Sample records for gadolinium enhanced cardiovascular

  1. Recovery of methamphetamine associated cardiomyopathy predicted by late gadolinium enhanced cardiovascular magnetic resonance.

    PubMed

    Lopez, Javier E; Yeo, Khung; Caputo, Gary; Buonocore, Michael; Schaefer, Saul

    2009-11-11

    Methamphetamine is known to cause a cardiomyopathy which may be reversible with appropriate medical therapy and cessation of use. Late gadolinium enhancement cardiovascular magnetic resonance (CMR) has been shown to identify fibrosis in ischemic and non-ischemic cardiomyopathies. We present a case of severe methamphetamine-associated cardiomyopathy in which cardiac function recovered after 6 months. Evaluation by CMR using late gadolinium enhancement was notable for an absence of enhancement, suggesting an absence of irreversible myocyte injury and a good prognosis. CMR may be useful to predict recovery in toxin-associated non-ischemic cardiomyopathies.

  2. Recovery of methamphetamine associated cardiomyopathy predicted by late gadolinium enhanced cardiovascular magnetic resonance

    PubMed Central

    2009-01-01

    Methamphetamine is known to cause a cardiomyopathy which may be reversible with appropriate medical therapy and cessation of use. Late gadolinium enhancement cardiovascular magnetic resonance (CMR) has been shown to identify fibrosis in ischemic and non-ischemic cardiomyopathies. We present a case of severe methamphetamine-associated cardiomyopathy in which cardiac function recovered after 6 months. Evaluation by CMR using late gadolinium enhancement was notable for an absence of enhancement, suggesting an absence of irreversible myocyte injury and a good prognosis. CMR may be useful to predict recovery in toxin-associated non-ischemic cardiomyopathies. PMID:19906310

  3. Myocardial late gadolinium enhancement in specific cardiomyopathies by cardiovascular magnetic resonance: a preliminary experience.

    PubMed

    Silva, Caterina; Moon, James C; Elkington, Andrew G; John, Anna S; Mohiaddin, Raad H; Pennell, Dudley J

    2007-12-01

    Late gadolinium enhancement cardiovascular magnetic resonance (CMR) can visualize myocardial interstitial abnormalities. The aim of this study was to assess whether regions of abnormal myocardium can also be visualized by late enhancement gadolinium CMR in the specific cardiomyopathies. A retrospective review of all referrals for gadolinium CMR with specific cardiomyopathy over 20 months. Nine patients with different specific cardiomyopathies were identified. Late enhancement was demonstrated in all patients, with a mean signal intensity of 390 +/- 220% compared with normal regions. The distribution pattern of late enhancement was unlike the subendocardial late enhancement related to coronary territories found in myocardial infarction. The affected areas included papillary muscles (sarcoid), the mid-myocardium (Anderson-Fabry disease, glycogen storage disease, myocarditis, Becker muscular dystrophy) and the global sub-endocardium (systemic sclerosis, Loeffler's endocarditis, amyloid, Churg-Strauss). Focal myocardial late gadolinium enhancement is found in the specific cardiomyopathies, and the pattern is distinct from that seen in infarction. Further systematic studies are warranted to assess whether the pattern and extent of late enhancement may aid diagnosis and prognostic assessment.

  4. Gadolinium enhanced cardiovascular magnetic resonance in Anderson-Fabry disease. Evidence for a disease specific abnormality of the myocardial interstitium.

    PubMed

    Moon, James C C; Sachdev, Bhavesh; Elkington, Andrew G; McKenna, William J; Mehta, Atul; Pennell, Dudley J; Leed, Philip J; Elliott, Perry M

    2003-12-01

    Anderson-Fabry Disease (AFD), an X-linked disorder of sphingolipid metabolism, is a cause of idiopathic left ventricular hypertrophy but the mechanism of hypertrophy is poorly understood. Gadolinium enhanced cardiovascular magnetic resonance can detect focal myocardial fibrosis. We hypothesised that hyperenhancement would be present in AFD. Eighteen males (mean 43+/-14 years) and eight female heterozygotes (mean 48+/-12 years) with AFD underwent cine and late gadolinium cardiovascular magnetic resonance. Nine male (50%) had myocardial hyperenhancement ranging from 3.4% to 20.6% (mean 7.7+/-5.7%) of total myocardium; in males, percentage hyperenhancement related to LV mass index (r=0.78, P=0.0002) but not to ejection fraction or left ventricular volumes. Lesser hyperenhancement was also found in four (50%) heterozygous females (mean 4.6%). In 12 (92%) patients with abnormal gadolinium uptake, hyperenhancement occurred in the basal infero-lateral wall where, unlike myocardial infarction, it was not sub-endocardial. In two male patients with severe LVH (left ventricular hypertrophy) and systolic impairment there was additional hyperenhancement in other myocardial segments. These observations suggests that myocardial fibrosis occurs in AFD and may contribute to the hypertrophy and the natural history of the disease.

  5. Prognostic Value of Late Gadolinium Enhancement Cardiovascular Magnetic Resonance in Cardiac Amyloidosis.

    PubMed

    Fontana, Marianna; Pica, Silvia; Reant, Patricia; Abdel-Gadir, Amna; Treibel, Thomas A; Banypersad, Sanjay M; Maestrini, Viviana; Barcella, William; Rosmini, Stefania; Bulluck, Heerajnarain; Sayed, Rabya H; Patel, Ketna; Mamhood, Shameem; Bucciarelli-Ducci, Chiara; Whelan, Carol J; Herrey, Anna S; Lachmann, Helen J; Wechalekar, Ashutosh D; Manisty, Charlotte H; Schelbert, Eric B; Kellman, Peter; Gillmore, Julian D; Hawkins, Philip N; Moon, James C

    2015-10-20

    The prognosis and treatment of the 2 main types of cardiac amyloidosis, immunoglobulin light chain (AL) and transthyretin (ATTR) amyloidosis, are substantially influenced by cardiac involvement. Cardiovascular magnetic resonance with late gadolinium enhancement (LGE) is a reference standard for the diagnosis of cardiac amyloidosis, but its potential for stratifying risk is unknown. Two hundred fifty prospectively recruited subjects, 122 patients with ATTR amyloid, 9 asymptomatic mutation carriers, and 119 patients with AL amyloidosis, underwent LGE cardiovascular magnetic resonance. Subjects were followed up for a mean of 24±13 months. LGE was performed with phase-sensitive inversion recovery (PSIR) and without (magnitude only). These were compared with extracellular volume measured with T1 mapping. PSIR was superior to magnitude-only inversion recovery LGE because PSIR always nulled the tissue (blood or myocardium) with the longest T1 (least gadolinium). LGE was classified into 3 patterns: none, subendocardial, and transmural, which were associated with increasing amyloid burden as defined by extracellular volume (P<0.0001), with transitions from none to subendocardial LGE at an extracellular volume of 0.40 to 0.43 (AL) and 0.39 to 0.40 (ATTR) and to transmural at 0.48 to 0.55 (AL) and 0.47 to 0.59 (ATTR). Sixty-seven patients (27%) died. Transmural LGE predicted death (hazard ratio, 5.4; 95% confidence interval, 2.1-13.7; P<0.0001) and remained independent after adjustment for N-terminal pro-brain natriuretic peptide, ejection fraction, stroke volume index, E/E', and left ventricular mass index (hazard ratio, 4.1; 95% confidence interval, 1.3-13.1; P<0.05). There is a continuum of cardiac involvement in systemic AL and ATTR amyloidosis. Transmural LGE is determined reliably by PSIR and represents advanced cardiac amyloidosis. The PSIR technique provides incremental information on outcome even after adjustment for known prognostic factors. © 2015 The Authors.

  6. The histological basis of late gadolinium enhancement cardiovascular magnetic resonance in a patient with Anderson-Fabry disease.

    PubMed

    Moon, James C; Sheppard, Mary; Reed, Emma; Lee, Phillip; Elliott, Perry M; Pennell, Dudley J

    2006-01-01

    Anderson-Fabry Disease (AFD) is a storage disease that mimics hypertrophic cardiomyopathy. Late gadolinium enhancement (LGE) by cardiovascular magnetic resonance occurs in approximately 50% of patients in the basal inferolateral LV wall, but how an intracellular storage disease causes focal LGE is unknown. We present a whole-heart histological validation that LGE is caused by focal myocardial collagen scarring. This scarring may be the substrate for electrical re-entry and sudden arrhythmic death. The reasons for this distribution of fibrosis are unclear, but may reflect inhomogeneous left ventricular wall stress.

  7. Prognostic Value of Late Gadolinium Enhancement Cardiovascular Magnetic Resonance in Cardiac Amyloidosis

    PubMed Central

    Fontana, Marianna; Pica, Silvia; Reant, Patricia; Abdel-Gadir, Amna; Treibel, Thomas A.; Banypersad, Sanjay M.; Maestrini, Viviana; Barcella, William; Rosmini, Stefania; Bulluck, Heerajnarain; Sayed, Rabya H.; Patel, Ketna; Mamhood, Shameem; Bucciarelli-Ducci, Chiara; Whelan, Carol J.; Herrey, Anna S.; Lachmann, Helen J.; Wechalekar, Ashutosh D.; Manisty, Charlotte H.; Schelbert, Eric B.; Kellman, Peter; Gillmore, Julian D.; Hawkins, Philip N.

    2015-01-01

    Background— The prognosis and treatment of the 2 main types of cardiac amyloidosis, immunoglobulin light chain (AL) and transthyretin (ATTR) amyloidosis, are substantially influenced by cardiac involvement. Cardiovascular magnetic resonance with late gadolinium enhancement (LGE) is a reference standard for the diagnosis of cardiac amyloidosis, but its potential for stratifying risk is unknown. Methods and Results— Two hundred fifty prospectively recruited subjects, 122 patients with ATTR amyloid, 9 asymptomatic mutation carriers, and 119 patients with AL amyloidosis, underwent LGE cardiovascular magnetic resonance. Subjects were followed up for a mean of 24±13 months. LGE was performed with phase-sensitive inversion recovery (PSIR) and without (magnitude only). These were compared with extracellular volume measured with T1 mapping. PSIR was superior to magnitude-only inversion recovery LGE because PSIR always nulled the tissue (blood or myocardium) with the longest T1 (least gadolinium). LGE was classified into 3 patterns: none, subendocardial, and transmural, which were associated with increasing amyloid burden as defined by extracellular volume (P<0.0001), with transitions from none to subendocardial LGE at an extracellular volume of 0.40 to 0.43 (AL) and 0.39 to 0.40 (ATTR) and to transmural at 0.48 to 0.55 (AL) and 0.47 to 0.59 (ATTR). Sixty-seven patients (27%) died. Transmural LGE predicted death (hazard ratio, 5.4; 95% confidence interval, 2.1–13.7; P<0.0001) and remained independent after adjustment for N-terminal pro-brain natriuretic peptide, ejection fraction, stroke volume index, E/E′, and left ventricular mass index (hazard ratio, 4.1; 95% confidence interval, 1.3–13.1; P<0.05). Conclusions— There is a continuum of cardiac involvement in systemic AL and ATTR amyloidosis. Transmural LGE is determined reliably by PSIR and represents advanced cardiac amyloidosis. The PSIR technique provides incremental information on outcome even after

  8. Gadolinium-enhanced cardiovascular magnetic resonance: administered dose in relationship to United States Food and Drug Administration (FDA) guidelines.

    PubMed

    Nacif, Marcelo S; Arai, Andrew E; Lima, Joao A C; Bluemke, David A

    2012-02-29

    Myocardial late gadolinium enhancement was originally validated using higher than label-recommended doses of gadolinium chelate. The objective of this study was to evaluate available evidence for various gadolinium dosing regimens used for CMR. The relationship of gadolinium dose warnings (due to nephrogenic systemic fibrosis) announced in 2008 to gadolinium dosing regimens was also examined. We conducted a meta-analysis of peer reviewed publications from January, 2004 to December, 2010. Major subject search headings (MeSh) terms from the National Library of Medicine's PubMed were: contrast media, gadolinium, heart, magnetic resonance imaging; searches were limited to human studies with abstracts published in English. Case reports, review articles, editorials, MRA related papers and all reports that did not indicate gadolinium type or weight-based dose were excluded. For all included references, full text was available to determine the total administered gadolinium dose on a per kg basis. Average and median dose values were weighted by the number of subjects in each study. 399 publications were identified in PubMed; 233 studies matched the inclusion criteria, encompassing 19,934 patients with mean age 54.2 ± 11.4 (range 9.3 to 76 years). 34 trials were related to perfusion testing and 199 to myocardial late gadolinium enhancement. In 2004, the weighted-median and weighted-mean contrast dose were 0.15 and 0.16 ± 0.06 mmol/kg, respectively. Median contrast doses for 2005-2010 were: 0.2 mmol/kg for all years, respectively. Mean contrast doses for the years 2005-2010 were: 0.19 ± 0.03, 0.18 ± 0.04, 0.18 ± 0.10, 0.18 ± 0.03, 0.18 ± 0.04 and 0.18 ± 0.04 mmol/kg, respectively (p for trend, NS). Gadopentetate dimeglumine was the most frequent gadolinium type [114 (48.9%) studies]. No change in mean gadolinium dose was present before, versus after the Food and Drug Administration (FDA) black box warning (p > 0.05). Three multi-center dose ranging trials have been

  9. Role of late gadolinium enhancement cardiovascular magnetic resonance in the risk stratification of hypertrophic cardiomyopathy.

    PubMed

    Ismail, Tevfik F; Jabbour, Andrew; Gulati, Ankur; Mallorie, Amy; Raza, Sadaf; Cowling, Thomas E; Das, Bibek; Khwaja, Jahanzaib; Alpendurada, Francisco D; Wage, Ricardo; Roughton, Michael; McKenna, William J; Moon, James C; Varnava, Amanda; Shakespeare, Carl; Cowie, Martin R; Cook, Stuart A; Elliott, Perry; O'Hanlon, Rory; Pennell, Dudley J; Prasad, Sanjay K

    2014-12-01

    Myocardial fibrosis identified by late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) in patients with hypertrophic cardiomyopathy (HCM) is associated with adverse cardiovascular events, but its value as an independent risk factor for sudden cardiac death (SCD) is unknown. We investigated the role of LGE-CMR in the risk stratification of HCM. We conducted a prospective cohort study in a tertiary referral centre. Consecutive patients with HCM (n=711, median age 56.3 years, IQR 46.7-66.6; 70.0% male) underwent LGE-CMR and were followed for a median 3.5 years. The primary end point was SCD or aborted SCD. Overall, 471 patients (66.2%) had myocardial fibrosis (median 5.9% of left ventricular mass, IQR: 2.2-13.3). Twenty-two (3.1%) reached the primary end point. The extent but not the presence of fibrosis was a significant univariable predictor of the primary end point (HR per 5% LGE: 1.24, 95% CI 1.06 to 1.45; p=0.007 and HR for LGE: 2.69, 95% CI 0.91 to 7.97; p=0.073, respectively). However, on multivariable analysis, only LV-EF remained statistically significant (HR: 0.92, 95% CI 0.89 to 0.95; p<0.001). For the secondary outcome of cardiovascular mortality/aborted SCD, the presence and the amount of fibrosis were significant predictors on univariable but not multivariable analysis after adjusting for LV-EF and non-sustained ventricular tachycardia. The amount of myocardial fibrosis was a strong univariable predictor of SCD risk. However, this effect was not maintained after adjusting for LV-EF. Further work is required to elucidate the interrelationship between fibrosis and traditional predictors of outcome in HCM. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. Gadolinium-enhanced computed tomographic angiography: current status.

    PubMed

    Rosioreanu, Alex; Alberico, Ronald A; Litwin, Alan; Hon, Man; Grossman, Zachary D; Katz, Douglas S

    2005-01-01

    This article reviews the research to date, as well as our clinical experience from two institutions, on gadolinium-enhanced computed tomographic angiography (gCTA) for imaging the body. gCTA may be an appropriate examination for the small percentage of patients who would benefit from noninvasive vascular imaging, but who have contraindications to both iodinated contrast and magnetic resonance imaging. gCTA is more expensive than CTA with iodinated contrast, due to the dose of gadolinium administered, and gCTA has limitations compared with CTA with iodinated contrast, in that parenchymal organs are not optimally enhanced at doses of 0.5 mmol/kg or lower. However, in our experience, gCTA has been a very useful problem-solving examination in carefully selected patients. With the advent of 16-64 detector CT, in combination with bolus tracking, we believe that the overall dose of gadolinium needed for diagnostic CTA examinations, while relatively high, can be safely administered.

  11. Right ventricular stress-induced perfusion defects and late gadolinium enhancement in coronary artery disease.

    PubMed

    Milks, Michael Wesley; Upadhya, Bharathi; Hall, Michael E; Vasu, Sujethra; Hundley, William Gregory; Stacey, Richard Brandon

    2015-01-01

    The assessment of right ventricular (RV) perfusion defects has remained challenging during vasodilator stress perfusion with cardiovascular magnetic resonance (CMR). The significance of RV signal abnormalities during vasodilator stress perfusion and late gadolinium-enhanced CMR is yet uncertain. Among 61 individuals who underwent adenosine CMR stress testing before cardiac catheterization, we assessed the severity of coronary artery stenoses, mortality, the presence of stress and rest perfusion defects, as well as the presence of late gadolinium enhancement (LGE). Right ventricular stress-induced perfusion defects were positively associated with left anterior descending artery and proximal right coronary artery stenoses but were negatively associated with left circumflex artery stenoses. The presence of RVLGE was associated with mortality, but 77% of those with RVLGE also had left ventricular LGE. Proximal right coronary artery and left anterior descending artery stenoses are positively associated, whereas left circumflex artery stenoses are negatively associated with RV stress-induced perfusion defects. Right ventricular LGE was associated with mortality, but further study is needed to determine whether this is independent of left ventricular LGE.

  12. Myocardial Damage Detected by Late Gadolinium Enhancement Cardiovascular Magnetic Resonance Is Associated With Subsequent Hospitalization for Heart Failure

    PubMed Central

    Wong, Timothy C.; Piehler, Kayla M.; Zareba, Karolina M.; Lin, Kathie; Phrampus, Ashley; Patel, Agam; Moon, James C.; Ugander, Martin; Valeti, Uma; Holtz, Jonathan E.; Fu, Bo; Chang, Chung‐Chou H.; Mathier, Michael; Kellman, Peter; Butler, Javed; Gheorghiade, Mihai; Schelbert, Erik B.

    2013-01-01

    Background Hospitalization for heart failure (HHF) is among the most important problems confronting medicine. Late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) robustly identifies intrinsic myocardial damage. LGE may indicate inherent vulnerability to HHF, regardless of etiology, across the spectrum of heart failure stage or left ventricular ejection fraction (LVEF). Methods and Results We enrolled 1068 consecutive patients referred for CMR where 448 (42%) exhibited LGE. After a median of 1.4 years (Q1 to Q3: 0.9 to 2.0 years), 57 HHF events occurred, 15 deaths followed HHF, and 43 deaths occurred without antecedent HHF (58 total deaths). Using multivariable Cox regression adjusting for LVEF, heart failure stage, and other covariates, LGE was associated with first HHF after CMR (HR: 2.70, 95% CI: 1.32 to 5.50), death (HR: 2.13, 95% CI: 1.08 to 4.21), or either death or HHF (HR: 2.52, 95% CI: 1.49 to 4.25). Quantifying LGE extent yielded similar results; more LGE equated higher risks. LGE improved model discrimination (IDI: 0.016, 95% CI: 0.005 to 0.028, P=0.002) and reclassification of individuals at risk (continuous NRI: 0.40, 95% CI: 0.05 to 0.70, P=0.024). Adjustment for competing risks of death that shares common risk factors with HHF strengthened the LGE and HHF association (HR: 4.85, 95% CI: 1.40 to 16.9). Conclusions The presence and extent of LGE is associated with vulnerability for HHF, including higher risks of HHF across the spectrum of heart failure stage and LVEF. Even when LVEF is severely decreased, those without LGE appear to fare reasonably well. LGE may enhance risk stratification for HHF and may enhance both clinical and research efforts to reduce HHF through targeted treatment. PMID:24249712

  13. Utility of late gadolinium enhancement in pediatric cardiac MRI.

    PubMed

    Etesami, Maryam; Gilkeson, Robert C; Rajiah, Prabhakar

    2016-07-01

    Late gadolinium enhancement (LGE) cardiac magnetic resonance (MR) imaging sequence is increasingly used in the evaluation of pediatric cardiovascular disorders, and although LGE might be a normal feature at the sites of previous surgeries, it is pathologically seen as a result of extracellular space expansion, either from acute cell damage or chronic scarring or fibrosis. LGE is broadly divided into ischemic and non-ischemic patterns. LGE caused by myocardial infarction occurs in a vascular distribution and always involves the subendocardial portion, progressively involving the outer regions in a waveform pattern. Non-ischemic cardiomyopathies can have a mid-myocardial (either linear or patchy), subepicardial or diffuse subendocardial distribution. Idiopathic dilated cardiomyopathy can have a linear mid-myocardial pattern, while hypertrophic cardiomyopathy can have fine, patchy enhancement in hypertrophied and non-hypertrophied segments as well as right ventricular insertion points. Myocarditis and sarcoidosis have a mid-myocardial or subepicardial pattern of LGE. Fabry disease typically affects the basal inferolateral segment while Danon disease typically spares the septum. Pericarditis is characterized by diffuse or focal pericardial thickening and enhancement. Thrombus, the most common non-neoplastic cardiac mass, is characterized by absence of enhancement in all sequences, while neoplastic masses show at least some contrast enhancement, depending on the pathology. Regardless of the etiology, presence of LGE is associated with a poor prognosis. In this review, we describe the technical modifications required for performing LGE cardiac MR sequence in children, review and illustrate the patterns of LGE in children, and discuss their clinical significance.

  14. Growth Control in Colon Epithelial Cells: Gadolinium Enhances Calcium-Mediated Growth Regulation

    PubMed Central

    Attili, Durga; Jenkins, Brian; Aslam, Muhammad Nadeem; Dame, Michael K.

    2013-01-01

    Gadolinium, a member of the lanthanoid family of transition metals, interacts with calcium-binding sites on proteins and other biological molecules. The overall goal of the present investigation was to determine if gadolinium could enhance calcium-induced epithelial cell growth inhibition in the colon. Gadolinium at concentrations as low as 1–5 µM combined with calcium inhibits proliferation of human colonic epithelial cells more effectively than calcium alone. Gadolinium had no detectable effect on calcium-induced differentiation in the same cells based on change in cell morphology, induction of E-cadherin synthesis, and translocation of E-cadherin from the cytosol to the cell surface. When the colon epithelial cells were treated with gadolinium and then exposed to increased calcium concentrations, movement of extracellular calcium into the cell was suppressed. In contrast, gadolinium treatment had no effect on ionomycin-induced release of stored intracellular calcium into the cytoplasm. Whether these in vitro observations can be translated into an approach for reducing abnormal proliferation in the colonic mucosa (including polyp formation) is not known. These results do, however, provide an explanation for our recent findings that a multi-mineral supplement containing all of the naturally occurring lanthanoid metals including gadolinium are more effective than calcium alone in preventing colon polyp formation in mice on a high-fat diet. PMID:23008064

  15. Growth control in colon epithelial cells: gadolinium enhances calcium-mediated growth regulation.

    PubMed

    Attili, Durga; Jenkins, Brian; Aslam, Muhammad Nadeem; Dame, Michael K; Varani, James

    2012-12-01

    Gadolinium, a member of the lanthanoid family of transition metals, interacts with calcium-binding sites on proteins and other biological molecules. The overall goal of the present investigation was to determine if gadolinium could enhance calcium-induced epithelial cell growth inhibition in the colon. Gadolinium at concentrations as low as 1-5 μM combined with calcium inhibits proliferation of human colonic epithelial cells more effectively than calcium alone. Gadolinium had no detectable effect on calcium-induced differentiation in the same cells based on change in cell morphology, induction of E-cadherin synthesis, and translocation of E-cadherin from the cytosol to the cell surface. When the colon epithelial cells were treated with gadolinium and then exposed to increased calcium concentrations, movement of extracellular calcium into the cell was suppressed. In contrast, gadolinium treatment had no effect on ionomycin-induced release of stored intracellular calcium into the cytoplasm. Whether these in vitro observations can be translated into an approach for reducing abnormal proliferation in the colonic mucosa (including polyp formation) is not known. These results do, however, provide an explanation for our recent findings that a multi-mineral supplement containing all of the naturally occurring lanthanoid metals including gadolinium are more effective than calcium alone in preventing colon polyp formation in mice on a high-fat diet.

  16. Presence of Late Gadolinium Enhancement by Cardiac Magnetic Resonance Among Patients With Suspected Cardiac Sarcoidosis Is Associated With Adverse Cardiovascular Prognosis: A Systematic Review and Meta-Analysis.

    PubMed

    Hulten, Edward; Agarwal, Vikram; Cahill, Michael; Cole, Geoff; Vita, Tomas; Parrish, Scott; Bittencourt, Marcio Sommer; Murthy, Venkatesh L; Kwong, Raymond; Di Carli, Marcelo F; Blankstein, Ron

    2016-09-01

    Individuals with cardiac sarcoidosis have an increased risk of ventricular arrhythmia and death. Several small cohort studies have evaluated the ability of late gadolinium enhancement (LGE) by cardiac magnetic resonance imaging (MRI) to predict adverse cardiovascular events. However, studies have yielded inconsistent results, and some analyses were underpowered. Therefore, we sought to systematically review and perform meta-analysis of the prognostic value of cardiac MRI for patients with known or suspected cardiac sarcoidosis. We systematically searched for cohort studies of patients with known sarcoidosis with suspected cardiac involvement who underwent cardiac MRI with LGE with at least 12 months of either prospective or retrospective follow-up data regarding post-MRI adverse cardiovascular outcomes. We identified 7 studies of 694 subjects (mean age 53; 42% men).One hundred and ninety-nine patients (29%) were LGE positive. All-cause mortality occurred in 19 LGE-positive versus 17 LGE-negative subjects (annualized incidence, 3.1% versus 0.6%). The pooled relative risk was 3.38 (95% confidence interval, 1.07-10.7; P=0.04). Cardiovascular mortality occurred in 10 LGE-positive versus 2 LGE-negative subjects (annualized incidence, 1.9% versus 0.3%; relative risk 10.7 [95% confidence interval, 1.34-86.3]; P=0.03). Ventricular arrhythmia occurred in 41 LGE-positive versus 0 LGE-negative subjects (annualized incidence, 5.9% versus 0%; relative risk 19.5 [95% confidence interval, 2.68-143]; P=0.003). A combined end point of death or ventricular arrhythmia occurred in 64 LGE-positive versus 18 LGE-negative subjects (annualized incidence, 8.8% versus 0.6%; relative risk 6.20 [95% confidence interval, 2.47-15.6]; P<0.001). There was no significant heterogeneity for any outcomes. LGE is associated with future cardiovascular death and ventricular arrhythmia among patients referred to MRI for known or suspected cardiac sarcoidosis. © 2016 American Heart Association, Inc.

  17. Self-Gated Late Gadolinium Enhancement at 7T to Image Rats with Reperfused Acute Myocardial Infarction.

    PubMed

    Wang, Lei; Chen, Yushu; Zhang, Bing; Chen, Wei; Wang, Chunhua; Song, Li; Xu, Ziqian; Zheng, Jie; Gao, Fabao

    2018-01-01

    A failed electrocardiography (ECG)-trigger often leads to a long acquisition time (TA) and deterioration in image quality. The purpose of this study was to evaluate and optimize the technique of self-gated (SG) cardiovascular magnetic resonance (CMR) for cardiac late gadolinium enhancement (LGE) imaging of rats with myocardial infarction/reperfusion. Cardiovascular magnetic resonance images of 10 rats were obtained using SG-LGE or ECG with respiration double-gating (ECG-RESP-gating) method at 7T to compare differences in image interference and TA between the two methods. A variety of flip angles (FA: 10°-80°) and the number of repetitions (NR: 40, 80, 150, and 300) were investigated to determine optimal scan parameters of SG-LGE technique based on image quality score and contrast-to-noise ratio (CNR). Self-gated late gadolinium enhancement allowed successful scan in 10 (100%) rats. However, only 4 (40%) rats were successfully scanned with the ECG-RESP-gating method. TAs with SG-LGE varied depending on NR used (TA: 41, 82, 154, and 307 seconds, corresponding to NR of 40, 80, 150, and 300, respectively). For the ECG-RESP-gating method, the average TA was 220 seconds. For SG-LGE images, CNR (42.5 ± 5.5, 43.5 ± 7.5, 54 ± 9, 59.5 ± 8.5, 56 ± 13, 54 ± 8, and 41 ± 9) and image quality score (1.85 ± 0.75, 2.20 ± 0.83, 2.85 ± 0.37, 3.85 ± 0.52, 2.8 ± 0.51, 2.45 ± 0.76, and 1.95 ± 0.60) were achieved with different FAs (10°, 15°, 20°, 25°, 30°, 35°, and 40°, respectively). Optimal FAs of 20°-30° and NR of 80 were recommended. Self-gated technique can improve image quality of LGE without irregular ECG or respiration gating. Therefore, SG-LGE can be used an alternative method of ECG-RESP-gating.

  18. Effectiveness of late gadolinium enhancement to improve outcomes prediction in patients referred for cardiovascular magnetic resonance after echocardiography

    PubMed Central

    2013-01-01

    Background Echocardiography (echo) is a first line test to assess cardiac structure and function. It is not known if cardiovascular magnetic resonance (CMR) with late gadolinium enhancement (LGE) ordered during routine clinical practice in selected patients can add additional prognostic information after routine echo. We assessed whether CMR improves outcomes prediction after contemporaneous echo, which may have implications for efforts to optimize processes of care, assess effectiveness, and allocate limited health care resources. Methods and results We prospectively enrolled 1044 consecutive patients referred for CMR. There were 38 deaths and 3 cardiac transplants over a median follow-up of 1.0 years (IQR 0.4-1.5). We first reproduced previous survival curve strata (presence of LGE and ejection fraction (EF) < 50%) for transplant free survival, to support generalizability of any findings. Then, in a subset (n = 444) with contemporaneous echo (median 3 days apart, IQR 1–9), EF by echo (assessed visually) or CMR were modestly correlated (R2 = 0.66, p < 0.001), and 30 deaths and 3 transplants occurred over a median follow-up of 0.83 years (IQR 0.29-1.40). CMR EF predicted mortality better than echo EF in univariable Cox models (Integrated Discrimination Improvement (IDI) 0.018, 95% CI 0.008-0.034; Net Reclassification Improvement (NRI) 0.51, 95% CI 0.11-0.85). Finally, LGE further improved prediction beyond EF as determined by hazard ratios, NRI, and IDI in all Cox models predicting mortality or transplant free survival, adjusting for age, gender, wall motion, and EF. Conclusions Among those referred for CMR after echocardiography, CMR with LGE further improves risk stratification of individuals at risk for death or death/cardiac transplant. PMID:23324403

  19. Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI.

    PubMed

    Gong, Enhao; Pauly, John M; Wintermark, Max; Zaharchuk, Greg

    2018-02-13

    There are concerns over gadolinium deposition from gadolinium-based contrast agents (GBCA) administration. To reduce gadolinium dose in contrast-enhanced brain MRI using a deep learning method. Retrospective, crossover. Sixty patients receiving clinically indicated contrast-enhanced brain MRI. 3D T 1 -weighted inversion-recovery prepped fast-spoiled-gradient-echo (IR-FSPGR) imaging was acquired at both 1.5T and 3T. In 60 brain MRI exams, the IR-FSPGR sequence was obtained under three conditions: precontrast, postcontrast images with 10% low-dose (0.01mmol/kg) and 100% full-dose (0.1 mmol/kg) of gadobenate dimeglumine. We trained a deep learning model using the first 10 cases (with mixed indications) to approximate full-dose images from the precontrast and low-dose images. Synthesized full-dose images were created using the trained model in two test sets: 20 patients with mixed indications and 30 patients with glioma. For both test sets, low-dose, true full-dose, and the synthesized full-dose postcontrast image sets were compared quantitatively using peak-signal-to-noise-ratios (PSNR) and structural-similarity-index (SSIM). For the test set comprised of 20 patients with mixed indications, two neuroradiologists scored blindly and independently for the three postcontrast image sets, evaluating image quality, motion-artifact suppression, and contrast enhancement compared with precontrast images. Results were assessed using paired t-tests and noninferiority tests. The proposed deep learning method yielded significant (n = 50, P < 0.001) improvements over the low-dose images (>5 dB PSNR gains and >11.0% SSIM). Ratings on image quality (n = 20, P = 0.003) and contrast enhancement (n = 20, P < 0.001) were significantly increased. Compared to true full-dose images, the synthesized full-dose images have a slight but not significant reduction in image quality (n = 20, P = 0.083) and contrast enhancement (n = 20, P = 0.068). Slightly

  20. Subcellular SIMS imaging of gadolinium isotopes in human glioblastoma cells treated with a gadolinium containing MRI agent

    NASA Astrophysics Data System (ADS)

    Smith, Duane R.; Lorey, Daniel R.; Chandra, Subhash

    2004-06-01

    Neutron capture therapy is an experimental binary radiotherapeutic modality for the treatment of brain tumors such as glioblastoma multiforme. Recently, neutron capture therapy with gadolinium-157 has gained attention, and techniques for studying the subcellular distribution of gadolinium-157 are needed. In this preliminary study, we have been able to image the subcellular distribution of gadolinium-157, as well as the other six naturally abundant isotopes of gadolinium, with SIMS ion microscopy. T98G human glioblastoma cells were treated for 24 h with 25 mg/ml of the metal ion complex diethylenetriaminepentaacetic acid Gd(III) dihydrogen salt hydrate (Gd-DTPA). Gd-DTPA is a contrast enhancing agent used for MRI of brain tumors, blood-brain barrier impairment, diseases of the central nervous system, etc. A highly heterogeneous subcellular distribution was observed for gadolinium-157. The nuclei in each cell were distinctly lower in gadolinium-157 than in the cytoplasm. Even within the cytoplasm the gadolinium-157 was heterogeneously distributed. The other six naturally abundant isotopes of gadolinium were imaged from the same cells and exhibited a subcellular distribution consistent with that observed for gadolinium-157. These observations indicate that SIMS ion microscopy may be a viable approach for subcellular studies of gadolinium containing neutron capture therapy drugs and may even play a major role in the development and validation of new gadolinium contrast enhancing agents for diagnostic MRI applications.

  1. Kondo effect and enhanced magnetic properties in gadolinium functionalized carbon nanotube supramolecular complex.

    PubMed

    Ncube, S; Coleman, C; Strydom, A; Flahaut, E; de Sousa, A; Bhattacharyya, S

    2018-05-23

    We report on the enhancement of magnetic properties of multiwalled carbon nanotubes (MWNTs) functionalized with a gadolinium based supramolecular complex. By employing a newly developed synthesis technique we find that the functionalization method of the nanocomposite enhances the strength of magnetic interaction leading to a large effective moment of 15.79 µ B and non-superparamagnetic behaviour unlike what has been previously reported. Saturating resistance at low temperatures is fitted with the numerical renormalization group formula verifying the Kondo effect for magnetic impurities on a metallic electron system. Magnetoresistance shows devices fabricated from aligned gadolinium functionalized MWNTs (Gd-Fctn-MWNTs) exhibit spin-valve switching behaviour of up to 8%. This study highlights the possibility of enhancing magnetic interactions in carbon systems through chemical modification, moreover we demonstrate the rich physics that might be useful for developing spin based quantum computing elements based on one-dimensional (1D) channels.

  2. Quantitative assessment of the rheumatoid synovial microvascular bed by gadolinium-DTPA enhanced magnetic resonance imaging

    PubMed Central

    Gaffney, K.; Cookson, J.; Blades, S.; Coumbe, A.; Blake, D.

    1998-01-01

    OBJECTIVE—To examine the relation between rate of synovial membrane enhancement, intra-articular pressure (IAP), and histologically determined synovial vascularity in rheumatoid arthritis, using gadolinium-DTPA enhanced magnetic resonance imaging (MRI).
METHODS—Dynamic gadolinium-DTPA enhanced MRI was performed in 31 patients with knee synovitis (10 patients IAP study, 21 patients vascular morphometry study). Rate of synovial membrane enhancement was quantified by line profile analysis using the image processing package ANALYZE. IAP was measured using an intra-compartmental pressure monitor system. Multiple synovial biopsy specimens were obtained by a blind biopsy technique. Blood vessels were identified immunohistochemically using the endothelial cell marker QBend30 and quantified (blood vessel numerical density and fractional area).
RESULTS—Median blood vessel numerical density and fractional area were 77.5/mm2 (IQR; 69.3-110.7) and 5.6% (IQR; 3.4-8.5) respectively. The rate of synovial membrane enhancement (median 2.74 signal intensity units/s, IQR 2.0-3.8) correlated with both blood vessel numerical density (r = 0.46, p < 0.05) and blood vessel fractional area (r = 0.55, p < 0.02). IAP did not influence the rate of enhancement.
CONCLUSIONS—Gadolinium-DTPA enhanced MRI may prove to be a valuable technique for evaluating drugs that influence angiogenesis.

 Keywords: magnetic resonance imaging; rheumatoid arthritis; synovitis; vascularity PMID:9640130

  3. Late Gadolinium Enhancement Amount As an Independent Risk Factor for the Incidence of Adverse Cardiovascular Events in Patients with Stage C or D Heart Failure

    PubMed Central

    Liu, Tong; Ma, Xiaohai; Liu, Wei; Ling, Shukuan; Zhao, Lei; Xu, Lei; Song, Deli; Liu, Jie; Sun, Zhonghua; Fan, Zhanming; Luo, Taiyang; Kang, Junping; Liu, Xiaohui; Dong, Jianzeng

    2016-01-01

    Background: Myocardial fibrosis (MF) is a risk factor for poor prognosis in dilated cardiomyopathy (DCM). Late gadolinium enhancement (LGE) of the myocardium on cardiac magnetic resonance (CMR) represents MF. We examined whether the LGE amount increases the incidence of adverse cardiovascular events in patients with stage C or D heart failure (HF). Methods: Eighty-four consecutive patients with stage C or D HF, either ischemic or non-ischemic, were enrolled. Comprehensive clinical and CMR evaluations were performed. All patients were followed up for a composite endpoint of cardiovascular death, heart transplantation, and cardiac resynchronization therapy with defibrillator (CRT-D). Results: LGE was present in 79.7% of the end-stage HF patients. LGE distribution patterns were mid-wall, epi-myocardial, endo-myocardial, and the morphological patterns were patchy, transmural, and diffuse. During the average follow-up of 544 days, 13 (15.5%) patients had endpoint events: 7 patients cardiac death, 2 patients heart transplantation, and 4 patients underwent CRT-D implantation. On univariate analysis, LGE quantification on cardiac magnetic resonance, blood urine nitrogen, QRS duration on electrocardiogram, left ventricular end-diastolic diameter (LVEDD), and left ventricular end-diastolic volume (LVEDV) on CMR had the strongest associations with the composite endpoint events. However, on multivariate analysis for both Model I (after adjusting for age, sex, and body mass index) and Model II (after adjusting for age, sex, BMI, renal function, QRS duration, and atrial fibrillation on electrocardiogram, the etiology of HF, LVEF, CMR-LVEDD, and CMR-LVEDV), LGE amount was a significant risk factor for composite endpoint events (Model I 6SD HR 1.037, 95%CI 1.005–1.071, p = 0.022; Model II 6SD HR 1.045, 95%CI 1.001–1.084, p = 0.022). Conclusion: LGE amount from high-scale threshold on CMR increased the incidence of adverse cardiovascular events for patients in either stage C or

  4. The Prognostic Value of Late Gadolinium-Enhanced Cardiac Magnetic Resonance Imaging in Nonischemic Dilated Cardiomyopathy: A Review and Meta-Analysis.

    PubMed

    Becker, Marthe A J; Cornel, Jan H; van de Ven, Peter M; van Rossum, Albert C; Allaart, Cornelis P; Germans, Tjeerd

    2018-04-13

    This review and meta-analysis reviews the prognostic value of cardiac magnetic resonance (CMR) in nonischemic dilated cardiomyopathy (DCM). Late gadolinium-enhanced (LGE) CMR is a noninvasive method to determine the underlying cause of DCM and previous studies reported the prognostic value of the presence of LGE to identify patients at risk of major adverse cardiovascular events. PubMed was searched for studies describing the prognostic implication of LGE in patients with DCM for the specified endpoints cardiovascular mortality, major ventricular arrhythmic events including appropriate implantable cardioverter-defibrillator therapy, rehospitalization for heart failure, and left ventricular reverse remodeling. Data from 34 studies were included, with a total of 4,554 patients. Contrast enhancement was present in 44.8% of DCM patients. Patients with LGE had increased cardiovascular mortality (odds ratio [OR]: 3.40; 95% confidence interval [CI]: 2.04 to 5.67), ventricular arrhythmic events (OR: 4.52; 95% CI: 3.41 to 5.99), and rehospitalization for heart failure (OR: 2.66; 95% CI: 1.67 to 4.24) compared with those without LGE. Moreover, the absence of LGE predicted left ventricular reverse remodeling (OR: 0.15; 95% CI: 0.06 to 0.36). The presence of LGE on CMR substantially worsens prognosis for adverse cardiovascular events in DCM patients, and the absence indicates left ventricular reverse remodeling. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  5. Imaging of cauda equina edema in lumbar canal stenosis by using gadolinium-enhanced MR imaging: experimental constriction injury.

    PubMed

    Kobayashi, S; Uchida, K; Takeno, K; Baba, H; Suzuki, Y; Hayakawa, K; Yoshizawa, H

    2006-02-01

    It has been reported that disturbance of blood flow arising from circumferential compression of the cauda equina by surrounding tissue plays a major role in the appearance of neurogenic intermittent claudication (NIC) associated with lumbar spinal canal stenosis (LSCS). We created a model of LSCS to clarify the mechanism of enhancement within the cauda equina on gadolinium-enhanced MR images from patients with LSCS. In 20 dogs, a lumbar laminectomy was performed by applying circumferential constriction to the cauda equina by using a silicon tube, to produce 30% stenosis of the circumferential diameter of the dural tube. After 1 and 3 weeks, gadolinium and Evans blue albumin were injected intravenously at the same time. The sections were used to investigate the status of the blood-nerve barrier function under a fluorescence microscope and we compared gadolinium-enhanced MR images with Evans blue albumin distribution in the nerve. The other sections were used for light and transmission electron microscopic study. In this model, histologic examination showed congestion and dilation in many of the intraradicular veins, as well as inflammatory cell infiltration. The intraradicular edema caused by venous congestion and Wallerian degeneration can also occur at sites that are not subject to mechanical compression. Enhanced MR imaging showed enhancement of the cauda equina at the stenosed region, demonstrating the presence of edema. Gadolinium-enhanced MR imaging may be a useful tool for the diagnosis of microcirculatory disorders of the cauda equina associated with LSCS.

  6. MRI of normal and abnormal duodenum using Half-Fourier Single-Shot RARE and gadolinium-enhanced spoiled gradient echo sequences.

    PubMed

    Marcos, H B; Semelka, R C; Noone, T C; Woosley, J T; Lee, J K

    1999-07-01

    The objective of this research was two-fold: First, to describe the normal and abnormal MR appearances of the duodenum using combined Half-Fourier Acquisition Single Shot RARE (HASTE) and gadolinium-enhanced standard and fat suppressed spoiled gradient echo (SGE) sequences. The second objective was to assess the ability of these combined sequences to detect and characterize duodenal diseases. MR examinations were performed on fifty consecutive patients with no clinical history of duodenal diseases, who were 1) imaged with HASTE and gadolinium-enhanced standard and fat suppressed SGE sequences and 2) referred to MR examination for reasons other than duodenal diseases, and were reviewed retrospectively to determine the normal MR appearances of the duodenum. A second population of patients with abnormal duodenum who were imaged with the same MR sequences were included in the second part of this study. This population was composed of 20 consecutive patients with subsequently proven duodenal abnormalities, including: malrotation (2), diverticula (4), intussusception (1), sprue (1), polyps (2), neurofibroma (1), lymphoma (1), Zollinger Ellison syndrome (1), metastatic disease (1), Crohn's disease (1), and wall thickening and duodenitis (5). Normal measurements of the duodenum are described. Abnormalities of wall thickness and duodenal masses required combined HASTE and gadolinium-enhanced SGE images to evaluate well. Abnormalities of the bowel lumen (e.g., diverticula and intussusception), and developmental variants (e.g., malrotation), were sufficiently visualized on HASTE images alone. Bowel inflammation was best shown on gadolinium-enhanced fat suppressed SGE images. HASTE and gadolinium-enhanced fat suppressed SGE sequences are complementary techniques for the demonstration of normal and abnormal duodenum. The combined use of both sequences allows evaluation of different aspects of bowel diseases; abnormalities of position, lumen, and contents are well shown on HASTE

  7. Applying Amide Proton Transfer MR Imaging to Hybrid Brain PET/MR: Concordance with Gadolinium Enhancement and Added Value to [18F]FDG PET.

    PubMed

    Sun, Hongzan; Xin, Jun; Zhou, Jinyuan; Lu, Zaiming; Guo, Qiyong

    2018-06-01

    The purpose of this study is to evaluate the diagnostic concordance and metric correlations of amide proton transfer (APT) imaging with gadolinium-enhanced magnetic resonance imaging (MRI) and 2-deoxy-2-[ 18 F-]fluoro-D-glucose ([ 18 F]FDG) positron emission tomography (PET), using hybrid brain PET/MRI. Twenty-one subjects underwent brain gadolinium-enhanced [ 18 F]FDG PET/MRI prospectively. Imaging accuracy was compared between unenhanced MRI, MRI with enhancement, APT-weighted (APTW) images, and PET based on six diagnostic criteria. Among tumors, the McNemar test was further used for concordance assessment between gadolinium-enhanced imaging, APT imaging, and [ 18 F]FDG PET. As well, the relation of metrics between APT imaging and PET was analyzed by the Pearson correlation analysis. APT imaging and gadolinium-enhanced MRI showed superior and similar diagnostic accuracy. APTW signal intensity and gadolinium enhancement were concordant in 19 tumors (100 %), while high [ 18 F]FDG avidity was shown in only 12 (63.2 %). For the metrics from APT imaging and PET, there was significant correlation for 13 hypermetabolic tumors (P < 0.05) and no correlation for the remaining six [ 18 F]FDG-avid tumors. APT imaging can be used to increase diagnostic accuracy with no need to administer gadolinium chelates. APT imaging may provide an added value to [ 18 F]FDG PET in the evaluation of tumor metabolic activity during brain PET/MR studies.

  8. A polymeric fastener can easily functionalize liposome surfaces with gadolinium for enhanced magnetic resonance imaging.

    PubMed

    Smith, Cartney E; Shkumatov, Artem; Withers, Sarah G; Yang, Binxia; Glockner, James F; Misra, Sanjay; Roy, Edward J; Wong, Chun-Ho; Zimmerman, Steven C; Kong, Hyunjoon

    2013-11-26

    Common methods of loading magnetic resonance imaging (MRI) contrast agents into nanoparticles often suffer from challenges related to particle formation, complex chemical modification/purification steps, and reduced contrast efficiency. This study presents a simple, yet advanced process to address these issues by loading gadolinium, an MRI contrast agent, exclusively on a liposome surface using a polymeric fastener. The fastener, so named for its ability to physically link the two functional components together, consisted of chitosan substituted with diethylenetriaminepentaacetic acid (DTPA) to chelate gadolinium, as well as octadecyl chains to stabilize the modified chitosan on the liposome surface. The assembly strategy, mimicking the mechanisms by which viruses and proteins naturally anchor to a cell, provided greater T1 relaxivity than liposomes loaded with gadolinium in both the interior and outer leaflet. Gadolinium-coated liposomes were ultimately evaluated in vivo using murine ischemia models to highlight the diagnostic capability of the system. Taken together, this process decouples particle assembly and functionalization and, therefore, has considerable potential to enhance imaging quality while alleviating many of the difficulties associated with multifunctional particle fabrication.

  9. A Polymeric Fastener can Easily Functionalize Liposome Surfaces with Gadolinium for Enhanced Magnetic Resonance Imaging

    PubMed Central

    Smith, Cartney E.; Shkumatov, Artem; Withers, Sarah G.; Glockner, James F.; Misra, Sanjay; Roy, Edward J.; Wong, Chun-Ho; Zimmerman, Steven C.; Kong, Hyunjoon

    2013-01-01

    Common methods of loading magnetic resonance imaging (MRI) contrast agents into nanoparticles often suffer from challenges related to particle formation, complex chemical modification/purification steps, and reduced contrast efficiency. This study presents a simple, yet advanced process to address these issues by loading gadolinium, an MRI contrast agent, exclusively on a liposome surface using a polymeric fastener. The fastener, so named for its ability to physically link the two functional components together, consisted of chitosan substituted with diethylenetriaminepentaacetic acid (DTPA) to chelate gadolinium, as well as octadecyl chains to stabilize the modified chitosan on the liposome surface. The assembly strategy, mimicking the mechanisms by which viruses and proteins naturally anchor to a cell, provided greater T1 relaxivity than liposomes loaded with gadolinium in both the interior and outer leaflet. Gadolinium-coated liposomes were ultimately evaluated in vivo using murine ischemia models to highlight the diagnostic capability of the system. Taken together, this process decouples particle assembly and functionalization, and therefore has considerable potential to enhance imaging quality while alleviating many of the difficulties associated with multifunctional particle fabrication. PMID:24083377

  10. Influence of acquired obesity on coronary vessel wall late gadolinium enhancement in discordant monozygote twins.

    PubMed

    Makowski, Marcus R; Jansen, Christian H P; Ebersberger, Ullrich; Schaeffter, Tobias; Razavi, Reza; Mangino, Massimo; Spector, Tim D; Botnar, Rene M; Greil, Gerald F

    2017-11-01

    The aim of this study was to investigate the impact of BMI on late gadolinium enhancement (LGE) of the coronary artery wall in identical monozygous twins discordant for BMI. Coronary LGE represents a useful parameter for the detection and quantification of atherosclerotic coronary vessel wall disease. Thirteen monozygote female twin pairs (n = 26) with significantly different BMIs (>1.6 kg/m2) were recruited out of >10,000 twin pairs (TwinsUK Registry). A coronary 3D-T2prep-TFE MR angiogram and 3D-IR-TFE vessel wall scan were performed prior to and following the administration of 0.2 mmol/kg of Gd-DTPA on a 1.5 T MR scanner. The number of enhancing coronary segments and contrast to noise ratios (CNRs) of the coronary wall were quantified. An increase in BMI was associated with an increased number of enhancing coronary segments (5.3 ± 1.5 vs. 3.5 ± 1.6, p < 0.0001) and increased coronary wall enhancement (6.1 ± 1.1 vs. 4.8 ± 0.9, p = 0.0027) compared to matched twins with lower BMI. This study in monozygous twins indicates that acquired factors predisposing to obesity, including lifestyle and environmental factors, result in increased LGE of the coronary arteries, potentially reflecting an increase in coronary atherosclerosis in this female study population. • BMI-discordant twins allow the investigation of the influence of lifestyle factors independent from genetic confounders. • Only thirteen obesity-discordant twins were identified underlining the strong genetic component of BMI. • In female twins, a BMI increase is associated with increased coronary late gadolinium enhancement. • Increased late gadolinium enhancement in the coronary vessel wall potentially reflects increased atherosclerosis.

  11. Gadolinium Distribution in Cerebrospinal Fluid after Administration of a Gadolinium-based MR Contrast Agent in Humans.

    PubMed

    Berger, Florian; Kubik-Huch, Rahel A; Niemann, Tilo; Schmid, Hans Ruedi; Poetzsch, Michael; Froehlich, Johannes M; Beer, Jürg H; Thali, Michael J; Kraemer, Thomas

    2018-05-08

    Purpose To evaluate whether gadolinium penetrates human cerebrospinal fluid (CSF) after MR imaging (MRI) with a gadolinium-based contrast agent (GBCA). Materials and Methods For this retrospective study, the authors analyzed 60 CSF samples from 57 patients (median age, 50 years; range, 3-92 years) who underwent one contrast material-enhanced MRI examination with gadoterate meglumine within 60 days of CSF extraction between January and December 2016. CSF samples from patients who underwent MRI without contrast material administration (n = 22) or those who underwent contrast-enhanced MRI at least 1 year before extraction (n = 2) were analyzed and used as control samples. CSF measurements were performed with inductively coupled plasma mass spectrometry by monitoring the gadolinium 158 isotope. Statistical analyses were performed by using a preliminary Kruskal-Wallis test. Results Higher CSF gadolinium concentrations were detected within the first 8 hours after GBCA administration (mean concentration, 1152 ng/mL ± 734.6). Concentrations were lower between 8 and 48 hours (872 ng/mL ± 586). After 48 hours, gadolinium was almost completely cleared from CSF (121 ng/mL ± 296.3). All but two samples from the 24 control patients (median age, 60.5 years; range, 19-79 years) were negative for the presence of gadolinium. Those samples were from patients who had undergone GBCA-enhanced MRI examination more than a year before CSF extraction (0.1 and 0.2 ng/mL after 1 and 3 years, respectively). The concentrations in patients with chronic renal insufficiency (n = 3), cerebral toxoplasmosis (n = 1), and liver cirrhosis (n = 1) were higher than the mean concentrations. Conclusion Gadoterate meglumine can be detected in human CSF after intravenous administration. © RSNA, 2018.

  12. Application of an oscillation-type linear cadmium telluride detector to enhanced gadolinium K-edge computed tomography

    NASA Astrophysics Data System (ADS)

    Matsukiyo, Hiroshi; Sato, Eiichi; Hagiwara, Osahiko; Abudurexiti, Abulajiang; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Nagao, Jiro; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2011-03-01

    A linear cadmium telluride (CdTe) detector is useful for carrying out energy-discrimination X-ray imaging, including computed tomography (CT). To perform enhanced gadolinium K-edge CT, we used an oscillation-type linear CdTe detector with an energy resolution of 1.2 keV. CT is performed by repeating the linear scan and the rotation of an object. Penetrating X-ray photons from the object are detected by the CdTe detector, and event signals of X-ray photons are produced using charge-sensitive and shaping amplifiers. Both the photon energy and the energy width are selected using a multichannel analyzer, and the number of photons is counted by a counter card. In energy-discrimination CT, tube voltage and current were 80 kV and 20 μA, respectively, and X-ray intensity was 1.55 μGy/s at 1.0 m from the source at a tube voltage of 80 kV. Demonstration of enhanced gadolinium K-edge X-ray CT was carried out by selecting photons with energies just beyond gadolinium K-edge energy of 50.3 keV.

  13. Cardiovascular Magnetic Resonance and prognosis in cardiac amyloidosis

    PubMed Central

    Maceira, Alicia M; Prasad, Sanjay K; Hawkins, Philip N; Roughton, Michael; Pennell, Dudley J

    2008-01-01

    Background Cardiac involvement is common in amyloidosis and associated with a variably adverse outcome. We have previously shown that cardiovascular magnetic resonance (CMR) can assess deposition of amyloid protein in the myocardial interstitium. In this study we assessed the prognostic value of late gadolinium enhancement (LGE) and gadolinium kinetics in cardiac amyloidosis in a prospective longitudinal study. Materials and methods The pre-defined study end point was all-cause mortality. We prospectively followed a cohort of 29 patients with proven cardiac amyloidosis. All patients underwent biopsy, 2D-echocardiography and Doppler studies, 123I-SAP scintigraphy, serum NT pro BNP assay, and CMR with a T1 mapping method and late gadolinium enhancement (LGE). Results Patients with were followed for a median of 623 days (IQ range 221, 1436), during which 17 (58%) patients died. The presence of myocardial LGE by itself was not a significant predictor of mortality. However, death was predicted by gadolinium kinetics, with the 2 minute post-gadolinium intramyocardial T1 difference between subepicardium and subendocardium predicting mortality with 85% accuracy at a threshold value of 23 ms (the lower the difference the worse the prognosis). Intramyocardial T1 gradient was a better predictor of survival than FLC response to chemotherapy (Kaplan Meier analysis P = 0.049) or diastolic function (Kaplan-Meier analysis P = 0.205). Conclusion In cardiac amyloidosis, CMR provides unique information relating to risk of mortality based on gadolinium kinetics which reflects the severity of the cardiac amyloid burden. PMID:19032744

  14. Gadolinium Deposition in Human Brain Tissues after Contrast-enhanced MR Imaging in Adult Patients without Intracranial Abnormalities.

    PubMed

    McDonald, Robert J; McDonald, Jennifer S; Kallmes, David F; Jentoft, Mark E; Paolini, Michael A; Murray, David L; Williamson, Eric E; Eckel, Laurence J

    2017-11-01

    Purpose To determine whether gadolinium deposits in neural tissues of patients with intracranial abnormalities following intravenous gadolinium-based contrast agent (GBCA) exposure might be related to blood-brain barrier integrity by studying adult patients with normal brain pathologic characteristics. Materials and Methods After obtaining antemortem consent and institutional review board approval, the authors compared postmortem neuronal tissue samples from five patients who had undergone four to 18 gadolinium-enhanced magnetic resonance (MR) examinations between 2005 and 2014 (contrast group) with samples from 10 gadolinium-naive patients who had undergone at least one MR examination during their lifetime (control group). All patients in the contrast group had received gadodiamide. Neuronal tissues from the dentate nuclei, pons, globus pallidus, and thalamus were harvested and analyzed with inductively coupled plasma mass spectrometry (ICP-MS), transmission electron microscopy with energy-dispersive x-ray spectroscopy, and light microscopy to quantify, localize, and assess the effects of gadolinium deposition. Results Tissues from the four neuroanatomic regions of gadodiamide-exposed patients contained 0.1-19.4 μg of gadolinium per gram of tissue in a statistically significant dose-dependent relationship (globus pallidus: ρ = 0.90, P = .04). In contradistinction, patients in the control group had undetectable levels of gadolinium with ICP-MS. All patients had normal brain pathologic characteristics at autopsy. Three patients in the contrast group had borderline renal function (estimated glomerular filtration rate <45 mL/min/1.73 m 2 ) and hepatobiliary dysfunction at MR examination. Gadolinium deposition in the contrast group was localized to the capillary endothelium and neuronal interstitium and, in two cases, within the nucleus of the cell. Conclusion Gadolinium deposition in neural tissues after GBCA administration occurs in the absence of intracranial

  15. Neurosarcoidosis--demonstration of meningeal disease by gadolinium enhanced magnetic resonance imaging.

    PubMed Central

    Khaw, K T; Manji, H; Britton, J; Schon, F

    1991-01-01

    Arriving at a firm diagnosis of neurosarcoidosis continues to pose serious problems, particularly when evidence of granulomatous disease outside the nervous system is lacking. The commonest mode of presentation of neurosarcoidosis is with cranial nerve palsies. Two cases of presumed neurosarcoidosis with cranial nerve palsies showed clear evidence of focal meningeal disease on gadolinium-DTPA enhanced MRI brain scans. Although not specific for sarcoidosis, this technique may be very useful in aiding the diagnosis in suspected cases. Images PMID:1880510

  16. Gadolinium-enhanced inner ear magnetic resonance imaging for evaluation of delayed endolymphatic hydrops, including a bilateral case.

    PubMed

    Fukushima, Munehisa; Oya, Ryohei; Akazawa, Hitoshi; Tsuruta, Yukinori; Inohara, Hidenori

    2016-01-01

    The data suggests that gadolinium-enhanced inner ear MR imaging is useful for diagnosis of delayed endolymphatic hydrops (DEH) because it is independent of inner ear function, and the size of the affected endolymphatic space is clearly enlarged. This study was performed to semi-quantitatively evaluate the endolymphatic space in patients with all types of DEH using gadolinium-enhanced inner ear magnetic resonance (MR) imaging. Seven patients (age range = 21-77 years; five female, two male) with ipsilateral DEH (n = 5), contralateral DEH (n = 1), and bilateral DEH (n = 1). All patients underwent 3T MR imaging 4 h after intravenous injection of gadolinium. Software was used to determine the size of the endolymphatic space. Pure tone audiometry and caloric testing using an electronystagmogram were carried out. One side of the endolymphatic space was dominantly extended in patients with ipsilateral DEH, and both sides of the space were extended in patients with contralateral and bilateral DEH. In patients with ipsilateral DEH, the volume ratio of endolymph to vestibule was 2.5-4.3-times that in the unaffected ear. The volume ratio of endolymph to vestibule was nearly equal in patients with contralateral and bilateral DEH.

  17. SWI enhances vein detection using gadolinium in multiple sclerosis

    PubMed Central

    Mazzoni, Lorenzo N; Moretti, Marco; Grammatico, Matteo; Chiti, Stefano; Massacesi, Luca

    2015-01-01

    Susceptibility weighted imaging (SWI) combined with the FLAIR sequence provides the ability to depict in vivo the perivenous location of inflammatory demyelinating lesions – one of the most specific pathologic features of multiple sclerosis (MS). In addition, in MS white matter (WM) lesions, gadolinium-based contrast media (CM) can increase vein signal loss on SWI. This report focuses on two cases of WM inflammatory lesions enhancing on SWI images after CM injection. In these lesions in fact the CM increased the contrast between the parenchyma and the central vein allowing as well, in one of the two cases, the detection of a vein not visible on the same SWI sequence acquired before CM injection. PMID:25815209

  18. Intraoperative Near-Infrared Optical Imaging Can Localize Gadolinium-Enhancing Gliomas During Surgery

    PubMed Central

    Lee, John Y-K.; Thawani, Jayesh P.; Pierce, John; Zeh, Ryan; Martinez-Lage, Maria; Chanin, Michelle; Venegas, Ollin; Nims, Sarah; Learned, Kim; Keating, Jane; Singhal, Sunil

    2016-01-01

    Background Although real-time localization of gliomas has improved with intraoperative image guidance systems, these tools are limited by brain shift, surgical cavity deformation, and expense. Objective To propose a novel method to perform near-infrared (NIR) imaging during glioma resections based on preclinical and clinical investigations, in order to localize tumors and to potentially identify residual disease. Methods Fifteen patients were identified and administered an FDA-approved, NIR contrast agent (Second Window indocyanine green [ICG], 5 mg/kg) prior to surgical resection. An NIR camera was utilized to localize the tumor prior to resection and to visualize surgical margins following resection. Neuropathology and MR imaging data were used to assess the accuracy and precision of NIR-fluorescence in identifying tumor tissue. Results NIR visualization of 15 gliomas (10 glioblastoma multiforme, 1 anaplastic astrocytoma, 2 low grade astrocytoma, 1 juvenile pilocytic astrocytoma, and 1 ganglioglioma) was performed 22.7 hours (mean) after intravenous injection of ICG. During surgery, 12/15 tumors were visualized with the NIR camera. The mean signal-to-background ratio was 9.5 ± 0.8 and fluorescence was noted through the dura to a maximum parenchymal depth of 13 mm. The best predictor of positive fluorescence was enhancement on T1-weighted imaging; this correlated with SBR (P = .03). Non-enhancing tumors did not demonstrate NIR fluorescence. Using pathology as the gold standard, the technique demonstrated a sensitivity of 98% and specificity of 45% to identify tumor in gadolinium-enhancing specimens (n = 71). Conclusion Using Second Window ICG, gadolinium-enhancing tumors can be localized through brain parenchyma intraoperatively. Its utility for margin detection is promising but limited by lower specificity. PMID:27741220

  19. Gadolinium-free MR in coarctation-can contrast-enhanced MR angiography be replaced?

    PubMed

    Kalmar, Peter I; Koestenberger, Martin; Marterer, Robert; Tschauner, Sebastian; Sorantin, Erich

    2016-01-01

    To determine the difference in vessel measurements, signal-to-noise ratio (SNR), and voxel size between contrast-enhanced and noncontrast magnetic resonance techniques in patients with coarctation of the aorta (CoA). In 39 patients, vessel size, SNR, and voxel size were compared in cine magnetic resonance imaging (MRI), gadolinium-free magnetic resonance angiography (Gd-free MRA), and contrast-enhanced MRA (ce-MRA). There was no significant difference in measurement and SNR, but there was a significant difference in voxel size (P<.001). Our results show that, in CoA patients, monitoring of vessel size using cine MRI and Gd-free MRA is equivalent to ce-MRA while being less invasive. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Toxicological and pharmacological effects of gadolinium and samarium chlorides

    PubMed Central

    Haley, T. J.; Raymond, K.; Komesu, N.; Upham, H. C.

    1961-01-01

    A study has been made of the toxicology and pharmacology of gadolinium and samarium chlorides. The symptoms of acute toxicity following intraperitoneal injection are described. The chronic oral ingestion of both chemicals for 12 weeks produced no effects on growth or the blood picture, and only the male rats receiving gadolinium chloride showed liver damage. The pharmacological responses to both chemicals were mainly depressant on all systems studied, and death was associated with cardiovascular collapse coupled with respiratory paralysis. The greatest damage seen was on abraded skin, where non-healing ulcers were produced by both chemicals, whereas irritation of intact skin and ocular tissues was only transient in nature. PMID:13903826

  1. Gadolinium Enhanced MR Coronary Vessel Wall Imaging at 3.0 Tesla.

    PubMed

    Kelle, Sebastian; Schlendorf, Kelly; Hirsch, Glenn A; Gerstenblith, Gary; Fleck, Eckart; Weiss, Robert G; Stuber, Matthias

    2010-10-11

    Purpose. We evaluated the influence of the time between low-dose gadolinium (Gd) contrast administration and coronary vessel wall enhancement (LGE) detected by 3T magnetic resonance imaging (MRI) in healthy subjects and patients with coronary artery disease (CAD). Materials and Methods. Four healthy subjects (4 men, mean age 29 ± 3 years and eleven CAD patients (6 women, mean age 61 ± 10 years) were studied on a commercial 3.0 Tesla (T) whole-body MR imaging system (Achieva 3.0 T; Philips, Best, The Netherlands). T1-weighted inversion-recovery coronary magnetic resonance imaging (MRI) was repeated up to 75 minutes after administration of low-dose Gadolinium (Gd) (0.1 mmol/kg Gd-DTPA). Results. LGE was seen in none of the healthy subjects, however in all of the CAD patients. In CAD patients, fifty-six of 62 (90.3%) segments showed LGE of the coronary artery vessel wall at time-interval 1 after contrast. At time-interval 2, 34 of 42 (81.0%) and at time-interval 3, 29 of 39 evaluable segments (74.4%) were enhanced. Conclusion. In this work, we demonstrate LGE of the coronary artery vessel wall using 3.0 T MRI after a single, low-dose Gd contrast injection in CAD patients but not in healthy subjects. In the majority of the evaluated coronary segments in CAD patients, LGE of the coronary vessel wall was already detectable 30-45 minutes after administration of the contrast agent.

  2. Liver acquisition with acceleration volume acquisition gadolinium-enhanced magnetic resonance combined with T2 sequences in the diagnosis of local recurrence of rectal cancer.

    PubMed

    Cao, Wuteng; Li, Fangqian; Gong, Jiaying; Liu, Dechao; Deng, Yanhong; Kang, Liang; Zhou, Zhiyang

    2016-11-22

    To investigate the efficacy of liver acquisition with acceleration volume acquisition (LAVA) gadolinium-enhanced magnetic resonance (MR) sequences and to assess its added accuracy in diagnosing local recurrence (LR) of rectal cancer with conventional T2-weighted fast spin echo (FSE) sequences. Pelvic MRI, including T2-weighted FSE sequences, gadolinium-enhanced sequences of LAVA and T1-weighted FSE with fat suppression, was performed on 225 patients with postoperative rectal cancer. Two readers evaluated the presence of LR according to "T2" (T2 sequences only), "T2 + LAVA-Gad" (LAVA and T2 imaging), and "T2 + T1-fs-Gad" (T1 fat suppression-enhanced sequence with T2 images). To evaluate diagnostic efficiency, imaging quality with LAVA and T1-fs-Gad by subjective scores and the signal intensity (SI) ratio. In the result, the SI ratio of LAVA was significantly higher than that of T1-fs-Gad (p = 0.0001). The diagnostic efficiency of "T2 + LAVA-Gad" was better than that of "T2 + T1-fs-Gad" (p = 0.0016 for Reader 1, p = 0.0001 for Reader 2) and T2 imaging only (p = 0.0001 for Reader 1; p = 0.0001 for Reader 2). Therefore, LAVA gadolinium-enhanced MR increases the accuracy of diagnosis of LR from rectal cancer and could replace conventional T1 gadolinium-enhanced sequences in the postoperative pelvic follow-up of rectal cancer.

  3. Investigation of suspected Guillain-Barre syndrome in childhood: what is the role for gadolinium enhanced magnetic resonance imaging of the spine?

    PubMed

    Smith, Nicholas; Pereira, John; Grattan-Smith, Padraic

    2014-10-01

    To review the role of gadolinium-enhanced magnetic resonance imaging of the spine in the diagnosis of paediatric Guillain-Barre syndrome and compare it with nerve conduction studies and cerebrospinal fluid analysis. A retrospective review of investigations undertaken in children admitted to our institution with acute Guillain-Barre syndrome over a 10-year period was performed. Seven of eight children (88%) displayed post-gadolinium nerve root enhancement consistent with Guillain-Barre syndrome. This compared with supportive nerve conduction studies in 21/24 children (88%) and cerebrospinal fluid protein analysis consistent with the diagnosis in 16/20 children (80%). Nerve conduction studies are the recognised 'gold standard' technique for confirming a clinical diagnosis of Guillain-Barre syndrome. In this study, a high positive rate was demonstrated. While more experience is necessary, this study and the literature support gadolinium enhanced magnetic resonance imaging of the spine as a valuable, although not necessarily superior, investigation in the diagnosis of Guillain-Barre syndrome. It may be of particular benefit when specialist neurophysiology expertise is unavailable. © 2010 The Authors. Journal compilation © 2010 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  4. Gadolinium accumulation in organs of Sprague-Dawley® rats after implantation of a biodegradable magnesium-gadolinium alloy.

    PubMed

    Myrissa, Anastasia; Braeuer, Simone; Martinelli, Elisabeth; Willumeit-Römer, Regine; Goessler, Walter; Weinberg, Annelie Martina

    2017-01-15

    Biodegradable magnesium implants are under investigation because of their promising properties as medical devices. For enhancing the mechanical properties and the degradation resistance, rare earth elements are often used as alloying elements. In this study Mg10Gd pins were implanted into Sprague-Dawley® rats. The pin volume loss and a possible accumulation of magnesium and gadolinium in the rats' organs and blood were investigated in a long-term study over 36weeks. The results showed that Mg10Gd is a fast disintegrating material. Already 12weeks after implantation the alloy is fragmented to smaller particles, which can be found within the intramedullary cavity and the cortical bones. They disturbed the bone remodeling until the end of the study. The results concerning the elements' distribution in the animals' bodies were even more striking, since an accumulation of gadolinium could be observed in the investigated organs over the whole time span. The most affected tissue was the spleen, with up to 3240μgGd/kg wet mass, followed by the lung, liver and kidney (up to 1040, 685 and 207μgGd/kg). In the brain, muscle and heart, the gadolinium concentrations were much smaller (less than 20μg/kg), but an accumulation could still be detected. Interestingly, blood serum samples showed no accumulation of magnesium and gadolinium. This is the first time that an accumulation of gadolinium in animal organs was observed after the application of a gadolinium-containing degradable magnesium implant. These findings demonstrate the importance of future investigations concerning the distribution of the constituents of new biodegradable materials in the body, to ensure the patients' safety. In the last years, biodegradable Mg alloys are under investigation due to their promising properties as orthopaedic devices used for bone fracture stabilization. Gadolinium as Rare Earth Element enhances the mechanical properties of Mg-Gd alloys but its toxicity in humans is still questionable

  5. Bi-atrial fibrosis detected using three-dimensional late gadolinium enhancement magnetic resonance imaging in a patient with cardiac sarcoidosis.

    PubMed

    Spence, Stewart; Pena, Elena; Thornhill, Rebecca E; Nery, Pablo B; Birnie, David H

    2018-05-01

    Presented is the case of a 62-year old male with a history of sarcoidosis and sinus node dysfunction, who underwent late gadolinium enhancement magnetic resonance imaging, which demonstrated left ventricular hyperenhancement and bi-atrial fibrosis.

  6. Gadolinium toxicity and treatment.

    PubMed

    Ramalho, Joana; Ramalho, Miguel; Jay, Michael; Burke, Lauren M; Semelka, Richard C

    2016-12-01

    Gadolinium based contrast agents (GBCAs) play an important role in the diagnostic evaluation of many patients. The safety of these agents has been once again questioned after gadolinium deposits were observed and measured in brain and bone of patients with normal renal function. This retention of gadolinium in the human body has been termed "gadolinium storage condition". The long-term and cumulative effects of retained gadolinium in the brain and elsewhere are not as yet understood. Recently, patients who report that they suffer from chronic symptoms secondary to gadolinium exposure and retention created gadolinium-toxicity on-line support groups. Their self-reported symptoms have recently been published. Bone and joint complaints, and skin changes were two of the most common complaints. This condition has been termed "gadolinium deposition disease". In this review we will address gadolinium toxicity disorders, from acute adverse reactions to GBCAs to gadolinium deposition disease, with special emphasis on the latter, as it is the most recently described and least known. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Gadolinium-enhanced MR images of the growing piglet skeleton: ionic versus nonionic contrast agent.

    PubMed

    Menezes, Nina M; Olear, Elizabeth A; Li, Xiaoming; Connolly, Susan A; Zurakowski, David; Foley, Mary; Shapiro, Frederic; Jaramillo, Diego

    2006-05-01

    To determine whether there are differences in the distribution of ionic and nonionic gadolinium-based contrast agents by evaluating contrast enhancement of the physis, epiphyseal cartilage, secondary ossification center, and metaphysis in the knees of normal piglets. Following approval from the Subcommittee on Research Animal Care, knees of 12 3-week-old piglets were imaged at 3-T magnetic resonance (MR) imaging after intravenous injection of gadoteridol (nonionic contrast agent; n = 6) or gadopentetate dimeglumine (ionic contrast agent; n = 6). Early enhancement evaluation with gradient-echo MR imaging was quantified and compared (Student t test) by means of enhancement ratios. Distribution of contrast material was assessed and compared (Student t test) by means of T1 measurements obtained before and at three 15-minute intervals after contrast agent administration. The relative visibility of the physis, epiphyseal cartilage, secondary ossification center, and metaphysis was qualitatively assessed by two observers and compared (Wilcoxon signed rank test). Differences in matrix content and cellularity that might explain the imaging findings were studied at histologic evaluation. Enhancement ratios were significantly higher for gadoteridol than for gadopentetate dimeglumine in the physis, epiphyseal cartilage, and secondary ossification center (P < .05). After contrast agent administration, T1 values decreased sharply for both agents-but more so for gadoteridol. Additionally, there was less variability in T1 values across structures with this contrast agent. Gadoteridol resulted in greater visibility of the physis, while gadopentetate dimeglumine resulted in greater contrast between the physis and metaphysis (P < .05). The results suggest different roles for the two gadolinium-based contrast agents: The nonionic contrast medium is better suited for evaluating perfusion and anatomic definition in the immature skeleton, while the ionic contrast medium is better for

  8. Usefulness of the advanced neuroimaging protocol based on plain and gadolinium-enhanced constructive interference in steady state images for gamma knife radiosurgery and planning microsurgical procedures for skull base tumors.

    PubMed

    Hayashi, Motohiro; Chernov, Mikhail F; Tamura, Noriko; Yomo, Shoji; Tamura, Manabu; Horiba, Ayako; Izawa, Masahiro; Muragaki, Yoshihiro; Iseki, Hiroshi; Okada, Yoshikazu; Ivanov, Pavel; Régis, Jean; Takakura, Kintomo

    2013-01-01

    Gamma Knife radiosurgery (GKS) is currently performed with 0.1 mm preciseness, which can be designated microradiosurgery. It requires advanced methods for visualizing the target, which can be effectively attained by a neuroimaging protocol based on plain and gadolinium-enhanced constructive interference in steady state (CISS) images. Since 2003, the following thin-sliced images are routinely obtained before GKS of skull base lesions in our practice: axial CISS, gadolinium-enhanced axial CISS, gadolinium-enhanced axial modified time-of-flight (TOF), and axial computed tomography (CT). Fusion of "bone window" CT and magnetic resonance imaging (MRI), and detailed three-dimensional (3D) delineation of the anatomical structures are performed with the Leksell GammaPlan (Elekta Instruments AB). Recently, a similar technique has been also applied to evaluate neuroanatomy before open microsurgical procedures. Plain CISS images permit clear visualization of the cranial nerves in the subarachnoid space. Gadolinium-enhanced CISS images make the tumor "lucid" but do not affect the signal intensity of the cranial nerves, so they can be clearly delineated in the vicinity to the lesion. Gadolinium-enhanced TOF images are useful for 3D evaluation of the interrelations between the neoplasm and adjacent vessels. Fusion of "bone window" CT and MRI scans permits simultaneous assessment of both soft tissue and bone structures and allows 3D estimation and correction of MRI distortion artifacts. Detailed understanding of the neuroanatomy based on application of the advanced neuroimaging protocol permits performance of highly conformal and selective radiosurgical treatment. It also allows precise planning of the microsurgical procedures for skull base tumors.

  9. Normal spinal bone marrow in adults: dynamic gadolinium-enhanced MR imaging.

    PubMed

    Montazel, Jean-Luc; Divine, Marine; Lepage, Eric; Kobeiter, Hicham; Breil, Stephane; Rahmouni, Alain

    2003-12-01

    To determine the patterns of dynamic enhancement of normal spinal bone marrow in adults at gadolinium-enhanced magnetic resonance (MR) imaging and the changes that occur with aging. Dynamic contrast material-enhanced MR imaging of the thoracolumbar spine was performed in 71 patients. The maximum percentage of enhancement (Emax), enhancement slope, and enhancement washout were determined from bone marrow enhancement time curves (ETCs). The bone marrow signal intensity on T1-weighted spin-echo MR images was qualitatively classified into three grade categories. Quantitative ETC values were correlated with patient age and bone marrow fat content grade. Statistical analysis included mean t test comparison, analysis of variance, and regression analysis of the correlations between age and quantitative MR parameters. Emax, slope, and washout varied widely among the patients. Emax values were obtained within 1 minute after contrast material injection and ranged from 0% to 430%. Emax values were significantly higher in patients younger than 40 years than in those aged 40 years or older (P <.001). These values decreased with increasing age in a logarithmic relationship (r = 0.71). Emax values decreased as fat content increased, but some overlap among the fat content grades was noted. Analysis of variance revealed that Emax was significantly related to age (younger than 40 years vs 40 years or older) (P <.001) and fat content grade (P <.001) but not significantly related to sex. Dynamic contrast-enhanced MR imaging patterns of normal spinal bone marrow are dependent mainly on patient age and fat content.

  10. Synthesis and evaluation of gadolinium complexes based on PAMAM as MRI contrast agents.

    PubMed

    Yan, Guo-Ping; Hu, Bin; Liu, Mai-Li; Li, Li-Yun

    2005-03-01

    Diethylenetriaminepentaacetic acid (DTPA) and pyridoxamine (PM) were incorporated into the amine groups on the surface of ammonia-core poly(amidoamine) dendrimers (PAMAM, Generation 2.0-5.0) to obtain dendritic ligands. These dendritic ligands were reacted with gadolinium chloride to yield the corresponding dendritic gadolinium (Gd) complexes. The dendritic ligands and their gadolinium complexes were characterized by(1)HNMR, IR, UV and elemental analysis. Relaxivity studies showed that the dendritic gadolinium complexes possessed higher relaxation effectiveness compared with the clinically used Gd-DTPA. After administration of the dendritic gadolinium complexes (0.09 mmol kg(-1) ) to rats, magnetic resonance imaging of the liver indicated that the dendritic gadolinium complexes containing pyridoxamine groups enhanced the contrast of the MR images of the liver, provided prolonged intravascular duration and produced highly contrasted visualization of blood vessels.

  11. Porphyrin-containing polyaspartamide gadolinium complexes as potential magnetic resonance imaging contrast agents.

    PubMed

    Yan, Guo-Ping; Li, Zhen; Xu, Wei; Zhou, Cheng-Kai; Yang, Lian; Zhang, Qiao; Li, Liang; Liu, Fan; Han, Lin; Ge, Yuan-Xing; Guo, Jun-Fang

    2011-04-04

    Porphyrin-containing polyaspartamide ligands (APTSPP-PHEA-DTPA) were synthesized by the incorporation of diethylenetriaminepentaacetic acid (DTPA) and 5-(4'-aminophenyl)-10,15,20-tris(4'-sulfonatophenyl) porphyrin, trisodium salt (APTSPP) into poly-α,β-[N-(2-hydroxyethyl)-l-aspartamide] (PHEA). These ligands were further reacted with gadolinium chloride to produce macromolecule-gadolinium complexes (APTSPP-PHEA-DTPA-Gd). Experimental data of (1)H NMR, IR, UV and elemental analysis evidenced the formation of the polyaspartamide ligands and gadolinium complexes. In vitro and in vivo property tests indicated that APTSPP-PHEA-DTPA-Gd possessed noticeably higher relaxation effectiveness, less toxicity to HeLa cells, and significantly higher enhanced signal intensities (SI) of the VX2 carcinoma in rabbits with lower injection dose requirement than that of Gd-DTPA. Moreover, APTSPP-PHEA-DTPA-Gd was found to greatly enhance the contrast of MR images of the VX2 carcinoma, providing prolonged intravascular duration, and distinguished the VX2 carcinoma and normal tissues in rabbits according to MR image signal enhancements. These porphyrin-containing polyaspartamide gadolinium complexes can be used as the candidates of contrast agents for targeted MRI to tumors. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  12. Incremental prognostic value of the SYNTAX score to late gadolinium-enhanced magnetic resonance images for patients with stable coronary artery disease.

    PubMed

    Kato, Shingo; Saito, Naka; Kirigaya, Hidekuni; Gyotoku, Daiki; Iinuma, Naoki; Kusakawa, Yuka; Iguchi, Kohei; Nakachi, Tatsuya; Fukui, Kazuki; Futaki, Masaaki; Iwasawa, Tae; Taguri, Masataka; Kimura, Kazuo; Umemura, Satoshi

    2016-06-01

    The prognostic significance of the SYNTAX (Synergy between PCI with Taxus and cardiac surgery) score has recently been demonstrated in patients with stable multivessel or left main coronary artery disease (CAD). The present study determines whether adding the SYNTAX score to Framingham risk score (FRS), left ventricular ejection fraction (LVEF) and presence of myocardial infarction (MI) by late gadolinium enhancement (LGE) magnetic resonance imaging can improve the risk stratification in patients with stable CAD. We calculated the SYNTAX score in 161 patients with stable CAD (mean age: 66 ± 10 years old). During a mean follow-up of 2.3 years, 56 (35 %) of 161 patients developed cardiovascular events defined as cardiovascular death, non-fatal MI, cerebral infarction, unstable angina pectoris, hospitalization due to heart failure and revascularization. Multivariate Cox regression analysis selected triglycerides [hazard ratio (HR): 1.005 (95 % confidence interval (CI): 1.001-1.008), p < 0.008], presence of LGE [HR: 6.329 (95 % CI: 2.662-15.05), p < 0.001] and the SYNTAX score [HR: 1.085 (95 % CI: 1.044-1.127), p < 0.001] as risk factors for future cardiovascular events. Adding the SYNTAX score to FRS, EF and LGE significantly improved the net reclassification index (NRI) [40.4 % (95 % CI: 18.1-54.8 %), p < 0.05] with an increase in C-statistics of 0.089 (from 0.707 to 0.796). An increase in C-statistics and significant improvement of NRI showed that adding the SYNTAX score to the FRS, LVEF and LGE incrementally improved risk stratification in patient with stable CAD.

  13. The prognostic value of T1 mapping and late gadolinium enhancement cardiovascular magnetic resonance imaging in patients with light chain amyloidosis.

    PubMed

    Lin, Lu; Li, Xiao; Feng, Jun; Shen, Kai-Ni; Tian, Zhuang; Sun, Jian; Mao, Yue-Ying; Cao, Jian; Jin, Zheng-Yu; Li, Jian; Selvanayagam, Joseph B; Wang, Yi-Ning

    2018-01-03

    Cardiac impairment is associated with high morbidity and mortality in immunoglobulin light chain (AL) type amyloidosis, for which early identification and risk stratification is vital. For myocardial tissue characterization, late gadolinium enhancement (LGE) is a classic and most commonly performed cardiovascular magnetic resonance (CMR) parameter. T1 mapping with native T1 and extracellular volume (ECV) are recently developed quantitative parameters. We aimed to investigate the prognostic value of native T1, ECV and LGE in patients with AL amyloidosis. Eighty-two patients (55.5 ± 8.5 years; 52 M) and 20 healthy subjects (53.2 ± 11.7 years; 10 M) were prospectively recruited. All subjects underwent CMR with LGE imaging and T1 mapping using a Modified Look-Locker Inversion-recovery (MOLLI) sequence on a 3 T scanner. Native T1 and ECV were measured semi-automatically using a dedicated CMR software. The left ventricular (LV) LGE pattern was classified as none, patchy, and global groups. Global LGE was considered when there was diffuse, transmural LGE in more than half of the short axis images. Follow-up was performed for all-cause mortality using Cox proportional hazards regression analysis and Kaplan-Meier survival curves. The patients demonstrated an increase in native T1 (1438 ± 120 ms vs. 1283 ± 46 ms, P = 0.001) and ECV (43.9 ± 10.9% vs. 27.0 ± 1.7%, P = 0.001) compared to healthy controls. Native T1, ECV and LGE showed significant correlation with Mayo Stage, and ECV and LGE showed significant correlation with echocardiographic E/E' and LV ejection fraction. During the follow-up for a median time of 8 months, 21 deaths occurred. ECV ≥ 44.0% (hazard ratio [HR] 7.249, 95% confidence interval (CI) 1.751-13.179, P = 0.002) and global LGE (HR 4.804, 95% CI 1.971-12.926, P = 0.001) were independently prognostic for mortality over other clinical and imaging parameters. In subgroups with the same LGE pattern

  14. Gadolinium diethylenetriaminopentaacetic acid-loaded chitosan microspheres for gadolinium neutron-capture therapy.

    PubMed

    Saha, Tapan Kumar; Ichikawa, Hideki; Fukumori, Yoshinobu

    2006-12-11

    In order to provide a suitable device that would contain water-soluble drugs, highly water-soluble gadolinium diethylenetriaminopentaacetic acid-loaded chitosan microspheres (CMS-Gd-DTPA) were prepared by the emulsion method using glutaraldehyde as a cross-linker and Span 80 as a surfactant for gadolinium neutron-capture therapy of cancer. The gadolinium content and the mass median diameter of CMS-Gd-DTPA were estimated. The size and morphology of the CMS-Gd-DTPA were strongly influenced by the initial applied weight ratio of Gd-DTPA:chitosan. FTIR spectra showed that the electrostatic interaction between chitosan and Gd-DTPA accelerated the formation of gadolinium-enriched chitosan microspheres. Sufficient amounts of glutaraldehyde and Span 80 were necessary for producing discrete CMS-Gd-DTPA. The CMS-Gd-DTPA having a mass median diameter 11.7microm and 11.6% of gadolinium could be used in Gd-NCT following intratumoral injection.

  15. Gadolinium-Conjugated Gold Nanoshells for Multimodal Diagnostic Imaging and Photothermal Cancer Therapy

    PubMed Central

    Coughlin, Andrew J.; Ananta, Jeyarama S.; Deng, Nanfu; Larina, Irina V.; Decuzzi, Paolo

    2014-01-01

    Multimodal imaging offers the potential to improve diagnosis and enhance the specificity of photothermal cancer therapy. Toward this goal, we have engineered gadolinium-conjugated gold nanoshells and demonstrated that they enhance contrast for magnetic resonance imaging, X-Ray, optical coherence tomography, reflectance confocal microscopy, and two-photon luminescence. Additionally, these particles effectively convert near-infrared light to heat, which can be used to ablate cancer cells. Ultimately, these studies demonstrate the potential of gadolinium-nanoshells for image-guided photothermal ablation. PMID:24115690

  16. Use of cardiovascular magnetic resonance in the evaluation of a giant right atrial appendage aneurysm: a case report and review of the literature.

    PubMed

    Sivakumaran, Lojan; Sayegh, Karl; Mehanna, Emile; Sanchez, Frank W; Fields, Jonathan; Cury, Ricardo

    2017-12-04

    Right atrial appendage aneurysms are rare entities that may have significant clinical consequences. When co-existing with atrial fibrillation, patients are at risk of developing pulmonary or paradoxical systemic emboli. An elderly patient presented to medical attention with symptoms of acute diverticulitis. On abdominal computed tomography, a massively enlarged right atrial appendage aneurysm was discovered incidentally. The aneurysm caused marked compression of the right ventricle and contained an area of hypoenhancement concerning for an intraluminal thrombus. Gadolinium-enhanced cardiovascular magnetic resonance was performed and first-pass perfusion images demonstrated that the area of hypoenhancement was in fact poorly mixing blood. The patient was therefore managed medically. Right atrial appendage aneurysms are infrequently encountered cardiac abnormalities. In the literature, surgery has been offered to patients who are young, symptomatic, or have evidence of thrombotic disease, although whether this practice pattern is associated with superior clinical outcomes is unclear. In the present case, gadolinium-enhanced cardiovascular magnetic resonance imaging was used to exclude the presence of intraluminal thrombus in an elderly patient, which helped orient the patient's treating team towards medical-rather than surgical-therapy.

  17. Gadolinium Endohedral Metallofullerene-Based MRI Contrast Agents

    NASA Astrophysics Data System (ADS)

    Bolskar, Robert D.

    With the ability to encapsulate and carry the highly paramagnetic Gd3+ ion, gadolinium endohedral metallofullerenes or "gadofullerenes" are being explored as alternatives to the chelate complexes that are currently used for contrast-enhanced magnetic resonance imaging (MRI). Reviewed here are the various water-soluble derivatives of the gadofullerenes Gd@C82, Gd@C60, and Gd3N@C80 that have been investigated as MRI contrast agents. The water proton r1 relaxivities of gadofullerenes can be more than an order of magnitude higher than those of clinically used chelate agents. Gadofullerene relaxivity mechanisms have been studied, and multiple factors are found to contribute to their high relaxivities. In vitro and in vivoT1-weighted MRI tests of gadofullerene derivatives have shown their utility as bright image-enhancing agents. The gadofullerene MRI contrast agents are a promising new and unique style of gadolinium carrier for advanced imaging applications, including cellular and molecular imaging.

  18. Cardiovascular Magnetic Resonance Imaging of Myocardial Infarction, Viability, and Cardiomyopathies

    PubMed Central

    West, Amy M.; Kramer, Christopher M.

    2010-01-01

    Cardiovascular magnetic resonance provides the opportunity for a truly comprehensive evaluation of patients with a history of MI, with regards to characterizing the extent of disease, impact on LV function and degree of viable myocardium. The use of contrast-enhanced CMR for first-pass perfusion and late gadolinium enhancement is a powerful technique for delineating areas of myocardial ischemia and infarction. Using a combination of T2-weighted and contrast-enhanced CMR images, information about the acuity of an infarct can be obtained. There is an extensive amount of literature using contrast-enhanced CMR to predict myocardial functional recovery with revascularization in patients with ischemic cardiomyopathies. In addition, CMR imaging in patients with cardiomyopathies can distinguish between ischemic and non-ischemic etiologies, with the ability to further characterize the underlying pathology for non-ischemic cardiomyopathies. PMID:20197150

  19. Gadolinium-enhanced magnetic resonance angiography in renal artery stenosis: comparison with digital subtraction angiography.

    PubMed

    Law, Y M; Tay, K H; Gan, Y U; Cheah, F K; Tan, B S

    2008-04-01

    To evaluate the accuracy of gadolinium-enhanced magnetic resonance angiography in assessing renal artery stenosis compared to catheter digital subtraction angiography. Retrospective study. Singapore General Hospital. Records of patients who underwent magnetic resonance angiography as well as digital subtraction angiography for assessment of renal artery stenosis from January 2003 to December 2005 were reviewed. There were 27 patients (14 male, 13 female) with a mean age of 62 (range, 44-77) years. There were 10 patients with renal transplants; their native renal arteries were not evaluated. Each of the two experienced interventional and body magnetic resonance radiologists, who were blinded to the results, reviewed the digital subtraction angiography and magnetic resonance angiography images respectively. Digital subtraction angiography was used as the standard of reference. A total of 39 renal arteries from these 27 patients were evaluated. One of the arteries was previously stented and could not be assessed with magnetic resonance angiography due to severe artefacts. Of the remaining 38 renal arteries, two were graded as normal, seven as having mild stenosis (<50%), eight as having moderate stenosis (> or =50% but <75%), and 21 as having severe stenosis (> or =75%). Magnetic resonance angiography and digital subtraction angiography were concordant in 89% of the arteries; magnetic resonance angiography overestimated the degree of stenosis in 8% and underestimated it in 3% of them. In the evaluation of clinically significant renal artery stenosis (> or =50%) with magnetic resonance angiography, the overall sensitivity, specificity, positive predictive value, and negative predictive value were 97%, 67%, 90%, and 86% respectively. The sensitivity and specificity of magnetic resonance angiography in transplant renal artery stenosis was 100%. CONCLUSION. Our experience suggested that gadolinium-enhanced magnetic resonance angiography is a sensitive non

  20. Do we need gadolinium-based contrast medium for brain magnetic resonance imaging in children?

    PubMed

    Dünger, Dennis; Krause, Matthias; Gräfe, Daniel; Merkenschlager, Andreas; Roth, Christian; Sorge, Ina

    2018-06-01

    Brain imaging is the most common examination in pediatric magnetic resonance imaging (MRI), often combined with the use of a gadolinium-based contrast medium. The application of gadolinium-based contrast medium poses some risk. There is limited evidence of the benefits of contrast medium in pediatric brain imaging. To assess the diagnostic gain of contrast-enhanced sequences in brain MRI when the unenhanced sequences are normal. We retrospectively assessed 6,683 brain MR examinations using contrast medium in children younger than 16 years in the pediatric radiology department of the University Hospital Leipzig to determine whether contrast-enhanced sequences delivered additional, clinically relevant information to pre-contrast sequences. All examinations were executed using a 1.5-T or a 3-T system. In 8 of 3,003 (95% confidence interval 0.12-0.52%) unenhanced normal brain examinations, a relevant additional finding was detected when contrast medium was administered. Contrast enhancement led to a change in diagnosis in only one of these cases. Children with a normal pre-contrast brain MRI rarely benefit from contrast medium application. Comparing these results to the risks and disadvantages of a routine gadolinium application, there is substantiated numerical evidence for avoiding routine administration of gadolinium in a pre-contrast normal MRI examination.

  1. Nanoamplifiers synthesized from gadolinium and gold nanocomposites for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Tian, Xiumei; Shao, Yuanzhi; He, Haoqiang; Liu, Huan; Shen, Yingying; Huang, Wenlin; Li, Li

    2013-03-01

    We have synthesized an efficient and highly sensitive nanoamplifier composed of gadolinium-doped silica nanoparticles and gold nanoparticles (AuNPs). Magnetic resonance imaging (MRI) in vitro and in vivo assays revealed enhancement of signal sensitivity, which may be explained by electron transfer between water and gadolinium-doped nanoparticles, apparent in the presence of gold. In vitro and in vivo evaluation demonstrated nanoamplifier incurred minimal cytotoxicity and immunotoxicity, increased stability, and gradual excretion patterns. Tumor targeted properties were preliminarily determined when the nanoamplifier was injected into mouse models of colon cancer liver metastasis. Furthermore, although AuNPs departed from the nanoamplifiers in specific mice tissues, optical and magnetic resonance imaging was efficient, especially in metastatic tumors. These assays validate our nanoamplifier as an effective MRI signal enhancer with sensitive cancer diagnosis potential.We have synthesized an efficient and highly sensitive nanoamplifier composed of gadolinium-doped silica nanoparticles and gold nanoparticles (AuNPs). Magnetic resonance imaging (MRI) in vitro and in vivo assays revealed enhancement of signal sensitivity, which may be explained by electron transfer between water and gadolinium-doped nanoparticles, apparent in the presence of gold. In vitro and in vivo evaluation demonstrated nanoamplifier incurred minimal cytotoxicity and immunotoxicity, increased stability, and gradual excretion patterns. Tumor targeted properties were preliminarily determined when the nanoamplifier was injected into mouse models of colon cancer liver metastasis. Furthermore, although AuNPs departed from the nanoamplifiers in specific mice tissues, optical and magnetic resonance imaging was efficient, especially in metastatic tumors. These assays validate our nanoamplifier as an effective MRI signal enhancer with sensitive cancer diagnosis potential. Electronic supplementary information

  2. Early diagnosis and follow-up of chronic active Epstein–Barr-virus-associated cardiovascular complications with cardiovascular magnetic resonance imaging

    PubMed Central

    Jiang, Shu; Li, Xiao; Cao, Jian; Wu, Di; Kong, Lingyan; Lin, Lu; Jin, Zhengyu; An, Jing; Wang, Yining

    2016-01-01

    Abstract Introduction: Chronic active Epstein–Barr virus (EBV) infection (CAEBV) is characterized as chronic or recurrent mononucleosis-like symptoms and elevated EBV deoxyribonucleic acid (EBV-DNA) copies. Cardiovascular complications have high morbidity and mortality. The treatment regimen for CAEBV has not been established yet, resulting in poor prognoses. Herein, we present a case of cardiovascular magnetic resonance imaging (CMRI) evaluation with a series of sequences for CAEBV-associated cardiovascular involvement, which has never been reported. Case presentation: A 16-year-old female (body weight, 55 kg) developed a persistent fever and a positive EBV-DNA level of 28,000 copies/mL. Computed tomography angiography (CTA) showed aneurysms involving the aorta and its major branches, as well as multiple aneurysms and stenoses of the coronary arteries. CMRI of the coronary arteries depicted the dilution and stenosis of the arterial lumen as well as the thickening of the arterial wall. Late gadolinium enhancement (LGE) showed subendocardial and transmural delayed enhancement of the left ventricle, suggesting myocardial infarction. CAEBV and associated cardiovascular complications were diagnosed. After treatment with Medrol and Leflunomide, the clinical manifestation and serological parameters reversed to normal. However, the EBV-DNA level increased again to 13,900 copies/mL 2 months later. A follow-up with aorta CTA showed that the arterial walls of the bilateral common iliac artery aneurysms were thicker with new-onset mural thrombi. The aorta CTA also showed new-onset occlusion of the right coronary artery, but a follow-up of CMRI at the same day did not find new-onset delayed enhancement lesion. Conclusion: This case reminds clinicians of the vital importance of early diagnosis and close follow-up of CAEBV-associated cardiovascular complications. With cine imaging, coronary artery imaging, LGE imaging, and other novel techniques, CMRI can effectively and

  3. The Effect of gadolinium on the ESR response of alanine and ammonium tartrate exposed to thermal neutrons.

    PubMed

    Marrale, Maurizio; Brai, Maria; Gennaro, Gaetano; Bartolotta, Antonio; D'Oca, Maria Cristina

    2008-02-01

    Many efforts have been made to develop neutron capture therapy (NCT) for cancer treatment. Among the challenges in using NCT is the characterization of the features of the mixed radiation field and of its components. In this study, we examined the enhancement of the ESR response of pellets of alanine and ammonium tartrate with gadolinium oxide exposed to a thermal neutron beam. In particular, the ESR response of these dosimeters as a function of the gadolinium content inside the dosimeter was analyzed. We found that the addition of gadolinium improves the sensitivity of both alanine and ammonium tartrate. However, the use of gadolinium reduces or abolishes tissue equivalence because of its high atomic number (Z(Gd) = 64). Therefore, it is necessary to find the optimum compromise between the sensitivity to thermal neutrons and the reduction of tissue equivalence. Our analysis showed that a low concentration of gadolinium oxide (of the order of 5% of the total mass of the dosimeter) can enhance the thermal neutron sensitivity more than 13 times with an insignificant reduction of tissue equivalence.

  4. Progressing Toward a Cohesive Pediatric 18F-FDG PET/MR Protocol: Is Administration of Gadolinium Chelates Necessary?

    PubMed

    Klenk, Christopher; Gawande, Rakhee; Tran, Vy Thao; Leung, Jennifer Trinh; Chi, Kevin; Owen, Daniel; Luna-Fineman, Sandra; Sakamoto, Kathleen M; McMillan, Alex; Quon, Andy; Daldrup-Link, Heike E

    2016-01-01

    With the increasing availability of integrated PET/MR scanners, the utility and need for MR contrast agents for combined scans is questioned. The purpose of our study was to evaluate whether administration of gadolinium chelates is necessary for evaluation of pediatric tumors on (18)F-FDG PET/MR images. First, in 119 pediatric patients with primary and secondary tumors, we used 14 diagnostic criteria to compare the accuracy of several MR sequences: unenhanced T2-weighted fast spin-echo imaging; unenhanced diffusion-weighted imaging; and-before and after gadolinium chelate contrast enhancement-T1-weighted 3-dimensional spoiled gradient echo LAVA (liver acquisition with volume acquisition) imaging. Next, in a subset of 36 patients who had undergone (18)F-FDG PET within 3 wk of MRI, we fused the PET images with the unenhanced T2-weighted MR images (unenhanced (18)F-FDG PET/MRI) and the enhanced T1-weighted MR images (enhanced (18)F-FDG PET/MRI). Using the McNemar test, we compared the accuracy of the two types of fused images using the 14 diagnostic criteria. We also evaluated the concordance between (18)F-FDG avidity and gadolinium chelate enhancement. The standard of reference was histopathologic results, surgical notes, and follow-up imaging. There was no significant difference in diagnostic accuracy between the unenhanced and enhanced MR images. Accordingly, there was no significant difference in diagnostic accuracy between the unenhanced and enhanced (18)F-FDG PET/MR images. (18)F-FDG avidity and gadolinium chelate enhancement were concordant in 30 of the 36 patients and 106 of their 123 tumors. Gadolinium chelate administration is not necessary for accurate diagnostic characterization of most solid pediatric malignancies on (18)F-FDG PET/MR images, with the possible exception of focal liver lesions. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  5. Association of left ventricular late gadolinium enhancement with left atrial low voltage areas in patients with atrial fibrillation.

    PubMed

    Stegmann, Clara; Jahnke, Cosima; Paetsch, Ingo; Hilbert, Sebastian; Arya, Arash; Bollmann, Andreas; Hindricks, Gerhard; Sommer, Philipp

    2018-02-06

    Presence of late gadolinium enhancement (LGE) is related to adverse cardiovascular outcome. Many patients suffering from atrial fibrillation (AF) undergo cardiovascular magnetic resonance (CMR) imaging prior to ablation. Since quantification of atrial fibrosis still lacks reproducibility, we sought to investigate risk factors for the presence of left ventricular (LV)-LGE and a possible correlation between ventricular fibrosis as defined by positive LGE and pathological atrial voltage maps evaluated by 3D mapping systems. Between May 2015 and January 2017, 241 patients with AF (73% persistent AF, 71% male, mean age 62.8 ± 10.1 years, Redo procedure in 24%, AF history 4.5 ± 5.2 years) underwent CMR including LV LGE prior to pulmonary vein (PV) isolation at Heart Center Leipzig. Depending on CMR results, two groups were separated: 'LV-LGE negative' (Group A, n = 197, 82%) and 'LV-LGE positive' (Group B, n = 44, 18%). To identify low voltage areas (LVA), a 3D electro-anatomic map was created during PV isolation. Multivariate analysis revealed male gender [odds ratio (OR) 7.6, 95% confidence interval (95% CI) 2.4-23.9, P = 0.001] and an increased CHA2DS2VASc Score (OR 1.6, 95% CI 1.2-2.2, P = 0.004) as significantly associated with LV-LGE. Impaired left ventricular ejection fraction, LV dilatation, larger LA size and, enlarged septum diameter occurred significantly more often in the 'LGE positive' group. Low voltage areas were detected in 83 patients overall (34%): Group A: n = 64/197 (33%), Group B: n = 19/44 (43%) (P = 0.177). Male gender and high CHA2DS2VASc Score are significantly associated with presence of LV-LGE, but LV-LGE is not associated with left atrial LVA. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2018. For permissions, please email: journals.permissions@oup.com.

  6. Removal of gadolinium by peritoneal dialysis.

    PubMed

    Murashima, M; Drott, H R; Carlow, D; Shaw, L M; Milone, M; Bachman, M; Tsai, D E; Yang, S-L; Bloom, R D

    2008-05-01

    An association between gadolinium-containing contrast and the development of nephrogenic systemic fibrosis (NSF) has been increasingly recognized. For patients receiving hemodialysis (HD) who are exposed to gadolinium, the Federal Drug Administration (FDA) recommends HD to remove this contrast agent in order to minimize the risk of NSF. This study examines if gadolinium can be removed by frequent exchanges by peritoneal dialysis (PD). Following administration of 0.1 mmol/kg of gadodiamide to a patient with end-stage renal disease, the serum clearance of this contrast agent by automated PD was examined. 10 and 15 exchanges of PD using an automated cycler were respectively performed during the first and second 24-hour periods after gadolinium exposure. Serum gadolinium levels were measured 1 hour after the gadolinium administration, then at 24 and 48 hours after PD was initiated. 90% of the gadolinium was removed from the circulation in 2 days with a regimen of 10-15 exchanges per day of PD. For patients on chronic maintenance PD who receive gadolinium, our case suggests that a temporary intensive automated PD regimen, aimed at maximizing clearance of this contrast agent immediately after exposure, could be an effective alternative when institution of HD is problematic.

  7. Reticular Appearance on Gadolinium-enhanced T1- and Diffusion-weighted MRI, and Low Apparent Diffusion Coefficient Values in Microcystic Meningioma Cysts.

    PubMed

    Terada, Yukinori; Toda, Hiroki; Okumura, Ryosuke; Ikeda, Naokado; Yuba, Yoshiaki; Katayama, Toshiro; Iwasaki, Koichi

    2018-03-01

    Microcystic meningioma, a rare meningioma subtype, can present diagnostic difficulty. We aimed to investigate the historadiological properties of microcystic meningioma using conventional magnetic resonance imaging (MRI) and diffusion-weighted imaging (DWI) analysis. We retrospectively analyzed conventional MRI and DWI results of six microcystic meningioma cases by examining their appearance and determining their apparent diffusion coefficient (ADC) values. The ADC values of the intratumoral components were normalized with ADC values of the cerebrospinal fluid in the lateral ventricle (ADC ratios). As cystic formations are frequently associated with microcystic meningiomas, their MRI characteristics were compared with the imaging data from 11 cystic meningiomas of non-microcystic subtypes. We found that cysts in microcystic meningioma tended to have a reticular appearance on DWI, as they did on gadolinium-enhanced T1-weighted imaging. Additionally, these reticular cysts had significantly lower ADC ratios than microcystic non-reticular and non-microcystic cysts. These DWI characteristics likely reflect the histological properties of microcystic meningioma. A reticular appearance on gadolinium-enhanced T1-weighted MRI and DWI, and cyst formation with relatively low ADC values can be diagnostic markers of microcystic meningiomas.

  8. Structural, optical and magnetic properties of gadolinium sesquioxide nanobars synthesized via thermal decomposition of gadolinium oxalate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manigandan, R.; Giribabu, K.; Suresh, R.

    2013-10-15

    Graphical abstract: - Highlights: • The cubic Gd{sub 2}O{sub 3} nanobars are synthesized by decomposition of C{sub 6}H{sub 20}Gd{sub 2}O{sub 22}. • The nanoparticles are rectangular bar shape with high porous surface. • The combination of magnetic and optical properties within a single particle. • The Gd{sub 2}O{sub 3} nanobars have tailorable nanostructure, wide bandgap and are paramagnetic. - Abstract: Gadolinium oxide nanobars were obtained by thermal decomposition of gadolinium oxalate, which was synthesized by the chemical precipitation method along with glycerol. The functional group analysis and formation of gadolinium oxide from gadolinium oxalate were characterized by the Fourier transformmore » infrared spectroscopy and thermo gravimetric analyzer. The crystal structure, average crystallite size, and lattice parameter were analyzed by X-ray diffraction technique. Moreover, Raman shifts, elemental composition and morphology of the gadolinium oxide was widely investigated by the laser Raman microscope, X-ray photoelectron spectroscopy, FE-SEM-EDAX and HR-TEM, respectively. Furthermore, the optical properties like band gap, absorbance measurement of the gadolinium oxide were extensively examined. In addition, the paramagnetic property of gadolinium oxide nanobars was explored by the vibrating sample magnetometer.« less

  9. Enhancements in hepatobiliary imaging: the spectrum of gadolinium-ethoxybenzyl diethylenetriaminepentaacetic acid usages in hepatobiliary magnetic resonance imaging.

    PubMed

    Channual, Stephanie; Pahwa, Anokh; Lu, David S; Raman, Steven S

    2016-09-01

    Gadolinium-ethoxybenzyl diethylenetriaminepentaacetic acid (Gd-EOB-DTPA) is a unique hepatocyte-specific contrast agent approved for clinical use in the United States in 2008. Gd-EOB-DTPA-enhanced MR has shown to improve detection and characterization of hepatic lesions. Gd-EOB-DTPA is now being routinely used in daily clinical practice worldwide. Therefore, it is important for radiologists to be familiar with the potential uses and pitfalls of Gd-EOB-DTPA, which extends beyond the assessment of focal hepatic lesions. The purpose of this article is to review the various usages of Gd-EOB-DTPA in hepatobiliary MR imaging.

  10. Pathophysiology of gadolinium-associated systemic fibrosis

    PubMed Central

    Drel, Viktor; Gorin, Yves

    2016-01-01

    Systemic fibrosis from gadolinium-based magnetic resonance imaging contrast is a scourge for the afflicted. Although gadolinium-associated systemic fibrosis is a rare condition, the threat of litigation has vastly altered clinical practice. Most theories concerning the etiology of the fibrosis are grounded in case reports rather than experiment. This has led to the widely accepted conjecture that the relative affinity of certain contrast agents for the gadolinium ion inversely correlates with the risk of succumbing to the disease. How gadolinium-containing contrast agents trigger widespread and site-specific systemic fibrosis and how chronicity is maintained are largely unknown. This review highlights experimentally-derived information from our laboratory and others that pertain to our understanding of the pathophysiology of gadolinium-associated systemic fibrosis. PMID:27147669

  11. Early diagnosis and follow-up of chronic active Epstein-Barr-virus-associated cardiovascular complications with cardiovascular magnetic resonance imaging: A case report.

    PubMed

    Jiang, Shu; Li, Xiao; Cao, Jian; Wu, Di; Kong, Lingyan; Lin, Lu; Jin, Zhengyu; An, Jing; Wang, Yining

    2016-08-01

    Chronic active Epstein-Barr virus (EBV) infection (CAEBV) is characterized as chronic or recurrent mononucleosis-like symptoms and elevated EBV deoxyribonucleic acid (EBV-DNA) copies. Cardiovascular complications have high morbidity and mortality. The treatment regimen for CAEBV has not been established yet, resulting in poor prognoses. Herein, we present a case of cardiovascular magnetic resonance imaging (CMRI) evaluation with a series of sequences for CAEBV-associated cardiovascular involvement, which has never been reported. A 16-year-old female (body weight, 55 kg) developed a persistent fever and a positive EBV-DNA level of 28,000 copies/mL. Computed tomography angiography (CTA) showed aneurysms involving the aorta and its major branches, as well as multiple aneurysms and stenoses of the coronary arteries. CMRI of the coronary arteries depicted the dilution and stenosis of the arterial lumen as well as the thickening of the arterial wall. Late gadolinium enhancement (LGE) showed subendocardial and transmural delayed enhancement of the left ventricle, suggesting myocardial infarction.CAEBV and associated cardiovascular complications were diagnosed. After treatment with Medrol and Leflunomide, the clinical manifestation and serological parameters reversed to normal. However, the EBV-DNA level increased again to 13,900 copies/mL 2 months later. A follow-up with aorta CTA showed that the arterial walls of the bilateral common iliac artery aneurysms were thicker with new-onset mural thrombi. The aorta CTA also showed new-onset occlusion of the right coronary artery, but a follow-up of CMRI at the same day did not find new-onset delayed enhancement lesion. This case reminds clinicians of the vital importance of early diagnosis and close follow-up of CAEBV-associated cardiovascular complications. With cine imaging, coronary artery imaging, LGE imaging, and other novel techniques, CMRI can effectively and comprehensively reveal the early and dynamic changes, and

  12. Characteristics of Gadolinium Oxide Nanoparticles Using Terahertz Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Dongkyu; Maeng, Inhee; Son, Joo-Hiuk

    2009-04-19

    The penetration property of the terahertz electromagnetic (THz) wave is relevant to its use. We used the THz wave spectroscopy system which easily penetrates some materials that do not contain water, e.g., plastic and ceramics. The system has been developed for several purposes, including measuring the properties of semiconductors and bio-materials, and detecting plastic bombs and ceramic knives at airports. It is also used for medical imaging systems, such as magnetic resonance imaging (MRI), at some research institutes. It can show not only the difference in amplitude, but also the difference of the phase of each point of sample. MRImore » technology usually uses contrast agents to enhance the quality of the image. Gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA), made with a heavy metal ion, is commonly used as a clinical MRI contrast agent. Gadolinium oxide (Gd{sub 2}O{sub 3}) nanoparticle is a new contrast agent. It serves to equip the core of each particle with antibodies or ligands. It can freely circulate in blood vessels without amassing in the liver or lungs. This study shows the characteristics of gadolinium oxide nanoparticles to further advance terahertz medical imaging.« less

  13. Apparent diffusion coefficient for molecular subtyping of non-gadolinium-enhancing WHO grade II/III glioma: volumetric segmentation versus two-dimensional region of interest analysis.

    PubMed

    Thust, S C; Hassanein, S; Bisdas, S; Rees, J H; Hyare, H; Maynard, J A; Brandner, S; Tur, C; Jäger, H R; Yousry, T A; Mancini, L

    2018-03-23

    To investigate if quantitative apparent diffusion coefficient (ADC) measurements can predict genetic subtypes of non-gadolinium-enhancing gliomas, comparing whole tumour against single slice analysis. Volumetric T2-derived masks of 44 gliomas were co-registered to ADC maps with ADC mean (ADC mean ) calculated. For the slice analysis, two observers placed regions of interest in the largest tumour cross-section. The ratio (ADC ratio ) between ADC mean in the tumour and normal appearing white matter was calculated for both methods. Isocitrate dehydrogenase (IDH) wild-type gliomas showed the lowest ADC values throughout (p < 0.001). ADC mean in the IDH-mutant 1p19q intact group was significantly higher than in the IDH-mutant 1p19q co-deleted group (p < 0.01). A volumetric ADC mean threshold of 1201 × 10 -6 mm 2 /s identified IDH wild-type with a sensitivity of 83% and a specificity of 86%; a volumetric ADC ratio cut-off value of 1.65 provided a sensitivity of 80% and a specificity of 92% (area under the curve (AUC) 0.9-0.94). A slice ADC ratio threshold for observer 1 (observer 2) of 1.76 (1.83) provided a sensitivity of 80% (86%), specificity of 91% (100%) and AUC of 0.95 (0.96). The intraclass correlation coefficient was excellent (0.98). ADC measurements can support the distinction of glioma subtypes. Volumetric and two-dimensional measurements yielded similar results in this study. • Diffusion-weighted MRI aids the identification of non-gadolinium-enhancing malignant gliomas • ADC measurements may permit non-gadolinium-enhancing glioma molecular subtyping • IDH wild-type gliomas have lower ADC values than IDH-mutant tumours • Single cross-section and volumetric ADC measurements yielded comparable results in this study.

  14. Usefulness of the dynamic gadolinium-enhanced magnetic resonance imaging with simultaneous acquisition of coronal and sagittal planes for detection of pituitary microadenomas.

    PubMed

    Lee, Han Bee; Kim, Sung Tae; Kim, Hyung-Jin; Kim, Keon Ha; Jeon, Pyoung; Byun, Hong Sik; Choi, Jin Wook

    2012-03-01

    Does dynamic gadolinium-enhanced imaging with simultaneous acquisition of coronal and sagittal planes improve diagnostic accuracy of pituitary microadenomas compared with coronal images alone? Fifty-six patients underwent 3-T sella MRI including dynamic simultaneous acquisition of coronal and sagittal planes after gadolinium injection. According to conspicuity, lesions were divided into four scores (0, no; 1, possible; 2, probable; 3, definite delayed enhancing lesion). Additional information on supplementary sagittal images compared with coronal ones was evaluated with a 4-point score (0, no; 1, possible; 2, probable; 3, definite additional information). Accuracy of tumour detection was calculated. Average scores for lesion detection of a combination of two planes, coronal, and sagittal images were 2.59, 2.32, and 2.18. 6/10 lesions negative on coronal images were detected on sagittal ones. Accuracy of a combination of two planes, of coronal and of sagittal images was 92.86%, 82.14% and 75%. Six patients had probable or definite additional information on supplementary sagittal images compared with coronal ones alone (10.71%). Dynamic MRI with combined coronal and sagittal planes was more accurate for detection of pituitary microadenomas than routinely used coronal images. Simultaneous dynamic enhanced acquisition can make study time fast and costs low. We present a new dynamic MRI technique for evaluating pituitary microadenomas • This technique provides simultaneous acquisition of contrast enhanced coronal and sagittal images. • This technique makes the diagnosis more accurate and reduces the examination time. • Such MR imaging only requires one single bolus of contrast agent.

  15. Use of gadolinium-based magnetic resonance imaging contrast agents and awareness of brain gadolinium deposition among pediatric providers in North America.

    PubMed

    Mithal, Leena B; Patel, Payal S; Mithal, Divakar; Palac, Hannah L; Rozenfeld, Michael N

    2017-05-01

    Numerous recent articles have reported brain gadolinium deposition when using linear but not macrocyclic gadolinium-based contrast agents (GBCAs). To determine the current landscape of gadolinium use among pediatric institutions and the knowledge base of radiologists and referring providers with regard to GBCAs and brain gadolinium deposition. We e-mailed voluntary closed surveys to 5,390 physicians in various pediatric professional societies between January 2016 and March 2016. We used chi-square and Fisher exact tests to compare response distributions among specialties. We found that 80% of surveyed pediatric hospitals use macrocyclic contrast agents. In the last year, 58% switched their agent, most commonly to gadoterate meglumine, with the most common reason being brain gadolinium deposition. Furthermore, surveys indicated that 23% of hospitals are considering switching, and, of these, 83% would switch to gadoterate meglumine; the most common reasons were brain gadolinium deposition and safety. Radiologists were more aware of brain gadolinium deposition than non-radiologist physicians (87% vs. 26%; P<0.0001). Radiologists and referring providers expressed similar levels of concern (95% and 89%). Twelve percent of radiologists and 2% of referring providers reported patients asking about brain gadolinium deposition. Radiologists were significantly more comfortable addressing patient inquiries than referring pediatric physicians (48% vs. 6%; P<0.0001). The number of MRIs requested by referring pediatric physicians correlated with their knowledge of brain gadolinium deposition, contrast agent used by their hospital, and comfort discussing brain gadolinium deposition with patients (P<0.0001). Since the discovery of brain gadolinium deposition, many pediatric hospitals have switched to or plan to switch to a more stable macrocyclic MR contrast agent, most commonly gadoterate meglumine. Despite this, there is need for substantial further education of radiologists and

  16. Evaluation of state-of-the-art segmentation algorithms for left ventricle infarct from late Gadolinium enhancement MR images.

    PubMed

    Karim, Rashed; Bhagirath, Pranav; Claus, Piet; James Housden, R; Chen, Zhong; Karimaghaloo, Zahra; Sohn, Hyon-Mok; Lara Rodríguez, Laura; Vera, Sergio; Albà, Xènia; Hennemuth, Anja; Peitgen, Heinz-Otto; Arbel, Tal; Gonzàlez Ballester, Miguel A; Frangi, Alejandro F; Götte, Marco; Razavi, Reza; Schaeffter, Tobias; Rhode, Kawal

    2016-05-01

    Studies have demonstrated the feasibility of late Gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging for guiding the management of patients with sequelae to myocardial infarction, such as ventricular tachycardia and heart failure. Clinical implementation of these developments necessitates a reproducible and reliable segmentation of the infarcted regions. It is challenging to compare new algorithms for infarct segmentation in the left ventricle (LV) with existing algorithms. Benchmarking datasets with evaluation strategies are much needed to facilitate comparison. This manuscript presents a benchmarking evaluation framework for future algorithms that segment infarct from LGE CMR of the LV. The image database consists of 30 LGE CMR images of both humans and pigs that were acquired from two separate imaging centres. A consensus ground truth was obtained for all data using maximum likelihood estimation. Six widely-used fixed-thresholding methods and five recently developed algorithms are tested on the benchmarking framework. Results demonstrate that the algorithms have better overlap with the consensus ground truth than most of the n-SD fixed-thresholding methods, with the exception of the Full-Width-at-Half-Maximum (FWHM) fixed-thresholding method. Some of the pitfalls of fixed thresholding methods are demonstrated in this work. The benchmarking evaluation framework, which is a contribution of this work, can be used to test and benchmark future algorithms that detect and quantify infarct in LGE CMR images of the LV. The datasets, ground truth and evaluation code have been made publicly available through the website: https://www.cardiacatlas.org/web/guest/challenges. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Breakthrough reactions of iodinated and gadolinium contrast media after oral steroid premedication protocol.

    PubMed

    Jingu, Akiko; Fukuda, Junya; Taketomi-Takahashi, Ayako; Tsushima, Yoshito

    2014-10-06

    Adverse reactions to iodinated and gadolinium contrast media are an important clinical issue. Although some guidelines have proposed oral steroid premedication protocols to prevent adverse reactions, some patients may have reactions to contrast media in spite of premedication (breakthrough reaction; BTR).The purpose of this study was to assess the frequency, type and severity of BTR when following an oral steroid premedication protocol. All iodinated and gadolinium contrast-enhanced radiologic examinations between August 2011 and February 2013 for which the premedication protocol was applied in our institution were assessed for BTRs. The protocol was applied to a total of 252 examinations (153 patients, ages 15-87 years; 63 males, 90 females). Of these, 152 were for prior acute adverse reactions to contrast media, 85 were for a history of bronchial asthma, and 15 were for other reasons. There were 198 contrast enhanced CTs and 54 contrast enhanced MRIs. There were nine BTR (4.5%) for iodinated contrast media, and only one BTR (1.9%) for gadolinium contrast media: eight were mild and one was moderate. No patient who had a mild index reaction (IR) had a severe BTR. Incidence of BTRs when following the premedication protocol was low. This study by no means proves the efficacy of premedication, but provides some support for following a premedication protocol to improve safety of contrast-enhanced examinations when prior adverse reactions are mild, or when there is a history of asthma.

  18. Breakthrough reactions of iodinated and gadolinium contrast media after oral steroid premedication protocol

    PubMed Central

    2014-01-01

    Background Adverse reactions to iodinated and gadolinium contrast media are an important clinical issue. Although some guidelines have proposed oral steroid premedication protocols to prevent adverse reactions, some patients may have reactions to contrast media in spite of premedication (breakthrough reaction; BTR). The purpose of this study was to assess the frequency, type and severity of BTR when following an oral steroid premedication protocol. Methods All iodinated and gadolinium contrast-enhanced radiologic examinations between August 2011 and February 2013 for which the premedication protocol was applied in our institution were assessed for BTRs. Results The protocol was applied to a total of 252 examinations (153 patients, ages 15–87 years; 63 males, 90 females). Of these, 152 were for prior acute adverse reactions to contrast media, 85 were for a history of bronchial asthma, and 15 were for other reasons. There were 198 contrast enhanced CTs and 54 contrast enhanced MRIs. There were nine BTR (4.5%) for iodinated contrast media, and only one BTR (1.9%) for gadolinium contrast media: eight were mild and one was moderate. No patient who had a mild index reaction (IR) had a severe BTR. Conclusion Incidence of BTRs when following the premedication protocol was low. This study by no means proves the efficacy of premedication, but provides some support for following a premedication protocol to improve safety of contrast-enhanced examinations when prior adverse reactions are mild, or when there is a history of asthma. PMID:25287952

  19. Gadolinium Enhancement in Intracranial Atherosclerotic Plaque and Ischemic Stroke: A Systematic Review and Meta-Analysis.

    PubMed

    Gupta, Ajay; Baradaran, Hediyeh; Al-Dasuqi, Khalid; Knight-Greenfield, Ashley; Giambrone, Ashley E; Delgado, Diana; Wright, Drew; Teng, Zhongzhao; Min, James K; Navi, Babak B; Iadecola, Costantino; Kamel, Hooman

    2016-08-15

    Gadolinium enhancement on high-resolution magnetic resonance imaging (MRI) has been proposed as a marker of inflammation and instability in intracranial atherosclerotic plaque. We performed a systematic review and meta-analysis to summarize the association between intracranial atherosclerotic plaque enhancement and acute ischemic stroke. We searched the medical literature to identify studies of patients undergoing intracranial vessel wall MRI for evaluation of intracranial atherosclerotic plaque. We recorded study data and assessed study quality, with disagreements in data extraction resolved by a third reader. A random-effects odds ratio was used to assess whether, in any given patient, cerebral infarction was more likely in the vascular territory supplied by an artery with MRI-detected plaque enhancement as compared to territory supplied by an artery without enhancement. We calculated between-study heterogeneity using the Cochrane Q test and publication bias using the Begg-Mazumdar test. Eight articles published between 2011 and 2015 met inclusion criteria. These studies provided information about plaque enhancement characteristics from 295 arteries in 330 patients. We found a significant positive relationship between MRI enhancement and cerebral infarction in the same vascular territory, with a random effects odds ratio of 10.8 (95% CI 4.1-28.1, P<0.001). No significant heterogeneity (Q=11.08, P=0.14) or publication bias (P=0.80) was present. Intracranial plaque enhancement on high-resolution vessel wall MRI is strongly associated with ischemic stroke. Evaluation for plaque enhancement on MRI may be a useful test to improve diagnostic yield in patients with ischemic strokes of undetermined etiology. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  20. Characteristics of Gadolinium Oxide Nanoparticles Using Terahertz Spectroscopy (abstract)

    NASA Astrophysics Data System (ADS)

    Lee, Dongkyu; Maeng, Inhee; Oh, Seung Jae; Kim, Taekhoon; Cho, Byung Kyu; Lee, Kwangyeol; Son, Joo-Hiuk

    2009-04-01

    The penetration property of the terahertz electromagnetic (THz) wave is relevant to its use. We used the THz wave spectroscopy system which easily penetrates some materials that do not contain water, e.g., plastic and ceramics. The system has been developed for several purposes, including measuring the properties of semiconductors and bio-materials, and detecting plastic bombs and ceramic knives at airports. It is also used for medical imaging systems, such as magnetic resonance imaging (MRI), at some research institutes. It can show not only the difference in amplitude, but also the difference of the phase of each point of sample. MRI technology usually uses contrast agents to enhance the quality of the image. Gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA), made with a heavy metal ion, is commonly used as a clinical MRI contrast agent. Gadolinium oxide (Gd2O3) nanoparticle is a new contrast agent. It serves to equip the core of each particle with antibodies or ligands. It can freely circulate in blood vessels without amassing in the liver or lungs. This study shows the characteristics of gadolinium oxide nanoparticles to further advance terahertz medical imaging.

  1. Bone marrow with diffuse tumor infiltration in patients with lymphoproliferative diseases: dynamic gadolinium-enhanced MR imaging.

    PubMed

    Rahmouni, Alain; Montazel, Jean-Luc; Divine, Marine; Lepage, Eric; Belhadj, Karim; Gaulard, Philippe; Bouanane, Mohamed; Golli, Mondher; Kobeiter, Hicham

    2003-12-01

    To evaluate gadolinium enhancement of bone marrow in patients with lymphoproliferative diseases and diffuse bone marrow involvement. Dynamic contrast material-enhanced magnetic resonance (MR) imaging of the thoracolumbar spine was performed in 42 patients with histologically proved diffuse bone marrow involvement and newly diagnosed myeloma (n = 31), non-Hodgkin lymphoma (n = 8), or Hodgkin disease (n = 3). The maximum percentage of enhancement (Emax), enhancement slope, and enhancement washout were determined from enhancement time curves (ETCs). A three-grade system for scoring bone marrow involvement was based on the percentage of neoplastic cells in bone marrow samples. Quantitative ETC values for the 42 patients were compared with ETC values for healthy subjects and with grades of bone marrow involvement by using mean t test comparisons. Receiver operating characteristic (ROC) analysis was conducted by comparing Emax values between patients with and those without bone marrow involvement. Baseline and follow-up MR imaging findings were compared in nine patients. Significant differences in Emax (P <.001), slope (P <.001), and washout (P =.005) were found between subjects with normal bone marrow and patients with diffuse bone marrow involvement. ROC analysis results showed Emax values to have a diagnostic accuracy of 99%. Emax, slope, and washout values increased with increasing bone marrow involvement grade. The mean Emax increased from 339% to 737%. Contrast enhancement decreased after treatment in all six patients who responded to treatment but not in two of three patients who did not respond to treatment. Dynamic contrast-enhanced MR images can demonstrate increased bone marrow enhancement in patients with lymphoproliferative diseases and marrow involvement.

  2. Hyperintense Dentate Nuclei on T1-Weighted MRI: Relation to Repeat Gadolinium Administration

    PubMed Central

    Adin, M.E.; Kleinberg, L.; Vaidya, D.; Zan, E.; Mirbagheri, S.; Yousem, D.M.

    2016-01-01

    BACKGROUND AND PURPOSE A hyperintense appearance of the dentate nucleus on T1-weighted MR images has been related to various clinical conditions, but the etiology remains indeterminate. We aimed to investigate the possible associations between a hyperintense appearance of the dentate nucleus on T1-weighted MR images in patients exposed to radiation and factors including, but not limited to, the cumulative number of contrast-enhanced MR images, amount of gadolinium administration, dosage of ionizing radiation, and patient demographics. MATERIALS AND METHODS The medical records of 706 consecutive patients who were treated with brain irradiation at The Johns Hopkins Medical Institutions between 1995 and 2010 were blindly reviewed by 2 readers. RESULTS One hundred eighty-four subjects were included for dentate nuclei analysis. Among the 184 subjects who cumulatively underwent 2677 MR imaging studies following intravenous gadolinium administration, 103 patients had hyperintense dentate nuclei on precontrast T1-weighted MR images. The average number of gadolinium-enhanced MR imaging studies performed in the group with normal dentate nuclei was significantly lower than that of the group with hyperintense dentate nuclei. The average follow-up time was 62.5 months. No significant difference was observed between hyperintense and normal dentate nuclei groups in terms of exposed radiation dose, serum creatinine and calcium/phosphate levels, patient demographics, history of chemotherapy, and strength of the scanner. No dentate nuclei abnormalities were found on the corresponding CT scans of patients with hyperintense dentate nuclei (n = 44). No dentate nuclei abnormalities were found in 53 healthy volunteers. CONCLUSIONS Repeat performance of gadolinium-enhanced studies likely contributes to a long-standing hyperintense appearance of dentate nuclei on precontrast T1-weighted-MR images. PMID:26294649

  3. Gadolinium-DTPA enhanced magnetic resonance imaging of bone cysts in patients with rheumatoid arthritis.

    PubMed Central

    Gubler, F M; Algra, P R; Maas, M; Dijkstra, P F; Falke, T H

    1993-01-01

    OBJECTIVES--To examine the contents of intraosseous cysts in patients with rheumatoid arthritis (RA) through the signal intensity characteristics on gadolinium-DTPA (Gd-DTPA) enhanced magnetic resonance imaging. METHODS--The hand or foot joints of nine patients with the cystic form of RA (where the initial radiological abnormality consisted of intraosseous cysts without erosions) were imaged before and after intravenous administration of Gd-DTPA. A 0.6 unit, T1 weighted spin echo and T2* weighted gradient echo were used to obtain images in at least two perpendicular planes. RESULTS--Most cysts showed a low signal intensity on the non-enhanced T1 weighted (spin echo) images and a high signal intensity on the T2* weighted (gradient echo) images, consistent with a fluid content. No cyst showed an enhancement of signal intensity on the T1 weighted images after intravenous administration of Gd-DTPA, whereas synovium hyperplasia at the site of bony erosions did show an increased signal intensity after Gd-DTPA. Magnetic resonance imaging detected more cysts (as small as 2 mm) than plain films, and the cysts were located truly intraosseously. In six patients no other joint abnormalities were identified by magnetic resonance imaging; the three other patients also showed, after Gd-DTPA administration, an enhanced synovium at the site of bony erosions. CONCLUSIONS--It is suggested that intraosseous bone cysts in patients with RA do not contain hyperaemic synovial proliferation. The bone cysts in patients with the cystic form of RA may be the only joint abnormality. Images PMID:8257207

  4. Geometrically confined ultrasmall gadolinium oxide nanoparticles boost the T1 contrast ability

    NASA Astrophysics Data System (ADS)

    Ni, Kaiyuan; Zhao, Zhenghuan; Zhang, Zongjun; Zhou, Zijian; Yang, Li; Wang, Lirong; Ai, Hua; Gao, Jinhao

    2016-02-01

    High-performance magnetic resonance imaging (MRI) contrast agents and novel contrast enhancement strategies are urgently needed for sensitive and accurate diagnosis. Here we report a strategy to construct a new T1 contrast agent based on the Solomon-Bloembergen-Morgan (SBM) theory. We loaded the ultrasmall gadolinium oxide nanoparticles into worm-like interior channels of mesoporous silica nanospheres (Gd2O3@MSN nanocomposites). This unique structure endows the nanocomposites with geometrical confinement, high molecular tumbling time, and a large coordinated number of water molecules, which results in a significant enhancement of the T1 contrast with longitudinal proton relaxivity (r1) as high as 45.08 mM-1 s-1. Such a high r1 value of Gd2O3@MSN, compared to those of ultrasmall Gd2O3 nanoparticles and gadolinium-based clinical contrast agents, is mainly attributed to the strong geometrical confinement effect. This strategy provides new guidance for developing various high-performance T1 contrast agents for sensitive imaging and disease diagnosis.High-performance magnetic resonance imaging (MRI) contrast agents and novel contrast enhancement strategies are urgently needed for sensitive and accurate diagnosis. Here we report a strategy to construct a new T1 contrast agent based on the Solomon-Bloembergen-Morgan (SBM) theory. We loaded the ultrasmall gadolinium oxide nanoparticles into worm-like interior channels of mesoporous silica nanospheres (Gd2O3@MSN nanocomposites). This unique structure endows the nanocomposites with geometrical confinement, high molecular tumbling time, and a large coordinated number of water molecules, which results in a significant enhancement of the T1 contrast with longitudinal proton relaxivity (r1) as high as 45.08 mM-1 s-1. Such a high r1 value of Gd2O3@MSN, compared to those of ultrasmall Gd2O3 nanoparticles and gadolinium-based clinical contrast agents, is mainly attributed to the strong geometrical confinement effect. This strategy

  5. Direct comparison of intra-articular versus intravenous delayed gadolinium-enhanced MRI of hip joint cartilage.

    PubMed

    Zilkens, Christoph; Miese, Falk; Kim, Young-Jo; Jäger, Marcus; Mamisch, Tallal C; Hosalkar, Harish; Antoch, Gerald; Krauspe, Rüdiger; Bittersohl, Bernd

    2014-01-01

    To investigate the potential of delayed gadolinium-enhanced magnetic resonance imaging in cartilage (dGEMRIC) after intra-articular (ia) contrast agent administration at 3 Tesla (T), a paired study comparing intravenous (iv) dGEMRIC (standard) with ia-dGEMRIC was performed. Thirty-five symptomatic patients with suspected cartilage damage underwent ia- and iv-dGEMRIC. MRI was performed with a 3T system wherein the interval between both measurements was 2 weeks. For iv-dGEMRIC, FDA approved Gd-DOTA(-) was injected intravenously 45 min before the MRI scan. For ia-dGEMRIC, 10-20 mL of a 2 mM solution of Gd- DOTA(-) was injected under fluoroscopic guidance 30 min before the MRI scan. Both ia- and iv-dGEMRIC demonstrated the typical T1Gd pattern in hip joint cartilage with increasing values toward the superior regions in acetabular cartilage reflecting the higher glycosaminoglycan (GAG) content in the main weight-bearing area. Correlation analysis revealed a moderate correlation between both techniques (r = 0.439, P-value < 0.001), whereas the T1Gd values for iv-dGEMRIC were significantly higher than those for ia-dGEMRIC. This corresponds with the Bland-Altman plot analysis, which revealed a systemic bias (higher T1Gd values after iv gadolinium application) of ∼70 ms. Ia-dGEMRIC was able to reveal the characteristic T1Gd pattern in hip joint cartilage confirming the sensitivity of ia-dGEMRIC for GAG. In addition, there was a significant correlation between iv-dGEMRIC and ia-dGEMRIC. However, the T1Gd values after ia contrast media application were significantly lower than those after iv application that has to be considered for future studies. Copyright © 2013 Wiley Periodicals, Inc.

  6. The dosimetric impact of gadolinium-based contrast media in GBM brain patient plans for a MRI-Linac

    NASA Astrophysics Data System (ADS)

    Bilal Ahmad, Syed; Paudel, Moti Raj; Sarfehnia, Arman; Kim, Anthony; Pang, Geordi; Ruschin, Mark; Sahgal, Arjun; Keller, Brian M.

    2017-08-01

    Dosimetric effects of gadolinium based contrast media (Gadovist) were evaluated for the Elekta MRI linear accelerator using the research version of the Monaco treatment planning system (TPS). In order to represent a gadolinium uptake, the contrast was manually assigned to a phantom as well as to the gross tumour volume (GTV) of 6 glioblastoma multiforme (GBM) patients. A preliminary estimate of the dose enhancement, due to gadolinium, was performed using the phantom irradiated with a single beam. A more complicated assessment was performed for the GBM patients using a 7 field IMRT technique. The material table in Monaco was modified in order to identify the presence of a non-biological material. The dose distribution was modelled using GPUMCD (MC algorithm in Monaco) for an unmodified (or default) material table (DMT) as well as for a modified (or custom) material table (CMT) for both the phantom and patients. Various concentrations ranging between 8 and 157 mg ml-1 were used to represent the gadolinium uptake in the patient’s GTV. It was assumed that the gadolinium concentration remained the same for the entire course of radiation treatment. Results showed that at the tissue-Gadovist interface, inside the phantom, dose scored using the DMT was 7% lower compared to that using the CMT for 157 mg ml-1 concentration of gadolinium. Dosimetric differences in the case of the patient study were measured using the DVH parameters. D 50% was higher by 6% when the DMT was used compared to the CMT for dose modelling for a gadolinium concentration of 157 mg ml-1. This difference decreased gradually with decreasing concentration of gadolinium. It was concluded that dosimetric differences can be quantified in Monaco if the tumour-gadolinium concentration is more than 23 mg ml-1. If the gadolinium concentration is lower than 23 mg ml-1, then a correction for the presence of gadolinium may not be necessary in the TPS.

  7. The dosimetric impact of gadolinium-based contrast media in GBM brain patient plans for a MRI-Linac.

    PubMed

    Ahmad, Syed Bilal; Paudel, Moti Raj; Sarfehnia, Arman; Kim, Anthony; Pang, Geordi; Ruschin, Mark; Sahgal, Arjun; Keller, Brian M

    2017-08-01

    Dosimetric effects of gadolinium based contrast media (Gadovist) were evaluated for the Elekta MRI linear accelerator using the research version of the Monaco treatment planning system (TPS). In order to represent a gadolinium uptake, the contrast was manually assigned to a phantom as well as to the gross tumour volume (GTV) of 6 glioblastoma multiforme (GBM) patients. A preliminary estimate of the dose enhancement, due to gadolinium, was performed using the phantom irradiated with a single beam. A more complicated assessment was performed for the GBM patients using a 7 field IMRT technique. The material table in Monaco was modified in order to identify the presence of a non-biological material. The dose distribution was modelled using GPUMCD (MC algorithm in Monaco) for an unmodified (or default) material table (DMT) as well as for a modified (or custom) material table (CMT) for both the phantom and patients. Various concentrations ranging between 8 and 157 mg ml -1 were used to represent the gadolinium uptake in the patient's GTV. It was assumed that the gadolinium concentration remained the same for the entire course of radiation treatment. Results showed that at the tissue-Gadovist interface, inside the phantom, dose scored using the DMT was 7% lower compared to that using the CMT for 157 mg ml -1 concentration of gadolinium. Dosimetric differences in the case of the patient study were measured using the DVH parameters. D 50% was higher by 6% when the DMT was used compared to the CMT for dose modelling for a gadolinium concentration of 157 mg ml -1 . This difference decreased gradually with decreasing concentration of gadolinium. It was concluded that dosimetric differences can be quantified in Monaco if the tumour-gadolinium concentration is more than 23 mg ml -1 . If the gadolinium concentration is lower than 23 mg ml -1 , then a correction for the presence of gadolinium may not be necessary in the TPS.

  8. Diagnostic and prognostic value of cardiovascular magnetic resonance in non-ischaemic cardiomyopathies

    PubMed Central

    2012-01-01

    Cardiovascular Magnetic Resonance (CMR) is recognised as a valuable clinical tool which in a single scan setting can assess ventricular volumes and function, myocardial fibrosis, iron loading, flow quantification, tissue characterisation and myocardial perfusion imaging. The advent of CMR using extrinsic and intrinsic contrast-enhanced protocols for tissue characterisation have dramatically changed the non-invasive work-up of patients with suspected or known cardiomyopathy. Although the technique initially focused on the in vivo identification of myocardial necrosis through the late gadolinium enhancement (LGE) technique, recent work highlighted the ability of CMR to provide more detailed in vivo tissue characterisation to help establish a differential diagnosis of the underlying aetiology, to exclude an ischaemic substrate and to provide important prognostic markers. The potential application of CMR in the clinical approach of a patient with suspected non-ischaemic cardiomyopathy is discussed in this review. PMID:22857649

  9. Gadolinium-based nanoparticles to improve the hadrontherapy performances.

    PubMed

    Porcel, Erika; Tillement, Olivier; Lux, François; Mowat, Pierre; Usami, Noriko; Kobayashi, Katsumi; Furusawa, Yoshiya; Le Sech, Claude; Li, Sha; Lacombe, Sandrine

    2014-11-01

    Nanomedicine is proposed as a novel strategy to improve the performance of radiotherapy. High-Z nanoparticles are known to enhance the effects of ionizing radiation. Recently, multimodal nanoparticles such as gadolinium-based nanoagents were proposed to amplify the effects of x-rays and g-rays and to improve MRI diagnosis. For tumors sited in sensitive tissues, childhood cases and radioresistant cancers, hadrontherapy is considered superior to x-rays and g-rays. Hadrontherapy, based on fast ion radiation, has the advantage of avoiding damage to the tissues behind the tumor; however, the damage caused in front of the tumor is its major limitation. Here, we demonstrate that multimodal gadolinium-based nanoparticles amplify cell death with fast ions used as radiation. Molecular scale experiments give insights into the mechanisms underlying the amplification of radiation effects. This proof-of-concept opens up novel perspectives for multimodal nanomedicine in hadrontherapy, ultimately reducing negative radiation effects in healthy tissues in front of the tumor. Gadolinium-chelating polysiloxane nanoparticles were previously reported to amplify the anti-tumor effects of x-rays and g-rays and to serve as MRI contrast agents. Fast ion radiation-based hadrontherapy avoids damage to the tissues behind the tumor, with a major limitation of tissue damage in front of the tumor. This study demonstrates a potential role for the above nanoagents in optimizing hadrontherapy with preventive effects in healthy tissue and amplified cell death in the tumor. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Comparison of cardiogoniometry and electrocardiography with perfusion cardiac magnetic resonance imaging and late gadolinium enhancement.

    PubMed

    Birkemeyer, Ralf; Toelg, Ralph; Zeymer, Uwe; Wessely, Rainer; Jäckle, Sebastian; Hairedini, Bajram; Lübke, Mike; Aßfalg, Manfred; Jung, Werner

    2012-12-01

    Cardiogoniometry (CGM) is a spatio-temporal five-lead resting electrocardiographic method utilizing automated analysis. The purpose of this study was to determine CGM's and electrocardiography (ECG)'s accuracy for detecting myocardial ischaemia and/or lesions in comparison with perfusion cardiac magnetic resonance imaging (CMRI) and late gadolinium enhancement (LGE). Forty (n= 40) patients with suspected or known stable coronary artery disease were examined by CGM and resting ECG directly prior to CMRI including adenosine stress perfusion (ASP) and LGE. The investigators visually reading the CMRI were blinded to the CGM and ECG results. Half of the patients (n= 20) had a normal CMRI while the other half presented with either abnormal ASP and/or detectable LGE. Cardiogoniometry yielded an accuracy of 83% (sensitivity 70%) and ECG of 63% (sensitivity 35%) compared with CMRI. In this pilot study CGM compares more favourably than ECG with the detection of ischaemia and/or structural myocardial lesions on CMRI.

  11. Comparison of Contrast-Enhanced Ultrasound and Gadolinium-Ethoxybenzyl-Diethylenetriamine Pentaacetic Acid-Enhanced MRI for the Diagnosis of Macroscopic Type of Hepatocellular Carcinoma.

    PubMed

    Iwamoto, Takayuki; Imai, Yasuharu; Kogita, Sachiyo; Igura, Takumi; Sawai, Yoshiyuki; Fukuda, Kazuto; Yamaguchi, Yoshitaka; Matsumoto, Yasushi; Nakahara, Masanori; Morimoto, Osakuni; Seki, Yasushi; Ohashi, Hiroshi; Fujita, Norihiko; Kudo, Masatoshi; Takehara, Tetsuo

    We compared the efficacy of contrast-enhanced ultrasound sonography (CEUS) with sonazoid and gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced MRI for the assessment of macroscopic classification of nodular hepatocellular carcinoma (HCC). Seventy-seven consecutive patients with 79 surgically resected HCCs who underwent both preoperative CEUS and Gd-EOB-DTPA-enhanced MRI were enrolled in this retrospective study. Based on the macroscopic diagnosis of resected specimens, nodules were categorized into the simple nodular (SN) and non-SN type HCC. Two hepatologists independently assessed image datasets of the post-vascular phase of CEUS and hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI to compare their diagnostic performance. Gd-EOB-DTPA-enhanced MRI enabled the evaluation of macroscopic classification in a significantly larger number of nodules than CEUS (78/79 (98.7%) vs. 70/79 (88.6%), p < 0.05). Of 70 nodules that could be evaluated by both modalities, 41 and 29 nodules were pathologically categorized as SN and non-SN, respectively. The areas under the receiver operating characteristic curve (AUC) for non-SN did not differ between CEUS and Gd-EOB-DTPA-enhanced MRI (reader 1: 0.748 for CEUS, 0.808 for MRI; reader 2: 0.759 for CEUS, 0.787 for MRI). The AUC of combined CEUS and Gd-EOB-DTPA-enhanced MRI for SN HCC was 0.855 (reader 1) and 0.824 (reader 2), indicating higher AUC values for the combined modalities. The diagnostic performance for macroscopic classification of nodular HCC of CEUS was comparable with that of Gd-EOB-DTPA-enhanced MRI, although some HCCs could not be evaluated by CEUS owing to lower detectability. The combination of the 2 modalities had a more accurate diagnostic performance. © 2016 S. Karger AG, Basel.

  12. Comparison of gadolinium-EOB-DTPA-enhanced and diffusion-weighted liver MRI for detection of small hepatic metastases.

    PubMed

    Shimada, Kotaro; Isoda, Hiroyoshi; Hirokawa, Yuusuke; Arizono, Shigeki; Shibata, Toshiya; Togashi, Kaori

    2010-11-01

    To compare the accuracy of gadolinium ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced MRI with that of diffusion-weighted MRI (DWI) in the detection of small hepatic metastases (2 cm or smaller). Forty-five patients underwent abdominal MRI at 3 T, including T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), heavily T2WI (HASTE), DWI with a b-value of 500 s/mm(2) and contrast-enhanced MRI with Gd-EOB-DTPA. Two groups were assigned and compared: group A (T1WI, T2WI, HASTE and contrast-enhanced study with Gd-EOB-DTPA), and group B (T1WI, T2WI, HASTE and DWI). Two observers independently interpreted the images obtained in a random order. For all hepatic metastases, the diagnostic performance using each imaging set was evaluated by receiver-operating characteristic (ROC) curve analysis. A total of 51 hepatic metastases were confirmed. The area under the ROC curve (Az) of group A was larger than that of group B, and the difference in the mean Az values between the two image sets was statistically significant, whereas, there were three metastases that lay near thin vessels or among multiple cysts and were better visualised in group B than in group A. Gd-EOB-DTPA-enhanced MRI showed higher accuracy in the detection of small metastases than DWI.

  13. High mass (>18g) of late gadolinium enhancement on CMR imaging is associated with major cardiac events on long-term outcome in patients with biopsy-proven extracardiac sarcoidosis.

    PubMed

    Agoston-Coldea, Lucia; Kouaho, Sylvain; Sacre, Karim; Dossier, Antoine; Escoubet, Brigitte; Chillon, Sylvie; Laissy, Jean-Pierre; Rouzet, François; Kutty, Shelby; Extramiana, Fabrice; Leenhardt, Antoine; Borie, Raphael; Crestani, Bruno; Ou, Phalla

    2016-11-01

    Cardiac involvement is the most important cause of mortality in patients with systemic sarcoidosis. Late gadolinium enhancement (LGE) on cardiovascular magnetic resonance imaging (CMR) has been shown to be a predictor of major cardiovascular adverse events (MACE) in the setting of systemic sarcoidosis. We sought to evaluate the relationship between LGE mass and adverse long-term outcome in patients with biopsy-proven extracardiac sarcoidosis. Between 2001 and 2013, 197 consecutive patients with suspected cardiac sarcoidosis were identified in our institution database. Of them, 56 patients have had biopsy-proven extracardiac sarcoidosis and represented our studied population. Patients were divided into two groups based on LGE mass by a median value (mild LGE<18g, high LGE>18g) for comparison of MACE. Twenty-eight patients had a high mass of LGE. Of them, 15 (54%) experienced MACE (OR=31.15, 95% CI 3.7-262). Except for 1 patient, no patient with mild LGE presented with any MACE during follow-up (median of 32months). Patients with high LGE had lower CMR-derived left (53.6±14.9 vs. 62.2±6.7, p<0.01) and right (49.1±11.5 vs. 56.4±9.2, p<0.05) ventricular ejection fractions. LGE mass of 18g discriminated patients with and without MACE (93% sensitivity, 88% specificity, AUC=0.972). LGE mass was the only independent predictor of MACE on multivariate Cox analysis adjusted (OR=1.7, 95% CI 1.06 to 2.72, p=0.03). In biopsy-proven extracardiac sarcoidosis patients, a high mass of LGE >18g was associated with MACE. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Electrical and Structural Substrate of Arrhythmogenic Right Ventricular Cardiomyopathy Determined Using Noninvasive Electrocardiographic Imaging and Late Gadolinium Magnetic Resonance Imaging.

    PubMed

    Andrews, Christopher M; Srinivasan, Neil T; Rosmini, Stefania; Bulluck, Heerajnarain; Orini, Michele; Jenkins, Sharon; Pantazis, Antonis; McKenna, William J; Moon, James C; Lambiase, Pier D; Rudy, Yoram

    2017-07-01

    Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a significant cause of sudden cardiac death in the young. Improved noninvasive assessment of ARVC and better understanding of the disease substrate are important for improving patient outcomes. We studied 20 genotyped ARVC patients with a broad spectrum of disease using electrocardiographic imaging (a method for noninvasive cardiac electrophysiology mapping) and advanced late gadolinium enhancement cardiac magnetic resonance scar imaging. Compared with 20 healthy controls, ARVC patients had longer ventricular activation duration (median, 52 versus 42 ms; P =0.007) and prolonged mean epicardial activation-recovery intervals (a surrogate for local action potential duration; median, 275 versus 241 ms; P =0.014). In these patients, we observed abnormal and varied epicardial activation breakthrough locations and regions of nonuniform conduction and fractionated electrograms. Nonuniform conduction and fractionated electrograms were present in the early concealed phase of ARVC. Electrophysiological abnormalities colocalized with late gadolinium enhancement scar, indicating a relationship with structural disease. Premature ventricular contractions were common in ARVC patients with variable initiation sites in both ventricles. Premature ventricular contraction rate increased with exercise, and within anatomic segments, it correlated with prolonged repolarization, electric markers of scar, and late gadolinium enhancement (all P <0.001). Electrocardiographic imaging reveals electrophysiological substrate properties that differ in ARVC patients compared with healthy controls. A novel mechanistic finding is the presence of repolarization abnormalities in regions where ventricular ectopy originates. The results suggest a potential role for electrocardiographic imaging and late gadolinium enhancement in early diagnosis and noninvasive follow-up of ARVC patients. © 2017 American Heart Association, Inc.

  15. Diuretic-enhanced gadolinium excretory MR urography: comparison of conventional gradient-echo sequences and echo-planar imaging.

    PubMed

    Nolte-Ernsting, C C; Tacke, J; Adam, G B; Haage, P; Jung, P; Jakse, G; Günther, R W

    2001-01-01

    The aim of this study was to investigate the utility of different gadolinium-enhanced T1-weighted gradient-echo techniques in excretory MR urography. In 74 urologic patients, excretory MR urography was performed using various T1-weighted gradient-echo (GRE) sequences after injection of gadolinium-DTPA and low-dose furosemide. The examinations included conventional GRE sequences and echo-planar imaging (GRE EPI), both obtained with 3D data sets and 2D projection images. Breath-hold acquisition was used primarily. In 20 of 74 examinations, we compared breath-hold imaging with respiratory gating. Breath-hold imaging was significantly superior to respiratory gating for the visualization of pelvicaliceal systems, but not for the ureters. Complete MR urograms were obtained within 14-20 s using 3D GRE EPI sequences and in 20-30 s with conventional 3D GRE sequences. Ghost artefacts caused by ureteral peristalsis often occurred with conventional 3D GRE imaging and were almost completely suppressed in EPI sequences (p < 0.0001). Susceptibility effects were more pronounced on GRE EPI MR urograms and calculi measured 0.8-21.7% greater in diameter compared with conventional GRE sequences. Increased spatial resolution degraded the image quality only in GRE-EPI urograms. In projection MR urography, the entire pelvicaliceal system was imaged by acquisition of a fast single-slice sequence and the conventional 2D GRE technique provided superior morphological accuracy than 2D GRE EPI projection images (p < 0.0003). Fast 3D GRE EPI sequences improve the clinical practicability of excretory MR urography especially in old or critically ill patients unable to suspend breathing for more than 20 s. Conventional GRE sequences are superior to EPI in high-resolution detail MR urograms and in projection imaging.

  16. The evolution of gadolinium based contrast agents: from single-modality to multi-modality

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Liu, Ruiqing; Peng, Hui; Li, Penghui; Xu, Zushun; Whittaker, Andrew K.

    2016-05-01

    Gadolinium-based contrast agents are extensively used as magnetic resonance imaging (MRI) contrast agents due to their outstanding signal enhancement and ease of chemical modification. However, it is increasingly recognized that information obtained from single modal molecular imaging cannot satisfy the higher requirements on the efficiency and accuracy for clinical diagnosis and medical research, due to its limitation and default rooted in single molecular imaging technique itself. To compensate for the deficiencies of single function magnetic resonance imaging contrast agents, the combination of multi-modality imaging has turned to be the research hotpot in recent years. This review presents an overview on the recent developments of the functionalization of gadolinium-based contrast agents, and their application in biomedicine applications.

  17. Nephrogenic Systemic Fibrosis Manifesting a Decade After Exposure to Gadolinium.

    PubMed

    Larson, Krista N; Gagnon, Amy L; Darling, Melissa D; Patterson, James W; Cropley, Thomas G

    2015-10-01

    Nephrogenic systemic fibrosis (NSF) is a fibrosing skin disorder that develops in patients with kidney failure and has been linked to exposure to gadolinium-containing contrast agents. The time between exposure to gadolinium and the initial presentation of NSF is typically weeks to months but has been documented to be as long as 3½ years. We report a case of NSF developing 10 years after exposure to gadolinium. A long-term hemodialysis patient was exposed to gadolinium several times between 1998 and 2004 during magnetic resonance angiography of his abdominal vessels and arteriovenous fistula. In 2014, he was seen at our clinic with new dermal papules and plaques. Biopsy of affected skin showed thickening of collagen, CD34+ spindle cells, and increased mucin in the dermis, supporting the diagnosis of NSF. The clinical history and histopathological features of this case support the diagnosis of NSF 10 years after exposure to gadolinium. Although the use of gadolinium contrast agents in patients with kidney failure has markedly decreased, patients with exposure to gadolinium years to decades previously may manifest the disease.

  18. Accumulation of MRI contrast agents in malignant fibrous histiocytoma for gadolinium neutron capture therapy.

    PubMed

    Fujimoto, T; Ichikawa, H; Akisue, T; Fujita, I; Kishimoto, K; Hara, H; Imabori, M; Kawamitsu, H; Sharma, P; Brown, S C; Moudgil, B M; Fujii, M; Yamamoto, T; Kurosaka, M; Fukumori, Y

    2009-07-01

    Neutron-capture therapy with gadolinium (Gd-NCT) has therapeutic potential, especially that gadolinium is generally used as a contrast medium in magnetic resonance imaging (MRI). The accumulation of gadolinium in a human sarcoma cell line, malignant fibrosis histiocytoma (MFH) Nara-H, was visualized by the MRI system. The commercially available MRI contrast medium Gd-DTPA (Magnevist, dimeglumine gadopentetate aqueous solution) and the biodegradable and highly gadopentetic acid (Gd-DTPA)-loaded chitosan nanoparticles (Gd-nanoCPs) were prepared as MRI contrast agents. The MFH cells were cultured and collected into three falcon tubes that were set into the 3-tesra MRI system to acquire signal intensities from each pellet by the spin echo method, and the longitudinal relaxation time (T1) was calculated. The amount of Gd in the sample was measured by inductively coupled plasma atomic emission spectrography (ICP-AES). The accumulation of gadolinium in cells treated with Gd-nanoCPs was larger than that in cells treated with Gd-DTPA. In contrast, and compared with the control, Gd-DTPA was more effective than Gd-nanoCPs in reducing T1, suggesting that the larger accumulation exerted the adverse effect of lowering the enhancement of MRI. Further studies are warranted to gain insight into the therapeutic potential of Gd-NCT.

  19. Nephrogenic systemic fibrosis (NSF): a late adverse reaction to some of the gadolinium based contrast agents

    PubMed Central

    Marckmann, Peter; Logager, Vibeke B.

    2007-01-01

    Abstract Until recently it was believed that extracellular gadolinium based contrast agents were safe for both the kidneys and all other organs within the dose range up to 0.3 mmol/kg body weight. However, in 2006, it was demonstrated that some gadolinium based contrast agents may trigger the development of nephrogenic systemic fibrosis, a generalised fibrotic disorder, in renal failure patients. Accordingly, the use of gadodiamide and gadopentate dimeglumine for renal failure patients was banned in Europe in spring 2007. The same two compounds should only be used cautiously in patients with moderate renal dysfunction. The current paper reviews the situation (July 2007) regarding gadolinium based contrast agent and the severe delayed reaction to some of these agents. The fear of nephrogenic systemic fibrosis should not lead to a denial of a well indicated enhanced magnetic resonance imaging examination. PMID:17905680

  20. Tracing gadolinium-based contrast agents from surface water to drinking water by means of speciation analysis.

    PubMed

    Birka, Marvin; Wehe, Christoph A; Hachmöller, Oliver; Sperling, Michael; Karst, Uwe

    2016-04-01

    In recent decades, a significant amount of anthropogenic gadolinium has been released into the environment as a result of the broad application of contrast agents for magnetic resonance imaging (MRI). Since this anthropogenic gadolinium anomaly has also been detected in drinking water, it has become necessary to investigate the possible effect of drinking water purification on these highly polar microcontaminats. Therefore, a novel highly sensitive method for speciation analysis of gadolinium is presented. For that purpose, the hyphenation of hydrophilic interaction liquid chromatography (HILIC) and inductively coupled plasma-mass spectrometry (ICP-MS) was employed. In order to enhance the detection power, sample introduction was carried out by ultrasonic nebulization. In combination with a novel HILIC method using a diol-based stationary phase, it was possible to achieve superior limits of detection for frequently applied gadolinium-based contrast agents below 20pmol/L. With this method, the contrast agents Gd-DTPA, Gd-DOTA and Gd-BT-DO3A were determined in concentrations up to 159pmol/L in samples from several waterworks in a densely populated region of Germany alongside the river Ruhr as well as from a waterworks near a catchment lake. Thereby, the direct impact of anthropogenic gadolinium species being present in the surface water on the amount of anthropogenic gadolinium in drinking water was shown. There was no evidence for the degradation of contrast agents, the release of Gd(3+) or the presence of further Gd species. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Characterization of the biliary tract by virtual ultrasonography constructed by gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging.

    PubMed

    Koizumi, Yohei; Hirooka, Masashi; Ochi, Hironori; Tokumoto, Yoshio; Takechi, Megumi; Hiraoka, Atsushi; Ikeda, Yoshio; Kumagi, Teru; Matsuura, Bunzo; Abe, Masanori; Hiasa, Yoichi

    2015-04-01

    This study aimed at prospectively evaluating bile duct anatomy on ultrasonography and evaluating the safety and utility of radiofrequency ablation (RFA) assisted by virtual ultrasonography from gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI). The institutional review board approved this study, and patients provided written informed consent prior to entry into the study. Bile duct anatomy was assessed in 201 patients who underwent Gd-EOB-DTPA-enhanced MRI for the evaluation of hepatic tumor. Eighty-one of these patients subsequently underwent RFA assisted by ultrasound imaging. In 23 patients, the tumor was located within 5 mm of the central bile duct, as demonstrated by MRI. Virtual ultrasonography constructed by Gd-EOB-enhanced MRI was able to visualize the common bile duct, left hepatic duct, and right hepatic duct in 96.5, 94.0, and 89.6 % of cases, respectively. The target hepatic tumor nodule and biliary duct could be detected with virtual ultrasonography in all patients, and no severe complications occurred. The running pattern of the bile ducts could be recognized on conventional ultrasound by referencing virtual ultrasonography constructed by Gd-EOB-DTPA-enhanced MRI. RFA assisted by this imaging strategy did not result in bile duct injury.

  2. Gadolinium photoionization process

    DOEpatents

    Paisner, J.A.; Comaskey, B.J.; Haynam, C.A.; Eggert, J.H.

    1993-04-13

    A method is provided for selective photoionization of the odd-numbered atomic mass gadolinium isotopes 155 and 157. The selective photoionization is accomplished by circular or linear parallel polarized laser beam energy effecting a three-step photoionization pathway.

  3. Gadolinium photoionization process

    DOEpatents

    Paisner, Jeffrey A.; Comaskey, Brian J.; Haynam, Christopher A.; Eggert, Jon H.

    1993-01-01

    A method is provided for selective photoionization of the odd-numbered atomic mass gadolinium isotopes 155 and 157. The selective photoionization is accomplished by circular or linear parallel polarized laser beam energy effecting a three-step photoionization pathway.

  4. Hybrid Calcium Phosphate-Polymeric Micelles Incorporating Gadolinium Chelates for Imaging-Guided Gadolinium Neutron Capture Tumor Therapy.

    PubMed

    Mi, Peng; Dewi, Novriana; Yanagie, Hironobu; Kokuryo, Daisuke; Suzuki, Minoru; Sakurai, Yoshinori; Li, Yanmin; Aoki, Ichio; Ono, Koji; Takahashi, Hiroyuki; Cabral, Horacio; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2015-06-23

    Gadolinium (Gd) chelates-loaded nanocarriers have high potential for achieving magnetic resonance imaging (MRI)-guided Gd neutron capture therapy (GdNCT) of tumors. Herein, we developed calcium phosphate micelles hybridized with PEG-polyanion block copolymers, and incorporated with the clinical MRI contrast agent Gd-diethylenetriaminepentaacetic acid (Gd-DTPA/CaP). The Gd-DTPA/CaP were nontoxic to cancer cells at the concentration of 100 μM based on Gd-DTPA, while over 50% of the cancer cells were killed by thermal neutron irradiation at this concentration. Moreover, the Gd-DTPA/CaP showed a dramatically increased accumulation of Gd-DTPA in tumors, leading to the selective contrast enhancement of tumor tissues for precise tumor location by MRI. The enhanced tumor-to-blood distribution ratio of Gd-DTPA/CaP resulted in the effective suppression of tumor growth without loss of body weight, indicating the potential of Gd-DTPA/CaP for safe cancer treatment.

  5. In vitro study of novel gadolinium-loaded liposomes guided by GBI-10 aptamer for promising tumor targeting and tumor diagnosis by magnetic resonance imaging.

    PubMed

    Gu, Meng-Jie; Li, Kun-Feng; Zhang, Lan-Xin; Wang, Huan; Liu, Li-Si; Zheng, Zhuo-Zhao; Han, Nan-Yin; Yang, Zhen-Jun; Fan, Tian-Yuan

    2015-01-01

    Novel gadolinium-loaded liposomes guided by GBI-10 aptamer were developed and evaluated in vitro to enhance magnetic resonance imaging (MRI) diagnosis of tumor. Nontargeted gadolinium-loaded liposomes were achieved by incorporating amphipathic material, Gd (III) [N,N-bis-stearylamidomethyl-N'-amidomethyl] diethylenetriamine tetraacetic acid, into the liposome membrane using lipid film hydration method. GBI-10, as the targeting ligand, was then conjugated onto the liposome surface to get GBI-10-targeted gadolinium-loaded liposomes (GTLs). Both nontargeted gadolinium-loaded liposomes and GTLs displayed good dispersion stability, optimal size, and zeta potential for tumor targeting, as well as favorable imaging properties with enhanced relaxivity compared with a commercial MRI contrast agent (CA), gadopentetate dimeglumine. The use of GBI-10 aptamer in this liposomal system was intended to result in increased accumulation of gadolinium at the periphery of C6 glioma cells, where the targeting extracellular matrix protein tenascin-C is overexpressed. Increased cellular binding of GTLs to C6 cells was confirmed by confocal microscopy, flow cytometry, and MRI, demonstrating the promise of this novel delivery system as a carrier of MRI contrast agent for the diagnosis of tumor. These studies provide a new strategy furthering the development of nanomedicine for both diagnosis and therapy of tumor.

  6. In vitro study of novel gadolinium-loaded liposomes guided by GBI-10 aptamer for promising tumor targeting and tumor diagnosis by magnetic resonance imaging

    PubMed Central

    Gu, Meng-Jie; Li, Kun-Feng; Zhang, Lan-Xin; Wang, Huan; Liu, Li-Si; Zheng, Zhuo-Zhao; Han, Nan-Yin; Yang, Zhen-Jun; Fan, Tian-Yuan

    2015-01-01

    Novel gadolinium-loaded liposomes guided by GBI-10 aptamer were developed and evaluated in vitro to enhance magnetic resonance imaging (MRI) diagnosis of tumor. Nontargeted gadolinium-loaded liposomes were achieved by incorporating amphipathic material, Gd (III) [N,N-bis-stearylamidomethyl-N′-amidomethyl] diethylenetriamine tetraacetic acid, into the liposome membrane using lipid film hydration method. GBI-10, as the targeting ligand, was then conjugated onto the liposome surface to get GBI-10-targeted gadolinium-loaded liposomes (GTLs). Both nontargeted gadolinium-loaded liposomes and GTLs displayed good dispersion stability, optimal size, and zeta potential for tumor targeting, as well as favorable imaging properties with enhanced relaxivity compared with a commercial MRI contrast agent (CA), gadopentetate dimeglumine. The use of GBI-10 aptamer in this liposomal system was intended to result in increased accumulation of gadolinium at the periphery of C6 glioma cells, where the targeting extracellular matrix protein tenascin-C is overexpressed. Increased cellular binding of GTLs to C6 cells was confirmed by confocal microscopy, flow cytometry, and MRI, demonstrating the promise of this novel delivery system as a carrier of MRI contrast agent for the diagnosis of tumor. These studies provide a new strategy furthering the development of nanomedicine for both diagnosis and therapy of tumor. PMID:26316749

  7. High spatial resolution free-breathing 3D late gadolinium enhancement cardiac magnetic resonance imaging in ischaemic and non-ischaemic cardiomyopathy: quantitative assessment of scar mass and image quality.

    PubMed

    Bizino, Maurice B; Tao, Qian; Amersfoort, Jacob; Siebelink, Hans-Marc J; van den Bogaard, Pieter J; van der Geest, Rob J; Lamb, Hildo J

    2018-04-06

    To compare breath-hold (BH) with navigated free-breathing (FB) 3D late gadolinium enhancement cardiac MRI (LGE-CMR) MATERIALS AND METHODS: Fifty-one patients were retrospectively included (34 ischaemic cardiomyopathy, 14 non-ischaemic cardiomyopathy, three discarded). BH and FB 3D phase sensitive inversion recovery sequences were performed at 3T. FB datasets were reformatted into normal resolution (FB-NR, 1.46x1.46x10mm) and high resolution (FB-HR, isotropic 0.91-mm voxels). Scar mass, scar edge sharpness (SES), SNR and CNR were compared using paired-samples t-test, Pearson correlation and Bland-Altman analysis. Scar mass was similar in BH and FB-NR (mean ± SD: 15.5±18.0 g vs. 15.5±16.9 g, p=0.997), with good correlation (r=0.953), and no bias (mean difference ± SD: 0.00±5.47 g). FB-NR significantly overestimated scar mass compared with FB-HR (15.5±16.9 g vs 14.4±15.6 g; p=0.007). FB-NR and FB-HR correlated well (r=0.988), but Bland-Altman demonstrated systematic bias (1.15±2.84 g). SES was similar in BH and FB-NR (p=0.947), but significantly higher in FB-HR than FB-NR (p<0.01). SNR and CNR were lower in BH than FB-NR (p<0.01), and lower in FB-HR than FB-NR (p<0.01). Navigated free-breathing 3D LGE-CMR allows reliable scar mass quantification comparable to breath-hold. During free-breathing, spatial resolution can be increased resulting in improved sharpness and reduced scar mass. • Navigated free-breathing 3D late gadolinium enhancement is reliable for myocardial scar quantification. • High-resolution 3D late gadolinium enhancement increases scar sharpness • Ischaemic and non-ischaemic cardiomyopathy patients can be imaged using free-breathing LGE CMR.

  8. Contrast-enhanced computed tomography plus gadolinium-ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging for gross classification of hepatocellular carcinoma.

    PubMed

    Chen, Chuang; Zhao, Hui; Fu, Xu; Huang, LuoShun; Tang, Min; Yan, XiaoPeng; Sun, ShiQuan; Jia, WenJun; Mao, Liang; Shi, Jiong; Chen, Jun; He, Jian; Zhu, Jin; Qiu, YuDong

    2017-05-02

    Accurate gross classification through imaging is critical for determination of hepatocellular carcinoma (HCC) patient prognoses and treatment strategies. The present retrospective study evaluated the utility of contrast-enhanced computed tomography (CE-CT) combined with gadolinium-ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging (EOB-MRI) for diagnosis and classification of HCCs prior to surgery. Ninety-four surgically resected HCC nodules were classified as simple nodular (SN), SN with extranodular growth (SN-EG), confluent multinodular (CMN), or infiltrative (IF) types. SN-EG, CMN and IF samples were grouped as non-SN. The abilities of the two imaging modalities to differentiate non-SN from SN HCCs were assessed using the EOB-MRI hepatobiliary phase and CE-CT arterial, portal, and equilibrium phases. Areas under the ROC curves for non-SN diagnoses were 0.765 (95% confidence interval [CI]: 0.666-0.846) for CE-CT, 0.877 (95% CI: 0.793-0.936) for EOB-MRI, and 0.908 (95% CI: 0.830-0.958) for CE-CT plus EOB-MRI. Sensitivities, specificities, and accuracies with respect to identification of non-SN tumors of all sizes were 71.4%, 81.6%, and 75.5% for CE-CT; 96.4%, 78.9%, and 89.3% for EOB-MRI; and 98.2%, 84.2%, and 92.5% for CE-CT plus EOB-MRI. These results show that CE-CT combined with EOB-MRI offers a more accurate imaging evaluation for HCC gross classification than either modality alone.

  9. Gadolinium-Induced Fibrosis.

    PubMed

    Todd, Derrick J; Kay, Jonathan

    2016-01-01

    Gadolinium-based contrast agents (GBCAs), once believed to be safe for patients with renal disease, have been strongly associated with nephrogenic systemic fibrosis (NSF), a severe systemic fibrosing disorder that predominantly afflicts individuals with advanced renal dysfunction. We provide a historical perspective on the appearance and disappearance of NSF, including its initial recognition as a discrete clinical entity, its association with GBCA exposure, and the data supporting a causative relationship between GBCA exposure and NSF. On the basis of this body of evidence, we propose that the name gadolinium-induced fibrosis (GIF) more accurately reflects the totality of knowledge regarding this disease. Use of high-risk GBCAs, such as formulated gadodiamide, should be avoided in patients with renal disease. Restriction of GBCA use in this population has almost completely eradicated new cases of this debilitating condition. Emerging antifibrotic therapies may be useful for patients who suffer from GIF.

  10. Gadolinium Brain Deposition after Macrocyclic Gadolinium Administration: A Pediatric Case-Control Study.

    PubMed

    Tibussek, Daniel; Rademacher, Christin; Caspers, Julian; Turowski, Bernd; Schaper, Jörg; Antoch, Gerald; Klee, Dirk

    2017-10-01

    Purpose To determine whether signal intensity (SI) in T1 sequences as a potential indicator of gadolinium deposition increases after repeated administration of the macrocyclic gadolinium-based contrast agents (GBCAs) gadoteridol and gadoterate meglumine in a pediatric cohort. Materials and Methods This retrospective case-control study of children with brain tumors who underwent nine or more contrast material-enhanced brain magnetic resonance (MR) imaging studies from 2008 to 2015 was approved by the local ethics board. Informed consent was obtained for MR imaging. Twenty-four case patients aged 5-18 years and appropriate control patients with nonpathologic MR neuroimaging findings (and no GBCA administration), matched for age and sex, were inculded. SI was measured on unenhanced T1-weighted MR images for the following five regions of interest (ROIs): the dentate nucleus (DN), pons, substantia nigra (SN), pulvinar thalami, and globus pallidus (GP). Paired t tests were used to compare SI and SI ratios (DN to pons, GP to thalamus) between case patients and control patients. Pearson correlations between relative signal changes and the number of GBCA administrations and total GBCA dose were calculated. Results The mean number of GBCA administrations was 14.2. No significant differences in mean SI for any ROI and no group differences were found when DN-to-pons and GP-to-pulvinar ratios were compared (DN-to-pons ratio in case patients: mean, 1.0083 ± 0.0373 [standard deviation]; DN-to-pons ratio in control patients: mean, 1.0183 ± 0.01917; P = .37; GP-to-pulvinar ratio in case patients: mean, 1.1335 ± 0.04528; and GP-to-pulvinar ratio in control patients: mean, 1.1141 ± 0.07058; P = .29). No correlation was found between the number of GBCA administrations or the total amount of GBCA administered and signal change for any ROI. (Number of GBCA applications: DN: r = -0.254, P = .31; pons: r = -0.097, P = .65; SN: r = -0.194, P = .38; GP: r = -0.175, P = .41; pulvinar: r

  11. Gadolinium Chelate Safety in Pregnancy: Barely Detectable Gadolinium Levels in the Juvenile Nonhuman Primate after in Utero Exposure.

    PubMed

    Prola-Netto, Joao; Woods, Mark; Roberts, Victoria H J; Sullivan, Elinor L; Miller, Christina Ann; Frias, Antonio E; Oh, Karen Y

    2018-01-01

    Purpose To determine whether gadolinium remains in juvenile nonhuman primate tissue after maternal exposure to intravenous gadoteridol during pregnancy. Materials and Methods Gravid rhesus macaques and their offspring (n = 10) were maintained, as approved by the institutional animal care and utilization committee. They were prospectively studied as part of a pre-existing ongoing research protocol to evaluate the effects of maternal malnutrition on placental and fetal development. On gestational days 85 and 135, they underwent placental magnetic resonance imaging after intravenous gadoteridol administration. Amniocentesis was performed on day 135 prior to administration of the second dose of gadoteridol. After delivery, the offspring were followed for 7 months. Tissue samples from eight different organs and from blood were harvested from each juvenile macaque. Gadolinium levels were measured by using inductively coupled plasma mass spectrometry. Results Gadolinium concentration in the amniotic fluid was 0.028 × 10 -5 %ID/g (percentage injected dose per gram of tissue) 50 days after administration of one gadoteridol dose. Gadolinium was most consistently detected in the femur (mean, 2.5 × 10 -5 %ID/g; range, [0.81-4.1] × 10 -5 %ID/g) and liver (mean, 0.15 × 10 -5 %ID/g; range, [0-0.26] × 10 -5 %ID/g). Levels were undetectable in the remaining sampled tissues, with the exception of one juvenile skin sample (0.07 × 10 -5 %ID/g), one juvenile spleen sample (0.039 × 10 -5 %ID/g), and one juvenile brain (0.095 × 10 -5 %ID/g) and kidney (0.13 × 10 -5 %ID/g) sample. Conclusion The presence of gadoteridol in the amniotic fluid after maternal injection enables confirmation that it crosses the placenta. Extremely low levels of gadolinium are found in juvenile macaque tissues after in utero exposure to two doses of gadoteridol, indicating that a very small amount of gadolinium persists after delivery. © RSNA, 2017.

  12. High-resolution gadolinium-enhanced 3D MRA of the infrapopliteal arteries. Lessons for improving bolus-chase peripheral MRA.

    PubMed

    Hood, Maureen N; Ho, Vincent B; Foo, Thomas K F; Marcos, Hani B; Hess, Sandra L; Choyke, Peter L

    2002-09-01

    Peripheral magnetic resonance angiography (MRA) is growing in use. However, methods of performing peripheral MRA vary widely and continue to be optimized, especially for improvement in illustration of infrapopliteal arteries. The main purpose of this project was to identify imaging factors that can improve arterial visualization in the lower leg using bolus chase peripheral MRA. Eighteen healthy adults were imaged on a 1.5T MR scanner. The calf was imaged using conventional three-station bolus chase three-dimensional (3D) MRA, two dimensional (2D) time-of-flight (TOF) MRA and single-station Gadolinium (Gd)-enhanced 3D MRA. Observer comparisons of vessel visualization, signal to noise ratios (SNR), contrast to noise ratios (CNR) and spatial resolution comparisons were performed. Arterial SNR and CNR were similar for all three techniques. However, arterial visualization was dramatically improved on dedicated, arterial-phase Gd-enhanced 3D MRA compared with the multi-station bolus chase MRA and 2D TOF MRA. This improvement was related to optimization of Gd-enhanced 3D MRA parameters (fast injection rate of 2 mL/sec, high spatial resolution imaging, the use of dedicated phased array coils, elliptical centric k-space sampling and accurate arterial phase timing for image acquisition). The visualization of the infrapopliteal arteries can be substantially improved in bolus chase peripheral MRA if voxel size, contrast delivery, and central k-space data acquisition for arterial enhancement are optimized. Improvements in peripheral MRA should be directed at these parameters.

  13. Distribution of late gadolinium enhancement in various types of cardiomyopathies: Significance in differential diagnosis, clinical features and prognosis

    PubMed Central

    Satoh, Hiroshi; Sano, Makoto; Suwa, Kenichiro; Saitoh, Takeji; Nobuhara, Mamoru; Saotome, Masao; Urushida, Tsuyoshi; Katoh, Hideki; Hayashi, Hideharu

    2014-01-01

    The recent development of cardiac magnetic resonance (CMR) techniques has allowed detailed analyses of cardiac function and tissue characterization with high spatial resolution. We review characteristic CMR features in ischemic and non-ischemic cardiomyopathies (ICM and NICM), especially in terms of the location and distribution of late gadolinium enhancement (LGE). CMR in ICM shows segmental wall motion abnormalities or wall thinning in a particular coronary arterial territory, and the subendocardial or transmural LGE. LGE in NICM generally does not correspond to any particular coronary artery distribution and is located mostly in the mid-wall to subepicardial layer. The analysis of LGE distribution is valuable to differentiate NICM with diffusely impaired systolic function, including dilated cardiomyopathy, end-stage hypertrophic cardiomyopathy (HCM), cardiac sarcoidosis, and myocarditis, and those with diffuse left ventricular (LV) hypertrophy including HCM, cardiac amyloidosis and Anderson-Fabry disease. A transient low signal intensity LGE in regions of severe LV dysfunction is a particular feature of stress cardiomyopathy. In arrhythmogenic right ventricular cardiomyopathy/dysplasia, an enhancement of right ventricular (RV) wall with functional and morphological changes of RV becomes apparent. Finally, the analyses of LGE distribution have potentials to predict cardiac outcomes and response to treatments. PMID:25068019

  14. Distribution of late gadolinium enhancement in various types of cardiomyopathies: Significance in differential diagnosis, clinical features and prognosis.

    PubMed

    Satoh, Hiroshi; Sano, Makoto; Suwa, Kenichiro; Saitoh, Takeji; Nobuhara, Mamoru; Saotome, Masao; Urushida, Tsuyoshi; Katoh, Hideki; Hayashi, Hideharu

    2014-07-26

    The recent development of cardiac magnetic resonance (CMR) techniques has allowed detailed analyses of cardiac function and tissue characterization with high spatial resolution. We review characteristic CMR features in ischemic and non-ischemic cardiomyopathies (ICM and NICM), especially in terms of the location and distribution of late gadolinium enhancement (LGE). CMR in ICM shows segmental wall motion abnormalities or wall thinning in a particular coronary arterial territory, and the subendocardial or transmural LGE. LGE in NICM generally does not correspond to any particular coronary artery distribution and is located mostly in the mid-wall to subepicardial layer. The analysis of LGE distribution is valuable to differentiate NICM with diffusely impaired systolic function, including dilated cardiomyopathy, end-stage hypertrophic cardiomyopathy (HCM), cardiac sarcoidosis, and myocarditis, and those with diffuse left ventricular (LV) hypertrophy including HCM, cardiac amyloidosis and Anderson-Fabry disease. A transient low signal intensity LGE in regions of severe LV dysfunction is a particular feature of stress cardiomyopathy. In arrhythmogenic right ventricular cardiomyopathy/dysplasia, an enhancement of right ventricular (RV) wall with functional and morphological changes of RV becomes apparent. Finally, the analyses of LGE distribution have potentials to predict cardiac outcomes and response to treatments.

  15. Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms.

    PubMed

    Rogosnitzky, Moshe; Branch, Stacy

    2016-06-01

    Gadolinium chelates are widely used as contrast media for magnetic resonance imaging. The approved gadolinium-based contrast agents (GBCAs) have historically been considered safe and well tolerated when used at recommended dosing levels. However, for nearly a decade, an association between GBCA administration and the development of nephrogenic systemic fibrosis (NSF) has been recognized in patients with severe renal impairment. This has led to modifications in clinical practices aimed at reducing the potential and incidence of NSF development. Newer reports have emerged regarding the accumulation of gadolinium in various tissues of patients who do not have renal impairment, including bone, brain, and kidneys. Despite the observations of gadolinium accumulation in tissues regardless of renal function, very limited clinical data regarding the potential for and mechanisms of toxicity is available. This significant gap in knowledge warrants retrospective cohort study efforts, as well as prospective studies that involve gadolinium ion (Gd(3+)) testing in patients exposed to GBCA. This review examines the potential biochemical and molecular basis of gadolinium toxicity, possible clinical significance of gadolinium tissue retention and accumulation, and methods that can limit gadolinium body burden.

  16. Room temperature ferromagnetic gadolinium silicide nanoparticles

    DOEpatents

    Hadimani, Magundappa Ravi L.; Gupta, Shalabh; Harstad, Shane; Pecharsky, Vitalij; Jiles, David C.

    2018-03-06

    A particle usable as T1 and T2 contrast agents is provided. The particle is a gadolinium silicide (Gd5Si4) particle that is ferromagnetic at temperatures up to 290 K and is less than 2 .mu.m in diameter. An MRI contrast agent that includes a plurality of gadolinium silicide (Gd.sub.5Si.sub.4) particles that are less than 1 .mu.m in diameter is also provided. A method for creating gadolinium silicide (Gd5Si4) particles is also provided. The method includes the steps of providing a Gd5Si4 bulk alloy; grinding the Gd5Si4 bulk alloy into a powder; and milling the Gd5Si4 bulk alloy powder for a time of approximately 20 minutes or less.

  17. Emerging MRI Methods in Translational Cardiovascular Research

    PubMed Central

    Vandsburger, Moriel H; Epstein, Frederick H

    2011-01-01

    Cardiac magnetic resonance imaging (CMR) has become a reference standard modality for imaging of left ventricular (LV) structure and function, and, using late gadolinium enhancement, for imaging myocardial infarction. Emerging CMR techniques enable a more comprehensive examination of the heart, making CMR an excellent tool for use in translational cardiovascular research. Specifically, emerging CMR methods have been developed to measure the extent of myocardial edema, changes in ventricular mechanics, changes in tissue composition as a result of fibrosis, and changes in myocardial perfusion as a function of both disease and infarct healing. New CMR techniques also enable the tracking of labeled cells, molecular imaging of biomarkers of disease, and changes in calcium flux in cardiomyocytes. In addition, MRI can quantify blood flow velocity and wall shear stress in large blood vessels. Almost all of these techniques can be applied in both pre-clinical and clinical settings, enabling both the techniques themselves and the knowledge gained using such techniques in pre-clinical research to be translated from the lab bench to the patient bedside. PMID:21452060

  18. Modified Wideband Three-Dimensional Late Gadolinium Enhancement MRI for Patients with Implantable Cardiac Devices

    PubMed Central

    Rashid, Shams; Rapacchi, Stanislas; Shivkumar, Kalyanam; Plotnik, Adam; Finn, J. Paul; Hu, Peng

    2015-01-01

    Purpose To study the effects of cardiac devices on three-dimensional (3D) late gadolinium enhancement (LGE) MRI and to develop a 3D LGE protocol for implantable cardioverter defibrillator (ICD) patients with reduced image artifacts. Theory and Methods The 3D LGE sequence was modified by implementing a wideband inversion pulse, which reduces hyperintensity artifacts, and by increasing bandwidth of the excitation pulse. The modified wideband 3D LGE sequence was tested in phantoms and evaluated in six volunteers and five patients with ICDs. Results Phantom and in vivo studies results demonstrated extended signal void and ripple artifacts in 3D LGE that were associated with ICDs. The reason for these artifacts was slab profile distortion and the subsequent aliasing in the slice-encoding direction. The modified wideband 3D LGE provided significantly reduced ripple artifacts than 3D LGE with wideband inversion only. Comparison of 3D and 2D LGE images demonstrated improved spatial resolution of the heart using 3D LGE. Conclusion Increased bandwidth of the inversion and excitation pulses can significantly reduce image artifacts associated with ICDs. Our modified wideband 3D LGE protocol can be readily used for imaging patients with ICDs given appropriate safety guidelines are followed. PMID:25772155

  19. Complex imaging features of accidental cerebral intraventricular gadolinium administration.

    PubMed

    Nayak, Nita B; Huang, Jimmy C; Hathout, Gasser M; Shaba, Wisam; El-Saden, Suzie M

    2013-05-01

    Gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA) is a contrast agent commonly used for enhancing MRI. In this paper, the authors report on 2 cases of postoperative inadvertent administration of Gd-DTPA directly into a ventriculostomy tubing side port that was mistaken for intravenous tubing. Both cases demonstrated a low signal on MRI throughout the ventricular system and dependent portions of the subarachnoid spaces, which was originally believed to be CSF with areas of T1 shortening in the nondependent portions of the subarachnoid spaces, and misinterpreted as basal leptomeningeal enhancement and meningitis. The authors propose that the appearance of profound T1 hypointensity within the ventricles and diffuse susceptibility artifact along the ependyma is pathognomonic of intraventricular Gd-DTPA and should be recognized.

  20. Use of gadolinium chloride as a contrast agent for imaging spruce knots by magnetic resonance

    Treesearch

    Thomas L. Eberhardt; Chi-Leung So; Amy H. Herlihy; Po-Wah So

    2006-01-01

    Treatments of knot-containing spruce wood blocks with a paramagnetic salt, gadolinium (III) chloride, in combination with solvent pretreatments, were evaluated as strategies to enhance the visualization of wood features by magnetic resonance imaging (MRI). Initial experiments with clear wood and excised knot samples showed differences in moisture uptake after...

  1. Does stress perfusion imaging improve the diagnostic accuracy of late gadolinium enhanced cardiac magnetic resonance for establishing the etiology of heart failure?

    PubMed

    Gulsin, Gaurav S; Shetye, Abishek; Khoo, Jeffrey; Swarbrick, Daniel J; Levelt, Eylem; Lai, Florence Y; Squire, Iain B; Arnold, Jayanth R; McCann, Gerry P

    2017-04-08

    Late gadolinium enhanced cardiovascular magnetic resonance (LGE-CMR) has excellent specificity, sensitivity and diagnostic accuracy for differentiating between ischemic cardiomyopathy (ICM) and non-ischemic dilated cardiomyopathy (NICM). CMR first-pass myocardial perfusion imaging (perfusion-CMR) may also play role in distinguishing heart failure of ischemic and non-ischemic origins, although the utility of additional of stress perfusion imaging in such patients is unclear. The aim of this retrospective study was to assess whether the addition of adenosine stress perfusion imaging to LGE-CMR is of incremental value for differentiating ICM and NICM in patients with severe left ventricular systolic dysfunction (LVSD) of uncertain etiology. We retrospectively identified 100 consecutive adult patients (median age 69 years (IQR 59-73)) with severe LVSD (mean LV EF 26.6 ± 7.0%) referred for perfusion-CMR to establish the underlying etiology of heart failure. The cause of heart failure was first determined on examination of CMR cine and LGE images in isolation. Subsequent examination of complete adenosine stress perfusion-CMR studies (cine, LGE and perfusion images) was performed to identify whether this altered the initial diagnosis. On LGE-CMR, 38 patients were diagnosed with ICM, 46 with NICM and 16 with dual pathology. With perfusion-CMR, there were 39 ICM, 44 NICM and 17 dual pathology diagnoses. There was excellent agreement in diagnoses between LGE-CMR and perfusion-CMR (κ 0.968, p<0.001). The addition of adenosine stress perfusion images to LGE-CMR altered the diagnosis in only two of the 100 patients. The addition of adenosine stress perfusion-CMR to cine and LGE-CMR provides minimal incremental diagnostic yield for determining the etiology of heart failure in patients with severe LVSD.

  2. Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging.

    PubMed

    Alric, Christophe; Taleb, Jacqueline; Le Duc, Géraldine; Mandon, Céline; Billotey, Claire; Le Meur-Herland, Alice; Brochard, Thierry; Vocanson, Francis; Janier, Marc; Perriat, Pascal; Roux, Stéphane; Tillement, Olivier

    2008-05-07

    Functionalized gold nanoparticles were applied as contrast agents for both in vivo X-ray and magnetic resonance imaging. These particles were obtained by encapsulating gold cores within a multilayered organic shell which is composed of gadolinium chelates bound to each other through disulfide bonds. The contrast enhancement in MRI stems from the presence of gadolinium ions which are entrapped in the organic shell, whereas the gold core provides a strong X-ray absorption. This study revealed that these particles suited for dual modality imaging freely circulate in the blood vessels without undesirable accumulation in the lungs, spleen, and liver.

  3. Magnetic resonance characteristics and susceptibility weighted imaging of the brain in gadolinium encephalopathy.

    PubMed

    Samardzic, Dejan; Thamburaj, Krishnamoorthy

    2015-01-01

    To report the brain imaging features on magnetic resonance imaging (MRI) in inadvertent intrathecal gadolinium administration. A 67-year-old female with gadolinium encephalopathy from inadvertent high dose intrathecal gadolinium administration during an epidural steroid injection was studied with multisequence 3T MRI. T1-weighted imaging shows pseudo-T2 appearance with diffusion of gadolinium into the brain parenchyma, olivary bodies, and membranous labyrinth. Nulling of cerebrospinal fluid (CSF) signal is absent on fluid attenuation recovery (FLAIR). Susceptibility-weighted imaging (SWI) demonstrates features similar to subarachnoid hemorrhage. CT may demonstrate a pseudo-cerebral edema pattern given the high attenuation characteristics of gadolinium. Intrathecal gadolinium demonstrates characteristic imaging features on MRI of the brain and may mimic subarachnoid hemorrhage on susceptibility-weighted imaging. Identifying high dose gadolinium within the CSF spaces on MRI is essential to avoid diagnostic and therapeutic errors. Copyright © 2013 by the American Society of Neuroimaging.

  4. Gadolinium chloride as a contrast agent for imaging wood composite components by magnetic resonance

    Treesearch

    Thomas L. Eberhardt; Chi-Leung So; Andrea Protti; Po-Wah So

    2009-01-01

    Although paramagnetic contrast agents have an established track record in medical uses of magnetic resonance imaging (MRI), only recently has a contrast agent been used for enhancing MRI images of solid wood specimens. Expanding on this concept, wood veneers were treated with a gadolinium-based contrast agent and used in a model system comprising three-ply plywood...

  5. Density of Gadolinium Nitrate Solutions for the High Flux Isotope Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Paul Allen; Lee, Denise L

    2009-05-01

    In late 1992, the High Flux Isotope Reactor (HFIR) was planning to switch the solution contained in the poison injection tank from cadmium nitrate to gadolinium nitrate. The poison injection system is an emergency system used to shut down the reactor by adding a neutron poison to the cooling water. This system must be able to supply a minimum of 69 pounds of gadolinium to the reactor coolant system in order to guarantee that the reactor would become subcritical. A graph of the density of gadolinium nitrate solutions over a concentration range of 5 to 30 wt% and a temperaturemore » range of 15 to 40{sup o}C was prepared. Routine density measurements of the solution in the poison injection tank are made by HFIR personnel, and an adaptation of the original graph is used to determine the gadolinium nitrate concentration. In late 2008, HFIR personnel decided that the heat tracing that was present on the piping for the poison injection system could be removed without any danger of freezing the solution; however, the gadolinium nitrate solution might get as cold as 5{sup o}C. This was outside the range of the current density-concentration correlation, so the range needed to be expanded. This report supplies a new density-concentration correlation that covers the extended temperature range. The correlation is given in new units, which greatly simplifies the calculation that is required to determine the pounds of gadolinium in the tank solution. The procedure for calculating the amount of gadolinium in the HFIR poison injection system is as follows: (1) Calculate the usable volume in the system; (2) Measure the density of the solution; (3) Calculate the gadolinium concentration using the following equation: Gd(lb/ft{sup 3}) = measured density (g/mL) x 34.681 - 34.785; (4) Calculate the amount of gadolinium in the system using the following equation: Amount of Gd(lb) = Gd concentration (lb/ft{sup 3}) x usable volume (ft{sup 3}). The equation in step 3 is exact for a

  6. Structural and magnetic phase transitions in gadolinium under high pressures and low temperatures

    DOE PAGES

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.; ...

    2014-11-07

    High pressure structural transition studies have been carried out on rare earth metal gadolinium in a diamond anvil cell at room temperature to 169 GPa. Gadolinium has been compressed to 38% of its initial volume at this pressure. With increasing pressure, a crystal structure sequence of hcp → Smtype→ dhcp → fcc → dfcc → monoclinic has been observed in our studies on gadolinium. The measured equation of state of gadolinium is presented to 169 GPa at ambient temperature. Magnetic ordering temperature of gadolinium has been studied using designer diamond anvils to a pressure of 25 GP and a temperaturemore » of 10 K. The magnetic ordering temperature has been determined from the four-point electrical resistivity measurements carried out on gadolinium. Furthermore, our experiments show that the magnetic transition temperature decreases with increasing pressure to 19 GPa and then increases when gadolinium is subjected to higher pressures.« less

  7. Structural and magnetic phase transitions in gadolinium under high pressures and low temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.

    High pressure structural transition studies have been carried out on rare earth metal gadolinium in a diamond anvil cell at room temperature to 169 GPa. Gadolinium has been compressed to 38% of its initial volume at this pressure. With increasing pressure, a crystal structure sequence of hcp → Smtype→ dhcp → fcc → dfcc → monoclinic has been observed in our studies on gadolinium. The measured equation of state of gadolinium is presented to 169 GPa at ambient temperature. Magnetic ordering temperature of gadolinium has been studied using designer diamond anvils to a pressure of 25 GP and a temperaturemore » of 10 K. The magnetic ordering temperature has been determined from the four-point electrical resistivity measurements carried out on gadolinium. Furthermore, our experiments show that the magnetic transition temperature decreases with increasing pressure to 19 GPa and then increases when gadolinium is subjected to higher pressures.« less

  8. Structural and magnetic phase transitions in gadolinium under high pressures and low temperatures

    NASA Astrophysics Data System (ADS)

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.; Vohra, Yogesh K.

    2014-10-01

    High pressure structural transition studies have been carried out on rare earth metal gadolinium in a diamond anvil cell at room temperature to 169 GPa. Gadolinium has been compressed to 38% of its initial volume at this pressure. With increasing pressure, a crystal structure sequence of hcp → Sm-type → dhcp → fcc → dfcc → monoclinic has been observed in our studies on gadolinium. The measured equation of state of gadolinium is presented to 169 GPa at ambient temperature. Magnetic ordering temperature of gadolinium has been studied using designer diamond anvils to a pressure of 25 GPa and a temperature of 10 K. The magnetic ordering temperature has been determined from the four-point electrical resistivity measurements carried out on gadolinium. Our experiments show that the magnetic transition temperature decreases with increasing pressure to 19 GPa and then increases when gadolinium is subjected to higher pressures.

  9. A new automatic algorithm for quantification of myocardial infarction imaged by late gadolinium enhancement cardiovascular magnetic resonance: experimental validation and comparison to expert delineations in multi-center, multi-vendor patient data.

    PubMed

    Engblom, Henrik; Tufvesson, Jane; Jablonowski, Robert; Carlsson, Marcus; Aletras, Anthony H; Hoffmann, Pavel; Jacquier, Alexis; Kober, Frank; Metzler, Bernhard; Erlinge, David; Atar, Dan; Arheden, Håkan; Heiberg, Einar

    2016-05-04

    Late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) using magnitude inversion recovery (IR) or phase sensitive inversion recovery (PSIR) has become clinical standard for assessment of myocardial infarction (MI). However, there is no clinical standard for quantification of MI even though multiple methods have been proposed. Simple thresholds have yielded varying results and advanced algorithms have only been validated in single center studies. Therefore, the aim of this study was to develop an automatic algorithm for MI quantification in IR and PSIR LGE images and to validate the new algorithm experimentally and compare it to expert delineations in multi-center, multi-vendor patient data. The new automatic algorithm, EWA (Expectation Maximization, weighted intensity, a priori information), was implemented using an intensity threshold by Expectation Maximization (EM) and a weighted summation to account for partial volume effects. The EWA algorithm was validated in-vivo against triphenyltetrazolium-chloride (TTC) staining (n = 7 pigs with paired IR and PSIR images) and against ex-vivo high resolution T1-weighted images (n = 23 IR and n = 13 PSIR images). The EWA algorithm was also compared to expert delineation in 124 patients from multi-center, multi-vendor clinical trials 2-6 days following first time ST-elevation myocardial infarction (STEMI) treated with percutaneous coronary intervention (PCI) (n = 124 IR and n = 49 PSIR images). Infarct size by the EWA algorithm in vivo in pigs showed a bias to ex-vivo TTC of -1 ± 4%LVM (R = 0.84) in IR and -2 ± 3%LVM (R = 0.92) in PSIR images and a bias to ex-vivo T1-weighted images of 0 ± 4%LVM (R = 0.94) in IR and 0 ± 5%LVM (R = 0.79) in PSIR images. In multi-center patient studies, infarct size by the EWA algorithm showed a bias to expert delineation of -2 ± 6 %LVM (R = 0.81) in IR images (n = 124) and 0 ± 5%LVM (R = 0.89) in

  10. [Studies of three-dimensional cardiac late gadolinium enhancement MRI at 3.0 Tesla].

    PubMed

    Ishimoto, Takeshi; Ishihara, Masaru; Ikeda, Takayuki; Kawakami, Momoe

    2008-12-20

    Cardiac late Gadolinium enhancement MR imaging has been shown to allow assessment of myocardial viability in patients with ischemic heart disease. The current standard approach is a 3D inversion recovery sequence at 1.5 Tesla. The aims of this study were to evaluate the technique feasibility and clinical utility of MR viability imaging at 3.0 Tesla in patients with myocardial infarction and cardiomyopathy. In phantom and volunteer studies, the inversion time required to suppress the signal of interests and tissues was prolonged at 3.0 Tesla. In the clinical study, the average inversion time to suppress the signal of myocardium at 3.0 Tesla with respect to MR viability imaging at 1.5 Tesla was at 15 min after the administration of contrast agent (304.0+/-29.2 at 3.0 Tesla vs. 283.9+/-20.9 at 1.5 Tesla). The contrast between infarction and viable myocardium was equal at both field strengths (4.06+/-1.30 at 3.0 Tesla vs. 4.42+/-1.85 at 1.5 Tesla). Even at this early stage, MR viability imaging at 3.0 Tesla provides high quality images in patients with myocardial infarction. The inversion time is significantly prolonged at 3.0 Tesla. The contrast between infarction and viable myocardium at 3.0 Tesla are equal to 1.5 Tesla. Further investigation is needed for this technical improvement, for clinical evaluation, and for limitations.

  11. Studies of MRI relaxivities of gadolinium-labeled dendrons

    NASA Astrophysics Data System (ADS)

    Pan, Hongmu; Daniel, Marie-Christine

    2011-05-01

    In cancer detection, imaging techniques have a great importance in early diagnosis. The more sensitive the imaging technique and the earlier the tumor can be detected. Contrast agents have the capability to increase the sensitivity in imaging techniques such as magnetic resonance imaging (MRI). Until now, gadolinium-based contrast agents are mainly used for MRI, and show good enhancement. But improvement is needed for detection of smaller tumors at the earliest stage possible. The dendrons complexed with Gd(DOTA) were synthesized and evaluated as a new MRI contrast agent. The longitudinal and transverse relaxation effects were tested and compared with commercial drug Magnevist, Gd(DTPA).

  12. Identification and characterization of gadolinium(III) complexes in biological tissue extracts.

    PubMed

    Kahakachchi, Chethaka L; Moore, Dennis A

    2010-07-01

    The gadolinium species present in a rat kidney following intravenous administration of a gadolinium-based magnetic resonance contrast agent (Optimark™, Gadoversetamide injection) to a rat was examined in the present study. The major gadolinium species in the supernatant of the rat kidney tissue extracts was determined by reversed-phase liquid chromatography with online inductively coupled plasma optical emission spectrometry (HPLC-ICP-OES). The identity of the compound was established by liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) detection. The principal gadolinium(III) complex in a rat kidney tissue extract was identified as Gd-DTPA-BMEA 24 Hrs and 7 days after a single intravenous injection of Optimark™ (gadoversetamide; Gd-DTPA-BMEA) at a dose of 5 mmol Gd/kg body weight. The study demonstrated for the first time the feasibility of the use of two complementary techniques, HPLC-ICP-OES and HPLC-ESI-MS to study the in vivo behavior of gadolinium-based magnetic resonance contrast media.

  13. Alkali metal and alkali earth metal gadolinium halide scintillators

    DOEpatents

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  14. Relaxivity enhancement of aquated Tris(β-diketonate)gadolinium(III) chelates by confinement within ultrashort single-walled carbon nanotubes.

    PubMed

    Law, Justin J; Guven, Adem; Wilson, Lon J

    2014-01-01

    Ultrashort single-walled carbon nanotubes loaded with gadolinium ions (gadonanotubes) have been previously shown to exhibit extremely high T1 -weighted relaxivities (>100 mm(-1) s(-1) ). To further examine the effect of nanoconfinement on the relaxivity of gadolinium-based contrast agents for magnetic resonance imaging, a series of ultrashort single-walled carbon nanotube (US-tube) materials internally loaded with gadolinium chelates have been prepared and studied. US-tubes were loaded with Gd(acac)3  · 2H2 O, Gd(hfac)3  · 2H2 O, and Gd(thd)3 (acac = acetylacetone, hfac = hexafluoroacetylacetone, thd = tetramethylheptanedione). The longitudinal relaxivities of the prepared materials determined at 25°C in a 1.5 T field were 103 mm(-1) s(-1) for Gd(acac)3  · 2H2 O@US-tubes, 105 mm(-1) s(-1) for Gd(hfac)3  · 2H2 O@US-tubes and 26 mm(-1) s(-1) for Gd(thd)3 @US-tubes. Compared with the relaxivities obtained for the unloaded chelates (<10 mm(-1) s(-1) ) as well as accounting for the T1 reduction observed for the empty US-tubes, the boost in relaxivity for chelate-loaded US-tubes is attributed to confinement within the nanotube and depends on the number of coordinated water molecules. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Gadolinium-based magnetic resonance imaging contrast agents in interventional radiology.

    PubMed

    Atar, Eli

    2004-07-01

    Gadolinium-based agents are widely used in magnetic resonance imaging as contrast agents. These agents are radio-opaque enough for diagnostic imaging of the vascular tree by using digitally subtracted images as well as for imaging of the biliary system and the urinary tract. The recommended doses for gadolinium do not impair renal function or cause adverse reactions in patients with iodine sensitivity; thus patients with such conditions can safely undergo diagnostic angiography, either by MRI angiography or by catheterization using gadolinium as contrast agent, for diagnostic and therapeutic purposes.

  16. Laser-induced thermotherapy for the treatment of liver metastasis. Correlation of gadolinium-DTPA-enhanced MRI with histomorphologic findings to determine criteria for follow-up monitoring.

    PubMed

    Germer, C; Isbert, C M; Albrecht, D; Ritz, J P; Schilling, A; Roggan, A; Wolf, K J; Müller, G; Buhr, H

    1998-11-01

    To evaluate gadolinium (Gd)-diethylenetriamine-pentaacetic-acid (DTPA)-enhanced magnetic resonance imaging (MRI) for follow-up monitoring of laser-induced thermotherapy (LITT) and to determine a useful examination schedule. LITT of the liver was performed in 55 rabbits using a neodymium: yttrium-aluminum-garnet (Nd:YAG) laser (4-W power output, 840-s exposure time). Gd-DTPA MRI and histologic examinations were performed at different times (0-168 days). Laser-induced lesions underwent regeneration and volume size reduction (69% after 168 days). The correlation coefficient (MR vs. macroscopic analysis) for the mean lesion diameter was r = 0.96. Histology of lesions comprised the four zones that correlated best with MRI findings. Coagulation necroses immediately after LITT was seen as an area of no enhancement on Gd-DTPA MRI. Circular enhancement was first seen 72-96 h after LITT, which was due to early mesenchymal proliferation. Gd-DTPA MRI is a good monitoring procedure for LITT. MRI should be performed 24 and 96 h after LITT.

  17. Thermodynamic properties of gadolinium in Ga-Sn and Ga-Zn eutectic based alloys

    NASA Astrophysics Data System (ADS)

    Maltsev, Dmitry S.; Volkovich, Vladimir A.; Yamshchikov, Leonid F.; Chukin, Andrey V.

    2016-09-01

    Thermodynamic properties of gadolinium in Ga-Sn and Ga-Zn eutectic based alloys were studied. Temperature dependences of gadolinium activity in the studied alloys were determined at 573-1073 K employing the EMF method. Solubility of gadolinium in the Ga-Sn and Ga-Zn alloys was measured at 462-1073 K using IMCs sedimentation method. Activity coefficients as well as partial and excess thermodynamic functions of gadolinium in the studied alloys were calculated on the basis of the obtained experimental data.

  18. Lipoprotein(a) in patients with aortic stenosis: Insights from cardiovascular magnetic resonance

    PubMed Central

    Vassiliou, Vassilios S.; Flynn, Paul D.; Raphael, Claire E.; Newsome, Simon; Khan, Tina; Ali, Aamir; Halliday, Brian; Studer Bruengger, Annina; Malley, Tamir; Sharma, Pranev; Selvendran, Subothini; Aggarwal, Nikhil; Sri, Anita; Berry, Helen; Donovan, Jackie; Lam, Willis; Auger, Dominique; Cook, Stuart A.; Pennell, Dudley J.; Prasad, Sanjay K.

    2017-01-01

    Background Aortic stenosis is the most common age-related valvular pathology. Patients with aortic stenosis and myocardial fibrosis have worse outcome but the underlying mechanism is unclear. Lipoprotein(a) is associated with adverse cardiovascular risk and is elevated in patients with aortic stenosis. Although mechanistic pathways could link Lipoprotein(a) with myocardial fibrosis, whether the two are related has not been previously explored. In this study, we investigated whether elevated Lipoprotein(a) was associated with the presence of myocardial replacement fibrosis. Methods A total of 110 patients with mild, moderate and severe aortic stenosis were assessed by late gadolinium enhancement (LGE) cardiovascular magnetic resonance to identify fibrosis. Mann Whitney U tests were used to assess for evidence of an association between Lp(a) and the presence or absence of myocardial fibrosis and aortic stenosis severity and compared to controls. Univariable and multivariable linear regression analysis were undertaken to identify possible predictors of Lp(a). Results Thirty-six patients (32.7%) had no LGE enhancement, 38 (34.6%) had midwall enhancement suggestive of midwall fibrosis and 36 (32.7%) patients had subendocardial myocardial fibrosis, typical of infarction. The aortic stenosis patients had higher Lp(a) values than controls, however, there was no significant difference between the Lp(a) level in mild, moderate or severe aortic stenosis. No association was observed between midwall or infarction pattern fibrosis and Lipoprotein(a), in the mild/moderate stenosis (p = 0.91) or severe stenosis patients (p = 0.42). Conclusion There is no evidence to suggest that higher Lipoprotein(a) leads to increased myocardial midwall or infarction pattern fibrosis in patients with aortic stenosis. PMID:28704465

  19. MR imaging of the inner ear: comparison of a three-dimensional fast spin-echo sequence with use of a dedicated quadrature-surface coil with a gadolinium-enhanced spoiled gradient-recalled sequence.

    PubMed

    Naganawa, S; Ito, T; Fukatsu, H; Ishigaki, T; Nakashima, T; Ichinose, N; Kassai, Y; Miyazaki, M

    1998-09-01

    To prospectively evaluate the sensitivity and specificity of magnetic resonance (MR) imaging in the inner ear with a long echo train, three-dimensional (3D), asymmetric Fourier-transform, fast spin-echo (SE) sequence with use of a dedicated quadrature-surface phased-array coil to detect vestibular schwannoma in the cerebellopontine angle and the internal auditory canal. In 205 patients (410 ears) with ear symptoms, 1.5-T MR imaging was performed with unenhanced 3D asymmetric fast SE and gadolinium-enhanced 3D gradient-recalled (SPGR) sequences with use of a quadrature surface phased-array coil. The 3D asymmetric fast SE images were reviewed by two radiologists, with the gadolinium-enhanced 3D SPGR images used as the standard of reference. Nineteen lesions were detected in the 410 ears (diameter range, 2-30 mm; mean, 10.5 mm +/- 6.4 [standard deviation]; five lesions were smaller than 5 mm). With 3D asymmetric fast SE, sensitivity, specificity, and accuracy, respectively, were 100%, 99.5%, and 99.5% for observer 1 and 100%, 99.7%, and 99.8% for observer 2. The unenhanced 3D asymmetric fast SE sequence with a quadrature-surface phased-array coli allows the reliable detection of vestibular schwannoma in the cerebellopontine angle and internal auditory canal.

  20. Diagnostic significance of gadolinium-DTPA (diethylenetriamine penta-acetic acid) enhanced magnetic resonance imaging in thrombolytic treatment for acute myocardial infarction: its potential in assessing reperfusion.

    PubMed Central

    van der Wall, E E; van Dijkman, P R; de Roos, A; Doornbos, J; van der Laarse, A; Manger Cats, V; van Voorthuisen, A E; Matheijssen, N A; Bruschke, A V

    1990-01-01

    The diagnostic value of gadolinium-DTPA (diethylenetriamine penta-acetic acid) enhanced magnetic resonance imaging in patients treated by thrombolysis for acute myocardial infarction was assessed in 27 consecutive patients who had a first acute myocardial infarction (14 anterior, 13 inferior) and who underwent thrombolytic treatment and coronary arteriography within 4 hours of the onset of symptoms. Magnetic resonance imaging was performed 93 hours (range 15-241) after the onset of symptoms. A Philips Gyroscan (0.5 T) was used, and spin echo measurements (echo time 30 ms) were made before and 20 minutes after intravenous injection of 0.1 mmol/kg gadolinium-DTPA. In all patients contrast enhancement of the infarcted areas was seen after Gd-DTPA. The signal intensities of the infarcted and normal values were used to calculate the intensity ratios. Mean (SD) intensity ratios after Gd-DTPA were significantly increased (1.15 (0.17) v 1.52 (0.29). Intensity ratios were higher in the 17 patients who underwent magnetic resonance imaging more than 72 hours after the onset of symptoms than in the 10 who underwent magnetic resonance imaging earlier, the difference being significantly greater after administration of Gd-DTPA (1.38 (0.12) v 1.61 (0.34). When patients were classified according to the site and size of the infarcted areas, or to reperfusion (n = 19) versus non-reperfusion (n = 8), the intensity ratios both before and after Gd-DTPA did not show significant differences. Magnetic resonance imaging with Gd-DTPA improved the identification of acutely infarcted areas, but with current techniques did not identify patients in whom thrombolytic treatment was successful. Images PMID:2310640

  1. Reliability of gadolinium-enhanced magnetic resonance imaging findings and their correlation with clinical outcome in patients with sciatica.

    PubMed

    el Barzouhi, Abdelilah; Vleggeert-Lankamp, Carmen L A M; Lycklama à Nijeholt, Geert J; Van der Kallen, Bas F; van den Hout, Wilbert B; Koes, Bart W; Peul, Wilco C

    2014-11-01

    Gadolinium-enhanced magnetic resonance imaging (Gd-MRI) is often performed in the evaluation of patients with persistent sciatica after lumbar disc surgery. However, correlation between enhancement and clinical findings is debated, and limited data are available regarding the reliability of enhancement findings. To evaluate the reliability of Gd-MRI findings and their correlation with clinical findings in patients with sciatica. Prospective observational evaluation of patients who were enrolled in a randomized trial with 1-year follow-up. Patients with 6- to 12-week sciatica, who participated in a multicentre randomized clinical trial comparing an early surgery strategy with prolonged conservative care with surgery if needed. In total 204 patients underwent Gd-MRI at baseline and after 1 year. Patients were assessed by means of the Roland Disability Questionnaire (RDQ) for sciatica, visual analog scale (VAS) for leg pain, and patient-reported perceived recovery at 1 year. Kappa coefficients were used to assess interobserver reliability. In total, 204 patients underwent Gd-MRI at baseline and after 1 year. Magnetic resonance imaging findings were correlated to the outcome measures using the Mann-Whitney U test for continuous data and Fisher exact tests for categorical data. Poor-to-moderate agreement was observed regarding Gd enhancement of the herniated disc and compressed nerve root (kappa<0.41), which was in contrast with excellent interobserver agreement of the disc level of the herniated disc and compressed nerve root (kappa>0.95). Of the 59 patients with an enhancing herniated disc at 1 year, 86% reported recovery compared with 100% of the 12 patients with nonenhancing herniated discs (p=.34). Of the 12 patients with enhancement of the most affected nerve root at 1 year, 83% reported recovery compared with 85% of the 192 patients with no enhancement (p=.69). Patients with and without enhancing herniated discs or nerve roots at 1 year reported comparable

  2. Self-assembled gemcitabine-gadolinium nanoparticles for magnetic resonance imaging and cancer therapy.

    PubMed

    Li, Lele; Tong, Rong; Li, Mengyuan; Kohane, Daniel S

    2016-03-01

    Nanoparticles with combined diagnostic and therapeutic functions are promising tools for cancer diagnosis and treatment. Here, we demonstrate a theranostic nanoparticle that integrates an active gemcitabine metabolite and a gadolinium-based magnetic resonance imaging agent via a facile supramolecular self-assembly synthesis, where the anti-cancer drug gemcitabine-5'-monophosphate (a phosphorylated active metabolite of the anti-cancer drug gemcitabine) was used to coordinate with Gd(III) to self-assemble into theranostic nanoparticles. The formulation exhibits a strong T1 contrast signal for magnetic resonance imaging of tumors in vivo, with enhanced retention time. Furthermore, the nanoparticles did not require other inert nanocarriers or excipients and thus had an exceptionally high drug loading (55 wt%), resulting in the inhibition of MDA-MB-231 tumor growth in mice. Recent advances in nanoparticle-based drug delivery systems have spurred the development of "theranostic" multifunctional nanoparticles, which combine therapeutic and diagnostic functionalities in a single formulation. Developing simple and efficient synthetic strategies for the construction of nanotheranostics with high drug loading remains a challenge. Here, we demonstrate a theranostic nanoparticle that integrates high loadings of an active gemcitabine metabolite and a gadolinium-based magnetic resonance imaging agent via a facile synthesis. The nanoparticles were better T1 contrast agents than currently used Gd-DTPA and had prolonged retention in tumor. Moreover they exhibited enhanced in vivo antitumor activity compared to free drug in a breast cancer xenograft mouse model. The strategy provides a scalable way to fabricate nanoparticles that enables enhancement of both therapeutic and diagnostic capabilities. Published by Elsevier Ltd.

  3. Are gadolinium-based contrast media nephrotoxic? A renal biopsy study.

    PubMed

    Akgun, Hulya; Gonlusen, Gulfiliz; Cartwright, Joiner; Suki, Wadi N; Truong, Luan D

    2006-09-01

    Gadolinium-based contrast media were originally introduced as alternatives to iodinated media for magnetic resonance imaging. Although originally thought to be nonnephrotoxic, gadolinium-based contrast media have recently been reported to be associated with acute renal failure; the mechanism and the underlying renal injury are not completely understood. We report what is, to our knowledge, the first renal biopsy in this context. A 56-year-old patient underwent 2 consecutive vascular imaging procedures in conjunction with gadolinium-based contrast medium administration. A few days later, the patient developed acute renal failure. A renal biopsy showed acute tubular cell injury including patchy tubular cell necrosis, tubular cell degeneration, and marked proliferation of tubular cells, together with mild interstitial edema and interstitial inflammation, but without significant glomerular or vascular changes. During supportive therapy, renal function was partially regained. This case emphasizes the potential nephrotoxicity of gadolinium-based contrast media and suggests that the nephrotoxicity is related to potentially reversible acute tubular cell injury.

  4. Technical aspects of MRI signal change quantification after gadolinium-based contrast agents' administration.

    PubMed

    Ramalho, Joana; Ramalho, Miguel; AlObaidy, Mamdoh; Semelka, Richard C

    2016-12-01

    Over the last 2years several studies have been published regarding gadolinium deposition in brain structures in patients with normal renal function after repeated administrations of gadolinium-based contrast agents (GBCAs). Most of the publications are magnetic resonance imaging (MRI) based retrospective studies, where gadolinium deposition may be indirectly measured by evaluating changes in T1 signal intensity (SI) in brain tissue, particularly in the dentate nucleus (DN) and/or globus pallidi (GP). The direct correlation between T1 signal changes and gadolinium deposition was validated by human pathology studies. However, the variability of the MR equipment and parameters used across different publications, along with the inherent limitations of MRI to assess gadolinium in human tissues should be acknowledged when interpreting those studies. Nevertheless, MRI studies remain essential regarding gadolinium bio-distribution knowledge. The aim of this paper is to overview current knowledge of technical aspects of T1 signal intensity evaluation by MRI and describe confounding factors, with the intention to achieve higher accuracy and maximize reproducibility. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Long term effects of cocaine on the heart assessed by cardiovascular magnetic resonance at 3T

    PubMed Central

    2014-01-01

    Background Cocaine is an addictive, sympathomimetic drug with potentially lethal effects. The prevalence and features of cocaine cardiotoxicity are not well known. We aimed to assess these effects using a comprehensive cardiovascular magnetic resonance (CMR) protocol in a large group of asymptomatic cocaine users. Methods Consecutive (n = 94, 81 males, 36.6 ±7 years), non-selected, cocaine abusers were recruited and had a medical history, examination, ECG, blood test and CMR. The CMR study included measurement of left and right ventricular (LV, RV) dimensions and ejection fraction (EF), sequences for detection of myocardial oedema and late gadolinium enhancement (LGE). Images were compared to a cohort of healthy controls. Results Years of regular cocaine use were 13.9 ± 9. When compared to the age-matched healthy cohort, the cocaine abusers had increased LV end-systolic volume, LV mass index and RV end-systolic volume, with decreased LVEF and RVEF. No subject had myocardial oedema, but 30% had myocardial LGE indicating myocardial damage. Conclusions CMR detected cardiovascular disease in 71% of this cohort of consecutive asymptomatic cocaine abusers and mean duration of abuse was related to probability of LV systolic dysfunction. PMID:24758161

  6. Assessment of aortic stiffness in patients with ankylosing spondylitis using cardiovascular magnetic resonance.

    PubMed

    Biesbroek, P Stefan; Heslinga, Sjoerd C; van de Ven, Peter M; Peters, Mike J L; Amier, Raquel P; Konings, Thelma C; Maroules, Christopher D; Ayers, Colby; Joshi, Parag H; van der Horst-Bruinsma, Irene E; van Halm, Vokko P; van Rossum, Albert C; Nurmohamed, Michael T; Nijveldt, Robin

    2018-05-12

    To evaluate aortic stiffness in patients with ankylosing spondylitis (AS) using cardiovascular magnetic resonance (CMR) and to assess its association with AS characteristics and left ventricular (LV) remodeling. In this prospective study, 14 consecutive AS patients were each matched to two controls without cardiovascular symptoms or known cardiovascular disease who underwent CMR imaging for the assessment of aortic arch pulse wave velocity (PWV) at 1.5 Tesla. To enhance comparability of the samples, matching was done with replacement resulting in 20 unique controls. Only AS patients with abnormal findings on screening echocardiography were included in this exploratory study. Cine CMR was used to assess LV geometry and systolic function, and late gadolinium enhancement was performed to determine the presence of myocardial hyperenhancement (i.e., fibrosis). Aortic arch PWV was significantly higher in the AS group compared with the control group (median 9.7 m/s, interquartile range [IQR] 7.1 to 11.8 vs. 6.1 m/s, IQR 4.6 to 7.6 m/s; p < 0.001). PWV was positively associated with functional disability as measured by BASFI (R: 0.62; p = 0.018). Three patients (21%) with a non-ischemic pattern of hyperenhancement showed increased PWV (11.7, 12.3, and 16.5 m/s) as compared to the 11 patients without hyperenhancement (9.0 m/s, IQR 6.6 to 10.5 m/s; p = 0.022). PWV was inversely associated with LV ejection fraction (R: - 0.63; p = 0.015), but was not found to be statistically correlated to LV volumes or mass. Aortic arch PWV was increased in our cohort of patients with AS. Higher PWV in the aortic arch was associated with functional disability, the presence of non-ischemic hyperenhancement, and reduced LV systolic function.

  7. In vitro comparison of intracranial stent visibility using various concentrations of gadolinium contrast agent under 1.5 T and 3 T MR angiography.

    PubMed

    Chiang, Chen-Hua; Tseng, Ying-Chi; Chen, Ai-Chi; Huang, Yen-Lin; Chen, David Yen-Ting; Chen, Chi-Jen; Lin, Yen-Kuang; Hsu, Hui-Ling

    2017-04-01

    MR angiography (MRA) is an increasingly used evaluation method following intracranial stenting. However, the various artifacts created by the stent limit this technique. The purpose of this study was to investigate the effects of various concentrations of gadolinium contrast agent on the visibility and signal characteristics of two stents using the a contrast enhanced MRA technique. Two intracranial stents (Enterprise and Helistent) were placed in polyvinyl chloride tubes as vascular phantoms. They were filled with six different doses of gadolinium contrast agent (1.0, 2.0, 4.0, 6.0, 8.0, and 10.0 mmol/L dimeglumine gadopentetate, respectively) and imaged using 3 T and 1.5 T MR systems. Relative in-stent signal (RIS) was calculated and artificial luminal narrowing (ALN) was obtained using pixel by pixel analysis. The Enterprise stent, performed in both 1.5 T and 3 T MR systems, showed mean RIS values much less than those for the Helistent for all different doses of gadolinium solution. Increased gadolinium concentration resulted in a gradual reduction in RIS values in the Enterprise group. Also, ALN in the Enterprise group showed no or little change with various gadolinium doses. The Enterprise stent demonstrated good luminal visibility regardless of gadolinium concentration. The relative in-stent signals were more predictable in the Enterprise stent with various doses of gadolinium. Therefore, the Enterprise stent has been shown to provide better in-stent visibility compared with the Helistent using various gadolinium doses. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  8. Active extravasation of gadolinium-based contrast agent into the subdural space following lumbar puncture.

    PubMed

    Kothari, Pranay D; Hanser, Evelyn M; Wang, Harrison; Farid, Nikdokht

    2016-01-01

    A 38year-old male presented with cauda equina syndrome following multiple lumbar puncture attempts. Lumbar spine magnetic resonance imaging (MRI) showed a subdural hematoma and an area of apparent contrast enhancement in the spinal canal on sagittal post-contrast images. Axial post-contrast images obtained seven minutes later demonstrated an increase in size and change in shape of the region of apparent contrast enhancement, indicating active extravasation of the contrast agent. This is the first reported case of active extravasation of gadolinium-based contrast agent in the spine. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Multi-atlas propagation based left atrium segmentation coupled with super-voxel based pulmonary veins delineation in late gadolinium-enhanced cardiac MRI

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Zhuang, Xiahai; Khan, Habib; Haldar, Shouvik; Nyktari, Eva; Li, Lei; Ye, Xujiong; Slabaugh, Greg; Wong, Tom; Mohiaddin, Raad; Keegan, Jennifer; Firmin, David

    2017-02-01

    Late Gadolinium-Enhanced Cardiac MRI (LGE CMRI) is a non-invasive technique, which has shown promise in detecting native and post-ablation atrial scarring. To visualize the scarring, a precise segmentation of the left atrium (LA) and pulmonary veins (PVs) anatomy is performed as a first step—usually from an ECG gated CMRI roadmap acquisition—and the enhanced scar regions from the LGE CMRI images are superimposed. The anatomy of the LA and PVs in particular is highly variable and manual segmentation is labor intensive and highly subjective. In this paper, we developed a multi-atlas propagation based whole heart segmentation (WHS) to delineate the LA and PVs from ECG gated CMRI roadmap scans. While this captures the anatomy of the atrium well, the PVs anatomy is less easily visualized. The process is therefore augmented by semi-automated manual strokes for PVs identification in the registered LGE CMRI data. This allows us to extract more accurate anatomy than the fully automated WHS. Both qualitative visualization and quantitative assessment with respect to manual segmented ground truth showed that our method is efficient and effective with an overall mean Dice score of 0.91.

  10. Three-dimensional gadolinium-enhanced magnetic resonance venography in suspected thrombo-occlusive disease of the central chest veins.

    PubMed

    Kroencke, T J; Taupitz, M; Arnold, R; Fritsche, L; Hamm, B

    2001-11-01

    To determine the usefulness of high-resolution three-dimensional (3D) gadolinium-enhanced magnetic resonance venography (MRV) in the evaluation of central venous thrombo-occlusive disease of the chest. Prospective study. University hospital. Sixteen consecutive patients with clinically suspected thrombosis of the superior vena cava, subclavian, brachiocephalic/innominate, internal jugular, or axillary veins. Thirteen patients had a neoplasm, two patients had a connective tissue disease, and one patient had a history of strenuous exercise. Twelve of 16 patients had prior central venous catheter placement. MRI was correlated with color-coded duplex sonography (CCDS) in 7 of 16 patients, digital subtraction angiography (DSA) in 3 of 16 patients, and CT in 2 of 16 patients. Contrast-enhanced MRV was performed in a total of 20 examinations. A 3D data set (gradient echo; time to repeat, 4.6 ms; time to echo, 1.8 ms; flip angle, 30 degrees; time of acquisition, 23 s; 512 matrix/64 partitions; slice thickness, 1.5 mm) was acquired in the arterial and venous phase. Overall image quality was assessed on a 5-point scale. The presence, site, and extent of thrombus, as well as presence of an intravascular device, were determined. Overall image quality was rated very good (1 point) in 7 of 16 cases (44%) and good (2 points) in 9 of 16 cases (56%). Thrombus was detected in 16 of 16 patients, and complete extent of disease could be determined in 15 of 16 patients (94%). MRV did not miss any finding obtained by CCDS, DSA, or CT, and provided additional information in 6 of 16 examinations (38%). Contrast-enhanced MRV is a fast and reliable noninvasive procedure with excellent results regarding detection and determination of the extent of thrombo-occlusive disease of the chest veins.

  11. Graphene oxide-gadolinium (III) oxide nanoparticle composite: a novel MR contrast agent with high longitudinal and transverse relaxivity

    NASA Astrophysics Data System (ADS)

    Venkatesha, N.; Poojar, Pavan; Geethanath, Sairam; Srivastava, Chandan

    2014-12-01

    Production of bio-compatible contrast agent materials to enhance the sensitivity of the magnetic resonance imaging (MRI) technique is a highly active area in MRI related research. This work illustrates the potential of a new material: graphene oxide-gadolinium (III) oxide nanoparticle (GO-Gd2O3) composite in yielding both transverse (16.3 mM-1 s-1) and longitudinal relaxivity (40 mM-1 s-1) values which are significantly higher than the proton relaxivity values achieved using the gadolinium based contrast agents currently used in MRI. Such high proton relaxivity values can facilitate low dosage of GO-Gd2O3 composite for obtaining both T1 and T2 weighted high signal-to-noise ratio images in MRI.

  12. Compensated gadolinium-loaded plastic scintillators for thermal neutron detection (and counting)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumazert, Jonathan; Coulon, Romain; Bertrand, Guillaume H. V.

    2015-07-01

    Plastic scintillator loading with gadolinium-rich organometallic complexes shows a high potential for the deployment of efficient and cost-effective neutron detectors. Due to the low-energy photon and electron signature of thermal neutron capture by gadolinium-155 and gadolinium-157, alternative treatment to Pulse Shape Discrimination has to be proposed in order to display a trustable count rate. This paper discloses the principle of a compensation method applied to a two-scintillator system: a detection scintillator interacts with photon radiation and is loaded with gadolinium organometallic compound to become a thermal neutron absorber, while a non-gadolinium loaded compensation scintillator solely interacts with the photon partmore » of the incident radiation. Posterior to the nonlinear smoothing of the counting signals, a hypothesis test determines whether the resulting count rate after photon response compensation falls into statistical fluctuations or provides a robust image of a neutron activity. A laboratory prototype is tested under both photon and neutron irradiations, allowing us to investigate the performance of the overall compensation system in terms of neutron detection, especially with regards to a commercial helium-3 counter. The study reveals satisfactory results in terms of sensitivity and orientates future investigation toward promising axes. (authors)« less

  13. Tracking the Evolution of Cerebral Gadolinium-Enhancing Lesions to Persistent T1 Black Holes in Multiple Sclerosis: Validation of a Semiautomated Pipeline.

    PubMed

    Andermatt, Simon; Papadopoulou, Athina; Radue, Ernst-Wilhelm; Sprenger, Till; Cattin, Philippe

    2017-09-01

    Some gadolinium-enhancing multiple sclerosis (MS) lesions remain T1-hypointense over months ("persistent black holes, BHs") and represent areas of pronounced tissue loss. A reduced conversion of enhancing lesions to persistent BHs could suggest a favorable effect of a medication on tissue repair. However, the individual tracking of enhancing lesions can be very time-consuming in large clinical trials. We created a semiautomated workflow for tracking the evolution of individual MS lesions, to calculate the proportion of enhancing lesions becoming persistent BHs at follow-up. Our workflow automatically coregisters, compares, and detects overlaps between lesion masks at different time points. We tested the algorithm in a data set of Magnetic Resonance images (1.5 and 3T; spin-echo T1-sequences) from a phase 3 clinical trial (n = 1,272), in which all enhancing lesions and all BHs had been previously segmented at baseline and year 2. The algorithm analyzed the segmentation masks in a longitudinal fashion to determine which enhancing lesions at baseline turned into BHs at year 2. Images of 50 patients (192 enhancing lesions) were also reviewed by an experienced MRI rater, blinded to the algorithm results. In this MRI data set, there were no cases that could not be processed by the algorithm. At year 2, 417 lesions were classified as persistent BHs (417/1,613 = 25.9%). The agreement between the rater and the algorithm was > 98%. Due to the semiautomated procedure, this algorithm can be of great value in the analysis of large clinical trials, when a rater-based analysis would be time-consuming. Copyright © 2017 by the American Society of Neuroimaging.

  14. Cardiovascular magnetic resonance physics for clinicians: part II

    PubMed Central

    2012-01-01

    This is the second of two reviews that is intended to cover the essential aspects of cardiovascular magnetic resonance (CMR) physics in a way that is understandable and relevant to clinicians using CMR in their daily practice. Starting with the basic pulse sequences and contrast mechanisms described in part I, it briefly discusses further approaches to accelerate image acquisition. It then continues by showing in detail how the contrast behaviour of black blood fast spin echo and bright blood cine gradient echo techniques can be modified by adding rf preparation pulses to derive a number of more specialised pulse sequences. The simplest examples described include T2-weighted oedema imaging, fat suppression and myocardial tagging cine pulse sequences. Two further important derivatives of the gradient echo pulse sequence, obtained by adding preparation pulses, are used in combination with the administration of a gadolinium-based contrast agent for myocardial perfusion imaging and the assessment of myocardial tissue viability using a late gadolinium enhancement (LGE) technique. These two imaging techniques are discussed in more detail, outlining the basic principles of each pulse sequence, the practical steps required to achieve the best results in a clinical setting and, in the case of perfusion, explaining some of the factors that influence current approaches to perfusion image analysis. The key principles of contrast-enhanced magnetic resonance angiography (CE-MRA) are also explained in detail, especially focusing on timing of the acquisition following contrast agent bolus administration, and current approaches to achieving time resolved MRA. Alternative MRA techniques that do not require the use of an endogenous contrast agent are summarised, and the specialised pulse sequence used to image the coronary arteries, using respiratory navigator gating, is described in detail. The article concludes by explaining the principle behind phase contrast imaging techniques

  15. Comparison of triple dose versus standard dose gadolinium-DTPA for detection of MRI enhancing lesions in patients with primary progressive multiple sclerosis.

    PubMed Central

    Filippi, M; Campi, A; Martinelli, V; Colombo, B; Yousry, T; Canal, N; Scotti, G; Comi, G

    1995-01-01

    This study was performed to evaluate whether a triple dose of gadolinium-DTPA (Gd-DTPA) increases the sensitivity of brain MRI for detecting enhancing lesions in patients with primary progressive multiple sclerosis (PPMS). T1 weighted brain MRI was obtained for 10 patients with PPMS in two sessions. In the first session, one scan was obtained five to seven minutes after the injection of 0.1 mmol/kg Gd-DTPA (standard dose). In the second session, six to 24 hours later, one scan before and two scans five to seven minutes and one hour after the injection of 0.3 mmol/kg Gd-DTPA (triple dose) were obtained. Four enhancing lesions were detected in two patients when the standard dose of Gd-DTPA was used. The numbers of enhancing lesions increased to 13 and the numbers of patients with such lesions to five when the triple dose of Gd-DTPA was used and to 14 and six in the one hour delayed scans. The mean contrast ratio for enhancing lesions detected with the triple dose of Gd-DTPA was higher than those for lesions present in both the standard dose (P < 0.0009) and the one hour delayed scans (P = 0.04). These data indicate that with a triple dose of Gd-DTPA many more enhancing lesions can be detected in patients with PPMS. This is important both for planning clinical trials and for detecting the presence of inflammation in vivo in the lesions of such patients. Images PMID:8530944

  16. Presence of non-hypervascular hypointense nodules on Gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging in patients with hepatocellular carcinoma.

    PubMed

    Inoue, Masanori; Ogasawara, Sadahisa; Chiba, Tetsuhiro; Ooka, Yoshihiko; Wakamatsu, Toru; Kobayashi, Kazufumi; Suzuki, Eiichiro; Tawada, Akinobu; Yokosuka, Osamu

    2017-04-01

    Gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) performed before curative therapy for hepatocellular carcinoma (HCC) can distinguish between intrahepatic distant recurrence and hypervascularization. This study aimed to retrospectively evaluate the presence of non-hypervascular hypointense nodules on hepatobiliary phase images from Gd-EOB-DTPA-enhanced MRI as a risk factor of the intrahepatic distant recurrence of early stage HCC following radiofrequency ablation (RFA). A total of 132 patients who underwent preprocedural Gd-EOB-DTPA-enhanced MRI followed by initial RFA were retrospectively analyzed. Post-RFA intrahepatic distant recurrence, which excluded the hypervascularization of non-hypervascular hypointense nodules detected by preprocedural Gd-EOB-DTPA-enhanced MRI, was evaluated according to the presence of non-hypervascular hypointense nodules on preprocedural Gd-EOB-DTPA-enhanced MRI. Intrahepatic distant recurrence rates following RFA were higher in patients with non-hypervascular hypointense nodules (1-year: 22.5%, 2-year: 52.1%, 5-year: 89.1%) compared with in patients without non-hypervascular hypointense nodules (1-year: 7.0%, 2-year: 28.8%, 5-year: 48.7%). The presence of non-hypervascular hypointense nodules was associated with markedly increased cumulative recurrence rates of both identical and different subsegment intrahepatic distant recurrence, being an independent risk factor for post-RFA identical and different subsegment intrahepatic distant recurrence (identical: HR = 2.365, P = 0.027; different: HR = 3.276, P < 0.001). The presence of non-hypervascular hypointense nodules on hepatobiliary phase images from Gd-EOB-DTPA-enhanced MRI obtained prior to RFA is an important predictive factor of intrahepatic distant recurrence following RFA of HCC. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  17. Gadolinium-modulated 19F signals from Perfluorocarbon Nanoparticles as a New Strategy for Molecular Imaging

    PubMed Central

    Neubauer, Anne M.; Myerson, Jacob; Caruthers, Shelton D.; Hockett, Franklin D.; Winter, Patrick M.; Chen, Junjie; Gaffney, Patrick J.; Robertson, J. David; Lanza, Gregory M.; Wickline, Samuel A.

    2008-01-01

    Recent advances in the design of fluorinated nanoparticles for magnetic resonance molecular imaging have enabled specific detection of 19F nuclei, providing unique and quantifiable spectral signatures. However, a pressing need for signal enhancement exists because the total 19F in imaging voxels is often limited. By directly incorporating a relaxation agent (gadolinium) into the lipid monolayer that surrounds the perfluorocarbon, a marked augmentation of the 19F signal from 200nm nanoparticles was achieved. This design increases the magnetic relaxation rate of the 19F nuclei 4-fold at 1.5 T and effects a 125% increase in signal, an effect which is maintained when they are targeted to human plasma clots. By varying the surface concentration of gadolinium, the relaxation effect can be quantitatively modulated to tailor particle properties. This novel strategy dramatically improves the sensitivity and range of 19F MRI/MRS and forms the basis for designing contrast agents capable of sensing their surface chemistry. PMID:18956457

  18. Application of classification trees for the qualitative differentiation of focal liver lesions suspicious for metastasis in gadolinium-EOB-DTPA-enhanced liver MR imaging.

    PubMed

    Schelhorn, J; Benndorf, M; Dietzel, M; Burmeister, H P; Kaiser, W A; Baltzer, P A T

    2012-09-01

    To evaluate the diagnostic accuracy of qualitative descriptors alone and in combination for the classification of focal liver lesions (FLLs) suspicious for metastasis in gadolinium-EOB-DTPA-enhanced liver MR imaging. Consecutive patients with clinically suspected liver metastases were eligible for this retrospective investigation. 50 patients met the inclusion criteria. All underwent Gd-EOB-DTPA-enhanced liver MRI (T2w, chemical shift T1w, dynamic T1w). Primary liver malignancies or treated lesions were excluded. All investigations were read by two blinded observers (O1, O2). Both independently identified the presence of lesions and evaluated predefined qualitative lesion descriptors (signal intensities, enhancement pattern and morphology). A reference standard was determined under consideration of all clinical and follow-up information. Statistical analysis besides contingency tables (chi square, kappa statistics) included descriptor combinations using classification trees (CHAID methodology) as well as ROC analysis. In 38 patients, 120 FLLs (52 benign, 68 malignant) were present. 115 (48 benign, 67 malignant) were identified by the observers. The enhancement pattern, relative SI upon T2w and late enhanced T1w images contributed significantly to the differentiation of FLLs. The overall classification accuracy was 91.3 % (O1) and 88.7 % (O2), kappa = 0.902. The combination of qualitative lesion descriptors proposed in this work revealed high diagnostic accuracy and interobserver agreement in the differentiation of focal liver lesions suspicious for metastases using Gd-EOB-DTPA-enhanced liver MRI. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Phenotypic expression in hypertrophic cardiomyopathy and late gadolinium enhancement on cardiac magnetic resonance.

    PubMed

    Caetano, Francisca; Botelho, Ana; Trigo, Joana; Silva, Joana; Almeida, Inês; Venâncio, Margarida; Pais, João; Sanches, Conceição; Leitão Marques, António

    2014-05-01

    The prognostic value of late gadolinium enhancement (LGE) for risk stratification of hypertrophic cardiomyopathy (HCM) patients is the subject of disagreement. We set out to examine the association between clinical and morphological variables, risk factors for sudden cardiac death and LGE in HCM patients. From a population of 78 patients with HCM, we studied 53 who underwent cardiac magnetic resonance. They were divided into two groups according to the presence or absence of LGE. Ventricular arrhythmias and morbidity and mortality during follow-up were analyzed. Patients with LGE were younger at the time of diagnosis (p=0.046) and more often had a family history of sudden death (p=0.008) and known coronary artery disease (p=0.086). On echocardiography they had greater maximum wall thickness (p=0.007) and left atrial area (p=0.037) and volume (p=0.035), and more often presented a restrictive pattern of diastolic dysfunction (p=0.011) with a higher E/É ratio (p=0.003) and left ventricular systolic dysfunction (p=0.038). Cardiac magnetic resonance supported the association between LGE and previous echocardiographic findings: greater left atrial area (p=0.029) and maximum wall thickness (p<0.001) and lower left ventricular ejection fraction (p=0.056). Patients with LGE more often had an implantable cardioverter-defibrillator (ICD) (p=0.015). At follow-up, no differences were found in the frequency of ventricular arrhythmias, appropriate ICD therapies or mortality. The presence of LGE emerges as a risk marker, associated with the classical predictors of sudden cardiac death in this population. However, larger studies are required to confirm its independent association with clinical events. Copyright © 2013 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  20. Comparison of Image Processing Techniques for Nonviable Tissue Quantification in Late Gadolinium Enhancement Cardiac Magnetic Resonance Images.

    PubMed

    Carminati, M Chiara; Boniotti, Cinzia; Fusini, Laura; Andreini, Daniele; Pontone, Gianluca; Pepi, Mauro; Caiani, Enrico G

    2016-05-01

    The aim of this study was to compare the performance of quantitative methods, either semiautomated or automated, for left ventricular (LV) nonviable tissue analysis from cardiac magnetic resonance late gadolinium enhancement (CMR-LGE) images. The investigated segmentation techniques were: (i) n-standard deviations thresholding; (ii) full width at half maximum thresholding; (iii) Gaussian mixture model classification; and (iv) fuzzy c-means clustering. These algorithms were applied either in each short axis slice (single-slice approach) or globally considering the entire short-axis stack covering the LV (global approach). CMR-LGE images from 20 patients with ischemic cardiomyopathy were retrospectively selected, and results from each technique were assessed against manual tracing. All methods provided comparable performance in terms of accuracy in scar detection, computation of local transmurality, and high correlation in scar mass compared with the manual technique. In general, no significant difference between single-slice and global approach was noted. The reproducibility of manual and investigated techniques was confirmed in all cases with slightly lower results for the nSD approach. Automated techniques resulted in accurate and reproducible evaluation of LV scars from CMR-LGE in ischemic patients with performance similar to the manual technique. Their application could minimize user interaction and computational time, even when compared with semiautomated approaches.

  1. [Rapid imaging in orbito-ocular pathology. Contribution of gadolinium].

    PubMed

    Pigeau, I; Legeais, J M; D'Hermies, F; Fayet, B; Leport, M; Abenhaim, A; Guinet, C; Levy, C; Renard, G; Vadrot, D

    1990-01-01

    To evaluate Gradient-Echo Imaging (GEI) in orbito-ocular pathology, 15 volunteers and 34 patients (40 lesions) were examined with GEA T1 and GEA T2 (0.5 T). Results were compared with SE T1 in all cases, with SE T2 in 20 cases and with other imaging modalities (CT). 30 patients were examined before and after injection of gadolinium. Final diagnosis was obtained by surgery or biopsy in 24 cases or by combined results of imaging and clinical findings in 16 cases. Compared with SE, GEA demonstrated a better visualisation of optic nerve, orbital muscles, choroidal-retinal layer, lens capsule and episclera and a better detection of small lesions. It is very helpful for characterisation of lesions containing hemorrhages or paramagnetic components (melanine, gadolinium) or of vascular nature (angioma). Gadolinium was useful for detection of small lesions or characterisation of a few lesions. Thus GEA seems to be an efficient method for the evaluation of orbito-ocular pathology.

  2. Target binding improves relaxivity in aptamer-gadolinium conjugates.

    PubMed

    Bernard, Elyse D; Beking, Michael A; Rajamanickam, Karunanithi; Tsai, Eve C; Derosa, Maria C

    2012-12-01

    MRI contrast agents (CA) have been heavily used over the past several decades to enhance the diagnostic value of the obtained images. From a design perspective, two avenues to improve the efficacy of contrast agents are readily evident: optimization of magnetic properties of the CA, and optimization of the pharmacokinetics and distribution of the CA in the patient. Contrast agents consisting of DNA aptamer-gadolinium(III) conjugates provide a single system in which these factors can be addressed simultaneously. In this proof-of-concept study, the 15mer thrombin aptamer was conjugated to diethylenetriaminepentaacetic (DTPA) dianhydride to form a monoamide derivative of the linear open-chain chelate present in the commonly used contrast agent Magnevist(®). The stability of the conjugated DNA aptamer-DTPA-Gd(III) chelate in a transmetallation study using Zn(II) was found to be similar to that reported for DTPA-Gd(III). Relaxivity enhancements of 35 ± 4 and 20 ± 1 % were observed in the presence of thrombin compared to a control protein at fields of 9.4 and 1.5 T, respectively. The inclusion of spacers between the aptamer and the DTPA to eliminate possible steric effects was also investigated but not found to improve the relaxation enhancement achieved in comparison to the unaltered aptamer conjugate.

  3. Distribution and chemical forms of gadolinium in the brain: a review.

    PubMed

    Kanda, Tomonori; Nakai, Yudai; Hagiwara, Akifumi; Oba, Hiroshi; Toyoda, Keiko; Furui, Shigeru

    2017-11-01

    In the 3 years since residual gadolinium-based contrast agent (GBCA) in the brain was first reported, much has been learned about its accumulation, including the pathway of GBCA entry into the brain, the brain distribution of GBCA and its excretion. Here we review recent progress in understanding the routes of gadolinium deposition in brain structures.

  4. Fuel bundle design for enhanced usage of plutonium fuel

    DOEpatents

    Reese, Anthony P.; Stachowski, Russell E.

    1995-01-01

    A nuclear fuel bundle includes a square array of fuel rods each having a concentration of enriched uranium and plutonium. Each rod of an interior array of the rods also has a concentration of gadolinium. The interior array of rods is surrounded by an exterior array of rods void of gadolinium. By this design, usage of plutonium in the nuclear reactor is enhanced.

  5. The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy

    PubMed Central

    Sancey, L; Kotb, S; Roux, S; Dufort, S; Bianchi, A; Crémillieux, Y; Fries, P; Coll, J-L; Rodriguez-Lafrasse, C; Janier, M; Dutreix, M; Barberi-Heyob, M; Boschetti, F; Denat, F; Louis, C; Porcel, E; Lacombe, S; Le Duc, G; Deutsch, E; Perfettini, J-L; Detappe, A; Verry, C; Berbeco, R; Butterworth, K T; McMahon, S J; Prise, K M; Perriat, P; Tillement, O

    2014-01-01

    A new efficient type of gadolinium-based theranostic agent (AGuIX®) has recently been developed for MRI-guided radiotherapy (RT). These new particles consist of a polysiloxane network surrounded by a number of gadolinium chelates, usually 10. Owing to their small size (<5 nm), AGuIX typically exhibit biodistributions that are almost ideal for diagnostic and therapeutic purposes. For example, although a significant proportion of these particles accumulate in tumours, the remainder is rapidly eliminated by the renal route. In addition, in the absence of irradiation, the nanoparticles are well tolerated even at very high dose (10 times more than the dose used for mouse treatment). AGuIX particles have been proven to act as efficient radiosensitizers in a large variety of experimental in vitro scenarios, including different radioresistant cell lines, irradiation energies and radiation sources (sensitizing enhancement ratio ranging from 1.1 to 2.5). Pre-clinical studies have also demonstrated the impact of these particles on different heterotopic and orthotopic tumours, with both intratumoural or intravenous injection routes. A significant therapeutical effect has been observed in all contexts. Furthermore, MRI monitoring was proven to efficiently aid in determining a RT protocol and assessing tumour evolution following treatment. The usual theoretical models, based on energy attenuation and macroscopic dose enhancement, cannot account for all the results that have been obtained. Only theoretical models, which take into account the Auger electron cascades that occur between the different atoms constituting the particle and the related high radical concentrations in the vicinity of the particle, provide an explanation for the complex cell damage and death observed. PMID:24990037

  6. Feasibility and accuracy of dual-layer spectral detector computed tomography for quantification of gadolinium: a phantom study.

    PubMed

    van Hamersvelt, Robbert W; Willemink, Martin J; de Jong, Pim A; Milles, Julien; Vlassenbroek, Alain; Schilham, Arnold M R; Leiner, Tim

    2017-09-01

    The aim of this study was to evaluate the feasibility and accuracy of dual-layer spectral detector CT (SDCT) for the quantification of clinically encountered gadolinium concentrations. The cardiac chamber of an anthropomorphic thoracic phantom was equipped with 14 tubular inserts containing different gadolinium concentrations, ranging from 0 to 26.3 mg/mL (0.0, 0.1, 0.2, 0.4, 0.5, 1.0, 2.0, 3.0, 4.0, 5.1, 10.6, 15.7, 20.7 and 26.3 mg/mL). Images were acquired using a novel 64-detector row SDCT system at 120 and 140 kVp. Acquisitions were repeated five times to assess reproducibility. Regions of interest (ROIs) were drawn on three slices per insert. A spectral plot was extracted for every ROI and mean attenuation profiles were fitted to known attenuation profiles of water and pure gadolinium using in-house-developed software to calculate gadolinium concentrations. At both 120 and 140 kVp, excellent correlations between scan repetitions and true and measured gadolinium concentrations were found (R > 0.99, P < 0.001; ICCs > 0.99, CI 0.99-1.00). Relative mean measurement errors stayed below 10% down to 2.0 mg/mL true gadolinium concentration at 120 kVp and below 5% down to 1.0 mg/mL true gadolinium concentration at 140 kVp. SDCT allows for accurate quantification of gadolinium at both 120 and 140 kVp. Lowest measurement errors were found for 140 kVp acquisitions. • Gadolinium quantification may be useful in patients with contraindication to iodine. • Dual-layer spectral detector CT allows for overall accurate quantification of gadolinium. • Interscan variability of gadolinium quantification using SDCT material decomposition is excellent.

  7. Remote magnetic targeting of iron oxide nanoparticles for cardiovascular diagnosis and therapeutic drug delivery: where are we now?

    PubMed Central

    Bietenbeck, Michael; Florian, Anca; Faber, Cornelius; Sechtem, Udo; Yilmaz, Ali

    2016-01-01

    Magnetic resonance imaging (MRI) allows for an accurate assessment of both functional and structural cardiac parameters, and thereby appropriate diagnosis and validation of cardiovascular diseases. The diagnostic yield of cardiovascular MRI examinations is often increased by the use of contrast agents that are almost exclusively based on gadolinium compounds. Another clinically approved contrast medium is composed of superparamagnetic iron oxide nanoparticles (IONs). These particles may expand the field of contrast-enhanced cardiovascular MRI as recently shown in clinical studies focusing on acute myocardial infarction (AMI) and atherosclerosis. Furthermore, IONs open up new research opportunities such as remote magnetic drug targeting (MDT). The approach of MDT relies on the coupling of bioactive molecules and magnetic nanoparticles to form an injectable complex. This complex, in turn, can be attracted to and retained at a desired target inside the body with the help of applied magnetic fields. In comparison to common systemic drug applications, MDT techniques promise both higher concentrations at the target site and lower concentrations elsewhere in the body. Moreover, concurrent or subsequent MRI can be used for noninvasive monitoring of drug distribution and successful delivery to the desired organ in vivo. This review does not only illustrate the basic conceptual and biophysical principles of IONs, but also focuses on new research activities and achievements in the cardiovascular field, mainly in the management of AMI. Based on the presentation of successful MDT applications in preclinical models of AMI, novel approaches and the translational potential of MDT are discussed. PMID:27486321

  8. Type of MRI contrast, tissue gadolinium, and fibrosis.

    PubMed

    Do, Catherine; Barnes, Jeffrey L; Tan, Chunyan; Wagner, Brent

    2014-10-01

    It has been presupposed that the thermodynamic stability constant (K(therm)) of gadolinium-based MRI chelates relate to the risk of precipitating nephrogenic systemic fibrosis. The present study compared low-K(therm) gadodiamide with high-K(therm) gadoteridol in cultured fibroblasts and rats with uninephrectomies. Gadolinium content was assessed using scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy in paraffin-embedded tissues. In vitro, fibroblasts demonstrated dose-dependent fibronectin generation, transforming growth factor-β production, and expression of activated myofibroblast stress fiber protein α-smooth muscle actin. There were negligible differences with respect to toxicity or proliferation between the two contrast agents. In the rodent model, gadodiamide treatment led to greater skin fibrosis and dermal cellularity than gadoteridol. In the kidney, both contrast agents led to proximal tubule vacuolization and increased fibronectin accumulation. Despite large detectable gadolinium signals in the spleen, skin, muscle, and liver from the gadodiamide-treated group, contrast-induced fibrosis appeared to be limited to the skin and kidney. These findings support the hypothesis that low-K(therm) chelates have a greater propensity to elicit nephrogenic systemic fibrosis and demonstrate that certain tissues are resistant to these effects.

  9. Differentiation of pre-ablation and post-ablation late gadolinium-enhanced cardiac MRI scans of longstanding persistent atrial fibrillation patients

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Zhuang, Xiahai; Khan, Habib; Haldar, Shouvik; Nyktari, Eva; Li, Lei; Ye, Xujiong; Slabaugh, Greg; Wong, Tom; Mohiaddin, Raad; Keegan, Jennifer; Firmin, David

    2017-03-01

    Late Gadolinium-Enhanced Cardiac MRI (LGE CMRI) is an emerging non-invasive technique to image and quantify preablation native and post-ablation atrial scarring. Previous studies have reported that enhanced image intensities of the atrial scarring in the LGE CMRI inversely correlate with the left atrial endocardial voltage invasively obtained by electro-anatomical mapping. However, the reported reproducibility of using LGE CMRI to identify and quantify atrial scarring is variable. This may be due to two reasons: first, delineation of the left atrium (LA) and pulmonary veins (PVs) anatomy generally relies on manual operation that is highly subjective, and this could substantially affect the subsequent atrial scarring segmentation; second, simple intensity based image features may not be good enough to detect subtle changes in atrial scarring. In this study, we hypothesized that texture analysis can provide reliable image features for the LGE CMRI images subject to accurate and objective delineation of the heart anatomy based on a fully-automated whole heart segmentation (WHS) method. We tested the extracted texture features to differentiate between pre-ablation and post-ablation LGE CMRI studies in longstanding persistent atrial fibrillation patients. These patients often have extensive native scarring and differentiation from post-ablation scarring can be difficult. Quantification results showed that our method is capable of solving this classification task, and we can envisage further deployment of this texture analysis based method for other clinical problems using LGE CMRI.

  10. Comparison of Inner Ear Contrast Enhancement among Patients with Unilateral Inner Ear Symptoms in MR Images Obtained 10 Minutes and 4 Hours after Gadolinium Injection.

    PubMed

    Kim, T Y; Park, D W; Lee, Y J; Lee, J Y; Lee, S H; Chung, J H; Lee, S

    2015-12-01

    Recently 4-hour delayed-enhanced 3D-FLAIR MR imaging has been used in pathophysiologic analysis of the inner ear in many auditory diseases, including sudden sensorineural hearing loss, but comparison among different time points is not clear in patients with unilateral inner ear symptoms. We compared the signal-intensity ratios of the inner ears in patients with unilateral inner ear symptoms on 10-minute delayed-enhanced and 4-hour delayed-enhanced 3D-FLAIR MR images after IV gadolinium injection. The 10-minute delayed-enhanced and 4-hour delayed-enhanced 3D-FLAIR MR images were retrospectively analyzed. Signal-intensity ratios between the cerebellum and inner ear structures, such as the cochleae, vestibules, and vestibulocochlear nerve were assessed. Multiple comparisons were performed. Signal-intensity ratios of the affected cochleae, vestibules, and vestibulocochlear nerve were higher than those of unaffected sides in both 10-minute delayed-enhanced and 4-hour delayed-enhanced images. At the affected side, signal-intensity ratios of the vestibulocochlear nerve were higher in patients with nonsudden sensorineural hearing loss than in those with sudden sensorineural hearing loss on both 10-minute delayed-enhanced and 4-hour delayed-enhanced images. The signal-intensity ratios of some affected inner ear structures were higher than those of the unaffected sides in a group of 30 patients with sudden sensorineural hearing loss and 20 patients with nonsudden sensorineural hearing loss on 10-minute delayed-enhanced and 4-hour delayed-enhanced images. Signal-intensity ratios of the inner ear show statistically significant increases in many diseases, especially neuritis, in 10-minute delayed-enhanced and 4-hour delayed-enhanced images. The 4-hour delayed-enhanced images may be superior in neural inflammatory-dominant conditions, while 10-minute delayed-enhanced images may be superior in neural noninflammatory-dominant conditions. © 2015 by American Journal of

  11. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) of cadaveric shoulders: comparison of contrast dynamics in hyaline and fibrous cartilage after intraarticular gadolinium injection.

    PubMed

    Wiener, E; Hodler, J; Pfirrmann, C W A

    2009-01-01

    Delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) is a novel method to investigate cartilaginous and fibrocartilaginous structures. To investigate the contrast dynamics in hyaline and fibrous cartilage of the glenohumeral joint after intraarticular injection of gadopentetate dimeglumine. Transverse T(1) maps were acquired on a 1.5T scanner before and after intraarticular injection of 2.0 mmol/l gadopentetate dimeglumine in five cadaveric shoulders using a dual flip angle three-dimensional gradient echo (3D-GRE) sequence. The acquisition time for the T(1) maps was 5 min 5 s for the whole shoulder. Measurements were repeated every 15 min over 2.5 hours. Regions of interest (ROIs) covering the glenoid cartilage and the labrum were drawn to assess the temporal evolution of the relaxation parameters. T(1) of unenhanced hyaline cartilage of the glenoid was 568+/-34 ms. T(1) of unenhanced fibrous cartilage of the labrum was 552+/-38 ms. Significant differences (P=0.002 and 0.03) in the relaxation parameters were already measurable after 15 min. After 2 to 2.5 hours, hyaline and fibrous cartilage still demonstrated decreasing relaxation parameters, with a larger range of the T(1)(Gd) values in fibrous cartilage. T(1) and triangle Delta R(1) values of hyaline and fibrous cartilage after 2.5 hours were 351+/-16 ms and 1.1+/-0.09 s(-1), and 332+/-31 ms and 1.2+/-0.1 s(-1), respectively. A significant decrease in T(1)(Gd) was found 15 min after intraarticular contrast injection. Contrast accumulation was faster in hyaline than in fibrous cartilage. After 2.5 hours, contrast accumulation showed a higher rate of decrease in hyaline cartilage, but neither hyaline nor fibrous cartilage had reached equilibrium.

  12. Additive value of 3T cardiovascular magnetic resonance coronary angiography for detecting coronary artery disease.

    PubMed

    Zhang, Lijun; Song, Xiantao; Dong, Li; Li, Jianan; Dou, Ruiyu; Fan, Zhanming; An, Jing; Li, Debiao

    2018-04-30

    The purpose of the work was to evaluate the incremental diagnostic value of free-breathing, contrast-enhanced, whole-heart, 3 T cardiovascular magnetic resonance coronary angiography (CE-MRCA) to stress/rest myocardial perfusion imaging (MPI) and late gadolinium enhancement (LGE) imaging for detecting coronary artery disease (CAD). Fifty-one patients with suspected CAD underwent a comprehensive cardiovascular magnetic resonance (CMR) examination (CE-MRCA, MPI, and LGE). The additive diagnostic value of MRCA to MPI and LGE was evaluated using invasive x-ray coronary angiography (XA) as the standard for defining functionally significant CAD (≥ 50% stenosis in vessels > 2 mm in diameter). 90.2% (46/51) patients (54.0 ± 11.5 years; 71.7% men) completed CE-MRCA successfully. On per-patient basis, compared to MPI/LGE alone or MPI alone, the addition of MRCA resulted in higher sensitivity (100% vs. 76.5%, p < 0.01), no change in specificity (58.3% vs. 66.7%, p = 0.6), and higher accuracy (89.1% vs 73.9%, p < 0.01) for CAD detection (prevalence = 73.9%). Compared to LGE alone, the addition of CE-MRCA resulted in higher sensitivity (97.1% vs. 41.2%, p < 0.01), inferior specificity (83.3% vs. 91.7%, p = 0.02), and higher diagnostic accuracy (93.5% vs. 54.3%, p < 0.01). The inclusion of successful free-breathing, whole-heart, 3 T CE-MRCA significantly improved the sensitivity and diagnostic accuracy as compared to MPI and LGE alone for CAD detection.

  13. Delayed gadolinium-enhanced MRI of the fibrocartilage disc of the temporomandibular joint--a feasibility study.

    PubMed

    Pittschieler, Elisabeth; Szomolanyi, Pavol; Schmid-Schwap, Martina; Weber, Michael; Egerbacher, Monika; Traxler, Hannes; Trattnig, Siegfried

    2014-12-01

    To 1) test the feasibility of delayed Gadolinium-Enhanced Magnetic Resonance Imaging of Cartilage (dGEMRIC) at 3 T in the temporomandibular joint (TMJ) and 2) to determine the optimal delay for measurements of the TMJ disc after i.v. contrast agent (CA) administration. MRI of the right and left TMJ of six asymptomatic volunteers was performed at 3 T using a dedicated coil. 2D inversion recovery (2D-IR) sequences were performed at 4 time points covering 120 minutes and 3D gradient-echo (3D GRE) dual flip-angle sequences were performed at 14 time points covering 130 minutes after the administration of 0.2 mmol/kg of Gd-diethylenetriamine pentaacetic acid ion (Gd-DTPA)(2-), i.e., 0.4 mL of Magnevist™ per kg body weight. Pair-wise tests were used to assess differences between pre-and post-contrast T1 values. 2D-IR sequences showed a statistically significant drop (p<0.001) in T1 values after i.v. CA administration. The T1 drop of 50% was reached 60 minutes after bolus injection in the TMJ disc. The 3D GRE dual flip-angle sequences confirmed these results and show plateau of T1 after 60 minutes. T1(Gd) maps calculated from dGEMRIC data allow in vivo assessment of the fibrocartilage disc of the TMJ. The recommended measurement time for dGEMRIC in the TMJ after i.v. CA administration is from 60 to 120 minutes. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Fuel bundle design for enhanced usage of plutonium fuel

    DOEpatents

    Reese, A.P.; Stachowski, R.E.

    1995-08-08

    A nuclear fuel bundle includes a square array of fuel rods each having a concentration of enriched uranium and plutonium. Each rod of an interior array of the rods also has a concentration of gadolinium. The interior array of rods is surrounded by an exterior array of rods void of gadolinium. By this design, usage of plutonium in the nuclear reactor is enhanced. 10 figs.

  15. Monte Carlo simulation of energy absorbed in phenolic ESR dosimeters added with gadolinium exposed to thermal, epithermal and fast neutrons

    NASA Astrophysics Data System (ADS)

    Longo, A.; Collura, G.; Gallo, S.; Bartolotta, A.; Marrale, M.

    2017-11-01

    In this work analyses of the energy released per unit mass in phenolic compound exposed to neutron beams were performed with the aim of predicting the increase in dose achievable by addition of gadolinium (Gd) inside the pellets. In particular, Monte Carlo (MC) simulations were carried out for IRGANOX® 1076 phenolic compound irradiated with neutron beams with different energy spectra at various depths inside a water phantom. The addition of gadolinium increases sensitivity of phenolic ESR (electron spin resonance) dosimeters to neutrons thanks to the high gadolinium cross section for neutron capture and to the large number of secondary particles (mainly Auger and internal conversion electrons) which are able to release energy inside the sensitive material layers. For small depths in water phantom and low energy neutron spectra the increase in dose due to gadolinium is large (more than a factor 50). The enhancement is smaller in case of epithermal neutron beam, whereas the increase in dose for fast neutrons is less than 50%. In order to have a comparison with other ESR dosimeters the energy released per unit mass in phenolic compound was compared with that calculated in alanine pellets. For thermal neutron beams the energy released in phenolic compound with gadolinium is comparable to that released in alanine for small depths in phantom, whereas it is larger than in alanine for large depths. In case of epithermal and fast neutron beams the energy released in phenolic compound is larger than in alanine samples because the elastic scattering with hydrogen nuclei is more probable for high neutron energies and this phenolic compound is characterized by an higher number of 1H nuclei than alanine. All results here found suggest that these phenolic pellets could be fruitfully used for dosimetric applications in Neutron Capture Therapy.

  16. 3D Late Gadolinium Enhancement in a Single Prolonged Breath-hold using Supplemental Oxygenation and Hyperventilation

    PubMed Central

    Roujol, Sébastien; Basha, Tamer A.; Akçakaya, Mehmet; Foppa, Murilo; Chan, Raymond H.; Kissinger, Kraig V.; Goddu, Beth; Berg, Sophie; Manning, Warren J.; Nezafat, Reza

    2013-01-01

    Purpose: To evaluate the feasibility of 3D single breath-hold late gadolinium enhancement (LGE) of the left ventricle (LV) using supplemental oxygen and hyperventilation and compressed-sensing acceleration. Methods: Breath-hold metrics (breath-hold duration, diaphragmatic/LV position drift, and maximum variation of RR interval) without and with supplemental oxygen and hyperventilation were assessed in healthy adult subjects using a real time single shot acquisition. Ten healthy subjects and 13 patients then underwent assessment of the proposed 3D breath-hold LGE acquisition (FOV=320×320×100 mm3, resolution=1.6×1.6×5.0 mm3, acceleration rate of 4) and a free breathing acquisition with right hemidiaphragm navigator (NAV) respiratory gating. Semi-quantitative grading of overall image quality, motion artifact, myocardial nulling, and diagnostic value was performed by consensus of two blinded observers. Results: Supplemental oxygenation and hyperventilation increased the breath-hold duration (35±11 s to 58±21 s, p<0.0125) without significant impact on diaphragmatic/LV position drift or maximum variation of RR interval (both p>0.01). LGE images were of similar quality when compared to free breathing acquisitions but with reduced total scan time (85±22 s to 35±6 s, p<0.001). Conclusions: Supplemental oxygenation and hyperventilation allow for prolonged breath-holding and enable single breath-hold 3D accelerated LGE with similar image quality as free breathing with NAV. PMID:24186772

  17. Does Late Gadolinium Enhancement still have Value? Right Ventricular Internal Mechanical Work, Ea/Emax and Late Gadolinium Enhancement as Prognostic Markers in Patients with Advanced Pulmonary Hypertension via Cardiac MRI.

    PubMed

    Abouelnour, Amr Ei; Doyle, Mark; Thompson, Diane V; Yamrozik, June; Williams, Ronald B; Shah, Moneal B; Soma, Siva Kr; Murali, Srinivas; Benza, Raymond L; Biederman, Robert Ww

    2017-01-01

    Investigate the impact of Right Ventricular (RV) Internal Work (IW), ratio of arterial to ventricular end-systolic elastance (E a /E max ), and RV Insertion Point (IP) Late Gadolinium Enhancement (LGE) on outcome in Pulmonary Hypertension (PH) patients. LGE is well known to be present within the RVIPs and Inter Ventricular Septum (IVS) in PH patients, but its prognostic role remains complex and potentially overestimated via 2D qualitative relative to the 3D quantitative measures now available. However, E a /E max , a measure of ventricular-arterial coupling and IW, when added to external cardiac work i.e. the P-V loop area as correlates to the heart's energy demands, might fundamentally improve measures of prognosis as they interrogate physiology beyond just the RV. Cardiac Magnetic Resonance Imaging (CMR) of 124 PH patients (age = 60±13, 85F) referred to a large tertiary PH center, was retrospectively examined for RV volumetric and functional indices and RVIP LGE%. Right Heart Catheterizations (RHC) performed within 1±2 months of the CMR were reviewed. E a /E max was derived as RV End-Systolic Volume (ESV/RVSV). IW was estimated as RVESV ×(RV end-systolic pressure-RV diastolic pressure). Patients were followed from date of CMR for up to 5 years for MACE (death, hospitalized RV failure, initiation of parenteral prostacyclin, sustained ventricular arrhythmia or referral for lung transplantation). MACE was high; 48/124 (39%) patients had MACE by 1.6±1.3 years. Neither RVIP nor IVS LGE using visual assessment or even 3D quantization predicted MACE. The strongest predictor of MACE was RVIW (OR=1.00013, p<0.002), vs. mPAP, RV mass, RV EF and IP LGE. Surprisingly, neither a single time-point RVIP nor whole IVS LGE% can predict outcome in the largest cohort of PH patients studied to date when compared with conventional or contemporary metrics of disease progression. CMR-LGE appears to lose its' prognostic value in PH patients in stark contradistinction to all other

  18. Regional convection-enhanced delivery of gadolinium-labeled albumin in the rat hippocampus in vivo.

    PubMed

    Astary, Garrett W; Kantorovich, Svetlana; Carney, Paul R; Mareci, Thomas H; Sarntinoranont, Malisa

    2010-03-15

    Convection-enhanced delivery (CED) has emerged as a promising method of targeted drug delivery for treating central nervous system (CNS) disorders, but the influence of brain structure on infusate distribution is unclear. We have utilized this approach to study extracellular transport and distribution of a contrast agent in the hippocampus, a complex structure susceptible to CNS disorders. The magnetic resonance (MR) contrast agent diethylene triamene penta-acetic acid chelated gadolinium-labeled albumin (Gd-albumin), tagged with Evans blue dye, was directly infused (V(i)=5 microl) into the dorsal and ventral hippocampus of seven male Sprague-Dawley rats. The final distribution profile of the contrast agent, a product of CED and limited diffusion, was observed in vivo using high-resolution T1-weighted MR imaging at 11.1T. Dense cell layers, such as the granule cell layer of the dentate gyrus and the pyramidal cell layer of CA1, appeared to be barriers to transport of the tracer. Three-dimensional distribution shape and volume (V(d)) differences, between the dorsal and ventral hippocampus infusions, were determined from the MR images using a semi-automatic segmentation routine (dorsal V(d)=23.4+/-1.8 microl, ventral V(d)=36.4+/-5.1 microl). Finer structural detail of the hippocampus was obtained using a combination of histological analysis and fluorescence imaging. This study demonstrates that CED has the potential to target all regions of the hippocampus and that tracer distribution is influenced by infusion site, underlying structure and circuitry, and extent of backflow. Therefore, CED, combined with high-resolution MR imaging, may be a useful strategy for delivering therapeutics for the treatment of CNS disorders affecting the hippocampus. Published by Elsevier B.V.

  19. Anterior delayed gadolinium-enhanced MRI of cartilage values predict joint failure after periacetabular osteotomy.

    PubMed

    Kim, Sang Do; Jessel, Rebecca; Zurakowski, David; Millis, Michael B; Kim, Young-Jo

    2012-12-01

    Several available compositional MRIs seem to detect early osteoarthritis before radiographic appearance. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) has been most frequently used in clinical studies and reportedly predicts premature joint failure in patients undergoing Bernese periacetabular osteotomies (PAOs). We asked, given regional variations in biochemical composition in dysplastic hips, whether the dGEMRIC index of the anterior joint would better predict premature joint failure after PAOs than the coronal dGEMRIC index as previously reported. We retrospectively reviewed 43 hips in 41 patients who underwent Bernese PAO for hip dysplasia. Thirty-seven hips had preserved joints after PAOs and six were deemed premature failures based on pain, joint space narrowing, or subsequent THA. We used dGEMRIC to determine regional variations in biochemical composition. Preoperative demographic and clinical outcome score, radiographic measures of osteoarthritis and severity of dysplasia, and dGEMRIC indexes from different hip regions were analyzed in a multivariable regression analysis to determine the best predictor of premature joint failure. Minimum followup was 24 months (mean, 32 months; range, 24-46 months). The two cohorts were similar in age and sex distribution. Severity of dysplasia was similar as measured by lateral center-edge, anterior center-edge, and Tönnis angles. Preoperative pain, joint space width, Tönnis grade, and coronal and sagittal dGEMRIC indexes differed between groups. The dGEMRIC index in the anterior weightbearing region of the hip was lower in the prematurely failed group and was the best predictor. Success of PAO depends on the amount of preoperative osteoarthritis. These degenerative changes are seen most commonly in the anterior joint. The dGEMRIC index of the anterior joint may better predict premature joint failure than radiographic measures of hip osteoarthritis and coronal dGEMRIC index. Level II, prognostic study. See

  20. Clinical predictors of cardiac magnetic resonance late gadolinium enhancement in patients with atrial fibrillation.

    PubMed

    Chrispin, Jonathan; Ipek, Esra Gucuk; Habibi, Mohammadali; Yang, Eunice; Spragg, David; Marine, Joseph E; Ashikaga, Hiroshi; Rickard, John; Berger, Ronald D; Zimmerman, Stefan L; Calkins, Hugh; Nazarian, Saman

    2017-03-01

    This study aims to examine the association of clinical co-morbidities with the presence of left atrial (LA) late gadolinium enhancement (LGE) on cardiac magnetic resonance (CMR). Previous studies have established the severity of LA LGE to be associated with atrial fibrillation (AF) recurrence following AF ablation. We sought to determine whether baseline clinical characteristics were associated with LGE extent among patients presenting for an initial AF ablation. The cohort consisted of 179 consecutive patients with no prior cardiac ablation procedures who underwent pre-procedure LGE-CMR. The extent of LA LGE for each patient was calculated using the image intensity ratio, normalized to the mean blood pool intensity, corresponding to a bipolar voltage ≤0.3 mV. The association of LGE extent with baseline clinical characteristics was examined using non-parametric and multivariable models. The mean age of the cohort was 60.9 ± 9.6 years and 128 (72%) were male. In total, 56 (31%) patients had persistent AF. The mean LA volume was 118.4 ± 41.6 mL, and the mean LA LGE extent was 14.1 ± 10.4%. There was no association with any clinical variables with LGE extent by quartiles in the multivariable model. Extent of LGE as a continuous variable was positively, but weakly associated with LA volume in a multivariable model adjusting for age, body mass index, AF persistence, and left ventricular ejection fraction (1.5% scar/mL, P = 0.038). In a cohort of patients presenting for initial AF ablation, the presence of pre-ablation LA LGE extent was weakly, but positively associated with increasing LA volume. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  1. Method of separating and purifying gadolinium-153

    DOEpatents

    Bray, Lane A [Richland, WA; Corneillie, Todd M [Davis, CA

    2001-01-01

    The present invention is an improvement to the method of separating and purifying gadolinium from a mixture of gadolinium and europium having the steps of (a) dissolving the mixture in an acid; (b) reducing europium+3 to europium+2; and (c) precipitating the europium+2 with a sulfate ion in a superstoichiometric amount; wherein the improvement is achieved by using one or more of the following: (i) the acid is an anoic acid; (ii) the reducing is with zinc metal in the absence of a second metal or with an amount of the second metal that is ineffective in the reducing; (iii) adding a group IIA element after step (c) for precipitating the excess sulfate prior to repeating step (c); (iv) the sulfate is a sulfate salt with a monovalent cation; (v) adding cold europium+3 prior to repeating step (c).

  2. Grading of inflammatory disease activity in the sacroiliac joints with magnetic resonance imaging: comparison between short-tau inversion recovery and gadolinium contrast-enhanced sequences.

    PubMed

    Madsen, Karen Berenth; Egund, Niels; Jurik, Anne Grethe

    2010-02-01

    We investigated the potential concordance of 2 different magnetic resonance (MR) sequences - short-tau inversion recovery (STIR) and fat-saturated T1-weighted spin-echo after application of gadolinium (Gd) contrast medium to detect active bone marrow abnormalities at the sacroiliac joints (SIJ) in patients with spondyloarthritis (SpA). Blinded and using the Danish scoring method, we evaluated transaxial MR images of the 2 sequences in 40 patients with SpA with disease duration of 3-14 years. Both the cartilaginous and ligamentous portions of the SIJ were analyzed. There was a significant positive correlation between the activity scores obtained by STIR and Gd-enhanced sequences (p < 0.0001). Agreement in the detection of bone marrow abnormalities occurred in 60 of the 80 joints, 35 with and 25 without signs of active disease. Discordance with STIR-positive marrow activity scores occurred in only 11 joints; Gd-enhanced positive scores in 9 joints. The STIR sequence detected remnants of marrow activity in the periphery of chronic fatty replacement not seen or partly obscured on the Gd sequence. Small subchondral enhancing lesions may not be scored on the STIR sequence, mostly because of reduced image resolution. Active bone marrow abnormalities were detected nearly equally well with STIR and Gd-enhanced fat-suppressed T1 sequences in patients with SpA, with STIR being most sensitive to visualize active abnormalities in the periphery of chronic changes.

  3. Low-Molecular-Weight Iron Chelates May Be an Alternative to Gadolinium-based Contrast Agents for T1-weighted Contrast-enhanced MR Imaging.

    PubMed

    Boehm-Sturm, Philipp; Haeckel, Akvile; Hauptmann, Ralf; Mueller, Susanne; Kuhl, Christiane K; Schellenberger, Eyk A

    2018-02-01

    Purpose To synthesize two low-molecular-weight iron chelates and compare their T1 contrast effects with those of a commercial gadolinium-based contrast agent for their applicability in dynamic contrast material-enhanced (DCE) magnetic resonance (MR) imaging. Materials and Methods The animal experiments were approved by the local ethics committee. Two previously described iron (Fe) chelates of pentetic acid (Fe-DTPA) and of trans-cyclohexane diamine tetraacetic acid (Fe-tCDTA) were synthesized with stability constants several orders of magnitude higher than those of gadolinium-based contrast agents. The T1 contrast effects of the two chelates were compared with those of gadopentetate dimeglumine in blood serum phantoms at 1.5 T, 3 T, and 7 T. For in vivo studies, a human breast cancer cell line (MDA-231) was implanted in five mice per group. The dynamic contrast effects of the chelates were compared by performing DCE MR imaging with intravenous application of Fe-DTPA or Fe-tCDTA on day 1 and DCE MR imaging in the same tumors with gadopentetate dimeglumine on day 2. Quantitative DCE maps were generated with software and were compared by means of a one-tailed Pearson correlation test. Results Relaxivities in serum (0.94 T at room temperature) of Fe-tCDTA (r1 = 2.2 mmol -1 · sec -1 , r2 = 2.5 mmol -1 · sec -1 ) and Fe-DTPA (r1 = 0.9 mmol -1 · sec -1 , r2 = 0.9 mmol -1 · sec -1 ) were approximately twofold and fivefold lower, respectively, compared with those of gadopentetate dimeglumine (r1 = 4.1 mmol -1 · sec -1 , r2 = 4.8 mmol -1 · sec -1 ). Used at moderately higher concentrations, however, iron chelates generated similar contrast effects at T1-weighted MR imaging in vitro in serum, in vivo in blood, and for DCE MR imaging of breast cancer xenografts. The volume transfer constant values for Fe-DTPA and Fe-tCDTA in the same tumors correlated well with those observed for gadopentetate dimeglumine (Fe-tCDTA Pearson R, 0.99; P = .0003; Fe-DTPA Pearson R, 0.97; P

  4. Gadolinium: Central Metal of the Lanthanoids

    ERIC Educational Resources Information Center

    Laing, Michael

    2009-01-01

    The physical and chemical properties of gadolinium are compared with those of the other lanthanoids. Some properties are intermediate between those of lanthanum and lutetium; some between those of barium and hafnium; and others (unexpectedly) between those of ytterbium and lutetium. Both the remarkably high molar heat capacity of the metal and the…

  5. Gadolinium Use in Spine Pain Management Procedures for Patients with Contrast Allergies: Results in 527 Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safriel, Yair; Ang, Roberto; Ali, Muhammed

    2008-03-15

    Introduction. To review the safety and efficacy of gadolinium in spine pain management procedures in patients at high risk for a contrast reaction and who are not suitable candidates for the use of standard non-ionic contrast. Methods. We reviewed records over a 61-month period of all image-guided spinal pain management procedures where patients had allergies making them unsuitable candidates for standard non-ionic contrast and where gadolinium was used to confirm needle tip placement prior to injection of medication. Results. Three hundred and four outpatients underwent 527 procedures. A spinal needle was used in all but 41 procedures. Gadolinium was visualizedmore » using portable C-arm fluoroscopy in vivo allowing for confirmation of needle tip location. The gadolinium dose ranged from 0.2 to 10 ml per level. The highest dose received by one patient was 15.83 ml intradiscally during a three-level discogram. Three hundred and one patients were discharged without complication or known delayed complications. One patient had documented intrathecal injection but without sequelae and 2 patients who underwent cervical procedures experienced seizures requiring admission to the intensive care unit. Both the latter patients were discharged without any further complications. Conclusion. Based on our experience we recommend using gadolinium judiciously for needle tip confirmation. We feel more confident using gadolinium in the lumbar spine and in cervical nerve blocks. Gadolinium should probably not be used as an injectate volume expander. The indications for gadolinium use in cervical needle-guided spine procedures are less clear and use of a blunt-tipped needle should be considered.« less

  6. Distinguishing liver haemangiomas from metastatic tumours using gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced diffusion-weighted imaging at 1.5T MRI.

    PubMed

    Saito, Kazuhiro; Yoshimura, Nobutaka; Shirota, Natsuhiko; Saguchi, Toru; Sugimoto, Katsutoshi; Tokuuye, Koichi

    2016-10-01

    The aim of this study to evaluate the effectiveness of enhanced diffusion-weighted imaging (DWI) for distinguishing liver haemangiomas from metastatic tumours (mets). This study included 23 patients with 27 haemangiomas and 26 patients with 46 mets. Breath-holding diffusion-weighted imaging (DWI) (b-values of 0, 50, 100, 150, 200, 400 and 800 s/mm 2 ) were obtained before and 20 min after injection of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA). Lesion contrast-to-noise ratios (CNRs) were calculated. The data were processed using the bi-exponential model of intravoxel incoherent motion (IVIM). Receiver operating characteristic analysis was performed to compare the diagnostic performance when distinguishing haemangioma from mets. The CNRs of haemangioma and mets at post-contrast enhancement increased. All IVIM parameters for liver haemangioma and mets showed no significant differences between pre- and post-contrast enhancement. The highest A z value of CNR and IVIM parameters occurred at a post-contrast b-value of 0 s/mm 2 and true diffusion (D). The highest qualitative evaluation occurred at a b-value of 800 s/mm 2 . The sensitivity and specificity, with a CNR of 100 or higher at a post-contrast b-value of 0 s/mm 2 and considered to be haemangioma, were 89% and 67% (<10 mm, 91%, 77%) respectively. The sensitivity and specificity, when D was higher than 1.4 × 10 -3 mm 2 /s, were 74% and 83% (<10 mm, 64%, 77%) respectively. The sensitivity and specificity of qualitative evaluation by enhanced DWI were 74% and 76% (<10 mm, 64%, 80%) respectively. The accuracy of the CNR was highest with b = 0; however, examination at high b-values had advantages in the qualitative evaluation of some small-size lesions. © 2016 The Royal Australian and New Zealand College of Radiologists.

  7. [Gadolinium-based contrast agents for magnetic resonance imaging].

    PubMed

    Carrasco Muñoz, S; Calles Blanco, C; Marcin, Javier; Fernández Álvarez, C; Lafuente Martínez, J

    2014-06-01

    Gadolinium-based contrast agents are increasingly being used in magnetic resonance imaging. These agents can improve the contrast in images and provide information about function and metabolism, increasing both sensitivity and specificity. We describe the gadolinium-based contrast agents that have been approved for clinical use, detailing their main characteristics based on their chemical structure, stability, and safety. In general terms, these compounds are safe. Nevertheless, adverse reactions, the possibility of nephrotoxicity from these compounds, and the possibility of developing nephrogenic systemic fibrosis will be covered in this article. Lastly, the article will discuss the current guidelines, recommendations, and contraindications for their clinical use, including the management of pregnant and breast-feeding patients. Copyright © 2014 SERAM. Published by Elsevier Espana. All rights reserved.

  8. Theoretical study of structure and stability of small gadolinium carboxylate complexes in liquid scintillator solvents.

    PubMed

    Huang, Pin-Wen

    2014-09-01

    The structural properties of three small gadolinium carboxylate complexes in three liquid scintillator solvents (pseudocumene, linear alkylbenzene, and phenyl xylylethane) were theoretically investigated using density functional theory (B3LYP/LC-RECP) and polarizable continuum model (PCM). The average interaction energy between gadolinium atom and carboxylate ligand (E(int)) and the energy difference of the highest singly occupied molecular orbital and lowest unoccupied molecular orbital (Δ(SL)) were calculated to evaluate and compare the relative stability of these complexes in solvents. The calculation results show that the larger (with a longer alkyl chain) gadolinium carboxylate complex has greater stability than the smaller one, while these gadolinium carboxylates in linear alkylbenzene were found to have greater stability than those in the other two solvents.

  9. Exploratory use of cardiovascular magnetic resonance imaging in liver transplantation: a one-stop shop for preoperative cardiohepatic evaluation.

    PubMed

    Reddy, Sahadev T; Thai, Ngoc L; Fakhri, Asghar A; Oliva, Jose; Tom, Kusum B; Dishart, Michael K; Doyle, Mark; Yamrozik, June A; Williams, Ronald B; Grant, Saundra B; Poydence, Jacqueline; Shah, Moneal; Singh, Anil; Nathan, Swami; Biederman, Robert W W

    2013-11-15

    Preoperative cardiovascular risk stratification in orthotopic liver transplantation candidates has proven challenging due to limitations of current noninvasive modalities. Additionally, the preoperative workup is logistically cumbersome and expensive given the need for separate cardiac, vascular, and abdominal imaging. We evaluated the feasibility of a "one-stop shop" in a magnetic resonance suite, performing assessment of cardiac structure, function, and viability, along with simultaneous evaluation of thoracoabdominal vasculature and liver anatomy. In this pilot study, patients underwent steady-state free precession sequences and stress cardiac magnetic resonance (CMR), thoracoabdominal magnetic resonance angiography, and abdominal magnetic resonance imaging (MRI) on a standard MRI scanner. Pharmacologic stress was performed using regadenoson, adenosine, or dobutamine. Viability was assessed using late gadolinium enhancement. Over 2 years, 51 of 77 liver transplant candidates (mean age, 56 years; 35% female; mean Model for End-stage Liver Disease score, 10.8; range, 6-40) underwent MRI. All referred patients completed standard dynamic CMR, 98% completed stress CMR, 82% completed late gadolinium enhancement for viability, 94% completed liver MRI, and 88% completed magnetic resonance angiography. The mean duration of the entire study was 72 min, and 45 patients were able to complete the entire examination. Among all 51 patients, 4 required follow-up coronary angiography (3 for evidence of ischemia on perfusion CMR and 1 for postoperative ischemia), and none had flow-limiting coronary disease. Nine proceeded to orthotopic liver transplantation (mean 74 days to transplantation after MRI). There were six ascertained mortalities in the nontransplant group and one death in the transplanted group. Explant pathology confirmed 100% detection/exclusion of hepatocellular carcinoma. No complications during CMR examination were encountered. In this proof-of-concept study, it

  10. Anti-EpCAM scFv gadolinium chelate: a novel targeted MRI contrast agent for imaging of colorectal cancer.

    PubMed

    Khantasup, Kannika; Saiviroonporn, Pairash; Jarussophon, Suwatchai; Chantima, Warangkana; Dharakul, Tararaj

    2018-05-08

    The development of targeted contrast agents for magnetic resonance imaging (MRI) facilitates enhanced cancer imaging and more accurate diagnosis. In the present study, a novel contrast agent was developed by conjugating anti-EpCAM humanized scFv with gadolinium chelate to achieve target specificity. The material design strategy involved site-specific conjugation of the chelating agent to scFv. The scFv monomer was linked to maleimide-DTPA via unpaired cysteine at the scFv C-terminus, followed by chelation with gadolinium (Gd). Successful scFv-DTPA conjugation was achieved at 1:10 molar ratio of scFv to maleimide-DTPA at pH 6.5. The developed anti-EpCAM-Gd-DTPA MRI contrast agent was evaluated for cell targeting ability, in vitro serum stability, cell cytotoxicity, relaxivity, and MR contrast enhancement. A high level of targeting efficacy of anti-EpCAM-Gd-DTPA to an EpCAM-overexpressing HT29 colorectal cell was demonstrated by confocal microscopy. Good stability of the contrast agent was obtained and no cytotoxicity was observed in HT29 cells after 48 h incubation with 25-100 µM of Gd. Favorable imaging was obtained using anti-EpCAM-Gd-DTPA, including 1.8-fold enhanced relaxivity compared with Gd-DTPA, and MR contrast enhancement observed after binding to HT29. The potential benefit of this contrast agent for in vivo MR imaging of colorectal cancer, as well as other EpCAM positive cancers, is suggested and warrants further investigation.

  11. Proton Relaxivity and Magnetic Hyperthermia Evaluation of Gadolinium Doped Nickel Ferrite Nanoparticles as Potential Theranostic Agents.

    PubMed

    Yadavalli, Tejabhiram; Raja, Paradeep; Ramaswamy, Shivaraman; Chandrasekharan, Gopalakrishnan; Chennakesavulu, Ramasamy

    2017-02-01

    This paper outlines the preparation of gadolinium doped nickel ferrite nanoparticles as potential magnetic carriers and longitudinal magnetic resonance imaging contrast agents using hydrothermal method with gadolinium concentration varying from 10% to 40%. A concise effect on the crystal structure was observed at 10% and 20% gadolinium doping, while gadolinium oxide was observed to leach at concentrations exceeding 20%. Further, gadolinium doped nickel ferrites were analyzed for their morphological, magnetic, proton relaxation and magnetic hyperthermia heating properties to understand their potential role as magnetic carrier agents. Low temperature and room temperature magnetic studies conducted on the samples showed comparatively high magnetic saturation with low remanent magnetization. Further, relaxometry studies revealed a high relaxation rate of 6.63 s−1 at a concentration of 0.1 mg/mL. Magnetic hyperthermia studies of the samples at a concentration of 1 mg/mL, assessed that the samples attained a temperature of 68 °C in 240 seconds.

  12. Delayed gadolinium-enhanced MRI of the fibrocartilage disc of the temporomandibular joint – a feasibility study

    PubMed Central

    Pittschieler, Elisabeth; Szomolanyi, Pavol; Schmid-Schwap, Martina; Weber, Michael; Egerbacher, Monika; Traxler, Hannes; Trattnig, Siegfried

    2014-01-01

    Objective To 1) test the feasibility of delayed Gadolinium-Enhanced Magnetic Resonance Imaging of Cartilage (dGEMRIC) at 3 T in the temporomandibular joint (TMJ) and 2) to determine the optimal delay for measurements of the TMJ disc after i.v. contrast agent (CA) administration. Design MRI of the right and left TMJ of six asymptomatic volunteers was performed at 3 T using a dedicated coil. 2D inversion recovery (2D-IR) sequences were performed at 4 time points covering 120 minutes and 3D gradient-echo (3D GRE) dual flip-angle sequences were performed at 14 time points covering 130 minutes after the administration of 0.2 mmol/kg of Gd-diethylenetriamine pentaacetic acid ion (Gd-DTPA)2-, i.e., 0.4 mL of Magnevist™ per kg body weight. Pair-wise tests were used to assess differences between pre-and post-contrast T1 values. Results 2D-IR sequences showed a statistically significant drop (p < 0.001) in T1 values after i.v. CA administration. The T1 drop of 50% was reached 60 minutes after bolus injection in the TMJ disc. The 3D GRE dual flip-angle sequences confirmed these results and show plateau of T1 after 60 minutes. Conclusions T1(Gd) maps calculated from dGEMRIC data allow in vivo assessment of the fibrocartilage disc of the TMJ. The recommended measurement time for dGEMRIC in the TMJ after i.v. CA administration is from 60 to 120 minutes. PMID:25131629

  13. 3D late gadolinium enhancement in a single prolonged breath-hold using supplemental oxygenation and hyperventilation.

    PubMed

    Roujol, Sébastien; Basha, Tamer A; Akçakaya, Mehmet; Foppa, Murilo; Chan, Raymond H; Kissinger, Kraig V; Goddu, Beth; Berg, Sophie; Manning, Warren J; Nezafat, Reza

    2014-09-01

    To evaluate the feasibility of three-dimensional (3D) single breath-hold late gadolinium enhancement (LGE) of the left ventricle (LV) using supplemental oxygen and hyperventilation and compressed-sensing acceleration. Breath-hold metrics [breath-hold duration, diaphragmatic/LV position drift, and maximum variation of R wave to R wave (RR) interval] without and with supplemental oxygen and hyperventilation were assessed in healthy adult subjects using a real-time single shot acquisition. Ten healthy subjects and 13 patients then underwent assessment of the proposed 3D breath-hold LGE acquisition (field of view = 320 × 320 × 100 mm(3) , resolution = 1.6 × 1.6 × 5.0 mm(3) , acceleration rate of 4) and a free-breathing acquisition with right hemidiaphragm navigator (NAV) respiratory gating. Semiquantitative grading of overall image quality, motion artifact, myocardial nulling, and diagnostic value was performed by consensus of two blinded observers. Supplemental oxygenation and hyperventilation increased the breath-hold duration (35 ± 11 s to 58 ± 21 s; P < 0.0125) without significant impact on diaphragmatic/LV position drift or maximum variation of RR interval (both P > 0.01). LGE images were of similar quality when compared with free-breathing acquisitions, but with reduced total scan time (85 ± 22 s to 35 ± 6 s; P < 0.001). Supplemental oxygenation and hyperventilation allow for prolonged breath-holding and enable single breath-hold 3D accelerated LGE with similar image quality as free breathing with NAV. Copyright © 2013 Wiley Periodicals, Inc.

  14. Evaluating the potential of chelation therapy to prevent and treat gadolinium deposition from MRI contrast agents

    DOE PAGES

    Rees, Julian A.; Deblonde, Gauthier J. -P.; An, Dahlia D.; ...

    2018-03-13

    Several MRI contrast agent clinical formulations are now known to leave deposits of the heavy metal gadolinium in the brain, bones, and other organs of patients. This persistent biological accumulation of gadolinium has been recently recognized as a deleterious outcome in patients administered Gd-based contrast agents (GBCAs) for MRI, prompting the European Medicines Agency to recommend discontinuing the use of over half of the GBCAs currently approved for clinical applications. Here, to address this problem, we find that the orally-available metal decorporation agent 3,4,3-LI(1,2-HOPO) demonstrates superior efficacy at chelating and removing Gd from the body compared to diethylenetriaminepentaacetic acid, amore » ligand commonly used in the United States in the GBCA Gadopentetate (Magnevist). Using the radiotracer 153Gd to obtain precise biodistribution data, the results herein, supported by speciation simulations, suggest that the prophylactic or post-hoc therapeutic use of 3,4,3-LI(1,2-HOPO) may provide a means to mitigate Gd retention in patients requiring contrast-enhanced MRI.« less

  15. Evaluating the potential of chelation therapy to prevent and treat gadolinium deposition from MRI contrast agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rees, Julian A.; Deblonde, Gauthier J. -P.; An, Dahlia D.

    Several MRI contrast agent clinical formulations are now known to leave deposits of the heavy metal gadolinium in the brain, bones, and other organs of patients. This persistent biological accumulation of gadolinium has been recently recognized as a deleterious outcome in patients administered Gd-based contrast agents (GBCAs) for MRI, prompting the European Medicines Agency to recommend discontinuing the use of over half of the GBCAs currently approved for clinical applications. Here, to address this problem, we find that the orally-available metal decorporation agent 3,4,3-LI(1,2-HOPO) demonstrates superior efficacy at chelating and removing Gd from the body compared to diethylenetriaminepentaacetic acid, amore » ligand commonly used in the United States in the GBCA Gadopentetate (Magnevist). Using the radiotracer 153Gd to obtain precise biodistribution data, the results herein, supported by speciation simulations, suggest that the prophylactic or post-hoc therapeutic use of 3,4,3-LI(1,2-HOPO) may provide a means to mitigate Gd retention in patients requiring contrast-enhanced MRI.« less

  16. Removal of gadolinium, a neutron poison from the moderator system of nuclear reactors.

    PubMed

    Rufus, A L; Kumar, Padma S; Jeena, K; Velmurugan, S

    2018-01-15

    Gadolinium as gadolinium nitrate is used as neutron poison in the moderator system for regulating and controlling the power generation of Pressurized Heavy Water Reactors (PHWR) and proposed to be used in Advanced Heavy Water Reactors (AHWR) owing to its high neutron absorption cross section. Removal of the added gadolinium nitrate (Gd 3+ and NO 3 - ) from the system after its intended use is done using ion exchange resins. In the present investigation, attempts have been made to optimize the ion exchange process for generation of low radioactive waste and maximize utilization of the ion exchange resins by employing different types of resins and different modes of operation. The investigations revealed that use of mixed bed (MB) resin column consisting of Strong Acid Cation (SAC) resin and Strong Base Anion (SBA) resin followed by SAC resin column is efficient in removing the Gd 3+ and NO 3 - from the system besides maintaining the pH of the moderator system in the desirable regime, where gadolinium does not get precipitated as its hydroxide. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. High Relaxivity Gadolinium Hydroxypyridonate-Viral Capsid Conjugates: Nano-sized MRI Contrast Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meux, Susan C.; Datta, Ankona; Hooker, Jacob M.

    2007-08-29

    High relaxivity macromolecular contrast agents based on the conjugation of gadolinium chelates to the interior and exterior surfaces of MS2 viral capsids are assessed. The proton nuclear magnetic relaxation dispersion (NMRD) profiles of the conjugates show up to a five-fold increase in relaxivity, leading to a peak relaxivity (per Gd{sup 3+} ion) of 41.6 mM{sup -1}s{sup -1} at 30 MHz for the internally modified capsids. Modification of the exterior was achieved through conjugation to flexible lysines, while internal modification was accomplished by conjugation to relatively rigid tyrosines. Higher relaxivities were obtained for the internally modified capsids, showing that (1) theremore » is facile diffusion of water to the interior of capsids and (2) the rigidity of the linker attaching the complex to the macromolecule is important for obtaining high relaxivity enhancements. The viral capsid conjugated gadolinium hydroxypyridonate complexes appear to possess two inner-sphere water molecules (q = 2) and the NMRD fittings highlight the differences in the local motion for the internal ({tau}{sub RI} = 440 ps) and external ({tau}{sub RI} = 310 ps) conjugates. These results indicate that there are significant advantages of using the internal surface of the capsids for contrast agent attachment, leaving the exterior surface available for the installation of tissue targeting groups.« less

  18. Gadolinium Scandium Gallium Garnet (GSGG) as a Solid-State Laser Host

    DTIC Science & Technology

    1987-07-01

    o*SATI CODSi1.SBEC EM (otne nrvrs fnceayad dniy nb)k ubr ~~~~~~~~ Gadolinium Scandium Gallium Garnet (GSGG)asaSldtteLerHt 17. ABSTRACT 6.SUJCTTEM...certain other garnet materials for replacement. It also addresses the solid-state laser host material Gadolinium Scandium Gal- lium Garnet (GSGG) and its...by neodymium-doped yttrium aluminum garnet (Nd:YAG) or other mate- rials for most applications. In the years after the invention of the ruby laser, in

  19. Diagnostic accuracy for macroscopic classification of nodular hepatocellular carcinoma: comparison of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging and angiography-assisted computed tomography.

    PubMed

    Tada, Toshifumi; Kumada, Takashi; Toyoda, Hidenori; Ito, Takanori; Sone, Yasuhiro; Okuda, Seiji; Ogawa, Sadanobu; Igura, Takumi; Imai, Yasuharu

    2015-01-01

    The macroscopic type of hepatocellular carcinoma (HCC) is a predictor of prognosis. We clarified the diagnostic value of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) in the macroscopic classification of nodular hepatocellular carcinoma (HCC) as compared to angiography-assisted computed tomography (CT). A total of 71 surgically resected nodular HCCs with a maximum diameter of ≤5 cm were investigated. HCCs were evaluated preoperatively using Gd-EOB-DTPA-enhanced MRI and angiography-assisted CT. HCCs were pathologically classified as simple nodular (SN), SN with extranodular growth (SN-EG), or confluent multinodular (CMN). SN-EG and CMN were grouped as non-SN. Five readers independently reviewed the images using a five-point scale. We examined the accuracy of both imaging modalities in differentiating between SN and non-SN HCC. Overall, the area under the receiver operating characteristic curve (A z ) for the diagnosis of non-SN did not differ between Gd-EOB-DTPA-enhanced MRI and angiography-assisted CT [0.879 (95% confidence interval (CI), 0.779-0.937) and 0.845 (95% CI, 0.723-0.919), respectively]. For HCCs >2 cm, the A z for Gd-EOB-DTPA-enhanced MRI was greater than 0.9. The sensitivity, specificity, and accuracy of Gd-EOB-DTPA-enhanced MRI for identifying non-SN were equal to or higher than values with angiography-assisted CT in all three categories (all tumors, ≤2 cm, and >2 cm), but the differences were not statistically significant. Using Gd-EOB-DTPA-enhanced MRI to assess the macroscopic findings in nodular HCC was equal or superior to using angiography-assisted CT.

  20. Cardiovascular magnetic resonance in the evaluation of hypertrophic and infiltrative cardiomyopathies.

    PubMed

    O'Hanlon, Rory; Pennell, Dudley J

    2009-07-01

    There is often considerable phenotypic overlap in hypertrophic and infiltrative cardiomyopathies. This overlap creates difficulties, when using routine imaging modalities, in arriving at a conclusive diagnosis. Cardiovascular magnetic resonance (CMR) can make diagnosis easier and more certain. Used with gadolinium contrast agent for tissue characterization, CMR offers a superior field of view and temporal resolution, enabling clinicians to make more confident assessments of etiology. CMR may also be a useful modality for stratifying risk and monitoring treatment responses over time in patients with hypertrophic or infiltrative cardiomyopathies. This article highlights the role of CMR in the assessment and, if relevant, the risk stratification of hypertrophic and infiltrative cardiomyopathies.

  1. Usefulness of combining gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging and contrast-enhanced ultrasound for diagnosing the macroscopic classification of small hepatocellular carcinoma.

    PubMed

    Kobayashi, Tomoki; Aikata, Hiroshi; Hatooka, Masahiro; Morio, Kei; Morio, Reona; Kan, Hiromi; Fujino, Hatsue; Fukuhara, Takayuki; Masaki, Keiichi; Ohno, Atsushi; Naeshiro, Noriaki; Nakahara, Takashi; Honda, Yohji; Murakami, Eisuke; Kawaoka, Tomokazu; Tsuge, Masataka; Hiramatsu, Akira; Imamura, Michio; Kawakami, Yoshiiku; Hyogo, Hideyuki; Takahashi, Shoichi; Chayama, Kazuaki

    2015-11-01

    Non-simple nodules in hepatocellular carcinoma (HCC) correlate with poor prognosis. Therefore, we examined the diagnostic ability of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging (EOB-MRI) and contrast-enhanced ultrasound (CEUS) for diagnosing the macroscopic classification of small HCCs. A total of 85 surgically resected nodules (≤30 mm) were analyzed. HCCs were pathologically classified as simple nodular (SN) and non-SN. By evaluating hepatobiliary phase (HBP) of EOB-MRI and Kupffer phase of CEUS, the diagnostic abilities of both modalities to correctly distinguish between SN and non-SN were compared. Forty-six nodules were diagnosed as SN and the remaining 39 nodules as non-SN. The area under the ROC curve (AUROCs, 95% confidence interval) for the diagnosis of non-SN were EOB-MRI, 0.786 (0.682-0.890): CEUS, 0.784 (0.679-0.889), in combination, 0.876 (0.792-0.959). The sensitivity, specificity, and accuracy were 64.1%, 95.7%, and 81.2% in EOB-MRI, 56.4%, 97.8%, and 78.8% in CEUS, and 84.6%, 95.7%, and 90.6% in combination, respectively. High diagnostic ability was obtained when diagnosed in both modalities combined. The sensitivity was especially statistically significant compared to CEUS. Combined diagnosis by EOB-MRI and CEUS can provide high-quality imaging assessment for determining non-SN in small HCCs. • Non-SN has a higher frequency of MVI and intrahepatic metastasis than SN. • Macroscopic classification is useful to choose the treatment strategy for small HCCs. • Diagnostic ability for macroscopic findings of EOB-MRI and CEUS were statistically equal. • The diagnosis of macroscopic findings by individual modality has limitations. • Combined diagnosis of EOB-MRI and CEUS provides high diagnostic ability.

  2. Retention of Gadolinium-Based Contrast Agents in Multiple Sclerosis: Retrospective Analysis of an 18-Year Longitudinal Study.

    PubMed

    Forslin, Y; Shams, S; Hashim, F; Aspelin, P; Bergendal, G; Martola, J; Fredrikson, S; Kristoffersen-Wiberg, M; Granberg, T

    2017-07-01

    Gadolinium-based contrast agents have been associated with lasting high T1-weighted signal intensity in the dentate nucleus and globus pallidus, with histopathologically confirmed gadolinium retention. We aimed to longitudinally investigate the relationship of multiple gadolinium-based contrast agent administrations to the Signal Intensity Index in the dentate nucleus and globus pallidus and any associations with cognitive function in multiple sclerosis. The Signal Intensity Index in the dentate nucleus and globus pallidus was retrospectively evaluated on T1-weighted MR imaging in an 18-year longitudinal cohort study of 23 patients with MS receiving multiple gadolinium-based contrast agent administrations and 23 healthy age- and sex-matched controls. Participants also underwent comprehensive neuropsychological testing. Patients with MS had a higher Signal Intensity Index in the dentate nucleus ( P < .001), but not in the globus pallidus ( P = .19), compared with non-gadolinium-based contrast agent-exposed healthy controls by an unpaired t test. Increasing numbers of gadolinium-based contrast agent administrations were associated with an increased Signal Intensity Index in the dentate nucleus (β = 0.45, P < .001) and globus pallidus (β = 0.60, P < .001). This association remained stable with corrections for the age, disease duration, and physical disability for both the dentate nucleus (β = 0.43, P = .001) and globus pallidus (β = 0.58, P < .001). An increased Signal Intensity Index in the dentate nucleus among patients with MS was associated with lower verbal fluency scores, which remained significant after correction for several aspects of disease severity (β = -0.40 P = .013). Our data corroborate previous reports of lasting gadolinium retention in brain tissues. An increased Signal Intensity Index in the dentate nucleus and globus pallidus was associated with lower verbal fluency, which does not prove causality but encourages further studies on cognition

  3. Contribution of cardiovascular magnetic resonance in the evaluation of coronary arteries

    PubMed Central

    Mavrogeni, Sophie; Markousis-Mavrogenis, George; Kolovou, Genovefa

    2014-01-01

    Cardiovascular magnetic resonance (CMR) allows the nonradiating assessment of coronary arteries; to achieve better image quality cardiorespiratory artefacts should be corrected. Coronary MRA (CMRA) at the moment is indicated only for the detection of abnormal coronary origin, coronary artery ectasia and/or aneurysms (class I indication) and coronary bypass grafts (class II indication). CMRA utilisation for coronary artery disease is not yet part of clinical routine. However, the lack of radiation is of special value for the coronary artery evaluation in children and women. CMRA can assess the proximal part of coronary arteries in almost all cases. The best results have been observed in the evaluation of the left anterior descending and the right coronary artery, while the left circumflex, which is located far away from the coil elements, is frequently imaged with reduced quality, compared to the other two. Different studies detected an increase in wall thickness of the coronaries in patients with type I diabetes and abnormal renal function. Additionally, the non-contrast enhanced T1-weighed images detected the presence of thrombus in acute myocardial infarction. New techniques using delayed gadolinium enhanced imaging promise the direct visualization of inflamed plaques in the coronary arteries. The major advantage of CMR is the potential of an integrated protocol offering assessment of coronary artery anatomy, cardiac function, inflammation and stress perfusion-fibrosis in the same study, providing an individualized clinical profile of patients with heart disease. PMID:25349650

  4. [Combined use of contrast media containing iodine and gadolinium for imaging and intervention : A hitherto widely ignored topic in radiological practice].

    PubMed

    Golder, W

    2012-02-01

    The synchronous use of chemically different contrast media in the same body compartment is a challenge for the radiologist, whether it is scheduled or unexpected. However, to inject contrast media containing iodine and gadolinium at the same time can be a prerequisite for the examination of several organs or organ systems. Unlike other topics of contrast-enhanced imaging procedures, the difficulties encountered with double contrast injections have been widely ignored in the literature. In the absence of reliable data from experimental and clinical studies the radiologist is dependent on case reports, information provided by the contrast media manufacturers, personal communications, mostly scanty personal experiences and a skilful time management, in order to overcome the situation. Only the combination of X-ray, computed tomography and magnetic resonance arthrography can be performed without another thought. However, the more or less synchronous vascular application of contrast media containing iodine and gadolinium requires vigilance. The more seriously ill the patient is, the more caution is advised even if the decision on the combined administration has to be reached urgently. The following overview gives a description of the properties of contrast media containing iodine and gadolinium as far as interactions following simultaneous administration are concerned. Subsequently, the clinically relevant situations and constellations are outlined and analyzed.

  5. Polydisulfide Manganese(II) Complexes as Non-Gadolinium Biodegradable Macromolecular MRI Contrast Agents

    PubMed Central

    Ye, Zhen; Jeong, Eun-Kee; Wu, Xueming; Tan, Mingqian; Yin, Shouyu; Lu, Zheng-Rong

    2011-01-01

    Purpose To develop safe and effective manganese(II) based biodegradable macromolecular MRI contrast agents. Materials and Methods In this study, we synthesized and characterized two polydisulfide manganese(II) complexes, Mn-DTPA cystamine copolymers and Mn-EDTA cystamine copolymers, as new biodegradable macromolecular MRI contrast agents. The contrast enhancement of the two manganese based contrast agents were evaluated in mice bearing MDA-MB-231 human breast carcinoma xenografts, in comparison with MnCl2. Results The T1 and T2 relaxivities were 4.74 and 10.38 mM−1s−1 per manganese at 3T for Mn-DTPA cystamine copolymers (Mn=30.50 kDa) and 6.41 and 9.72 mM−1s−1 for Mn-EDTA cystamine copolymers (Mn= 61.80 kDa). Both polydisulfide Mn(II) complexes showed significant liver, myocardium and tumor enhancement. Conclusion The manganese based polydisulfide contrast agents have a potential to be developed as alternative non-gadolinium contrast agents for MR cancer and myocardium imaging. PMID:22031457

  6. Fabrication and in vitro characterization of gadolinium-based nanoclusters for simultaneous drug delivery and radiation enhancement

    NASA Astrophysics Data System (ADS)

    Yoo, Shannon S.; Guo, Linghong; Sun, Xuejun; Shaw, Andrew R.; Yuan, Zhipeng; Löbenberg, Raimar; Roa, Wilson H.

    2016-09-01

    We report the synthesis of a gadolinium hydroxide (Gd(OH)3) nanorod based doxorubicin (Dox) delivery system that can enhance both magnetic resonance imaging contrast and radiation sensitivity. A simple and cost effective wet-chemical method was utilized in the presence of manganese (Mn) ions and Dox to produce the Gd(OH)3:Mn·Dox nanocluster structure. The Gd(OH)3:Mn·Dox nanocluster was composed of Mn-doped Gd(OH)3 nanorods arranged in parallel with Dox as a linker molecule between the adjacent nanorods. No other studies have utilized Dox as both the linker and therapeutic molecule in a nanostructure to date. The Gd(OH)3 nanorod is reported to have no significant cellular or in vivo toxicity, which makes it an ideal base material for this biomedical application. The Gd(OH)3:Mn·Dox nanocluster exhibited paramagnetic behavior and was stable in a colloidal solution. The nanocluster also enabled high Dox loading capacity and specifically released Dox in a sustained and pH-dependent manner. The positively charged Gd(OH)3:Mn·Dox nanoclusters were readily internalized into MDA-MB-231 breast cancer cells via endocytosis, which resulted in intracellular release of Dox. The released Dox in cells was effective in conferring cytotoxicity and inhibiting proliferation of cancer cells. Furthermore, a synergistic anticancer effect could be observed with radiation treatment. Overall, the Gd(OH)3:Mn·Dox nanocluster drug delivery system described herein may have potential utility in clinics as a multifunctional theranostic nanoparticle with combined benefits in both diagnosis and therapy in the management of cancer.

  7. Pediatric Patients Demonstrate Progressive T1-Weighted Hyperintensity in the Dentate Nucleus following Multiple Doses of Gadolinium-Based Contrast Agent.

    PubMed

    Roberts, D R; Chatterjee, A R; Yazdani, M; Marebwa, B; Brown, T; Collins, H; Bolles, G; Jenrette, J M; Nietert, P J; Zhu, X

    2016-12-01

    While there have been recent reports of brain retention of gadolinium following gadolinium-based contrast agent administration in adults, a retrospective series of pediatric patients has not previously been reported, to our knowledge. We investigated the relationship between the number of prior gadolinium-based contrast agent doses and increasing T1 signal in the dentate nucleus on unenhanced T1-weighted MR imaging. We hypothesized that despite differences in pediatric physiology and the smaller gadolinium-based contrast agent doses that pediatric patients are typically administered based on weighted-adjusted dosing, the pediatric brain would also demonstrate dose-dependent increasing T1 signal in the dentate nucleus. We included children with multiple gadolinium-based contrast agent administrations at our institution. A blinded reader placed ROIs within the dentate nucleus and adjacent cerebellar white matter. To eliminate reader bias, we also performed automated ROI delineation of the dentate nucleus, cerebellar white matter, and pons. Dentate-to-cerebellar white matter and dentate-to pons ratios were compared with the number of gadolinium-based contrast agent administrations. During 20 years at our institution, 280 patients received at least 5 gadolinium-based contrast agent doses, with 1 patient receiving 38 doses. Sixteen patients met the inclusion/exclusion criteria for ROI analysis. Blinded reader dentate-to-cerebellar white matter ratios were significantly associated with gadolinium-based contrast agent doses (r s = 0.77, P = .001). The dentate-to-pons ratio and dentate-to-cerebellar white matter ratios based on automated ROI placement were also significantly correlated with gadolinium-based contrast agent doses (t = 4.98, P < .0001 and t = 2.73, P < .02, respectively). In pediatric patients, the number of prior gadolinium-based contrast agent doses is significantly correlated with progressive T1-weighted dentate hyperintensity. Definitive confirmation of

  8. The High Radiosensitizing Efficiency of a Trace of Gadolinium-Based Nanoparticles in Tumors

    NASA Astrophysics Data System (ADS)

    Dufort, Sandrine; Le Duc, Géraldine; Salomé, Murielle; Bentivegna, Valerie; Sancey, Lucie; Bräuer-Krisch, Elke; Requardt, Herwig; Lux, François; Coll, Jean-Luc; Perriat, Pascal; Roux, Stéphane; Tillement, Olivier

    2016-07-01

    We recently developed the synthesis of ultrasmall gadolinium-based nanoparticles (GBN), (hydrodynamic diameter <5 nm) characterized by a safe behavior after intravenous injection (renal clearance, preferential accumulation in tumors). Owing to the presence of gadolinium ions, GBN can be used as contrast agents for magnetic resonance imaging (MRI) and as radiosensitizers. The attempt to determine the most opportune delay between the intravenous injection of GBN and the irradiation showed that a very low content of radiosensitizing nanoparticles in the tumor area is sufficient (0.1 μg/g of particles, i.e. 15 ppb of gadolinium) for an important increase of the therapeutic effect of irradiation. Such a promising and unexpected result is assigned to a suited distribution of GBN within the tumor, as revealed by the X-ray fluorescence (XRF) maps.

  9. Prognostic Value of Late Gadolinium Enhancement CMR in Systemic Amyloidosis.

    PubMed

    Raina, Sameer; Lensing, Shelly Y; Nairooz, Ramez S; Pothineni, Naga Venkata K; Hakeem, Abdul; Bhatti, Sabha; Pandey, Tarun

    2016-11-01

    The aim of this study was to access the prognostic implication of late gadolinium enhancement (LGE) in patients with systemic amyloidosis undergoing cardiac magnetic resonance (CMR). Cardiac amyloidosis confers significantly worse prognosis in patients with systemic amyloidosis. CMR imaging has emerged as an attractive noninvasive modality to diagnose cardiac involvement in patients with systemic amyloidosis. We performed a systemic review and meta-analysis to evaluate the prognostic role of LGE-CMR imaging in patients with systemic amyloidosis. Electronic databases MEDLINE, PubMed, Embase, and Cochrane were systematically searched to identify studies evaluating the association between LGE-CMR and prognosis in systemic amyloidosis with cardiac involvement. The present study was designed to systematically review and assess the association between LGE and the primary endpoint of all-cause mortality. A random effects model was used to calculate a pooled odds ratio using inverse-variance weighting. Data were included from 7 studies with a total of 425 patients and a mean follow-up of 25 months. Patients had a weighted average age of 64 years and left ventricular ejection fraction of 59.2%; 67% were male. Endomyocardial biopsy was positive for amyloidosis in 20%, whereas LGE was present in 73% of patients. LGE-positive patients had increased overall mortality compared with those without LGE (pooled odds ratio: 4.96; 95% confidence interval [CI]: 1.90 to 12.93; p = 0.001). For the LGE group, the pooled death rate was 0.07 (95% CI: 0.03 to 0.19) events per year and for the LGE+ group, the rate was 0.25 (95% CI: 0.16 to 0.39 per year; p = 0.001). The proportion of patients with cardiac biopsy within each study ranged from 3% to 68%, and the relationship between LGE status and death did not vary according to cardiac biopsy proportion across studies. LGE on CMR in patients with systemic amyloidosis with known or suspected cardiac amyloidosis is associated with increased

  10. In vitro radiosensitizing effects of ultrasmall gadolinium based particles on tumour cells.

    PubMed

    Mowat, P; Mignot, A; Rima, W; Lux, F; Tillement, O; Roulin, C; Dutreix, M; Bechet, D; Huger, S; Humbert, L; Barberi-Heyob, M; Aloy, M T; Armandy, E; Rodriguez-Lafrasse, C; Le Duc, G; Roux, S; Perriat, P

    2011-09-01

    Since radiotherapy is widely used in cancer treatment, it is essential to develop strategies which lower the irradiation burden while increasing efficacy and become efficient even in radio resistant tumors. Our new strategy is relying on the development of solid hybrid nanoparticles based on rare-earth such as gadolinium. In this paper, we then evidenced that gadolinium-based particles can be designed to enter efficiently into the human glioblastoma cell line U87 in quantities that can be tuned by modifying the incubation conditions. These sub-5 nm particles consist in a core of gadolinium oxide, a shell of polysiloxane and are functionalized by diethylenetriaminepentaacetic acid (DTPA). Although photoelectric effect is maximal in the [10-100 keV] range, such particles were found to possess efficient in-vitro radiosensitizing properties at an energy of 660 keV by using the "single-cell gel electrophoresis comet assay," an assay that measures the number of DNA damage that occurs during irradiation. Even more interesting, the particles have been evidenced by MTT assays to be also efficient radiosensitizers at an energy of 6 MeV for doses comprised between 2 and 8 Gy. The properties of the gadolinium-based particles give promising opening to a particle-assisted radio-therapy by using irradiation systems already installed in the majority of hospitals.

  11. Multifunctional Gadolinium-Doped Mesoporous TiO2 Nanobeads: Photoluminescence, Enhanced Spin Relaxation, and Reactive Oxygen Species Photogeneration, Beneficial for Cancer Diagnosis and Treatment.

    PubMed

    Imani, Roghayeh; Dillert, Ralf; Bahnemann, Detlef W; Pazoki, Meysam; Apih, Tomaž; Kononenko, Veno; Repar, Neža; Kralj-Iglič, Veronika; Boschloo, Gerrit; Drobne, Damjana; Edvinsson, Tomas; Iglič, Aleš

    2017-05-01

    Materials with controllable multifunctional abilities for optical imaging (OI) and magnetic resonant imaging (MRI) that also can be used in photodynamic therapy are very interesting for future applications. Mesoporous TiO 2 sub-micrometer particles are doped with gadolinium to improve photoluminescence functionality and spin relaxation for MRI, with the added benefit of enhanced generation of reactive oxygen species (ROS). The Gd-doped TiO 2 exhibits red emission at 637 nm that is beneficial for OI and significantly improves MRI relaxation times, with a beneficial decrease in spin-lattice and spin-spin relaxation times. Density functional theory calculations show that Gd 3+ ions introduce impurity energy levels inside the bandgap of anatase TiO 2 , and also create dipoles that are beneficial for charge separation and decreased electron-hole recombination in the doped lattice. The Gd-doped TiO 2 nanobeads (NBs) show enhanced ability for ROS monitored via • OH radical photogeneration, in comparison with undoped TiO 2 nanobeads and TiO 2 P25, for Gd-doping up to 10%. Cellular internalization and biocompatibility of TiO 2 @xGd NBs are tested in vitro on MG-63 human osteosarcoma cells, showing full biocompatibility. After photoactivation of the particles, anticancer trace by means of ROS photogeneration is observed just after 3 min irradiation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Gadolinium-hydrogen ion exchange of zirconium phosphate

    NASA Technical Reports Server (NTRS)

    Liu, D. C.; Power, J. L.

    1972-01-01

    The Gd(+3)/H(+) ion exchange on a commercial zirconium phosphate ion exchanger was investigated in chloride, sulfate, and phosphate solutions of Gd(+3) at gadolinium concentrations of 0.001 to 1 millimole per cc and in the pH range of 0 to 3.5. Relatively low Gd(+3) capacities, in the range of 0.01 to 0.1 millimole per g of ion exchanger were found at room temperature. A significant difference in Gd(+3) sorption was observed, depending on whether the ion exchanger was converted from initial conditions of greater or lesser Gd(+3) sorption than the specific final conditions. Correlations were found between decrease in Gd(+3) capacity and loss of exchanger phosphate groups due to hydrolysis during washing and between increase in capacity and treatment with H3PO4. Fitting of the experimental data to ideal ion exchange equilibrium expressions indicated that each Gd(+3) ion is sorbed on only one site of the ion exchanger. The selectivity quotient was determined to be 2.5 + or - 0.4 at room temperature on gadolinium desorption in chloride solutions.

  13. Gadolinium-loaded Plastic Scintillators for Thermal Neutron Detection using Compensation

    NASA Astrophysics Data System (ADS)

    Dumazert, Jonathan; Coulon, Romain; Hamel, Matthieu; Carrel, Frédérick; Sguerra, Fabien; Normand, Stéphane; Méchin, Laurence; Bertrand, Guillaume H. V.

    2016-06-01

    Plastic scintillator loading with gadolinium-rich organometallic complexes shows a high potential for the deployment of efficient and cost-effective neutron detectors. Due to the low-energy photon and electron signature of thermal neutron capture by Gd-155 and Gd-157, alternative treatment to pulse-shape discrimination has to be proposed in order to display a count rate. This paper discloses the principle of a compensation method applied to a two-scintillator system: a detection scintillator interacts with photon and fast neutron radiation and is loaded with gadolinium organometallic compound to become a thermal neutron absorber, while a not-gadolinium loaded compensation scintillator solely interacts with the fast neutron and photon part of incident radiation. After the nonlinear smoothing of the counting signals, a hypothesis test determines whether the resulting count rate post-background response compensation falls into statistical fluctuations or provides a robust indication of neutron activity. Laboratory samples are tested under both photon and neutron irradiations, allowing the authors to investigate the performance of the overall detection system in terms of sensitivity and detection limits, especially with regards to a similar-active volume He-3 based commercial counter. The study reveals satisfactory figures of merit in terms of sensitivity and directs future investigation toward promising paths.

  14. Cardiovascular reactivity, stress, and physical activity

    PubMed Central

    Huang, Chun-Jung; Webb, Heather E.; Zourdos, Michael C.; Acevedo, Edmund O.

    2013-01-01

    Psychological stress has been proposed as a major contributor to the progression of cardiovascular disease (CVD). Acute mental stress can activate the sympathetic-adrenal-medullary (SAM) axis, eliciting the release of catecholamines (NE and EPI) resulting in the elevation of heart rate (HR) and blood pressure (BP). Combined stress (psychological and physical) can exacerbate these cardiovascular responses, which may partially contribute to the elevated risk of CVD and increased proportionate mortality risks experienced by some occupations (e.g., firefighting and law enforcement). Studies have supported the benefits of physical activity on physiological and psychological health, including the cardiovascular response to acute stress. Aerobically trained individuals exhibit lower sympathetic nervous system (e.g., HR) reactivity and enhanced cardiovascular efficiency (e.g., lower vascular reactivity and decreased recovery time) in response to physical and/or psychological stress. In addition, resistance training has been demonstrated to attenuate cardiovascular responses and improve mental health. This review will examine stress-induced cardiovascular reactivity and plausible explanations for how exercise training and physical fitness (aerobic and resistance exercise) can attenuate cardiovascular responses to stress. This enhanced functionality may facilitate a reduction in the incidence of stroke and myocardial infarction. Finally, this review will also address the interaction of obesity and physical activity on cardiovascular reactivity and CVD. PMID:24223557

  15. Delayed emergence of methamphetamine's enhanced cardiovascular effects in nonhuman primates during protracted methamphetamine abstinence.

    PubMed

    Vaupel, D B; Schindler, C W; Chefer, S; Belcher, A M; Ahmet, I; Scheidweiler, K B; Huestis, M A; Stein, E A

    2016-02-01

    Methamphetamine abuse is linked with brain abnormalities, but its peripheral effects constitute an integral aspect of long-term methamphetamine use. Eight male rhesus monkeys with long histories of intravenous methamphetamine self-administration were evaluated 1 day, and 1, 4, 12, 26, and 52 weeks after their last methamphetamine self-administration session. On test days, isoflurane-anesthetized animals received a 0.35 mg/kg IV methamphetamine challenge. A control group consisted of 10 age and gender matched drug naïve monkeys. Cardiovascular responses to methamphetamine were followed for 2.5h. Echocardiograms were acquired at 3 and 12 months of abstinence and in the control animals. No pre-methamphetamine baseline differences existed among 7 physiological measures across all conditions and controls. As expected, methamphetamine increased heart rate and blood pressure in controls. However, immediately following the self-administration period, the blood pressure response to methamphetamine challenge was reduced when compared to control monkeys. The peak and 150-min average heart rate increases, as well as peak blood pressure increases following methamphetamine were significantly elevated between weeks 12 to 26 of abstinence. These data indicate the development of tolerance followed by sensitization to methamphetamine cardiovascular effects. Echocardiography demonstrated decreased left ventricular ejection fraction and cardiac output at 3 months of abstinence. Importantly, both cardiovascular sensitization and cardiotoxicity appeared to be reversible as they returned toward control group levels after 1 year of abstinence. Enhanced cardiovascular effects may occur after prolonged abstinence in addicts relapsing to methamphetamine and may underlie clinically reported acute cardiotoxic events. Published by Elsevier Ireland Ltd.

  16. Highly transparent cerium doped gadolinium gallium aluminum garnet ceramic prepared with precursors fabricated by ultrasonic enhanced chemical co-precipitation.

    PubMed

    Zhang, Ji-Yun; Luo, Zhao-Hua; Jiang, Hao-Chuan; Jiang, Jun; Chen, Chun-Hua; Zhang, Jing-Xian; Gui, Zhen-Zhen; Xiao, Na

    2017-11-01

    Cerium doped gadolinium gallium aluminum garnet (GGAG:Ce) ceramic precursors have been synthesized with an ultrasonic chemical co-precipitation method (UCC) and for comparison with a traditional chemical co-precipitation method (TCC). The effect of ultra-sonication on the morphology of powders and the transmittance of GGAG:Ce ceramics are studied. The results indicate that the UCC method can effectively improve the homogenization and sinterability of GGAG:Ce powders, which contribute to obtain high transparent GGAG ceramic with the highest transmittance of 81%. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Penetration and distribution of gadolinium-based contrast agents into the cerebrospinal fluid in healthy rats: a potential pathway of entry into the brain tissue.

    PubMed

    Jost, Gregor; Frenzel, Thomas; Lohrke, Jessica; Lenhard, Diana Constanze; Naganawa, Shinji; Pietsch, Hubertus

    2017-07-01

    Signal hyperintensity on unenhanced MRI in certain brain regions has been reported after multiple administrations of some, but not all, gadolinium-based contrast agents (GBCAs). One potential initial pathway of GBCA entry into the brain, infiltration from blood into the cerebrospinal fluid (CSF), was systematically evaluated in this preclinical study. GBCA infiltration and distribution in the CSF were investigated in healthy rats using repeated fluid-attenuated MRI up to 4 h after high-dose (1.8 mmol/kg) administration of six marketed and one experimental GBCA. Additionally, gadolinium measurements in CSF, blood and brain tissue samples (after 24 h) were performed using inductively coupled plasma mass spectrometry. Enhanced MRI signals in the CSF spaces with similar distribution kinetics were observed for all GBCAs. No substantial differences in the gadolinium concentrations among the marketed GBCAs were found in the CSF, blood or brain tissue. After 4.5 h, the concentration in the CSF was clearly higher than in blood but was almost completely cleared and lower than the brain tissue concentration after 24 h. In contrast to the brain signal hyperintensities, no differences in penetration and distribution into the CSF of healthy rats exist among the marketed GBCAs. • Gadolinium-based contrast agents can cross the blood-CSF barrier. • Fluid-attenuated MRI shows GBCA distribution with CSF flow. • GBCA structure and physicochemical properties do not impact CSF penetration and distribution. • GBCA clearance from CSF was almost complete within 24 h in rats. • CSF is a potential pathway of GBCA entry into the brain.

  18. Predictors of ischaemic mitral regurgitation recurrence in patients undergoing combined surgery: additional value of cardiovascular magnetic resonance imaging.

    PubMed

    Glaveckaite, Sigita; Uzdavinyte-Gateliene, Egle; Petrulioniene, Zaneta; Palionis, Darius; Valeviciene, Nomeda; Kalinauskas, Gintaras; Serpytis, Pranas; Laucevicius, Aleksandras

    2018-03-09

    We aimed to evaluate (i) the effectiveness of combined surgery (coronary artery bypass grafting with restrictive mitral valve annuloplasty) and (ii) the late gadolinium enhancement cardiovascular magnetic resonance-based predictors of ischaemic mitral regurgitation (IMR) recurrence. The prospective analysis included 40 patients with multivessel coronary artery disease, IMR >II° and left ventricular (LV) dysfunction undergoing combined surgery. The degree of IMR and LV parameters were assessed preoperatively by transthoracic echocardiography, 3D transoesophageal echocardiography and cardiovascular magnetic resonance and postoperatively by transthoracic echocardiography. The effective mitral valve repair group (n = 30) was defined as having recurrent ischaemic mitral regurgitation (RIMR) ≤II° at the end of follow-up (25 ± 11 months). The surgery was effective: freedom from RIMR >II° at 1 and 2 years after surgery was 80% and 75%, respectively. Using multivariable logistic regression, 2 independent predictors of RIMR >II° were identified: ≥3 non-viable LV segments (odds ratio 22, P = 0.027) and ≥1 non-viable segment in the LV posterior wall (odds ratio 11, P = 0.026). Using classification trees, the best combinations of cardiovascular magnetic resonance-based and 3D transoesophageal echocardiography-based predictors for RIMR >II° were (i) posterior mitral valve leaflet angle >40° and LV end-systolic volume index >45 ml/m2 (sensitivity 100%, specificity 89%) and (ii) scar transmurality >68% in the inferior LV wall and EuroSCORE II >8 (sensitivity 83%, specificity 78%). There is a clear relationship between the amount of non-viable LV segments, especially in the LV posterior and inferior walls, and the recurrence of IMR after the combined surgery.

  19. Gadolinium deposition disease: Initial description of a disease that has been around for a while.

    PubMed

    Semelka, Richard C; Ramalho, Joana; Vakharia, Ami; AlObaidy, Mamdoh; Burke, Lauren M; Jay, Michael; Ramalho, Miguel

    2016-12-01

    To describe the clinical manifestations of presumed gadolinium toxicity in patients with normal renal function. Participants were recruited from two online gadolinium toxicity support groups. The survey was anonymous and individuals were instructed to respond to the survey only if they had evidence of normal renal function, evidence of gadolinium in their system beyond 30days of this MRI, and no pre-existent clinical symptoms and/or signs of this type. 42 subjects responded to the survey (age: 28-69, mean 49.1±22.4years). The most common findings were: central pain (n=15), peripheral pain (n=26), headache (n=28), and bone pain (n=26). Only subjects with distal leg and arm distribution described skin thickening (n=22). Clouded mentation and headache were the symptoms described as persistent beyond 3months in 29 subjects. Residual disease was present in all patients. Twenty-eight patients described symptoms following administration of one brand of Gadolinium-Based Contrast Agent (GBCA), 21 after a single GBCA administration and 7 after multiple GBCA administrations, including: gadopentetate dimeglumine, n=9; gadodiamide, n=4; gadoversetamide, n=4; gadobenate dimeglumine, n=4; gadobutrol, n=1; gadoteridol, n=2; and unknown, n=4. Gadolinium toxicity appears to arise following GBCA administration, which appears to contain clinical features seen in Nephrogenic Systemic Fibrosis, but also features not observed in that condition. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Gadolinium-based Contrast Media, Cerebrospinal Fluid and the Glymphatic System: Possible Mechanisms for the Deposition of Gadolinium in the Brain.

    PubMed

    Taoka, Toshiaki; Naganawa, Shinji

    2018-04-10

    After Kanda's first report in 2014 on gadolinium (Gd) deposition in brain tissue, a considerable number of studies have investigated the explanation for the observation. Gd deposition in brain tissue after repeated administration of gadolinium-based contrast medium (GBCM) has been histologically proven, and chelate stability has been shown to affect the deposition. However, the mechanism for this deposition has not been fully elucidated. Recently, a hypothesis was introduced that involves the 'glymphatic system', which is a coined word that combines 'gl' for glia cell and 'lymphatic' system. According to this hypothesis, the perivascular space functions as a conduit for cerebrospinal fluid to flow into the brain parenchyma. The perivascular space around the arteries allows cerebrospinal fluid to enter the interstitial space of the brain tissue through water channels controlled by aquaporin 4. The cerebrospinal fluid entering the interstitial space clears waste proteins from the tissue. It then flows into the perivascular space around the vein and is discharged outside the brain. In addition to the hypothesis regarding the glymphatic system, some reports have described that after GBCM administration, some of the GBCM distributes through systemic blood circulation and remains in other compartments including the cerebrospinal fluid. It is thought that the GBCM distributed into the cerebrospinal fluid cavity via the glymphatic system may remain in brain tissue for a longer duration compared to the GBCM in systemic circulation. Glymphatic system may of course act as a clearance system for GBCM from brain tissue. Based on these findings, the mechanism for Gd deposition in the brain will be discussed in this review. The authors speculate that the glymphatic system may be the major contributory factor to the deposition and clearance of gadolinium in brain tissue.

  1. Gadolinium-based Contrast Media, Cerebrospinal Fluid and the Glymphatic System: Possible Mechanisms for the Deposition of Gadolinium in the Brain

    PubMed Central

    Taoka, Toshiaki; Naganawa, Shinji

    2018-01-01

    After Kanda’s first report in 2014 on gadolinium (Gd) deposition in brain tissue, a considerable number of studies have investigated the explanation for the observation. Gd deposition in brain tissue after repeated administration of gadolinium-based contrast medium (GBCM) has been histologically proven, and chelate stability has been shown to affect the deposition. However, the mechanism for this deposition has not been fully elucidated. Recently, a hypothesis was introduced that involves the ‘glymphatic system’, which is a coined word that combines ‘gl’ for glia cell and ‘lymphatic’ system. According to this hypothesis, the perivascular space functions as a conduit for cerebrospinal fluid to flow into the brain parenchyma. The perivascular space around the arteries allows cerebrospinal fluid to enter the interstitial space of the brain tissue through water channels controlled by aquaporin 4. The cerebrospinal fluid entering the interstitial space clears waste proteins from the tissue. It then flows into the perivascular space around the vein and is discharged outside the brain. In addition to the hypothesis regarding the glymphatic system, some reports have described that after GBCM administration, some of the GBCM distributes through systemic blood circulation and remains in other compartments including the cerebrospinal fluid. It is thought that the GBCM distributed into the cerebrospinal fluid cavity via the glymphatic system may remain in brain tissue for a longer duration compared to the GBCM in systemic circulation. Glymphatic system may of course act as a clearance system for GBCM from brain tissue. Based on these findings, the mechanism for Gd deposition in the brain will be discussed in this review. The authors speculate that the glymphatic system may be the major contributory factor to the deposition and clearance of gadolinium in brain tissue. PMID:29367513

  2. Image-guided convection-enhanced delivery of muscimol to the primate brain

    PubMed Central

    Heiss, John D.; Walbridge, Stuart; Asthagiri, Ashok R.; Lonser, Russell R.

    2009-01-01

    Object Muscimol is a potent γ-aminobutyric acid-A receptor agonist (GABAA) that temporarily and selectively suppresses neurons. Targeted muscimol-suppression of neuronal structures could provide insight into the pathophysiology and treatment of a variety of neurologic disorders. To determine if muscimol delivered to the brain by convection-enhanced delivery (CED) could be monitored using a co-infused surrogate magnetic resonance (MR)-imaging tracer, we perfused the striata of primates with tritiated muscimol and gadolinium-DTPA. Methods Three primates underwent convective co-infusion of 3H-muscimol (0.8 μM) and gadolinium-DTPA (−5 mM) into the bilateral striata. Primates underwent serial MR-imaging during infusion and animals were sacrificed immediately after infusion. Post-mortem quantitative autoradiography and histological analysis was performed. Results MR-imaging revealed that infusate (tritiated muscimol and gadolinium-DTPA) distribution was clearly discernible from the non-infused parenchyma. Real-time MR-imaging of the infusion revealed the precise region of anatomic perfusion in each animal. Imaging analysis during infusion revealed that the distribution volume of infusate linearly increased (R=0.92) with volume of infusion. Overall, the mean (±S.D.) volume of distribution to volume of infusion ratio was 8.2±1.3. Autoradiographic analysis revealed that MR-imaging of gadolinium-DTPA closely correlated with the distribution of 3H-muscimol and precisely estimated its volume of distribution (mean difference in volume of distribution, 7.4%). Quantitative autoradiograms revealed that muscimol was homogeneously distributed over the perfused region in a square-shaped concentration profile. Conclusions Muscimol can be effectively delivered to clinically relevant volumes of the primate brain. Moreover, the distribution of muscimol can be tracked by co-infusion of gadolinium-DTPA using MR-imaging. The ability to accurately monitor and control the anatomic

  3. Contrast-enhanced magnetic resonance angiography: first-pass arterial enhancement as a function of gadolinium-chelate concentration, and the saline chaser volume and injection rate.

    PubMed

    Husarik, Daniela B; Bashir, Mustafa R; Weber, Paul W; Nichols, Eli B; Howle, Laurens E; Merkle, Elmar M; Nelson, Rendon C

    2012-02-01

    To evaluate the effect of the contrast medium (CM) concentration and the saline chaser volume and injection rate on first-pass aortic enhancement characteristics in contrast-enhanced magnetic resonance angiography using a physiologic flow phantom. Imaging was performed on a 3.0-T magnetic resonance system (MAGNETOM Trio, Siemens Healthcare Solutions, Inc, Erlangen, Germany) using a 2-dimensional fast low angle shot T1-weighted sequence (repetition time, 500 milliseconds; echo time, 1.23 milliseconds; flip angle, 8 degrees; 1 frame/s × 60 seconds). The following CM concentrations injected at 2 mL/s were used with 3 different contrast agents (gadolinium [Gd]-BOPTA, Gd-HP-DO3A, Gd-DTPA): 20 mL of undiluted CM (100%) and 80%, 40%, 20%, 10%, 5%, and 2.5% of the full amount, all diluted in saline to a volume of 20 mL to ensure equal bolus volume. The CM was followed by saline chasers of 20 to 60 mL injected at 2 mL/s and 6 mL/s. Aortic signal intensity (SI) was measured, and normalized SI versus time (SI/Tn) curves were generated. The maximal SI (SI(max)), bolus length, and areas under the SI/Tn curve were calculated. Decreasing the CM concentration from 100% to 40% resulted in a decrease of SI(max) to 86.1% (mean). Further decreasing the CM concentration to 2.5% decreased SI(max) to 5.1% (mean). Altering the saline chaser volume had no significant effect on SI(max). Increasing the saline chaser injection rate had little effect (mean increase, 2.2%) on SI(max) when using ≥40% of CM. There was a larger effect (mean increase, 19.6%) when ≤20% of CM were used. Bolus time length was significantly shorter (P < 0.001), and area under the SI/T(n) curve was significantly smaller (P < 0.01) for the CM protocols followed by a saline chaser injected at 6 mL/s compared with a saline chaser injected at 2 mL/s. With 40% of CM and a fast saline chaser, SImax close to that with undiluted CM can be achieved. An increased saline chaser injection rate has a more pronounced effect on

  4. Improved dark blood late gadolinium enhancement (DB-LGE) imaging using an optimized joint inversion preparation and T2 magnetization preparation.

    PubMed

    Basha, Tamer A; Tang, Maxine C; Tsao, Connie; Tschabrunn, Cory M; Anter, Elad; Manning, Warren J; Nezafat, Reza

    2018-01-01

    To develop a dark blood-late gadolinium enhancement (DB-LGE) sequence that improves scar-blood contrast and delineation of scar region. The DB-LGE sequence uses an inversion pulse followed by T 2 magnetization preparation to suppress blood and normal myocardium. Time delays inserted after preparation pulses and T 2 -magnetization-prep duration are used to adjust tissue contrast. Selection of these parameters was optimized using numerical simulations and phantom experiments. We evaluated DB-LGE in 9 swine and 42 patients (56 ± 14 years, 33 male). Improvement in scar-blood contrast and overall image quality was subjectively evaluated by two independent readers (1 = poor, 4 = excellent). The signal ratios among scar, blood, and myocardium were compared. Simulations and phantom studies demonstrated that simultaneous nulling of myocardium and blood can be achieved by selecting appropriate timing parameters. The scar-blood contrast score was significantly higher for DB-LGE (P < 0.001) with no significant difference in overall image quality (P > 0.05). Scar-blood signal ratios for DB-LGE versus LGE were 5.0 ± 2.8 versus 1.5 ± 0.5 (P < 0.001) for patients, and 2.2 ± 0.7 versus 1.0 ± 0.4 (P = 0.0023) for animals. Scar-myocardium signal ratios were 5.7 ± 2.9 versus 6.3 ± 2.6 (P = 0.35) for patients, and 3.7 ± 1.1 versus 4.1 ± 2.0 (P = 0.60) for swine. The DB-LGE sequence simultaneously reduces normal myocardium and blood signal intensity, thereby enhancing scar-blood contrast while preserving scar-myocardium contrast. Magn Reson Med 79:351-360, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  5. Measurement of gamma-ray production from thermal neutron capture on gadolinium for neutrino experiments

    NASA Astrophysics Data System (ADS)

    Yano, Takatomi; 2012B0025 Collaboration; 2014B0126 Collaboration

    2017-02-01

    Recently, several scientific applications of gadolinium are found in neutrino physics experiments. Gadolinium-157 is the nucleus, which has the largest thermal neutron capture cross-section among all stable nuclei. Gadolinium-155 also has the large cross-section. These neutron capture reactions provide the gamma-ray cascade with the total energy of about 8 MeV. This reaction is applied for several neutrino experiments, e.g. reactor neutrino experiments and Gd doped large water Cherenkov detector experiments, to recognize inverse-beta-decay reaction. A good Gd(n,γ) simulation model is needed to evaluate the detection efficiency of the neutron capture reaction, i.e. the efficiency of IBD detection. In this presentation, we will report the development and study status of a Gd(n,γ) calculation model and comparison with our experimental data taken at ANNRI/MLF beam line, J-PARC.

  6. [The implementation of the method of enhanced external counter pulsation for the treatment of cardiovascular diseases].

    PubMed

    Badtieva, V A; Voroshilova, D N

    2018-05-21

    The cardiovascular diseases occupy a leading place in the structure of overall morbidity affecting the population not only of Russia but also of the majority of the developed countries throughout the world; they thus impose the heavy social and economic burden on both the public healthcare services and the modern society in general. At the same time, systemic atherosclerosis is considered to be one of the most common, severe, and life-threatening condition. Despite the presence of a large number of pharmaceutical and surgical methods for the treatment of this pathology, they are not infrequently lacking the desired effectiveness. The use of the shunting operations and endovascular methods failed to radically resolve the problem of managing systemic atherosclerosis and atherosclerosis of the lower limbs. A relatively novel approach which currently begins to find the ever increasing application for the treatment of patients presenting with cardiovascular pathology is based on the enhanced external counter-pulsation method although both the clinical and theoretical prerequisites of its application were developed rather long ago. This non-invasive therapeutic method allows to increase the perfusion pressure in the coronary arteries in diastole and to reduce the resistance to the cardiac ejection in the systole. The objective of this review article was to perform the analysis of the available literature publications on the use of the enhanced external counter-pulsation technique for the treatment of the patients presenting with the diseases of the cardiovascular system and to evaluate the clinical effectiveness of this approach as well as the availability of the treatment for the patients.

  7. Critical Questions Regarding Gadolinium Deposition in the Brain and Body After Injections of the Gadolinium-Based Contrast Agents, Safety, and Clinical Recommendations in Consideration of the EMA's Pharmacovigilance and Risk Assessment Committee Recommendation for Suspension of the Marketing Authorizations for 4 Linear Agents.

    PubMed

    Runge, Val M

    2017-06-01

    For magnetic resonance, the established class of intravenous contrast media is the gadolinium-based contrast agents. In the 3 decades since initial approval, these have proven in general to be very safe for human administration. However, in 2006, a devastating late adverse reaction to administration of the less stable gadolinium-based contrast agents was identified, nephrogenic systemic fibrosis. The result of actions taken by the European Medicines Agency and the US Food and Drug Administration, stratifying the agents by risk and contraindicating specific agents in severe renal dysfunction, has led to no new cases being identified in North America or Europe. Subsequently, in 2014, long-term deposition in the brain of gadolinium was first shown, after administration of 2 nonionic linear chelates, gadodiamide, and gadopentetate dimeglumine. This has led to an intense focus on the question of in vivo distribution, possible dechelation, and subsequent deposition of gadolinium, together with substantial clarification of the phenomenon as well as stratification of the agents on this basis. This review focuses on 8 critical questions regarding gadolinium deposition in the brain and body, with the answers and discussion therein important for future regulatory decisions and clinical practice. It is now clear that dechelation of gadolinium occurs in vivo with the linear agents and is responsible for this phenomenon, with key experts in the field recommending, except where there is no suitable alternative, a shift in clinical practice from the linear to macrocyclic agents. In addition, on March 10, 2017, the Pharmacovigilance and Risk Assessment Committee of the European Medicines Agency recommended suspension of the marketing authorization for 4 linear gadolinium contrast agents-specifically Omniscan, Optimark, Magnevist, and MultiHance (gadodiamide, gadoversetamide, gadopentetate dimeglumine, and gadobenate dimeglumine)-for intravenous injection. Cited in the report was

  8. Type-II domains in ferroelectric gadolinium molybdate (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohm, J.; Kuersten, H.D.

    Etching (001)-faces of gadolinium molybdate (GMO) reveals new kinds of domains. They are created by a translation, that leaves the spontaneous polarization and the transition parameter invariant. The translation vector is a part of a lattice vector, similar to stacking faults. (auth)

  9. The Effect of Pressure and Temperature on Separation of Free Gadolinium(III) From Gd-DTPA Complex by Nanofiltration-Complexation Method

    NASA Astrophysics Data System (ADS)

    Rahayu, Iman; Anggraeni, Anni; Ukun, MSS; Bahti, Husein H.

    2017-05-01

    Nowdays, the utilization of rare earth elements has been carried out widely in industry and medicine, one of them is gadolinium in Gd-DTPA complex is used as a contrast agent in a magnetic resonance imaging (MRI) diagnostic to increase the visual contrast between normal tissue and diseased. Although the stability of a given complex may be high enough, the complexation step couldnot have been completed, so there is possible to gadolinium(III) in the complex compound. Therefore, the function of that compounds should be dangerous because of the toxicity of gadolinium(III) in human body. So, it is necessarry to separate free gadolinium(III) from Gd-DTPA complex by nanofiltration-complexation. The method of this study is complexing of Gd2O3 with DTPA ligand by reflux and separation of Gd-DTPA complex from gadolinium(III) with a nanofiltration membrane on the variation of pressures(2, 3, 4, 5, 6 bars) and temperature (25, 30, 35, 40 °C) and determined the flux and rejection. The results of this study are the higher of pressures and temperatures, permeation flux are increasing and ion rejections are decreasing and gave the free gadolinium(III) rejection until 86.26%.

  10. Use of a 3-Telsa magnet to perform delayed gadolinium-enhanced magnetic resonance imaging of the distal interphalangeal joint of horses with and without naturally occurring osteoarthritis.

    PubMed

    Bischofberger, Andrea S; Fürst, Anton E; Torgerson, Paul R; Carstens, Ann; Hilbe, Monika; Kircher, Patrick

    2018-03-01

    OBJECTIVE To characterize delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) features of healthy hyaline cartilage of the distal interphalangeal joint (DIPJ) of horses, to determine whether dGEMRIC can be used to differentiate various stages of naturally occurring osteoarthritis of the DIPJ, and to correlate relaxation times determined by dGEMRIC with the glycosaminoglycan concentration, water content, and macroscopic and histologic findings of hyaline cartilage of DIPJs with and without osteoarthritis. SAMPLE 1 cadaveric forelimb DIPJ from each of 12 adult warmblood horses. PROCEDURES T1-weighted cartilage relaxation times were obtained for predetermined sites of the DIPJ before (T1 preGd ) and after (T1 postGd ) intra-articular gadolinium administration. Corresponding cartilage sites underwent macroscopic, histologic, and immunohistochemical evaluation, and cartilage glycosaminoglycan concentration and water content were determined. Median T1 preGd and T1 postGd were correlated with macroscopic, histologic, and biochemical data. Mixed generalized linear models were created to evaluate the effects of cartilage site, articular surface, and macroscopic and histologic scores on relaxation times. RESULTS 122 cartilage specimens were analyzed. Median T1 postGd was lower than the median T1 preGd for normal and diseased cartilage. Both T1 preGd and T1 postGd were correlated with macroscopic and histologic scores, whereby T1 preGd increased and T1 postGd decreased as osteoarthritis progressed. There was topographic variation of T1 preGd and T1 postGd within the DIPJ. Cartilage glycosaminoglycan concentration and water content were significantly correlated with T1 preGd and macroscopic and histologic scores but were not correlated with T1 postGd . CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that dGEMRIC relaxation times varied for DIPJs with various degrees of osteoarthritis. These findings may help facilitate early detection of osteoarthritis.

  11. Identification and assessment of Anderson-Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping.

    PubMed

    Sado, Daniel M; White, Steven K; Piechnik, Stefan K; Banypersad, Sanjay M; Treibel, Thomas; Captur, Gabriella; Fontana, Marianna; Maestrini, Viviana; Flett, Andrew S; Robson, Matthew D; Lachmann, Robin H; Murphy, Elaine; Mehta, Atul; Hughes, Derralynn; Neubauer, Stefan; Elliott, Perry M; Moon, James C

    2013-05-01

    Anderson-Fabry disease (AFD) is a rare but underdiagnosed intracellular lipid disorder that can cause left ventricular hypertrophy (LVH). Lipid is known to shorten the magnetic resonance imaging parameter T1. We hypothesized that noncontrast T1 mapping by cardiovascular magnetic resonance would provide a novel and useful measure in this disease with potential to detect early cardiac involvement and distinguish AFD LVH from other causes. Two hundred twenty-seven subjects were studied: patients with AFD (n=44; 55% with LVH), healthy volunteers (n=67; 0% with LVH), patients with hypertension (n=41; 24% with LVH), patients with hypertrophic cardiomyopathy (n=34; 100% with LVH), those with severe aortic stenosis (n=21; 81% with LVH), and patients with definite amyloid light-chain (AL) cardiac amyloidosis (n=20; 100% with LVH). T1 mapping was performed using the shortened modified Look-Locker inversion sequence on a 1.5-T magnet before gadolinium administration with primary results derived from the basal and midseptum. Compared with health volunteers, septal T1 was lower in AFD and higher in other diseases (AFD versus healthy volunteers versus other patients, 882±47, 968±32, 1018±74 milliseconds; P<0.0001). In patients with LVH (n=105), T1 discriminated completely between AFD and other diseases with no overlap. In AFD, T1 correlated inversely with wall thickness (r=-0.51; P=0.0004) and was abnormal in 40% of subjects who did not have LVH. Segmentally, AFD showed pseudonormalization or elevation of T1 in the left ventricular inferolateral wall, correlating with the presence or absence of late gadolinium enhancement (1001±82 versus 891±38 milliseconds; P<0.0001). Noncontrast T1 mapping shows potential as a unique and powerful measurement in the imaging assessment of LVH and AFD.

  12. Biocompatible Polyhydroxyethylaspartamide-based Micelles with Gadolinium for MRI Contrast Agents

    PubMed Central

    2010-01-01

    Biocompatible poly-[N-(2-hydroxyethyl)-d,l-aspartamide]-methoxypoly(ethyleneglycol)-hexadecylamine (PHEA-mPEG-C16) conjugated with 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid-gadolinium (DOTA-Gd) via ethylenediamine (ED) was synthesized as a magnetic resonance imaging (MRI) contrast agent. Amphiphilic PHEA-mPEG-C16-ED-DOTA-Gd forms micelle in aqueous solution. All the synthesized materials were characterized by proton nuclear magnetic resonance (1H NMR). Micelle size and shape were examined by dynamic light scattering (DLS) and atomic force microscopy (AFM). Micelles with PHEA-mPEG-C16-ED-DOTA-Gd showed higher relaxivities than the commercially available gadolinium contrast agent. Moreover, the signal intensity of a rabbit liver was effectively increased after intravenous injection of PHEA-mPEG-C16-ED-DOTA-Gd. PMID:21170410

  13. Biocompatible Polyhydroxyethylaspartamide-based Micelles with Gadolinium for MRI Contrast Agents

    NASA Astrophysics Data System (ADS)

    Jeong, Sang Young; Kim, Hyo Jeong; Kwak, Byung-Kook; Lee, Ha-Young; Seong, Hasoo; Shin, Byung Cheol; Yuk, Soon Hong; Hwang, Sung-Joo; Cho, Sun Hang

    2010-12-01

    Biocompatible poly-[ N-(2-hydroxyethyl)- d, l-aspartamide]-methoxypoly(ethyleneglycol)-hexadecylamine (PHEA-mPEG-C16) conjugated with 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid-gadolinium (DOTA-Gd) via ethylenediamine (ED) was synthesized as a magnetic resonance imaging (MRI) contrast agent. Amphiphilic PHEA-mPEG-C16-ED-DOTA-Gd forms micelle in aqueous solution. All the synthesized materials were characterized by proton nuclear magnetic resonance (1H NMR). Micelle size and shape were examined by dynamic light scattering (DLS) and atomic force microscopy (AFM). Micelles with PHEA-mPEG-C16-ED-DOTA-Gd showed higher relaxivities than the commercially available gadolinium contrast agent. Moreover, the signal intensity of a rabbit liver was effectively increased after intravenous injection of PHEA-mPEG-C16-ED-DOTA-Gd.

  14. Electron magnetic resonance investigation of gadolinium diffusion in zircon powders

    NASA Astrophysics Data System (ADS)

    de Biasi, R. S.; Grillo, M. L. N.

    2011-11-01

    The electron magnetic resonance (EMR) technique was used to investigate the diffusion of gadolinium in zircon (ZrSiO4) powders. The EMR absorption intensity was measured for several annealing times and three different temperatures of isothermal annealing: 1273, 1323 and 1373 K. The activation energy for diffusion, calculated from the experimental data using a theoretical model based on the Fick equation, was found to be EA=506±5 kJ mol-1. This value is close to the ones for the diffusion of Gd in UO2 and CeO2, but much larger than for the diffusion of gadolinium in a compound with the same crystal structure as zircon, YVO4. This is attributed to a difference in the relative sizes of the ions involved in the diffusion process.

  15. Gadolinium concentration analysis in brain phantom by X-ray fluorescence.

    PubMed

    Almalki, Musaed; Majid, Samir Abdul; Butler, Philip H; Reinisch, Lou

    2010-06-01

    We have measured the X-ray fluorescence from gadolinium as a function of concentration and position in tumors of different sizes and shapes in a head phantom. The gadolinium fluorescence was excited with a 36 GBq Am-241 source. The fluorescence signal was detected with a CdTe detector and a multi-channel analyzer. The fluorescence peak was clearly separated from the scattered X-rays. Concentrations of 5.62-78.63 mg/ml of Gd ion were used in 1, 2, and 3 cm diameter spherical tumors and a 2x4 cm oblate spheroid tumor. The data show trends approaching saturation for the highest concentrations, probably due to reabsorption in the tumor. A comparison of X-ray photographic imaging and densitometer measurements to determine concentration is also presented.

  16. Spectral presaturation inversion recovery MR imaging sequence after gadolinium injection to differentiate fibrotic scar tissue and neoplastic strands in the mesorectal fat in patients undergoing restaging of rectal carcinoma after neoadjuvant chemo- and radiation therapy.

    PubMed

    Quaia, Emilio; Ulcigrai, Veronica; Coss, Matteo; De Paoli, Luca; Ukmar, Maja; Zanconati, Fabrizio; De Pellegrin, Alessandro; De Manzini, Nicolò; Cova, Maria Assunta

    2011-11-01

    To retrospectively assess the value of spectral presaturation by inversion-recovery (SPIR) magnetic resonance (MR) imaging sequence after gadolinium injection to differentiate fibrotic scar tissue and tumoral infiltration within the mesorectal fat in patients with rectal carcinoma undergoing MR restaging after neoadjuvant chemo- and radiation therapy (CRT). Forty-three consecutive patients (mean age, 65.8 years; range, 46-85 years; male:female, 29:14) with locally advanced rectal carcinoma underwent CRT followed by surgery. MR imaging was performed before and after completion of CRT by using T2-weighted turbo spin-echo and T1-weighted SPIR sequences before and after gadolinium injection, and MR images were assessed by two radiologists in consensus. Logistic regression was conducted to test the significance of the MR image findings with histology. After CRT the disease was either limited to the rectal wall (n = 18 patients) or presented perirectal infiltration (n = 25) on histology. In 21 patients, mesorectal enhancing strands were observed. Reticular-shaped enhancing strands reaching the mesorectal fascia presented the highest correlation with tumor infiltration of the mesorectal fat (OR 130.33, 95% CI: 4.1-4220.29; logistic regression), whereas linear-shaped enhancing strands either reaching or not reaching the mesorectal fascia (OR 0.25 or 0.1, 95% CI: 0.024-2.6 or 0.01-1.07) revealed the lowest correlation. Reticular-shaped enhancing strands on SPIR MR imaging after gadolinium injection are associated with tumor infiltration of the mesorectal fat. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.

  17. Multifunctional gadolinium-based dendritic macromolecules as liver targeting imaging probes.

    PubMed

    Luo, Kui; Liu, Gang; He, Bin; Wu, Yao; Gong, Qingyong; Song, Bin; Ai, Hua; Gu, Zhongwei

    2011-04-01

    The quest for highly efficient and safe contrast agents has become the key factor for successful application of magnetic resonance imaging (MRI). The gadolinium (Gd) based dendritic macromolecules, with precise and tunable nanoscopic sizes, are excellent candidates as multivalent MRI probes. In this paper, a novel series of Gd-based multifunctional peptide dendritic probes (generation 2, 3, and 4) possessing highly controlled structures and single molecular weight were designed and prepared as liver MRI probes. These macromolecular Gd-ligand agents exhibited up to 3-fold increase in T(1) relaxivity comparing to Gd-DTPA complexes. No obvious in vitro cytotoxicity was observed from the measured concentrations. These dendritic probes were further functionalized with multiple galactosyl moieties and led to much higher cell uptake in vitro as demonstrated in T(1)-weighted scans. During in vivo animal studies, the probes provided better signal intensity (SI) enhancement in mouse liver, especially at 60 min post-injection, with the most efficient enhancement from the galactosyl moiety decorated third generation dendrimer. The imaging results were verified with analysis of Gd content in liver tissues. The design strategy of multifunctional Gd-ligand peptide dendritic macromolecules in this study may be used for developing other sensitive MRI probes with targeting capability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Acute side effects of three commonly used gadolinium contrast agents in the paediatric population.

    PubMed

    Neeley, Chris; Moritz, Michael; Brown, Jeffrey J; Zhou, Yihua

    2016-07-01

    To determine the incidence of acute side effects of three commonly used gadolinium contrast agents in the paediatric population. A retrospective review of medical records was performed to determine the incidence of acute adverse side effects of i.v. gadolinium contrast agents [MultiHance(®) (Bracco Diagnostics Inc., Princeton, NJ), Magnevist(®) (Bayer Healthcare Pharmaceuticals, Wayne, NJ) or Gadavist(®) (Bayer HealthCare Pharmaceuticals)] in paediatric patients. 40 of the 2393 patients who received gadolinium contrast agents experienced acute side effects, representing an incidence of 1.7%. The majority of the acute side effects (in 30 patients) were nausea and vomiting. The incidence was significantly higher in non-sedated patients (2.37% vs 0.7%; p = 0.0018). Furthermore, without sedation, the incidence of both nausea and vomiting was significantly higher in children receiving MultiHance, with a 4.48% incidence of nausea when compared with Magnevist (0.33%, p < 0.0001) and Gadavist (0.28%, p < 0.0001) and a 2.36% incidence of vomiting compared with those for Magnevist (0.50%, p = 0.0054) and Gadavist (0.28%, p = 0.014), whereas no difference was observed between Magnevist and Gadavist within the power of the study. In addition, there was no apparent difference between any of the three contrast agents for the incidence of allergy or other acute side effects detected, given the sample size. The gadolinium contrast agents MultiHance, Magnevist and Gadavist have a low incidence of acute side effects in the paediatric population, a rate that is further reduced in moderately sedated patients. MultiHance demonstrated significantly increased incidence of gastrointestinal symptoms compared with Magnevist and Gadavist. The incidence of acute side effects of three commonly used gadolinium contrast agents was determined in the paediatric population, which can have clinical implications.

  19. Layered gadolinium hydroxides for low-temperature magnetic cooling.

    PubMed

    Abellán, Gonzalo; Espallargas, Guillermo Mínguez; Lorusso, Giulia; Evangelisti, Marco; Coronado, Eugenio

    2015-09-28

    Layered gadolinium hydroxides have revealed to be excellent candidates for cryogenic magnetic refrigeration. These materials behave as pure 2D magnetic systems with a Heisenberg-Ising critical crossover, induced by dipolar interactions. This 2D character and the possibility offered by these materials to be delaminated open the possibility of rapid heat dissipation upon substrate deposition.

  20. Which interventions are used by health care professionals to enhance medication adherence in cardiovascular patients? A survey of current clinical practice.

    PubMed

    Berben, Lut; Bogert, Laura; Leventhal, Marcia E; Fridlund, Bengt; Jaarsma, Tiny; Norekvål, Tone M; Smith, Karen; Strömberg, Anna; Thompson, David R; De Geest, Sabina

    2011-03-01

    Complex medication regimens are often required to manage cardiovascular diseases. As non-adherence, which can have severe negative outcomes, is common among cardiovascular patients, various interventions to improve adherence should be implemented in daily practice. To assess which strategies cardiovascular nurses and allied health professionals utilize to (1) assess patients' adherence to medication regimen, and (2) enhance medication adherence via educational/cognitive, counseling/behavioral, and psychological/affective interventions. A 45-item questionnaire to assess adherence assessment and interventional strategies utilized by health care professionals in daily clinical practice was distributed to a convenience sample of attendants of the 10th Annual Spring Meeting of the European Society of Cardiology Council on Cardiovascular Nursing and Allied Professions conference in Geneva (Switzerland) in March 2010. Respondents not in direct clinical practice were excluded. Descriptive statistics were used to describe practice patterns regarding adherence management. Of 276 distributed questionnaires, 171 (62%) were returned, of which 34 (20%) were excluded as respondents performed no direct patient care. Questioning patients about non-adherence during follow-up was the most frequently reported assessment strategy (56%). Educational/cognitive adherence enhancing interventions were used most frequently, followed by counseling/behavioral interventions. Psychological/affective interventions were less frequently used. The most frequent intervention used was providing reading materials (66%) followed by training patients regarding medication taking during inpatient recovery (48%). Slightly over two-thirds (69%) reported using a combination of interventions to improve patient's adherence. Educational interventions are used most in clinical practice, although evidence shows they are less effective than behavioral interventions at enhancing medication adherence. Copyright

  1. Gadolinium-148 and other spallation production cross section measurements for accelerator target facilities

    NASA Astrophysics Data System (ADS)

    Kelley, Karen Corzine

    At the Los Alamos Neutron Science Center accelerator complex, protons are accelerated to 800 MeV and directed to two tungsten targets, Target 4 at the Weapons Neutron Research facility and the 1L target at the Lujan Center. The Department of Energy requires hazard classification analyses to be performed on these targets and places limits on certain radionuclide inventories in the targets to avoid characterizing the facilities as "nuclear facilities." Gadolinium-148 is a radionuclide created from the spallation of tungsten. Allowed isotopic inventories are particularly low for this isotope because it is an alpha-particle emitter with a 75-year half-life. The activity level of Gadolinium-148 is low, but it encompasses almost two-thirds of the total dose burden for the two tungsten targets based on present yield estimates. From a hazard classification standpoint, this severely limits the lifetime of these tungsten targets. The cross section is not well-established experimentally and this is the motivation for measuring the Gadolinium-148 production cross section from tungsten. In a series of experiments at the Weapons Neutron Research facility, Gadolinium-148 production was measured for 600- and 800-MeV protons on tungsten, tantalum, and gold. These experiments used 3 mum thin tungsten, tantalum, and gold foils and 10 mum thin aluminum activation foils. In addition, spallation yields were determined for many short-lived and long-lived spallation products with these foils using gamma and alpha spectroscopy and compared with predictions of the Los Alamos National Laboratory codes CEM2k+GEM2 and MCNPX. The cumulative Gadolinium-148 production cross section measured from tantalum, tungsten, and gold for incident 600-MeV protons were 15.2 +/- 4.0, 8.31 +/- 0.92, and 0.591 +/- 0.155, respectively. The average production cross sections measured at 800 MeV were 28.6 +/- 3.5, 19.4 +/- 1.8, and 3.69 +/- 0.50 for tantalum, tungsten, and gold, respectively. These cumulative

  2. Delayed emergence of methamphetamine’s enhanced cardiovascular effects in nonhuman primates during protracted methamphetamine abstinence

    PubMed Central

    Vaupel, DB; Schindler, CW; Chefer, S; Belcher, AM; Ahmet, I; Scheidweiler, KB; Huestis, MA; Stein, EA

    2015-01-01

    Background Methamphetamine abuse is linked with brain abnormalities, but its peripheral effects constitute an integral aspect of long-term methamphetamine use. Methods Eight male rhesus monkeys with long histories of intravenous methamphetamine self-administration were evaluated 1 day, and 1, 4, 12, 26, and 52 weeks after their last methamphetamine self-administration session. On test days, isoflurane-anesthetized animals received a 0.35 mg/kg IV methamphetamine challenge. A control group consisted of 10 age and gender matched drug naïve monkeys. Cardiovascular responses to methamphetamine were followed for 2.5 h. Echocardiograms were acquired at 3 and 12 months of abstinence and in the control animals. Results No pre-methamphetamine baseline differences existed among 7 physiological measures across all conditions and controls. As expected, methamphetamine increased heart rate and blood pressure in controls. However, immediately following the self-administration period, the blood pressure response to methamphetamine challenge was reduced when compared to control monkeys. The peak and 150-min average heart rate increases, as well as peak blood pressure increases following methamphetamine were significantly elevated between weeks 12 to 26 of abstinence. These data indicate the development of tolerance followed by sensitization to methamphetamine cardiovascular effects. Echocardiography demonstrated decreased left ventricular ejection fraction and cardiac output at 3 months of abstinence. Importantly, both cardiovascular sensitization and cardiotoxicity appeared to be reversible as they returned toward control group levels after 1 year of abstinence. Conclusions Enhanced cardiovascular effects may occur after prolonged abstinence in addicts relapsing to methamphetamine and may underlie clinically reported acute cardiotoxic events. PMID:26775284

  3. Non‐invasive evaluation of the myocardial substrate of cardiac amyloidosis by gadolinium cardiac magnetic resonance

    PubMed Central

    Perugini, E; Rapezzi, C; Piva, T; Leone, O; Bacchi‐Reggiani, L; Riva, L; Salvi, F; Lovato, L; Branzi, A; Fattori, R

    2006-01-01

    Objective To investigate the prevalence and distribution of gadolinium (Gd) enhancement at cardiac magnetic resonance (CMR) imaging in patients with cardiac amyloidosis (CA) and to look for associations with clinical, morphological, and functional features. Patients and design 21 patients with definitely diagnosed CA (nine with immunoglobulin light chain amyloidosis and 12 transthyretin related) underwent Gd‐CMR. Results Gd enhancement was detected in 16 of 21 (76%) patients. Sixty six of 357 (18%) segments were enhanced, more often at the mid ventricular level. Transmural extension of enhancement within each patient significantly correlated with left ventricular (LV) end systolic volume (r  =  0.58). The number of enhanced segments correlated with LV end diastolic volume (r  =  0.76), end systolic volume (r  =  0.6), and left atrial size (r  =  0.56). Segments with > 50% extensive transmural enhancement more often were severely hypokinetic or akinetic (p  =  0.001). Patients with > 2 enhanced segments had significantly lower 12 lead QRS voltage and Sokolow‐Lyon index. No relation was apparent with any other clinical, morphological, functional, or histological characteristics. Conclusion Gd enhancement is common but not universally present in CA, probably due to expansion of infiltrated interstitium. The segmental and transmural distribution of the enhancement is highly variable, and mid‐ventricular regions are more often involved. Enhancement appears to be associated with impaired segmental and global contractility and a larger atrium. PMID:15939726

  4. Spectrum and clinical significance of systolic function and myocardial fibrosis assessed by cardiovascular magnetic resonance in hypertrophic cardiomyopathy.

    PubMed

    Olivotto, Iacopo; Maron, Barry J; Appelbaum, Evan; Harrigan, Caitlin J; Salton, Carol; Gibson, C Michael; Udelson, James E; O'Donnell, Christopher; Lesser, John R; Manning, Warren J; Maron, Martin S

    2010-07-15

    In hypertrophic cardiomyopathy (HCM), the clinical significance attributable to the broad range of left ventricular (LV) systolic function, assessed as the ejection fraction (EF), is incompletely resolved. We evaluated the EF using cardiovascular magnetic resonance (CMR) imaging in a large cohort of patients with HCM with respect to the clinical status and evidence of left ventricular remodeling with late gadolinium enhancement (LGE). CMR imaging was performed in 310 consecutive patients, aged 42 +/- 17 years. The EF in patients with HCM was 71 +/- 10% (range 28% to 89%), exceeding that of 606 healthy controls without cardiovascular disease (66 +/- 5%, p <0.001). LGE reflecting LV remodeling showed an independent, inverse relation to the EF (B-0.69, 95% confidence interval -0.86 to -0.52; p <0.001) and was greatest in patients with an EF <50%, in whom it constituted a median value of 29% of the LV volume (interquartile range 16% to 40%). However, the substantial subgroup with low-normal EF values of 50% to 65% (n = 45; 15% of the whole cohort), who were mostly asymptomatic or mildly symptomatic (37 or 82% with New York Heart Association functional class I to II), showed substantial LGE (median 5% of LV volume, interquartile range 2% to 10%). This overlapped with the subgroup with systolic dysfunction and significantly exceeded that of patients with an EF of 66% to 75% and >75% (median 2% of the LV volume, interquartile range 1.5% to 4%; p <0.01). In conclusion, in a large cohort of patients with HCM, a subset of patients with low-normal EF values (50% to 65%) was identified by contrast-enhanced CMR imaging as having substantial degrees of LGE, suggesting a transition phase, potentially heralding advanced LV remodeling and systolic dysfunction, with implications for clinical surveillance and management. Copyright (c) 2010. Published by Elsevier Inc.

  5. Solid solutions of gadolinium doped zinc oxide nanorods by combined microwave-ultrasonic irradiation assisted crystallization

    NASA Astrophysics Data System (ADS)

    Kiani, Armin; Dastafkan, Kamran; Obeydavi, Ali; Rahimi, Mohammad

    2017-12-01

    Nanocrystalline solid solutions consisting of un-doped and gadolinium doped zinc oxide nanorods were fabricated by a modified sol-gel process utilizing combined ultrasonic-microwave irradiations. Polyvinylpyrrolidone, diethylene glycol, and triethylenetetramine respectively as capping, structure directing, and complexing agents were used under ultrasound dynamic aging and microwave heating to obtain crystalline nanorods. Crystalline phase monitoring, lattice parameters and variation, morphology and shape, elemental analysis, functional groups, reducibility, and the oxidation state of emerged species were examined by PXRD, FESEM, TEM, EDX, FTIR, micro Raman, H2-TPR, and EPR techniques. Results have verified that irradiation mechanism of gelation and crystallization reduces the reaction time, augments the crystal quality, and formation of hexagonal close pack structure of Wurtzite morphology. Besides, dissolution of gadolinium within host lattice involves lattice deformation, unit cell distortion, and angular position variation. Structure related shape and growth along with compositional purity were observed through microscopic and spectroscopic surveys. Furthermore, TPR and EPR studies elucidated more detailed behavior upon exposure to the exerted irradiations and subsequent air-annealing including the formed oxidation states and electron trapping centers, presence of gadolinium, zinc, and oxygen disarrays and defects, as well as alteration in the host unit cell via gadolinium addition.

  6. The network formers role of gadolinium(III) ions in some zinc-borate glass ceramics

    NASA Astrophysics Data System (ADS)

    Bosca, Maria; Pop, Lidia; Pascuta, Petru

    2017-12-01

    EPR and magnetic susceptibility measurements were performed on glass ceramics from the (Gd2O3)x.(B2O3)(60-x).(ZnO)40 system, with 0 ≤ x ≤ 15 mol%, in order to determine the role of gadolinium ions on structural and magnetic properties. At low Gd2O3 contents (x ≤ 1 mol%) the EPR spectra show four resonance lines with effective g-values of ˜ 6, 4.8, 2.8 and 2, typical for Gd3+ ions uniformly distributed in the glass and glass ceramic samples. For higher contents of gadolinium ions (x ≥ 3 mol%) the EPR spectra are dominated by a single broad line centered at g ˜ 2, which can be due to the magnetic clusters containing Gd3+ ions. The magnetic susceptibility data show that the gadolinium ions are involved in superexchange interactions in all the investigated glass ceramics, being antiferromagnetically coupled.

  7. Role of MRI and added value of diffusion-weighted and gadolinium-enhanced MRI for the diagnosis of local recurrence from rectal cancer.

    PubMed

    Molinelli, Valeria; Angeretti, Maria Gloria; Duka, Ejona; Tarallo, Nicola; Bracchi, Elena; Novario, Raffaele; Fugazzola, Carlo

    2018-03-14

    To evaluate whether the addition of gadolinium-enhanced MRI and diffusion-weighted imaging (DWI) improves T2 sequence performance for the diagnosis of local recurrence (LR) from rectal cancer and to assess which approach is better at formulating this diagnosis among readers with different experience. Forty-three patients with suspected LR underwent pelvic MRI with T2 weighted (T2) sequences, gadolinium fat-suppressed T1 weighted sequences (post-contrast T1), and DWI sequences. Three readers (expert: G, intermediate: E, resident: V) scored the likelihood of LR on T2, T2 + post-contrast T1, T2 + DWI, and T2 + post-contrast T1 + DWI. In total, 18/43 patients had LR; on T2 images, the expert reader achieved an area under the ROC curve (AUC) of 0.916, sensitivity of 88.9%, and specificity of 76%; the intermediate reader achieved values of 0.890, 88.9%, and 48%, respectively, and the resident achieved values of 0.852, 88.9%, and 48%, respectively. DWI significantly improved the AUC value for the expert radiologist by up to 0.999 (p = 0.04), while post-contrast T1 significantly improved the AUC for the resident by up to 0.950 (p = 0.04). For the intermediate reader, both the T2 + DWI AUC and T2 + post-contrast T1 AUC were better than the T2 AUC (0.976 and 0.980, respectively), but with no statistically significant difference. No statistically significant difference was achieved by any of the three readers by comparing either the T2 + DWI AUCs to the T2 + post-contrast T1 AUCs or the AUCs of the two pairs of sequences to those of the combined three sequences. Furthermore, using the T2 sequences alone, all of the readers achieved a fair number of "equivocal" cases: they decreased with the addition of either DWI or post-contrast T1 sequences and, for the two less experienced readers, they decreased even more with the three combined sequences. Both DWI and T1 post-contrast MRI increased diagnostic performance for LR diagnosis compared to T2; however, no

  8. Sensitive and transportable gadolinium-core plastic scintillator sphere for neutron detection and counting

    NASA Astrophysics Data System (ADS)

    Dumazert, Jonathan; Coulon, Romain; Carrel, Frédérick; Corre, Gwenolé; Normand, Stéphane; Méchin, Laurence; Hamel, Matthieu

    2016-08-01

    Neutron detection forms a critical branch of nuclear-related issues, currently driven by the search for competitive alternative technologies to neutron counters based on the helium-3 isotope. The deployment of plastic scintillators shows a high potential for efficient detectors, safer and more reliable than liquids, more easily scalable and cost-effective than inorganic. In the meantime, natural gadolinium, through its 155 and mostly 157 isotopes, presents an exceptionally high interaction probability with thermal neutrons. This paper introduces a dual system including a metal gadolinium core inserted at the center of a high-scale plastic scintillator sphere. Incident fast neutrons are thermalized by the scintillator shell and then may be captured with a significant probability by gadolinium 155 and 157 nuclei in the core. The deposition of a sufficient fraction of the capture high-energy prompt gamma signature inside the scintillator shell will then allow discrimination from background radiations by energy threshold, and therefore neutron detection. The scaling of the system with the Monte Carlo MCNPX2.7 code was carried out according to a tradeoff between the moderation of incident fast neutrons and the probability of slow neutron capture by a moderate-cost metal gadolinium core. Based on the parameters extracted from simulation, a first laboratory prototype for the assessment of the detection method principle has been synthetized. The robustness and sensitivity of the neutron detection principle are then assessed by counting measurement experiments. Experimental results confirm the potential for a stable, highly sensitive, transportable and cost-efficient neutron detector and orientate future investigation toward promising axes.

  9. T1 relaxivity of core-encapsulated gadolinium liposomal contrast agents--effect of liposome size and internal gadolinium concentration.

    PubMed

    Ghaghada, Ketan; Hawley, Catherine; Kawaji, Keigo; Annapragada, Ananth; Mukundan, Srinivasan

    2008-10-01

    Long circulating core-encapsulated gadolinium (CE-Gd) liposomal nanoparticles that have surface conjugated polyethylene glycol are a promising platform technology for use as blood pool T1-based magnetic resonance (MR) contrast agents. The objective of this study was to investigate the effect of liposome size and internal (core) Gd concentration on the T1 relaxivity of CE-Gd liposomes. Twelve different liposomal formulations were synthesized and characterized, resulting in a size (50, 100, 200, and 400 nm) and core Gd-concentration (200, 350, and 500 mM) "matrix" of test samples. Subsequently, CE-Gd liposomes were diluted in deionized water (four diluted samples) and molar T1 relaxivity (r1) measurements were performed at 2- and 7-T MR field strengths. The r1 of CE-Gd liposomes was inversely related to the liposome size. The largest change in r1 was observed between liposomes that were extruded through 50- and 100-nm filter membranes. At both field strengths, the variation in internal gadolinium concentration did not show any significant correlation (alpha < or = 0.05) with r1. The size of CE-Gd liposomal nanoparticles significantly affects the T1 relaxivity. An inverse relation was observed between liposome size and T1 relaxivity. The T1 relaxivity did not change significantly with core Gd concentration over the measured concentration range.

  10. Magnetization reversal and inverted magnetoresistance of exchange-biased spin valves with a gadolinium layer

    NASA Astrophysics Data System (ADS)

    Milyaev, M.; Naumova, L.; Chernyshova, T.; Proglyado, V.; Kamensky, I.; Krinitsina, T.; Ryabukhina, M.; Ustinov, V.

    2017-03-01

    FeMn-based spin valves with a gadolinium layer have been fabricated by magnetron sputtering. The magnetoresistive properties of the spin valves have been investigated at temperatures of 80-293 K. Temperature-induced switching between low- and high-resistance magnetic states has been revealed. Realization of the low- or high-resistance states depends on which magnetic moment dominates in the exchange-coupled Gd/CoFe, of Gd or CoFe. It has been shown that the switching temperature depends on the thickness of the gadolinium layer.

  11. Synthesis of gadolinium doped titanium(IV) oxide and their photocatalytic activity to decrease chemical oxygen demand (COD) value of water pollutants

    NASA Astrophysics Data System (ADS)

    Eddy, Diana Rakhmawaty; Dwiyanti, Dina; Rahayu, Iman; Hastiawan, Iwan; Bahti, Husein H.

    2017-05-01

    Pesticides are widely used for the control of plant disease. Unfortunately they are highly toxic to terraneous and aquatic life; this is a particular problem in agricultural areas. TiO2 is widely used for pesticide control because of its photocatalytic activity, but it still has inadequacy in its wide band gap. Alternatively, the wide band gap of TiO2 could be narrowed by modification with rare earth element such as gadolinium, so the photocatalytic activity of TiO2could be significantly enhanced. The purpose of this experiment is to synthesize Gd/TiO2 and its application to reduce COD of water pollutants such as carbosulfan pesticide. This experiment is done by doping gadolinium oxide into titanium tetra isopropoxide by sol-gel method. The crystal structure is characterized by using XRD, shown anatase successfully obtained with the smallest crystallite size is 37.655 nm, indicated optimum calcination time is 4 hours. SEM-EDX result shown morphology of crystal is big aggregates. Photocatalytic activity is tested to carbosulfan pesticide, obtained the COD percent decreases up to 87.88%.

  12. Patterns of CMR measured longitudinal strain and its association with late gadolinium enhancement in patients with cardiac amyloidosis and its mimics.

    PubMed

    Williams, Lynne K; Forero, Julian F; Popovic, Zoran B; Phelan, Dermot; Delgado, Diego; Rakowski, Harry; Wintersperger, Bernd J; Thavendiranathan, Paaladinesh

    2017-08-07

    Regional variability of longitudinal strain (LS) has been previously described with echocardiography in patients with cardiac amyloidosis (CA), however, the reason for this variability is not completely evident. We sought to describe regional patterns in LS using feature-tracking software applied to cardiovascular magnetic resonance (CMR) cine images in patients with CA, hypertrophic cardiomyopathy (HCM), and Anderson-Fabry's disease (AFD) and to relate these patterns to the distribution of late gadolinium enhancement (LGE). Patients with CA (n = 45) were compared to LV mass indexed matched patients with HCM (n = 19) and AFD (n = 19). Peak systolic LS measurements were obtained using Velocity Vector Imaging (VVI) software on CMR cine images. A relative regional LS ratio (RRSR) was calculated as the ratio of the average of the apical segmental LS divided by the sum of the average basal and mid-ventricular segmental LS. LGE was quantified for the basal, mid, and apical segments using a threshold of 5SD above remote myocardium. A regional LGE ratio was calculated similar to RRSR. Patients with CA had significantly had worse global LS (-15.7 ± 4.6%) than those with HCM (-18.0 ± 4.6%, p = 0.046) and AFD (-21.9 ± 5.1%, p < 0.001). The RRSR was higher in patients with CA (1.00 ± 0.31) than in AFD (0.79 ± 0.24; p = 0.018) but not HCM (0.84 ± 0.32; p = 0.114). In CA, a regional difference in LGE burden was noted, with lower LGE in the apex (31.5 ± 19.1%) compared to the mid (38.2 ± 19.0%) and basal (53.7 ± 22.7%; p < 0.001 for both) segments. The regional LGE ratio was not significantly different between patients with CA (0.33 ± 0.15) and AFD (0.47 ± 0.58; p = 0.14) but lower compared to those with HCM (0.72 ± 0.43; p < 0.0001). LGE percentage showed a significant impact on LS (p < 0.0001), with a 0.9% decrease in absolute LS for every 10% increase in LGE percentage. The presence of marked "relative apical sparing

  13. Gadolinium-based nanoparticles for highly efficient T1-weighted magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Lim, Eun-Kyung; Kang, Byunghoon; Choi, Yuna; Jang, Eunji; Han, Seungmin; Lee, Kwangyeol; Suh, Jin-Suck; Haam, Seungjoo; Huh, Yong-Min

    2014-06-01

    We developed Pyrene-Gadolinium (Py-Gd) nanoparticles as pH-sensitive magnetic resonance imaging (MRI) contrast agents capable of showing a high-Mr signal in cancer-specific environments, such as acidic conditions. Py-Gd nanoparticles were prepared by coating Py-Gd, which is a complex of gadolinium with pyrenyl molecules, with pyrenyl polyethyleneglycol PEG using a nano-emulsion method. These particles show better longitudinal relaxation time (T1) MR signals in acidic conditions than they do in neutral conditions. Furthermore, the particles exhibit biocompatibility and MR contrast effects in both in vitro and in vivo studies. From these results, we confirm that Py-Gd nanoparticles have the potential to be applied for accurate cancer diagnosis and therapy.

  14. The growth and evolution of cardiovascular magnetic resonance: a 20-year history of the Society for Cardiovascular Magnetic Resonance (SCMR) annual scientific sessions.

    PubMed

    Lee, Daniel C; Markl, Michael; Dall'Armellina, Erica; Han, Yuchi; Kozerke, Sebastian; Kuehne, Titus; Nielles-Vallespin, Sonia; Messroghli, Daniel; Patel, Amit; Schaeffter, Tobias; Simonetti, Orlando; Valente, Anne Marie; Weinsaft, Jonathan W; Wright, Graham; Zimmerman, Stefan; Schulz-Menger, Jeanette

    2018-01-31

    The purpose of this work is to summarize cardiovascular magnetic resonance (CMR) research trends and highlights presented at the annual Society for Cardiovascular Magnetic Resonance (SCMR) scientific sessions over the past 20 years. Scientific programs from all SCMR Annual Scientific Sessions from 1998 to 2017 were obtained. SCMR Headquarters also provided data for the number and the country of origin of attendees and the number of accepted abstracts according to type. Data analysis included text analysis (key word extraction) and visualization by 'word clouds' representing the most frequently used words in session titles for 5-year intervals. In addition, session titles were sorted into 17 major subject categories to further evaluate research and clinical CMR trends over time. Analysis of SCMR annual scientific sessions locations, attendance, and number of accepted abstracts demonstrated substantial growth of CMR research and clinical applications. As an international field of study, significant growth of CMR was documented by a strong increase in SCMR scientific session attendance (> 500%, 270 to 1406 from 1998 to 2017, number of accepted abstracts (> 700%, 98 to 701 from 1998 to 2018) and number of international participants (42-415% increase for participants from Asia, Central and South America, Middle East and Africa in 2004-2017). 'Word clouds' based evaluation of research trends illustrated a shift from early focus on 'MRI technique feasibility' to new established techniques (e.g. late gadolinium enhancement) and their clinical applications and translation (key words 'patient', 'disease') and more recently novel techniques and quantitative CMR imaging (key words 'mapping', 'T1', 'flow', 'function'). Nearly every topic category demonstrated an increase in the number of sessions over the 20-year period with 'Clinical Practice' leading all categories. Our analysis identified three growth areas 'Congenital', 'Clinical Practice', and 'Structure

  15. Gadolinium oxide nanoplates with high longitudinal relaxivity for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Cho, Minjung; Sethi, Richa; Ananta Narayanan, Jeyarama Subramanian; Lee, Seung Soo; Benoit, Denise N.; Taheri, Nasim; Decuzzi, Paolo; Colvin, Vicki L.

    2014-10-01

    Molecular-based contrast agents for magnetic resonance imaging (MRI) are often characterized by insufficient relaxivity, thus requiring the systemic injection of high doses to induce sufficient contrast enhancement at the target site. In this work, gadolinium oxide (Gd2O3) nanoplates are produced via a thermal decomposition method. The nanoplates have a core diameter varying from 2 to 22 nm, a thickness of 1 to 2 nm and are coated with either an oleic acid bilayer or an octylamine modified poly(acrylic acid) (PAA-OA) polymer layer. For the smaller nanoplates, longitudinal relaxivities (r1) of 7.96 and 47.2 (mM s)-1 were measured at 1.41 T for the oleic acid bilayer and PAA-OA coating, respectively. These values moderately reduce as the size of the Gd2O3 nanoplates increases, and are always larger for the PAA-OA coating. Cytotoxicity studies on human dermal fibroblast cells documented no significant toxicity, with 100% cell viability preserved up to 250 μM for the PAA-OA coated Gd2O3 nanoplates. Given the 10 times increase in longitudinal relaxivity over the commercially available Gd-based molecular agents and the favorable toxicity profile, the 2 nm PAA-OA coated Gd2O3 nanoplates could represent a new class of highly effective T1 MRI contrast agents.Molecular-based contrast agents for magnetic resonance imaging (MRI) are often characterized by insufficient relaxivity, thus requiring the systemic injection of high doses to induce sufficient contrast enhancement at the target site. In this work, gadolinium oxide (Gd2O3) nanoplates are produced via a thermal decomposition method. The nanoplates have a core diameter varying from 2 to 22 nm, a thickness of 1 to 2 nm and are coated with either an oleic acid bilayer or an octylamine modified poly(acrylic acid) (PAA-OA) polymer layer. For the smaller nanoplates, longitudinal relaxivities (r1) of 7.96 and 47.2 (mM s)-1 were measured at 1.41 T for the oleic acid bilayer and PAA-OA coating, respectively. These values

  16. Characterization of the reaction products and precipitates at the interface of carbon fiber reinforced magnesium–gadolinium composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yaping; Jiang, Longtao, E-mail: longtaojiang@163.com; Chen, Guoqin

    2016-03-15

    In the present work, carbon fiber reinforced magnesium-gadolinium composite was fabricated by pressure infiltration method. The phase composition, micro-morphology, and crystal structure of reaction products and precipitates at the interface of the composite were investigated. Scanning electron microscopy and energy dispersive spectroscopy analysis revealed the segregation of gadolinium element at the interface between carbon fiber and matrix alloy. It was shown that block-shaped Gd4C5, GdC2 and nano-sized Gd2O3 were formed at the interface during the fabrication process due to the interfacial reaction. Furthermore, magnesium-gadolinium precipitates including needle-like Mg5Gd (or Mg24Gd5) and thin plate-shaped long period stacking-ordered phase, were also observedmore » at the interface and in the matrix near the interface. The interfacial microstructure and bonding mode were influenced by these interfacial products, which were beneficial for the improvement of the interfacial bonding strength. - Highlights: • Gadolinium element segregated on the surface of carbon fibers. • Block-shaped Gd{sub 4}C{sub 5} and GdC{sub 2} were formed at the interface via chemical reaction. • Gadolinium and oxygen reacted at the interface and formed nano-scaled Gd{sub 2}O{sub 3}. • The precipitates formed in the interface were identified to be Mg{sub 5}Gd (or Mg{sub 24}Gd{sub 5}) and plate-shaped long period stacking-ordered phase.« less

  17. Cardiovascular Biology of the Incretin System

    PubMed Central

    Ussher, John R.; Drucker, Daniel J.

    2012-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone that enhances glucose-stimulated insulin secretion and exerts direct and indirect actions on the cardiovascular system. GLP-1 and its related incretin hormone, glucose-dependent insulinotropic polypeptide (GIP), are rapidly inactivated by the enzyme dipeptidyl peptidase 4 (DPP-4), a key determinant of incretin bioactivity. Two classes of medications that enhance incretin action, GLP-1R agonists and DPP-4 inhibitors, are used for the treatment of type 2 diabetes mellitus (T2DM). We review herein the cardiovascular biology of GLP-1R agonists and DPP-4 inhibitors, including direct and indirect effects on cardiomyocytes, blood vessels, adipocytes, the control of blood pressure and postprandial lipoprotein secretion. Both GLP-1R activation and DPP-4 inhibition exert multiple cardioprotective actions in preclinical models of cardiovascular dysfunction, and short term studies in human subjects appear to demonstrate modest yet beneficial actions on cardiac function in subjects with ischemic heart disease. Incretin-based agents control body weight, improve glycemic control with a low risk of hypoglycemia, decrease blood pressure, inhibit the secretion of intestinal chylomicrons, and reduce inflammation in preclinical studies. Nevertheless, there is limited information on the cardiovascular actions of these agents in patients with diabetes and established cardiovascular disease. Hence, a more complete understanding of the cardiovascular risk:benefit ratio of incretin-based therapies will require completion of long term cardiovascular outcome studies currently underway in patients with T2DM. PMID:22323472

  18. Compressed sensing for rapid late gadolinium enhanced imaging of the left atrium: A preliminary study.

    PubMed

    Kamesh Iyer, Srikant; Tasdizen, Tolga; Burgon, Nathan; Kholmovski, Eugene; Marrouche, Nassir; Adluru, Ganesh; DiBella, Edward

    2016-09-01

    Current late gadolinium enhancement (LGE) imaging of left atrial (LA) scar or fibrosis is relatively slow and requires 5-15min to acquire an undersampled (R=1.7) 3D navigated dataset. The GeneRalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) based parallel imaging method is the current clinical standard for accelerating 3D LGE imaging of the LA and permits an acceleration factor ~R=1.7. Two compressed sensing (CS) methods have been developed to achieve higher acceleration factors: a patch based collaborative filtering technique tested with acceleration factor R~3, and a technique that uses a 3D radial stack-of-stars acquisition pattern (R~1.8) with a 3D total variation constraint. The long reconstruction time of these CS methods makes them unwieldy to use, especially the patch based collaborative filtering technique. In addition, the effect of CS techniques on the quantification of percentage of scar/fibrosis is not known. We sought to develop a practical compressed sensing method for imaging the LA at high acceleration factors. In order to develop a clinically viable method with short reconstruction time, a Split Bregman (SB) reconstruction method with 3D total variation (TV) constraints was developed and implemented. The method was tested on 8 atrial fibrillation patients (4 pre-ablation and 4 post-ablation datasets). Blur metric, normalized mean squared error and peak signal to noise ratio were used as metrics to analyze the quality of the reconstructed images, Quantification of the extent of LGE was performed on the undersampled images and compared with the fully sampled images. Quantification of scar from post-ablation datasets and quantification of fibrosis from pre-ablation datasets showed that acceleration factors up to R~3.5 gave good 3D LGE images of the LA wall, using a 3D TV constraint and constrained SB methods. This corresponds to reducing the scan time by half, compared to currently used GRAPPA methods. Reconstruction of 3D LGE images

  19. Simple method for quantification of gadolinium magnetic resonance imaging contrast agents using ESR spectroscopy.

    PubMed

    Takeshita, Keizo; Kinoshita, Shota; Okazaki, Shoko

    2012-01-01

    To develop an estimation method of gadolinium magnetic resonance imaging (MRI) contrast agents, the effect of concentration of Gd compounds on the ESR spectrum of nitroxyl radical was examined. A solution of either 4-oxo-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPONE) or 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPOL) was mixed with a solution of Gd compound and the ESR spectrum was recorded. Increased concentration of gadolinium-diethylenetriamine pentaacetic acid chelate (Gd-DTPA), an MRI contrast agent, increased the peak-to-peak line widths of ESR spectra of the nitroxyl radicals, in accordance with a decrease of their signal heights. A linear relationship was observed between concentration of Gd-DTPA and line width of ESR signal, up to approximately 50 mmol/L Gd-DTPA, with a high correlation coefficient. Response of TEMPONE was 1.4-times higher than that of TEMPOL as evaluated from the slopes of the lines. The response was slightly different among Gd compounds; the slopes of calibration curves for acua[N,N-bis[2-[(carboxymethyl)[(methylcarbamoyl)methyl]amino]ethyl]glycinato(3-)]gadolinium hydrate (Gd-DTPA-BMA) (6.22 μT·L/mmol) and gadolinium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid chelate (Gd-DOTA) (6.62 μT·L/mmol) were steeper than the slope for Gd-DTPA (5.45 μT·L/mmol), whereas the slope for gadolinium chloride (4.94 μT·L/mmol) was less steep than that for Gd-DTPA. This method is simple to apply. The results indicate that this method is useful for rough estimation of the concentration of Gd contrast agents if calibration is carried out with each standard compound. It was also found that the plot of the reciprocal square root of signal height against concentrations of contrast agents could be useful for the estimation if a constant volume of sample solution is taken and measured at the same position in the ESR cavity every time.

  20. Implementation of cardiovascular disease prevention in primary health care: enhancing understanding using normalisation process theory.

    PubMed

    Volker, Nerida; Williams, Lauren T; Davey, Rachel C; Cochrane, Thomas; Clancy, Tanya

    2017-02-24

    The reorientation of primary health care towards prevention is fundamental to addressing the rising burden of chronic disease. However, in Australia, cardiovascular disease prevention practice in primary health care is not generally consistent with existing guidelines. The Model for Prevention study was a whole-of-system cardiovascular disease prevention intervention, with one component being enhanced lifestyle modification support and addition of a health coaching service in the general practice setting. To determine the feasibility of translating intervention outcomes into real world practice, implementation work done by stakeholders was examined using Normalisation Process Theory as a framework. Data was collected through interviews with 40 intervention participants and included general practitioners, practice nurses, practice managers, lifestyle advisors and participants. Data analysis was informed by normalisation process theory constructs. Stakeholders were in agreement that, while prevention is a key function of general practice, it was not their usual work. There were varying levels of engagement with the intervention by practice staff due to staff interest, capacity and turnover, but most staff reconfigured their work for required activities. The Lifestyle Advisors believed staff had varied levels of interest in and understanding of, their service, but most staff felt their role was useful. Patients expanded their existing relationships with their general practice, and most achieved their lifestyle modification goals. While the study highlighted the complex nature of the change required, many of the new or enhanced processes implemented as part of the intervention could be scaled up to improve the systems approach to prevention. Overcoming the barriers to change, such as the perception of CVD prevention as a 'hard sell', is going to rely on improving the value proposition for all stakeholders. The study provided a detailed understanding of the work

  1. Measurement of gadolinium retention: current status and review from an applied radiation physics perspective.

    PubMed

    Gräfe, James L; McNeill, Fiona E

    2018-06-28

    This article briefly reviews the main measurement techniques for the non-invasive detection of residual gadolinium (Gd) in those exposed to gadolinium-based contrast agents (GBCAs). Approach and Main results: The current status of in vivo Gd measurement is discussed and is put into the context of concerns within the radiology community. The main techniques are based on applied atomic/nuclear medicine utilizing the characteristic atomic and nuclear spectroscopic signature of Gd. The main emission energies are in the 40-200 keV region and require spectroscopic detectors with good energy resolution. The two main techniques, prompt gamma neutron activation analysis and x-ray fluorescence, provide adequate detection limits for in vivo measurement, whilst delivering a low effective radiation dose on the order of a few µSv. Gadolinium is being detected in measureable quantities in people with healthy renal function who have received FDA approved GBCAs. The applied atomic/nuclear medicine techniques discussed in this review will be useful in determining the significance of this retention, and will help on advising future administration protocols.

  2. Heavy metal staining, a comparative assessment of gadolinium chloride and osmium tetroxide for inner ear labyrinthine contrast enhancement using X-ray microtomography.

    PubMed

    Wong, Christopher C; Curthoys, Ian S; O'Leary, Stephen J; Jones, Allan S

    2013-01-01

    The use of both gadolinium chloride (GdCl(3)) and osmium tetroxide (OsO(4)) allowed for the visualization of the membranous labyrinth and other intralabyrinthine structures, at different intensities, as compared with the control sample. This initial comparison shows the advantages of GdCl(3) in radiological assessments and OsO(4) in more detailed anatomical studies and pathways of labyrinthine pathogenesis using X-ray microtomography (microCT). To assess an improved OsO(4) staining protocol and compare the staining affinities against GdCl(3). Guinea pig temporal bones were stained with either GdCl(3) (2% w/v) for 7 days or OsO(4) (2% w/v) for 3 days, and scanned in a microCT system. The post-scanned datasets were then assessed in a 3D rendering program. The enhanced soft tissue contrast as presented in the temporal bones stained with either GdCl(3) or OsO(4) allowed for the membranous labyrinth to be visualized throughout the whole specimen. GdCl(3)-stained specimens presented more defined contours of the bone profile in the radiographs, while OsO(4)-stained specimens provided more anatomical detail of individual intralabyrinthine structures, hence allowing spatial relationships to be visualized with ease in a 3D rendering context and 2D axial slice images.

  3. Revisiting the Pharmacokinetic Profiles of Gadolinium-Based Contrast Agents: Differences in Long-Term Biodistribution and Excretion.

    PubMed

    Lancelot, Eric

    2016-11-01

    Gadolinium-based contrast agents (GBCAs) have been used for years for magnetic resonance imaging examinations. Because of their rapid blood clearance, they were considered as very safe products until some of them were shown to induce nephrogenic systemic fibrosis in patients with renal failure and hypersignals on T1-weighted unenhanced brain scans of patients with normal renal function. To date, these adverse effects have been related almost exclusively to the use of low-stability linear agents, which are more prone to release free gadolinium. The aim of the present meta-analysis was to ascertain the existence of a deep compartment for gadolinium storage in the body and to assess whether all the GBCAs present the same toxicokinetic profile. Applying a systematic literature search methodology, all clinical and preclinical studies reporting time-dependent plasma concentrations and renal excretion data of gadolinium were identified and analyzed. Since the individual data were not available, the analysis focused on the average values per groups of subjects or animals, which had received a given GBCA at a given dose. The rate constants of the distribution phase (α), rapid elimination phase (β), and residual excretion phase (γ) of gadolinium were determined in each group from the plasma concentration (Cp) time curves and the relative urinary excretion rate (rER) time curves, taking the 2-hour time point as a reference. Moreover, as bone may represent a reservoir for long-term gadolinium accumulation and slow release into the blood stream, the time curves of the relative concentration in the bone (rCB) of Gd-labeled GBCAs in mice or rats were analyzed taking day 1 concentrations as a reference. The ratio of gadolinium concentrations in the bone marrow (CBM) as compared with the bone (CB) was also calculated. The relative urinary excretion rate (rER) plots revealed a prolonged residual excretion phase of gadolinium in healthy volunteers, consistent with the existence of

  4. The feasibility of in vivo quantification of bone-gadolinium in humans by prompt gamma neutron activation analysis (PGNAA) following gadolinium-based contrast-enhanced MRI

    NASA Astrophysics Data System (ADS)

    Mostafaei, F.; McNeill, F. E.; Chettle, D. R.; Noseworthy, M. D.; Prestwich, W. V.

    2015-11-01

    The feasibility of using a 238Pu/Be-based in vivo prompt γ-ray neutron activation analysis (IVNAA) system, previously successfully used for measurements of muscle, for the detection of gadolinium (Gd) in bone was presented. Gd is extensively used in contrast agents in MR imaging. We present phantom measurement data for the measurement of Gd in the tibia. Gd has seven naturally occurring isotopes, of which two have extremely large neutron capture cross sections; 155Gd (14.8% natural abundance (NA), σ= 60,900 barns) and 157Gd (15.65% NA, σ= 254,000 barns). Our previous work focused on muscle but this only informs about the short term kinetics of Gd. We studied the possibility of measuring bone, as it may be a long term storage site for Gd. A human simulating bone phantom set was developed. The phantoms were doped with seven concentrations of Gd of concentrations 0.0, 25, 50, 75, 100, 120 and 150 ppm. Additional elements important for neutron activation analysis, Na, Cl and Ca, were also included to create an overall elemental composition consistent with Reference Man. The overall conclusion is that the potential application of this Pu-Be-based prompt in vivo NAA for the monitoring of the storage and retention of Gd in bone is not feasible.

  5. Diverse patterns of perilymphatic space enhancement in the rat inner ear after intratympanic injection of two different types of gadolinium: a 9.4-tesla magnetic resonance study.

    PubMed

    Park, Mina; Lee, Ho Sun; Choi, Jun-Jae; Kim, Hyeonjin; Lee, Jun Ho; Oh, Seung Ha; Suh, Myung-Whan

    2015-01-01

    To compare the quality of perilymphatic enhancement in the rat inner ear after intratympanic injection of two types of gadolinium with a 9.4-tesla micro-MRI. Gadolinium was injected into the middle ear in 6 Sprague-Dawley rats via the transtympanic route. The left ear was injected with Gd-DO3A-butrol first, and then the right ear was injected with Gd-DOTA. MR images of the inner ear were acquired 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, and 4 h after intratympanic (IT) injection using an Agilent MRI system 9.4T/160/AS. The normalized signal intensity was quantitatively analyzed at the scala vestibuli (SV), scala media, and scala tympani (ST) using a Marosis M-view system. Then the normalized signal intensities (SIs) were compared between the two contrast agents. For Gd-DO3A-butrol, the SI was as low as 1.0-1.5 throughout 1-4 h at the SV and ST of the basal turn. The maximum SI was 1.5 ± 0.5 at the SV (2 h) and 1.3 ± 0.5 at the ST (2 h). For Gd-DOTA, the 1-hour postinjection SI at the basal turn was 2.5 ± 0.5 at the SV, 1.6 ± 0.3 at the ST, and 1.2 ± 0.3 at the scala media. In the apical turn, the maximum SI was reached after 2.5 h. The maximum SI in the apical turn was 1.8 ± 0.4 at the SV (3.5 h), 1.8 ± 0.4 at the ST (4 h), and 1.4 ± 0.3 at the scala media (4 h). We were able to clearly visualize and separate the ST and SV using IT Gd and 9.4-tesla micro-MRI. We recommend using Gd-DO3A-butrol over Gd-DOTA and to perform the MRI 2.5 h after using IT Gd in the rat inner ear. © 2015 S. Karger AG, Basel.

  6. Identifying the Etiology: A Systematic Approach Using Delayed Enhancement Cardiovascular Magnetic Resonance

    PubMed Central

    Senthilkumar, Annamalai; Majmudar, Maulik D.; Shenoy, Chetan; Kim, Han W.; Kim, Raymond J.

    2009-01-01

    SYNOPSIS In patients with heart failure, treatment and survival are directly related to the etiology. Clinically, as a practical first step, patients are classified as having either ischemic or nonischemic cardiomyopathy and this delineation is usually based on the presence or absence of epicardial coronary artery disease. However, this approach does not account for patients with nonischemic cardiomyopathy who also have coronary artery disease, which may be either incidental or partly contributing to myocardial dysfunction (mixed cardiomyopathy). By allowing direct assessment of the myocardium, delayed enhancement cardiovascular magnetic resonance (DE-CMR) may aid in addressing these conundrums. In this article we explore how DE-CMR may be helpful in identifying ischemic and nonischemic myopathic processes and detail a systematic approach using this technique to determine the etiology of cardiomyopathy. PMID:19564013

  7. Non-Hypervascular Hypointense Hepatic Nodules during the Hepatobiliary Phase of Gadolinium-Ethoxybenzyl-Diethylenetriamine Pentaacetic Acid-Enhanced MRI as a Risk Factor of Intrahepatic Distant Recurrence after Radiofrequency Ablation of Hepatocellular Carcinoma.

    PubMed

    Iwamoto, Takayuki; Imai, Yasuharu; Igura, Takumi; Kogita, Sachiyo; Sawai, Yoshiyuki; Fukuda, Kazuto; Yamaguchi, Yoshitaka; Matsumoto, Yasushi; Nakahara, Masanori; Morimoto, Osakuni; Ohashi, Hiroshi; Fujita, Norihiko; Kudo, Masatoshi; Takehara, Tetsuo

    2017-01-01

    Non-hypervascular hypointense hepatic nodules during the hepatobiliary phase of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced MRI have been reported to be associated with intrahepatic distant recurrence (IDR) after hepatectomy or radiofrequency ablation (RFA) for hepatocellular carcinoma (HCC). IDR is categorized into hypervascular transformation of non-hypervascular hypointense hepatic nodules and new intrahepatic recurrence. The aim of this study was to evaluate the relationship between non-hypervascular hypointense hepatic nodules on Gd-EOB-DTPA-enhanced MRI and IDR after RFA, focusing on new intrahepatic recurrence. Ninety-one consecutive patients with 115 HCCs undergoing pretreatment Gd-EOB-DTPA-enhanced MRI and RFA for treatment of HCC were enrolled. Of the 91 patients who underwent RFA for HCC, 24 had non-hypervascular hypointense hepatic nodules on pretreatment Gd-EOB-DTPA-enhanced MRI. Recurrences were observed in 15 and 19 patients with and without non-hypervascular hypointense hepatic nodules, respectively. Of the 15 recurrences in patients with non-hypervascular hypointense hepatic nodules, 10 patients had new intrahepatic recurrences. The cumulative incidence of new intrahepatic recurrence was significantly higher in patients with non-hypervascular hypointense hepatic nodules than in those without non-hypervascular hypointense hepatic nodules (p < 0.0001). Multivariate analysis revealed that the presence of non-hypervascular hypointense hepatic nodules and Child-Pugh score were independent risk factors for new intrahepatic recurrence. Non-hypervascular hypointense hepatic nodules during the hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI were a useful predictive factor for IDR, particularly for new intrahepatic recurrence, after RFA. © 2017 S. Karger AG, Basel.

  8. Gadolinium prevents high airway pressure-induced permeability increases in isolated rat lungs.

    PubMed

    Parker, J C; Ivey, C L; Tucker, J A

    1998-04-01

    To determine the initial signaling event in the vascular permeability increase after high airway pressure injury, we compared groups of lungs ventilated at different peak inflation pressures (PIPs) with (gadolinium group) and without (control group) infusion of 20 microM gadolinium chloride, an inhibitor of endothelial stretch-activated cation channels. Microvascular permeability was assessed by using the capillary filtration coefficient (Kfc), a measure of capillary hydraulic conductivity. Kfc was measured after ventilation for 30-min periods with 7, 20, and 30 cmH2O PIP with 3 cmH2O positive end-expiratory pressure and with 35 cmH2O PIP with 8 cmH2O positive end-expiratory pressure. In control lungs, Kfc increased significantly to 1.8 and 3.7 times baseline after 30 and 35 cmH2O PIP, respectively. In the gadolinium group, Kfc was unchanged from baseline (0.060 +/- 0.010 ml . min-1 . cmH2O-1 . 100 g-1) after any PIP ventilation period. Pulmonary vascular resistance increased significantly from baseline in both groups before the last Kfc measurement but was not different between groups. These results suggest that microvascular permeability is actively modulated by a cellular response to mechanical injury and that stretch-activated cation channels may initiate this response through increases in intracellular calcium concentration.

  9. Gadolinium released by the linear gadolinium-based contrast-agent Gd-DTPA decreases the activity of human epithelial Na+ channels (ENaCs).

    PubMed

    Knoepp, Fenja; Bettmer, Joerg; Fronius, Martin

    2017-05-01

    Gadolinium-based-contrast-agents (GBCAs) are used for magnetic-resonance-imaging and associated with renal and cardiovascular adverse reactions caused by released Gd 3+ ions. Gd 3+ is also a modulator of mechano-gated ion channels, including the epithelial Na + channel (ENaC) that is expressed in kidney epithelium and the vasculature. ENaC is important for salt-/water homeostasis and blood pressure regulation and a likely target of released Gd 3+ from GBCAs causing the above-mentioned adverse reactions. Therefore this study examined the effect of Gd 3+ and GBCAs on ENaC's activity. Human αβγENaC was expressed in Xenopus laevis oocytes and exposed to Gd 3+ , linear (Gd-DTPA, Magnevist) or cyclic (Dotarem) GBCAs. Transmembrane ion-currents (I M ) were recorded by the two-electrode-voltage-clamp technique and Gd 3+ -release by Gd-DTPA was confirmed by inductively coupled plasma-mass spectrometry. Gd 3+ exerts biphasic effects on ENaC's activity: ≤0.3mmol/l decreased I M which was preventable by DEPC (modifies histidines). Strikingly Gd 3+ ≥0.4mmol/l increased I M and this effect was prevented by cysteine-modifying MTSEA. Linear Gd-DTPA and Magnevist mimicked the effect of ≤0.3mmol/l Gd 3+ , whereas the chelator DTPA showed no effect. Gd 3+ and Gd-DTPA increased the IC 50 for amiloride, but did not affect ENaC's self-inhibition. Interestingly, cyclic Gd-DOTA (Dotarem) increased I M to a similar extent as its chelator DOTA, suggesting that the chelator rather than released Gd 3+ is responsible for this effect. These results confirm Gd 3+ -release from linear Gd-DTPA and indicate that the released Gd 3+ amount is sufficient to interfere with ENaC's activity to provide putative explanations for GBCA-related adverse effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Gadolinium Ethoxybenzyl Diethylenetriamine Pentaacetic Acid (Gd-EOB-DTPA)-Enhanced Magnetic Resonance Imaging and Multidetector-Row Computed Tomography for the Diagnosis of Hepatocellular Carcinoma: A Systematic Review and Meta-analysis.

    PubMed

    Ye, Feng; Liu, Jun; Ouyang, Han

    2015-08-01

    The purpose of this meta-analysis was to compare the diagnostic accuracy of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) and multidetector-row computed tomography (MDCT) for hepatocellular carcinoma (HCC).Medline, Cochrane, EMBASE, and Google Scholar databases were searched until July 4, 2014, using combinations of the following terms: gadoxetic acid disodium, Gd-EOB-DTPA, multidetector CT, contrast-enhanced computed tomography, and magnetic resonance imaging. Inclusion criteria were as follows: confirmed diagnosis of primary HCC by histopathological examination of a biopsy specimen; comparative study of MRI using Gd-EOB-DTPA and MDCT for diagnosis of HCC; and studies that provided quantitative outcome data. The pooled sensitivity and specificity of the 2 methods were compared, and diagnostic accuracy was assessed with alternative-free response receiver-operating characteristic analysis.Nine studies were included in the meta-analysis, and a total of 1439 lesions were examined. The pooled sensitivity and specificity for 1.5T MRI were 0.95 and 0.96, respectively, for 3.0T MRI were 0.91 and 0.96, respectively, and for MDCT were 0.74 and 0.93, respectively. The pooled diagnostic odds ratio for 1.5T and 3.0T MRI was 242.96, respectively, and that of MDCT was 33.47. To summarize, Gd-EOB-DTPA-enhanced MRI (1.5T and 3.0T) has better diagnostic accuracy for HCC than MDCT.

  11. Gadolinium-enhanced versus time-of-flight magnetic resonance angiography: what is the benefit of contrast enhancement in evaluating carotid stenosis?

    PubMed

    Muhs, Bart E; Gagne, Paul; Wagener, Jael; Baker, Jessica; Ortega, Marta Ramirez; Adelman, Mark A; Cayne, Neal S; Rockman, Caron B; Maldonado, Thomas

    2005-11-01

    Accurate patient selection based on preoperative imaging is imperative to good risk reduction in patients undergoing carotid endarterectomy (CEA). The goal of this study was to assess the accuracy of gadolinium-enhanced magnetic resonance angiography (GE MRA) versus time-of-flight (TOF) MRA in the work-up of patients undergoing CEA. Patients undergoing CEA between 1999 and 2001 were identified from a prospectively maintained institutional database. GE or TOF MRA was obtained on extracranial carotid arteries (n = 319) in patients undergoing CEA. Stenosis on MRA images was graded as moderate (n = 76) or severe (n = 243) by an attending radiologist who was blind to duplex results. Duplex imaging was performed in an Intersocietal Commission for the Accreditation of Vascular Labs (ICAVL) accredited lab, and stenosis was stratified as moderate (50-79%, n = 76) or high (80-99%, n = 243) grade using University of Washington criteria. For each patient, the degree of stenosis as determined by MRA (GE versus TOF) was compared to percent stenosis on duplex. For moderate-grade lesions, GE MRA concurred with duplex in 11.1% (4/36), underestimated in 2.8% (1/36), and overestimated in 86.1% (31/36) of carotid arteries imaged. TOF MRA concurred with duplex in 35% (14/40), underestimated in 0% (0/40), and overestimated in 65% (26/40) of carotid arteries. High-grade lesions demonstrated improved concordance between MRA and duplex. For these lesions, GE MRA concurred with duplex in 95.6% (130/136) of carotid arteries imaged, never overestimated stenosis (0/136), and underestimated in 4.4% (6/136). TOF MRA concurred with duplex 96.3% (103/107), overestimated stenosis as an occlusion in 0.9% (1/107), and underestimated in 2.8% (3/107). In addition to neck visualization, the GE technique allowed simultaneous aortic arch imaging. This was accomplished in 79.1% (136/172) of all GE MRAs. Simultaneous aortic arch imaging was not technically feasible with TOF MRA. For moderate-grade lesions

  12. GADOLINIUM(Gd)-BASED and Ion Oxide Nanoparticle Contrast Agents for Pre-Clinical and Clinical Magnetic Resonance Imaging (mri) Research

    NASA Astrophysics Data System (ADS)

    Ng, Thian C.

    2012-06-01

    It is known that one strength of MRI is its excellent soft tissue discrimination. It naturally provides sufficient contrast between the structural differences of normal and pathological tissues, their spatial extent and progression. However, to further extend its applications and enhance even more contrast for clinical studies, various Gadolinium (Gd)-based contrast agents have been developed for different organs (brain strokes, cancer, cardio-MRI, etc). These Gd-based contrast agents are paramagnetic compounds that have strong T1-effect for enhancing the contrast between tissue types. Gd-contrast can also enhance magnetic resonance angiography (CE-MRA) for studying stenosis and for measuring perfusion, vascular susceptibility, interstitial space, etc. Another class of contrast agents makes use of ferrite iron oxide nanoparticles (including Superparamagnetic Ion Oxide (SPIO) and Ultrasmall Superparamagnetic Iron Oxide (USPIO)). These nanoparticles have superior magnetic susceptibility effect and produce a drop in signal, namely in T2*-weighted images, useful for the determination of lymph nodes metastases, angiogenesis and arteriosclerosis plaques.

  13. Evaluation of the vascular anatomy in potential living kidney donors with gadolinium-enhanced magnetic resonance angiography: comparison with digital subtraction angiography and intraoperative findings.

    PubMed

    Asgari, Majid A; Dadkhah, Farid; Ghadian, Ali R; Razzaghi, Mohammad R; Noorbala, Mohammad H; Amini, Erfan

    2011-01-01

    X-ray contrast arteriography has traditionally been used for pre-operative evaluation in living kidney donors. However, magnetic resonance angiography (MRA) offers a non-invasive alternative, which has been considered to be less accurate. This study was performed to determine whether MRA in the pre-operative investigation of living kidney donors provides sufficient information. From December 2005 to December 2007, 173 potential live donors were evaluated in this study. Donors performed digital subtraction angiography (DSA) and those with one or more accessory arteries at least on one side recruited for further evaluation with three-dimensional gadolinium-enhanced MRA. A total of 30 donors constituted the study population. When compared with DSA as the reference method, MRA detected 20 of 36 renal accessory arteries which indicates a sensitivity of 55.6%. The difference between MRA and DSA in identifying accessory renal arteries was significant (p-value <0.001). Considering intraoperative findings as the standard of reference, MRA depicted correctly four of six (66.7%) accessory arteries on the transplanted kidneys. MRA has the advantage of avoiding exposure to ionizing radiation and is non-invasive. These are important considerations in pre-operative evaluation of a generally healthy donor population. However, MRA provides suboptimal accuracy in detecting small accessory arteries. © 2010 John Wiley & Sons A/S.

  14. Racism and cardiovascular disease: implications for nursing.

    PubMed

    Jackson, Jennifer; McGibbon, Elizabeth; Waldron, Ingrid

    2013-01-01

    The social determinants of health (SDH) are recognized as a prominent influence on health outcomes across the lifespan. Racism is identified as a key SDH. In this article, the authors describe the concept of racism as an SDH, its impact in discriminatory actions and inactions, and the implications for cardiovascular nurses. Although research in Canada on the links among racism, stress, and cardiovascular disease is limited, there is growing evidence about the stress of racism and its long-term impact on cardiovascular health. The authors discuss how cardiovascular nursing could be enhanced through an understanding of racism-related stress, and race-based differences in cardiovascular care. The authors conclude with strategies for action to address this nursing concern.

  15. Contrast enhanced liver MRI in patients with primary sclerosing cholangitis: inverse appearance of focal confluent fibrosis on delayed phase MR images with hepatocyte specific versus extracellular gadolinium based contrast agents.

    PubMed

    Husarik, Daniela B; Gupta, Rajan T; Ringe, Kristina I; Boll, Daniel T; Merkle, Elmar M

    2011-12-01

    To assess the enhancement pattern of focal confluent fibrosis (FCF) on contrast-enhanced hepatic magnetic resonance imaging (MRI) using hepatocyte-specific (Gd-EOB-DTPA) and extracellular (ECA) gadolinium-based contrast agents in patients with primary sclerosing cholangitis (PSC). After institutional review board approval, 10 patients with PSC (6 male, 4 female; 33-61 years) with 13 FCF were included in this retrospective study. All patients had a Gd-EOB-DTPA-enhanced liver MRI exam, and a comparison ECA-enhanced MRI. On each T1-weighted dynamic dataset, the signal intensity (SI) of FCF and the surrounding liver as well as the paraspinal muscle (M) were measured. In the Gd-EOB-DTPA group, hepatocyte phase images were also included. SI FCF/SI M, SI liver/SI M, and [(SI liver - SI FCF)/SI liver] were compared between the different contrast agents for each dynamic phase using the paired Student's t-test. There was no significant difference in SI FCF/SI M in all imaging phases. SI liver/SI M was significantly higher for the Gd-EOB-DTPA group in the delayed phase (P < .001), whereas there was no significant difference in all other imaging phases. In the Gd-EOB-DTPA group, mean [(SI liver - SI FCF)/SI liver] were as follows (values for ECA group in parentheses): unenhanced phase: 0.26 (0.26); arterial phase: 0.01 (-0.31); portal venous phase (PVP): -0.05 (-0.26); delayed phase (DP): 0.14 (-0.54); and hepatocyte phase: 0.26. Differences were significant for the DP (P < .001). On delayed phase MR images the FCF-to-liver contrast is reversed with the lesions appearing hyperintense on ECA enhanced images and hypointense on Gd-EOB-DTPA-enhanced images. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.

  16. Helium defectoscopy of cerium gadolinium ceramics Ce0.8Gd0.2O1.9 with a submicrocrystalline structure in the impurity disorder region

    NASA Astrophysics Data System (ADS)

    Koromyslov, A. V.; Zhiganov, A. N.; Kovalenko, M. A.; Kupryazhkin, A. Ya.

    2013-12-01

    The concentration of impurity anion vacancies formed upon the dissociation of gadolinium-vacancy complexes has been determined using helium defectoscopy of the cerium gadolinium ceramics Ce0.8Gd0.2O1.9 with a submicrocrystalline structure in the temperature range T = 740-1123 K and at saturation pressures ranging from 0.05 to 15 MPa. It has been found that the energy of dissociation of gadoliniumvacancy complexes is E {eff/ D }= 0.26 ± 0.06 eV, and the energy of dissolution of helium in anion vacancies in the impurity disorder region is E P = -0.31 ± 0.09 eV. The proposed mechanism of dissolution has been confirmed by the investigation of the electrical conductivity of the cerium gadolinium ceramics, as well as by the high-speed molecular dynamics simulation of the dissociation of gadolinium-vacancy complexes. It has been assumed that a decrease in the effective dissolution energy in comparison with the results of the previously performed low-temperature investigations is caused by the mutual repulsion of vacancies formed upon the dissociation of gadolinium-vacancy complexes in highly concentrated solutions of gadolinium in CeO2 with increasing temperature.

  17. Light deflection in gadolinium molybdate ferroelastic crystals

    NASA Astrophysics Data System (ADS)

    Staniorowski, Piotr; Bornarel, Jean

    2000-02-01

    The deflection of a He-Ne light beam by polydomain gadolinium molybdate (GMO) crystals has been studied with respect to incidence angle icons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> i on the sample at room temperature. The A and B deflected beams do not cross each other during the icons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> i variation, in contrast to results and calculations previously published. The model using the Fresnel equation confirms this result. The model presented is more accurate for numerical calculation than that using the Huygens construction.

  18. The benefits of ribose in cardiovascular disease.

    PubMed

    Pauly, D F; Johnson, C; St Cyr, J A

    2003-02-01

    Cardiovascular disease still ranks as the leading cause of death in men and women. Adults have tried to lower their risk of cardiovascular disease by improving their diet, quitting smoking, controlling blood pressure and exercising regularly. Additionally, many adults have turned to nutriceutical or natural products. Myocardial ischemia, produces a depression in myocardial tissue levels of high energy compounds, along with a compromise in myocardial function. Ribose, a naturally occurring sugar, has been extensively investigated, both in animal and clinical studies, as an agent to enhance the recovery of these depressed energy compounds. Results of these studies have been promising in enhancing the recovery of these energy molecules along with an improvement in myocardial function. Therefore, ribose should be considered as a potential agent in the treatment of ischemic cardiovascular disease.

  19. Controlled intracellular self-assembly of gadolinium nanoparticles as smart molecular MR contrast agents.

    PubMed

    Cao, Chun-Yan; Shen, Ying-Ying; Wang, Jian-Dong; Li, Li; Liang, Gao-Lin

    2013-01-01

    Herein we developed a new "smart" Gd-based MR contrast agent (i.e., 1) which is susceptive to furin, a protease overexpressed in tumor. Under the action of furin, 1 condenses to form dimers (1-Ds) and the latter self-assemble into gadolinium nanparticles (Gd-NPs). Relaxivity of 1-D is more than 2 folds of those of 1 and magnevist at 1.5 T, and 1.4 folds of that of 1 at 3 T. Intracellular condensation of 1 in furin-overexpressed MDA-MB-468 cells was proven with direct two-photon laser microscopy (TPLM) fluorescence imaging of the cells incubated with the europium analog of 1 (i.e., 2). Intracellular Gd-NPs of 1 were uncovered and characterized for the first time. MRI of MDA-MB-468 tumors showed that 1 has enhanced MR contrast within the tumors than that of its scrambled control 1-Scr.

  20. T1 mapping using saturation recovery single-shot acquisition at 3-tesla magnetic resonance imaging in hypertrophic cardiomyopathy: comparison to late gadolinium enhancement.

    PubMed

    Ogawa, Ryo; Kido, Tomoyuki; Nakamura, Masashi; Kido, Teruhito; Kurata, Akira; Uetani, Teruyoshi; Ogimoto, Akiyoshi; Miyagawa, Masao; Mochizuki, Teruhito

    2017-03-01

    We evaluated the T1 values of segments and slices and the reproducibility in healthy controls, using saturation recovery single-shot acquisition (SASHA) at 3T magnetic resonance imaging. Moreover, we examined the difference in T1 values between hypertrophic cardiomyopathy (HCM) and healthy controls, and compared those with late gadolinium enhancement (LGE). Twenty-one HCM patients and 10 healthy controls underwent T1 mapping before and after contrast administration. T1 values were measured in 12 segments. Native T1 values were significantly longer in HCM than in healthy controls [1373 ms (1312-1452 ms) vs. 1279 ms (1229-1326 ms); p < 0.0001]. Even in HCM segments without LGE, native T1 values were significantly longer than in healthy control segments [1366 ms (1300-1439 ms) vs. 1279 ms (1229-1326 ms); p < 0.0001]. Using a cutoff value of 1327 ms for septal native T1 values, we differentiated between HCM and healthy controls with 95% sensitivity, 90% specificity, 94% accuracy, and an area under the curve of 0.95. Native T1 values using a SASHA at 3T could differentiate HCM from healthy controls. Moreover, native T1 values have the potential to detect abnormal myocardium that cannot be identified adequately by LGE in HCM.

  1. Suppression of Rabbit VX‐2 Subcutaneous Tumor Growth by Gadolinium Neutron Capture Therapy

    PubMed Central

    Tokita, Nobuhiko; Tokuuye, Koichi; Satoh, Michinao; Churei, Hisahiko; Pechoux, Cécile Le; Kobayashi, Tooru; Kanda, Keiji

    1993-01-01

    VX‐2 tumors growing in hind legs of New Zealand White rabbits (n=4) were exposed to thermal neutrons for 40 min (2.1 × 1012 neutrons cm−2) while one of two hind leg tumors of each rabbit was infused continuously with meglumine gadopentetate through a branch of the left femoral artery. The contralateral (uninfused) tumors served as controls. Although no differential distribution of gadolinium was achieved between the tumor and its adjacent normal tissue, the gadolinium concentration in the infused tumor was approximately 5–6 fold higher than that in the contralateral tumor. Growth of gadolinium‐infused tumors was significantly inhibited compared to that of control tumors (P<0.05) between the 16th and 23rd days after treatment. PMID:8407547

  2. Gadolinium sulfate modified by formate to obtain optimized magneto-caloric effect.

    PubMed

    Xu, Long-Yang; Zhao, Jiong-Peng; Liu, Ting; Liu, Fu-Chen

    2015-06-01

    Three new Gd(III) based coordination polymers [Gd2(C2H6SO)(SO4)3(H2O)2]n (1), {[Gd4(HCOO)2(SO4)5(H2O)6]·H2O}n (2), and [Gd(HCOO)(SO4)(H2O)]n (3) were obtained by modifying gadolinium sulfate. With the gradual increase of the volume ratio of HCOOH and DMSO in synthesis, the formate anions begin to coordinate with metal centers; this results in the coordination numbers of sulfate anion increasing and the contents of water and DMSO molecules decreasing in target complexes. Accordingly, spin densities both per mass and per volume were enhanced step by step, which are beneficial for the magneto-caloric effect (MCE). Magnetic studies reveal that with the more formate anions present, the larger the negative value of magnetic entropy change (-ΔSm) is. Complex 3 exhibits the largest -ΔSm = 49.91 J kg(-1) K(-1) (189.51 mJ cm(-3) K(-1)) for T = 2 K and ΔH = 7 T among three new complexes.

  3. Major Depressive Disorder is Associated with Attenuated Cardiovascular Reactivity and Impaired Recovery among Those Free of Cardiovascular Disease

    PubMed Central

    Salomon, Kristen; Clift, April; Karlsdóttir, Mardís; Rottenberg, Jonathan

    2008-01-01

    Objective To examine cardiovascular reactivity and recovery to laboratory stress among a naturalistic sample of individuals diagnosed with major depressive disorder (MDD) and healthy control participants. Prospective evidence suggests that MDD confers risk for cardiovascular disease equal to or greater than the risk associated with depressed mood. Enhanced cardiovascular reactivity has been proposed as a mechanism explaining increased risk, but data are inconsistent as to whether depressed individuals exhibit enhanced or attenuated reactivity. Further, few studies have examined appraisal and recovery differences. Design Participants diagnosed with MDD (N = 25) and healthy control participants (N = 25) engaged in a cardiovascular reactivity protocol including two tasks, each followed by a brief recovery period. Main outcome measures Blood pressure, heart rate, pre-ejection period, cardiac output and total peripheral resistance were assessed. Appraisals of tasks were assessed prior to each task. Results Depressed participants exhibited significantly less systolic blood pressure, heart rate and cardiac output reactivity during speech, less heart rate reactivity during mirror tracing and less heart rate recovery after speech and mirror tracing than controls. Depressed participants appraised the tasks as more demanding, threatening, and stressful and reported being less able to cope than controls. Appraisals were related to heart rate reactivity, but appraisals did not mediate the relationship between depression group and reactivity. Conclusion Impaired recovery rather than exaggerated cardiovascular reactivity may partially explain the increased prospective cardiovascular disease risk in depressed individuals. PMID:19290707

  4. Triple dose of gadolinium-DTPA and delayed MRI in patients with benign multiple sclerosis.

    PubMed Central

    Filippi, M; Capra, R; Campi, A; Colombo, B; Prandini, F; Marcianò, N; Gasparotti, R; Comi, G

    1996-01-01

    OBJECTIVES--To evaluate whether a triple dose of gadolinium-DTPA (Gd-DTPA) or delayed MRI increase the number, size, and conspicuousness of enhancing lesions in patients with benign multiple sclerosis. METHODS--T1 weighted brain MRI was carried out on 20 patients with benign multiple sclerosis (expanded disability status scale < 3 with a disease duration > 10 years) in two sessions. In the first session, one scan was obtained before and two scans five to seven minutes and 20-30 minutes after the injection of 0.1 mmol/kg Gd-DTPA (standard dose). In the second session, six to 24 hours later, the same procedure was repeated with 0.3 mmol/kg Gd-DTPA (triple dose). RESULTS--Nine enhancing lesions were found in seven patients (35%) using the standard dose of Gd-DTPA. The numbers of enhancing lesions increased to 13 (P = 0.03) and the number of patients with such lesions to eight (40%) on the delayed standard dose scans. On the early triple dose scans, we found 19 enhancing lesions in 10 patients (50%). The number of enhancing lesions was significantly higher (P = 0.01) than that obtained with the early standard dose. The number of enhancing lesions was 18 and the number of "active" patients 11 (55%) on the delayed triple dose scans. The enhancing areas increased progressively from the early standard dose scans to the delayed triple dose scans. The contrast ratios of the lesions detected in early standard dose scans was lower than those of lesions present in the early (P = 0.01) and delayed (P = 0.04) triple dose scans. CONCLUSIONS--More enhancing lesions were detected in patients with benign multiple sclerosis with both delay of MRI and the use of triple dose of Gd-DTPA suggesting that the amount of inflammation in the lesions of such patients is mild and heterogeneous. Images PMID:8778257

  5. Multifaceted prospects of nanocomposites for cardiovascular grafts and stents

    PubMed Central

    Vellayappan, Muthu Vignesh; Balaji, Arunpandian; Subramanian, Aruna Priyadarshini; John, Agnes Aruna; Jaganathan, Saravana Kumar; Murugesan, Selvakumar; Supriyanto, Eko; Yusof, Mustafa

    2015-01-01

    Cardiovascular disease is the leading cause of death across the globe. The use of synthetic materials is indispensable in the treatment of cardiovascular disease. Major drawbacks related to the use of biomaterials are their mechanical properties and biocompatibility, and these have to be circumvented before promoting the material to the market or clinical setting. Revolutionary advancements in nanotechnology have introduced a novel class of materials called nanocomposites which have superior properties for biomedical applications. Recently, there has been a widespread recognition of the nanocomposites utilizing polyhedral oligomeric silsesquioxane, bacterial cellulose, silk fibroin, iron oxide magnetic nanoparticles, and carbon nanotubes in cardiovascular grafts and stents. The unique characteristics of these nanocomposites have led to the development of a wide range of nanostructured copolymers with appreciably enhanced properties, such as improved mechanical, chemical, and physical characteristics suitable for cardiovascular implants. The incorporation of advanced nanocomposite materials in cardiovascular grafts and stents improves hemocompatibility, enhances antithrombogenicity, improves mechanical and surface properties, and decreases the microbial response to the cardiovascular implants. A thorough attempt is made to summarize the various applications of nanocomposites for cardiovascular graft and stent applications. This review will highlight the recent advances in nanocomposites and also address the need of future research in promoting nanocomposites as plausible candidates in a campaign against cardiovascular disease. PMID:25897223

  6. Survey of gadolinium-based contrast agent utilization among the members of the Society for Pediatric Radiology: a Quality and Safety Committee report.

    PubMed

    Blumfield, Einat; Moore, Michael M; Drake, Mary K; Goodman, Thomas R; Lewis, Kristopher N; Meyer, Laura T; Ngo, Thang D; Sammet, Christina; Stanescu, Arta Luana; Swenson, David W; Slovis, Thomas L; Iyer, Ramesh S

    2017-05-01

    Gadolinium-based contrast agents (GBCAs) have been used for magnetic resonance (MR) imaging over the last three decades. Recent reports demonstrated gadolinium retention in patients' brains following intravenous administration. Since gadolinium is a highly toxic heavy metal, there is a potential for adverse effects from prolonged retention or deposition, particularly in children. For this reason, the Society (SPR) for Pediatric Radiology Quality and Safety committee conducted a survey to evaluate the current status of GBCAs usage among pediatric radiologists. To assess the usage of GBCAs among SPR members. An online 15-question survey was distributed to SPR members. Survey questions pertained to the type of GBCAs used, protocoling workflow, requirement of renal function or pregnancy tests, and various clinical indications for contrast-enhanced MRI examinations. A total of 163 survey responses were compiled (11.1% of survey invitations), the majority of these from academic institutions in the United States. Ninety-four percent reported that MR studies are always or usually protocoled by pediatric radiologists. The most common GBCA utilized by survey respondents were Eovist (60.7%), Ablavar (45.4%), Gadovist (38.7%), Magnevist (34.4%) and Dotarem (32.5%). For several clinical indications, survey responses regarding GBCA administration were concordant with American College of Radiology (ACR) Appropriateness Criteria, including seizures, headache and osteomyelitis. For other indications, including growth hormone deficiency and suspected vascular ring, survey responses revealed potential overutilization of GBCAs when compared to ACR recommendations. Survey results demonstrate that GBCAs are administered judiciously in children, yet there is an opportunity to improve their utilization with the goal of reducing potential future adverse effects.

  7. Study of the Photon Strength Functions for Gadolinium Isotopes with the DANCE Array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dashdorj, D.; Mitchell, G. E.; Baramsai, B.

    2009-03-10

    The gadolinium isotopes are interesting for reactor applications as well as for medicine and astrophysics. The gadolinium isotopes have some of the largest neutron capture cross sections. As a consequence they are used in the control rod in reactor fuel assembly. From the basic science point of view, there are seven stable isotopes of gadolinium with varying degrees of deformation. Therefore they provide a good testing ground for the study of deformation dependent structure such as the scissors mode. Decay gamma rays following neutron capture on Gd isotopes are detected by the DANCE array, which is located at flight pathmore » 14 at the Lujan Neutron Scattering Center at Los Alamos National Laboratory. The high segmentation and close packing of the detector array enable gamma-ray multiplicity measurements. The calorimetric properties of the DANCE array coupled with the neutron time-of-flight technique enables one to gate on a specific resonance of a specific isotope in the time-of-flight spectrum and obtain the summed energy spectrum for that isotope. The singles gamma-ray spectrum for each multiplicity can be separated by their DANCE cluster multiplicity. Various photon strength function models are used for comparison with experimentally measured DANCE data and provide insight for understanding the statistical decay properties of deformed nuclei.« less

  8. Role of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging in the management of hepatocellular carcinoma: consensus at the Symposium of the 48th Annual Meeting of the Liver Cancer Study Group of Japan.

    PubMed

    Kudo, Masatoshi; Matsui, Osamu; Sakamoto, Michiie; Kitao, Azusa; Kim, Tonsok; Ariizumi, Shun-ichi; Ichikawa, Tomoaki; Kobayashi, Satoshi; Imai, Yasuharu; Izumi, Namiki; Fujinaga, Yasunari; Arii, Shigeki

    2013-01-01

    We summarize here the consensus reached at the Symposium of the 48th Annual Meeting of the Liver Cancer Study Group of Japan held in Kanazawa on July 20th and 21st, 2012, on the role of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging (EOB-MRI) in the management of hepatocellular carcinoma (HCC). Currently, dynamic CT is the first choice of imaging modality when HCC is suspected. EOB-MRI is useful for differentiation and definitive diagnosis of HCC when dynamic CT/MRI does not show conclusive findings for HCC. In addition, contrast- enhanced ultrasound with Sonazoid is useful for making a decision on whether or not to treat a hypovascular lesion <1 cm when the nodules are shown with low intensity in the hepatocyte phase of EOB-MRI. Furthermore, EOB-MRI should be performed in selected cases of HCC ultrahigh-risk groups every 3-4 months, or EOB-MRI should be performed at least once at the first visit in all HCC ultrahigh-risk groups. Copyright © 2013 S. Karger AG, Basel.

  9. Recurrent medulloblastoma: Frequency of tumor enhancement on Gd-DTPA MR imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rollins, N.; Mendelsohn, D.; Mulne, A.

    1990-05-01

    Thirty-two children with medulloblastoma were evaluated postoperatively with conventional and gadolinium-enhanced MR imaging. Eleven patients had abnormal cranial MR studies; nine of these had recurrent tumor. In six patients recurrent tumor enhanced with Gd, while in the other three patients recurrent tumor did not enhance. The remaining two patients had areas of abnormal Gd enhancement that were caused by radiation-induced breakdown of the blood-brain barrier rather than by recurrent tumor. This study shows that not all recurrent medulloblastoma enhances and that the absence of Gd enhancement does not necessarily indicate the absence of recurrent tumor.

  10. Recurrent medulloblastoma: Frequency of tumor enhancement on Gd-DTPA MR imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rollins, N.; Mendelsohn, D.; Mulne, A.

    1990-07-01

    Thirty-two children with medulloblastoma were evaluated postoperatively with conventional and gadolinium-enhanced MR imaging. Eleven patients had abnormal cranial MR studies; nine of these had recurrent tumor. In six patients recurrent tumor enhanced with Gd, while in the other three patients recurrent tumor did not enhance. The remaining two patients had areas of abnormal Gd enhancement that were caused by radiation-induced breakdown of the blood-brain barrier rather than by recurrent tumor. This study shows that not all recurrent medulloblastoma enhances and that the absence of Gd enhancement does not necessarily indicate the absence of recurrent tumor.

  11. [Comparing the activity of multiple sclerosis (MS) at the minute and at 20 minutes of gadolinium application in magnetic resonance imaging (MRI) of the brain?

    PubMed

    Saldívar-Uribe, Christina; de la Portilla-Villanueva, Mario Alberto; Esau-Mendoza-García, Alberto

    2017-01-01

    The aim was to compare active disease in patients diagnosed with multiple sclerosis, brain by MRI after gadolinium application at one minute and 20 minutes. A longitudinal, prospective, observational, analytical and comparative study was conducted in 18 patients over 18 years of age diagnosed with multiple sclerosis (MS). An analysis was made for each patient, watching for inflammatory activity in MS lesions, comparing the results to one minute and 20 minutes after the application of gadolinium. For the descriptive analysis, absolute frequencies and percentages were used, as well as means and standard deviations or medians with ranges for the inferential analysis comparing the presence or absence of enhancement in lesions at one minute and 20 minutes; the exact probability test used was Fisher. Finally, the results were analyzed, looking at the gender distribution: 14 (77.8%) were female. The average age was 36.2 ± 9.5 years, with a minimum age of 18 years and a maximum of 55 years; four patients (22.2%) presented further highlight active lesions at 20 minutes, and two patients (11.1%) presented enhancement at one minute. Concluding that MRI in the diagnosis of MS is very important for the detection of activity in lesions caused by the disease, it is evident that the optimum time for evaluation of postcontrast sequences is 20 minutes.

  12. Pericortical Enhancement on Delayed Postgadolinium Fluid-Attenuated Inversion Recovery Images in Normal Aging, Mild Cognitive Impairment, and Alzheimer Disease.

    PubMed

    Freeze, W M; Schnerr, R S; Palm, W M; Jansen, J F; Jacobs, H I; Hoff, E I; Verhey, F R; Backes, W H

    2017-09-01

    Breakdown of BBB integrity occurs in dementia and may lead to neurodegeneration and cognitive decline. We assessed whether extravasation of gadolinium chelate could be visualized on delayed postcontrast FLAIR images in older individuals with and without cognitive impairment. Seventy-four individuals participated in this study (15 with Alzheimer disease, 33 with mild cognitive impairment, and 26 with normal cognition). We assessed the appearance of pericortical enhancement after contrast administration, MR imaging markers of cerebrovascular damage, and medial temporal lobe atrophy. Three participants who were positive for pericortical enhancement (1 with normal cognition and 2 with mild cognitive impairment) were followed up for approximately 2 years. In vitro experiments with a range of gadolinium concentrations served to elucidate the mechanisms underlying the postcontrast FLAIR signals. Postcontrast pericortical enhancement was observed in 21 participants (28%), including 6 individuals with Alzheimer disease (40%), 10 with mild cognitive impairment (30%), and 5 with normal cognition (19%). Pericortical enhancement was positively associated with age ( P < .02) and ischemic stroke ( P < .05), but not with cognitive status ( P = .3). Foci with enhanced signal remained stable across time in all follow-up cases. The in vitro measurements confirmed that FLAIR imaging is highly sensitive for the detection of low gadolinium concentrations in CSF, but not in cerebral tissue. Postcontrast pericortical enhancement on FLAIR images occurs in older individuals with normal cognition, mild cognitive impairment, and dementia. It may represent chronic focal superficial BBB leakage. Future longitudinal studies are needed to determine its clinical significance. © 2017 by American Journal of Neuroradiology.

  13. Kinetic characteristics of the luminescence decay for industrial yttrium-gadolinium-aluminium garnet based phosphors

    NASA Astrophysics Data System (ADS)

    Lisitsyn, V. M.; Stepanov, S. A.; Valiev, D. T.; Vishnyakova, E. A.; Abdullin, H. A.; Marhabaeva, A. A.; Tulegenova, A. T.

    2016-02-01

    The spectral and decay kinetic characteristics of pulse cathodoluminescence and photoluminescence of phosphors based on yttrium-gadolinium-aluminum garnet were investigated using pulsed optical time resolved spectroscopy.

  14. Childhood socioeconomic status and serotonin transporter gene polymorphism enhance cardiovascular reactivity to mental stress.

    PubMed

    Williams, Redford B; Marchuk, Douglas A; Siegler, Ilene C; Barefoot, John C; Helms, Michael J; Brummett, Beverly H; Surwit, Richard S; Lane, James D; Kuhn, Cynthia M; Gadde, Kishore M; Ashley-Koch, Allison; Svenson, Ingrid K; Schanberg, Saul M

    2008-01-01

    To test the hypothesis that low socioeconomic status (SES) and the 5HTTLPR L allele are associated with increased cardiovascular reactivity (CVR) to stress in a larger sample and that SES and 5HTTLPR genotypes interact to enhance CVR to stress. CVR to mental stress has been proposed as one mechanism linking stress to the pathogenesis of cardiovascular disease. The more transcriptionally efficient long (L) allele of a polymorphism of the serotonin transporter gene promoter (5HTTLPR) has been found associated with increased risk of myocardial infarction. We found the long allele associated with larger CVR to mental stress in a preliminary study of 54 normal volunteers. Subjects included 165 normal community volunteers stratified for race, gender, and SES, who underwent mental stress testing. Childhood SES as indexed by Father's Education Level was associated with larger systolic blood pressure (SBP) (p < .05) and diastolic blood pressure (DBP) (p = .01) responses to mental stress. The L allele was associated with larger SBP (p = .04), DBP (p < .0001), and heart rate (p = .04) responses to mental stress compared with the short (S) allele. Subjects with the SS genotype and high Father's Education exhibited smaller SBP (5.2 mm Hg) and DBP (2.9 mm Hg) responses than subjects with LL genotype and low Father's Education (SBP = 13.3 mm Hg, p = .002; DBP = 9.7 mm Hg, p < .0001). Both the 5HTTLPR long allele and low SES, particularly during childhood, are associated with increased CVR to mental stress, which could account, at least in part, for the increased cardiovascular disease risk associated with these characteristics. If confirmed in further research, these characteristics could be used to identify persons who might benefit from preventive interventions.

  15. Tumor Xenograft Response to Redox-Active Therapies Assessed by Magnetic Resonance Imaging Using a Thiol-Bearing DOTA Complex of Gadolinium1

    PubMed Central

    Guntle, Gerald P; Jagadish, Bhumasamudram; Mash, Eugene A; Powis, Garth; Dorr, Robert T; Raghunand, Natarajan

    2012-01-01

    Gd-LC6-SH is a thiol-bearing DOTA complex of gadolinium designed to bind plasma albumin at the conserved Cys34 site. The binding of Gd-LC6-SH shows sensitivity to the presence of competing thiols. We hypothesized that Gd-LC6-SH could provide magnetic resonance imaging (MRI) enhancement that is sensitive to tumor redox state and that the prolonged retention of albumin-bound Gd-LC6-SH in vivo can be exploited to identify a saturating dose above which the shortening of MRI longitudinal relaxation time (T1) of tissue is insensitive to the injected gadolinium dose. In the Mia-PaCa-2 pancreatic tumor xenograft model in SCID mice, both the small-molecule Gd-DTPA-BMA and the macromolecule Galbumin MRI contrast agents produced dose-dependent decreases in tumor T1. By contrast, the decreases in tumor T1 provided by Gd-LC6-SH at 0.05 and 0.1 mmol/kg were not significantly different at longer times after injection. SCID mice bearing Mia-PaCa-2 or NCI-N87 tumor xenografts were treated with either the glutathione synthesis inhibitor buthionine sulfoximine or the thiol-oxidizing anticancer drug Imexon, respectively. In both models, there was a significantly greater increase in tumor R1 (=1/T1) 60 minutes after injection of Gd-LC6-SH in drug-treated animals relative to saline-treated controls. In addition, Mercury Orange staining for nonprotein sulfhydryls was significantly decreased by drug treatment relative to controls in both tumor models. In summary, these studies show that thiol-bearing complexes of gadolinium such as Gd-LC6-SH can serve as redox-sensitive MRI contrast agents for detecting differences in tumor redox status and can be used to evaluate the effects of redox-active drugs. PMID:22741038

  16. Synthesis route and three different core-shell impacts on magnetic characterization of gadolinium oxide-based nanoparticles as new contrast agents for molecular magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Azizian, Gholamreza; Riyahi-Alam, Nader; Haghgoo, Soheila; Moghimi, Hamid Reza; Zohdiaghdam, Reza; Rafiei, Behrooz; Gorji, Ensieh

    2012-10-01

    Despite its good resolution, magnetic resonance imaging intrinsically has low sensitivity. Recently, contrast agent nanoparticles have been used as sensitivity and contrast enhancer. The aim of this study was to investigate a new controlled synthesis method for gadolinium oxide-based nanoparticle preparation. For this purpose, diethyleneglycol coating of gadolinium oxide (Gd2O3-DEG) was performed using new supervised polyol route, and small particulate gadolinium oxide (SPGO) PEGylation was obtained with methoxy-polyethylene-glycol-silane (550 and 2,000 Da) coatings as SPGO-mPEG-silane550 and 2,000, respectively. Physicochemical characterization and magnetic properties of these three contrast agents in comparison with conventional Gd-DTPA were verified by dynamic light scattering transmission electron microscopy, Fourier transform infrared spectroscopy, inductively coupled plasma, X-ray diffraction, vibrating sample magnetometer, and the signal intensity and relaxivity measurements were performed using 1.5-T MRI scanner. As a result, the nanoparticle sizes of Gd2O3-DEG, SPGO-mPEG-silane550, and SPGO-mPEG-silane2000 could be reached to 5.9, 51.3, 194.2 nm, respectively. The image signal intensity and longitudinal ( r 1) and transverse relaxivity ( r 2) measurements in different concentrations (0.3 to approximately 2.5 mM), revealed the r 2/ r 1 ratios of 1.13, 0.89, 33.34, and 33.72 for Gd-DTPA, Gd2O3-DEG, SPGO-mPEG-silane550, and SPGO-mPEG-silane2000, respectively. The achievement of new synthesis route of Gd2O3-DEG resulted in lower r 2/ r 1 ratio for Gd2O3-DEG than Gd-DTPA and other previous synthesized methods by this and other groups. The smaller r 2/ r 1 ratios of two PEGylated-SPGO contrast agents in our study in comparison with r 2/ r 1 ratio of previous PEGylation ( r 2/ r 1 = 81.9 for mPEG-silane 6,000 MW) showed that these new three introduced contrast agents could potentially be proper contrast enhancers for cellular and molecular MR imaging.

  17. Nephrogenic systemic fibrosis and class labeling of gadolinium-based contrast agents by the Food and Drug Administration.

    PubMed

    Yang, Lucie; Krefting, Ira; Gorovets, Alex; Marzella, Louis; Kaiser, James; Boucher, Robert; Rieves, Dwaine

    2012-10-01

    In 2007, the Food and Drug Administration requested that manufacturers of all approved gadolinium-based contrast agents (GBCAs), drugs widely used in magnetic resonance imaging, use nearly identical text in their product labeling to describe the risk of nephrogenic systemic fibrosis (NSF). Accumulating information about NSF risks led to revision of the labeling text for all of these drugs in 2010. The present report summarizes the basis and purpose of this class-labeling approach and describes some of the related challenges, given the evolutionary nature of the NSF risk evidence. The class-labeling approach for presentation of product risk is designed to decrease the occurrence of NSF and to enhance the safe use of GBCAs in radiologic practice. © RSNA, 2012.

  18. Improved multimodality data fusion of late gadolinium enhancement MRI to left ventricular voltage maps in ventricular tachycardia ablation.

    PubMed

    Roujol, Sebastien; Basha, Tamer A; Tan, Alex; Khanna, Varun; Chan, Raymond H; Moghari, Mehdi H; Rayatzadeh, Hussein; Shaw, Jaime L; Josephson, Mark E; Nezafat, Reza

    2013-05-01

    Electroanatomical voltage mapping (EAVM) is commonly performed prior to catheter ablation of scar-related ventricular tachycardia (VT) to locate the arrhythmic substrate and to guide the ablation procedure. EAVM is used to locate the position of the ablation catheter and to provide a 3-D reconstruction of left-ventricular anatomy and scar. However, EAVM measurements only represent the endocardial scar with no transmural or epicardial information. Furthermore, EAVM is a time-consuming procedure, with a high operator dependence and has low sampling density, i.e., spatial resolution. Late gadolinium enhancement (LGE) magnetic resonance imaging (MRI) allows noninvasive assessment of scar morphology that can depict 3-D scar architecture. Despite the potential use of LGE as a roadmap for VT ablation for identification of arrhythmogenic substrate, its utility has been very limited. To allow for identification of VT substrate, a correlation is needed between the substrates identified by EAVM as the gold standard and LGE-MRI scar characteristics. To do so, a system must be developed to fuse the datasets from these modalities. In this study, a registration pipeline for the fusion of LGE-MRI and EAVM data is presented. A novel surface registration algorithm is proposed, integrating the matching of global scar areas as an additional constraint in the registration process. A preparatory landmark registration is initially performed to expedite the convergence of the algorithm. Numerical simulations were performed to evaluate the accuracy of the registration in the presence of errors in identifying landmarks in EAVM or LGE-MRI datasets as well as additional errors due to respiratory or cardiac motion. Subsequently, the accuracy of the proposed fusion system was evaluated in a cohort of ten patients undergoing VT ablation where both EAVM and LGE-MRI data were available. Compared to landmark registration and surface registration, the presented method achieved significant

  19. Increased Prognostic Value of Query Amyloid Late Enhancement Score in Light-Chain Cardiac Amyloidosis.

    PubMed

    Wan, Ke; Sun, Jiayu; Han, Yuchi; Liu, Hong; Yang, Dan; Li, Weihao; Wang, Jie; Cheng, Wei; Zhang, Qing; Zeng, Zhi; Chen, Yucheng

    2018-02-23

    Late gadolinium enhancement (LGE) pattern is a powerful imaging biomarker for prognosis of cardiac amyloidosis. It is unknown if the query amyloid late enhancement (QALE) score in light-chain (AL) amyloidosis could provide increased prognostic value compared with LGE pattern.Methods and Results:Seventy-eight consecutive patients with AL amyloidosis underwent contrast-enhanced cardiovascular magnetic resonance imaging. Patients with cardiac involvement were grouped by LGE pattern and analyzed using QALE score. Receiver operating characteristic curve was used to identify the optimal cut-off for QALE score in predicting all-cause mortality. Survival of these patients was analyzed with the Kaplan-Meier method and multivariate Cox regression. During a median follow-up of 34 months, 53 of 78 patients died. The optimal cut-off for QALE score to predict mortality at 12-month follow-up was 9.0. On multivariate Cox analysis, QALE score ≥9 (HR, 5.997; 95% CI: 2.665-13.497; P<0.001) and log N-terminal pro-brain natriuretic peptide (HR, 1.525; 95% CI: 1.112-2.092; P=0.009) were the only 2 independent predictors of all-cause mortality. On Kaplan-Meier analysis, patients with subendocardial LGE can be further risk stratified using QALE score ≥9. The QALE scoring system provides powerful independent prognostic value in AL cardiac amyloidosis. QALE score ≥9 has added value to differentiate prognosis in AL amyloidosis patients with a subendocardial LGE pattern.

  20. Systemic right ventricular fibrosis detected by cardiovascular magnetic resonance is associated with clinical outcome, mainly new-onset atrial arrhythmia, in patients after atrial redirection surgery for transposition of the great arteries.

    PubMed

    Rydman, Riikka; Gatzoulis, Michael A; Ho, Siew Yen; Ernst, Sabine; Swan, Lorna; Li, Wei; Wong, Tom; Sheppard, Mary; McCarthy, Karen P; Roughton, Michael; Kilner, Philip J; Pennell, Dudley J; Babu-Narayan, Sonya V

    2015-05-01

    We hypothesized that fibrosis detected by late gadolinium enhancement (LGE) cardiovascular magnetic resonance predicts outcomes in patients with transposition of the great arteries post atrial redirection surgery. These patients have a systemic right ventricle (RV) and are at risk of arrhythmia, premature RV failure, and sudden death. Fifty-five patients (aged 27±7 years) underwent LGE cardiovascular magnetic resonance and were followed for a median 7.8 (interquartile range, 3.8-9.6) years in a prospective single-center cohort study. RV LGE was present in 31 (56%) patients. The prespecified composite clinical end point comprised new-onset sustained tachyarrhythmia (atrial/ventricular) or decompensated heart failure admission/transplantation/death. Univariate predictors of the composite end point (n=22 patients; 19 atrial/2 ventricular tachyarrhythmia, 1 death) included RV LGE presence and extent, RV volumes/mass/ejection fraction, right atrial area, peak Vo(2), and age at repair. In bivariate analysis, RV LGE presence was independently associated with the composite end point (hazard ratio, 4.95 [95% confidence interval, 1.60-15.28]; P=0.005), and only percent predicted peak Vo(2) remained significantly associated with cardiac events after controlling for RV LGE (hazard ratio, 0.80 [95% confidence interval, 0.68-0.95]; P=0.009/5%). In 8 of 9 patients with >1 event, atrial tachyarrhythmia, itself a known risk factor for mortality, occurred first. There was agreement between location and extent of RV LGE at in vivo cardiovascular magnetic resonance and histologically documented focal RV fibrosis in an explanted heart. There was RV LGE progression in a different case restudied for clinical indications. Systemic RV LGE is strongly associated with adverse clinical outcome especially arrhythmia in transposition of the great arteries, thus LGE cardiovascular magnetic resonance should be incorporated in risk stratification of these patients. © 2015 American Heart

  1. Polythermal investigation of viscosity of solution of metal carboxylates in VIK-grade mixed carboxylic acids: Yttrium and gadolinium carboxylates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezhov, E.A.; Samatov, A.V.; Troyanovskii, L.V.

    Kinematic viscosities have been measured for solutions of yttrium and gadolinium carboxylates in grade VIK mixed carboxylic acids (MCA). It has been established that the optimal fluidity of these metal carboxylate solutions for application to articles is reached at 333 K. A regression model has been developed to describe the concentration and temperature dependences of the viscosity of yttrium- and gadolinium-containing MCA solutions. 2 refs., 3 tabs.

  2. The performance of hafnium and gadolinium self powered neutron detectors in the TREAT reactor

    NASA Astrophysics Data System (ADS)

    Imel, G. R.; Hart, P. R.

    1996-05-01

    The use of gadolinium and hafnium self powered neutron detectors in a transient reactor is described in this paper. The detectors were calibrated to the fission rate of U-235 using calibrated fission chambers; the calibration factors were tested in two reactors in steady state and found to be consistent. Calibration of the detectors in transient reactor conditions was done by using uranium wires that were analyzed by radiochemistry techniques to determine total fissions during the transient. This was correlated to the time-integrated current of the detectors during the transient. A temperature correction factor was derived to account for self-shielding effects in the hafnium and gadolinium detectors. The dynamic response of the detectors under transient conditions was studied, and found to be excellent.

  3. How are tonic and phasic cardiovascular changes related to central motor command?

    PubMed

    Jennings, J R; van der Molen, M W; Brock, K; Somsen, R J

    1993-07-01

    We examined the influence of central motor command on heart rate, respiration, and peripheral vascular activity. Central command was enhanced or reduced using tendon vibration. Muscle tension was held constant permitting the examination of variation in central command. Experiment 1 demonstrated in 13 college-aged males an enhancement of heart rate and vascular responses to an isometric, extensor contraction when vibration of the flexor tendon was added. Experiment 2 asked whether changes in central command interacted with phasic cardiovascular changes such as stimulus-linked anticipatory cardiac deceleration. Twenty college-aged males performed either an isometric flexor or extensor contraction with or without flexor tendon vibration. As expected, vibration enhanced cardiovascular change with extensor contraction more than with flexor contraction. Relative to control contractions, however, the flexor change was not an absolute decrease in cardiovascular change. More importantly, tendon vibration failed to alter phasic cardiovascular changes. Force and central commands for force induce cardiovascular change, but this change seems independent of phasic changes induced by the anticipation and processing of environmental stimuli.

  4. Metabolomic Analysis of N-acetylcysteine Protection of Injury from Gadolinium-DTPA Contrast Agent in Rats with Chronic Renal Failure.

    PubMed

    Wan, Chuanling; Xue, Rong; Zhan, Youyang; Wu, Yijie; Li, Xiaojing; Pei, Fengkui

    2017-09-01

    Gadolinium-based contrast agents (GBCAs) are frequently used to enhance the diagnostic efficacy of magnetic resonance imaging. On the other hand, the association between GBCA administration in patients with advanced renal disease and nephrogenic systemic fibrosis (NSF) was also noted. NSF is a systemic disorder characterized by widespread tissue fibrosis that may lead to death. N-acetylcysteine (NAC) protects rats from injury induced by gadolinium-based contrast agents, but the underlying mechanisms remain unclear. In this study, a nuclear magnetic resonance-based metabolomic approach was used to systematically investigate the protective effects of NAC on Gd-DTPA-induced injury. Thirty-two male Sprague-Dawley rats were given adenine (200 mg·kg -1 body weight) by oral gavage once a day for 3 weeks to induce chronic renal failure (CRF). NAC (600 mg/L in drinking water for 9 days) pretreatment was initiated 2 days before Gd-DTPA injection (a single tail vein injection, 2 mmol/kg body weight). Serum and liver samples were collected on day 7 after Gd-DTPA injection. By study design, the serum and hepatic metabolic changes of rats were measured in four groups of eight each: CRF, CRF-Gd, CRF-Gd-NAC, and CRF-NAC. Gd-DTPA administration to rats with CRF resulted in disturbances of several metabolic pathways, including glucose, lipid, glutamate, choline, gut microbiota, one-carbon, and purine metabolism. NAC pretreatment reversed the abundance changes of high-density lipoprotein, low-density lipoprotein, very low-density lipoprotein, glutamate, glutamine, oxidized glutathione, choline, phosphocholine, glycerophosphocholine, trimethylamine, and trimethylamine-N-oxide induced by Gd-DTPA. It is noteworthy, however, that the ameliorating effects of NAC on the disturbance of glutamate, choline, and gut microbiota metabolism may be specific to Gd-DTPA. In all, these findings could be potentially useful to decipher the underlying mechanisms of NAC protective effects from the

  5. Effect of Cu2+ substitution on the structural, magnetic and electrical properties of gadolinium orthoferrite

    NASA Astrophysics Data System (ADS)

    Sai Vandana, C.; Hemalatha Rudramadevi, B.

    2018-04-01

    The pure and copper (Cu) substituted Gadolinium orthoferrites, GdFeO3, GdCu0.1Fe0.9O3, GdCu0.2Fe0.8O3 and GdCu0.3Fe0.7O3 were synthesized by conventional solid state method. The structural, morphological, dielectric, magnetic and impedance properties of Cu substituted Gadolinium orthoferrites have been investigated. The crystallographic phase as well as the substitution of Cu2+ ions in the lattice of GdFeO3 is confirmed from the x-ray diffraction patterns. The Fourier transform infrared spectra exhibit two prominent fundamental absorption peaks at ∼417 cm‑1 and 545 cm‑1. These bands are related to inherent stretching vibrations of metals at octahedral and tetrahedral sites respectively. The coercivity (Hc) and saturation magnetization (Ms) of the synthesized samples at different temperatures were determined from the hysteresis plots. Higher coercive values, 598 Oe and 600 Oe were achieved in GdCu0.1Fe0.9O3 ferrites compared to 527 Oe and 360 Oe in pure GdFeO3 at room temperature (300 K) and low temperature (20 k) respectively. Dielectric dispersion has been observed for gadolinium ferrite samples with Maxwell–Wagner type interfacial polarization. The decrease of dielectric constant and dielectric loss tangent with an increase in frequency was observed. The conduction due to charge hopping between localized states was confirmed from AC conductivity measurements. The composition dependent cationic distributions estimated from XRD, magnetic and electrical studies are in good agreement with each other. The achieved results indicate that the substitution of Cu in gadolinium orthoferrite strongly influences the crystal structure, magnetic and electrical properties thereby making them suitable as multiple state memory devices, transducers, electronic field controlled ferromagnetic resonance devices and spintronic devices.

  6. The Use of Gadolinium-Carbon Nanostructures to Magnetically Enhance Stem Cell Retention for Cellular Cardiomyoplasty

    PubMed Central

    Tran, Lesa A.; Hernández-Rivera, Mayra; Berlin, Ari N.; Zheng, Yi; Sampaio, Luiz; Bové, Christina; Cabreira-Hansen, Maria da Graça; Willerson, James T.; Perin, Emerson C.; Wilson, Lon J.

    2014-01-01

    In this work, the effectiveness of using Gadonanotubes (GNTs) with an external magnetic field to improve retention of transplanted adult mesenchymal stem cells (MSCs) during cellular cardiomyoplasty was evaluated. As a high-performance T1-weighted magnetic resonance imaging (MRI) cell tracking label, the GNTs are gadolinium-loaded carbon nanotube capsules that render MSCs magnetic when internalized. MSCs were internally labeled with either superparamagnetic GNTs or colloidal diamagnetic lutetium (Lu). In vitro cell rolling assays and ex vivo cardiac perfusion experiments qualitatively demonstrated increased magnetic-assisted retention of GNT-labeled MSCs. Subsequent in vivo epicardial cell injections were performed around a 1.3 T NdFeB ring magnet sutured onto the left ventricle of female juvenile pigs (n = 21). Cell dosage, magnet exposure time, and endpoints were varied to evaluate the safety and efficacy of the proposed therapy. Quantification of retained cells in collected tissues by elemental analysis (Gd or Lu) showed that the external magnet helped retain nearly three times more GNT-labeled MSCs than Lu-labeled cells. The sutured magnet was tolerated for up to 168 hours; however, an inflammatory response to the magnet was noted after 48 hours. These proof-of-concept studies support the feasibility and value of using GNTs as a magnetic nanoparticle facilitator to improve cell retention during cellular cardiomyoplasty. PMID:24148239

  7. Mechanistic insights and characterization of sickle cell disease-associated cardiomyopathy.

    PubMed

    Desai, Ankit A; Patel, Amit R; Ahmad, Homaa; Groth, John V; Thiruvoipati, Thejasvi; Turner, Kristen; Yodwut, Chattanong; Czobor, Peter; Artz, Nicole; Machado, Roberto F; Garcia, Joe G N; Lang, Roberto M

    2014-05-01

    Cardiovascular disease is an important cause of morbidity and mortality in sickle cell disease (SCD). We sought to characterize sickle cell cardiomyopathy using multimodality noninvasive cardiovascular testing and identify potential causative mechanisms. Stable adults with SCD (n=38) and healthy controls (n=13) prospectively underwent same day multiparametric cardiovascular magnetic resonance (cine, T2* iron, vasodilator first pass myocardial perfusion, and late gadolinium enhancement imaging), transthoracic echocardiography, and applanation tonometry. Compared with controls, patients with SCD had severe dilation of the left ventricle (124±27 vs 79±12 mL/m(2)), right ventricle (127±28 vs 83±14 mL/m(2)), left atrium (65±16 vs 41±9 mL/m(2)), and right atrium (78±17 vs 56±17 mL/m(2); P<0.01 for all). Patients with SCD also had a 21% lower myocardial perfusion reserve index than control subjects (1.47±0.34 vs 1.87±0.37; P=0.034). A significant subset of patients with SCD (25%) had evidence of late gadolinium enhancement, whereas only 1 patient had evidence of myocardial iron overload. Diastolic dysfunction was present in 26% of patients with SCD compared with 8% in controls. Estimated filling pressures (E/e', 9.3±2.7 vs 7.3±2.0; P=0.0288) were higher in patients with SCD. Left ventricular dilation and the presence of late gadolinium enhancement were inversely correlated to hepatic T2* times (ie, hepatic iron overload because of frequent blood transfusions; P<0.05 for both), whereas diastolic dysfunction and increased filling pressures were correlated to aortic stiffness (augmentation pressure and index, P<0.05 for all). Sickle cell cardiomyopathy is characterized by 4-chamber dilation and in some patients myocardial fibrosis, abnormal perfusion reserve, diastolic dysfunction, and only rarely myocardial iron overload. Left ventricular dilation and myocardial fibrosis are associated with increased blood transfusion requirements, whereas left ventricular

  8. Left ventricular hypertrophy with strain and aortic stenosis.

    PubMed

    Shah, Anoop S V; Chin, Calvin W L; Vassiliou, Vassilis; Cowell, S Joanna; Doris, Mhairi; Kwok, T'ng Choong; Semple, Scott; Zamvar, Vipin; White, Audrey C; McKillop, Graham; Boon, Nicholas A; Prasad, Sanjay K; Mills, Nicholas L; Newby, David E; Dweck, Marc R

    2014-10-28

    ECG left ventricular hypertrophy with strain is associated with an adverse prognosis in aortic stenosis. We investigated the mechanisms and outcomes associated with ECG strain. One hundred and two patients (age, 70 years [range, 63-75 years]; male, 66%; aortic valve area, 0.9 cm(2) [range, 0.7-1.2 cm(2)]) underwent ECG, echocardiography, and cardiovascular magnetic resonance. They made up the mechanism cohort. Myocardial fibrosis was determined with late gadolinium enhancement (replacement fibrosis) and T1 mapping (diffuse fibrosis). The relationship between ECG strain and cardiovascular magnetic resonance was then assessed in an external validation cohort (n=64). The outcome cohort was made up of 140 patients from the Scottish Aortic Stenosis and Lipid Lowering Trial Impact on Regression (SALTIRE) study and was followed up for 10.6 years (1254 patient-years). Compared with those without left ventricular hypertrophy (n=51) and left ventricular hypertrophy without ECG strain (n=30), patients with ECG strain (n=21) had more severe aortic stenosis, increased left ventricular mass index, more myocardial injury (high-sensitivity plasma cardiac troponin I concentration, 4.3 ng/L [interquartile range, 2.5-7.3 ng/L] versus 7.3 ng/L [interquartile range, 3.2-20.8 ng/L] versus 18.6 ng/L [interquartile range, 9.0-45.2 ng/L], respectively; P<0.001) and increased diffuse fibrosis (extracellular volume fraction, 27.4±2.2% versus 27.2±2.9% versus 30.9±1.9%, respectively; P<0.001). All patients with ECG strain had midwall late gadolinium enhancement (positive and negative predictive values of 100% and 86%, respectively). Indeed, late gadolinium enhancement was independently associated with ECG strain (odds ratio, 1.73; 95% confidence interval, 1.08-2.77; P=0.02), a finding confirmed in the validation cohort. In the outcome cohort, ECG strain was an independent predictor of aortic valve replacement or cardiovascular death (hazard ratio, 2.67; 95% confidence interval, 1

  9. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 mapping of talar osteochondral lesions: Indicators of clinical outcomes.

    PubMed

    Rehnitz, Christoph; Kuni, Benita; Wuennemann, Felix; Chloridis, Dimitrios; Kirwadi, Anand; Burkholder, Iris; Kauczor, Hans-Ulrich; Weber, Marc-André

    2017-12-01

    To evaluate the utility of delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) and T 2 mapping in evaluation of type II osteochondral lesions (OCLs) of the talus and define cutoff values for identifying patients with good/poor clinical outcomes. 28 patients (mean age, 42.3 years) underwent T 2 mapping and dGEMRIC at least 1.5 years (mean duration, 3.5 years) after microfracture (n = 12) or conservative (n = 16) treatment for type II OCL. Clinical outcomes were considered good with an American Orthopedic Foot and Ankle Society score ≥80. The T 1 /T 2 -values and indices of repair tissue (RT; cartilage above the OCL) were compared to those of the adjacent normal cartilage (NC) by region-of-interest analysis. The ability of the two methods to discriminate RT from NC was determined by area under the receiver operating characteristics curve (AUC) analysis. The Youden index was maximized for T 1 /T 2 measures for identifying cutoff values indicative of good/poor clinical outcomes. Repair tissue exhibited lower dGEMRIC values (629.83 vs. 738.51 msec) and higher T 2 values (62.07 vs. 40.69 msec) than NC (P < 0.001). T 2 mapping exhibited greater AUC than dGEMRIC (0.88 vs. 0.69; P = 0.0398). All T 1 measures exhibited higher maximized Youden indices than the corresponding T 2 measures. The highest maximized Youden index for T 1difference was observed at a cutoff value of 84 msec (sensitivity, 78%; specificity, 83%). While T 2 mapping is superior to dGEMRIC in discriminating RT, the latter better identifies good/poor clinical outcomes in patients with type II talar OCL. 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2017;46:1601-1610. © 2017 International Society for Magnetic Resonance in Medicine.

  10. Automatic classification of scar tissue in late gadolinium enhancement cardiac MRI for the assessment of left-atrial wall injury after radiofrequency ablation

    PubMed Central

    Morris, Alan; Burgon, Nathan; McGann, Christopher; MacLeod, Robert; Cates, Joshua

    2013-01-01

    Radiofrequency ablation is a promising procedure for treating atrial fibrillation (AF) that relies on accurate lesion delivery in the left atrial (LA) wall for success. Late Gadolinium Enhancement MRI (LGE MRI) at three months post-ablation has proven effective for noninvasive assessment of the location and extent of scar formation, which are important factors for predicting patient outcome and planning of redo ablation procedures. We have developed an algorithm for automatic classification in LGE MRI of scar tissue in the LA wall and have evaluated accuracy and consistency compared to manual scar classifications by expert observers. Our approach clusters voxels based on normalized intensity and was chosen through a systematic comparison of the performance of multivariate clustering on many combinations of image texture. Algorithm performance was determined by overlap with ground truth, using multiple overlap measures, and the accuracy of the estimation of the total amount of scar in the LA. Ground truth was determined using the STAPLE algorithm, which produces a probabilistic estimate of the true scar classification from multiple expert manual segmentations. Evaluation of the ground truth data set was based on both inter- and intra-observer agreement, with variation among expert classifiers indicating the difficulty of scar classification for a given a dataset. Our proposed automatic scar classification algorithm performs well for both scar localization and estimation of scar volume: for ground truth datasets considered easy, variability from the ground truth was low; for those considered difficult, variability from ground truth was on par with the variability across experts. PMID:24236224

  11. Automatic classification of scar tissue in late gadolinium enhancement cardiac MRI for the assessment of left-atrial wall injury after radiofrequency ablation

    NASA Astrophysics Data System (ADS)

    Perry, Daniel; Morris, Alan; Burgon, Nathan; McGann, Christopher; MacLeod, Robert; Cates, Joshua

    2012-03-01

    Radiofrequency ablation is a promising procedure for treating atrial fibrillation (AF) that relies on accurate lesion delivery in the left atrial (LA) wall for success. Late Gadolinium Enhancement MRI (LGE MRI) at three months post-ablation has proven effective for noninvasive assessment of the location and extent of scar formation, which are important factors for predicting patient outcome and planning of redo ablation procedures. We have developed an algorithm for automatic classification in LGE MRI of scar tissue in the LA wall and have evaluated accuracy and consistency compared to manual scar classifications by expert observers. Our approach clusters voxels based on normalized intensity and was chosen through a systematic comparison of the performance of multivariate clustering on many combinations of image texture. Algorithm performance was determined by overlap with ground truth, using multiple overlap measures, and the accuracy of the estimation of the total amount of scar in the LA. Ground truth was determined using the STAPLE algorithm, which produces a probabilistic estimate of the true scar classification from multiple expert manual segmentations. Evaluation of the ground truth data set was based on both inter- and intra-observer agreement, with variation among expert classifiers indicating the difficulty of scar classification for a given a dataset. Our proposed automatic scar classification algorithm performs well for both scar localization and estimation of scar volume: for ground truth datasets considered easy, variability from the ground truth was low; for those considered difficult, variability from ground truth was on par with the variability across experts.

  12. Myocardial impairment detected by late gadolinium enhancement in hypertrophic cardiomyopathy: comparison with 99mTc-MIBI/tetrofosmin and 123I-BMIPP SPECT.

    PubMed

    Hashimura, Hiromi; Kiso, Keisuke; Yamada, Naoaki; Kono, Atsushi; Morita, Yoshiaki; Fukushima, Kazuto; Higashi, Masahiro; Noguchi, Teruo; Ishibashi-Ueda, Hatsue; Naito, Hiroaki; Sugimura, Kazuro

    2013-06-17

    Myocardial fibrosis is considered to be an important factor in myocardial dysfunction and sudden cardiac death in hypertrophic cardiomyopathy (HCM). The purpose of this study was to compare myocardial fibrosis detected by late gadolinium enhancement (LGE) on cardiac MRI with myocardial perfusion and fatty acid metabolism assessed by single photon emission computed tomography in HCM. We retrospectively evaluated 20 consecutive HCM patients (female, 7; mean age, 53.4 years) who underwent LGE, technetium-99m methoxyisobutylisonitrile/tetrofosmin (99mTc-MIBI/tetrofosmin), and iodine-123 beta-methyl-iodophenylpentadecanoic acid (123I-BMIPP) imaging. We calculated the myocardium-to-lumen signal ratio (M/L) for LGE in 17 segments based on the American Heart Association statement. Scoring of 99mTc-MIBI/tetrofosmin (PI) and 123I-BMIPP (BM) was performed for each segment using a 5-point scale (0, normal; 4, highly decreased). Nineteen of 20 patients (95%) and 153 of 340 segments (45%) showed LGE. M/Ls were 0.42±0.16, 0.55±0.17, and 0.65±0.24 in PI0/BM0, PI0/BM1-4 and PI1-4/BM1-4, respectively. All M/Ls were significantly higher than that of a normal control (0.34±0.14) (p<0.001). Myocardial fibrosis in HCM can occur despite normal perfusion and fatty acid metabolism, and is more strongly associated with disorders of fatty acid metabolism than with perfusion abnormalities. M/L may be a useful indicator of disease severity.

  13. Influence of delayed gadolinium enhanced MRI of cartilage (dGEMRIC) protocol on T2-mapping: is it possible to comprehensively assess knee cartilage composition in one post-contrast MR examination at 3 Tesla?

    PubMed

    Verschueren, J; van Tiel, J; Reijman, M; Bron, E E; Klein, S; Verhaar, J A N; Bierma-Zeinstra, S M A; Krestin, G P; Wielopolski, P A; Oei, E H G

    2017-09-01

    To evaluate the possibility of assessing knee cartilage with T2-mapping and delayed gadolinium enhanced magnetic resonance imaging (MRI) of cartilage (dGEMRIC) in one post-contrast MR examination at 3 Tesla (T). T2 mapping was performed in 10 healthy volunteers at baseline; directly after baseline; after 10 min of cycling; and after 90 min delay, and in 16 osteoarthritis patients before and after intravenous administration of a double dose gadolinium dimeglumine contrast agent, reflecting key dGEMRIC protocol elements. Differences in T2 relaxation times between each timepoint and baseline were calculated for 6 cartilage regions using paired t tests or Wilcoxon signed-rank tests and the smallest detectable change (SDC). After cycling, a significant change in T2 relaxation times was found in the lateral weight-bearing tibial plateau (+1.0 ms, P = 0.04). After 90 min delay, significant changes were found in the lateral weight-bearing femoral condyle (+1.2 ms, P = 0.03) and the lateral weight-bearing tibial plateau (+1.3 ms, P = 0.01). In these regions of interests (ROIs), absolute differences were small and lower than the corresponding SDCs. T2-mapping after contrast administration only showed statistically significantly lower T2 relaxation times in the medial posterior femoral condyle (-2.4 ms, P < 0.001) with a change exceeding the SDC. Because dGEMRIC protocol elements resulted in only small differences in T2 relaxation times that were not consistent and lower than the SDC in the majority of regions, our results suggest that T2-mapping and dGEMRIC can be performed reliably in a single imaging session to assess cartilage biochemical composition in knee osteoarthritis (OA) at 3 T. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  14. Manganese-Enhanced Magnetic Resonance Imaging Enables In Vivo Confirmation of Peri-Infarct Restoration Following Stem Cell Therapy in a Porcine Ischemia-Reperfusion Model.

    PubMed

    Dash, Rajesh; Kim, Paul J; Matsuura, Yuka; Ikeno, Fumiaki; Metzler, Scott; Huang, Ngan F; Lyons, Jennifer K; Nguyen, Patricia K; Ge, Xiaohu; Foo, Cheryl Wong Po; McConnell, Michael V; Wu, Joseph C; Yeung, Alan C; Harnish, Phillip; Yang, Phillip C

    2015-07-27

    The exact mechanism of stem cell therapy in augmenting the function of ischemic cardiomyopathy is unclear. In this study, we hypothesized that increased viability of the peri-infarct region (PIR) produces restorative benefits after stem cell engraftment. A novel multimodality imaging approach simultaneously assessed myocardial viability (manganese-enhanced magnetic resonance imaging [MEMRI]), myocardial scar (delayed gadolinium enhancement MRI), and transplanted stem cell engraftment (positron emission tomography reporter gene) in the injured porcine hearts. Twelve adult swine underwent ischemia-reperfusion injury. Digital subtraction of MEMRI-negative myocardium (intrainfarct region) from delayed gadolinium enhancement MRI-positive myocardium (PIR and intrainfarct region) clearly delineated the PIR in which the MEMRI-positive signal reflected PIR viability. Human amniotic mesenchymal stem cells (hAMSCs) represent a unique population of immunomodulatory mesodermal stem cells that restored the murine PIR. Immediately following hAMSC delivery, MEMRI demonstrated an increased PIR viability signal compared with control. Direct PIR viability remained higher in hAMSC-treated hearts for >6 weeks. Increased PIR viability correlated with improved regional contractility, left ventricular ejection fraction, infarct size, and hAMSC engraftment, as confirmed by immunocytochemistry. Increased MEMRI and positron emission tomography reporter gene signal in the intrainfarct region and the PIR correlated with sustained functional augmentation (global and regional) within the hAMSC group (mean change, left ventricular ejection fraction: hAMSC 85±60%, control 8±10%; P<0.05) and reduced chamber dilatation (left ventricular end-diastole volume increase: hAMSC 24±8%, control 110±30%; P<0.05). The positron emission tomography reporter gene signal of hAMSC engraftment correlates with the improved MEMRI signal in the PIR. The increased MEMRI signal represents PIR viability and the

  15. Heat and Dehydration Additively Enhance Cardiovascular Outcomes following Orthostatically-Stressful Calisthenics Exercise.

    PubMed

    Akerman, Ashley P; Lucas, Samuel J E; Katare, Rajesh; Cotter, James D

    2017-01-01

    Exercise and exogenous heat each stimulate multiple adaptations, but their roles are not well delineated, and that of the related stressor, dehydration, is largely unknown. While severe and prolonged hypohydration potentially "silences" the long-term heat acclimated phenotype, mild and transient dehydration may enhance cardiovascular and fluid-regulatory adaptations. We tested the hypothesis that exogenous heat stress and dehydration additively potentiate acute (24 h) cardiovascular and hematological outcomes following exercise. In a randomized crossover study, 10 physically-active volunteers (mean ± SD: 173 ± 11 cm; 72.1 ± 11.5 kg; 24 ± 3 year; 6 females) completed three trials of 90-min orthostatically-stressful calisthenics, in: (i) temperate conditions (22°C, 50% rh, no airflow; CON); (ii) heat (40°C, 60% rh) whilst euhydrated (HEAT), and (iii) heat with dehydration (no fluid ~16 h before and during exercise; HEAT+DEHY). Using linear mixed effects model analyses, core temperature (T CORE ) rose 0.7°C more in HEAT than CON (95% CL: [0.5, 0.9]; p < 0.001), and another 0.4°C in HEAT+DEHY ([0.2, 0.5]; p < 0.001, vs. HEAT). Skin temperature also rose 1.2°C more in HEAT than CON ([0.6, 1.8]; p < 0.001), and similarly to HEAT+DEHY ( p = 0.922 vs. HEAT). Peak heart rate was 40 b·min -1 higher in HEAT than in CON ([28, 51]; p < 0.001), and another 15 b·min -1 higher in HEAT+DEHY ([3, 27]; p = 0.011, vs. HEAT). Mean arterial pressure at 24-h recovery was not consistently below baseline after CON or HEAT ( p ≥ 0.452), but was reduced 4 ± 1 mm Hg after HEAT+DEHY ([0, 8]; p = 0.020 vs. baseline). Plasma volume at 24 h after exercise increased in all trials; the 7% increase in HEAT was not reliably more than in CON (5%; p = 0.335), but was an additional 4% larger after HEAT+DEHY ([1, 8]; p = 0.005 vs. HEAT). Pooled-trial correlational analysis showed the rise in T CORE predicted the hypotension ( r = -0.4) and plasma volume expansion ( r = 0.6) at 24 h, with

  16. Heat and Dehydration Additively Enhance Cardiovascular Outcomes following Orthostatically-Stressful Calisthenics Exercise

    PubMed Central

    Akerman, Ashley P.; Lucas, Samuel J. E.; Katare, Rajesh; Cotter, James D.

    2017-01-01

    Exercise and exogenous heat each stimulate multiple adaptations, but their roles are not well delineated, and that of the related stressor, dehydration, is largely unknown. While severe and prolonged hypohydration potentially “silences” the long-term heat acclimated phenotype, mild and transient dehydration may enhance cardiovascular and fluid-regulatory adaptations. We tested the hypothesis that exogenous heat stress and dehydration additively potentiate acute (24 h) cardiovascular and hematological outcomes following exercise. In a randomized crossover study, 10 physically-active volunteers (mean ± SD: 173 ± 11 cm; 72.1 ± 11.5 kg; 24 ± 3 year; 6 females) completed three trials of 90-min orthostatically-stressful calisthenics, in: (i) temperate conditions (22°C, 50% rh, no airflow; CON); (ii) heat (40°C, 60% rh) whilst euhydrated (HEAT), and (iii) heat with dehydration (no fluid ~16 h before and during exercise; HEAT+DEHY). Using linear mixed effects model analyses, core temperature (TCORE) rose 0.7°C more in HEAT than CON (95% CL: [0.5, 0.9]; p < 0.001), and another 0.4°C in HEAT+DEHY ([0.2, 0.5]; p < 0.001, vs. HEAT). Skin temperature also rose 1.2°C more in HEAT than CON ([0.6, 1.8]; p < 0.001), and similarly to HEAT+DEHY (p = 0.922 vs. HEAT). Peak heart rate was 40 b·min−1 higher in HEAT than in CON ([28, 51]; p < 0.001), and another 15 b·min−1 higher in HEAT+DEHY ([3, 27]; p = 0.011, vs. HEAT). Mean arterial pressure at 24-h recovery was not consistently below baseline after CON or HEAT (p ≥ 0.452), but was reduced 4 ± 1 mm Hg after HEAT+DEHY ([0, 8]; p = 0.020 vs. baseline). Plasma volume at 24 h after exercise increased in all trials; the 7% increase in HEAT was not reliably more than in CON (5%; p = 0.335), but was an additional 4% larger after HEAT+DEHY ([1, 8]; p = 0.005 vs. HEAT). Pooled-trial correlational analysis showed the rise in TCORE predicted the hypotension (r = −0.4) and plasma volume expansion (r = 0.6) at 24 h, with

  17. Cardiovascular disease biomarkers across autoimmune diseases.

    PubMed

    Ahearn, Joseph; Shields, Kelly J; Liu, Chau-Ching; Manzi, Susan

    2015-11-01

    Cardiovascular disease is increasingly recognized as a major cause of premature mortality among those with autoimmune disorders. There is an urgent need to identify those patients with autoimmune disease who are at risk for CVD so as to optimize therapeutic intervention and ultimately prevention. Accurate identification, monitoring and stratification of such patients will depend upon a panel of biomarkers of cardiovascular disease. This review will discuss some of the most recent biomarkers of cardiovascular diseases in autoimmune disease, including lipid oxidation, imaging biomarkers to characterize coronary calcium, plaque, and intima media thickness, biomarkers of inflammation and activated complement, genetic markers, endothelial biomarkers, and antiphospholipid antibodies. Clinical implementation of these biomarkers will not only enhance patient care but also likely accelerate the pharmaceutical pipeline for targeted intervention to reduce or eliminate cardiovascular disease in the setting of autoimmunity. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Tungsten-encapsulated gadolinium nanoislands with enhanced magnetocaloric response

    DOE PAGES

    Logan, Jonathan M.; Rosenmann, Daniel; Sangpo, Tenzin; ...

    2017-07-03

    Here, we report a method for growing chemically pure, oxide-free, air-stable Gd nanoislands with enhanced magnetic properties. These nanoislands are grown by solid-state dewetting and are fully encapsulated in tungsten such that they remain stable in ambient environments. They display good crystalline properties with hexagonally close-packed crystal structure and strong preferential orientation. We show that the choice of substrate strongly affects their shape, crystal orientation, and magnetic properties. The temperature-dependent magnetic coercivity and remanence of the Gd islands can vary by as much as a factor of three depending on the substrate used. The magneto- caloric properties of Gd islandsmore » grown on a sapphire substrate exceed those of high-quality Gd thin films.« less

  19. Applications of 3D printing in cardiovascular diseases.

    PubMed

    Giannopoulos, Andreas A; Mitsouras, Dimitris; Yoo, Shi-Joon; Liu, Peter P; Chatzizisis, Yiannis S; Rybicki, Frank J

    2016-12-01

    3D-printed models fabricated from CT, MRI, or echocardiography data provide the advantage of haptic feedback, direct manipulation, and enhanced understanding of cardiovascular anatomy and underlying pathologies. Reported applications of cardiovascular 3D printing span from diagnostic assistance and optimization of management algorithms in complex cardiovascular diseases, to planning and simulating surgical and interventional procedures. The technology has been used in practically the entire range of structural, valvular, and congenital heart diseases, and the added-value of 3D printing is established. Patient-specific implants and custom-made devices can be designed, produced, and tested, thus opening new horizons in personalized patient care and cardiovascular research. Physicians and trainees can better elucidate anatomical abnormalities with the use of 3D-printed models, and communication with patients is markedly improved. Cardiovascular 3D bioprinting and molecular 3D printing, although currently not translated into clinical practice, hold revolutionary potential. 3D printing is expected to have a broad influence in cardiovascular care, and will prove pivotal for the future generation of cardiovascular imagers and care providers. In this Review, we summarize the cardiovascular 3D printing workflow, from image acquisition to the generation of a hand-held model, and discuss the cardiovascular applications and the current status and future perspectives of cardiovascular 3D printing.

  20. Assessing the effect of football play on knee articular cartilage using delayed gadolinium-enhanced MRI of cartilage (dGEMRIC).

    PubMed

    Wei, Wenbo; Lambach, Becky; Jia, Guang; Flanigan, David; Chaudhari, Ajit M W; Wei, Lai; Rogers, Alan; Payne, Jason; Siston, Robert A; Knopp, Michael V

    2017-06-01

    The prevalence of cartilage lesions is much higher in football athletes than in the general population. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) has been shown to quantify regional variations of glycosaminoglycan (GAG) concentrations which is an indicator of early cartilage degeneration. The goal of this study is to determine whether dGEMRIC can be used to assess the influence in cartilage GAG concentration due to college level football play. Thirteen collegiate football players with one to four years of collegiate football play experience were recruited and both knee joints were scanned using a dedicated 8-channel phased array knee coil on a 3T MRI system. The contrast concentrations within cartilage were calculated based on the T 1 values from dGEMRIC scans. No substantial differences were found in the contrast concentrations between the pre- and post-season across all the cartilage compartments. One year collegiate football players presented an average contrast concentration at the pre-season of 0.116±0.011mM and post-season of 0.116±0.011mM. In players with multiple years of football play, contrast uptake was elevated to 0.141±0.012mM at the pre-season and 0.139±0.012mM at the post-season. The pre-season 0.023±0.016mM and post-season 0.025±0.016mM increase in contrast concentration within the group with multiple years of experience presented with a >20% increase in contrast uptake. This may indicate the gradual, cumulative damage of football play to the articular cartilage over years, even though the effect may not be noticeable after a season of play. Playing collegiate football for a longer period of time may lead to cartilage microstructural alterations, which may be linked to early knee cartilage degeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Cross-linkable liposomes stabilize a magnetic resonance contrast-enhancing polymeric fastener.

    PubMed

    Smith, Cartney E; Kong, Hyunjoon

    2014-04-08

    Liposomes are commonly used to deliver drugs and contrast agents to their target site in a controlled manner. One of the greatest obstacles in the performance of such delivery vehicles is their stability in the presence of serum. Here, we demonstrate a method to stabilize a class of liposomes that load gadolinium, a magnetic resonance (MR) contrast agent, as a model cargo on their surfaces. We hypothesized that the sequential adsorption of a gadolinium-binding chitosan fastener on the liposome surface followed by covalent cross-linking of the lipid bilayer would provide enhanced stability and improved MR signal in the presence of human serum. To investigate this hypothesis, liposomes composed of diyne-containing lipids were assembled and functionalized via chitosan conjugated with a hydrophobic anchor and diethylenetriaminepentaacetic acid (DTPA). This postadsorption cross-linking strategy served to stabilize the thermodynamically favorable association between liposome and polymeric fastener. Furthermore, the chitosan-coated, cross-linked liposomes proved more effective as delivery vehicles of gadolinium than uncross-linked liposomes due to the reduced liposome degradation and chitosan desorption. Overall, this study demonstrates a useful method to stabilize a broad class of particles used for systemic delivery of various molecular payloads.

  2. Cross-Linkable Liposomes Stabilize a Magnetic Resonance Contrast-Enhancing Polymeric Fastener

    PubMed Central

    2015-01-01

    Liposomes are commonly used to deliver drugs and contrast agents to their target site in a controlled manner. One of the greatest obstacles in the performance of such delivery vehicles is their stability in the presence of serum. Here, we demonstrate a method to stabilize a class of liposomes that load gadolinium, a magnetic resonance (MR) contrast agent, as a model cargo on their surfaces. We hypothesized that the sequential adsorption of a gadolinium-binding chitosan fastener on the liposome surface followed by covalent cross-linking of the lipid bilayer would provide enhanced stability and improved MR signal in the presence of human serum. To investigate this hypothesis, liposomes composed of diyne-containing lipids were assembled and functionalized via chitosan conjugated with a hydrophobic anchor and diethylenetriaminepentaacetic acid (DTPA). This postadsorption cross-linking strategy served to stabilize the thermodynamically favorable association between liposome and polymeric fastener. Furthermore, the chitosan-coated, cross-linked liposomes proved more effective as delivery vehicles of gadolinium than uncross-linked liposomes due to the reduced liposome degradation and chitosan desorption. Overall, this study demonstrates a useful method to stabilize a broad class of particles used for systemic delivery of various molecular payloads. PMID:24635565

  3. Daclizumab high-yield process reduced the evolution of new gadolinium-enhancing lesions to T1 black holes in patients with relapsing-remitting multiple sclerosis.

    PubMed

    Radue, E-W; Sprenger, T; Vollmer, T; Giovannoni, G; Gold, R; Havrdova, E; Selmaj, K; Stefoski, D; You, X; Elkins, J

    2016-02-01

    In the SELECT study, treatment with daclizumab high-yield process (DAC HYP) versus placebo reduced the frequency of gadolinium-enhancing (Gd(+) ) lesions in patients with relapsing-remitting multiple sclerosis (RRMS). The objective of this post hoc analysis of SELECT was to evaluate the effect of DAC HYP on the evolution of new Gd(+) lesions to T1 hypointense lesions (T1 black holes). SELECT was a randomized double-blind study of subcutaneous DAC HYP 150 or 300 mg or placebo every 4 weeks. Magnetic resonance imaging (MRI) scans were performed at baseline and weeks 24, 36 and 52 in all patients and monthly between weeks 4 and 20 in a subset of patients. MRI scans were evaluated for new Gd(+) lesions that evolved to T1 black holes at week 52. Data for the DAC HYP groups were pooled for analysis. Daclizumab high-yield process reduced the number of new Gd(+) lesions present at week 24 (P = 0.005) or between weeks 4 and 20 (P = 0.014) that evolved into T1 black holes at week 52 versus placebo. DAC HYP treatment also reduced the percentage of patients with Gd(+) lesions evolving to T1 black holes versus placebo. Treatment with DAC HYP reduced the evolution of Gd(+) lesions to T1 black holes versus placebo, suggesting that inflammatory lesions that evolved during DAC HYP treatment are less destructive than those evolving during placebo treatment. © 2016 EAN.

  4. MO-FG-BRA-07: Theranostic Gadolinium-Based AGuIX Nanoparticles for MRI-Guided Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detappe, A; Institut Lumiere-Matiere, Villeurbanne; Nano-H, St-Quentin Fallavier

    2015-06-15

    Purpose: AGuIX are gadolinium-based nanoparticles, initially developed for MRI, that have a potential role in radiation therapy as a radiosensitizer. Our goal is to demonstrate that these nanoparticles can both be used as an MRI contrast agent, as well as to obtain local dose enhancement in a pancreatic tumor when delivered in combination with an external beam irradiation. Methods: We performed in vitro cell uptake and radiosensitization studies of a pancreatic cancer cell line in a low energy (220kVp) beam, a standard clinical 6MV beam (STD) and a flattening filter free clinical 6MV beam (FFF). After injection of 40mM ofmore » nanoparticles, a biodistribution study was performed in vivo on mice with subcutaneous xenograft pancreatic tumors. In vivo radiation therapy studies were performed at the time point of maximum tumor uptake. Results: The concentration of AGuIX nanoparticles in Panc-1 pancreatic cancer cells, determined in vitro by MRI and ICPMS, peaks after 30 minutes with 0.3% of the initial concentration (5mg/g). Clonogenic assays show a significant effect (p<0.05) when the AGuIX are coupled with MV photon irradiation (DEF20%=1.31). Similar AGuIX tumor uptake is found in vivo by both MRI and ICPMS 30 minutes after intravenous injection. For long term survival studies, the choice of the radiation dose is determined with 5 control groups (3mice/group) irradiated with 0, 5, 10, 15, and 20Gy. Afterwards, 4 groups (8mice/group) are used to evaluate the effect of the nanoparticles. A Logrank test is performed as a statistical test to evaluate the effect of the nanoparticles. Conclusion: The combination of the MRI contrast and radiosensitization properties of gadolinium nanoparticles reveals a strong potential for usage with MRI-guided radiation therapy.« less

  5. Impact of Impaired Renal Function on Gadolinium Retention After Administration of Gadolinium-Based Contrast Agents in a Mouse Model.

    PubMed

    Kartamihardja, A Adhipatria P; Nakajima, Takahito; Kameo, Satomi; Koyama, Hiroshi; Tsushima, Yoshito

    2016-10-01

    The aim of this study was to investigate the impact of impaired renal function on gadolinium (Gd) retention in various organs after Gd-based contrast agent injection. After local animal care and review committee approval, 23 normal mice and 26 with renal failure were divided into 4 treatment groups (Gd-DTPA-BMA, 5 mmol/kg; Gd-DOTA, 5 mmol/kg; GdCl3, 0.02 mmol/kg; and saline, 250 μL). Each agent was intravenously administered on weekdays for 4 weeks. Samples were collected on days 3 (short-term) and 45 (long-term) after the last injection. Gadolinium concentrations were quantified by inductively coupled plasma-mass spectrometry. Three mice with renal failure and 2 normal mice in the GdCl3 group and 1 mouse with renal failure in the Gd-DTPA-BMA group died. In the Gd-DTPA-BMA group, impaired renal function increased short-term Gd retention in the liver, bone, spleen, skin, and kidney (P < 0.01) but did not affect long-term Gd retention. Gd-DTPA-BMA showed higher Gd retention than Gd-DOTA. Although Gd retention in the Gd-DOTA group was generally low, impaired renal function increased only long-term hepatic Gd retention. Hepatic and splenic Gd retentions were significantly higher than other organs' Gd retention in the GdCl3 group (P < 0.01). Renal function did not affect brain Gd retention, regardless of the Gd compound used. The tendency of Gd retention varied according to the agent, regardless of renal function. Although renal impairment increased short-term Gd retention after Gd-DTPA-BMA administration, long-term Gd retention for Gd-based contrast agents was almost unaffected by renal function, suggesting that the chemical structures of retained Gd may not be consistent and some Gd is slowly eliminated after initially being retained.

  6. [Atmospheric pollution and cardiovascular damage].

    PubMed

    Román, Oscar; Prieto, María José; Mancilla, Pedro

    2004-06-01

    The damaging effect of atmospheric pollution with particulate matter and toxic gases on the respiratory system and its effect in the incidence and severity of respiratory diseases, is well known. A similar effect on the cardiovascular system is currently under investigation. Epidemiological studies have demonstrated that the inhalation of particulate matter can increase cardiovascular disease incidence and mortality, specially ischemic heart disease. The damage would be mediated by alterations in the autonomic nervous system, inflammation, infections and free radicals. In human studies, environmental pollution is associated with alterations in cardiac frequency variability and blood pressure and with changes in ventricular repolarization. Experimentally, an enhancement of ischemia, due to coronary obstruction, has been demonstrated. The study of the toxic effects of environmental pollution over the cardiovascular system, is an open field, specially in Chile, were the big cities have serious contamination problems.

  7. Engineered gadolinium-doped carbon dots for magnetic resonance imaging-guided radiotherapy of tumors.

    PubMed

    Du, Fengyi; Zhang, Lirong; Zhang, Li; Zhang, Miaomiao; Gong, Aihua; Tan, Youwen; Miao, Jiawen; Gong, Yuhua; Sun, Mingzhong; Ju, Huixiang; Wu, Chaoyang; Zou, Shenqiang

    2017-03-01

    The effectiveness of radiotherapy can decrease due to inaccurate positioning of machinery and inherent radioresistance of tumors. To address this issue, we present a novel theranostic nanoplatform based on gadolinium-doped carbon dots (Gd-doped CDs) designed specifically for magnetic resonance imaging (MRI)-guided radiotherapy of tumors. The Gd-doped CDs (∼18 nm) with dispersibility in water and stable photoluminescence were synthesized via a one-step hydrothermal approach. After tail vein injection of the Gd-doped CDs, they exhibited a relatively long circulation time (∼6 h), enabled efficient passive tumor targeting. Gd-doped CDs accumulate in the kidney and could be cleared out of the body from bladder. Importantly, they exhibited favorable biocompatibility with excellent performance in longitudinal relaxivity rate (r 1 ) of 6.45 mM -1 S -1 and radiosensitization enhancements. These results show that Gd-doped CDs are excellent T 1 contrast agents and radiosensitizers, possessing great promise for MRI-guided radiotherapy of tumors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. High-pressure high-temperature phase diagram of gadolinium studied using a boron-doped heater anvil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, J. M.; Samudrala, G. K.; Vohra, Y. K.

    A boron-doped designer heater anvil is used in conjunction with powder x-ray diffraction to collect structural information on a sample of quasi-hydrostatically loaded gadolinium metal up to pressures above 8 GPa and 600 K. The heater anvil consists of a natural diamond anvil that has been surface modified with a homoepitaxially grown chemical-vapor-deposited layer of conducting boron-doped diamond, and is used as a DC heating element. Internally insulating both diamond anvils with sapphire support seats allows for heating and cooling of the high-pressure area on the order of a few tens of seconds. This device is then used to scan the phasemore » diagram of the sample by oscillating the temperature while continuously increasing the externally applied pressure and collecting in situ time-resolved powder diffraction images. In the pressure-temperature range covered in this experiment, the gadolinium sample is observed in its hcp, αSm, and dhcp phases. Under this temperature cycling, the hcp → αSm transition proceeds in discontinuous steps at points along the expected phase boundary. From these measurements (representing only one hour of synchrotron x-ray collection time), a single-experiment equation of state and phase diagram of each phase of gadolinium is presented for the range of 0–10 GPa and 300–650 K.« less

  9. High-pressure high-temperature phase diagram of gadolinium studied using a boron-doped heater anvil

    NASA Astrophysics Data System (ADS)

    Montgomery, J. M.; Samudrala, G. K.; Velisavljevic, N.; Vohra, Y. K.

    2016-04-01

    A boron-doped designer heater anvil is used in conjunction with powder x-ray diffraction to collect structural information on a sample of quasi-hydrostatically loaded gadolinium metal up to pressures above 8 GPa and 600 K. The heater anvil consists of a natural diamond anvil that has been surface modified with a homoepitaxially grown chemical-vapor-deposited layer of conducting boron-doped diamond, and is used as a DC heating element. Internally insulating both diamond anvils with sapphire support seats allows for heating and cooling of the high-pressure area on the order of a few tens of seconds. This device is then used to scan the phase diagram of the sample by oscillating the temperature while continuously increasing the externally applied pressure and collecting in situ time-resolved powder diffraction images. In the pressure-temperature range covered in this experiment, the gadolinium sample is observed in its hcp, αSm, and dhcp phases. Under this temperature cycling, the hcp → αSm transition proceeds in discontinuous steps at points along the expected phase boundary. From these measurements (representing only one hour of synchrotron x-ray collection time), a single-experiment equation of state and phase diagram of each phase of gadolinium is presented for the range of 0-10 GPa and 300-650 K.

  10. Disparate ultrafast dynamics of itinerant and localized magnetic moments in gadolinium metal

    PubMed Central

    Frietsch, B.; Bowlan, J.; Carley, R.; Teichmann, M.; Wienholdt, S.; Hinzke, D.; Nowak, U.; Carva, K.; Oppeneer, P. M.; Weinelt, M.

    2015-01-01

    The Heisenberg–Dirac intra-atomic exchange coupling is responsible for the formation of the atomic spin moment and thus the strongest interaction in magnetism. Therefore, it is generally assumed that intra-atomic exchange leads to a quasi-instantaneous aligning process in the magnetic moment dynamics of spins in separate, on-site atomic orbitals. Following ultrashort optical excitation of gadolinium metal, we concurrently record in photoemission the 4f magnetic linear dichroism and 5d exchange splitting. Their dynamics differ by one order of magnitude, with decay constants of 14 versus 0.8 ps, respectively. Spin dynamics simulations based on an orbital-resolved Heisenberg Hamiltonian combined with first-principles calculations explain the particular dynamics of 5d and 4f spin moments well, and corroborate that the 5d exchange splitting traces closely the 5d spin-moment dynamics. Thus gadolinium shows disparate dynamics of the localized 4f and the itinerant 5d spin moments, demonstrating a breakdown of their intra-atomic exchange alignment on a picosecond timescale. PMID:26355196

  11. A Manganese Alternative to Gadolinium for MRI Contrast

    PubMed Central

    Gale, Eric M.; Atanasova, Iliyana P.; Blasi, Francesco; Ay, Ilknur; Caravan, Peter

    2016-01-01

    Contrast-enhanced computed tomography (CT) and magnetic resonance imaging (MRI) are routinely used to diagnose soft tissue and vascular abnormalities. However safety concerns limit the use of iodinated and gadolinium- (Gd) based CT and MRI contrast media in renally compromised patients. With an estimated 14% of the US population suffering from chronic kidney disease (CKD), contrast media compatible with renal impairment is sorely needed. We present the new manganese(II) complex [Mn(PyC3A)(H2O)]- as a Gd alternative. [Mn(PyC3A)(H2O)]- is amongst the most stable Mn(II) complexes at pH 7.4 (log KML = 11.40). In the presence of 25 mol equiv. Zn at pH 6.0, 37 °C, [Mn(PyC3A)(H2O)]- is 20-fold more resistant to dissociation than [Gd(DTPA)(H2O)]2-. Relaxivity of [Mn(PyC3A)(H2O)]- in blood plasma is comparable to commercial Gd contrast agents. Biodistribution analysis confirms that [Mn(PyC3A)(H2O)]- clears via a mixed renal/ hepatobiliary pathway with >99% elimination by 24h. [Mn(PyC3A)(H2O)]- was modified to form a bifunctional chelator and 4 chelates were conjugated to a fibrin-specific peptide to give Mn-FBP. Mn-FBP binds the soluble fibrin fragment DD(E) with Kd = 110 nM. Per Mn relaxivity of Mn-FBP is 4-fold greater than [Mn(PyC3A)(H2O)]- and increases 60% in the presence of fibrin, consistent with binding. Mn-FBP provided equivalent thrombus enhancement to the state of the art Gd analog, EP-2104R, in a rat model of arterial thrombosis. Mn metabolite analysis reveals no evidence of dechelation and the probe was >99% eliminated after 24 hr. [Mn(PyC3A)(H2O)]- is a lead development candidate for an imaging probe that is compatible with renally compromised patients. PMID:26588204

  12. K3 Li3 Gd7 (BO3 )9 : A New Gadolinium-Rich Orthoborate for Cryogenic Magnetic Cooling.

    PubMed

    Xia, Mingjun; Shen, Shipeng; Lu, Jun; Sun, Young; Li, Rukang

    2018-03-02

    Magnetic cooling technology based on magnetocaloric effect (MCE) has attracted great interest in obtaining extremely low temperatures, for example, for space exploration. Here, we grew a new gadolinium-rich orthoborate K 3 Li 3 Gd 7 (BO 3 ) 9 (1) as a promising cryogenic magnetic coolant. It exhibits a complicated three dimensional framework constructed from BO 3 groups and gadolinium-oxygen chains. The Gd-O chain consists of two types of clusters of Gd 3 O 20 and Gd 3 O 19 interconnection by Gd(4)O 8 polyhydron. Due to its high gadolinium concentration, a large -ΔS m of 56.6 J kg -1  K -1 for 1 was obtained at 2 K and ΔH=7 T, much larger than that of the commercial benchmark Gd 3 Ga 5 O 12 (GGG) crystal (38.4 J kg -1  K -1 ), suggesting it to be an excellent MCE material. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Transient arterial phase respiratory motion-related artifact in MR imaging of the liver: an analysis of four different gadolinium-based contrast agents.

    PubMed

    Shah, Mansi R; Flusberg, Milana; Paroder, Viktoriya; Rozenblit, Alla M; Chernyak, Victoria

    The purpose was to compare hepatic arterial phase (HAP) respiratory motion artifact (RMA) between gadoxetate, gadobutrol, gadopentetate, and gadobenate. Two hundred cases of each gadolinium agent were included. RMA was assigned using 5-point Likert scale (1=no motion, 5=extreme motion) on precontrast and HAP. RMA increase (increase ≥1 on HAP from precontrast) was the outcome in logistic regression. Odds of RMA increase for gadoxetate were 5.5 (P<.001), 3.6 (P=.034), and 9.5 (P<.001) times higher than gadobutrol, gadopentetate, and gadobenate, respectively. Gadolinium volume and dose were not independent predictors of RMA increase. Gadoxetate has increased odds of RMA compared with other gadolinium agents; tight contrast bolus is not a contributor. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Evaluation of focal cartilage lesions of the knee using MRI T2 mapping and delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC).

    PubMed

    Årøen, Asbjørn; Brøgger, Helga; Røtterud, Jan Harald; Sivertsen, Einar Andreas; Engebretsen, Lars; Risberg, May Arna

    2016-02-11

    Assessment of degenerative changes of the cartilage is important in knee cartilage repair surgery. Magnetic Resonance Imaging (MRI) T2 mapping and delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC) are able to detect early degenerative changes. The hypothesis of the study was that cartilage surrounding a focal cartilage lesion in the knee does not possess degenerative changes. Twenty-eight consecutive patients included in a randomized controlled trial on cartilage repair were evaluated using MRI T2 mapping and dGEMRIC before cartilage treatment was initiated. Inclusion was based on disabling knee problems (Lysholm score of ≤ 75) due to an arthroscopically verified focal femoral condyle cartilage lesion. Furthermore, no major malalignments or knee ligament injuries were accepted. Mean patient age was 33 ± 9.6 years, and the mean duration of knee symptoms was 49 ± 60 months. The MRI T2 mapping and the dGEMRIC measurements were performed at three standardized regions of interest (ROIs) at the medial and lateral femoral condyle, avoiding the cartilage lesion The MRI T2 mapping of the cartilage did not demonstrate significant differences between condyles with or without cartilage lesions. The dGEMRIC results did not show significantly lower values of the affected condyle compared with the opposite condyle and the contra-lateral knee in any of the ROIs. The intraclass correlation coefficient (ICC) of the dGEMRIC readings was 0.882. The MRI T2 mapping and the dGEMRIC confirmed the arthroscopic findings that normal articular cartilage surrounded the cartilage lesion, reflecting normal variation in articular cartilage quality. NCT00885729 , registered April 17 2009.

  15. Renal function, nephrogenic systemic fibrosis and other adverse reactions associated with gadolinium-based contrast media.

    PubMed

    Canga, Ana; Kislikova, Maria; Martínez-Gálvez, María; Arias, Mercedes; Fraga-Rivas, Patricia; Poyatos, Cecilio; de Francisco, Angel L M

    2014-01-01

    Nephrogenic systemic fibrosis is a fibrosing disorder that affects patients with impaired renal function and is associated with the administration of gadolinium-based contrast media used in MRI. Despite being in a group of drugs that were considered safe, report about this potentially serious adverse reaction was a turning point in the administration guidelines of these contrast media. There has been an attempt to establish safety parameters to identify patients with risk factors of renal failure. The close pharmacovigilance and strict observation of current regulations, with special attention being paid to the value of glomerular filtration, have reduced the published cases involving the use of gadolinium-based contrast media. In a meeting between radiologists and nephrologists we reviewed the most relevant aspects currently and recommendations for its prevention.

  16. Bioconjugation of luminescent silicon quantum dots to gadolinium ions for bioimaging applications

    NASA Astrophysics Data System (ADS)

    Erogbogbo, Folarin; Chang, Ching-Wen; May, Jasmine L.; Liu, Liwei; Kumar, Rajiv; Law, Wing-Cheung; Ding, Hong; Yong, Ken Tye; Roy, Indrajit; Sheshadri, Mukund; Swihart, Mark T.; Prasad, Paras N.

    2012-08-01

    Luminescent imaging agents and MRI contrast agents are desirable components in the rational design of multifunctional nanoconstructs for biological imaging applications. Luminescent biocompatible silicon quantum dots (SiQDs) and gadolinium chelates can be applied for fluorescence microscopy and MRI, respectively. Here, we report the first synthesis of a nanocomplex incorporating SiQDs and gadolinium ions (Gd3+) for biological applications. The nanoconstruct is composed of a PEGylated micelle, with hydrophobic SiQDs in its core, covalently bound to DOTA-chelated Gd3+. Dynamic light scattering reveals a radius of 85 nm for these nanoconstructs, which is consistent with the electron microscopy results depicting radii ranging from 25 to 60 nm. Cellular uptake of the probes verified that they maintain their optical properties within the intracellular environment. The magnetic resonance relaxivity of the nanoconstruct was 2.4 mM-1 s-1 (in terms of Gd3+ concentration), calculated to be around 6000 mM-1 s-1 per nanoconstruct. These desirable optical and relaxivity properties of the newly developed probe open the door for use of SiQDs in future multimodal applications such as tumour imaging.Luminescent imaging agents and MRI contrast agents are desirable components in the rational design of multifunctional nanoconstructs for biological imaging applications. Luminescent biocompatible silicon quantum dots (SiQDs) and gadolinium chelates can be applied for fluorescence microscopy and MRI, respectively. Here, we report the first synthesis of a nanocomplex incorporating SiQDs and gadolinium ions (Gd3+) for biological applications. The nanoconstruct is composed of a PEGylated micelle, with hydrophobic SiQDs in its core, covalently bound to DOTA-chelated Gd3+. Dynamic light scattering reveals a radius of 85 nm for these nanoconstructs, which is consistent with the electron microscopy results depicting radii ranging from 25 to 60 nm. Cellular uptake of the probes verified that they

  17. Left ventricular hypertrophy: The relationship between the electrocardiogram and cardiovascular magnetic resonance imaging.

    PubMed

    Bacharova, Ljuba; Ugander, Martin

    2014-11-01

    Conventional assessment of left ventricular hypertrophy (LVH) using the electrocardiogram (ECG), for example, by the Sokolow-Lyon, Romhilt-Estes or Cornell criteria, have relied on assessing changes in the amplitude and/or duration of the QRS complex of the ECG to quantify LV mass. ECG measures of LV mass have typically been validated by imaging with echocardiography or cardiovascular magnetic resonance imaging (CMR). However, LVH can be the result of diverse etiologies, and LVH is also characterized by pathological changes in myocardial tissue characteristics on the genetic, molecular, cellular, and tissue level beyond a pure increase in the number of otherwise normal cardiomyocytes. For example, slowed conduction velocity through the myocardium, which can be due to diffuse myocardial fibrosis, has been shown to be an important determinant of conventional ECG LVH criteria regardless of LV mass. Myocardial tissue characterization by CMR has emerged to not only quantify LV mass, but also detect and quantify the extent and severity of focal or diffuse myocardial fibrosis, edema, inflammation, myocarditis, fatty replacement, myocardial disarray, and myocardial deposition of amyloid proteins (amyloidosis), glycolipids (Fabry disease), or iron (siderosis). This can be undertaken using CMR techniques including late gadolinium enhancement (LGE), T1 mapping, T2 mapping, T2* mapping, extracellular volume fraction (ECV) mapping, fat/water-weighted imaging, and diffusion tensor CMR. This review presents an overview of current and emerging concepts regarding the diagnostic possibilities of both ECG and CMR for LVH in an attempt to narrow gaps in our knowledge regarding the ECG diagnosis of LVH. © 2014 Wiley Periodicals, Inc.

  18. Removal of gadolinium nitrate from heavy water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilde, E.W.

    2000-03-22

    Work was conducted to develop a cost-effective process to purify 181 55-gallon drums containing spent heavy water moderator (D2O) contaminated with high concentrations of gadolinium nitrate, a chemical used as a neutron poison during former nuclear reactor operations at the Savannah River Site (SRS). These drums also contain low level radioactive contamination, including tritium, which complicates treatment options. Presently, the drums of degraded moderator are being stored on site. It was suggested that a process utilizing biological mechanisms could potentially lower the total cost of heavy water purification by allowing the use of smaller equipment with less product loss andmore » a reduction in the quantity of secondary waste materials produced by the current baseline process (ion exchange).« less

  19. Insights into the use of gadolinium and gadolinium/boron-based agents in imaging-guided neutron capture therapy applications.

    PubMed

    Deagostino, Annamaria; Protti, Nicoletta; Alberti, Diego; Boggio, Paolo; Bortolussi, Silva; Altieri, Saverio; Crich, Simonetta Geninatti

    2016-05-01

    Gadolinium neutron capture therapy (Gd-NCT) is currently under development as an alternative approach for cancer therapy. All of the clinical experience to date with NCT is done with (10)B, known as boron neutron capture therapy (BNCT), a binary treatment combining neutron irradiation with the delivery of boron-containing compounds to tumors. Currently, the use of Gd for NCT has been getting more attention because of its highest neutron cross-section. Although Gd-NCT was first proposed many years ago, its development has suffered due to lack of appropriate tumor-selective Gd agents. This review aims to highlight the recent advances for the design, synthesis and biological testing of new Gd- and B-Gd-containing compounds with the task of finding the best systems able to improve the NCT clinical outcome.

  20. Global progress in prevention of cardiovascular disease

    PubMed Central

    2017-01-01

    Although there is measurable global progress in prevention of cardiovascular disease (CVD), it has been highly uneven and inadequate, particularly in low- and middle-income countries. Voluntary global targets have helped to galvanize attention, resources and accountability on tobacco use, harmful use of alcohol, unhealthy diet and physical inactivity which are the major behavioural drivers of CVD. Many obstacles and challenges continue to impede the progress of cardiovascular prevention. The inclusion of noncommunicable diseases (NCDs) in the sustainable development agenda as a specific target, offers an unprecedented opportunity to further advance the global progress of cardiovascular prevention. In order to seize this opportunity, a paradigm shift is required in the way key challenges to cardiovascular prevention are addressed. Such an approach must provide leadership for intersectoral policy coherence, identify effective means of tackling commercial determinants of behavioural risk factors, use rights based arguments, enhance public engagement and ensure accountability. PMID:28529920

  1. Convection-enhanced delivery of MANF--volume of distribution analysis in porcine putamen and substantia nigra.

    PubMed

    Barua, N U; Bienemann, A S; Woolley, M; Wyatt, M J; Johnson, D; Lewis, O; Irving, C; Pritchard, G; Gill, S

    2015-10-15

    Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a 20kDa human protein which has both neuroprotective and neurorestorative activity on dopaminergic neurons and therefore may have application for the treatment of Parkinson's Disease. The aims of this study were to determine the translational potential of convection-enhanced delivery (CED) of MANF for the treatment of PD by studying its distribution in porcine putamen and substantia nigra and to correlate histological distribution with co-infused gadolinium-DTPA using real-time magnetic resonance imaging. We describe the distribution of MANF in porcine putamen and substantia nigra using an implantable CED catheter system using co-infused gadolinium-DTPA to allow real-time MRI tracking of infusate distribution. The distribution of gadolinium-DTPA on MRI correlated well with immunohistochemical analysis of MANF distribution. Volumetric analysis of MANF IHC staining indicated a volume of infusion (Vi) to volume of distribution (Vd) ratio of 3 in putamen and 2 in substantia nigra. This study confirms the translational potential of CED of MANF as a novel treatment strategy in PD and also supports the co-infusion of gadolinium as a proxy measure of MANF distribution in future clinical studies. Further study is required to determine the optimum infusion regime, flow rate and frequency of infusions in human trials. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. High-pressure high-temperature phase diagram of gadolinium studied using a boron-doped heater anvil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, J. M.; Samudrala, G. K.; Velisavljevic, N.

    A boron-doped designer heater anvil is used in conjunction with powder x-ray diffraction to collect structural information on a sample of quasi-hydrostatically loaded gadolinium metal up to pressures above 8 GPa and 600 K. The heater anvil consists of a natural diamond anvil that has been surface modified with a homoepitaxially-grown chemical-vapor-deposited layer of conducting boron-doped diamond, and is used as a DC heating element. Internally insulating both diamond anvils with sapphire support seats allows for heating and cooling of the high pressure area on the order of a few tens of seconds. This device is then used to scanmore » the phase diagram of the sample by oscillating the temperature while continuously increasing the externally applied pressure and collecting in situ time-resolved powder diffraction images. In the pressure-temperature range covered in the experiment the gadolinium sample is observed in its hcp, αSm, and dhcp phases. Under this temperature cycling, the hcp→αSm transition proceeds in discontinuous steps at points along the expected phase boundary. Additionally, the unit cell volumes of each phase deviate from the expected thermal expansion behavior just before each transition is observed from the diffraction data. From these measurements (representing only one hour of synchrotron x-ray collection time), a single-experiment equation of state and phase diagram of each phase of gadolinium is presented for the range of 0 - 10 GPa and 300 - 650 K.« less

  3. High-pressure high-temperature phase diagram of gadolinium studied using a boron-doped heater anvil

    DOE PAGES

    Montgomery, J. M.; Samudrala, G. K.; Velisavljevic, N.; ...

    2016-04-07

    A boron-doped designer heater anvil is used in conjunction with powder x-ray diffraction to collect structural information on a sample of quasi-hydrostatically loaded gadolinium metal up to pressures above 8 GPa and 600 K. The heater anvil consists of a natural diamond anvil that has been surface modified with a homoepitaxially-grown chemical-vapor-deposited layer of conducting boron-doped diamond, and is used as a DC heating element. Internally insulating both diamond anvils with sapphire support seats allows for heating and cooling of the high pressure area on the order of a few tens of seconds. This device is then used to scanmore » the phase diagram of the sample by oscillating the temperature while continuously increasing the externally applied pressure and collecting in situ time-resolved powder diffraction images. In the pressure-temperature range covered in the experiment the gadolinium sample is observed in its hcp, αSm, and dhcp phases. Under this temperature cycling, the hcp→αSm transition proceeds in discontinuous steps at points along the expected phase boundary. Additionally, the unit cell volumes of each phase deviate from the expected thermal expansion behavior just before each transition is observed from the diffraction data. From these measurements (representing only one hour of synchrotron x-ray collection time), a single-experiment equation of state and phase diagram of each phase of gadolinium is presented for the range of 0 - 10 GPa and 300 - 650 K.« less

  4. Ambient temperature enhanced acute cardiovascular-respiratory mortality effects of PM2.5 in Beijing, China.

    PubMed

    Li, Yi; Ma, Zhiqiang; Zheng, Canjun; Shang, Yu

    2015-12-01

    Studies have shown that temperature could modify the effect of ambient fine particles on mortality risk. In assessing air pollution effects, temperature is usually considered as a confounder. However, ambient temperature can alter people's physiological response to air pollution and might "modify" the impact of air pollution on health outcomes. This study investigated the interaction between daily PM2.5 and daily mean temperature in Beijing, China, using data for the period 2005-2009. Bivariate PM2.5-temperature response surfaces and temperature-stratified generalized additive model (GAM) were applied to study the effect of PM2.5 on cardiovascular, respiratory mortality, and total non-accidental mortality across different temperature levels. We found that low temperature could significantly enhance the effect of PM2.5 on cardiovascular mortality. For an increase of 10 μg/m(3) in PM2.5 concentration in the lowest temperature range (-9.7∼2.6 °C), the relative risk (RR) of cardiovascular mortality increased 1.27 % (95 % CI 0.38∼2.17 %), which was higher than that of the whole temperature range (0.59 %, 95 % CI 0.22-1.16 %). The largest effect of PM2.5 on respiratory mortality appeared in the high temperature range. For an increase of 10 μg/m(3) in PM2.5 concentration, RR of respiratory mortality increased 1.70 % (95 % CI 0.92∼3.33 %) in the highest level (23.50∼31.80 °C). For the total non-accidental mortality, significant associations appeared only in low temperature levels (-9.7∼2.6 °C): for an increase of 10 μg/m(3) in current day PM2.5 concentration, RR increased 1.27 % (95 % CI 0.46∼2.00 %) in the lowest temperature level. No lag effect was observed. The results suggest that in air pollution mortality time series studies, the possibility of an interaction between air pollution and temperature should be considered.

  5. Ambient temperature enhanced acute cardiovascular-respiratory mortality effects of PM2.5 in Beijing, China

    NASA Astrophysics Data System (ADS)

    Li, Yi; Ma, Zhiqiang; Zheng, Canjun; Shang, Yu

    2015-12-01

    Studies have shown that temperature could modify the effect of ambient fine particles on mortality risk. In assessing air pollution effects, temperature is usually considered as a confounder. However, ambient temperature can alter people's physiological response to air pollution and might "modify" the impact of air pollution on health outcomes. This study investigated the interaction between daily PM2.5 and daily mean temperature in Beijing, China, using data for the period 2005-2009. Bivariate PM2.5-temperature response surfaces and temperature-stratified generalized additive model (GAM) were applied to study the effect of PM2.5 on cardiovascular, respiratory mortality, and total non-accidental mortality across different temperature levels. We found that low temperature could significantly enhance the effect of PM2.5 on cardiovascular mortality. For an increase of 10 μg/m3 in PM2.5 concentration in the lowest temperature range (-9.7˜2.6 °C), the relative risk (RR) of cardiovascular mortality increased 1.27 % (95 % CI 0.38˜2.17 %), which was higher than that of the whole temperature range (0.59 %, 95 % CI 0.22-1.16 %). The largest effect of PM2.5 on respiratory mortality appeared in the high temperature range. For an increase of 10 μg/m3 in PM2.5 concentration, RR of respiratory mortality increased 1.70 % (95 % CI 0.92˜3.33 %) in the highest level (23.50˜31.80 °C). For the total non-accidental mortality, significant associations appeared only in low temperature levels (-9.7˜2.6 °C): for an increase of 10 μg/m3 in current day PM2.5 concentration, RR increased 1.27 % (95 % CI 0.46˜2.00 %) in the lowest temperature level. No lag effect was observed. The results suggest that in air pollution mortality time series studies, the possibility of an interaction between air pollution and temperature should be considered.

  6. Hypertensive heart disease versus hypertrophic cardiomyopathy: multi-parametric cardiovascular magnetic resonance discriminators when end-diastolic wall thickness ≥ 15 mm.

    PubMed

    Rodrigues, Jonathan C L; Rohan, Stephen; Ghosh Dastidar, Amardeep; Harries, Iwan; Lawton, Christopher B; Ratcliffe, Laura E; Burchell, Amy E; Hart, Emma C; Hamilton, Mark C K; Paton, Julian F R; Nightingale, Angus K; Manghat, Nathan E

    2017-03-01

    European guidelines state left ventricular (LV) end-diastolic wall thickness (EDWT) ≥15mm suggests hypertrophic cardiomyopathy (HCM), but distinguishing from hypertensive heart disease (HHD) is challenging. We identify cardiovascular magnetic resonance (CMR) predictors of HHD over HCM when EDWT ≥15mm. 2481 consecutive clinical CMRs between 2014 and 2015 were reviewed. 464 segments from 29 HCM subjects with EDWT ≥15mm but without other cardiac abnormality, hypertension or renal impairment were analyzed. 432 segments from 27 HHD subjects with EDWT ≥15mm but without concomitant cardiac pathology were analyzed. Magnitude and location of maximal EDWT, presence of late gadolinium enhancement (LGE), LV asymmetry (>1.5-fold opposing segment) and systolic anterior motion of the mitral valve (SAM) were measured. Multivariate logistic regression was performed. Significance was defined as p<0.05. HHD and HCM cohorts were age-/gender-matched. HHD had significantly increased indexed LV mass (110±27g/m 2 vs. 91±31g/m 2 , p=0.016) but no difference in site or magnitude of maximal EDWT. Mid-wall LGE was significantly more prevalent in HCM. Elevated indexed LVM, mid-wall LGE and absence of SAM were significant multivariate predictors of HHD, but LV asymmetry was not. Increased indexed LV mass, absence of mid-wall LGE and absence of SAM are better CMR discriminators of HHD from HCM than EDWT ≥15mm. • Hypertrophic cardiomyopathy (HCM) is often diagnosed with end-diastolic wall thickness ≥15mm. • Hypertensive heart disease (HHD) can be difficult to distinguish from HCM. • Retrospective case-control study showed that location and magnitude of EDWT are poor discriminators. • Increased left ventricular mass and midwall fibrosis are independent predictors of HHD. • Cardiovascular magnetic resonance parameters facilitate a better discrimination between HHD and HCM.

  7. Are gadolinium contrast agents suitable for gadolinium neutron capture therapy?

    PubMed

    De Stasio, Gelsomina; Rajesh, Deepika; Casalbore, Patrizia; Daniels, Matthew J; Erhardt, Robert J; Frazer, Bradley H; Wiese, Lisa M; Richter, Katherine L; Sonderegger, Brandon R; Gilbert, Benjamin; Schaub, Sebastien; Cannara, Rachel J; Crawford, John F; Gilles, Mary K; Tyliszczak, Tolek; Fowler, John F; Larocca, Luigi M; Howard, Steven P; Mercanti, Delio; Mehta, Minesh P; Pallini, Roberto

    2005-06-01

    Gadolinium neutron capture therapy (GdNCT) is a potential treatment for malignant tumors based on two steps: (1) injection of a tumor-specific (157)Gd compound; (2) tumor irradiation with thermal neutrons. The GdNC reaction can induce cell death provided that Gd is proximate to DNA. Here, we studied the nuclear uptake of Gd by glioblastoma (GBM) tumor cells after treatment with two Gd compounds commonly used for magnetic resonance imaging, to evaluate their potential as GdNCT agents. Using synchrotron X-ray spectromicroscopy, we analyzed the Gd distribution at the subcellular level in: (1) human cultured GBM cells exposed to Gd-DTPA or Gd-DOTA for 0-72 hours; (2) intracerebrally implanted C6 glioma tumors in rats injected with one or two doses of Gd-DOTA, and (3) tumor samples from GBM patients injected with Gd-DTPA. In cell cultures, Gd-DTPA and Gd-DOTA were found in 84% and 56% of the cell nuclei, respectively. In rat tumors, Gd penetrated the nuclei of 47% and 85% of the tumor cells, after single and double injection of Gd-DOTA, respectively. In contrast, in human GBM tumors 6.1% of the cell nuclei contained Gd-DTPA. Efficacy of Gd-DTPA and Gd-DOTA as GdNCT agents is predicted to be low, due to the insufficient number of tumor cell nuclei incorporating Gd. Although multiple administration schedules in vivo might induce Gd penetration into more tumor cell nuclei, a search for new Gd compounds with higher nuclear affinity is warranted before planning GdNCT in animal models or clinical trials.

  8. Gadolinium based contrast agents in current practice: Risks of accumulation and toxicity in patients with normal renal function

    PubMed Central

    Ranga, Anju; Agarwal, Yatish; Garg, Kanika J

    2017-01-01

    Despite being decked as the most prized compounds in the nugget box of contrast agents for clinical radiologists, and carrying an indisputable tag of safety of the US Food and Drug Administration for close to three decades, all may not be seemingly well with the family of gadolinium compounds. If the first signs of violations of primum non nocere in relation to gadolinium-based contrast agents (GBCAs) appeared in the millennium year with the first published report of skin fibrosis in patients with compromised renal function, the causal relationship between the development of nephrogenic systemic fibrosis (NSF) and GBCAs, first proposed by two European groups in 2006, further precluded their use in renocompromised patients. The toxicity, pharmacokinetics, and pharmacodynamics of GBCAs, however, has come under hawk-eyed scrutiny with recent reports that gadolinium tends to deposit cumulatively in the brain of patients with normal hepatobiliary function and intact blood–brain barrier. While the jury on the long-term hazard significance of this critical scientific finding is still out, the use of GBCAs must be guided by due clinical diligence, avoidance of repeated doses, and preferring GBCAs with the best safety profiles. PMID:28744073

  9. Reaction of gadolinium chelates with ozone and hydroxyl radicals.

    PubMed

    Cyris, Maike; Knolle, Wolfgang; Richard, Jessica; Dopp, Elke; von Sonntag, Clemens; Schmidt, Torsten C

    2013-09-03

    Gadolinium chelates are used in increasing amounts as contrast agents in magnetic resonance imaging, and their fate in wastewater treatment has recently become the focus of research. Oxidative processes, in particular the application of ozone, are currently discussed or even implemented for advanced wastewater treatment. However, reactions of the gadolinium chelates with ozone are not yet characterized. In this study, therefore, rate constants with ozone were determined for the three commonly used chelates Gd-DTPA, Gd-DTPA-BMA, and Gd-BT-DO3A, which were found to be 4.8 ± 0.88, 46 ± 2.5, and 24 ± 1.5 M(-1) s(-1), respectively. These low rate constants indicate that a direct reaction with ozone in wastewater is negligible. However, application of ozone in wastewater leads to substantial yields of (•)OH. Different methods have been applied and compared for determination of k((•)OH+Gd chelate). From rate constants determined by pulse radiolysis experiments (k((•)OH+Gd-DTPA) = 2.6 ± 0.2 × 10(9) M(-1) s(-1), k((•)OH+Gd-DTPA-BMA) = 1.9 ± 0.7 × 10(9) M(-1) s(-1), k((•)OH+Gd-BT-DO3A) = 4.3 ± 0.2 × 10(9) M(-1) s(-1)), it is concluded that a reaction in wastewater via (•)OH radicals is feasible. Toxicity has been tested for educt and product mixtures of both reactions. Cytotoxicity (MTT test) and genotoxicity (micronuclei assay) were not detectable.

  10. Neuroprotective effect of gadolinium: a stretch-activated calcium channel blocker in mouse model of ischemia-reperfusion injury.

    PubMed

    Gulati, Puja; Muthuraman, Arunachalam; Jaggi, Amteshwar S; Singh, Nirmal

    2013-03-01

    The present study was designed to investigate the potential of gadolinium, a stretch-activated calcium channel blocker in ischemic reperfusion (I/R)-induced brain injury in mice. Bilateral carotid artery occlusion of 12 min followed by reperfusion for 24 h was given to induce cerebral injury in male Swiss mice. Cerebral infarct size was measured using triphenyltetrazolium chloride staining. Memory was assessed using Morris water maze test and motor incoordination was evaluated using rota-rod, lateral push, and inclined beam walking tests. In addition, total calcium, thiobarbituric acid reactive substance (TBARS), reduced glutathione (GSH), and acetylcholinesterase (AChE) activity were also estimated in brain tissue. I/R injury produced a significant increase in cerebral infarct size. A significant loss of memory along with impairment of motor performance was also noted. Furthermore, I/R injury also produced a significant increase in levels of TBARS, total calcium, AChE activity, and a decrease in GSH levels. Pretreatment of gadolinium significantly attenuated I/R-induced infarct size, behavioral and biochemical changes. On the basis of the present findings, we can suggest that opening of stretch-activated calcium channel may play a critical role in ischemic reperfusion-induced brain injury and that gadolinium has neuroprotective potential in I/R-induced injury.

  11. Analytical Interference in Serum Iron Determination Reveals Iron Versus Gadolinium Transmetallation With Linear Gadolinium-Based Contrast Agents

    PubMed Central

    Fretellier, Nathalie; Poteau, Nathalie; Factor, Cécile; Mayer, Jean-François; Medina, Christelle; Port, Marc; Idée, Jean-Marc; Corot, Claire

    2014-01-01

    Objectives The purposes of this study were to evaluate the risk for analytical interference with gadolinium-based contrast agents (GBCAs) for the colorimetric measurement of serum iron (Fe3+) and to investigate the mechanisms involved. Materials and Methods Rat serum was spiked with several concentrations of all molecular categories of GBCAs, ligands, or “free” soluble gadolinium (Gd3+). Serum iron concentration was determined by 2 different colorimetric methods at pH 4.0 (with a Vitros DT60 analyzer or a Cobas Integra 400 analyzer). Secondly, the cause of interference was investigated by (a) adding free soluble Gd3+ or Mn2+ to serum in the presence of gadobenic acid or gadodiamide and (b) electrospray ionization mass spectrometry. Results Spurious decrease in serum Fe3+ concentration was observed with all linear GBCAs (only with the Vitros DT60 technique occurring at pH 4.0) but not with macrocyclic GBCAs or with free soluble Gd3+. Spurious hyposideremia was also observed with the free ligands present in the pharmaceutical solutions of the linear GBCAs gadopentetic acid and gadodiamide (ie, diethylene triamine pentaacetic acid and calcium-diethylene triamine pentaacetic acid bismethylamide, respectively), suggesting the formation of Fe-ligand chelate. Gadobenic acid-induced interference was blocked in a concentration-dependent fashion by adding a free soluble Gd3+ salt. Conversely, Mn2+, which has a lower affinity than Gd3+ and Fe3+ for the ligand of gadobenic acid (ie, benzyloxypropionic diethylenetriamine tetraacetic acid), was less effective (interference was only partially blocked), suggesting an Fe3+ versus Gd3+ transmetallation phenomenon at pH 4.0. Similar results were observed with gadodiamide. Mass spectrometry detected the formation of Fe-ligand with all linear GBCAs tested in the presence of Fe3+ and the disappearance of Fe-ligand after the addition of free soluble Gd3+. No Fe-ligand chelate was found in the case of the macrocyclic GBCA gadoteric

  12. Cardiovascular point of care initiative: enhancements in clinical data management.

    PubMed

    Robertson, Jane

    2003-01-01

    The Department of Cardiovascular Surgery at East Alabama Medical Center (EAMC) initiated a program in 1996 to improve the quality and usefulness of clinical outcomes data. After years of using a commercial vendor product and enduring a tedious collection process, the department decided to develop its own tools to support quality improvement efforts. Using a hand-held personal data assistant (PDA), the team developed tools that allowed ongoing data collection at the point of care delivery. The tools and methods facilitated the collection of real time, accurate information that allowed EAMC to participate in multiple clinical quality initiatives. The ability to conduct rapid-cycle performance improvement studies propelled EAMC's Cardiovascular Surgery Program into the Top 100 as recognized by HCIA, now Solucient, for 3 consecutive years (1999-2001). This report will describe the evolution of the data collection process as well as the quality improvements that resulted.

  13. Focal Reduction in Cardiac 123I-Metaiodobenzylguanidine Uptake in Patients With Anderson-Fabry Disease.

    PubMed

    Yamamoto, Saori; Suzuki, Hideaki; Sugimura, Koichiro; Tatebe, Shunsuke; Aoki, Tatsuo; Miura, Masanobu; Yaoita, Nobuhiro; Sato, Haruka; Kozu, Katuya; Ota, Hideki; Takanami, Kentaro; Takase, Kei; Shimokawa, Hiroaki

    2016-11-25

    It remains to be elucidated whether cardiac sympathetic nervous activity is impaired in patients with Anderson-Fabry disease (AFD).Methods and Results:We performed 123 I-meta-iodobenzylguanidine (MIBG) scintigraphy and gadolinium-enhanced cardiovascular magnetic resonance (CMR) in 5 AFD patients. MIBG uptake in the inferolateral wall, where wall thinning and delayed enhancement were noted on CMR, was significantly lower compared with the anteroseptal wall. The localized reduction in MIBG uptake was also noted in 2 patients with no obvious abnormal findings on CMR. Cardiac sympathetic nervous activity is impaired in AFD before development of structural myocardial abnormalities. (Circ J 2016; 80: 2550-2551).

  14. Evaluation of liver function using gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid enhanced magnetic resonance imaging based on a three-dimensional volumetric analysis system.

    PubMed

    Kudo, Masashi; Gotohda, Naoto; Sugimoto, Motokazu; Kobayashi, Tatsushi; Kojima, Motohiro; Takahashi, Shinichiro; Konishi, Masaru; Hayashi, Ryuichi

    2018-06-02

    Magnetic resonance imaging with gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (EOB-MRI) is a diagnostic modality for liver tumors. Three-dimensional (3D) volumetric analysis systems using EOB-MRI data are used to simulate liver anatomy for surgery. This study was conducted to investigate clinical utility of a 3D volumetric analysis system on EOB-MRI to evaluate liver function. Between August 2014 and December 2015, 181 patients underwent laboratory and radiological exams as standardized preoperative evaluation for liver surgery. The liver-spleen contrast-enhanced ratio (LSR) was measured by a semi-automated 3D volumetric analysis system on EOB-MRI. First, the inter-evaluator variability of the calculated LSR was evaluated. Additionally, a subset of liver surgical specimens was evaluated histologically by using immunohistochemical staining. Finally, the correlations between the LSR and grading systems of liver function, laboratory data, or histological findings were analyzed. The inter-evaluator correlation coefficient of the measured LSR was 0.986. The mean LSR was significantly correlated with the Child-Pugh score (p = 0.014) and the ALBI score (p < 0.001). Significant correlations were also observed between the LSR and indocyanine green retention rate at 15 min (r = - 0.601, p < 0.001), between the LSR and liver fibrosis stage (r = - 0.556, p < 0.001), and between the LSR and liver steatosis grade (r = - 0.396, p < 0.001). The LSR calculated by a 3D volumetric analysis system on EOB-MRI was highly reproducible and was shown to be correlated with liver function parameters and liver histology. These data suggest that this imaging modality can be a reliable tool to evaluate liver function.

  15. T2* mapping and delayed gadolinium-enhanced magnetic resonance imaging in cartilage (dGEMRIC) of humeral articular cartilage--a histologically controlled study.

    PubMed

    Bittersohl, Bernd; Kircher, Jörn; Miese, Falk R; Dekkers, Christin; Habermeyer, Peter; Fröbel, Julia; Antoch, Gerald; Krauspe, Rüdiger; Zilkens, Christoph

    2015-10-01

    Cartilage biochemical imaging modalities that include the magnetic resonance imaging (MRI) techniques of T2* mapping (sensitive to water content and collagen fiber network) and delayed gadolinium-enhanced MRI of cartilage (dGEMRIC, sensitive to the glycosaminoglycan content) can be effective instruments for early diagnosis and reliable follow-up of cartilage damage. The purpose of this study was to provide T2* mapping and dGEMRIC values in various histologic grades of cartilage degeneration in humeral articular cartilage. A histologically controlled in vitro study was conducted that included human humeral head cartilage specimens with various histologic grades of cartilage degeneration. High-resolution, 3-dimensional (3D) T2* mapping and dGEMRIC were performed that enabled the correlation of MRI and histology data. Cartilage degeneration was graded according to the Mankin score, which evaluates surface morphology, cellularity, toluidine blue staining, and tidemark integrity. SPSS software was used for statistical analyses. Both MRI mapping values decreased significantly (P < .001) with increasing cartilage degeneration. Spearman rank analysis revealed a significant correlation (correlation coefficients ranging from -0.315 to 0.784; P < .001) between the various histologic parameters and the T2* and T1Gd mapping values. This study demonstrates the feasibility of 3D T2* and dGEMRIC to identify various histologic grades of cartilage damage of humeral articular cartilage. With regard to the advantages of these mapping techniques with high image resolution and the ability to accomplish a 3D biochemically sensitive imaging, we consider that these imaging techniques can make a positive contribution to the currently evolving science and practice of cartilage biochemical imaging. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  16. Magnetic Resonance Imaging-Based Assessment of Gadolinium-Conjugated Diethylenetriamine Penta-Acetic Acid Test-Infusion in Detecting Dysfunction of Convection-Enhanced Delivery Catheters.

    PubMed

    van Putten, Erik H P; Wembacher-Schröder, Eva; Smits, Marion; Dirven, Clemens M F

    2016-05-01

    In a phase 1 trial conducted at our institute, convection-enhanced delivery (CED) was used to administrate the Delta-24-RGD adenovirus in patients with a recurrent glioblastoma multiforme. Infusion of the virus was preceded by a gadolinium-conjugated diethylenetriamine penta-acetic acid (Gd-DTPA) test-infusion. In the present study, we analyzed the results of Gd-DTPA test infusion through 50 catheters. Thirteen adults with a recurrent glioblastoma multiforme were enrolled in a larger phase 1 multicenter, dose-finding study, in which a conditionally replication-competent adenovirus was administered by CED. Up to 4 infusion catheters per patient were placed intra- and/or peritumorally. Before infusion of the virus, a Gd-DTPA infusion was performed for 6 hours, directly followed by a MRI scan. The MRIs were evaluated for catheter position, Gd-DTPA distribution outcome, and contrast leakage. Leakage of Gd-DTPA into the cerebrospinal fluid was detected in 17 of the 50 catheters (34%). Sulcus crossing was the most frequent cause of leakage. In 8 cases, leakage could only be detected on the fluid-attenuated inversion recovery sequence. Nonleaking catheters showed a significantly larger Gd-DTPA distribution fraction (volume of distribution/volume of infusion) than leaking catheters (P = 0.009). A significantly lower volume of distribution/volume of infusion was observed in intratumoral catheters, compared with peritumoral catheters (P = 0.004). Gd-DTPA test infusion did not result in significant changes in Karnofsky Performance Score and Neurological Status. Pre-CED treatment infusion of Gd-DTPA is an adequate and safe method to identify dysfunctional catheters. The use of an optimized drug delivery catheter is necessary to reduce leakage and improve the efficacy of intracerebral drug infusion. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Stability of Gadolinium-Doped Liquid Organic Scintillators

    NASA Astrophysics Data System (ADS)

    Gromov, M. B.; Kuznetsov, D. S.; Murchenko, A. E.; Novikova, G. Ya.; Obinyakov, B. A.; Oralbaev, A. Yu.; Plakitina, K. V.; Skorokhvatov, M. D.; Sukhotin, S. V.; Chepurnov, A. S.; Etenko, A. V.

    2018-03-01

    The technology of preparing a linear-alkylbenzene-based gadolinium-doped liquid organic scintillator (Gd-LOS) as a target material in reactor antineutrino detectors has been developed. Results of longterm measurements of the light yield of Gd-LOS in contact with acryl and stainless steel are presented, which confirm the compatibility of Gd-LOS with these materials. The measurements were performed for two otherwise identical LOS detectors only differing in wall materials of the sensitive volume: acryl versus stainless steel. The results of measurements over about one year showed almost the same, relatively small decreases in the light yield of both detectors. It is concluded that both structural materials can be used in detector parts contacting with Gd-doped scintillator. Such a long-term parallel comparative test was carried out for the first time.

  18. Analysis of Blood Gadolinium in an Isotope Geochemist Following Contrast MRI

    NASA Astrophysics Data System (ADS)

    Wasylenki, L. E.

    2011-12-01

    Normal brain tissue does not have blood flowing throughout it; instead oxygen diffuses across a blood-brain barrier in order to oxygenate brain cells. Brain tumors, however, do grow blood supplies, so an abnormal distribution of blood in the brain is a key indicator of abnormal cell growth. But how is the distribution of blood in inside the brain observed? The lanthanide ion gadolinium(III) has unpaired 5f-shell electrons and is thus paramagnetic. As such, the presence of Gd causes the nuclei of nearby atoms to relax more quickly when excited to high-energy spin states by pulses of radio-frequency energy than they would without Gd nearby. The signal in magnetic resonance imaging correlates with this nuclear spin relaxation time, so gadolinium's presence in certain body tissues makes those tissues appear as bright areas on MRI images. Gadolinium is therefore commonly injected intravenously just prior to MRI imaging, so that the distribution of blood in and around the brain can be mapped. Gadolinium as a free ion is toxic, so it is injected in a relatively inert form, often as gadoversetamide, in which Gd is tightly bound in nine-fold coordination with N, C, and O. This compound is removed from the blood by the kidneys at a rate that is fast compared to the rate of breakdown of this compound in the blood, thus preventing release of toxic Gd in the bloodstream. But how quickly can the kidneys of an isotope geochemist remove Gd from blood? In this experiment, a single isotope geochemist's wristwatch was synchronized with that of the MRI technician and then left in a dressing room with all other magnetically susceptible objects until after the MRI. The time of intravenous injection of gadoversetamide into the isotopist was recorded by the technician and later transmitted verbally to the isotopist. Following the MRI session, blood samples were collected by self-fingerprick, in a Class 100 trace metal clean lab, from 47 to 281 minutes after intravenous injection. For each

  19. Cardiovascular Nursing on Human Genomics: What do cardiovascular nurses need to know about congestive heart failure?

    PubMed Central

    Frazier, Lorraine; Wung, Shu-Fen; Sparks, Elizabeth; Eastwood, Cathy

    2009-01-01

    This paper presents the main causes of heart failure (HF) and an update on the genetics studies on each cause. The review includes a delineation of the etiology and fundamental pathophysiology of HF and provides rational for treatment for the patient and family. Various cardiomyopathies are discussed, includingprimary cardiomyopathies, mixed cardiomyopathies, cardiomyopathies that involve altered cardiac muscle along with generalized multi-organ disorders, and various cardiovascular conditions, such as coronary artery disease (ischemic cardiomyopathy) and hypertension (hypertensive cardiomyopathy).1 A brief review of pharmacogenetics and HF is presented. The application of the genetic components of cardiomyopathy and pharmacogenetics is included to enhance cardiovascular nursing care. PMID:19737164

  20. Differences in perilymphatic space enhancement and adverse inflammatory reaction after intratympanic injection of two different gadolinium agents: A 9.4-T magnetic resonance imaging study.

    PubMed

    Park, Mina; Lee, Ho Sun; Kim, Hyeonjin; Oh, Seung Ha; Lee, Jun Ho; Suh, Myung-Whan

    2016-03-01

    To compare the inner ear enhancement after intratympanic injection of two widely used gadolinium (Gd) agents by 9.4 T micro-magnetic resonance imaging (MRI) and to investigate the effects of Gd on the inner ear. Twelve ears of six rats received intratympanic administration of 1/5 diluted Gd agents: gadoterate meglumine (Gd-DTPA) for the left ear and gadodiamide (Gd-DTPA-BMA) for the right ear. MRI was performed every 30 min from 1 to 4 h after administration. The normalized signal intensity was evaluated by quantitative analysis at each cochlear fluid compartment. Eight, six, and seven ears treated with Gd-DTPA, Gd-DPTA-BMA, and nothing as controls, respectively, were processed for histological evaluation after MRI. After hematoxylin & eosin staining, adverse inflammatory reactions were evaluated for turbid aggregation and lymphocytes. The perilymphatic enhancement of Gd-DTPA was superior to that of Gd-DTPA-BMA regardless of cochlear turn, compartment, and time point. Inflammatory reactions were found in 4/8 (50.0%) and 4/6 (66.6%) ears administered Gd-DTPA and Gd-DTPA-BMA, respectively. Regardless of the contrast agent used, inflammatory reactions were most definite in the scala tympani of the basal turn, i.e., near the round window. Slightly greater inflammatory reactions were observed in ears injected with Gd-DTPA-BMA compared to Gd-DTPA although the difference was not statistically significant. No inflammatory reaction was observed in any of the seven controls. The auditory brainstem response threshold was 11.8 ± 2.5 dB SPL before IT Gd injection and it did not change for up to 5 days (15.4 ± 6.6 dB SPL) post-injection. Gd-DTPA was superior to Gd-DTPA-BMA for visualization of the inner ear. Administration of diluted Gd agents intratympanically may induce considerable inflammatory reactions in the inner ear. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Dramatic impact of the giant local magnetic fields on spin-dependent recombination processes in gadolinium based garnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanov, N. G., E-mail: nikolai.romanov@mail.ioffe.ru; Tolmachev, D. O.; Gurin, A. S.

    2015-06-29

    A giant magnetic field effect on spin-dependent recombination of the radiation-induced defects has been found in cerium doped gadolinium based garnet crystals and ceramics, promising materials for scintillator applications. A sharp and strong increase in the afterglow intensity stimulated by external magnetic field and an evidence of the magnetic field memory have been discovered. The effect was ascribed to huge Gd-induced internal magnetic fields, which suppress the recombination, and cross-relaxation with Gd{sup 3+} ions leading to reorientation of the spins of the electron and hole centers. Thus, the spin system of radiation-induced defects in gadolinium garnet based scintillator materials wasmore » shown to accumulate significant energy which can be released in external magnetic fields.« less

  2. The Mediterranean diet, its components, and cardiovascular disease.

    PubMed

    Widmer, R Jay; Flammer, Andreas J; Lerman, Lilach O; Lerman, Amir

    2015-03-01

    One of the best-studied diets for cardiovascular health is the Mediterranean diet. This consists of fish, monounsaturated fats from olive oil, fruits, vegetables, whole grains, legumes/nuts, and moderate alcohol consumption. The Mediterranean diet has been shown to reduce the burden, or even prevent the development, of cardiovascular disease, breast cancer, depression, colorectal cancer, diabetes, obesity, asthma, erectile dysfunction, and cognitive decline. This diet is also known to improve surrogates of cardiovascular disease, such as waist-to-hip ratio, lipids, and markers of inflammation, as well as primary cardiovascular disease outcomes such as death and events in both observational and randomized controlled trial data. These enhancements easily rival those seen with more established tools used to fight cardiovascular disease such as aspirin, beta-blockers, angiotensin-converting enzyme inhibitors, and exercise. However, it is unclear if the Mediterranean diet offers cardiovascular disease benefit from its individual constituents or in aggregate. Furthermore, the potential benefit of the Mediterranean diet or its components is not yet validated by concrete cardiovascular disease endpoints in randomized trials or observational studies. This review will focus on the effects of the whole and parts of the Mediterranean diet with regard to both population-based and experimental data highlighting cardiovascular disease morbidity or mortality and cardiovascular disease surrogates when hard outcomes are not available. Our synthesis will highlight the potential for the Mediterranean diet to act as a key player in cardiovascular disease prevention, and attempt to identify certain aspects of the diet that are particularly beneficial for cardioprotection. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Quantification of fibrosis in infarcted swine hearts by ex vivo late gadolinium-enhancement and diffusion-weighted MRI methods

    NASA Astrophysics Data System (ADS)

    Pop, Mihaela; Ghugre, Nilesh R.; Ramanan, Venkat; Morikawa, Lily; Stanisz, Greg; Dick, Alexander J.; Wright, Graham A.

    2013-08-01

    Many have speculated that MRI signal characteristics can be used to identify regions of heterogeneous infarct associated with an arrhythmogenic substrate; however, direct evidence of this relationship is limited. The aim of this study was to demonstrate the remodelling characteristics of fibrosis by means of histology and high-resolution MR imaging. For this purpose, we performed whole-mount histology in heart samples (n = 9) collected from five swine at six weeks post-infarction and compared the extent of fibrosis in the infarcted areas delineated in these histological images with that obtained ex vivo by MRI using late gadolinium-enhancement (LGE) and diffusion-weighted imaging (DWI) methods. All MR images were obtained at a submillimetre resolution (i.e., voxel size of 0.6×0.6×1.2 mm3). Specifically, in the histology images, we differentiated moderate fibrosis (consisting of a mixture of viable and non-viable myocytes, known as border zone, BZ) from severe fibrosis (i.e., the dense scar). Correspondingly, tissue heterogeneities in the MR images were categorized by a Gaussian mixture model into healthy, BZ and scar. Our results showed that (a) both MRI methods were capable of qualitatively distinguishing sharp edges between dense scar and healthy tissue from regions of heterogeneous BZ; (b) the BZ and dense scar areas had intermediate-to-high increased values of signal intensity in the LGE images and of apparent diffusion coefficient in the DWI, respectively. In addition, as demonstrated by the Picrosirius Red and immunohistochemistry stains, the viable bundles in the BZ were clearly separated by thin collagen strands and had reduced expression of Cx43, whereas the core scar was composed of dense fibrosis. A quantitative analysis demonstrated that the comparison between BZ/scar extent in LGE and DWI to the corresponding areas identified in histology yielded very good correlations (i.e., for the scar identified by LGE, R2 was 0.96 compared to R2 = 0.93 for the

  4. The Utility of Cardiac Magnetic Resonance Imaging in the Diagnosis of Cardiac Sarcoidosis.

    PubMed

    Stanton, Kelly M; Ganigara, Madhusudan; Corte, Peter; Celermajer, David S; McGuire, Mark A; Torzillo, Paul J; Corte, Tamera J; Puranik, Rajesh

    2017-11-01

    Autopsy reports suggest that cardiac sarcoidosis occurs in 20 to 25% of patients with pulmonary sarcoidosis, yet the clinical ante-mortem diagnosis is made in only 5% of cases. Current diagnostic algorithms are complex and lack sensitivity. Cardiac Magnetic Resonance imaging (CMR) provides an opportunity to detect myocardial involvement in sarcoidosis. The aim of this study is to determine the prevalence and clinical significance of late gadolinium enhancement (LGE) on CMR in patients with sarcoidosis. Consecutive patients with biopsy-proven sarcoidosis undergoing CMR were retrospectively evaluated for cardiac sarcoidosis. Medical records were correlated with CMR. Forty-six patients were evaluated. Late gadolinium enhancement was present in 22%, indicating myocardial involvement, and 70% had corresponding hyper-intense T2 signal indicating active inflammation. Late gadolinium enhancement was 18%+/-9.7% of overall left ventricular (LV) mass and most commonly located in the basal to mid septum. There was no association between LGE and cardiovascular symptoms or pulmonary stage. Eighty per cent of patients with LGE did not fulfill conventional diagnostic criteria for cardiac sarcoidosis. However, LGE was associated with clinically significant arrhythmia (p<0.01) and a lower LVEF (p=0.04). Using CMR, we identified a higher prevalence of cardiac sarcoidosis than previously reported clinical studies, a prevalence which is more consistent with autopsy data. The presence of LGE was highly correlated with clinically significant arrhythmias and lower LVEF. Copyright © 2017 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). All rights reserved.

  5. Prognostic capacity of a clinically indicated exercise test for cardiovascular mortality is enhanced by combined analysis of exercise capacity, heart rate recovery and T-wave alternans.

    PubMed

    Minkkinen, Mikko; Nieminen, Tuomo; Verrier, Richard L; Leino, Johanna; Lehtimäki, Terho; Viik, Jari; Lehtinen, Rami; Nikus, Kjell; Kööbi, Tiit; Turjanmaa, Väinö; Kähönen, Mika

    2015-09-01

    Exercise capacity, heart rate recovery and T-wave alternans are independent predictors of cardiovascular mortality. We tested whether these parameters contain supplementary prognostic information. A total of 3609 consecutive patients (2157 men) referred for a routine, clinically indicated bicycle exercise test were enrolled in the Finnish Cardiovascular Study (FINCAVAS). Exercise capacity was measured in metabolic equivalents, heart rate recovery as the decrease in heart rate from maximum to one minute post-exercise, and T-wave alternans by time-domain Modified Moving Average method. During 57-month median follow-up (interquartile range 35-78 months), 96 patients died of cardiovascular causes (primary endpoint) and 233 from any cause. All three parameters were independent predictors of cardiovascular mortality when analysed as continuous variables. Adding metabolic equivalents (p < 0.001), heart rate recovery (p = 0.002) or T-wave alternans (p = 0.01) to the linear model improved its predictive power for cardiovascular mortality. The combination of low exercise capacity (<6 metabolic equivalents), reduced heart rate recovery (≤12 beats/min) and elevated T-wave alternans (≥60 μV) yielded the highest hazard ratio for cardiovascular mortality of 16.5 (95% confidence interval 4.0-67.7, p < 0.001). Harrell's C index was 0.719 (confidence interval 0.665-0.772) for cardiovascular mortality with previously defined cutpoints (<8 units for metabolic equivalents, ≤18 beats/min for heart rate recovery and ≥60 μV for T-wave alternans). The prognostic capacity of the clinical exercise test is enhanced by combined analysis of exercise capacity, heart rate recovery and T-wave alternans. © The European Society of Cardiology 2014.

  6. Switching of the polarization of ferroelectric-ferroelastic gadolinium molybdate in a magnetic field

    NASA Astrophysics Data System (ADS)

    Yakushkin, E. D.

    2017-10-01

    A change in the character of the electric switching of polydomain ferroelectric-ferroelastic gadolinium molybdate in an external magnetic field has been detected. This change has been attributed to a magnetically stimulated increase in the pinning of domain walls. Under certain conditions, the loop of switchable polarization is degenerated into an ellipse characteristic of a linear insulator with leakage current.

  7. Methodological Rigor in Preclinical Cardiovascular Studies: Targets to Enhance Reproducibility and Promote Research Translation.

    PubMed

    Ramirez, F Daniel; Motazedian, Pouya; Jung, Richard G; Di Santo, Pietro; MacDonald, Zachary D; Moreland, Robert; Simard, Trevor; Clancy, Aisling A; Russo, Juan J; Welch, Vivian A; Wells, George A; Hibbert, Benjamin

    2017-06-09

    Methodological sources of bias and suboptimal reporting contribute to irreproducibility in preclinical science and may negatively affect research translation. Randomization, blinding, sample size estimation, and considering sex as a biological variable are deemed crucial study design elements to maximize the quality and predictive value of preclinical experiments. To examine the prevalence and temporal patterns of recommended study design element implementation in preclinical cardiovascular research. All articles published over a 10-year period in 5 leading cardiovascular journals were reviewed. Reports of in vivo experiments in nonhuman mammals describing pathophysiology, genetics, or therapeutic interventions relevant to specific cardiovascular disorders were identified. Data on study design and animal model use were collected. Citations at 60 months were additionally examined as a surrogate measure of research impact in a prespecified subset of studies, stratified by individual and cumulative study design elements. Of 28 636 articles screened, 3396 met inclusion criteria. Randomization was reported in 21.8%, blinding in 32.7%, and sample size estimation in 2.3%. Temporal and disease-specific analyses show that the implementation of these study design elements has overall not appreciably increased over the past decade, except in preclinical stroke research, which has uniquely demonstrated significant improvements in methodological rigor. In a subset of 1681 preclinical studies, randomization, blinding, sample size estimation, and inclusion of both sexes were not associated with increased citations at 60 months. Methodological shortcomings are prevalent in preclinical cardiovascular research, have not substantially improved over the past 10 years, and may be overlooked when basing subsequent studies. Resultant risks of bias and threats to study validity have the potential to hinder progress in cardiovascular medicine as preclinical research often precedes and

  8. Quantitative comparison of 2D and 3D late gadolinium enhancement MR imaging in patients with Fabry disease and hypertrophic cardiomyopathy.

    PubMed

    Morsbach, F; Gordic, S; Gruner, C; Niemann, M; Goetti, R; Gotschy, A; Kozerke, S; Alkadhi, H; Manka, R

    2016-08-15

    This study aims to determine whether the quantification of myocardial fibrosis in patients with Fabry disease (FD) and hypertrophic cardiomyopathy (HCM) using a late gadolinium enhancement (LGE) singlebreath-hold three-dimensional (3D) inversion recovery magnetic resonance (MR) imaging sequence is comparable with a clinically established two-dimensional (2D) multi-breath-hold sequence. In this retrospective, IRB-approved study, 40 consecutive patients (18 male; mean age 50±17years) with Fabry disease (n=18) and HCM (n=22) underwent MR imaging at 1.5T. Spatial resolution was the same for 3D and 2D images (field-of-view, 350×350mm(2); in-plane-resolution, 1.2×1.2mm(2); section-thickness, 8mm). Datasets were analyzed for subjective image quality; myocardial and fibrotic mass, and total fibrotic tissue percentage were quantified. There was no significant difference in subjective image quality between 3D and 2D acquisitions (P=0.1 and P=0.3) for either disease. In patients with Fabry disease there were no significant differences between 3D and 2D acquisitions for myocardial mass (P=0.55), fibrous tissue mass (P=0.89), and total fibrous percentage (P=0.67), with good agreement between acquisitions according to Bland-Altman analyses. In patients with HCM there were also no significant differences between acquisitions for myocardial mass (P=0.48), fibrous tissue mass (P=0.56), and total fibrous percentage (P=0.67), with good agreement according to Bland-Altman analyses. Acquisition time was significantly shorter for 3D (25±5s) as compared to the 2D sequence (349±62s, P<0.001). In patients with Fabry disease and HCM, 3D LGE imaging provides equivalent diagnostic information in regard to quantification of myocardial fibrosis as compared with a standard 2D sequence, but at superior acquisition speed. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Tetrahydrobiopterin in Cardiovascular Health and Disease

    PubMed Central

    Bendall, Jennifer K.; Douglas, Gillian; McNeill, Eileen; Channon, Keith M.

    2014-01-01

    Abstract Tetrahydrobiopterin (BH4) functions as a cofactor for several important enzyme systems, and considerable evidence implicates BH4 as a key regulator of endothelial nitric oxide synthase (eNOS) in the setting of cardiovascular health and disease. BH4 bioavailability is determined by a balance of enzymatic de novo synthesis and recycling, versus degradation in the setting of oxidative stress. Augmenting vascular BH4 levels by pharmacological supplementation has been shown in experimental studies to enhance NO bioavailability. However, it has become more apparent that the role of BH4 in other enzymatic pathways, including other NOS isoforms and the aromatic amino acid hydroxylases, may have a bearing on important aspects of vascular homeostasis, inflammation, and cardiac function. This article reviews the role of BH4 in cardiovascular development and homeostasis, as well as in pathophysiological processes such as endothelial and vascular dysfunction, atherosclerosis, inflammation, and cardiac hypertrophy. We discuss the therapeutic potential of BH4 in cardiovascular disease states and attempt to address how this modulator of intracellular NO-redox balance may ultimately provide a powerful new treatment for many cardiovascular diseases. Antioxid. Redox Signal. 20, 3040–3077. PMID:24294830

  10. Cardiovascular physiology - Effects of microgravity

    NASA Technical Reports Server (NTRS)

    Convertino, V.; Hoffler, G. W.

    1992-01-01

    Experiments during spaceflight and its groundbase analog, bedrest, provide consistent data which demonstrate that numerous changes in cardiovascular function occur as part of the physiological adaptation process to the microgravity environment. These include elevated heart rate and venous compliance, lowered blood volume, central venous pressure and stroke volume, and attenuated autonomic reflex functions. Although most of these adaptations are not functionally apparent during microgravity exposure, they manifest themselves during the return to the gravitational challenge of earth's terrestrial environment as orthostatic hypotension and instability, a condition which could compromise safety, health and productivity. Development and application of effective and efficient countermeasures such as saline "loading," intermittent venous pooling, pharmacological treatments, and exercise have become primary emphases of the space life sciences research effort with only limited success. Successful development of countermeasures will require knowledge of the physiological mechanisms underlying cardiovascular adaptation to microgravity which can be obtained only through controlled, parallel groundbased research to complement carefully designed flight experiments. Continued research will provide benefits for both space and clinical applications as well as enhance the basic understanding of cardiovascular homeostasis in humans.

  11. Impact of agglomeration on the relaxometric properties of paramagnetic ultra-small gadolinium oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Faucher, Luc; Gossuin, Yves; Hocq, Aline; Fortin, Marc-André

    2011-07-01

    Ultra-small gadolinium oxide nanoparticles (US-Gd2O3) are used to provide 'positive' contrast effects in magnetic resonance imaging (MRI), and are being considered for molecular and cellular imaging applications. However, these nanoparticles can aggregate over time in aqueous medium, as well as when internalized into cells. This study is aimed at measuring in vitro, in aqueous medium, the impact of aggregation on the relaxometric properties of paramagnetic US-Gd2O3 particles. First, the nanoparticle core size as well as aggregation behaviour was assessed by HRTEM. DLS (hydrodynamic diameter) was used to measure the hydrodynamic diameter of nanoparticles and nanoaggregates. The relaxometric properties were measured by NMRD profiling, as well as with 1H NMR relaxometers. Then, the positive contrast enhancement effect was assessed by using magnetic resonance scanners (at 1.5 and 7 T). At every magnetic field, the longitudinal relaxivity (r1) decreased upon agglomeration, while remaining high enough to provide positive contrast. On the other hand, the transverse relaxivity (r2) slightly decreased at 0.47 and 1.41 T, but it was enhanced at higher fields (7 and 11.7 T) upon agglomeration. All NMRD profiles revealed a characteristic relaxivity peak in the range 60-100 MHz, suggesting the possibility to use US-Gd2O3 as an efficient 'positive-T1' contrast agent at clinical magnetic fields (1-3 T), in spite of aggregation.

  12. Does point-of-care functional echocardiography enhance cardiovascular care in the NICU?

    PubMed

    Sehgal, A; McNamara, P J

    2008-11-01

    Although the last two decades have seen major advances in the care of sick, extremely premature newborns, the approach to cardiovascular assessment and monitoring remains suboptimal owing to an overreliance on poorly predictive clinical markers such as heart rate or capillary refill time. Point-of-care functional echocardiography (PCFecho) enables real-time evaluation of cardiac performance and systemic hemodynamics to characterize acute physiology, identify the exact nature of cardiovascular compromise and guide therapeutic decisions. In this article, we will review four clinical scenarios where bedside functional cardiac imaging enabled delineation of the real clinical problem and refinement of the therapeutic care plan with direct patient benefits.

  13. Graphene Oxide and Gadolinium-Chelate Functionalized Poly(lactic acid) Nanocapsules Encapsulating Perfluorooctylbromide for Ultrasound/Magnetic Resonance Bimodal Imaging Guided Photothermal Ablation of Cancer.

    PubMed

    Li, Zhenglin; Ke, Hengte; Wang, Jinrui; Miao, Zhaohua; Yue, Xiuli

    2016-03-01

    This paper successfully fabricated a novel multifunctional theranostic agent (PFOB@PLA/GO/Gd-DTPA NCs) by loading perfluorooctylbromide (PFOB) into poly(lactic acid) (PLA) nanocapsules (NCs) followed by surface functionalization with graphene oxide (GO) and gadolinium-chelate (Gd-DTPA). It was found that the resulting nanoagent could serve as a contrast agent simultaneously to enhance ultrasound (US) and magnetic resonance imaging (MRI). Benefiting from the strong absorption in the near infrared (NIR) region, the nanocapsules could efficiently kill cancer cells under NIR laser irradiation. Thus, such a single theranostic agent with the combination of realtime US imaging and high-resolution MR imaging could achieve great therapeutic effectiveness without systemic damage to the body. In addition, the cytotoxicity assay on HUVEC cells revealed a good biocompatibility of PFOB@PLA/GO/Gd-DTPA NCs, showing that the versatile nanocapsule system may hold great potential as an effective nanoplatform for contrast enhanced imaging guided photothermal therapy.

  14. Effect of solid-phase amorphization on the spectral characteristics of europium-doped gadolinium molybdate

    NASA Astrophysics Data System (ADS)

    Shmurak, S. Z.; Kiselev, A. P.; Kurmasheva, D. M.; Red'Kin, B. S.; Sinitsyn, V. V.

    2010-05-01

    A method is proposed for detecting spectral characteristics of optically inactive molybdates of rare-earth elements by their doping with rare-earth ions whose luminescence lies in the transparency region of all structural modifications of the sample. Gadolinium molybdate is chosen as the object of investigations, while europium ions are used as an optically active and structurally sensitive admixture. It is shown that after the action of a high pressure under which gadolinium molybdate passes to the amorphous state, the spectral characteristics of Gd1.99Eu0.01(MoO4)3 (GMO:Eu) change radically; namely, considerable line broadening is observed in the luminescence spectra and the luminescence excitation spectra, while the long-wave threshold of optical absorption is shifted considerably (by approximately 1.1 eV) towards lower energies. It is found that by changing the structural state of GMO:Eu by solid-state amorphization followed by annealing, the spectral characteristics of the sample can be purposefully changed. This is extremely important for solving the urgent problem of designing high-efficiency light-emitting diodes producing “white” light.

  15. Precision Cardiovascular Medicine: State of Genetic Testing.

    PubMed

    Giudicessi, John R; Kullo, Iftikhar J; Ackerman, Michael J

    2017-04-01

    In the 15 years following the release of the first complete human genome sequences, our understanding of rare and common genetic variation as determinants of cardiovascular disease susceptibility, prognosis, and therapeutic response has grown exponentially. As such, the use of genomics to enhance the care of patients with cardiovascular diseases has garnered increased attention from clinicians, researchers, and regulatory agencies eager to realize the promise of precision genomic medicine. However, owing to a large burden of "complex" common diseases, emphasis on evidence-based practice, and a degree of unfamiliarity/discomfort with the language of genomic medicine, the development and implementation of genomics-guided approaches designed to further individualize the clinical management of a variety of cardiovascular disorders remains a challenge. In this review, we detail a practical approach to genetic testing initiation and interpretation as well as review the current state of cardiovascular genetic and pharmacogenomic testing in the context of relevant society and regulatory agency recommendations/guidelines. Copyright © 2017 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  16. Role of Adipokines in Atherosclerosis: Interferences with Cardiovascular Complications in Rheumatic Diseases

    PubMed Central

    Scotece, Morena; Conde, Javier; Gómez, Rodolfo; López, Verónica; Pino, Jesús; González, Antonio; Lago, Francisca; Gómez-Reino, Juan J.; Gualillo, Oreste

    2012-01-01

    Patients with rheumatic diseases have an increased risk of mortality by cardiovascular events. In fact, several rheumatic diseases such as rheumatoid arthritis, osteoarthritis, systemic lupus erythematosus, and ankylosing spondylitis are associated with a higher prevalence of cardiovascular diseases (CVDs). Although traditional cardiovascular risk factors have been involved in the pathogenesis of cardiovascular diseases in rheumatic patients, these alterations do not completely explain the enhanced cardiovascular risk in this population. Obesity and its pathologic alteration of fat mass and dysfunction, due to an altered pattern of secretion of proinflammatory adipokines, could be one of the links between cardiovascular and rheumatic diseases. Indeed, the incidence of CVDs is augmented in obese individuals with rheumatic disorders. Thus, in this paper we explore in detail the relationships among adipokines, rheumatic diseases, and cardiovascular complications by giving to the reader a holistic vision and several suggestions for future perspectives and potential clinical implications. PMID:22910888

  17. A comparison of the COG and MCNP codes in computational neutron capture therapy modeling, Part II: gadolinium neutron capture therapy models and therapeutic effects.

    PubMed

    Wangerin, K; Culbertson, C N; Jevremovic, T

    2005-08-01

    The goal of this study was to evaluate the COG Monte Carlo radiation transport code, developed and tested by Lawrence Livermore National Laboratory, for gadolinium neutron capture therapy (GdNCT) related modeling. The validity of COG NCT model has been established for this model, and here the calculation was extended to analyze the effect of various gadolinium concentrations on dose distribution and cell-kill effect of the GdNCT modality and to determine the optimum therapeutic conditions for treating brain cancers. The computational results were compared with the widely used MCNP code. The differences between the COG and MCNP predictions were generally small and suggest that the COG code can be applied to similar research problems in NCT. Results for this study also showed that a concentration of 100 ppm gadolinium in the tumor was most beneficial when using an epithermal neutron beam.

  18. Plastics and cardiovascular health: phthalates may disrupt heart rate variability and cardiovascular reactivity.

    PubMed

    Jaimes, Rafael; Swiercz, Adam; Sherman, Meredith; Muselimyan, Narine; Marvar, Paul J; Posnack, Nikki Gillum

    2017-11-01

    Plastics have revolutionized medical device technology, transformed hematological care, and facilitated modern cardiology procedures. Despite these advances, studies have shown that phthalate chemicals migrate out of plastic products and that these chemicals are bioactive. Recent epidemiological and research studies have suggested that phthalate exposure adversely affects cardiovascular function. Our objective was to assess the safety and biocompatibility of phthalate chemicals and resolve the impact on cardiovascular and autonomic physiology. Adult mice were implanted with radiofrequency transmitters to monitor heart rate variability, blood pressure, and autonomic regulation in response to di-2-ethylhexyl-phthalate (DEHP) exposure. DEHP-treated animals displayed a decrease in heart rate variability (-17% SD of normal beat-to-beat intervals and -36% high-frequency power) and an exaggerated mean arterial pressure response to ganglionic blockade (31.5% via chlorisondamine). In response to a conditioned stressor, DEHP-treated animals displayed enhanced cardiovascular reactivity (-56% SD major axis Poincarè plot) and prolonged blood pressure recovery. Alterations in cardiac gene expression of endothelin-1, angiotensin-converting enzyme, and nitric oxide synthase may partly explain these cardiovascular alterations. This is the first study to show an association between phthalate chemicals that are used in medical devices with alterations in autonomic regulation, heart rate variability, and cardiovascular reactivity. Because changes in autonomic balance often precede clinical manifestations of hypertension, atherosclerosis, and conduction abnormalities, future studies are warranted to assess the downstream impact of plastic chemical exposure on end-organ function in sensitive patient populations. This study also highlights the importance of adopting safer biomaterials, chemicals, and/or surface coatings for use in medical devices. NEW & NOTEWORTHY Phthalates are widely

  19. Indirect MR lymphangiography of the head and neck using conventional gadolinium contrast: A pilot study in humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loo, Billy W.; Draney, Mary T.; Sivanandan, Ranjiv

    2006-10-01

    Purpose: To evaluate indirect magnetic resonance lymphangiography (MR-LAG) using interstitial injection of conventional gadolinium contrast (gadoteridol and gadopentetate dimeglumine) for delineating the primary lymphatic drainage of head-and-neck sites. Methods and Materials: We performed head-and-neck MR-LAG in 5 healthy volunteers, with injection of dermal and mucosal sites. We evaluated the safety of the procedure, the patterns of enhancement categorized by injection site and nodal level, the time course of enhancement, the optimal concentration and volume of contrast, and the optimal imaging sequence. Results: The worst side effects of interstitial contrast injection were brief, mild pain and swelling at the injected sitesmore » that were self-limited. MR-LAG resulted in consistent visualization of the primary lymphatic drainage pattern specific to each injected site, which was reproducible on repeated examinations. The best enhancement was obtained with injection of small volumes (0.3-0.5 mL) of either agent diluted, imaging within 5-15 min of injection, and a three-dimensional fast spoiled gradient echo sequence with magnetization transfer. Conclusions: We found head-and-neck MR-LAG to be a safe, convenient imaging method that provides functional information about the lymphatic drainage of injected sites. Applied to head-and-neck cancer, it has the potential to identify sites at highest risk of occult metastatic spread for radiotherapy or surgical planning, and possibly to visualize micrometastases.« less

  20. Gadolinium oxide decorated multiwalled carbon nanotube/tridoped titania nanocomposites for improved dye degradation under simulated solar light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamba, Gcina; Nanotechnology and Water Sustainability Research Unit, College of Engineering, Science and Technology, University of South Africa Florida Science Campus, 1709 Florida; Mbianda, Xavier Yangkou

    2016-03-15

    Graphical abstract: Illustration of the collaborative effect between MWCNT-Gd and Gd,N,S-TiO{sub 2} towards degradation of AB 74. - Highlights: • MWCNT-Gd/tridoped titania was successfully prepared via a sol-gel method. • XPS revealed the presence of Ti, C, O, S, N and Gd in MWCNT-Gd/Gd,N,S-TiO{sub 2}. • MWCNT-Gd/Gd,N,S-TiO{sub 2} displayed 100% degradation of acid blue 74 in 150 min. • Over 60% TOC removal by MWCNT-Gd/Gd,N,S-TiO{sub 2}. - Abstract: Neodymium/gadolinium/europium, nitrogen and sulphur tridoped titania (Nd/Gd/Eu, N,S-TiO{sub 2}) was hybridised with pre-synthesised gadolinium oxide decorated multiwalled carbon nanotubes (MWCNT-Gd) using a sol–gel method. Subsequent to drying and calcination, composite photocatalysts: MWCNT-Gd/Nd,N,S-TiO{submore » 2}, MWCNT-Gd/Gd,N,S-TiO{sub 2} and MWCNT-Gd/Eu,N,S-TiO{sub 2}, were obtained and characterised using TEM, SEM-EDX, UV–vis, XPS, XRD and FT-IR. Acid blue 74 (AB74) was used as a model dye to investigate the photocatalytic degradation properties of the prepared materials under simulated solar light irradiation. Coupling the different tridoped titania with MWCNT-Gd enhanced their activity compared to MWCNT/TiO{sub 2}, MWCNT-Gd/TiO{sub 2} and MWCNT/Gd,N,S-TiO{sub 2}. MWCNT-Gd/Gd,N,S-TiO{sub 2} showed the highest activity towards AB74 degradation reaching 100% decolourisation after 150 min of irradiation. Total organic carbon analysis revealed that over 50% of the AB74 molecules were completely mineralised after 180 min of irradiation in the presence of MWCNT-Gd/Gd,N,S-TiO{sub 2}.« less

  1. Laser therapy in cardiovascular disease

    NASA Astrophysics Data System (ADS)

    Rindge, David

    2009-02-01

    Cardiovascular disease is the number one cause of death worldwide. It is broadly defined to include anything which adversely affects the heart or blood vessels. One-third of Americans have one or more forms of it. By one estimate, average human life expectancy would increase by seven years if it were eliminated. The mainstream medical model seeks mostly to "manage" cardiovascular disease with pharmaceuticals or to surgically bypass or reopen blocked vessels via angioplasty. These methods have proven highly useful and saved countless lives. Yet drug therapy may be costly and ongoing, and it carries the risk of side effects while often doing little or nothing to improve underlying health concerns. Similarly, angioplasty or surgery are invasive methods which entail risk. Laser therapy1 regenerates tissue, stimulates biological function, reduces inflammation and alleviates pain. Its efficacy and safety have been increasingly well documented in cardiovascular disease of many kinds. In this article we will explore the effects of laser therapy in angina, atherosclerosis, coronary artery disease, hypertension, hyperlipidemia, myocardial infarction, stroke and other conditions. The clinical application of various methods of laser therapy, including laserpuncture and transcutaneous, supravascular and intravenous irradiation of blood will be discussed. Implementing laser therapy in the treatment of cardiovascular disease offers the possibility of increasing the health and wellbeing of patients while reducing the costs and enhancing safety of medical care.

  2. Primed infusion with delayed equilibrium of Gd.DTPA for enhanced imaging of small pulmonary metastases.

    PubMed

    Kalber, Tammy L; Campbell-Washburn, Adrienne E; Siow, Bernard M; Sage, Elizabeth; Price, Anthony N; Ordidge, Katherine L; Walker-Samuel, Simon; Janes, Sam M; Lythgoe, Mark F

    2013-01-01

    To use primed infusions of the magnetic resonance imaging (MRI) contrast agent Gd.DTPA (Magnevist), to achieve an equilibrium between blood and tissue (eqMRI). This may increase tumor Gd concentrations as a novel cancer imaging methodology for the enhancement of small tumor nodules within the low signal-to-noise background of the lung. A primed infusion with a delay before equilibrium (eqMRI) of the Gd(III) chelator Gd.DTPA, via the intraperitoneal route, was used to evaluate gadolinium tumor enhancement as a function of a bolus injection, which is applied routinely in the clinic, compared to gadolinium maintained at equilibrium. A double gated (respiration and cardiac) spin-echo sequence at 9.4T was used to evaluate whole lungs pre contrast and then at 15 (representative of bolus enhancement), 25 and 35 minutes (representative of eqMRI). This was carried out in two lung metastasis models representative of high and low tumor cell seeding. Lungs containing discrete tumor nodes where inflation fixed and taken for haematoxylin and eosin staining as well as CD34 staining for correlation to MRI. We demonstrate that sustained Gd enhancement, afforded by Gd equilibrium, increases the detection of pulmonary metastases compared to bolus enhancement and those tumors which enhance at equilibrium are sub-millimetre in size (<0.7 mm(2)) with a similar morphology to early bronchoalveolar cell carcinomas. As Gd-chelates are routinely used in the clinic for detecting tumors by MRI, this methodology is readily transferable to the clinic and advances MRI as a methodology for the detection of small pulmonary tumors.

  3. Prevalence of scarred and dysfunctional myocardium in patients with heart failure of ischaemic origin: A cardiovascular magnetic resonance study

    PubMed Central

    2011-01-01

    Background Cardiovascular magnetic resonance (CMR) with late gadolinium enhancement (LGE) can provide unique data on the transmural extent of scar/viability. We assessed the prevalence of dysfunctional myocardium, including partial thickness scar, which could contribute to left ventricular contractile dysfunction in patients with heart failure and ischaemic heart disease who denied angina symptoms. Methods We invited patients with ischaemic heart disease and a left ventricular ejection fraction < 50% by echocardiography to have LGE CMR. Myocardial contractility and transmural extent of scar were assessed using a 17-segment model. Results The median age of the 193 patients enrolled was 70 (interquartile range: 63-76) years and 167 (87%) were men. Of 3281 myocardial segments assessed, 1759 (54%) were dysfunctional, of which 581 (33%) showed no scar, 623 (35%) had scar affecting ≤50% of wall thickness and 555 (32%) had scar affecting > 50% of wall thickness. Of 1522 segments with normal contractile function, only 98 (6%) had evidence of scar on CMR. Overall, 182 (94%) patients had ≥1 and 107 (55%) patients had ≥5 segments with contractile dysfunction that had no scar or ≤50% transmural scar suggesting viability. Conclusions In this cohort of patients with left ventricular systolic dysfunction and ischaemic heart disease, about half of all segments had contractile dysfunction but only one third of these had > 50% of the wall thickness affected by scar, suggesting that most dysfunctional segments could improve in response to an appropriate intervention. PMID:21936915

  4. Strategies for the preparation of bifunctional gadolinium(III) chelators

    PubMed Central

    Frullano, Luca; Caravan, Peter

    2012-01-01

    The development of gadolinium chelators that can be easily and readily linked to various substrates is of primary importance for the development high relaxation efficiency and/or targeted magnetic resonance imaging (MRI) contrast agents. Over the last 25 years a large number of bifunctional chelators have been prepared. For the most part, these compounds are based on ligands that are already used in clinically approved contrast agents. More recently, new bifunctional chelators have been reported based on complexes that show a more potent relaxation effect, faster complexation kinetics and in some cases simpler synthetic procedures. This review provides an overview of the synthetic strategies used for the preparation of bifunctional chelators for MRI applications. PMID:22375102

  5. The structural response of gadolinium phosphate to pressure

    DOE PAGES

    Heffernan, Karina M.; Ross, Nancy L.; Spencer, Elinor C.; ...

    2016-06-16

    In this study, accurate elastic constants for gadolinium phosphate (GdPO 4) have been measured by single-crystal high-pressure diffraction methods. The bulk modulus of GdPO 4 determined under hydrostatic conditions, 128.1(8) GPa (K'=5.8(2)), is markedly different from that obtained with GdPO 4 under non-hydrostatic conditions (160(2) GPa), which indicates the importance of shear stresses on the elastic response of this phosphate. Finally, high pressure Raman and diffraction analysis indicate that the PO 4 tetrahedra behave as rigid units in response to pressure and that contraction of the GdPO 4 structure is facilitated by bending/twisting of the Gd–O–P links that result inmore » increased distortion in the GdO 9 polyhedra.« less

  6. [Cardiovascular Prevention: Acceptance of Enhanced Occupational Health Care].

    PubMed

    Bleckwenn, M; Theisel, N; Mücke, M; Steudel, H

    2016-06-17

    Background: To date, prevention efforts of company medical officers and general practitioners are largely independent of each other. In a comprehensive model of healthcare management including both sets of doctors, the company doctor should determine the risk of cardiovascular disease in the employees of the company. In case increased risk is detected, there should be exchange of information between the 2 professional groups so that common preventive interventions can be decided upon. Aim: The aim of this pilot study was to determine how well cardiovascular risk assessment is accepted by employees of a midsize company and where prevention is needed. Materials and Methods: In a company with 660 employees, risk analysis was conducted among staff in the context of regular preventive measures. In addition to risk factors, primary care, agreement with an interdisciplinary exchange of information and motivation for health promotion activities were investigated. Results: 204 employees (4 females only) were examined. The average age of the participants was 42.9±10.3 years. In 27% (n=55), an increased overall risk was present. Employees with risk requiring medical intervention were under the care of primary care physician and most of them (70%) agreed to the transfer of information to these physicians. In the survey itself, employees showed sufficient motivation (VAS 6.4±2.8) for workplace health promotion. Conclusion: The examined company agreed to implementing further health promoting activities. Due to demographic changes, new concepts for effective prevention are needed. The high acceptance of the proposed prevention framework should motivate implementation of this concept. As a next step, studies must be conducted to examine the effectiveness of screening for risk carried out by company medical officers. © Georg Thieme Verlag KG Stuttgart · New York.

  7. 2017 Cardiovascular and Stroke Endpoint Definitions for Clinical Trials.

    PubMed

    Hicks, Karen A; Mahaffey, Kenneth W; Mehran, Roxana; Nissen, Steven E; Wiviott, Stephen D; Dunn, Billy; Solomon, Scott D; Marler, John R; Teerlink, John R; Farb, Andrew; Morrow, David A; Targum, Shari L; Sila, Cathy A; Hai, Mary T Thanh; Jaff, Michael R; Joffe, Hylton V; Cutlip, Donald E; Desai, Akshay S; Lewis, Eldrin F; Gibson, C Michael; Landray, Martin J; Lincoff, A Michael; White, Christopher J; Brooks, Steven S; Rosenfield, Kenneth; Domanski, Michael J; Lansky, Alexandra J; McMurray, John J V; Tcheng, James E; Steinhubl, Steven R; Burton, Paul; Mauri, Laura; O'Connor, Christopher M; Pfeffer, Marc A; Hung, H M James; Stockbridge, Norman L; Chaitman, Bernard R; Temple, Robert J

    2018-02-27

    This publication describes uniform definitions for cardiovascular and stroke outcomes developed by the Standardized Data Collection for Cardiovascular Trials Initiative and the US Food and Drug Administration (FDA). The FDA established the Standardized Data Collection for Cardiovascular Trials Initiative in 2009 to simplify the design and conduct of clinical trials intended to support marketing applications. The writing committee recognizes that these definitions may be used in other types of clinical trials and clinical care processes where appropriate. Use of these definitions at the FDA has enhanced the ability to aggregate data within and across medical product development programs, conduct meta-analyses to evaluate cardiovascular safety, integrate data from multiple trials, and compare effectiveness of drugs and devices. Further study is needed to determine whether prospective data collection using these common definitions improves the design, conduct, and interpretability of the results of clinical trials. © 2018 American Heart Association, Inc.

  8. Dielectric properties and activation behavior of gadolinium doped nanocrystalline yttrium chromite

    NASA Astrophysics Data System (ADS)

    Sinha, R.; Basu, S.; Meikap, A. K.

    2018-04-01

    Gadolinium doped Yttrium Chromite nanoparticles are synthesized following sol-gel method. The formation of the nanoparticles are confirmed by XRD and TEM measurements. Dielectric permittivity and dielectric loss are estimated within the temperature range 298K to 523K and in the frequency range 20 Hz to 1 MHz. Dielectric permittivity follows the power law ɛ'(f) ∝ Tm. It is observed that the temperature exponent m increases with the decreasing frequency. The temperature variation of resistivity shows that the samples have semiconducting behavior. The activation energy is also measured.

  9. Preparation of 152Gd targets from a small quantity of gadolinium oxide in a pyrochemical reaction

    NASA Astrophysics Data System (ADS)

    Lipski, A. R.

    1995-02-01

    A simple method utilizing small amounts (< 5 mg) of isotopically enriched material for the production of gadolinium targets is discussed. An electrostatically focused e-gun is used in the procedure in which 152Gd 2O 3 powder undergoes reduction-distillation and deposition onto an Fe foil.

  10. Wideband late gadolinium enhanced magnetic resonance imaging for imaging myocardial scar without image artefacts induced by implantable cardioverter-defibrillator: a feasibility study at 3 T

    PubMed Central

    Ranjan, Ravi; McGann, Christopher J.; Jeong, Eun-Kee; Hong, KyungPyo; Kholmovski, Eugene G.; Blauer, Josh; Wilson, Brent D.; Marrouche, Nassir F.; Kim, Daniel

    2015-01-01

    Aim Late gadolinium enhanced (LGE) magnetic resonance imaging (MRI) is a useful tool for facilitating ventricular tachycardia (VT) ablation. Unfortunately, most VT ablation candidates often have prophylactic implantable cardioverter-defibrillator (ICD) and do not undergo cardiac MRI largely due to image artefacts generated by ICD. A prior study has reported success of ‘wideband’ LGE MRI for imaging myocardial scar without image artefacts induced by ICD at 1.5T. The purpose of this study was to widen the availability of wideband LGE MRI to 3T, since it has the potential to achieve higher spatial resolution than 1.5T. Methods and results We compared the performance of standard and wideband LGE MRI pulse sequences in phantoms and canines with myocardial lesions created by radiofrequency ablation. Standard LGE MRI produced image artefacts induced by ICD and 49% accuracy in detecting 97 myocardial scars examined in this study, whereas wideband LGE MRI produced artefact-free images and 94% accuracy in detecting scars. The mean image quality score (1 = nondiagnostic, 2 = poor, 3 = adequate, 4 = good, 5 = excellent) was significantly (P < 0.001) higher for wideband (3.7 ± 0.8) than for standard LGE MRI (2.1 ± 0.7). The mean artefact level score (1 = minimal, 2 = mild, 3 = moderate, 4 = severe, 5 = nondiagnostic) was significantly (P < 0.001) lower for wideband (2.1 ± 0.8) than for standard LGE MRI (4.0 ± 0.6). Wideband LGE MRI agreed better with gross pathology than standard LGE MRI. Conclusion This study demonstrates the feasibility of wideband LGE MRI for suppression of image artefacts induced by ICD at 3T. PMID:25336666

  11. Corrosion resistance of 0Kh18N10T steel in gadolinium nitrate solutions in the liquid regulation of the reactivity of nuclear reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganzha, V.D.; Konoplev, K.A.; Mashchetov, V.P.

    1986-03-01

    This study was carried out in connection with the preparation of the design for the PIK research reactor. The corrosion resistance of 0Kh18N10T steel in gadolinium nitrate solutions was tested in laboratory, ampule, and loop corrosion tests. At all stages of the tests, the authors investigated the effect produced on the corrosion processes by factors related to the technology of preparation of the equipment (mechanical working of the surfaces, welding, sensitizing, annealing, stressed state of the material, cracks, etc.). Ampule tests were conducted in order to determine the effect produced by reactor radiation and shutdown regimes on the corrosion resistancemore » of the steel. Special ampules made of 0Kh18N10T steel were filled with gadolinium nitrate solutions of various concentrations, sealed, and irradiated for a long period in the core of the VVR-M reactor at a temperature of 20-50 degrees C. The results of the tests are shown. The investigations showed that the corrosion of 0Kh18N10T steel in solutions of gadolinium nitrate is uniform, regardless of the state of the surface, the concentration of gadolinium nitrate, the duration of the tests, the action of the reactor radiation under static and dynamic conditions, and the presence of mechanical stresses.« less

  12. A novel cryogenic magnetic refrigerant metal-organic framework based on 1D gadolinium(III) chain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Qun; Li, Peng-Fei; Zou, Zhi-Ming, E-mail: 2014005@glut.edu.cn

    2017-02-15

    A metal-organic framework (MOF) based on gadolinium ion (Gd{sup 3+}) and tricarboxylate ligand, [Gd(BTPCA)(H{sub 2}O)]·2DMF·3H{sub 2}O (Gd-BTPCA) (H{sub 3}BTPCA =1,1′,1′-(benzene-1,3,5-triyl)tripiperidine-4-carboxylic acid; DMF=dimethylformamide), was synthesized and structurally characterized. The adjacent Gd{sup 3+} ions are intraconnected by the carboxylate groups of the BTPCA{sup 3-} ligands to form a 1D Gd{sup 3+} ion chain. The 1D Gd{sup 3+} ion chains are interconnected by the BTPCA{sup 3-} ligands, giving rise to a 3D framework with 1D open channel. The magnetic studies indicate that Gd-BTPCA exhibits weak ferromagnetic interactions, and acts as a cryogenic magnetic refrigerant having the magnetic entropy change (−ΔS{sub m}) of 20.40more » J kg{sup −1} K{sup −1} for ΔH =7 T at 3 K. - Graphical abstract: A 1D gadolinium(III) chains-based metal-organic framework performed ferromagnetic coupling on the magnetic property. Magnetic investigation reveals that Gd-BTPCA exhibits the entropy change (−ΔS{sub m}) of 20.40 J kg{sup −1} K{sup −1} for ΔH =7 T at 3 K. - Highlights: • The MOF based on gadolinium ion and tricarboxylate ligand was synthesized. • This MOF is connected with 1D Gd{sup 3+} ions chain and the carboxylate groups of BTPCA{sup 3-} ligands. • The magnetic studies indicate that the MOF exhibits the weak ferromagnetic interactions. • Magnetic investigation reveals that the MOF exhibits the high entropy change.« less

  13. Synthesis of samarium doped gadolinium oxide nanorods, its spectroscopic and physical properties

    NASA Astrophysics Data System (ADS)

    Boopathi, G.; Gokul Raj, S.; Ramesh Kumar, G.; Mohan, R.; Mohan, S.

    2018-06-01

    One-dimensional samarium doped gadolinium oxide [Sm:Gd2O3] nanorods have been synthesized successfully through co-precipitation technique in aqueous solution. The as-synthesized and calcined products were characterized by using powder X-ray diffraction pattern, Fourier transform Raman spectroscopy, thermogravimetric/differential thermal analysis, scanning electron microscopy with energy-dispersive X-ray analysis, transmission electron microscopy, Fourier transform infrared spectroscopy, Ultraviolet-Visible spectrometry, photoluminescence spectrophotometer and X-ray photoelectron spectroscopy techniques. The obtained results are discussed in detailed manner.

  14. Adenosine stress cardiovascular magnetic resonance with variable-density spiral pulse sequences accurately detects coronary artery disease: initial clinical evaluation.

    PubMed

    Salerno, Michael; Taylor, Angela; Yang, Yang; Kuruvilla, Sujith; Ragosta, Michael; Meyer, Craig H; Kramer, Christopher M

    2014-07-01

    Adenosine stress cardiovascular magnetic resonance perfusion imaging can be limited by motion-induced dark-rim artifacts, which may be mistaken for true perfusion abnormalities. A high-resolution variable-density spiral pulse sequence with a novel density compensation strategy has been shown to reduce dark-rim artifacts in first-pass perfusion imaging. We aimed to assess the clinical performance of adenosine stress cardiovascular magnetic resonance using this new perfusion sequence to detect obstructive coronary artery disease. Cardiovascular magnetic resonance perfusion imaging was performed during adenosine stress (140 μg/kg per minute) and at rest on a Siemens 1.5-T Avanto scanner in 41 subjects with chest pain scheduled for coronary angiography. Perfusion images were acquired during injection of 0.1 mmol/kg Gadolinium-diethylenetriaminepentacetate at 3 short-axis locations using a saturation recovery interleaved variable-density spiral pulse sequence. Significant stenosis was defined as >50% by quantitative coronary angiography. Two blinded reviewers evaluated the perfusion images for the presence of adenosine-induced perfusion abnormalities and assessed image quality using a 5-point scale (1 [poor] to 5 [excellent]). The prevalence of obstructive coronary artery disease by quantitative coronary angiography was 68%. The average sensitivity, specificity, and accuracy were 89%, 85%, and 88%, respectively, with a positive predictive value and negative predictive value of 93% and 79%, respectively. The average image quality score was 4.4±0.7, with only 1 study with more than mild dark-rim artifacts. There was good inter-reader reliability with a κ statistic of 0.67. Spiral adenosine stress cardiovascular magnetic resonance results in high diagnostic accuracy for the detection of obstructive coronary artery disease with excellent image quality and minimal dark-rim artifacts. © 2014 American Heart Association, Inc.

  15. Measurement of myocardial native T1 in cardiovascular diseases and norm in 1291 subjects.

    PubMed

    Liu, Joanna M; Liu, Alexander; Leal, Joana; McMillan, Fiona; Francis, Jane; Greiser, Andreas; Rider, Oliver J; Myerson, Saul; Neubauer, Stefan; Ferreira, Vanessa M; Piechnik, Stefan K

    2017-09-28

    Native T1-mapping provides quantitative myocardial tissue characterization for cardiovascular diseases (CVD), without the need for gadolinium. However, its translation into clinical practice is hindered by differences between techniques and the lack of established reference values. We provide typical myocardial T1-ranges for 18 commonly encountered CVDs using a single T1-mapping technique - Shortened Look-Locker Inversion Recovery (ShMOLLI), also used in the large UK Biobank and Hypertrophic Cardiomyopathy Registry study. We analyzed 1291 subjects who underwent CMR (1.5-Tesla, MAGNETOM-Avanto, Siemens Healthcare, Erlangen, Germany) between 2009 and 2016, who had a single CVD diagnosis, with mid-ventricular T1-map assessment. A region of interest (ROI) was placed on native T1-maps in the "most-affected myocardium", characterized by the presence of late gadolinium enhancement (LGE), or regional wall motion abnormalities (RWMA) on cines. Another ROI was placed in the "reference myocardium" as far as possible from LGE/RWMA, and in the septum if no focal abnormality was present. To further define normality, we included native T1 of healthy subjects from an existing dataset after sub-endocardial pixel-erosions. Native T1 of patients with normal CMR (938 ± 21 ms) was similar compared to healthy subjects (941 ± 23 ms). Across all patient groups (57 ± 19 yrs., 65% males), focally affected myocardium had significantly different T1 value compared to reference myocardium (all p < 0.001). In the affected myocardium, cardiac amyloidosis (1119 ± 61 ms) had the highest native T1 compared to normal and all other CVDs, while iron-overload (795 ± 58 ms) and Anderson-Fabry disease (863 ± 23 ms) had the lowest native reference T1 (all p < 0.001). Future studies designed to detect the large T1 differences between affected and reference myocardium are estimated to require small sample-sizes (n < 50). However, studies designed to detect the small T1

  16. Delayed enhancement cardiac computed tomography for the assessment of myocardial infarction: from bench to bedside

    PubMed Central

    2017-01-01

    A large number of studies support the increasingly relevant prognostic value of the presence and extent of delayed enhancement (DE), a surrogate marker of fibrosis, in diverse etiologies. Gadolinium and iodinated based contrast agents share similar kinetics, thus leading to comparable myocardial characterization with cardiac magnetic resonance (CMR) and cardiac computed tomography (CT) at both first-pass perfusion and DE imaging. We review the available evidence of DE imaging for the assessment of myocardial infarction (MI) using cardiac CT (CTDE), from animal to clinical studies, and from 16-slice CT to dual-energy CT systems (DECT). Although both CMR and gadolinium agents have been originally deemed innocuous, a number of concerns (though inconclusive and very rare) have been recently issued regarding safety issues, including DNA double-strand breaks related to CMR, and gadolinium-associated nephrogenic systemic fibrosis and deposition in the skin and certain brain structures. These concerns have to be considered in the context of non-negligible rates of claustrophobia, increasing rates of patients with implantable cardiac devices, and a number of logistic drawbacks compared with CTDE, such as higher costs, longer scanning times, and difficulties to scan patients with impaired breath-holding capabilities. Overall, these issues might encourage the role of CTDE as an alternative for DE-CMR in selected populations. PMID:28540211

  17. SimVascular: An Open Source Pipeline for Cardiovascular Simulation.

    PubMed

    Updegrove, Adam; Wilson, Nathan M; Merkow, Jameson; Lan, Hongzhi; Marsden, Alison L; Shadden, Shawn C

    2017-03-01

    Patient-specific cardiovascular simulation has become a paradigm in cardiovascular research and is emerging as a powerful tool in basic, translational and clinical research. In this paper we discuss the recent development of a fully open-source SimVascular software package, which provides a complete pipeline from medical image data segmentation to patient-specific blood flow simulation and analysis. This package serves as a research tool for cardiovascular modeling and simulation, and has contributed to numerous advances in personalized medicine, surgical planning and medical device design. The SimVascular software has recently been refactored and expanded to enhance functionality, usability, efficiency and accuracy of image-based patient-specific modeling tools. Moreover, SimVascular previously required several licensed components that hindered new user adoption and code management and our recent developments have replaced these commercial components to create a fully open source pipeline. These developments foster advances in cardiovascular modeling research, increased collaboration, standardization of methods, and a growing developer community.

  18. 2017 Cardiovascular and Stroke Endpoint Definitions for Clinical Trials.

    PubMed

    Hicks, Karen A; Mahaffey, Kenneth W; Mehran, Roxana; Nissen, Steven E; Wiviott, Stephen D; Dunn, Billy; Solomon, Scott D; Marler, John R; Teerlink, John R; Farb, Andrew; Morrow, David A; Targum, Shari L; Sila, Cathy A; Thanh Hai, Mary T; Jaff, Michael R; Joffe, Hylton V; Cutlip, Donald E; Desai, Akshay S; Lewis, Eldrin F; Gibson, C Michael; Landray, Martin J; Lincoff, A Michael; White, Christopher J; Brooks, Steven S; Rosenfield, Kenneth; Domanski, Michael J; Lansky, Alexandra J; McMurray, John J V; Tcheng, James E; Steinhubl, Steven R; Burton, Paul; Mauri, Laura; O'Connor, Christopher M; Pfeffer, Marc A; Hung, H M James; Stockbridge, Norman L; Chaitman, Bernard R; Temple, Robert J

    2018-03-06

    This publication describes uniform definitions for cardiovascular and stroke outcomes developed by the Standardized Data Collection for Cardiovascular Trials Initiative and the U.S. Food and Drug Administration (FDA). The FDA established the Standardized Data Collection for Cardiovascular Trials Initiative in 2009 to simplify the design and conduct of clinical trials intended to support marketing applications. The writing committee recognizes that these definitions may be used in other types of clinical trials and clinical care processes where appropriate. Use of these definitions at the FDA has enhanced the ability to aggregate data within and across medical product development programs, conduct meta-analyses to evaluate cardiovascular safety, integrate data from multiple trials, and compare effectiveness of drugs and devices. Further study is needed to determine whether prospective data collection using these common definitions improves the design, conduct, and interpretability of the results of clinical trials. Copyright © 2018 American College of Cardiology Foundation and American Heart Association, Inc. Published by Elsevier Inc. All rights reserved.

  19. Clinical application of a gadolinium-based capsule as an MRI contrast agent in slow transit constipation diagnostics.

    PubMed

    Zhi, M; Zhou, Z; Chen, H; Xiong, F; Huang, J; He, H; Zhang, M; Su, M; Gao, X; Hu, P

    2017-06-01

    As a traditional method for the assessment of colon dynamics, radio-opaque markers (ROMs) are limited in clinical use because of their ionizing radiation. We compared the accuracy and applicability of gadolinium-based capsules with ROMs in the measurement of colon dynamics in healthy controls and slow transit constipation (STC) patients. Seven patients with STC and nine healthy controls under a normal diet orally consumed ROMs and gadolinium-based capsules simultaneously. All subjects underwent X-ray and magnetic resonance imaging (MRI). Healthy control images were acquired at 12, 24, and 48 h, and STC patient images were acquired at 24, 48, and 72 h. The scores based on the position of the labeling capsules and ROMs in the colon and the colon transit times (CTTs) in the two groups were compared. The CTTs obtained via the ROMs were 34.7±17.4 and 67.3±6.5 h in the healthy controls and STC patients, respectively (P<.05). The CTTs obtained via MRI were 30.9±15.9 and 74.1±7.2 h in the healthy controls and STC patients, respectively (P<.05). The CTTs of the STC patients were significantly longer than the healthy controls. The correlation (r s ) between the scores based on the position of the labeling capsule and ROMs in the healthy group and the STC patients was .880 (P<.05) and .889 (P<.05), respectively. As a MRI contrast label, gadolinium-based capsules exhibit results comparable to ROMs in colon motility measurements. © 2017 John Wiley & Sons Ltd.

  20. Evaluation of Novel 64Cu-Labeled Theranostic Gadolinium-Based Nanoprobes in HepG2 Tumor-Bearing Nude Mice

    NASA Astrophysics Data System (ADS)

    Hu, Pengcheng; Cheng, Dengfeng; Huang, Tao; Banizs, Anna B.; Xiao, Jie; Liu, Guobing; Chen, Quan; Wang, Yuenan; He, Jiang; Shi, Hongcheng

    2017-09-01

    Radiation therapy of liver cancer is limited by low tolerance of the liver to radiation. Radiosensitizers can effectively reduce the required radiation dose. AGuIX nanoparticles are small, multifunctional gadolinium-based nanoparticles that can carry radioisotopes or fluorescent markers for single-photon emission computed tomography (SPECT), positron emission tomography (PET), fluorescence imaging, and even multimodality imaging. In addition, due to the high atomic number of gadolinium, it can also serve as a tumor radiation sensitizer. It is critical to define the biodistribution and pharmacokinetics of these gadolinium-based nanoparticles to quantitate the magnitude and duration of their retention within the tumor microenvironment during radiotherapy. Therefore, in this study, we successfully labeled AGuIX with 64Cu through the convenient built-in chelator. The biodistribution studies indicated that the radiotracer 64Cu-AGuIX accumulates to high levels in the HepG2 xenograft of nude mice, suggesting that it would be a potential theranostic nanoprobe for image-guided radiotherapy in HCC. We also used a transmission electron microscope to confirm AGuIX uptake in the HepG2 cells. In radiation therapy studies, a decrease in 18F-FDG uptake was observed in the xenografts of the nude mice irradiated with AGuIX, which was injected 1 h before. These results provide proof-of-concept that AGuIX can be used as a theranostic radiosensitizer for PET imaging to guide radiotherapy for liver cancer.

  1. Evaluation of Novel 64Cu-Labeled Theranostic Gadolinium-Based Nanoprobes in HepG2 Tumor-Bearing Nude Mice.

    PubMed

    Hu, Pengcheng; Cheng, Dengfeng; Huang, Tao; Banizs, Anna B; Xiao, Jie; Liu, Guobing; Chen, Quan; Wang, Yuenan; He, Jiang; Shi, Hongcheng

    2017-09-06

    Radiation therapy of liver cancer is limited by low tolerance of the liver to radiation. Radiosensitizers can effectively reduce the required radiation dose. AGuIX nanoparticles are small, multifunctional gadolinium-based nanoparticles that can carry radioisotopes or fluorescent markers for single-photon emission computed tomography (SPECT), positron emission tomography (PET), fluorescence imaging, and even multimodality imaging. In addition, due to the high atomic number of gadolinium, it can also serve as a tumor radiation sensitizer. It is critical to define the biodistribution and pharmacokinetics of these gadolinium-based nanoparticles to quantitate the magnitude and duration of their retention within the tumor microenvironment during radiotherapy. Therefore, in this study, we successfully labeled AGuIX with 64 Cu through the convenient built-in chelator. The biodistribution studies indicated that the radiotracer 64 Cu-AGuIX accumulates to high levels in the HepG2 xenograft of nude mice, suggesting that it would be a potential theranostic nanoprobe for image-guided radiotherapy in HCC. We also used a transmission electron microscope to confirm AGuIX uptake in the HepG2 cells. In radiation therapy studies, a decrease in 18 F-FDG uptake was observed in the xenografts of the nude mice irradiated with AGuIX, which was injected 1 h before. These results provide proof-of-concept that AGuIX can be used as a theranostic radiosensitizer for PET imaging to guide radiotherapy for liver cancer.

  2. Thermophysical Property Measurements of Liquid Gadolinium by Containerless Methods

    NASA Astrophysics Data System (ADS)

    Ishikawa, T.; Okada, J. T.; Paradis, P.-F.; Watanabe, Y.

    2010-02-01

    Thermophysical properties of liquid gadolinium were measured using non-contact diagnostic techniques with an electrostatic levitator. Over the 1585 K to 1920 K temperature range, the density can be expressed as ρ( T) = 7.41 × 103 - 0.46 ( T - T m) (kg · m-3) where T m = 1585 K, yielding a volume expansion coefficient of 6.2 × 10-5 K-1. In addition, the surface tension data can be fitted as γ( T) = 8.22 × 102 - 0.097( T - T m)(10-3 N · m-1) over the 1613 K to 1803 K span and the viscosity as η( T) = 1.7exp[1.4 × 104/( RT)](10-3 Pa · s) over the same temperature range.

  3. Cardiovascular application of polyhedral oligomeric silsesquioxane nanomaterials: a glimpse into prospective horizons

    PubMed Central

    Ghanbari, Hossein; de Mel, Achala; Seifalian, Alexander M

    2011-01-01

    Revolutionary advances in nanotechnology propose novel materials with superior properties for biomedical application. One of the most promising nanomaterials for biomedical application is polyhedral oligomeric silsesquioxane (POSS), an amazing nanocage consisting of an inner inorganic framework of silicon and oxygen atoms and an outer shell of organic groups. The unique properties of this nanoparticle has led to the development of a wide range of nanostructured copolymers with significantly enhanced properties including improved mechanical, chemical, and physical characteristics. Since POSS nanomaterials are highly biocompatible, biomedical application of POSS nanostructures has been intensely explored. One of the most promising areas of application of POSS nanomaterials is the development of cardiovascular implants. The incorporation of POSS into biocompatible polymers has resulted in advanced nanocomposite materials with improved hemocompatibility, antithrombogenicity, enhanced mechanical and surface properties, calcification resistance, and reduced inflammatory response, which make these materials the material of choice for cardiovascular implants. These highly versatile POSS derivatives have opened new horizons to the field of cardiovascular implant. Currently, application of POSS containing polymers in the development of new generation cardiovascular implants including heart valve prostheses, bypass grafts, and coronary stents is under intensive investigation, with encouraging outcomes. PMID:21589645

  4. Magnetic resonance imaging with gadolinium arthrography to assess acetabular cartilage delamination.

    PubMed

    Zaragoza, Edward; Lattanzio, Pierre-Jean; Beaule, Paul E

    2009-01-01

    Recent reports have demonstrated magnetic resonance imaging (MRI) as a promising technique in detecting articular cartilage lesions of the hip joint. The purpose of our study was to evaluate the diagnostic performance of MRI with gadolinium arthrography in detecting acetabular cartilage delamination in patients with pre-arthritic hip pain. 46 patients (48 hips) underwent surgical dislocation of the hip. Mean age was 38.8 (range 17-56). There were 26 males and 20 females. All patients had Magnetic Resonance Imaging with gadolinium arthrography (MRA) before undergoing open hip surgery where the acetabular cartilage was inspected. Acetabular cartilage delamination on MRA was seen on sagittal images as a linear intra-articular filling defect of low signal intensity >1mm in thickness on T1 weighted images and surrounded by contrast. On MRA all hips had a labral tear confirmed at surgery. At surgery 30 hips had evidence of acetabular cartilage delamination, 4 hips had ulceration and 14 had no articular cartilage damage. The majority of labral tears and cartilage damage were located in the antero-superior quadrant. The sensitivity and specificity of MRA detection of cartilage delamination confirmed at surgery were 97% and 84%, respectively. The positive and negative predictive values of the MRA finding were 90% and 94%, respectively. The presence of the acetabular cartilage delamination represents an early stage of articular cartilage degeneration. When evaluating a young adult with hip pain, labral tears in association with cartilage delamination should be considered. MRA represents an effective diagnostic tool.

  5. Primed Infusion with Delayed Equilibrium of Gd.DTPA for Enhanced Imaging of Small Pulmonary Metastases

    PubMed Central

    Kalber, Tammy L.; Campbell-Washburn, Adrienne E.; Siow, Bernard M.; Sage, Elizabeth; Price, Anthony N.; Ordidge, Katherine L.; Walker-Samuel, Simon

    2013-01-01

    Objectives To use primed infusions of the magnetic resonance imaging (MRI) contrast agent Gd.DTPA (Magnevist), to achieve an equilibrium between blood and tissue (eqMRI). This may increase tumor Gd concentrations as a novel cancer imaging methodology for the enhancement of small tumor nodules within the low signal-to-noise background of the lung. Methods A primed infusion with a delay before equilibrium (eqMRI) of the Gd(III) chelator Gd.DTPA, via the intraperitoneal route, was used to evaluate gadolinium tumor enhancement as a function of a bolus injection, which is applied routinely in the clinic, compared to gadolinium maintained at equilibrium. A double gated (respiration and cardiac) spin-echo sequence at 9.4T was used to evaluate whole lungs pre contrast and then at 15 (representative of bolus enhancement), 25 and 35 minutes (representative of eqMRI). This was carried out in two lung metastasis models representative of high and low tumor cell seeding. Lungs containing discrete tumor nodes where inflation fixed and taken for haematoxylin and eosin staining as well as CD34 staining for correlation to MRI. Results We demonstrate that sustained Gd enhancement, afforded by Gd equilibrium, increases the detection of pulmonary metastases compared to bolus enhancement and those tumors which enhance at equilibrium are sub-millimetre in size (<0.7 mm2) with a similar morphology to early bronchoalveolar cell carcinomas. Conclusion As Gd-chelates are routinely used in the clinic for detecting tumors by MRI, this methodology is readily transferable to the clinic and advances MRI as a methodology for the detection of small pulmonary tumors. PMID:23382996

  6. Myocardial infarct sizing by late gadolinium-enhanced MRI: Comparison of manual, full-width at half-maximum, and n-standard deviation methods.

    PubMed

    Zhang, Lin; Huttin, Olivier; Marie, Pierre-Yves; Felblinger, Jacques; Beaumont, Marine; Chillou, Christian DE; Girerd, Nicolas; Mandry, Damien

    2016-11-01

    To compare three widely used methods for myocardial infarct (MI) sizing on late gadolinium-enhanced (LGE) magnetic resonance (MR) images: manual delineation and two semiautomated techniques (full-width at half-maximum [FWHM] and n-standard deviation [SD]). 3T phase-sensitive inversion-recovery (PSIR) LGE images of 114 patients after an acute MI (2-4 days and 6 months) were analyzed by two independent observers to determine both total and core infarct sizes (TIS/CIS). Manual delineation served as the reference for determination of optimal thresholds for semiautomated methods after thresholding at multiple values. Reproducibility and accuracy were expressed as overall bias ± 95% limits of agreement. Mean infarct sizes by manual methods were 39.0%/24.4% for the acute MI group (TIS/CIS) and 29.7%/17.3% for the chronic MI group. The optimal thresholds (ie, providing the closest mean value to the manual method) were FWHM30% and 3SD for the TIS measurement and FWHM45% and 6SD for the CIS measurement (paired t-test; all P > 0.05). The best reproducibility was obtained using FWHM. For TIS measurement in the acute MI group, intra-/interobserver agreements, from Bland-Altman analysis, with FWHM30%, 3SD, and manual were -0.02 ± 7.74%/-0.74 ± 5.52%, 0.31 ± 9.78%/2.96 ± 16.62% and -2.12 ± 8.86%/0.18 ± 16.12, respectively; in the chronic MI group, the corresponding values were 0.23 ± 3.5%/-2.28 ± 15.06, -0.29 ± 10.46%/3.12 ± 13.06% and 1.68 ± 6.52%/-2.88 ± 9.62%, respectively. A similar trend for reproducibility was obtained for CIS measurement. However, semiautomated methods produced inconsistent results (variabilities of 24-46%) compared to manual delineation. The FWHM technique was the most reproducible method for infarct sizing both in acute and chronic MI. However, both FWHM and n-SD methods showed limited accuracy compared to manual delineation. J. Magn. Reson. Imaging 2016;44:1206-1217. © 2016 International Society for Magnetic Resonance in Medicine.

  7. Regulation of sympathetic nervous system function after cardiovascular deconditioning

    NASA Technical Reports Server (NTRS)

    Hasser, E. M.; Moffitt, J. A.

    2001-01-01

    Humans subjected to prolonged periods of bed rest or microgravity undergo deconditioning of the cardiovascular system, characterized by resting tachycardia, reduced exercise capability, and a predisposition for orthostatic intolerance. These changes in cardiovascular function are likely due to a combination of factors, including changes in control of body fluid balance or cardiac alterations resulting in inadequate maintenance of stroke volume, altered arterial or venous vascular function, reduced activation of cardiovascular hormones, and diminished autonomic reflex function. There is evidence indicating a role for each of these mechanisms. Diminished reflex activation of the sympathetic nervous system and subsequent vasoconstriction appear to play an important role. Studies utilizing the hindlimb-unloaded (HU) rat, an animal model of deconditioning, evaluated the potential role of altered arterial baroreflex control of the sympathetic nervous system. These studies indicate that HU results in blunted baroreflex-mediated activation of both renal and lumbar sympathetic nerve activity in response to a hypotensive stimulus. HU rats are less able to maintain arterial pressure during hemorrhage, suggesting that diminished ability to increase sympathetic activity has functional consequences for the animal. Reflex control of vasopressin secretion appears to be enhanced following HU. Blunted baroreflex-mediated sympathoexcitation appears to involve altered central nervous system function. Baroreceptor afferent activity in response to changes in arterial pressure is unaltered in HU rats. However, increases in efferent sympathetic nerve activity for a given decrease in afferent input are blunted after HU. This altered central nervous system processing of baroreceptor inputs appears to involve an effect at the rostral ventrolateral medulla (RVLM). Specifically, it appears that tonic GABAA-mediated inhibition of the RVLM is enhanced after HU. Augmented inhibition apparently

  8. [Hypertension, cardiovascular reactivity to stress and sensibility to pain].

    PubMed

    Conde-Guzón, P A; Bartolomé-Albistegui, M T; Quirós-Expósito, P; Grzib-Schlosky, G

    To provide a review of empirical evidence of decreased pain perception in hypertensive persons or exaggerated cardiovascular reactivity to stress. To following article will briefly review the existing literature on the association between hypoalgesia and high blood pressure. In particular, evidence of hypoalgesia in normotensive individuals at increased risk for hypertension (exaggerated cardiovascular reactivity to stress) will be offered in support of the notion that high cardiovascular reactivity to stress and decreased pain perception may result from a common physiological dysfunction. Cardiovascular reactivity refers to changes in cardiovascular activity associated primarily with exposure to psychological stress. Different individuals show different amounts of reactivity under the same conditions. The greater cardiovascular reactivity to behavioral stressors may play some role in the development of sustained arterial hypertension. Central opioid hyposensitivity is hypothesized as a mechanism of both hypoalgesia and exaggerated autonomic and neuroendocrine responses to stress in individuals at risk for hypertension. The paraventricular nucleus of the hypothalamus (PVN) serves the crucial function of integrating cardiovascular and painful responses. The central opioid hyposensitivity model of hypoalgesia asserts that attenuation of inhibitory opioid input to the PVN may have important consequences for pain modulation. These consequences includes: 1) greater activation of baroreceptor reflex arcs, 2) enhanced release of endogenous opioids during stress, and 3) increased stimulation of descending pain modulation pathways. High elevated thresholds to painful thermal stressors might serve as a behavioral marker of risk for hypertension before the onset of high blood pressure levels.

  9. Effects of gadolinium-based MRI contrast agents on liver tissue.

    PubMed

    Mercantepe, Tolga; Tümkaya, Levent; Çeliker, Fatma Beyazal; Topal Suzan, Zehra; Çinar, Seda; Akyildiz, Kerimali; Mercantepe, Filiz; Yilmaz, Adnan

    2018-04-01

    MRI with contrast is often used clinically. However, recent studies have reported a high accumulation of gadolinium-based contrast agents (GBCAs) in kidney, liver, and spleen tissues in several mouse models. To compare the effects on liver tissue of gadolinium-based MRI contrast agents in the light of biochemical and histopathological evaluation. Institutional Review Board (IRB)-approved controlled longitudinal study. In all, 32 male Sprague-Dawley rats were divided into a healthy control group subjected to no procedure (Group 1), a sham group (Group 2), a gadodiamide group (Group 3), and a gadoteric acid group (Group 4). Not applicable. Liver tissues removed at the end of the fifth week and evaluated pathologically (scored Knodell's histological activity index [HAI] method by two histopathologists) immunohistochemical (caspase-3 and biochemical tests (AST, ALT, TAS, TOS, and OSI method by Erel et al) were obtained. Differences between groups were analyzed using the nonparametric Kruskal-Wallis test followed by the Tamhane test, and one-way analysis of variance (ANOVA) followed by Turkey's HSD test. An increase was observed in histological activity scores in sections from rats administered gadodiamide and gadoteric acid, and in caspase-3, AST and ALT values (P < 0.05). In contrast, we determined no change in TOS (P = 0.568 and P = 0.094, respectively), TAS (P = 0.151 and P = 0.055, respectively), or OSI (P = 0.949 and P = 0.494, respectively) values. These data suggest that gadodiamide and gadoteric acid trigger hepatocellular necrosis and apoptosis by causing damage in hepatocytes, although no change occurs in total antioxidant and antioxidant capacity. 1 Technical Efficacy: Stage 4 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.

  10. Pharmacogenomic Strain Differences in Cardiovascular Sensitivity to Propofol

    PubMed Central

    Stekiel, Thomas A.; Contney, Stephen J.; Roman, Richard J.; Weber, Craig A.; Stadnicka, Anna; Bosnjak, Zeljko J.; Greene, Andrew S; Moreno, Carol

    2011-01-01

    Introduction A pharmacogenomic approach was used to further localize the genetic region responsible for previously observed enhanced cardiovascular sensitivity to propofol in Dahl Salt Sensitive (SS) vs. control Brown Norway (BN) rats. Methods Propofol infusion levels that decreased blood pressure by 50% were measured in BN.13SS rats (substitution of SS chromosome 13 into BN) and in 5 congenic (partial substitution) strains of SS.13BN. The effect of superfused 2,6 diisopropylphenol on small mesenteric arterial vascular smooth muscle transmembrane potential was measured in congenic strains before and during superfusion with Rp-cAMPS and Rp-8-pCPT-cGMPS, inhibitors of protein kinase A and G respectively. The genetic locus and potential role of the renin gene in mediating VSM sensitivity to propofol were determined in three selected sub-congenic SS.BN13 strains. Results A 30 – 32% smaller propofol infusion rate reduced blood pressure by 50% in BN.13SS compared to BN and the SS.13BN congenic containing a 80 BN gene substitution. Compared to the latter, SS exhibited greater protein kinase A dependent vascular smooth muscle hyperpolarization in response to propofol. Using sub-congenics, the increased propofol-induced cardiovascular sensitivity and hyperpolarization was further localized to an 8-gene region (containing the BN renin gene). Blockade of angiotensin (AT1) receptors with losartan in this sub-congenic, elevated propofol-induced hyperpolarization by 3 fold, to that observed in SS. Conclusions Enhanced cardiovascular sensitivity to propofol in SS (compared to BN) is caused by an altered renin gene. Through modified second messenger function, this differentially regulates VSM contractile state and reduces vascular tone exacerbating cardiovascular depression by propofol. PMID:22020141

  11. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 mapping at 3T MRI of the wrist: Feasibility and clinical application.

    PubMed

    Rehnitz, Christoph; Klaan, Bastian; Burkholder, Iris; von Stillfried, Falko; Kauczor, Hans-Ulrich; Weber, Marc-André

    2017-02-01

    To assess the feasibility of delayed gadolinium-enhanced magnetic resonance imaging (MRI) of cartilage (dGEMRIC) and T 2 mapping for biochemical imaging of the wrist at 3T. Seventeen patients with wrist pain (mean age, 41.4 ± 13.1 years) including a subgroup with chondromalacia (n = 11) and 15 healthy volunteers (26.0 ± 2.2 years) underwent dGEMRIC and T 2 mapping at 3T. For dGEMRIC, the optimum time window after contrast-injection (gadopentetate dimeglumine) was defined as the plateau of the T 1 curve of repeated measurements 15-90 minutes postinjection and assessed in all volunteers. Reference values of healthy-appearing cartilage from all individuals and values in areas of chondromalacia were assessed using region-of-interest analyses. Receiver-operating-characteristic analyses were applied to assess discriminatory ability between damaged and normal cartilage. The optimum time window was 45-90 minutes, and the 60-minute timepoint was subsequently used. In chondromalacia, dGEMRIC values were lower (551 ± 84 msec, P < 0.001), and T 2 values higher (63.9 ± 17.7, P = 0.001) compared to healthy-appearing cartilage of the same patient. Areas under the curve did not significantly differ between dGEMRIC (0.91) and T 2 mapping (0.99; P = 0.17). In healthy-appearing cartilage of volunteers and patients, mean dGEMRIC values were 731.3 ± 47.1 msec and 674.6 ± 72.1 msec (P = 0.01), and mean T 2 values were 36.5 ± 5 msec and 41.1 ± 3.2 msec (P = 0.009), respectively. At 3T, dGEMRIC and T 2 mapping are feasible for biochemical cartilage imaging of the wrist. Both techniques allow separation and biochemical assessment of thin opposing cartilage surfaces and can distinguish between healthy and damaged cartilage. 3 J. Magn. Reson. Imaging 2017;45:381-389. © 2016 International Society for Magnetic Resonance in Medicine.

  12. Gadolinium-enhanced 7.0 T magnetic resonance imaging assessment of the aqueous inflow in rat eyes in vivo.

    PubMed

    Li, Lu; Yuan, Yuxiang; Chen, Liwen; Li, Mu; Ji, Pingting; Gong, Jieling; Zhao, Yin; Zhang, Hong

    2017-09-01

    The goal of this study was to calculate the anterior chamber volume and assess aqueous inflow in rat eyes in vivo, under anesthetic condition. Gadolinium-contrast agent (Gd-DTPA, 234.5 mg/ml) was administered to Sprague-Dawley rat eyes via anterior chamber injection or instillation of 234.5 or 117.25 mg/ml Gd-DTPA in 0.2% azone as eye drops, and changes of Gd signal visualized by 7.0 T magnetic resonance imaging (MRI). The safety of local application of Gd-DTPA and azone were performed after MRI scanning. The anterior chamber injection of Gd-DTPA (234.5 mg/ml) group was used for anterior chamber volume and aqueous inflow calculating. Serial changes in Gd-DTPA relative concentration in the anterior chamber was determined based on the initial Gd signal gray values and the initial relative concentration of Gd-DTPA after anterior chamber Gd-DTPA injection. The mean aqueous inflow in rat eyes in vivo was assessed based on changes in Gd-DTPA relative concentration and the anterior chamber volume. Eye drops of Gd-DTPA (234.5 mg/ml) in 0.2% azone readily allowed safe assessment of the aqueous inflow by 7.0 T MRI. Under anesthetic condition in vivo, the mean anterior chamber volume (ACV) in rats was 8493.6 ± 657.4 μm 3 , no differences were observed in the aqueous inflow measured by topical instillation of 234.5 mg/ml Gd-DTPA in 0.2% azone (0.182 ± 0.011 μl/min) between that measured by anterior chamber injection (0.165 ± 0.041 μl/min, P > 0.05), Timolol reduced aqueous inflow to 0.124 ± 0.020 μl/min (P < 0.05). Our results indicated that Gd-enhanced 7.0 T MRI allows evaluation of the Gd signal variation and anterior chamber volume in rats in vivo. The aqueous inflow calculation via non-invasive local application of 234.5 mg/ml Gd-DTPA can be assessed by the variability of relative concentration of Gd-DTPA in anterior chamber and ACV in vivo, under anesthetic condition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Rapid colorimetric sensing of gadolinium by EGCG-derived AgNPs: the development of a nanohybrid bioimaging probe.

    PubMed

    Singh, Rohit Kumar; Mishra, Sourav; Jena, Satyapriya; Panigrahi, Bijayananda; Das, Bhaskar; Jayabalan, Rasu; Parhi, Pankaj Kumar; Mandal, Dindyal

    2018-04-17

    Polyphenol functionalized silver nanoparticles (AgNPs) have been developed and demonstrated as colorimetric sensors for the selective detection of gadolinium. The newly obtained AgNP-Gd3+ conjugates exhibit high aqueous dispersibility and excitation dependent fluorescence emission. The conjugates offer multicolor bioimaging potential owing to their excellent luminescence properties.

  14. A first principles kinetic Monte Carlo investigation of the adsorption and mobility of gadolinium on the (100) surface of tungsten

    NASA Astrophysics Data System (ADS)

    Samin, Adib J.; Zhang, Jinsuo

    2017-05-01

    An accurate characterization of lanthanide adsorption and mobility on tungsten surfaces is important for pyroprocessing. In the present study, the adsorption and diffusion of gadolinium on the (100) surface of tungsten was investigated. It was found that the hollow sites were the most energetically favorable for the adsorption. It was further observed that a magnetic moment was induced following the adsorption of gadolinium on the tungsten surface and that the system with adsorbed hollow sites had the largest magnetization. A pathway for the surface diffusion of gadolinium was determined to occur by hopping between the nearest neighbor hollow sites via the bridge site and the activation energy for the hop was calculated to be 0.75 eV. The surface diffusion process was further assessed using two distinct kinetic Monte Carlo models; one that accounted for lateral adsorbate interactions up to the second nearest neighbor and one that did not account for such interatomic interactions in the adlayer. When the lateral interactions were included in the simulations, the diffusivity was observed to have a strong dependence on coverage (for the coverage values being studied). The effects of lateral interactions were further observed in a one-dimensional simulation of the diffusion equation where the asymmetry in the surface coverage profile upon its approach to a steady state distribution was clear in comparison with the simulations which did not account for those interactions.

  15. In vivo magnetic resonance imaging of atherosclerotic lesions with a newly developed Evans blue-DTPA-gadolinium contrast medium in apolipoprotein-E-deficient mice.

    PubMed

    Yasuda, Satoshi; Ikuta, Kenjiro; Uwatoku, Toyokazu; Oi, Keiji; Abe, Kohtaro; Hyodo, Fuminori; Yoshimitsu, Kengo; Sugimura, Kohtaro; Utsumi, Hideo; Katayama, Yoshiki; Shimokawa, Hiroaki

    2008-01-01

    Magnetic resonance imaging (MRI) contrast agents that specifically detect atherosclerotic plaque may be useful for the noninvasive detection of the plaque. We have recently developed a new contrast agent, Evans blue-DTPA-gadolinium (EB-DTPA-Gd), which selectively accumulates vascular lesions with endothelial removal. In this study, we examined whether EB-DTPA-Gd is also useful for in vivo imaging of atherosclerotic plaques. We used male apolipoprotein-E-deficient (ApoE-/-) mice of different ages (3, 6 and 12 months old) and age-matched male wild-type mice. After a single intravenous administration of EB-DTPA-Gd (160 microM/kg body weight), MRI T(1) signal was obtained in vivo. Increased signal intensity in the aortic wall was noted within 10-20 min after intravenous injection of EB-DTPA-Gd and was maintained for 30 min. The MRI enhancement in the aorta of ApoE-/- mice was increased in accordance with age, whereas no such enhancement was noted in wild-type mice. Histological examination demonstrated that there was a topological correlation between the site of MRI enhancement and that of atherosclerotic plaque. These results indicate that EB-DTPA-Gd is a useful MRI contrast medium for the in vivo detection of atherosclerotic plaques. Copyright (c) 2007 S. Karger AG, Basel.

  16. S-nitrosothiols and the S-nitrosoproteome of the cardiovascular system.

    PubMed

    Maron, Bradley A; Tang, Shiow-Shih; Loscalzo, Joseph

    2013-01-20

    Since their discovery in the early 1990's, S-nitrosylated proteins have been increasingly recognized as important determinants of many biochemical processes. Specifically, S-nitrosothiols in the cardiovascular system exert many actions, including promoting vasodilation, inhibiting platelet aggregation, and regulating Ca(2+) channel function that influences myocyte contractility and electrophysiologic stability. Contemporary developments in liquid chromatography-mass spectrometry methods, the development of biotin- and His-tag switch assays, and the availability of cyanide dye-labeling for S-nitrosothiol detection in vitro have increased significantly the identification of a number of cardiovascular protein targets of S-nitrosylation in vivo. Recent analyses using modern S-nitrosothiol detection techniques have revealed the mechanistic significance of S-nitrosylation to the pathophysiology of numerous cardiovascular diseases, including essential hypertension, pulmonary hypertension, ischemic heart disease, stroke, and congestive heart failure, among others. Despite enhanced insight into S-nitrosothiol biochemistry, translating these advances into beneficial pharmacotherapies for patients with cardiovascular diseases remains a primary as-yet unmet goal for investigators within the field.

  17. Cardiovascular Deconditioning

    NASA Technical Reports Server (NTRS)

    Charles, John B.; Fritsch-Yelle, Janice M.; Whitson, Peggy A.; Wood, Margie L.; Brown, Troy E.; Fortner, G. William

    1999-01-01

    Spaceflight causes adaptive changes in cardiovascular function that may deleteriously affect crew health and safety. Over the last three decades, symptoms of cardiovascular changes have ranged from postflight orthostatic tachycardia and decreased exercise capacity to serious cardiac rhythm disturbances during extravehicular activities (EVA). The most documented symptom of cardiovascular dysfunction, postflight orthostatic intolerance, has affected a significant percentage of U.S. Space Shuttle astronauts. Problems of cardiovascular dysfunction associated with spaceflight are a concern to NASA. This has been particularly true during Shuttle flights where the primary concern is the crew's physical health, including the pilot's ability to land the Orbiter, and the crew's ability to quickly egress and move to safety should a dangerous condition arise. The study of astronauts during Shuttle activities is inherently more difficult than most human research. Consequently, sample sizes have been small and results have lacked consistency. Before the Extended Duration Orbiter Medical Project (EDOMP), there was a lack of normative data on changes in cardiovascular parameters during and after spaceflight. The EDOMP for the first time allowed studies on a large enough number of subjects to overcome some of these problems. There were three primary goals of the Cardiovascular EDOMP studies. The first was to establish, through descriptive studies, a normative data base of cardiovascular changes attributable to spaceflight. The second goal was to determine mechanisms of cardiovascular changes resulting from spaceflight (particularly orthostatic hypotension and cardiac rhythm disturbances). The third was to evaluate possible countermeasures. The Cardiovascular EDOMP studies involved parallel descriptive, mechanistic, and countermeasure evaluations.

  18. Cardiac involvement in ANCA (+) and ANCA (-) Churg-Strauss syndrome evaluated by cardiovascular magnetic resonance.

    PubMed

    Mavrogeni, Sophie; Karabela, Georgia; Gialafos, Elias; Stavropoulos, Efthymios; Spiliotis, George; Katsifis, Gikas; Kolovou, Genovefa

    2013-10-01

    The cardiovascular magnetic resonance (CMR) pattern of Churg-Strauss syndrome (CSS) includes myopericarditis, diffuse subendocardial vasculitis or myocardial infarction with or without cardiac symptoms and is usually associated with lack of antineutrophil cytoplasmic antibodies (ANCA). To correlate the CMR pattern with ANCA in CSS, compare it with healthy controls and systemic lupus erythematosus (SLE) patients and re-evaluate 2 yrs after the first CMR. 28 consecutive CSS, aged 42±7 yrs, were referred for CMR and 2 yrs re-evaluation. The CMR included left ventricular ejection fraction (LVEF), T2-weighted (T2-W), early (EGE) and late gadolinium enhanced (LGE) imaging. Their results were compared with 28 systemic lupus erythematosus (SLE) under remission and 28 controls with normal myocardial perfusion, assessed by scintigraphy. CMR revealed acute cardiac lesions in all ANCA (-) CSS with active disease and acute cardiac symptoms and only in one asymptomatic ANCA (+) CSS, with active disease. Diffuse subendocardial fibrosis (DSF) or past myocarditis was identified in both ANCA(+) and ANCA (-) CSS, but with higher incidence and fibrosis amount in ANCA (-) CSS (p<0.05). In comparison to SLE, both ANCA (+) and ANCA (-) CSS had higher incidence of DSF, lower incidence of myocarditis and no evidence of myocardial infarction, due to coronary artery disease (p<0.05). In 2 yrs CMR follow up, 1/3 of CSS with DSF presented LV function deterioration and one died, although immunosuppressive treatment was given early after CSS diagnosis. Cardiac involvement either as DSF or myocarditis, can be detected in both ANCA (+) and ANCA (-) CSS, although more clinically overt in ANCA (-). DSF carries an ominous prognosis for LV function. CMR, due to its capability to detect disease severity, before cardiac dysfunction takes place, is an excellent tool for CSS risk stratification and treatment individualization.

  19. Cardiovascular Health of Construction Workers in Hong Kong: A Cross-Sectional Study.

    PubMed

    Chung, Joanne Wai-Yee; Wong, Bonny Yee-Man; Yan, Vincent Chun-Man; Chung, Louisa Ming-Yan; So, Henry Chi-Fuk; Chan, Albert

    2018-06-12

    Given a shortage of construction workers, it is important to develop strategies to avoid early retirement caused by cardiovascular diseases in Hong Kong. (1) to describe the cardiovascular health of construction workers in Hong Kong, (2) to examine the demographic differences in cardiovascular health, and (3) to examine the association between health behaviors and cardiovascular health factors. 626 registered construction workers were included in the analysis. Blood chemistry, blood pressure, weight, and height were measured. Face-to-face questionnaire interviews for health behaviors were conducted. Approximately two-thirds of the construction workers achieved only three out of the seven “ideal” cardiovascular health metrics. The younger, more educated, and female subjects had better cardiovascular health scores than the older, less educated, and male counterparts. Fish and seafood consumption was associated with (1) ideal weight status and (2) ideal cholesterol level, whereas less soft drink consumption was associated with ideal cholesterol level. The findings highlighted the importance of promoting cardiovascular health in the construction industry. This study provided some insights for future interventions, which should include increasing fish and seafood intake, decreasing soft drink consumption, and enhancing the health literacy amongst older, less educated, and male construction workers.

  20. Psoriasis and cardiovascular risk. Assessment by different cardiovascular risk scores.

    PubMed

    Fernández-Torres, R; Pita-Fernández, S; Fonseca, E

    2013-12-01

    Psoriasis is an inflammatory disease associated with an increased risk of cardiovascular morbidity and mortality. However, very few studies determine cardiovascular risk by means of Framingham risk score or other indices more appropriate for countries with lower prevalence of cardiovascular risk factors. To determine multiple cardiovascular risk scores in psoriasis patients, the relation between cardiovascular risk and psoriasis features and to compare our results with those in the literature. We assessed demographic data, smoking status, psoriasis features, blood pressure and analytical data. Cardiovascular risk was determined by means of Framingham, SCORE, DORICA and REGICOR scores. A total of 395 patients (59.7% men and 40.3% women) aged 18-86 years were included. The proportion of patients at intermediate and high risk of suffering a major cardiovascular event in the next 10 years was 30.5% and 11.4%, respectively, based on Framingham risk score; 26.9% and 2.2% according to DORICA and 6.8% and 0% using REGICOR score. According to the SCORE index, 22.1% of patients had a high risk of death due to a cardiovascular event over the next 10 years. Cardiovascular risk was not related to psoriasis characteristics, except for the Framingham index, with higher risk in patients with more severe psoriasis (P = 0.032). A considerable proportion of patients had intermediate or high cardiovascular risk, without relevant relationship with psoriasis characteristics and treatment schedules. Therefore, systematic evaluation of cardiovascular risk scores in all psoriasis patients could be useful to identify those with increased cardiovascular risk, subsidiary of lifestyle changes or therapeutic interventions. © 2012 The Authors. Journal of the European Academy of Dermatology and Venereology © 2012 European Academy of Dermatology and Venereology.

  1. Gadolinium-conjugated PLA-PEG nanoparticles as liver targeted molecular MRI contrast agent.

    PubMed

    Chen, Zhijin; Yu, Dexin; Liu, Chunxi; Yang, Xiaoyan; Zhang, Na; Ma, Chunhong; Song, Jibin; Lu, Zaijun

    2011-09-01

    A nanoparticle magnetic resonance imaging (MRI) contrast agent targeted to liver was developed by conjugation of gadolinium (Gd) chelate groups onto the biocompatible poly(l-lactide)-block-poly (ethylene glycol) (PLA-PEG) nanoparticles. PLA-PEG conjugated with diethylenetriaminopentaacetic acid (DTPA) was used to formulate PLA-PEG-DTPA nanoparticles by solvent diffusion method, and then Gd was loaded onto the nanoparticles by chelated with the unfolding DTPA on the surface of the PLA-PEG-DTPA nanoparticles. The mean size of the nanoparticles was 265.9 ± 6.7 nm. The relaxivity of the Gd-labeled nanoparticles was measured, and the distribution in vivo was evaluated in rats. Compared with conventional contrast agent (Magnevist), the Gd-labeled PLA-PEG nanoparticles showed significant enhancement both on liver targeting ability and imaging signal intensity. The T(1) and T(2) relaxivities per [Gd] of the Gd-labeled nanoparticles was 18.865 mM(-1) s(-1) and 24.863 mM(-1) s(-1) at 3 T, respectively. In addition, the signal intensity in vivo was stronger comparing with the Gd-DTPA and the T(1) weight time was lasting for 4.5 h. The liver targeting efficiency of the Gd-labeled PLA-PEG nanoparticles in rats was 14.57 comparing with Magnevist injection. Therefore, the Gd-labeled nanoparticles showed the potential as targeting molecular MRI contrast agent for further clinical utilization.

  2. Gadolinium embedded iron oxide nanoclusters as T1-T2 dual-modal MRI-visible vectors for safe and efficient siRNA delivery

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyong; Zhou, Zijian; Wang, Zhiyong; Xue, Yunxin; Zeng, Yun; Gao, Jinhao; Zhu, Lei; Zhang, Xianzhong; Liu, Gang; Chen, Xiaoyuan

    2013-08-01

    This report illustrates a new strategy of designing a T1-T2 dual-modal magnetic resonance imaging (MRI)-visible vector for siRNA delivery and MRI. Hydrophobic gadolinium embedded iron oxide (GdIO) nanocrystals are self-assembled into nanoclusters in the water phase with the help of stearic acid modified low molecular weight polyethylenimine (stPEI). The resulting water-dispersible GdIO-stPEI nanoclusters possess good stability, monodispersity with narrow size distribution and competitive T1-T2 dual-modal MR imaging properties. The nanocomposite system is capable of binding and delivering siRNA for knockdown of a gene of interest while maintaining its magnetic properties and biocompatibility. This new gadolinium embedded iron oxide nanocluster provides an important platform for safe and efficient gene delivery with non-invasive T1-T2 dual-modal MRI monitoring capability.This report illustrates a new strategy of designing a T1-T2 dual-modal magnetic resonance imaging (MRI)-visible vector for siRNA delivery and MRI. Hydrophobic gadolinium embedded iron oxide (GdIO) nanocrystals are self-assembled into nanoclusters in the water phase with the help of stearic acid modified low molecular weight polyethylenimine (stPEI). The resulting water-dispersible GdIO-stPEI nanoclusters possess good stability, monodispersity with narrow size distribution and competitive T1-T2 dual-modal MR imaging properties. The nanocomposite system is capable of binding and delivering siRNA for knockdown of a gene of interest while maintaining its magnetic properties and biocompatibility. This new gadolinium embedded iron oxide nanocluster provides an important platform for safe and efficient gene delivery with non-invasive T1-T2 dual-modal MRI monitoring capability. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr02797j

  3. Are self-enhancing cognitions associated with healthy or unhealthy biological profiles?

    PubMed

    Taylor, Shelley E; Lerner, Jennifer S; Sherman, David K; Sage, Rebecca M; McDowell, Nina K

    2003-10-01

    Self-enhancement is variously portrayed as a positive illusion that can foster health and longevity or as defensive neuroticism that can have physiological-neuroendocrine costs. In a laboratory stress-challenge paradigm, the authors found that high self-enhancers had lower cardiovascular responses to stress, more rapid cardiovascular recovery, and lower baseline cortisol levels, consistent with the positive illusions predictions and counter to the predictions of the defensive neuroticism position. A second set of analyses, replicating the "illusory mental health paradigm" (J. Shedler, M. Mayman, & M. Manis, 1993), also did not support the defensive neuroticism hypothesis. The association between self-enhancement and cortisol was mediated by psychological resources; analyses of the cardiovascular results provided no definitive mediational pathway. Discussion centers on the potential stress-buffering effects of self-enhancing beliefs.

  4. NO Signaling in the Cardiovascular System and Exercise.

    PubMed

    Fernandes, Tiago; Gomes-Gatto, Camila V; Pereira, Noemy P; Alayafi, Yahya R; das Neves, Vander J; Oliveira, Edilamar M

    2017-01-01

    Nitric oxide (NO) is a small molecule implicated in multiple signal transduction pathways thus contributing to the regulation of many cellular functions. The identification of NO synthase (NOS) isoforms and the subsequent characterization of the mechanisms of cell activation of the enzymes permitted the partial understanding of both the physiological and pathological processes. NO bioavailability plays an important role in the pathophysiology of cardiovascular disease and its reduction in endothelial cells is strictly associated to endothelial dysfunction which, in turn, correlates with cardiovascular mortality. Indeed, endothelial NO synthase (eNOS) has a key role in limiting cardiac dysfunction and remodeling in heart diseases, in part by decreasing myocyte hypertrophy. Conversely, exercise training is recommended to prevent and treat cardiovascular diseases-associated disorders at least by enhanced NO synthase activity and expression, and increased production of antioxidants, which prevents premature breakdown of NO. Exercise training may cause an improvement in endothelial function for both experimental animals and humans; Studies in both healthy subjects and patients with impaired NO-related vasorelaxation remarked exercise training ability to improve vascular structure and function and endothelial homeostasis. This chapter will briefly consider the importance of NO signaling in the maintenance of cardiovascular physiology, and discuss recent insights into the effect of exercise training on the signaling pathways that modulate NO synthesis and degradation in health and cardiovascular disease. In addition, we will highlight the molecular mechanisms via which microRNAs (miRs) target NO signaling in the cardiovascular system, and NO as a candidate molecule for development of new therapies.

  5. The effect of boron and gadolinium burnable poisons on the hot-to-cold reactivity swing of a pressurized water reactor assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galperin, A.; Segev, M.; Radkowsky, A.

    1986-11-01

    Control requirements for advanced pressurized water reactor designs must be met with heavy loadings of burnable poison rods, the required reactivity hold-down typically amounting to 30% or more in a poisoned subassembly. Two apparent choices for poisons are natural boron rods and natural gadolinium rods. Studied and analyzed is the effect of these two poisons on the hot-to-cold reactivity upswing. Compared with an upswing of 2.9% in a nonpoisoned assembly, the upswing in the gadolinium-poisoned assembly is 3.0%, and the upswing in the boron-poisoned assembly is 8.8%. Thus the hot-to-cold control penalty is almost nil for the choice of gadoliniummore » and is considerable for the choice of boron.« less

  6. Magnetic resonance imaging in the pre-operative evaluation of obstructive epiphora: true-FISP and VIBE vs gadolinium.

    PubMed

    Somma, Francesco; d'Agostino, Vincenzo; Tortora, Fabio; Serra, Nicola; Sorrentino, Gerardo; Piscitelli, Valeria; Somma, Andrea; Gamerra, Mario

    2017-02-01

    To assess unenhanced magnetic resonance imaging (MRI) in the preoperative evaluation of obstructive epiphora in patients undergoing dacryocystorhinostomy (DCR) and in particular, to evaluate the efficacy of this technique in the detection of the exact level of obstruction occurring in the naso-lachrymal duct (NLD). The correct identification and characterization of the NLD and its obstructions lead to a more effective surgery, preventing recurrent dacryocystitis after the surgical treatment. From January 2009 to December 2014, 127 obstructive epiphoras were diagnosed and treated in 127 patients (35 M, 92 F; mean age 60.7 ± 7.48 years, range 42-75 years) with endoscopic DCR, in a IRB-approved protocol. To precisely define the morphology of the NLD and the site of obstruction, some of these patients (67/127) underwent unenhanced 1.5-T MR with TrueFISP and VIBE sequences, while the remaining (60/127) underwent Gadolinium-enhanced 1.5-T MR. Afterwards, surgery checked the real site of obstruction in both groups of patients (enhanced and unenhanced MR), with surgical outcomes matched with previous MR reports. In all cases, unenhanced MRI was able to detect the exact site of obstruction along the NLD, allowing a correct planning of surgical endoscopic procedures. On the contrary, enhanced MRI wrongly diagnosed six patients with proximal stenosis (6/60, 10.0%) as intermediate NLD obstruction. Unenhanced MRI was found to be more accurate than enhanced MRI with a statistical significant difference (p value = 0.0256) and obviously cheaper and easier to perform. All imaging reports were verified with surgery. The correct identification of the level of obstruction allowed successful surgery in around 73% (93/127) of patients, who had no recurrence during 6-month follow-up. In patients with epiphora, unenhanced MR showed to be highly reliable and even more effective than enhanced MR in the preoperative characterization of NLD stenosis, with no need of performing complex

  7. 3D image fusion of whole-heart dynamic cardiac MR perfusion and late gadolinium enhancement: Intuitive delineation of myocardial hypoperfusion and scar.

    PubMed

    von Spiczak, Jochen; Mannil, Manoj; Kozerke, Sebastian; Alkadhi, Hatem; Manka, Robert

    2018-03-30

    Since patients with myocardial hypoperfusion due to coronary artery disease (CAD) with preserved viability are known to benefit from revascularization, accurate differentiation of hypoperfusion from scar is desirable. To develop a framework for 3D fusion of whole-heart dynamic cardiac MR perfusion and late gadolinium enhancement (LGE) to delineate stress-induced myocardial hypoperfusion and scar. Prospective feasibility study. Sixteen patients (61 ± 14 years, two females) with known/suspected CAD. 1.5T (nine patients); 3.0T (seven patients); whole-heart dynamic 3D cardiac MR perfusion (3D-PERF, under adenosine stress); 3D LGE inversion recovery sequences (3D-SCAR). A software framework was developed for 3D fusion of 3D-PERF and 3D-SCAR. Computation steps included: 1) segmentation of the left ventricle in 3D-PERF and 3D-SCAR; 2) semiautomatic thresholding of perfusion/scar data; 3) automatic calculation of ischemic/scar burden (ie, pathologic relative to total myocardium); 4) projection of perfusion/scar values onto artificial template of the left ventricle; 5) semiautomatic coregistration to an exemplary heart contour easing 3D orientation; and 6) 3D rendering of the combined datasets using automatically defined color tables. All tasks were performed by two independent, blinded readers (J.S. and R.M.). Intraclass correlation coefficients (ICC) for determining interreader agreement. Image acquisition, postprocessing, and 3D fusion were feasible in all cases. In all, 10/16 patients showed stress-induced hypoperfusion in 3D-PERF; 8/16 patients showed LGE in 3D-SCAR. For 3D-PERF, semiautomatic thresholding was possible in all patients. For 3D-SCAR, automatic thresholding was feasible where applicable. Average ischemic burden was 11 ± 7% (J.S.) and 12 ± 7% (R.M.). Average scar burden was 8 ± 5% (J.S.) and 7 ± 4% (R.M.). Interreader agreement was excellent (ICC for 3D-PERF = 0.993, for 3D-SCAR = 0.99). 3D fusion of 3D-PERF and 3D

  8. Multiparametric Cardiac Magnetic Resonance Survey in Children With Thalassemia Major: A Multicenter Study.

    PubMed

    Casale, Maddalena; Meloni, Antonella; Filosa, Aldo; Cuccia, Liana; Caruso, Vincenzo; Palazzi, Giovanni; Gamberini, Maria Rita; Pitrolo, Lorella; Putti, Maria Caterina; D'Ascola, Domenico Giuseppe; Casini, Tommaso; Quarta, Antonella; Maggio, Aurelio; Neri, Maria Giovanna; Positano, Vincenzo; Salvatori, Cristina; Toia, Patrizia; Valeri, Gianluca; Midiri, Massimo; Pepe, Alessia

    2015-08-01

    Cardiovascular magnetic resonance (CMR) plays a key role in the management of thalassemia major patients, but few data are available in pediatric population. This study aims at a retrospective multiparametric CMR assessment of myocardial iron overload, function, and fibrosis in a cohort of pediatric thalassemia major patients. We studied 107 pediatric thalassemia major patients (61 boys, median age 14.4 years). Myocardial and liver iron overload were measured by T2* multiecho technique. Atrial dimensions and biventricular function were quantified by cine images. Late gadolinium enhancement images were acquired to detect myocardial fibrosis. All scans were performed without sedation. The 21.4% of the patients showed a significant myocardial iron overload correlated with lower compliance to chelation therapy (P<0.013). Serum ferritin ≥2000 ng/mL and liver iron concentration ≥14 mg/g/dw were detected as the best threshold for predicting cardiac iron overload (P=0.001 and P<0.0001, respectively). A homogeneous pattern of myocardial iron overload was associated with a negative cardiac remodeling and significant higher liver iron concentration (P<0.0001). Myocardial fibrosis by late gadolinium enhancement was detected in 15.8% of the patients (youngest children 13 years old). It was correlated with significant lower heart T2* values (P=0.022) and negative cardiac remodeling indexes. A pathological magnetic resonance imaging liver iron concentration was found in the 77.6% of the patients. Cardiac damage detectable by a multiparametric CMR approach can occur early in thalassemia major patients. So, the first T2* CMR assessment should be performed as early as feasible without sedation to tailor the chelation treatment. Conversely, late gadolinium enhancement CMR should be postponed in the teenager age. © 2015 American Heart Association, Inc.

  9. Overnutrition, mTOR signaling, and cardiovascular diseases

    PubMed Central

    Jia, Guanghong; Aroor, Annayya R.; Martinez-Lemus, Luis A.

    2014-01-01

    The prevalence of obesity and associated medical disorders has increased dramatically in the United States and throughout much of the world in the past decade. Obesity, induced by excess intake of carbohydrates and fats, is a major cause of Type 2 diabetes, hypertension, and the cardiorenal metabolic syndrome. There is emerging evidence that excessive nutrient intake promotes signaling through the mammalian target of rapamycin (mTOR), which, in turn, may lead to alterations of cellular metabolic signaling leading to insulin resistance and obesity-related diseases, such as diabetes, cardiovascular and kidney disease, as well as cancer. While the pivotal role of mTOR signaling in regulating metabolic stress, autophagy, and adaptive immune responses has received increasing attention, there remain many gaps in our knowledge regarding this important nutrient sensor. For example, the precise cellular signaling mechanisms linking excessive nutrient intake and enhanced mTOR signaling with increased cardiovascular and kidney disease, as well as cancer, are not well understood. In this review, we focus on the effects that the interaction between excess intake of nutrients and enhanced mTOR signaling have on the promotion of obesity-associated diseases and potential therapeutic strategies involving targeting mTOR signaling. PMID:25253086

  10. Cardiovascular effects of air pollution.

    PubMed

    Brook, Robert D

    2008-09-01

    Air pollution is a heterogeneous mixture of gases, liquids and PM (particulate matter). In the modern urban world, PM is principally derived from fossil fuel combustion with individual constituents varying in size from a few nanometres to 10 microm in diameter. In addition to the ambient concentration, the pollution source and chemical composition may play roles in determining the biological toxicity and subsequent health effects. Nevertheless, studies from across the world have consistently shown that both short- and long-term exposures to PM are associated with a host of cardiovascular diseases, including myocardial ischaemia and infarctions, heart failure, arrhythmias, strokes and increased cardiovascular mortality. Evidence from cellular/toxicological experiments, controlled animal and human exposures and human panel studies have demonstrated several mechanisms by which particle exposure may both trigger acute events as well as prompt the chronic development of cardiovascular diseases. PM inhaled into the pulmonary tree may instigate remote cardiovascular health effects via three general pathways: instigation of systemic inflammation and/or oxidative stress, alterations in autonomic balance, and potentially by direct actions upon the vasculature of particle constituents capable of reaching the systemic circulation. In turn, these responses have been shown to trigger acute arterial vasoconstriction, endothelial dysfunction, arrhythmias and pro-coagulant/thrombotic actions. Finally, long-term exposure has been shown to enhance the chronic genesis of atherosclerosis. Although the risk to one individual at any single time point is small, given the prodigious number of people continuously exposed, PM air pollution imparts a tremendous burden to the global public health, ranking it as the 13th leading cause of morality (approx. 800,000 annual deaths).

  11. Investigation of Plutonium and Uranium Precipitation Behavior with Gadolinium as a Neutron Poison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visser, A.E.

    2003-10-17

    The caustic precipitation of plutonium (Pu)-containing solutions has been investigated to determine whether the presence of 3:1 uranium (U):Pu in solutions stored in the H-Canyon Facility at the U.S. Department of Energy's (DOE) Savannah River Site (SRS) would adversely impact the use of gadolinium nitrate (Gd(NO3)3) as a neutron poison. In the past, this disposition strategy has been successfully used to discard solutions containing approximately 100 kg of Pu to the SRS high level waste (HLW) system. In the current experiments, gadolinium (as Gd(NO3)3) was added to samples of a 3:1 U:Pu solution, a surrogate 3 g/L U solution, andmore » a surrogate 3 g/L U with 1 g/L Pu solution. A series of experiments was then performed to observe and characterize the precipitate at selected pH values. Solids formed at pH 4.5 and were found to contain at least 50 percent of the U and 94 percent of the Pu, but only 6 percent of the Gd. As the pH of the solution increased (e.g., pH greater than 14 with 1.2 or 3.6 M sodium hydroxide (NaOH) excess), the precipitate contained greater than 99 percent of the Pu, U, and Gd. After the pH greater than 14 systems were undisturbed for one week, no significant changes were found in the composition of the solid or supernate for each sample. The solids were characterized by X-ray diffraction (XRD) which found sodium diuranate (Na2U2O7) and gadolinium hydroxide (Gd(OH)3) at pH 14. Thermal gravimetric analysis (TGA) indicated sufficient water molecules were present in the solids to thermalize the neutrons, a requirement for the use of Gd as a neutron poison. Scanning electron microscopy (SEM) was also performed and the accompanying back-scattering electron analysis (BSE) found Pu, U, and Gd compounds in all pH greater than 14 precipitate samples. The rheological properties of the slurries at pH greater than 14 were also investigated by performing precipitate settling rate studies and measuring the viscosity and density of the materials. Based

  12. Myocardial Fibrosis in Hypertrophic Cardiomyopathy: Volumetric Assessment of Late Enhancement Provided by Cardiac Computed Tomography.

    PubMed

    Langer, Christoph; Schaefer, Philipp; Lutz, Matthias; Eden, Matthias; Hohnhorst, Mirko; Harders, Hauke; Faber, Lothar; Jansen, Olav; Both, Marcus; Frey, Norbert

    2015-01-01

    With subgroups of patients with hypertrophic cardiomyopathy (HCM) confers a 4% to 5% risk for adverse prognosis. Besides left-ventricular muscle mass (LV-MM) myocardial fibrosis (MF) assessable by late gadolinium enhancement in cardiovascular magnetic resonance (LGE-CMR) has been related to that. Myocardial fibrosis can also be demonstrated by late enhancement (LE) in late-enhanced multislice computed tomography (leMDCT). This analysis investigates leMDCT whether to enable quantification of LE load in terms of LE mass by percent LV-MM in HCM. In a prospective validation study, we included 30 consecutive patients with HCM who underwent leMDCT (64 slice) and LGE-CMR (1.5 T). The leMDCT scan was performed 7 minutes after injection of iodine contrast (Iopromid). Endocardial and epicardial planimetry served for the assessment of LV-MM. Visually detectable LE was quantified using the manual quantification method resulting in LE by percent LV-MM (%LE). The LGE-CMR data served for validation. Mean (SD) age was 64.1 (13.9) years. Myocardial fibrosis prevalence was 63.3% (19/30 patients indentified by both leMDCT and LGE-CMR). In leMDCT, tissue density in LE areas compared with normal myocardium was higher (138.2 [23.9] HU vs 98.4 [16.5] HU, P < 0.001) but lower than in the LV cavity (138.2 [23.9] HU vs 169.2 [35.9] HU, P < 0.001). Late enhancement mass in leMDCT seemed to be 7.9 (8.5) g LE versus 8.6 [11] g LGE in CMR (P = 0.497, r = 0.95) resulting in a leMDCT/LGE-CMR relation of 1.2. Referring LE mass to LV-MM gave an LE proportion measured by leMDCT of 4 (3.9) %LE versus 3.9 (4.1) %LGE in LGE-CMR (r = 0.88, P = 0.75). Intraobserver/interobserver reliability of LE mass assessment showed an intraclass correlation coefficient of 0.99 and 0.97. In patients with HCM, leMDCT provides volumetric assessment of LE mass-absolutely and by percent LV-MM.

  13. Comparative theoretical study of the structures and stabilities of four typical gadolinium carboxylates in different scintillator solvents.

    PubMed

    Huang, Pin-Wen

    2016-03-01

    The structural properties and stabilities of four typical gadolinium carboxylates (Gd-CBX) in toluene, linear alkyl benzene (LAB), and phenyl xylyl ethane (PXE) solvents were theoretically studied using density functional theory (DFT/B3LYP with the basis sets 6-311G(d) and MWB54) and the polarizable continuum model (PCM). The average Gd-ligand interaction energies (E int, corrected for dispersion) and the values of the energy gap between the highest occupied molecular orbital and lowest unoccupied molecular orbital (ΔHL) for the gadolinium complexes were calculated to compare the relative stabilities of the four Gd-CBX molecules in the three liquid scintillator solvents. According to the calculations, the values of E int and ΔHL for Gd-CBX in LAB are larger than the corresponding values in PXE and toluene. Gd-CBX may therefore be more compatible with LAB than with PXE and toluene. It was also found that, in the three scintillator solvents, the stabilities of the four Gd-CBX molecules increase in the order Gd-2EHA < Gd-2MVA < Gd-pivalate < Gd-TMHA.

  14. Caspase-responsive smart gadolinium-based contrast agent for magnetic resonance imaging of drug-induced apoptosis.

    PubMed

    Ye, Deju; Shuhendler, Adam J; Pandit, Prachi; Brewer, Kimberly D; Tee, Sui Seng; Cui, Lina; Tikhomirov, Grigory; Rutt, Brian; Rao, Jianghong

    2014-10-01

    Non-invasive detection of caspase-3/7 activity in vivo has provided invaluable predictive information regarding tumor therapeutic efficacy and anti-tumor drug selection. Although a number of caspase-3/7 targeted fluorescence and positron emission tomography (PET) imaging probes have been developed, there is still a lack of gadolinium (Gd)-based magnetic resonance imaging (MRI) probes that enable high spatial resolution detection of caspase-3/7 activity in vivo . Here we employ a self-assembly approach and develop a caspase-3/7 activatable Gd-based MRI probe for monitoring tumor apoptosis in mice. Upon reduction and caspase-3/7 activation, the caspase-sensitive nano-aggregation MR probe (C-SNAM: 1 ) undergoes biocompatible intramolecular cyclization and subsequent self-assembly into Gd-nanoparticles (GdNPs). This results in enhanced r 1 relaxivity-19.0 (post-activation) vs. 10.2 mM -1 s -1 (pre-activation) at 1 T in solution-and prolonged accumulation in chemotherapy-induced apoptotic cells and tumors that express active caspase-3/7. We demonstrate that C-SNAM reports caspase-3/7 activity by generating a significantly brighter T 1 -weighted MR signal compared to non-treated tumors following intravenous administration of C-SNAM, providing great potential for high-resolution imaging of tumor apoptosis in vivo .

  15. Anabolic steroids and cardiovascular risk.

    PubMed

    Angell, Peter; Chester, Neil; Green, Danny; Somauroo, John; Whyte, Greg; George, Keith

    2012-02-01

    Recent reports from needle exchange programmes and other public health initiatives have suggested growing use of anabolic steroids (AS) in the UK and other countries. Data indicate that AS use is not confined to body-builders or high-level sportsmen. Use has spread to professionals working in emergency services, casual fitness enthusiasts and subelite sportsmen and women. Although the precise health consequences of AS use is largely undefined, AS use represents a growing public health concern. Data regarding the consequences of AS use on cardiovascular health are limited to case studies and a modest number of small cohort studies. Numerous case studies have linked AS use with a variety of cardiovascular disease (CVD) events or endpoints, including myocardial infarction, stroke and death. Large-scale epidemiological studies to support these links are absent. Consequently, the impact of AS use upon known CVD risk factors has been studied in relatively small, case-series studies. Data relating AS use to elevated blood pressure, altered lipid profiles and ECG abnormalities have been reported, but are often limited in scope, and other studies have often produced equivocal outcomes. The use of AS has been linked to the appearance of concentric left ventricular hypertrophy as well as endothelial dysfunction but the data again remains controversial. The mechanisms responsible for the negative effect of AS on cardiovascular health are poorly understood, especially in humans. Possibilities include direct effects on myocytes and endothelial cells, reduced intracellular Ca2+ levels, increased release of apoptogenic factors, as well as increased collagen crosslinks between myocytes. New data relating AS use to cardiovascular health risks are emerging, as novel technologies are developed (especially in non-invasive imaging) that can assess physiological structure and function. Continued efforts to fully document the cardiovascular health consequences of AS use is important to

  16. Structural, kinetic, and thermodynamic characterization of the interconverting isomers of MS-325, a gadolinium(III)-based magnetic resonance angiography contrast agent.

    PubMed

    Tyeklar, Zoltan; Dunham, Stephen U; Midelfort, Katarina; Scott, Daniel M; Sajiki, Hirano; Ong, Karen; Lauffer, Randall B; Caravan, Peter; McMurry, Thomas J

    2007-08-06

    The amphiphilic gadolinium complex MS-325 ((trisodium-{(2-(R)-[(4,4-diphenylcyclohexyl) phosphonooxymethyl] diethylenetriaminepentaacetato) (aquo)gadolinium(III)}) is a contrast agent for magnetic resonance angiography (MRA). MS-325 comprises a GdDTPA core with an appended phosphodiester moiety linked to a diphenylcyclohexyl group to facilitate noncovalent binding to serum albumin and extension of the plasma half-life in vivo. The chiral DTPA ligand (R) was derived from L-serine, and upon complexation with gadolinium, forms two interconvertible diastereomers, denoted herein as isomers A and B. X-ray crystallography of the tris(ethylenediamine)cobalt(III) salt derivative of isomer A revealed a structure in the polar acentric space group P32. The structure consisted of three independent molecules of the gadolinium complex in the asymmetric unit along with three Delta-[Co(en)3]3+ cations, and it represents an unusual example of spontaneous Pasteur resolution of the cobalt cation. The geometry of the coordination core was best described as a distorted trigonal prism, and the final R factor was 5.6%. The configuration of the chiral central nitrogen of the DTPA core was S. The Gd-water (2.47-2.48 A), the Gd-acetate oxygens (2.34-2.42 A), and the Gd-N bond distances (central N, 2.59-2.63 A; terminal N, 2.74-2.80 A) were similar to other reported GdDTPA structures. The structurally characterized single crystal was one of two interconvertable diastereomers (isomers A and B) that equilibrated to a ratio of 1.81 to 1 at pH 7.4 and were separable at elevated pH by ion-exchange chromatography. The rate of isomerization was highly pH dependent: k1 = (1.45 +/- 0.08) x 102[H+] + (4.16 +/- 0.30) x 105[H+]2; k-1 = (2.57 +/- 0.17) x 102[H+] + (7.54 +/- 0.60) x 105[H+]2.

  17. Exercise and end-stage kidney disease: functional exercise capacity and cardiovascular outcomes.

    PubMed

    Parsons, Trisha L; King-Vanvlack, Cheryl E

    2009-11-01

    This review examined published reports of the impact of extradialytic and intradialytic exercise programs on physiologic aerobic exercise capacity, functional exercise endurance, and cardiovascular outcomes in individuals with ESKD. Studies spanning 30 years from the first published report of exercise in the ESKD population were reviewed. Studies conducted in the first half of the publication record focused on the efficacy of exercise training programs performed "off"-dialysis with respect to the modification of traditional cardiovascular risk factors, aerobic capacity, and its underlying determinants. In the latter half of the record, there had been a shift to include other client-centered goals such as physical function and quality of life. There is evidence that both intra- and extradialytic programs can significantly enhance aerobic exercise capacity, but moderate-intensity extradialytic programs may result in greater gains in those individuals who initially have extremely poor aerobic capacity. Functionally, substantive improvements in exercise endurance in excess of the minimum clinical significant difference can occur following either low- or moderate-intensity exercise regardless of the initial level of performance. Reductions in blood pressure and enhanced vascular functioning reported after predominantly intradialytic exercise programs suggest that either low- or moderate-intensity exercise programs can confer cardiovascular benefit. Regardless of prescription model, there was an overall lack of evidence regarding the impact of exercise-induced changes in exercise capacity, endurance, and cardiovascular function on a number of relevant health outcomes (survival, morbidity, and cardiovascular risk), and, more importantly, there is no evidence on the long-term impact of exercise and/or physical activity interventions on these health outcomes.

  18. Microstructural Anisotropy of Magnetocaloric Gadolinium Cylinders: Effect on the Mechanical Properties of the Material

    PubMed Central

    Petrovič, Darja Steiner; Šturm, Roman; Naglič, Iztok; Markoli, Boštjan; Pepelnjak, Tomaž

    2016-01-01

    The development of advanced materials and technologies based on magnetocaloric Gd and its compounds requires an understanding of the dependency of mechanical properties on their underlying microstructure. Therefore, the aim of the study was to characterize microstructural inhomogeneities in the gadolinium that can be used in magnetocaloric refrigeration systems. Microstructures of magnetocaloric gadolinium cylinders were investigated by light microscopy and FE-SEM (Field Emission Scanning Electron Microscopy), EDS (Energy-dispersive X-ray Spectroscopy), and BSE (Back-scattered Electrons) in both the extrusion and the extrusion-transversal directions. XRD (X-ray Diffraction) analyses were performed to reveal the presence of calcium- and fluorine-based compounds. Metallographic characterization showed an oxidized and inhomogeneous microstructure of the cross-sections. The edges and the outer parts of the cylinders were oxidized more intensively on the surfaces directly exposed to the processing tools. Moreover, a significant morphological anisotropy of the non-metallic inclusions was observed. CaF inclusions act as active nucleation sites for internal oxidation. The non-metallic, Ca- and F-containing inclusions can be classified as complex calciumoxyfluorides. The solubility of Er and Yb in the CaF was negligible compared to the Gd matrix and/or the oxide phase. Lower mechanical properties of the material are a consequence of the lower structural integrity due to selective oxidation of surfaces and interfaces. PMID:28773502

  19. Modulation of channel activity and gadolinium block of MscL by static magnetic fields.

    PubMed

    Petrov, Evgeny; Martinac, Boris

    2007-02-01

    The magnetic field of the Earth has for long been known to influence the behaviour and orientation of a variety of living organisms. Experimental studies of the magnetic sense have, however, been impaired by the lack of a plausible cellular and/or molecular mechanism providing meaningful explanation for detection of magnetic fields by these organisms. Recently, mechanosensitive (MS) ion channels have been implied to play a role in magnetoreception. In this study we have investigated the effect of static magnetic fields (SMFs) of moderate intensity on the activity and gadolinium block of MscL, the bacterial MS channel of large conductance, which has served as a model channel to study the basic physical principles of mechanosensory transduction in living cells. In addition to showing that direct application of the magnetic field decreased the activity of the MscL channel, our study demonstrates for the first time that SMFs can reverse the effect of gadolinium, a well-known blocker of MS channels. The results of our study are consistent with a notion that (1) the effects of SMFs on the MscL channels may result from changes in physical properties of the lipid bilayer due to diamagnetic anisotropy of phospholipid molecules and consequently (2) cooperative superdiamagnetism of phospholipid molecules under influence of SMFs could cause displacement of Gd(3+) ions from the membrane bilayer and thus remove the MscL channel block.

  20. Extracellular Vesicles as Therapeutic Tools in Cardiovascular Diseases

    PubMed Central

    Fleury, Audrey; Martinez, Maria Carmen; Le Lay, Soazig

    2014-01-01

    Extracellular vesicles (EVs), including microvesicles (MVs) and exosomes, are small vesicles secreted from a wide variety of cells. Whereas MVs are particles released by the outward budding of the plasma membrane, exosomes are derived from endocytic compartments. Secretion of EVs can be enhanced by specific stimuli, and increased plasma circulating levels of EVs have been correlated with pathophysiological situations. MVs, already present in the blood of healthy individuals, are considerably elevated in several cardiovascular diseases associated with inflammation, suggesting that they can mediate deleterious effects such as endothelial dysfunction or thrombosis. Nonetheless, very recent studies also demonstrate that MVs may act as biological information vectors transferring proteins or genetic material to maintain cell homeostasis, favor cell repair, or even promote angiogenesis. Additionally, exosomes have also been shown to have pro-angiogenic and cardio-protective properties. These beneficial effects, therefore, reveal the potential therapeutical use of EVs in the field of cardiovascular medicine and regenerative therapy. In this review, we will provide an update of cellular processes modulated by EVs of specific interest in the treatment of cardiovascular pathologies. A special focus will be made on the morphogen sonic hedgehog (Shh) associated with EVs (EVsShh+), which have been shown to mediate many pro-angiogenic effects. In addition to offer a potential source of cardiovascular markers, therapeutical potential of EVs reveal exciting opportunities to deliver specific agents by non-immunogenic means to cardiovascular system. PMID:25136343

  1. Gadolinium(III)-sensitized fluorescence of europium in its mixed-metal compounds with trifluroacetate

    NASA Astrophysics Data System (ADS)

    Kalinovskaya, I. V.; Zadorozhnaya, A. N.

    2017-04-01

    The fluorescence properties of mixed-metal compounds of Eu(III) and Gd(III) with trifluoroacetic acid, Eu1-хGdx(С2F3O2)3·yD·zH2O, where D - 1,10-phenanthroline, 2,2-dipyridil, diphenylguanidine, x = 0, 0.25, 0.5, or 0.7, were studied. Luminescence spectroscopic evidence and the examination of excitation spectra indicate the occurrence of efficient energy transfer from the gadolinium to the europium ion. The greatest promotion of Eu3+ photoluminescence at 615 nm is observed when Eu:Gd = 1:1.

  2. Modification of the crystal structure of gadolinium gallium garnet by helium ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostafiychuk, B. K.; Yaremiy, I. P., E-mail: yaremiy@rambler.ru; Yaremiy, S. I.

    2013-12-15

    The structure of gadolinium gallium garnet (GGG) single crystals before and after implantation by He{sup +} ions has been investigated using high-resolution X-ray diffraction methods and the generalized dynamic theory of X-ray scattering. The main types of growth defects in GGG single crystals and radiation-induced defects in the ion-implanted layer have been determined. It is established that the concentration of dislocation loops in the GGG surface layer modified by ion implantation increases and their radius decreases with an increase in the implantation dose.

  3. Gadolinium for neutron detection in current nuclear instrumentation research: A review

    NASA Astrophysics Data System (ADS)

    Dumazert, J.; Coulon, R.; Lecomte, Q.; Bertrand, G. H. V.; Hamel, M.

    2018-02-01

    Natural gadolinium displays a number of remarkable physical properties: it is a rare earth element, composed of seven stable or quasi-stable isotopes, with an exceptionally high magnetization and a Curie point near room temperature. Its use in the field of nuclear instrumentation historically relates to its efficiency as a neutron poison in power reactors. Gadolinium is indeed the naturally occurring element with the highest interaction probability with neutrons at thermal energy, shared between Gd-157 (15.65%, 254000 b cross section) and Gd-155 (14.8%, 60900 b) isotopes. Considering that neutron capture results in an isotopic change, followed by a radiative rearrangement of nuclear and atomic structures, Gd may be embodied not merely as a neutron poison but as a neutron converter into a prompt photon and an electron source term. Depending on the nature and energy of the reaction products (from a few-keV Auger electrons up to 8 MeV gamma rays) that the detector aims at isolating as an indirect neutron signature, a variety of sensor media and counting methods have been introduced during the last decades. This review first draws a theoretical description of the radiative cascade following Gd(n , γ) capture. The cascade may be subdivided into regions of interest, each corresponding to dedicated detection designs and optimizations whose current status is detailed. This inventory has allowed the authors to extract and benchmark key figures of merit for the definition of a detection scheme: neutron attenuation, neutron sensitivity (cps/nv), gamma rejection, neutron detection limit in a mixed field, intrinsic or extrinsic moderation, and transportability. On this basis, the authors have identified promising paths for Gd-based neutron detection in contemporary instrumentation.

  4. In vivo comparison of delayed gadolinium-enhanced MRI of cartilage and delayed quantitative CT arthrography in imaging of articular cartilage.

    PubMed

    Hirvasniemi, J; Kulmala, K A M; Lammentausta, E; Ojala, R; Lehenkari, P; Kamel, A; Jurvelin, J S; Töyräs, J; Nieminen, M T; Saarakkala, S

    2013-03-01

    To compare delayed gadolinium-enhanced magnetic resonance imaging (MRI) of cartilage (dGEMRIC) and delayed quantitative computed tomography (CT) arthrography (dQCTA) to each other, and their association to arthroscopy. Additionally, the relationship between dGEMRIC with intravenous (dGEMRIC(IV)) and intra-articular contrast agent administration (dGEMRIC(IA)) was determined. Eleven patients with knee pain were scanned at 3 T MRI and 64-slice CT before arthroscopy. dQCTA was performed at 5 and 45 min after intra-articular injection of ioxaglate. Both dGEMRIC(IV) and dGEMRIC(IA) were performed at 90 min after gadopentetate injection. dGEMRIC indices and change in relaxation rates (ΔR(1)) were separately calculated for dGEMRIC(IV) and dGEMRIC(IA). dGEMRIC and dQCTA parameters were calculated for predetermined sites at the knee joint that were International Cartilage Repair Society (ICRS) graded in arthroscopy. dQCTA normalized with the contrast agent concentration in synovial fluid (SF) and dGEMRIC(IV) correlated significantly, whereas dGEMRIC(IA) correlated with the normalized dQCTA only when dGEMRIC(IA) was also normalized with the contrast agent concentration in SF. Correlation was strongest between normalized dQCTA at 45 min and ΔR(1,IV) (r(s) = 0.72 [95% CI 0.56-0.83], n = 49, P < 0.01) and ΔR(1,IA) normalized with ΔR(1) in SF (r(s) = 0.70 [0.53-0.82], n = 52, P < 0.01). Neither dGEMRIC nor dQCTA correlated with arthroscopic grading. dGEMRIC(IV) and non-normalized dGEMRIC(IA) were not related while ΔR(1,IV) correlated with normalized ΔR(1,IA) (r(s) = 0.52 [0.28-0.70], n = 50, P < 0.01). This study suggests that dQCTA is in best agreement with dGEMRIC(IV) at 45 min after CT contrast agent injection. dQCTA and dGEMRIC were not related to arthroscopy, probably because the remaining cartilage is analysed in dGEMRIC and dQCTA, whereas in arthroscopy the absence of cartilage defines the grading. The findings indicate the importance to take

  5. Homeostatic effect of laughter on diabetic cardiovascular complications: The myth turned to fact.

    PubMed

    Noureldein, Mohamed H; Eid, Assaad A

    2018-01-01

    Laughter has been used for centuries to alleviate pain in morbid conditions. It was not until 1976 that scientists thought about laughter as a form of therapy that can modulate hormonal and immunological parameters that affect the outcome of many serious diseases. Moreover, laughter therapy was shown to be beneficial in type 2 diabetes mellitus (T2DM) by delaying the onset of many diabetic complications. Laughter is also described to influence the cardiovascular and endothelial functions and thus may protect against diabetic cardiovascular complications. In this review, we outline the different biochemical, physiological and immunological mechanisms by which laughter may influence the overall state of wellbeing and enhance disease prognosis. We also focus on the biological link between laughter therapy and diabetic cardiovascular complications as well as the underlying mechanisms involved in T2DM. Reviewing all the essential databases for "laughter" and "type 2 diabetes mellitus". Although laughter therapy is still poorly investigated, recent studies show that laughter may retard the onset of diabetic complications, enhance cardiovascular functions and rectify homeostatic abnormalities associated with T2DM. Laughter therapy is effective in delaying diabetic complications and should be used as an adjuvant therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Cardiovascular biomarkers and sex: the case for women.

    PubMed

    Daniels, Lori B; Maisel, Alan S

    2015-10-01

    Measurement of biomarkers is a critical component of cardiovascular care. Women and men differ in their cardiac physiology and manifestations of cardiovascular disease. Although most cardiovascular biomarkers are used by clinicians without taking sex into account, sex-specific differences in biomarkers clearly exist. Baseline concentrations of many biomarkers (including cardiac troponin, natriuretic peptides, galectin-3, and soluble ST2) differ in men versus women, but these sex-specific differences do not generally translate into a need for differential sex-based cut-off points. Furthermore, most biomarkers are similarly diagnostic and prognostic, regardless of sex. Two potential exceptions are cardiac troponins measured by high-sensitivity assay, and proneurotensin. Troponin levels are lower in women than in men and, with the use of high-sensitivity assays, sex-specific cut-off points might improve the diagnosis of myocardial infarction. Proneurotensin is a novel biomarker that was found to be predictive of incident cardiovascular disease in women, but not men, and was also predictive of incident breast cancer. If confirmed, proneurotensin might be a unique biomarker of disease risk in women. With any biomarker, an understanding of sex-specific differences might improve its use and might also lead to an enhanced understanding of the physiological differences between the hearts of men and women.

  7. Statins and oxidative stress in the cardiovascular system.

    PubMed

    Margaritis, Marios; Sanna, Fabio; Antoniades, Charalambos

    2017-09-26

    Statins are widely established as an important class of medications for primary and secondary prevention of cardiovascular disease. In addition to their lipid-lowering effects, mounting evidence suggests that statins exhibit non-lipid-lowering mediated effects in the cardiovascular system. These so called "pleiotropic" effects are partly due to antioxidant properties of statins. These are mediated by inhibition of the mevalonate pathway, which interferes with small GTP-ase protein prenylation. This, in turn, leads to anti-oxidant effects of statins via a plethora of mechanisms. Statins prevent the activation of the pro-oxidant enzyme NADPH-oxidase by interfering with Rac1 activation and translocation to the membrane, as well as reducing expression of crucial subunits of NADPH-oxidase. Statins also enhance the expression, enzymatic activity and coupling of endothelial nitric oxide synthase (eNOS), through mevalonate-dependent effects. The net result is a restoration of the redox balance in the cardiovascular system, with subsequent anti-atherosclerotic and cardioprotective effects. While the evidence from basic science studies and animal models is strong, more clinical trials are required to establish the relevance of these pleiotropic effects to human cardiovascular disease and potentially lead to expanded indications for statin treatment or alternative therapeutic strategies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Effect of environmental air pollution on cardiovascular diseases.

    PubMed

    Meo, S A; Suraya, F

    2015-12-01

    Environmental air pollution has become a leading health concern especially in the developing countries with more urbanization, industrialization and rapidly growing population. Prolonged exposure to air pollution is a risk factor for cardiovascular diseases. The present study aimed to investigate the effects of environmental air pollution on progression of cardiovascular problems. In this study, we identified 6880 published articles through a systematic database including ISI-Web of Science, PubMed and EMBASE. The allied literature was searched by using the key words such as environmental pollution, air pollution, particulate matter pollutants PM 2.5 μm-PM 10 μm. Literature in which environmental air pollution and cardiac diseases were discussed was included. Descriptive information was retrieved from the selected literature. Finally, we included 67 publications and remaining studies were excluded. Environmental pollution can cause high blood pressure, arrhythmias, enhanced coagulation, thrombosis, acute arterial vasoconstriction, atherosclerosis, ischemic heart diseases, myocardial infarction and even heart failure. Environmental air pollution is associated with increased risk of cardiovascular diseases. Environmental pollution exerts its detrimental effects on the heart by developing pulmonary inflammation, systemic inflammation, oxidative stress, endothelial dysfunction and prothrombotic changes. Environmental protection officials must take high priority steps to minimize the air pollution to decrease the prevalence of cardiovascular diseases.

  9. Green tea catechins: defensive role in cardiovascular disorders.

    PubMed

    Bhardwaj, Pooja; Khanna, Deepa

    2013-07-01

    Green tea, Camellia sinensis (Theaceae), a major source of flavonoids such as catechins, has recently shown multiple cardiovascular health benefits through various experimental and clinical studies. These studies suggest that green tea catechins prevent the incidence of detrimental cardiovascular events, and also lower the cardiovascular mortality rate. Catechins present in green tea have the ability to prevent atherosclerosis, hypertension, endothelial dysfunction, ischemic heart diseases, cardiomyopathy, cardiac hypertrophy and congestive heart failure by decreasing oxidative stress, preventing inflammatory events, reducing platelet aggregation and halting the proliferation of vascular smooth muscle cells. Catechins afford an anti-oxidant effect by inducing anti-oxidant enzymes, inhibiting pro-oxidant enzymes and scavenging free radicals. Catechins present anti-inflammatory activity through the inhibition of transcriptional factor NF-κB-mediated production of cytokines and adhesion molecules. Green tea catechins interfere with vascular growth factors and thus inhibit vascular smooth muscle cell proliferation, and also inhibit thrombogenesis by suppressing platelet adhesion. Additionally, catechins could protect vascular endothelial cells and enhance vascular integrity and regulate blood pressure. In this review various experimental and clinical studies suggesting the role of green tea catechins against the markers of cardiovascular disorders and the underlying mechanisms for these actions are discussed. Copyright © 2013 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  10. The use of innovative gadolinium-based contrast agent for MR-diagnosis of cancer in the experiment

    NASA Astrophysics Data System (ADS)

    Chernov, V.; Medvedeva, A.; Sinilkin, I.; Zelchan, R.; Grigorev, E.; Frolova, I.; Nam, I.

    2016-02-01

    The present study of the functional suitability and specific activity of the contrast agent gadolinium-based for magnetic resonance imaging demonstrated that the investigated contrast agent intensively accumulates in organs and anatomical structures of the experimental animals. In the model of tumor lesions in animals, study have shown that investigational contrast agent accumulates in the tumor tissue and retained there in for a long enough time.

  11. S-Nitrosothiols and the S-Nitrosoproteome of the Cardiovascular System

    PubMed Central

    Maron, Bradley A.; Tang, Shiow-Shih

    2013-01-01

    Abstract Significance: Since their discovery in the early 1990's, S-nitrosylated proteins have been increasingly recognized as important determinants of many biochemical processes. Specifically, S-nitrosothiols in the cardiovascular system exert many actions, including promoting vasodilation, inhibiting platelet aggregation, and regulating Ca2+ channel function that influences myocyte contractility and electrophysiologic stability. Recent Advances: Contemporary developments in liquid chromatography–mass spectrometry methods, the development of biotin- and His-tag switch assays, and the availability of cyanide dye-labeling for S-nitrosothiol detection in vitro have increased significantly the identification of a number of cardiovascular protein targets of S-nitrosylation in vivo. Critical Issues: Recent analyses using modern S-nitrosothiol detection techniques have revealed the mechanistic significance of S-nitrosylation to the pathophysiology of numerous cardiovascular diseases, including essential hypertension, pulmonary hypertension, ischemic heart disease, stroke, and congestive heart failure, among others. Future Directions: Despite enhanced insight into S-nitrosothiol biochemistry, translating these advances into beneficial pharmacotherapies for patients with cardiovascular diseases remains a primary as-yet unmet goal for investigators within the field. Antioxid. Redox Signal. 18, 270–287. PMID:22770551

  12. Gadolinium heteropoly complex K 17[Gd(P 2W 17O 61) 2] as a potential MRI contrast agent

    NASA Astrophysics Data System (ADS)

    Sun, Guoying; Feng, Jianghua; Wu, Huifeng; Pei, Fengkui; Fang, Ke; Lei, Hao

    2004-10-01

    Gadolinium heteropoly complex K17[Gd(P2W17O61)2] has been evaluated by in vitro and in vivo experiments as a potential contrast agent for magnetic resonance imaging (MRI). The thermal analysis and conductivity study indicate that this complex has good thermal stability and wide pH stability range. The T1 relaxivity is 7.59 mM-1 s-1 in aqueous solution and 7.97 mM-1 s-1 in 0.725 mmol l-1 bovine serum albumin (BSA) solution at 25 °C and 9.39 T, respectively. MR imaging of three male Sprague-Dawley rats showed remarkable enhancement in rat liver after intravenous injection, which persisted longer than with Gd-DTPA. The signal intensity increased by 57.1±16.9% during the whole imaging period at 0.082 mmol kg-1dose. Our preliminary in vitro and in vivo studies indicate that K17[Gd(P2W17O61)2] is a potential liver-specific MRI contrast agent.

  13. Geometry of electromechanically active structures in Gadolinium - doped Cerium oxides

    DOE PAGES

    Li, Yuanyuan; Kraynis, Olga; Kas, Joshua; ...

    2016-05-20

    Local distortions from average structure are important in many functional materials, such as electrostrictors or piezoelectrics, and contain clues about their mechanism of work. However, the geometric attributes of these distortions are exceedingly difficult to measure, leading to a gap in knowledge regarding their roles in electromechanical response. This task is particularly challenging in the case of recently reported non-classical electrostriction in Cerium-Gadolinium oxides (CGO), where only a small population of Ce-O bonds that are located near oxygen ion vacancies responds to external electric field. In this study, we used high-energy resolution fluorescence detection (HERFD) technique to collect X-ray absorptionmore » spectra in CGO in situ, with and without an external electric field, coupled with theoretical modeling to characterize three-dimensional geometry of electromechanically active units.« less

  14. Geometry of electromechanically active structures in Gadolinium - doped Cerium oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yuanyuan; Zacharowicz, Renee; Frenkel, Anatoly I., E-mail: igor.lubomirsky@weizmann.ac.il, E-mail: anatoly.frenkel@yu.edu

    2016-05-15

    Local distortions from average structure are important in many functional materials, such as electrostrictors or piezoelectrics, and contain clues about their mechanism of work. However, the geometric attributes of these distortions are exceedingly difficult to measure, leading to a gap in knowledge regarding their roles in electromechanical response. This task is particularly challenging in the case of recently reported non-classical electrostriction in Cerium-Gadolinium oxides (CGO), where only a small population of Ce-O bonds that are located near oxygen ion vacancies responds to external electric field. We used high-energy resolution fluorescence detection (HERFD) technique to collect X-ray absorption spectra in CGOmore » in situ, with and without an external electric field, coupled with theoretical modeling to characterize three-dimensional geometry of electromechanically active units.« less

  15. Adsorption Studies of Gadolinium ion on Graphitic Carbon Nitride

    NASA Astrophysics Data System (ADS)

    Kuila, S. K.; Kundu, T. K.

    2018-03-01

    Bulk graphitic carbon nitride (g-C3N4) is synthesized by thermal decomposition of urea and used as an adsorbent for gadolinium ion (Gd3+) from aqueous solution. Adsorption capacity of g-C3N4 is found to be influenced by initial Gd3+ concentration, solution pH and contact time. Adsorbed Gd3+is separated from g-C3N4 by ultracentrifuge. Initial and Gd ion accumulated g-C3N4 adsorbent are characterized by X-ray diffraction technique (XRD) for phase identification, UV-visible and Fourier transform infrared (FTIR) spectroscopy for adsorption characteristics and optical property, scanning electron microscopy (SEM) for morphological behaviour along with energy dispersive X-ray spectroscopy (EDS) for elemental study. HNO3(0.1M), NaOH (0.1M) and de-ionized water are used for desorption and around 97% quantitative recovery of Gd ion is observed.

  16. Monitoring Blood-Brain Barrier Integrity Following Amyloid-β Immunotherapy Using Gadolinium-Enhanced MRI in a PDAPP Mouse Model.

    PubMed

    Blockx, Ines; Einstein, Steve; Guns, Pieter-Jan; Van Audekerke, Johan; Guglielmetti, Caroline; Zago, Wagner; Roose, Dimitri; Verhoye, Marleen; Van der Linden, Annemie; Bard, Frederique

    2016-09-06

    Amyloid-related imaging abnormalities (ARIA) have been reported with some anti-amyloid-β (Aβ) immunotherapy trials. They are detected with magnetic resonance imaging (MRI) and thought to represent transient accumulation of fluid/edema (ARIA-E) or microhemorrhages (ARIA-H). Although the clinical significance and pathophysiology are unknown, it has been proposed that anti-Aβimmunotherapy may affect blood-brain barrier (BBB) integrity. To examine vascular integrity in aged (12-16 months) PDAPP and wild type mice (WT), we performed a series of longitudinal in vivo MRI studies. Mice were treated on a weekly basis using anti-Aβimmunotherapy (3D6) and follow up was done longitudinally from 1-12 weeks after treatment. BBB-integrity was assessed using both visual assessment of T1-weighted scans and repeated T1 mapping in combination with gadolinium (Gd-DOTA). A subset of 3D6 treated PDAPP mice displayed numerous BBB disruptions, whereas WT and saline-treated PDAPP mice showed intact BBB integrity under the conditions tested. In addition, the contrast induced decrease in T1 value was observed in the meningeal and midline area. BBB disruption events occurred early during treatment (between 1 and 5 weeks), were transient, and resolved quickly. Finally, BBB-leakages associated with microhemorrhages were confirmed by Perls'Prussian blue histopathological analysis. Our preclinical findings support the hypothesis that 3D6 leads to transient leakage from amyloid-positive vessels. The current study has provided valuable insights on the time course of vascular alterations during immunization treatment and supports further research in relation to the nature of ARIA and the utility of in vivo repeated T1 MRI as a translational tool.

  17. Chelating DTPA amphiphiles: ion-tunable self-assembly structures and gadolinium complexes.

    PubMed

    Moghaddam, Minoo J; de Campo, Liliana; Kirby, Nigel; Drummond, Calum J

    2012-10-05

    A series of chelating amphiphiles and their gadolinium (Gd(III)) metal complexes have been synthesized and studied with respect to their neat and lyotropic liquid crystalline phase behavior. These amphiphiles have the ability to form ion-tunable self-assembly nanostructures and their associated Gd(III) complexes have potential as magnetic resonance imaging (MRI) contrast enhancement agents. The amphiphiles are composed of diethylenetriaminepentaacetic acid (DTPA) chelates conjugated to one or two oleyl chain(s) (DTPA-MO and DTPA-BO), or isoprenoid-type chain(s) of phytanyl (DTPA-MP and DTPA-BP). The thermal phase behavior of the neat amphiphiles was examined by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and cross polarizing optical microscopy (POM). Self-assembly of neat amphiphiles and their associated Gd complexes, as well as their lyotropic phase behavior in water and sodium acetate solutions of different ionic strengths, were examined by POM and small and wide angle X-ray scattering (SWAXS). All neat amphiphiles exhibited lamellar structures. The non-complexed amphiphiles showed a variety of lyotropic phases depending on the number and nature of the hydrophobic chain in addition to the ionic state of the hydration. Upon hydration with increased Na-acetate concentration and the subtle changes in the effective headgroup size, the interfacial curvature of the amphiphile increased, altering the lyotropic liquid crystalline structures towards higher order mesophases such as the gyroid (Ia3d) bicontinuous cubic phase. The chelation of Gd with the DTPA amphiphiles resulted in lamellar crystalline structures for all the neat amphiphiles. Upon hydration with water, the Gd-complexed mono-conjugates formed micellar or vesicular self-assemblies, whilst the bis-conjugates transformed only partially into lyotropic liquid crystalline mesophases.

  18. Microfabrication of a gadolinium-derived solid-state sensor for thermal neutrons

    PubMed Central

    Achyuthan, Komandoor E.; Allen, Matthew; Denton, Michele L. B.; Siegal, Michael P.; Manginell, Ronald P.

    2017-01-01

    Abstract Neutron sensing is critical in civilian and military applications. Conventional neutron sensors are limited by size, weight, cost, portability and helium supply. Here the microfabrication of gadolinium (Gd) conversion material–based heterojunction diodes for detecting thermal neutrons using electrical signals produced by internal conversion electrons (ICEs) is described. Films with negligible stress were produced at the tensile-compressive crossover point, enabling Gd coatings of any desired thickness by controlling the radiofrequency sputtering power and using the zero-point near p(Ar) of 50 mTorr at 100 W. Post-deposition Gd oxidation–induced spallation was eliminated by growing a residual stress-free 50 nm neodymium-doped aluminum cap layer atop Gd. The resultant coatings were stable for at least 6 years, demonstrating excellent stability and product shelf-life. Depositing Gd directly on the diode surface eliminated the air gap, leading to a 200-fold increase in electron capture efficiency and facilitating monolithic microfabrication. The conversion electron spectrum was dominated by ICEs with energies of 72, 132 and 174 keV. Results are reported for neutron reflection and moderation by polyethylene for enhanced sensitivity, and γ- and X-ray elimination for improved specificity. The optimal Gd thickness was 10.4 μm for a 300 μm-thick partially depleted diode of 300 mm2 active surface area. Fast detection (within 10 min) at a neutron source-to-diode distance of 11.7 cm was achieved with this configuration. All ICE energies along with γ-ray and Kα,β X-rays were modeled to emphasize correlations between experiment and theory. Semi-conductor thermal neutron detectors offer advantages for field-sensing of radioactive neutron sources. PMID:28369631

  19. Cardiovascular magnetic resonance in adults with previous cardiovascular surgery.

    PubMed

    von Knobelsdorff-Brenkenhoff, Florian; Trauzeddel, Ralf Felix; Schulz-Menger, Jeanette

    2014-03-01

    Cardiovascular magnetic resonance (CMR) is a versatile non-invasive imaging modality that serves a broad spectrum of indications in clinical cardiology and has proven evidence. Most of the numerous applications are appropriate in patients with previous cardiovascular surgery in the same manner as in non-surgical subjects. However, some specifics have to be considered. This review article is intended to provide information about the application of CMR in adults with previous cardiovascular surgery. In particular, the two main scenarios, i.e. following coronary artery bypass surgery and following heart valve surgery, are highlighted. Furthermore, several pictorial descriptions of other potential indications for CMR after cardiovascular surgery are given.

  20. Biomaterials in Cardiovascular Research: Applications and Clinical Implications

    PubMed Central

    Jaganathan, Saravana Kumar; Supriyanto, Eko; Murugesan, Selvakumar; Balaji, Arunpandian; Asokan, Manjeesh Kumar

    2014-01-01

    Cardiovascular biomaterials (CB) dominate the category of biomaterials based on the demand and investments in this field. This review article classifies the CB into three major classes, namely, metals, polymers, and biological materials and collates the information about the CB. Blood compatibility is one of the major criteria which limit the use of biomaterials for cardiovascular application. Several key players are associated with blood compatibility and they are discussed in this paper. To enhance the compatibility of the CB, several surface modification strategies were in use currently. Some recent applications of surface modification technology on the materials for cardiovascular devices were also discussed for better understanding. Finally, the current trend of the CB, endothelization of the cardiac implants and utilization of induced human pluripotent stem cells (ihPSCs), is also presented in this review. The field of CB is growing constantly and many new investigators and researchers are developing interest in this domain. This review will serve as a one stop arrangement to quickly grasp the basic research in the field of CB. PMID:24895577

  1. Optimisation of dynamic nuclear polarisation of [1-13C] pyruvate by addition of gadolinium-based contrast agents

    NASA Astrophysics Data System (ADS)

    Friesen-Waldner, Lanette; Chen, Albert; Mander, Will; Scholl, Timothy J.; McKenzie, Charles A.

    2012-10-01

    Dynamic nuclear polarisation (DNP) of carbon-13 (13C) enriched endogenous compounds provides a novel means for magnetic resonance imaging and spectroscopy of biological processes. Adding small amounts of gadolinium-based contrast agents (GBCAs) to the 13C-enriched substrate matrix increases the amount of hyperpolarisation that can be achieved, but also may decrease the longitudinal relaxation time (T1) of the 13C nucleus in solution. This study examined the effects of five different GBCA at concentrations of 0.5, 1, 2, and 3 mM on [1-13C]-enriched pyruvic acid. It was found that contrast agents with an open chain structure (Gadobenate dimeglumine, Gadopentetate dimeglumine, Gadodiamide) caused the largest enhancement (up to 82%) in solid state polarisation relative to solutions without GBCA. In the liquid state, T1 of pyruvate decreased by as much as 62% and polarisation was much lower (70%) relative to solutions without GBCA added. Conversely, for GBCA with macrocyclic structures (Gadoterate meglumine, Gadoteridol), the solid state polarisation enhancement was only slightly less than the open chain GBCA, but enhanced polarisation was retained much better in the liquid state with minimal decrease in T1 (25% at the highest GBCA concentrations). Near maximum polarisation in the solid state was obtained at a GBCA concentration of 2 mM, with a higher concentration of 3 mM producing minimal improvement. These results indicate that the macrocyclic contrast agents provide the best combination of high solid state and liquid state polarisations with minimal loss of T1 in experiments with hyperpolarised 13C-enriched pyruvate. This suggests that macrocyclic contrast agents should be the GBCA of choice for maximising signal in experiments with hyperpolarised 13C-enriched pyruvate, particularly for in vivo measurements where shortened substrate T1 is especially problematic.

  2. Contrast-enhanced fluid-attenuated inversion recovery vs. contrast-enhanced spin echo T1-weighted brain imaging.

    PubMed

    Falzone, Cristian; Rossi, Federica; Calistri, Maurizio; Tranquillo, Massimo; Baroni, Massimo

    2008-01-01

    In humans, contrast-enhanced fluid-attenuated inversion recovery (FLAIR) imaging plays an important role in detecting brain disease. The aim of this study was to define the clinical utility of contrast-enhanced FLAIR imaging by comparing the results with those with contrast-enhanced spin echo T1-weighted images (SE T1WI) in animals with different brain disorders. Forty-one dogs and five cats with a clinical suspicion of brain disease and 30 normal animals (25 dogs and five cats) were evaluated using a 0.2 T permanent magnet. Before contrast medium injection, spin echo T1-weighted, SE T1WI, and FLAIR sequences were acquired in three planes. SE T1WI and FLAIR images were also acquired after gadolinium injection. Sensitivity in detecting the number, location, margin, and enhancement pattern and rate were evaluated. No lesions were found in a normal animal. In affected animals, 48 lesions in 34 patients were detected in contrast-enhanced SE T1WI whereas 81 lesions in 44 patients were detected in contrast-enhanced FLAIR images. There was no difference in the characteristics of the margins or enhancement pattern of the detected lesions. The objective enhancement rate, the mean value between lesion-to-white matter ratio and lesion-to-gray matter ratio, although representing an overlap of T1 and T2 effects and not pure contrast medium shortening of T1 relaxation, was better in contrast-enhanced FLAIR images. These results suggest a superiority of contrast-enhanced FLAIR images as compared with contrast-enhanced SE T1WI in detecting enhancing brain lesions.

  3. Feasibility and Diagnostic Value of Cardiovascular Magnetic Resonance Imaging After Acute Ischemic Stroke of Undetermined Origin.

    PubMed

    Haeusler, Karl Georg; Wollboldt, Christian; Bentheim, Laura Zu; Herm, Juliane; Jäger, Sebastian; Kunze, Claudia; Eberle, Holger-Carsten; Deluigi, Claudia Christina; Bruder, Oliver; Malsch, Carolin; Heuschmann, Peter U; Endres, Matthias; Audebert, Heinrich J; Morguet, Andreas J; Jensen, Christoph; Fiebach, Jochen B

    2017-05-01

    Etiology of acute ischemic stroke remains undetermined (cryptogenic) in about 25% of patients after state-of-the-art diagnostic work-up. One-hundred and three patients with magnetic resonance imaging (MRI)-proven acute ischemic stroke of undetermined origin were prospectively enrolled and underwent 3-T cardiac MRI and magnetic resonance angiography of the aortic arch in addition to state-of-the-art diagnostic work-up, including transesophageal echocardiography (TEE). We analyzed the feasibility, diagnostic accuracy, and added value of cardiovascular MRI (cvMRI) compared with TEE for detecting sources of stroke. Overall, 102 (99.0%) ischemic stroke patients (median 63 years [interquartile range, 53-72], 24% female, median NIHSS (National Institutes of Health Stroke Scale) score on admission 2 [interquartile range, 1-4]) underwent cvMRI and TEE in hospital; 89 (86.4%) patients completed the cvMRI examination. In 93 cryptogenic stroke patients, a high-risk embolic source was found in 9 (8.7%) patients by cvMRI and in 11 (11.8%) patients by echocardiography, respectively. cvMRI and echocardiography findings were consistent in 80 (86.0%) patients, resulting in a degree of agreement of κ=0.24. In 82 patients with cryptogenic stroke according to routine work-up, including TEE, cvMRI identified stroke etiology in additional 5 (6.1%) patients. Late gadolinium enhancement consistent with previous myocardial infarction was found in 13 (14.6%) out of 89 stroke patients completing cvMRI. Only 2 of these 13 patients had known coronary artery disease. Our study demonstrated that cvMRI was feasible in the vast majority of included patients with acute ischemic stroke. The diagnostic information of cvMRI seems to be complementary to TEE but is not replacing echocardiography after acute ischemic stroke. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01917955. © 2017 American Heart Association, Inc.

  4. Clinical and prognostic utility of cardiovascular magnetic resonance imaging in myeloma patients with suspected cardiac amyloidosis.

    PubMed

    Bhatti, Sabha; Watts, Evan; Syed, Fahd; Vallurupalli, Srikanth; Pandey, Tarun; Jambekar, Kedar; Mazur, Wojciech; Hakeem, Abdul

    2016-09-01

    AL amyloidosis affects up to 30% of patients with multiple myeloma (MM), and cardiac involvement is associated with worse outcomes. Traditional screening modalities including EKG, echocardiography and biomarkers have limited value. The aim of this study was to evaluate the clinical and prognostic value of late gadolinium enhancement (LGE) by cardiovascular magnetic resonance (CMR) imaging in patients with plasma cell dyscrasias and suspected cardiac amyloidosis (CA). A total of 251 consecutive patients with plasma cell dyscrasias who underwent CMR were enrolled in this study. Primary endpoint was all cause mortality. Clinical, ECG, echocardiographic, biomarker and CMR predictors of mortality were analyzed. Mean age of population was 63 ± 10 years, 36% females and 19% African Americans. During a median follow-up duration of 28 months (IQR 5-56), there were 97 deaths (39%). Patients who died were more likely to have diabetes (28% vs. 14%; P = 0.03), CAD (28% vs. 16%; P = 0.04) and CKD (33% vs. 21%; P = 0.04). With endomyocardial biopsy as the gold standard (42 (17%) patients), amyloid pattern on CMR (LGE+) had sensitivity and negative predictive values of 100%; specificity and positive predictive values of 80 and 81% with an AUC 0.9 for CA. History of CAD (HR 1.64, 95% CI 1.01-2.6; P = 0.04), brain natriuretic peptide (HR 1.0003 95% CI 1.0001-1.0006; P = 0.004) and LGE + (HR 1.72, 95% CI 1.05-2.8; P = 0.02) were independent predictors of mortality. LGE+ possessed incremental prognostic value over clinical, laboratory and echocardiographic variables for mortality prediction. CMR is a clinically useful tool for diagnosis and prognostication in myeloma patients with suspected CA. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  5. Cardiovascular magnetic resonance imaging (CMR) reveals characteristic pattern of myocardial damage in patients with mitochondrial myopathy.

    PubMed

    Yilmaz, Ali; Gdynia, Hans-Jürgen; Ponfick, Matthias; Rösch, Sabine; Lindner, Alfred; Ludolph, Albert C; Sechtem, Udo

    2012-04-01

    Mitochondrial myopathy comprises various clinical subforms of neuromuscular disorders that are characterised by impaired mitochondrial energy metabolism due to dysfunction of the mitochondrial respiratory chain. No comprehensive and targeted cardiovascular magnetic resonance (CMR) studies have been performed so far in patients with mitochondrial disorders. The present study aimed at characterising cardiac disease manifestations in patients with mitochondrial myopathy and elucidating the in vivo cardiac damage pattern of patients with different subforms of mitochondrial disease by CMR studies. In a prospective study, 37 patients with mitochondrial myopathy underwent comprehensive neurological and cardiac evaluations including physical examination, resting ECG and CMR. The CMR studies comprised cine-CMR, T2-weighted "edema" imaging and T1-weighted late-gadolinium-enhancement (LGE) imaging. Various patterns and degrees of skeletal myopathy were present in the participants of this study, whereas clinical symptoms such as chest pain symptoms (in eight (22%) patients) and various degrees of dyspnea (in 16 (43%) patients) were less frequent. Pathological ECG findings were documented in eight (22%) patients. T2-weighted "edema" imaging was positive in one (3%) patient with MELAS (mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes) only. LGE imaging demonstrated the presence of non-ischemic LGE in 12 (32%) patients: 10 out of 24 (42%) patients with CPEO (chronic progressive external ophthalmoplegia) or KSS (Kearns-Sayre syndrome) and 2 of 3 (67%) patients with MELAS were LGE positive. All 10 LGE-positive patients with CPEO or KSS demonstrated a potentially typical pattern of diffuse intramural LGE in the left-ventricular (LV) inferolateral segments. Cardiac involvement is a frequent finding in patients with mitochondrial myopathy. A potentially characteristic pattern of diffuse intramural LGE in the LV inferolateral segments was identified in

  6. Nanoparticle radio-enhancement: principles, progress and application to cancer treatment

    NASA Astrophysics Data System (ADS)

    Kuncic, Zdenka; Lacombe, Sandrine

    2018-01-01

    Enhancement of radiation effects by high-atomic number nanoparticles (NPs) has been increasingly studied for its potential to improve radiotherapeutic efficacy. The underlying principle of NP radio-enhancement is the potential to release copious electrons into a nanoscale volume, thereby amplifying radiation-induced biological damage. While the vast majority of studies to date have focused on gold nanoparticles with photon radiation, an increasing number of experimental, theoretical and simulation studies have explored opportunities offered by other NPs (e.g. gadolinium, platinum, iron oxide, hafnium) and other therapeutic radiation sources such as ion beams. It is thus of interest to the research community to consolidate findings from the different studies and summarise progress to date, as well as to identify strategies that offer promising opportunities for clinical translation. This is the purpose of this Topical Review.

  7. Right and Left Ventricular Function and Mass in Male Elite Master Athletes: A Controlled Contrast-Enhanced Cardiovascular Magnetic Resonance Study.

    PubMed

    Bohm, Philipp; Schneider, Günther; Linneweber, Lutz; Rentzsch, Axel; Krämer, Nadine; Abdul-Khaliq, Hashim; Kindermann, Wilfried; Meyer, Tim; Scharhag, Jürgen

    2016-05-17

    It is under debate whether the cumulative effects of intensive endurance exercise induce chronic cardiac damage, mainly involving the right heart. The aim of this study was to examine the cardiac structure and function in long-term elite master endurance athletes with special focus on the right ventricle by contrast-enhanced cardiovascular magnetic resonance. Thirty-three healthy white competitive elite male master endurance athletes (age range, 30-60 years) with a training history of 29±8 years, and 33 white control subjects pair-matched for age, height, and weight underwent cardiopulmonary exercise testing, echocardiography including tissue-Doppler imaging and speckle tracking, and cardiovascular magnetic resonance. Indexed left ventricular mass and right ventricular mass (left ventricular mass/body surface area, 96±13 and 62±10 g/m(2); P<0.001; right ventricular mass/body surface area, 36±7 and 24±5 g/m(2); P<0.001) and indexed left ventricular end-diastolic volume and right ventricular end-diastolic volume (left ventricular end-diastolic volume/body surface area, 104±13 and 69±18 mL/m(2); P<0.001; right ventricular end-diastolic volume/body surface area, 110±22 and 66±16 mL/m(2); P<0.001) were significantly increased in athletes in comparison with control subjects. Right ventricular ejection fraction did not differ between athletes and control subjects (52±8 and 54±6%; P=0.26). Pathological late enhancement was detected in 1 athlete. No correlations were found for left ventricular and right ventricular volumes and ejection fraction with N-terminal pro-brain natriuretic peptide, and high-sensitive troponin was negative in all subjects. Based on our results, chronic right ventricular damage in elite endurance master athletes with lifelong high training volumes seems to be unlikely. Thus, the hypothesis of an exercise-induced arrhythmogenic right ventricular cardiomyopathy has to be questioned. © 2016 American Heart Association, Inc.

  8. Reverse microemulsion synthesis of layered gadolinium hydroxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Xu, Yadong; Suthar, Jugal; Egbu, Raphael; Weston, Andrew J.; Fogg, Andrew M.; Williams, Gareth R.

    2018-02-01

    A reverse microemulsion approach has been explored for the synthesis of layered gadolinium hydroxide (LGdH) nanoparticles in this work. This method uses oleylamine as a multifunctional agent, acting as surfactant, oil phase and base. 1-butanol is additionally used as a co-surfactant. A systematic study of the key reaction parameters was undertaken, including the volume ratio of surfactant (oleylamine) to water, the reaction time, synthesis temperature, and the amount of co-surfactant (1-butanol) added. It proved possible to obtain pristine LGdH materials at temperatures of 120 °C or below with an oleylamine: water ratio of 1:4. Using larger amounts of surfactant or higher temperatures caused the formation of Gd(OH)3, either as the sole product or as a major impurity phase. The LGdH particles produced have sizes of ca. 200 nm, with this size being largely independent of temperature or reaction time. Adjusting the amount of 1-butanol co-surfactant added permits the size to be varied between 200 and 300 nm.

  9. Gadolinium-Based Contrast Agents for MR Cancer Imaging

    PubMed Central

    Zhou, Zhuxian; Lu, Zheng-Rong

    2013-01-01

    Magnetic resonance imaging (MRI) is a clinical imaging modality effective for anatomical and functional imaging of diseased soft tissues, including solid tumors. MRI contrast agents have been routinely used for detecting tumor at an early stage. Gadolinium based contrast agents are the most commonly used contrast agents in clinical MRI. There have been significant efforts to design and develop novel Gd(III) contrast agents with high relaxivity, low toxicity and specific tumor binding. The relaxivity of the Gd(III) contrast agents can be increased by proper chemical modification. The toxicity of Gd(III) contrast agents can be reduced by increasing the agents’ thermodynamic and kinetic stability, as well as optimizing their pharmacokinetic properties. The increasing knowledge in the field of cancer genomics and biology provides an opportunity for designing tumor-specific contrast agents. Various new Gd(III) chelates have been designed and evaluated in animal models for more effective cancer MRI. This review outlines the design and development, physicochemical properties, and in vivo properties of several classes of Gd(III)-based MR contrast agents for tumor imaging. PMID:23047730

  10. HIV and Cardiovascular Disease

    MedlinePlus

    ... Select a Language: Fact Sheet 652 HIV and Cardiovascular Disease HIV AND CARDIOVASCULAR DISEASE WHY SHOULD PEOPLE WITH HIV CARE ABOUT CVD? ... OF CVD? WHAT ABOUT CHANGING MEDICATIONS? HIV AND CARDIOVASCULAR DISEASE Cardiovascular disease (CVD) includes a group of problems ...

  11. Dynamic contrast enhanced MRI of the placenta: A tool for prenatal diagnosis of placenta accreta?

    PubMed

    Millischer, A E; Deloison, B; Silvera, S; Ville, Y; Boddaert, N; Balvay, D; Siauve, N; Cuenod, C A; Tsatsaris, V; Sentilhes, L; Salomon, L J

    2017-05-01

    Ultrasound (US) is the primary imaging modality for the diagnosis of placenta accreta, but it is not sufficiently accurate. MRI morphologic criteria have recently emerged as a useful tool in this setting, but their analysis is too subjective. Recent studies suggest that gadolinium enhancement may help to distinguish between the stretched myometrium and placenta within a scar area. However, objective MRI criteria are still required for prenatal diagnosis of placenta accreta. The purpose of this study was to assess the diagnostic value of dynamic contrast gadolinium enhancement (DCE) MRI patterns for placenta accreta. MR images were acquired with a 1.5-T unit at 30-35 weeks of gestation in women with a history of Caesarian section, a low-lying anterior placenta, and US features compatible with placenta accreta. Sagittal, axial and coronal SSFP (Steady State Free Precession) sequences were acquired before injection. Then, contrast-enhanced dynamic T1-weighted images were acquired through the entire cross-sectional area of the placenta. Images were obtained sequentially at 10- to 14-s intervals for 2 min, beginning simultaneously with the bolus injection. Functional analysis was performed retrospectively, and tissular relative enhancement parameters were extracted from the recorded images. The suspected area of accreta (SAA) was placed in the region of the previous scar, and a control area (CA) of similar size was placed on the same image plane, as far as possible from the SAA. Semi-quantitative analysis of DCE-MR images was based on the kinetic enhancement curves in these two regions of interest (ROI). Three tissular relative enhancement parameters were compared according to the pregnancy outcomes, namely time to peak, maximal signal intensity, and area under the enhancement curve. We studied 9 women (43%) with accreta and 12 women (57%) with a normal placenta. All three tissular relative enhancement parameters differed significantly between the two groups (p < 10

  12. The cardiovascular macrophage: a missing link between gut microbiota and cardiovascular diseases?

    PubMed

    Chen, X; Zheng, L; Zheng, Y-Q; Yang, Q-G; Lin, Y; Ni, F-H; Li, Z-H

    2018-03-01

    The prevalence of cardiovascular diseases is on the rise. Interventions that would aid prevention or treatment of these diseases are essential. The microbes residing in the gut, collectively called "gut microbiota", produce a plethora of compounds that enter the bloodstream and affect the cardiovascular system. Signals ascending from gut microbiome are believed to modulate differentiation and functional activity of macrophages residing in perivascular tissue, atherosclerotic plaques, and perivascular areas of the brain. Cardiovascular macrophages may be the key players that transform the signals ascending from gut microbiome into increased predisposition to cardiovascular diseases. The present review summarizes the knowledge to date on potential relationships between gut microbiota, cardiovascular macrophages, and cardiovascular diseases.

  13. Ferromagnetic coupling in the three-dimensional malonato-bridged gadoliniumIII complex [Gd2(mal)3(H2O)6] (H2mal = malonic acid).

    PubMed

    Hernández-Molina, María; Ruiz-Pérez, Catalina; López, Trinidad; Lloret, Francesc; Julve, Miguel

    2003-09-08

    The novel gadolinium(III) complex of formula [Gd(2)(mal)(3)(H(2)O)(6)] (1) (H(2)mal = 1,3-propanedioic acid) has been prepared and characterized by X-ray diffraction analysis. Crystal data for 1: monoclinic, space group I2/a, a = 11.1064(10) A, b = 12.2524(10) A, c =13.6098(2) A, beta = 92.925(10) degrees, U = 1849.5(3) A(3), Z = 4. Compound 1 is a three-dimensional network made up of malonate-bridged gadolinium(III) ions where the malonate exhibits two bridging modes, eta(5)-bidentate + unidentate and eta(3):eta(3) + bis(unidentate). The gadolinium atom is nine-coordinate with three water molecules and six malonate oxygen atoms from three malonate ligands forming a distorted monocapped square antiprism. The shortest metal-metal separations are 4.2763(3) A [through the oxo-carboxylate bridge] and 6.541(3) A [through the carboxylate in the anti-syn coordination mode]. The value of the angle at the oxo-carboxylate atom is 116.8(2) degrees. Variable-temperature magnetic susceptibility measurements reveal the occurrence of a significant ferromagnetic interaction through the oxo-carboxylate pathway (J = +0.048(1) cm(-1), H = -JS(Gd(1)) x S(Gd(1a))).

  14. Abnormal cardiovascular response to exercise in hypertension: contribution of neural factors.

    PubMed

    Mitchell, Jere H

    2017-06-01

    During both dynamic (e.g., endurance) and static (e.g., strength) exercise there are exaggerated cardiovascular responses in hypertension. This includes greater increases in blood pressure, heart rate, and efferent sympathetic nerve activity than in normal controls. Two of the known neural factors that contribute to this abnormal cardiovascular response are the exercise pressor reflex (EPR) and functional sympatholysis. The EPR originates in contracting skeletal muscle and reflexly increases sympathetic efferent nerve activity to the heart and blood vessels as well as decreases parasympathetic efferent nerve activity to the heart. These changes in autonomic nerve activity cause an increase in blood pressure, heart rate, left ventricular contractility, and vasoconstriction in the arterial tree. However, arterial vessels in the contracting skeletal muscle have a markedly diminished vasoconstrictor response. The markedly diminished vasoconstriction in contracting skeletal muscle has been termed functional sympatholysis. It has been shown in hypertension that there is an enhanced EPR, including both its mechanoreflex and metaboreflex components, and an impaired functional sympatholysis. These conditions set up a positive feedback or vicious cycle situation that causes a progressively greater decrease in the blood flow to the exercising muscle. Thus these two neural mechanisms contribute significantly to the abnormal cardiovascular response to exercise in hypertension. In addition, exercise training in hypertension decreases the enhanced EPR, including both mechanoreflex and metaboreflex function, and improves the impaired functional sympatholysis. These two changes, caused by exercise training, improve the muscle blood flow to exercising muscle and cause a more normal cardiovascular response to exercise in hypertension. Copyright © 2017 the American Physiological Society.

  15. Validation of the analytical methods in the LWR code BOXER for gadolinium-loaded fuel pins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paratte, J.M.; Arkuszewski, J.J.; Kamboj, B.K.

    1990-01-01

    Due to the very high absorption occurring in gadolinium-loaded fuel pins, calculations of lattices with such pins present are a demanding test of the analysis methods in light water reactor (LWR) cell and assembly codes. Considerable effort has, therefore, been devoted to the validation of code methods for gadolinia fuel. The goal of the work reported in this paper is to check the analysis methods in the LWR cell/assembly code BOXER and its associated cross-section processing code ETOBOX, by comparison of BOXER results with those from a very accurate Monte Carlo calculation for a gadolinium benchmark problem. Initial results ofmore » such a comparison have been previously reported. However, the Monte Carlo calculations, done with the MCNP code, were performed at Los Alamos National Laboratory using ENDF/B-V data, while the BOXER calculations were performed at the Paul Scherrer Institute using JEF-1 nuclear data. This difference in the basic nuclear data used for the two calculations, caused by the restricted nature of these evaluated data files, led to associated uncertainties in a comparison of the results for methods validation. In the joint investigations at the Georgia Institute of Technology and PSI, such uncertainty in this comparison was eliminated by using ENDF/B-V data for BOXER calculations at Georgia Tech.« less

  16. Visualization of Fluoride Ions In Vivo Using a Gadolinium(III)-Coumarin Complex-Based Fluorescence/MRI Dual-Modal Probe.

    PubMed

    Wang, Yue; Song, Renfeng; Feng, Huan; Guo, Ke; Meng, Qingtao; Chi, Haijun; Zhang, Run; Zhang, Zhiqiang

    2016-12-16

    A new Gadolinium(III)-coumarin complex, DO3A-Gd- CA , was designed and prepared as a dual-modal probe for simultaneous fluorescence and relaxivity responses to fluoride ions (F - ) in aqueous media and mice. DO3A-Gd- CA was designed by using Gd(III) center as an MRI signal output unit and fluoride binding site, and the 4-(diethylamino)-coumarin-3-carboxylic acid ( CA ) as a fluorescence reporter. Upon the addition of fluoride ions to the solution of DO3A-Gd- CA , the liberation of the coordinated CA ligand led to a 5.7-fold fluorescence enhancement and a 75% increase in the longitudinal relaxivity ( r ₁). The fluorescent detection limit for fluoride ions was determined to be 8 μM based on a 3 σ / slope . The desirable features of the proposed DO3A-Gd- CA , such as high sensitivity and specificity, reliability at physiological pH and low cytotoxicity enable its application in visualization of fluoride ion in mice. The successful in vivo imaging indicates that DO3A-Gd- CA could be potentially used in biomedical diagnosis fields.

  17. Visualization of Fluoride Ions In Vivo Using a Gadolinium(III)-Coumarin Complex-Based Fluorescence/MRI Dual-Modal Probe

    PubMed Central

    Wang, Yue; Song, Renfeng; Feng, Huan; Guo, Ke; Meng, Qingtao; Chi, Haijun; Zhang, Run; Zhang, Zhiqiang

    2016-01-01

    A new Gadolinium(III)–coumarin complex, DO3A-Gd-CA, was designed and prepared as a dual-modal probe for simultaneous fluorescence and relaxivity responses to fluoride ions (F−) in aqueous media and mice. DO3A-Gd-CA was designed by using Gd(III) center as an MRI signal output unit and fluoride binding site, and the 4-(diethylamino)-coumarin-3-carboxylic acid (CA) as a fluorescence reporter. Upon the addition of fluoride ions to the solution of DO3A-Gd-CA, the liberation of the coordinated CA ligand led to a 5.7-fold fluorescence enhancement and a 75% increase in the longitudinal relaxivity (r1). The fluorescent detection limit for fluoride ions was determined to be 8 μM based on a 3σ/slope. The desirable features of the proposed DO3A-Gd-CA, such as high sensitivity and specificity, reliability at physiological pH and low cytotoxicity enable its application in visualization of fluoride ion in mice. The successful in vivo imaging indicates that DO3A-Gd-CA could be potentially used in biomedical diagnosis fields. PMID:27999298

  18. Therapeutic Potential of Phytochemicals in Combination with Drugs for Cardiovascular Disorders.

    PubMed

    Shen, James Z; Ng, Ting L J; Ho, Wing S

    2017-01-01

    The incidence of cardiovascular disorders is increasing worldwide. Heart disease is the leading cause of death for both men and women. High blood pressure, high low-density lipoprotein cholesterol level, and smoking are key risk factors for heart disease. Other medical conditions such as diabetes, overweight, obesity and lifestyle can put people at a higher risk for coronary heart disease. The preventive measures based on the common drugs may help reduce the risk of cardiovascular diseases. The present review highlights the contributions of therapeutic potential of phytochemicals in management of cardiovascular diseases. However, the delivery efficiency of therapeutic agents can be enhanced in order to improve the efficacy of phytochemicals as a therapeutic agent. The oral administration of phytochemicals as therapeutic agents is a common approach. The review highlights the recent development of natural products for the complementary treatment of cardiovascular diseases. These findings indicate that the combination of therapeutic drugs and natural products may improve the treatment efficacy of therapeutic agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Are There Genetic Paths Common to Obesity, Cardiovascular Disease Outcomes, and Cardiovascular Risk Factors?

    PubMed Central

    Rankinen, Tuomo; Sarzynski, Mark A.; Ghosh, Sujoy; Bouchard, Claude

    2015-01-01

    Clustering of obesity, coronary artery disease, and cardiovascular disease risk factors is observed in epidemiological studies and clinical settings. Twin and family studies have provided some supporting evidence for the clustering hypothesis. Loci nearest a lead single nucleotide polymorphism (SNP) showing genome-wide significant associations with coronary artery disease, body mass index, C-reactive protein, blood pressure, lipids, and type 2 diabetes mellitus were selected for pathway and network analyses. Eighty-seven autosomal regions (181 SNPs), mapping to 56 genes, were found to be pleiotropic. Most pleiotropic regions contained genes associated with coronary artery disease and plasma lipids, whereas some exhibited coaggregation between obesity and cardiovascular disease risk factors. We observed enrichment for liver X receptor (LXR)/retinoid X receptor (RXR) and farnesoid X receptor/RXR nuclear receptor signaling among pleiotropic genes and for signatures of coronary artery disease and hepatic steatosis. In the search for functionally interacting networks, we found that 43 pleiotropic genes were interacting in a network with an additional 24 linker genes. ENCODE (Encyclopedia of DNA Elements) data were queried for distribution of pleiotropic SNPs among regulatory elements and coding sequence variations. Of the 181 SNPs, 136 were annotated to ≥1 regulatory feature. An enrichment analysis found over-representation of enhancers and DNAse hypersensitive regions when compared against all SNPs of the 1000 Genomes pilot project. In summary, there are genomic regions exerting pleiotropic effects on cardiovascular disease risk factors, although only a few included obesity. Further studies are needed to resolve the clustering in terms of DNA variants, genes, pathways, and actionable targets. PMID:25722444

  20. Methylxanthines enhance the effects of cocoa flavanols on cardiovascular function: randomized, double-masked controlled studies.

    PubMed

    Sansone, Roberto; Ottaviani, Javier I; Rodriguez-Mateos, Ana; Heinen, Yvonne; Noske, Dorina; Spencer, Jeremy P; Crozier, Alan; Merx, Marc W; Kelm, Malte; Schroeter, Hagen; Heiss, Christian

    2017-02-01

    Cocoa flavanol intake, especially that of (-)-epicatechin, has been linked to beneficial effects on human cardiovascular function. However, cocoa also contains the methylxanthines theobromine and caffeine, which may also affect vascular function. We sought to determine whether an interaction between cocoa flavanols and methylxanthines exists that influences cocoa flavanol-dependent vascular effects. Test drinks that contained various amounts of cocoa flavanols (0-820 mg) and methylxanthines (0-220 mg), either together or individually, were consumed by healthy volunteers (n = 47) in 4 different clinical studies-3 with a randomized, double-masked crossover design and 1 with 4 parallel crossover studies. Vascular status was assessed by measuring flow-mediated vasodilation (FMD), brachial pulse wave velocity (bPWV), circulating angiogenic cells (CACs), and blood pressure before and 2 h after the ingestion of test drinks. Although cocoa flavanol intake increased FMD 2 h after intake, the consumption of cocoa flavanols with methylxanthines resulted in a greater enhancement of FMD. Methylxanthine intake alone did not result in statistically significant changes in FMD. Cocoa flavanol ingestion alone decreased bPWV and diastolic blood pressure and increased CACs. Each of these changes was more pronounced when cocoa flavanols and methylxanthines were ingested together. It is important to note that the area under the curve of the plasma concentration of (-)-epicatechin metabolites over time was higher after the co-ingestion of cocoa flavanols and methylxanthines than after the intake of cocoa flavanols alone. Similar results were obtained when pure (-)-epicatechin and the methylxanthines theobromine and caffeine were consumed together. A substantial interaction between cocoa flavanols and methylxanthines exists at the level of absorption, in which the methylxanthines mediate an increased plasma concentration of (-)-epicatechin metabolites that coincides with enhanced vascular

  1. Single and multiple cardiovascular biomarkers in subjects without a previous cardiovascular event.

    PubMed

    Pareek, Manan; Bhatt, Deepak L; Vaduganathan, Muthiah; Biering-Sørensen, Tor; Qamar, Arman; Diederichsen, Axel Cp; Møller, Jacob Eifer; Hindersson, Peter; Leósdóttir, Margrét; Magnusson, Martin; Nilsson, Peter M; Olsen, Michael H

    2017-10-01

    Aims To assess the incremental value of biomarkers, including N-terminal prohormone of brain natriuretic peptide (NT-proBNP), high-sensitivity troponin T (hs-TnT), high-sensitivity C-reactive protein (hs-CRP), interleukin-6 (IL-6), growth differentiation factor 15 (GDF-15), and procollagen type 1 N-terminal propeptide (P1NP), in predicting incident cardiovascular events and mortality among asymptomatic individuals from the general population, beyond traditional risk factors, including fasting glucose and renal function (cystatin C), medication use, and echocardiographic measures. Methods and results Prospective population-based cohort study of 1324 subjects without a previous cardiovascular event, who underwent baseline echocardiography and biomarker assessment between 2002 and 2006. The clinical endpoint was the composite of myocardial infarction, invasively treated stable/unstable ischemic heart disease, heart failure, stroke, or all-cause mortality. Predictive capabilities were evaluated using Cox proportional-hazards regression, Harrell's concordance index (C-index), and net reclassification improvement. Median age was 66 (interquartile range: 60-70) years, and 413 (31%) were female. During median 8.6 (interquartile range: 8.1-9.2) follow-up years, 368 (28%) composite events occurred. NT-proBNP, hs-TnT, GDF-15, and IL-6 were significantly associated with outcome, independently of traditional risk factors, medications, and echocardiography ( p < 0.05 for all). Separate addition of NT-proBNP and GDF-15 to traditional risk factors, medications, and echocardiographic measurements provided significant improvements in discriminative ability (NT-proBNP: C-index 0.714 vs. 0.703, p = 0.03; GDF-15: C-index 0.721 vs. 0.703, p = 0.02). Both biomarkers remained significant predictors of outcome upon inclusion in the same model ( p < 0.05 for both). Conclusions NT-proBNP and GDF-15 each enhance prognostication beyond traditional risk factors, glucose levels

  2. Comparison of Low-Dose Higher-Relaxivity and Standard-Dose Lower-Relaxivity Contrast Media for Delayed-Enhancement MRI: A Blinded Randomized Crossover Study.

    PubMed

    Cheong, Benjamin Y C; Duran, Cihan; Preventza, Ourania A; Muthupillai, Raja

    2015-09-01

    The gadolinium-based MRI contrast agent gadobenate dimeglumine has nearly twice the MR relaxivity of gadopentetate dimeglumine at 1.5 T. The purpose of this study was to determine whether a lower dose (0.1 mmol/kg) of gadobenate dimeglumine can be used to obtain delayed-enhancement MR images comparable to those obtained with a standard dose (0.2 mmol/kg) of gadopentetate dimeglumine. In this blinded randomized crossover study, 20 patients with known myocardial infarction underwent two separate delayed-enhancement MRI examinations after receiving 0.1 mmol/kg gadobenate dimeglumine and 0.2 mmol/kg gadopentetate dimeglumine (random administration). The conspicuity of lesion enhancement 5, 10, and 20 minutes after contrast administration was quantified as relative enhancement ratio (RER). With either gadolinium-based contrast agent, damaged myocardium had higher signal intensity than normal remote myocardium (RER > 4) on delayed-enhancement MR images, and the blood RER declined over time after contrast administration. The blood RER was not significantly higher for gadobenate dimeglumine than for gadopentetate dimeglumine at 5 and 10 minutes. Nevertheless, there was a larger reduction in blood RER for gadobenate dimeglumine than for gadopentetate dimeglumine between 5 and 10 minutes and between 10 and 20 minutes. The volumes of enhancement were similar for gadobenate dimeglumine (13.6 ± 8.8 cm(3)) and gadopentetate dimeglumine (13.5 ± 8.9 cm(3)) (p = 0.98). The mean difference in Bland-Altman analysis for delayed-enhancement volume between the agents was 0.1 cm(3). Qualitatively and quantitatively, delayed-enhancement MR images of ischemic myocardium obtained with 0.1 mmol/kg gadobenate dimeglumine are comparable to those obtained with 0.2 mmol/kg gadopentetate dimeglumine 5, 10, and 20 minutes after contrast administration.

  3. Electronic transport in gadolinium atomic-size contacts

    NASA Astrophysics Data System (ADS)

    Olivera, B.; Salgado, C.; Lado, J. L.; Karimi, A.; Henkel, V.; Scheer, E.; Fernández-Rossier, J.; Palacios, J. J.; Untiedt, C.

    2017-02-01

    We report on the fabrication, transport measurements, and density functional theory (DFT) calculations of atomic-size contacts made of gadolinium (Gd). Gd is known to have local moments mainly associated with f electrons. These coexist with itinerant s and d bands that account for its metallic character. Here we explore whether and how the local moments influence electronic transport properties at the atomic scale. Using both scanning tunneling microscope and lithographic mechanically controllable break junction techniques under cryogenic conditions, we study the conductance of Gd when only few atoms form the junction between bulk electrodes made of the very same material. Thousands of measurements show that Gd has an average lowest conductance, attributed to single-atom contact, below 2/e2 h . Our DFT calculations for monostrand chains anticipate that the f bands are fully spin polarized and insulating and that the conduction may be dominated by s , p , and d bands. We also analyze the electronic transport for model nanocontacts using the nonequilibrium Green's function formalism in combination with DFT. We obtain an overall good agreement with the experimental results for zero bias and show that the contribution to the electronic transport from the f channels is negligible and that from the d channels is marginal.

  4. Microfabrication of a gadolinium-derived solid-state sensor for thermal neutrons

    DOE PAGES

    Pfeifer, Kent B.; Achyuthan, Komandoor E.; Allen, Matthew; ...

    2017-03-25

    Neutron sensing is critical in civilian and military applications. Conventional neutron sensors are limited by size, weight, cost, portability and helium supply. Here in this study, the microfabrication of gadolinium (Gd) conversion material–based heterojunction diodes for detecting thermal neutrons using electrical signals produced by internal conversion electrons (ICEs) is described. Films with negligible stress were produced at the tensile-compressive crossover point, enabling Gd coatings of any desired thickness by controlling the radiofrequency sputtering power and using the zero-point near p(Ar) of 50 mTorr at 100 W. Post-deposition Gd oxidation–induced spallation was eliminated by growing a residual stress-free 50 nm neodymium-dopedmore » aluminum cap layer atop Gd. The resultant coatings were stable for at least 6 years, demonstrating excellent stability and product shelf-life. Depositing Gd directly on the diode surface eliminated the air gap, leading to a 200-fold increase in electron capture efficiency and facilitating monolithic microfabrication. The conversion electron spectrum was dominated by ICEs with energies of 72, 132 and 174 keV. Results are reported for neutron reflection and moderation by polyethylene for enhanced sensitivity, and γ- and X-ray elimination for improved specificity. The optimal Gd thickness was 10.4 μm for a 300 μm-thick partially depleted diode of 300 mm 2 active surface area. Fast detection (within 10 min) at a neutron source-to-diode distance of 11.7 cm was achieved with this configuration. All ICE energies along with γ-ray and K α,β X-rays were modeled to emphasize correlations between experiment and theory. Semi-conductor thermal neutron detectors offer advantages for field-sensing of radioactive neutron sources.« less

  5. Microfabrication of a gadolinium-derived solid-state sensor for thermal neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfeifer, Kent B.; Achyuthan, Komandoor E.; Allen, Matthew

    Neutron sensing is critical in civilian and military applications. Conventional neutron sensors are limited by size, weight, cost, portability and helium supply. Here in this study, the microfabrication of gadolinium (Gd) conversion material–based heterojunction diodes for detecting thermal neutrons using electrical signals produced by internal conversion electrons (ICEs) is described. Films with negligible stress were produced at the tensile-compressive crossover point, enabling Gd coatings of any desired thickness by controlling the radiofrequency sputtering power and using the zero-point near p(Ar) of 50 mTorr at 100 W. Post-deposition Gd oxidation–induced spallation was eliminated by growing a residual stress-free 50 nm neodymium-dopedmore » aluminum cap layer atop Gd. The resultant coatings were stable for at least 6 years, demonstrating excellent stability and product shelf-life. Depositing Gd directly on the diode surface eliminated the air gap, leading to a 200-fold increase in electron capture efficiency and facilitating monolithic microfabrication. The conversion electron spectrum was dominated by ICEs with energies of 72, 132 and 174 keV. Results are reported for neutron reflection and moderation by polyethylene for enhanced sensitivity, and γ- and X-ray elimination for improved specificity. The optimal Gd thickness was 10.4 μm for a 300 μm-thick partially depleted diode of 300 mm 2 active surface area. Fast detection (within 10 min) at a neutron source-to-diode distance of 11.7 cm was achieved with this configuration. All ICE energies along with γ-ray and K α,β X-rays were modeled to emphasize correlations between experiment and theory. Semi-conductor thermal neutron detectors offer advantages for field-sensing of radioactive neutron sources.« less

  6. Gadolinium-Loaded Solid Lipid Nanoparticles as a Tumor-Absorbable Contrast Agent for Early Diagnosis of Colorectal Tumors Using Magnetic Resonance Colonography.

    PubMed

    Sun, Jihong; Zhang, Shizheng; Jiang, Shaojie; Bai, Weixian; Liu, Fei; Yuan, Hong; Ji, Jiansong; Luo, Jingfeng; Han, Guocan; Chen, Lumin; Jin, Yin; Hu, Peng; Yu, Lei; Yang, Xiaoming

    2016-09-01

    Magnetic resonance (MR) contrast agents focusing on special functions are required to improve cancer diagnosis, particularly in the early stages. Here, we designed multifunctional solid lipid nanoparticles (SLNs) with simultaneous loading of gadolinium (Gd) diethylenetriaminepentaacetic acid (Gd-DTPA) and octadecylamine fluorescein isothiocyanate (FITC) to obtain Gd-FITC-SLNs as a tumor-absorbable nanoparticle contrast agent for the histological confirmation of MR imaging (MRI) findings. Colorectal tumors were evaluated in vitro and in vivo via direct uptake of this contrast agent, which displayed reasonable T1 relaxivity and no significant cytotoxicity at the experimental concentrations in human colon carcinoma cells (HT29) and mouse colon carcinoma cells (CT26). In vitro cell uptake experiments demonstrated that contrast agent absorption by the two types of cancer cells was concentration-dependent in the safe concentration range. During in vivo MRI, transrectal infusion of Gd-FITC-SLNs showed more significant enhancement at the tumor site compared with the infusion of Gd-DTPA in female C57/BL mice with azoxymethane/dextran sulfate sodium-induced colorectal highgrade intraepithelial neoplasia. Subsequent confocal fluorescence microscopy demonstrated Gd-FITC-SLNs as highly concentrated green fluorescent spots distributed from the tumor capsule into the tumor. This study establishes the "proof-of-principle" of a new MRI technique wherein colorectal tumors are enhanced via direct absorption or uptake of the nanoparticle contrast agent.

  7. Cardiovascular response to thermoregulatory challenges

    PubMed Central

    Liu, Cuiqing; Yavar, Zubin

    2015-01-01

    A growing number of extreme climate events are occurring in the setting of ongoing climate change, with an increase in both the intensity and frequency. It has been shown that ambient temperature challenges have a direct and highly varied impact on cardiovascular health. With a rapidly growing amount of literature on this issue, we aim to review the recent publications regarding the impact of cold and heat on human populations with regard to cardiovascular disease (CVD) mortality/morbidity while also examining lag effects, vulnerable subgroups, and relevant mechanisms. Although the relative risk of morbidity/mortality associated with extreme temperature varied greatly across different studies, both cold and hot temperatures were associated with a positive mean excess of cardiovascular deaths or hospital admissions. Cause-specific study of CVD morbidity/mortality indicated that the sensitivity to temperature was disease-specific, with different patterns for acute and chronic ischemic heart disease. Vulnerability to temperature-related mortality was associated with some characteristics of the populations, including sex, age, location, socioeconomic condition, and comorbidities such as cardiac diseases, kidney diseases, diabetes, and hypertension. Temperature-induced damage is thought to be related to enhanced sympathetic reactivity followed by activation of the sympathetic nervous system, renin-angiotensin system, as well as dehydration and a systemic inflammatory response. Future research should focus on multidisciplinary adaptation strategies that incorporate epidemiology, climatology, indoor/building environments, energy usage, labor legislative perfection, and human thermal comfort models. Studies on the underlying mechanism by which temperature challenge induces pathophysiological response and CVD await profound and lasting investigation. PMID:26432837

  8. Fetal Programming and Cardiovascular Pathology

    PubMed Central

    Alexander, Barbara T.; Dasinger, John Henry; Intapad, Suttira

    2016-01-01

    Low birth weight serves as a crude proxy for impaired growth during fetal life and indicates a failure for the fetus to achieve its full growth potential. Low birth weight can occur in response to numerous etiologies that include complications during pregnancy, poor prenatal care, parental smoking, maternal alcohol consumption or stress. Numerous epidemiological and experimental studies demonstrate that birth weight is inversely associated with blood pressure and coronary heart disease. Sex and age impact the developmental programming of hypertension. In addition, impaired growth during fetal life also programs enhanced vulnerability to a secondary insult. Macrosomia, which occurs in response to maternal obesity, diabetes and excessive weight gain during gestation, is also associated with increased cardiovascular risk. Yet, the exact mechanisms that permanently change the structure, physiology and endocrine health of an individual across their lifespan following altered growth during fetal life are not entirely clear. Transmission of increased risk from one generation to the next in the absence of an additional prenatal insult indicates an important role for epigenetic processes. Experimental studies also indicate that the sympathetic nervous system, the renin angiotensin system, increased production of oxidative stress and increased endothelin play an important role in the developmental programming of blood pressure in later life. Thus, this review will highlight how adverse influences during fetal life and early development program an increased risk for cardiovascular disease including high blood pressure and provide an overview of the underlying mechanisms that contribute to the fetal origins of cardiovascular pathology. PMID:25880521

  9. Mannose-coated gadolinium liposomes for improved magnetic resonance imaging in acute pancreatitis.

    PubMed

    Tian, Bing; Liu, Ri; Chen, Shiyue; Chen, Luguang; Liu, Fang; Jia, Guorong; Dong, Yinmei; Li, Jing; Chen, Huaiwen; Lu, Jianping

    2017-01-01

    Acute pancreatitis (AP) is an acute inflammatory condition of the pancreas. The symptoms, treatment, and prognosis of mild and severe AP are different, and severe AP is a potentially life-threatening disease with a high incidence of complications and high mortality rate. Thus, it is urgent to develop an effective approach to reliably discriminate between mild and severe AP. We have developed novel gadolinium-diethylenetriaminepentaacetic (Gd-DTPA)-loaded mannosylated liposomes (named thereafter M-Gd-NL) that preferably target macrophages in AP. The targeting ability of M-Gd-NL toward macrophages in AP and its ability to discriminate between mild and severe AP were evaluated. The liposomes were of desired particle size (~100 nm), Gd-DTPA encapsulation efficiency (~85%), and stability. M-Gd-NL and non-targeted Gd-DTPA-loaded liposomes (Gd-NL) exhibited increased relaxivity compared with Gd-DTPA. Compared with Gd-NL and Gd-DTPA, M-Gd-NL showed increased uptake in macrophages, resulting in increased T 1 imaging ability both in vitro (macrophage cell line) and in vivo (severe AP model). Importantly, M-Gd-NL had the ability to discriminate between mild and severe AP, as reflected by a significantly higher T 1 magnetic resonance imaging signal in severe AP than in mild AP. M-Gd-NL did not show severe organ toxicity in rats. Our data suggest that M-Gd-NL had enhanced magnetic resonance imaging ability by targeting macrophages in AP and good ability to discriminate between mild and severe AP. We believe that M-Gd-NL could shed new light on the diagnosis of AP in the near future.

  10. Design and development of a Gadolinium-doped water Cherenkov detector

    NASA Astrophysics Data System (ADS)

    Poudyal, Nabin

    This thesis describes a research and development project for neutron capture and detection in Gadolinium doped water. The Sanford Underground Research Facility (SURF) is exploring rare event physics, such as neutrinoless double beta decay (MAJORANA Project) and dark-matter detection (LUX experiment). The success of these experiments requires a careful study and understanding of background radiation, including flux and energy spectrum. The background radiation from surface contamination, radioactive decays of U-238, Th-232, Rn-222 in the surrounding rocks and muon induced neutrons have a large impact on the success of rare-event physics. The main objective of this R&D project is to measure the neutron flux contributing to ongoing experiments at SURF and suppress it by identification and capture method. For this purpose, we first modeled and designed a detector with Geant4 software. The approximate dimension of the detector is determined. The neutron capture percentage of the detector is estimated using Monte Carlo. The energy response of the detector is simulated. Next, we constructed the experimental detector, an acrylic rectangular tank (60cm x 30cm x 30cm), filled with Gadolinium-doped deionized water. The tank is coated with high efficient reflector and then taped with black electrical tape to make it opaque. The voltage dividers attached to PMTs are covered with mu-metal. Two 5-inch Hamamatsu Photomultiplier tubes were attached on both sides facing the tank to collect the Cherenkov light produced in the water. The detector utilizes the principle of Cherenkov light emission by a charged particle moving through a water at a speed higher than the speed of light in the water, hence it has an inherent energy threshold of Cherenkov photon production. This property reduces the lower energy backgrounds. Event data are obtained using the Data Acquisition hardware, Flash Analog to digital converter, along with Multi Instance Data Acquisition software. Post

  11. Anomalous Hall effect in calcium-doped lanthanum cobaltite and gadolinium

    NASA Astrophysics Data System (ADS)

    Baily, Scott Alan

    The physical origin of the anomalous (proportional to magnetization) Hall effect is not very well understood. While many theories account for a Hall effect proportional to the magnetization of a material, these theories often predict effects significantly smaller than those found in ferromagnetic materials. An even more significant deficiency of the conventional theories is that they predict an anomalous Hall resistivity that is proportional to a power of the resistivity, and in the absence of a metal insulator transition cannot account for the anomalous Hall effect that peaks near TC. Recent models based on a geometric, or Berry, phase have had a great deal of success describing the anomalous Hall effect in double-exchange systems (e.g., lanthanum manganite and chromium dioxide). In gadolinium, as in double-exchange magnets, the exchange interaction is mediated by the conduction electrons and the anomalous Hall effect may therefore resemble that of CrO2 and other metallic double-exchange ferromagnets. Lanthanum cobaltite is similar to manganite in many ways, but a strong double-exchange interaction is not present. Calcium-doped lanthanum cobaltite films were found to have the largest anomalous Hall effect of any ferromagnetic metal. The primary purpose of this study is to gain insight into the origin of the anomalous Hall effect with the hope that these theories can be extended to account for the effect in other materials. The Hall resistivity, magnetoresistance, and magnetization of a Gadolinium single crystal were measured in fields up to 30 T. Cobaltite films were grown via laser ablation and characterized by a variety of techniques. Hall resistivity, magnetoresistance, magnetization, and magnetothermopower of L 1-xCaxCoO3 samples with 0.15 < x < 0.4 were measured in fields up to 7 T. The Gd results suggest that Berry's phase contributes partially to the Hall effect near TC. Berry's phase theories hold promise for explaining the large anomalous Hall effect in

  12. Introduction: Cardiovascular physics

    NASA Astrophysics Data System (ADS)

    Wessel, Niels; Kurths, Jürgen; Ditto, William; Bauernschmitt, Robert

    2007-03-01

    The number of patients suffering from cardiovascular diseases increases unproportionally high with the increase of the human population and aging, leading to very high expenses in the public health system. Therefore, the challenge of cardiovascular physics is to develop high-sophisticated methods which are able to, on the one hand, supplement and replace expensive medical devices and, on the other hand, improve the medical diagnostics with decreasing the patient's risk. Cardiovascular physics-which interconnects medicine, physics, biology, engineering, and mathematics-is based on interdisciplinary collaboration of specialists from the above scientific fields and attempts to gain deeper insights into pathophysiology and treatment options. This paper summarizes advances in cardiovascular physics with emphasis on a workshop held in Bad Honnef, Germany, in May 2005. The meeting attracted an interdisciplinary audience and led to a number of papers covering the main research fields of cardiovascular physics, including data analysis, modeling, and medical application. The variety of problems addressed by this issue underlines the complexity of the cardiovascular system. It could be demonstrated in this Focus Issue, that data analyses and modeling methods from cardiovascular physics have the ability to lead to significant improvements in different medical fields. Consequently, this Focus Issue of Chaos is a status report that may invite all interested readers to join the community and find competent discussion and cooperation partners.

  13. Investigation of terbium in the ferroelectric crystal, gadolinium molybdate, as a potential laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crouch, J.E.

    A preliminary non-stimulated study of the laser host combination Gd(2 - x)Tb(x)(MoO4)3 is made. The host material, gadolinium molybdate (GMO), is a ferroelectric/ferroelastic crystal. An investigation of temperature and external electric field affects on the absorption and fluorescence of the crystal did not produce any unusual results. The terbium ion, Tb(3+), peak cross section in GMO for the 5D sub 4 to 7F sub 5 transition is 10 x 10 to the minus twenty first power sq. cm. at 300K. The wavelength of this four level laser transition is 543 nm. (GRA)

  14. Fibroblast growth factors in cardiovascular disease: The emerging role of FGF21

    PubMed Central

    Domouzoglou, Eleni M.; Naka, Katerina K.; Vlahos, Antonios P.; Papafaklis, Michail I.; Michalis, Lampros K.; Tsatsoulis, Agathoklis

    2015-01-01

    Early detection of risk factors for enhanced primary prevention and novel therapies for treating the chronic consequences of cardiovascular disease are of the utmost importance for reducing morbidity. Recently, fibroblast growth factors (FGFs) have been intensively studied as potential new molecules in the prevention and treatment of cardiovascular disease mainly attributable to metabolic effects and angiogenic actions. Members of the endocrine FGF family have been shown to increase metabolic rate, decrease adiposity, and restore glucose homeostasis, suggesting a multiple metabolic role. Serum levels of FGFs have been associated with established cardiovascular risk factors as well as with the severity and extent of coronary artery disease and could be useful for prediction of cardiovascular death. Furthermore, preclinical investigations and clinical trials have tested FGF administration for therapeutic angiogenesis in ischemic vascular disease, demonstrating a potential role in improving angina and limb function. FGF21 has lately emerged as a potent metabolic regulator with multiple effects that ultimately improve the lipoprotein profile. Early studies show that FGF21 is associated with the presence of atherosclerosis and may play a protective role against plaque formation by improving endothelial function. The present review highlights recent investigations suggesting that FGFs, in particular FGF21, may be useful as markers of cardiovascular risk and may also serve as protective/therapeutic agents in cardiovascular disease. PMID:26232236

  15. Fibroblast growth factors in cardiovascular disease: The emerging role of FGF21.

    PubMed

    Domouzoglou, Eleni M; Naka, Katerina K; Vlahos, Antonios P; Papafaklis, Michail I; Michalis, Lampros K; Tsatsoulis, Agathoklis; Maratos-Flier, Eleftheria

    2015-09-15

    Early detection of risk factors for enhanced primary prevention and novel therapies for treating the chronic consequences of cardiovascular disease are of the utmost importance for reducing morbidity. Recently, fibroblast growth factors (FGFs) have been intensively studied as potential new molecules in the prevention and treatment of cardiovascular disease mainly attributable to metabolic effects and angiogenic actions. Members of the endocrine FGF family have been shown to increase metabolic rate, decrease adiposity, and restore glucose homeostasis, suggesting a multiple metabolic role. Serum levels of FGFs have been associated with established cardiovascular risk factors as well as with the severity and extent of coronary artery disease and could be useful for prediction of cardiovascular death. Furthermore, preclinical investigations and clinical trials have tested FGF administration for therapeutic angiogenesis in ischemic vascular disease, demonstrating a potential role in improving angina and limb function. FGF21 has lately emerged as a potent metabolic regulator with multiple effects that ultimately improve the lipoprotein profile. Early studies show that FGF21 is associated with the presence of atherosclerosis and may play a protective role against plaque formation by improving endothelial function. The present review highlights recent investigations suggesting that FGFs, in particular FGF21, may be useful as markers of cardiovascular risk and may also serve as protective/therapeutic agents in cardiovascular disease. Copyright © 2015 the American Physiological Society.

  16. Electronic structure, charge transfer, and intrinsic luminescence of gadolinium oxide nanoparticles: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Zatsepin, D. A.; Boukhvalov, D. W.; Zatsepin, A. F.; Kuznetsova, Yu. A.; Mashkovtsev, M. A.; Rychkov, V. N.; Shur, V. Ya.; Esin, A. A.; Kurmaev, E. Z.

    2018-04-01

    The cubic (c) and monoclinic (m) polymorphs of Gd2O3 were studied using the combined analysis of several materials science techniques - X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) spectroscopy. Density functional theory (DFT) based calculations for the samples under study were performed as well. The cubic phase of gadolinium oxide (c-Gd2O3) synthesized using a precipitation method exhibits spheroidal-like nanoclusters with well-defined edges assembled from primary nanoparticles with an average size of 50 nm, whereas the monoclinic phase of gadolinium oxide (m-Gd2O3) deposited using explosive pyrolysis has a denser structure compared with natural gadolinia. This phase also has a structure composed of three-dimensional complex agglomerates without clear-edged boundaries that are ∼21 nm in size plus a cubic phase admixture of only 2 at.% composed of primary edge-boundary nanoparticles ∼15 nm in size. These atomic features appear in the electronic structure as different defects ([Gd…Osbnd OH] and [Gd…Osbnd O]) and have dissimilar contributions to the charge-transfer processes among the appropriate electronic states with ambiguous contributions in the Gd 5р - O 2s core-like levels in the valence band structures. The origin of [Gd…Osbnd OH] defects found by XPS was well-supported by PL analysis. The electronic and atomic structures of the synthesized gadolinias calculated using DFT were compared and discussed on the basis of the well-known joint OKT-van der Laan model, and good agreement was established.

  17. Differential diagnosis of left ventricular hypertrophy: usefulness of multimodality imaging and tissue characterization with cardiac magnetic resonance.

    PubMed

    Izgi, Cemil; Vassiliou, Vassilis; Baksi, A John; Prasad, Sanjay K

    2016-11-01

    Differential diagnosis of asymmetrical left ventricular hypertrophy may be challenging, particularly in patients with history of hypertension. A middle-aged man underwent an echocardiographic examination during workup for hypertension, which unexpectedly showed significant asymmetrical septal hypertrophy and raised suspicion for hypertrophic cardiomyopathy. Cardiovascular magnetic resonance confirmed the asymmetrical hypertrophy. No myocardial late gadolinium contrast enhancement was seen. However, precontrast T1 mapping revealed a low native myocardial T1 value. This was highly suggestive of Anderson-Fabry disease, which was subsequently proved with very low alpha galactosidase enzyme levels and mutation analysis. The case illustrates clinical usefulness of multimodality imaging and the novel tissue characterization techniques for assessment of left ventricular hypertrophy. © 2016, Wiley Periodicals, Inc.

  18. Diabetes Drugs and Cardiovascular Safety

    PubMed Central

    2016-01-01

    Diabetes is a well-known risk factor of cardiovascular morbidity and mortality, and the beneficial effect of improved glycemic control on cardiovascular complications has been well established. However, the rosiglitazone experience aroused awareness of potential cardiovascular risk associated with diabetes drugs and prompted the U.S. Food and Drug Administration to issue new guidelines about cardiovascular risk. Through postmarketing cardiovascular safety trials, some drugs demonstrated cardiovascular benefits, while some antidiabetic drugs raised concern about a possible increased cardiovascular risk associated with drug use. With the development of new classes of drugs, treatment options became wider and the complexity of glycemic management in type 2 diabetes has increased. When choosing the appropriate treatment strategy for patients with type 2 diabetes at high cardiovascular risk, not only the glucose-lowering effects, but also overall benefits and risks for cardiovascular disease should be taken into consideration. PMID:27302713

  19. Exercise and the cardiovascular system: clinical science and cardiovascular outcomes.

    PubMed

    Lavie, Carl J; Arena, Ross; Swift, Damon L; Johannsen, Neil M; Sui, Xuemei; Lee, Duck-Chul; Earnest, Conrad P; Church, Timothy S; O'Keefe, James H; Milani, Richard V; Blair, Steven N

    2015-07-03

    Substantial evidence has established the value of high levels of physical activity, exercise training (ET), and overall cardiorespiratory fitness in the prevention and treatment of cardiovascular diseases. This article reviews some basics of exercise physiology and the acute and chronic responses of ET, as well as the effect of physical activity and cardiorespiratory fitness on cardiovascular diseases. This review also surveys data from epidemiological and ET studies in the primary and secondary prevention of cardiovascular diseases, particularly coronary heart disease and heart failure. These data strongly support the routine prescription of ET to all patients and referrals for patients with cardiovascular diseases, especially coronary heart disease and heart failure, to specific cardiac rehabilitation and ET programs. © 2015 American Heart Association, Inc.

  20. Magnetic and magnetothermal studies of pure and doped gadolinium silicide nanoparticles for self-controlled hyperthermia applications

    NASA Astrophysics Data System (ADS)

    Alnasir, M. Hisham; Awan, M. S.; Manzoor, Sadia

    2018-03-01

    We report on magnetic and magnetothermal properties of undoped and doped gadolinium silicide (Gd5Si4) nanoparticles with the objective of simultaneously attaining high specific absorption rate (SAR) and low Curie temperature (TC) suitable for self-controlled hyperthermia applications for which TC ∼ 315-320 K. Pellets of doped gadolinium silicide Gd5(Si1-xGex)4 and (Gd1-xRx)5Si4 with R = Ho, Nd and Er and 0 ≤ x ≤ 0.35 were made by arc melting and reduced to nanoparticulate form by surfactant assisted ball milling. Structural and morphological studies were done using X-ray diffraction and scanning electron microscopy respectively. All samples show soft magnetic properties. At low fields there is a ferromagnetic to paramagnetic transition that reduces remanance and coercivity to zero making these materials very attractive for biomedical applications. Zero-field-cooled thermal demagnetization measurements showed that TC of these nanoparticles can be lowered to lie within the limits required for self-controlled hyperthermia by varying the dopant concentration. Specific absorption rates (SAR's) were obtained from magnetothermia measurements made in an ac magnetic field of amplitude 10 Oe and frequency 300 kHz. We have identified samples that have SAR values larger or comparable to those of magnetite and several ferrite nanoparticles, while having Curie temperatures that are low enough for self controlled hyperthermia applications.