying agents on the oral absorption of two weakly basic anticancer drugs, dasatinib and GDC-0941. We also tested whether drug-induced hypochlorhydria could be temporarily mitigated using betaine HCl. Pretreatments with pentagastrin, famotidine, betaine HCl, or combinations of famotidine and betaine HCl were administered orally to dogs prior to drug dosing. The gastric pH was measured under each condition for up to 7 h, and the exposure of the compounds tested was calculated. The average gastric pH in fasted dogs ranged from 1.45 to 3.03. Pentagastrin or betaine HCl treatments lowered the pH and reduced its variability between dogs compared to control animals. In contrast, famotidine treatment maintained gastric pH at values close to 7 for up to 5 h, while betaine HCl transiently reduced the pH to approximately 2 in the famotidine-treated dogs. Famotidine pretreatment lowered GDC-0941 exposure by 5-fold, and decreased dasatinib measurable concentrations 30-fold, compared to the pentagastrin-treated dogs. Betaine HCl restored GDC-0941 AUC in famotidine-treated dogs to levels achieved in control animals, and increased dasatinib AUC to 1.5-fold that measured in control dogs. The results confirmed the negative impact of acid-reducing agents on the absorption of weakly basic drugs. They also suggested that betaine HCl coadministration may be a viable strategy in humans treated with acid-reducing agents in order to temporarily reduce gastric pH and restore drug exposure.

  4. High power density solid oxide fuel cells

    DOEpatents

    Pham, Ai Quoc; Glass, Robert S.

    2004-10-12

    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O (LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  5. Method of Fabrication of High Power Density Solid Oxide Fuel Cells

    DOEpatents

    Pham, Ai Quoc; Glass, Robert S.

    2008-09-09

    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O(LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  6. Highly CO2-Tolerant Cathode for Intermediate-Temperature Solid Oxide Fuel Cells: Samarium-Doped Ceria-Protected SrCo0.85Ta0.15O3-δ Hybrid.

    PubMed

    Li, Mengran; Zhou, Wei; Zhu, Zhonghua

    2017-01-25

    Susceptibility to CO 2 is one of the major challenges for the long-term stability of the alkaline-earth-containing cathodes for intermediate-temperature solid oxide fuel cells. To alleviate the adverse effects from CO 2 , we incorporated samarium-stabilized ceria (SDC) into a SrCo 0.85 Ta 0.15 O 3-δ (SCT15) cathode by either mechanical mixing or a wet impregnation method and evaluated their cathode performance stability in the presence of a gas mixture of 10% CO 2 , 21% O 2 , and 69% N 2 . We observed that the CO 2 tolerance of the hybrid cathode outperforms the pure SCT15 cathode by over 5 times at 550 °C. This significant enhancement is likely attributable to the low CO 2 adsorption and reactivity of the SDC protective layer, which are demonstrated through thermogravimetric analysis, energy-dispersive spectroscopy, and electrical conductivity study.

  7. Enhanced Electrochemical Activity and Chromium Tolerance of the Nucleation-Agent-Free La2Ni0.9Fe0.1O4+δ Cathode by Gd0.1Ce0.9O1.95 Incorporation

    NASA Astrophysics Data System (ADS)

    Ling, Yihan; Xie, Huixin; Liu, Zijing; Du, Xiaoni; Chen, Hui; Ou, Xuemei; Zhao, Ling; Budiman, Riyan Achmad

    2018-07-01

    For the sake of improving the electrochemical activity and chromium tolerance of the K2NiF4-type oxide, La2NiO4+δ (LNO), with nonnucleation agents like Mn and Sr elements, the electrochemical performance and degradation were comparatively studied at two cathodes La2Ni0.9Fe0.1O4+δ (LNF) and LNF-40wt%Gd0.1Ce0.9O1.95 (LNF-GDC) on the GDC electrolyte, where 5wt%Cr2O3 incorporation provides Cr-containing atmosphere. Compared with non-doped LNO, LNF shows a higher interstitial oxygen concentration (δ = 0.298) and a lower electrical conductivity, where bivalent Ni ion, {Ni}_{Ni}^{ × }, and trivalent Ni ion, {Ni}_{Ni}^{ \\cdot }, and trivalent Fe ion on Ni-site, {Fe}_{Ni}^{ \\cdot }, were observed from the XPS measurements. LNF-GDC shows greatly reduced interfacial polarization resistances (Rp), which are only half of those of LNF, indicating a better electrochemical performance. More importantly, no significant degradation of LNF-GDC in performance has been observed under exposure of Cr-containing atmosphere at 700 °C for 350 h, while Rp of LNF increased by nearly 20%, suggesting LNF by GDC incorporation can enhance the electrochemical performance as well as chromium tolerance for intermediate temperature solid oxide fuel cells (IT-SOFCs).

  8. Enhanced Electrochemical Activity and Chromium Tolerance of the Nucleation-Agent-Free La2Ni0.9Fe0.1O4+δ Cathode by Gd0.1Ce0.9O1.95 Incorporation

    NASA Astrophysics Data System (ADS)

    Ling, Yihan; Xie, Huixin; Liu, Zijing; Du, Xiaoni; Chen, Hui; Ou, Xuemei; Zhao, Ling; Budiman, Riyan Achmad

    2018-03-01

    For the sake of improving the electrochemical activity and chromium tolerance of the K2NiF4-type oxide, La2NiO4+δ (LNO), with nonnucleation agents like Mn and Sr elements, the electrochemical performance and degradation were comparatively studied at two cathodes La2Ni0.9Fe0.1O4+δ (LNF) and LNF-40wt%Gd0.1Ce0.9O1.95 (LNF-GDC) on the GDC electrolyte, where 5wt%Cr2O3 incorporation provides Cr-containing atmosphere. Compared with non-doped LNO, LNF shows a higher interstitial oxygen concentration (δ = 0.298) and a lower electrical conductivity, where bivalent Ni ion, {Ni}_{Ni}^{ × } , and trivalent Ni ion, {Ni}_{Ni}^{ \\cdot } , and trivalent Fe ion on Ni-site, {Fe}_{Ni}^{ \\cdot } , were observed from the XPS measurements. LNF-GDC shows greatly reduced interfacial polarization resistances (Rp), which are only half of those of LNF, indicating a better electrochemical performance. More importantly, no significant degradation of LNF-GDC in performance has been observed under exposure of Cr-containing atmosphere at 700 °C for 350 h, while Rp of LNF increased by nearly 20%, suggesting LNF by GDC incorporation can enhance the electrochemical performance as well as chromium tolerance for intermediate temperature solid oxide fuel cells (IT-SOFCs).

  9. Ceria-supported ruthenium nanoparticles as highly active and long-lived catalysts in hydrogen generation from the hydrolysis of ammonia borane.

    PubMed

    Akbayrak, Serdar; Tonbul, Yalçın; Özkar, Saim

    2016-07-05

    Ruthenium(0) nanoparticles supported on ceria (Ru(0)/CeO2) were in situ generated from the reduction of ruthenium(iii) ions impregnated on ceria during the hydrolysis of ammonia borane. Ru(0)/CeO2 was isolated from the reaction solution by centrifugation and characterized by ICP-OES, BET, XRD, TEM, SEM-EDS and XPS techniques. All the results reveal that ruthenium(0) nanoparticles were successfully supported on ceria and the resulting Ru(0)/CeO2 is a highly active, reusable and long-lived catalyst for hydrogen generation from the hydrolysis of ammonia borane with a turnover frequency value of 361 min(-1). The reusability tests reveal that Ru(0)/CeO2 is still active in the subsequent runs of hydrolysis of ammonia borane preserving 60% of the initial catalytic activity even after the fifth run. Ru(0)/CeO2 provides a superior catalytic lifetime (TTO = 135 100) in hydrogen generation from the hydrolysis of ammonia borane at 25.0 ± 0.1 °C before deactivation. The work reported here includes the formation kinetics of ruthenium(0) nanoparticles. The rate constants for the slow nucleation and autocatalytic surface growth of ruthenium(0) nanoparticles were obtained using hydrogen evolution as a reporter reaction. An evaluation of rate constants at various temperatures enabled the estimation of activation energies for both the reactions, Ea = 60 ± 7 kJ mol(-1) for the nucleation and Ea = 47 ± 2 kJ mol(-1) for the autocatalytic surface growth of ruthenium(0) nanoparticles, as well as the activation energy of Ea = 51 ± 2 kJ mol(-1) for the catalytic hydrolysis of ammonia borane.

  10. SolarSyngas: Results from a virtual institute developing materials and key components for solar thermochemical fuel production

    NASA Astrophysics Data System (ADS)

    Roeb, Martin; Steinfeld, Aldo; Borchardt, Günter; Feldmann, Claus; Schmücker, Martin; Sattler, Christian; Pitz-Paal, Robert

    2016-05-01

    The Helmholtz Virtual Institute (VI) SolarSynGas brings together expertise from solar energy research and materials science to develop metal oxide based redox materials and to integrate them in a suitable way into related process technologies for two-step thermochemical production of hydrogen and carbon monoxide from water and CO2. One of the foci of experimental investigation was exploring the impact of doping on the feasibility of ceria-based materials - mainly by Zr-doping. The results indicate that a certain Zr-content enhances the reducibility and therefore the splitting performance. Increasing the Zr-content to x = 0.15 improved the specific CO2-splitting performance by 50% compared to pure ceria. This finding agrees with theoretical studies attributing the improvements to lattice modification caused by the introduction of Zr4+. Thermogravimetric relaxation experiments and equilibrium oxygen isotope exchange experiments with subsequent depth profiling analysis were carried out on ceria. As a result the reduction reaction of even dense samples of pure ceria with a grain size of about 20 µm is surface reaction controlled. The structure of the derived expression for the apparent activation energy suggests that the chemical surface exchange coefficient should show only a very weak dependence on temperature for ceria doped with lower valence cations. A solar receiver reactor exhibiting a foam-type reticulated porous ceramics made of ceria was tested. It could be shown that applying dual-scale porosity to those foams with mm-size pores for effective radiative heat transfer during reduction and μm-size pores within its struts for enhanced kinetics during oxidation allows enhancing the performance of the reactor significantly. Also a particle process concept applying solid-solid heat recovery from redox particles in a high temperature solar thermochemical process was analysed that uses ceramic spheres as solid heat transfer medium. This concept can be implemented

  11. Structure and chemistry of epitaxial ceria thin films on yttria-stabilized zirconia substrates, studied by high resolution electron microscopy

    DOE PAGES

    Sinclair, Robert; Lee, Sang Chul; Shi, Yezhou; ...

    2017-03-18

    Here, we have applied aberration-corrected transmission electron microscopy (TEM) imaging and electron energy loss spectroscopy (EELS) to study the structure and chemistry of epitaxial ceria thin films, grown by pulsed laser deposition onto (001) yttria-stabilized zirconia (YSZ) substrates. There are few observable defects apart from the expected mismatch interfacial dislocations and so the films would be expected to have good potential for applications. Under high electron beam dose rate (above about 6000 e-/Å 2s) domains of an ordered structure appear and these are interpreted as being created by oxygen vacancy ordering. The ordered structure does not appear at lower losemore » rates (ca. 2600 e-/Å 2s) and can be removed by imaging under 1 mbar oxygen gas in an environmental TEM. EELS confirms that there is both oxygen deficiency and the associated increase in Ce 3+ versus Ce 4+ cations in the ordered domains. In situ high resolution TEM recordings show the formation of the ordered domains as well as atomic migration along the ceria thin film (001) surface.« less

  12. Structure and chemistry of epitaxial ceria thin films on yttria-stabilized zirconia substrates, studied by high resolution electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinclair, Robert; Lee, Sang Chul; Shi, Yezhou

    Here, we have applied aberration-corrected transmission electron microscopy (TEM) imaging and electron energy loss spectroscopy (EELS) to study the structure and chemistry of epitaxial ceria thin films, grown by pulsed laser deposition onto (001) yttria-stabilized zirconia (YSZ) substrates. There are few observable defects apart from the expected mismatch interfacial dislocations and so the films would be expected to have good potential for applications. Under high electron beam dose rate (above about 6000 e-/Å 2s) domains of an ordered structure appear and these are interpreted as being created by oxygen vacancy ordering. The ordered structure does not appear at lower losemore » rates (ca. 2600 e-/Å 2s) and can be removed by imaging under 1 mbar oxygen gas in an environmental TEM. EELS confirms that there is both oxygen deficiency and the associated increase in Ce 3+ versus Ce 4+ cations in the ordered domains. In situ high resolution TEM recordings show the formation of the ordered domains as well as atomic migration along the ceria thin film (001) surface.« less

  13. Nonlinear Impedance Analysis of La 0.4Sr 0.6Co 0.2Fe 0.8O 3-δ Thin Film Oxygen Electrodes

    DOE PAGES

    Geary, Tim C.; Lee, Dongkyu; Shao-Horn, Yang; ...

    2016-07-23

    Here, linear and nonlinear electrochemical impedance spectroscopy (EIS, NLEIS) were used to study 20 nm thin film La 0.6Sr 0.4Co 0.2Fe 0.8O 3-δ (LSCF-6428) electrodes at 600°C in oxygen environments. LSCF films were epitaxially deposited on single crystal yttria-stabilized zirconia (YSZ) with a 5 nm gadolinium-doped ceria (GDC) protective interlayer. Impedance measurements reveal an oxygen storage capacity similar to independent thermogravimetry measurements on semi-porous pellets. However, the impedance data fail to obey a homogeneous semiconductor point-defect model. Two consistent scenarios were considered: a homogeneous film with non-ideal thermodynamics (constrained by thermogravimetry measurements), or an inhomogeneous film (constrained by a semiconductormore » point-defect model with a Sr maldistribution). The latter interpretation suggests that gradients in Sr composition would have to extend beyond the space-charge region of the gas-electrode interface. While there is growing evidence supporting an equilibrium Sr segregation at the LSCF surface monolayer, a long-range, non-equilibrium Sr stratification caused by electrode processing conditions offers a possible explanation for the large volume of highly reducible LSCF. Additionally, all thin films exhibited fluctuations in both linear and nonlinear impedance over the hundred-hour measurement period. This behavior is inconsistent with changes solely in the surface rate coefficient and possibly caused by variations in the surface thermodynamics over exposure time.« less

  14. Microsurgical management of a complicated aneurysmal endovascular embolisation with GDC coil: a case report.

    PubMed

    Pogády, P; Mustafa, H; Wies, W; Lungenschmid, K; Wurm, G; Tomancok, B; Holl, K; Fischer, J

    1998-01-01

    We present a case involving a microsurgical approach to solving the problem of a medial cerebral artery (MCA) occlusion occurring after GDC coiling of an internal cerebral artery (ICA) bifurcation aneurysm in a 40 year old woman. We describe the clinical course of the case and discuss technical possibilities and risks of clipping a coiled aneurysm. One key to success is awareness of changes in the aneurysm's properties after coiling. With loss of elasticity the aneurysm had the effect of a tumor fixed on the vessel. The apposition of the aneurysm to the wall of the vessel, as well as the aneurysm's rigidity and increase of intracranial pressure after subarachnoideal hemorrhage (SAH), may lead to occlusion of the vessel. In cases of an mandatory operation due to the occlusion of a main arterial stem after coiling, it is primarily crucial to perforate the aneurysm's fundus, remove the coils, and, finally, to clip the slack neck of the aneurysm. An attempt to precisely prepare and clip the aneurysmal neck without removing the coils could result in the rupture of the aneurysm's neck.

  15. Effect of Nb2O5 doping on improving the thermo-mechanical stability of sealing interfaces for solid oxide fuel cells.

    PubMed

    Zhang, Qi; Du, Xinhang; Tan, Shengwei; Tang, Dian; Chen, Kongfa; Zhang, Teng

    2017-07-13

    Nb 2 O 5 is added to a borosilicate sealing system to improve the thermo-mechanical stability of the sealing interface between the glass and Fe-Cr metallic interconnect (Crofer 22APU) in solid oxide fuel cells (SOFCs). The thermo-mechanical stability of the glass/metal interface is evaluated experimentally as well as by using a finite element analysis (FEA) method. The sealing glass doped with 4 mol.% Nb 2 O 5 shows the best thermo-mechanical stability, and the sealing couple of Crofer 22APU/glass/GDC (Gd 0.2 Ce 0.8 O 1.9 ) remains intact after 50 thermal cycles. In addition, all sealing couples show good joining after being held at 750 °C for 1000 h. Moreover, the possible mechanism on the thermo-mechanical stability of sealing interface is investigated in terms of stress-based and energy-based perspectives.

  16. Preparation of Sm-doped ceria (SDC) nanowires and tubes by gas-liquid co-precipitation at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu Lina; School of Chemistry and Chemical Engineering, Anhui University, 230039 Hefei; Meng Guangyao

    Sm-doped cerium dioxide (SDC) with fcc structure was formed using a gas-liquid chemical co-precipitation process at room temperature. Morphology and structure of the as-prepared samples were characterized using TG, XRD, TEM, HRTEM and SAED techniques. Under our specific experimental conditions, two kinds of 1D nano-structures SDC have been mainly obtained. SDC nanowires are 0.3-1.2 {mu}m in lengths and 5-20 nm in diameters. SDC nanotubes have outer diameters in 10-40 nm with lengths up to 2 {mu}m. The as-prepared SDC shows very strong UV absorption ability and the maximum absorption peak redshifts compared with that of SDC nanoparticles.

  17. Color-Center Production and Formation in Electron-Irradiated Magnesium Aluminate Spinel and Ceria

    DOE PAGES

    Costantini, Jean-Marc; Lelong, Gerald; Guillaumet, Maxime; ...

    2016-06-20

    Single crystals of magnesium aluminate spinel (MgAl2O4) with (100) or (110) orientations and cerium dioxide or ceria (CeO2) were irradiated by 1.0-MeV and 2.5-MeV electrons in a high fluence range. Point-defect production was studied by off-line UV-visible optical spectroscopy after irradiation. For spinel, regardless of both crystal orientation and electron energy, two characteristic broad bands centered at photon energies of 5.4 eV and 4.9 eV were assigned to F and F+ centers (neutral and singly-ionized oxygen vacancies), respectively, on the basis of available literature data. No clear differences in colour-centre formation were observed for the two crystal orientations. Using calculationsmore » of displacement cross sections by elastic collisions, these results are consistent with a very large threshold displacement energy (200 eV) for oxygen atoms at RT. A third very broad band centered at 3.7 eV might be attributed either to an oxygen hole center (V-type center) or an F2 dimer center (oxygen di-vacancy). The onset of recovery of these color centers took place at 200°C with almost full bleaching at 600°C. Activation energies (~0.3-0.4 eV) for defect recovery were deduced from the isochronal annealing data by using a first-order kinetics analysis. For ceria, a sub band-gap absorption feature peaked at ~3.1 eV was recorded for 2.5-MeV electron irradiation only. Assuming a ballistic process, we suggest that the latter defect might result from cerium atom displacement on the basis of computed cross sections.« less

  18. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.

    PubMed

    Senanayake, Sanjaya D; Stacchiola, Dario; Rodriguez, Jose A

    2013-08-20

    Oxides play a central role in important industrial processes, including applications such as the production of renewable energy, remediation of environmental pollutants, and the synthesis of fine chemicals. They were originally used as catalyst supports and were thought to be chemically inert, but now they are used to build catalysts tailored toward improved selectivity and activity in chemical reactions. Many studies have compared the morphological, electronic, and chemical properties of oxide materials with those of unoxidized metals. Researchers know much less about the properties of oxides at the nanoscale, which display distinct behavior from their bulk counterparts. More is known about metal nanoparticles. Inverse-model catalysts, composed of oxide nanoparticles supported on metal or oxide substrates instead of the reverse (oxides supporting metal nanoparticles), are excellent tools for systematically testing the properties of novel catalytic oxide materials. Inverse models are prepared in situ and can be studied with a variety of surface science tools (e.g. scanning tunneling microscopy, X-ray photoemission spectroscopy, ultraviolet photoemission spectroscopy, low-energy electron microscopy) and theoretical tools (e.g. density functional theory). Meanwhile, their catalytic activity can be tested simultaneously in a reactor. This approach makes it possible to identify specific functions or structures that affect catalyst performance or reaction selectivity. Insights gained from these tests help to tailor powder systems, with the primary objective of rational design (experimental and theoretical) of catalysts for specific chemical reactions. This Account describes the properties of inverse catalysts composed of CeOx nanoparticles supported on Cu(111) or CuOx/Cu(111) as determined through the methods described above. Ceria is an important material for redox chemistry because of its interchangeable oxidation states (Ce⁴⁺ and Ce³⁺). Cu(111), meanwhile, is

  19. NASA Tech Briefs, January 2009

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Tech Briefs are short announcements of innovations originating from research and development activities of the National Aeronautics and Space Administration. They emphasize information considered likely to be transferable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. Topics covered include: The Radio Frequency Health Node Wireless Sensor System; Effects of Temperature on Polymer/Carbon Chemical Sensors; Small CO2 Sensors Operate at Lower Temperature; Tele-Supervised Adaptive Ocean Sensor Fleet; Synthesis of Submillimeter Radiation for Spectroscopy; 100-GHz Phase Switch/Mixer Containing a Slot-Line Transition; Generating Ka-Band Signals Using an X-Band Vector Modulator; SiC Optically Modulated Field-Effect Transistor; Submillimeter-Wave Amplifier Module with Integrated Waveguide Transitions; Metrology System for a Large, Somewhat Flexible Telescope; Economical Implementation of a Filter Engine in an FPGA; Improved Joining of Metal Components to Composite Structures; Machined Titanium Heat-Pipe Wick Structure; Gadolinia-Doped Ceria Cathodes for Electrolysis of CO2; Utilizing Ocean Thermal Energy in a Submarine Robot; Fuel-Cell Power Systems Incorporating Mg-Based H2 Generators; Alternative OTEC Scheme for a Submarine Robot; Sensitive, Rapid Detection of Bacterial Spores; Adenosine Monophosphate-Based Detection of Bacterial Spores; Silicon Microleaks for Inlets of Mass Spectrometers; CGH Figure Testing of Aspherical Mirrors in Cold Vacuums; Series-Coupled Pairs of Silica Microresonators; Precise Stabilization of the Optical Frequency of WGMRs; Formation Flying of Components of a Large Space Telescope; Laser Metrology Heterodyne Phase-Locked Loop; Spatial Modulation Improves Performance in CTIS; High-Performance Algorithm for Solving the Diagnosis Problem; Truncation Depth Rule-of-Thumb for Convolutional Codes; Efficient Method for Optimizing Placement of Sensors.

  20. Effect of composition and calcination temperature of ceria-zirconia-alumina mixed oxides on catalytic performances of ethanol conversion

    NASA Astrophysics Data System (ADS)

    Chuklina, S. G.; Maslenkova, S. A.; Pylinina, A. I.; Podzorova, L. I.; Ilyicheva, A. A.

    2017-02-01

    In the present study, we investigated the effect of preparation method, phase composition and calcination temperature of the (Ce-TZP) - Al2O3 mixed oxides on their structural features and catalytic performance in ethanol conversion. Ceria-zirconia-alumina mixed oxides with different (Ce+Zr)/Al atomic ratios were prepared via sol-gel method. Catalytic activity and selectivity were investigated for ethanol conversion to acetaldehyde, ethylene and diethyl ether.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Nicholas C.; Boote, Brett W.; Naik, Pranjali

    Ceria (CeO 2) and sodium-modified ceria (Ce-Na) were prepared through combustion synthesis. Palladium was deposited onto the supports (Pd/CeO 2 and Pd/Ce-Na) and their activity for the aqueous-phase transfer hydrogenation of phenol using 2-propanol under liquid flow conditions was studied. Pd/Ce-Na showed a marked increase (6×) in transfer hydrogenation activity over Pd/CeO 2. Material characterization indicated that water-stable sodium species were not doped into the ceria lattice, but rather existed as subsurface carbonates. Modification of ceria by sodium provided more adsorption and redox active sites (i.e. defects) for 2-propanol dehydrogenation. This effect was an intrinsic property of the Ce-Na supportmore » and independent of Pd. The redox sites active for 2-propanol dehydrogenation were thermodynamically equivalent on both supports/catalysts. At high phenol concentrations, the reaction was limited by 2-propanol adsorption. Furthermore, the difference in catalytic activity was attributed to the different numbers of 2-propanol adsorption and redox active sites on each catalyst.« less

  2. Long-Term Cr Poisoning Effect on LSCF-GDC Composite Cathodes Sintered at Different Temperatures

    DOE PAGES

    Xiong, Chunyan; Taillon, Joshua A.; Pellegrinelli, Christopher; ...

    2016-07-19

    Here, the impact of sintering temperature on Cr-poisoning of solid oxide fuel cell (SOFC) cathodes was systematically studied. La 0.6Sr 0.4Fe 0.8Co 0.2O 3-δ - Ce 0.9Gd 0.1O 2-δ symmetric cells were aged at 750°C in synthetic air with the presence of Crofer 22 APU, a common high temperature interconnect, over 200 hours and electrochemical impedance spectroscopy (EIS) was used to determine the degradation process. Both the ohmic resistance (R Ω) and polarization resistance (R P) of LSCF-GDC cells, extracted from EIS spectra, for different sintering temperatures increase as a function of aging time. Furthermore, the Cr-related degradation rate increasesmore » with decreased cathode sintering temperature. The polarization resistance of cathode sintered at lower temperature (950°C) increases dramatically while aging with the presence of Cr and also significantly decreases the oxygen partial pressure dependence after aging. The degradation rate shows a positive correlation to the concentration of Cr. The results indicate that decreased sintering temperature increases the total surface area, leading to more available sites for Sr-Cr-O nucleation and thus greater Cr degradation.« less

  3. Dependence of Non-Prestonian Behavior of Ceria Slurry with Anionic Surfactant on Abrasive Concentration and Size in Shallow Trench Isolation Chemical Mechanical Polishing

    NASA Astrophysics Data System (ADS)

    Kang, Hyun‑Goo; Kim, Dae‑Hyeong; Katoh, Takeo; Kim, Sung‑Jun; Paik, Ungyu; Park, Jea‑Gun

    2006-05-01

    The dependencies of the non-Prestonian behavior of ceria slurry with anionic surfactant on the size and concentration of abrasive particles were investigated by performing chemical mechanical polishing (CMP) experiments using blanket wafers. We found that not only the abrasive size but also the abrasive concentration with surfactant addition influences the non-Prestonian behavior. Such behavior is clearly exhibited with small abrasive sizes and a higher concentrations of abrasives with surfactant addition, because the abrasive particles can locally contact the film surface more effectively with applied pressure. We introduce a factor to quantify these relations with the non-Prestonian behavior of a slurry. For ceria slurry, this non-Prestonian factor, βNP, was determined to be almost independent of the abrasive concentration for a larger size and a smaller weight conentration of abrasive particles, but it increased with the surfactant concentration for a smaller size and a higher concentration of abrasives with surfactant addition.

  4. Two-stage epitaxial growth of vertically-aligned SnO 2 nano-rods on(001) ceria

    DOE PAGES

    Solovyov, Vyacheslav F.; Wu, Li-jun; Rupich, Martin W.; ...

    2014-09-20

    Growth of high-aspect ratio oriented tin oxide, SnO 2, nano-rods is complicated by a limited choice of matching substrates. We show that a (001) cerium oxide, CeO 2, surface uniquely enables epitaxial growth of tin-oxide nano-rods via a two-stage process. First, (100) oriented nano-wires coat the ceria surface by lateral growth, forming a uniaxially-textured SnO 2 deposit. Second, vertical SnO 2nano-rods nucleate on the deposit by homoepitaxy. We demonstrate growth of vertically oriented 1-2 μm long nano-rods with an average diameter of ≈20 nm.

  5. Influence of xc functional on thermal-elastic properties of Ceria: A DFT-based Debye-Grüneisen model approach

    NASA Astrophysics Data System (ADS)

    Lee, Ji-Hwan; Tak, Youngjoo; Lee, Taehun; Soon, Aloysius

    Ceria (CeO2-x) is widely studied as a choice electrolyte material for intermediate-temperature (~ 800 K) solid oxide fuel cells. At this temperature, maintaining its chemical stability and thermal-mechanical integrity of this oxide are of utmost importance. To understand their thermal-elastic properties, we firstly test the influence of various approximations to the density-functional theory (DFT) xc functionals on specific thermal-elastic properties of both CeO2 and Ce2O3. Namely, we consider the local-density approximation (LDA), the generalized gradient approximation (GGA-PBE) with and without additional Hubbard U as applied to the 4 f electron of Ce, as well as the recently popularized hybrid functional due to Heyd-Scuseria-Ernzehof (HSE06). Next, we then couple this to a volume-dependent Debye-Grüneisen model to determine the thermodynamic quantities of ceria at arbitrary temperatures. We find an explicit description of the strong correlation (e.g. via the DFT + U and hybrid functional approach) is necessary to have a good agreement with experimental values, in contrast to the mean-field treatment in standard xc approximations (such as LDA or GGA-PBE). We acknowledge support from Samsung Research Funding Center of Samsung Electronics (SRFC-MA1501-03).

  6. Two-stage epitaxial growth of vertically-aligned SnO2 nano-rods on (001) ceria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solovyov, VF; Wu, LJ; Rupich, MW

    2014-12-15

    Growth of high-aspect ratio oriented tin oxide, SnO2, nano-rods is complicated by a limited choice of matching substrates. We show that a (001) cerium oxide, CeO2, surface uniquely enables epitaxial growth of tin-oxide nano-rods via a two-stage process. First, (100) oriented nano-wires coat the ceria surface by lateral growth, forming a uniaxially-textured SnO2 deposit. Second, vertical SnO2 nano-rods nucleate on the deposit by homoepitaxy. We demonstrate growth of vertically oriented 1-2 mu m long nano-rods with an average diameter of approximate to 20 nm. 2014 Elsevier B.V. All rights reserved.

  7. Sub-nA spatially resolved conductivity profiling of surface and interface defects in ceria films

    DOE PAGES

    Farrow, Tim; Yang, Nan; Doria, Sandra; ...

    2015-03-17

    Spatial variability of conductivity in ceria is explored using scanning probe microscopy with galvanostatic control. Ionically blocking electrodes are used to probe the conductivity under opposite polarities to reveal possible differences in the defect structure across a thin film of CeO2. Data suggest the existence of a large spatial inhomogeneity that could give rise to constant phase elements during standard electrochemical characterization, potentially affecting the overall conductivity of films on the macroscale. The approach discussed here can also be utilized for other mixed ionic electronic conductor systems including memristors and electroresistors, as well as physical systems such as ferroelectric tunnelingmore » barriers« less

  8. High performance electrodes for reduced temperature solid oxide fuel cells with doped lanthanum gallate electrolyte. I. Ni-SDC cermet anode

    NASA Astrophysics Data System (ADS)

    Ohara, S.; Maric, R.; Zhang, X.; Mukai, K.; Fukui, T.; Yoshida, H.; Inagaki, T.; Miura, K.

    A Ni-samaria-doped ceria (SDC) cermet was selected as the anode material for reduced temperature (800°C) solid oxide fuel cells. The NiO-SDC composite powder, synthesized by spray pyrolysis, was employed as the starting anode powder in this study. The influence of Ni content in Ni-SDC cermets on the electrode performance was investigated in order to create the most suitable microstructures. It was found that anodic polarization was strongly influenced by the Ni content in Ni-SDC cermets. The best results were obtained for anode cermets with Ni content of around 50 vol.%; anodic polarization was about 30 mV at a current density of 300 mA/cm 2. This high performance seems to be attributable to the microstructure, in which Ni grains form a skeleton with well-connected SDC grains finely distributed over the Ni grains surfaces; such microstructure was also conducive to high stability of the anode.

  9. Vacancy–Vacancy Interaction Induced Oxygen Diffusivity Enhancement in Undoped Nonstoichiometric Ceria

    DOE PAGES

    Yuan, Fenglin; Zhang, Yanwen; Weber, William J.

    2015-05-19

    In this paper, molecular dynamics simulations and molecular static calculations have been used to systematically study oxygen vacancy transport in undoped nonstoichiometric ceria. A strong oxygen diffusivity enhancement appears in the vacancy concentration range of 2–4% over the temperature range from 1000 to 2000 K. An Arrhenius ion diffusion mechanism by vacancy hopping along the (100) direction is unambiguously identified, and an increasing trend of both the oxygen migration barrier and the prefactor with increasing vacancy concentration is observed. Within the framework of classical diffusion theory, a weak concentration dependence of the prefactor in oxygen vacancy migration is shown tomore » be crucial for explaining the unusual fast oxygen ion migration in the low concentration range and consequently the appearance of a maximum in oxygen diffusivity. Finally, a representative (100) direction interaction model is constructed to identify long-range vacancy–vacancy interaction as the structural origin of the positive correlation between oxygen migration barrier and vacancy concentration.« less

  10. Size dependent compressibility of nano-ceria: Minimum near 33 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodenbough, Philip P.; Chemistry Department, Columbia University, New York, New York 10027; Song, Junhua

    2015-04-20

    We report the crystallite-size-dependency of the compressibility of nanoceria under hydrostatic pressure for a wide variety of crystallite diameters and comment on the size-based trends indicating an extremum near 33 nm. Uniform nano-crystals of ceria were synthesized by basic precipitation from cerium (III) nitrate. Size-control was achieved by adjusting mixing time and, for larger particles, a subsequent annealing temperature. The nano-crystals were characterized by transmission electron microscopy and standard ambient x-ray diffraction (XRD). Compressibility, or its reciprocal, bulk modulus, was measured with high-pressure XRD at LBL-ALS, using helium, neon, or argon as the pressure-transmitting medium for all samples. As crystallite sizemore » decreased below 100 nm, the bulk modulus first increased, and then decreased, achieving a maximum near a crystallite diameter of 33 nm. We review earlier work and examine several possible explanations for the peaking of bulk modulus at an intermediate crystallite size.« less

  11. Studies on Synthesis, Microstructure and Transport Properties of Doped Cerium Oxides

    NASA Astrophysics Data System (ADS)

    Handal, Hala Talaat Abd El-Samei

    Acceptor-doped ceria exhibits mixed ionic electronic conduction in reducing conditions and chemical stability against sulfur poisoning and coking. This thesis's primary goal is to explore new anode materials based on ceria--solid solutions for solid oxide fuel cells (SOFCs). The physicochemical and electrochemical performance of Ce0.9-xY 0.1MnxO2-delta ( x = 0 to 15 mol%) (CYMO) and Ce0.87Y0.1Mn 0.01N0.02O2-delta (N = Mg or Ca) were studied. Among the materials investigated in this study, Ce0.89Y 0.1Mn0.01Mg0.02O2-delta (Mg-CYMO) showed the highest total conductivity of 0.2 S cm-1 at 700°C in H2. An area specific polarization resistance of 0.23 O cm2 was observed for both Mg-CYMO and Ce0.8Y 0.1Mn0.1O2-delta (10CYMO) at 800°C, in wet H2. Chronoamperometric measurement for the symmetrical cell configuration based on 10CYMO electrodes showed stable performance upon exposure to 10 ppm H2S/H2. In a full cell configuration, 10CYMO (anode)/YSZ (electrolyte)/La0.8Sr0.2MnO3 (LSM)-YSZ cathode, polarization resistance of 1.4 O cm2 and power density of 75 mW/cm2 were obtained at 800°C in wet H2. The main challenge of employing proton-conducting electrolytes in SOFC is their poor chemical stability in the presence of steam and hydrocarbon fuels. Another goal of this thesis is to develop a chemically stable proton-conducting electrolyte for SOFCs. The effects of Fe and Co substitution on the electrical and physicochemical properties of BaCe0.9Sm0.1O 3-delta (BCS) were evaluated. Thermogravimetric analysis showed that incorporation of 5 to 10 mol% Fe or Co in BCS did not improve the chemical stability in CO2 at elevated temperatures. The BCSC10 sample sintering at 1400°C showed the highest electrical conductivity of 0.02 S cm -1 at 600°C in air, but it did not show any appreciable proton mobility under humidified atmosphere.

  12. Discovery and preclinical pharmacology of a selective ATP-competitive Akt inhibitor (GDC-0068) for the treatment of human tumors.

    PubMed

    Blake, James F; Xu, Rui; Bencsik, Josef R; Xiao, Dengming; Kallan, Nicholas C; Schlachter, Stephen; Mitchell, Ian S; Spencer, Keith L; Banka, Anna L; Wallace, Eli M; Gloor, Susan L; Martinson, Matthew; Woessner, Richard D; Vigers, Guy P A; Brandhuber, Barbara J; Liang, Jun; Safina, Brian S; Li, Jun; Zhang, Birong; Chabot, Christine; Do, Steven; Lee, Leslie; Oeh, Jason; Sampath, Deepak; Lee, Brian B; Lin, Kui; Liederer, Bianca M; Skelton, Nicholas J

    2012-09-27

    The discovery and optimization of a series of 6,7-dihydro-5H-cyclopenta[d]pyrimidine compounds that are ATP-competitive, selective inhibitors of protein kinase B/Akt is reported. The initial design and optimization was guided by the use of X-ray structures of inhibitors in complex with Akt1 and the closely related protein kinase A. The resulting compounds demonstrate potent inhibition of all three Akt isoforms in biochemical assays and poor inhibition of other members of the cAMP-dependent protein kinase/protein kinase G/protein kinase C extended family and block the phosphorylation of multiple downstream targets of Akt in human cancer cell lines. Biological studies with one such compound, 28 (GDC-0068), demonstrate good oral exposure resulting in dose-dependent pharmacodynamic effects on downstream biomarkers and a robust antitumor response in xenograft models in which the phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin pathway is activated. 28 is currently being evaluated in human clinical trials for the treatment of cancer.

  13. Experimental and modeling studies of sorption of ceria nanoparticle on microbial biofilms.

    PubMed

    Jing, Hengye; Mezgebe, Bineyam; Aly Hassan, Ashraf; Sahle-Demessie, Endalkachew; Sorial, George A; Bennett-Stamper, Christina

    2014-06-01

    This study focuses on the interaction of ceria nanoparticles (CeO2-NPs) with Pseudomonas fluorescens and Mycobacterium smegmatis biofilms. Confocal laser microscopy and transmission electron microscopy determined the distribution of NPs in the complex structures of biofilm at molecular levels. Visual data showed that most of the adsorption takes place on the bacterial cell walls and spores. The interaction of nanoparticles (NPs) with biofilms reached equilibrium after the initial high adsorption rate regardless of biofilm heterogeneity and different nanoparticle concentrations in the bulk liquid. Physical processes may dominate this sorption phenomenon. Pseudo first order sorption kinetics was used to estimate adsorption and desorption rate of CeO2-NPs onto biofilms. When biofilms got exposed to CeO2-NPs, a self-protecting mechanism was observed. Cells moved away from the bulk solution in the biofilm matrix, and portions of biofilm outer layer were detached, hence releasing some CeO2-NPs back to the bulk phase. Published by Elsevier Ltd.

  14. Finite-temperature lattice dynamics and superionic transition in ceria from first principles

    NASA Astrophysics Data System (ADS)

    Klarbring, Johan; Skorodumova, Natalia V.; Simak, Sergei I.

    2018-03-01

    Ab initio molecular dynamics (AIMD) in combination with the temperature dependent effective potential (TDEP) method has been used to go beyond the quasiharmonic approximation and study the lattice dynamics in ceria, CeO2, at finite temperature. The results indicate that the previously proposed connection between the B1 u phonon mode turning imaginary and the transition to the superionic phase in fluorite structured materials is an artifact of the failure of the quasiharmonic approximation in describing the lattice dynamics at elevated temperatures. We instead show that, in the TDEP picture, a phonon mode coupling to the Eu mode prevents the B1 u mode from becoming imaginary. We directly observe the superionic transition at high temperatures in our AIMD simulations and find that it is initiated by the formation of oxygen Frenkel pairs (FP). These FP are found to form in a collective process involving simultaneous motion of two oxygen ions.

  15. Hydrodeoxygenation of vicinal OH groups over heterogeneous rhenium catalyst promoted by palladium and ceria support.

    PubMed

    Ota, Nobuhiko; Tamura, Masazumi; Nakagawa, Yoshinao; Okumura, Kazu; Tomishige, Keiichi

    2015-02-02

    Heterogeneous ReOx-Pd/CeO2 catalyst showed excellent performance for simultaneous hydrodeoxygenation of vicinal OH groups. High yield (>99%), turnover frequency (300 h(-1)), and turnover number (10,000) are achieved in the reaction of 1,4-anhydroerythritol to tetrahydrofuran. This catalyst can be applied to sugar alcohols, and mono-alcohols and diols are obtained in high yields (≥85%) from substrates with even and odd numbers of OH groups, respectively. The high catalytic performance of ReOx-Pd/CeO2 can be assigned to rhenium species with +4 or +5 valence state, and the formation of this species is promoted by H2/Pd and the ceria support. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Developing Cost-Effective Dense Continuous SDC Barrier Layers for SOFCs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Hoang Viet P.; Hardy, John S.; Coyle, Christopher A.

    Significantly improved performance during electrochemical testing of a cell with a dense continuous pulsed laser deposited (PLD) samarium doped ceria (SDC) layer spurred investigations into the fabrication of dense continuous SDC barrier layers by means of cost-effective deposition using screen printing which is amenable to industrial production of SOFCs. Many approaches to improve the SDC density have been explored including the use of powder with reduced particle sizes, inks with increased solids loading, and doping with sintering aids (1). In terms of sintering aids, dopants like Mo or binary systems of Mo+Cu or Fe+Co greatly enhance SDC sinterability. In fact,more » adding dopants to a screen printed, prefired, porous SDC layer made it possible to achieve a dense continuous barrier layer atop the YSZ electrolyte without sintering above 1200°C. Although the objective of fabricating a dense continuous layer was achieved, additional studies have been initiated to improve the cell performance. Underlying issues with constrained sintering and dopant-enhanced ceria-zirconia solid solubility are also addressed in this paper.« less

  17. Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941.

    PubMed

    Junttila, Teemu T; Akita, Robert W; Parsons, Kathryn; Fields, Carter; Lewis Phillips, Gail D; Friedman, Lori S; Sampath, Deepak; Sliwkowski, Mark X

    2009-05-05

    Herceptin (trastuzumab) is the backbone of HER2-directed breast cancer therapy and benefits patients in both the adjuvant and metastatic settings. Here, we describe a mechanism of action for trastuzumab whereby antibody treatment disrupts ligand-independent HER2/HER3 interactions in HER2-amplified cells. The kinetics of dissociation parallels HER3 dephosphorylation and uncoupling from PI3K activity, leading to downregulation of proximal and distal AKT signaling, and correlates with the antiproliferative effects of trastuzumab. A selective and potent PI3K inhibitor, GDC-0941, is highly efficacious both in combination with trastuzumab and in the treatment of trastuzumab-resistant cells and tumors.

  18. Pathways for Ethanol Dehydrogenation and Dehydration Catalyzed by Ceria (111) and (100) Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beste, Ariana; Steven Overbury

    2015-01-08

    We have performed computations to better understand how surface structure affects selectivity in dehydrogenation and dehydration reactions of alcohols. Ethanol reactions on the (111) and (100) ceria surfaces were studied starting from the dominant surface species, ethoxy. We used DFT (PBE+U) to explore reaction pathways leading to ethylene and acetaldehyde and calculated estimates of rate constants employing transition state theory. To assess pathway contributions, we carried out kinetic analysis. Our results show that intermediate and transition state structures are stabilized on the (100) surface compared to the (111) surface. Formation of acetaldehyde over ethylene is kinetically and thermodynamically preferred onmore » both surfaces. Our results are consistent with temperature programmed surface reaction and steady-state experiments, where acetaldehyde was found as the main product and evidence was presented that ethylene formation at higher temperature originates from changes in adsorbate and surface structure.« less

  19. Supported Pd nanoclusters with enhanced hydrogen spillover for NOx removal via H2-SCR: the elimination of "volcano-type" behaviour.

    PubMed

    Peng, Zhezhe; Li, Zongyuan; Liu, Yun-Quan; Yan, Shuai; Tong, Jianing; Wang, Duo; Ye, Yueyuan; Li, Shuirong

    2017-05-30

    A rational design of a Pd catalyst with highly dispersed Pd nanoclusters on an Al doped ceria-based oxide for low temperature selective catalytic reduction of NO x by hydrogen with excess O 2 was achieved. The supported Pd nanocluster shows a high hydrogen spillover ability and a NO x conversion of >84% within 100-300 °C.

  20. [Preparation and photocatalytic activity of boron doped CeO2/TiO2 mixed oxides].

    PubMed

    Tang, Xin-hu; Wei, Chao-hai; Liang, Jie-rong; Wang, Bo-guang

    2006-07-01

    Boron doped CeO2/TiO2 mixed oxides photocatalysts were prepared by adding boric acid and cerous nitrate during the hydrolyzation of titanium trichloride and tetrabutyl titanate. XRD, UV-Vis DRS and XPS techniques were used to characterize the crystalline structure, light absorbing ability and the chemical state of Boron element in the photocatalyst sample. The photocatalytic activities were evaluated by monitoring the degradation of acid red B under UV irradiation. These results indicate that the wavelengths at adsorbing edge are affected by the content of cerous nitrate and the maximum absorption wavelength is about 481 nm when the mole ratio of Ce/Ti is 1.0. For higher dosage of Cerium, the absorbance edge shifts to blue slightly. The prepared photocatalyst is composed of anatase TiO2 and cubic CeO2 when calcined at 500 degrees C. An increase in the calcination temperature transforms the crystalline structure of the titanium oxides from anatase to rutile, and has no obvious influence on crystalline structure of CeO2 but crystallites growth up. The absorbance edge decreases drastically with the increase of calcination temperature. With a view to the stability of photocatalyst and utilization of sun energy, 500 degrees C of calcination temperature is recommended. The XP spectrum for B1s exhibits that only a few boron ions dope into titania and ceria matrix, others exist in B2O3. The photocatalytic activity increases with increase of cerous nitrate dosage, and decreases drastically due to higher dosage (the mol ratio of Ce/Ti > 0.5). After 10 min UV irradiation, 96% of acid red B is degraded completely over photocatalyst under optimum reaction condition.

  1. Oxygen flux and dielectric response study of Mixed Ionic-Electronic Conducting (MIEC) heterogeneous functional materials

    NASA Astrophysics Data System (ADS)

    Rabbi, Fazle

    Dense mixed ionic-electronic conducting (MIEC) membranes consisting of ionic conductive perovskite-type and/or fluorite-type oxides and high electronic conductive spinel type oxides, at elevated temperature can play a useful role in a number of energy conversion related systems including the solid oxide fuel cell (SOFC), oxygen separation and permeation membranes, partial oxidization membrane reactors for natural gas processing, high temperature electrolysis cells, and others. This study will investigate the impact of different heterogeneous characteristics of dual phase ionic and electronic conductive oxygen separation membranes on their transport mechanisms, in an attempt to develop a foundation for the rational design of such membranes. The dielectric behavior of a material can be an indicator for MIEC performance and can be incorporated into computational models of MIEC membranes in order to optimize the composition, microstructure, and ultimately predict long term membrane performance. The dielectric behavior of the MIECs can also be an indicator of the transport mechanisms and the parameters they are dependent upon. For this study we chose a dual phase MIEC oxygen separation membrane consisting of an ionic conducting phase: gadolinium doped ceria-Ce0.8 Gd0.2O2 (GDC) and an electronic conductive phase: cobalt ferrite-CoFe2O4 (CFO). The membranes were fabricated from mixtures of Nano-powder of each of the phases for different volume percentages, sintered with various temperatures and sintering time to form systematic micro-structural variations, and characterized by structural analysis (XRD), and micro-structural analysis (SEM-EDS). Performance of the membranes was tested for variable partial pressures of oxygen across the membrane at temperatures from 850°C-1060°C using a Gas Chromatography (GC) system. Permeated oxygen did not directly correlate with change in percent mixture. An intermediate mixture 60%GDC-40%CFO had the highest flux compared to the 50%GDC

  2. Synthesis, thermal expansion and high-temperature electrical conductivity of Co-doped (Y,Ca)FeO{sub 3−δ} with orthorhombic perovskite structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalyuzhnaya, A.S.; Drozhzhin, O.A.; Istomin, S.Ya., E-mail: istomin@icr.chem.msu.ru

    Highlights: • (Y,Ca)(Fe,Co)O{sub 3−δ} was prepared via citrate-based route with annealing at 1150–1200 °C. • Y{sub 0.9}Ca{sub 0.1}Fe{sub 0.8}Co{sub 0.2}O{sub 3−δ} demonstrates low thermal expansion coefficient of 11.9 ppm K{sup −1}. • Oxides do not react with YSZ and GDC up to 1000 °C and 1100 °C, respectively. • Compounds demonstrate higher electrical conductivity in comparison with Y{sub 0.9}Ca{sub 0.1}FeO{sub 3}. • Pr-doped (Y,Ca)(Fe,Co)O{sub 3−δ} demonstrate both higher electrical conductivity and TEC. - Abstract: Orthorhombic perovskites Y{sub 1−x}Ca{sub x}Fe{sub 1−y}Co{sub y}O{sub 3−δ} (0.1 ≤ x ≤ 0.2, 0.1 ≤ y ≤ 0.2 and x = 0.1, y = 0.3) weremore » synthesized in air by the citrate route at 1150–1300 °C. High-temperature X-ray powder diffraction (HT XRPD) data for Y{sub 0.9}Ca{sub 0.1}Fe{sub 0.8}Co{sub 0.2}O{sub 3−δ} at 25–800 °C showed no phase transition with calculated thermal expansion coefficient (TEC) of 11.9 ppm K{sup −1}. High-temperature electrical conductivity measurements revealed almost composition independent conductivity values of 22–27 S/cm at 900 °C. No chemical interaction of Y{sub 0.8}Ca{sub 0.2}Fe{sub 0.9}Co{sub 0.1}O{sub 3−δ} with (Zr,Y)O{sub 2−x} (YSZ) or (Ce,Gd)O{sub 2−x} (GDC) was observed up to 1000 °C and 1100 °C, respectively. Partial replacement of Y by Pr according to formula Y{sub 0.8−z}Pr{sub z}Ca{sub 0.2}Fe{sub 0.7}Co{sub 0.3}O{sub 3−δ}, 0.1 ≤ z ≤ 0.35, leads to an increase of both electrical conductivity up to 50 S/cm (z = 0.3) at 900 °C and dilatometry measured TEC up to 15.1 ppm K{sup −1}. Moderate values of electrical conductivity in combination with low TEC and stability towards chemical interaction with typical SOFC electrolytes make Co-doped Y{sub 1−x}Ca{sub x}FeO{sub 3−δ} promissing cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFC)« less

  3. Ceria nanoparticles vis-à-vis cerium nitrate as corrosion inhibitors for silica-alumina hybrid sol-gel coating

    NASA Astrophysics Data System (ADS)

    Lakshmi, R. V.; Aruna, S. T.; Sampath, S.

    2017-01-01

    The present work provides a comparative study on the corrosion protection efficiency of defect free sol-gel hybrid coating containing ceria nanoparticles and cerium nitrate ions as corrosion inhibitors. Less explored organically modified alumina-silica hybrid sol-gel coatings are synthesized from 3-glycidoxypropyltrimethoxysilane and aluminium-tri-sec-butoxide. The microemulsion derived nanoparticles and the hybrid coatings are characterized and compared with coatings containing cerium nitrate. Corrosion inhibiting capability is assessed using electrochemical impedance spectroscopy. Scanning Kelvin probe measurements are also conducted on the coatings for identifying the apparent corrosion prone regions. Detailed X-ray photoelectron spectroscopy (XPS) analysis is carried out to comprehend the bonding and corrosion protection rendered by the hybrid coatings.

  4. Role of Pullulan in preparation of ceria nanoparticles and investigation of their biological activities

    NASA Astrophysics Data System (ADS)

    Khorrami, Mohammad Bagher; Sadeghnia, Hamid Reza; Pasdar, Alireza; Ghayour-Mobarhan, Majid; Riahi-Zanjani, Bamdad; Darroudi, Majid

    2018-04-01

    Throughout this work, a facile, environmental-friendly, and "green" method is delineated for preparing ceria nanoparticles (CNPs), which utilizes nontoxic and renewable degraded polysaccharide polymer including pullulan as a natural matrix. Pullulan behaves as a suitable stabilizing (capping) agent for CNPs that are effectively formed at various high temperatures, while they are structurally analyzed through different techniques such as TGA/DTG, XRD, FESEM, and FTIR instruments. This procedure was found to be comparable to the ones that were acquired from conventional preparation methods that employ hazardous materials, which confirms this approach to be an exquisite alternative in preparing CNPs through the benefit of bioorganic materials. The in vitro cytotoxicity studies on Neuro2A cells have mentioned nontoxic particles in a range of concentrations (0.97-125 μg/ml) and thus, we reckon that the prepared particular CNPs will have persistent utilization in various fields of biology and medicine.

  5. Characterization of cubic ceria?zirconia powders by X-ray diffraction and vibrational and electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Sánchez Escribano, Vicente; Fernández López, Enrique; Panizza, Marta; Resini, Carlo; Gallardo Amores, José Manuel; Busca, Guido

    2003-10-01

    The X-ray diffraction (XRD) patterns and the Infrared, Raman and UV-visible spectra of CeO 2ZrO 2 powders prepared by co-precipitation are presented. Raman spectra provide evidence for the largely predominant cubic structure of the powders with CeO 2 molar composition higher than 25%. Also skeletal IR spectra allow to distinguish cubic from tetragonal phases which are instead not easily distinguished on the basis of the XRD patterns. All mixed oxides including pure ceria are strong UV absorbers although also absorb in the violet visible region. By carefully selecting their composition and treatment temperature, the onset of the radiation that they cut off can be chosen in the 425-475 nm interval. Although they are likely metastable, the cubic phases are still pure even after heating at 1173 K for 4 h.

  6. Effect of Dopants on the Adsorption of Carbon Dioxide on Ceria Surfaces

    DOE PAGES

    Li, Meijun; Tumuluri, Uma; Wu, Zili; ...

    2015-09-25

    Here, high-surface-area nanosized CeO 2 and M-doped CeO 2 (M=Cu, La, Zr, and Mg) prepared by a surfactant-templated method were tested for CO 2 adsorption. Cu, La, and Zr are doped into the lattice of CeO 2, whereas Mg is dispersed on the CeO 2 surface. The doping of Cu and La into CeO 2 leads to an increase of the CO 2 adsorption capacity, whereas the doping of Zr has little or no effect. The addition of Mg causes a decrease of the CO 2 adsorption capacity at a low Mg content and a gradual increase at a highermore » content. The CO 2 adsorption capacity follows the sequence Cu-CeO 2>La-CeO 2>Zr-CeO 2≈CeO 2>Mg-CeO 2 at low dopant contents, in line with the relative amount of defect sites in the samples. It is the defect sites on the surface, not in the bulk of CeO 2, modified by the dopants that play the vital role in CO 2 chemisorption. Lastly, the role of surface oxygen vacancies is further supported by an in situ IR spectroscopic study of the surface chemistry during CO 2 adsorption on the doped CeO 2.« less

  7. In Situ Spectroscopy and Mechanistic Insights into CO Oxidation on Transition-Metal-Substituted Ceria Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elias, Joseph S.; Stoerzinger, Kelsey A.; Hong, Wesley T.

    Herein we investigate the reaction intermediates formed during CO oxidation on copper-substituted ceria nanoparticles (Cu0.1Ce0.9O2–x) by means of in situ spectroscopic techniques and identify an activity descriptor that rationalizes a trend with other metal substitutes (M0.1Ce0.9O2–x, M = Mn, Fe, Co, Ni). In situ X-ray absorption spectroscopy (XAS) performed under catalytic conditions demonstrates that O2– transfer occurs at dispersed copper centers, which are redox active during catalysis. In situ XAS reveals a dramatic reduction at the copper centers that is fully reversible under catalytic conditions, which rationalizes the high catalytic activity of Cu0.1Ce0.9O2–x. Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) andmore » in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) show that CO can be oxidized to CO32– in the absence of O2. We find that CO32– desorbs as CO2 only under oxygen-rich conditions when the oxygen vacancy is filled by the dissociative adsorption of O2. These data, along with kinetic analyses, lend support to a mechanism in which the breaking of copper–oxygen bonds is rate-determining under oxygen-rich conditions, while refilling the resulting oxygen vacancy is rate-determining under oxygen-lean conditions. On the basis of these observations and density functional calculations, we introduce the computed oxygen vacancy formation energy (Evac) as an activity descriptor for substituted ceria materials and demonstrate that Evac successfully rationalizes the trend in the activities of M0.1Ce0.9O2–x catalysts that spans three orders of magnitude. The applicability of Evac as a useful design descriptor is demonstrated by the catalytic performance of the ternary oxide Cu0.1La0.1Ce0.8O2–x, which has an apparent activation energy rivaling those of state-of-the-art Au/TiO2 materials. Thus, we suggest that cost-effective catalysts for CO oxidation can be rationally designed by judicious choice of

  8. Direct Single-Enzyme Biomineralization of Catalytically Active Ceria and Ceria–Zirconia Nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curran, Christopher D.; Lu, Li; Jia, Yue

    Biomineralization is an intriguing approach to the synthesis of functional inorganic materials for energy applications whereby biological systems are engineered to mineralize inorganic materials and control their structure over multiple length scales under mild reaction conditions. Herein we demonstrate a single-enzyme-mediated biomineralization route to synthesize crystalline, catalytically active, quantum-confined ceria (CeO2–x) and ceria–zirconia (Ce1–yZryO2–x) nanocrystals for application as environmental catalysts. In contrast to typical anthropogenic synthesis routes, the crystalline oxide nanoparticles are formed at room temperature from an otherwise inert aqueous solution without the addition of a precipitant or additional reactant. An engineered form of silicatein, rCeSi, as a singlemore » enzyme not only catalyzes the direct biomineralization of the nanocrystalline oxides but also serves as a templating agent to control their morphological structure. The biomineralized nanocrystals of less than 3 nm in diameter are catalytically active toward carbon monoxide oxidation following an oxidative annealing step to remove carbonaceous residue. The introduction of zirconia into the nanocrystals leads to an increase in Ce(III) concentration, associated catalytic activity, and the thermal stability of the nanocrystals.« less

  9. The Anti-Doping Movement.

    PubMed

    Willick, Stuart E; Miller, Geoffrey D; Eichner, Daniel

    2016-03-01

    Historical reports of doping in sports date as far back as the ancient Greek Olympic Games. The anti-doping community considers doping in sports to be cheating and a violation of the spirit of sport. During the past century, there has been an increasing awareness of the extent of doping in sports and the health risks of doping. In response, the anti-doping movement has endeavored to educate athletes and others about the health risks of doping and promote a level playing field. Doping control is now undertaken in most countries around the world and at most elite sports competitions. As athletes have found new ways to dope, however, the anti-doping community has endeavored to strengthen its educational and deterrence efforts. It is incumbent upon sports medicine professionals to understand the health risks of doping and all doping control processes. Copyright © 2016 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  10. Doped Organic Transistors.

    PubMed

    Lüssem, Björn; Keum, Chang-Min; Kasemann, Daniel; Naab, Ben; Bao, Zhenan; Leo, Karl

    2016-11-23

    Organic field-effect transistors hold the promise of enabling low-cost and flexible electronics. Following its success in organic optoelectronics, the organic doping technology is also used increasingly in organic field-effect transistors. Doping not only increases device performance, but it also provides a way to fine-control the transistor behavior, to develop new transistor concepts, and even improve the stability of organic transistors. This Review summarizes the latest progress made in the understanding of the doping technology and its application to organic transistors. It presents the most successful doping models and an overview of the wide variety of materials used as dopants. Further, the influence of doping on charge transport in the most relevant polycrystalline organic semiconductors is reviewed, and a concise overview on the influence of doping on transistor behavior and performance is given. In particular, recent progress in the understanding of contact doping and channel doping is summarized.

  11. Cerium reduction at the interface between ceria and yttria-stabilised zirconia and implications for interfacial oxygen non-stoichiometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Kepeng; Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, 110016 Shenyang; Schmid, Herbert

    2014-03-01

    Epitaxial CeO{sub 2} films with different thickness were grown on Y{sub 2}O{sub 3} stabilised Zirconia substrates. Reduction of cerium ions at the interface between CeO{sub 2} films and yttria stabilised zirconia substrates is demonstrated using aberration-corrected scanning transmission electron microscopy combined with electron energy-loss spectroscopy. It is revealed that most of the Ce ions were reduced from Ce{sup 4+} to Ce{sup 3+} at the interface region with a decay of several nanometers. Several possibilities of charge compensations are discussed. Irrespective of the details, such local non-stoichiometries are crucial not only for understanding charge transport in such hetero-structures but also formore » understanding ceria catalytic properties.« less

  12. Concurrent CO2 Control and O2 Generation for Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Duncan, Keith L.; Hagelin-Weaver, Helena E.; Bishop, Sean R.; Wachsman, Eric D.

    2007-01-01

    The electrochemical reduction of carbon dioxide (CO2) using ceramic oxygen generators (COGs) is well known and widely studied, however, conventional devices using yttria-stabilized zirconia (YSZ) electrolytes operate at temperatures greater than 700 C. Operating at such high temperatures increases system mass compared to lower temperature systems because of increased energy overhead to get the COG up to operating temperature and the need for heavier insulation and/or heat exchangers to reduce the COG oxygen (O2) output temperature for comfortable inhalation. Recently, the University of Florida developed novel ceramic oxygen generators employing a bilayer electrolyte of gadolinia-doped ceria and erbia-stabilized bismuth for NASA's future exploration of Mars. To reduce landed mass and operation expenditures during the mission, in-situ resource utilization was proposed using these COGs to obtain both lifesupporting oxygen and oxidant/propellant fuel, by converting CO2 from the Mars atmosphere. The results showed that oxygen could be reliably produced from CO2 at temperatures as low as 400 C. These results indicate that this technology could be adapted to CO2 removal from a spacesuit and other applications in which CO2 removal was an issue. The strategy proposed for CO2 removal for advanced life support systems employs a catalytic layer combined with a COG so that it is reduced all the way to solid carbon and oxygen. Hence, a three-phased approach was used for the development of a viable low weight COG for CO2 removal. First, to reduce the COG operating temperature a high oxide ion conductivity electrolyte was developed. Second, to promote full CO2 reduction while avoiding the problem of carbon deposition on the COG cathode, novel cathodes and a removable catalytic carbon deposition layer were designed. Third, to improve efficiency, a pre-stage for CO2 absorption was used to concentrate CO2 from the exhalate before sending it to the COG. These subsystems were then

  13. Oxygen Generation from Carbon Dioxide for Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Bishop, s. R.; Duncan, K. L.; Hagelin-Weaver, H. E.; Neal, L.; Paul, H. L.; Wachsman, E. D.

    2007-01-01

    The partial electrochemical reduction of CO2 using ceramic oxygen generators (COGs) is well known and has been studied. Conventional COGs use yttria-stabilized zirconia (YSZ) electrolytes and operate at temperatures greater than 700 C (1, 2). Operating at a lower temperature has the advantage of reducing the mass of the ancillary components such as insulation. Moreover, complete reduction of metabolically produced CO2 (into carbon and oxygen) has the potential of reducing oxygen storage weight if the oxygen can be recovered. Recently, the University of Florida developed ceramic oxygen generators employing a bilayer electrolyte of gadolinia-doped ceria and erbia-stabilized bismuth oxide (ESB) for NASA s future exploration of Mars (3). The results showed that oxygen could be reliably produced from CO2 at temperatures as low as 400 C. These results indicate that this technology could be adapted to CO2 removal from a spacesuit and other applications in which CO2 removal is an issue. This strategy for CO2 removal in advanced life support systems employs a catalytic layer combined with a COG so that the CO2 is reduced completely to solid carbon and oxygen. First, to reduce the COG operating temperature, a thin, bilayer electrolyte was employed. Second, to promote full CO2 reduction while avoiding the problem of carbon deposition on the COG cathode, a catalytic carbon deposition layer was designed and the cathode utilized materials shown to be coke resistant. Third, a composite anode was used consisting of bismuth ruthenate (BRO) and ESB that has been shown to have high performance (4). The inset of figure 1 shows the conceptual design of the tubular COG and the rest of the figure shows schematically the test apparatus. Figure 2 shows the microstructure of a COG tube prior to testing. During testing, current is applied across the cell and initially CuO is reduced to copper metal by electrochemical pumping. Then the oxygen source becomes the CO/CO2. This presentation

  14. Implicit versus explicit attitude to doping: Which better predicts athletes' vigilance towards unintentional doping?

    PubMed

    Chan, Derwin King Chung; Keatley, David A; Tang, Tracy C W; Dimmock, James A; Hagger, Martin S

    2018-03-01

    This preliminary study examined whether implicit doping attitude, explicit doping attitude, or both, predicted athletes' vigilance towards unintentional doping. A cross-sectional correlational design. Australian athletes (N=143;M age =18.13, SD=4.63) completed measures of implicit doping attitude (brief single-category implicit association test), explicit doping attitude (Performance Enhancement Attitude Scale), avoidance of unintentional doping (Self-Reported Treatment Adherence Scale), and behavioural vigilance task of unintentional doping (reading the ingredients of an unfamiliar food product). Positive implicit doping attitude and explicit doping attitude were negatively related to athletes' likelihood of reading the ingredients table of an unfamiliar food product, and positively related to athletes' vigilance towards unintentional doping. Neither attitude measures predicted avoidance of unintentional doping. Overall, the magnitude of associations by implicit doping attitude appeared to be stronger than that of explicit doping attitude. Athletes with positive implicit and explicit doping attitudes were less likely to read the ingredients table of an unknown food product, but were more likely to be aware of the possible presence of banned substances in a certain food product. Implicit doping attitude appeared to explain athletes' behavioural response to the avoidance of unintentional doping beyond variance explained by explicit doping attitude. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  15. Current Status of Doping in Japan Based on Japan Anti-Doping Disciplinary Panels of the Japan Anti-Doping Agency (JADA): A Suggestion on Anti-Doping Activities by Pharmacists in Japan.

    PubMed

    Imanishi, Takashi; Kawabata, Takayoshi; Takayama, Akira

    2017-01-01

    In 2009, the Japan Anti-Doping Agency (JADA) established the "Sports Pharmacist Accreditation Program" to prevent doping in sports. Since then, anti-doping activities in Japan have been attracting attention. In this study, we investigated research about the current status of doping from 2007 to 2014 in Japan to make anti-doping activities more concrete, and we also discussed future anti-doping activities by pharmacists. In Japan, bodybuilding was the sporting event with the highest number and rate of doping from 2007 to 2014. Many of the positive doping cases were detected for class S1 (anabolic agents), S5 (diuretics and masking agents), and S6 (stimulants). Within class S1, supplements were the main cause of positive doping. Within class S5, medicines prescribed by medical doctors were the main cause of positive doping. Within class S6, non-prescription medicines (e.g., OTC) were the main cause of positive doping. When we looked at the global statistics on doping, many of the positive doping cases were detected for class S1. On comparing the Japanese statistics with the global statistics, the rate of positive doping caused by class S1 was significantly lower, but that caused by classes S5 and S6 was significantly higher in Japan than in the world. In conclusion, pharmacists in Japan should pay attention to class S1, S5, and S6 prohibited substances and to the sport events of bodybuilding. Based on this study, sports pharmacists as well as common pharmacists should suggest new anti-doping activities to prevent doping in the future.

  16. Nannochloropsis algae pyrolysis with ceria-based catalysts for production of high-quality bio-oils.

    PubMed

    Aysu, Tevfik; Sanna, Aimaro

    2015-10-01

    Pyrolysis of Nannochloropsis was carried out in a fixed-bed reactor with newly prepared ceria based catalysts. The effects of pyrolysis parameters such as temperature and catalysts on product yields were investigated. The amount of bio-char, bio-oil and gas products, as well as the compositions of the resulting bio-oils was determined. The results showed that both temperature and catalyst had significant effects on conversion of Nannochloropsis into solid, liquid and gas products. The highest bio-oil yield (23.28 wt%) and deoxygenation effect was obtained in the presence of Ni-Ce/Al2O3 as catalyst at 500°C. Ni-Ce/Al2O3 was able to retain 59% of the alga starting energy in the bio-oil, compared to only 41% in absence of catalyst. Lower content of acids and oxygen in the bio-oil, higher aliphatics (62%), combined with HHV show promise for production of high-quality bio-oil from Nannochloropsis via Ni-Ce/Al2O3 catalytic pyrolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Highly concentrated, stable nitrogen-doped graphene for supercapacitors: Simultaneous doping and reduction

    NASA Astrophysics Data System (ADS)

    Jiang, Baojiang; Tian, Chungui; Wang, Lei; Sun, Li; Chen, Chen; Nong, Xiaozhen; Qiao, Yingjie; Fu, Honggang

    2012-02-01

    In this work, we developed a concentrated ammonia-assisted hydrothermal method to obtain N-doped graphene sheets by simultaneous N-doping and reduction of graphene oxide (GO) sheets. The effects of hydrothermal temperature on the surface chemistry and the structure of N-doped graphene sheets were also investigated. X-ray photoelectron spectroscopy (XPS) study of N-doped graphene reveals that the highest doping level of 7.2% N is achieved at 180 °C for 12 h. N binding configurations of sample consist of pyridine N, quaternary N, and pyridine-N oxides. N doping is accompanied by the reduction of GO with decreases in oxygen levels from 34.8% in GO down to 8.5% in that of N-doped graphene. Meanwhile, the sample exhibits excellent N-doped thermal stability. Electrical measurements demonstrate that products have higher capacitive performance than that of pure graphene, the maximum specific capacitance of 144.6 F/g can be obtained which ascribe the pseudocapacitive effect from the N-doping. The samples also show excellent long-term cycle stability of capacitive performance.

  18. [Interdisciplinary strategies versus doping].

    PubMed

    Vitzthum, Karin; Mache, Stefanie; Quarcoo, David; Groneberg, David A; Schöffel, Norman

    2010-06-01

    Doping is a phenomenon which in the past years through the various incidences in professional cycling has come more and more into the focus of the public interest. Whilst in the young past the problems were to define the term "doping" exactly, today's problem is to prevent adolescents and children of doping. This shall be achieved by carrying out controls and serious sanctions for doping violations. Scientific research proved that doping usage can be avoided by broad specific prevention measures. In general, the earlier the athletes dope the higher the risk to become addicted later on in life to other legal or illegal drugs. The aim of this review is to analyse the prevalence of doping regarding youth-, competitive-, high performance and recreational sports and to examine further aspects of doping abuse, risks of addiction, the legal situation, current strategies in the fight against doping and to enhance chances of further doping prevention opportunities. By means of this data an all-embracing view should be given over the current situation, problems and prospects in German-speaking countries.

  19. Conversion of Methane into Methanol and Ethanol over Nickel Oxide on Ceria-Zirconia Catalysts in a Single Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okolie, Chukwuemeka; Belhseine, Yasmeen F.; Lyu, Yimeng

    Direct conversion of methane into alcohols is a promising technology for converting stranded methane reserves into liquids that can be transported in pipelines and upgraded to value-added chemicals. We demonstrate that a catalyst consisting of small nickel oxide clusters supported on ceria-zirconia (NiO/CZ) can selectively oxidize methane to methanol and ethanol in a single, steady-state process at 723 K using O2 as an abundantly available oxidant. The presence of steam is required to obtain alcohols rather than CO2 as the product of catalytic combustion. The unusual activity of this catalyst is attributed to the synergy between the small Lewis acidicmore » NiO clusters and the redox-active CZ support, which also stabilizes the small NiO clusters.« less

  20. Conversion of Methane to Methanol and Ethanol over Nickel Oxide on Ceria-Zirconia Catalysts in a Single Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okolie, Chukwuemeka; Belhseine, Yasmeen F.; Lyu, Yimeng

    Here, the conversion of methane into alcohols under moderate reaction conditions is a promising technology for converting stranded methane reserves into liquids that can be transported in pipelines and upgraded to value-added chemicals. We demonstrate that a catalyst consisting of small nickel oxide clusters supported on ceria-zirconia (NiO/CZ) can convert methane to methanol and ethanol in a single, steady-state process at 723 K using O 2 as an abundantly available oxidant. The presence of steam is required to obtain alcohols rather than CO 2 as the product of catalytic combustion. The unusual activity of this catalyst is attributed to themore » synergy between the small Lewis acidic NiO clusters and the redox-active CZ support, which also stabilizes the small NiO clusters.« less

  1. Conversion of Methane to Methanol and Ethanol over Nickel Oxide on Ceria-Zirconia Catalysts in a Single Reactor

    DOE PAGES

    Okolie, Chukwuemeka; Belhseine, Yasmeen F.; Lyu, Yimeng; ...

    2017-08-08

    Here, the conversion of methane into alcohols under moderate reaction conditions is a promising technology for converting stranded methane reserves into liquids that can be transported in pipelines and upgraded to value-added chemicals. We demonstrate that a catalyst consisting of small nickel oxide clusters supported on ceria-zirconia (NiO/CZ) can convert methane to methanol and ethanol in a single, steady-state process at 723 K using O 2 as an abundantly available oxidant. The presence of steam is required to obtain alcohols rather than CO 2 as the product of catalytic combustion. The unusual activity of this catalyst is attributed to themore » synergy between the small Lewis acidic NiO clusters and the redox-active CZ support, which also stabilizes the small NiO clusters.« less

  2. Practical Doping Principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zunger, A.

    2003-05-01

    'Theoretical investigations of doping of several wide-gap materials suggest a number of rather general, practical"doping principles" that may help guide experimental strategies of overcoming doping bottlenecks. This paper will be published as a journal article in the future.

  3. Doped graphene supercapacitors.

    PubMed

    Kumar, Nanjundan Ashok; Baek, Jong-Beom

    2015-12-11

    Heteroatom-doped graphitic frameworks have received great attention in energy research, since doping endows graphitic structures with a wide spectrum of properties, especially critical for electrochemical supercapacitors, which tend to complement or compete with the current lithium-ion battery technology/devices. This article reviews the latest developments in the chemical modification/doping strategies of graphene and highlights the versatility of such heteroatom-doped graphitic structures. Their role as supercapacitor electrodes is discussed in detail. This review is specifically focused on the concept of material synthesis, techniques for electrode fabrication and metrics of performance, predominantly covering the last four years. Challenges and insights into the future research and perspectives on the development of novel electrode architectures for electrochemical supercapacitors based on doped graphene are also discussed.

  4. Doped graphene supercapacitors

    NASA Astrophysics Data System (ADS)

    Ashok Kumar, Nanjundan; Baek, Jong-Beom

    2015-12-01

    Heteroatom-doped graphitic frameworks have received great attention in energy research, since doping endows graphitic structures with a wide spectrum of properties, especially critical for electrochemical supercapacitors, which tend to complement or compete with the current lithium-ion battery technology/devices. This article reviews the latest developments in the chemical modification/doping strategies of graphene and highlights the versatility of such heteroatom-doped graphitic structures. Their role as supercapacitor electrodes is discussed in detail. This review is specifically focused on the concept of material synthesis, techniques for electrode fabrication and metrics of performance, predominantly covering the last four years. Challenges and insights into the future research and perspectives on the development of novel electrode architectures for electrochemical supercapacitors based on doped graphene are also discussed.

  5. In situ trapping of As, Sb and Se hydrides on nanometer-sized ceria-coated iron oxide-silica and slurry suspension introduction to ICP-OES.

    PubMed

    Dados, A; Kartsiouli, E; Chatzimitakos, Th; Papastephanou, C; Stalikas, C D

    2014-12-01

    A procedure is developed for the analysis of sub-μg L(-1) levels of arsenic, antimony and selenium after preconcentration of their hydrides. The study highlights the capability of an aqueous suspension of a nanometer-sized magnetic ceria, in the presence of iodide, to function as a sorbent for the in situ trapping and preconcentration of the hydrides of certain metalloids. After extraction, the material is magnetically separated from the trapping solution and analyzed. A slurry suspension sampling approach with inductively coupled plasma-optical emission spectrometry (ICP-OES) is employed for measurements, as the quantitative elution of the adsorbed metalloids is not feasible. The whole analytical procedure consists of five steps: (i) pre-reduction of As, Sb and Se, (ii) generation of the hydrides AsH3, SbH3 and SeH2, (iii) in situ collection in the trapping suspension of magnetic ceria, (iv) isolation of the particles by applying a magnetic field, and (v) measurement of As, Sb and Se concentrations using ICP-OES. Under the established experimental conditions, the efficiency of trapping accounted for 94 ± 2%, 89 ± 2% and 98 ± 3% for As, Sb and Se, respectively, signifying the effective implementation of the overall procedure. The applicability of the procedure has been demonstrated by analyzing tap and lake water and a reference material (soft drinking water). The obtained analytical figures of merit were satisfactory for the analysis of the above metalloids in natural waters by ICP-OES. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Reversible and Precisely Controllable p/n-Type Doping of MoTe2 Transistors through Electrothermal Doping.

    PubMed

    Chang, Yuan-Ming; Yang, Shih-Hsien; Lin, Che-Yi; Chen, Chang-Hung; Lien, Chen-Hsin; Jian, Wen-Bin; Ueno, Keiji; Suen, Yuen-Wuu; Tsukagoshi, Kazuhito; Lin, Yen-Fu

    2018-03-01

    Precisely controllable and reversible p/n-type electronic doping of molybdenum ditelluride (MoTe 2 ) transistors is achieved by electrothermal doping (E-doping) processes. E-doping includes electrothermal annealing induced by an electric field in a vacuum chamber, which results in electron (n-type) doping and exposure to air, which induces hole (p-type) doping. The doping arises from the interaction between oxygen molecules or water vapor and defects of tellurium at the MoTe 2 surface, and allows the accurate manipulation of p/n-type electrical doping of MoTe 2 transistors. Because no dopant or special gas is used in the E-doping processes of MoTe 2 , E-doping is a simple and efficient method. Moreover, through exact manipulation of p/n-type doping of MoTe 2 transistors, quasi-complementary metal oxide semiconductor adaptive logic circuits, such as an inverter, not or gate, and not and gate, are successfully fabricated. The simple method, E-doping, adopted in obtaining p/n-type doping of MoTe 2 transistors undoubtedly has provided an approach to create the electronic devices with desired performance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Statistical error in simulations of Poisson processes: Example of diffusion in solids

    NASA Astrophysics Data System (ADS)

    Nilsson, Johan O.; Leetmaa, Mikael; Vekilova, Olga Yu.; Simak, Sergei I.; Skorodumova, Natalia V.

    2016-08-01

    Simulations of diffusion in solids often produce poor statistics of diffusion events. We present an analytical expression for the statistical error in ion conductivity obtained in such simulations. The error expression is not restricted to any computational method in particular, but valid in the context of simulation of Poisson processes in general. This analytical error expression is verified numerically for the case of Gd-doped ceria by running a large number of kinetic Monte Carlo calculations.

  8. Structural analysis of nickel doped cerium oxide catalysts for fuel reforming in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Cavendish, Rio

    As world energy demands increase, research into more efficient energy production methods has become imperative. Heterogeneous catalysis and nanoscience are used to promote chemical transformations important for energy production. These concepts are important in solid oxide fuel cells (SOFCs) which have attracted attention because of their potential to provide an efficient and environmentally favorable power generation system. The SOFC is also fuel-flexible with the ability to run directly on many fuels other than hydrogen. Internal fuel reforming directly in the anode of the SOFC would greatly reduce the cost and complexity of the device. Methane is the simplest hydrocarbon and a main component in natural gas, making it useful when testing catalysts on the laboratory scale. Nickel (Ni) and gadolinium (Gd) doped ceria (CeO 2) catalysts for potential use in the SOFC anode were synthesized with a spray drying method and tested for catalytic performance using partial oxidation of methane and steam reforming. The relationships between catalytic performance and structure were then investigated using X-ray diffraction, transmission electron microscopy, and environmental transmission electron microscopy. The possibility of solid solutions, segregated phases, and surface layers of Ni were explored. Results for a 10 at.% Ni in CeO2 catalyst reveal a poor catalytic behavior while a 20 at.% Ni in CeO2 catalyst is shown to have superior activity. The inclusion of both 10 at.% Gd and 10 at.% Ni in CeO2 enhances the catalytic performance. Analysis of the presence of Ni in all 3 samples reveals Ni heterogeneity and little evidence for extensive solid solution doping. Ni is found in small domains throughout CeO2 particles. In the 20 at.% Ni sample a segregated, catalytically active NiO phase is observed. Overall, it is found that significant interaction between Ni and CeO2 occurs that could affect the synthesis and functionality of the SOFC anode.

  9. Doping droops.

    PubMed

    Chaturvedi, Aditi; Chaturvedi, Harish; Kalra, Juhi; Kalra, Sudhanshu

    2007-01-01

    Drug abuse is a major concern in the athletic world. The misconception among athletes and their coaches is that when an athlete breaks a record it is due to some "magic ingredient" and not because of training, hard work, mental attitude and championship performance. The personal motivation to win in competitive sports has been intensified by national, political, professional and economic incentives. Under this increased pressure athletes have turned to finding this "magic ingredient". Athlete turns to mechanical (exercise, massage), nutritional (vitamins, minerals), pharmacological (medicines) or gene therapies to have an edge over other players. The World Anti-Doping Agency (WADA) has already asked scientists to help find ways to prevent gene therapy from becoming the newest form of doping. The safety of the life of athletes is compromised with all forms of doping techniques, be it a side effect of a drug or a new technique of gene doping.

  10. Doping Attitudes and Covariates of Potential Doping Behaviour in High-Level Team-Sport Athletes; Gender Specific Analysis

    PubMed Central

    Sekulic, Damir; Tahiraj, Enver; Zvan, Milan; Zenic, Natasa; Uljevic, Ognjen; Lesnik, Blaz

    2016-01-01

    Team sports are rarely studied with regard to doping behaviour and doping-related factors regardless of their global popularity. This study aimed to investigate doping factors and covariates of potential doping behaviour in high-level team-sport athletes. The subjects were 457 high-performing, national- and international-level athletes (21.9 ± 3.4 years of age; 179 females) involved in volleyball (n = 77), soccer (n = 163), basketball (n = 114) and handball (n = 103). Previously validated self-administered questionnaires aimed at evidencing sport factors, doping-related factors, knowledge on sport nutrition and doping, and attitudes to performance enhancement were used. The results indicated a higher doping likelihood in male athletes, with a significant gender difference for basketball and handball. In males, a higher doping likelihood is found for athletes who had achieved better results at junior-age level, those who regularly consume dietary supplements, and who perceive their sport as being contaminated by doping. A higher sport achievement at senior-age level is protective against potential doping behaviour in males. In females, a higher likelihood of doping is evidenced in those athletes involved in binge drinking, while a lower tendency for doping is evidenced in female athletes who possess better knowledge on sport nutrition. Knowledge about doping is very low and thus education about doping is urgently needed. An improvement of knowledge on sport nutrition might be a potentially effective method for reducing the tendency for doping in females. Future studies should consider other approaches and theories, such as theory of planned behaviour and/or social-cognitive theory, in studying the problem of doping behaviour in team-sports. Key points The doping knowledge among Kosovar team-sport athletes is very low and systematic anti-doping education is urgently needed. The highest risk of doping behaviour in males is found for those athletes who had been

  11. Morphology and Doping Engineering of Sn-Doped Hematite Nanowire Photoanodes.

    PubMed

    Li, Mingyang; Yang, Yi; Ling, Yichuan; Qiu, Weitao; Wang, Fuxin; Liu, Tianyu; Song, Yu; Liu, Xiaoxia; Fang, Pingping; Tong, Yexiang; Li, Yat

    2017-04-12

    High-temperature activation has been commonly used to boost the photoelectrochemical (PEC) performance of hematite nanowires for water oxidation, by inducing Sn diffusion from fluorine-doped tin oxide (FTO) substrate into hematite. Yet, hematite nanowires thermally annealed at high temperature suffer from two major drawbacks that negatively affect their performance. First, the structural deformation reduces light absorption capability of nanowire. Second, this "passive" doping method leads to nonuniform distribution of Sn dopant in nanowire and limits the Sn doping concentration. Both factors impair the electrochemical properties of hematite nanowire. Here we demonstrate a silica encapsulation method that is able to simultaneously retain the hematite nanowire morphology even after high-temperature calcination at 800 °C and improve the concentration and uniformity of dopant distribution along the nanowire growth axis. The capability of retaining nanowire morphology allows tuning the nanowire length for optimal light absorption. Uniform distribution of Sn doping enhances the donor density and charge transport of hematite nanowire. The morphology and doping engineered hematite nanowire photoanode decorated with a cobalt oxide-based oxygen evolution reaction (OER) catalyst achieves an outstanding photocurrent density of 2.2 mA cm -2 at 0.23 V vs Ag/AgCl. This work provides important insights on how the morphology and doping uniformity of hematite photoanodes affect their PEC performance.

  12. Doping-dependent charge order correlations in electron-doped cuprates

    PubMed Central

    da Silva Neto, Eduardo H.; Yu, Biqiong; Minola, Matteo; Sutarto, Ronny; Schierle, Enrico; Boschini, Fabio; Zonno, Marta; Bluschke, Martin; Higgins, Joshua; Li, Yangmu; Yu, Guichuan; Weschke, Eugen; He, Feizhou; Le Tacon, Mathieu; Greene, Richard L.; Greven, Martin; Sawatzky, George A.; Keimer, Bernhard; Damascelli, Andrea

    2016-01-01

    Understanding the interplay between charge order (CO) and other phenomena (for example, pseudogap, antiferromagnetism, and superconductivity) is one of the central questions in the cuprate high-temperature superconductors. The discovery that similar forms of CO exist in both hole- and electron-doped cuprates opened a path to determine what subset of the CO phenomenology is universal to all the cuprates. We use resonant x-ray scattering to measure the CO correlations in electron-doped cuprates (La2−xCexCuO4 and Nd2−xCexCuO4) and their relationship to antiferromagnetism, pseudogap, and superconductivity. Detailed measurements of Nd2−xCexCuO4 show that CO is present in the x = 0.059 to 0.166 range and that its doping-dependent wave vector is consistent with the separation between straight segments of the Fermi surface. The CO onset temperature is highest between x = 0.106 and 0.166 but decreases at lower doping levels, indicating that it is not tied to the appearance of antiferromagnetic correlations or the pseudogap. Near optimal doping, where the CO wave vector is also consistent with a previously observed phonon anomaly, measurements of the CO below and above the superconducting transition temperature, or in a magnetic field, show that the CO is insensitive to superconductivity. Overall, these findings indicate that, although verified in the electron-doped cuprates, material-dependent details determine whether the CO correlations acquire sufficient strength to compete for the ground state of the cuprates. PMID:27536726

  13. Doping-dependent charge order correlations in electron-doped cuprates.

    PubMed

    da Silva Neto, Eduardo H; Yu, Biqiong; Minola, Matteo; Sutarto, Ronny; Schierle, Enrico; Boschini, Fabio; Zonno, Marta; Bluschke, Martin; Higgins, Joshua; Li, Yangmu; Yu, Guichuan; Weschke, Eugen; He, Feizhou; Le Tacon, Mathieu; Greene, Richard L; Greven, Martin; Sawatzky, George A; Keimer, Bernhard; Damascelli, Andrea

    2016-08-01

    Understanding the interplay between charge order (CO) and other phenomena (for example, pseudogap, antiferromagnetism, and superconductivity) is one of the central questions in the cuprate high-temperature superconductors. The discovery that similar forms of CO exist in both hole- and electron-doped cuprates opened a path to determine what subset of the CO phenomenology is universal to all the cuprates. We use resonant x-ray scattering to measure the CO correlations in electron-doped cuprates (La2-x Ce x CuO4 and Nd2-x Ce x CuO4) and their relationship to antiferromagnetism, pseudogap, and superconductivity. Detailed measurements of Nd2-x Ce x CuO4 show that CO is present in the x = 0.059 to 0.166 range and that its doping-dependent wave vector is consistent with the separation between straight segments of the Fermi surface. The CO onset temperature is highest between x = 0.106 and 0.166 but decreases at lower doping levels, indicating that it is not tied to the appearance of antiferromagnetic correlations or the pseudogap. Near optimal doping, where the CO wave vector is also consistent with a previously observed phonon anomaly, measurements of the CO below and above the superconducting transition temperature, or in a magnetic field, show that the CO is insensitive to superconductivity. Overall, these findings indicate that, although verified in the electron-doped cuprates, material-dependent details determine whether the CO correlations acquire sufficient strength to compete for the ground state of the cuprates.

  14. Route to the Smallest Doped Semiconductor: Mn(2+)-Doped (CdSe)13 Clusters.

    PubMed

    Yang, Jiwoong; Fainblat, Rachel; Kwon, Soon Gu; Muckel, Franziska; Yu, Jung Ho; Terlinden, Hendrik; Kim, Byung Hyo; Iavarone, Dino; Choi, Moon Kee; Kim, In Young; Park, Inchul; Hong, Hyo-Ki; Lee, Jihwa; Son, Jae Sung; Lee, Zonghoon; Kang, Kisuk; Hwang, Seong-Ju; Bacher, Gerd; Hyeon, Taeghwan

    2015-10-14

    Doping semiconductor nanocrystals with magnetic transition-metal ions has attracted fundamental interest to obtain a nanoscale dilute magnetic semiconductor, which has unique spin exchange interaction between magnetic spin and exciton. So far, the study on the doped semiconductor NCs has usually been conducted with NCs with larger than 2 nm because of synthetic challenges. Herein, we report the synthesis and characterization of Mn(2+)-doped (CdSe)13 clusters, the smallest doped semiconductors. In this study, single-sized doped clusters are produced in large scale. Despite their small size, these clusters have semiconductor band structure instead of that of molecules. Surprisingly, the clusters show multiple excitonic transitions with different magneto-optical activities, which can be attributed to the fine structure splitting. Magneto-optically active states exhibit giant Zeeman splittings up to elevated temperatures (128 K) with large g-factors of 81(±8) at 4 K. Our results present a new synthetic method for doped clusters and facilitate the understanding of doped semiconductor at the boundary of molecules and quantum nanostructure.

  15. Formation mechanism of monodispersed spherical core-shell ceria/polymer hybrid nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izu, Noriya, E-mail: n-izu@aist.go.jp; Uchida, Toshio; Matsubara, Ichiro

    2011-08-15

    Graphical abstract: The formation mechanism for core-shell nanoparticles is considered to be as follows: nucleation and particle growth occur simultaneously (left square); very slow particle growth occurs (middle square). Highlights: {yields} The size of the resultant nanoparticles was strongly and complicatedly dependent on the set temperature used during reflux heating and the PVP molecular weight. {yields} The size of the nanoparticles increased by a 2-step process as the reflux heating time increased. {yields} The IR spectral changes with increasing reflux time indicated the increase in the number of cross-linked polymers in the shell. -- Abstract: Very unique core-shell ceria (ceriummore » oxide)/polymer hybrid nanoparticles that have monodispersed spherical structures and are easily dispersed in water or alcohol without the need for a dispersant were reported recently. The formation mechanism of the unique nanoparticles, however, was not clear. In order to clarify the formation mechanism, these nanoparticles were prepared using a polyol method (reflux heating) under varied conditions of temperature, time, and concentration and molecular weight of added polymer (poly(vinylpyrrolidone)). The size of the resultant nanoparticles was strongly and complicatedly dependent on the set temperature used during reflux heating and the poly(vinylpyrrolidone) molecular weight. Furthermore, the size of the nanoparticles increased by a 2-step process as the reflux heating time increased. The IR spectral changes with increasing reflux time indicated the increase in the number of cross-linked polymers in the shell. From these results, the formation mechanism was discussed and proposed.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jadeja, K.A.; Patel, K.M.; Tanna, R.L., E-mail: kumarpal@ipr.res.in

    Low temperature glow discharge wall conditioning (GDC) using H{sub 2} gas is effective in reduction of oxygen and carbon (low-Z) contain impurities on near surface region of vessel wall. The high retention of hydrogen in vessel wall/components due to long operation of H{sub 2} GDC increases hydrogen out-gassing during tokamak operation and affects the production of high temperature plasma. The hydrogen retention can be reduced using inert gas GDC by sputter cleaning for short duration. But in that case the out-gassing rate of inert gas increases, that again impairs the plasma performance. To overcome above problems, the GDC with hydrogen-inertmore » gas mixture can be used for better removal of C and O surface contaminants and low hydrogen retention in surface. In ADITYA tokamak, H{sub 2}-GDC is carried out regularly after plasma operation, while the GDC with argon-hydrogen (Ar-H{sub 2}) mixture has been experimentally tested to observe the reduction of oxygen and carbon impurities along with low hydrogen retention. In Ar-H{sub 2} GDC, the reason being the formation of ArH{sup +} hydride ions, which has quite long life and more energy compared to H{sub 2}{sup +} ions formed in H{sub 2} GDC for breaking the bond of wall molecules. A systematic comparative study of H{sub 2} GDC and Ar-H{sub 2} Mixture GDC by changing the mixture ratio has been carried out in ADITYA tokamak. The relative levels of oxygen and carbon contain impurities have been measured using residual gas analyzer in both GDC's. We have observed a substantial reduction in oxygen and carbon impurities with a significant improvement in wall condition with Ar-H{sub 2} GDC compared to the H{sub 2} GDC. The effect of wall conditioning by Ar-H{sub 2} GDC on the performance of high temperature plasma operation will be presented in this paper. (author)« less

  17. High p-type doping, mobility, and photocarrier lifetime in arsenic-doped CdTe single crystals

    NASA Astrophysics Data System (ADS)

    Nagaoka, Akira; Kuciauskas, Darius; McCoy, Jedidiah; Scarpulla, Michael A.

    2018-05-01

    Group-V element doping is promising for simultaneously maximizing the hole concentration and minority carrier lifetime in CdTe for thin film solar cells, but there are roadblocks concerning point defects including the possibility of self-compensation by AX metastability. Herein, we report on doping, lifetime, and mobility of CdTe single crystals doped with As between 1016 and 1020 cm-3 grown from the Cd solvent by the travelling heater method. Evidence consistent with AX instability as a major contributor to compensation in samples doped below 1017 cm-3 is presented, while for higher-doped samples, precipitation of a second phase on planar structural defects is also observed and may explain spatial variation in properties such as lifetime. Rapid cooling after crystal growth increases doping efficiency and mobility for times up to 20-30 days at room temperature with the highest efficiencies observed close to 45% and a hole mobility of 70 cm2/Vs at room temperature. A doping limit in the low 1017/cm3 range is observed for samples quenched at 200-300 °C/h. Bulk minority carrier lifetimes exceeding 20 ns are observed for samples doped near 1016 cm-3 relaxed in the dark and for unintentionally doped samples, while a lifetime of nearly 5 ns is observed for 1018 cm-3 As doping. These results help us to establish limits on properties expected for group-V doped CdTe polycrystalline thin films for use in photovoltaics.

  18. Knowledge of pharmacy students about doping, and the need for doping education: a questionnaire survey.

    PubMed

    Shibata, Keita; Ichikawa, Koichi; Kurata, Naomi

    2017-08-11

    Anti-doping activities are carried out on a global scale. Based on these activities, the specialty of "sports pharmacist," which entails a deeper comprehension of doping, use of supplements, and appropriate drug use for athletes, was established in 2009 in Japan. It is difficult to say whether the education on doping is adequate for pharmacy students who will be eligible to become sports pharmacists. It is also unclear how well these students understand doping. Therefore, the aim of this study was to investigate pharmacy students' current knowledge of appropriate drug use, doping and use of supplements, and to explore the need for further education on these topics. A questionnaire survey was conducted from July 3rd to August 2nd in 2014 at Showa University in Japan. A total of 406 respondents (2nd- to 6th-year students) were assessed as eligible. Group comparison was used to compare those who had attended a lecture about doping and those who had not. Most of the students only knew the word doping and had not attended a lecture on the subject, but 72% of them expressed a desire to attend one. Over half did not know that the most common doping violation in Japan is unintentional doping, and were unfamiliar with certain past cases of doping. In addition, 41% did not know that over-the-counter medicines and dietary supplements might contain prohibited substances, and 87% were unaware that names of prohibited substances might not appear on the ingredient labels of dietary supplements. In contrast, attending a lecture on doping was effective in facilitating the acquisition of all these types of knowledge. It is important to provide more opportunities for appropriate education of pharmacy students on the topic of doping, given that interest exists and attending a lecture on the topic appears to be useful. More education about doping for pharmacy students would be as effective for anti-doping activities as is education of athletes.

  19. Doping Attitudes and Covariates of Potential Doping Behaviour in High-Level Team-Sport Athletes; Gender Specific Analysis.

    PubMed

    Sekulic, Damir; Tahiraj, Enver; Zvan, Milan; Zenic, Natasa; Uljevic, Ognjen; Lesnik, Blaz

    2016-12-01

    Team sports are rarely studied with regard to doping behaviour and doping-related factors regardless of their global popularity. This study aimed to investigate doping factors and covariates of potential doping behaviour in high-level team-sport athletes. The subjects were 457 high-performing, national- and international-level athletes (21.9 ± 3.4 years of age; 179 females) involved in volleyball (n = 77), soccer (n = 163), basketball (n = 114) and handball (n = 103). Previously validated self-administered questionnaires aimed at evidencing sport factors, doping-related factors, knowledge on sport nutrition and doping, and attitudes to performance enhancement were used. The results indicated a higher doping likelihood in male athletes, with a significant gender difference for basketball and handball. In males, a higher doping likelihood is found for athletes who had achieved better results at junior-age level, those who regularly consume dietary supplements, and who perceive their sport as being contaminated by doping. A higher sport achievement at senior-age level is protective against potential doping behaviour in males. In females, a higher likelihood of doping is evidenced in those athletes involved in binge drinking, while a lower tendency for doping is evidenced in female athletes who possess better knowledge on sport nutrition. Knowledge about doping is very low and thus education about doping is urgently needed. An improvement of knowledge on sport nutrition might be a potentially effective method for reducing the tendency for doping in females. Future studies should consider other approaches and theories, such as theory of planned behaviour and/or social-cognitive theory, in studying the problem of doping behaviour in team-sports.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yajuan; Peng, Yi; Tang, Hao

    Dysregulation of mammalian target of rapamycin (mTOR) signaling contributes to head and neck squamous cell carcinoma (HNSCC) tumorigenesis and progression. In the current study, we tested the anti-HNSCC cell activity by GDC-0349, a selective ATP-competitive inhibitor of mTOR. We showed that GDC-0349 inhibited proliferation of established and primary human HNSCC cells bearing high-level of p-AKT/p-S6K. Further, it induced caspase-dependent apoptosis in the HNSCC cells. GDC-0349 blocked mTORC1 and mTORC2 activation, yet it simultaneously induced autophagy activation in HNSCC cells. The latter was evidenced by induction of LC3B-II, Beclin-1 and Autophagy-related (ATG)-7, as well as downregulation of p62. Autophagy inhibitors (3-methyladeninemore » and bafilomycin A1) or ATG-7 siRNA dramatically potentiated GDC-0349’s cytotoxicity against HNSCC cells. Intriguingly, we showed that ceramide (C14), a pro-apoptotic sphingolipid, also induced ATG-7 degradation, and sensitized HNSCC cells to GDC-0349. Collectively, the preclinical study provided evidences to support GDC-0349 as a promising anti-HNSCC agent. GDC-0349 sensitization may be achieved via autophagy inhibition. - Highlights: • GDC-0349 inhibits proliferation of HNSCC cells bearing high-level of p-AKT/p-S6K. • GDC-0349 activates caspase-dependent apoptosis in HNSCC cells. • Simultaneous blockage of mTORC1/2 by GDC-0349 induces autophagy activation. • Autophagy inhibitor or ATG-7 siRNA potentiates GDC-0349’s cytotoxicity. • C14 ceramide downregulates ATG-7 and sensitizes HNSCC cells to GDC-0349.« less

  1. Thin film coatings for improved alpha/epi

    NASA Technical Reports Server (NTRS)

    Krisl, M. E.; Sachs, I. M.

    1985-01-01

    New thin film coatings were developed for fused silica, ceria doped glass, and Corning 0211 microsheet which provide increased emissivity and/or decreased solar absorption. Emissivity is enhanced by suppression of the reststrahlen reflectance and solar absorption is reduced by externally reflecting the ultraviolet portion of the solar spectrum. Optical properties of these coatings make them suitable for both solar cell cover and thermal control mirror applications. Measurements indicate equivalent environmental performance to conventional solar cell cover and thermal control mirror products.

  2. Enhancement of radiotherapy by ceria nanoparticles modified with neogambogic acid in breast cancer cells

    PubMed Central

    Chen, Feng; Zhang, Xiao Hong; Hu, Xiao Dan; Zhang, Wei; Lou, Zhi Chao; Xie, Li Hua; Liu, Pei Dang; Zhang, Hai Qian

    2015-01-01

    Radiotherapy is one of the main strategies for cancer treatment but has significant challenges, such as cancer cell resistance and radiation damage to normal tissue. Radiosensitizers that selectively increase the susceptibility of cancer cells to radiation can enhance the effectiveness of radiotherapy. We report here the development of a novel radiosensitizer consisting of monodispersed ceria nanoparticles (CNPs) covered with the anticancer drug neogambogic acid (NGA-CNPs). These were used in conjunction with radiation in MCF-7 breast cancer cells, and the efficacy and mechanisms of action of this combined treatment approach were evaluated. NGA-CNPs potentiated the toxic effects of radiation, leading to a higher rate of cell death than either treatment used alone and inducing the activation of autophagy and cell cycle arrest at the G2/M phase, while pretreatment with NGA or CNPs did not improve the rate of radiation-induced cancer cells death. However, NGA-CNPs decreased both endogenous and radiation-induced reactive oxygen species formation, unlike other nanomaterials. These results suggest that the adjunctive use of NGA-CNPs can increase the effectiveness of radiotherapy in breast cancer treatment by lowering the radiation doses required to kill cancer cells and thereby minimizing collateral damage to healthy adjacent tissue. PMID:26316742

  3. High p-type doping, mobility, and photocarrier lifetime in arsenic-doped CdTe single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagaoka, Akira; Kuciauskas, Darius; McCoy, Jedidiah

    Here, Group-V element doping is promising for simultaneously maximizing the hole concentration and minority carrier lifetime in CdTe for thin film solar cells, but there are roadblocks concerning point defects including the possibility of self-compensation by AX metastability. Herein, we report on doping, lifetime, and mobility of CdTe single crystals doped with As between 10 16 and 10 20 cm –3 grown from the Cd solvent by the travelling heater method. Evidence consistent with AX instability as a major contributor to compensation in samples doped below 10 17 cm –3 is presented, while for higher-doped samples, precipitation of a secondmore » phase on planar structural defects is also observed and may explain spatial variation in properties such as lifetime. Rapid cooling after crystal growth increases doping efficiency and mobility for times up to 20–30 days at room temperature with the highest efficiencies observed close to 45% and a hole mobility of 70 cm 2/Vs at room temperature. A doping limit in the low 10 17/cm 3 range is observed for samples quenched at 200–300 °C/h. Bulk minority carrier lifetimes exceeding 20 ns are observed for samples doped near 10 16 cm –3 relaxed in the dark and for unintentionally doped samples, while a lifetime of nearly 5 ns is observed for 10 18 cm –3 As doping. These results help us to establish limits on properties expected for group-V doped CdTe polycrystalline thin films for use in photovoltaics.« less

  4. High p-type doping, mobility, and photocarrier lifetime in arsenic-doped CdTe single crystals

    DOE PAGES

    Nagaoka, Akira; Kuciauskas, Darius; McCoy, Jedidiah; ...

    2018-05-07

    Here, Group-V element doping is promising for simultaneously maximizing the hole concentration and minority carrier lifetime in CdTe for thin film solar cells, but there are roadblocks concerning point defects including the possibility of self-compensation by AX metastability. Herein, we report on doping, lifetime, and mobility of CdTe single crystals doped with As between 10 16 and 10 20 cm –3 grown from the Cd solvent by the travelling heater method. Evidence consistent with AX instability as a major contributor to compensation in samples doped below 10 17 cm –3 is presented, while for higher-doped samples, precipitation of a secondmore » phase on planar structural defects is also observed and may explain spatial variation in properties such as lifetime. Rapid cooling after crystal growth increases doping efficiency and mobility for times up to 20–30 days at room temperature with the highest efficiencies observed close to 45% and a hole mobility of 70 cm 2/Vs at room temperature. A doping limit in the low 10 17/cm 3 range is observed for samples quenched at 200–300 °C/h. Bulk minority carrier lifetimes exceeding 20 ns are observed for samples doped near 10 16 cm –3 relaxed in the dark and for unintentionally doped samples, while a lifetime of nearly 5 ns is observed for 10 18 cm –3 As doping. These results help us to establish limits on properties expected for group-V doped CdTe polycrystalline thin films for use in photovoltaics.« less

  5. Enhanced B doping in CVD-grown GeSn:B using B δ-doping layers

    NASA Astrophysics Data System (ADS)

    Kohen, David; Vohra, Anurag; Loo, Roger; Vandervorst, Wilfried; Bhargava, Nupur; Margetis, Joe; Tolle, John

    2018-02-01

    Highly doped GeSn material is interesting for both electronic and optical applications. GeSn:B is a candidate for source-drain material in future Ge pMOS device because Sn adds compressive strain with respect to pure Ge, and therefore can boost the Ge channel performances. A high B concentration is required to obtain low contact resistivity between the source-drain material and the metal contact. To achieve high performance, it is therefore highly desirable to maximize both the Sn content and the B concentration. However, it has been shown than CVD-grown GeSn:B shows a trade-off between the Sn incorporation and the B concentration (increasing B doping reduces Sn incorporation). Furthermore, the highest B concentration of CVD-grown GeSn:B process reported in the literature has been limited to below 1 × 1020 cm-3. Here, we demonstrate a CVD process where B δ-doping layers are inserted in the GeSn layer. We studied the influence of the thickness between each δ-doping layers and the δ-doping layers process conditions on the crystalline quality and the doping density of the GeSn:B layers. For the same Sn content, the δ-doping process results in a 4-times higher B doping than the co-flow process. In addition, a B doping concentration of 2 × 1021 cm-3 with an active concentration of 5 × 1020 cm-3 is achieved.

  6. Doping and musculoskeletal system: short-term and long-lasting effects of doping agents.

    PubMed

    Nikolopoulos, Dimitrios D; Spiliopoulou, Chara; Theocharis, Stamatios E

    2011-10-01

    Doping is a problem that has plagued the world of competition and sports for ages. Even before the dawn of Olympic history in ancient Greece, competitors have looked for artificial means to improve athletic performance. Since ancient times, athletes have attempted to gain an unfair competitive advantage through the use of doping substances. A Prohibited List of doping substances and methods banned in sports is published yearly by the World Anti-Doping Agency. Among the substances included are steroidal and peptide hormones and their modulators, stimulants, glucocorticosteroids, β₂-agonists, diuretics and masking agents, narcotics, and cannabinoids. Blood doping, tampering, infusions, and gene doping are examples of prohibited methods indicated on the List. Apart from the unethical aspect of doping, as it abrogates fair-play's principle, it is extremely important to consider the hazards it presents to the health and well-being of athletes. The referred negative effects for the athlete's health have to do, on the one hand, by the high doses of the performance-enhancing agents and on the other hand, by the relentless, superhuman strict training that the elite or amateur athletes put their muscles, bones, and joints. The purpose of this article is to highlight the early and the long-lasting consequences of the doping abuse on bone and muscle metabolism. © 2010 The Authors Fundamental and Clinical Pharmacology © 2010 Société Française de Pharmacologie et de Thérapeutique.

  7. Doped colloidal artificial spin ice

    DOE PAGES

    Libál, A.; Reichhardt, C. J. Olson; Reichhardt, C.

    2015-10-07

    We examine square and kagome artificial spin ice for colloids confined in arrays of double-well traps. Conversely, magnetic artificial spin ices, unlike colloidal and vortex artificial spin ice realizations, allow creation of doping sites through double occupation of individual traps. We find that doping square and kagome ice geometries produces opposite effects. For square ice, doping creates local excitations in the ground state configuration that produce a local melting effect as the temperature is raised. In contrast, the kagome ice ground state can absorb the doping charge without generating non-ground-state excitations, while at elevated temperatures the hopping of individual colloidsmore » is suppressed near the doping sites. Our results indicate that in the square ice, doping adds degeneracy to the ordered ground state and creates local weak spots, while in the kagome ice, which has a highly degenerate ground state, doping locally decreases the degeneracy and creates local hard regions.« less

  8. Doped colloidal artificial spin ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Libál, A.; Reichhardt, C. J. Olson; Reichhardt, C.

    We examine square and kagome artificial spin ice for colloids confined in arrays of double-well traps. Conversely, magnetic artificial spin ices, unlike colloidal and vortex artificial spin ice realizations, allow creation of doping sites through double occupation of individual traps. We find that doping square and kagome ice geometries produces opposite effects. For square ice, doping creates local excitations in the ground state configuration that produce a local melting effect as the temperature is raised. In contrast, the kagome ice ground state can absorb the doping charge without generating non-ground-state excitations, while at elevated temperatures the hopping of individual colloidsmore » is suppressed near the doping sites. Our results indicate that in the square ice, doping adds degeneracy to the ordered ground state and creates local weak spots, while in the kagome ice, which has a highly degenerate ground state, doping locally decreases the degeneracy and creates local hard regions.« less

  9. Thermodynamic stability of perovskite and lanthanum nickelate-type cathode materials for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Cetin, Deniz

    The need for cleaner and more efficient alternative energy sources is becoming urgent as concerns mount about climate change wrought by greenhouse gas emissions. Solid oxide fuel cells (SOFCs) are one of the most efficient options if the goal is to reduce emissions while still operating on fossil energy resources. One of the foremost problems in SOFCs that causes efficiency loss is the polarization resistance associated with the oxygen reduction reaction(ORR) at the cathodes. Hence, improving the cathode design will greatly enhance the overall performance of SOFCs. Lanthanum nickelate, La2NiO4+delta (LNO), is a mixed ionic and electronic conductor that has competitive surface oxygen exchange and transport properties and excellent electrical conductivity compared to perovskite-type oxides. This makes it an excellent candidate for solid oxide fuel cell (SOFC) applications. It has been previously shown that composites of LNO with Sm0.2Ce0.8O2-delta (SDC20) as cathode materials lead to higher performance than standalone LNO. However, in contact with lanthanide-doped ceria, LNO decomposes resulting in free NiO and ceria with higher lanthanide dopant concentration. In this study, the aforementioned instability of LNO has been addressed by compositional tailoring of LNO: lanthanide doped ceria (LnxCe 1-xO2,LnDC)composite. By increasing the lanthanide dopant concentration in the ceria phase close to its solubility limit, the LNO phase has been stabilized in the LNO:LnDC composites. Electrical conductivity of the composites as a function of LNO volume fraction and temperature has been measured, and analyzed using a resistive network model which allows the identification of a percolation threshold for the LNO phase. The thermomechanical compatibility of these composites has been investigated with SOFC systems through measurement of the coefficients of thermal expansion. LNO:LDC40 composites containing LNO lower than 50 vol%and higher than 40 vol% were identified as being

  10. Gas-filled phospholipid nanoparticles conjugated with gadolinium play a role as a potential theragnostics for MR-guided HIFU ablation.

    PubMed

    Choi, Se-Young; Kim, Young-Sun; Seo, Yeong-Ju; Yang, Jehoon; Choi, Kyu-Sil

    2012-01-01

    To develop a long-circulating theragnostics, meaning therapeutics and diagnostics for MR-guided HIFU ablation, we designed and prepared Gd-C(5)F(12)-phospholipid nanobubbles (PLNs) 30-100 nm in diameter. The biochemical and physical characterization of Gd-C(5)F(12)-PLNs were performed. Since Gd-C(5)F(12)-PLN-50 (Φ = 50 nm) and Gd-C(5)F(12)-PLN-100 (Φ = 100 nm) enhanced the hyperthermal effect of HIFU size- and concentration-dependently in a tissue-mimicking phantom, its circulation, distribution, tumor accumulation and tumor ablation were examined in tumor-bearing mice. The plasma-half life of Gd-C(5)F(12)-PLNs was longer than 1.5 hrs. Gd-C(5)F(12)-PLNs mainly accumulated in the liver and the spleen, suggesting that they are slowly secreted through the hepatobiliary pathway. Monitored by the T1 signal intensity of MR, Gd-C(5)F(12)-PLNs accumulated in tumor tissues for 8 hours in mice. HIFU with Gd-C(5)F(12)-PLN-100 showed the increased tumor ablation area as compared with HIFU alone. The results suggest that Gd-C(5)F(12)-PLNs exhibit a potential theragnostics for MR-guided HIFU ablation.

  11. Gene doping.

    PubMed

    Harridge, Stephen D R; Velloso, Cristiana P

    2008-01-01

    Gene doping is the misuse of gene therapy to enhance athletic performance. It has recently been recognised as a potential threat and subsequently been prohibited by the World Anti-Doping Agency. Despite concerns with safety and efficacy of gene therapy, the technology is progressing steadily. Many of the genes/proteins which are involved in determining key components of athletic performance have been identified. Naturally occurring mutations in humans as well as gene-transfer experiments in adult animals have shown that altered expression of these genes does indeed affect physical performance. For athletes, however, the gains in performance must be weighed against the health risks associated with the gene-transfer process, whereas the detection of such practices will provide new challenges for the anti-doping authorities.

  12. Isoelectronic co-doping

    DOEpatents

    Mascarenhas, Angelo

    2004-11-09

    Isoelectronic co-doping of semiconductor compounds and alloys with deep acceptors and deep donors is used to decrease bandgap, to increase concentration of the dopant constituents in the resulting alloys, and to increase carrier mobilities lifetimes. Group III-V compounds and alloys, such as GaAs and GaP, are isoelectronically co-doped with, for example, N and Bi, to customize solar cells, thermal voltaic cells, light emitting diodes, photodetectors, and lasers on GaP, InP, GaAs, Ge, and Si substrates. Isoelectronically co-doped Group II-VI compounds and alloys are also included.

  13. In pursuit of synergy: An investigation of the PI3K/mTOR/MEK co-targeted inhibition strategy in NSCLC

    PubMed Central

    Heavey, Susan; Cuffe, Sinead; Finn, Stephen; Young, Vincent; Ryan, Ronan; Nicholson, Siobhan; Leonard, Niamh; McVeigh, Niall; Barr, Martin; O'Byrne, Kenneth; Gately, Kathy

    2016-01-01

    Clinical PI3K inhibition has been somewhat disappointing, due to both inadequate patient stratification and compensatory cell signalling through bypass mechanisms. As such, investigation of PI3K-MEK co-targeted inhibition has been recommended. With high mortality rates and a clear need for new therapeutic intervention strategies, non-small cell lung cancer (NSCLC) is an important setting to investigate the effectiveness of this approach. Here, 174 NSCLC tumours were screened for 150 mutations by Fluidigm technology, with 15 patients being profiled for phosphoprotein expression. The effects of GDC-0941 (a pan PI3K inhibitor), GDC-0980 (a dual PI3K/mTOR inhibitor) and GDC-0973 (a MEK inhibitor) alone and in combination were assessed in 3 NSCLC cell lines. PIK3CA was mutated in 5.17% of NSCLC patients. GDC-0941 and GDC-0980 treatment induced anti-proliferative and pro-apoptotic responses across all NSCLC cell lines, while GDC-0973 treatment induced only anti-proliferative responses. GDC-0980 and GDC-0973 combined treatment led to significant increases in apoptosis and synergistic reductions in proliferation across the panel of cell lines. This study found that the PI3K/MEK co-targeted inhibition strategy is synergistic in all 3 molecular subtypes of NSCLC investigated. Consequently, we would advocate clinical trials for NSCLC patients combining GDC-0980 and GDC-0973, each of which are separately under clinical investigation currently. PMID:27765909

  14. In pursuit of synergy: An investigation of the PI3K/mTOR/MEK co-targeted inhibition strategy in NSCLC.

    PubMed

    Heavey, Susan; Cuffe, Sinead; Finn, Stephen; Young, Vincent; Ryan, Ronan; Nicholson, Siobhan; Leonard, Niamh; McVeigh, Niall; Barr, Martin; O'Byrne, Kenneth; Gately, Kathy

    2016-11-29

    Clinical PI3K inhibition has been somewhat disappointing, due to both inadequate patient stratification and compensatory cell signalling through bypass mechanisms. As such, investigation of PI3K-MEK co-targeted inhibition has been recommended. With high mortality rates and a clear need for new therapeutic intervention strategies, non-small cell lung cancer (NSCLC) is an important setting to investigate the effectiveness of this approach.Here, 174 NSCLC tumours were screened for 150 mutations by Fluidigm technology, with 15 patients being profiled for phosphoprotein expression. The effects of GDC-0941 (a pan PI3K inhibitor), GDC-0980 (a dual PI3K/mTOR inhibitor) and GDC-0973 (a MEK inhibitor) alone and in combination were assessed in 3 NSCLC cell lines.PIK3CA was mutated in 5.17% of NSCLC patients. GDC-0941 and GDC-0980 treatment induced anti-proliferative and pro-apoptotic responses across all NSCLC cell lines, while GDC-0973 treatment induced only anti-proliferative responses. GDC-0980 and GDC-0973 combined treatment led to significant increases in apoptosis and synergistic reductions in proliferation across the panel of cell lines.This study found that the PI3K/MEK co-targeted inhibition strategy is synergistic in all 3 molecular subtypes of NSCLC investigated. Consequently, we would advocate clinical trials for NSCLC patients combining GDC-0980 and GDC-0973, each of which are separately under clinical investigation currently.

  15. Facile Synthesis of Pre-Doping Lithium-Ion Into Nitrogen-Doped Graphite Negative Electrode for Lithium-Ion Capacitor.

    PubMed

    Lee, Seul-Yi; Kim, Ji-Il; Rhee, Kyong Yop; Park, Soo-Jin

    2015-09-01

    Nitrogen-doped graphite, prepared via the thermal decomposition of melamine into a carbon matrix for use as the negative electrode in lithium-ion capacitors (LICs), was evaluated by electrochemical measurements. Furthermore, in order to study the performance of pre-doped lithium components as a function of nitrogen-doped material, the pre-doped lithium graphite was allowed to react with a lithium salt solution. The results showed that the nitrogen functional groups in the graphite largely influenced the pre-doped lithium components, thereby contributing to the discharge capacity and cycling performance. We confirmed that the large initial irreversible capacity could be significantly decreased by using pre-doped lithium components obtained through the nitrogen-doping method.

  16. Gene doping.

    PubMed

    Haisma, H J; de Hon, O

    2006-04-01

    Together with the rapidly increasing knowledge on genetic therapies as a promising new branch of regular medicine, the issue has arisen whether these techniques might be abused in the field of sports. Previous experiences have shown that drugs that are still in the experimental phases of research may find their way into the athletic world. Both the World Anti-Doping Agency (WADA) and the International Olympic Committee (IOC) have expressed concerns about this possibility. As a result, the method of gene doping has been included in the list of prohibited classes of substances and prohibited methods. This review addresses the possible ways in which knowledge gained in the field of genetic therapies may be misused in elite sports. Many genes are readily available which may potentially have an effect on athletic performance. The sporting world will eventually be faced with the phenomena of gene doping to improve athletic performance. A combination of developing detection methods based on gene arrays or proteomics and a clear education program on the associated risks seems to be the most promising preventive method to counteract the possible application of gene doping.

  17. Direct ethanol solid oxide fuel cell operating in gradual internal reforming

    NASA Astrophysics Data System (ADS)

    Nobrega, S. D.; Galesco, M. V.; Girona, K.; de Florio, D. Z.; Steil, M. C.; Georges, S.; Fonseca, F. C.

    2012-09-01

    An electrolyte supported solid oxide fuel cell (SOFC) using standard electrodes, doped-lanthanum manganite cathode and Ni-cermet anode, was operated with direct (anhydrous) ethanol for more than 100 h, delivering essentially the same power output as running on hydrogen. A ceria-based layer provides the catalytic activity for the gradual internal reforming, which uses the steam formed by the electrochemical oxidation of hydrogen for the decomposition of ethanol. Such a concept opens up the way for multi-fuel SOFCs using standard components and a catalytic layer.

  18. Current anti-doping policy: a critical appraisal

    PubMed Central

    Kayser, Bengt; Mauron, Alexandre; Miah, Andy

    2007-01-01

    Background Current anti-doping in competitive sports is advocated for reasons of fair-play and concern for the athlete's health. With the inception of the World Anti Doping Agency (WADA), anti-doping effort has been considerably intensified. Resources invested in anti-doping are rising steeply and increasingly involve public funding. Most of the effort concerns elite athletes with much less impact on amateur sports and the general public. Discussion We review this recent development of increasingly severe anti-doping control measures and find them based on questionable ethical grounds. The ethical foundation of the war on doping consists of largely unsubstantiated assumptions about fairness in sports and the concept of a "level playing field". Moreover, it relies on dubious claims about the protection of an athlete's health and the value of the essentialist view that sports achievements reflect natural capacities. In addition, costly antidoping efforts in elite competitive sports concern only a small fraction of the population. From a public health perspective this is problematic since the high prevalence of uncontrolled, medically unsupervised doping practiced in amateur sports and doping-like behaviour in the general population (substance use for performance enhancement outside sport) exposes greater numbers of people to potential harm. In addition, anti-doping has pushed doping and doping-like behaviour underground, thus fostering dangerous practices such as sharing needles for injection. Finally, we argue that the involvement of the medical profession in doping and anti-doping challenges the principles of non-maleficience and of privacy protection. As such, current anti-doping measures potentially introduce problems of greater impact than are solved, and place physicians working with athletes or in anti-doping settings in an ethically difficult position. In response, we argue on behalf of enhancement practices in sports within a framework of medical supervision

  19. Attitudes and doping: a structural equation analysis of the relationship between athletes' attitudes, sport orientation and doping behaviour

    PubMed Central

    2007-01-01

    Background For effective deterrence methods, individual, systemic and situational factors that make an athlete or athlete group more susceptible to doping than others should be fully investigated. Traditional behavioural models assume that the behaviour in question is the ultimate end. However, growing evidence suggests that in doping situations, the doping behaviour is not the end but a means to an end, which is gaining competitive advantage. Therefore, models of doping should include and anti-doping policies should consider attitudes or orientations toward the specific target end, in addition to the attitude toward the 'tool' itself. Objectives The aim of this study was to empirically test doping related dispositions and attitudes of competitive athletes with the view of informing anti-doping policy developments and deterrence methods. To this end, the paper focused on the individual element of the drug availability – athlete's personality – situation triangle. Methods Data were collected by questionnaires containing a battery of psychological tests among competitive US male college athletes (n = 199). Outcome measures included sport orientation (win and goal orientation and competitiveness), doping attitude, beliefs and self-reported past or current use of doping. A structural equation model was developed based on the strength of relationships between these outcome measures. Results Whilst the doping model showed satisfactory fit, the results suggested that athletes' win and goal orientation and competitiveness do not play a statistically significant role in doping behaviour, but win orientation has an effect on doping attitude. The SEM analysis provided empirical evidence that sport orientation and doping behaviour is not directly related. Conclusion The considerable proportion of doping behaviour unexplained by the model suggests that other factors play an influential role in athletes' decisions regarding prohibited methods. Future research, followed by

  20. Gene doping in sports.

    PubMed

    Unal, Mehmet; Ozer Unal, Durisehvar

    2004-01-01

    Gene or cell doping is defined by the World Anti-Doping Agency (WADA) as "the non-therapeutic use of genes, genetic elements and/or cells that have the capacity to enhance athletic performance". New research in genetics and genomics will be used not only to diagnose and treat disease, but also to attempt to enhance human performance. In recent years, gene therapy has shown progress and positive results that have highlighted the potential misuse of this technology and the debate of 'gene doping'. Gene therapies developed for the treatment of diseases such as anaemia (the gene for erythropoietin), muscular dystrophy (the gene for insulin-like growth factor-1) and peripheral vascular diseases (the gene for vascular endothelial growth factor) are potential doping methods. With progress in gene technology, many other genes with this potential will be discovered. For this reason, it is important to develop timely legal regulations and to research the field of gene doping in order to develop methods of detection. To protect the health of athletes and to ensure equal competitive conditions, the International Olympic Committee, WADA and International Sports Federations have accepted performance-enhancing substances and methods as being doping, and have forbidden them. Nevertheless, the desire to win causes athletes to misuse these drugs and methods. This paper reviews the current status of gene doping and candidate performance enhancement genes, and also the use of gene therapy in sports medicine and ethics of genetic enhancement. Copyright 2004 Adis Data Information BV

  1. Doping dependence of charge order in electron-doped cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Mou, Yingping; Feng, Shiping

    2017-12-01

    In the recent studies of the unconventional physics in cuprate superconductors, one of the central issues is the interplay between charge order and superconductivity. Here the mechanism of the charge-order formation in the electron-doped cuprate superconductors is investigated based on the t-J model. The experimentally observed momentum dependence of the electron quasiparticle scattering rate is qualitatively reproduced, where the scattering rate is highly anisotropic in momentum space, and is intriguingly related to the charge-order gap. Although the scattering strength appears to be weakest at the hot spots, the scattering in the antinodal region is stronger than that in the nodal region, which leads to the original electron Fermi surface is broken up into the Fermi pockets and their coexistence with the Fermi arcs located around the nodal region. In particular, this electron Fermi surface instability drives the charge-order correlation, with the charge-order wave vector that matches well with the wave vector connecting the hot spots, as the charge-order correlation in the hole-doped counterparts. However, in a striking contrast to the hole-doped case, the charge-order wave vector in the electron-doped side increases in magnitude with the electron doping. The theory also shows the existence of a quantitative link between the single-electron fermiology and the collective response of the electron density.

  2. Ego involvement increases doping likelihood.

    PubMed

    Ring, Christopher; Kavussanu, Maria

    2018-08-01

    Achievement goal theory provides a framework to help understand how individuals behave in achievement contexts, such as sport. Evidence concerning the role of motivation in the decision to use banned performance enhancing substances (i.e., doping) is equivocal on this issue. The extant literature shows that dispositional goal orientation has been weakly and inconsistently associated with doping intention and use. It is possible that goal involvement, which describes the situational motivational state, is a stronger determinant of doping intention. Accordingly, the current study used an experimental design to examine the effects of goal involvement, manipulated using direct instructions and reflective writing, on doping likelihood in hypothetical situations in college athletes. The ego-involving goal increased doping likelihood compared to no goal and a task-involving goal. The present findings provide the first evidence that ego involvement can sway the decision to use doping to improve athletic performance.

  3. Polarization induced doped transistor

    DOEpatents

    Xing, Huili; Jena, Debdeep; Nomoto, Kazuki; Song, Bo; Zhu, Mingda; Hu, Zongyang

    2016-06-07

    A nitride-based field effect transistor (FET) comprises a compositionally graded and polarization induced doped p-layer underlying at least one gate contact and a compositionally graded and doped n-channel underlying a source contact. The n-channel is converted from the p-layer to the n-channel by ion implantation, a buffer underlies the doped p-layer and the n-channel, and a drain underlies the buffer.

  4. Harmonization of anti-doping rules in a global context (World Anti-Doping Agency-laboratory accreditation perspective).

    PubMed

    Ivanova, Victoria; Miller, John H M; Rabin, Olivier; Squirrell, Alan; Westwood, Steven

    2012-07-01

    This article provides a review of the leading role of the World Anti-Doping Agency (WADA) in the context of the global fight against doping in sport and the harmonization of anti-doping rules worldwide through the implementation of the World Anti-Doping Program. Particular emphasis is given to the WADA-laboratory accreditation program, which is coordinated by the Science Department of WADA in conjunction with the Laboratory Expert Group, and the cooperation with the international accreditation community through International Laboratory Accreditation Cooperation and other organizations, all of which contribute to constant improvement of laboratory performance in the global fight against doping in sport. A perspective is provided of the means to refine the existing anti-doping rules and programs to ensure continuous improvement in order to face growing sophisticated challenges. A viewpoint on WADA's desire to embrace cooperation with other international organizations whose knowledge can contribute to the fight against doping in sport is acknowledged.

  5. Empathic and Self-Regulatory Processes Governing Doping Behavior

    PubMed Central

    Boardley, Ian D.; Smith, Alan L.; Mills, John P.; Grix, Jonathan; Wynne, Ceri

    2017-01-01

    Evidence associating doping behavior with moral disengagement (MD) has accumulated over recent years. However, to date, research examining links between MD and doping has not considered key theoretically grounded influences and outcomes of MD. As such, there is a need for quantitative research in relevant populations that purposefully examines the explanatory pathways through which MD is thought to operate. Toward this end, the current study examined a conceptually grounded model of doping behavior that incorporated empathy, doping self-regulatory efficacy (SRE), doping MD, anticipated guilt and self-reported doping/doping susceptibility. Participants were specifically recruited to represent four key physical-activity contexts and consisted of team- (n = 195) and individual- (n = 169) sport athletes and hardcore- (n = 125) and corporate- (n = 121) gym exercisers representing both genders (nmale = 371; nfemale = 239); self-reported lifetime prevalence of doping across the sample was 13.6%. Each participant completed questionnaires assessing the aforementioned variables. Structural equation modeling indicated strong support for all study hypotheses. Specifically, we established: (a) empathy and doping SRE negatively predicted reported doping; (b) the predictive effects of empathy and doping SRE on reported doping were mediated by doping MD and anticipated guilt; (c) doping MD positively predicted reported doping; (d) the predictive effects of doping MD on reported doping were partially mediated by anticipated guilt. Substituting self-reported doping for doping susceptibility, multisample analyses then demonstrated these predictive effects were largely invariant between males and females and across the four physical-activity contexts represented. These findings extend current knowledge on a number of levels, and in doing so aid our understanding of key psychosocial processes that may govern doping behavior across key physical-activity contexts. PMID:29018370

  6. Empathic and Self-Regulatory Processes Governing Doping Behavior.

    PubMed

    Boardley, Ian D; Smith, Alan L; Mills, John P; Grix, Jonathan; Wynne, Ceri

    2017-01-01

    Evidence associating doping behavior with moral disengagement (MD) has accumulated over recent years. However, to date, research examining links between MD and doping has not considered key theoretically grounded influences and outcomes of MD. As such, there is a need for quantitative research in relevant populations that purposefully examines the explanatory pathways through which MD is thought to operate. Toward this end, the current study examined a conceptually grounded model of doping behavior that incorporated empathy, doping self-regulatory efficacy (SRE), doping MD, anticipated guilt and self-reported doping/doping susceptibility. Participants were specifically recruited to represent four key physical-activity contexts and consisted of team- ( n = 195) and individual- ( n = 169) sport athletes and hardcore- ( n = 125) and corporate- ( n = 121) gym exercisers representing both genders ( n male = 371; n female = 239); self-reported lifetime prevalence of doping across the sample was 13.6%. Each participant completed questionnaires assessing the aforementioned variables. Structural equation modeling indicated strong support for all study hypotheses. Specifically, we established: (a) empathy and doping SRE negatively predicted reported doping; (b) the predictive effects of empathy and doping SRE on reported doping were mediated by doping MD and anticipated guilt; (c) doping MD positively predicted reported doping; (d) the predictive effects of doping MD on reported doping were partially mediated by anticipated guilt. Substituting self-reported doping for doping susceptibility, multisample analyses then demonstrated these predictive effects were largely invariant between males and females and across the four physical-activity contexts represented. These findings extend current knowledge on a number of levels, and in doing so aid our understanding of key psychosocial processes that may govern doping behavior across key physical-activity contexts.

  7. Anchoring ceria nanoparticles on graphene oxide and their radical scavenge properties under gamma irradiation environment.

    PubMed

    Xia, Wei; Zhao, Jun; Wang, Tao; Song, Li; Gong, Hao; Guo, Hu; Gao, Bing; Fan, Xiaoli; He, Jianping

    2017-06-28

    Polymer networks such as those of epoxy resin, as common protection materials, possess radiolytic oxidation degradation effects under gamma irradiation environment, which have a great accelerating effect on the ageing rate and severely limit their potential applications for metal protection in the nuclear industry. To overcome this, we report a simple scheme of anchoring crystalline ceria nanoparticles onto graphene sheets (CG) and incorporate it into the epoxy resin, followed by thermal polymerization to obtain CeO 2 /graphene-epoxy nanocomposite coating (CGNS). We had proven that graphene might act as "interwalls" in the epoxy matrix, which will result in space location-obstruct effect as well as absorb the radicals induced by γ-ray irradiation. Moreover, owing to the interconversion of cerium ions between their +3 and +4 states coupled with the formation of oxygen vacancy defects, electron spin resonance (ESR) detection shows that CeO 2 /graphene (CG) could act as a preferable radical scavenger and achieve better performance in trapping radicals than single graphene based composite. Electrochemical data strongly demonstrate that CeO 2 /graphene is capable of maintaining the anti-corrosion properties under gamma irradiation environment. Therefore, the designed hybrid CeO 2 /graphene-epoxy composite can be considered as potential candidates for protective coatings in nuclear industry.

  8. Genetic doping and health damages.

    PubMed

    Fallahi, Aa; Ravasi, Aa; Farhud, Dd

    2011-01-01

    Use of genetic doping or gene transfer technology will be the newest and the lethal method of doping in future and have some unpleasant consequences for sports, athletes, and outcomes of competitions. The World Anti-Doping Agency (WADA) defines genetic doping as "the non-therapeutic use of genes, genetic elements, and/or cells that have the capacity to enhance athletic performance ". The purpose of this review is to consider genetic doping, health damages and risks of new genes if delivered in athletes. This review, which is carried out by reviewing relevant publications, is primarily based on the journals available in GOOGLE, ELSEVIER, PUBMED in fields of genetic technology, and health using a combination of keywords (e.g., genetic doping, genes, exercise, performance, athletes) until July 2010. There are several genes related to sport performance and if they are used, they will have health risks and sever damages such as cancer, autoimmunization, and heart attack.

  9. Genetic Doping and Health Damages

    PubMed Central

    Fallahi, AA; Ravasi, AA; Farhud, DD

    2011-01-01

    Background: Use of genetic doping or gene transfer technology will be the newest and the lethal method of doping in future and have some unpleasant consequences for sports, athletes, and outcomes of competitions. The World Anti-Doping Agency (WADA) defines genetic doping as “the non-therapeutic use of genes, genetic elements, and/or cells that have the capacity to enhance athletic performance ”. The purpose of this review is to consider genetic doping, health damages and risks of new genes if delivered in athletes. Methods: This review, which is carried out by reviewing relevant publications, is primarily based on the journals available in GOOGLE, ELSEVIER, PUBMED in fields of genetic technology, and health using a combination of keywords (e.g., genetic doping, genes, exercise, performance, athletes) until July 2010. Conclusion: There are several genes related to sport performance and if they are used, they will have health risks and sever damages such as cancer, autoimmunization, and heart attack. PMID:23113049

  10. Controlling Molecular Doping in Organic Semiconductors.

    PubMed

    Jacobs, Ian E; Moulé, Adam J

    2017-11-01

    The field of organic electronics thrives on the hope of enabling low-cost, solution-processed electronic devices with mechanical, optoelectronic, and chemical properties not available from inorganic semiconductors. A key to the success of these aspirations is the ability to controllably dope organic semiconductors with high spatial resolution. Here, recent progress in molecular doping of organic semiconductors is summarized, with an emphasis on solution-processed p-type doped polymeric semiconductors. Highlighted topics include how solution-processing techniques can control the distribution, diffusion, and density of dopants within the organic semiconductor, and, in turn, affect the electronic properties of the material. Research in these areas has recently intensified, thanks to advances in chemical synthesis, improved understanding of charged states in organic materials, and a focus on relating fabrication techniques to morphology. Significant disorder in these systems, along with complex interactions between doping and film morphology, is often responsible for charge trapping and low doping efficiency. However, the strong coupling between doping, solubility, and morphology can be harnessed to control crystallinity, create doping gradients, and pattern polymers. These breakthroughs suggest a role for molecular doping not only in device function but also in fabrication-applications beyond those directly analogous to inorganic doping. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Importance of doping and frustration in itinerant Fe-doped Cr 2Al

    DOE PAGES

    Susner, M. A.; Parker, D. S.; Sefat, A. S.

    2015-05-12

    We performed an experimental and theoretical study comparing the effects of Fe-doping of Cr 2Al, an antiferromagnet with a N el temperature of 670 K, with known results on Fe-doping of antiferromagnetic bcc Cr. (Cr 1-xFe x) 2Al materials are found to exhibit a rapid suppression of antiferromagnetic order with the presence of Fe, decreasing T N to 170 K for x=0.10. Antiferromagnetic behavior disappears entirely at x≈0.125 after which point increasing paramagnetic behavior is exhibited. Moreover, this is unlike the effects of Fe doping of bcc antiferromagnetic Cr, in which T N gradually decreases followed by the appearance ofmore » a ferromagnetic state. Theoretical calculations explain that the Cr 2Al-Fe suppression of magnetic order originates from two effects: the first is band narrowing caused by doping of additional electrons from Fe substitution that weakens itinerant magnetism; the second is magnetic frustration of the Cr itinerant moments in Fe-substituted Cr 2Al. In pure-phase Cr 2Al, the Cr moments have an antiparallel alignment; however, these are destroyed through Fe substitution and the preference of Fe for parallel alignment with Cr. This is unlike bulk Fe-doped Cr alloys in which the Fe anti-aligns with the Cr atoms, and speaks to the importance of the Al atoms in the magnetic structure of Cr 2Al and Fe-doped Cr 2Al.« less

  12. Biomarker monitoring in sports doping control.

    PubMed

    Pottgiesser, Torben; Schumacher, Yorck Olaf

    2012-06-01

    Biomarker monitoring can be considered a new era in the effort against doping. Opposed to the old concept in doping control of direct detection of a prohibited substance in a biological sample such as urine or blood, the new paradigm allows a personalized longitudinal monitoring of biomarkers that indicate non-physiological responses independently of the used doping technique or substance, and may cause sanctioning of illicit practices. This review presents the development of biomarker monitoring in sports doping control and focuses on the implementation of the Athlete Biological Passport as the current concept of the World Anti Doping Agency for the detection of blood doping (hematological module). The scope of the article extends to the description of novel biomarkers and future concepts of application.

  13. [Doping. High-tech cheating in sport].

    PubMed

    Striegel, H; Simon, P

    2007-07-01

    Today, doping is no longer limited to the classical drugs with well known effects and side effects. Older generation anabolic steroids are used mainly in fitness and recreational sports. In contrast, due to doping tests, substances used in competitive sports include peptide hormones, medications not yet approved, and even specially developed drugs, such as designer steroids. Of the peptide hormones, particularly growth hormones (human growth hormone), erythropoietin and generics, insulin, and presumably insulin-like growth factor 1 are used. Substance groups potentially relevant for doping are selective androgen receptor modulators and gene therapy drugs. For most of these, there is no knowledge about side effects in healthy individuals, and no adequate doping tests. Therefore, anti-doping measures cannot rely solely on the continual improvement of doping analyses, but should include increased measures for doping prevention. Not only sports organizations, but also governmental agencies should be involved in developing and implementing these measures.

  14. Doping dependence of ordered phases and emergent quasiparticles in the doped Hubbard-Holstein model

    DOE PAGES

    Mendl, C. B.; Nowadnick, E. A.; Huang, E. W.; ...

    2017-11-15

    Here, we present determinant quantum Monte Carlo simulations of the hole-doped single-band Hubbard-Holstein model on a square lattice, to investigate how quasiparticles emerge when doping a Mott insulator (MI) or a Peierls insulator (PI). The MI regime at large Hubbard interaction U and small relative e-ph coupling strength λ is quickly suppressed upon doping, by drawing spectral weight from the upper Hubbard band and shifting the lower Hubbard band towards the Fermi level, leading to a metallic state with emergent quasiparticles at the Fermi level. On the other hand, the PI regime at large λ and small U persists outmore » to relatively high doping levels. We study the evolution of the d-wave superconducting susceptibility with doping, and find that it increases with lowering temperature in a regime of intermediate values of U and λ.« less

  15. Doping dependence of ordered phases and emergent quasiparticles in the doped Hubbard-Holstein model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendl, C. B.; Nowadnick, E. A.; Huang, E. W.

    Here, we present determinant quantum Monte Carlo simulations of the hole-doped single-band Hubbard-Holstein model on a square lattice, to investigate how quasiparticles emerge when doping a Mott insulator (MI) or a Peierls insulator (PI). The MI regime at large Hubbard interaction U and small relative e-ph coupling strength λ is quickly suppressed upon doping, by drawing spectral weight from the upper Hubbard band and shifting the lower Hubbard band towards the Fermi level, leading to a metallic state with emergent quasiparticles at the Fermi level. On the other hand, the PI regime at large λ and small U persists outmore » to relatively high doping levels. We study the evolution of the d-wave superconducting susceptibility with doping, and find that it increases with lowering temperature in a regime of intermediate values of U and λ.« less

  16. Developing strategies for detection of gene doping.

    PubMed

    Baoutina, Anna; Alexander, Ian E; Rasko, John E J; Emslie, Kerry R

    2008-01-01

    It is feared that the use of gene transfer technology to enhance athletic performance, the practice that has received the term 'gene doping', may soon become a real threat to the world of sport. As recognised by the anti-doping community, gene doping, like doping in any form, undermines principles of fair play in sport and most importantly, involves major health risks to athletes who partake in gene doping. One attraction of gene doping for such athletes and their entourage lies in the apparent difficulty of detecting its use. Since the realisation of the threat of gene doping to sport in 2001, the anti-doping community and scientists from different disciplines concerned with potential misuse of gene therapy technologies for performance enhancement have focused extensive efforts on developing robust methods for gene doping detection which could be used by the World Anti-Doping Agency to monitor athletes and would meet the requirements of a legally defensible test. Here we review the approaches and technologies which are being evaluated for the detection of gene doping, as well as for monitoring the efficacy of legitimate gene therapy, in relation to the detection target, the type of sample required for analysis and detection methods. We examine the accumulated knowledge on responses of the body, at both cellular and systemic levels, to gene transfer and evaluate strategies for gene doping detection based on current knowledge of gene technology, immunology, transcriptomics, proteomics, biochemistry and physiology. (c) 2008 John Wiley & Sons, Ltd.

  17. Developing Cancer Informatics Applications and Tools Using the NCI Genomic Data Commons API.

    PubMed

    Wilson, Shane; Fitzsimons, Michael; Ferguson, Martin; Heath, Allison; Jensen, Mark; Miller, Josh; Murphy, Mark W; Porter, James; Sahni, Himanso; Staudt, Louis; Tang, Yajing; Wang, Zhining; Yu, Christine; Zhang, Junjun; Ferretti, Vincent; Grossman, Robert L

    2017-11-01

    The NCI Genomic Data Commons (GDC) was launched in 2016 and makes available over 4 petabytes (PB) of cancer genomic and associated clinical data to the research community. This dataset continues to grow and currently includes over 14,500 patients. The GDC is an example of a biomedical data commons, which collocates biomedical data with storage and computing infrastructure and commonly used web services, software applications, and tools to create a secure, interoperable, and extensible resource for researchers. The GDC is (i) a data repository for downloading data that have been submitted to it, and also a system that (ii) applies a common set of bioinformatics pipelines to submitted data; (iii) reanalyzes existing data when new pipelines are developed; and (iv) allows users to build their own applications and systems that interoperate with the GDC using the GDC Application Programming Interface (API). We describe the GDC API and how it has been used both by the GDC itself and by third parties. Cancer Res; 77(21); e15-18. ©2017 AACR . ©2017 American Association for Cancer Research.

  18. Self-regulation in dentistry and the social contract.

    PubMed

    Holden, A C L

    2016-10-21

    This article looks at the General Dental Council (GDC) and dental regulation from the perspective of social contract theory. Self-regulation is a requirement for the dental profession to exist within such a contract with society and this article seeks to examine the effects of the GDC upon the social contract. The GDC maintains that it is independent of the dental profession and while this may be true when discussing impartiality, the existence and purpose of the GDC is intrinsically intertwined with the dental profession. This article will show that the GDC has acted in a manner that has a negative impact upon the social contract between the dental profession and society and that for the dental profession to maintain its status and ability to place patients first, the GDC needs to re-evaluate its role and attitudes.

  19. Brief History of Anti-Doping.

    PubMed

    Ljungqvist, Arne

    2017-01-01

    The fight against doping in sport as we know it today commenced by the creation of the International Olympic Committee (IOC) Medical Commission in 1961 following the death of a Danish cyclist during the Rome Olympic Games the year before. After a slow start, the fight got under way as from the early 1970s under the leadership of the IOC and of the International Association of Athletics Federations. Despite a lack of understanding and weak support even from the sports community, a series of measures were taken during the 1970s and 1980s which still form cornerstones of today's anti-doping strategy. In addition to information and education campaigns, the most important examples are the introduction of procedural rules for doping controls, the establishment and follow-up of a list of prohibited substances and methods, the accreditation of doping control laboratories, the introduction of in- and out-of-competition testing, rules for therapeutic use exemption, and the introduction of blood sampling. During the 1990s, the anti-doping fight gained increasing support both inside and outside the sport community. In order to harmonize the wide variety of rules that had developed both in sport organizations and at the domestic level and to promote anti-doping activities, the World Anti-Doping Agency (WADA) was jointly created by the Olympic movement and the public authorities in 1999. WADA is today carrying on the fight supported by the universally accepted WADA Code and an International Anti-Doping Convention under UNESCO. © 2017 S. Karger AG, Basel.

  20. Spectroscopic Study of Local Interactions of Platinum in Small [CexOy]Ptx' - Clusters

    NASA Astrophysics Data System (ADS)

    Ray, Manisha; Kafader, Jared O.; Chick Jarrold, Caroline

    2016-06-01

    Cerium oxide is a good ionic conductor, and the conductivity can be enhanced with oxygen vacancies and doping. This conductivity may play an important role in the enhancement of noble or coinage metal toward the water-gas shift reaction when supported by cerium oxide. The ceria-supported platinum catalyst in particular has received much attention because of higher activity at lower temperatures (LT) compared to the most common commercial LT-WGS catalyst. We have used a combination of anion photoelectron spectroscopy and density functional theory calculations to study the interesting molecular and electronic structures and properties of cluster models of ceria-supported platinum. [CexOy]Ptx' - (x,x'=1,2 ; y≤2x') clusters exhibit evidence of ionic bonding possible because of the high electron affinity of Pt and the low ionization potential of cerium oxide clusters. In addition, Pt- is a common daughter ion resulting from photodissociation of [CexOy]Ptx' - clusters. Finally, several of the anion and neutral clusters have profoundly different structures. These features may play a role in the enhancement of catalytic activity toward the water-gas shift reaction.

  1. Effect of Core-shell Ceria/Poly(Vinylpyrrolidone) (PVP) Nanoparticles Incorporated in Polymer Films and Their Optical Properties (2): Increasing the Refractive Index

    PubMed Central

    Itoh, Toshio; Uchida, Toshio; Izu, Noriya; Shin, Woosuck

    2017-01-01

    We investigated the preparation of well-dispersed core-shell ceria-poly(vinylpyrrolidone) (PVP) nanoparticles with an average particle size of around 20 nm which were used to produce a hybrid film with a polymer coating of dipentaerythritol hexaacrylate (DPHA). We obtained good dispersion of the nanoparticles in a mixed solvent of 48% 1-methoxy-2-propanol (MP), 32% 3-methoxy-3-methyl-1-butanol (MMB), and 20% methyl i-butyl ketone (MIBK). An ink of the polymer coating consisting of 68.7 wt% nanoparticles and 31.3 wt% DPHA with a polymerization initiator was prepared using this solvent mixture. The surface of the hybrid film showed low roughness and the nanoparticles formed a densely packed structure in the DPHA matrix. The resulting coating possessed excellent transparency and a high refractive index of 1.69. PMID:28773070

  2. Ceria promoted deoxygenation and denitrogenation of Thalassiosira weissflogii and its model compounds by catalytic in-situ pyrolysis.

    PubMed

    Aysu, Tevfik; Maroto-Valer, M Mercedes; Sanna, Aimaro

    2016-05-01

    Pyrolysis of microcrystalline cellulose, egg white powder, palm-jojoba oils mixtures Thalassiosira weissflogii model compounds was performed with CeO2 at 500°C, to evaluate its catalytic upgrading mechanism. Light organics, aromatics and aliphatics were originated from carbohydrates, proteins and lipids, respectively. Dehydration and decarboxylation were the main reactions involved in the algae and model compounds deoxygenation, while nitrogen was removed as NH3 and HCN. CeO2 increased decarbonylation reactions compared to in absence of catalyst, with production of ketones. The results showed that the catalysts had a significant effect on the pyrolysis products composition of T. weissflogii. CeO2, NiCeAl2O3 and MgCe/Al2O3 catalysts increased the aliphatics and decreased the oxygen content in bio-oils to 6-7 wt% of the algae starting O2 content. Ceria catalysts were also able to consistently reduce the N-content in the bio-oil to 20-38% of that in the parent material, with NiCe/Al2O3 being the most effective. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Gene doping: of mice and men.

    PubMed

    Azzazy, Hassan M E; Mansour, Mai M H; Christenson, Robert H

    2009-04-01

    Gene doping is the newest threat to the spirit of fair play in sports. Its concept stemmed out from legitimate gene therapy trials, but anti-doping authorities fear that they now may be facing a form of doping that is virtually undetectable and extremely appealing to athletes. This paper presents studies that generated mouse models with outstanding physical performance, by manipulating genes such as insulin-like growth factor 1 (IGF-1) or phosphoenolpyruvate carboxykinase (PEPCK), which are likely to be targeted for gene doping. The potential transition from super mice to super athletes will also be discussed, in addition to possible strategies for detection of gene doping.

  4. Charge partitioning and anomalous hole doping in Rh-doped Sr 2 IrO 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chikara, S.; Fabbris, G.; Terzic, J.

    2017-02-01

    The simultaneous presence of sizable spin-orbit interactions and electron correlations in iridium oxides has led to predictions of novel ground states including Dirac semimetals, Kitaev spin liquids, and superconductivity. Electron and hole doping studies of spin-orbit assisted Mott insulator Sr2IrO4 are being intensively pursued due to extensive parallels with the La2CuO4 parent compound of cuprate superconductors. In particular, the mechanism of charge doping associated with replacement of Ir with Rh ions remains controversial with profound consequences for the interpretation of electronic structure and transport data. Using x-ray absorption near edge structure measurements at the Rh L, K, and Ir Lmore » edges we observe anomalous evolution of charge partitioning between Rh and Ir with Rh doping. The partitioning of charge between Rh and Ir sites progresses in a way that holes are initially doped into the J(eff) = 1/2 band at low x only to be removed from it at higher x values. This anomalous hole doping naturally explains the reentrant insulating phase in the phase diagram of Sr2Ir1-x Rh-x O-4 and ought to be considered when searching for superconductivity and other emergent phenomena in iridates doped with 4d elements.« less

  5. Charge partitioning and anomalous hole doping in Rh-doped Sr2IrO4

    NASA Astrophysics Data System (ADS)

    Chikara, S.; Fabbris, G.; Terzic, J.; Cao, G.; Khomskii, D.; Haskel, D.

    2017-02-01

    The simultaneous presence of sizable spin-orbit interactions and electron correlations in iridium oxides has led to predictions of novel ground states including Dirac semimetals, Kitaev spin liquids, and superconductivity. Electron and hole doping studies of spin-orbit assisted Mott insulator Sr2Ir O4 are being intensively pursued due to extensive parallels with the La2CuO4 parent compound of cuprate superconductors. In particular, the mechanism of charge doping associated with replacement of Ir with Rh ions remains controversial with profound consequences for the interpretation of electronic structure and transport data. Using x-ray absorption near edge structure measurements at the Rh L, K, and Ir L edges we observe anomalous evolution of charge partitioning between Rh and Ir with Rh doping. The partitioning of charge between Rh and Ir sites progresses in a way that holes are initially doped into the Jeff=1 /2 band at low x only to be removed from it at higher x values. This anomalous hole doping naturally explains the reentrant insulating phase in the phase diagram of Sr2Ir1 -xRhxO4 and ought to be considered when searching for superconductivity and other emergent phenomena in iridates doped with 4 d elements.

  6. Doped bottom-contact organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Liu, Shiyi; Billig, Paul; Al-Shadeedi, Akram; Kaphle, Vikash; Lüssem, Björn

    2018-07-01

    The influence of doping on doped bottom-gate bottom-contact organic field-effect transistors (OFETs) is discussed. It is shown that the inclusion of a doped layer at the dielectric/organic semiconductor layer leads to a significant reduction in the contact resistances and a fine control of the threshold voltage. Through varying the thickness of the doped layer, a linear shift of threshold voltage V T from ‑3.1 to ‑0.22 V is observed for increasing thickness of doped layer. Meanwhile, the contact resistance at the source and drain electrode is reduced from 138.8 MΩ at V GS = ‑10 V for 3 nm to 0.3 MΩ for 7 nm thick doped layers. Furthermore, an increase of charge mobility is observed for increasing thickness of doped layer. Overall, it is shown that doping can minimize injection barriers in bottom-contact OFETs with channel lengths in the micro-meter regime, which has the potential to increase the performance of this technology further.

  7. Ferromagnetism in doped or undoped spintronics nanomaterials

    NASA Astrophysics Data System (ADS)

    Qiang, You

    2010-10-01

    Much interest has been sparked by the discovery of ferromagnetism in a range of oxide doped and undoped semiconductors. The development of ferromagnetic oxide semiconductor materials with giant magnetoresistance (GMR) offers many advantages in spintronics devices for future miniaturization of computers. Among them, TM-doped ZnO is an extensively studied n-type wide-band-gap (3.36 eV) semiconductor with a tremendous interest as future mini-computer, blue light emitting, and solar cells. In this talk, Co-doped ZnO and Co-doped Cu2O semiconductor nanoclusters are successfully synthesized by a third generation sputtering-gas-aggregation cluster technique. The Co-doped nanoclusters are ferromagnetic with Curie temperature above room temperature. Both of Co-doped nanoclusters show positive magnetoresistance (PMR) at low temperature, but the amplitude of the PMRs shows an anomalous difference. For similar Co doping concentration at 5 K, PMR is greater than 800% for Co-doped ZnO but only 5% for Co-doped Cu2O nanoclusters. Giant PMR in Co-doped ZnO which is attributed to large Zeeman splitting effect has a linear dependence on applied magnetic field with very high sensitivity, which makes it convenient for the future spintronics applications. The small PMR in Co-doped Cu2O is related to its vanishing density of states at Fermi level. Undoped Zn/ZnO core-shell nanoparticle gives high ferromagnetic properties above room temperature due to the defect induced magnetization at the interface.

  8. Cat-doping: Novel method for phosphorus and boron shallow doping in crystalline silicon at 80 °C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumura, Hideki; Hayakawa, Taro; Ohta, Tatsunori

    Phosphorus (P) or boron (B) atoms can be doped at temperatures as low as 80 to 350 °C, when crystalline silicon (c-Si) is exposed only for a few minutes to species generated by catalytic cracking reaction of phosphine (PH₃) or diborane (B₂H₆) with heated tungsten (W) catalyzer. This paper is to investigate systematically this novel doping method, “Cat-doping”, in detail. The electrical properties of P or B doped layers are studied by the Van der Pauw method based on the Hall effects measurement. The profiles of P or B atoms in c-Si are observed by secondary ion mass spectrometry mainlymore » from back side of samples to eliminate knock-on effects. It is confirmed that the surface of p-type c-Si is converted to n-type by P Cat-doping at 80 °C, and similarly, that of n-type c-Si is to p-type by B Cat-doping. The doping depth is as shallow as 5 nm or less and the electrically activated doping concentration is 10¹⁸ to 10¹⁹cm⁻³ for both P and B doping. It is also found that the surface potential of c-Si is controlled by the shallow Cat-doping and that the surface recombination velocity of minority carriers in c-Si can be enormously lowered by this potential control.« less

  9. Portable ceria nanoparticle-based assay for rapid detection of food antioxidants (NanoCerac)

    PubMed Central

    Sharpe, Erica; Frasco, Thalia; Andreescu, Daniel; Andreescu, Silvana

    2012-01-01

    With increased awareness of nutrition and the advocacy for healthier food choices, there exists a great demand for a simple, easy-to-use test that can reliably measure the antioxidant capacity of dietary products. We report development and characterization of a portable nanoparticle based-assay, similar to a small sensor patch, for rapid and sensitive detection of food antioxidants. The assay is based on the use of immobilized ceria nanoparticles, which change color after interaction with antioxidants by means of redox and surface chemistry reactions. Monitoring corresponding optical changes enables sensitive detection of antioxidants in which the nanoceria provides an optical ‘signature’ of antioxidant power, while the antioxidants act as reducing agents. The sensor has been tested for the detection of common antioxidant compounds including ascorbic acid, gallic acid, vanilic acid, quercetin, caffeic acid, and epigallocatechin gallate and its function has been successfully applied for the assessment of antioxidant activity in real samples (teas and medicinal mushrooms). The colorimetric response was concentration dependent, with detection limits ranging from 20–400 μM depending on the antioxidant involved. Steady-state color intensity was achieved within seconds upon addition of antioxidants. The results are presented in terms of Gallic Acid Equivalents (GAE). The sensor performed favorably when compared with commonly used antioxidant detection methods. This assay is particularly appealing for remote sensing applications, where specialized equipment is not available, and also for high throughput analysis of a large number of samples. Potential applications for antioxidant detection in remote locations are envisioned. PMID:23139929

  10. Projection parameters for zirconia-alumina-ceria coatings made by flame spraying from results of numerical simulation

    NASA Astrophysics Data System (ADS)

    Rodríguez, L.; Ferrer, M.; Vargas, F.; Peña, G.

    2017-12-01

    A numerical simulation was performed with the software Jets et Poudres, the results let choose the parameters to deposit zirconia-alumina-ceria coatings of different composition on substrates of red clay, by thermal spraying with the oxyacetylene flame to obtain homogeneous coatings with good adhesion to the substrate. The effect of the projection distance (7, 10 and 12cm) between the substrate and the torch, the fusion percentage of particles and the K-Sommerfeld number was determined. This number is dimensionless and is affected by the projection distance and by the chemical composition of the particles. For a projection distance of 9cm, the fusion percentage of the particles varies between 83.8% and 100%, and the K-Sommerfeld number between 47.3 and 50 for the different compounds. This makes possible to obtain uniform coatings with good wettability, therefore, good adhesion to the substrate, while for the distance of 7cm the fusion percentage varies between 22% and 38%, due to the short time of the particles in the flame which causes low adhesion, when the projection distance is 12cm the particles do not have sufficient kinetic energy to reach the substrate and therefore the coating is not deposited.

  11. Nitrogen-doped graphene prepared by a transfer doping approach for the oxygen reduction reaction application

    NASA Astrophysics Data System (ADS)

    Mo, Zaiyong; Zheng, Ruiping; Peng, Hongliang; Liang, Huagen; Liao, Shijun

    2014-01-01

    Well defined nitrogen-doped graphene (NG) is prepared by a transfer doping approach, in which the graphene oxide (GO) is deoxidized and nitrogen doped by the vaporized polyaniline, and the GO is prepared by a thermal expansion method from graphite oxide. The content of doped nitrogen in the doped graphene is high up to 6.25 at% by the results of elements analysis, and oxygen content is lowered to 5.17 at%. As a non-precious metal cathode electrocatalyst, the NG catalyst exhibits excellent activity toward the oxygen reduction reaction, as well as excellent tolerance toward methanol. In 0.1 M KOH solution, its onset potential, half-wave potential and limiting current density for the oxygen reduction reaction reach 0.98 V (vs. RHE), 0.87 V (vs. RHE) and 5.38 mA cm-2, respectively, which are comparable to those of commercial 20 wt% Pt/C catalyst. The well defined graphene structure of the catalyst is revealed clearly by HRTEM and Raman spectra. It is suggested that the nitrogen-doping and large surface area of the NG sheets give the main contribution to the high ORR catalytic activity.

  12. Transport properties for carbon chain sandwiched between heteroatom-doped carbon nanotubes with different doping sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenjiang; Guizhou University of Finance and Economics, Guiyang 550025; Deng, Xiaoqing, E-mail: xq-deng@163.com, E-mail: caish@mail.gufe.edu.cn

    The First-principles calculation is used to investigate the transport properties of a carbon chain connected with N-and/or B-doped caped carbon nanotube acting as electrodes. The I-V curves of the carbon chain are affected by the N/B doping sites, and rectifying behavior can be obtained distinctly when the carbon chain is just connected onto two doping atom sites (N- chain-B), and a weak rectification occurs when N (B) doping at other sites. Interestingly, the spin-filtering effects exist in the junction when it is doped at other sites, undoped system, or N-terminal carbon chains. However, no this behavior is found in N-chain-Bmore » and B-chain-B systems. The analysis on the transmission spectra, PDOS, LDOS, spin density, and the electron transmission pathways give an insight into the observed results for the system.« less

  13. Dispersion of ceria nanoparticles on γ-alumina surface functionalized using long chain carboxylic acids

    NASA Astrophysics Data System (ADS)

    Ledwa, Karolina Anna; Kępiński, Leszek

    2017-04-01

    Dispersion and stability of nanoparticles on a support is determined by the interaction between these phases. In case of hydrophobic nanoparticles (e.g. synthesized by reverse microemulsion method) the interaction with hydrophilic support (e.g. γ-Al2O3) is weak and agglomeration as well as poor resistance to sintering may cause problems. The bonding of the particles to the support may be effectively strengthened by proper modification of the support, e.g. by adsorption of hydrophobic compounds on its surface. In this work decanoic, myristic, stearic and oleic acid were used for the first time to cover γ-Al2O3 surface in order to enhance the dispersion of ceria nanoparticles deposited afterward by impregnation on such support. TGA and FTIR methods revealed that at monolayer coverage (1.1-2.5 molecules per nm2) the acid molecules are firmly bounded to the alumina surface. Morphology, textural properties, phase composition and reducibility of the CeO2/γ-Al2O3 samples were investigated using TEM, SEM, BET, XRD and H2-TPR methods. It has been shown that deposition of CeO2 nanoparticles on γ-Al2O3 surface covered with all studied acids enhances its dispersion, stability and reducibility. The most effective modification of the γ-Al2O3 surface was obtained at loading of 2.3 molecules of decanoic acid per nm2 of the support.

  14. [Doping in disabled sports. Doping control activities at the Paralympic Games 1984-2008 and in Germany 1992-2008].

    PubMed

    Thevis, Mario; Hemmersbach, Peter; Geyer, Hans; Schänzer, Wilhelm

    2009-12-15

    Activities concerning the fight against doping with regard to the Paralympic Games have been initiated in 1984, when first doping controls were conducted. The foundation of the International Paralympic Committee exactly 20 years ago (1989) considerably supported systematic sports drug-testing programs specifically designed to meet the particular challenges related to disabled sports, which yielded a variety of adverse analytical findings (e.g., with anabolic steroids, diuretics, corticosteroids, and stimulants) especially at Paralympic Summer Games. In Germany, doping controls for handicapped athletes were established in 1992 and have been conducted since by the National Paralympic Committee Germany and the National Anti-Doping Agency. Also here, various analogies in terms of antidoping rule violations were found in comparison to doping controls of nondisabled athletes. In the present article, available numbers of samples analyzed at Paralympic Summer and Winter Games as well as within the doping control program for disabled sports in Germany are summarized, and particularities concerning sample collection and the doping method termed boosting are presented.

  15. Doping-induced spin-orbit splitting in Bi-doped ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Aras, Mehmet; Güler-Kılıç, Sümeyra; Kılıç, ćetin

    2017-04-01

    Our predictions, based on density-functional calculations, reveal that surface doping of ZnO nanowires with Bi leads to a linear-in-k splitting of the conduction-band states, through spin-orbit interaction, due to the lowering of the symmetry in the presence of the dopant. This finding implies that spin polarization of the conduction electrons in Bi-doped ZnO nanowires could be controlled with applied electric (as opposed to magnetic) fields, making them candidate materials for spin-orbitronic applications. Our findings also show that the degree of spin splitting could be tuned by adjusting the dopant concentration. Defect calculations and ab initio molecular dynamics simulations indicate that stable doping configurations exhibiting the foregoing linear-in-k splitting could be realized under reasonable thermodynamic conditions.

  16. The identification of 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer .

    PubMed

    Folkes, Adrian J; Ahmadi, Khatereh; Alderton, Wendy K; Alix, Sonia; Baker, Stewart J; Box, Gary; Chuckowree, Irina S; Clarke, Paul A; Depledge, Paul; Eccles, Suzanne A; Friedman, Lori S; Hayes, Angela; Hancox, Timothy C; Kugendradas, Arumugam; Lensun, Letitia; Moore, Pauline; Olivero, Alan G; Pang, Jodie; Patel, Sonal; Pergl-Wilson, Giles H; Raynaud, Florence I; Robson, Anthony; Saghir, Nahid; Salphati, Laurent; Sohal, Sukhjit; Ultsch, Mark H; Valenti, Melanie; Wallweber, Heidi J A; Wan, Nan Chi; Wiesmann, Christian; Workman, Paul; Zhyvoloup, Alexander; Zvelebil, Marketa J; Shuttleworth, Stephen J

    2008-09-25

    Phosphatidylinositol-3-kinase (PI3K) is an important target in cancer due to the deregulation of the PI3K/ Akt signaling pathway in a wide variety of tumors. A series of thieno[3,2-d]pyrimidine derivatives were prepared and evaluated as inhibitors of PI3 kinase p110alpha. The synthesis, biological activity, and further profiling of these compounds are described. This work resulted in the discovery of 17, GDC-0941, which is a potent, selective, orally bioavailable inhibitor of PI3K and is currently being evaluated in human clinical trials for the treatment of cancer.

  17. Charge partitioning and anomalous hole doping in Rh-doped Sr 2 IrO 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chikara, Shalinee; Fabbris, G.; Terzic, J.

    2017-02-15

    The simultaneous presence of sizable spin-orbit interactions and electron correlations in iridium oxides has led to predictions of novel ground states including Dirac semimetals, Kitaev spin liquids, and superconductivity. Electron and hole doping studies of spin-orbit assisted Mott insulator Sr 2IrO 4 are being intensively pursued due to extensive parallels with the La 2CuO 4 parent compound of cuprate superconductors. In particular, the mechanism of charge doping associated with replacement of Ir with Rh ions remains controversial with profound consequences for the interpretation of electronic structure and transport data. Using x-ray absorption near edge structure measurements at the Rh L,more » K, and Ir L edges we observe anomalous evolution of charge partitioning between Rh and Ir with Rh doping. The partitioning of charge between Rh and Ir sites progresses in a way that holes are initially doped into the J eff = 1/2 band at low x only to be removed from it at higher x values. Furthermore, this anomalous hole doping naturally explains the reentrant insulating phase in the phase diagram of Sr 2Ir 1–xRh xO 4 and ought to be considered when searching for superconductivity and other emergent phenomena in iridates doped with 4d elements.« less

  18. Gene doping: possibilities and practicalities.

    PubMed

    Wells, Dominic J

    2009-01-01

    Our ever-increasing understanding of the genetic control of cardiovascular and musculoskeletal function together with recent technical improvements in genetic manipulation generates mounting concern over the possibility of such technology being abused by athletes in their quest for improved performance. Genetic manipulation in the context of athletic performance is commonly referred to as gene doping. A review of the literature was performed to identify the genes and methodologies most likely to be used for gene doping and the technologies that might be used to identify such doping. A large number of candidate performance-enhancing genes have been identified from animal studies, many of them using transgenic mice. Only a limited number have been shown to be effective following gene transfer into adults. Those that seem most likely to be abused are genes that exert their effects locally and leave little, if any, trace in blood or urine. There is currently no evidence that gene doping has yet been undertaken in competitive athletes but the anti-doping authorities will need to remain vigilant in reviewing this rapidly emerging technology. The detection of gene doping involves some different challenges from other agents and a number of promising approaches are currently being explored. 2009 S. Karger AG, Basel

  19. Effect of doping on the intersubband absorption in Si- and Ge-doped GaN/AlN heterostructures

    NASA Astrophysics Data System (ADS)

    Ajay, A.; Lim, C. B.; Browne, D. A.; Polaczyński, J.; Bellet-Amalric, E.; Bleuse, J.; den Hertog, M. I.; Monroy, E.

    2017-10-01

    In this paper, we study band-to-band and intersubband (ISB) characteristics of Si- and Ge-doped GaN/AlN heterostructures (planar and nanowires) structurally designed to absorb in the short-wavelength infrared region, particularly at 1.55 μm. Regarding the band-to-band properties, we discuss the variation of the screening of the internal electric field by free carriers, as a function of the doping density and well/nanodisk size. We observe that nanowire heterostructures consistently present longer photoluminescence decay times than their planar counterparts, which supports the existence of an in-plane piezoelectric field associated to the shear component of the strain tensor in the nanowire geometry. Regarding the ISB characteristics, we report absorption covering 1.45-1.75 μm using Ge-doped quantum wells, with comparable performance to Si-doped planar heterostructures. We also report similar ISB absorption in Si- and Ge-doped nanowire heterostructures indicating that the choice of dopant is not an intrinsic barrier for observing ISB phenomena. The spectral shift of the ISB absorption as a function of the doping concentration due to many body effects confirms that Si and Ge efficiently dope GaN/AlN nanowire heterostructures.

  20. The prevalence of doping in Flanders in comparison to the prevalence of doping in international sports.

    PubMed

    Van Eenoo, P; Delbeke, F T

    2003-11-01

    For many years, doping has been considered a major problem in sports. Recent doping cases have shocked the general public and press reports have further generated the idea that a great number of athletes are doped. In this study statistical data provided by the International Olympic Committee (1996 - 2000) to IOC accredited laboratories and results from the Flemish anti-doping program (1993 - 2000) are discussed. During these periods, the average percentage positive samples in the IOC accredited laboratories and in Flanders were 1.8 % and 4.1 %, respectively. The percentage of positive samples was significantly higher for in-competition than for out-of-competition samples. During the period 1993 - 2000, doping was detected in all sports in Flanders, for which a representative number of samples (n > 50) was tested except mini-soccer, where no positive doping samples were found. The use of doping among male athletes is significantly higher than for female athletes. Bodybuilding and power lifting had the highest incidence of positive cases in Flanders. The distribution of detected drugs among the different groups of prohibited substances shows a significant increase in the number of samples containing cannabis over the last years. The occurrence of cannabis in all sports and the high frequency of detection in Flanders, indicate that cannabis is predominantly misused as a "social" drug rather than for doping purposes. In Flanders, multiple prohibited substances were detected in 41 % of all positive cases. At least 27.6 % out of those were due to co-administration of drugs.

  1. Computational discovery of lanthanide doped and Co-doped Y{sub 3}Al{sub 5}O{sub 12} for optoelectronic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, Kamal; Chernatynskiy, Aleksandr; Phillpot, Simon R.

    2015-09-14

    We systematically elucidate the optoelectronic properties of rare-earth doped and Ce co-doped yttrium aluminum garnet (YAG) using hybrid exchange-correlation functional based density functional theory. The predicted optical transitions agree with the experimental observations for single doped Ce:YAG, Pr:YAG, and co-doped Er,Ce:YAG. We find that co-doping of Ce-doped YAG with any lanthanide except Eu and Lu lowers the transition energies; we attribute this behavior to the lanthanide-induced change in bonding environment of the dopant atoms. Furthermore, we find infrared transitions only in case of the Er, Tb, and Tm co-doped Ce:YAG and suggest Tm,Ce:YAG and Tb,Ce:YAG as possible functional materials formore » efficient spectral up-conversion devices.« less

  2. Metal-doped organic foam

    DOEpatents

    Rinde, James A.

    1982-01-01

    Organic foams having a low density and very small cell size and method for producing same in either a metal-loaded or unloaded (nonmetal loaded) form are described. Metal-doped foams are produced by soaking a polymer gel in an aqueous solution of desired metal salt, soaking the gel successively in a solvent series of decreasing polarity to remove water from the gel and replace it with a solvent of lower polarity with each successive solvent in the series being miscible with the solvents on each side and being saturated with the desired metal salt, and removing the last of the solvents from the gel to produce the desired metal-doped foam having desired density cell size, and metal loading. The unloaded or metal-doped foams can be utilized in a variety of applications requiring low density, small cell size foam. For example, rubidium-doped foam made in accordance with the invention has utility in special applications, such as in x-ray lasers.

  3. Alternative medicine and doping in sports.

    PubMed

    Koh, Benjamin; Freeman, Lynne; Zaslawski, Christopher

    2012-01-01

    Athletes are high achievers who may seek creative or unconventional methods to improve performance. The literature indicates that athletes are among the heaviest users of complementary and alternative medicine (CAM) and thus may pioneer population trends in CAM use. Unlike non-athletes, athletes may use CAM not just for prevention, treatment or rehabilitation from illness or injuries, but also for performance enhancement. Assuming that athletes' creative use of anything unconventional is aimed at "legally" improving performance, CAM may be used because it is perceived as more "natural" and erroneously assumed as not potentially doping. This failure to recognise CAMs as pharmacological agents puts athletes at risk of inadvertent doping.The general position of the World Anti-Doping Authority (WADA) is one of strict liability, an application of the legal proposition that ignorance is no excuse and the ultimate responsibility is on the athlete to ensure at all times whatever is swallowed, injected or applied to the athlete is both safe and legal for use. This means that a violation occurs whether or not the athlete intentionally or unintentionally, knowingly or unknowingly, used a prohibited substance/method or was negligent or otherwise at fault. Athletes are therefore expected to understand not only what is prohibited, but also what might potentially cause an inadvertent doping violation. Yet, as will be discussed, athlete knowledge on doping is deficient and WADA itself sometimes changes its position on prohibited methods or substances. The situation is further confounded by the conflicting stance of anti-doping experts in the media. These highly publicised disagreements may further portray inconsistencies in anti-doping guidelines and suggest to athletes that what is considered doping is dependent on the dominant political zeitgeist. Taken together, athletes may believe that unless a specific and explicit ruling is made, guidelines are open to interpretation

  4. Gene doping.

    PubMed

    Azzazy, Hassan M E

    2010-01-01

    Gene doping abuses the legitimate approach of gene therapy. While gene therapy aims to correct genetic disorders by introducing a foreign gene to replace an existing faulty one or by manipulating existing gene(s) to achieve a therapeutic benefit, gene doping employs the same concepts to bestow performance advantages on athletes over their competitors. Recent developments in genetic engineering have contributed significantly to the progress of gene therapy research and currently numerous clinical trials are underway. Some athletes and their staff are probably watching this progress closely. Any gene that plays a role in muscle development, oxygen delivery to tissues, neuromuscular coordination, or even pain control is considered a candidate for gene dopers. Unfortunately, detecting gene doping is technically very difficult because the transgenic proteins expressed by the introduced genes are similar to their endogenous counterparts. Researchers today are racing the clock because assuring the continued integrity of sports competition depends on their ability to develop effective detection strategies in preparation for the 2012 Olympics, which may mark the appearance of genetically modified athletes.

  5. [Current status and prospects of gene doping detection].

    PubMed

    Wang, Wenjun; Zhang, Sichun; Xu, Jingjuan; Xia, Xinghua; Tian, Yaping; Zhang, Xinrong; Chen, Hong-Yuan

    2008-07-01

    The fast development of biotechnology promotes the development of doping. From recombinant protein to gene doping, there is a great challenge to their detection. The improvement of gene therapy and potential to enhance athletic performance open the door for gene doping. After a brief introduction of the concept of gene doping, the current status and prospects of gene doping detection are reviewed.

  6. Method of making molecularly doped composite polymer material

    DOEpatents

    Affinito, John D [Tucson, AZ; Martin, Peter M [Kennewick, WA; Graff, Gordon L [West Richland, WA; Burrows, Paul E [Kennewick, WA; Gross, Mark E. , Sapochak, Linda S.

    2005-06-21

    A method of making a composite polymer of a molecularly doped polymer. The method includes mixing a liquid polymer precursor with molecular dopant forming a molecularly doped polymer precursor mixture. The molecularly doped polymer precursor mixture is flash evaporated forming a composite vapor. The composite vapor is cryocondensed on a cool substrate forming a composite molecularly doped polymer precursor layer, and the cryocondensed composite molecularly doped polymer precursor layer is cross linked thereby forming a layer of the composite polymer layer of the molecularly doped polymer.

  7. [Advances and strategies in gene doping detection].

    PubMed

    He, Jiangang; Liu, Zhen; Liu, Jing; Dou, Peng; Chen, Hong-Yuan

    2008-07-01

    This review surveys the recent status of gene doping detection and the strategies for anti-gene doping. The main gene doping candidates for athletes are summarized, and the advances in the detection of the proteins expressed by these genes such as erythropoietin (EPO) and human growth hormone (hGH) are reviewed. The potential detection strategies for further gene doping analysis are also discussed.

  8. Magnetic resonance imaging of the inner ear in Meniere's disease.

    PubMed

    Pyykkö, Ilmari; Zou, Jing; Poe, Dennis; Nakashima, Tsutomu; Naganawa, Shinji

    2010-10-01

    Recent magnetic resonance imaging (MRI) techniques have made it possible to examine the compartments of the cochlea using gadolidium-chelate (GdC) as a contrast agent. As GdC loads into the perilymph space without entering the endolymph in healthy inner ears, the technique provides possibilities to visualize the different cochlear compartments and evaluate the integrity of the inner ear barriers. This critical review presents the recent advancements in the inner ear MRI technology, contrast agent application and the correlated ototoxicity study, and the uptake dynamics of GdC in the inner ear. GdC causes inflammation of the mucosa of the middle ear, but there are no reports or evidence of toxicity-related changes in vivo either in animals or in humans. Intravenously administered GdC reached the guinea pig cochlea about 10 minutes after administration and loaded the scala tympani and scala vestibuli with the peak at 60 minutes. However, the perilymphatic loading peak was 80 to 100 minutes in mice after intravenous administration of GdC. In healthy animals the scala media did not load GdC. In mice in which GdC was administered topically onto the round window, loading of the cochlea peaked at 4 hours, at which time it reached the apex. The initial portions of the organ to be filled were the basal turn of the cochlea and vestibule. In animal models with endolymphatic hydrops (EH), bulging of the Reissner's membrane was observed as deficit of GdC in the scala vestibuli. Histologically the degree of bulging correlated with the MR images. In animals with immune reaction-induced EH, MRI showed that EH could be limited to restricted regions of the inner ear, and in the same inner ear both EH and leakage of GdC into the scala media were visualized. More than 100 inner ear MRI scans have been performed to date in humans. Loading of GdC followed the pattern seen in animals, but the time frame was different. In intravenous delivery of double-dose GdC, the inner ear compartments

  9. Heavily Sn-doped GaAs with abrupt doping profiles grown by migration-enhanced epitaxy at low temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavanapranee, Tosaporn; Horikoshi, Yoshiji

    The characteristics of heavily Sn-doped GaAs samples grown at 300 deg. C by a migration-enhanced epitaxy (MEE) technique are investigated in comparison with those of the samples grown by a conventional molecular-beam epitaxy (MBE) at 580 deg. C. While no discernible difference is observed in the low doping regime, the difference in doping characteristics between the MBE- and MEE-grown samples becomes apparent when the doping concentration exceeds 1x10{sup 19} cm{sup -3}. Sn atoms as high as 4x10{sup 21} cm{sup -3} can be incorporated into MEE-grown GaAs films, unlike the MBE-grown samples that have a maximum doping level limited around 1x10{supmore » 19} cm{sup -3}. Due to an effective suppression of Sn segregation in the MEE growth case, high quality GaAs films with abrupt high-concentration Sn-doping profiles are achieved with the doping concentrations of up to 2x10{sup 21} cm{sup -3}. It has been shown that even though a high concentration of Sn atoms is incorporated into the GaAs film, the electron concentration saturates at 6x10{sup 19} cm{sup -3} and then gradually decreases with Sn concentration. The uniform doping limitation, as well as the electron concentration saturation, is discussed by means of Hall-effect measurement, x-ray diffraction, and Raman scattering spectroscopy.« less

  10. [Doping, sport and addiction--any links?].

    PubMed

    Foucart, J; Verbanck, P; Lebrun, P

    2015-01-01

    Sport is widely encouraged as it is beneficial for health. However, high-performance sport is more and more associated to rather suspicious practices; doping is one of the best example. From a physician point of view, the use of doping agents is obviously a major concern because taking such products often induce serious adverse effects on health. The present manuscript aims to inform physicians about the most frequent doping practices. It also points out that intensive sport can generate an "addictive" behavior sharing with "common"addictions a loss of practice control, a lack of interest in other activities and even a sport's practice detrimental to athlete's health. Analysis of the doping issue needs to take this reality into account as some doping products display an established " addictive" effect.

  11. Doping properties of cadmium-rich arsenic-doped CdTe single crystals: Evidence of metastable AX behavior

    NASA Astrophysics Data System (ADS)

    Nagaoka, Akira; Kuciauskas, Darius; Scarpulla, Michael A.

    2017-12-01

    Cd-rich composition and group-V element doping are of interest for simultaneously maximizing the hole concentration and minority carrier lifetime in CdTe, but the critical details concerning point defects are not yet fully established. Herein, we report on the properties of arsenic doped CdTe single crystals grown from Cd solvent by the travelling heater method. The photoluminescence spectra and activation energy of 74 ± 2 meV derived from the temperature-dependent Hall effect are consistent with AsTe as the dominant acceptor. Doping in the 1016 to 1017/cm3 range is achieved for measured As concentrations between 1016 and 1020/cm3 with the highest doping efficiency of 40% occurring near 1017 As/cm3. We observe persistent photoconductivity, a hallmark of light-induced metastable configuration changes consistent with AX behavior. Additionally, quenching experiments reveal at least two mechanisms of increased p-type doping in the dark, one decaying over 2-3 weeks and the other persisting for at least 2 months. These results provide essential insights for the application of As-doped CdTe in thin film solar cells.

  12. PULSION® HP: Tunable, High Productivity Plasma Doping

    NASA Astrophysics Data System (ADS)

    Felch, S. B.; Torregrosa, F.; Etienne, H.; Spiegel, Y.; Roux, L.; Turnbaugh, D.

    2011-01-01

    Plasma doping has been explored for many implant applications for over two decades and is now being used in semiconductor manufacturing for two applications: DRAM polysilicon counter-doping and contact doping. The PULSION HP is a new plasma doping tool developed by Ion Beam Services for high-volume production that enables customer control of the dominant mechanism—deposition, implant, or etch. The key features of this tool are a proprietary, remote RF plasma source that enables a high density plasma with low chamber pressure, resulting in a wide process space, and special chamber and wafer electrode designs that optimize doping uniformity.

  13. Modeling and Simulation Network Data Standards

    DTIC Science & Technology

    2011-09-30

    COMBATXXI Movement Logger Data Output Dictionary. Field # Geocentric Coordinates (GCC) Heading Geodetic Coordinates (GDC) Heading Universal...B-8 Field # Geocentric Coordinates (GCC) Heading Geodetic Coordinates (GDC) Heading Universal Transverse Mercator (UTM) Heading...FKSM Fort Knox Supplemental Material FM field manual GCC geocentric coordinates GDC geodetic coordinates GIG global information grid

  14. Formation of hydroxyl radicals and kinetic study of 2-chlorophenol photocatalytic oxidation using C-doped TiO2, N-doped TiO2, and C,N Co-doped TiO2 under visible light.

    PubMed

    Ananpattarachai, Jirapat; Seraphin, Supapan; Kajitvichyanukul, Puangrat

    2016-02-01

    This work reports on synthesis, characterization, adsorption ability, formation rate of hydroxyl radicals (OH(•)), photocatalytic oxidation kinetics, and mineralization ability of C-doped titanium dioxide (TiO2), N-doped TiO2, and C,N co-doped TiO2 prepared by the sol-gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy were used to analyze the titania. The rate of formation of OH(•) for each type of titania was determined, and the OH-index was calculated. The kinetics of as-synthesized TiO2 catalysts in photocatalytic oxidation of 2-chlorophenol (2-CP) under visible light irradiation were evaluated. Results revealed that nitrogen was incorporated into the lattice of titania with the structure of O-Ti-N linkages in N-doped TiO2 and C,N co-doped TiO2. Carbon was joined to the Ti-O-C bond in the C-doped TiO2 and C,N co-doped TiO2. The 2-CP adsorption ability of C,N co-doped TiO2 and C-doped TiO2 originated from a layer composed of a complex carbonaceous mixture at the surface of TiO2. C,N co-doped TiO2 had highest formation rate of OH(•) and photocatalytic activity due to a synergistic effect of carbon and nitrogen co-doping. The order of photocatalytic activity per unit surface area was the same as that of the formation rate of OH(•) unit surface area in the following order: C,N co-doped TiO2 > C-doped TiO2 > N-doped TiO2 > undoped TiO2.

  15. Metal-insulator transition properties of sputtered silicon-doped and un-doped vanadium dioxide films at terahertz range

    NASA Astrophysics Data System (ADS)

    Zhang, Huafu; Wu, Zhiming; Niu, Ruihua; Wu, Xuefei; he, Qiong; Jiang, Yadong

    2015-03-01

    Silicon-doped and un-doped vanadium dioxide (VO2) films were synthesized on high-purity single-crystal silicon substrates by means of reactive direct current magnetron sputtering followed by thermal annealing. The structure, morphology and metal-insulator transition properties of silicon-doped VO2 films at terahertz range were measured and compared to those of un-doped VO2 films. X-ray diffraction and scanning electron microscopy indicated that doping the films with silicon significantly affects the preferred crystallographic orientation and surface morphologies (grain size, pores and characteristics of grain boundaries). The temperature dependence of terahertz transmission shows that the transition temperature, hysteresis width and transition sharpness greatly depend on the silicon contents while the transition amplitude was relatively insensitive to the silicon contents. Interestingly, the VO2 film doped with a silicon content of 4.6 at.% shows excellent terahertz switching characteristics, namely a small hysteresis width of 4.5 °C, a giant transmission modulation ratio of about 82% and a relatively low transition temperature of 56.1 °C upon heating. This work experimentally indicates that silicon doping can effectively control not only the surface morphology but also the metal-insulator transition characteristics of VO2 films at terahertz range.

  16. Probing and tuning the size, morphology, chemistry and structure of nanoscale cerium oxide

    NASA Astrophysics Data System (ADS)

    Kuchibhatla, Satyanarayana Vnt

    Cerium oxide (ceria)-based materials in the nanoscale regime are of significant fundamental and technological interest. Nanoceria in pure and doped forms has current and potential use in solid oxide fuel cells, catalysis, UV-screening, chemical mechanical planarization, oxygen sensors, and bio-medical applications. The characteristic feature of Ce to switch between the +3 and +4 oxidation states renders oxygen buffering capability to ceria. The ease of this transformation was expected to be enhanced in the nanoceria. In most the practical scenarios, it is necessary to have a stable suspension of ceria nanoparticles (CNPs) over longer periods of time. However, the existing literature is confined to short term studies pertaining to synthesis and property evaluation. Having understood the need for a comprehensive understanding of the CNP suspensions, this dissertation is primarily aimed at understanding the behavior of CNPs in various chemical and physical environments. We have synthesized CNPs in the absence of any surfactants at room temperature and studied the aging characteristics. After gaining some understanding about the behavior of this functional oxide, the synthesis environment and aging temperature were varied, and their affects were carefully analyzed using various materials analysis techniques such as high resolution transmission electron microscopy (HRTEM), UV-Visible spectroscopy (UV-Vis), and X-ray photoelectron spectroscopy (XPS). When the CNPs were aged at room temperature in as-synthesized condition, they were observed to spontaneously assemble and evolve as fractal superoctahedral structures. The reasons for this unique polycrystalline morphology were attributed to the symmetry driven assembly of the individual truncated octahedral and octahedral seed of the ceria. HRTEM and Fast Fourier Transform (FFT) analyses were used to explain the agglomeration behavior and evolution of the octahedral morphology. Some of the observations were supported by

  17. Optical properties of highly n-doped germanium obtained by in situ doping and laser annealing

    NASA Astrophysics Data System (ADS)

    Frigerio, J.; Ballabio, A.; Gallacher, K.; Giliberti, V.; Baldassarre, L.; Millar, R.; Milazzo, R.; Maiolo, L.; Minotti, A.; Bottegoni, F.; Biagioni, P.; Paul, D.; Ortolani, M.; Pecora, A.; Napolitani, E.; Isella, G.

    2017-11-01

    High n-type doping in germanium is essential for many electronic and optoelectronic applications especially for high performance Ohmic contacts, lasing and mid-infrared plasmonics. We report on the combination of in situ doping and excimer laser annealing to improve the activation of phosphorous in germanium. An activated n-doping concentration of 8.8  ×  1019 cm-3 has been achieved starting from an incorporated phosphorous concentration of 1.1  ×  1020 cm-3. Infrared reflectivity data fitted with a multi-layer Drude model indicate good uniformity over a 350 nm thick layer. Photoluminescence demonstrates clear bandgap narrowing and an increased ratio of direct to indirect bandgap emission confirming the high doping densities achieved.

  18. [Doping practices and behaviours among Ivorian soccer players].

    PubMed

    Dah, Cyrille; Bogui, Pascal; Yavo, Jean-Claude; Gourouza, Issa; Ouattara, Soualiho; Keita, Mustapha

    2002-01-01

    We have conducted a survey of doping among soccer players in Côte d'Ivoire with a representative sample of 150 soccer players who filled out an anonymous questionnaire. The aim of this survey was to get a clearer picture of doping in Ivorian soccer in order to suggest preventive actions against doping. The results of this study showed that doping was known by the Ivorian soccer players; about 18.7% admitted to the use of doping substances, 42% recognised that they felt tempted by doping, while 38% knew another soccer player who had already used a doping substance. Government and sports organisations should recognize the importance of education and information in the antidoping campaign and agree on effective preventive as well as repressive strategies.

  19. Low doping concentration studies of doped PVA-Coumarin nanocomposite films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, J., E-mail: jtripathi00@rediffmail.com; Bisen, R.; Choudhary, A.

    2016-05-23

    The observations of combination of Poly (vinyl) alcohol and Coumarin properties in nanocmposite films are reported. The X-ray diffraction measurements reveal nanocrystalline nature of PVA film, which remains nanocrystalline after doping Coumarin but along with PVA peaks, additional peak due to dopant crystallinity is seen. The absorption edge shows a double edge feature, where distinct bandgaps for PVA host and dopant Coumarin are obtained. However at a higher doping wt % of 1 and 2, the absorption is mainly dominated by Coumarin and single absorption edge is observed giving a bandgap equal to that of bulk Coumarin (3.3 eV). Themore » composite formation affects the bonding of host drastically and is seen through the bond modification in FTIR spectra. The results suggest that doping below 2 wt% is advantageous as combination of PVA and Coumarin properties are obtained but at 2 wt %, the properties are dominated by mainly Coumarin and the signature of PVA from optical properties is completely lost.« less

  20. Shallow Heavily Doped n++ Germanium by Organo-Antimony Monolayer Doping.

    PubMed

    Alphazan, Thibault; Díaz Álvarez, Adrian; Martin, François; Grampeix, Helen; Enyedi, Virginie; Martinez, Eugénie; Rochat, Névine; Veillerot, Marc; Dewitte, Marc; Nys, Jean-Philippe; Berthe, Maxime; Stiévenard, Didier; Thieuleux, Chloé; Grandidier, Bruno

    2017-06-14

    Functionalization of Ge surfaces with the aim of incorporating specific dopant atoms to form high-quality junctions is of particular importance for the development of solid-state devices. In this study, we report the shallow doping of Ge wafers with a monolayer doping strategy that is based on the controlled grafting of Sb precursors and the subsequent diffusion of Sb into the wafer upon annealing. We also highlight the key role of citric acid in passivating the surface before its reaction with the Sb precursors and the benefit of a protective SiO 2 overlayer that enables an efficient incorporation of Sb dopants with a concentration higher than 10 20 cm -3 . Microscopic four-point probe measurements and photoconductivity experiments show the full electrical activation of the Sb dopants, giving rise to the formation of an n++ Sb-doped layer and an enhanced local field-effect passivation at the surface of the Ge wafer.

  1. Low doping concentration studies of doped PVA-Coumarin nanocomposite films

    NASA Astrophysics Data System (ADS)

    Tripathi, J.; Tripathi, S.; Bisen, R.; Sharma, A.; Choudhary, A.; Shripathi, T.

    2016-05-01

    The observations of combination of Poly (vinyl) alcohol and Coumarin properties in nanocmposite films are reported. The X-ray diffraction measurements reveal nanocrystalline nature of PVA film, which remains nanocrystalline after doping Coumarin but along with PVA peaks, additional peak due to dopant crystallinity is seen. The absorption edge shows a double edge feature, where distinct bandgaps for PVA host and dopant Coumarin are obtained. However at a higher doping wt % of 1 and 2, the absorption is mainly dominated by Coumarin and single absorption edge is observed giving a bandgap equal to that of bulk Coumarin (3.3 eV). The composite formation affects the bonding of host drastically and is seen through the bond modification in FTIR spectra. The results suggest that doping below 2 wt% is advantageous as combination of PVA and Coumarin properties are obtained but at 2 wt %, the properties are dominated by mainly Coumarin and the signature of PVA from optical properties is completely lost.

  2. Metal-doped organic gels and method thereof

    DOEpatents

    Satcher, Jr., Joe H.; Baumann, Theodore F.

    2003-09-02

    Disclosed herein is a sol-gel polymerization process for synthesizing metal-doped organic gels. The process polymerizes metal salts of hydroxylated benzenes or hydroxylated benzene derivatives with alkyl or aryl aldehydes to form metal-doped, wet, organic gels. The gels can then be dried by supercritical solvent extraction to form metal-doped aerogels or by evaporation to form metal-doped xerogels. The aerogels and xerogels can then be pyrolyzed.

  3. Metal-doped organic gels and method thereof

    DOEpatents

    Satcher, Jr., Joe H.; Baumann, Theodore F.

    2007-10-23

    Disclosed herein is a sol-gel polymerization process for synthesizing metal-doped organic gels. The process polymerizes metal salts of hydroxylated benzenes or hydroxylated benzene derivatives with alkyl or aryl aldehydes to form metal-doped, wet, organic gels. The gels can then be dried by supercritical solvent extraction to form metal-doped aerogels or by evaporation to form metal-doped xerogels. The aerogels and xerogels can then be pyrolyzed.

  4. Aero dopes and varnishes

    NASA Technical Reports Server (NTRS)

    Britton, H T S

    1927-01-01

    Before proceeding to discuss the preparation of dope solutions, it will be necessary to consider some of the essential properties which should be possessed of a dope film, deposited in and on the surface of an aero fabric. The first is that it should tighten the material and second it should withstand weathering.

  5. Intended or Unintended Doping? A Review of the Presence of Doping Substances in Dietary Supplements Used in Sports.

    PubMed

    Martínez-Sanz, José Miguel; Sospedra, Isabel; Ortiz, Christian Mañas; Baladía, Eduard; Gil-Izquierdo, Angel; Ortiz-Moncada, Rocio

    2017-10-04

    The use of dietary supplements is increasing among athletes, year after year. Related to the high rates of use, unintentional doping occurs. Unintentional doping refers to positive anti-doping tests due to the use of any supplement containing unlisted substances banned by anti-doping regulations and organizations, such as the World Anti-Doping Agency (WADA). The objective of this review is to summarize the presence of unlabeled doping substances in dietary supplements that are used in sports. A review of substances/metabolites/markers banned by WADA in ergonutritional supplements was completed using PubMed. The inclusion criteria were studies published up until September 2017, which analyzed the content of substances, metabolites and markers banned by WADA. 446 studies were identified, 23 of which fulfilled all the inclusion criteria. In most of the studies, the purpose was to identify doping substances in dietary supplements. Substances prohibited by WADA were found in most of the supplements analyzed in this review. Some of them were prohormones and/or stimulants. With rates of contamination between 12 and 58%, non-intentional doping is a point to take into account before establishing a supplementation program. Athletes and coaches must be aware of the problems related to the use of any contaminated supplement and should pay special attention before choosing a supplement, informing themselves fully and confirming the guarantees offered by the supplement.

  6. Electron Doping a Kagome Spin Liquid

    NASA Astrophysics Data System (ADS)

    Kelly, Zachary; Gallagher, Miranda; McQueen, Tyrel

    In 1987, Anderson proposed that charge doping a material with the resonating valance bond (RVB) state would yield a superconducting state. Ever since, there has been a search for these RVB containing spin liquid materials and their charge doped counterparts. Studies on the most promising spin liquid candidate, Herbertsmithite, ZnCu3(OH)6Cl2, a two dimensional kagomé lattice, show evidence of fractionalized excitations and a gapped ground state. In this work, we report the synthesis and characterization of a newly synthesized electron doped spin liquid, ZnLixCu3(OH)6Cl2 from x = 0 to x = 1.8 (3 / 5 th per Cu2+). Despite heavy doping, the series remains insulating and the magnetism is systematically suppressed. We have done extensive structural studies of the doped series to determine the effect of the intercalated atoms on the structure, and whether these structural differences induce strong localization effects that suppress the metallic and superconducting states. Other doped spin liquid candidates are also being explored to understand if this localization is system dependent or systemic to all doped spin liquid systems. NSF, Division of Materials Research (DMR), Solid State Chemistry (SSMC), CAREER Grant under Award No. DMR- 1253562, Institute for Quantum Matter under Grant No.DE-FG02- 08ER46544, and the David and Lucile Packard Foundation.

  7. IR-doped ruthenium oxide catalyst for oxygen evolution

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas I. (Inventor); Narayanan, Sekharipuram R. (Inventor)

    2012-01-01

    A method for preparing a metal-doped ruthenium oxide material by heating a mixture of a doping metal and a source of ruthenium under an inert atmosphere. In some embodiments, the doping metal is in the form of iridium black or lead powder, and the source of ruthenium is a powdered ruthenium oxide. An iridium-doped or lead-doped ruthenium oxide material can perform as an oxygen evolution catalyst and can be fabricated into electrodes for electrolysis cells.

  8. Doping effect in Si nanocrystals

    NASA Astrophysics Data System (ADS)

    Li, Dongke; Xu, Jun; Zhang, Pei; Jiang, Yicheng; Chen, Kunji

    2018-06-01

    Intentional doping in semiconductors is a fundamental issue since it can control the conduction type and ability as well as modify the optical and electronic properties. To realize effective doping is the basis for developing semiconductor devices. However, by reducing the size of a semiconductor, like Si, to the nanometer scale, the doping effects become complicated due to the coupling between the quantum confinement effect and the surfaces and/or interfaces effect. In particular, by introducing phosphorus or boron impurities as dopants into material containing Si nanocrystals with a dot size of less than 10 nm, it exhibits different behaviors and influences on the physical properties from its bulk counterpart. Understanding the doping effects in Si nanocrystals is currently a challenge in order to further improve the performance of the next generation of nano-electronic and photonic devices. In this review, we present an overview of the latest theoretical studies and experimental results on dopant distributions and their effects on the electronic and optical properties of Si nanocrystals. In particular, the advanced characterization techniques on dopant distribution, the carrier transport process as well as the linear and nonlinear optical properties of doped Si nanocrystals, are systematically summarized.

  9. [Xenon: From rare gaz to doping product].

    PubMed

    Tassel, Camille; Le Daré, Brendan; Morel, Isabelle; Gicquel, Thomas

    2016-04-01

    Doping is defined as the use of processes or substances to artificially increase physical or mental performance. Xenon is a noble gas used as an anesthetic and recently as a doping agent. Xenon is neuroprotective as an antagonist of NMDA glutamate receptors. Xenon stimulates the synthesis of erythropoietin (EPO) by increase of hypoxia inducible factor (HIF). Xenon would be a new doping product, maintaining doping methods ahead of detection. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. DFT study of Al doped armchair SWCNTs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhiman, Shobhna, E-mail: s-dhiman@hotmail.com; Rani, Anita; Kumar, Ranjan

    2016-05-23

    Electronic properties of endohedrally doped armchair single-walled carbon nanotubes (SWCNTs) with a chain of six Al atoms have been studied using ab-initio density functional theory. We investigate the binding energy/atom, ionization potential, electron Affinity and Homo-Lumo gap of doped armchair SWNTs from (4,4) to (6,6) with two ends open. BE/dopant atom and ionization potential is maximum for (6, 6) doped armchair carbon nanotube; suggest that it is more stable than (4, 4) and (5, 5) doped tubes. HOMO - LUMO gap of Al doped arm chair carbon nanotubes decreases linearly with the increase in diameter of the tube. This showsmore » that confinement induce a strong effect on electronic properties of doped tubes. These combined systems can be used for future nano electronics. The ab–initio calculations were performed with SIESTA code using generalized gradient approximation (GGA).« less

  11. Intended or Unintended Doping? A Review of the Presence of Doping Substances in Dietary Supplements Used in Sports

    PubMed Central

    Mañas Ortiz, Christian; Ortiz-Moncada, Rocio

    2017-01-01

    Introduction: The use of dietary supplements is increasing among athletes, year after year. Related to the high rates of use, unintentional doping occurs. Unintentional doping refers to positive anti-doping tests due to the use of any supplement containing unlisted substances banned by anti-doping regulations and organizations, such as the World Anti-Doping Agency (WADA). The objective of this review is to summarize the presence of unlabeled doping substances in dietary supplements that are used in sports. Methodology: A review of substances/metabolites/markers banned by WADA in ergonutritional supplements was completed using PubMed. The inclusion criteria were studies published up until September 2017, which analyzed the content of substances, metabolites and markers banned by WADA. Results: 446 studies were identified, 23 of which fulfilled all the inclusion criteria. In most of the studies, the purpose was to identify doping substances in dietary supplements. Discussion: Substances prohibited by WADA were found in most of the supplements analyzed in this review. Some of them were prohormones and/or stimulants. With rates of contamination between 12 and 58%, non-intentional doping is a point to take into account before establishing a supplementation program. Athletes and coaches must be aware of the problems related to the use of any contaminated supplement and should pay special attention before choosing a supplement, informing themselves fully and confirming the guarantees offered by the supplement. PMID:28976928

  12. FIFA's approach to doping in football

    PubMed Central

    Dvorak, J; Graf‐Baumann, T; D'Hooghe, M; Kirkendall, D; Taennler, H; Saugy, M

    2006-01-01

    Background and objectives FIFA's anti‐doping strategy relies on education and prevention. A worldwide network of physicians guarantees doping control procedures that are straightforward and leave no place for cheating. FIFA actively acknowledges its responsibility to protect players from harm and ensure equal chances for all competitors by stringent doping control regulations, data collection of positive samples, support of research, and collaboration with other organisations. This article aims to outline FIFA's approach to doping in football. Method Description of FIFA's doping control regulations and procedures, statistical analysis of FIFA database on doping control, and comparison with data obtained by WADA accredited laboratories as for 2004. Results Data on positive doping samples per substance and confederation/nation documented at the FIFA medical office from 1994 to 2005 are provided. According to the FIFA database, the incidence of positive cases over the past 11 years was 0.12%, with about 0.42% in 2004 (based on the assumption of 20 750 samples per year) and 0.37% in 2005. Especially important in this regard is the extremely low incidence of the true performance enhancing drugs such as anabolic steroids and stimulants. However, there is a need for more consistent data collection and cross checks among international anti‐doping agencies as well as for further studies on specific substances, methods, and procedures. With regard to general health impairments in players, FIFA suggests that principles of occupational medicine should be considered and treatment with banned substances for purely medical reasons should be permitted to enable players to carry out their profession. At the same time, a firm stand has to be taken against suppression of symptoms by medication with the aim of meeting the ever increasing demands on football players. Conclusion Incidence of doping in football seems to be low, but much closer collaboration and further

  13. Effect of variations in the doping profiles on the properties of doped multiple quantum well avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Menkara, H. M.; Wagner, B. K.; Summers, C. J.

    1996-01-01

    The purpose of this study is to use both theoretical and experimental evidence to determine the impact of doping imbalance and symmetry on the physical and electrical characteristics of doped multiple quantum well avalanche photodiodes (APD). Theoretical models have been developed to calculate the electric field valence and conduction bands, capacitance-voltage (CV), and carrier concentration versus depletion depth profiles. The models showed a strong correlation between the p- and n-doping balance inside the GaAs wells and the number of depleted stages and breakdown voltage of the APD. A periodic doping imbalance in the wells has been shown to result in a gradual increase (or decrease) in the electric field profile throughout the device which gave rise to partially depleted devices at low bias. The MQW APD structures that we modeled consisted of a 1 micron top p(+)-doped (3 x 10(exp 18) cm(exp -3)) GaAs layer followed by a 1 micron region of alternating layers of GaAs (500 A) and Al(0.42)Ga(0.58)As (500 A), and a 1 micron n(+) back layer (3 x 10(exp 18) cm(exp -3)). The GaAs wells were doped with p-i-n layers placed at the center of each well. The simulation results showed that in an APD with nine doped wells, and where the 50 A p-doped layer is off by 10% (p = 1.65 x 10(exp 18) cm(exp -3), n = 1.5 x 10(exp 18) cm(exp -3)), almost half of the MQW stages were shown to be undepleted at low bias which was a result of a reduction in the electric field near the p(+) cap layer by over 50% from its value in the balanced structure. Experimental CV and IV data on similar MBE grown MQW structures have shown very similar depletion and breakdown characteristics. The models have enabled us to better interpret our experimental data and to determine both the extent of the doping imbalances in the devices as well as the overall p- or n-type doping characteristics of the structures.

  14. True Dopers or Negligent Athletes? An Analysis of Anti-Doping Rule Violations Reported to the World Anti-Doping Agency 2010-2012.

    PubMed

    de Hon, Olivier; van Bottenburg, Maarten

    2017-12-06

    The sanction that an athlete receives when an anti-doping rule violation has been committed depends on the specific circumstances of the case. Anti-doping tribunals decide on the final sanction, following the rules of the World Anti-Doping Code. To assess the athletes' degree of fault based on the length of sanctions imposed on them to feed policy-related discussions. Analysing data from the results management database of the World Anti-Doping Agency for anonymous information of anti-doping rule violations in eight selected sports covering the years 2010-2012. Four out of ten athletes who committed an anti-doping rule violation received a suspension that was lower than the standard. This is an indication that tribunals in many instances are not convinced that the athletes concerned were completely at fault, that mitigating circumstances were applicable, or that full responsibility of the suspected violation should not be held against them. Anabolic agents, peptide hormones, and hormone modulators lead to higher sanctions, as do combinations of several anti-doping rule violations. This first analysis of information from the World Anti-Doping Agency's results management database indicates that a large proportion of the athletes who commit anti-doping rule violations may have done this unintentionally. Anti-doping professionals should strive to improve this situation in various ways.

  15. Doping Level of Boron-Doped Diamond Electrodes Controls the Grafting Density of Functional Groups for DNA Assays.

    PubMed

    Švorc, Ĺubomír; Jambrec, Daliborka; Vojs, Marian; Barwe, Stefan; Clausmeyer, Jan; Michniak, Pavol; Marton, Marián; Schuhmann, Wolfgang

    2015-09-02

    The impact of different doping levels of boron-doped diamond on the surface functionalization was investigated by means of electrochemical reduction of aryldiazonium salts. The grafting efficiency of 4-nitrophenyl groups increased with the boron levels (B/C ratio from 0 to 20,000 ppm). Controlled grafting of nitrophenyldiazonium was used to adjust the amount of immobilized single-stranded DNA strands at the surface and further on the hybridization yield in dependence on the boron doping level. The grafted nitro functions were electrochemically reduced to the amine moieties. Subsequent functionalization with a succinic acid introduced carboxyl groups for subsequent binding of an amino-terminated DNA probe. DNA hybridization significantly depends on the probe density which is in turn dependent on the boron doping level. The proposed approach opens new insights for the design and control of doped diamond surface functionalization for the construction of DNA hybridization assays.

  16. The Women's Recovery Group Study: a Stage I trial of women-focused group therapy for substance use disorders versus mixed-gender group drug counseling.

    PubMed

    Greenfield, Shelly F; Trucco, Elisa M; McHugh, R Kathryn; Lincoln, Melissa; Gallop, Robert J

    2007-09-06

    The aim of this Stage I Behavioral Development Trial was to develop a manual-based 12-session Women's Recovery Group (WRG) and to pilot test this new treatment in a randomized controlled trial against a mixed-gender Group Drug Counseling (GDC), an effective manual-based treatment for substance use disorders. After initial manual development, two pre-pilot groups of WRG were conducted to determine feasibility and initial acceptability of the treatment among subjects and therapists. In the pilot stage, women were randomized to either WRG or GDC. No significant differences in substance use outcomes were found between WRG and GDC during the 12-week group treatment. However, during the 6-month post-treatment follow-up, WRG members demonstrated a pattern of continued reductions in substance use while GDC women did not. In addition, pilot WRG women with alcohol dependence had significantly greater reductions in average drinks/drinking day than GDC women 6 months post-treatment (p<.03, effect size=0.81). While satisfaction with both groups was high, women were significantly more satisfied with WRG than GDC (p<.009, effect size=1.11). In this study, the newly developed 12-session women-focused WRG was feasible with high satisfaction among participants. It was equally effective as mixed-gender GDC in reducing substance use during the 12-week in-treatment phase, but demonstrated significantly greater improvement in reductions in drug and alcohol use over the post-treatment follow-up phase compared with GDC. A women-focused single-gender group treatment may enhance longer-term clinical outcomes among women with substance use disorders.

  17. Visible light photocatalytic antibacterial activity of Ni-doped and N-doped TiO2 on Staphylococcus aureus and Escherichia coli bacteria.

    PubMed

    Ananpattarachai, Jirapat; Boonto, Yuphada; Kajitvichyanukul, Puangrat

    2016-03-01

    The Ni-doped and N-doped TiO2 nanoparticles were investigated for their antibacterial activities on Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacteria. Their morphological features and characteristics such as particle size, surface area, and visible light absorbing capacity were compared and discussed. Scanning electron microscopy, X-ray diffraction, and UV-visible spectrophotometry were used to characterize both materials. The inactivation of E. coli (as an example of Gram-negative bacteria) and S. aureus (as an example of Gram-positive bacteria) with Ni-doped and N-doped TiO2 was investigated in the absence and presence of visible light. Antibacterial activity tests were conducted using undoped, Ni-doped, and N-doped TiO2. The N-doped TiO2 nanoparticles show higher antibacterial activity than Ni-doped TiO2. The band gap narrowing of N-doped TiO2 can induce more visible light absorption and leads to the superb antibacterial properties of this material. The complete inactivation time for E. coli at an initial cell concentration of 2.7 × 10(4) CFU/mL was 420 min which is longer than the 360 min required for S. aureus inactivation. The rate of inactivation of S. aureus using the doped TiO2 nanoparticles in the presence of visible light is greater than that of E. coli. The median lethal dose (LD50) values of S. aureus and E. coli by antibacterial activity under an 18-W visible light intensity were 80 and 350 mg/ml for N-doped TiO2, respectively.

  18. Plasmonic Properties of Silicon Nanocrystals Doped with Boron and Phosphorus.

    PubMed

    Kramer, Nicolaas J; Schramke, Katelyn S; Kortshagen, Uwe R

    2015-08-12

    Degenerately doped silicon nanocrystals are appealing plasmonic materials due to silicon's low cost and low toxicity. While surface plasmonic resonances of boron-doped and phosphorus-doped silicon nanocrystals were recently observed, there currently is poor understanding of the effect of surface conditions on their plasmonic behavior. Here, we demonstrate that phosphorus-doped silicon nanocrystals exhibit a plasmon resonance immediately after their synthesis but may lose their plasmonic response with oxidation. In contrast, boron-doped nanocrystals initially do not exhibit plasmonic response but become plasmonically active through postsynthesis oxidation or annealing. We interpret these results in terms of substitutional doping being the dominant doping mechanism for phosphorus-doped silicon nanocrystals, with oxidation-induced defects trapping free electrons. The behavior of boron-doped silicon nanocrystals is more consistent with a strong contribution of surface doping. Importantly, boron-doped silicon nanocrystals exhibit air-stable plasmonic behavior over periods of more than a year.

  19. Doping concentration dependence of microstructure and magnetic behaviours in Co-doped TiO2 nanorods

    PubMed Central

    2014-01-01

    Co-doped titanium dioxide (TiO2) nanorods with different doping concentrations were fabricated by a molten salt method. It is found that the morphology of TiO2 changes from nanorods to nanoparticles with increasing doping concentration. The mechanism for the structure and phase evolution is investigated in detail. Undoped TiO2 nanorods show strong ferromagnetism at room temperature, whereas incorporating of Co deteriorates the ferromagnetic ordering. X-ray photoelectron spectroscopy (XPS) and electron spin resonance (ESR) results demonstrate that the ferromagnetism is associated with Ti vacancy. PMID:25593558

  20. Cobalt nanoparticles/nitrogen-doped graphene with high nitrogen doping efficiency as noble metal-free electrocatalysts for oxygen reduction reaction.

    PubMed

    Liang, Jingwen; Hassan, Mehboob; Zhu, Dongsheng; Guo, Liping; Bo, Xiangjie

    2017-03-15

    Nitrogen-doped graphene (N/GR) has been considered as active metal-free electrocatalysts for oxygen reduction reaction (ORR). However, the nitrogen (N) doping efficiency is very low and only few N atoms are doped into the framework of GR. To boost the N doping efficiency, in this work, a confined pyrolysis method with high N doping efficiency is used for the preparation of cobalt nanoparticles/nitrogen-doped GR (Co/N/GR). Under the protection of SiO 2 , the inorganic ligand NH 3 in cobalt amine complex ([Co(NH 3 ) 6 ] 3+ ) is trapped in the confined space and then can be effectively doped into the framework of GR without the introduction of any carbon residues. Meanwhile, due to the redox reaction between the cobalt ions and carbon atoms of GR, Co nanoparticles are supported into the framework of N/GR. Due to prevention of GR layer aggregation with SiO 2 , the Co/N/GR with high dispersion provides sufficient surface area and maximum opportunity for the exposure of Co nanoparticles and active sites of N dopant. By combination of enhanced N doping efficiency, Co nanoparticles and high dispersion of GR sheets, the Co/N/GR is remarkably active, cheap and selective noble-metal free catalysts for ORR. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Redox cycling induced Ni exsolution in Gd0.1Ce0.8Ni0.1O2 - (Sr0.9La0.1)0.9Ti0.9Ni0.1O3 composite solid oxide fuel cell anodes

    NASA Astrophysics Data System (ADS)

    Shen, X.; Chen, T.; Bishop, S. R.; Perry, N. H.; Tuller, H. L.; Sasaki, K.

    2017-12-01

    Oxide anodes composed of 60 wt% Gd0.1Ce0.8Ni0.1O2 (GDCN)- 40 wt% (Sr0.9La0.1)0.9Ti0.9Ni0.1O3 (SLTN) composites were prepared and tested on (ZrO2)0.89(Sc2O3)0.1(CeO2)0.01 (SSZ) electrolyte-supported SOFC cells utilizing a (La0.75Sr0.25)0.98MnO3 (LSM)-SSZ cathode, in 3%-humidified hydrogen fuel at 800 °C. Improved electrochemical performance was found compared to the cell using Ni-free 60 wt% Gd0.1Ce0.9O2 (GDC) - 40 wt % Sr0.9La0.1TiO3 (SLT) that was attributed to the exsolution of nano-sized Ni particles from the Ni-doped system. This exsolution process represents a simpler, more attractive method to improve performance than the more conventional but more complicated infiltration method for introducing catalytic nanoparticles. Redox cycling testing was performed to investigate the performance and structural stability of the Ni-doped GDC-SLT anode. The results indicated that the Ni exsolution and aggregation occurred while redox cycling proceeded, resulting in a gradually reduced anodic overvoltage. Symmetric cells with dense thin film Gd0.1Ce0.9-xNixO2 (x = 0, 0.05, 0.1, 0.15) electrodes were also tested, demonstrating lower area-specific resistances with increasing Ni content on the surface under reducing conditions. The steady improvement during redox cycling, despite Ni agglomeration, is related to the continuous increase in the overall Ni content on the anode surface, which may be enabled by kinetic limitations to Ni re-dissolving under oxidizing transients.

  2. The psychology behind doping in sport.

    PubMed

    Ehrnborg, Christer; Rosén, Thord

    2009-08-01

    Drugs and methods to improve physical performance among athletes have been used since the beginning of sport history, but the use of performance enhancing drugs has not always been regarded as cheating. In short, the motives for doping are improving and maintaining physical functioning, coping with the social/psychological pressures and striving for social and psychological goals, including economic benefits. Factors such as, "doping dilemma", "win at all costs", cost versus benefit, and the specificity of some specific doping agents, also play major roles. It seems that action on the athletes' attitude about the achievement of physical improvement and creating effective methods to reveal the drug abuse, are two main ways in winning the struggle against doping.

  3. Transition‐Metal‐Doped NIR‐Emitting Silicon Nanocrystals

    PubMed Central

    Chandra, Sourov; Masuda, Yoshitake

    2017-01-01

    Abstract Impurity‐doping in nanocrystals significantly affects their electronic properties and diversifies their applications. Herein, we report the synthesis of transition metal (Mn, Ni, Co, Cu)‐doped oleophilic silicon nanocrystals (SiNCs) through hydrolysis/polymerization of triethoxysilane with acidic aqueous metal salt solutions, followed by thermal disproportionation of the resulting gel into a doped‐Si/SiO2 composite that, upon HF etching and hydrosilylation with 1‐n‐octadecene, produces free‐standing octadecyl‐capped doped SiNCs (diameter≈3 to 8 nm; dopant <0.2 atom %). Metal‐doping triggers a red‐shift of the SiNC photoluminescence (PL) of up to 270 nm, while maintaining high PL quantum yield (26 % for Co doping). PMID:28374522

  4. Doping and structural properties for the phosphorous-doped polysilicon layers used for micromechanical applications

    NASA Astrophysics Data System (ADS)

    Gaiseanu, Florin; Esteve, Jaume; Cane, Carles; Perez-Rodriguez, Alejandro; Morante, Juan R.; Serre, Christoph

    1999-08-01

    Our researches were devoted to the micromechanical elements fabricated by the surface micromachining technology, in order to reduce or to eliminate the internal stress or the stress gradients. We used an analysis based on secondary ion mass spectroscopy and the spreading resistance profiling determinations, correlated with cross-section electron transmission spectroscopy. The stress induced in the polysilicon layers by the technological processes depends on: (i) the conditions of the low pressure chemical vapor deposition process; (ii) the phosphorus doping technique; (iii) the subsequent multi-step annealing processes. In our experiments the LP-CVD conditions were maintained the same, but the condition specified previously as items (ii) was varied by using two different doping techniques: thermal- chemical doping consisting in prediffusion from a POCl3 source in an open furnace tube; ionic implantation with an energy E equals 65KeV and a dose N equals 4.5 X 1015 cm-2. The implantation process was followed by an annealing at 900 degrees C in an oxygen ambient for 30 minutes. The thermal budget was varied after the doping in order to reduce the stress gradient in the polysilicon layers. The results of our analysis allow us to show that: (1) the doping gradients are correlated with the slower phosphorus grains forme by an excess of the oxygen atoms; a concurrent process induced by the silicon self-interstitial injection during the diffusion and oxidation, determines the enhancement of the grain growth and therefore the enhancement of the electrical activation especially near the internal polysilicon interface; (2) the post-doping annealing conditions could be varied in a convenient manner, so that the doping induced stress gradients into the polysilicon layers to be reduced or completely eliminated for suitable micromechanical induced stress gradients into the polysilicon layers to be reduced or completely eliminated for suitable micromechanical applications. The

  5. The Development of the World Anti-Doping Code.

    PubMed

    Young, Richard

    2017-01-01

    This chapter addresses both the development and substance of the World Anti-Doping Code, which came into effect in 2003, as well as the subsequent Code amendments, which came into effect in 2009 and 2015. Through an extensive process of stakeholder input and collaboration, the World Anti-Doping Code has transformed the hodgepodge of inconsistent and competing pre-2003 anti-doping rules into a harmonized and effective approach to anti-doping. The Code, as amended, is now widely recognized worldwide as the gold standard in anti-doping. The World Anti-Doping Code originally went into effect on January 1, 2004. The first amendments to the Code went into effect on January 1, 2009, and the second amendments on January 1, 2015. The Code and the related international standards are the product of a long and collaborative process designed to make the fight against doping more effective through the adoption and implementation of worldwide harmonized rules and best practices. © 2017 S. Karger AG, Basel.

  6. Photoluminescence and doping mechanism of theranostic Eu3+/Fe3+ dual-doped hydroxyapatite nanoparticles.

    PubMed

    Chen, Min-Hua; Yoshioka, Tomohiko; Ikoma, Toshiyuki; Hanagata, Nobutaka; Lin, Feng-Huei; Tanaka, Junzo

    2014-10-01

    Theranostic nanoparticles currently have been regarded as an emerging concept of 'personalized medicine' with diagnostic and therapeutic dual-functions. Eu 3+ doped hydroxyapatite (HAp) has been regarded as a promising fluorescent probe for in vivo imaging applications. Additionally, substitution of Ca 2+ with Fe 3+ in HAp crystal may endow the capability of producing heat upon exposure to a magnetic field. Here we report a preliminary study of doping mechanism and photoluminescence of Eu 3+ and Fe 3+ doped HAp nanoparticles (Eu/Fe:HAp). HAp with varied concentration of Eu 3+ and Fe 3+ doping are presented as Eu(10 mol%):HAp, Eu(7 mol%)-Fe(3 mol%):HAp, Eu(5 mol%)-Fe(5 mol%):HAp, Eu(3 mol%)-Fe(7 mol%):HAp, and Fe(10 mol%):HAp in the study. The results showed that the HAp particles, in nano-size with rod-like morphology, were successfully doped with Eu 3+ and Fe 3+ , and the particles can be well suspended in cell culture medium. Photoluminescence analysis revealed that particles have prominent emissions at 536 nm, 590 nm, 615 nm, 650 nm and 695 nm upon excitation at a wavelength of 397 nm. Moreover, these Eu/Fe:HAp nanoparticles belonged to B-type carbonated HAp, which has been considered an effective biodegradable and biocompatible drug/gene carrier in biological applications.

  7. N-Doped Graphene with Low Intrinsic Defect Densities via a Solid Source Doping Technique.

    PubMed

    Liu, Bo; Yang, Chia-Ming; Liu, Zhiwei; Lai, Chao-Sung

    2017-09-30

    N-doped graphene with low intrinsic defect densities was obtained by combining a solid source doping technique and chemical vapor deposition (CVD). The solid source for N-doping was embedded into the copper substrate by NH₃ plasma immersion. During the treatment, NH₃ plasma radicals not only flattened the Cu substrate such that the root-mean-square roughness value gradually decreased from 51.9 nm to 15.5 nm but also enhanced the nitrogen content in the Cu substrate. The smooth surface of copper enables good control of graphene growth and the decoupling of height fluctuations and ripple effects, which compensate for the Coulomb scattering by nitrogen incorporation. On the other hand, the nitrogen atoms on the pre-treated Cu surface enable nitrogen incorporation with low defect densities, causing less damage to the graphene structure during the process. Most incorporated nitrogen atoms are found in the pyrrolic configuration, with the nitrogen fraction ranging from 1.64% to 3.05%, while the samples exhibit low defect densities, as revealed by Raman spectroscopy. In the top-gated graphene transistor measurement, N-doped graphene exhibits n-type behavior, and the obtained carrier mobilities are greater than 1100 cm²·V -1 ·s -1 . In this study, an efficient and minimally damaging n-doping approach was proposed for graphene nanoelectronic applications.

  8. Photoluminescence and doping mechanism of theranostic Eu3+/Fe3+ dual-doped hydroxyapatite nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Min-Hua; Yoshioka, Tomohiko; Ikoma, Toshiyuki; Hanagata, Nobutaka; Lin, Feng-Huei; Tanaka, Junzo

    2014-10-01

    Theranostic nanoparticles currently have been regarded as an emerging concept of ‘personalized medicine’ with diagnostic and therapeutic dual-functions. Eu3+ doped hydroxyapatite (HAp) has been regarded as a promising fluorescent probe for in vivo imaging applications. Additionally, substitution of Ca2+ with Fe3+ in HAp crystal may endow the capability of producing heat upon exposure to a magnetic field. Here we report a preliminary study of doping mechanism and photoluminescence of Eu3+ and Fe3+ doped HAp nanoparticles (Eu/Fe:HAp). HAp with varied concentration of Eu3+ and Fe3+ doping are presented as Eu(10 mol%):HAp, Eu(7 mol%)-Fe(3 mol%):HAp, Eu(5 mol%)-Fe(5 mol%):HAp, Eu(3 mol%)-Fe(7 mol%):HAp, and Fe(10 mol%):HAp in the study. The results showed that the HAp particles, in nano-size with rod-like morphology, were successfully doped with Eu3+ and Fe3+, and the particles can be well suspended in cell culture medium. Photoluminescence analysis revealed that particles have prominent emissions at 536 nm, 590 nm, 615 nm, 650 nm and 695 nm upon excitation at a wavelength of 397 nm. Moreover, these Eu/Fe:HAp nanoparticles belonged to B-type carbonated HAp, which has been considered an effective biodegradable and biocompatible drug/gene carrier in biological applications.

  9. All-fiber passively Q-switched thulium-doped fiber laser by using a holmium-doped fiber as saturable absorber

    NASA Astrophysics Data System (ADS)

    Durán Sánchez, M.; Álvarez-Tamayo, R. I.; Posada-Ramírez, B.; Alaniz-Baylón, J.; Bravo-Huerta, E.; Santiago-Hernández, H.; Hernández-Arriaga, M. V.; Bello-Jiménez, Miguel; Ibarra-Escamilla, B.; Kuzin, E. A.

    2018-02-01

    We report a linear cavity all-fiber passive Q-switched thulium-doped fiber laser operating at the 2 μm wavelength range. The laser configuration is based on a thulium-doped fiber used as a gain medium and an unpumped segment of holmium-doped fiber which acts as a fiber saturable absorber. The cavity is formed by a fiber optical loop mirror and the flat end facet of the holmium-doped fiber. The fiber segments as saturable absorber is a 1-m long single mode doubleclad holmium-doped fiber. Q-switched pulses are obtained at the wavelength of 2024.5 nm with a pulse width of 1.1 μs. The pulse repetition rate increases as a linear function of the applied pump power. The maximum pulse repetition rate of 100 kHz was obtained with a pump power of 2.4 W.

  10. Genes in sport and doping.

    PubMed

    Pokrywka, A; Kaliszewski, P; Majorczyk, E; Zembroń-Łacny, A

    2013-09-01

    Genes control biological processes such as muscle production of energy, mitochondria biogenesis, bone formation, erythropoiesis, angiogenesis, vasodilation, neurogenesis, etc. DNA profiling for athletes reveals genetic variations that may be associated with endurance ability, muscle performance and power exercise, tendon susceptibility to injuries and psychological aptitude. Already, over 200 genes relating to physical performance have been identified by several research groups. Athletes' genotyping is developing as a tool for the formulation of personalized training and nutritional programmes to optimize sport training as well as for the prediction of exercise-related injuries. On the other hand, development of molecular technology and gene therapy creates a risk of non-therapeutic use of cells, genes and genetic elements to improve athletic performance. Therefore, the World Anti-Doping Agency decided to include prohibition of gene doping within their World Anti-Doping Code in 2003. In this review article, we will provide a current overview of genes for use in athletes' genotyping and gene doping possibilities, including their development and detection techniques.

  11. Hormones as doping in sports.

    PubMed

    Duntas, Leonidas H; Popovic, Vera

    2013-04-01

    Though we may still sing today, as did Pindar in his eighth Olympian Victory Ode, "… of no contest greater than Olympia, Mother of Games, gold-wreathed Olympia…", we must sadly admit that today, besides blatant over-commercialization, there is no more ominous threat to the Olympic games than doping. Drug-use methods are steadily becoming more sophisticated and ever harder to detect, increasingly demanding the use of complex analytical procedures of biotechnology and molecular medicine. Special emphasis is thus given to anabolic androgenic steroids, recombinant growth hormone and erythropoietin as well as to gene doping, the newly developed mode of hormones abuse which, for its detection, necessitates high-tech methodology but also multidisciplinary individual measures incorporating educational and psychological methods. In this Olympic year, the present review offers an update on the current technologically advanced endocrine methods of doping while outlining the latest procedures applied-including both the successes and pitfalls of proteomics and metabolomics-to detect doping while contributing to combating this scourge.

  12. Ceria modified activated carbon: an efficient arsenic removal adsorbent for drinking water purification

    NASA Astrophysics Data System (ADS)

    Sawana, Radha; Somasundar, Yogesh; Iyer, Venkatesh Shankar; Baruwati, Babita

    2017-06-01

    Ceria (CeO2) coated powdered activated carbon was synthesized by a single step chemical process and demonstrated to be a highly efficient adsorbent for the removal of both As(III) and As(V) from water without any pre-oxidation process. The formation of CeO2 on the surface of powdered activated carbon was confirmed by X-ray diffraction, Raman spectroscopy and X-ray photoelectron spectroscopy. The percentage of Ce in the adsorbent was confirmed to be 3.5 % by ICP-OES. The maximum removal capacity for As(III) and As(V) was found to be 10.3 and 12.2 mg/g, respectively. These values are comparable to most of the commercially available adsorbents. 80 % of the removal process was completed within 15 min of contact time in a batch process. More than 95 % removal of both As(III) and As(V) was achieved within an hour. The efficiency of removal was not affected by change in pH (5-9), salinity, hardness, organic (1-4 ppm of humic acid) and inorganic anions (sulphate, nitrate, chloride, bicarbonate and fluoride) excluding phosphate. Presence of 100 ppm phosphate reduced the removal significantly from 90 to 18 %. The equilibrium adsorption pattern of both As(III) and As(V) fitted well with the Freundlich model with R 2 values 0.99 and 0.97, respectively. The material shows reusability greater than three times in a batch process (arsenic concentration reduced below 10 ppb from 330 ppb) and a life of at least 100 L in a column study with 80 g material when tested under natural hard water (TDS 1000 ppm, pH 7.8, hardness 600 ppm as CaCO3) spiked with 330 ppb of arsenic.

  13. Electronic properties and reactivity of Pt-doped carbon nanotubes.

    PubMed

    Tian, Wei Quan; Liu, Lei Vincent; Wang, Yan Alexander

    2006-08-14

    The structures of the (5,5) single-walled carbon nanotube (SWCNT) segments with hemispheric carbon cages capped at the ends (SWCNT rod) and the Pt-doped SWCNT rods have been studied within density functional theory. Our theoretical studies find that the hemispheric cages introduce localized states on the caps. The cap-Pt-doped SWCNT rods can be utilized as sensors because of the sensitivity of the doped Pt atom. The Pt-doped SWCNT rods can also be used as catalysts, where the doped Pt atom serves as the enhanced and localized active center on the SWCNT. The adsorptions of C(2)H(4) and H(2) on the Pt atom in the Pt-doped SWCNT rods reveal different adsorption characteristics. The adsorption of C(2)H(4) on the Pt atom in all of the three Pt-doped SWCNT rods studied (cap-end-doped, cap-doped, and wall-doped) is physisorption with the strongest interaction occurring in the middle of the sidewall of the SWCNT. On the other hand, the adsorption of H(2) on the Pt atom at the sidewall of the SWCNT is chemisorption resulting in the decomposition of H(2), and the adsorption of H(2) at the hemispheric caps is physisorption.

  14. The composite capacitive behaviors of the N and S dual doped ordered mesoporous carbon with ultrahigh doping level

    NASA Astrophysics Data System (ADS)

    Zhang, Deyi; Lei, Longyan; Shang, Yonghua; Wang, Kunjie; Wang, Yi

    2016-01-01

    Heteroatoms doping provides a promising strategy for improving the energy density of supercapacitors based on the carbon electrodes. In this paper, we present a N and S dual doped ordered mesoporous carbon with ultrahigh doping level using dimethylglyoxime as pristine precursor. The N doping content of the reported materials varies from 6.6 to 15.6 at.% dependent on the carbonization temperature, and the S doping content varies from 0.46 to 1.01 at.%. Due to the ultrahigh heteroatoms doping content, the reported materials exhibit pronounced pseudo-capacitance. Meanwhile, the reported materials exhibit high surface areas (640⿿869 m2 g⿿1), large pore volume (0.71⿿1.08 cm2 g⿿1) and ordered pore structure. The outstanding textual properties endow the reported materials excellent electrical double-layer capacitance (EDLC). By effectively combining the pseudo-capacitance with EDLC, the reported materials exhibit a surprising energy storage/relax capacity with the highest specific capacitance of 565 F g⿿1, which value is 3.3 times higher than that of pristine CMK-3, and can compete against some conventional pseudo-capacitance materials.

  15. Doping properties of cadmium-rich arsenic-doped CdTe single crystals: Evidence of metastable AX behavior

    DOE PAGES

    Nagaoka, Akira; Kuciauskas, Darius; Scarpulla, Michael A.

    2017-12-04

    Cd-rich composition and group-V element doping are of interest for simultaneously maximizing the hole concentration and minority carrier lifetime in CdTe, but the critical details concerning point defects are not yet fully established. Herein, we report on the properties of arsenic doped CdTe single crystals grown from Cd solvent by the travelling heater method. The photoluminescence spectra and activation energy of 74 +/- 2 meV derived from the temperature-dependent Hall effect are consistent with AsTe as the dominant acceptor. Doping in the 10^16 to 10^17/cm^3 range is achieved for measured As concentrations between 10^16 and 10^20/cm^3 with the highest dopingmore » efficiency of 40% occurring near 10^17 As/cm^3. We observe persistent photoconductivity, a hallmark of light-induced metastable configuration changes consistent with AX behavior. Additionally, quenching experiments reveal at least two mechanisms of increased p-type doping in the dark, one decaying over 2-3 weeks and the other persisting for at least 2 months. These results provide essential insights for the application of As-doped CdTe in thin film solar cells.« less

  16. Doping properties of cadmium-rich arsenic-doped CdTe single crystals: Evidence of metastable AX behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagaoka, Akira; Kuciauskas, Darius; Scarpulla, Michael A.

    Cd-rich composition and group-V element doping are of interest for simultaneously maximizing the hole concentration and minority carrier lifetime in CdTe, but the critical details concerning point defects are not yet fully established. Herein, we report on the properties of arsenic doped CdTe single crystals grown from Cd solvent by the travelling heater method. The photoluminescence spectra and activation energy of 74 +/- 2 meV derived from the temperature-dependent Hall effect are consistent with AsTe as the dominant acceptor. Doping in the 10^16 to 10^17/cm^3 range is achieved for measured As concentrations between 10^16 and 10^20/cm^3 with the highest dopingmore » efficiency of 40% occurring near 10^17 As/cm^3. We observe persistent photoconductivity, a hallmark of light-induced metastable configuration changes consistent with AX behavior. Additionally, quenching experiments reveal at least two mechanisms of increased p-type doping in the dark, one decaying over 2-3 weeks and the other persisting for at least 2 months. These results provide essential insights for the application of As-doped CdTe in thin film solar cells.« less

  17. The evolving science of detection of 'blood doping'.

    PubMed

    Lundby, Carsten; Robach, Paul; Saltin, Bengt

    2012-03-01

    Blood doping practices in sports have been around for at least half a century and will likely remain for several years to come. The main reason for the various forms of blood doping to be common is that they are easy to perform, and the effects on exercise performance are gigantic. Yet another reason for blood doping to be a popular illicit practice is that detection is difficult. For autologous blood transfusions, for example, no direct test exists, and the direct testing of misuse with recombinant human erythropoietin (rhEpo) has proven very difficult despite a test exists. Future blood doping practice will likely include the stabilization of the transcription factor hypoxia-inducible factor which leads to an increased endogenous erythropoietin synthesis. It seems unrealistic to develop specific test against such drugs (and the copies hereof originating from illegal laboratories). In an attempt to detect and limit blood doping, the World Anti-Doping Agency (WADA) has launched the Athlete Biological Passport where indirect markers for all types of blood doping are evaluated on an individual level. The approach seemed promising, but a recent publication demonstrates the system to be incapable of detecting even a single subject as 'suspicious' while treated with rhEpo for 10-12 weeks. Sad to say, the hope that the 2012 London Olympics should be cleaner in regard to blood doping seems faint. We propose that WADA strengthens the quality and capacities of the National Anti-Doping Agencies and that they work more efficiently with the international sports federations in an attempt to limit blood doping. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  18. Multiple doping of silicon-germanium alloys for thermoelectric applications

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre; Vining, Cronin B.; Borshchevsky, Alex

    1989-01-01

    It is shown that heavy doping of n-type Si/Ge alloys with phosphorus and arsenic (V-V doping interaction) by diffusion leads to a significant enhancement of their carrier concentration and possible improvement of the thermoelectric figure of merit. High carrier concentrations were achieved by arsenic doping alone, but for a same doping level higher carrier mobilities and lower resistivities are obtained through phosphorus doping. By combining the two dopants with the proper diffusion treatments, it was possible to optimize the different properties, obtaining high carrier concentration, good carrier mobility and low electrical resistivity. Similar experiments, using the III-V doping interaction, were conducted on boron-doped p-type samples and showed the possibility of overcompensating the samples by diffusing arsenic, in order to get n-type behavior.

  19. Doping enhanced barrier lowering in graphene-silicon junctions

    NASA Astrophysics Data System (ADS)

    Zhang, Xintong; Zhang, Lining; Chan, Mansun

    2016-06-01

    Rectifying properties of graphene-semiconductor junctions depend on the Schottky barrier height. We report an enhanced barrier lowering in graphene-Si junction and its essential doping dependence in this paper. The electric field due to ionized charge in n-type Si induces the same type doping in graphene and contributes another Schottky barrier lowering factor on top of the image-force-induced lowering (IFIL). We confirm this graphene-doping-induced lowering (GDIL) based on well reproductions of the measured reverse current of our fabricated graphene-Si junctions by the thermionic emission theory. Excellent matching between the theoretical predictions and the junction data of the doping-concentration dependent barrier lowering serves as another evidence of the GDIL. While both GDIL and IFIL are enhanced with the Si doping, GDIL exceeds IFIL with a threshold doping depending on the as-prepared graphene itself.

  20. Cobalt doped proangiogenic hydroxyapatite for bone tissue engineering application.

    PubMed

    Kulanthaivel, Senthilguru; Roy, Bibhas; Agarwal, Tarun; Giri, Supratim; Pramanik, Krishna; Pal, Kunal; Ray, Sirsendu S; Maiti, Tapas K; Banerjee, Indranil

    2016-01-01

    The present study delineates the synthesis and characterization of cobalt doped proangiogenic-osteogenic hydroxyapatite. Hydroxyapatite samples, doped with varying concentrations of bivalent cobalt (Co(2+)) were prepared by the ammoniacal precipitation method and the extent of doping was measured by ICP-OES. The crystalline structure of the doped hydroxyapatite samples was confirmed by XRD and FTIR studies. Analysis pertaining to the effect of doped hydroxyapatite on cell cycle progression and proliferation of MG-63 cells revealed that the doping of cobalt supported the cell viability and proliferation up to a threshold limit. Furthermore, such level of doping also induced differentiation of the bone cells, which was evident from the higher expression of differentiation markers (Runx2 and Osterix) and better nodule formation (SEM study). Western blot analysis in conjugation with ELISA study confirmed that the doped HAp samples significantly increased the expression of HIF-1α and VEGF in MG-63 cells. The analysis described here confirms the proangiogenic-osteogenic properties of the cobalt doped hydroxyapatite and indicates its potential application in bone tissue engineering. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Effect of Doping on Surface Reactivity and Conduction Mechanism in Sm-doped CeO2 Thin Films

    DOE PAGES

    Yang, Nan; Belianinov, Alex; Strelcov, Evgheni; ...

    2014-11-21

    Scanning probe microscopy measurements show irreversible surface electrochemistry in Sm-doped CeO2 thin films, which depends on humidity, temperature and doping concentration. A systematic study by electrochemical strain microscopy (ESM) in samples with two different Sm content and in several working conditions allows disclosing the microscopic mechanism underlying the difference in water adsorption and splitting with subsequent proton liberation. We measure the behavior of the hysteresis loops by changing temperature and humidity, both in standard ESM configuration and using the first order reversal curve (FORC) method. Complementing our study with spectroscopic measurements by hard x-ray photoemission spectroscopy we find that watermore » incorporation is favored until the doping with Sm is too high to allow the presence of Ce3+. The influence of doping on the surface reactivity and conduction mechanism clearly emerges from all of our experimental results. We find that at lower Sm concentration proton conduction is prevalent, featured by lower activation energy and higher mobility. Defect concentrations determine the type of the prevalent charge carrier in a doping dependent manner.« less

  2. Rapid Synthesis and Formation Mechanism of Core-Shell-Structured La-Doped SrTiO3 with a Nb-Doped Shell

    PubMed Central

    Park, Nam-Hee; Akamatsu, Takafumi; Itoh, Toshio; Izu, Noriya; Shin, Woosuck

    2015-01-01

    To provide a convenient and practical synthesis process for metal ion doping on the surface of nanoparticles in an assembled nanostructure, core-shell-structured La-doped SrTiO3 nanocubes with a Nb-doped surface layer were synthesized via a rapid synthesis combining a rapid sol-precipitation and hydrothermal process. The La-doped SrTiO3 nanocubes were formed at room temperature by a rapid dissolution of NaOH pellets during the rapid sol-precipitation process, and the Nb-doped surface (shell) along with Nb-rich edges formed on the core nanocubes via the hydrothermal process. The formation mechanism of the core-shell-structured nanocubes and their shape evolution as a function of the Nb doping level were investigated. The synthesized core-shell-structured nanocubes could be arranged face-to-face on a SiO2/Si substrate by a slow evaporation process, and this nanostructured 10 μm thick thin film showed a smooth surface. PMID:28793420

  3. Neutron transmutation doped Ge bolometers

    NASA Technical Reports Server (NTRS)

    Haller, E. E.; Kreysa, E.; Palaio, N. P.; Richards, P. L.; Rodder, M.

    1983-01-01

    Some conclusions reached are as follow. Neutron Transmutation Doping (NTD) of high quality Ge single crystals provides perfect control of doping concentration and uniformity. The resistivity can be tailored to any given bolometer operating temperature down to 0.1 K and probably lower. The excellent uniformity is advantaged for detector array development.

  4. Two and four photon absorption and nonlinear refraction in undoped, chromium doped and copper doped ZnS quantum dots

    NASA Astrophysics Data System (ADS)

    Sharma, Dimple; Malik, B. P.; Gaur, Arun

    2015-12-01

    The ZnS quantum dots (QDs) with Cr and Cu doping were synthesized by chemical co-precipitation method. The nanostructures of the prepared undoped and doped ZnS QDs were characterized by UV-vis spectroscopy, Transmission electron microscopy (TEM) and X-ray diffraction (XRD). The sizes of QDs were found to be within 3-5 nm range. The nonlinear parameters viz. Two photon absorption coefficient (β2), nonlinear refractive index (n2), third order nonlinear susceptibility (χ3) at wavelength 532 nm and Four photon absorption coefficient (β4) at wavelength 1064 nm have been calculated by Z-scan technique using nanosecond Nd:YAG laser in undoped, Cr doped and Cu doped ZnS QDs. Higher values of nonlinear parameters for doped ZnS infer that they are potential material for the development of photonics devices and sensor protection applications.

  5. An insight into the dopant selection for CeO2-based resistive-switching memory system: a DFT and experimental study

    NASA Astrophysics Data System (ADS)

    Hussain, Fayyaz; Imran, Muhammad; Rana, Anwar Manzoor; Khalil, R. M. Arif; Khera, Ejaz Ahmad; Kiran, Saira; Javid, M. Arshad; Sattar, M. Atif; Ismail, Muhammad

    2018-03-01

    The aim of this study is to figure out better metal dopants for CeO2 for designing highly efficient non-volatile memory (NVM) devices. The present DFT work involves four different metals doped interstitially and substitutionally in CeO2 thin films. First principle calculations involve electron density of states (DOS) and partial density of states (PDOS), and isosurface charge densities are carried out within the plane-wave density functional theory using GGA and GGA + U approach by employing the Vienna ab initio simulation package VASP. Isosurface charge density plots confirmed that interstitial doping of Zr and Ti metals truly assists in generating conduction filaments (CFs), while substitutional doping of these metals cannot do so. Substitutional doping of W may contribute in generating CFs in CeO2 directly, but its interstitial doping improves conductivity of CeO2. However, Ni-dopant is capable of directly generating CFs both as substitutional and interstitial dopants in ceria. Such a capability of Ni appears acting as top electrode in Ni/CeO2/Pt memory devices, but its RS behavior is not so good. On inserting Zr layer to make Ni/Zr:CeO2/Pt memory stacks, Ni does not contribute in RS characteristics, but Zr plays a vital role in forming CFs by creating oxygen vacancies and forming ZrO2 interfacial layer. Therefore, Zr-doped devices exhibit high-resistance ratio of 104 and good endurance as compared to undoped devices suitable for RRAM applications.

  6. Microsecond molecular dynamics simulations provide insight into the ATP-competitive inhibitor-induced allosteric protection of Akt kinase phosphorylation.

    PubMed

    Mou, Linkai; Cui, Tongwei; Liu, Weiguang; Zhang, Hong; Cai, Zhanxiu; Lu, Shaoyong; Gao, Guojun

    2017-05-01

    Akt is a serine/threonine protein kinase, a critical mediator of growth factor-induced survival in key cellular pathways. Allosteric signaling between protein intramolecular domains requires long-range communication mediated by hotspot residues, often triggered by ligand binding. Here, based on extensive 3 μs explicit solvent molecular dynamics (MD) simulations of Akt1 kinase domain in the unbound (apo) and ATP-competitive inhibitor, GDC-0068-bound states, we propose a molecular mechanism for allosteric regulation of Akt1 kinase phosphorylation by GDC-0068 binding to the ATP-binding site. MD simulations revealed that the apo Akt1 is flexible with two disengaged N- and C-lobes, equilibrated between the open and closed conformations. GDC-0068 occupancy of the ATP-binding site shifts the conformational equilibrium of Akt1 from the open conformation toward the closed conformation and stabilizes the closed state. This effect enables allosteric signal propagation from the GDC-0068 to the phosphorylated T308 (pT308) in the activation loop and restrains phosphatase access to pT308, thereby protecting the pT308 in the GDC-0068-bound Akt1. Importantly, functional hotspots involved in the allosteric communication from the GDC-0068 to the pT308 are identified. Our analysis of GDC-0068-induced allosteric protection of Akt kinase phosphorylation yields important new insights into the molecular mechanism of allosteric regulation of Akt kinase activity. © 2016 John Wiley & Sons A/S.

  7. The worldwide fight against doping: from the beginning to the World Anti-Doping Agency.

    PubMed

    Kamber, Matthias; Mullis, Primus-E

    2010-03-01

    This article describes the worldwide endeavor to combat doping in sports. It describes the historical reasons the movement began and outlines the current status of this effort by international sports groups, governments, and the World Anti-Doping Agency. The purposes, strengths, and limitations of the various entities are illustrated; and recommendations for improvements are made. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Doped biocompatible layers prepared by laser

    NASA Astrophysics Data System (ADS)

    Jelínek, M.; Weiserová, M.; Kocourek, T.; Jurek, K.; Strnad, J.

    2010-03-01

    The contribution deals with KrF laser synthesis and study of doped biocompatible materials with focus on diamond-like carbon (DLC) and hydroxyapatite (HA). Overview of materials used for dopation is given. Experimental results of study of HA layers doped with silver are presented. Films properties were characterized using profilometer, SEM, WDX, XRD and optical transmission. Content of silver in layers moved from 0.06 to 13.7 at %. The antibacterial properties of HA, silver and doped HA layers were studied in vivo using Escherichia coli cells.

  9. Detection of EPO doping and blood doping: the haematological module of the Athlete Biological Passport.

    PubMed

    Schumacher, Yorck Olaf; Saugy, Martial; Pottgiesser, Torben; Robinson, Neil

    2012-11-01

    The increase of the body's capacity to transport oxygen is a prime target for doping athletes in all endurance sports. For this pupose, blood transfusions or erythropoiesis stimulating agents (ESA), such as erythropoietin, NESP, and CERA are used. As direct detection of such manipulations is difficult, biomarkers that are connected to the haematopoietic system (haemoglobin concentration, reticulocytes) are monitored over time (Athlete Biological Passport (ABP)) and analyzed using mathematical models to identify patterns suspicious of doping. With this information, athletes can either be sanctioned directly based on their profile or targeted with conventional doping tests. Key issues for the appropriate use of the ABP are correct targeting and use of all available information (e.g. whereabouts, cross sectional population data) in a forensic manner. Future developments of the passport include the correction of all concentration-based variables for shifts in plasma volume, which might considerably increase sensitivity. New passport markers from the genomic, proteomic, and metabolomic level might add further information, but need to be validated before integration into the passport procedure. A first assessment of blood data of federations that have implemented the passport show encouraging signs of a decreased blood-doping prevalence in their athletes, which adds scientific credibility to this innovative concept in the fight against ESA- and blood doping. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Electrical properties of tin-doped zinc oxide nanostructures doped at different dopant concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasir, M. F., E-mail: babaibaik2002@yahoo.com; Zainol, M. N., E-mail: nizarzainol@yahoo.com; Hannas, M., E-mail: mhannas@gmail.com

    This project has been focused on the electrical and optical properties respectively on the effect of Tin doped zinc oxide (ZnO) thin films at different dopant concentrations. These thin films were doped with different Sn dopant concentrations at 1 at%, 2 at%, 3 at%, 4 at% and 5 at% was selected as the parameter to optimize the thin films quality while the annealing temperature is fixed 500 °C. Sn doped ZnO solutions were deposited onto the glass substrates using sol-gel spin coating method. This project was involved with three phases, which are thin films preparation, deposition and characterization. The thinmore » films were characterized using Current Voltage (I-V) measurement and ultraviolet-visible-near-infrared (UV-vis-NIR) spectrophotometer (Perkin Elmer Lambda 750) for electrical properties and optical properties. The electrical properties show that the resistivity is the lowest at 4 at% Sn doping concentration with the value 3.08 × 10{sup 3} Ωcm{sup −1}. The absorption coefficient spectrum obtained shows all films exhibit very low absorption in the visible (400-800 nm) and near infrared (NIR) (>800 nm) range but exhibit high absorption in the UV range.« less

  11. Synthesis of Antimony Doped Amorphous Carbon Films

    NASA Astrophysics Data System (ADS)

    Okuyama, H.; Takashima, M.; Akasaka, H.; Ohtake, N.

    2013-06-01

    We report the effects of antimony (Sb) doping on the electrical and optical properties of amorphous carbon (a-C:H) films grown on silicon and copper substrates by magnetron sputtering deposition. For film deposition, the mixture targets fabricated from carbon and antimony powders was used. The atomic concentration of carbon, hydrogen, and antimony, in the film deposited from the 1.0 mol% Sb containing target were 81, 17, 2 at.%, respectively. These elements were homogeneously distributed in the film. On the structural effect, the average continuous sp2 carbon bonding networks decreased with Sb concentration increasing, and defects in the films were increased with the Sb incorporation because atomic radius of Sb atoms is twice larger size than that of carbon. The optical gap and the electrical resistivity were carried out before and after the Sb doping. The results show that optical gap dropped from 3.15 to 3.04 eV corresponding to non-doping to Sb-doping conditions, respectively. The electrical resistivity reduced from 10.5 to 1.0 MΩm by the Sb doping. These results suggest the doping level was newly formed in the forbidden band.

  12. Optical method for the screening of doping substances

    NASA Astrophysics Data System (ADS)

    Lademann, J.; Shevtsova, J.; Patzelt, A.; Richter, H.; Gladkowa, N. D.; Gelikonov, V. M.; Gonchukov, S. A.; Sterry, W.; Blume-Peytavi, U.

    2008-12-01

    During the last years, an increased misuse of doping substances in sport has been observed. The action of doping substances characterized by the stimulation of blood flow and metabolic processes is also reflected in the hair structure. In the present study it was demonstrated that optical coherent tomography is well suited for the analysis of hair parameters influenced by doping. Analyzing 20 patients, systemically treated with steroids which also represent doping substances, it was found that in all cases a significant increase in the cross-section of the hairs could be detected. The results obtained in the study are not only important for the screening of doping substances but also for medical diagnostics and control of compliance of patients.

  13. [Gene doping: gene transfer and possible molecular detection].

    PubMed

    Argüelles, Carlos Francisco; Hernández-Zamora, Edgar

    2007-01-01

    The use of illegal substances in sports to enhance athletic performance during competition has caused international sports organizations such as the COI and WADA to take anti doping measures. A new doping method know as gene doping is defined as "the non-therapeutic use of genes, genetic elements and/or cells that have the capacity to enhance athletic performance". However, gene doping in sports is not easily identified and can cause serious consequences. Molecular biology techniques are needed in order to distinguish the difference between a "normal" and an "altered" genome. Further, we need to develop new analytic methods and biological molecular techniques in anti-doping laboratories, and design programs that avoid the non therapeutic use of genes.

  14. GENES IN SPORT AND DOPING

    PubMed Central

    Kaliszewski, P.; Majorczyk, E.; Zembroń-Łacny, A.

    2013-01-01

    Genes control biological processes such as muscle production of energy, mitochondria biogenesis, bone formation, erythropoiesis, angiogenesis, vasodilation, neurogenesis, etc. DNA profiling for athletes reveals genetic variations that may be associated with endurance ability, muscle performance and power exercise, tendon susceptibility to injuries and psychological aptitude. Already, over 200 genes relating to physical performance have been identified by several research groups. Athletes’ genotyping is developing as a tool for the formulation of personalized training and nutritional programmes to optimize sport training as well as for the prediction of exercise-related injuries. On the other hand, development of molecular technology and gene therapy creates a risk of non-therapeutic use of cells, genes and genetic elements to improve athletic performance. Therefore, the World Anti-Doping Agency decided to include prohibition of gene doping within their World Anti-Doping Code in 2003. In this review article, we will provide a current overview of genes for use in athletes’ genotyping and gene doping possibilities, including their development and detection techniques. PMID:24744482

  15. N-doping of organic semiconductors by bis-metallosandwich compounds

    DOEpatents

    Barlow, Stephen; Qi, Yabing; Kahn, Antoine; Marder, Seth; Kim, Sang Bok; Mohapatra, Swagat K.; Guo, Song

    2016-01-05

    The various inventions disclosed, described, and/or claimed herein relate to the field of methods for n-doping organic semiconductors with certain bis-metallosandwich compounds, the doped compositions produced, and the uses of the doped compositions in organic electronic devices. Metals can be manganese, rhenium, iron, ruthenium, osmium, rhodium, or iridium. Stable and efficient doping can be achieved.

  16. Composite solid oxide fuel cell anode based on ceria and strontium titanate

    DOEpatents

    Marina, Olga A.; Pederson, Larry R.

    2008-12-23

    An anode and method of making the same wherein the anode consists of two separate phases, one consisting of a doped strontium titanate phase and one consisting of a doped cerium oxide phase. The strontium titanate phase consists of Sr.sub.1-xM.sub.xTiO.sub.3-.delta., where M is either yttrium (Y), scandium (Sc), or lanthanum (La), where "x" may vary typically from about 0.01 to about 0.5, and where .delta. is indicative of some degree of oxygen non-stoichiometry. A small quantity of cerium may also substitute for titanium in the strontium titanate lattice. The cerium oxide consists of N.sub.yCe.sub.1-yO.sub.2-.delta., where N is either niobium (Nb), vanadium (V), antimony (Sb) or tantalum (Ta) and where "y" may vary typically from about 0.001 to about 0.1 and wherein the ratio of Ti in said first phase to the sum of Ce and N in the second phase is between about 0.2 to about 0.75. Small quantities of strontium, yttrium, and/or lanthanum may additionally substitute into the cerium oxide lattice. The combination of these two phases results in better performance than either phase used separately as an anode for solid oxide fuel cell or other electrochemical device.

  17. Boron doping a semiconductor particle

    DOEpatents

    Stevens, G.D.; Reynolds, J.S.; Brown, L.K.

    1998-06-09

    A method of boron doping a semiconductor particle using boric acid to obtain a p-type doped particle. Either silicon spheres or silicon powder is mixed with a diluted solution of boric acid having a predetermined concentration. The spheres are dried, with the boron film then being driven into the sphere. A melt procedure mixes the driven boron uniformly throughout the sphere. In the case of silicon powder, the powder is metered out into piles and melted/fused with an optical furnace. Both processes obtain a p-type doped silicon sphere with desired resistivity. Boric acid is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirements. 2 figs.

  18. Metal Doped Manganese Oxide Thin Films for Supercapacitor Application.

    PubMed

    Tung, Mai Thanh; Thuy, Hoang Thi Bich; Hang, Le Thi Thu

    2015-09-01

    Co and Fe doped manganese oxide thin films were prepared by anodic deposition at current density of 50 mA cm(-2) using the electrolyte containing manganese sulfate and either cobalt sulfate or ferrous sulfate. Surface morphology and crystal structure of oxides were studied by scanning electron microscope (SEM) and X-ray diffraction (XRD). Chemical composition of materials was analyzed by X-ray energy dispersive spectroscope (EDS), iodometric titration method and complexometric titration method, respectively. Supercapacitive behavior of Co and Fe doped manganese oxide films were characterized by cyclic voltammetry (CV) and impedance spectroscopy (EIS). The results show that the doped manganese oxides are composed of nano fiber-like structure with radius of 5-20 nm and remain amorphous structure after heat treatment at 100 degrees C for 2 hours. The average valence of manganese increases from +3.808 to +3.867 after doping Co and from +3.808 to +3.846 after doping Fe. The doped manganese oxide film electrodes exhibited preferably ideal pseudo-capacitive behavior. The specific capacitance value of deposited manganese oxide reaches a maximum of 175.3 F/g for doping Co and 244.6 F/g for doping Fe. The thin films retained about 84% of the initial capacity even after 500 cycles of charge-discharge test. Doping Co and Fe decreases diffusion and charge transfer resistance of the films. The electric double layer capacitance and capacitor response frequency are increased after doping.

  19. Cobalt Doping of Semiconducting Boron Carbide Using Cobaltocene

    DTIC Science & Technology

    2007-03-01

    COBALT DOPING OF SEMICONDUCTING BORON CARBIDE USING COBALTOCENE THESIS Lonnie Carlson, Major...DOPING OF SEMICONDUCTING BORON CARBIDE USING COBALTOCENE THESIS Presented to the Faculty Department of Engineering Physics Graduate School...DISTRIBUTION UNLIMITED AFIT/GNE/ENP/07-01 COBALT DOPING OF SEMICONDUCTING BORON CARBIDE USING COBALTOCENE Lonnie

  20. Thirteen years of the fight against doping in figures.

    PubMed

    Aguilar, Millán; Muñoz-Guerra, Jesús; Plata, María Del Mar; Del Coso, Juan

    2017-06-01

    Every year, the World Anti-Doping Agency (WADA) publishes the main statistics reported by the accredited laboratories, which provide very valuable information for assessing changes in the patterns of doping in sports over time. Using the information provided since 2003 as the basis for the analysis, the evolution of doping/anti-doping figures over the last decade can be examined in reasonable detail, at least in reference to samples analyzed and categories of substances more commonly found in athletes' samples. This brief analysis of the WADA statistical reports leads us to the following outcomes: the increase in anti-doping pressure from 2003 to 2015, as evidenced by increased numbers of samples analyzed and banned substances, has not directly produced a higher frequency of adverse/atypical findings. Although this could be interpreted as steady state in the capacity to detect doping through this whole period, it also resulted in a significant increase in the absolute number of samples catalogued as doping (from 2247 in 2003 to 5912 in 2015). Anabolic agents have been the most common doping substances detected in all statistics reports while the remaining groups of substances are much less frequently found in doping control samples. Given that one might have expected the enhancement of the anti-doping programme led by WADA over this last decade to have increased the percentage of adverse/atypical findings, the fact that it did not might indicate the need to take another step in sampling strategies, such as 'more intelligent testing' based on the differences in the prevalence of doping substances among sports. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Biomedical activities of endohedral metallofullerene optimized for nanopharmaceutics.

    PubMed

    Meng, Jie; Wang, Dong-liang; Wang, Paul C; Jia, Lee; Chen, Chunying; Liang, Xing-Jie

    2010-12-01

    Endohedral metallofullerenes, a novel form of carbon-related nanomaterials, currently attract wide attention for their potential applications in biomedical fields such as therapeutic medicine. Most endohedral metallofullerenes are synthesized using C60 or higher molecular weight fullerenes because of the limited interior volume of fullerene. It is known that the encapsulated metal atom has strong electronic interactions with the carbon cage in metallofullerenes. Gd@C82 is one of the most important molecules in the metallofullerene family, known as Magnetic Resonance Imaging (MRI) contrast agent candidate for diagnostic imaging. Gadolinium endohedral metallofullerenol (e.g., Gd@C82(OH)22) is a functionalized fullerene with gadolinium trapped inside carbon cage. Our group previously demonstrated that the distinctive chemical and physical properties of Gd@C82(OH)22 are dependent on the number and position of the hydroxyl groups on the fullerene cage. The present article summarizes our latest findings of biomedical effects of Gd@C82(OH)22 and gives rise to a connected flow of the existing knowledge and information from experts in the field. It briefly narrates the synthesis and physico-chemical properties of Gd@C82(OH)22. The polyhydroxylated nanoparticles exhibit the enhanced water solubility and high purity, and were tested as a MRI contrast agent. Gd@C82(OH)22 treatment inhibited tumor growth in tumor-bearing nude mice. Although the precise mechanisms of this action are not well defined, our in vitro data suggest involvements of improved immunity and antioxidation by Gd@C82(OH)22 and its size-based selective targeting to tumor site. The review critically analyzed the relevant data instead of fact-listing, and explained the potential for developing Gd@C82(OH)22 into a diagnostic or therapeutic agent.

  2. Nano-sized Ni-doped carbon aerogel for supercapacitor.

    PubMed

    Lee, Yoon Jae; Jung, Ji Chul; Park, Sunyoung; Seo, Jeong Gil; Baeck, Sung-Hyeon; Yoon, Jung Rag; Yi, Jongheop; Song, In Kyu

    2011-07-01

    Carbon aerogel was prepared by polycondensation of resorcinol with formaldehyde using sodium carbonate as a catalyst in ambient conditions. Nano-sized Ni-doped carbon aerogel was then prepared by a precipitation method in an ethanol solvent. In order to elucidate the effect of nickel content on electrochemical properties, Ni-doped carbon aerogels (21, 35, 60, and 82 wt%) were prepared and their performance for supercapacitor electrode was investigated. Electrochemical properties of Ni-doped carbon aerogel electrodes were measured by cyclic voltammetry at a scan rate of 10 mV/sec and charge/discharge test at constant current of 1 A/g in 6 M KOH electrolyte. Among the samples prepared, 35 wt% Ni-doped carbon aerogel (Ni/CA-35) showed the highest capacitance (110 F/g) and excellent charge/discharge behavior. The enhanced capacitance of Ni-doped carbon aerogel was attributed to the faradaic redox reactions of nano-sized nickel oxide. Moreover, Ni-doped carbon aerogel exhibited quite stable cyclability, indicating long-term electrochemical stability.

  3. Characteristics of camel-gate structures with active doping channel profiles

    NASA Astrophysics Data System (ADS)

    Tsai, Jung-Hui; Lour, Wen-Shiung; Laih, Lih-Wen; Liu, Rong-Chau; Liu, Wen-Chau

    1996-03-01

    In this paper, we demonstrate the influence of channel doping profile on the performances of camel-gate field effect transistors (CAMFETs). For comparison, single and tri-step doping channel structures with identical doping thickness products are employed, while other parameters are kept unchanged. The results of a theoretical analysis show that the single doping channel FET with lightly doping active layer has higher barrier height and drain-source saturation current. However, the transconductance is decreased. For a tri-step doping channel structure, it is found that the output drain-source saturation current and the barrier height are enhanced. Furthermore, the relatively voltage independent performances are improved. Two CAMFETs with single and tri-step doping channel structures have been fabricated and discussed. The devices exhibit nearly voltage independent transconductances of 144 mS mm -1 and 222 mS mm -1 for single and tri-step doping channel CAMFETs, respectively. The operation gate voltage may extend to ± 1.5 V for a tri-step doping channel CAMFET. In addition, the drain current densities of > 750 and 405 mA mm -1 are obtained for the tri-step and single doping CAMFETs. These experimental results are inconsistent with theoretical analysis.

  4. Doping and thrombosis in sports.

    PubMed

    Lippi, Giuseppe; Banfi, Giuseppe

    2011-11-01

    Historically, humans have long sought to enhance their "athletic" performance to increase body weight, aggressiveness, mental concentration and physical strength, contextually reducing fatigue, pain, and improving recovery. Although regular training is the mainstay for achieving these targets, the ancillary use of ergogenic aids has become commonplace in all sports. The demarcation between ergogenic aids and doping substances or practices is continuously challenging and mostly based on perceptions regarding the corruption of the fairness of competition and the potential side effects or adverse events arising from the use of otherwise unnecessary ergogenic substances. A kaleidoscope of side effects has been associated with the use of doping agents, including behavioral, skeletal, endocrinologic, metabolic, hemodynamic, and cardiovascular imbalances. Among the various doping substances, the most striking association with thrombotic complications has been reported for androgenic anabolic steroids (i.e., cardiomyopathy, fatal and nonfatal arrhythmias, myocardial infarction [MI], intracardiac thrombosis, stroke, venous thromboembolism [VTE], limb arterial thrombosis, branch retinal vein occlusion, cerebral venous sinus thrombosis) and blood boosting (i.e., VTE and MI, especially for epoetin and analogs). The potential thrombotic complication arising from misuse of other doping agents such as the administration of cortisol, growth hormone, prolactin, cocaine, and platelet-derived preparations is instead speculative or anecdotal at best. The present article provides an overview on the epidemiological association as well as the underlying biochemical and biological mechanisms linking the practice of doping in sports with the development of thrombosis. © Thieme Medical Publishers.

  5. Doped luminescent materials and particle discrimination using same

    DOEpatents

    Doty, F. Patrick; Allendorf, Mark D; Feng, Patrick L

    2014-10-07

    Doped luminescent materials are provided for converting excited triplet states to radiative hybrid states. The doped materials may be used to conduct pulse shape discrimination (PSD) using luminescence generated by harvested excited triplet states. The doped materials may also be used to detect particles using spectral shape discrimination (SSD).

  6. Hole transport in pure and doped hematite

    NASA Astrophysics Data System (ADS)

    Liao, Peilin; Carter, Emily A.

    2012-07-01

    Hematite (α-Fe2O3) is a promising candidate for use in photovoltaic (PV) and photoelectrochemical devices. Its poor conductivity is one major drawback. Doping hematite either p-type or n-type greatly enhances its measured conductivity and is required for potential p-n junctions in PVs. Here, we study hole transport in pure and doped hematite using an electrostatically embedded cluster model with ab initio quantum mechanics (unrestricted Hartree-Fock theory). Consistent with previous work, the model suggests that hole hopping is via oxygen anions for pure hematite. The activation energy for hole mobility is predicted to be at least 0.1 eV higher than the activation energy for electron mobility, consistent with the trend observed in experiments. We examine four dopants—magnesium(II), nickel(II), copper(II), and manganese(II/III) in direct cation substitution sites—to gain insight into the mechanism by which conductivity is improved. The activation energies are used to assess qualitative effects of different dopants. The hole carriers are predicted to be attracted to O anions near the dopants. The magnitude of the trapping effect is similar among the four dopants in their +2 oxidation states. The multivalent character of Mn doping facilitates local hole transport around Mn centers via a low-barrier O-Mn-O pathway, which suggests that higher hole mobility can be achieved with increasing Mn doping concentration, especially when a network of these low-barrier pathways is produced. Our results suggest that the experimentally observed conductivity increase in Mg-, Ni-, and Cu-doped p-type hematite is mostly due to an increase in hole carriers rather than improved mobility, and that Mg-, Ni-, and Cu-doping perform similarly, while the conductivity of Mn-doped hematite might be significantly improved in the high doping concentration limit.

  7. Simultaneous Graphite Exfoliation and N Doping in Supercritical Ammonia.

    PubMed

    Sasikala, Suchithra Padmajan; Huang, Kai; Giroire, Baptiste; Prabhakaran, Prem; Henry, Lucile; Penicaud, Alain; Poulin, Philippe; Aymonier, Cyril

    2016-11-16

    We report the exfoliation of graphite and simultaneous N doping of graphene by two methods: supercritical ammonia treatment and liquid-phase exfoliation with NH 4 OH. While the supercritical ammonia allowed N doping at a level of 6.4 atom % in 2 h, the liquid-phase exfoliation with NH 4 OH allowed N doping at a level of 2.7 atom % in 6 h. The N doped graphene obtained via the supercritical ammonia route had few layers (<5) and showed large lateral flake size (∼8 μm) and low defect density (I D /I G < 0.6) in spite of their high level of N doping. This work is the first demonstration of supercritical ammonia as an exfoliation agent and N doping precursor for graphene. Notably, the N doped graphene showed electrocatalytic activity toward oxygen reduction reaction with high durability and good methanol tolerance compared to those of commercial Pt/C catalyst.

  8. Molecular-scale properties of MoO3 -doped pentacene

    NASA Astrophysics Data System (ADS)

    Ha, Sieu D.; Meyer, Jens; Kahn, Antoine

    2010-10-01

    The mechanisms of molecular doping in organic electronic materials are explored through investigation of pentacene p -doped with molybdenum trioxide (MoO3) . Doping is confirmed with ultraviolet photoelectron spectroscopy. Isolated dopants are imaged at the molecular scale using scanning tunneling microscopy (STM) and effects due to localized holes are observed. The results demonstrate that donated charges are localized by the counterpotential of ionized dopants in MoO3 -doped pentacene, generalizing similar effects previously observed for pentacene doped with tetrafluoro-tetracyanoquinodimethane. Such localized hole effects are only observed for low molecular weight MoO3 species. It is shown that for larger MoO3 polymers and clusters, the ionized dopant potential is sufficiently large as to mask the effect of the localized hole in STM images. Current-voltage measurements recorded using scanning tunneling spectroscopy reveal that electron conductivity decreases in MoO3 -doped films, as expected for electron capture and p -doping.

  9. Characteristics of Mg-doped and In-Mg co-doped p-type GaN epitaxial layers grown by metal organic chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Chung, S. J.; Senthil Kumar, M.; Lee, Y. S.; Suh, E.-K.; An, M. H.

    2010-05-01

    Mg-doped and In-Mg co-doped p-type GaN epilayers were grown using the metal organic chemical vapour deposition technique. The effect of In co-doping on the physical properties of p-GaN layer was examined by high resolution x-ray diffraction (HRXRD), transmission electron microscopy (TEM), Hall effect, photoluminescence (PL) and persistent photoconductivity (PPC) at room temperature. An improved crystalline quality and a reduction in threading dislocation density are evidenced upon In doping in p-GaN from HRXRD and TEM images. Hole conductivity, mobility and carrier density also significantly improved by In co-doping. PL studies of the In-Mg co-doped sample revealed that the peak position is blue shifted to 3.2 eV from 2.95 eV of conventional p-GaN and the PL intensity is increased by about 25%. In addition, In co-doping significantly reduced the PPC effect in p-type GaN layers. The improved electrical and optical properties are believed to be associated with the active participation of isolated Mg impurities.

  10. Electrical properties of Er-doped CdS thin films

    NASA Astrophysics Data System (ADS)

    Dávila-Pintle, J. A.; Lozada-Morales, R.; Palomino-Merino, M. R.; Rivera-Márquez, J. A.; Portillo-Moreno, O.; Zelaya-Angel, O.

    2007-01-01

    Cadmium sulfide thin films were prepared by chemical bath on glass substrates at 80°C. CdS was Er-doped during the growth process by adding water-diluted Er(NO3)33•H2O to the CdS aqueous growing solution. The relative volume of the doping solution was varied in order to obtain different doping levels. The crystalline structure of CdS:Er films was cubic zinc blende for all the doped layers prepared. The (111) interplanar distance has an irregular variation with the Er doping level. Consequently, the band gap energy (Eg) firstly increases and afterward diminishes becoming, at last, approximately constant at around Eg=2.37eV. For higher doping levels, in the as-grown films, dark electrical conductivity (σ ) values reach 1.8×10-2Ω-1cm-1 at room temperature. The logarithm of σ vs 1/kT plot, where k is Boltzmann's constant and T the absolute temperature, indicates an effective doping of CdS as a result of the Er introduction into the lattice of the material. Hall effect measurements reveal a n-type doping with 2.8×1019cm-3 as maximum carrier density.

  11. Self-compensation in arsenic doping of CdTe

    DOE PAGES

    Ablekim, Tursun; Swain, Santosh K.; Yin, Wan -Jian; ...

    2017-07-04

    Efficient p-type doping in CdTe has remained a critical challenge for decades, limiting the performance of CdTe-based semiconductor devices. Arsenic is a promising p-type dopant; however, reproducible doping with high concentration is difficult and carrier lifetime is low. We systematically studied defect structures in As-doped CdTe using high-purity single crystal wafers to investigate the mechanisms that limit p-type doping. Two As-doped CdTe with varying acceptor density and two undoped CdTe were grown in Cd-rich and Te-rich environments. The defect structures were investigated by thermoelectric-effect spectroscopy (TEES), and first-principles calculations were used for identifying and assigning the experimentally observed defects. Measurementsmore » revealed activation of As is very low in both As-doped samples with very short lifetimes indicating strong compensation and the presence of significant carrier trapping defects. Defect studies suggest two acceptors and one donor level were introduced by As doping with activation energies at ~88 meV, ~293 meV and ~377 meV. In particular, the peak shown at ~162 K in the TEES spectra is very prominent in both As-doped samples, indicating a signature of AX-center donors. In conclusion, the AX-centers are believed to be responsible for most of the compensation because of their low formation energy and very prominent peak intensity in TEES spectra.« less

  12. [Doping: health risks and relation to addictive behaviors].

    PubMed

    Siri, Françoise; Roques, Bernard P

    2003-11-01

    The paper presents the health hazards of the major doping substances and raises some questions about the relationship between doping and addictive behavior. Current definitions of doping and addictive behavior are examined. The paper's goal is: 1- to assess the risks of neurotoxicity and overall toxicity of doping substances: stimulants, narcotics (seldom used as doping substances), and hormones, and assess their addictive potential; 2- to present available data on drug-dependent patients with a record of early prolonged and intensive physical activity or athletic practice. Some doping substances present high risks for health at large doses, but usually low addictive potential and neurotoxicity. Dependency on doping substances and drift towards dependency to addictive drugs, if any, are therefore determined by genetic and environmental factors. A significant susceptibility to drug dependence has been observed in some cases of very intensive and competitive practice. Over-representation of intensive and competitive athletic antecedents among some drug-dependent patients could be accounted for in either of two ways. On the first account, the causal factor is a sensation-seeking character trait, with a likely genetic component, which predisposes the individual to the use of drugs or doping substances, as the opportunities arise. On the second account, the sudden interruption of intensive practice, and of the associated organic stress and hypersensitization of the hedonic pathway, creates a weaning syndrome and leads to the search for relief through drugs. Further exploration of this hypothesis is called for.

  13. Self-compensation in arsenic doping of CdTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ablekim, Tursun; Swain, Santosh K.; Yin, Wan -Jian

    Efficient p-type doping in CdTe has remained a critical challenge for decades, limiting the performance of CdTe-based semiconductor devices. Arsenic is a promising p-type dopant; however, reproducible doping with high concentration is difficult and carrier lifetime is low. We systematically studied defect structures in As-doped CdTe using high-purity single crystal wafers to investigate the mechanisms that limit p-type doping. Two As-doped CdTe with varying acceptor density and two undoped CdTe were grown in Cd-rich and Te-rich environments. The defect structures were investigated by thermoelectric-effect spectroscopy (TEES), and first-principles calculations were used for identifying and assigning the experimentally observed defects. Measurementsmore » revealed activation of As is very low in both As-doped samples with very short lifetimes indicating strong compensation and the presence of significant carrier trapping defects. Defect studies suggest two acceptors and one donor level were introduced by As doping with activation energies at ~88 meV, ~293 meV and ~377 meV. In particular, the peak shown at ~162 K in the TEES spectra is very prominent in both As-doped samples, indicating a signature of AX-center donors. In conclusion, the AX-centers are believed to be responsible for most of the compensation because of their low formation energy and very prominent peak intensity in TEES spectra.« less

  14. Effect of aluminum and yttrium doping on zinc sulphide nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Swati, E-mail: sharma.swati1507@gmail.com; Kashyap, Jyoti; Kapoor, A.

    2016-05-06

    In this work, pristine and doped Zinc Sulphide (ZnS) nanoparticles have been synthesized via chemical co-precipitation method. ZnS nanoparticles have been doped with Aluminium (Al) and Yttrium (Y) with doping concentration of 5wt% each. The structural and optical properties of the as prepared nanoparticles have been studied using X-Ray diffraction (XRD) technique and Photoluminescence spectroscopy. Average grain size of 2-3nm is observed through the XRD analysis. Effect of doping on stress, strain and lattice constant of the nanoparticles has also been analyzed. Photoluminescence spectra of the as prepared nanoparticles is enhanced due to Al doping and quenched due to Ymore » doping. EDAX studies confirm the relative doping percentage to be 3.47 % and 3.94% by wt. for Al and Y doped nanoparticles respectively. Morphology of the nanoparticles studied using TEM and SEM indicates uniform distribution of spherical nanoparticles.« less

  15. Co-doping effects on luminescence and scintillation properties of Ce doped (Lu,Gd)3(Ga,Al)5O12 scintillator

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hiroaki; Kamada, Kei; Kurosawa, Shunsuke; Pejchal, Jan; Shoji, Yasuhiro; Yokota, Yuui; Ohashi, Yuji; Yoshikawa, Akira

    2016-11-01

    Mg co-doping effects on scintillation properties of Ce:Lu1Gd2(Ga,Al)5O12 (LGGAG) were investigated. Mg 200 ppm co-doped Ce:LGGAG single crystals were prepared by micro pulling down method. Absorption and luminescence spectra were measured together with several other scintillation characteristics, namely the scintillation decay and light yield to reveal the effect of Mg co-doping. Ce4+ charge transfer absorption was observed below 300 nm in Mg,Ce:LGGAG which is in good agreement with previous reports. The scintillation decay times were accelerated by Mg co-doping.

  16. Novel solid oxide cells with SrCo0.8Fe0.1Ga0.1O3-δ oxygen electrode for flexible power generation and hydrogen production

    NASA Astrophysics Data System (ADS)

    Meng, Xiuxia; Shen, Yichi; Xie, Menghan; Yin, Yimei; Yang, Naitao; Ma, Zi-Feng; Diniz da Costa, João C.; Liu, Shaomin

    2016-02-01

    This work investigates the performance of solid oxide cells as fuel cells (SOFCs) for power production and also as electrolysis cells (SOECs) for hydrogen production. In order to deliver this dual mode flexible operation system, a novel perovskite oxide based on Ga3+ doped SrCo0.8Fe0.1Ga0.1O3-δ (SCFG) is synthesized via a sol-gel method. Its performance for oxygen electrode catalyst was then evaluated. Single solid oxide cell in the configuration of Ni-YSZ|YSZ|GDC|SCFG is assembled and tested in SOFC or SOEC modes from 550 to 850 °C with hydrogen as the fuel or as the product, respectively. GDC is used to avoid the reaction between the electrolyte YSZ and the cobalt-based electrode. Under SOFC mode, a maximum power density of 1044 mW cm-2 is obtained at 750 °C. Further, the cell delivers a stable power output of 650 mW cm-2 up to 125 h at 0.7 V. In the electrolysis mode, when the applied voltage is controlled at 2 V, the electrolysis current density reaches 3.33 A cm-2 at 850 °C with the hydrogen production rate up to 22.9 mL min-1 cm-2 (STP). These results reveal that SCFG is a very promising oxygen electrode material for application in both SOFC and SOEC.

  17. Enhanced hydroxyl radical generation in the combined ozonation and electrolysis process using carbon nanotubes containing gas diffusion cathode.

    PubMed

    Wu, Donghai; Lu, Guanghua; Zhang, Ran; Lin, Qiuhong; Yan, Zhenhua; Liu, Jianchao; Li, Yi

    2015-10-01

    Combination of ozone together with electrolysis (ozone-electrolysis) is a promising wastewater treatment technology. This work investigated the potential use of carbon nanotube (CNT)-based gas diffusion cathode (GDC) for ozone-electrolysis process employing hydroxyl radicals (·OH) production as an indicator. Compared with conventional active carbon (AC)-polytetrafluoroethylene (PTFE) and carbon black (CB)-PTFE cathodes, the production of ·OH in the coupled process was improved using CNTs-PTFE GDC. Appropriate addition of acetylene black (AB) and pore-forming agent Na2SO4 could enhance the efficiency of CNTs-PTFE GDC. The optimum GDC composition was obtained by response surface methodology (RSM) analysis and was determined as CNTs 31.2 wt%, PTFE 60.6 wt%, AB 3.5 wt%, and Na2SO4 4.7 wt%. Moreover, the optimized CNT-based GDC exhibited much more effective than traditional Ti and graphite cathodes in Acid Orange 7 (AO7) mineralization and possessed the desirable stability without performance decay after ten times reaction. The comparison tests revealed that peroxone reaction was the main pathway of ·OH production in the present system, and cathodic reduction of ozone could significantly promote ·OH generation. These results suggested that application of CNT-based GDC offers considerable advantages in ozone-electrolysis of organic wastewater.

  18. General practitioners and doping in sport: attitudes and experience

    PubMed Central

    Laure, P; Binsinger, C; Lecerf, T; Ayotte, C

    2003-01-01

    Objectives: To examine the attitudes to, and knowledge of, doping in sport of French general practitioners (GPs), and their contact with drug taking athletes on an everyday basis. Methods: A total of 402 GPs were randomly selected from all over France and interviewed by telephone, using a prepared script. Results: The response rate was 50.5% (153 men and 49 women; mean (SD) age 45.6 (5.6) years). Of the respondents, 73% confirmed that they had the list of banned products, and only 34.5% stated that they were aware of the latest French law, brought into effect in March 1999, concerning the fight against doping. Some 11% had directly encountered a request for prescription of doping agents over the preceding 12 months (the requested substances were mainly anabolic steroids, stimulants, and corticosteroids), and 10% had been consulted by an athlete who was using doping drugs and was frightened of the health risks (the substances used were mainly anabolic steroids). Over half (52%) of the GPs favoured the prescription of drug substitutions to athletes who used doping agents. According to 87.5% of respondents, doping is a public health problem, and 80% stated that doping is a form of drug addiction. Most (89%) said that a GP has a role to play in doping prevention, but 77% considered themselves poorly prepared to participate in its prevention. Conclusion: The results suggest that (a) GPs have limited knowledge of doping and (b) are confronted with doping in their daily practice, at least occasionally. PMID:12893720

  19. Detection of EPO gene doping in blood.

    PubMed

    Neuberger, Elmo W I; Jurkiewicz, Magdalena; Moser, Dirk A; Simon, Perikles

    2012-11-01

    Gene doping--or the abuse of gene therapy--will continue to threaten the sports world. History has shown that progress in medical research is likely to be abused in order to enhance human performance. In this review, we critically discuss the progress and the risks associated with the field of erythropoietin (EPO) gene therapy and its applicability to EPO gene doping. We present typical vector systems that are employed in ex vivo and in vivo gene therapy trials. Due to associated risks, gene doping is not a feasible alternative to conventional EPO or blood doping at this time. Nevertheless, it is well described that about half of the elite athlete population is in principle willing to risk its health to gain a competitive advantage. This includes the use of technologies that lack safety approval. Sophisticated detection approaches are a prerequisite for prevention of unapproved and uncontrolled use of gene therapy technology. In this review, we present current detection approaches for EPO gene doping, with a focus on blood-based direct and indirect approaches. Gene doping is detectable in principle, and recent DNA-based detection strategies enable long-term detection of transgenic DNA (tDNA) following in vivo gene transfer. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Harmonically mode-locked erbium-doped waveguide laser

    NASA Astrophysics Data System (ADS)

    Fanto, Michael L.; Malowicki, John E.; Bussjager, Rebecca J.; Johns, Steven T.; Vettese, Elizabeth K.; Hayduk, Michael J.

    2004-08-01

    The generation of ultrastable picosecond pulses in the 1550 nm range is required for numerous applications that include photonic analog-to-digital converter systems and high-bit rate optical communication systems. Mode-locked erbium-doped fiber ring lasers (EDFLs) are typically used to generate pulses at this wavelength. In addition to timing stability and output power, the physical size of the laser cavity is of primary importance to the Air Force. The length of the erbium (Er)-doped fiber used as the gain medium may be on the order of meters or even tens of meters which adds complexity to packaging. However, with the recent advancements in the production of multi-component glasses, higher doping concentrations can be achieved as compared to silicate glasses. Even more recent is the introduction of Er-doped multi-component glass waveguides, thus allowing the overall footprint of the gain medium to be reduced. We have constructed a novel harmonically mode-locked fiber ring laser using the Er-doped multi-component glass waveguide as the gain medium. The performance characteristics of this Er-doped waveguide laser (EDWL) including pulse width, spectral width, harmonic suppression, optical output power, laser stability and single sideband residual phase noise will be discussed in this paper.