Sample records for gadolinium oxysulfide phosphors

  1. Formation of Yttrium Oxysulfide Phosphor at Room Temperature

    NASA Astrophysics Data System (ADS)

    Shoji, Masahiko; Sakurai, Kenji

    2005-12-01

    Europium-doped yttrium oxysulfide (Y2O2S:Eu) phosphor was successfully synthesized at room temperature from yttrium oxide, europium oxide, and sulfur. The method employs high-energy ball milling to enable a substitution reaction between oxygen and sulfur, unlike conventional methods, such as heating in a sulfurizing atmosphere. It was found that the material is fluorescent through X-ray irradiation, and the luminescence spectra exhibit four peaks in the wavelength region from 500 to 800 nm.

  2. Synthesis and characterization of physical properties of Gd2O2S:Pr3+ semi-nanoflower phosphor

    NASA Astrophysics Data System (ADS)

    Bagheri, A.; Rezaee Ebrahim Saraee, Kh.; Shakur, H. R.; Zamani Zeinali, H.

    2016-05-01

    Pure gadolinium oxysulfide phosphor (Gd2O2S) and trivalent praseodymium-doped gadolinium oxysulfide phosphor (Gd2O2S:Pr3+) scintillators with semi-nanoflower crystalline structures were successfully synthesized through a precipitation method and subsequent calcination treatment as a converter for X-ray imaging detectors. The characterization such as the crystal structures and nanostructure of Gd2O2S:Pr3+ scintillator measured by XRD and FeE-SEM experiment. The optical properties of Gd2O2S:Pr3+ scintillator were studied. Luminescence spectra of Gd2O2S:Pr3+ under 320 nm UV excitation show a green emission at near 511 nm corresponding to the 3P0-3H4 of Pr ions. After scintillation properties of synthesized Gd2O2S:Pr3+ scintillator investigated, Gd2O2S:Pr3+ scintillating film fabricated on a glass substrate by a sedimentation method. X-ray imaging of the fabricated scintillators confirmed that the Gd2O2S:Pr3+ scintillator could be used for radiography applications in which good spatial resolution is needed.

  3. Kinetic characteristics of the luminescence decay for industrial yttrium-gadolinium-aluminium garnet based phosphors

    NASA Astrophysics Data System (ADS)

    Lisitsyn, V. M.; Stepanov, S. A.; Valiev, D. T.; Vishnyakova, E. A.; Abdullin, H. A.; Marhabaeva, A. A.; Tulegenova, A. T.

    2016-02-01

    The spectral and decay kinetic characteristics of pulse cathodoluminescence and photoluminescence of phosphors based on yttrium-gadolinium-aluminum garnet were investigated using pulsed optical time resolved spectroscopy.

  4. Geometric magnetic frustration in RE{sub 2}O{sub 2}S oxysulfides (RE = Sm, Eu and Gd)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biondo, V.; Sarvezuk, P.W.C.; Ivashita, F.F.

    2014-06-01

    Graphical abstract: Stacked planes in the <001> direction of an oxysulfide structure, showing the triangular nets formed by rare earth cations, which moments present geometric magnetic frustration. - Highlights: • We prepared monophasic RE{sub 2}O{sub 2}S Oxysulfides (RE = Sm, Eu and Gd). • RE{sub 2}O{sub 2}S compounds were characterized regarding structural and magnetic properties. • Mössbauer spectra were obtained for Eu{sub 2}O{sub 2}S and Gd{sub 2}O{sub 2}S at different temperatures. • Oxysulfides present geometric magnetic frustration of the rare-earth sublattice. - Abstract: RE{sub 2}O{sub 2}S oxysulfides (with RE = Sm, Eu and Gd) were prepared and characterized regarding theirmore » structural and magnetic properties. The compounds crystallized in the trigonal symmetry (space group P-3m/D{sub 3}{sup 3}d), with the lattice parameter varying linearly with the ionic radius of the RE cation. All these oxysulfides are magnetically frustrated and only the gadolinium sample showed magnetic order down to 3 K. The magnetic frustration is attributed to the spatial distribution of cations over the lattice, where the RE’s magnetic moments occupy the sites forming a triangular plane lattice, perpendicular to the direction. This geometric magnetic frustration was firstly recognized for these oxysulfides.« less

  5. Luminescence studies of rare earth doped yttrium gadolinium mixed oxide phosphor

    NASA Astrophysics Data System (ADS)

    Som, S.; Choubey, A.; Sharma, S. K.

    2012-09-01

    This paper reports the photoluminescence and thermoluminescence properties of gamma ray induced rare earth doped yttrium gadolinium mixed oxide phosphor. The europium (Eu3+) was used as rare earth dopant. The phosphor was prepared by chemical co-precipitation method according to the formula (Y2-x-yGdx) O3: Euy3+ (x=0.5; y=0.05). The photoluminescence emission spectrum of the prepared phosphor shows intense peaks in the red region at 615 nm for 5D0→7F2 transitions and the photoluminescence excitation spectra show a broad band located around 220-270 nm for the emission wavelength fixed at 615 nm. The thermoluminescence studies were carried out after irradiating the phosphor by gamma rays in the dose range from 100 Gy to 1 KGy. In the thermoluminescence glow curves, one single peak was observed at about 300 °C of which the intensity increases linearly in the studied dose range of gamma rays. The glow peak was deconvoluted by GlowFit program and the kinetic parameters associated with the deconvoluted peaks were calculated. The kinetic parameters were also calculated by various glow curve shape and heating rate methods.

  6. Cathodoluminescent characteristics and light technical parameters of thin-film screens based on oxides and oxysulfides of rare-earth elements

    NASA Astrophysics Data System (ADS)

    Bondar, Vyacheslav D.; Grytsiv, Myroslav; Groodzinsky, Arkady; Vasyliv, Mykhailo

    1995-11-01

    Results on creation of thin-film single-crystal high-resolution screens with energy control of luminescence color are presented. In order to create phosphor films ion-plasma technology for deposition of yttrium and lanthanum oxides and oxysulfides activated by rare earth elements has been developed. The screen consists of phosphor film on phosphor substrate with different colors of luminescence (e.g. Y2O3-Eu film with red color on Y3Al5O12- Tb, Ce substrate with green color of luminescence). Electron irradiation causes luminescence with color that depends on energy of the electron beam. The physical reason for color change is that electron beam energy defines electron penetration depth. If the energy is weak, only the film is excited. More powerful beam penetrates into the substrate and thus changes the color of luminescence.

  7. Guided design of copper oxysulfide superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yee, Chuck-Hou; Birol, Turan; Kotliar, Gabriel

    2015-07-01

    We describe a framework for designing novel materials, combining modern first-principles electronic-structure tools, materials databases, and evolutionary algorithms capable of exploring large configurational spaces. Guided by the chemical principles introduced by Antipov et al., for the design and synthesis of the Hg-based high-temperature superconductors, we apply our framework to screen 333 proposed compositions to design a new layered copper oxysulfide, Hg(CaS)2CuO2. We evaluate the prospects of superconductivity in this oxysulfide using theories based on charge-transfer energies, orbital distillation and uniaxial strain.

  8. Rare earth phosphors and phosphor screens

    DOEpatents

    Buchanan, Robert A.; Maple, T. Grant; Sklensky, Alden F.

    1981-01-01

    This invention relates to rare earth phosphor screens for converting image carrying incident radiation to image carrying visible or near-visible radiation and to the rare earth phosphor materials utilized in such screens. The invention further relates to methods for converting image carrying charged particles to image carrying radiation principally in the blue and near-ultraviolet region of the spectrum and to stabilized rare earth phosphors characterized by having a continuous surface layer of the phosphors of the invention. More particularly, the phosphors of the invention are oxychlorides and oxybromides of yttrium, lanthanum and gadolinium activated with trivalent cerium and the conversion screens are of the type illustratively including x-ray conversion screens, image amplifier tube screens, neutron imaging screens, cathode ray tube screens, high energy gamma ray screens, scintillation detector screens and screens for real-time translation of image carrying high energy radiation to image carrying visible or near-visible radiation.

  9. Laser-induced fluorescence of phosphors for remote cryogenic thermometry

    NASA Technical Reports Server (NTRS)

    Beshears, D. L.; Capps, G. J.; Cates, M. R.; Simmons, C. M.; Schwenterly, S. W.

    1990-01-01

    Remote cryogenic temperature measurements can be made by inducing fluorescence in phosphors with temperature-dependent emissions and measuring the emission lifetimes. The thermographic phosphor technique can be used for making precision, noncontact, cryogenic-temperature measurements in electrically hostile environments, such as high dc electric or magnetic fields. The National Aeronautics and Space Administration is interested in using these thermographic phosphors for mapping hot spots on cryogenic tank walls. Europium-doped lanthanum oxysulfide (La2O2S:Eu) and magnesium fluorogermanate doped with manganese (Mg4FGeO6:Mn) are suitable for low-temperature surface thermometry. Several emission lines, excited by a 337-nm ultraviolet laser, provide fluorescence lifetimes having logarithmic dependence with temperature from 4 to above 125 K. A calibration curve for both La2O2S:Eu and Mg4FGeO6:Mn is presented, as well as emission spectra taken at room temperature and 11 K.

  10. The BiCu{sub 1−x}OS oxysulfide: Copper deficiency and electronic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berthebaud, D.; Guilmeau, E.; Lebedev, O.I.

    2016-05-15

    An oxysulfide series of nominal compositions BiCu{sub 1−x}OS with x<0.20 has been prepared and its structural properties characterized by combining powder X-ray diffraction and transmission electron microscopy techniques. It is found that this oxysulfide, crystallizing in the P4/nmm space group, tends to adopt a constant amount of copper vacancy corresponding to x=0.05 in the BiCu{sub 1−x}OS formula. The presence of Cu vacancies is confirmed by HAADF-STEM analysis showing, in the Cu atomic columns, alternating peaks of different intensities in some very localized regions. For larger Cu deficiencies (x>0.05 in the nominal composition), other types of structural nanodefects are evidenced suchmore » as bismuth oxysulfides of the “BiOS” ternary system which might explain the report of superconductivity for the BiCu{sub 1−x}OS oxysulfide. Local epitaxial growth of the BiCuOS oxysulfide on top of CuO is also observed. In marked contrast to the BiCu{sub 1−x}OSe oxyselenide, these results give an explanation to the limited impact of Cu deficiency on the Seebeck coefficient in BiCu{sub 1−x}OS compounds. - Graphical abstract: High resolution TEM image showing a Bi(Cu)OS/Bi{sub 2}O{sub 2}S interface and corresponding dislocation region. The Bi(Cu)OS structure adopts a rather constant Cu content (near 0.95); starting from BiCuOS leads to the formation of defects such as the Bi{sub 2}O{sub 2}S oxysulfide.« less

  11. Crystalline rare-earth activated oxyorthosilicate phosphor

    DOEpatents

    McClellan, Kenneth J.; Cooke, D. Wayne

    2004-02-10

    Crystalline, transparent, rare-earth activated lutetium oxyorthosilicate phosphor. The phosphor consists essentially of lutetium yttrium oxyorthosilicate activated with a rare-earth metal dopant M and having the general formula Lu(.sub.2-x-z)Y.sub.x M.sub.z SiO.sub.5, wherein 0.00.ltoreq.x.ltoreq.1.95, wherein 0.001.ltoreq.z.ltoreq.0.02, and wherein M is selected from Sm, Tb, Tm, Eu, Yb, and Pr. The phosphor also consists essentially of lutetium gadolinium oxyorthosilicate activated with a rare-earth metal dopant M and having the general formula Lu(.sub.2-x-z)Gd.sub.x M.sub.z SiO.sub.5, wherein 0.00.ltoreq.x.ltoreq.1.95, wherein 0.001.ltoreq.z.ltoreq.0.02, and wherein M is selected from Sm, Tb, Tm, Eu, Yb, and Pr. The phosphor also consists essentially of gadolinium yttrium oxyorthosilicate activated with a rare-earth metal dopant M and having the general formula Gd(.sub.2-x-z)Y.sub.x M.sub.z SiO.sub.5, wherein 0.00.ltoreq.x.ltoreq.1.95, wherein 0.001.ltoreq.z.ltoreq.0.02, and wherein M is selected from Sm, Tb, Tm, Eu, Yb, and Pr. The phosphor may be optically coupled to a photodetector to provide a radiation detector.

  12. Complex study on photoluminescence properties of YAG:Ce,Gd phosphors

    NASA Astrophysics Data System (ADS)

    Lisitsyn, V. M.; Ju, Yangyang; Stepanov, S. A.; Soschin, N. M.

    2017-05-01

    Luminescence characteristics of gadolinium co-doped yttrium aluminium garnet doped with cerium phosphors were studied. In this work, powder X-ray diffraction (XRD) spectra, elemental composition analyses, excitation and emission spectra, conversion efficiency of emission phosphor, corresponding (CIE) chromaticity colour coordinates and pulsed photoluminescence decay kinetic curves were investigated, all the measurements were performed at room temperature. The properties of the phosphors were studied by comparing the composition of the phosphors and their luminescent properties.

  13. Dispersion characteristic of photoluminescence decay times of phosphor YAG: Ce, Gd

    NASA Astrophysics Data System (ADS)

    Lisitsyn, V. M.; Ju, Yangyang; Stepanov, S. A.; Soschin, N. M.

    2017-05-01

    The dispersion of the characteristic decay times of gadolinium co-doped yttrium aluminum garnet doped with cerium phosphors were studied. In the present work, an ultraviolet semiconductor laser (λem=375 nm, τ = 1 ns) was used as excitation source for measuring kinetics characteristics of phosphor groups based on YAG with different content of cerium.

  14. Fluorescent lighting with aluminum nitride phosphors

    DOEpatents

    Cherepy, Nerine J.; Payne, Stephen A.; Seeley, Zachary M.; Srivastava, Alok M.

    2016-05-10

    A fluorescent lamp includes a glass envelope; at least two electrodes connected to the glass envelope; mercury vapor and an inert gas within the glass envelope; and a phosphor within the glass envelope, wherein the phosphor blend includes aluminum nitride. The phosphor may be a wurtzite (hexagonal) crystalline structure Al.sub.(1-x)M.sub.xN phosphor, where M may be drawn from beryllium, magnesium, calcium, strontium, barium, zinc, scandium, yttrium, lanthanum, cerium, praseodymium, europium, gadolinium, terbium, ytterbium, bismuth, manganese, silicon, germanium, tin, boron, or gallium is synthesized to include dopants to control its luminescence under ultraviolet excitation. The disclosed Al.sub.(1-x)M.sub.xN:Mn phosphor provides bright orange-red emission, comparable in efficiency and spectrum to that of the standard orange-red phosphor used in fluorescent lighting, Y.sub.2O.sub.3:Eu. Furthermore, it offers excellent lumen maintenance in a fluorescent lamp, and does not utilize "critical rare earths," minimizing sensitivity to fluctuating market prices for the rare earth elements.

  15. Bismuth Oxysulfide and Its Polymer Nanocomposites for Efficient Purification

    PubMed Central

    Luo, Yidong; Qiao, Lina; Wang, Huanchun; Lan, Shun; Shen, Yang; Lin, Yuanhua; Nan, Cewen

    2018-01-01

    The danger of toxic organic pollutants in both aquatic and air environments calls for high-efficiency purification material. Herein, layered bismuth copper oxychalcogenides, BiCuSO, nanosheets of high photocatalytic activity were introduced to the PVDF (Polyvinylidene Fluoride). The fibrous membranes provide an easy, efficient, and recyclable way to purify organic pollutant. The physical and photophysical properties of the BiCuSO and its polymer composite were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), ultraviolet-visible diffuse reflection spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), electron spin resonance (EPR). Photocatalysis of Congo Red reveals that the BiCuSO/PVDF shows a superior photocatalytic activity of a 55% degradation rate in 70 min at visible light. The high photocatalytic activity is attributed to the exposed active {101} facets and the triple vacant associates VBi‴VO••VBi‴. By engineering the intrinsic defects on the surface of bismuth oxysulfide, high solar-driven photocatalytic activity can be approached. The successful fabrication of the bismuth oxysulfide and its polymer nanocomposites provides an easy and general approach for high-performance purification materials for various applications. PMID:29562701

  16. Monodisperse Ultrasmall Manganese-Doped Multimetallic Oxysulfide Nanoparticles as Highly Efficient Oxygen Reduction Electrocatalyst.

    PubMed

    Zhang, Yingying; Wang, Xiang; Hu, Dandan; Xue, Chaozhuang; Wang, Wei; Yang, Huajun; Li, Dongsheng; Wu, Tao

    2018-04-25

    The highly efficient and cheap non-Pt-based electrocatalysts such as transition-based catalysts prepared via facile methods for oxygen reduction reaction (ORR) are desirable for large-scale practical industry applications in energy conversion and storage systems. Herein, we report a straightforward top-down synthesis of monodisperse ultrasmall manganese-doped multimetallic (ZnGe) oxysulfide nanoparticles (NPs) as an efficient ORR electrocatalyst by simple ultrasonic treatment of the Mn-doped Zn-Ge-S chalcogenidometalate crystal precursors in H 2 O/EtOH for only 1 h at room temperature. Thus obtained ultrasmall monodisperse Mn-doped oxysulfide NPs with ultralow Mn loading level (3.92 wt %) not only exhibit comparable onset and half-wave potential (0.92 and 0.86 V vs reversible hydrogen electrode, respectively) to the commercial 20 wt % Pt/C but also exceptionally high metal mass activity (189 mA/mg at 0.8 V) and good methanol tolerance. A combination of transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and electrochemical analysis demonstrated that the homogenous distribution of a large amount of Mn(III) on the surface of NPs mainly accounts for the high ORR activity. We believe that this simple synthesis of Mn-doped multimetallic (ZnGe) oxysulfide NPs derived from chalcogenidometalates will open a new route to explore the utilization of discrete-cluster-based chalcogenidometalates as novel non-Pt electrocatalysts for energy applications and provide a facile way to realize the effective reduction of the amount of catalyst while keeping desired catalytic performances.

  17. Nano-aggregates of cobalt nickel oxysulfide as a high-performance electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Lifeng

    2013-11-01

    Nano-aggregates of cobalt nickel oxysulfide (CoNi)OxSy have been synthesized by hydrothermal processing and exhibited specific and areal capacitance as high as 592 F g-1 and 1628 mF cm-2, respectively, at a current density of 0.5 A g-1/1.375 mA cm-2. They also show high capacitance retention upon extended cycling at high rates.Nano-aggregates of cobalt nickel oxysulfide (CoNi)OxSy have been synthesized by hydrothermal processing and exhibited specific and areal capacitance as high as 592 F g-1 and 1628 mF cm-2, respectively, at a current density of 0.5 A g-1/1.375 mA cm-2. They also show high capacitance retention upon extended cycling at high rates. Electronic supplementary information (ESI) available: Experimental details; supplementary tables. See DOI: 10.1039/c3nr03533f

  18. Fullerene-Like Nickel Oxysulfide Hollow Nanospheres as Bifunctional Electrocatalysts for Water Splitting.

    PubMed

    Liu, Junli; Yang, Yong; Ni, Bing; Li, Haoyi; Wang, Xun

    2017-02-01

    Fullerene-like nickel oxysulfide hollow nanospheres with ≈50 nm are constructed by in situ growth on the surface of nickel foam by taking advantage of solvothermal reaction. The as-prepared composite exhibits exhilaratingly high HER and OER performance in 1 m KOH, which opens up a very promising aspect for non-noble metal chalcogenides as bifunctional electrocatalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Synthesis of Green-Emitting (La,Gd)OBr:Tb3+ Phosphors

    PubMed Central

    Kim, Sun Woog; Jyoko, Kazuya; Masui, Toshiyuki; Imanaka, Nobuhito

    2010-01-01

    Green-emitting phosphors based on lanthanum-gadolinium oxybromide were synthesized in a single phase form by the conventional solid state reaction method, and photoluminescence properties of them were characterized. The excitation peak wavelength of (La1-xGdx)OBr:Tb3+ shifted to the shorter wavelength side with the increase in the crystal field around the Tb3+ ions by doping Gd3+ ions into the La3+ site, and, as a result, the green emission intensity was successfully enhanced. The maximum emission intensity was obtained for (La0.95Gd0.05)OBr:5%Tb3+, where the relative emission intensity was 45% of that of a commercial green-emitting LaPO4:Ce3+,Tb3+ phosphor.

  20. Europium-activated phosphors containing oxides of rare-earth and group-IIIB metals and method of making the same

    DOEpatents

    Comanzo, Holly Ann; Setlur, Anant Achyut; Srivastava, Alok Mani

    2006-04-04

    Europium-activated phosphors comprise oxides of at least a rare-earth metal selected from the group consisting of gadolinium, yttrium, lanthanum, and combinations thereof and at least a Group-IIIB metal selected from the group consisting of aluminum, gallium, indium, and combinations thereof. A method for making such phosphors comprises adding at least a halide of at least one of the selected Group-IIIB metals in a starting mixture. The method further comprises firing the starting mixture in an oxygen-containing atmosphere. The phosphors produced by such a method exhibit improved absorption in the UV wavelength range and improved quantum efficiency.

  1. Europium-activated phosphors containing oxides of rare-earth and group-IIIB metals and method of making the same

    DOEpatents

    Comanzo, Holly Ann; Setlur, Anant Achyut; Srivastava, Alok Mani; Manivannan, Venkatesan

    2004-07-13

    Europium-activated phosphors comprise oxides of at least a rare-earth metal selected from the group consisting of gadolinium, yttrium, lanthanum, and combinations thereof and at least a Group-IIIB metal selected from the group consisting of aluminum, gallium, indium, and combinations thereof. A method for making such phosphors comprises adding at least a halide of at least one of the selected Group-IIIB metals in a starting mixture. The method further comprises firing the starting mixture in an oxygen-containing atmosphere. The phosphors produced by such a method exhibit improved absorption in the UV wavelength range and improved quantum efficiency.

  2. Nano-aggregates of cobalt nickel oxysulfide as a high-performance electrode material for supercapacitors.

    PubMed

    Liu, Lifeng

    2013-12-07

    Nano-aggregates of cobalt nickel oxysulfide (CoNi)OxSy have been synthesized by hydrothermal processing and exhibited specific and areal capacitance as high as 592 F g(-1) and 1628 mF cm(-2), respectively, at a current density of 0.5 A g(-1)/1.375 mA cm(-2). They also show high capacitance retention upon extended cycling at high rates.

  3. Development of Eu3+ activated monoclinic, perovskite, and garnet compounds in the Gd2O3-Al2O3 phase diagram as efficient red-emitting phosphors

    NASA Astrophysics Data System (ADS)

    Li, Jinkai; Li, Ji-Guang; Li, Jing; Liu, Shaohong; Li, Xiaodong; Sun, Xudong; Sakka, Yoshio

    2013-10-01

    Eu3+ doped Gd4Al2O9 (GdAM), GdAlO3 (GdAP), and Gd3Al5O12 (GdAG, containing 10 at% of Lu3+ for lattice stabilization) have been developed in this work as efficient red-emitting phosphors. With coprecipitated carbonate precursors, phase evolution studies found minimum processing temperatures of ~1000, 1100, and 1300 °C for the three phosphors to crystallize as pure phases, respectively. Compared with their yttrium aluminate counterparts, the gadolinium-based phosphors exhibit red-shifted O2--Eu3+ charge transfer excitation band (CTB) centers due to the lower electronegativity of Gd3+ and appreciably higher quantum yields of photoluminescence owing to the occurrence of efficient Gd3+→Eu3+energy transfer. The optimal Eu3+ contents were determined to be ~7.5 at% for GdAM and 5.0 at% for both GdAP and GdAG, and concentration quenching of luminescence was suggested to be due to exchange interactions. Fluorescence decay analysis found a shorter lifetime for the phosphor powder processed at a higher temperature or with a higher Eu3+ content, and the underlying mechanism was discussed. Fluorescence lifetimes were also compared between the yttrium and gadolinium phosphor systems for the dominant emissions.

  4. A promising p-type transparent conducting material: Layered oxysulfide [Cu2S2][Sr3Sc2O5

    NASA Astrophysics Data System (ADS)

    Liu, Min-Ling; Wu, Li-Bin; Huang, Fu-Qiang; Chen, Li-Dong; Chen, I.-Wei

    2007-12-01

    Sr3Cu2Sc2O5S2, a layered oxysulfide, composed of anti-PbO-like [Cu2S2] slabs alternating with perovskitelike [Sr3Sc2O5] slabs, was systematically studied as a p-type transparent conducting material. The material has a wide energy gap of 3.1eV and a p-type electrical conductivity of 2.8Scm-1 at room temperature. The hole mobility of +150cm2V-1S-1 at room temperature, which is much higher than the typical value of ˜10-1-10width="0.3em"/>cm2V-1S-1 found in other copper compounds. The performances of bulk undoped Sr3Cu2Sc2O5S2 show the promise of copper oxysulfides as a class of p-type transparent conductive materials that is essential for optoelectronic applications.

  5. Molten metal containment vessel with rare earth oxysulfide protective coating thereon and method of making same

    DOEpatents

    Krikorian, Oscar H.; Curtis, Paul G.

    1992-01-01

    An improved molten metal containment vessel is disclosed in which wetting of the vessel's inner wall surfaces by molten metal is inhibited by coating at least the inner surfaces of the containment vessel with one or more rare earth oxysulfide or rare earth sulfide compounds to inhibit wetting and or adherence by the molten metal to the surfaces of the containment vessel.

  6. Synthesis and study on the luminescence properties of cadmium borate phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annalakshmi, O.; Jose, M.T., E-mail: mtjosein@yahoo.co.in; Venkatraman, B.

    2014-02-01

    Highlights: • Cadmium borate synthesized by solid state sintering technique. • Neutron sensitivity of the material ten times that of TLD-600. • Gamma sensitivity is found to be twice that of TLD-100. • Gamma response is linear from 0.1 to 10{sup 3} mGy. - Abstract: Cadmium borate compound prepared through wet chemical reaction from the starting chemicals followed by high temperature solid state synthesis below the melting point to get the final TL phosphor powder. Phase purity and bond details of cadmium borate crystals are characterized using X-ray diffraction technique and infrared spectroscopy. Feasibility of these materials for radiation dosimetrymore » applications was studied after gamma and neutron irradiation. Gamma irradiation of undoped phosphors show a single peak around 185 °C whereas doping with gadolinium and silver, new more intense peak observed at 290 °C. Irradiation to thermal neutrons revealed single peak around 170 °C for all the phosphors. TL emission spectra and photoluminescence (PL) studies were also carried out on the phosphors. These borate materials are found to be highly sensitive to neutrons and hence can be used for neutron detection. Neutron sensitivity of the material is about ten times that of TLD-600.« less

  7. Gadolinium toxicity and treatment.

    PubMed

    Ramalho, Joana; Ramalho, Miguel; Jay, Michael; Burke, Lauren M; Semelka, Richard C

    2016-12-01

    Gadolinium based contrast agents (GBCAs) play an important role in the diagnostic evaluation of many patients. The safety of these agents has been once again questioned after gadolinium deposits were observed and measured in brain and bone of patients with normal renal function. This retention of gadolinium in the human body has been termed "gadolinium storage condition". The long-term and cumulative effects of retained gadolinium in the brain and elsewhere are not as yet understood. Recently, patients who report that they suffer from chronic symptoms secondary to gadolinium exposure and retention created gadolinium-toxicity on-line support groups. Their self-reported symptoms have recently been published. Bone and joint complaints, and skin changes were two of the most common complaints. This condition has been termed "gadolinium deposition disease". In this review we will address gadolinium toxicity disorders, from acute adverse reactions to GBCAs to gadolinium deposition disease, with special emphasis on the latter, as it is the most recently described and least known. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Characterizing energy dependence and count rate performance of a dual scintillator fiber-optic detector for computed tomography.

    PubMed

    Hoerner, Matthew R; Stepusin, Elliott J; Hyer, Daniel E; Hintenlang, David E

    2015-03-01

    Kilovoltage (kV) x-rays pose a significant challenge for radiation dosimetry. In the kV energy range, even small differences in material composition can result in significant variations in the absorbed energy between soft tissue and the detector. In addition, the use of electronic systems in light detection has demonstrated measurement losses at high photon fluence rates incident to the detector. This study investigated the feasibility of using a novel dual scintillator detector and whether its response to changes in beam energy from scatter and hardening is readily quantified. The detector incorporates a tissue-equivalent plastic scintillator and a gadolinium oxysulfide scintillator, which has a higher sensitivity to scatter x-rays. The detector was constructed by coupling two scintillators: (1) small cylindrical plastic scintillator, 500 μm in diameter and 2 mm in length, and (2) 100 micron sheet of gadolinium oxysulfide 500 μm in diameter, each to a 2 m long optical fiber, which acts as a light guide to transmit scintillation photons from the sensitive element to a photomultiplier tube. Count rate linearity data were obtained from a wide range of exposure rates delivered from a radiological x-ray tube by adjusting the tube current. The data were fitted to a nonparalyzable dead time model to characterize the time response. The true counting rate was related to the reference free air dose air rate measured with a 0.6 cm(3) Radcal(®) thimble chamber as described in AAPM Report No. 111. Secondary electron and photon spectra were evaluated using Monte Carlo techniques to analyze ionization quenching and photon energy-absorption characteristics from free-in-air and in phantom measurements. The depth/energy dependence of the detector was characterized using a computed tomography dose index QA phantom consisting of nested adult head and body segments. The phantom provided up to 32 cm of acrylic with a compatible 0.6 cm(3) calibrated ionization chamber to measure the

  9. Recent progress in advanced optical materials based on gadolinium aluminate garnet (Gd3Al5O12)

    PubMed Central

    Li, Ji-Guang; Sakka, Yoshio

    2015-01-01

    This review article summarizes the recent achievements in stabilization of the metastable lattice of gadolinium aluminate garnet (Gd3Al5O12, GAG) and the related developments of advanced optical materials, including down-conversion phosphors, up-conversion phosphors, transparent ceramics, and single crystals. Whenever possible, the materials are compared with their better known YAG and LuAG counterparts to demonstrate the merits of the GAG host. It is shown that novel emission features and significantly improved luminescence can be attained for a number of phosphor systems with the more covalent GAG lattice and the efficient energy transfer from Gd3+ to the activator. Ce3+ doped GAG-based single crystals and transparent ceramics are also shown to simultaneously possess the advantages of high theoretical density, fast scintillation decay, and high light yields, and hold great potential as scintillators for a wide range of applications. The unresolved issues are also pointed out. PMID:27877750

  10. Recent progress in advanced optical materials based on gadolinium aluminate garnet (Gd3Al5O12)

    NASA Astrophysics Data System (ADS)

    Li, Ji-Guang; Sakka, Yoshio

    2015-02-01

    This review article summarizes the recent achievements in stabilization of the metastable lattice of gadolinium aluminate garnet (Gd3Al5O12, GAG) and the related developments of advanced optical materials, including down-conversion phosphors, up-conversion phosphors, transparent ceramics, and single crystals. Whenever possible, the materials are compared with their better known YAG and LuAG counterparts to demonstrate the merits of the GAG host. It is shown that novel emission features and significantly improved luminescence can be attained for a number of phosphor systems with the more covalent GAG lattice and the efficient energy transfer from Gd3+ to the activator. Ce3+ doped GAG-based single crystals and transparent ceramics are also shown to simultaneously possess the advantages of high theoretical density, fast scintillation decay, and high light yields, and hold great potential as scintillators for a wide range of applications. The unresolved issues are also pointed out.

  11. UVB emitting LiSrBO3 phosphor for phototherapy lamp

    NASA Astrophysics Data System (ADS)

    Kunghatkar, R. G.; Hemne, P. S.; Dhoble, S. J.

    2018-05-01

    LiSrBO3 doped Gadolinium have been synthesized by sol gel technique. The formation of host was confirmed by XRD techniques. The incorporation of Gd3+ was confirmed by photoluminescence (PL) characterization. The UVB emission is observed at 316 nm when UV excited by 274 nm. The second order emission are also observed in PL emission spectra at 612 nm and 627 nm. Energy band gap is found to be 5.81 eV by using Kubelka - Munk function. The UVB emission at 316 nm of Gd3+ doped materials are used as phototherapy lamp phosphor.

  12. Characterizing energy dependence and count rate performance of a dual scintillator fiber-optic detector for computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoerner, Matthew R., E-mail: mrh5038@ufl.edu; Stepusin, Elliott J.; Hyer, Daniel E.

    Purpose: Kilovoltage (kV) x-rays pose a significant challenge for radiation dosimetry. In the kV energy range, even small differences in material composition can result in significant variations in the absorbed energy between soft tissue and the detector. In addition, the use of electronic systems in light detection has demonstrated measurement losses at high photon fluence rates incident to the detector. This study investigated the feasibility of using a novel dual scintillator detector and whether its response to changes in beam energy from scatter and hardening is readily quantified. The detector incorporates a tissue-equivalent plastic scintillator and a gadolinium oxysulfide scintillator,more » which has a higher sensitivity to scatter x-rays. Methods: The detector was constructed by coupling two scintillators: (1) small cylindrical plastic scintillator, 500 μm in diameter and 2 mm in length, and (2) 100 micron sheet of gadolinium oxysulfide 500 μm in diameter, each to a 2 m long optical fiber, which acts as a light guide to transmit scintillation photons from the sensitive element to a photomultiplier tube. Count rate linearity data were obtained from a wide range of exposure rates delivered from a radiological x-ray tube by adjusting the tube current. The data were fitted to a nonparalyzable dead time model to characterize the time response. The true counting rate was related to the reference free air dose air rate measured with a 0.6 cm{sup 3} Radcal{sup ®} thimble chamber as described in AAPM Report No. 111. Secondary electron and photon spectra were evaluated using Monte Carlo techniques to analyze ionization quenching and photon energy-absorption characteristics from free-in-air and in phantom measurements. The depth/energy dependence of the detector was characterized using a computed tomography dose index QA phantom consisting of nested adult head and body segments. The phantom provided up to 32 cm of acrylic with a compatible 0.6 cm{sup 3

  13. Gadolinium diethylenetriaminopentaacetic acid-loaded chitosan microspheres for gadolinium neutron-capture therapy.

    PubMed

    Saha, Tapan Kumar; Ichikawa, Hideki; Fukumori, Yoshinobu

    2006-12-11

    In order to provide a suitable device that would contain water-soluble drugs, highly water-soluble gadolinium diethylenetriaminopentaacetic acid-loaded chitosan microspheres (CMS-Gd-DTPA) were prepared by the emulsion method using glutaraldehyde as a cross-linker and Span 80 as a surfactant for gadolinium neutron-capture therapy of cancer. The gadolinium content and the mass median diameter of CMS-Gd-DTPA were estimated. The size and morphology of the CMS-Gd-DTPA were strongly influenced by the initial applied weight ratio of Gd-DTPA:chitosan. FTIR spectra showed that the electrostatic interaction between chitosan and Gd-DTPA accelerated the formation of gadolinium-enriched chitosan microspheres. Sufficient amounts of glutaraldehyde and Span 80 were necessary for producing discrete CMS-Gd-DTPA. The CMS-Gd-DTPA having a mass median diameter 11.7microm and 11.6% of gadolinium could be used in Gd-NCT following intratumoral injection.

  14. Rare-earth doped gadolinia based phosphors for potential multicolor and white light emitting deep UV LEDs.

    PubMed

    Bedekar, Vinila; Dutta, Dimple P; Mohapatra, M; Godbole, S V; Ghildiyal, R; Tyagi, A K

    2009-03-25

    Gadolinium oxide host and europium/dysprosium/terbium doped gadolinium oxide nanoparticles were synthesized using the sonochemical technique. Gadolinium oxide nanocrystals were also co-doped with total 2 mol% of Eu(3+)/Dy(3+),Eu(3+)/Tb(3+),Dy(3+)/Tb(3+), and also Eu(3+)/Dy(3+)/Tb(3+) ions, by the same method. The nanoparticles obtained were characterized using powder x-ray diffraction (XRD), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) techniques. The size of the particles ranged from 15 to 30 nm. The triple doped samples showed multicolor emission on single wavelength excitation. The photoluminescence results were correlated with the lifetime data to get an insight into the luminescence and energy transfer processes taking place in the system. On excitation at 247 nm, the novel nanocrystalline Gd(2)O(3):RE (RE = Dy, Tb) phosphor resulted in having very impressive CIE chromaticity coordinates of x = 0.315 and y = 0.316, and a correlated color temperature of 6508 K, which is very close to standard daylight.

  15. A new V-doped Bi2(O,S)3 oxysulfide catalyst for highly efficient catalytic reduction of 2-nitroaniline and organic dyes.

    PubMed

    Abay, Angaw Kelemework; Kuo, Dong-Hau; Chen, Xiaoyun; Saragih, Albert Daniel

    2017-12-01

    A new type of convenient, and environmentally friendly, Vanadium (V)-doped Bi 2 (O,S) 3 oxysulfide catalyst with different V contents was successfully synthesized via a simple and facile method. The obtained V-doped Bi 2 (O,S) 3 solid solution catalysts were fully characterized by conventional methods. The catalytic performance of the samples was tested by using the reduction of 2-nitroaniline (2-NA) in aqueous solution. The reduction/decolorization of methylene blue (MB) and rhodamine B (RhB) was also chosen to evaluate the universality of catalysts. It was observed that the introduction of V can improve the catalytic performance, and 20%V-Bi 2 (O,S) 3 was found to be the optimal V doping concentration for the reduction of 2-NA, MB, and RhB dyes. For comparative purposes, a related V-free Bi 2 (O, S) 3 oxysulfide material was synthesized and tested as the catalyst. The superior activity of V-doped Bi 2 (O,S) 3 over pure Bi 2 (O,S) 3 was ascribed mainly to an increase in active sites of the material and also due to the presence of synergistic effects. The presence of V 5+ as found from XPS analysis may interact with Bi atoms and enhancing the catalytic activity of the sample. In the catalytic reduction of 2-NA, MB and RhB, the obtained V-doped Bi 2 (O,S) 3 oxysulfide catalyst exhibited excellent catalytic activity as compared with other reported catalysts. Furthermore this highly efficient, low-cost and easily reusable V-doped Bi 2 (O,S) 3 catalyst is anticipated to be of great potential in catalysis in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Synthesis and luminescent properties of Gd3Ga2Al3O12 phosphors doped with Eu3+ or Ce3+

    NASA Astrophysics Data System (ADS)

    Oh, M. J.; Kim, H. J.

    2016-09-01

    Eu3+-or Ce3+-doped gadolinium gallium aluminum garnet (GGAG), Gd3Ga2Al3O12, phosphors are fabricated using solid-state reactions with Gd2O3, Ga2O3, Al2O3, CeO2 and Eu2O3 powders. The Eu3+-or Ce3+-doped Gd3Ga2Al3O12 phosphors are sintered at 1300 °C or 1600 °C for 5 hours by using an electric furnace under normal atmosphere. X-ray diffraction and field-emission scanning electron microscopy studies are carried out in order to analyze the physical properties of these materials, and their luminescence properties are also measured by using UV and X-ray sources. The Eu3+-or Ce3+-doped Gd3Ga2Al3O12 phosphors show higher light yields in comparison to commercial phosphors such as Gd2O2S:Tb (gadox). This indicates that Gd3Ga2Al3O12:Eu3+ phosphors are promising materials for use in X-ray imaging and dose monitoring at proton beamlines.

  17. Subcellular SIMS imaging of gadolinium isotopes in human glioblastoma cells treated with a gadolinium containing MRI agent

    NASA Astrophysics Data System (ADS)

    Smith, Duane R.; Lorey, Daniel R.; Chandra, Subhash

    2004-06-01

    Neutron capture therapy is an experimental binary radiotherapeutic modality for the treatment of brain tumors such as glioblastoma multiforme. Recently, neutron capture therapy with gadolinium-157 has gained attention, and techniques for studying the subcellular distribution of gadolinium-157 are needed. In this preliminary study, we have been able to image the subcellular distribution of gadolinium-157, as well as the other six naturally abundant isotopes of gadolinium, with SIMS ion microscopy. T98G human glioblastoma cells were treated for 24 h with 25 mg/ml of the metal ion complex diethylenetriaminepentaacetic acid Gd(III) dihydrogen salt hydrate (Gd-DTPA). Gd-DTPA is a contrast enhancing agent used for MRI of brain tumors, blood-brain barrier impairment, diseases of the central nervous system, etc. A highly heterogeneous subcellular distribution was observed for gadolinium-157. The nuclei in each cell were distinctly lower in gadolinium-157 than in the cytoplasm. Even within the cytoplasm the gadolinium-157 was heterogeneously distributed. The other six naturally abundant isotopes of gadolinium were imaged from the same cells and exhibited a subcellular distribution consistent with that observed for gadolinium-157. These observations indicate that SIMS ion microscopy may be a viable approach for subcellular studies of gadolinium containing neutron capture therapy drugs and may even play a major role in the development and validation of new gadolinium contrast enhancing agents for diagnostic MRI applications.

  18. Oxysulfide LiAlSO: A Lithium Superionic Conductor from First Principles.

    PubMed

    Wang, Xuelong; Xiao, Ruijuan; Li, Hong; Chen, Liquan

    2017-05-12

    Through first-principles calculations and crystal structure prediction techniques, we identify a new layered oxysulfide LiAlSO in orthorhombic structure as a novel lithium superionic conductor. Two kinds of stacking sequences of layers of AlS_{2}O_{2} are found in different temperature ranges. Phonon and molecular dynamics simulations verify their dynamic stabilities, and wide band gaps up to 5.6 eV are found by electronic structure calculations. The lithium migration energy barrier simulations reveal the collective interstitial-host ion "kick-off" hopping mode with barriers lower than 50 meV as the dominating conduction mechanism for LiAlSO, indicating it to be a promising solid-state electrolyte in lithium secondary batteries with fast ionic conductivity and a wide electrochemical window. This is a first attempt in which the lithium superionic conductors are designed by the crystal structure prediction method and may help explore other mixed-anion battery materials.

  19. Oxysulfide LiAlSO: A Lithium Superionic Conductor from First Principles

    NASA Astrophysics Data System (ADS)

    Wang, Xuelong; Xiao, Ruijuan; Li, Hong; Chen, Liquan

    2017-05-01

    Through first-principles calculations and crystal structure prediction techniques, we identify a new layered oxysulfide LiAlSO in orthorhombic structure as a novel lithium superionic conductor. Two kinds of stacking sequences of layers of AlS2O2 are found in different temperature ranges. Phonon and molecular dynamics simulations verify their dynamic stabilities, and wide band gaps up to 5.6 eV are found by electronic structure calculations. The lithium migration energy barrier simulations reveal the collective interstitial-host ion "kick-off" hopping mode with barriers lower than 50 meV as the dominating conduction mechanism for LiAlSO, indicating it to be a promising solid-state electrolyte in lithium secondary batteries with fast ionic conductivity and a wide electrochemical window. This is a first attempt in which the lithium superionic conductors are designed by the crystal structure prediction method and may help explore other mixed-anion battery materials.

  20. Quantitative study on the chemical solution deposition of zinc oxysulfide

    DOE PAGES

    Reinisch, Michael; Perkins, Craig L.; Steirer, K. Xerxes

    2015-11-21

    Zinc Oxysulfide (ZnOS) has demonstrated potential in the last decade to replace CdS as a buffer layer material since it is a wide-band-gap semiconductor with performance advantages over CdS (E g = 2.4 eV) in the near UV-range for solar energy conversion. However, questions remain on the growth mechanisms of chemical bath deposited ZnOS. In this study, a detailed model is employed to calculate solubility diagrams that describe simple conditions for complex speciation control using only ammonium hydroxide without additional base. For these conditions, ZnOS is deposited via aqueous solution deposition on a quartz crystal microbalance in a continuous flowmore » cell. Data is used to analyze the growth rate dependence on temperature and also to elucidate the effects of dimethylsulfoxide (DMSO) when used as a co-solvent. Activation energies (EA) of ZnOS are calculated for different flow rates and solution compositions. As a result, the measured EA relationships are affected by changes in the primary growth mechanism when DMSO is included.« less

  1. Triple energy transfer and color tuning in Tb3+ and Eu3+-coactivated apatite-type gadolinium-containing phosphors

    NASA Astrophysics Data System (ADS)

    Guo, Ning; Liang, Qimeng; Li, Shuo; Ouyang, Ruizhuo; Lü, Wei

    2017-11-01

    A family of apatite-type fluorophosphate phosphors with general formula Sr3Gd(1-m-n)Na(PO4)3F:mTb3+,nEu3+ (SGN:mTb3+,nEu3+) have been synthesized via the high-temperature solid-state reaction method. Triple energy transfer processes from Gd3+ in the host to both Tb3+ and Eu3+, as well as from Tb3+ to Eu3+ have been verified by the photoluminescence spectra. Under the excitation of UV light, both green line from the transitions of Tb3+ and red line origin from the transitions of Eu3+ have been simultaneously observed in a single phase phosphor, which makes a promise for tunable color emissions from yellowish-green through yellow and ultimately to reddish-orange by simply adjusting the Eu3+ content (n) in SGN:0.20Tb3+,nEu3+ phosphors. Additionally, the energy transfer from the Tb3+ to the Eu3+ ions has been demonstrated to be a resonant type via a quadrupole-quadrupole mechanism based on the Dexter's theoretical model, and the energy transfer efficiency increases with an increase in Eu3+ concentration.

  2. Removal of gadolinium by peritoneal dialysis.

    PubMed

    Murashima, M; Drott, H R; Carlow, D; Shaw, L M; Milone, M; Bachman, M; Tsai, D E; Yang, S-L; Bloom, R D

    2008-05-01

    An association between gadolinium-containing contrast and the development of nephrogenic systemic fibrosis (NSF) has been increasingly recognized. For patients receiving hemodialysis (HD) who are exposed to gadolinium, the Federal Drug Administration (FDA) recommends HD to remove this contrast agent in order to minimize the risk of NSF. This study examines if gadolinium can be removed by frequent exchanges by peritoneal dialysis (PD). Following administration of 0.1 mmol/kg of gadodiamide to a patient with end-stage renal disease, the serum clearance of this contrast agent by automated PD was examined. 10 and 15 exchanges of PD using an automated cycler were respectively performed during the first and second 24-hour periods after gadolinium exposure. Serum gadolinium levels were measured 1 hour after the gadolinium administration, then at 24 and 48 hours after PD was initiated. 90% of the gadolinium was removed from the circulation in 2 days with a regimen of 10-15 exchanges per day of PD. For patients on chronic maintenance PD who receive gadolinium, our case suggests that a temporary intensive automated PD regimen, aimed at maximizing clearance of this contrast agent immediately after exposure, could be an effective alternative when institution of HD is problematic.

  3. Structural, optical and magnetic properties of gadolinium sesquioxide nanobars synthesized via thermal decomposition of gadolinium oxalate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manigandan, R.; Giribabu, K.; Suresh, R.

    2013-10-15

    Graphical abstract: - Highlights: • The cubic Gd{sub 2}O{sub 3} nanobars are synthesized by decomposition of C{sub 6}H{sub 20}Gd{sub 2}O{sub 22}. • The nanoparticles are rectangular bar shape with high porous surface. • The combination of magnetic and optical properties within a single particle. • The Gd{sub 2}O{sub 3} nanobars have tailorable nanostructure, wide bandgap and are paramagnetic. - Abstract: Gadolinium oxide nanobars were obtained by thermal decomposition of gadolinium oxalate, which was synthesized by the chemical precipitation method along with glycerol. The functional group analysis and formation of gadolinium oxide from gadolinium oxalate were characterized by the Fourier transformmore » infrared spectroscopy and thermo gravimetric analyzer. The crystal structure, average crystallite size, and lattice parameter were analyzed by X-ray diffraction technique. Moreover, Raman shifts, elemental composition and morphology of the gadolinium oxide was widely investigated by the laser Raman microscope, X-ray photoelectron spectroscopy, FE-SEM-EDAX and HR-TEM, respectively. Furthermore, the optical properties like band gap, absorbance measurement of the gadolinium oxide were extensively examined. In addition, the paramagnetic property of gadolinium oxide nanobars was explored by the vibrating sample magnetometer.« less

  4. Pathophysiology of gadolinium-associated systemic fibrosis

    PubMed Central

    Drel, Viktor; Gorin, Yves

    2016-01-01

    Systemic fibrosis from gadolinium-based magnetic resonance imaging contrast is a scourge for the afflicted. Although gadolinium-associated systemic fibrosis is a rare condition, the threat of litigation has vastly altered clinical practice. Most theories concerning the etiology of the fibrosis are grounded in case reports rather than experiment. This has led to the widely accepted conjecture that the relative affinity of certain contrast agents for the gadolinium ion inversely correlates with the risk of succumbing to the disease. How gadolinium-containing contrast agents trigger widespread and site-specific systemic fibrosis and how chronicity is maintained are largely unknown. This review highlights experimentally-derived information from our laboratory and others that pertain to our understanding of the pathophysiology of gadolinium-associated systemic fibrosis. PMID:27147669

  5. Silicon Oxysulfide, OSiS: Rotational Spectrum, Quantum-Chemical Calculations, and Equilibrium Structure.

    PubMed

    Thorwirth, Sven; Mück, Leonie Anna; Gauss, Jürgen; Tamassia, Filippo; Lattanzi, Valerio; McCarthy, Michael C

    2011-06-02

    Silicon oxysulfide, OSiS, and seven of its minor isotopic species have been characterized for the first time in the gas phase at high spectral resolution by means of Fourier transform microwave spectroscopy. The equilibrium structure of OSiS has been determined from the experimental data using calculated vibration-rotation interaction constants. The structural parameters (rO-Si = 1.5064 Å and rSi-S = 1.9133 Å) are in very good agreement with values from high-level quantum chemical calculations using coupled-cluster techniques together with sophisticated additivity and extrapolation schemes. The bond distances in OSiS are very short in comparison with those in SiO and SiS. This unexpected finding is explained by the partial charges calculated for OSiS via a natural population analysis. The results suggest that electrostatic effects rather than multiple bonding are the key factors in determining bonding in this triatomic molecule. The data presented provide the spectroscopic information needed for radio astronomical searches for OSiS.

  6. Synthesis of crystalline Ce-activated garnet phosphor powders and technique to characterize their scintillation light yield

    NASA Astrophysics Data System (ADS)

    Gordienko, E.; Fedorov, A.; Radiuk, E.; Mechinsky, V.; Dosovitskiy, G.; Vashchenkova, E.; Kuznetsova, D.; Retivov, V.; Dosovitskiy, A.; Korjik, M.; Sandu, R.

    2018-04-01

    This work reports on a process of preparation of garnet phosphor powders and a technique for light yield evaluation of strongly light scattering samples. Powders of scintillation compounds could be used as individual materials or as samples for express tests of scintillation properties. However, estimation of their light yield (LY) is complicated by strong light scattering of this kind of materials. Ce3+-activated yttrium-aluminum and gallium-gadolinium-aluminum garnet phosphor powders, Y3Al5O12 (YAG:Ce) and Gd3Ga3Al2O12 (GGAG:Ce), were obtained using a modified coprecipitation technique. Ga tends to residue in mother liquor in ammonia media, but the modification allows to avoid the loss of components. We propose an approach for sample preparation and LY measurement setup with alpha particles excitation, allowing to decrease light scattering influence and to estimate a light yield of powder samples. This approach is used to evaluate the obtained powders.

  7. Toward scatter-free phosphors in white phosphor-converted light-emitting diodes

    PubMed Central

    Park, Hoo Keun; Oh, Ji Hye; Rag Do, Young

    2012-01-01

    Scatter-free phosphors promise to suppress the scattering loss of conventional micro-size powder phosphors in white phosphor-converted light-emitting diodes (pc-LEDs). Large micro-size cube phosphors (~100 μm) are newly designed and prepared as scatter-free phosphors, combining the two scatter-free conditions of particles based on Mie’s scattering theory; the grain size or grain boundary was smaller than 50 nm and the particle size was larger than 30 μm. A careful evaluation of the conversion efficiency and packaging efficiency of the large micro-size cube phosphor-based white pc-LED demonstrated that large micro-size cube phosphors are an outstanding potential candidate for scatter-free phosphors in white pc-LEDs. The luminous efficacy and packaging efficiency of the Y3Al5O12:Ce3+ large micro-size cube phosphor-based pc-LEDs were 123.0 lm/W and 0.87 at 4300 K under 300 mA, which are 17% and 34% higher than those of commercial powder phosphor-based white LEDs (104.8 lm/W and 0.65), respectively. In addition, the introduction of large micro-size cube phosphors can reduce the wide variation in optical properties as a function of both the ambient temperature and applied current compared with those of conventional powder phosphor-based white LEDs. PMID:22535113

  8. Use of gadolinium-based magnetic resonance imaging contrast agents and awareness of brain gadolinium deposition among pediatric providers in North America.

    PubMed

    Mithal, Leena B; Patel, Payal S; Mithal, Divakar; Palac, Hannah L; Rozenfeld, Michael N

    2017-05-01

    Numerous recent articles have reported brain gadolinium deposition when using linear but not macrocyclic gadolinium-based contrast agents (GBCAs). To determine the current landscape of gadolinium use among pediatric institutions and the knowledge base of radiologists and referring providers with regard to GBCAs and brain gadolinium deposition. We e-mailed voluntary closed surveys to 5,390 physicians in various pediatric professional societies between January 2016 and March 2016. We used chi-square and Fisher exact tests to compare response distributions among specialties. We found that 80% of surveyed pediatric hospitals use macrocyclic contrast agents. In the last year, 58% switched their agent, most commonly to gadoterate meglumine, with the most common reason being brain gadolinium deposition. Furthermore, surveys indicated that 23% of hospitals are considering switching, and, of these, 83% would switch to gadoterate meglumine; the most common reasons were brain gadolinium deposition and safety. Radiologists were more aware of brain gadolinium deposition than non-radiologist physicians (87% vs. 26%; P<0.0001). Radiologists and referring providers expressed similar levels of concern (95% and 89%). Twelve percent of radiologists and 2% of referring providers reported patients asking about brain gadolinium deposition. Radiologists were significantly more comfortable addressing patient inquiries than referring pediatric physicians (48% vs. 6%; P<0.0001). The number of MRIs requested by referring pediatric physicians correlated with their knowledge of brain gadolinium deposition, contrast agent used by their hospital, and comfort discussing brain gadolinium deposition with patients (P<0.0001). Since the discovery of brain gadolinium deposition, many pediatric hospitals have switched to or plan to switch to a more stable macrocyclic MR contrast agent, most commonly gadoterate meglumine. Despite this, there is need for substantial further education of radiologists and

  9. Cast Iron Inoculation Enhanced by Supplementary Oxy-sulfides Forming Elements

    NASA Astrophysics Data System (ADS)

    Riposan, Iulian; Stan, Stelian; Uta, Valentin; Stefan, Ion

    2017-09-01

    Inoculation is one of the most important metallurgical treatments applied to the molten cast iron immediately prior to casting, to promote solidification without excessive eutectic undercooling, which favors carbides formation usually with undesirable graphite morphologies. The paper focused on the separate addition of an inoculant enhancer alloy [S, O, oxy-sulfides forming elements] with a conventional Ca-FeSi alloy, in the production of gray and ductile cast irons. Carbides formation tendency decreased with improved graphite characteristics as an effect of the [Ca-FeSi + Enhancer] inoculation combination, when compared to other Ca/Ca, Ba/Ca, RE-FeSi alloy treatments. Adding an inoculant enhancer greatly enhances inoculation, lowers inoculant consumption up to 50% or more and avoids the need to use more costly inoculants, such as a rare earth bearing alloy. The Inoculation Specific Factor [ISF] was developed as a means to more realistically measure inoculant treatment efficiency. It compares the ratio between the improved characteristic level and total inoculant consumption for this effect. Addition of any of the commercial inoculants plus the inoculant enhancer offered outstanding inoculation power [increased ISF] even at higher solidification cooling rates, even though the total enhancer addition was at a small fraction of the amount of commercial inoculant used.

  10. One-stage pulsed laser deposition of conductive zinc oxysulfide layers

    NASA Astrophysics Data System (ADS)

    Bereznev, Sergei; Kocharyan, Hrachya; Maticiuc, Natalia; Naidu, Revathi; Volobujeva, Olga; Tverjanovich, Andrey; Kois, Julia

    2017-12-01

    Zinc oxysulfide - Zn(O,S) is one of the prospective materials for substitution of conventional CdS buffer layer in complete optoelectronic devices due to its optimal bandgap and low toxicity. In this work Zn(O,S) thin films have been prepared by one-step pulsed laser deposition technique. The films with a thickness of 650 nm were deposited onto the FTO/glass substrates at different substrate temperatures from room temperature to 400 °C. Zn(O,S) layers were characterized by means of scanning electron microscopy, energy dispersive spectroscopy, Raman, X-ray diffraction, UV-vis spectroscopy and Van der Pauw technique. It was found, that obtained Zn(O,S) layers are mainly polycrystalline, highly uniform, transparent, electrically conductive and demonstrate good adhesion to the FTO/glass substrates. In addition, we show that elemental composition of PLD Zn(O,S) films depends on the substrate temperature. For the first time high quality single phase conductive Zn(O,S) layers were prepared by one stage PLD in high vacuum at relatively low temperature 200 °C without any post treatment. The properties of prepared Zn(O,S) films suggest that these films can be applied as buffer layer in optoelectronic devices.

  11. Magnetic order and phase transition in the iron oxysulfide La2O2Fe2OS2

    NASA Astrophysics Data System (ADS)

    Oogarah, Reeya K.; Suard, Emmanuelle; McCabe, Emma E.

    2018-01-01

    The Mott-insulating iron oxychalcogenides exhibit complex magnetic behaviour and we report here a neutron diffraction investigation into the magnetic ordering in La2O2Fe2OS2. This quaternary oxysulfide adopts the anti-Sr2MnO2Mn2Sb2-type structure (described by space group I4/mmm) and orders antiferromagnetically below TN = 105 K. We consider both its long-range magnetic structure and its magnetic microstructure, and the onset of magnetic order. It adopts the multi-k vector "2k" magnetic structure (k = (1/2 0 1/2) and k = (0 1/2 1/2) and has similarities with related iron oxychalcogenides, illustrating the robust nature of the "2k" magnetic structure.

  12. Implementation of an Ultra-Bright Thermographic Phosphor for Gas Turbine Engine Temperature Measurements

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Bencic, Timothy J.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.; Allison, Stephen W.; Beshears, David L.; Jenkins, Thomas P.; Heeg, Bauke; Howard, Robert P.; hide

    2014-01-01

    The overall goal of the Aeronautics Research Mission Directorate (ARMD) Seedling Phase II effort was to build on the promising temperature-sensing characteristics of the ultrabright thermographic phosphor Cr-doped gadolinium aluminum perovskite (Cr:GAP) demonstrated in Phase I by transitioning towards an engine environment implementation. The strategy adopted was to take advantage of the unprecedented retention of ultra-bright luminescence from Cr:GAP at temperatures over 1000 C to enable fast 2D temperature mapping of actual component surfaces as well as to utilize inexpensive low-power laser-diode excitation suitable for on-wing diagnostics. A special emphasis was placed on establishing Cr:GAP luminescence-based surface temperature mapping as a new tool for evaluating engine component surface cooling effectiveness.

  13. Thermoluminescent phosphor

    DOEpatents

    Lasky, Jerome B.; Moran, Paul R.

    1978-01-01

    A thermoluminescent phosphor comprising LiF doped with boron and magnesium is produced by diffusion of boron into a conventional LiF phosphor doped with magnesium. Where the boron dopant is made to penetrate only the outer layer of the phosphor, it can be used to detect shallowly penetrating radiation such as tritium beta rays in the presence of a background of more penetrating radiation.

  14. Advanced phosphors

    DOEpatents

    Xiang, Xiao-Dong; Sun, Xiaodong; Schultz, Peter G.

    2000-01-01

    This invention relates to new phosphor materials and to combinatorial methods of synthesizing and detecting the same. In addition, methods of using phosphors to generate luminescence are also disclosed.

  15. White- and blue-light-emitting dysprosium(III) and terbium(III)-doped gadolinium titanate phosphors.

    PubMed

    Antić, Ž; Kuzman, S; Đorđević, V; Dramićanin, M D; Thundat, T

    2017-06-01

    Here we report the synthesis and structural, morphological, and photoluminescence analysis of white- and blue-light-emitting Dy 3 + - and Tm 3 + -doped Gd 2 Ti 2 O 7 nanophosphors. Single-phase cubic Gd 2 Ti 2 O 7 nanopowders consist of compact, dense aggregates of nanoparticles with an average size of ~25 nm for Dy 3 + -doped and ~50 nm for Tm 3 + -doped samples. The photoluminescence results indicated that ultraviolet (UV) light excitation of the Dy 3 + -doped sample resulted in direct generation of white light, while a dominant yellow emission was obtained under blue-light excitation. Intense blue light was obtained for Tm 3 + -doped Gd 2 Ti 2 O 7 under UV excitation suggesting that this material could be used as a blue phosphor. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Gadolinium Distribution in Cerebrospinal Fluid after Administration of a Gadolinium-based MR Contrast Agent in Humans.

    PubMed

    Berger, Florian; Kubik-Huch, Rahel A; Niemann, Tilo; Schmid, Hans Ruedi; Poetzsch, Michael; Froehlich, Johannes M; Beer, Jürg H; Thali, Michael J; Kraemer, Thomas

    2018-05-08

    Purpose To evaluate whether gadolinium penetrates human cerebrospinal fluid (CSF) after MR imaging (MRI) with a gadolinium-based contrast agent (GBCA). Materials and Methods For this retrospective study, the authors analyzed 60 CSF samples from 57 patients (median age, 50 years; range, 3-92 years) who underwent one contrast material-enhanced MRI examination with gadoterate meglumine within 60 days of CSF extraction between January and December 2016. CSF samples from patients who underwent MRI without contrast material administration (n = 22) or those who underwent contrast-enhanced MRI at least 1 year before extraction (n = 2) were analyzed and used as control samples. CSF measurements were performed with inductively coupled plasma mass spectrometry by monitoring the gadolinium 158 isotope. Statistical analyses were performed by using a preliminary Kruskal-Wallis test. Results Higher CSF gadolinium concentrations were detected within the first 8 hours after GBCA administration (mean concentration, 1152 ng/mL ± 734.6). Concentrations were lower between 8 and 48 hours (872 ng/mL ± 586). After 48 hours, gadolinium was almost completely cleared from CSF (121 ng/mL ± 296.3). All but two samples from the 24 control patients (median age, 60.5 years; range, 19-79 years) were negative for the presence of gadolinium. Those samples were from patients who had undergone GBCA-enhanced MRI examination more than a year before CSF extraction (0.1 and 0.2 ng/mL after 1 and 3 years, respectively). The concentrations in patients with chronic renal insufficiency (n = 3), cerebral toxoplasmosis (n = 1), and liver cirrhosis (n = 1) were higher than the mean concentrations. Conclusion Gadoterate meglumine can be detected in human CSF after intravenous administration. © RSNA, 2018.

  17. Phosphor thermometry system

    DOEpatents

    Beshears, David L.; Sitter, Jr., David N.; Andrews, William H.; Simpson, Marc L.; Abston, Ruth A.; Cates, Michael R.; Allison, Steve W.

    2000-01-01

    An apparatus for measuring the temperature of a moving substrate includes an air gun with a powder inlet port in communication with the outlet port of a powder reservoir, an air inlet port in communication with a pressurized air source, and an outlet nozzle spaced from and directed toward the moving substrate. The air gun is activated by the air pulses to spray controlled amounts of the powdered phosphor onto the moving substrate, where the phosphor assumes the temperature of the moving substrate. A laser produces light pulses, and optics direct the light pulses onto the phosphor on the moving substrate, in response to which the phosphor emits a luminescence with a decay rate indicative of the temperature of the phosphor. A collection lens is disposed to focus the luminescence, and a photodetector detects the luminescence focused by the collection lens and produces an electrical signal that is characteristic of the brightness of the luminescence. A processor analyzes the electrical signal to determine the decay characteristic of the luminescence and to determine the temperature of the phosphor from the decay characteristic.

  18. Gadolinium accumulation in organs of Sprague-Dawley® rats after implantation of a biodegradable magnesium-gadolinium alloy.

    PubMed

    Myrissa, Anastasia; Braeuer, Simone; Martinelli, Elisabeth; Willumeit-Römer, Regine; Goessler, Walter; Weinberg, Annelie Martina

    2017-01-15

    Biodegradable magnesium implants are under investigation because of their promising properties as medical devices. For enhancing the mechanical properties and the degradation resistance, rare earth elements are often used as alloying elements. In this study Mg10Gd pins were implanted into Sprague-Dawley® rats. The pin volume loss and a possible accumulation of magnesium and gadolinium in the rats' organs and blood were investigated in a long-term study over 36weeks. The results showed that Mg10Gd is a fast disintegrating material. Already 12weeks after implantation the alloy is fragmented to smaller particles, which can be found within the intramedullary cavity and the cortical bones. They disturbed the bone remodeling until the end of the study. The results concerning the elements' distribution in the animals' bodies were even more striking, since an accumulation of gadolinium could be observed in the investigated organs over the whole time span. The most affected tissue was the spleen, with up to 3240μgGd/kg wet mass, followed by the lung, liver and kidney (up to 1040, 685 and 207μgGd/kg). In the brain, muscle and heart, the gadolinium concentrations were much smaller (less than 20μg/kg), but an accumulation could still be detected. Interestingly, blood serum samples showed no accumulation of magnesium and gadolinium. This is the first time that an accumulation of gadolinium in animal organs was observed after the application of a gadolinium-containing degradable magnesium implant. These findings demonstrate the importance of future investigations concerning the distribution of the constituents of new biodegradable materials in the body, to ensure the patients' safety. In the last years, biodegradable Mg alloys are under investigation due to their promising properties as orthopaedic devices used for bone fracture stabilization. Gadolinium as Rare Earth Element enhances the mechanical properties of Mg-Gd alloys but its toxicity in humans is still questionable

  19. Long-persistence blue phosphors

    NASA Technical Reports Server (NTRS)

    Yen, William M. (Inventor); Jia, Weiyi (Inventor); Lu, Lizhu (Inventor); Yuan, Huabiao (Inventor)

    2000-01-01

    This invention relates to phosphors including long-persistence blue phosphors. Phosphors of the invention are represented by the general formula: MO . mAl.sub.2 O.sub.3 :Eu.sup.2+,R.sup.3+ wherein m is a number ranging from about 1.6 to about 2.2, M is Sr or a combination of Sr with Ca and Ba or both, R.sup.3+ is a trivalent metal ion or trivalent Bi or a mixture of these trivalent ions, Eu.sup.2+ is present at a level up to about 5 mol % of M, and R.sup.3+ is present at a level up to about 5 mol % of M. Phosphors of this invention include powders, ceramics, single crystals and single crystal fibers. A method of manufacturing improved phosphors and a method of manufacturing single crystal phosphors are also provided.

  20. Phosphors for LED lamps

    DOEpatents

    Murphy, James Edward; Manepalli, Satya Kishore; Kumar, Prasanth Nammalwar

    2013-08-13

    A phosphor, a phosphor blend including the phosphor, a phosphor prepared by a process, and a lighting apparatus including the phosphor blend are disclosed. The phosphor has the formula (Ca.sub.1-p-qCe.sub.pK.sub.q).sub.xSc.sub.y(Si.sub.1-rGa.sub.r).sub.zO.su- b.12+.delta. or derived from a process followed using disclosed amounts of reactants. In the formula, (0

  1. Nephrogenic Systemic Fibrosis Manifesting a Decade After Exposure to Gadolinium.

    PubMed

    Larson, Krista N; Gagnon, Amy L; Darling, Melissa D; Patterson, James W; Cropley, Thomas G

    2015-10-01

    Nephrogenic systemic fibrosis (NSF) is a fibrosing skin disorder that develops in patients with kidney failure and has been linked to exposure to gadolinium-containing contrast agents. The time between exposure to gadolinium and the initial presentation of NSF is typically weeks to months but has been documented to be as long as 3½ years. We report a case of NSF developing 10 years after exposure to gadolinium. A long-term hemodialysis patient was exposed to gadolinium several times between 1998 and 2004 during magnetic resonance angiography of his abdominal vessels and arteriovenous fistula. In 2014, he was seen at our clinic with new dermal papules and plaques. Biopsy of affected skin showed thickening of collagen, CD34+ spindle cells, and increased mucin in the dermis, supporting the diagnosis of NSF. The clinical history and histopathological features of this case support the diagnosis of NSF 10 years after exposure to gadolinium. Although the use of gadolinium contrast agents in patients with kidney failure has markedly decreased, patients with exposure to gadolinium years to decades previously may manifest the disease.

  2. An Integrated Rare Earth Elements Supply Chain Strategy

    DTIC Science & Technology

    2011-02-24

    iron boron magnets in Joint Direct Attack Munitions (JDAM) smart bombs; neodymium-yttrium- aluminum - garnet lasers and range finders in multiple weapon...components Europium 63 computer screens, fluorescent lights Gadolinium 64 magnetic applications, phosphors Terbium 65 phosphors, projection TV’s...Defense Stockpile report advised several production delays of weapons systems were caused by lanthanum, cerium, europium and gadolinium supply

  3. Green emitting phosphors and blends thereof

    DOEpatents

    Setlur, Anant Achyut; Siclovan, Oltea Puica; Nammalwar, Prasanth Kumar; Sathyanarayan, Ramesh Rao; Porob, Digamber G.; Chandran, Ramachandran Gopi; Heward, William Jordan; Radkov, Emil Vergilov; Briel, Linda Jane Valyou

    2010-12-28

    Phosphor compositions, blends thereof and light emitting devices including white light emitting LED based devices, and backlights, based on such phosphor compositions. The devices include a light source and a phosphor material as described. Also disclosed are phosphor blends including such a phosphor and devices made therefrom.

  4. Gadolinium photoionization process

    DOEpatents

    Paisner, J.A.; Comaskey, B.J.; Haynam, C.A.; Eggert, J.H.

    1993-04-13

    A method is provided for selective photoionization of the odd-numbered atomic mass gadolinium isotopes 155 and 157. The selective photoionization is accomplished by circular or linear parallel polarized laser beam energy effecting a three-step photoionization pathway.

  5. Gadolinium photoionization process

    DOEpatents

    Paisner, Jeffrey A.; Comaskey, Brian J.; Haynam, Christopher A.; Eggert, Jon H.

    1993-01-01

    A method is provided for selective photoionization of the odd-numbered atomic mass gadolinium isotopes 155 and 157. The selective photoionization is accomplished by circular or linear parallel polarized laser beam energy effecting a three-step photoionization pathway.

  6. Evaluation of Microencapsulated Phosphors.

    DTIC Science & Technology

    1979-05-01

    microencapsulated phosphors of the same control lot with nominal 0.5, 1.0, and 3.0-micron walls. Light output was normalized with respect to the amount of phosphor...had indicated that microencapsulation enhanced the light output of phosphors. The original results were not confirmed although the same procedures and material lots were used. (Author)

  7. Comparison analysis on the properties of the phosphor film according to the various composition ratio of phosphor slurry

    NASA Astrophysics Data System (ADS)

    Park, Jeong Yeon; Lee, Jeong Won; Heo, Young Moo; Won, Si Tae; Yoon, Gil Sang

    2016-03-01

    The conventional method of making a phosphor layer on the LED package by using a dispensing method is difficult to implement the specific color coordinate, color temperature and optical efficiency because the thickness of the phosphor layer is non-uniform due to precipitation of the phosphor. Besides, the dispensing method consume a large amount of phosphor and silicone to fill the LED package. Thus, studies that manufacture phosphor layer with a uniform thickness such as spray coating, screen printing, electrophoresis are active recently. The purpose of this study is to perform the basic research about the change of the characteristics of phosphor film that is molded with uniform thickness using the phosphor slurry according to various silicone resin and phosphor composition ratio. It is expected to be used as useful information for the fabricating properties when production environment of phosphor layer is changed dispensing method into phosphor film fabrication. In the experiment, it was selected three kinds of methyl-phenyl silicone based resin as the phosphor slurry constituents, and mixed with phosphor various amount of 20 ˜ 60wt% content per one silicone resin. Using this mixed phosphor slurry, it was molded the phosphor film with 300 μm thickness and analyzed the mechanical properties and optical properties of the phosphor film. Finally, the results of this study are presented below: (a) As the phenyl group content is increased, the total heat of reaction need to cure the silicone resin is decrease, and also lower the durometer hardness of the phosphor sheet. On the other hand, it was confirmed that there is no relationship between the phenyl group content in the phosphor film and optical characteristics of the phosphor film. (b) If the amount of the phosphor within the film are increased, then the values of shore hardness and CIE color coordinates are increased gradually but the value of CIE color temperature is decreased gradually in case of being

  8. High temperature thermometric phosphors

    DOEpatents

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  9. High temperature thermometric phosphors

    DOEpatents

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub x},Eu{sub y} wherein: 0.1 wt % {<=} x {<=} 20 wt % and 0.1 wt % {<=} y {<=} 20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  10. Kimzeyite garnet phosphors

    DOEpatents

    Lyons, Robert Joseph

    2013-05-14

    A phosphor of formula I is included in a phosphor composition in a lighting apparatus capable of emitting white light, Ca.sub.3-x-zSr.sub.xCe.sub.zM.sup.1.sub.2M.sup.2AlSiO.sub.12 (I) wherein M.sup.1 is Hf, Zr, or a combination thereof; M.sup.2 is Al, or a combination of Al and Ga; z<3-x; and 0.2>x.gtoreq.0. The lighting apparatus includes a semiconductor light source in addition to the phosphor composition.

  11. Gadolinium-Induced Fibrosis.

    PubMed

    Todd, Derrick J; Kay, Jonathan

    2016-01-01

    Gadolinium-based contrast agents (GBCAs), once believed to be safe for patients with renal disease, have been strongly associated with nephrogenic systemic fibrosis (NSF), a severe systemic fibrosing disorder that predominantly afflicts individuals with advanced renal dysfunction. We provide a historical perspective on the appearance and disappearance of NSF, including its initial recognition as a discrete clinical entity, its association with GBCA exposure, and the data supporting a causative relationship between GBCA exposure and NSF. On the basis of this body of evidence, we propose that the name gadolinium-induced fibrosis (GIF) more accurately reflects the totality of knowledge regarding this disease. Use of high-risk GBCAs, such as formulated gadodiamide, should be avoided in patients with renal disease. Restriction of GBCA use in this population has almost completely eradicated new cases of this debilitating condition. Emerging antifibrotic therapies may be useful for patients who suffer from GIF.

  12. Gadolinium Chelate Safety in Pregnancy: Barely Detectable Gadolinium Levels in the Juvenile Nonhuman Primate after in Utero Exposure.

    PubMed

    Prola-Netto, Joao; Woods, Mark; Roberts, Victoria H J; Sullivan, Elinor L; Miller, Christina Ann; Frias, Antonio E; Oh, Karen Y

    2018-01-01

    Purpose To determine whether gadolinium remains in juvenile nonhuman primate tissue after maternal exposure to intravenous gadoteridol during pregnancy. Materials and Methods Gravid rhesus macaques and their offspring (n = 10) were maintained, as approved by the institutional animal care and utilization committee. They were prospectively studied as part of a pre-existing ongoing research protocol to evaluate the effects of maternal malnutrition on placental and fetal development. On gestational days 85 and 135, they underwent placental magnetic resonance imaging after intravenous gadoteridol administration. Amniocentesis was performed on day 135 prior to administration of the second dose of gadoteridol. After delivery, the offspring were followed for 7 months. Tissue samples from eight different organs and from blood were harvested from each juvenile macaque. Gadolinium levels were measured by using inductively coupled plasma mass spectrometry. Results Gadolinium concentration in the amniotic fluid was 0.028 × 10 -5 %ID/g (percentage injected dose per gram of tissue) 50 days after administration of one gadoteridol dose. Gadolinium was most consistently detected in the femur (mean, 2.5 × 10 -5 %ID/g; range, [0.81-4.1] × 10 -5 %ID/g) and liver (mean, 0.15 × 10 -5 %ID/g; range, [0-0.26] × 10 -5 %ID/g). Levels were undetectable in the remaining sampled tissues, with the exception of one juvenile skin sample (0.07 × 10 -5 %ID/g), one juvenile spleen sample (0.039 × 10 -5 %ID/g), and one juvenile brain (0.095 × 10 -5 %ID/g) and kidney (0.13 × 10 -5 %ID/g) sample. Conclusion The presence of gadoteridol in the amniotic fluid after maternal injection enables confirmation that it crosses the placenta. Extremely low levels of gadolinium are found in juvenile macaque tissues after in utero exposure to two doses of gadoteridol, indicating that a very small amount of gadolinium persists after delivery. © RSNA, 2017.

  13. Plasma-enhanced atomic layer deposition of highly transparent zinc oxy-sulfide thin films

    NASA Astrophysics Data System (ADS)

    Bugot, C.; Schneider, N.; Lincot, D.; Donsanti, F.

    2018-05-01

    The potential of Plasma Enhanced Atomic Layer Deposition (PEALD) for the synthesis of zinc oxy-sulfide Zn(O,S) thin films was explored for the first time, using a supercycle strategy and DEZ, Ar/O2 plasma and H2S as precursors. The growth and the properties of the material were studied by varying the pulse ratio on the full range of composition and the process temperature from Tdep = 120 °C to 220 °C. PEALD-Zn(O,S) films could be grown from pure ZnO to pure ZnS compositions by varying the H2S/(O2 plasma + H2S) pulse ratio. Three distinct growth modes were identified depending on the nature of exchange mechanisms at the film surface during the growth. Films globally have an amorphous structure, except for the extremely sulfur-rich or sulfur-poor ones. High transmission values (up to 85% for Zn(O,S) for 500 < λ < 2500 nm) and optical band gaps (3.3-3.8 eV) have been obtained. The PEALD-Zn(O,S) process and the thin film properties were compared with ALD-Zn(O,S) to highlight the specificities, disadvantages and benefits of plasma enhancement for the synthesis of multi-element materials.

  14. Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms.

    PubMed

    Rogosnitzky, Moshe; Branch, Stacy

    2016-06-01

    Gadolinium chelates are widely used as contrast media for magnetic resonance imaging. The approved gadolinium-based contrast agents (GBCAs) have historically been considered safe and well tolerated when used at recommended dosing levels. However, for nearly a decade, an association between GBCA administration and the development of nephrogenic systemic fibrosis (NSF) has been recognized in patients with severe renal impairment. This has led to modifications in clinical practices aimed at reducing the potential and incidence of NSF development. Newer reports have emerged regarding the accumulation of gadolinium in various tissues of patients who do not have renal impairment, including bone, brain, and kidneys. Despite the observations of gadolinium accumulation in tissues regardless of renal function, very limited clinical data regarding the potential for and mechanisms of toxicity is available. This significant gap in knowledge warrants retrospective cohort study efforts, as well as prospective studies that involve gadolinium ion (Gd(3+)) testing in patients exposed to GBCA. This review examines the potential biochemical and molecular basis of gadolinium toxicity, possible clinical significance of gadolinium tissue retention and accumulation, and methods that can limit gadolinium body burden.

  15. Room temperature ferromagnetic gadolinium silicide nanoparticles

    DOEpatents

    Hadimani, Magundappa Ravi L.; Gupta, Shalabh; Harstad, Shane; Pecharsky, Vitalij; Jiles, David C.

    2018-03-06

    A particle usable as T1 and T2 contrast agents is provided. The particle is a gadolinium silicide (Gd5Si4) particle that is ferromagnetic at temperatures up to 290 K and is less than 2 .mu.m in diameter. An MRI contrast agent that includes a plurality of gadolinium silicide (Gd.sub.5Si.sub.4) particles that are less than 1 .mu.m in diameter is also provided. A method for creating gadolinium silicide (Gd5Si4) particles is also provided. The method includes the steps of providing a Gd5Si4 bulk alloy; grinding the Gd5Si4 bulk alloy into a powder; and milling the Gd5Si4 bulk alloy powder for a time of approximately 20 minutes or less.

  16. A colloidal quantum dot photonic crystal phosphor: nanostructural engineering of the phosphor for enhanced color conversion.

    PubMed

    Min, Kyungtaek; Jung, Hyunho; Park, Yeonsang; Cho, Kyung-Sang; Roh, Young-Geun; Hwang, Sung Woo; Jeon, Heonsu

    2017-06-29

    Phosphors, long-known color-converting photonic agents, are gaining increasing attention owing to the interest in white LEDs and related applications. Conventional material-based approaches to phosphors focus on obtaining the desired absorption/emission wavelengths and/or improving quantum efficiency. Here, we report a novel approach for enhancing the performance of phosphors: structural modification of phosphors. We incorporated inorganic colloidal quantum dots (CQDs) into a lateral one-dimensional (1D) photonic crystal (PhC) thin-film structure, with its photonic band-edge (PBE) modes matching the energy of 'excitation photons' (rather than 'emitted photons', as in most other PBE application devices). At resonance, we observed an approximately 4-fold enhancement of fluorescence over the reference bulk phosphor, which reflects an improved absorption of the excitation photons. This nano-structural engineering approach is a paradigm shift in the phosphor research area and may help to develop next-generation higher efficiency phosphors with novel characteristics.

  17. Phosphors with long-persistent green phosphorescence

    DOEpatents

    Yen, William M; Jia, Weiyi; Lu, Lizhu; Yuan, Huabiao

    2001-01-01

    This invention relates to phosphors including long-persistence green phosphors. Phosphors of the invention are represented by the general formula: M.sub.k Al.sub.2 O.sub.4 :2xEu.sup.2+,2yR.sup.3+ wherein k-1-2x-2y, x is a number ranging from about 0.0001 to about 0.05, y is a number ranging from about x to about 3x, M is an alkaline earth metal, and R.sup.3+ is one or more trivalent metal ions. Phosphors of this invention include powders, ceramics, single crystals and single crystal fibers. A method of manufacturing improved phosphors and a method of manufacturing single crystal phosphors are also provided.

  18. Storage Phosphors for Medical Imaging

    PubMed Central

    Leblans, Paul; Vandenbroucke, Dirk; Willems, Peter

    2011-01-01

    Computed radiography (CR) uses storage phosphor imaging plates for digital imaging. Absorbed X-ray energy is stored in crystal defects. In read-out the energy is set free as blue photons upon optical stimulation. In the 35 years of CR history, several storage phosphor families were investigated and developed. An explanation is given as to why some materials made it to the commercial stage, while others did not. The photo stimulated luminescence mechanism of the current commercial storage phosphors, BaFBr:Eu2+ and CsBr:Eu2+ is discussed. The relation between storage phosphor plate physical characteristics and image quality is explained. It is demonstrated that the morphology of the phosphor crystals in the CR imaging plate has a very significant impact on its performance. PMID:28879966

  19. Magnetic resonance characteristics and susceptibility weighted imaging of the brain in gadolinium encephalopathy.

    PubMed

    Samardzic, Dejan; Thamburaj, Krishnamoorthy

    2015-01-01

    To report the brain imaging features on magnetic resonance imaging (MRI) in inadvertent intrathecal gadolinium administration. A 67-year-old female with gadolinium encephalopathy from inadvertent high dose intrathecal gadolinium administration during an epidural steroid injection was studied with multisequence 3T MRI. T1-weighted imaging shows pseudo-T2 appearance with diffusion of gadolinium into the brain parenchyma, olivary bodies, and membranous labyrinth. Nulling of cerebrospinal fluid (CSF) signal is absent on fluid attenuation recovery (FLAIR). Susceptibility-weighted imaging (SWI) demonstrates features similar to subarachnoid hemorrhage. CT may demonstrate a pseudo-cerebral edema pattern given the high attenuation characteristics of gadolinium. Intrathecal gadolinium demonstrates characteristic imaging features on MRI of the brain and may mimic subarachnoid hemorrhage on susceptibility-weighted imaging. Identifying high dose gadolinium within the CSF spaces on MRI is essential to avoid diagnostic and therapeutic errors. Copyright © 2013 by the American Society of Neuroimaging.

  20. Blue light emitting thiogallate phosphor

    DOEpatents

    Dye, Robert C.; Smith, David C.; King, Christopher N.; Tuenge, Richard T.

    1998-01-01

    A crystalline blue emitting thiogallate phosphor of the formula RGa.sub.2 S.sub.4 :Ce.sub.x where R is selected from the group consisting of calcium, strontium, barium and zinc, and x is from about 1 to 10 atomic percent, the phosphor characterized as having a crystalline microstructure on the size order of from about 100 .ANG. to about 10,000 .ANG. is provided together with a process of preparing a crystalline blue emitting thiogallate phosphor by depositing on a substrate by CVD and resultant thin film electroluminescent devices including a layer of such deposited phosphor on an ordinary glass substrate.

  1. Density of Gadolinium Nitrate Solutions for the High Flux Isotope Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Paul Allen; Lee, Denise L

    2009-05-01

    In late 1992, the High Flux Isotope Reactor (HFIR) was planning to switch the solution contained in the poison injection tank from cadmium nitrate to gadolinium nitrate. The poison injection system is an emergency system used to shut down the reactor by adding a neutron poison to the cooling water. This system must be able to supply a minimum of 69 pounds of gadolinium to the reactor coolant system in order to guarantee that the reactor would become subcritical. A graph of the density of gadolinium nitrate solutions over a concentration range of 5 to 30 wt% and a temperaturemore » range of 15 to 40{sup o}C was prepared. Routine density measurements of the solution in the poison injection tank are made by HFIR personnel, and an adaptation of the original graph is used to determine the gadolinium nitrate concentration. In late 2008, HFIR personnel decided that the heat tracing that was present on the piping for the poison injection system could be removed without any danger of freezing the solution; however, the gadolinium nitrate solution might get as cold as 5{sup o}C. This was outside the range of the current density-concentration correlation, so the range needed to be expanded. This report supplies a new density-concentration correlation that covers the extended temperature range. The correlation is given in new units, which greatly simplifies the calculation that is required to determine the pounds of gadolinium in the tank solution. The procedure for calculating the amount of gadolinium in the HFIR poison injection system is as follows: (1) Calculate the usable volume in the system; (2) Measure the density of the solution; (3) Calculate the gadolinium concentration using the following equation: Gd(lb/ft{sup 3}) = measured density (g/mL) x 34.681 - 34.785; (4) Calculate the amount of gadolinium in the system using the following equation: Amount of Gd(lb) = Gd concentration (lb/ft{sup 3}) x usable volume (ft{sup 3}). The equation in step 3 is exact for a

  2. Effect of surface moisture on chemically bonded phosphor for thermographic phosphor thermometry

    NASA Astrophysics Data System (ADS)

    Cai, Tao; Kim, Dong; Kim, Mirae; Liu, Ying Zheng; Kim, Kyung Chun

    2016-09-01

    This study examined the effect of surface moisture on the calibration lifetime in chemically bonded phosphor paint preparation. Mg4FGeO6:Mn was used as a sensor material, which was excited by a pulsed UV LED. A high-speed camera with a frequency of 8000 Hz was used to conduct phosphor thermometry. Five samples with different degrees of surface moisture were selected during the preparation process, and each sample was calibrated 40 times at room temperature. A conventional post-processing method was used to acquire the phosphorescent lifetime for different samples with a 4  ×  4-pixel interrogation window. The measurement error and paint uniformity were also studied. The results showed that there was no obvious phosphorescence boundary between the wet parts and dry parts of phosphor paint. The lifetime increased by about 0.0345% per hour during the preparation process, showing the degree of surface moisture had almost no influence on the lifetime measurement. The lifetime changed only after annealing treatment. There was also no effect on the measurement error and uniformity. These results provide a reference for developing a real-time measurement method using thermographic phosphor thermometry. This study also provides a feasible basis for chemically bonded phosphor thermometry applications in humid and low-temperature environments.

  3. Structural and magnetic phase transitions in gadolinium under high pressures and low temperatures

    DOE PAGES

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.; ...

    2014-11-07

    High pressure structural transition studies have been carried out on rare earth metal gadolinium in a diamond anvil cell at room temperature to 169 GPa. Gadolinium has been compressed to 38% of its initial volume at this pressure. With increasing pressure, a crystal structure sequence of hcp → Smtype→ dhcp → fcc → dfcc → monoclinic has been observed in our studies on gadolinium. The measured equation of state of gadolinium is presented to 169 GPa at ambient temperature. Magnetic ordering temperature of gadolinium has been studied using designer diamond anvils to a pressure of 25 GP and a temperaturemore » of 10 K. The magnetic ordering temperature has been determined from the four-point electrical resistivity measurements carried out on gadolinium. Furthermore, our experiments show that the magnetic transition temperature decreases with increasing pressure to 19 GPa and then increases when gadolinium is subjected to higher pressures.« less

  4. Structural and magnetic phase transitions in gadolinium under high pressures and low temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.

    High pressure structural transition studies have been carried out on rare earth metal gadolinium in a diamond anvil cell at room temperature to 169 GPa. Gadolinium has been compressed to 38% of its initial volume at this pressure. With increasing pressure, a crystal structure sequence of hcp → Smtype→ dhcp → fcc → dfcc → monoclinic has been observed in our studies on gadolinium. The measured equation of state of gadolinium is presented to 169 GPa at ambient temperature. Magnetic ordering temperature of gadolinium has been studied using designer diamond anvils to a pressure of 25 GP and a temperaturemore » of 10 K. The magnetic ordering temperature has been determined from the four-point electrical resistivity measurements carried out on gadolinium. Furthermore, our experiments show that the magnetic transition temperature decreases with increasing pressure to 19 GPa and then increases when gadolinium is subjected to higher pressures.« less

  5. Structural and magnetic phase transitions in gadolinium under high pressures and low temperatures

    NASA Astrophysics Data System (ADS)

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.; Vohra, Yogesh K.

    2014-10-01

    High pressure structural transition studies have been carried out on rare earth metal gadolinium in a diamond anvil cell at room temperature to 169 GPa. Gadolinium has been compressed to 38% of its initial volume at this pressure. With increasing pressure, a crystal structure sequence of hcp → Sm-type → dhcp → fcc → dfcc → monoclinic has been observed in our studies on gadolinium. The measured equation of state of gadolinium is presented to 169 GPa at ambient temperature. Magnetic ordering temperature of gadolinium has been studied using designer diamond anvils to a pressure of 25 GPa and a temperature of 10 K. The magnetic ordering temperature has been determined from the four-point electrical resistivity measurements carried out on gadolinium. Our experiments show that the magnetic transition temperature decreases with increasing pressure to 19 GPa and then increases when gadolinium is subjected to higher pressures.

  6. Concentration and wavelength dependent frequency downshifting photoluminescence from a Tb3+ doped yttria nano-phosphor: A photochromic phosphor

    NASA Astrophysics Data System (ADS)

    Yadav, Ram Sagar; Rai, Shyam Bahadur

    2018-03-01

    In this article, the Tb3+ doped Y2O3 nano-phosphor has been synthesized through solution combustion method. The structural measurements of the nano-phosphor have been carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques, which reveal nano-crystalline nature. The Fourier transform infrared (FTIR) measurements reveal the presence of different molecular species in the nano-phosphor. The UV-Vis-NIR absorption spectrum of the nano-phosphor shows large number of bands due to charge transfer band (CTB) and 4f-4f electronic transitions of Tb3+ ion. The Tb3+ doped Y2O3 nano-phosphor emits intense green downshifting photoluminescence centered at 543 nm due to 5D4 → 7F5 transition on excitation with 350 nm. The emission intensity of the nano-phosphor is optimized at 1.0 mol% concentration of Tb3+ ion. When the as-synthesized nano-phosphor is annealed at higher temperature the emission intensity of the nano-phosphor enhances upto 5 times. The enhancement in the emission intensity is due to an increase in crystallinity of the nano-phosphor, reduction in surface defects and optical quenching centers. The CIE diagram reveals that the Tb3+ doped nano-phosphor samples show the photochromic nature (color tunability) with a change in the concentration of Tb3+ ion and excitation wavelength. The lifetime measurement indicates an increase in the lifetime for the annealed sample. Thus, the Tb3+ doped Y2O3 nano-phosphor may be used in photochromic displays and photonic devices.

  7. Phosphor blends for high-CRI fluorescent lamps

    DOEpatents

    Setlur, Anant Achyut [Niskayuna, NY; Srivastava, Alok Mani [Niskayuna, NY; Comanzo, Holly Ann [Niskayuna, NY; Manivannan, Venkatesan [Clifton Park, NY; Beers, William Winder [Chesterland, OH; Toth, Katalin [Pomaz, HU; Balazs, Laszlo D [Budapest, HU

    2008-06-24

    A phosphor blend comprises at least two phosphors each selected from one of the groups of phosphors that absorb UV electromagnetic radiation and emit in a region of visible light. The phosphor blend can be applied to a discharge gas radiation source to produce light sources having high color rendering index. A phosphor blend is advantageously includes the phosphor (Tb,Y,LuLa,Gd).sub.x(Al,Ga).sub.yO.sub.12:Ce.sup.3+, wherein x is in the range from about 2.8 to and including 3 and y is in the range from about 4 to and including 5.

  8. Synthesis and evaluation of gadolinium complexes based on PAMAM as MRI contrast agents.

    PubMed

    Yan, Guo-Ping; Hu, Bin; Liu, Mai-Li; Li, Li-Yun

    2005-03-01

    Diethylenetriaminepentaacetic acid (DTPA) and pyridoxamine (PM) were incorporated into the amine groups on the surface of ammonia-core poly(amidoamine) dendrimers (PAMAM, Generation 2.0-5.0) to obtain dendritic ligands. These dendritic ligands were reacted with gadolinium chloride to yield the corresponding dendritic gadolinium (Gd) complexes. The dendritic ligands and their gadolinium complexes were characterized by(1)HNMR, IR, UV and elemental analysis. Relaxivity studies showed that the dendritic gadolinium complexes possessed higher relaxation effectiveness compared with the clinically used Gd-DTPA. After administration of the dendritic gadolinium complexes (0.09 mmol kg(-1) ) to rats, magnetic resonance imaging of the liver indicated that the dendritic gadolinium complexes containing pyridoxamine groups enhanced the contrast of the MR images of the liver, provided prolonged intravascular duration and produced highly contrasted visualization of blood vessels.

  9. Degradation of phosphor-in-glass encapsulants with various phosphor types for high power LEDs

    NASA Astrophysics Data System (ADS)

    Iqbal, Fauzia; Kim, Sunil; Kim, Hyungsun

    2017-10-01

    In order to replace conventional silicone-based phosphor light emitting diodes (LEDs), inorganic color converters with high thermal stabilities and transparencies, i.e., phosphors-in-glass (PiGs), have been investigated as encapsulants for high-power LEDs. In this paper, the effect of various types of phosphors, i.e., LuAG (green, Lu3Al5O12:Ce3+), silicate (yellow, Sr2SiO4:Eu2+), CASN (red, CaAlSiN3:Eu2+), and oxynitride (yellow, (Sr,Ba) Si2O2N2:Eu2+), on the reliability/degradation of the remote PiG encapsulants is explored for high power LEDs. For this purpose, a glass composition (SiO2-B2O3-ZnO-Na2O) was separately mixed with each type of phosphor and then sintered at appropriate temperatures to make the corresponding PiG. The reliabilities of the formed PiGs were evaluated by standard accelerated-aging tests (85 °C/85% RH) for 1000 h. Luminosity losses and shifts in the Commission Internationale de l'Eclairage (CIE) coordinates of the PiGs were measured before and after aging. Thermal, and moisture-induced quenching behavior was also analyzed. The surface of PiGs with different phosphors degraded differently, possibly because of structural incompatibilities between the glass matrix and phosphor type. Determining the compatibility of the glass composition with the type of phosphor used is therefore important in order to ensure the long-term stabilities of encapsulants for use in commercial LEDs.

  10. The development of new phosphors of Tb3+/Eu3+ co-doped Gd3Al5O12 with tunable emission

    NASA Astrophysics Data System (ADS)

    Teng, Xin; Wang, Wenzhi; Cao, Zhentao; Li, Jinkai; Duan, Guangbin; Liu, Zongming

    2017-07-01

    The gadolinium aluminum garnets Gd3Al5O12 (GdAG) activated with Tb3+/Eu3+ were successfully prepared via co-precipitation method at 1500 °C in this work. The crystal structure stabilization, elements analysis, microphotograph, PL/PLE spectra, decay behavior and quantum efficiency were discussed in detail. The metastable GdAG compounds been effectively stabilized by doping with smaller 10 at.% Tb3+, which then allows the development of new phosphors of (Gd0.9-xTb0.1Eux)3Al5O12 (GdAG:Tb3+/Eu3+, x = 0-0.03) for opto-functionality explorations. The PLE/PL spectra displays that the strongest PLE peak was located at ∼276 nm, which overlaps the 8S7/2 → 6IJ transition of Gd3+. Under 276 nm excitation, the phosphors exhibited both Tb3+ and Eu3+ emissions at 548 nm (green, 5D4 → 7F5 transition of Tb3+) and 592 nm (orange-red, 5D0 → 7F1 transition of Eu3+), respectively. The emission intensities of Tb3+ and Eu3+ remarkably varied with the Eu3+ incorporation. As a consequence, the emission color can be readily tuned from approximately green to orange-red. Fluorescence decay analysis found that the lifetime for the Tb3+ emission rapidly decreased conforming to the Tb3+ → Eu3+ energy transfer, and the energy transfer efficiency was calculated. Owing to the Gd3+ → Eu3+ and Gd3+ → Tb3+ energy transfer, the emission intensities of Tb3+ and Eu3+ in (Gd0.9-xTb0.1Eux)AG phosphor were higher than (Y0.87Tb0.1Eu0.03)AG and (Lu0.87Tb0.1Eu0.03)AG system. The (Gd0.9-xTb0.1Eux)AG garnet phosphors developed in this work may serve as a new type of phosphor which hopefully meets the requirements of various lighting and optical display applications.

  11. Blue-green phosphor for fluorescent lighting applications

    DOEpatents

    Srivastava, Alok; Comanzo, Holly; Manivannan, Venkatesan; Setlur, Anant Achyut

    2005-03-15

    A fluorescent lamp including a phosphor layer including Sr.sub.4 Al.sub.14 O.sub.25 :Eu.sup.2+ (SAE) and at least one of each of a red, green and blue emitting phosphor. The phosphor layer can optionally include an additional, deep red phosphor and a yellow emitting phosphor. The resulting lamp will exhibit a white light having a color rendering index of 90 or higher with a correlated color temperature of from 2500 to 10000 Kelvin. The use of SAE in phosphor blends of lamps results in high CRI light sources with increased stability and acceptable lumen maintenance over, the course of the lamp life.

  12. X-ray luminescence imaging of water, air, and tissue phantoms

    NASA Astrophysics Data System (ADS)

    Lun, Michael C.; Li, Changqing

    2018-02-01

    X-ray luminescence computed tomography (XLCT) is an emerging hybrid molecular imaging modality. In XLCT, high energy x-ray photons excite phosphors emitting optical photons for tomographic image reconstruction. During XLCT, the optical signal obtained is thought to only originate from the embedded phosphor particles. However, numerous studies have reported other sources of optical photons such as in air, water, and tissue that are generated from ionization. These sources of optical photons will provide background noise and will limit the molecular sensitivity of XLCT imaging. In this study, using a water-cooled electron multiplying charge-coupled device (EMCCD) camera, we performed luminescence imaging of water, air, and several tissue mimicking phantoms including one embedded with a target containing 0.01 mg/mL of europium-doped gadolinium oxysulfide (GOS:Eu3+) particles during x-ray irradiation using a focused x-ray beam with energy less than the Cerenkov radiation threshold. In addition, a spectrograph was used to measure the x-ray luminescence spectrum. The phantom embedded with the GOS:Eu3+ target displayed the greatest luminescence intensity, followed by the tissue phantom, and finally the water phantom. Our results indicate that the x-ray luminescence intensity from a background phantom is equivalent to a GOS:Eu3+ concentration of 0.8 μg/mL. We also found a 3-fold difference in the radioluminescence intensity between liquid water and air. From the measurements of the emission spectra, we found that water produced a broad spectrum and that a tissue-mimicking phantom made from Intralipid had a different x-ray emission spectrum than one made with TiO2 and India ink. The measured spectra suggest that it is better to use Intralipid instead if TiO2 as optical scatterer for future XLCT imaging.

  13. Identification and characterization of gadolinium(III) complexes in biological tissue extracts.

    PubMed

    Kahakachchi, Chethaka L; Moore, Dennis A

    2010-07-01

    The gadolinium species present in a rat kidney following intravenous administration of a gadolinium-based magnetic resonance contrast agent (Optimark™, Gadoversetamide injection) to a rat was examined in the present study. The major gadolinium species in the supernatant of the rat kidney tissue extracts was determined by reversed-phase liquid chromatography with online inductively coupled plasma optical emission spectrometry (HPLC-ICP-OES). The identity of the compound was established by liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) detection. The principal gadolinium(III) complex in a rat kidney tissue extract was identified as Gd-DTPA-BMEA 24 Hrs and 7 days after a single intravenous injection of Optimark™ (gadoversetamide; Gd-DTPA-BMEA) at a dose of 5 mmol Gd/kg body weight. The study demonstrated for the first time the feasibility of the use of two complementary techniques, HPLC-ICP-OES and HPLC-ESI-MS to study the in vivo behavior of gadolinium-based magnetic resonance contrast media.

  14. Reduced graphene oxide enwrapped phosphors for long-term thermally stable phosphor converted white light emitting diodes

    NASA Astrophysics Data System (ADS)

    Anoop, Gopinathan; Rani, Janardhanan R.; Lim, Juhwan; Jang, Myoung Soo; Suh, Dong Wook; Kang, Shinill; Jun, Seong Chan; Yoo, Jae Soo

    2016-09-01

    The long-term instability of the presently available best commercial phosphor-converted light-emitting diodes (pcLEDs) is the most serious obstacle for the realization of low-cost and energy-saving lighting applications. Emission from pcLEDs starts to degrade after approximately 200 h of operation because of thermal degradation of the phosphors. We propose a new strategy to overcome this thermal degradation problem of phosphors by wrapping the phosphor particles with reduced graphene oxide (rGO). Through the rGO wrapping, we have succeeded in controlling the thermal degradation of phosphors and improving the stability of fabricated pcLEDs. We have fabricated pcLEDs with long-term stability that maintain nearly 98% of their initial luminescence emission intensity even after 800 h of continuous operation at 85 °C and 85% relative humidity. The pcLEDs fabricated using SrBaSi2O2N2:Eu2+ phosphor particles wrapped with reduced graphene oxide are thermally stable because of enhanced heat dissipation that prevents the ionization of Eu2+ to Eu3+. We believe that this technique can be applied to other rare-earth doped phosphors for the realization of highly efficient and stable white LEDs.

  15. Alkali metal and alkali earth metal gadolinium halide scintillators

    DOEpatents

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  16. Color stable manganese-doped phosphors

    DOEpatents

    Lyons, Robert Joseph; Setlur, Anant Achyut; Deshpande, Anirundha Rajendra; Grigorov, Ljudmil Slavchev

    2014-04-29

    A lighting apparatus capable of emitting white light includes a semiconductor light source; and a phosphor material radiationally coupled to the light source. The phosphor material includes a color-stable Mn.sup.+4 doped phosphor prepared by a process including providing a phosphor of formula I; A.sub.x[MF.sub.y]:Mn.sup.+4 I and contacting the phosphor in particulate form with a saturated solution of a composition of formula II in aqueous hydrofluoric acid; A.sub.x[MF.sub.y]; II wherein A is Li, Na, K, Rb, Cs, NR.sub.4 or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; R is H, lower alkyl, or a combination thereof; x is the absolute value of the charge of the [MF.sub.y] ion; and y is 5, 6 or 7. In particular embodiments, M is Si, Ge, Sn, Ti, Zr, or a combination thereof.

  17. 46 CFR 151.50-23 - Phosphoric acid.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Phosphoric acid. 151.50-23 Section 151.50-23 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-23 Phosphoric acid. (a) The term phosphoric acid as used in this subpart shall include, in addition to phosphoric acid, aqueous solutions of...

  18. 46 CFR 151.50-23 - Phosphoric acid.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Phosphoric acid. 151.50-23 Section 151.50-23 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-23 Phosphoric acid. (a) The term phosphoric acid as used in this subpart shall include, in addition to phosphoric acid, aqueous solutions of...

  19. Gadolinium-enhanced computed tomographic angiography: current status.

    PubMed

    Rosioreanu, Alex; Alberico, Ronald A; Litwin, Alan; Hon, Man; Grossman, Zachary D; Katz, Douglas S

    2005-01-01

    This article reviews the research to date, as well as our clinical experience from two institutions, on gadolinium-enhanced computed tomographic angiography (gCTA) for imaging the body. gCTA may be an appropriate examination for the small percentage of patients who would benefit from noninvasive vascular imaging, but who have contraindications to both iodinated contrast and magnetic resonance imaging. gCTA is more expensive than CTA with iodinated contrast, due to the dose of gadolinium administered, and gCTA has limitations compared with CTA with iodinated contrast, in that parenchymal organs are not optimally enhanced at doses of 0.5 mmol/kg or lower. However, in our experience, gCTA has been a very useful problem-solving examination in carefully selected patients. With the advent of 16-64 detector CT, in combination with bolus tracking, we believe that the overall dose of gadolinium needed for diagnostic CTA examinations, while relatively high, can be safely administered.

  20. Gadolinium-based magnetic resonance imaging contrast agents in interventional radiology.

    PubMed

    Atar, Eli

    2004-07-01

    Gadolinium-based agents are widely used in magnetic resonance imaging as contrast agents. These agents are radio-opaque enough for diagnostic imaging of the vascular tree by using digitally subtracted images as well as for imaging of the biliary system and the urinary tract. The recommended doses for gadolinium do not impair renal function or cause adverse reactions in patients with iodine sensitivity; thus patients with such conditions can safely undergo diagnostic angiography, either by MRI angiography or by catheterization using gadolinium as contrast agent, for diagnostic and therapeutic purposes.

  1. 21 CFR 182.1073 - Phosphoric acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Phosphoric acid. 182.1073 Section 182.1073 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN....1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance is generally...

  2. Growth Control in Colon Epithelial Cells: Gadolinium Enhances Calcium-Mediated Growth Regulation

    PubMed Central

    Attili, Durga; Jenkins, Brian; Aslam, Muhammad Nadeem; Dame, Michael K.

    2013-01-01

    Gadolinium, a member of the lanthanoid family of transition metals, interacts with calcium-binding sites on proteins and other biological molecules. The overall goal of the present investigation was to determine if gadolinium could enhance calcium-induced epithelial cell growth inhibition in the colon. Gadolinium at concentrations as low as 1–5 µM combined with calcium inhibits proliferation of human colonic epithelial cells more effectively than calcium alone. Gadolinium had no detectable effect on calcium-induced differentiation in the same cells based on change in cell morphology, induction of E-cadherin synthesis, and translocation of E-cadherin from the cytosol to the cell surface. When the colon epithelial cells were treated with gadolinium and then exposed to increased calcium concentrations, movement of extracellular calcium into the cell was suppressed. In contrast, gadolinium treatment had no effect on ionomycin-induced release of stored intracellular calcium into the cytoplasm. Whether these in vitro observations can be translated into an approach for reducing abnormal proliferation in the colonic mucosa (including polyp formation) is not known. These results do, however, provide an explanation for our recent findings that a multi-mineral supplement containing all of the naturally occurring lanthanoid metals including gadolinium are more effective than calcium alone in preventing colon polyp formation in mice on a high-fat diet. PMID:23008064

  3. Growth control in colon epithelial cells: gadolinium enhances calcium-mediated growth regulation.

    PubMed

    Attili, Durga; Jenkins, Brian; Aslam, Muhammad Nadeem; Dame, Michael K; Varani, James

    2012-12-01

    Gadolinium, a member of the lanthanoid family of transition metals, interacts with calcium-binding sites on proteins and other biological molecules. The overall goal of the present investigation was to determine if gadolinium could enhance calcium-induced epithelial cell growth inhibition in the colon. Gadolinium at concentrations as low as 1-5 μM combined with calcium inhibits proliferation of human colonic epithelial cells more effectively than calcium alone. Gadolinium had no detectable effect on calcium-induced differentiation in the same cells based on change in cell morphology, induction of E-cadherin synthesis, and translocation of E-cadherin from the cytosol to the cell surface. When the colon epithelial cells were treated with gadolinium and then exposed to increased calcium concentrations, movement of extracellular calcium into the cell was suppressed. In contrast, gadolinium treatment had no effect on ionomycin-induced release of stored intracellular calcium into the cytoplasm. Whether these in vitro observations can be translated into an approach for reducing abnormal proliferation in the colonic mucosa (including polyp formation) is not known. These results do, however, provide an explanation for our recent findings that a multi-mineral supplement containing all of the naturally occurring lanthanoid metals including gadolinium are more effective than calcium alone in preventing colon polyp formation in mice on a high-fat diet.

  4. Thermodynamic properties of gadolinium in Ga-Sn and Ga-Zn eutectic based alloys

    NASA Astrophysics Data System (ADS)

    Maltsev, Dmitry S.; Volkovich, Vladimir A.; Yamshchikov, Leonid F.; Chukin, Andrey V.

    2016-09-01

    Thermodynamic properties of gadolinium in Ga-Sn and Ga-Zn eutectic based alloys were studied. Temperature dependences of gadolinium activity in the studied alloys were determined at 573-1073 K employing the EMF method. Solubility of gadolinium in the Ga-Sn and Ga-Zn alloys was measured at 462-1073 K using IMCs sedimentation method. Activity coefficients as well as partial and excess thermodynamic functions of gadolinium in the studied alloys were calculated on the basis of the obtained experimental data.

  5. 21 CFR 182.1073 - Phosphoric acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Phosphoric acid. 182.1073 Section 182.1073 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance is...

  6. Micro-electro-mechanical systems phosphoric acid fuel cell

    DOEpatents

    Sopchak, David A [Livermore, CA; Morse, Jeffrey D [Martinez, CA; Upadhye, Ravindra S [Pleasanton, CA; Kotovsky, Jack [Oakland, CA; Graff, Robert T [Modesto, CA

    2010-08-17

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  7. Micro-electro-mechanical systems phosphoric acid fuel cell

    DOEpatents

    Sopchak, David A.; Morse, Jeffrey D.; Upadhye, Ravindra S.; Kotovsky, Jack; Graff, Robert T.

    2010-12-21

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  8. Color stable manganese-doped phosphors

    DOEpatents

    Lyons, Robert Joseph [Burnt Hills, NY; Setlur, Anant Achyut [Niskayuna, NY; Deshpande, Anirudha Rajendra [Twinsburg, OH; Grigorov, Ljudmil Slavchev [Sofia, BG

    2012-08-28

    A process for preparing color stable Mn.sup.+4 doped phosphors includes providing a phosphor of formula I; A.sub.x[MF.sub.y]:Mn.sup.+4 I and contacting the phosphor in particulate form with a saturated solution of a composition of formula II in aqueous hydrofluoric acid; A.sub.x[MF.sub.y]; II wherein A is Li, Na, K, Rb, Cs, NR.sub.4 or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; R is H, lower alkyl, or a combination thereof; x is the absolute value of the charge of the [MF.sub.y] ion; and y is 5, 6 or 7. In particular embodiments, M is Si, Ge, Sn, Ti, Zr, or a combination thereof. A lighting apparatus capable of emitting white light includes a semiconductor light source; and a phosphor composition radiationally coupled to the light source, and which includes a color stable Mn.sup.+4 doped phosphor.

  9. Are gadolinium-based contrast media nephrotoxic? A renal biopsy study.

    PubMed

    Akgun, Hulya; Gonlusen, Gulfiliz; Cartwright, Joiner; Suki, Wadi N; Truong, Luan D

    2006-09-01

    Gadolinium-based contrast media were originally introduced as alternatives to iodinated media for magnetic resonance imaging. Although originally thought to be nonnephrotoxic, gadolinium-based contrast media have recently been reported to be associated with acute renal failure; the mechanism and the underlying renal injury are not completely understood. We report what is, to our knowledge, the first renal biopsy in this context. A 56-year-old patient underwent 2 consecutive vascular imaging procedures in conjunction with gadolinium-based contrast medium administration. A few days later, the patient developed acute renal failure. A renal biopsy showed acute tubular cell injury including patchy tubular cell necrosis, tubular cell degeneration, and marked proliferation of tubular cells, together with mild interstitial edema and interstitial inflammation, but without significant glomerular or vascular changes. During supportive therapy, renal function was partially regained. This case emphasizes the potential nephrotoxicity of gadolinium-based contrast media and suggests that the nephrotoxicity is related to potentially reversible acute tubular cell injury.

  10. Red phosphors for use in high CRI fluorescent lamps

    DOEpatents

    Srivastava, Alok; Comanzo, Holly; Manivannan, Vankatesan; Setlur, Anant Achyut

    2005-11-15

    Novel red emitting phosphors for use in fluorescent lamps resulting in superior color rendering index values compared to conventional red phosphors. Also disclosed is a fluorescent lamp including a phosphor layer comprising blends of one or more of a blue phosphor, a blue-green phosphor, a green phosphor and a red a phosphor selected from the group consisting of SrY.sub.2 O.sub.4 :Eu.sup.3+, (Y,Gd)Al.sub.3 B.sub.4 O.sub.12 :Eu.sup.3+, and [(Y.sub.1-x-y-m La.sub.y)Gd.sub.x ]BO.sub.3 :Eu.sub.m wherein y<0.50 and m=0.001-0.3. The phosphor layer can optionally include an additional deep red phosphor and a yellow emitting phosphor. The resulting lamp will exhibit a white light having a color rendering index of 90 or higher with a correlated color temperature of from 2500 to 10000 Kelvin. The use of the disclosed red phosphors in phosphor blends of lamps results in high CRI light sources with increased stability and acceptable lumen maintenance over the course of the lamp life.

  11. Custom blending of lamp phosphors

    NASA Technical Reports Server (NTRS)

    Klemm, R. E.

    1978-01-01

    Spectral output of fluorescent lamps can be precisely adjusted by using computer-assisted analysis for custom blending lamp phosphors. With technique, spectrum of main bank of lamps is measured and stored in computer memory along with emission characteristics of commonly available phosphors. Computer then calculates ratio of green and blue intensities for each phosphor according to manufacturer's specifications and plots them as coordinates on graph. Same ratios are calculated for measured spectrum. Once proper mix is determined, it is applied as coating to fluorescent tubing.

  12. Photoluminescence varied by selective excitation in BiGdWO6:Eu3+ phosphor

    NASA Astrophysics Data System (ADS)

    Pavani, K.; Graça, M. P. F.; Kumar, J. Suresh; Neves, A. J.

    2017-12-01

    Eu3+ doped bismuth gadolinium tungstate (BGW), a simplest member of Aurivillius family of layered perovskites, was synthesized by solid-state reaction method. Structural characterisation has been performed by X-Ray diffraction (XRD), Raman spectroscopy, Fourier Transform Infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Band gap of the host matrix has been calculated using reflectance and absorption spectra. Three different mechanisms were found to explain the excitation of Eu3+ ions and are described in detail. Photoluminescence (PL) spectra of the BGW phosphor doped with Eu3+ ions consist of major emission lines associated with 5D0 → 7FJ (J = 0, 1, 2, 3 and 4) of Eu3+ ion. Site selective PL excitation and emission indicates that Eu3+ ions doped in BiGdWO6 are sensitive to the excitation wavelength without change in the structure. Change in emission spectra were observed when the excitation wavelength was changed. Judd-Ofelt (J-O) parameters were determined from the indirect method to interpret the interactions between the host and dopant ions along with detailed analysis of lifetime measurements.

  13. Technical aspects of MRI signal change quantification after gadolinium-based contrast agents' administration.

    PubMed

    Ramalho, Joana; Ramalho, Miguel; AlObaidy, Mamdoh; Semelka, Richard C

    2016-12-01

    Over the last 2years several studies have been published regarding gadolinium deposition in brain structures in patients with normal renal function after repeated administrations of gadolinium-based contrast agents (GBCAs). Most of the publications are magnetic resonance imaging (MRI) based retrospective studies, where gadolinium deposition may be indirectly measured by evaluating changes in T1 signal intensity (SI) in brain tissue, particularly in the dentate nucleus (DN) and/or globus pallidi (GP). The direct correlation between T1 signal changes and gadolinium deposition was validated by human pathology studies. However, the variability of the MR equipment and parameters used across different publications, along with the inherent limitations of MRI to assess gadolinium in human tissues should be acknowledged when interpreting those studies. Nevertheless, MRI studies remain essential regarding gadolinium bio-distribution knowledge. The aim of this paper is to overview current knowledge of technical aspects of T1 signal intensity evaluation by MRI and describe confounding factors, with the intention to achieve higher accuracy and maximize reproducibility. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Method of preparing a thermoluminescent phosphor

    DOEpatents

    Lasky, Jerome B.; Moran, Paul R.

    1979-01-01

    A thermoluminescent phosphor comprising LiF doped with boron and magnesium is produced by diffusion of boron into a conventional LiF phosphor doped with magnesium. Where the boron dopant is made to penetrate only the outer layer of the phosphor, it can be used to detect shallowly penetrating radiation such as tritium beta ays in the presence of a background of more penetrating radiation.

  15. The Influence of Phosphor and Binder Chemistry on the Aging Characteristics of Remote Phosphor Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Lynn; Yaga, Robert; Lamvik, Michael

    The influence of phosphor and binder layer chemistries on the lumen maintenance and color stability of remote phosphor disks were examined using wet high-temperature operational lifetime testing (WHTOL). As part of the experimental matrix, two different correlated color temperature (CCT) values, 2700 K and 5000 K, were studied and each had a different binder chemistry. The 2700 K samples used a urethane binder whereas the 5000 K samples used an acrylate binder. Experimental conditions were chosen to enable study of the binder and phosphor chemistries and to minimize photo-oxidation of the polycarbonate substrate. Under the more severe WHTOL conditions ofmore » 85°C and 85% relative humidity (RH), absorption in the binder layer significantly reduced luminous flux and produced a blue color shift. The milder WHTOL conditions of 75°C and 75% RH, resulted in chemical changes in the binder layer that may alter its index of refraction. As a result, lumen maintenance remained high, but a slight yellow shift was found. The aging of remote phosphor products provides insights into the impact of materials on the performance of phosphors in an LED lighting system.« less

  16. Method and apparatus for reading thermoluminescent phosphors

    DOEpatents

    Braunlich, Peter F.; Tetzlaff, Wolfgang

    1987-01-01

    An apparatus and method for rapidly reading thermoluminescent phosphors to determine the amount of luminescent energy stored therein. The stored luminescent energy is interpreted as a measure of the total exposure of the thermoluminescent phosphor to ionizing radiation. The thermoluminescent phosphor reading apparatus uses a laser to generate a laser beam. The laser beam power level is monitored by a laser power detector and controlled to maintain the power level nearly constant. A shutter or other laser beam interrupting means is used to control exposure of the thermoluminescent phosphor to the laser beam. The laser beam can be equalized using an optical equalizer so that the laser beam has an approximately uniform power density across the beam. The heated thermoluminescent phosphor emits a visible or otherwise detectable luminescent emission which is measured as an indication of the radiation exposure of the thermoluminescent phosphors. Also disclosed are preferred signal processing and control circuits.

  17. Fog and Phosphorous:Mist Connections?

    NASA Astrophysics Data System (ADS)

    Weathers, K. C.; Caraco, N. F.; Ewing, H. A.

    2005-12-01

    Fog (or cloud) is an important vector for delivering water, nutrients and pollutants to many coastal and montane ecosystems worldwide. Previous research has demonstrated that elements and ions whose sources are thought to be atmospheric, such as nitrogen and sulfur, can be deposited in substantial quantities via fog water deposition. However, the ecologically-important nutrient, phosphorous (P), is thought to derive primarily from guano or terrestrial sources; it has not been demonstrated to be deposited in significant quantities via rain water, for example. Here we suggest that phosphorous may be quite prevalent in fog water and that the atmospheric deposition of phosphorous to the forest floor is significant. Phosphate appears to be either immobilized or utilized in the forest floor. We examine the concentrations of phosphorous in fog water from several ecosystems in the Americas and the spatial patterns of P movement in a fog-dominated, redwood forest in Sonoma County, CA. Phosphate concentrations were surprisingly high, ranging from 0.002 to 2.9 mg/L, in fog samples from near-coast and montane ecosystems. Phosphate in fog water appears to be derived from a crustal source as demonstrated by the strong relationship between phosphorous concentrations in fog and K:Na ratios. Fog water phosphorous inputs to the forest floor were observed to decline exponentially and vary significantly from edge to interior in a redwood forest. Phosphate via fog deposition can be detected in shallow soil zones but not at greater depths, and only at the forest edge, during the summer fog season.

  18. A relative-intensity two-color phosphor thermography system

    NASA Technical Reports Server (NTRS)

    Merski, N. Ronald

    1991-01-01

    The NASA LaRC has developed a relative-intensity two-color phosphor thermography system. This system has become a standard technique for acquiring aerothermodynamic data in LaRC Hypersonic Facilities Complex (HFC). The relative intensity theory and its application to the LaRC phosphor thermography system is discussed along with the investment casting technique which is critical to the utilization of the phosphor method for aerothermodynamic studies. Various approaches to obtaining quantitative heat transfer data using thermographic phosphors are addressed and comparisons between thin-film data and thermographic phosphor data on an orbiter-like configuration are presented. In general, data from these two techniques are in good agreement. A discussion is given on the application of phosphors to integration heat transfer data reduction techniques (the thin film method) and preliminary heat transfer data obtained on a calibration sphere using thin-film equations are presented. Finally, plans for a new phosphor system which uses target recognition software are discussed.

  19. Compensated gadolinium-loaded plastic scintillators for thermal neutron detection (and counting)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumazert, Jonathan; Coulon, Romain; Bertrand, Guillaume H. V.

    2015-07-01

    Plastic scintillator loading with gadolinium-rich organometallic complexes shows a high potential for the deployment of efficient and cost-effective neutron detectors. Due to the low-energy photon and electron signature of thermal neutron capture by gadolinium-155 and gadolinium-157, alternative treatment to Pulse Shape Discrimination has to be proposed in order to display a trustable count rate. This paper discloses the principle of a compensation method applied to a two-scintillator system: a detection scintillator interacts with photon radiation and is loaded with gadolinium organometallic compound to become a thermal neutron absorber, while a non-gadolinium loaded compensation scintillator solely interacts with the photon partmore » of the incident radiation. Posterior to the nonlinear smoothing of the counting signals, a hypothesis test determines whether the resulting count rate after photon response compensation falls into statistical fluctuations or provides a robust image of a neutron activity. A laboratory prototype is tested under both photon and neutron irradiations, allowing us to investigate the performance of the overall compensation system in terms of neutron detection, especially with regards to a commercial helium-3 counter. The study reveals satisfactory results in terms of sensitivity and orientates future investigation toward promising axes. (authors)« less

  20. 21 CFR 582.1073 - Phosphoric acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Additives § 582.1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding practice. ...

  1. 21 CFR 582.1073 - Phosphoric acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Additives § 582.1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding practice. ...

  2. 21 CFR 582.1073 - Phosphoric acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Additives § 582.1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding practice. ...

  3. 21 CFR 582.1073 - Phosphoric acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Additives § 582.1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding practice. ...

  4. 21 CFR 582.1073 - Phosphoric acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Additives § 582.1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding practice. ...

  5. Spincoat-fabricated multilayer PDMS-phosphor composites for thermometry

    NASA Astrophysics Data System (ADS)

    Parajuli, Pratikshya; Allison, Stephen W.; Sabri, Firouzeh

    2017-06-01

    Phosphor thermometry offers unique advantages over traditional forms of temperature sensing. Polymer-encapsulated phosphor powders provide versatility and flexibility not achievable when using the thermographic phosphors in powder form. By encapsulating the powder in a polymeric sleeve custom devices with unique properties can be created. Here, the authors report on the design, synthesis, and characterization of the first multilayer thermographic phosphor structure. A thin layer of neat PDMS, Sylgard 184, was sandwiched between two layers of La2O2S:Eu phosphor-doped PDMS. The thicknesses ranged from 0.15 to 4 mm depending on spin speed. The temperature dependent luminescence of the structure was characterized from  -40 °C to 75 °C, in a low humidity environmental chamber. Results show suitability for thermometry in this range. In addition, for design guidance, quantitative values for thermal conductivity and stress/strain characteristics versus phosphor loading percentage and temperature were measured. Thermal conductivities ranged from 0.15 W mK-1 for the Sylgard 184 to a value between 0.3 and 0.4 W mK-1 for pure phosphor powder for temperatures from  -55 °C to 195 °C. Tensile properties for a strain of up to 1 revealed differences between the different phosphor loadings and phosphor batches. Young’s modulus for the spincoat layered materials was between 1.2 and 1.4 N mm-2 and 0.8 for drop casted samples.

  6. Thermal management of the remote phosphor layer in LED systems

    NASA Astrophysics Data System (ADS)

    Perera, Indika U.; Narendran, Nadarajah

    2013-09-01

    Generally in a white light-emitting diode (LED), a phosphor slurry is placed around the semiconductor chip or the phosphor is conformally coated over the chip to covert the narrowband, short-wavelength radiation to a broadband white light. Over the past few years, the remote-phosphor method has provided significant improvement in overall system efficiency by reducing the photons absorbed by the LED chip and reducing the phosphor quenching effects. However, increased light output and smaller light engine requirements are causing high radiant energy density on the remotephosphor plates, thus heating the phosphor layer. The phosphor layer temperature rise increases when the phosphor material conversion efficiency decreases. Phosphor layer heating can negatively affect performance in terms of luminous efficacy, color shift, and life. In such cases, the performance of remote-phosphor LED lighting systems can be improved by suitable thermal management to reduce the temperature of the phosphor layer. To verify this hypothesis and to understand the factors that influence the reduction in temperature, a phosphor layer was embedded in a perforated metal heatsink to remove the heat; the parameters that influence the effectiveness of heat extraction were then studied. These parameters included the heatsink-to-phosphor layer interface area and the thermal conductivity of the heatsink. The temperature of the remote-phosphor surface was measured using IR thermography. The results showed that when the heat conduction area of the heatsink increased, the phosphor layer temperature decreased, but at the same time the overall light output of the remote phosphor light engine used in this study decreased due to light absorption by the metal areas.

  7. [Change traits of phosphorous consumption structure in China and their effects on environmental phosphorous loads].

    PubMed

    Ma, Dun-Chao; Hu, Shan-Ying; Chen, Ding-Jiang; Li, You-Run

    2012-04-01

    Substance flow analysis was used to construct a model to analyze change traits of China's phosphorous (P) consumption structure from 1980 to 2008 and their influences on environmental phosphorous loads, then the correlation between several socioeconomic factors and phosphorous consumption pollution was investigated. It is found that phosphorous nutrient inputs of urban life and rural life on a per capita level climbed to 1.20 kg x a(-1) and 0.99 kg x a(-1) from 0.83 kg x a(-1) and 0.75 kg x a(-1) respectively, but phosphorous recycling ratios of urban life fell to 15.6% from 62.6%. P inputs of animal husbandry and planting also kept increasing, but the recycling ratio of the former decreased from 67.5% to 40.5%, meanwhile much P input of the latter was left in agricultural soil. Correlation coefficients were all above 0.90, indicating that population, urbanization level, development levels of planting and animal husbandry were important incentives for P consumption pollution in China. Environmental Kuznets curve showed that China still stayed in the early development stage, promoting economic growth at an expense of environmental quality. This study demonstrates that China's P consumption system is being transformed into a linear and open structure, and that P nutrient loss and environmental P loads increase continually.

  8. Phosphorous-Containing Polymers for Regenerative Medicine

    PubMed Central

    Watson, Brendan M.; Kasper, F. Kurtis; Mikos, Antonios G.

    2014-01-01

    Disease and injury have resulted in a large, unmet need for functional tissue replacements. Polymeric scaffolds can be used to deliver cells and bioactive signals to address this need for regenerating damaged tissue. Phosphorous-containing polymers have been implemented to improve and accelerate the formation of native tissue both by mimicking the native role of phosphorous groups in the body and by attachment of other bioactive molecules. This manuscript reviews the synthesis, properties, and performance of phosphorous-containing polymers that can be useful in regenerative medicine applications. PMID:24565855

  9. [Rapid imaging in orbito-ocular pathology. Contribution of gadolinium].

    PubMed

    Pigeau, I; Legeais, J M; D'Hermies, F; Fayet, B; Leport, M; Abenhaim, A; Guinet, C; Levy, C; Renard, G; Vadrot, D

    1990-01-01

    To evaluate Gradient-Echo Imaging (GEI) in orbito-ocular pathology, 15 volunteers and 34 patients (40 lesions) were examined with GEA T1 and GEA T2 (0.5 T). Results were compared with SE T1 in all cases, with SE T2 in 20 cases and with other imaging modalities (CT). 30 patients were examined before and after injection of gadolinium. Final diagnosis was obtained by surgery or biopsy in 24 cases or by combined results of imaging and clinical findings in 16 cases. Compared with SE, GEA demonstrated a better visualisation of optic nerve, orbital muscles, choroidal-retinal layer, lens capsule and episclera and a better detection of small lesions. It is very helpful for characterisation of lesions containing hemorrhages or paramagnetic components (melanine, gadolinium) or of vascular nature (angioma). Gadolinium was useful for detection of small lesions or characterisation of a few lesions. Thus GEA seems to be an efficient method for the evaluation of orbito-ocular pathology.

  10. Distribution and chemical forms of gadolinium in the brain: a review.

    PubMed

    Kanda, Tomonori; Nakai, Yudai; Hagiwara, Akifumi; Oba, Hiroshi; Toyoda, Keiko; Furui, Shigeru

    2017-11-01

    In the 3 years since residual gadolinium-based contrast agent (GBCA) in the brain was first reported, much has been learned about its accumulation, including the pathway of GBCA entry into the brain, the brain distribution of GBCA and its excretion. Here we review recent progress in understanding the routes of gadolinium deposition in brain structures.

  11. Recycling of the anode from spent Ni-MH batteries for synthesis of the lanthanide oxysulfide/oxysulfate compounds used in an oxygen storage and release system

    NASA Astrophysics Data System (ADS)

    Dixini, P. V. M.; Celante, V. G.; Lelis, M. F. F.; Freitas, M. B. J. G.

    2014-08-01

    In this work, lanthanide oxysulfide/oxysulfate compounds, denominated as an oxygen storage and release system, have been synthesized from the anode electrodes of spent Ni-MH batteries. The rare earth metals have recovered by means of chemical precipitation as a mixture of La2(SO4)3, Ce2(SO4)3, and Nd2(SO4)3. The synthesis of (La·Nd)O2S·CeO2 have been carried out by subjecting a mixture of La2(SO4)3, Ce2(SO4)3, and Nd2(SO4)3 to a heat treatment in a reducing atmosphere up to 1000 °C. The (La·Nd)O2SO4·CeO2 compounds have been obtained after thermal treatment of (La·Nd)O2S·CeO2 in a synthetic air atmosphere. The oxysulfide/oxysulfate compounds have been subjected to thermal cycles, respectively, in synthetic air as well as in an N2-CO atmosphere. The thermogravimetric plot (TG) for (La·Nd)2O2S·CeO2 shows a mass gain of 14.98% w/w in a temperature range of 300-550 °C, which is due to the oxidation of (La·Nd)2O2S·CeO2 to (La·Nd)2O2SO4CeO2, where 2 mol of O2 are added. Likewise, in the (La·Nd)2O2SO4CeO2 thermogravimetric plot, a mass loss of 17.16% w/w is observed in the range of 500-750 °C. This loss of mass can be associated with output of 2 mol of O2 forming again the (La·Nd)2O2S·CeO2. The transformation of the (La·Nd)2·O2S·CeO2 to (La·Nd)2O2SO4CeO2 causes an increase in the macropores.

  12. Feasibility and accuracy of dual-layer spectral detector computed tomography for quantification of gadolinium: a phantom study.

    PubMed

    van Hamersvelt, Robbert W; Willemink, Martin J; de Jong, Pim A; Milles, Julien; Vlassenbroek, Alain; Schilham, Arnold M R; Leiner, Tim

    2017-09-01

    The aim of this study was to evaluate the feasibility and accuracy of dual-layer spectral detector CT (SDCT) for the quantification of clinically encountered gadolinium concentrations. The cardiac chamber of an anthropomorphic thoracic phantom was equipped with 14 tubular inserts containing different gadolinium concentrations, ranging from 0 to 26.3 mg/mL (0.0, 0.1, 0.2, 0.4, 0.5, 1.0, 2.0, 3.0, 4.0, 5.1, 10.6, 15.7, 20.7 and 26.3 mg/mL). Images were acquired using a novel 64-detector row SDCT system at 120 and 140 kVp. Acquisitions were repeated five times to assess reproducibility. Regions of interest (ROIs) were drawn on three slices per insert. A spectral plot was extracted for every ROI and mean attenuation profiles were fitted to known attenuation profiles of water and pure gadolinium using in-house-developed software to calculate gadolinium concentrations. At both 120 and 140 kVp, excellent correlations between scan repetitions and true and measured gadolinium concentrations were found (R > 0.99, P < 0.001; ICCs > 0.99, CI 0.99-1.00). Relative mean measurement errors stayed below 10% down to 2.0 mg/mL true gadolinium concentration at 120 kVp and below 5% down to 1.0 mg/mL true gadolinium concentration at 140 kVp. SDCT allows for accurate quantification of gadolinium at both 120 and 140 kVp. Lowest measurement errors were found for 140 kVp acquisitions. • Gadolinium quantification may be useful in patients with contraindication to iodine. • Dual-layer spectral detector CT allows for overall accurate quantification of gadolinium. • Interscan variability of gadolinium quantification using SDCT material decomposition is excellent.

  13. Type of MRI contrast, tissue gadolinium, and fibrosis.

    PubMed

    Do, Catherine; Barnes, Jeffrey L; Tan, Chunyan; Wagner, Brent

    2014-10-01

    It has been presupposed that the thermodynamic stability constant (K(therm)) of gadolinium-based MRI chelates relate to the risk of precipitating nephrogenic systemic fibrosis. The present study compared low-K(therm) gadodiamide with high-K(therm) gadoteridol in cultured fibroblasts and rats with uninephrectomies. Gadolinium content was assessed using scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy in paraffin-embedded tissues. In vitro, fibroblasts demonstrated dose-dependent fibronectin generation, transforming growth factor-β production, and expression of activated myofibroblast stress fiber protein α-smooth muscle actin. There were negligible differences with respect to toxicity or proliferation between the two contrast agents. In the rodent model, gadodiamide treatment led to greater skin fibrosis and dermal cellularity than gadoteridol. In the kidney, both contrast agents led to proximal tubule vacuolization and increased fibronectin accumulation. Despite large detectable gadolinium signals in the spleen, skin, muscle, and liver from the gadodiamide-treated group, contrast-induced fibrosis appeared to be limited to the skin and kidney. These findings support the hypothesis that low-K(therm) chelates have a greater propensity to elicit nephrogenic systemic fibrosis and demonstrate that certain tissues are resistant to these effects.

  14. Characteristics of Gadolinium Oxide Nanoparticles Using Terahertz Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Dongkyu; Maeng, Inhee; Son, Joo-Hiuk

    2009-04-19

    The penetration property of the terahertz electromagnetic (THz) wave is relevant to its use. We used the THz wave spectroscopy system which easily penetrates some materials that do not contain water, e.g., plastic and ceramics. The system has been developed for several purposes, including measuring the properties of semiconductors and bio-materials, and detecting plastic bombs and ceramic knives at airports. It is also used for medical imaging systems, such as magnetic resonance imaging (MRI), at some research institutes. It can show not only the difference in amplitude, but also the difference of the phase of each point of sample. MRImore » technology usually uses contrast agents to enhance the quality of the image. Gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA), made with a heavy metal ion, is commonly used as a clinical MRI contrast agent. Gadolinium oxide (Gd{sub 2}O{sub 3}) nanoparticle is a new contrast agent. It serves to equip the core of each particle with antibodies or ligands. It can freely circulate in blood vessels without amassing in the liver or lungs. This study shows the characteristics of gadolinium oxide nanoparticles to further advance terahertz medical imaging.« less

  15. Fundamental study of phosphor separation by controlling magnetic force

    NASA Astrophysics Data System (ADS)

    Wada, Kohei; Mishima, Fumihito; Akiyama, Yoko; Nishijima, Shigehiro

    2013-11-01

    The phosphor wastes consist of phosphors with different emission colors, green (LAP), red (YOX), blue (BAM) and white (HP). It is required to recover and reuse the rare earth phosphors with high market value. In this study, we tried to separate the phosphor using the magnetic separation by HTS bulk magnet utilizing the differences of magnetic susceptibility by the type of phosphors. We succeeded in the successive separation of HP with low market value from YOX and BAM including the rare earth using the magnetic Archimedes method. In this method, vertical and radial components of the magnetic force were used.

  16. Phosphoric acid

    Integrated Risk Information System (IRIS)

    Phosphoric acid ; CASRN 7664 - 38 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  17. The dosimetric impact of gadolinium-based contrast media in GBM brain patient plans for a MRI-Linac

    NASA Astrophysics Data System (ADS)

    Bilal Ahmad, Syed; Paudel, Moti Raj; Sarfehnia, Arman; Kim, Anthony; Pang, Geordi; Ruschin, Mark; Sahgal, Arjun; Keller, Brian M.

    2017-08-01

    Dosimetric effects of gadolinium based contrast media (Gadovist) were evaluated for the Elekta MRI linear accelerator using the research version of the Monaco treatment planning system (TPS). In order to represent a gadolinium uptake, the contrast was manually assigned to a phantom as well as to the gross tumour volume (GTV) of 6 glioblastoma multiforme (GBM) patients. A preliminary estimate of the dose enhancement, due to gadolinium, was performed using the phantom irradiated with a single beam. A more complicated assessment was performed for the GBM patients using a 7 field IMRT technique. The material table in Monaco was modified in order to identify the presence of a non-biological material. The dose distribution was modelled using GPUMCD (MC algorithm in Monaco) for an unmodified (or default) material table (DMT) as well as for a modified (or custom) material table (CMT) for both the phantom and patients. Various concentrations ranging between 8 and 157 mg ml-1 were used to represent the gadolinium uptake in the patient’s GTV. It was assumed that the gadolinium concentration remained the same for the entire course of radiation treatment. Results showed that at the tissue-Gadovist interface, inside the phantom, dose scored using the DMT was 7% lower compared to that using the CMT for 157 mg ml-1 concentration of gadolinium. Dosimetric differences in the case of the patient study were measured using the DVH parameters. D 50% was higher by 6% when the DMT was used compared to the CMT for dose modelling for a gadolinium concentration of 157 mg ml-1. This difference decreased gradually with decreasing concentration of gadolinium. It was concluded that dosimetric differences can be quantified in Monaco if the tumour-gadolinium concentration is more than 23 mg ml-1. If the gadolinium concentration is lower than 23 mg ml-1, then a correction for the presence of gadolinium may not be necessary in the TPS.

  18. The dosimetric impact of gadolinium-based contrast media in GBM brain patient plans for a MRI-Linac.

    PubMed

    Ahmad, Syed Bilal; Paudel, Moti Raj; Sarfehnia, Arman; Kim, Anthony; Pang, Geordi; Ruschin, Mark; Sahgal, Arjun; Keller, Brian M

    2017-08-01

    Dosimetric effects of gadolinium based contrast media (Gadovist) were evaluated for the Elekta MRI linear accelerator using the research version of the Monaco treatment planning system (TPS). In order to represent a gadolinium uptake, the contrast was manually assigned to a phantom as well as to the gross tumour volume (GTV) of 6 glioblastoma multiforme (GBM) patients. A preliminary estimate of the dose enhancement, due to gadolinium, was performed using the phantom irradiated with a single beam. A more complicated assessment was performed for the GBM patients using a 7 field IMRT technique. The material table in Monaco was modified in order to identify the presence of a non-biological material. The dose distribution was modelled using GPUMCD (MC algorithm in Monaco) for an unmodified (or default) material table (DMT) as well as for a modified (or custom) material table (CMT) for both the phantom and patients. Various concentrations ranging between 8 and 157 mg ml -1 were used to represent the gadolinium uptake in the patient's GTV. It was assumed that the gadolinium concentration remained the same for the entire course of radiation treatment. Results showed that at the tissue-Gadovist interface, inside the phantom, dose scored using the DMT was 7% lower compared to that using the CMT for 157 mg ml -1 concentration of gadolinium. Dosimetric differences in the case of the patient study were measured using the DVH parameters. D 50% was higher by 6% when the DMT was used compared to the CMT for dose modelling for a gadolinium concentration of 157 mg ml -1 . This difference decreased gradually with decreasing concentration of gadolinium. It was concluded that dosimetric differences can be quantified in Monaco if the tumour-gadolinium concentration is more than 23 mg ml -1 . If the gadolinium concentration is lower than 23 mg ml -1 , then a correction for the presence of gadolinium may not be necessary in the TPS.

  19. Blue-green and green phosphors for lighting applications

    DOEpatents

    Setlur, Anant Achyut; Chandran, Ramachandran Gopi; Henderson, Claire Susan; Nammalwar, Pransanth Kumar; Radkov, Emil

    2012-12-11

    Embodiments of the present techniques provide a related family of phosphors that may be used in lighting systems to generate blue or blue-green light. The phosphors include systems having a general formula of: ((Sr.sub.1-zM.sub.z).sub.1-(x+w)A.sub.wCe.sub.x).sub.3(Al.sub.1-ySi.s- ub.y)O.sub.4+y+3(x-w)F.sub.1-y-3(x-w) (I), wherein 0phosphors made accordingly to these formulations maintain emission intensity across a wide range of temperatures. The phosphors may be used in lighting systems, such as LEDs and fluorescent tubes, among others, to produce blue and blue/green light. Further, the phosphors may be used in blends with other phosphors, or in combined lighting systems, to produce white light suitable for illumination.

  20. Gadolinium-enhanced cardiovascular magnetic resonance: administered dose in relationship to United States Food and Drug Administration (FDA) guidelines.

    PubMed

    Nacif, Marcelo S; Arai, Andrew E; Lima, Joao A C; Bluemke, David A

    2012-02-29

    Myocardial late gadolinium enhancement was originally validated using higher than label-recommended doses of gadolinium chelate. The objective of this study was to evaluate available evidence for various gadolinium dosing regimens used for CMR. The relationship of gadolinium dose warnings (due to nephrogenic systemic fibrosis) announced in 2008 to gadolinium dosing regimens was also examined. We conducted a meta-analysis of peer reviewed publications from January, 2004 to December, 2010. Major subject search headings (MeSh) terms from the National Library of Medicine's PubMed were: contrast media, gadolinium, heart, magnetic resonance imaging; searches were limited to human studies with abstracts published in English. Case reports, review articles, editorials, MRA related papers and all reports that did not indicate gadolinium type or weight-based dose were excluded. For all included references, full text was available to determine the total administered gadolinium dose on a per kg basis. Average and median dose values were weighted by the number of subjects in each study. 399 publications were identified in PubMed; 233 studies matched the inclusion criteria, encompassing 19,934 patients with mean age 54.2 ± 11.4 (range 9.3 to 76 years). 34 trials were related to perfusion testing and 199 to myocardial late gadolinium enhancement. In 2004, the weighted-median and weighted-mean contrast dose were 0.15 and 0.16 ± 0.06 mmol/kg, respectively. Median contrast doses for 2005-2010 were: 0.2 mmol/kg for all years, respectively. Mean contrast doses for the years 2005-2010 were: 0.19 ± 0.03, 0.18 ± 0.04, 0.18 ± 0.10, 0.18 ± 0.03, 0.18 ± 0.04 and 0.18 ± 0.04 mmol/kg, respectively (p for trend, NS). Gadopentetate dimeglumine was the most frequent gadolinium type [114 (48.9%) studies]. No change in mean gadolinium dose was present before, versus after the Food and Drug Administration (FDA) black box warning (p > 0.05). Three multi-center dose ranging trials have been

  1. Phosphor Thermometry at ORNL

    NASA Astrophysics Data System (ADS)

    Allison, S. W.; Gates, M. R.; Beshears, D. L.; Gillies, G. T.

    2003-09-01

    Phosphor materials are, by design, capable of efficiently converting excitation energy into fluorescence. The temperature-dependent characteristics of this fluorescence provide the basis for noncontact thermometry. In the past decade this approach has been applied to turbine engine diagnostics, liquid temperature measurements for heat pump research, combustion engine intake valve and piston measurements, galvanneal steel processing, transient thermometry of particle beam targets, and microcantilevers used in MEMS devices. The temperatures involved range from ambient to in excess of 1200 °C. Some of these applications have involved fiber optics for light delivery and/or fluorescence signal collection. In addition to fielding these applications, there has been considerable work in the laboratory aimed at exploring further improvements and adding to the database of temperature-characterized phosphors. The activities involve investigation of short-decay time phosphors for use on imaging surfaces moving at high speeds, measuring and modeling pressure as well as temperature dependence, developing phosphor adhesion methods, developing phase-based data acquisition approaches. A significant advance is that light-emitting diodes can now be used to provide adequate stimulation of fluorescence in some applications. Recently nanophosphors have become available. The spectral properties and, by implication, thermal dependence of these properties change with particle size. This has ramifications that need to be explored. The ways in which such materials can be exploited for micro- and nano-technology are just now being addressed. These applications and developments mentioned above will be surveyed and discussed as well as envisioned future improvements and new uses for this thermometry technique.

  2. Apparatuses and methods for laser reading of thermoluminescent phosphors

    DOEpatents

    Braunlich, Peter F.; Tetzlaff, Wolfgang

    1989-01-01

    Apparatuses and methods for rapidly reading thermoluminescent phosphors to determine the amount of luminescent energy stored therein. The stored luminescent energy is interpreted as a measure of the total exposure of the thermoluminescent phosphor to ionizing radiation. The thermoluminescent phosphor reading apparatus uses a laser to generate a laser beam. The laser beam power level is monitored by a laser power detector and controlled to maintain the power level at a desired value or values which can vary with time. A shutter or other laser beam interrupting means is used to control exposure of the thermoluminescent phosphor to the laser beam. The laser beam can be equalized using an opitcal equalizer so that the laser beam has an approximately uniform power density across the beam. The heated thermoluminescent phosphor emits a visible or otherwise detectable luminescent emission which is measured as an indication of the radiation exposure of the thermoluminscent phosphors. Also disclosed are preferred signal processing and control circuits including one system using a digital computer. Also disclosed are time-profiled laser power cycles for pre-anneal, read and post-anneal treatment of phosphors.

  3. UV-emitting phosphors: synthesis, photoluminescence and applications

    NASA Astrophysics Data System (ADS)

    Thakare, D. S.; Omanwar, S. K.; Muthal, P. L.; Dhopte, S. M.; Kondawar, V. K.; Moharil, S. V.

    2004-02-01

    UV-emitting phosphors find uses in various applications, such as photocopying, phototherapy, sun tanning, etc. The phosphor requirements for these applications vary. Simple methods for preparing different UV-emitting phosphors are described. Novel syntheses for some borates (SrB4O7:Eu, CeMgB5O10:Gd, GdBO3:Pr, LaB3O6:Ce,Bi, LaB3O6:Gd,Bi, LaB3O6:Ce, Ba2B5O9Cl:Eu), a silicate (Ba2SiO5:Pb), phosphates (Sr2-xMgxP2O7:Eu) and a sulphate (CaSO4:Eu) are reported. Photoluminescence spectra of the phosphors so prepared are presented and discussed in the context of applications like phototherapy and photocopying lamps, photoluminescent liquid crystal displays, radiophotoluminescence, etc.

  4. Method of separating and purifying gadolinium-153

    DOEpatents

    Bray, Lane A [Richland, WA; Corneillie, Todd M [Davis, CA

    2001-01-01

    The present invention is an improvement to the method of separating and purifying gadolinium from a mixture of gadolinium and europium having the steps of (a) dissolving the mixture in an acid; (b) reducing europium+3 to europium+2; and (c) precipitating the europium+2 with a sulfate ion in a superstoichiometric amount; wherein the improvement is achieved by using one or more of the following: (i) the acid is an anoic acid; (ii) the reducing is with zinc metal in the absence of a second metal or with an amount of the second metal that is ineffective in the reducing; (iii) adding a group IIA element after step (c) for precipitating the excess sulfate prior to repeating step (c); (iv) the sulfate is a sulfate salt with a monovalent cation; (v) adding cold europium+3 prior to repeating step (c).

  5. 40 CFR 721.10685 - Phosphoric acid, mixed esters (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphoric acid, mixed esters (generic... Specific Chemical Substances § 721.10685 Phosphoric acid, mixed esters (generic). (a) Chemical substance... phosphoric acid, mixed esters (PMN P-13-170) is subject to reporting under this section for the significant...

  6. 40 CFR 721.6097 - Phosphoric acid derivative (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Phosphoric acid derivative (generic... Specific Chemical Substances § 721.6097 Phosphoric acid derivative (generic name). (a) Chemical substance... phosphoric acid derivative (PMN P-95-284) is subject to reporting under this section for the significant new...

  7. 40 CFR 721.6097 - Phosphoric acid derivative (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Phosphoric acid derivative (generic... Specific Chemical Substances § 721.6097 Phosphoric acid derivative (generic name). (a) Chemical substance... phosphoric acid derivative (PMN P-95-284) is subject to reporting under this section for the significant new...

  8. 40 CFR 721.3135 - Phosphorous modified epoxy resin (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Phosphorous modified epoxy resin... Specific Chemical Substances § 721.3135 Phosphorous modified epoxy resin (generic). (a) Chemical substance... phosphorous modified epoxy resin (PMNs P-00-992 and P-01-471) is subject to reporting under this section for...

  9. 40 CFR 721.3135 - Phosphorous modified epoxy resin (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Phosphorous modified epoxy resin... Specific Chemical Substances § 721.3135 Phosphorous modified epoxy resin (generic). (a) Chemical substance... phosphorous modified epoxy resin (PMNs P-00-992 and P-01-471) is subject to reporting under this section for...

  10. 40 CFR 721.3135 - Phosphorous modified epoxy resin (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphorous modified epoxy resin... Specific Chemical Substances § 721.3135 Phosphorous modified epoxy resin (generic). (a) Chemical substance... phosphorous modified epoxy resin (PMNs P-00-992 and P-01-471) is subject to reporting under this section for...

  11. 40 CFR 721.3135 - Phosphorous modified epoxy resin (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphorous modified epoxy resin... Specific Chemical Substances § 721.3135 Phosphorous modified epoxy resin (generic). (a) Chemical substance... phosphorous modified epoxy resin (PMNs P-00-992 and P-01-471) is subject to reporting under this section for...

  12. 40 CFR 721.3135 - Phosphorous modified epoxy resin (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphorous modified epoxy resin... Specific Chemical Substances § 721.3135 Phosphorous modified epoxy resin (generic). (a) Chemical substance... phosphorous modified epoxy resin (PMNs P-00-992 and P-01-471) is subject to reporting under this section for...

  13. Gadolinium: Central Metal of the Lanthanoids

    ERIC Educational Resources Information Center

    Laing, Michael

    2009-01-01

    The physical and chemical properties of gadolinium are compared with those of the other lanthanoids. Some properties are intermediate between those of lanthanum and lutetium; some between those of barium and hafnium; and others (unexpectedly) between those of ytterbium and lutetium. Both the remarkably high molar heat capacity of the metal and the…

  14. Gadolinium Use in Spine Pain Management Procedures for Patients with Contrast Allergies: Results in 527 Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safriel, Yair; Ang, Roberto; Ali, Muhammed

    2008-03-15

    Introduction. To review the safety and efficacy of gadolinium in spine pain management procedures in patients at high risk for a contrast reaction and who are not suitable candidates for the use of standard non-ionic contrast. Methods. We reviewed records over a 61-month period of all image-guided spinal pain management procedures where patients had allergies making them unsuitable candidates for standard non-ionic contrast and where gadolinium was used to confirm needle tip placement prior to injection of medication. Results. Three hundred and four outpatients underwent 527 procedures. A spinal needle was used in all but 41 procedures. Gadolinium was visualizedmore » using portable C-arm fluoroscopy in vivo allowing for confirmation of needle tip location. The gadolinium dose ranged from 0.2 to 10 ml per level. The highest dose received by one patient was 15.83 ml intradiscally during a three-level discogram. Three hundred and one patients were discharged without complication or known delayed complications. One patient had documented intrathecal injection but without sequelae and 2 patients who underwent cervical procedures experienced seizures requiring admission to the intensive care unit. Both the latter patients were discharged without any further complications. Conclusion. Based on our experience we recommend using gadolinium judiciously for needle tip confirmation. We feel more confident using gadolinium in the lumbar spine and in cervical nerve blocks. Gadolinium should probably not be used as an injectate volume expander. The indications for gadolinium use in cervical needle-guided spine procedures are less clear and use of a blunt-tipped needle should be considered.« less

  15. [Gadolinium-based contrast agents for magnetic resonance imaging].

    PubMed

    Carrasco Muñoz, S; Calles Blanco, C; Marcin, Javier; Fernández Álvarez, C; Lafuente Martínez, J

    2014-06-01

    Gadolinium-based contrast agents are increasingly being used in magnetic resonance imaging. These agents can improve the contrast in images and provide information about function and metabolism, increasing both sensitivity and specificity. We describe the gadolinium-based contrast agents that have been approved for clinical use, detailing their main characteristics based on their chemical structure, stability, and safety. In general terms, these compounds are safe. Nevertheless, adverse reactions, the possibility of nephrotoxicity from these compounds, and the possibility of developing nephrogenic systemic fibrosis will be covered in this article. Lastly, the article will discuss the current guidelines, recommendations, and contraindications for their clinical use, including the management of pregnant and breast-feeding patients. Copyright © 2014 SERAM. Published by Elsevier Espana. All rights reserved.

  16. Theoretical study of structure and stability of small gadolinium carboxylate complexes in liquid scintillator solvents.

    PubMed

    Huang, Pin-Wen

    2014-09-01

    The structural properties of three small gadolinium carboxylate complexes in three liquid scintillator solvents (pseudocumene, linear alkylbenzene, and phenyl xylylethane) were theoretically investigated using density functional theory (B3LYP/LC-RECP) and polarizable continuum model (PCM). The average interaction energy between gadolinium atom and carboxylate ligand (E(int)) and the energy difference of the highest singly occupied molecular orbital and lowest unoccupied molecular orbital (Δ(SL)) were calculated to evaluate and compare the relative stability of these complexes in solvents. The calculation results show that the larger (with a longer alkyl chain) gadolinium carboxylate complex has greater stability than the smaller one, while these gadolinium carboxylates in linear alkylbenzene were found to have greater stability than those in the other two solvents.

  17. Characteristics of Gadolinium Oxide Nanoparticles Using Terahertz Spectroscopy (abstract)

    NASA Astrophysics Data System (ADS)

    Lee, Dongkyu; Maeng, Inhee; Oh, Seung Jae; Kim, Taekhoon; Cho, Byung Kyu; Lee, Kwangyeol; Son, Joo-Hiuk

    2009-04-01

    The penetration property of the terahertz electromagnetic (THz) wave is relevant to its use. We used the THz wave spectroscopy system which easily penetrates some materials that do not contain water, e.g., plastic and ceramics. The system has been developed for several purposes, including measuring the properties of semiconductors and bio-materials, and detecting plastic bombs and ceramic knives at airports. It is also used for medical imaging systems, such as magnetic resonance imaging (MRI), at some research institutes. It can show not only the difference in amplitude, but also the difference of the phase of each point of sample. MRI technology usually uses contrast agents to enhance the quality of the image. Gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA), made with a heavy metal ion, is commonly used as a clinical MRI contrast agent. Gadolinium oxide (Gd2O3) nanoparticle is a new contrast agent. It serves to equip the core of each particle with antibodies or ligands. It can freely circulate in blood vessels without amassing in the liver or lungs. This study shows the characteristics of gadolinium oxide nanoparticles to further advance terahertz medical imaging.

  18. Toxicological and pharmacological effects of gadolinium and samarium chlorides

    PubMed Central

    Haley, T. J.; Raymond, K.; Komesu, N.; Upham, H. C.

    1961-01-01

    A study has been made of the toxicology and pharmacology of gadolinium and samarium chlorides. The symptoms of acute toxicity following intraperitoneal injection are described. The chronic oral ingestion of both chemicals for 12 weeks produced no effects on growth or the blood picture, and only the male rats receiving gadolinium chloride showed liver damage. The pharmacological responses to both chemicals were mainly depressant on all systems studied, and death was associated with cardiovascular collapse coupled with respiratory paralysis. The greatest damage seen was on abraded skin, where non-healing ulcers were produced by both chemicals, whereas irritation of intact skin and ocular tissues was only transient in nature. PMID:13903826

  19. Angle-resolved photoluminescence spectrum of a uniform phosphor layer

    NASA Astrophysics Data System (ADS)

    Fujieda, Ichiro; Ohta, Masamichi

    2017-10-01

    A photoluminescence spectrum depends on an emission angle due to self-absorption in a phosphor material. Assuming isotropic initial emission and Lambert-Beer's law, we have derived simple expressions for the angle-resolved spectra emerging from the top and bottom surfaces of a uniform phosphor layer. The transmittance of an excitation light through the phosphor layer can be regarded as a design parameter. For a strongly-absorbing phosphor layer, the forward flux is less intense and more red-shifted than the backward flux. The red-shift is enhanced as the emission direction deviates away from the plane normal. When we increase the transmittance, the backward flux decreases monotonically. The forward flux peaks at a certain transmittance value. The two fluxes become similar to each other for a weakly-absorbing phosphor layer. We have observed these behaviors in experiment. In a practical application, self-absorption decreases the efficiency of conversion and results in angle-dependent variations in chromaticity coordinates. A patterned phosphor layer with a secondary optical element such as a remote reflector alleviates these problems.

  20. Preparation of balanced trichromatic white phosphors for solid-state white lighting.

    PubMed

    Al-Waisawy, Sara; George, Anthony F; Jadwisienczak, Wojciech M; Rahman, Faiz

    2017-08-01

    High quality white light-emitting diodes (LEDs) employ multi-component phosphor mixtures to generate light of a high color rendering index (CRI). The number of distinct components in a typical phosphor mix usually ranges from two to four. Here we describe a systematic experimental technique for starting with phosphors of known chromatic properties and arriving at their respective proportions for creating a blended phosphor to produce light of the desired chromaticity. This method is applicable to both LED pumped and laser diode (LD) pumped white light sources. In this approach, the radiometric power in the down-converted luminescence of each phosphor is determined and that information is used to estimate the CIE chromaticity coordinate of light generated from the mixed phosphor. A suitable method for mixing multi-component phosphors is also described. This paper also examines the effect of light scattering particles in phosphors and their use for altering the spectral characteristics of LD- and LED-generated light. This is the only approach available for making high efficiency phosphor-converted single-color LEDs that emit light of wide spectral width. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Porphyrin-containing polyaspartamide gadolinium complexes as potential magnetic resonance imaging contrast agents.

    PubMed

    Yan, Guo-Ping; Li, Zhen; Xu, Wei; Zhou, Cheng-Kai; Yang, Lian; Zhang, Qiao; Li, Liang; Liu, Fan; Han, Lin; Ge, Yuan-Xing; Guo, Jun-Fang

    2011-04-04

    Porphyrin-containing polyaspartamide ligands (APTSPP-PHEA-DTPA) were synthesized by the incorporation of diethylenetriaminepentaacetic acid (DTPA) and 5-(4'-aminophenyl)-10,15,20-tris(4'-sulfonatophenyl) porphyrin, trisodium salt (APTSPP) into poly-α,β-[N-(2-hydroxyethyl)-l-aspartamide] (PHEA). These ligands were further reacted with gadolinium chloride to produce macromolecule-gadolinium complexes (APTSPP-PHEA-DTPA-Gd). Experimental data of (1)H NMR, IR, UV and elemental analysis evidenced the formation of the polyaspartamide ligands and gadolinium complexes. In vitro and in vivo property tests indicated that APTSPP-PHEA-DTPA-Gd possessed noticeably higher relaxation effectiveness, less toxicity to HeLa cells, and significantly higher enhanced signal intensities (SI) of the VX2 carcinoma in rabbits with lower injection dose requirement than that of Gd-DTPA. Moreover, APTSPP-PHEA-DTPA-Gd was found to greatly enhance the contrast of MR images of the VX2 carcinoma, providing prolonged intravascular duration, and distinguished the VX2 carcinoma and normal tissues in rabbits according to MR image signal enhancements. These porphyrin-containing polyaspartamide gadolinium complexes can be used as the candidates of contrast agents for targeted MRI to tumors. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  2. Red Mn4+-Doped Fluoride Phosphors: Why Purity Matters.

    PubMed

    Verstraete, Reinert; Sijbom, Heleen F; Joos, Jonas J; Korthout, Katleen; Poelman, Dirk; Detavernier, Christophe; Smet, Philippe F

    2018-06-06

    Traditional light sources, e.g., incandescent and fluorescent lamps, are currently being replaced by white light-emitting diodes (wLEDs) because of their improved efficiency, prolonged lifetime, and environmental friendliness. Much effort has recently been spent to the development of Mn 4+ -doped fluoride phosphors that can enhance the color gamut in displays and improve the color rendering index, luminous efficacy of the radiation, and correlated color temperature of wLEDs used for lighting. Purity, stability, and degradation of fluoride phosphors are, however, rarely discussed. Nevertheless, the typical wet chemical synthesis routes (involving hydrogen fluoride (HF)) and the large variety of possible Mn valence states often lead to impurities that drastically influence the performance and stability of these phosphors. In this article, the origins and consequences of impurities formed during synthesis and aging of K 2 SiF 6 :Mn 4+ are revealed. Both crystalline impurities such as KHF 2 and ionic impurities such as Mn 3+ are found to affect the phosphor performance. While Mn 3+ mainly influences the optical absorption behavior, KHF 2 can affect both the optical performance and chemical stability of the phosphor. Moisture leads to decomposition of KHF 2 , forming HF and amorphous hydrated potassium fluoride. As a consequence of hydrate formation, significant amounts of water can be absorbed in impure phosphor powders containing KHF 2 , facilitating the hydrolysis of [MnF 6 ] 2- complexes and affecting the optical absorption of the phosphors. Strategies are discussed to identify impurities and to achieve pure and stable phosphors with internal quantum efficiencies of more than 90%.

  3. Counting the Photons: Determining the Absolute Storage Capacity of Persistent Phosphors

    PubMed Central

    Rodríguez Burbano, Diana C.; Capobianco, John A.

    2017-01-01

    The performance of a persistent phosphor is often determined by comparing luminance decay curves, expressed in cd/m2. However, these photometric units do not enable a straightforward, objective comparison between different phosphors in terms of the total number of emitted photons, as these units are dependent on the emission spectrum of the phosphor. This may lead to incorrect conclusions regarding the storage capacity of the phosphor. An alternative and convenient technique of characterizing the performance of a phosphor was developed on the basis of the absolute storage capacity of phosphors. In this technique, the phosphor is incorporated in a transparent polymer and the measured afterglow is converted into an absolute number of emitted photons, effectively quantifying the amount of energy that can be stored in the material. This method was applied to the benchmark phosphor SrAl2O4:Eu,Dy and to the nano-sized phosphor CaS:Eu. The results indicated that only a fraction of the Eu ions (around 1.6% in the case of SrAl2O4:Eu,Dy) participated in the energy storage process, which is in line with earlier reports based on X-ray absorption spectroscopy. These findings imply that there is still a significant margin for improving the storage capacity of persistent phosphors. PMID:28773228

  4. Influencing of various phosphor parameters on the LED performance

    NASA Astrophysics Data System (ADS)

    Wu, Yi Ping; Zhang, Shu Qin; Jin, Shang-zhong; Shi, Chang Shou; Li, Liang; Yu, RenYong

    2012-10-01

    In this paper ,the advantages and disadvantages of the methods to achieve White LED are reviewed, and phosphor-converted white LEDs are discussed in detail. In the case of blue chip exciting YAG phosphor to get white LED, use Mie scattering theory to construct physical model, then analyze how the package, concentration, thickness and particle size of phosphor work on extraction efficiency, spatial Chroma uniformity and color temperature of white LED. The conclusion of this paper advances the application of LED solid-state light source. In the end, the paper puts forward the direction and focus of phosphor research.

  5. Proton Relaxivity and Magnetic Hyperthermia Evaluation of Gadolinium Doped Nickel Ferrite Nanoparticles as Potential Theranostic Agents.

    PubMed

    Yadavalli, Tejabhiram; Raja, Paradeep; Ramaswamy, Shivaraman; Chandrasekharan, Gopalakrishnan; Chennakesavulu, Ramasamy

    2017-02-01

    This paper outlines the preparation of gadolinium doped nickel ferrite nanoparticles as potential magnetic carriers and longitudinal magnetic resonance imaging contrast agents using hydrothermal method with gadolinium concentration varying from 10% to 40%. A concise effect on the crystal structure was observed at 10% and 20% gadolinium doping, while gadolinium oxide was observed to leach at concentrations exceeding 20%. Further, gadolinium doped nickel ferrites were analyzed for their morphological, magnetic, proton relaxation and magnetic hyperthermia heating properties to understand their potential role as magnetic carrier agents. Low temperature and room temperature magnetic studies conducted on the samples showed comparatively high magnetic saturation with low remanent magnetization. Further, relaxometry studies revealed a high relaxation rate of 6.63 s−1 at a concentration of 0.1 mg/mL. Magnetic hyperthermia studies of the samples at a concentration of 1 mg/mL, assessed that the samples attained a temperature of 68 °C in 240 seconds.

  6. Low-energy Cathodoluminescence for (Oxy)Nitride Phosphors

    PubMed Central

    Cho, Yujin; Dierre, Benjamin; Sekiguchi, Takashi; Suehiro, Takayuki; Takahashi, Kohsei; Takeda, Takashi; Xie, Rong-Jun; Yamamoto, Yoshinobu; Hirosaki, Naoto

    2016-01-01

    Nitride and oxynitride (Sialon) phosphors are good candidates for the ultraviolet and visible emission applications. High performance, good stability and flexibility of their emission properties can be achieved by controlling their composition and dopants. However, a lot of work is still required to improve their properties and to reduce the production cost. A possible approach is to correlate the luminescence properties of the Sialon particles with their local structural and chemical environment in order to optimize their growth parameters and find novel phosphors. For such a purpose, the low-voltage cathodoluminescence (CL) microscopy is a powerful technique. The use of electron as an excitation source allows detecting most of the luminescence centers, revealing their luminescence distribution spatially and in depth, directly comparing CL results with the other electron-based techniques, and investigating the stability of their luminescence properties under stress. Such advantages for phosphors characterization will be highlighted through examples of investigation on several Sialon phosphors by low-energy CL. PMID:27911365

  7. Laser discrimination by stimulated emission of a phosphor

    NASA Technical Reports Server (NTRS)

    Mathur, V. K.; Chakrabarti, K.

    1991-01-01

    A method for discriminating sources of UV, near infrared, and far infrared laser radiation was discovered. This technology is based on the use of a single magnesium sulfide phosphor doubly doped with rare earth ions, which is thermally/optically stimulated to generate colors correlatable to the incident laser radiation. The phosphor, after initial charging by visible light, exhibits green stimulated luminescence when exposed to a near infrared source (Nd: YAG laser). On exposure to far infrared sources (CO2 laser) the phosphor emission changes to orange color. A UV laser produces both an orange red as well as green color. A device using this phosphor is useful for detecting the laser and for discriminating between the near infrared, far infrared, and UV lasers. The technology is also capable of infrared laser diode beam profiling since the radiation source leaves an imprint on the phosphor that can be photographed. Continued development of the technology offers potential for discrimination between even smaller bandwidths within the infrared spectrum, a possible aid to communication or wavemixing devices that need to rapidly identify and process optical signals.

  8. Depth-Penetrating Measurements Developed for Thermal Barrier Coatings Incorporating Thermographic Phosphors

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Bencic, Timothy J.

    2004-01-01

    The insulating properties of thermal barrier coatings (TBCs) provide highly beneficial thermal protection to turbine engine components by reducing the temperature sustained by those components. Therefore, measuring the temperature beneath the TBC is critical for determining whether the TBC is performing its insulating function. Currently, noncontact temperature measurements are performed by infrared pyrometry, which unfortunately measures the TBC surface temperature rather than the temperature of the underlying component. To remedy this problem, the NASA Glenn Research Center, under the Information Rich Test Instrumentation Project, developed a technique to measure the temperature beneath the TBC by incorporating a thin phosphor layer beneath the TBC. By performing fluorescence decay-time measurements on light emission from this phosphor layer, Glenn successfully measured temperatures from the phosphor layer up to 1100 C. This is the first successful demonstration of temperature measurements that penetrate beneath the TBC. Thermographic phosphors have a history of providing noncontact surface temperature measurements. Conventionally, a thermographic phosphor is applied to the material surface and temperature measurements are performed by exciting the phosphor with ultraviolet light and then measuring the temperature-dependent decay time of the phosphor emission at a longer wavelength. The innovative feature of the new approach is to take advantage of the relative transparency of the TBC (composed of yttria-stabilized zirconia) in order to excite and measure the phosphor emission beneath the TBC. The primary obstacle to achieving depth-penetrating temperature measurements is that the TBCs are completely opaque to the ultraviolet light usually employed to excite the phosphor. The strategy that Glenn pursued was to select a thermographic phosphor that could be excited and emit at wavelengths that could be transmitted through the TBC. The phosphor that was selected was

  9. Removal of gadolinium, a neutron poison from the moderator system of nuclear reactors.

    PubMed

    Rufus, A L; Kumar, Padma S; Jeena, K; Velmurugan, S

    2018-01-15

    Gadolinium as gadolinium nitrate is used as neutron poison in the moderator system for regulating and controlling the power generation of Pressurized Heavy Water Reactors (PHWR) and proposed to be used in Advanced Heavy Water Reactors (AHWR) owing to its high neutron absorption cross section. Removal of the added gadolinium nitrate (Gd 3+ and NO 3 - ) from the system after its intended use is done using ion exchange resins. In the present investigation, attempts have been made to optimize the ion exchange process for generation of low radioactive waste and maximize utilization of the ion exchange resins by employing different types of resins and different modes of operation. The investigations revealed that use of mixed bed (MB) resin column consisting of Strong Acid Cation (SAC) resin and Strong Base Anion (SBA) resin followed by SAC resin column is efficient in removing the Gd 3+ and NO 3 - from the system besides maintaining the pH of the moderator system in the desirable regime, where gadolinium does not get precipitated as its hydroxide. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Investigation of Saturation Effects in Ceramic Phosphors for Laser Lighting

    PubMed Central

    Krasnoshchoka, Anastasiia; Dam-Hansen, Carsten; Corell, Dennis Dan; Petersen, Paul Michael

    2017-01-01

    We report observations of saturation effects in a Ce:LuAG and Eu-doped nitride ceramic phosphor for conversion of blue laser light for white light generation. The luminous flux from the phosphors material increases linearly with the input power until saturation effects limit the conversion. It is shown that the temperature of the phosphor layer influences the saturation power level and the conversion efficiency. It is also shown that the correlated color temperature (CCT), phosphor conversion efficiency and color rendering index (CRI) are dependent both on the incident power and spot size diameter of the illumination. A phosphor conversion efficiency up to 140.8 lm/W with CRI of 89.4 was achieved. The saturation in a ceramic phosphor, when illuminated by high intensity laser diodes, is estimated to play the main role in limiting the available luminance from laser-based lighting systems. PMID:29292770

  11. Timing properties of phosphor-coated polished LSO crystals.

    PubMed

    Schmall, Jeffrey P; Roncali, Emilie; Berg, Eric; Viswanath, Varsha; Du, Junwei; Cherry, Simon R

    2014-08-07

    This study investigates a time-of-flight (TOF)-depth-of-interaction (DOI) detector design for positron emission tomography (PET), based on phosphor-coated lutetium oxyorthosilicate (LSO) scintillator crystals coupled to fast single channel photomultiplier tubes. Interaction of the scintillation light with the phosphor coating changes the pulse shape in a depth-dependent manner. 3 × 3 × 10 mm(3) LSO scintillation crystals with polished surfaces were characterized, with and without phosphor coating, to assess DOI capability and timing properties. Two different phosphor coating geometries were studied: coating of the top surface of the crystal, and the top plus half of the crystal sides. There was negligible depth dependency in the decay time when coating only the top surface, however there was a ∼10 ns difference in end-to-end decay time when coating the top plus half of the crystal sides, sufficient to support the use of three DOI bins (3.3 mm DOI bin width). The rise time of the half-coated phosphor crystal was slightly faster at all depths, compared to uncoated crystals, however the signal amplitude was lower. Phosphor coating resulted in depth-dependent photopeak positions with an energy resolution of 13.7%, at a depth of 1 mm, and 15.3%, at a depth of 9 mm, for the half-coated crystal. Uncoated LSO crystals showed no change in photopeak position as a function of depth, with an energy resolution of 10.4%. The head-on coincidence timing resolution (CTR) of two uncoated LSO crystals was 287 ps using constant fraction discrimination for time pick-off. With phosphor coating, the CTR of the top-coated crystal was 314 ps, compared to 384 ps for the half-coated crystal. We demonstrate that the trade-off between timing resolution and DOI resolution can be controlled by the phosphor coating geometry. Here we present preliminary results demonstrating that good DOI resolution can be achieved with only a modest 26% degradation in CTR.

  12. Gadolinium Scandium Gallium Garnet (GSGG) as a Solid-State Laser Host

    DTIC Science & Technology

    1987-07-01

    o*SATI CODSi1.SBEC EM (otne nrvrs fnceayad dniy nb)k ubr ~~~~~~~~ Gadolinium Scandium Gallium Garnet (GSGG)asaSldtteLerHt 17. ABSTRACT 6.SUJCTTEM...certain other garnet materials for replacement. It also addresses the solid-state laser host material Gadolinium Scandium Gal- lium Garnet (GSGG) and its...by neodymium-doped yttrium aluminum garnet (Nd:YAG) or other mate- rials for most applications. In the years after the invention of the ruby laser, in

  13. Multilayer design of hybrid phosphor film for application in LEDs

    NASA Astrophysics Data System (ADS)

    Güner, Tuğrul; Köseoğlu, Devrim; Demir, Mustafa M.

    2016-10-01

    Crosslinked polydimethylsiloxane (PDMS) composite coatings containing luminescent micrometer-sized yellow Y3Al5O12:Ce3+ (YAG:Ce3+) particles were prepared by spraying for potential applications in solid-state lighting. Blue light was down converted by phosphor particles to produce white light, yet poor color properties of YAG:Ce3+ stemmed from a deficiency of red. When nitride-based red phosphor was simply blended into the system, the electrostatic interaction of negatively charged YAG:Ce3+ and positively charged red phosphor particles caused remarkable clustering and heterogeneity in particle dispersion. Consequently, the light is dominantly blue and shifted to cold white. In other case, phosphor particles were sprayed onto the diffused polycarbonate substrate in stacked layers. Coatings with >80% inorganic content by mass with a thickness of 60 μm were subjected to thermal crosslinking, which the presence of the phosphor particles obstructed, presumably due to the hindrance of large phosphor particles in the diffusion of PDMS precursors. The coating of YAG:Ce3+ first followed by red phosphor in stacked layers produced better light output and color properties than the coating obtained by spraying the mixture at once. Monte Carlo simulation validated the hypothesis.

  14. Gadolinium Brain Deposition after Macrocyclic Gadolinium Administration: A Pediatric Case-Control Study.

    PubMed

    Tibussek, Daniel; Rademacher, Christin; Caspers, Julian; Turowski, Bernd; Schaper, Jörg; Antoch, Gerald; Klee, Dirk

    2017-10-01

    Purpose To determine whether signal intensity (SI) in T1 sequences as a potential indicator of gadolinium deposition increases after repeated administration of the macrocyclic gadolinium-based contrast agents (GBCAs) gadoteridol and gadoterate meglumine in a pediatric cohort. Materials and Methods This retrospective case-control study of children with brain tumors who underwent nine or more contrast material-enhanced brain magnetic resonance (MR) imaging studies from 2008 to 2015 was approved by the local ethics board. Informed consent was obtained for MR imaging. Twenty-four case patients aged 5-18 years and appropriate control patients with nonpathologic MR neuroimaging findings (and no GBCA administration), matched for age and sex, were inculded. SI was measured on unenhanced T1-weighted MR images for the following five regions of interest (ROIs): the dentate nucleus (DN), pons, substantia nigra (SN), pulvinar thalami, and globus pallidus (GP). Paired t tests were used to compare SI and SI ratios (DN to pons, GP to thalamus) between case patients and control patients. Pearson correlations between relative signal changes and the number of GBCA administrations and total GBCA dose were calculated. Results The mean number of GBCA administrations was 14.2. No significant differences in mean SI for any ROI and no group differences were found when DN-to-pons and GP-to-pulvinar ratios were compared (DN-to-pons ratio in case patients: mean, 1.0083 ± 0.0373 [standard deviation]; DN-to-pons ratio in control patients: mean, 1.0183 ± 0.01917; P = .37; GP-to-pulvinar ratio in case patients: mean, 1.1335 ± 0.04528; and GP-to-pulvinar ratio in control patients: mean, 1.1141 ± 0.07058; P = .29). No correlation was found between the number of GBCA administrations or the total amount of GBCA administered and signal change for any ROI. (Number of GBCA applications: DN: r = -0.254, P = .31; pons: r = -0.097, P = .65; SN: r = -0.194, P = .38; GP: r = -0.175, P = .41; pulvinar: r

  15. Photoluminescence Characteristics of Yag:Ce, Gd Based Phosphors with Different Prehistories

    NASA Astrophysics Data System (ADS)

    Lisitsyn, V. M.; Soshchin, N. P.; Yang yang, Yu; Stepanov, S. A.; Lisitsyna, L. A.; Tulegenova, A. T.; Abdullin, Kh. A.

    2017-09-01

    Luminescence characteristics of yttrium-aluminum garnet based phosphor samples differed by their elemental composition and prehistory of synthesis are studied. The morphology, structure, and elemental composition of phosphor samples, their excitation and emission spectra, efficiency of phosphor conversion of chip emission, and kinetics of luminescence decay are measured. The emission characteristics of phosphors are compared with their structural properties and elemental composition.

  16. Gadolinium Endohedral Metallofullerene-Based MRI Contrast Agents

    NASA Astrophysics Data System (ADS)

    Bolskar, Robert D.

    With the ability to encapsulate and carry the highly paramagnetic Gd3+ ion, gadolinium endohedral metallofullerenes or "gadofullerenes" are being explored as alternatives to the chelate complexes that are currently used for contrast-enhanced magnetic resonance imaging (MRI). Reviewed here are the various water-soluble derivatives of the gadofullerenes Gd@C82, Gd@C60, and Gd3N@C80 that have been investigated as MRI contrast agents. The water proton r1 relaxivities of gadofullerenes can be more than an order of magnitude higher than those of clinically used chelate agents. Gadofullerene relaxivity mechanisms have been studied, and multiple factors are found to contribute to their high relaxivities. In vitro and in vivoT1-weighted MRI tests of gadofullerene derivatives have shown their utility as bright image-enhancing agents. The gadofullerene MRI contrast agents are a promising new and unique style of gadolinium carrier for advanced imaging applications, including cellular and molecular imaging.

  17. Method to produce nanocrystalline powders of oxide-based phosphors for lighting applications

    DOEpatents

    Loureiro, Sergio Paulo Martins; Setlur, Anant Achyut; Williams, Darryl Stephen; Manoharan, Mohan; Srivastava, Alok Mani

    2007-12-25

    Some embodiments of the present invention are directed toward nanocrystalline oxide-based phosphor materials, and methods for making same. Typically, such methods comprise a steric entrapment route for converting precursors into such phosphor material. In some embodiments, the nanocrystalline oxide-based phosphor materials are quantum splitting phosphors. In some or other embodiments, such nanocrystalline oxide based phosphor materials provide reduced scattering, leading to greater efficiency, when used in lighting applications.

  18. Full down-conversion of amber-emitting phosphor-converted light-emitting diodes with powder phosphors and a long-wave pass filter.

    PubMed

    Oh, Jeong Rok; Cho, Sang-Hwan; Park, Hoo Keun; Oh, Ji Hye; Lee, Yong-Hee; Do, Young Rag

    2010-05-24

    This paper reports the possibility of a facile optical structure to realize a highly efficient monochromatic amber-emitting light-emitting diode (LED) using a powder-based phosphor-converted LED combined with a long-wave pass filter (LWPF). The capping of a blue-reflecting and amber-passing LWPF enhances both the amber emission from the silicate amber phosphor layer and the color purity due to the blocking and recycling of the pumping blue light from the InGaN LED. The enhancement of the luminous efficacy of the amber pc-LED with a LWPF (phosphor concentration 20 wt%, 39.4 lm/W) is 34% over that of an amber pc-LED without a LWPF (phosphor concentration 55 wt%, 29.4 lm/W) at 100 mA and a high color purity (>96%) with Commission International d'Eclairage (CIE) color coordinates of x=0.57 and y=0.42.

  19. Thermal and Electrical Conductivity Measurements of Cda 510 Phosphor Bronze

    NASA Astrophysics Data System (ADS)

    Tuttle, J.; Canavan, E.; DiPirro, M.

    2010-04-01

    Many cryogenic systems use electrical cables containing phosphor bronze wire. While phosphor bronze's electrical and thermal conductivity values have been published, results vary among different phosphor bronze formulations. The James Webb Space Telescope (JWST) will use several phosphor bronze wire harnesses containing a specific formulation (CDA 510, annealed temper). These harnesses dominate the heat conducted into the JWST instrument stage, and approximately half of the harness conductance is due to the phosphor bronze wires. Since the JWST radiators are expected to keep the instruments at their operating temperature with limited cooling margin, it is important to know the thermal conductivity of the actual alloy being used. We describe an experiment that measured its electrical and thermal conductivity between 4 and 295 Kelvin.

  20. Gadolinium Deposition in Human Brain Tissues after Contrast-enhanced MR Imaging in Adult Patients without Intracranial Abnormalities.

    PubMed

    McDonald, Robert J; McDonald, Jennifer S; Kallmes, David F; Jentoft, Mark E; Paolini, Michael A; Murray, David L; Williamson, Eric E; Eckel, Laurence J

    2017-11-01

    Purpose To determine whether gadolinium deposits in neural tissues of patients with intracranial abnormalities following intravenous gadolinium-based contrast agent (GBCA) exposure might be related to blood-brain barrier integrity by studying adult patients with normal brain pathologic characteristics. Materials and Methods After obtaining antemortem consent and institutional review board approval, the authors compared postmortem neuronal tissue samples from five patients who had undergone four to 18 gadolinium-enhanced magnetic resonance (MR) examinations between 2005 and 2014 (contrast group) with samples from 10 gadolinium-naive patients who had undergone at least one MR examination during their lifetime (control group). All patients in the contrast group had received gadodiamide. Neuronal tissues from the dentate nuclei, pons, globus pallidus, and thalamus were harvested and analyzed with inductively coupled plasma mass spectrometry (ICP-MS), transmission electron microscopy with energy-dispersive x-ray spectroscopy, and light microscopy to quantify, localize, and assess the effects of gadolinium deposition. Results Tissues from the four neuroanatomic regions of gadodiamide-exposed patients contained 0.1-19.4 μg of gadolinium per gram of tissue in a statistically significant dose-dependent relationship (globus pallidus: ρ = 0.90, P = .04). In contradistinction, patients in the control group had undetectable levels of gadolinium with ICP-MS. All patients had normal brain pathologic characteristics at autopsy. Three patients in the contrast group had borderline renal function (estimated glomerular filtration rate <45 mL/min/1.73 m 2 ) and hepatobiliary dysfunction at MR examination. Gadolinium deposition in the contrast group was localized to the capillary endothelium and neuronal interstitium and, in two cases, within the nucleus of the cell. Conclusion Gadolinium deposition in neural tissues after GBCA administration occurs in the absence of intracranial

  1. Gadolinium-based nanoparticles to improve the hadrontherapy performances.

    PubMed

    Porcel, Erika; Tillement, Olivier; Lux, François; Mowat, Pierre; Usami, Noriko; Kobayashi, Katsumi; Furusawa, Yoshiya; Le Sech, Claude; Li, Sha; Lacombe, Sandrine

    2014-11-01

    Nanomedicine is proposed as a novel strategy to improve the performance of radiotherapy. High-Z nanoparticles are known to enhance the effects of ionizing radiation. Recently, multimodal nanoparticles such as gadolinium-based nanoagents were proposed to amplify the effects of x-rays and g-rays and to improve MRI diagnosis. For tumors sited in sensitive tissues, childhood cases and radioresistant cancers, hadrontherapy is considered superior to x-rays and g-rays. Hadrontherapy, based on fast ion radiation, has the advantage of avoiding damage to the tissues behind the tumor; however, the damage caused in front of the tumor is its major limitation. Here, we demonstrate that multimodal gadolinium-based nanoparticles amplify cell death with fast ions used as radiation. Molecular scale experiments give insights into the mechanisms underlying the amplification of radiation effects. This proof-of-concept opens up novel perspectives for multimodal nanomedicine in hadrontherapy, ultimately reducing negative radiation effects in healthy tissues in front of the tumor. Gadolinium-chelating polysiloxane nanoparticles were previously reported to amplify the anti-tumor effects of x-rays and g-rays and to serve as MRI contrast agents. Fast ion radiation-based hadrontherapy avoids damage to the tissues behind the tumor, with a major limitation of tissue damage in front of the tumor. This study demonstrates a potential role for the above nanoagents in optimizing hadrontherapy with preventive effects in healthy tissue and amplified cell death in the tumor. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Oxycarbonitride phosphors and light emitting devices using the same

    DOEpatents

    Li, Yuanqiang; Romanelli, Michael Dennis; Tian, Yongchi

    2013-10-08

    Disclosed herein is a novel family of oxycarbidonitride phosphor compositions and light emitting devices incorporating the same. Within the sextant system of M--Al--Si--O--N--C--Ln and quintuplet system of M--Si--O--N--C--Ln (M=alkaline earth element, Ln=rare earth element), the phosphors are composed of either one single crystalline phase or two crystalline phases with high chemical and thermal stability. In certain embodiments, the disclosed phosphor of silicon oxycarbidonitrides emits green light at wavelength between 530-550 nm. In further embodiments, the disclosed phosphor compositions emit blue-green to yellow light in a wavelength range of 450-650 nm under near-UV and blue light excitation.

  3. Oxycarbonitride phosphors and light emitting devices using the same

    DOEpatents

    Li, Yuanqiang; Romanelli, Michael Dennis; Tian, Yongchi

    2014-07-08

    Disclosed herein is a novel family of oxycarbonitride phosphor compositions and light emitting devices incorporating the same. Within the sextant system of M--Al--Si--O--N--C--Ln and quintuplet system of M--Si--O--N--C--Ln (M=alkaline earth element, Ln=rare earth element), the phosphors are composed of either one single crystalline phase or two crystalline phases with high chemical and thermal stability. In certain embodiments, the disclosed phosphor of silicon oxycarbonitrides emits green light at wavelength between 530-550 nm. In further embodiments, the disclosed phosphor compositions emit blue-green to yellow light in a wavelength range of 450-650 nm under near-UV and blue light excitation.

  4. The quality study of recycled glass phosphor waste for LED

    NASA Astrophysics Data System (ADS)

    Tsai, Chun-Chin; Chen, Guan-Hao; Yue, Cheng-Feng; Chen, Cin-Fu; Cheng, Wood-Hi

    2017-02-01

    To study the feasibility and quality of recycled glass phosphor waste for LED packaging, the experiments were conducted to compare optical characteristics between fresh color conversion layer and that made of recycled waste. The fresh color conversion layer was fabricated through sintering pristine mixture of Y.A.G. powder [yellow phosphor (Y3AlO12 : Ce3+). Those recycled waste glass phosphor re-melted to form Secondary Molten Glass Phosphor (S.M.G.P.). The experiments on such low melting temperature glass results showed that transmission rates of S.M.G.P. are 9% higher than those of first-sintered glass phosphor, corresponding to 1.25% greater average bubble size and 36% more bubble coverage area in S.M.G.P. In the recent years, high power LED modules and laser projectors have been requiring higher thermal stability by using glass phosphor materials for light mixing. Nevertheless, phosphor and related materials are too expensive to expand their markets. It seems a right trend and research goal that recycling such waste of high thermal stability and quality materials could be preferably one of feasible cost-down solutions. This technical approach could bring out brighter future for solid lighting and light source module industries.

  5. High-power laser phosphor light source with liquid cooling for digital cinema applications

    NASA Astrophysics Data System (ADS)

    Li, Kenneth

    2014-02-01

    Laser excited phosphor has been used to excite phosphor material, producing high intensity light output with smaller etendue than that of LEDs with the same long lifetime. But due to the high intensity of the laser light, phosphor with organic binder burns at low power, which requires the phosphor to be deposited on a rotating wheel in practical applications. Phosphor with inorganic binders, commonly known as ceramic phosphor, on the other hand, does not burn, but efficiency goes down as temperature goes up under high power excitation. This paper describes cooling schemes in sealed chambers such that the phosphor materials using organic or inorganic binders can be liquid cooled for high efficiency operations. Confined air bubbles are introduced into the sealed chamber accommodating the differential thermal expansion of the liquid and the chamber. For even higher power operation suitable for digital cinema, a suspension of phosphor in liquid is described suitable for screen brightness of over 30,000 lumens. The aging issues of phosphor can also be solved by using replaceable phosphor cartridges.

  6. Retention of Gadolinium-Based Contrast Agents in Multiple Sclerosis: Retrospective Analysis of an 18-Year Longitudinal Study.

    PubMed

    Forslin, Y; Shams, S; Hashim, F; Aspelin, P; Bergendal, G; Martola, J; Fredrikson, S; Kristoffersen-Wiberg, M; Granberg, T

    2017-07-01

    Gadolinium-based contrast agents have been associated with lasting high T1-weighted signal intensity in the dentate nucleus and globus pallidus, with histopathologically confirmed gadolinium retention. We aimed to longitudinally investigate the relationship of multiple gadolinium-based contrast agent administrations to the Signal Intensity Index in the dentate nucleus and globus pallidus and any associations with cognitive function in multiple sclerosis. The Signal Intensity Index in the dentate nucleus and globus pallidus was retrospectively evaluated on T1-weighted MR imaging in an 18-year longitudinal cohort study of 23 patients with MS receiving multiple gadolinium-based contrast agent administrations and 23 healthy age- and sex-matched controls. Participants also underwent comprehensive neuropsychological testing. Patients with MS had a higher Signal Intensity Index in the dentate nucleus ( P < .001), but not in the globus pallidus ( P = .19), compared with non-gadolinium-based contrast agent-exposed healthy controls by an unpaired t test. Increasing numbers of gadolinium-based contrast agent administrations were associated with an increased Signal Intensity Index in the dentate nucleus (β = 0.45, P < .001) and globus pallidus (β = 0.60, P < .001). This association remained stable with corrections for the age, disease duration, and physical disability for both the dentate nucleus (β = 0.43, P = .001) and globus pallidus (β = 0.58, P < .001). An increased Signal Intensity Index in the dentate nucleus among patients with MS was associated with lower verbal fluency scores, which remained significant after correction for several aspects of disease severity (β = -0.40 P = .013). Our data corroborate previous reports of lasting gadolinium retention in brain tissues. An increased Signal Intensity Index in the dentate nucleus and globus pallidus was associated with lower verbal fluency, which does not prove causality but encourages further studies on cognition

  7. Spectral properties of Dy3+ doped ZnAl2O4 phosphor

    NASA Astrophysics Data System (ADS)

    Prakash, Ram; Kumar, Sandeep; Mahajan, Rubby; Khajuria, Pooja; Kumar, Vinay; Choudhary, R. J.; Phase, D. M.

    2018-05-01

    Herein, Dy3+ doped ZnAl2O4 phosphor was synthesized by the solution combustion method. The synthesized phosphor was characterized by X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS). The phase purity of the phosphor was confirmed by the XRD studies that showed cubic symmetry of the synthesized phosphor. Under UV excitation (388 nm) the PL emission spectrum of the phosphor shows characteristic transition from the Dy3+ ion. A band gap of 5.2 eV was estimated from the diffused reflectance spectroscopy. The surface properties of the phosphor were studied using the X-ray photoelectron spectroscopy.

  8. Thermal and Electrical Conductivity Measurements of CDA 510 Phosphor Bronze

    NASA Technical Reports Server (NTRS)

    Tuttle, James E.; Canavan, Edgar; DiPirro, Michael

    2009-01-01

    Many cryogenic systems use electrical cables containing phosphor bronze wire. While phosphor bronze's electrical and thermal conductivity values have been published, there is significant variation among different phosphor bronze formulations. The James Webb Space Telescope (JWST) will use several phosphor bronze wire harnesses containing a specific formulation (CDA 510, annealed temper). The heat conducted into the JWST instrument stage is dominated by these harnesses, and approximately half of the harness conductance is due to the phosphor bronze wires. Since the JWST radiators are expected to just keep the instruments at their operating temperature with limited cooling margin, it is important to know the thermal conductivity of the actual alloy being used. We describe an experiment which measured the electrical and thermal conductivity of this material between 4 and 295 Kelvin.

  9. Depth-Selective Diagnostics of Thermal Barrier Coatings Incorporating Thermographic Phosphors

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Bencic, Timothy J.; Allison, Stephen W.; Beshears, David L.

    2003-01-01

    Thermographic phosphors have been previously demonstrated to provide effective non-contact, emissivity-independent surface temperature measurements. Because of the translucent nature of thermal barrier coatings (TBCs), thermographic-phosphor-based temperature measurements can be extended beyond the surface to provide depth-selective temperature measurements by incorporating the thermographic phosphor layer at the depth where the temperature measurement is desired. In this paper, thermographic phosphor (Y2O3:Eu) fluorescence decay time measurements are demonstrated for the first time to provide through-the-coating-thickness temperature readings up to 1000 C with the phosphor layer residing beneath a 100-Fm-thick TBC (plasma-sprayed 8wt% yttria-stabilized zirconia). With an appropriately chosen excitation wavelength and detection configuration, it is shown that sufficient phosphor emission is generated to provide effective temperature measurements, despite the attenuation of both the excitation and emission intensities by the overlying TBC. This depth-selective temperature measurement capability should prove particularly useful for TBC diagnostics, where a large thermal gradient is typically present across the TBC thickness.

  10. High temperature thermometric phosphors for use in a temperature sensor

    DOEpatents

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1998-01-01

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.(y), wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  11. High temperature thermometric phosphors for use in a temperature sensor

    DOEpatents

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1998-03-24

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub (x)},Eu{sub (y)}, wherein: 0.1 wt %{<=}x{<=}20 wt % and 0.1 wt %{<=}y{<=}20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  12. Depth-Selective Diagnostics of Thermal Barrier Coatings Incorporating Thermographic Phosphors

    NASA Technical Reports Server (NTRS)

    Eldridge, J. I.; Bencic, T. J.; Allison, S. W.; Beshears, D. L.

    2003-01-01

    Thermographic phosphors have been previously demonstrated to provide effective non- contact, emissivity-independent surface temperature measurements. Because of the translucent nature of thermal barrier coatings (TBCs), thermographic-phosphor-based temperature measurements can be extended beyond the surface to provide depth-selective temperature measurements by incorporating the thermographic phosphor layer at the depth where the temperature measurement is desired. In this paper, the use of thermographic phosphor (Y2O3:Eu) luminescence decay time measurements is demonstrated for the first time for through-the-thickness temperature readings up to 1000 C with the phosphor placed beneath a 100-micron-thick TBC (plasma-sprayed 8wt% yttria-stabilized zirconia). With an appropriately chosen excitation wavelength and detection configuration, it is shown that sufficient phosphor emission is generated to provide effective temperature measurements, despite the attenuation of both the excitation and emission intensities by the overlying TBC. This depth-selective temperature measurement capability should prove particularly useful for TBC diagnostics, where a large thermal gradient is typically present across the TBC thickness.

  13. Myocardial late gadolinium enhancement in specific cardiomyopathies by cardiovascular magnetic resonance: a preliminary experience.

    PubMed

    Silva, Caterina; Moon, James C; Elkington, Andrew G; John, Anna S; Mohiaddin, Raad H; Pennell, Dudley J

    2007-12-01

    Late gadolinium enhancement cardiovascular magnetic resonance (CMR) can visualize myocardial interstitial abnormalities. The aim of this study was to assess whether regions of abnormal myocardium can also be visualized by late enhancement gadolinium CMR in the specific cardiomyopathies. A retrospective review of all referrals for gadolinium CMR with specific cardiomyopathy over 20 months. Nine patients with different specific cardiomyopathies were identified. Late enhancement was demonstrated in all patients, with a mean signal intensity of 390 +/- 220% compared with normal regions. The distribution pattern of late enhancement was unlike the subendocardial late enhancement related to coronary territories found in myocardial infarction. The affected areas included papillary muscles (sarcoid), the mid-myocardium (Anderson-Fabry disease, glycogen storage disease, myocarditis, Becker muscular dystrophy) and the global sub-endocardium (systemic sclerosis, Loeffler's endocarditis, amyloid, Churg-Strauss). Focal myocardial late gadolinium enhancement is found in the specific cardiomyopathies, and the pattern is distinct from that seen in infarction. Further systematic studies are warranted to assess whether the pattern and extent of late enhancement may aid diagnosis and prognostic assessment.

  14. Pediatric Patients Demonstrate Progressive T1-Weighted Hyperintensity in the Dentate Nucleus following Multiple Doses of Gadolinium-Based Contrast Agent.

    PubMed

    Roberts, D R; Chatterjee, A R; Yazdani, M; Marebwa, B; Brown, T; Collins, H; Bolles, G; Jenrette, J M; Nietert, P J; Zhu, X

    2016-12-01

    While there have been recent reports of brain retention of gadolinium following gadolinium-based contrast agent administration in adults, a retrospective series of pediatric patients has not previously been reported, to our knowledge. We investigated the relationship between the number of prior gadolinium-based contrast agent doses and increasing T1 signal in the dentate nucleus on unenhanced T1-weighted MR imaging. We hypothesized that despite differences in pediatric physiology and the smaller gadolinium-based contrast agent doses that pediatric patients are typically administered based on weighted-adjusted dosing, the pediatric brain would also demonstrate dose-dependent increasing T1 signal in the dentate nucleus. We included children with multiple gadolinium-based contrast agent administrations at our institution. A blinded reader placed ROIs within the dentate nucleus and adjacent cerebellar white matter. To eliminate reader bias, we also performed automated ROI delineation of the dentate nucleus, cerebellar white matter, and pons. Dentate-to-cerebellar white matter and dentate-to pons ratios were compared with the number of gadolinium-based contrast agent administrations. During 20 years at our institution, 280 patients received at least 5 gadolinium-based contrast agent doses, with 1 patient receiving 38 doses. Sixteen patients met the inclusion/exclusion criteria for ROI analysis. Blinded reader dentate-to-cerebellar white matter ratios were significantly associated with gadolinium-based contrast agent doses (r s = 0.77, P = .001). The dentate-to-pons ratio and dentate-to-cerebellar white matter ratios based on automated ROI placement were also significantly correlated with gadolinium-based contrast agent doses (t = 4.98, P < .0001 and t = 2.73, P < .02, respectively). In pediatric patients, the number of prior gadolinium-based contrast agent doses is significantly correlated with progressive T1-weighted dentate hyperintensity. Definitive confirmation of

  15. The High Radiosensitizing Efficiency of a Trace of Gadolinium-Based Nanoparticles in Tumors

    NASA Astrophysics Data System (ADS)

    Dufort, Sandrine; Le Duc, Géraldine; Salomé, Murielle; Bentivegna, Valerie; Sancey, Lucie; Bräuer-Krisch, Elke; Requardt, Herwig; Lux, François; Coll, Jean-Luc; Perriat, Pascal; Roux, Stéphane; Tillement, Olivier

    2016-07-01

    We recently developed the synthesis of ultrasmall gadolinium-based nanoparticles (GBN), (hydrodynamic diameter <5 nm) characterized by a safe behavior after intravenous injection (renal clearance, preferential accumulation in tumors). Owing to the presence of gadolinium ions, GBN can be used as contrast agents for magnetic resonance imaging (MRI) and as radiosensitizers. The attempt to determine the most opportune delay between the intravenous injection of GBN and the irradiation showed that a very low content of radiosensitizing nanoparticles in the tumor area is sufficient (0.1 μg/g of particles, i.e. 15 ppb of gadolinium) for an important increase of the therapeutic effect of irradiation. Such a promising and unexpected result is assigned to a suited distribution of GBN within the tumor, as revealed by the X-ray fluorescence (XRF) maps.

  16. Phosphor Scanner For Imaging X-Ray Diffraction

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Hecht, Diana L.; Witherow, William K.

    1992-01-01

    Improved optoelectronic scanning apparatus generates digitized image of x-ray image recorded in phosphor. Scanning fiber-optic probe supplies laser light stimulating luminescence in areas of phosphor exposed to x rays. Luminescence passes through probe and fiber to integrating sphere and photomultiplier. Sensitivity and resolution exceed previously available scanners. Intended for use in x-ray crystallography, medical radiography, and molecular biology.

  17. In vitro radiosensitizing effects of ultrasmall gadolinium based particles on tumour cells.

    PubMed

    Mowat, P; Mignot, A; Rima, W; Lux, F; Tillement, O; Roulin, C; Dutreix, M; Bechet, D; Huger, S; Humbert, L; Barberi-Heyob, M; Aloy, M T; Armandy, E; Rodriguez-Lafrasse, C; Le Duc, G; Roux, S; Perriat, P

    2011-09-01

    Since radiotherapy is widely used in cancer treatment, it is essential to develop strategies which lower the irradiation burden while increasing efficacy and become efficient even in radio resistant tumors. Our new strategy is relying on the development of solid hybrid nanoparticles based on rare-earth such as gadolinium. In this paper, we then evidenced that gadolinium-based particles can be designed to enter efficiently into the human glioblastoma cell line U87 in quantities that can be tuned by modifying the incubation conditions. These sub-5 nm particles consist in a core of gadolinium oxide, a shell of polysiloxane and are functionalized by diethylenetriaminepentaacetic acid (DTPA). Although photoelectric effect is maximal in the [10-100 keV] range, such particles were found to possess efficient in-vitro radiosensitizing properties at an energy of 660 keV by using the "single-cell gel electrophoresis comet assay," an assay that measures the number of DNA damage that occurs during irradiation. Even more interesting, the particles have been evidenced by MTT assays to be also efficient radiosensitizers at an energy of 6 MeV for doses comprised between 2 and 8 Gy. The properties of the gadolinium-based particles give promising opening to a particle-assisted radio-therapy by using irradiation systems already installed in the majority of hospitals.

  18. Comparison of the up-conversion photoluminescence for GAP, GAG and GAM phosphors

    NASA Astrophysics Data System (ADS)

    Deng, Taoli; Jiang, Xianbang

    2018-04-01

    GdAlO3:Er3+/Yb3+, Gd3Al5O12:Er3+/Yb3+ and Gd4Al2O9:Er3+/Yb3+ phosphors were prepared by co-precipitation. The effects for Gd2O3-Al2O3 composite oxides as the host materials with different crystal structures such as GdAlO3, Gd3Al5O12 and Gd4Al2O9 were investigated. It was found that the perovskite structured GdAlO3:Er3+/Yb3+ (GAP phosphor) could be obtained from the precursor when the calcination temperature was 1000 °C, while the garnet structured Gd3Al5O12:Er3+/Yb3+ (GAG phosphor) could be formed when the calcination temperature was 1300 °C, but the monoclinic-structured Gd4Al2O9:Er3+/Yb3+ (GAM phosphor) could be formed only when the calcination temperature was raised up to 1500 °C. The difference of the up-conversion photoluminescence (UCPL) spectra under 980 nm between the GAP, GAG and GAM phosphors was studied. The result showed that the UCPL intensity of the GAP phosphor was close to that of the GAM phosphor with much higher red-to-green intensity ratio than that of GAP phosphor. The UCPL intensity of GAG phosphor was the weakest among them. Finally, the factors which influenced on the UCPL of the GAP, GAG and GAM phosphors were discussed.

  19. Gadolinium-Conjugated Gold Nanoshells for Multimodal Diagnostic Imaging and Photothermal Cancer Therapy

    PubMed Central

    Coughlin, Andrew J.; Ananta, Jeyarama S.; Deng, Nanfu; Larina, Irina V.; Decuzzi, Paolo

    2014-01-01

    Multimodal imaging offers the potential to improve diagnosis and enhance the specificity of photothermal cancer therapy. Toward this goal, we have engineered gadolinium-conjugated gold nanoshells and demonstrated that they enhance contrast for magnetic resonance imaging, X-Ray, optical coherence tomography, reflectance confocal microscopy, and two-photon luminescence. Additionally, these particles effectively convert near-infrared light to heat, which can be used to ablate cancer cells. Ultimately, these studies demonstrate the potential of gadolinium-nanoshells for image-guided photothermal ablation. PMID:24115690

  20. Gadolinium-hydrogen ion exchange of zirconium phosphate

    NASA Technical Reports Server (NTRS)

    Liu, D. C.; Power, J. L.

    1972-01-01

    The Gd(+3)/H(+) ion exchange on a commercial zirconium phosphate ion exchanger was investigated in chloride, sulfate, and phosphate solutions of Gd(+3) at gadolinium concentrations of 0.001 to 1 millimole per cc and in the pH range of 0 to 3.5. Relatively low Gd(+3) capacities, in the range of 0.01 to 0.1 millimole per g of ion exchanger were found at room temperature. A significant difference in Gd(+3) sorption was observed, depending on whether the ion exchanger was converted from initial conditions of greater or lesser Gd(+3) sorption than the specific final conditions. Correlations were found between decrease in Gd(+3) capacity and loss of exchanger phosphate groups due to hydrolysis during washing and between increase in capacity and treatment with H3PO4. Fitting of the experimental data to ideal ion exchange equilibrium expressions indicated that each Gd(+3) ion is sorbed on only one site of the ion exchanger. The selectivity quotient was determined to be 2.5 + or - 0.4 at room temperature on gadolinium desorption in chloride solutions.

  1. The Effect of gadolinium on the ESR response of alanine and ammonium tartrate exposed to thermal neutrons.

    PubMed

    Marrale, Maurizio; Brai, Maria; Gennaro, Gaetano; Bartolotta, Antonio; D'Oca, Maria Cristina

    2008-02-01

    Many efforts have been made to develop neutron capture therapy (NCT) for cancer treatment. Among the challenges in using NCT is the characterization of the features of the mixed radiation field and of its components. In this study, we examined the enhancement of the ESR response of pellets of alanine and ammonium tartrate with gadolinium oxide exposed to a thermal neutron beam. In particular, the ESR response of these dosimeters as a function of the gadolinium content inside the dosimeter was analyzed. We found that the addition of gadolinium improves the sensitivity of both alanine and ammonium tartrate. However, the use of gadolinium reduces or abolishes tissue equivalence because of its high atomic number (Z(Gd) = 64). Therefore, it is necessary to find the optimum compromise between the sensitivity to thermal neutrons and the reduction of tissue equivalence. Our analysis showed that a low concentration of gadolinium oxide (of the order of 5% of the total mass of the dosimeter) can enhance the thermal neutron sensitivity more than 13 times with an insignificant reduction of tissue equivalence.

  2. Comparison between mixed and spatially separated remote phosphor fabricated via a screen-printing process

    NASA Astrophysics Data System (ADS)

    Kim, Byung-Ho; Hwang, Jonghee; Lee, Young Jin; Kim, Jin-Ho; Jeon, Dae-Woo; Lee, Mi Jai

    2016-08-01

    We developed a fabrication method for remote phosphor by a screen-printing process, using green phosphor, red phosphor, and thermally stable glass frit. The glass frit was introduced for long-term stability. The optical properties of the remote phosphor were observed via an integrating sphere; the photoluminescence spectrum dramatically changed on incorporating a minor amount of the red phosphor. These unique optical properties were elucidated using four factors: phosphor ratio, scattering induced by packing density, light intensity per unit volume, and reabsorption. The thermal stability of the remote phosphor was investigated at 500°C, demonstrating its outstanding thermal properties.

  3. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Partial phosphoric acid esters of polyester resins... of polyester resins. Partial phosphoric acid esters of polyester resins identified in this section... prescribed conditions: (a) For the purpose of this section, partial phosphoric acid esters of polyester...

  4. Gadolinium-loaded Plastic Scintillators for Thermal Neutron Detection using Compensation

    NASA Astrophysics Data System (ADS)

    Dumazert, Jonathan; Coulon, Romain; Hamel, Matthieu; Carrel, Frédérick; Sguerra, Fabien; Normand, Stéphane; Méchin, Laurence; Bertrand, Guillaume H. V.

    2016-06-01

    Plastic scintillator loading with gadolinium-rich organometallic complexes shows a high potential for the deployment of efficient and cost-effective neutron detectors. Due to the low-energy photon and electron signature of thermal neutron capture by Gd-155 and Gd-157, alternative treatment to pulse-shape discrimination has to be proposed in order to display a count rate. This paper discloses the principle of a compensation method applied to a two-scintillator system: a detection scintillator interacts with photon and fast neutron radiation and is loaded with gadolinium organometallic compound to become a thermal neutron absorber, while a not-gadolinium loaded compensation scintillator solely interacts with the fast neutron and photon part of incident radiation. After the nonlinear smoothing of the counting signals, a hypothesis test determines whether the resulting count rate post-background response compensation falls into statistical fluctuations or provides a robust indication of neutron activity. Laboratory samples are tested under both photon and neutron irradiations, allowing the authors to investigate the performance of the overall detection system in terms of sensitivity and detection limits, especially with regards to a similar-active volume He-3 based commercial counter. The study reveals satisfactory figures of merit in terms of sensitivity and directs future investigation toward promising paths.

  5. Light Converting Inorganic Phosphors for White Light-Emitting Diodes

    PubMed Central

    Chen, Lei; Lin, Chun-Che; Yeh, Chiao-Wen; Liu, Ru-Shi

    2010-01-01

    White light-emitting diodes (WLEDs) have matched the emission efficiency of florescent lights and will rapidly spread as light source for homes and offices in the next 5 to 10 years. WLEDs provide a light element having a semiconductor light emitting layer (blue or near-ultraviolet (nUV) LEDs) and photoluminescence phosphors. These solid-state LED lamps, rather than organic light emitting diode (OLED) or polymer light-emitting diode (PLED), have a number of advantages over conventional incandescent bulbs and halogen lamps, such as high efficiency to convert electrical energy into light, reliability and long operating lifetime. To meet with the further requirement of high color rendering index, warm light with low color temperature, high thermal stability and higher energy efficiency for WLEDs, new phosphors that can absorb excitation energy from blue or nUV LEDs and generate visible emissions efficiently are desired. The criteria of choosing the best phosphors, for blue (450−480 nm) and nUV (380−400 nm) LEDs, strongly depends on the absorption and emission of the phosphors. Moreover, the balance of light between the emission from blue-nUV LEDs and the emissions from phosphors (such as yellow from Y3Al5O12:Ce3+) is important to obtain white light with proper color rendering index and color temperature. Here, we will review the status of phosphors for LEDs and prospect the future development.

  6. Microbial contamination in intraoral phosphor storage plates: the dilemma.

    PubMed

    de Souza, Tricia Murielly Pereira Andrade; de Castro, Ricardo Dias; de Vasconcelos, Laís César; Pontual, Andréa Dos Anjos; de Moraes Ramos Perez, Flávia Maria; Pontual, Maria Luiza Dos Anjos

    2017-01-01

    The aims of this study were to evaluate microbial contamination in phosphor storage plates in dental radiology services and discuss the possible origin of this contamination. The sample comprised 50 phosphor plates: 14 plates from service A, 30 from service B, and 6 in the control group, consisting of plates never used. Damp sterile swabs were rubbed on the phosphor plates, and then transferred to tests tubes containing sterile saline solution. Serial dilutions were made, and then inoculated in triplicate on Mueller Hinton agar plates and incubated at 37 °C/48 h, before counting the colony-forming units (CFU). The samples were also seeded in brain-heart infusion medium to confirm contamination by turbidity of the culture medium. All solutions, turbid and clean, were seeded in selective and non-selective media. At service A and B, 50 and 73.3 % of the phosphor plates were contaminated, respectively. This contamination was mainly due to bacteria of the genus Staphylococcus. CFU counts ranged from 26.4 to 80.0 CFU/plate. Most of the phosphor plates evaluated shown to be contaminated, mainly by Staphylococcus ssp. Quantitatively, this contamination occurred at low levels, possibly arising from handling of the plates. The use of a second plastic barrier may have diminished contamination by microorganisms from the oral cavity. There is a risk of cross-contamination by phosphor storage plates used in dental radiology services.

  7. Tracing gadolinium-based contrast agents from surface water to drinking water by means of speciation analysis.

    PubMed

    Birka, Marvin; Wehe, Christoph A; Hachmöller, Oliver; Sperling, Michael; Karst, Uwe

    2016-04-01

    In recent decades, a significant amount of anthropogenic gadolinium has been released into the environment as a result of the broad application of contrast agents for magnetic resonance imaging (MRI). Since this anthropogenic gadolinium anomaly has also been detected in drinking water, it has become necessary to investigate the possible effect of drinking water purification on these highly polar microcontaminats. Therefore, a novel highly sensitive method for speciation analysis of gadolinium is presented. For that purpose, the hyphenation of hydrophilic interaction liquid chromatography (HILIC) and inductively coupled plasma-mass spectrometry (ICP-MS) was employed. In order to enhance the detection power, sample introduction was carried out by ultrasonic nebulization. In combination with a novel HILIC method using a diol-based stationary phase, it was possible to achieve superior limits of detection for frequently applied gadolinium-based contrast agents below 20pmol/L. With this method, the contrast agents Gd-DTPA, Gd-DOTA and Gd-BT-DO3A were determined in concentrations up to 159pmol/L in samples from several waterworks in a densely populated region of Germany alongside the river Ruhr as well as from a waterworks near a catchment lake. Thereby, the direct impact of anthropogenic gadolinium species being present in the surface water on the amount of anthropogenic gadolinium in drinking water was shown. There was no evidence for the degradation of contrast agents, the release of Gd(3+) or the presence of further Gd species. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Radiation-induced defects in manganese-doped lithium tetraborate phosphor.

    PubMed

    Annalakshmi, O; Jose, M T; Madhusoodanan, U; Sridevi, J; Venkatraman, B; Amarendra, G; Mandal, A B

    2015-01-01

    Lithium tetraborate doped with manganese synthesised by solid-state sintering technique exhibits a dosimetric peak at 280°C. The high-temperature glow curve results in no fading for three months. The sensitivity of Li2B4O7:Mn is determined to be 0.9 times that of TLD-100. The infrared spectrum of this phosphor indicates the presence of bond vibrations corresponding to BO4 tetrahedral and BO3 triangles. The mechanism for thermoluminescence in this phosphor was proposed based on the thermoluminescence (TL) emission spectra, kinetic analysis of TL glow curves and electron paramagnetic resonance (EPR) measurements on non-irradiated and gamma-irradiated phosphors. It was identified that oxygen vacancies and Boron oxygen hole centre (BOHC) are the electron and hole trap centres for TL in this phosphor. When the phosphor is heated, the electrons are released from the electron trap and recombine with the trapped holes. The excitation energy during the recombination is transferred to the nearby Mn(2+) ions, which emit light at 580 nm. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. TL-OSL study of Li3PO4: Mg, Cu phosphor

    NASA Astrophysics Data System (ADS)

    Rahangdale, S. R.; Wankhede, S. P.; Dhabekar, B. S.; Palikundwar, U. A.; Moharil, S. V.

    2015-08-01

    In the present work, we report the thermoluminescence and optically stimulated luminescence properties of Mg and Cu doped Li3PO4 phosphor. The phosphor was synthesized by precipitation method. The thermoluminescence dosimetric peak temperature for the phosphor varies with concentrations of Mg and Cu. Li3PO4 shows good response to 470nm optical stimulation. The OSL sensitivity of the phosphor is approximately 12 times than that of standard Lithium magnesium phosphate. This study may help to develop this material for the application in real time dosimetry using optically stimulated luminescence.

  10. 40 CFR 721.10140 - Phosphoric acid, tin (2+) salt (2:3).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Phosphoric acid, tin (2+) salt (2:3... Specific Chemical Substances § 721.10140 Phosphoric acid, tin (2+) salt (2:3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as phosphoric acid, tin (2...

  11. 40 CFR 721.10140 - Phosphoric acid, tin (2+) salt (2:3).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphoric acid, tin (2+) salt (2:3... Specific Chemical Substances § 721.10140 Phosphoric acid, tin (2+) salt (2:3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as phosphoric acid, tin (2...

  12. 40 CFR 721.10140 - Phosphoric acid, tin (2+) salt (2:3).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphoric acid, tin (2+) salt (2:3... Specific Chemical Substances § 721.10140 Phosphoric acid, tin (2+) salt (2:3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as phosphoric acid, tin (2...

  13. 40 CFR 721.10140 - Phosphoric acid, tin (2+) salt (2:3).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Phosphoric acid, tin (2+) salt (2:3... Specific Chemical Substances § 721.10140 Phosphoric acid, tin (2+) salt (2:3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as phosphoric acid, tin (2...

  14. 40 CFR 721.10140 - Phosphoric acid, tin (2+) salt (2:3).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphoric acid, tin (2+) salt (2:3... Specific Chemical Substances § 721.10140 Phosphoric acid, tin (2+) salt (2:3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as phosphoric acid, tin (2...

  15. Comparison of microleakage on one composite etched with phosphoric acid or a combination of phosphoric and hydrofluoric acids and bonded with several different systems.

    PubMed

    Szep, Susanne; Langner, Nicole; Bayer, Silja; Börnichen, Diana; Schulz, Christoph; Gerhardt, Thomas; Schriever, Anette; Becker, Joachim; Heidemann, Detlef

    2003-02-01

    There are no data available on whether or to what extent hydrofluoric acid affects the marginal integrity of dentin-bonded composite restorations when it is used instead of phosphoric acid in the total-etch technique. This in vitro study examined the etching effects of phosphoric acid versus a combination of phosphoric and hydrofluoric acid by evaluation of microleakage in a composite restoration bonded with different dentin adhesive systems. Extracted teeth (n = 90) containing 2 class II preparations, mesial occlusal (MO) and distal occlusal (DO) standarized (cervical margins in dentin) were perfused with Ringer solution and etched in 1 of 2 ways: with phosphoric acid only or with phosphoric combined with hydrofluoric acid. Different dentin bonding agents were then applied (Etch & Prime 3.0, Optibond Solo, Prime & Bond NT, Scotchbond 1, Syntac Single Component, or Syntac Sprint; (n = 15 for each etching material)). The preparations were restored with a hybrid composite (Herculite XRV) and submitted to 5000 thermocycles (5 degrees C to 55 degrees C) to simulate the in vivo situation. Microleakage was assessed with 2% methylene blue diffusion for 24 hours. Dye penetration was calculated as a percentage of the total length of the gingival margins of the preparation with light microscopy at original magnification x 32. The results were analyzed with the Kruskal-Wallis multiple comparison z-value assay (alpha = .05). Differences in dye penetration were significant, both as a function of the dentin adhesive and the conditioning mode applied. In the specimen groups conditioned with phosphoric acid, Optibond Solo (54% +/- 44%) and Syntac Sprint (74% +/- 39%) demonstrated the lowest penetration values. Higher values were obtained for Prime & Bond NT (81% +/- 34%), Scotchbond 1 (83% +/- 31%), Etch & Prime 3.0 (85% +/- 33%), and Syntac Single Component (95% +/- 16%), with no significant differences (alpha=.05) between specimen groups. The best results were obtained for

  16. Method for incorporating radioactive phosphoric acid solutions in concrete

    DOEpatents

    Wolf, G.A.; Smith, J.W.; Ihle, N.C.

    1982-07-08

    A method for incorporating radioactive phosphoric acid solutions in concrete is described wherein the phosphoric acid is reacted with Ca(OH)/sub 2/ to form a precipitate of hydroxyapatite and the hydroxyapatite is mixed with Portland cement to form concrete.

  17. Method for incorporating radioactive phosphoric acid solutions in concrete

    DOEpatents

    Wolf, Gary A [Kennewick, WA; Smith, Jeffrey W [Lancaster, OH; Ihle, Nathan C [Walla Walla, WA

    1984-01-01

    A method for incorporating radioactive phosphoric acid solutions in concrete is described wherein the phosphoric acid is reacted with Ca(OH).sub.2 to form a precipitate of hydroxyapatite and the hydroxyapatite is mixed with portland cement to form concrete.

  18. A polymeric fastener can easily functionalize liposome surfaces with gadolinium for enhanced magnetic resonance imaging.

    PubMed

    Smith, Cartney E; Shkumatov, Artem; Withers, Sarah G; Yang, Binxia; Glockner, James F; Misra, Sanjay; Roy, Edward J; Wong, Chun-Ho; Zimmerman, Steven C; Kong, Hyunjoon

    2013-11-26

    Common methods of loading magnetic resonance imaging (MRI) contrast agents into nanoparticles often suffer from challenges related to particle formation, complex chemical modification/purification steps, and reduced contrast efficiency. This study presents a simple, yet advanced process to address these issues by loading gadolinium, an MRI contrast agent, exclusively on a liposome surface using a polymeric fastener. The fastener, so named for its ability to physically link the two functional components together, consisted of chitosan substituted with diethylenetriaminepentaacetic acid (DTPA) to chelate gadolinium, as well as octadecyl chains to stabilize the modified chitosan on the liposome surface. The assembly strategy, mimicking the mechanisms by which viruses and proteins naturally anchor to a cell, provided greater T1 relaxivity than liposomes loaded with gadolinium in both the interior and outer leaflet. Gadolinium-coated liposomes were ultimately evaluated in vivo using murine ischemia models to highlight the diagnostic capability of the system. Taken together, this process decouples particle assembly and functionalization and, therefore, has considerable potential to enhance imaging quality while alleviating many of the difficulties associated with multifunctional particle fabrication.

  19. A Polymeric Fastener can Easily Functionalize Liposome Surfaces with Gadolinium for Enhanced Magnetic Resonance Imaging

    PubMed Central

    Smith, Cartney E.; Shkumatov, Artem; Withers, Sarah G.; Glockner, James F.; Misra, Sanjay; Roy, Edward J.; Wong, Chun-Ho; Zimmerman, Steven C.; Kong, Hyunjoon

    2013-01-01

    Common methods of loading magnetic resonance imaging (MRI) contrast agents into nanoparticles often suffer from challenges related to particle formation, complex chemical modification/purification steps, and reduced contrast efficiency. This study presents a simple, yet advanced process to address these issues by loading gadolinium, an MRI contrast agent, exclusively on a liposome surface using a polymeric fastener. The fastener, so named for its ability to physically link the two functional components together, consisted of chitosan substituted with diethylenetriaminepentaacetic acid (DTPA) to chelate gadolinium, as well as octadecyl chains to stabilize the modified chitosan on the liposome surface. The assembly strategy, mimicking the mechanisms by which viruses and proteins naturally anchor to a cell, provided greater T1 relaxivity than liposomes loaded with gadolinium in both the interior and outer leaflet. Gadolinium-coated liposomes were ultimately evaluated in vivo using murine ischemia models to highlight the diagnostic capability of the system. Taken together, this process decouples particle assembly and functionalization, and therefore has considerable potential to enhance imaging quality while alleviating many of the difficulties associated with multifunctional particle fabrication. PMID:24083377

  20. Thermal Analysis of LED Phosphor Layer

    NASA Astrophysics Data System (ADS)

    Perera, Ukwatte Lokuliyanage Indika Upendra

    Solid-state lighting technology has progressed to a level where light-emitting diode (LED) products are either on par or better than their traditional lighting technology counterparts with respect to efficacy and lifetime. At present, the most common method to create "white" light from LEDs for illumination applications is by using the LED primary radiation and wavelength-converting materials. In this method, the re-emission from the wavelength-converting materials excited by the LED primary radiation is combined with the LED primary radiation to create the "white" light. During this conversion process, heat is generated as a result of conversion inefficiencies and other loss mechanisms in the LED and the wavelength-converting materials. This generated heat, if not properly dissipated, increases the operating temperature, thereby increasing the light output degradation of the system over both the short and long term. The heat generation of the LED and thermal management of the LED have been studied extensively. Methods to effectively dissipate heat from the LEDs and maintain lower LED operating temperature are well understood. However, investigation of factors driving heat generation, the resulting temperature distribution in the phosphor layer, and the influence of the phosphor layer temperature on LED performance and reliability have not received the same focus. The goal of this dissertation was to understand the main factors driving heat and light generation and the transport of light and heat in the wavelength-converting layer of an LED system. Another goal was to understand the interaction between heat and light in the system and to develop and analyze a solution to reduce the wavelength-converting layer operating temperature, thereby improving light output and reliability. Even though past studies have explored generation and transfer separately for light and heat, to the best of the author's knowledge, this is the first study that has analyzed both factors

  1. Ultraviolet /UV/ sensitive phosphors for silicon imaging detectors

    NASA Technical Reports Server (NTRS)

    Viehmann, W.; Cowens, M. W.; Butner, C. L.

    1981-01-01

    The fluorescence properties of UV sensitive organic phosphors and the radiometric properties of phosphor coated silicon detectors in the VUV, UV, and visible wavelengths are described. With evaporated films of coronene and liumogen, effective quantum efficiencies of up to 20% have been achieved on silicon photodiodes in the vacuum UV. With thin films of methylmethacrylate (acrylic), which are doped with organic laser dyes and deposited from solution, detector quantum efficiencies of the order of 15% for wavelengths of 120-165 nm and of 40% for wavelengths above 190 nm have been obtained. The phosphor coatings also act as antireflection coatings and thereby enhance the response of coated devices throughout the visible and near IR.

  2. Light propagation in phosphor-filled matrices for photovoltaic PL down-shifting

    NASA Astrophysics Data System (ADS)

    Solodovnyk, Anastasiia; Lipovšek, Benjamin; Forberich, Karen; Stern, Edda; Batentschuk, Miroslaw; Topič, Marko; Brabec, Christoph J.

    2014-09-01

    Efficient transparent light converters have received lately a growing interest from optical device industries (LEDs, PV, etc.). While organic luminescent dyes were tested in PV light-converting application, such restrictions as small Stokes shifts, short lifetimes, and relatively high costs must yet be overcome. Alternatively, use of phosphors in transparent matrix materials would mean a major breakthrough for this technology, as phosphors exhibit long-term stability and are widely available. For the fabrication of phosphor-filled layers tailored specifically for the desired application, it is of great importance to gain deep understanding of light propagation through the layers, including the detailed optical interplay between the phosphor particles and the matrix material. Our measurements show that absorption and luminescent behavior of the phosphors and especially the scattering of light by the phosphor particles play an important role. In this contribution we have investigated refractive index difference between transparent binder and phosphors. Commercially available highly luminescent UV and near-UV absorbing μm-sized powder is chosen for the fabrication of phosphor-filled layers with varied refractive index of transparent polymer matrix, and well-defined particle size distributions. Solution-processed thick layers on glass substrates are optically analyzed and compared with simulation results acquired from CROWM, a combined wave optics/ray optics home-built software. The results demonstrate the inter-dependence of the layer parameters, prove the importance of careful optimization steps required for fabrication of efficient light converting layers, and, thus, show a path into the future of this promising approach.

  3. Electrodeposition of Low Stress Nickel Phosphorous Alloys for Precision Component Fabrication

    NASA Technical Reports Server (NTRS)

    Engelhaupt, Darell; Ramsey, Brian; Speegle, Chet; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Nickel alloys are favored for electroforming precision components. Nickel phosphorous and nickel cobalt phosphorous are studied in this work. A completely new and innovative electrolytic process eliminates the fumes present in electroless processes and is suitable for electroforming nickel phosphorous and nickel cobalt phosphorous alloys to any desirable thickness, using soluble anodes, without stripping of tanks. Solutions show excellent performance for extended throughput. Properties include, cleaner low temperature operation (40 - 45 C), high Faradaic efficiency, low stress, Rockwell C 52 - 54 hardness and as much as 2000 N per square millimeter tensile strength. Performance is compared to nickel and nickel cobalt electroforming.

  4. Reduction and Analysis of Phosphor Thermography Data With the IHEAT Software Package

    NASA Technical Reports Server (NTRS)

    Merski, N. Ronald

    1998-01-01

    Detailed aeroheating information is critical to the successful design of a thermal protection system (TPS) for an aerospace vehicle. This report describes NASA Langley Research Center's (LaRC) two-color relative-intensity phosphor thermography method and the IHEAT software package which is used for the efficient data reduction and analysis of the phosphor image data. Development of theory is provided for a new weighted two-color relative-intensity fluorescence theory for quantitatively determining surface temperatures on hypersonic wind tunnel models; an improved application of the one-dimensional conduction theory for use in determining global heating mappings; and extrapolation of wind tunnel data to flight surface temperatures. The phosphor methodology at LaRC is presented including descriptions of phosphor model fabrication, test facilities and phosphor video acquisition systems. A discussion of the calibration procedures, data reduction and data analysis is given. Estimates of the total uncertainties (with a 95% confidence level) associated with the phosphor technique are shown to be approximately 8 to 10 percent in the Langley's 31-Inch Mach 10 Tunnel and 7 to 10 percent in the 20-Inch Mach 6 Tunnel. A comparison with thin-film measurements using two-inch radius hemispheres shows the phosphor data to be within 7 percent of thin-film measurements and to agree even better with predictions via a LATCH computational fluid dynamics solution (CFD). Good agreement between phosphor data and LAURA CFD computations on the forebody of a vertical takeoff/vertical lander configuration at four angles of attack is also shown. In addition, a comparison is given between Mach 6 phosphor data and laminar and turbulent solutions generated using the LAURA, GASP and LATCH CFD codes. Finally, the extrapolation method developed in this report is applied to the X-34 configuration with good agreement between the phosphor extrapolation and LAURA flight surface temperature predictions

  5. Gadolinium deposition disease: Initial description of a disease that has been around for a while.

    PubMed

    Semelka, Richard C; Ramalho, Joana; Vakharia, Ami; AlObaidy, Mamdoh; Burke, Lauren M; Jay, Michael; Ramalho, Miguel

    2016-12-01

    To describe the clinical manifestations of presumed gadolinium toxicity in patients with normal renal function. Participants were recruited from two online gadolinium toxicity support groups. The survey was anonymous and individuals were instructed to respond to the survey only if they had evidence of normal renal function, evidence of gadolinium in their system beyond 30days of this MRI, and no pre-existent clinical symptoms and/or signs of this type. 42 subjects responded to the survey (age: 28-69, mean 49.1±22.4years). The most common findings were: central pain (n=15), peripheral pain (n=26), headache (n=28), and bone pain (n=26). Only subjects with distal leg and arm distribution described skin thickening (n=22). Clouded mentation and headache were the symptoms described as persistent beyond 3months in 29 subjects. Residual disease was present in all patients. Twenty-eight patients described symptoms following administration of one brand of Gadolinium-Based Contrast Agent (GBCA), 21 after a single GBCA administration and 7 after multiple GBCA administrations, including: gadopentetate dimeglumine, n=9; gadodiamide, n=4; gadoversetamide, n=4; gadobenate dimeglumine, n=4; gadobutrol, n=1; gadoteridol, n=2; and unknown, n=4. Gadolinium toxicity appears to arise following GBCA administration, which appears to contain clinical features seen in Nephrogenic Systemic Fibrosis, but also features not observed in that condition. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Gadolinium-based Contrast Media, Cerebrospinal Fluid and the Glymphatic System: Possible Mechanisms for the Deposition of Gadolinium in the Brain.

    PubMed

    Taoka, Toshiaki; Naganawa, Shinji

    2018-04-10

    After Kanda's first report in 2014 on gadolinium (Gd) deposition in brain tissue, a considerable number of studies have investigated the explanation for the observation. Gd deposition in brain tissue after repeated administration of gadolinium-based contrast medium (GBCM) has been histologically proven, and chelate stability has been shown to affect the deposition. However, the mechanism for this deposition has not been fully elucidated. Recently, a hypothesis was introduced that involves the 'glymphatic system', which is a coined word that combines 'gl' for glia cell and 'lymphatic' system. According to this hypothesis, the perivascular space functions as a conduit for cerebrospinal fluid to flow into the brain parenchyma. The perivascular space around the arteries allows cerebrospinal fluid to enter the interstitial space of the brain tissue through water channels controlled by aquaporin 4. The cerebrospinal fluid entering the interstitial space clears waste proteins from the tissue. It then flows into the perivascular space around the vein and is discharged outside the brain. In addition to the hypothesis regarding the glymphatic system, some reports have described that after GBCM administration, some of the GBCM distributes through systemic blood circulation and remains in other compartments including the cerebrospinal fluid. It is thought that the GBCM distributed into the cerebrospinal fluid cavity via the glymphatic system may remain in brain tissue for a longer duration compared to the GBCM in systemic circulation. Glymphatic system may of course act as a clearance system for GBCM from brain tissue. Based on these findings, the mechanism for Gd deposition in the brain will be discussed in this review. The authors speculate that the glymphatic system may be the major contributory factor to the deposition and clearance of gadolinium in brain tissue.

  7. Gadolinium-based Contrast Media, Cerebrospinal Fluid and the Glymphatic System: Possible Mechanisms for the Deposition of Gadolinium in the Brain

    PubMed Central

    Taoka, Toshiaki; Naganawa, Shinji

    2018-01-01

    After Kanda’s first report in 2014 on gadolinium (Gd) deposition in brain tissue, a considerable number of studies have investigated the explanation for the observation. Gd deposition in brain tissue after repeated administration of gadolinium-based contrast medium (GBCM) has been histologically proven, and chelate stability has been shown to affect the deposition. However, the mechanism for this deposition has not been fully elucidated. Recently, a hypothesis was introduced that involves the ‘glymphatic system’, which is a coined word that combines ‘gl’ for glia cell and ‘lymphatic’ system. According to this hypothesis, the perivascular space functions as a conduit for cerebrospinal fluid to flow into the brain parenchyma. The perivascular space around the arteries allows cerebrospinal fluid to enter the interstitial space of the brain tissue through water channels controlled by aquaporin 4. The cerebrospinal fluid entering the interstitial space clears waste proteins from the tissue. It then flows into the perivascular space around the vein and is discharged outside the brain. In addition to the hypothesis regarding the glymphatic system, some reports have described that after GBCM administration, some of the GBCM distributes through systemic blood circulation and remains in other compartments including the cerebrospinal fluid. It is thought that the GBCM distributed into the cerebrospinal fluid cavity via the glymphatic system may remain in brain tissue for a longer duration compared to the GBCM in systemic circulation. Glymphatic system may of course act as a clearance system for GBCM from brain tissue. Based on these findings, the mechanism for Gd deposition in the brain will be discussed in this review. The authors speculate that the glymphatic system may be the major contributory factor to the deposition and clearance of gadolinium in brain tissue. PMID:29367513

  8. 40 CFR 721.6110 - Alkyldi(alkyloxyhydroxypropyl) derivative, phosphoric acid esters, potassium salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) derivative, phosphoric acid esters, potassium salts. 721.6110 Section 721.6110 Protection of Environment...) derivative, phosphoric acid esters, potassium salts. (a) Chemical substance and significant new uses subject...) derivative, phosphoric acid esters, potassium salts (PMN P-91-818) is subject to reporting under this section...

  9. 40 CFR 721.6110 - Alkyldi(alkyloxyhydroxypropyl) derivative, phosphoric acid esters, potassium salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) derivative, phosphoric acid esters, potassium salts. 721.6110 Section 721.6110 Protection of Environment...) derivative, phosphoric acid esters, potassium salts. (a) Chemical substance and significant new uses subject...) derivative, phosphoric acid esters, potassium salts (PMN P-91-818) is subject to reporting under this section...

  10. 40 CFR 721.6110 - Alkyldi(alkyloxyhydroxypropyl) derivative, phosphoric acid esters, potassium salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) derivative, phosphoric acid esters, potassium salts. 721.6110 Section 721.6110 Protection of Environment...) derivative, phosphoric acid esters, potassium salts. (a) Chemical substance and significant new uses subject...) derivative, phosphoric acid esters, potassium salts (PMN P-91-818) is subject to reporting under this section...

  11. 40 CFR 721.6110 - Alkyldi(alkyloxyhydroxypropyl) derivative, phosphoric acid esters, potassium salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) derivative, phosphoric acid esters, potassium salts. 721.6110 Section 721.6110 Protection of Environment...) derivative, phosphoric acid esters, potassium salts. (a) Chemical substance and significant new uses subject...) derivative, phosphoric acid esters, potassium salts (PMN P-91-818) is subject to reporting under this section...

  12. 40 CFR 721.6110 - Alkyldi(alkyloxyhydroxypropyl) derivative, phosphoric acid esters, potassium salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) derivative, phosphoric acid esters, potassium salts. 721.6110 Section 721.6110 Protection of Environment...) derivative, phosphoric acid esters, potassium salts. (a) Chemical substance and significant new uses subject...) derivative, phosphoric acid esters, potassium salts (PMN P-91-818) is subject to reporting under this section...

  13. Phosphor suspended in silicone, molded/formed and used in a remote phosphor configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolodin, Boris; Deshpande, Anirudha R

    A light emitting package comprising a support hosting at least one light emitting diode. A light transmissive dome comprised of a silicone including a phosphor material positioned to receive light emitted by the diode. A glass cap overlies said dome.

  14. Stabilizing platinum in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Remick, R. J.

    1982-01-01

    Platinum sintering on phosphoric acid fuel cell cathodes is discussed. The cathode of the phosphoric acid fuel cell uses a high surface area platinum catalyst dispersed on a conductive carbon support to minimize both cathode polarization and fabrication costs. During operation, however, the active surface area of these electrodes decreases, which in turn leads to decreased cell performance. This loss of active surface area is a major factor in the degradation of fuel cell performance over time.

  15. Photoluminescence studies on holmium (III) and praseodymium (III) doped calcium borophosphate (CBP) phosphors

    NASA Astrophysics Data System (ADS)

    Reddy Prasad, V.; Damodaraiah, S.; Devara, S. N.; Ratnakaram, Y. C.

    2018-05-01

    Using solid state reaction method, Ho3+ and Pr3+ doped calcium borophosphate (CBP) phosphors were prepared. These phosphors were characterized using XRD, SEM, FT-IR, 31P solid state NMR, photoluminescence (PL) and decay profiles. Structural details were discussed from XRD and FT-IR spectra. From 31P NMR spectra of these phosphors, mono-phosphate complexes Q0-(PO43-) were observed. Photoluminescence spectra were measured for both Ho3+ and Pr3+ doped calcium borophosphate phosphors and the spectra were studied for different concentrations. Decay curves were obtained for the excited level, 5F4+5S2 of Ho3+ and 1D2 level of Pr3+ in these calcium borophosphate phosphors and lifetimes were measured. CIE color chromaticity diagrams are drawn for these two rare earth ions in calcium borophosphate phosphors. Results show that Ho3+ and Pr3+ doped CBP phosphors might be served as green and red luminescence materials.

  16. World wide IFC phosphoric acid fuel cell implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, J.M. Jr

    1996-04-01

    International Fuel Cells, a subsidary of United technologies Corporation, is engaged in research and development of all types of fuel cell technologies and currently manufactures alkaline fuel cell power plants for the U.S. manned space flight program and natural gas fueled stationary power plants using phosphoric acid fuel cells. This paper describes the phosphoric acid fuel cell power plants.

  17. Unique photoluminescence degradation/recovery phenomena in trivalent ion-activated phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, Kenji; Adachi, Sadao, E-mail: adachi@el.gunma-u.ac.jp

    Photo-induced luminescence intensity degradation in red-emitting Tb{sub 3}Ga{sub 5}O{sub 12}:Eu{sup 3+} (TGG:Eu{sup 3+}) phosphor is observed and studied using x-ray diffraction measurement, photoluminescence (PL) analysis, PL excitation spectroscopy, and PL decay analysis. The red-emitting TGG:Eu{sup 3+} phosphor exhibits remarkable degradation in the PL intensity under weak UV light (λ < 350 nm) exposure in the seconds time scale. The PL degradation characteristics can be well expressed by the exponential formulation with respect to exposure time. Interestingly, the PL intensity recovers after a few minutes when the phosphor is stored in a dark room or exposed to the long-wavelength (λ > 350 nm) light. The luminescence decaymore » dynamics measured by excitation at λ{sub ex} = 355 and 266 nm suggest that the present degradation/recovery processes are caused by the electron traps formed in the TGG:Eu{sup 3+} phosphor. The Tb{sup 3+} emission in TGG shows the essentially same degradation characteristics as those observed in the TGG:Eu{sup 3+} phosphor. The present luminescence degradation/recovery phenomena of the trivalent ions (4f → 4f transitions) may universally occur in various oxide phosphors such as TGG (Tb{sup 3+} emission) and CaTiO{sub 3}:Eu{sup 3+}.« less

  18. Do we need gadolinium-based contrast medium for brain magnetic resonance imaging in children?

    PubMed

    Dünger, Dennis; Krause, Matthias; Gräfe, Daniel; Merkenschlager, Andreas; Roth, Christian; Sorge, Ina

    2018-06-01

    Brain imaging is the most common examination in pediatric magnetic resonance imaging (MRI), often combined with the use of a gadolinium-based contrast medium. The application of gadolinium-based contrast medium poses some risk. There is limited evidence of the benefits of contrast medium in pediatric brain imaging. To assess the diagnostic gain of contrast-enhanced sequences in brain MRI when the unenhanced sequences are normal. We retrospectively assessed 6,683 brain MR examinations using contrast medium in children younger than 16 years in the pediatric radiology department of the University Hospital Leipzig to determine whether contrast-enhanced sequences delivered additional, clinically relevant information to pre-contrast sequences. All examinations were executed using a 1.5-T or a 3-T system. In 8 of 3,003 (95% confidence interval 0.12-0.52%) unenhanced normal brain examinations, a relevant additional finding was detected when contrast medium was administered. Contrast enhancement led to a change in diagnosis in only one of these cases. Children with a normal pre-contrast brain MRI rarely benefit from contrast medium application. Comparing these results to the risks and disadvantages of a routine gadolinium application, there is substantiated numerical evidence for avoiding routine administration of gadolinium in a pre-contrast normal MRI examination.

  19. Accumulation of MRI contrast agents in malignant fibrous histiocytoma for gadolinium neutron capture therapy.

    PubMed

    Fujimoto, T; Ichikawa, H; Akisue, T; Fujita, I; Kishimoto, K; Hara, H; Imabori, M; Kawamitsu, H; Sharma, P; Brown, S C; Moudgil, B M; Fujii, M; Yamamoto, T; Kurosaka, M; Fukumori, Y

    2009-07-01

    Neutron-capture therapy with gadolinium (Gd-NCT) has therapeutic potential, especially that gadolinium is generally used as a contrast medium in magnetic resonance imaging (MRI). The accumulation of gadolinium in a human sarcoma cell line, malignant fibrosis histiocytoma (MFH) Nara-H, was visualized by the MRI system. The commercially available MRI contrast medium Gd-DTPA (Magnevist, dimeglumine gadopentetate aqueous solution) and the biodegradable and highly gadopentetic acid (Gd-DTPA)-loaded chitosan nanoparticles (Gd-nanoCPs) were prepared as MRI contrast agents. The MFH cells were cultured and collected into three falcon tubes that were set into the 3-tesra MRI system to acquire signal intensities from each pellet by the spin echo method, and the longitudinal relaxation time (T1) was calculated. The amount of Gd in the sample was measured by inductively coupled plasma atomic emission spectrography (ICP-AES). The accumulation of gadolinium in cells treated with Gd-nanoCPs was larger than that in cells treated with Gd-DTPA. In contrast, and compared with the control, Gd-DTPA was more effective than Gd-nanoCPs in reducing T1, suggesting that the larger accumulation exerted the adverse effect of lowering the enhancement of MRI. Further studies are warranted to gain insight into the therapeutic potential of Gd-NCT.

  20. Measurement of gamma-ray production from thermal neutron capture on gadolinium for neutrino experiments

    NASA Astrophysics Data System (ADS)

    Yano, Takatomi; 2012B0025 Collaboration; 2014B0126 Collaboration

    2017-02-01

    Recently, several scientific applications of gadolinium are found in neutrino physics experiments. Gadolinium-157 is the nucleus, which has the largest thermal neutron capture cross-section among all stable nuclei. Gadolinium-155 also has the large cross-section. These neutron capture reactions provide the gamma-ray cascade with the total energy of about 8 MeV. This reaction is applied for several neutrino experiments, e.g. reactor neutrino experiments and Gd doped large water Cherenkov detector experiments, to recognize inverse-beta-decay reaction. A good Gd(n,γ) simulation model is needed to evaluate the detection efficiency of the neutron capture reaction, i.e. the efficiency of IBD detection. In this presentation, we will report the development and study status of a Gd(n,γ) calculation model and comparison with our experimental data taken at ANNRI/MLF beam line, J-PARC.

  1. Critical Questions Regarding Gadolinium Deposition in the Brain and Body After Injections of the Gadolinium-Based Contrast Agents, Safety, and Clinical Recommendations in Consideration of the EMA's Pharmacovigilance and Risk Assessment Committee Recommendation for Suspension of the Marketing Authorizations for 4 Linear Agents.

    PubMed

    Runge, Val M

    2017-06-01

    For magnetic resonance, the established class of intravenous contrast media is the gadolinium-based contrast agents. In the 3 decades since initial approval, these have proven in general to be very safe for human administration. However, in 2006, a devastating late adverse reaction to administration of the less stable gadolinium-based contrast agents was identified, nephrogenic systemic fibrosis. The result of actions taken by the European Medicines Agency and the US Food and Drug Administration, stratifying the agents by risk and contraindicating specific agents in severe renal dysfunction, has led to no new cases being identified in North America or Europe. Subsequently, in 2014, long-term deposition in the brain of gadolinium was first shown, after administration of 2 nonionic linear chelates, gadodiamide, and gadopentetate dimeglumine. This has led to an intense focus on the question of in vivo distribution, possible dechelation, and subsequent deposition of gadolinium, together with substantial clarification of the phenomenon as well as stratification of the agents on this basis. This review focuses on 8 critical questions regarding gadolinium deposition in the brain and body, with the answers and discussion therein important for future regulatory decisions and clinical practice. It is now clear that dechelation of gadolinium occurs in vivo with the linear agents and is responsible for this phenomenon, with key experts in the field recommending, except where there is no suitable alternative, a shift in clinical practice from the linear to macrocyclic agents. In addition, on March 10, 2017, the Pharmacovigilance and Risk Assessment Committee of the European Medicines Agency recommended suspension of the marketing authorization for 4 linear gadolinium contrast agents-specifically Omniscan, Optimark, Magnevist, and MultiHance (gadodiamide, gadoversetamide, gadopentetate dimeglumine, and gadobenate dimeglumine)-for intravenous injection. Cited in the report was

  2. Type-II domains in ferroelectric gadolinium molybdate (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohm, J.; Kuersten, H.D.

    Etching (001)-faces of gadolinium molybdate (GMO) reveals new kinds of domains. They are created by a translation, that leaves the spontaneous polarization and the transition parameter invariant. The translation vector is a part of a lattice vector, similar to stacking faults. (auth)

  3. Photostimulated luminescence properties of Eu2+ -doped barium aluminate phosphor.

    PubMed

    He, Quanlong; Qiu, Guangyu; Xu, Xuhui; Qiu, Jianbei; Yu, Xue

    2015-03-01

    An intense green photostimulated luminescence in BaAl2 O4 :Eu(2+) phosphor was prepared. The thermoluminescence results indicate that there are at least three types of traps (T1 , T2 , T3 ) with different trap depths in BaAl2 O4 :Eu(2+) phosphor according to the bands located at 327, 361 and 555 K, respectively, which are closely associated with the phosphor's long persistent luminescence and photostimulated luminescence properties. In addition, as a novel optical read-out form, a photostimulated persistent luminescence signal can be repeatedly obtained in BaAl2 O4 :Eu(2+) phosphor. This shows that re-trapping of the electron released from a deep trap plays an important role in photostimulated persistent luminescence. Copyright © 2014 John Wiley & Sons, Ltd.

  4. The Effect of Pressure and Temperature on Separation of Free Gadolinium(III) From Gd-DTPA Complex by Nanofiltration-Complexation Method

    NASA Astrophysics Data System (ADS)

    Rahayu, Iman; Anggraeni, Anni; Ukun, MSS; Bahti, Husein H.

    2017-05-01

    Nowdays, the utilization of rare earth elements has been carried out widely in industry and medicine, one of them is gadolinium in Gd-DTPA complex is used as a contrast agent in a magnetic resonance imaging (MRI) diagnostic to increase the visual contrast between normal tissue and diseased. Although the stability of a given complex may be high enough, the complexation step couldnot have been completed, so there is possible to gadolinium(III) in the complex compound. Therefore, the function of that compounds should be dangerous because of the toxicity of gadolinium(III) in human body. So, it is necessarry to separate free gadolinium(III) from Gd-DTPA complex by nanofiltration-complexation. The method of this study is complexing of Gd2O3 with DTPA ligand by reflux and separation of Gd-DTPA complex from gadolinium(III) with a nanofiltration membrane on the variation of pressures(2, 3, 4, 5, 6 bars) and temperature (25, 30, 35, 40 °C) and determined the flux and rejection. The results of this study are the higher of pressures and temperatures, permeation flux are increasing and ion rejections are decreasing and gave the free gadolinium(III) rejection until 86.26%.

  5. Nanoamplifiers synthesized from gadolinium and gold nanocomposites for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Tian, Xiumei; Shao, Yuanzhi; He, Haoqiang; Liu, Huan; Shen, Yingying; Huang, Wenlin; Li, Li

    2013-03-01

    We have synthesized an efficient and highly sensitive nanoamplifier composed of gadolinium-doped silica nanoparticles and gold nanoparticles (AuNPs). Magnetic resonance imaging (MRI) in vitro and in vivo assays revealed enhancement of signal sensitivity, which may be explained by electron transfer between water and gadolinium-doped nanoparticles, apparent in the presence of gold. In vitro and in vivo evaluation demonstrated nanoamplifier incurred minimal cytotoxicity and immunotoxicity, increased stability, and gradual excretion patterns. Tumor targeted properties were preliminarily determined when the nanoamplifier was injected into mouse models of colon cancer liver metastasis. Furthermore, although AuNPs departed from the nanoamplifiers in specific mice tissues, optical and magnetic resonance imaging was efficient, especially in metastatic tumors. These assays validate our nanoamplifier as an effective MRI signal enhancer with sensitive cancer diagnosis potential.We have synthesized an efficient and highly sensitive nanoamplifier composed of gadolinium-doped silica nanoparticles and gold nanoparticles (AuNPs). Magnetic resonance imaging (MRI) in vitro and in vivo assays revealed enhancement of signal sensitivity, which may be explained by electron transfer between water and gadolinium-doped nanoparticles, apparent in the presence of gold. In vitro and in vivo evaluation demonstrated nanoamplifier incurred minimal cytotoxicity and immunotoxicity, increased stability, and gradual excretion patterns. Tumor targeted properties were preliminarily determined when the nanoamplifier was injected into mouse models of colon cancer liver metastasis. Furthermore, although AuNPs departed from the nanoamplifiers in specific mice tissues, optical and magnetic resonance imaging was efficient, especially in metastatic tumors. These assays validate our nanoamplifier as an effective MRI signal enhancer with sensitive cancer diagnosis potential. Electronic supplementary information

  6. Biocompatible Polyhydroxyethylaspartamide-based Micelles with Gadolinium for MRI Contrast Agents

    PubMed Central

    2010-01-01

    Biocompatible poly-[N-(2-hydroxyethyl)-d,l-aspartamide]-methoxypoly(ethyleneglycol)-hexadecylamine (PHEA-mPEG-C16) conjugated with 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid-gadolinium (DOTA-Gd) via ethylenediamine (ED) was synthesized as a magnetic resonance imaging (MRI) contrast agent. Amphiphilic PHEA-mPEG-C16-ED-DOTA-Gd forms micelle in aqueous solution. All the synthesized materials were characterized by proton nuclear magnetic resonance (1H NMR). Micelle size and shape were examined by dynamic light scattering (DLS) and atomic force microscopy (AFM). Micelles with PHEA-mPEG-C16-ED-DOTA-Gd showed higher relaxivities than the commercially available gadolinium contrast agent. Moreover, the signal intensity of a rabbit liver was effectively increased after intravenous injection of PHEA-mPEG-C16-ED-DOTA-Gd. PMID:21170410

  7. Biocompatible Polyhydroxyethylaspartamide-based Micelles with Gadolinium for MRI Contrast Agents

    NASA Astrophysics Data System (ADS)

    Jeong, Sang Young; Kim, Hyo Jeong; Kwak, Byung-Kook; Lee, Ha-Young; Seong, Hasoo; Shin, Byung Cheol; Yuk, Soon Hong; Hwang, Sung-Joo; Cho, Sun Hang

    2010-12-01

    Biocompatible poly-[ N-(2-hydroxyethyl)- d, l-aspartamide]-methoxypoly(ethyleneglycol)-hexadecylamine (PHEA-mPEG-C16) conjugated with 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid-gadolinium (DOTA-Gd) via ethylenediamine (ED) was synthesized as a magnetic resonance imaging (MRI) contrast agent. Amphiphilic PHEA-mPEG-C16-ED-DOTA-Gd forms micelle in aqueous solution. All the synthesized materials were characterized by proton nuclear magnetic resonance (1H NMR). Micelle size and shape were examined by dynamic light scattering (DLS) and atomic force microscopy (AFM). Micelles with PHEA-mPEG-C16-ED-DOTA-Gd showed higher relaxivities than the commercially available gadolinium contrast agent. Moreover, the signal intensity of a rabbit liver was effectively increased after intravenous injection of PHEA-mPEG-C16-ED-DOTA-Gd.

  8. Electron magnetic resonance investigation of gadolinium diffusion in zircon powders

    NASA Astrophysics Data System (ADS)

    de Biasi, R. S.; Grillo, M. L. N.

    2011-11-01

    The electron magnetic resonance (EMR) technique was used to investigate the diffusion of gadolinium in zircon (ZrSiO4) powders. The EMR absorption intensity was measured for several annealing times and three different temperatures of isothermal annealing: 1273, 1323 and 1373 K. The activation energy for diffusion, calculated from the experimental data using a theoretical model based on the Fick equation, was found to be EA=506±5 kJ mol-1. This value is close to the ones for the diffusion of Gd in UO2 and CeO2, but much larger than for the diffusion of gadolinium in a compound with the same crystal structure as zircon, YVO4. This is attributed to a difference in the relative sizes of the ions involved in the diffusion process.

  9. Gadolinium concentration analysis in brain phantom by X-ray fluorescence.

    PubMed

    Almalki, Musaed; Majid, Samir Abdul; Butler, Philip H; Reinisch, Lou

    2010-06-01

    We have measured the X-ray fluorescence from gadolinium as a function of concentration and position in tumors of different sizes and shapes in a head phantom. The gadolinium fluorescence was excited with a 36 GBq Am-241 source. The fluorescence signal was detected with a CdTe detector and a multi-channel analyzer. The fluorescence peak was clearly separated from the scattered X-rays. Concentrations of 5.62-78.63 mg/ml of Gd ion were used in 1, 2, and 3 cm diameter spherical tumors and a 2x4 cm oblate spheroid tumor. The data show trends approaching saturation for the highest concentrations, probably due to reabsorption in the tumor. A comparison of X-ray photographic imaging and densitometer measurements to determine concentration is also presented.

  10. Preparation of a YAG:Ce phosphor glass by screen-printing technology and its application in LED packaging.

    PubMed

    Yang, Liang; Chen, Mingxiang; Lv, Zhicheng; Wang, Simin; Liu, Xiaogang; Liu, Sheng

    2013-07-01

    A simple and practical method for preparing phosphor glass is proposed. Phosphor distribution and element analysis are investigated by optical microscope and field emission scanning electron microscope (FE-SEM). The phosphor particles dispersed in the matrix are vividly observed, and their distributions are uniform. Spectrum distribution and color coordinates dependent on the thickness of the screen-printed phosphor layer coupled with a blue light emitting diode (LED) chip are studied. The luminous efficacy of the 75 μm printed phosphor-layer phosphor glass packaged white LED is 81.24 lm/W at 350 mA. This study opens up many possibilities for applications using the phosphor glass on a selected chip in which emission is well absorbed by all phosphors. The screen-printing technique also offers possibilities for the design and engineering of complex phosphor layers on glass substrates. Phosphor screen-printing technology allows the realization of high stability and thermal conductivity for the phosphor layer. This phosphor glass method provides many possibilities for LED packing, including thin-film flip chip and remote phosphor technology.

  11. High-Temperature Surface Thermometry Technique based on Upconversion Nano-Phosphors

    NASA Astrophysics Data System (ADS)

    Combs, C.; Clemens, N.; Guo, X.; Song, H.; Zhao, H.; Li, K. K.; Zou, Y. K.; Jiang, H.

    2011-11-01

    Downconversion thermographic phosphors have been extensively used for high-temperature surface thermometry applications (e.g., aerothermodynamics, turbine blades) where temperature-sensitive paint is not viable. In downconversion techniques the phosphorescence is at longer wavelengths than the excitation source. We are developing a new upconversion thermographic phosphor technique that employs rare-earth-doped ceramics whose phosphorescence exhibit a strong temperature dependence. In the upconversion technique the phosphor is excited with near-IR light and emission is at visible wavelengths; thus, it does not require expensive UV windows and does not suffer from interference from background fluorescence. In this work the upconversion phosphors have been characterized in terms of their intensity, lifetimes and spectral content over a temperature range of 300K to 1500K. The technique has been evaluated for applications of 2D surface temperature measurements by using the total integrated intensity and the ratio of emission in different visible color bands. The results indicate that upconversion phosphor thermometry is a promising technique for making non-contact high-surface temperature measurements with good accuracy. Work supported by NASA under contract NNX11CG89P.

  12. Flexible phosphor sensors: a digital supplement or option to rigid sensors.

    PubMed

    Glazer, Howard S

    2014-01-01

    An increasing number of dental practices are upgrading from film radiography to digital radiography, for reasons that include faster image processing, easier image access, better patient education, enhanced data storage, and improved office productivity. Most practices that have converted to digital technology use rigid, or direct, sensors. Another digital option is flexible phosphor sensors, also called indirect sensors or phosphor storage plates (PSPs). Flexible phosphor sensors can be advantageous for use with certain patients who may be averse to direct sensors, and they can deliver a larger image area. Additionally, sensor cost for replacement PSPs is considerably lower than for hard sensors. As such, flexible phosphor sensors appear to be a viable supplement or option to direct sensors.

  13. Electronic structure descriptor for the discovery of narrow-band red-emitting phosphors

    DOE PAGES

    Wang, Zhenbin; Chu, Iek -Heng; Zhou, Fei; ...

    2016-05-09

    Narrow-band red-emitting phosphors are a critical component of phosphor-converted light-emitting diodes for highly efficient illumination-grade lighting. In this work, we report the discovery of a quantitative descriptor for narrow-band Eu 2+-activated emission identified through a comparison of the electronic structures of known narrow-band and broad-band phosphors. We find that a narrow emission bandwidth is characterized by a large splitting of more than 0.1 eV between the two highest Eu 2+ 4 f 7 bands. By incorporating this descriptor in a high-throughput first-principles screening of 2259 nitride compounds, we identify five promising new nitride hosts for Eu 2+-activated red-emitting phosphors thatmore » are predicted to exhibit good chemical stability, thermal quenching resistance, and quantum efficiency, as well as narrow-band emission. Lastly, our findings provide important insights into the emission characteristics of rare-earth activators in phosphor hosts and a general strategy to the discovery of phosphors with a desired emission peak and bandwidth.« less

  14. Structural studies of a green-emitting terbium doped calcium zinc phosphate phosphor

    NASA Astrophysics Data System (ADS)

    Ramesh, B.; Dillip, G. R.; Rambabu, B.; Joo, S. W.; Raju, B. Deva Prasad

    2018-03-01

    In this study, a new green emitting CaZn2(PO4)2:Tb3+ phosphors were synthesized through solid-state reaction route. The phosphors were characterized structurally by X-ray diffraction, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). All the synthesized phosphors were crystallized in triclinic crystal structure with P 1 bar space group. The phosphate groups in the phosphors were confirmed by FTIR analysis. The surface elements O 1s, P 2p, Ca 2p, Zn 2p and Tb 3d were studied by high-resolution XPS spectra. Upon excitation at 378 nm, the dominant green emission of CaZn2(PO4)2:Tb3+ phosphors at 542 nm were noticed in the emission spectra. For various emission wavelengths (at 435 and 489 nm) and constant excitation wavelength (at 378 nm), the decay curves have shown two different decay dynamics of phosphors. The lighting properties such as Commission International de l'Eclairage (x = 0.319, y = 0.398) and color temperature (5995 K) were calculated.

  15. Electronic structure descriptor for the discovery of narrow-band red-emitting phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhenbin; Chu, Iek -Heng; Zhou, Fei

    Narrow-band red-emitting phosphors are a critical component of phosphor-converted light-emitting diodes for highly efficient illumination-grade lighting. In this work, we report the discovery of a quantitative descriptor for narrow-band Eu 2+-activated emission identified through a comparison of the electronic structures of known narrow-band and broad-band phosphors. We find that a narrow emission bandwidth is characterized by a large splitting of more than 0.1 eV between the two highest Eu 2+ 4 f 7 bands. By incorporating this descriptor in a high-throughput first-principles screening of 2259 nitride compounds, we identify five promising new nitride hosts for Eu 2+-activated red-emitting phosphors thatmore » are predicted to exhibit good chemical stability, thermal quenching resistance, and quantum efficiency, as well as narrow-band emission. Lastly, our findings provide important insights into the emission characteristics of rare-earth activators in phosphor hosts and a general strategy to the discovery of phosphors with a desired emission peak and bandwidth.« less

  16. Recovery of methamphetamine associated cardiomyopathy predicted by late gadolinium enhanced cardiovascular magnetic resonance.

    PubMed

    Lopez, Javier E; Yeo, Khung; Caputo, Gary; Buonocore, Michael; Schaefer, Saul

    2009-11-11

    Methamphetamine is known to cause a cardiomyopathy which may be reversible with appropriate medical therapy and cessation of use. Late gadolinium enhancement cardiovascular magnetic resonance (CMR) has been shown to identify fibrosis in ischemic and non-ischemic cardiomyopathies. We present a case of severe methamphetamine-associated cardiomyopathy in which cardiac function recovered after 6 months. Evaluation by CMR using late gadolinium enhancement was notable for an absence of enhancement, suggesting an absence of irreversible myocyte injury and a good prognosis. CMR may be useful to predict recovery in toxin-associated non-ischemic cardiomyopathies.

  17. Recovery of methamphetamine associated cardiomyopathy predicted by late gadolinium enhanced cardiovascular magnetic resonance

    PubMed Central

    2009-01-01

    Methamphetamine is known to cause a cardiomyopathy which may be reversible with appropriate medical therapy and cessation of use. Late gadolinium enhancement cardiovascular magnetic resonance (CMR) has been shown to identify fibrosis in ischemic and non-ischemic cardiomyopathies. We present a case of severe methamphetamine-associated cardiomyopathy in which cardiac function recovered after 6 months. Evaluation by CMR using late gadolinium enhancement was notable for an absence of enhancement, suggesting an absence of irreversible myocyte injury and a good prognosis. CMR may be useful to predict recovery in toxin-associated non-ischemic cardiomyopathies. PMID:19906310

  18. Proton Conductivity in Phosphoric Acid: The Role of Quantum Effects

    DOE PAGES

    Heres, M.; Wang, Y.; Griffin, P. J.; ...

    2016-10-07

    Phosphoric acid has one of the highest intrinsic proton conductivities of any known liquids, and the mechanism of this exceptional conductivity remains a puzzle. In our detailed experimental studies we discovered a strong isotope effect in the conductivity of phosphoric acids caused by (i) a strong isotope shift of the glass transition temperature and (ii) a significant reduction of the energy barrier by zero-point quantum fluctuations. Our results suggest that the high conductivity in phosphoric acids is caused by a very efficient proton transfer mechanism, which is strongly assisted by quantum effects.

  19. Acute side effects of three commonly used gadolinium contrast agents in the paediatric population.

    PubMed

    Neeley, Chris; Moritz, Michael; Brown, Jeffrey J; Zhou, Yihua

    2016-07-01

    To determine the incidence of acute side effects of three commonly used gadolinium contrast agents in the paediatric population. A retrospective review of medical records was performed to determine the incidence of acute adverse side effects of i.v. gadolinium contrast agents [MultiHance(®) (Bracco Diagnostics Inc., Princeton, NJ), Magnevist(®) (Bayer Healthcare Pharmaceuticals, Wayne, NJ) or Gadavist(®) (Bayer HealthCare Pharmaceuticals)] in paediatric patients. 40 of the 2393 patients who received gadolinium contrast agents experienced acute side effects, representing an incidence of 1.7%. The majority of the acute side effects (in 30 patients) were nausea and vomiting. The incidence was significantly higher in non-sedated patients (2.37% vs 0.7%; p = 0.0018). Furthermore, without sedation, the incidence of both nausea and vomiting was significantly higher in children receiving MultiHance, with a 4.48% incidence of nausea when compared with Magnevist (0.33%, p < 0.0001) and Gadavist (0.28%, p < 0.0001) and a 2.36% incidence of vomiting compared with those for Magnevist (0.50%, p = 0.0054) and Gadavist (0.28%, p = 0.014), whereas no difference was observed between Magnevist and Gadavist within the power of the study. In addition, there was no apparent difference between any of the three contrast agents for the incidence of allergy or other acute side effects detected, given the sample size. The gadolinium contrast agents MultiHance, Magnevist and Gadavist have a low incidence of acute side effects in the paediatric population, a rate that is further reduced in moderately sedated patients. MultiHance demonstrated significantly increased incidence of gastrointestinal symptoms compared with Magnevist and Gadavist. The incidence of acute side effects of three commonly used gadolinium contrast agents was determined in the paediatric population, which can have clinical implications.

  20. Ce3+-Doped garnet phosphors: composition modification, luminescence properties and applications.

    PubMed

    Xia, Zhiguo; Meijerink, Andries

    2017-01-03

    Garnets have the general formula of A 3 B 2 C 3 O 12 and form a wide range of inorganic compounds, occurring both naturally (gemstones) and synthetically. Their physical and chemical properties are closely related to the structure and composition. In particular, Ce 3+ -doped garnet phosphors have a long history and are widely applied, ranging from flying spot cameras, lasers and phosphors in fluorescent tubes to more recent applications in white light LEDs, as afterglow materials and scintillators for medical imaging. Garnet phosphors are unique in their tunability of the luminescence properties through variations in the {A}, [B] and (C) cation sublattice. The flexibility in phosphor composition and the tunable luminescence properties rely on design and synthesis strategies for new garnet compositions with tailor-made luminescence properties. It is the aim of this review to discuss the variation in luminescence properties of Ce 3+ -doped garnet materials in relation to the applications. This review will provide insight into the relation between crystal chemistry and luminescence for the important class of Ce 3+ -doped garnet phosphors. It will summarize previous research on the structural design and optical properties of garnet phosphors and also discuss future research opportunities in this field.

  1. Layered gadolinium hydroxides for low-temperature magnetic cooling.

    PubMed

    Abellán, Gonzalo; Espallargas, Guillermo Mínguez; Lorusso, Giulia; Evangelisti, Marco; Coronado, Eugenio

    2015-09-28

    Layered gadolinium hydroxides have revealed to be excellent candidates for cryogenic magnetic refrigeration. These materials behave as pure 2D magnetic systems with a Heisenberg-Ising critical crossover, induced by dipolar interactions. This 2D character and the possibility offered by these materials to be delaminated open the possibility of rapid heat dissipation upon substrate deposition.

  2. Gadolinium-148 and other spallation production cross section measurements for accelerator target facilities

    NASA Astrophysics Data System (ADS)

    Kelley, Karen Corzine

    At the Los Alamos Neutron Science Center accelerator complex, protons are accelerated to 800 MeV and directed to two tungsten targets, Target 4 at the Weapons Neutron Research facility and the 1L target at the Lujan Center. The Department of Energy requires hazard classification analyses to be performed on these targets and places limits on certain radionuclide inventories in the targets to avoid characterizing the facilities as "nuclear facilities." Gadolinium-148 is a radionuclide created from the spallation of tungsten. Allowed isotopic inventories are particularly low for this isotope because it is an alpha-particle emitter with a 75-year half-life. The activity level of Gadolinium-148 is low, but it encompasses almost two-thirds of the total dose burden for the two tungsten targets based on present yield estimates. From a hazard classification standpoint, this severely limits the lifetime of these tungsten targets. The cross section is not well-established experimentally and this is the motivation for measuring the Gadolinium-148 production cross section from tungsten. In a series of experiments at the Weapons Neutron Research facility, Gadolinium-148 production was measured for 600- and 800-MeV protons on tungsten, tantalum, and gold. These experiments used 3 mum thin tungsten, tantalum, and gold foils and 10 mum thin aluminum activation foils. In addition, spallation yields were determined for many short-lived and long-lived spallation products with these foils using gamma and alpha spectroscopy and compared with predictions of the Los Alamos National Laboratory codes CEM2k+GEM2 and MCNPX. The cumulative Gadolinium-148 production cross section measured from tantalum, tungsten, and gold for incident 600-MeV protons were 15.2 +/- 4.0, 8.31 +/- 0.92, and 0.591 +/- 0.155, respectively. The average production cross sections measured at 800 MeV were 28.6 +/- 3.5, 19.4 +/- 1.8, and 3.69 +/- 0.50 for tantalum, tungsten, and gold, respectively. These cumulative

  3. 40 CFR 721.10220 - Phosphoric acid, polymer with cycloaliphatic diglycidyl ether, alkylethers (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Phosphoric acid, polymer with... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10220 Phosphoric acid, polymer with... to reporting. (1) The chemical substance identified generically as phosphoric acid, polymer with...

  4. 40 CFR 721.10220 - Phosphoric acid, polymer with cycloaliphatic diglycidyl ether, alkylethers (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphoric acid, polymer with... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10220 Phosphoric acid, polymer with... to reporting. (1) The chemical substance identified generically as phosphoric acid, polymer with...

  5. 40 CFR 721.10220 - Phosphoric acid, polymer with cycloaliphatic diglycidyl ether, alkylethers (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphoric acid, polymer with... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10220 Phosphoric acid, polymer with... to reporting. (1) The chemical substance identified generically as phosphoric acid, polymer with...

  6. 40 CFR 721.10220 - Phosphoric acid, polymer with cycloaliphatic diglycidyl ether, alkylethers (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphoric acid, polymer with... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10220 Phosphoric acid, polymer with... to reporting. (1) The chemical substance identified generically as phosphoric acid, polymer with...

  7. Addition of Grape Seed Extract Renders Phosphoric Acid a Collagen-stabilizing Etchant.

    PubMed

    Liu, Y; Dusevich, V; Wang, Y

    2014-08-01

    Previous studies found that grape seed extract (GSE), which is rich in proanthocyanidins, could protect demineralized dentin collagen from collagenolytic activities following clinically relevant treatment. Because of proanthocyanidin's adverse interference to resin polymerization, it was believed that GSE should be applied and then rinsed off in a separate step, which in effect increases the complexity of the bonding procedure. The present study aimed to investigate the feasibility of combining GSE treatment with phosphoric acid etching to address the issue. It is also the first attempt to formulate collagen-cross-linking dental etchants. Based on Fourier-transformed infrared spectroscopy and digestion assay, it was established that in the presence of 20% to 5% phosphoric acid, 30 sec of GSE treatment rendered demineralized dentin collagen inert to bacterial collagenase digestion. Based on this positive result, the simultaneous dentin etching and collagen protecting of GSE-containing phosphoric acid was evaluated on the premise of a 30-second etching time. According to micro-Raman spectroscopy, the formulation containing 20% phosphoric acid was found to lead to overetching. Based on scanning and transmission electronic microscopy, this same formulation exhibited unsynchronized phosphoric acid and GSE penetration. Therefore, addition of GSE did render phosphoric acid a collagen-stabilizing etchant, but the preferable phosphoric acid concentration should be <20%. © International & American Associations for Dental Research.

  8. Coated phosphors, methods of making them, and articles comprising the same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyons, Robert Joseph

    Compositions comprising a phosphor and a compound having the formula R.sub.1R.sub.2M, wherein R.sub.1 is a substituted or unsubstituted alkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, alkoxy, alkoxyl, acyl heterocycle, haloalkyl, oxaalkyl, or silyl; R.sub.2 is a sulfate, sulfonate, or carboxylate and M is an alkali metal or an alkaline earth metal are provided. Phosphors coated with the compound, methods of making the coated phosphors and articles comprising the compositions are provided.

  9. Solid solutions of gadolinium doped zinc oxide nanorods by combined microwave-ultrasonic irradiation assisted crystallization

    NASA Astrophysics Data System (ADS)

    Kiani, Armin; Dastafkan, Kamran; Obeydavi, Ali; Rahimi, Mohammad

    2017-12-01

    Nanocrystalline solid solutions consisting of un-doped and gadolinium doped zinc oxide nanorods were fabricated by a modified sol-gel process utilizing combined ultrasonic-microwave irradiations. Polyvinylpyrrolidone, diethylene glycol, and triethylenetetramine respectively as capping, structure directing, and complexing agents were used under ultrasound dynamic aging and microwave heating to obtain crystalline nanorods. Crystalline phase monitoring, lattice parameters and variation, morphology and shape, elemental analysis, functional groups, reducibility, and the oxidation state of emerged species were examined by PXRD, FESEM, TEM, EDX, FTIR, micro Raman, H2-TPR, and EPR techniques. Results have verified that irradiation mechanism of gelation and crystallization reduces the reaction time, augments the crystal quality, and formation of hexagonal close pack structure of Wurtzite morphology. Besides, dissolution of gadolinium within host lattice involves lattice deformation, unit cell distortion, and angular position variation. Structure related shape and growth along with compositional purity were observed through microscopic and spectroscopic surveys. Furthermore, TPR and EPR studies elucidated more detailed behavior upon exposure to the exerted irradiations and subsequent air-annealing including the formed oxidation states and electron trapping centers, presence of gadolinium, zinc, and oxygen disarrays and defects, as well as alteration in the host unit cell via gadolinium addition.

  10. High Temperature Thermographic Phosphor Coatings Development

    NASA Technical Reports Server (NTRS)

    Goedeke, Shawn; Allison, S. W.; Beshears, D. L.; Bencic, T.; Cates, M. R.; Hollerman, W. A.; Guidry, R.

    2003-01-01

    For many years, phosphor thermometry has been used for non-contact temperature measurements. A large number of applications have been associated with high temperatures, especially for aerospace systems where blackbody radiation backgrounds are large and in challenging environments, such as vibration, rotation, flame, or noise. These environments restrict the use of more common thermocouples or infrared thermometric techniques. In particular, temperature measurements inside jet turbines, rocket engines, or similar devices are especially amenable to phosphor techniques. Often the fluorescent materials are used as powders, either suspended in binders and applied like paint or applied as high-temperature sprays. Thin coatings that are less than 50 m thick are used on the surfaces of interest. These coatings will quickly assume the same temperature as the surface to which they are applied. The temperature dependence of fluorescent materials is a function of the base matrix atoms and a small quantity of added activator or dopant ions. Often for high temperature applications, the selected materials are refractory and include rare earth ions. Phosphors like Y3Al5O12 (YAG) doped with Eu, Dy, or Tm, Y2O3 doped with Eu, or similar rare earth compounds, will survive high temperatures and can be configured to emit light that changes rapidly in lifetime and intensity. For example, researchers at Oak Ridge National Laboratory recently observed fluorescence from YAG:Dy and YAG:Tm at temperatures above 1400 C. One of the biggest challenges is to locate a binder material that can withstand tremendous variations in temperature in an adverse aerospace environment. This poster will provide an overview into our attempt to utilize phosphors for thermometry purposes. Emphasis will be placed on the use of selected binder materials that can withstand high temperatures. This research was completed for the National Aeronautics and Space Administration's Glenn Research Center in Cleveland

  11. The network formers role of gadolinium(III) ions in some zinc-borate glass ceramics

    NASA Astrophysics Data System (ADS)

    Bosca, Maria; Pop, Lidia; Pascuta, Petru

    2017-12-01

    EPR and magnetic susceptibility measurements were performed on glass ceramics from the (Gd2O3)x.(B2O3)(60-x).(ZnO)40 system, with 0 ≤ x ≤ 15 mol%, in order to determine the role of gadolinium ions on structural and magnetic properties. At low Gd2O3 contents (x ≤ 1 mol%) the EPR spectra show four resonance lines with effective g-values of ˜ 6, 4.8, 2.8 and 2, typical for Gd3+ ions uniformly distributed in the glass and glass ceramic samples. For higher contents of gadolinium ions (x ≥ 3 mol%) the EPR spectra are dominated by a single broad line centered at g ˜ 2, which can be due to the magnetic clusters containing Gd3+ ions. The magnetic susceptibility data show that the gadolinium ions are involved in superexchange interactions in all the investigated glass ceramics, being antiferromagnetically coupled.

  12. Method for separating mono- and di-octylphenyl phosphoric acid esters

    DOEpatents

    Arnold, Jr., Wesley D.

    1977-01-01

    A method for separating mono-octylphenyl phosphoric acid ester and di-octylphenyl phosphoric acid ester from a mixture thereof comprises reacting the ester mixture with a source of lithium or sodium ions to form a mixture of the phosphate salts; contacting the salt mixture with an organic solvent which causes the dioctylphenyl phosphate salt to be dissolved in the organic solvent phase and the mono-octylphenyl phosphate salt to exist in a solid phase; separating the phases; recovering the phosphate salts from their respective phases; and acidifying the recovered salts to form the original phosphoric acid esters.

  13. Depth-Penetrating Temperature Measurements of Thermal Barrier Coatings Incorporating Thermographic Phosphors

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Bencic, Timothy J..; Allison, Stephen W.; Beshears, David L.

    2003-01-01

    Thermographic phosphors have been previously demonstrated to provide effective non-contact, emissivity-independent surface temperature measurements. Because of the translucent nature of thermal barrier coatings (TBCs), thermographic phosphor-based temperature measurements can be extended beyond the surface to provide depth-selective temperature measurements by incorporating the thermographic phosphor layer at the depth where the temperature measurement is desired. In this paper, thermographic phosphor (Y2O3:Eu) fluorescence decay time measurements are demonstrated to provide through-the-coating thickness temperature readings up to 1100 C with the phosphor layer residing beneath a 100 micron thick TBC (plasma-sprayed 8wt% yttria-stabilized zirconia). With an appropriately chosen excitation wavelength and detection configuration, it is shown that sufficient phosphor emission is generated to provide effective temperature measurements, despite the attenuation of both the excitation and emission intensities by the overlying TBC. This depth-penetrating temperature measurement capability should prove particularly useful for TBC diagnostics where a large thermal gradient is typically present across the TBC thickness. The fluorescence decay from the Y2O3:Eu layer exhibited both an initial short-term exponential rise and a longer-term exponential decay. The rise time constant was demonstrated to provide better temperature indication below 500 C while the decay time constant was a better indicator at higher temperatures.

  14. Sensitive and transportable gadolinium-core plastic scintillator sphere for neutron detection and counting

    NASA Astrophysics Data System (ADS)

    Dumazert, Jonathan; Coulon, Romain; Carrel, Frédérick; Corre, Gwenolé; Normand, Stéphane; Méchin, Laurence; Hamel, Matthieu

    2016-08-01

    Neutron detection forms a critical branch of nuclear-related issues, currently driven by the search for competitive alternative technologies to neutron counters based on the helium-3 isotope. The deployment of plastic scintillators shows a high potential for efficient detectors, safer and more reliable than liquids, more easily scalable and cost-effective than inorganic. In the meantime, natural gadolinium, through its 155 and mostly 157 isotopes, presents an exceptionally high interaction probability with thermal neutrons. This paper introduces a dual system including a metal gadolinium core inserted at the center of a high-scale plastic scintillator sphere. Incident fast neutrons are thermalized by the scintillator shell and then may be captured with a significant probability by gadolinium 155 and 157 nuclei in the core. The deposition of a sufficient fraction of the capture high-energy prompt gamma signature inside the scintillator shell will then allow discrimination from background radiations by energy threshold, and therefore neutron detection. The scaling of the system with the Monte Carlo MCNPX2.7 code was carried out according to a tradeoff between the moderation of incident fast neutrons and the probability of slow neutron capture by a moderate-cost metal gadolinium core. Based on the parameters extracted from simulation, a first laboratory prototype for the assessment of the detection method principle has been synthetized. The robustness and sensitivity of the neutron detection principle are then assessed by counting measurement experiments. Experimental results confirm the potential for a stable, highly sensitive, transportable and cost-efficient neutron detector and orientate future investigation toward promising axes.

  15. Colour-crafted phosphor-free white light emitters via in-situ nanostructure engineering.

    PubMed

    Min, Daehong; Park, Donghwy; Lee, Kyuseung; Nam, Okhyun

    2017-03-08

    Colour-temperature (T c ) is a crucial specification of white light-emitting diodes (WLEDs) used in a variety of smart-lighting applications. Commonly, T c is controlled by distributing various phosphors on top of the blue or ultra violet LED chip in conventional phosphor-conversion WLEDs (PC-WLEDs). Unfortunately, the high cost of phosphors, additional packaging processes required, and phosphor degradation by internal thermal damage must be resolved to obtain higher-quality PC-WLEDs. Here, we suggest a practical in-situ nanostructure engineering strategy for fabricating T c -controlled phosphor-free white light-emitting diodes (PF-WLEDs) using metal-organic chemical vapour deposition. The dimension controls of in-situ nanofacets on gallium nitride nanostructures, and the growth temperature of quantum wells on these materials, were key factors for T c control. Warm, true, and cold white emissions were successfully demonstrated in this study without any external processing.

  16. Colour-crafted phosphor-free white light emitters via in-situ nanostructure engineering

    PubMed Central

    Min, Daehong; Park, Donghwy; Lee, Kyuseung; Nam, Okhyun

    2017-01-01

    Colour-temperature (Tc) is a crucial specification of white light-emitting diodes (WLEDs) used in a variety of smart-lighting applications. Commonly, Tc is controlled by distributing various phosphors on top of the blue or ultra violet LED chip in conventional phosphor-conversion WLEDs (PC-WLEDs). Unfortunately, the high cost of phosphors, additional packaging processes required, and phosphor degradation by internal thermal damage must be resolved to obtain higher-quality PC-WLEDs. Here, we suggest a practical in-situ nanostructure engineering strategy for fabricating Tc-controlled phosphor-free white light-emitting diodes (PF-WLEDs) using metal-organic chemical vapour deposition. The dimension controls of in-situ nanofacets on gallium nitride nanostructures, and the growth temperature of quantum wells on these materials, were key factors for Tc control. Warm, true, and cold white emissions were successfully demonstrated in this study without any external processing. PMID:28272455

  17. Cathode catalyst for primary phosphoric fuel cells

    NASA Technical Reports Server (NTRS)

    Walsh, F.

    1980-01-01

    Alkylation of Vulcan XC-72 provided the most stable bond type for linking CoTAA to the surface of the carbon; this result is based on data obtained by cyclic voltammetry, pulse voltammetry and by release of 14C from bonded CoTAA. Half-cell tests at 100 C in 85% phosphoric acid showed that CoTAA bonded to the surface of carbon (Vulcan XC-72) via an alkylation procedure is a more active catalyst than is platinum based on a factor of two improvement in Tafel slope; dimeric CoTAA has catalytic activity equal to platinum. Half-cell tests also showed that bonded CoTAA catalysts do not suffer a loss in potential when air is used as a fuel rather than oxygen. Commercially available PTFE was shown to be stable for four months in 200 C 85% phosphoric acid based on lack of change in surface wetting properties, IR and physical characteristics. When stressed electrochemically in 150 C 85% phosphoric acid, PTFE also showed no changes after one month.

  18. T1 relaxivity of core-encapsulated gadolinium liposomal contrast agents--effect of liposome size and internal gadolinium concentration.

    PubMed

    Ghaghada, Ketan; Hawley, Catherine; Kawaji, Keigo; Annapragada, Ananth; Mukundan, Srinivasan

    2008-10-01

    Long circulating core-encapsulated gadolinium (CE-Gd) liposomal nanoparticles that have surface conjugated polyethylene glycol are a promising platform technology for use as blood pool T1-based magnetic resonance (MR) contrast agents. The objective of this study was to investigate the effect of liposome size and internal (core) Gd concentration on the T1 relaxivity of CE-Gd liposomes. Twelve different liposomal formulations were synthesized and characterized, resulting in a size (50, 100, 200, and 400 nm) and core Gd-concentration (200, 350, and 500 mM) "matrix" of test samples. Subsequently, CE-Gd liposomes were diluted in deionized water (four diluted samples) and molar T1 relaxivity (r1) measurements were performed at 2- and 7-T MR field strengths. The r1 of CE-Gd liposomes was inversely related to the liposome size. The largest change in r1 was observed between liposomes that were extruded through 50- and 100-nm filter membranes. At both field strengths, the variation in internal gadolinium concentration did not show any significant correlation (alpha < or = 0.05) with r1. The size of CE-Gd liposomal nanoparticles significantly affects the T1 relaxivity. An inverse relation was observed between liposome size and T1 relaxivity. The T1 relaxivity did not change significantly with core Gd concentration over the measured concentration range.

  19. Red emission phosphor for real-time skin dosimeter for fluoroscopy and interventional radiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Masaaki, E-mail: QYJ05476@nifty.com; Chida, Koichi; Zuguchi, Masayuki

    2014-10-15

    Purpose: There are no effective real-time direct skin dosimeters for interventional radiology. Such a scintillation dosimeter would be available if there was a suitable red emission phosphor in the medical x-ray range, since the silicon photodiode is a highly efficient device for red light. However, it is unknown whether there is a suitable red emission phosphor. The purpose of this study is to find a suitable red emission phosphor that can be used in x-ray dosimeters. Methods: Five kinds of phosphors which emit red light when irradiated with electron beams or ultraviolet rays in practical devices were chosen. For themore » brightness measurement, phosphor was put into transparent plastic cells or coated onto plastic sheets. The phosphors were irradiated with medical range x-rays [60–120 kV(peak), maximum dose rate of 160 mGy min{sup −1}], and the emission was measured by a luminance meter. Several characteristics, such as brightness, dose rate dependence, tube voltage dependence, and brightness stability, were investigated. Results: The luminescence of Y V O{sub 4}:Eu, (Y,Gd,Eu) BO{sub 3}, and Y{sub 2}O{sub 3}:Eu significantly deteriorated by 5%–10% when irradiated with continuous 2 Gy x-rays. The 0.5MgF{sub 2}⋅3.5MgO⋅GeO{sub 2}:Mn phosphor did not emit enough. Only the Y{sub 2}O{sub 2}S:Eu,Sm phosphor had hardly any brightness deterioration, and it had a linear relationship so that the x-ray dose rate could be determined from the brightness with sufficient accuracy. For the tube voltage dependence of the Y{sub 2}O{sub 2}S:Eu,Sm phosphor, the brightness per unit dose rate with 120 kV(peak) x-rays was 30% higher than that with 60 kV(peak) x-rays. Conclusions: Five kinds of phosphors were chosen as an x-ray scintillator for a real-time direct skin dosimeter. The Y V O{sub 4}:Eu, (Y,Gd,Eu)BO{sub 3}, and Y{sub 2}O{sub 3}:Eu phosphors had brightness deterioration caused by the x-rays. Only the Y{sub 2}O{sub 2}S:Eu,Sm phosphor had hardly any brightness

  20. Magnetization reversal and inverted magnetoresistance of exchange-biased spin valves with a gadolinium layer

    NASA Astrophysics Data System (ADS)

    Milyaev, M.; Naumova, L.; Chernyshova, T.; Proglyado, V.; Kamensky, I.; Krinitsina, T.; Ryabukhina, M.; Ustinov, V.

    2017-03-01

    FeMn-based spin valves with a gadolinium layer have been fabricated by magnetron sputtering. The magnetoresistive properties of the spin valves have been investigated at temperatures of 80-293 K. Temperature-induced switching between low- and high-resistance magnetic states has been revealed. Realization of the low- or high-resistance states depends on which magnetic moment dominates in the exchange-coupled Gd/CoFe, of Gd or CoFe. It has been shown that the switching temperature depends on the thickness of the gadolinium layer.

  1. LiMgPO 4:Tb,B - A new sensitive OSL phosphor for dosimetry

    NASA Astrophysics Data System (ADS)

    Dhabekar, Bhushan; Menon, S. N.; Alagu Raja, E.; Bakshi, A. K.; Singh, A. K.; Chougaonkar, M. P.; Mayya, Y. S.

    2011-08-01

    Optically Stimulated Luminescence (OSL) technique has emerged as a serious competitor to Thermally Stimulated Luminescence (TSL) technique in various dosimetric applications, especially after the development of crystalline alumina (Al 2O 3:C) doped with carbon. Since then, several attempts are being made to develop other possible materials for OSL based dosimetric applications. Efforts conducted in our laboratory in this direction have led to the development of a new phosphor, Lithium Magnesium Phosphate doped with terbium and boron (LiMgPO 4:Tb,B). This phosphor is prepared by solid-state diffusion method involving conventional air furnaces with operating temperature 1000 °C and easily amenable to large scale production without compromising primary dosimetric advantages. In this work we present some of the dosimetric OSL characteristics of this phosphor. The phosphor exhibits a main TSL peak at 250 °C. The phosphor also emits OSL, when the irradiated phosphor is stimulated with 470 nm light with the OSL sensitivity 1.3 times that of commercially available Al 2O 3:C. Photoluminescence (PL) emission spectrum consists of sharp lines characteristics of Tb 3+ emission. The OSL discs made out of this phosphor are reusable up to at least 50 cycles, the phosphor exhibits dose linearity up to 1 kGy. Minimum detectable dose is found to be 20 μGy and fading of the OSL signal is found to be about 16% in four days, after which the OSL signal stabilizes.

  2. Spectral downshifting in MBO3:Nd3+ (M=Y, La) phosphor

    NASA Astrophysics Data System (ADS)

    Omanwar, S. K.; Sawala, N. S.

    2017-11-01

    The spectral downshifting (DS) from ultra-violet (UV)/visible (VIS) light to near infra-red (NIR) radiation in Nd3+ doped YBO3 and LaBO3 phosphors is reported. The prepared materials were characterized by X-ray powder diffraction (XRD) and photoluminescence (PL) properties along with time-decay curves were studied which confirmed the spectral DS from VIS to NIR radiation. This can be employed to overcome the spectral mismatch of crystalline silicon (c-Si) solar cell with solar spectrum. The prepared Nd3+ doped as prepared phosphors provide NIR emission (1052 nm) at excitation of 586 nm where response of c-Si solar cell was optimum. Thus spectral modification by mentioned phosphor can be utilized to improve solar cells performance. Hence these phosphors have potential application for photovoltaic (PV) technology.

  3. Chromophore-Based Luminescent Metal–Organic Frameworks as Lighting Phosphors

    DOE PAGES

    Lustig, William P.; Wang, Fangming; Teat, Simon J.; ...

    2016-05-31

    Here, energy-efficient solid-state-lighting (SSL) technologies are rapidly developing, but the lack of stable, high-performance rare-earth free phosphors may impede the growth of the SSL market. One possible alternative is organic phosphor materials, but these can suffer from lower quantum yields and thermal instability compared to rare-earth phosphors. However, if luminescent organic chromophores can be built into a rigid metal-organic framework, their quantum yields and thermal stability can be greatly improved. This Forum Article discusses the design of a group of such chromophore-based luminescent metal-organic frameworks with exceptionally high performance and rational control of the important parameters that influence their emissionmore » properties, including electronic structures of chromophore, coligands, metal ions, and guest molecule s.« less

  4. Ionic Ckonductivity and Glass Transition of Phosphoric Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yangyang; Lane, Nathan A; Sun, Che-Nan

    2013-01-01

    Here we report the low-temperature dielectric and viscoelastic properties of phosphoric acids in the range of H2O:P2O5 1.5 5. Both dielectric and viscosity measurements allow us to determine the glass-transition temperatures of phosphoric acids. The obtained glass-transition temperatures are in good agreement with previous differential scanning calorimetric measurements. Moreover, our analysis reveals moderate decoupling of ionic conductivity from structural relaxation in the vicinity of the glass transition.

  5. Ionic conductivity and glass transition of phosphoric acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yangyang; Lane, Nathan A; Sun, Che-Nan

    2013-01-01

    Here we report the low-temperature dielectric and viscoelastic properties of phosphoric acids in the range of H2O:P2O5 1.5 5. Both dielectric and viscosity measurements allow us to determine the glass-transition temperatures of phosphoric acids. The obtained glass-transition temperatures are in good agreement with previous differential scanning calorimetric measurements. Moreover, our analysis reveals moderate decoupling of ionic conductivity from structural relaxation in the vicinity of the glass transition.

  6. Study on TL and OSL characteristics of indigenously developed CaF 2:Mn phosphor

    NASA Astrophysics Data System (ADS)

    Bakshi, A. K.; Dhabekar, Bhushan; Rawat, N. S.; Singh, S. G.; Joshi, V. J.; Kumar, Vijay

    2009-02-01

    CaF 2:Mn phosphor is known for its high thermoluminescent sensitivity and dose linearity up to few kGy. In the present study CaF 2 phosphor with different concentration of Mn dopant was prepared and was characterized through different techniques. The phosphor was prepared through chemical root using CaCO 3, HF acid and MnCl 2 as raw materials following co-precipitation method. TL sensitivity of the prepared phosphor was compared with other well established phosphors used for radiation dosimetry. It was found that the TL sensitivity is higher by a factor of 10 with respect to LiF:Mg, Ti, TLD-100 and half to that of CaSO 4:Dy (0.05 mol%) phosphor. X-ray diffraction, TL emission spectrum and ESR spectrum taken of the prepared phosphor confirms the crystal structure, Mn 2+ emission and incorporation Mn in the crystal, respectively. No significant fading of the dosimetric peak was observed of the prepared phosphor for a storage period of 45 days. The dose linearity of the phosphor was found to be in the range of 50 Gy-3 kGy within an uncertainty of about 10%. An attempt was made to determine the kinetic parameters of TL glow curve and the parameters related to optically stimulated luminescence. In view of its long range of dose linearity, it can be used for the dosimetry of commercial irradiator generally used for the irradiation of food and grains in our country.

  7. Gadolinium-based nanoparticles for highly efficient T1-weighted magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Lim, Eun-Kyung; Kang, Byunghoon; Choi, Yuna; Jang, Eunji; Han, Seungmin; Lee, Kwangyeol; Suh, Jin-Suck; Haam, Seungjoo; Huh, Yong-Min

    2014-06-01

    We developed Pyrene-Gadolinium (Py-Gd) nanoparticles as pH-sensitive magnetic resonance imaging (MRI) contrast agents capable of showing a high-Mr signal in cancer-specific environments, such as acidic conditions. Py-Gd nanoparticles were prepared by coating Py-Gd, which is a complex of gadolinium with pyrenyl molecules, with pyrenyl polyethyleneglycol PEG using a nano-emulsion method. These particles show better longitudinal relaxation time (T1) MR signals in acidic conditions than they do in neutral conditions. Furthermore, the particles exhibit biocompatibility and MR contrast effects in both in vitro and in vivo studies. From these results, we confirm that Py-Gd nanoparticles have the potential to be applied for accurate cancer diagnosis and therapy.

  8. A flux-free method for synthesis of Ce{sup 3+}-doped YAG phosphor for white LEDs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiang, Yaochun; Yu, Yuxi, E-mail: yu_heart@xmu.edu.cn; Chen, Guolong

    2016-02-15

    Highlights: • A series of CeF{sub 3}-doped YAG phosphors were successfully synthesized. • CeF{sub 3} not only can be used as the Ce{sup 3+} source but also can play the role of a flux. • The QY of YAG:CeF{sub 3} phosphor is 91% but the QY of YAG:Ce{sub 2}O{sub 3} phosphor is just 80%. • YAG:CeF{sub 3} phosphor exhibits excellent thermal stability. • Using CeF{sub 3} as the Ce{sup 3+} source is a promising flux-free method to prepare YAG:Ce{sup 3+}. - Abstract: A series of CeF{sub 3}-doped Y{sub 3}Al{sub 5}O{sub 12} (YAG:CeF{sub 3}) phosphor, CeO{sub 2}-doped Y{sub 3}Al{sub 5}O{sub 12}more » (YAG:Ce{sub 2}O{sub 3}) phosphor and 5 wt% BaF{sub 2} added YAG:Ce{sub 2}O{sub 3} (YAG:Ce{sub 2}O{sub 3} + BaF{sub 2}) phosphor were successfully synthesized by a solid-state reaction method. The microstructure, morphology, luminescence spectra, luminescence quantum yield (QY) and thermal quenching of the phosphors were investigated. The QY of YAG:CeF{sub 3} phosphor is 91% but the QY of YAG:Ce{sub 2}O{sub 3} phosphor is just 80%. At 150 °C, the luminescence intensity of YAG:CeF{sub 3} phosphor, YAG:Ce{sub 2}O{sub 3} phosphor and YAG:Ce{sub 2}O{sub 3} + BaF{sub 2} phosphor was 85%, 86% and 89% of that measured at 25 °C, respectively. The comprehensive performance of the white LED lamp employing YAG:CeF{sub 3} phosphor is even better than that of the white LED lamp employing YAG:Ce{sub 2}O{sub 3} + BaF{sub 2} phosphor. The experimental results show that it is a promising flux-free method to synthesize Ce{sup 3+}-doped YAG phosphor by employing CeF{sub 3} as the Ce{sup 3+} source.« less

  9. On the nanosecond proton dynamics in phosphoric acid–benzimidazole and phosphoric acid–water mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melchior, Jan-Patrick; Frick, Bernhard

    Combining 1H-NMR, 17O-NMR, and high-resolution backscattering QENS hydrodynamic and structural proton transport in phosphoric acid is separated. The rate limiting steps for structural proton diffusion in mixtures of acid with Brønsted bases are found to occur below the nanosecond timescale.

  10. On the nanosecond proton dynamics in phosphoric acid–benzimidazole and phosphoric acid–water mixtures

    DOE PAGES

    Melchior, Jan-Patrick; Frick, Bernhard

    2017-09-22

    Combining 1H-NMR, 17O-NMR, and high-resolution backscattering QENS hydrodynamic and structural proton transport in phosphoric acid is separated. The rate limiting steps for structural proton diffusion in mixtures of acid with Brønsted bases are found to occur below the nanosecond timescale.

  11. Characterization of the reaction products and precipitates at the interface of carbon fiber reinforced magnesium–gadolinium composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yaping; Jiang, Longtao, E-mail: longtaojiang@163.com; Chen, Guoqin

    2016-03-15

    In the present work, carbon fiber reinforced magnesium-gadolinium composite was fabricated by pressure infiltration method. The phase composition, micro-morphology, and crystal structure of reaction products and precipitates at the interface of the composite were investigated. Scanning electron microscopy and energy dispersive spectroscopy analysis revealed the segregation of gadolinium element at the interface between carbon fiber and matrix alloy. It was shown that block-shaped Gd4C5, GdC2 and nano-sized Gd2O3 were formed at the interface during the fabrication process due to the interfacial reaction. Furthermore, magnesium-gadolinium precipitates including needle-like Mg5Gd (or Mg24Gd5) and thin plate-shaped long period stacking-ordered phase, were also observedmore » at the interface and in the matrix near the interface. The interfacial microstructure and bonding mode were influenced by these interfacial products, which were beneficial for the improvement of the interfacial bonding strength. - Highlights: • Gadolinium element segregated on the surface of carbon fibers. • Block-shaped Gd{sub 4}C{sub 5} and GdC{sub 2} were formed at the interface via chemical reaction. • Gadolinium and oxygen reacted at the interface and formed nano-scaled Gd{sub 2}O{sub 3}. • The precipitates formed in the interface were identified to be Mg{sub 5}Gd (or Mg{sub 24}Gd{sub 5}) and plate-shaped long period stacking-ordered phase.« less

  12. Laser-activated remote phosphor light engine for projection applications

    NASA Astrophysics Data System (ADS)

    Daniels, Martin; Mehl, Oliver; Hartwig, Ulrich

    2015-09-01

    Recent developments in blue emitting laser diodes enable attractive solutions in projection applications using phosphors for efficient light conversion with very high luminance levels. Various commercially available projectors incorporating this technology have entered the market in the past years. While luminous flux levels are still comparable to lamp-based systems, lifetime expectations of classical lamp systems are exceeded by far. OSRAM GmbH has been exploring this technology for several years and has introduced the PHASER® brand name (Phosphor + laser). State-of-the-art is a rotating phosphor wheel excited by blue laser diodes to deliver the necessary primary colors, either sequentially for single-imager projection engines, or simultaneously for 3-panel systems. The PHASER® technology enables flux and luminance scaling, which allows for smaller imagers and therefore cost-efficient projection solutions. The resulting overall efficiency and ANSI lumen specification at the projection screen of these systems is significantly determined by the target color gamut and the light transmission efficiency of the projection system. With increasing power and flux level demand, thermal issues, especially phosphor conversion related, dominate the opto-mechanical system design requirements. These flux levels are a great challenge for all components of an SSL-projection system (SSL:solid-state lighting). OSRAḾs PHASER® light engine platform is constantly expanded towards higher luminous flux levels as well as higher luminance levels for various applications. Recent experiments employ blue laser pump powers of multiple 100 Watts to excite various phosphors resulting in luminous flux levels of more than 40 klm.

  13. Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication

    PubMed Central

    Chi, Yu-Chieh; Hsieh, Dan-Hua; Lin, Chung-Yu; Chen, Hsiang-Yu; Huang, Chia-Yen; He, Jr-Hau; Ooi, Boon; DenBaars, Steven P.; Nakamura, Shuji; Kuo, Hao-Chung; Lin, Gong-Ru

    2015-01-01

    An advanced light-fidelity (Li-Fi) system based on the blue Gallium nitride (GaN) laser diode (LD) with a compact white-light phosphorous diffuser is demonstrated for fusing the indoor white-lighting and visible light communication (VLC). The phosphorous diffuser adhered blue GaN LD broadens luminescent spectrum and diverges beam spot to provide ample functionality including the completeness of Li-Fi feature and the quality of white-lighting. The phosphorous diffuser diverged white-light spot covers a radiant angle up to 120o with CIE coordinates of (0.34, 0.37). On the other hand, the degradation on throughput frequency response of the blue LD is mainly attributed to the self-feedback caused by the reflection from the phosphor-air interface. It represents the current state-of-the-art performance on carrying 5.2-Gbit/s orthogonal frequency-division multiplexed 16-quadrature-amplitude modulation (16-QAM OFDM) data with a bit error rate (BER) of 3.1 × 10−3 over a 60-cm free-space link. This work aims to explore the plausibility of the phosphorous diffuser diverged blue GaN LD for future hybrid white-lighting and VLC systems. PMID:26687289

  14. Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication

    NASA Astrophysics Data System (ADS)

    Chi, Yu-Chieh; Hsieh, Dan-Hua; Lin, Chung-Yu; Chen, Hsiang-Yu; Huang, Chia-Yen; He-Hau, Jr.; Ooi, Boon; Denbaars, Steven P.; Nakamura, Shuji; Kuo, Hao-Chung; Lin, Gong-Ru

    2015-12-01

    An advanced light-fidelity (Li-Fi) system based on the blue Gallium nitride (GaN) laser diode (LD) with a compact white-light phosphorous diffuser is demonstrated for fusing the indoor white-lighting and visible light communication (VLC). The phosphorous diffuser adhered blue GaN LD broadens luminescent spectrum and diverges beam spot to provide ample functionality including the completeness of Li-Fi feature and the quality of white-lighting. The phosphorous diffuser diverged white-light spot covers a radiant angle up to 120o with CIE coordinates of (0.34, 0.37). On the other hand, the degradation on throughput frequency response of the blue LD is mainly attributed to the self-feedback caused by the reflection from the phosphor-air interface. It represents the current state-of-the-art performance on carrying 5.2-Gbit/s orthogonal frequency-division multiplexed 16-quadrature-amplitude modulation (16-QAM OFDM) data with a bit error rate (BER) of 3.1 × 10-3 over a 60-cm free-space link. This work aims to explore the plausibility of the phosphorous diffuser diverged blue GaN LD for future hybrid white-lighting and VLC systems.

  15. Simple method for quantification of gadolinium magnetic resonance imaging contrast agents using ESR spectroscopy.

    PubMed

    Takeshita, Keizo; Kinoshita, Shota; Okazaki, Shoko

    2012-01-01

    To develop an estimation method of gadolinium magnetic resonance imaging (MRI) contrast agents, the effect of concentration of Gd compounds on the ESR spectrum of nitroxyl radical was examined. A solution of either 4-oxo-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPONE) or 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPOL) was mixed with a solution of Gd compound and the ESR spectrum was recorded. Increased concentration of gadolinium-diethylenetriamine pentaacetic acid chelate (Gd-DTPA), an MRI contrast agent, increased the peak-to-peak line widths of ESR spectra of the nitroxyl radicals, in accordance with a decrease of their signal heights. A linear relationship was observed between concentration of Gd-DTPA and line width of ESR signal, up to approximately 50 mmol/L Gd-DTPA, with a high correlation coefficient. Response of TEMPONE was 1.4-times higher than that of TEMPOL as evaluated from the slopes of the lines. The response was slightly different among Gd compounds; the slopes of calibration curves for acua[N,N-bis[2-[(carboxymethyl)[(methylcarbamoyl)methyl]amino]ethyl]glycinato(3-)]gadolinium hydrate (Gd-DTPA-BMA) (6.22 μT·L/mmol) and gadolinium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid chelate (Gd-DOTA) (6.62 μT·L/mmol) were steeper than the slope for Gd-DTPA (5.45 μT·L/mmol), whereas the slope for gadolinium chloride (4.94 μT·L/mmol) was less steep than that for Gd-DTPA. This method is simple to apply. The results indicate that this method is useful for rough estimation of the concentration of Gd contrast agents if calibration is carried out with each standard compound. It was also found that the plot of the reciprocal square root of signal height against concentrations of contrast agents could be useful for the estimation if a constant volume of sample solution is taken and measured at the same position in the ESR cavity every time.

  16. Quantum-splitting oxide-based phosphors and method of producing the same

    DOEpatents

    Setlur, Anant Achyut; Srivastava, Alok Mani

    2003-09-02

    Strontium, calcium, strontium calcium, strontium calcium magnesium, calcium magnesium aluminates, and strontium borates activated with Pr.sup.3+ exhibit characteristics of quantum-splitting phosphors under VUV excitation. A large emission peak at about 405 nm under VUV excitation is used conveniently to identify quantum-splitting phosphors. Improvements may be achieved with addition of fluorides or boric acid as a flux during the preparation of the phosphors. It is also possible to predict improvement in quantum efficiency by observing the ratio of emission intensities at about 480 nm and about 610 nm.

  17. Zero- and two-dimensional hybrid carbon phosphors for high colorimetric purity white light-emission.

    PubMed

    Ding, Yamei; Chang, Qing; Xiu, Fei; Chen, Yingying; Liu, Zhengdong; Ban, Chaoyi; Cheng, Shuai; Liu, Juqing; Huang, Wei

    2018-03-01

    Carbon nanomaterials are promising phosphors for white light emission. A facile single-step synthesis method has been developed to prepare zero- and two-dimensional hybrid carbon phosphors for the first time. Zero-dimensional carbon dots (C-dots) emit bright blue luminescence under 365 nm UV light and two-dimensional nanoplates improve the dispersity and film forming ability of C-dots. As a proof-of-concept application, the as-prepared hybrid carbon phosphors emit bright white luminescence in the solid state, and the phosphor-coated blue LEDs exhibit high colorimetric purity white light-emission with a color coordinate of (0.3308, 0.3312), potentially enabling the successful application of white emitting phosphors in the LED field.

  18. TL-OSL study of Li{sub 3}PO{sub 4}: Mg, Cu phosphor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahangdale, S. R., E-mail: sachin.rahangdale1@gmail.com; Wankhede, S. P.; Dhabekar, B. S.

    In the present work, we report the thermoluminescence and optically stimulated luminescence properties of Mg and Cu doped Li{sub 3}PO{sub 4} phosphor. The phosphor was synthesized by precipitation method. The thermoluminescence dosimetric peak temperature for the phosphor varies with concentrations of Mg and Cu. Li{sub 3}PO{sub 4} shows good response to 470nm optical stimulation. The OSL sensitivity of the phosphor is approximately 12 times than that of standard Lithium magnesium phosphate. This study may help to develop this material for the application in real time dosimetry using optically stimulated luminescence.

  19. Nephrogenic systemic fibrosis (NSF): a late adverse reaction to some of the gadolinium based contrast agents

    PubMed Central

    Marckmann, Peter; Logager, Vibeke B.

    2007-01-01

    Abstract Until recently it was believed that extracellular gadolinium based contrast agents were safe for both the kidneys and all other organs within the dose range up to 0.3 mmol/kg body weight. However, in 2006, it was demonstrated that some gadolinium based contrast agents may trigger the development of nephrogenic systemic fibrosis, a generalised fibrotic disorder, in renal failure patients. Accordingly, the use of gadodiamide and gadopentate dimeglumine for renal failure patients was banned in Europe in spring 2007. The same two compounds should only be used cautiously in patients with moderate renal dysfunction. The current paper reviews the situation (July 2007) regarding gadolinium based contrast agent and the severe delayed reaction to some of these agents. The fear of nephrogenic systemic fibrosis should not lead to a denial of a well indicated enhanced magnetic resonance imaging examination. PMID:17905680

  20. Structural and spectral properties of MgZnO2:Sm3+ phosphor

    NASA Astrophysics Data System (ADS)

    Rajput, Preasha; Sharma, Pallavi; Biswas, Pankaj; Kamni

    2018-05-01

    The samarium doped MgZnO2 phosphor was synthesized by the low-cost combustion method. The powder X-ray diffraction (XRD) analysis confirmed the crystallinity and phase purity of the phosphor. The lattice parameters were determined by indexing the diffraction peaks. The photoluminescence (PL) study revealed that the phosphor exhibited a broad excitation band in the UV region ranging between 200 to 350 nm. The 601 nm emission was ascribed to 4G5/2 to 6H7/2 transitions of the Sm3+ ion. The optical bandgap of MgZnO2:Sm3+ was obtained to be 3.56 eV. The phosphor can be projected as a useful material in X- and gamma-ray scintillators.

  1. Measurement of gadolinium retention: current status and review from an applied radiation physics perspective.

    PubMed

    Gräfe, James L; McNeill, Fiona E

    2018-06-28

    This article briefly reviews the main measurement techniques for the non-invasive detection of residual gadolinium (Gd) in those exposed to gadolinium-based contrast agents (GBCAs). Approach and Main results: The current status of in vivo Gd measurement is discussed and is put into the context of concerns within the radiology community. The main techniques are based on applied atomic/nuclear medicine utilizing the characteristic atomic and nuclear spectroscopic signature of Gd. The main emission energies are in the 40-200 keV region and require spectroscopic detectors with good energy resolution. The two main techniques, prompt gamma neutron activation analysis and x-ray fluorescence, provide adequate detection limits for in vivo measurement, whilst delivering a low effective radiation dose on the order of a few µSv. Gadolinium is being detected in measureable quantities in people with healthy renal function who have received FDA approved GBCAs. The applied atomic/nuclear medicine techniques discussed in this review will be useful in determining the significance of this retention, and will help on advising future administration protocols.

  2. Effect of laser speckle on light from laser diode-pumped phosphor-converted light sources.

    PubMed

    Aquino, Felipe; Jadwisienczak, Wojciech M; Rahman, Faiz

    2017-01-10

    Laser diode (LD) pumped white light sources are being developed as an alternative to light-emitting diode-pumped sources for high efficiency and/or high brightness applications. While several performance metrics of laser-pumped phosphor-converted light sources have been investigated, the effect of laser speckle has not been sufficiently explored. This paper describes our experimental studies on how laser speckle affects the behavior of light from laser-excited phosphor lamps. A single LD pumping a phosphor plate was the geometry explored in this work. Overall, our findings are that the down-converted light did not exhibit any speckle, whereas speckle was present in the residual pump light but much reduced from that in direct laser light. Furthermore, a thicker coating of small-grained phosphors served to effectively reduce speckle through static pump light diffusion in the phosphor coating. Our investigations showed that speckle is not of concern in illumination from LD-pumped phosphor-converted light sources.

  3. Rare earth activated yttrium aluminate phosphors with modulated luminescence.

    PubMed

    Muresan, L E; Popovici, E J; Perhaita, I; Indrea, E; Oro, J; Casan Pastor, N

    2016-06-01

    Yttrium aluminate (Y3 A5 O12 ) was doped with different rare earth ions (i.e. Gd(3+) , Ce(3+) , Eu(3+) and/or Tb(3+) ) in order to obtain phosphors (YAG:RE) with general formula,Y3-x-a Gdx REa Al5 O12 (x = 0; 1.485; 2.97 and a = 0.03). The synthesis of the phosphor samples was done using the simultaneous addition of reagents technique. This study reveals new aspects regarding the influence of different activator ions on the morpho-structural and luminescent characteristics of garnet type phosphor. All YAG:RE phosphors are well crystallized powders containing a cubic-Y3 Al5 O12 phase as major component along with monoclinic-Y4 Al2 O9 and orthorhombic-YAlO3 phases as the impurity. The crystallites dimensions of YAG:RE phosphors vary between 38 nm and 88 nm, while the unit cell slowly increase as the ionic radius of the activator increases. Under UV excitation, YAG:Ce exhibits yellow emission due to electron transition in Ce(3+) from the 5d level to the ground state levels ((2) F5/2 , (2) F7/2 ). The emission intensity of Ce(3+) is enhanced in the presence of the Tb(3+) ions and is decreased in the presence of Eu(3+) ions due to some radiative or non-radiative processes that take place between activator ions. By varying the rare earth ions, the emission colour can be modulated from green to white and red. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Characterization and luminescence properties of Sr3Gd): Sm3+ orange-red phosphor

    NASA Astrophysics Data System (ADS)

    Yang, Zaifa; Xu, Denghui; Sun, Jiayue; Sun, Yumei; Du, Haiyan

    2015-10-01

    Reddish-orange emitting phosphors, Sr3Gd): Sm3+, were successfully synthesized by a conventional solid-state reaction. The crystal structure of the phosphors was characterized by x-ray diffraction. The excitation spectra and emission spectra were utilized to characterize the luminescence properties of the as-prepared phosphors. The results show that the phosphor consisted of some sharp emission peaks of Sm3+ ions centered at 564, 600, 647, and 707 nm, respectively. The critical distance of Sr3Gd0.93): 0.07Sm3+ was calculated to be 19.18 Å and the lifetime value of the sample was 1.63 ms. The band gap of Sr3Gd) was estimated to be about 2.74 eV from the diffuse reflection spectrum. The optimum doping concentration is 7 mol. % and the quenching occurs via dipole-dipole interaction according to Dexter's theory. The Commission Internationale de L'Eclairage value of Sr3Gd): Sm3+ phosphors presented that it has high color purity. These results indicated that the Sr3Gd): Sm3+ may be a promising reddish-orange emitting phosphor for cost-effective near ultraviolet white light-emitting diodes.

  5. Revisiting the Pharmacokinetic Profiles of Gadolinium-Based Contrast Agents: Differences in Long-Term Biodistribution and Excretion.

    PubMed

    Lancelot, Eric

    2016-11-01

    Gadolinium-based contrast agents (GBCAs) have been used for years for magnetic resonance imaging examinations. Because of their rapid blood clearance, they were considered as very safe products until some of them were shown to induce nephrogenic systemic fibrosis in patients with renal failure and hypersignals on T1-weighted unenhanced brain scans of patients with normal renal function. To date, these adverse effects have been related almost exclusively to the use of low-stability linear agents, which are more prone to release free gadolinium. The aim of the present meta-analysis was to ascertain the existence of a deep compartment for gadolinium storage in the body and to assess whether all the GBCAs present the same toxicokinetic profile. Applying a systematic literature search methodology, all clinical and preclinical studies reporting time-dependent plasma concentrations and renal excretion data of gadolinium were identified and analyzed. Since the individual data were not available, the analysis focused on the average values per groups of subjects or animals, which had received a given GBCA at a given dose. The rate constants of the distribution phase (α), rapid elimination phase (β), and residual excretion phase (γ) of gadolinium were determined in each group from the plasma concentration (Cp) time curves and the relative urinary excretion rate (rER) time curves, taking the 2-hour time point as a reference. Moreover, as bone may represent a reservoir for long-term gadolinium accumulation and slow release into the blood stream, the time curves of the relative concentration in the bone (rCB) of Gd-labeled GBCAs in mice or rats were analyzed taking day 1 concentrations as a reference. The ratio of gadolinium concentrations in the bone marrow (CBM) as compared with the bone (CB) was also calculated. The relative urinary excretion rate (rER) plots revealed a prolonged residual excretion phase of gadolinium in healthy volunteers, consistent with the existence of

  6. Dispersion of fine phosphor particles by newly developed beads mill

    NASA Astrophysics Data System (ADS)

    Joni, I. Made; Panatarani, C.; Maulana, Dwindra W.

    2016-02-01

    Fine phosphor Y2O3:Eu3+ particles has advanced properties compare to conventional particles applied for compact fluorescent lamp (CFL) as three band phosphor. However, suspension of fine particles easily agglomerated during preparation of spray coating of the CFL tube. Therefore, it is introduced newly developed beads mill system to disperse fine phosphor. The beads mill consist of glass beads, dispersing chamber (impellers), separator chamber, slurry pump and motors. The first important performance of beads mill is the performance of the designed on separating the beads with the suspended fine particles. We report the development of beads mill and its separation performance vary in flow rate and separator rotation speeds. The 27 kg of glass beads with 30 µm in size was poured into dispersing chamber and then water was pumped continuously through the slurry pump. The samples for the separation test was obtained every 1 hours vary in rotation speed and slurry flow rate. The results shows that the separation performance was 99.99 % obtained for the rotation speed of >1000 rpm and flow rate of 8 L/minute. The performances of the system was verified by dispersing fine phosphor Y2O3:Eu3+ particles with concentration 1 wt.%. From the observed size distribution of particles after beads mill, it is concluded that the current design of bead mill effectively dispersed fine phosphor Y2O3:Eu3+.

  7. Gadolinium prevents high airway pressure-induced permeability increases in isolated rat lungs.

    PubMed

    Parker, J C; Ivey, C L; Tucker, J A

    1998-04-01

    To determine the initial signaling event in the vascular permeability increase after high airway pressure injury, we compared groups of lungs ventilated at different peak inflation pressures (PIPs) with (gadolinium group) and without (control group) infusion of 20 microM gadolinium chloride, an inhibitor of endothelial stretch-activated cation channels. Microvascular permeability was assessed by using the capillary filtration coefficient (Kfc), a measure of capillary hydraulic conductivity. Kfc was measured after ventilation for 30-min periods with 7, 20, and 30 cmH2O PIP with 3 cmH2O positive end-expiratory pressure and with 35 cmH2O PIP with 8 cmH2O positive end-expiratory pressure. In control lungs, Kfc increased significantly to 1.8 and 3.7 times baseline after 30 and 35 cmH2O PIP, respectively. In the gadolinium group, Kfc was unchanged from baseline (0.060 +/- 0.010 ml . min-1 . cmH2O-1 . 100 g-1) after any PIP ventilation period. Pulmonary vascular resistance increased significantly from baseline in both groups before the last Kfc measurement but was not different between groups. These results suggest that microvascular permeability is actively modulated by a cellular response to mechanical injury and that stretch-activated cation channels may initiate this response through increases in intracellular calcium concentration.

  8. Hyperintense Dentate Nuclei on T1-Weighted MRI: Relation to Repeat Gadolinium Administration

    PubMed Central

    Adin, M.E.; Kleinberg, L.; Vaidya, D.; Zan, E.; Mirbagheri, S.; Yousem, D.M.

    2016-01-01

    BACKGROUND AND PURPOSE A hyperintense appearance of the dentate nucleus on T1-weighted MR images has been related to various clinical conditions, but the etiology remains indeterminate. We aimed to investigate the possible associations between a hyperintense appearance of the dentate nucleus on T1-weighted MR images in patients exposed to radiation and factors including, but not limited to, the cumulative number of contrast-enhanced MR images, amount of gadolinium administration, dosage of ionizing radiation, and patient demographics. MATERIALS AND METHODS The medical records of 706 consecutive patients who were treated with brain irradiation at The Johns Hopkins Medical Institutions between 1995 and 2010 were blindly reviewed by 2 readers. RESULTS One hundred eighty-four subjects were included for dentate nuclei analysis. Among the 184 subjects who cumulatively underwent 2677 MR imaging studies following intravenous gadolinium administration, 103 patients had hyperintense dentate nuclei on precontrast T1-weighted MR images. The average number of gadolinium-enhanced MR imaging studies performed in the group with normal dentate nuclei was significantly lower than that of the group with hyperintense dentate nuclei. The average follow-up time was 62.5 months. No significant difference was observed between hyperintense and normal dentate nuclei groups in terms of exposed radiation dose, serum creatinine and calcium/phosphate levels, patient demographics, history of chemotherapy, and strength of the scanner. No dentate nuclei abnormalities were found on the corresponding CT scans of patients with hyperintense dentate nuclei (n = 44). No dentate nuclei abnormalities were found in 53 healthy volunteers. CONCLUSIONS Repeat performance of gadolinium-enhanced studies likely contributes to a long-standing hyperintense appearance of dentate nuclei on precontrast T1-weighted-MR images. PMID:26294649

  9. The evolution of gadolinium based contrast agents: from single-modality to multi-modality

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Liu, Ruiqing; Peng, Hui; Li, Penghui; Xu, Zushun; Whittaker, Andrew K.

    2016-05-01

    Gadolinium-based contrast agents are extensively used as magnetic resonance imaging (MRI) contrast agents due to their outstanding signal enhancement and ease of chemical modification. However, it is increasingly recognized that information obtained from single modal molecular imaging cannot satisfy the higher requirements on the efficiency and accuracy for clinical diagnosis and medical research, due to its limitation and default rooted in single molecular imaging technique itself. To compensate for the deficiencies of single function magnetic resonance imaging contrast agents, the combination of multi-modality imaging has turned to be the research hotpot in recent years. This review presents an overview on the recent developments of the functionalization of gadolinium-based contrast agents, and their application in biomedicine applications.

  10. Combinatorial synthesis of phosphors using arc-imaging furnace

    PubMed Central

    Ishigaki, Tadashi; Toda, Kenji; Yoshimura, Masahiro; Uematsu, Kazuyoshi; Sato, Mineo

    2011-01-01

    We have applied a novel ‘melt synthesis technique’ rather than a conventional solid-state reaction to rapidly synthesize phosphor materials. During a synthesis, the mixture of oxides or their precursors is melted by light pulses (10–60 s) in an arc-imaging furnace on a water-cooled copper hearth to form a globule of 1–5 mm diameter, which is then rapidly cooled by turning off the light. Using this method, we synthesized several phosphor compounds including Y3Al5O12:Ce(YAG) and SrAl2O4:Eu,Dy. Complex phosphor oxides are difficult to produce by conventional solid-state reaction techniques because of the slow reaction rates among solid oxides; as a result, the oxides form homogeneous compounds or solid solutions. On the other hand, melt reactions are very fast (10–60 s) and result in homogeneous compounds owing to rapid diffusion and mixing in the liquid phase. Therefore, melt synthesis techniques are suitable for preparing multi component homogeneous compounds and solid solutions. PMID:27877432

  11. Combinatorial synthesis of phosphors using arc-imaging furnace

    NASA Astrophysics Data System (ADS)

    Ishigaki, Tadashi; Toda, Kenji; Yoshimura, Masahiro; Uematsu, Kazuyoshi; Sato, Mineo

    2011-10-01

    We have applied a novel 'melt synthesis technique' rather than a conventional solid-state reaction to rapidly synthesize phosphor materials. During a synthesis, the mixture of oxides or their precursors is melted by light pulses (10-60 s) in an arc-imaging furnace on a water-cooled copper hearth to form a globule of 1-5 mm diameter, which is then rapidly cooled by turning off the light. Using this method, we synthesized several phosphor compounds including Y3Al5O12:Ce(YAG) and SrAl2O4:Eu,Dy. Complex phosphor oxides are difficult to produce by conventional solid-state reaction techniques because of the slow reaction rates among solid oxides; as a result, the oxides form homogeneous compounds or solid solutions. On the other hand, melt reactions are very fast (10-60 s) and result in homogeneous compounds owing to rapid diffusion and mixing in the liquid phase. Therefore, melt synthesis techniques are suitable for preparing multi component homogeneous compounds and solid solutions.

  12. Synthesis of europium- or terbium-activated calcium tungstate phosphors

    NASA Astrophysics Data System (ADS)

    Forgaciu, Flavia; Popovici, Elisabeth-Jeanne; Ungur, Laura; Vadan, Maria; Vasilescu, Marilena; Nazarov, Mihail

    2001-06-01

    Utilization of luminescent substances in various optoelectronic devices depends on their luminescent properties and sensitivity to various excitation radiation as well as on particle size distribution and crystalline structure of luminous powders. Calcium tungstate phosphors are well excited with roentgen radiation, so that they are largely used for manufacture of x-ray intensifying screens. Being sensitive to short UV-radiation as well, they could be utilized in Plasma Display Panels or in advertising signs fluorescent tubes. In order to diversify the utilization possibilities of this tungstate class, luminescent powders based on CaWO4:Eu3+ and CaWO4:Tb3+ were synthesized and characterized. As compared with the starting self-activated phosphor, larger excitation wavelength domain and emission colors from blue-to-green-to- yellow-to-red were obtained. The good UV excitability and variable luminescence color recommend these phosphors for optoelectronic device manufacture.

  13. Novel Br-DPQ blue light-emitting phosphors for OLED.

    PubMed

    Dahule, H K; Thejokalyani, N; Dhoble, S J

    2015-06-01

    A new series of blue light-emitting 2,4-diphenylquinoline (DPQ) substituted blue light-emitting organic phosphors namely, 2-(4-methoxy-phenyl)-4-phenyl-quinoline (OMe-DPQ), 2-(4-methyl-phenyl)-4-phenylquinoline (M-DPQ), and 2-(4-bromo-phenyl)-4-phenylquinoline (Br-DPQ) were synthesized by substituting methoxy, methyl and bromine at the 2-para position of DPQ, respectively by Friedländer condensation of 2-aminobenzophenone and corresponding acetophenone. The synthesized phosphors were characterized by different techniques, e.g., Fourier transform infra-red (FTIR), differential scanning calorimeter (DSC), UV-visible absorption and photoluminescence spectra. FTIR spectra confirms the presence of chemical groups such as C=O, NH, or OH in all the three synthesized chromophores. DSC studies show that these complexes have good thermal stability. Although they are low-molecular-weight organic compounds, they have the potential to improve the stability and operating lifetime of a device made out of these complexes. The synthesized polymeric compounds demonstrate a bright emission in the blue region in the wavelength range of 405-450 nm in solid state. Thus the attachment of methyl, methoxy and bromine substituents to the diphenyl quinoline ring in these phosphors results in colour tuning of the phosphorescence. An electroluminescence (EL) cell of Br-DPQ phosphor was made and its EL behaviour was studied. A brightness-voltage characteristics curve of Br-DPQ cell revealed that EL begins at 400 V and then the brightness increases exponentially with applied AC voltage, while current-voltage (I-V) characteristics revealed that the turn on voltage of the fabricated EL cell was 11 V. Hence this phosphor can be used as a promising blue light material for electroluminescent devices. Copyright © 2014 John Wiley & Sons, Ltd.

  14. [The spectrogram characteristics of organic blue-emissive light-emitting excitated YAG : Ce phosphor].

    PubMed

    Xi, Jian-Fei; Zhang, Fang-Hui; Mu, Qiang; Zhang, Mai-Li

    2011-09-01

    It is demonstrated that the panchromatic luminescence devices with organic blue-emissive light-emitting was fabricated. This technique used down conversion, which was already popular in inorganic power LEDs to obtain white light emission. A blue OLED device with a configuration of ITO/2T-NATA (30 nm)/AND : TBPe (50 Wt%, 40 nm)/Alq3 (100 nm)/LiF(1 nm)/Al(100 nm) was prepared via vacuum deposition process, and then coated with YAG : Ce phosphor layers of different thicknesses to obtain a controllable and uniform shape while the CIE coordinates were fine tuned. This development not only decreased steps of technics and degree of difficulty, but also applied the mature technology of phosphor. The results showed that steady spectrogram was obtained in the devices with phosphor, with a best performance of a maximum luminance of 13 840 cd x m(-2) which was about 2 times of that of the devices without phosphor; a maximum current efficiency of 17.3 cd x A(-1) was increased more two times more than the devices without phosphor. The emission spectrum could be adjusted by varying the concentration and thickness of the phosphor layers. Absoulte spectrogram of devices was in direct proportion with different driving current corresponding.

  15. Thermoluminescent properties of rare earth doped lithium strontium borate phosphors

    NASA Astrophysics Data System (ADS)

    Jakathamani, S.; Annalakshmi, O.; Jose, M. T.

    2018-04-01

    Thermoluminescence (TL) of borates is remarkable in the field of radiation dosimetry because they can detect both neutron and gamma radiations. Usually, the TL efficiency of pure borates is low and hence dopants have to be added to increase their TL output. Their sensitivity and thermal stability vary widely and depend strongly on the preparation method. In this study polycrystalline powders of different rare earth doped thermoluminescent phosphors of Lithium Strontium borate (LSB) were synthesized by solid state sintering technique. Among the different rare earth dopants, the phosphor doped with cerium was found to have a simple glow curve structure with a dosimetric peak at around 265°C for a heating rate of 5°C/s. In order to study the effect of dopant on the TL characteristics, LSB phosphor with different concentrations of Ce dopant was synthesized and the TL intensity was found to be maximum for a dopant concentration of 0.7 mol%. All other important dosimetric characteristics like dose response and fading were carried out for the LSB:Ce (0.7 mol%) phosphor. Kinetic parameters like trap depth and frequency factor were determined using Peak shape method from Chen's equation.

  16. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... section, partial phosphoric acid esters of polyester resins are prepared by the reaction of trimellitic anhydride with 2,2-dimethyl-1,3-propanediol followed by reaction of the resin thus produced with phosphoric... characterizing the type of food and under the conditions of time and temperature characterizing the conditions of...

  17. Boron-Containing Red Light-Emitting Phosphors And Light Sources Incorporating The Same

    DOEpatents

    Srivastava, Alok Mani; Comanzo, Holly Ann; Manivannan, Venkatesan

    2006-03-28

    A boron-containing phosphor comprises a material having a formula of AD1-xEuxB9O16, wherein A is an element selected from the group consisting of Ba, Sr, Ca, Mg, and combinations thereof; D is at least an element selected from the group consisting of rare-earth metals other than europium; and x is in the range from about 0.005 to about 0.5. The phosphor is used in a blend with other phosphors in a light source for generating visible light with a high color rendering index.

  18. Helium defectoscopy of cerium gadolinium ceramics Ce0.8Gd0.2O1.9 with a submicrocrystalline structure in the impurity disorder region

    NASA Astrophysics Data System (ADS)

    Koromyslov, A. V.; Zhiganov, A. N.; Kovalenko, M. A.; Kupryazhkin, A. Ya.

    2013-12-01

    The concentration of impurity anion vacancies formed upon the dissociation of gadolinium-vacancy complexes has been determined using helium defectoscopy of the cerium gadolinium ceramics Ce0.8Gd0.2O1.9 with a submicrocrystalline structure in the temperature range T = 740-1123 K and at saturation pressures ranging from 0.05 to 15 MPa. It has been found that the energy of dissociation of gadoliniumvacancy complexes is E {eff/ D }= 0.26 ± 0.06 eV, and the energy of dissolution of helium in anion vacancies in the impurity disorder region is E P = -0.31 ± 0.09 eV. The proposed mechanism of dissolution has been confirmed by the investigation of the electrical conductivity of the cerium gadolinium ceramics, as well as by the high-speed molecular dynamics simulation of the dissociation of gadolinium-vacancy complexes. It has been assumed that a decrease in the effective dissolution energy in comparison with the results of the previously performed low-temperature investigations is caused by the mutual repulsion of vacancies formed upon the dissociation of gadolinium-vacancy complexes in highly concentrated solutions of gadolinium in CeO2 with increasing temperature.

  19. Phosphors containing boron and metals of Group IIIA and IIIB

    DOEpatents

    Setlur, Anant Achyut; Srivastava, Alok Mani; Comanzo, Holly Ann; Manivannan, Venkatesan

    2006-10-31

    A phosphor comprises: (a) at least a first metal selected from the group consisting of yttrium and elements of lanthanide series other than europium; (b) at least a second metal selected from the group consisting of aluminum, gallium, indium, and scandium; (c) boron; and (d) europium. The phosphor is used in light source that comprises a UV radiation source to convert UV radiation to visible light.

  20. Light deflection in gadolinium molybdate ferroelastic crystals

    NASA Astrophysics Data System (ADS)

    Staniorowski, Piotr; Bornarel, Jean

    2000-02-01

    The deflection of a He-Ne light beam by polydomain gadolinium molybdate (GMO) crystals has been studied with respect to incidence angle icons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> i on the sample at room temperature. The A and B deflected beams do not cross each other during the icons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> i variation, in contrast to results and calculations previously published. The model using the Fresnel equation confirms this result. The model presented is more accurate for numerical calculation than that using the Huygens construction.

  1. Photoluminescence in Sm3+ doped Ba2P2O7 phosphor prepared by solution combustion method

    NASA Astrophysics Data System (ADS)

    Ghawade, Sonal P.; Deshmukh, Kavita A.; Dhoble, S. J.; Deshmukh, Abhay D.

    2018-05-01

    In this paper, Sm3+ doped Ba2P2O7 phosphors were synthesized via a Solution combustion method. The crystal structure of the phosphor was characterized by XRD. Orange-red emission was observed from these phosphors under near-ultraviolet (UV) excitation at 404 nm. The luminescence properties of the obtained phosphors were characterized by different techniques. The Ba2P2O7:Sm3+ phosphor can be efficiently excited by near-UV and blue light, and their emission spectrum consists of three emission peaks, at 564, 602, and 646 nm, respectively. Based on the results, the as prepared Ba2P2O7:Sm3+ phosphors are promising orange-red-emitting phosphors exhibit great potential may be applicable as a spectral convertor in c-Si solar cell to enhance the efficiency of solar cell in future.

  2. Activated phosphors having matrices of yttrium-transition metal compound

    DOEpatents

    De Kalb, E.L.; Fassel, V.A.

    1975-07-01

    A method is described for preparing a phosphor composition containing a lanthanide activator element with a host matrix having a transition element as a major component. The host matrix is composed of certain rare earth phosphates or vanadates such as YPO$sub 4$ with a portion of the rare earth replaced with one or more of the transition elements. On x-ray or other electromagnetic excitation, trace lanthanide impurities or additives within the phosphor are spectrometrically determined from their characteristic luminescence. (auth)

  3. Machine for preparing phosphors for the fluorimetric determination of uranium

    USGS Publications Warehouse

    Stevens, R.E.; Wood, W.H.; Goetz, K.G.; Horr, C.A.

    1956-01-01

    The time saved by use of a machine for preparing many phosphors at one time increases the rate of productivity of the fluorimetric method for determining uranium. The machine prepares 18 phosphors at a time and eliminates the tedious and time-consuming step of preparing them by hand, while improving the precision of the method in some localities. The machine consists of a ring burner over which the platinum dishes, containing uranium and flux, are rotated. By placing the machine in an inclined position the molten flux comes into contact with all surfaces within th dish as the dishes rotate over the flame. Precision is improved because the heating and cooling conditions are the same for each of the 18 phosphors in one run as well as for successive runs.

  4. Photoluminescence properties of Eu(3+)/ Sm(3+) activated CaZr4(PO4)6 phosphors.

    PubMed

    Nair, Govind B; Dhoble, S J

    2016-09-01

    Solid state reaction method was employed for the synthesis of a series of CaZr4(PO4)6: Eu(3+)/Sm(3+) phosphors. The red-emitting CaZr4(PO4)6:Eu(3+) phosphors can be efficiently excited at 396 nm and thereby, exhibit a strong red luminescence predominantly corresponding to the electric dipole transition at 615 nm. Under 405 nm excitation, CaZr4(PO4)6:Sm(3+) phosphors display orange emission with color temperatures approximately around 2200 K. The acquired results reveal that CaZr4(PO4)6: RE(3+) (RE = Eu, Sm) phosphors could be potential candidates for red and orange emitting phosphor, respectively, for UV/blue-pump LEDs.

  5. A dual-emitting core-shell carbon dot-silica-phosphor composite for white light emission

    NASA Astrophysics Data System (ADS)

    Chen, Yonghao; Lei, Bingfu; Zheng, Mingtao; Zhang, Haoran; Zhuang, Jianle; Liu, Yingliang

    2015-11-01

    A unique dual-emitting core-shell carbon dot-silica-phosphor (CDSP) was constructed from carbon dots (CDs), tetraethoxysilane (TEOS) and Sr2Si5N8:Eu2+ phosphor through a one-pot sol-gel method. Blue emitting CDs uniformly disperse in the silica layer covering the orange emitting phosphor via a polymerization process, which makes CDSP achieve even white light emission. Tunable photoluminescence of CDSP is observed and the preferable white light emission is achieved through changing the excitation wavelength or controlling the mass ratio of the phosphor. When CDSP powders with a phosphor rate of 3.9% and 5.1% are excited at a wavelength of 400 nm, preferable white light emission is observed, with Commission Internationale de l'Eclairage (CIE) coordinates of (0.32, 0.32) and (0.34, 0.32), respectively. Furthermore, CDSP can mix well with epoxy resin to emit strong and even white light, and based on this, a CDSP-based white LED with a high colour rendering index (CRI) of 94 was fabricated.A unique dual-emitting core-shell carbon dot-silica-phosphor (CDSP) was constructed from carbon dots (CDs), tetraethoxysilane (TEOS) and Sr2Si5N8:Eu2+ phosphor through a one-pot sol-gel method. Blue emitting CDs uniformly disperse in the silica layer covering the orange emitting phosphor via a polymerization process, which makes CDSP achieve even white light emission. Tunable photoluminescence of CDSP is observed and the preferable white light emission is achieved through changing the excitation wavelength or controlling the mass ratio of the phosphor. When CDSP powders with a phosphor rate of 3.9% and 5.1% are excited at a wavelength of 400 nm, preferable white light emission is observed, with Commission Internationale de l'Eclairage (CIE) coordinates of (0.32, 0.32) and (0.34, 0.32), respectively. Furthermore, CDSP can mix well with epoxy resin to emit strong and even white light, and based on this, a CDSP-based white LED with a high colour rendering index (CRI) of 94 was fabricated

  6. Instense red phosphors for UV light emitting diode devices.

    PubMed

    Cao, Fa-Bin; Tian, Yan-Wen; Chen, Yong-Jie; Xiao, Lin-Jiu; Liu, Yun-Yi

    2010-03-01

    Ca(x)Sr1-x-1.5y-0.5zMoO4:yEu3+ zNa+ red phosphors were prepared by solid-state reaction using Na+ as charge supply for LEDs (light emitting diodes). The content of charge compensator, Ca2+ concentration, synthesis temperature, reaction time, and Eu3+ concentration were the keys to improving the properties of luminescence and crystal structure of red phosphors. The photoluminescence spectra shows the red phosphors are effectively excited at 616 nm by 311 nm, 395 nm, and 465 nm light. The wavelengths of 395 and 465 nm nicely match the widely applied emission wavelengths of ultraviolet or blue LED chips. Its chromaticity coordinates (CIE) are calculated to be x = 0.65, y = 0.32. Bright red light can be observed by the naked eye from the LED-based Ca0.60Sr0.25MoO4:0.08Eu3+ 0.06Na+.

  7. Alkaline and alkaline earth metal phosphate halides and phosphors

    DOEpatents

    Lyons, Robert Joseph; Setlur, Anant Achyut; Cleaver, Robert John

    2012-11-13

    Compounds, phosphor materials and apparatus related to nacaphite family of materials are presented. Potassium and rubidium based nacaphite family compounds and phosphors designed by doping divalent rare earth elements in the sites of alkaline earth metals in the nacaphite material families are descried. An apparatus comprising the phosphors based on the nacaphite family materials are presented herein. The compounds presented is of formula A.sub.2B.sub.1-yR.sub.yPO.sub.4X where the elements A, B, R, X and suffix y are defined such that A is potassium, rubidium, or a combination of potassium and rubidium and B is calcium, strontium, barium, or a combination of any of calcium, strontium and barium. X is fluorine, chlorine, or a combination of fluorine and chlorine, R is europium, samarium, ytterbium, or a combination of any of europium, samarium, and ytterbium, and y ranges from 0 to about 0.1.

  8. Near-infrared dyes and upconverting phosphors as biomolecule labels and probes

    NASA Astrophysics Data System (ADS)

    Patonay, Gabor; Strekowski, Lucjan; Nguyen, Diem-Ngoc; Seok, Kim Jun

    2007-02-01

    Near-Infrared (NIR) absorbing chromophores have been used in analytical and bioanalytical chemistry extensively, including for determination of properties of biomolecules, DNA sequencing, immunoassays, capillary electrophoresis (CE) separations, etc. The major analytical advantages of these dyes are low background interference and high molar absorptivities. NIR dyes have additional advantages due to their sensitivity to microenvironmental changes. Spectral changes induced by the microenvironment are not desirable if the labels are used as a simple reporting group, e.g., during a biorecognition reaction. For these applications upconverting phosphors seem to be a better choice. There are several difficulties in utilizing upconverting phosphors as reporting labels. These are: large physical size, no reactive groups and insolubility in aqueous systems. This presentation will discuss how these difficulties can be overcome for bioanalytical and forensic applications. During these studies we also have investigated how to reduce physical size of the phosphor by simple grinding without losing activity and how to attach reactive moiety to the phosphor to covalently bind to the biomolecule of interest. It has to be emphasized that the described approach is not suitable for medical applications and the results of this research are not applicable in medical applications. For bioanalytical and forensic applications upconverting phosphors used as reporting labels have several advantages. They are excited with lasers that are red shifted respective to phosphorescence, resulting in no light scatter issues during detection. Also some phosphors are excited using eye safe lasers. In addition energy transfer to NIR dyes is possible, allowing detection schemes using donor-acceptor pairs. Data is presented to illustrate the feasibility of this phenomenon. If microenvironmental sensitivity is required, then specially designed NIR dyes can be used as acceptor labels. Several novel dyes

  9. Why do proton conducting polybenzimidazole phosphoric acid membranes perform well in high-temperature PEM fuel cells?

    PubMed

    Melchior, Jan-Patrick; Majer, Günter; Kreuer, Klaus-Dieter

    2016-12-21

    Transport properties and hydration behavior of phosphoric acid/(benz)imidazole mixtures are investigated by diverse NMR techniques, thermogravimetric analysis (TGA) and conductivity measurements. The monomeric systems can serve as models for phosphoric acid/poly-benzimidazole membranes which are known for their exceptional performance in high temperature PEM fuel cells. 1 H- and 31 P-NMR data show benzimidazole acting as a strong Brønsted base with respect to neat phosphoric acid. Since benzimidazole's nitrogens are fully protonated with a low rate for proton exchange with phosphate species, proton diffusion and conduction processes must take place within the hydrogen bond network of phosphoric acid only. The proton exchange dynamics between phosphate and benzimidazole species pass through the intermediate exchange regime (with respect to NMR line separations) with exchange times being close to typical diffusion times chosen in PFG-NMR diffusion measurements (ms regime). The resulting effects, as described by the Kärger equation, are included into the evaluation of PFG-NMR data for obtaining precise proton diffusion coefficients. The highly reduced proton diffusion coefficient within the phosphoric acid part of the model systems compared to neat phosphoric acid is suggested to be the immediate consequence of proton subtraction from phosphoric acid. This reduces hydrogen bond network frustration (imbalance of the number of proton donors and acceptors) and therefore also the rate of structural proton diffusion, phosphoric acid's acidity and hygroscopicity. Reduced water uptake, shown by TGA, goes along with reduced electroosmotic water drag which is suggested to be the reason for PBI-phosphoric acid membranes performing better in fuel cells than other phosphoric-acid-containing electrolytes with higher protonic conductivity.

  10. UV excited downconversion luminescence properties of Eu3+: NaZnPO4 phosphors

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Lakshmi; Rai, Vineet Kumar

    2018-05-01

    The structural and optical properties of Eu3+: NaZnPO4 phosphors prepared by chemical coprecipitation method have been studied. The phase formation and morphology of the phosphors have been confirmed by the X-ray diffraction (XRD) and Field emission scanning electron microscopy (FESEM) analysis. The downconversion emission spectra upon 392 nm excitation exhibit five emission bands centred at ˜ 575 nm, ˜ 590 nm, ˜ 612 nm, ˜ 660 nm and ˜ 702 nm corresponding to the 5D0→7F0, 5D0→7F1, 5D0→7F2, 5D0→7F3 and 5D0→7F4 transitions of Eu3+ ions respectively. The observed downconversion emission peaks can be explained with the help of suitable energy level diagram. The CIE chromaticity diagram shows the purity of the emitted colour from the prepared phosphors. The present phosphors emit in intense red region which shows the applicability of the phosphors in red light emitting display devices.

  11. Sintering temperature effect of divalent europium ion doped tetra-calcium phosphate phosphors for latent fingerprint detection

    NASA Astrophysics Data System (ADS)

    Hong, Woo Tae; Park, Jin Young; Je, Jae-Yong; Yang, Hyun Kyoung

    2018-07-01

    Ca4(PO4)2O:Eu2+ (CPO:Eu2+) phosphors were successfully synthesized by high-energy ball milling. In order to study the effect of sintering temperature, the phosphors were synthesized at various sintering temperatures. The crystal structure of CPO:Eu2+ was determined to be monoclinic P21. Owing to the f-d transitions of the Eu2+ ions in the CPO:Eu2+ phosphors, the PL spectra of the phosphors showed an intense red emission centered at 635 nm with 418 nm excitation. Using high-energy ball milling, a more intense emission (compared to that reported from other research) can be visually observed with human eyes in the form of orange-red light, which is helpful in latent fingerprint detection. In addition, high-temperature sintering results in an increase of the PL intensity owing to the larger particle size and lower levels of impurities in the CPO:Eu2+ phosphors. The latent fingerprint image obtained by using CPO:Eu2+ phosphors reveals a high contrast for various substrate materials, because the phosphors exhibit strong red emission and adhere to the residue of the fingerprint after flowing. On the basis of these results, red-emitting CPO:Eu2+ phosphors can be used for the detection of latent fingerprints in solving criminal cases.

  12. One Step Combustion Synthesis Of YAG:Ce Phosphor For Solid State Lighting

    NASA Astrophysics Data System (ADS)

    Yadav, Pooja; Gupta, K. Vijay Kumar; Muley, Aarti; Joshi, C. P.; Moharil, S. V.

    2011-10-01

    YAG:Ce is an important phosphor having applications in various fields ranging from solid state lighting to scintillation detectors. YAG phosphors doped with activators are mainly synthesized by solid state reaction techniques that require high sintering temperatures (above 1500°C) to eliminate YAM and YAP phases. Though several soft chemical routes have been explored for synthesis of YAG, most of these methods are complex and phase pure materials are not obtained in one step, but prolonged annealing at temperatures around 1000 C or above becomes necessary. One step combustion synthesis of YAG:Ce3+ and related phosphors carried out at 500 C furnace temperature is reported here. Activation with Ce3+ could be achieved during the synthesis without taking recourse to any post-combustion thermal treatment. LEDs prepared from the combustion synthesized YAG:Ce3+, exhibited properties comparable to those produced from the commercial phosphor.

  13. Composite phase ceramic phosphor of Al₂O₃-Ce:YAG for high efficiency light emitting.

    PubMed

    Tang, Yanru; Zhou, Shengming; Chen, Chong; Yi, Xuezhuan; Feng, Yue; Lin, Hui; Zhang, Shuai

    2015-07-13

    We present our achievement which is a ceramic plate phosphorable to produce white light when directly combined with commercially available blue light emitting diodes. The ceramic phase structure is that the Al₂O₃ particle is uniformly distributed in the Ce:YAG matrix. The Al₂O₃-Ce:YAG ceramic phosphor has a better luminous efficacy than the transparent Ce:YAG ceramic phosphor under the same test condition. The Al₂O₃ particle plays an important role in promoting the luminous efficacy. The Al₂O₃ particle changes the propagation of the light in ceramic, and it reduces the total internal reflection. That is why the composite phase ceramic phosphor improves extraction efficiency of light.

  14. Preparation and Characterization of UV Emitting Fluoride Phosphors for Phototherapy Lamps

    NASA Astrophysics Data System (ADS)

    Belsare, P. D.; Moharil, S. V.; Joshi, C. P.; Omanwar, S. K.

    2011-10-01

    The use of ultraviolet radiation for the treatment of various skin diseases is well known for long time. Phototherapy employs ultraviolet-blue radiation to cure skin diseases. The basis of phototherapy is believed to be the direct interaction of light of certain frequencies with tissue to cause a change in immune response. Currently dermatologists use UV lamps having specific emissions in UV region for treating various skin diseases. The treatment of skin diseases using artificial sources of UV radiation is now well established and more than 50 types of skin diseases are treated by phototherapy. This is an effective treatment for many skin disorders, such as psoriasis, vitiligo, ofujis disease, morphea , scleroderma, cutaneous T-cell lymphoma, lupus erythematosus, hyperbilirubinemia commonly known as infant jaundice, acne vulgaris, This paper reports photoluminescence properties of UV emitting fluoride phosphors prepared by wet chemical method. Emission characteristics of these phosphors are found similar to those of commercial UV lamp phosphors with comparable intensities. The usefulness of UV emitting fluoride phosphor is discussed in the paper.

  15. Study of optical properties of cerium ion doped barium aluminate phosphor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lohe, P. P., E-mail: prachiti.lohe2012@gmail.com; Omanwar, S. K.; Bajaj, N. S.

    2016-05-06

    In the recent years due to their various optical and technological applications aluminate materials have attracted attention of several researchers. When these materials are doped with rare earth ions they show properties favorable for many optical applications such as high quantum efficiencies. These materials are used in various applications such as lamp phosphors, optically and thermoluminescence dosimeter etc Barium aluminate BaAl{sub 2}O{sub 4} doped with Ce is well known long lasting phosphor. This paper reports synthesis of BaAl{sub 2}O{sub 4}: Ce phosphor prepared by a simple combustion synthesis. The samples were characterized for the phase purity, chemical bonds and luminescentmore » properties.« less

  16. Suppression of Rabbit VX‐2 Subcutaneous Tumor Growth by Gadolinium Neutron Capture Therapy

    PubMed Central

    Tokita, Nobuhiko; Tokuuye, Koichi; Satoh, Michinao; Churei, Hisahiko; Pechoux, Cécile Le; Kobayashi, Tooru; Kanda, Keiji

    1993-01-01

    VX‐2 tumors growing in hind legs of New Zealand White rabbits (n=4) were exposed to thermal neutrons for 40 min (2.1 × 1012 neutrons cm−2) while one of two hind leg tumors of each rabbit was infused continuously with meglumine gadopentetate through a branch of the left femoral artery. The contralateral (uninfused) tumors served as controls. Although no differential distribution of gadolinium was achieved between the tumor and its adjacent normal tissue, the gadolinium concentration in the infused tumor was approximately 5–6 fold higher than that in the contralateral tumor. Growth of gadolinium‐infused tumors was significantly inhibited compared to that of control tumors (P<0.05) between the 16th and 23rd days after treatment. PMID:8407547

  17. Photoluminescence properties of non-stoichiometric strontium zirconate powder phosphor

    NASA Astrophysics Data System (ADS)

    Jarý, V.; Boháček, P.; Mihóková, E.; Havlák, L.; Trunda, B.; Nikl, M.

    2013-03-01

    Excitation and emission spectra and decay kinetics of non-stoichiometric strontium zirconate powder phosphor were measured in the 8-500 K temperature interval. Phenomenological model was applied to extract quantitative parameters of the excited state levels and nonradiative quenching pathways related to the luminescence centre. Delayed recombination integrals measurement was employed to investigate the occurrence of thermally induced ionization of the excited state of the emission centre. The nature of the emission centre itself is suggested. Suitability for phosphor and scintillation application is discussed.

  18. Applying LaPO4 Phosphor via Spinning for BetaPhotovoltaic Devices

    DTIC Science & Technology

    2015-06-01

    problem of creating a uniform coating of phosphor on a betaphotovoltaic (BPV) device. A mixture of phosphor was applied to 3 samples ( Si , GaN, and a GaN...experiment as above on sample g3123P-2. Sample g3123P-2 was fabricated with betavoltaic devices on the surface, similar to the device structures for the

  19. Progressing Toward a Cohesive Pediatric 18F-FDG PET/MR Protocol: Is Administration of Gadolinium Chelates Necessary?

    PubMed

    Klenk, Christopher; Gawande, Rakhee; Tran, Vy Thao; Leung, Jennifer Trinh; Chi, Kevin; Owen, Daniel; Luna-Fineman, Sandra; Sakamoto, Kathleen M; McMillan, Alex; Quon, Andy; Daldrup-Link, Heike E

    2016-01-01

    With the increasing availability of integrated PET/MR scanners, the utility and need for MR contrast agents for combined scans is questioned. The purpose of our study was to evaluate whether administration of gadolinium chelates is necessary for evaluation of pediatric tumors on (18)F-FDG PET/MR images. First, in 119 pediatric patients with primary and secondary tumors, we used 14 diagnostic criteria to compare the accuracy of several MR sequences: unenhanced T2-weighted fast spin-echo imaging; unenhanced diffusion-weighted imaging; and-before and after gadolinium chelate contrast enhancement-T1-weighted 3-dimensional spoiled gradient echo LAVA (liver acquisition with volume acquisition) imaging. Next, in a subset of 36 patients who had undergone (18)F-FDG PET within 3 wk of MRI, we fused the PET images with the unenhanced T2-weighted MR images (unenhanced (18)F-FDG PET/MRI) and the enhanced T1-weighted MR images (enhanced (18)F-FDG PET/MRI). Using the McNemar test, we compared the accuracy of the two types of fused images using the 14 diagnostic criteria. We also evaluated the concordance between (18)F-FDG avidity and gadolinium chelate enhancement. The standard of reference was histopathologic results, surgical notes, and follow-up imaging. There was no significant difference in diagnostic accuracy between the unenhanced and enhanced MR images. Accordingly, there was no significant difference in diagnostic accuracy between the unenhanced and enhanced (18)F-FDG PET/MR images. (18)F-FDG avidity and gadolinium chelate enhancement were concordant in 30 of the 36 patients and 106 of their 123 tumors. Gadolinium chelate administration is not necessary for accurate diagnostic characterization of most solid pediatric malignancies on (18)F-FDG PET/MR images, with the possible exception of focal liver lesions. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  20. In vitro comparison of intracranial stent visibility using various concentrations of gadolinium contrast agent under 1.5 T and 3 T MR angiography.

    PubMed

    Chiang, Chen-Hua; Tseng, Ying-Chi; Chen, Ai-Chi; Huang, Yen-Lin; Chen, David Yen-Ting; Chen, Chi-Jen; Lin, Yen-Kuang; Hsu, Hui-Ling

    2017-04-01

    MR angiography (MRA) is an increasingly used evaluation method following intracranial stenting. However, the various artifacts created by the stent limit this technique. The purpose of this study was to investigate the effects of various concentrations of gadolinium contrast agent on the visibility and signal characteristics of two stents using the a contrast enhanced MRA technique. Two intracranial stents (Enterprise and Helistent) were placed in polyvinyl chloride tubes as vascular phantoms. They were filled with six different doses of gadolinium contrast agent (1.0, 2.0, 4.0, 6.0, 8.0, and 10.0 mmol/L dimeglumine gadopentetate, respectively) and imaged using 3 T and 1.5 T MR systems. Relative in-stent signal (RIS) was calculated and artificial luminal narrowing (ALN) was obtained using pixel by pixel analysis. The Enterprise stent, performed in both 1.5 T and 3 T MR systems, showed mean RIS values much less than those for the Helistent for all different doses of gadolinium solution. Increased gadolinium concentration resulted in a gradual reduction in RIS values in the Enterprise group. Also, ALN in the Enterprise group showed no or little change with various gadolinium doses. The Enterprise stent demonstrated good luminal visibility regardless of gadolinium concentration. The relative in-stent signals were more predictable in the Enterprise stent with various doses of gadolinium. Therefore, the Enterprise stent has been shown to provide better in-stent visibility compared with the Helistent using various gadolinium doses. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  1. Stacking dependence of carrier transport properties in multilayered black phosphorous

    NASA Astrophysics Data System (ADS)

    Sengupta, A.; Audiffred, M.; Heine, T.; Niehaus, T. A.

    2016-02-01

    We present the effect of different stacking orders on carrier transport properties of multi-layer black phosphorous. We consider three different stacking orders AAA, ABA and ACA, with increasing number of layers (from 2 to 6 layers). We employ a hierarchical approach in density functional theory (DFT), with structural simulations performed with generalized gradient approximation (GGA) and the bandstructure, carrier effective masses and optical properties evaluated with the meta-generalized gradient approximation (MGGA). The carrier transmission in the various black phosphorous sheets was carried out with the non-equilibrium green’s function (NEGF) approach. The results show that ACA stacking has the highest electron and hole transmission probabilities. The results show tunability for a wide range of band-gaps, carrier effective masses and transmission with a great promise for lattice engineering (stacking order and layers) in black phosphorous.

  2. Enhancing Photovoltaic Performance Using Broadband Luminescent Down-Shifting by Combining Multiple Species of Eu-Doped Silicate Phosphors

    PubMed Central

    Shen, Yu-Tang; Liu, Jheng-Jie; You, Bang-Jin; Ho, Chun-Hung

    2017-01-01

    This paper demonstrates the application of a broadband luminescent downshifting (LDS) layer with multiple species of europium (Eu)-doped silicate phosphors using spin-on film technique to enhance the photovoltaic efficiency of crystalline silicon solar cells. The surface morphology of the deposited layer was examined using a scanning electron microscope (SEM). The chemical composition of the Eu-doped silicate phosphors was analyzed using energy-dispersive X-ray spectroscopy (EDS). The fluorescence emission of the Eu-doped silicate phosphors was characterized using photoluminescence (PL) measurements at room temperature. We also compared the optical reflectance and external quantum efficiency (EQE) response of cells with combinations of various Eu-doped phosphors species. The cell coated with two species of Eu-doped phosphors achieved a conversion efficiency enhancement (∆η) of 19.39%, far exceeding the ∆η = 15.08% of the cell with one species of Eu-doped phosphors and the ∆η = 8.51% of the reference cell with the same silicate layer without Eu-doped phosphors. PMID:29065487

  3. Enhancing Photovoltaic Performance Using Broadband Luminescent Down-Shifting by Combining Multiple Species of Eu-Doped Silicate Phosphors.

    PubMed

    Ho, Wen-Jeng; Shen, Yu-Tang; Liu, Jheng-Jie; You, Bang-Jin; Ho, Chun-Hung

    2017-10-21

    This paper demonstrates the application of a broadband luminescent downshifting (LDS) layer with multiple species of europium (Eu)-doped silicate phosphors using spin-on film technique to enhance the photovoltaic efficiency of crystalline silicon solar cells. The surface morphology of the deposited layer was examined using a scanning electron microscope (SEM). The chemical composition of the Eu-doped silicate phosphors was analyzed using energy-dispersive X-ray spectroscopy (EDS). The fluorescence emission of the Eu-doped silicate phosphors was characterized using photoluminescence (PL) measurements at room temperature. We also compared the optical reflectance and external quantum efficiency (EQE) response of cells with combinations of various Eu-doped phosphors species. The cell coated with two species of Eu-doped phosphors achieved a conversion efficiency enhancement (∆ η ) of 19.39%, far exceeding the ∆ η = 15.08% of the cell with one species of Eu-doped phosphors and the ∆ η = 8.51% of the reference cell with the same silicate layer without Eu-doped phosphors.

  4. Red-emission phosphor's brightness deterioration by x-ray and brightness recovery phenomenon by heating.

    PubMed

    Nakamura, Masaaki; Chida, Koichi; Inaba, Yohei; Kobayashi, Ryota; Zuguchi, Masayuki

    2017-06-26

    There are no feasible real-time and direct skin dosimeters for interventional radiology. One would be available if there were x-ray phosphors that had no brightness change caused by x-ray irradiation, but the emission of the Y 2 O 3 :Eu, (Y, Gd, Eu)BO 3 , and YVO 4 :Eu phosphors investigated in our previous study was reduced by x-ray irradiation. We found that the brightness of those phosphors recovered, and the purpose of this study is to investigate their recovery phenomena. It is expected that more kinds of phosphors could be used in x-ray dosimeters if the brightness changes caused by x-rays are elucidated and prevented. Three kinds of phosphors-Y 2 O 3 :Eu, (Y, Gd, Eu)BO 3 , and YVO 4 :Eu-were irradiated by x-rays (2 Gy) to reduce their brightness. After the irradiation, brightness changes occurring at room temperature and at 80 °C were investigated. The irradiation reduced the brightness of all the phosphors by 5%-10%, but the brightness of each recovered immediately both at room temperature and at 80 °C. The recovery at 80 °C was faster than that at room temperature, and at both temperatures the recovered brightness remained at 95%-98% of the brightness before the x-ray irradiation. The brightness recovery phenomena of Y 2 O 3 :Eu, (Y, Gd, Eu)BO 3 , and YVO 4 :Eu phosphors occurring after brightness deterioration due to x-ray irradiation were found to be more significant at 80 °C than at room temperature. More kinds of phosphors could be used in x-ray scintillation dosimeters if the reasons for the brightness changes caused by x-rays were elucidated.

  5. Study of the Photon Strength Functions for Gadolinium Isotopes with the DANCE Array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dashdorj, D.; Mitchell, G. E.; Baramsai, B.

    2009-03-10

    The gadolinium isotopes are interesting for reactor applications as well as for medicine and astrophysics. The gadolinium isotopes have some of the largest neutron capture cross sections. As a consequence they are used in the control rod in reactor fuel assembly. From the basic science point of view, there are seven stable isotopes of gadolinium with varying degrees of deformation. Therefore they provide a good testing ground for the study of deformation dependent structure such as the scissors mode. Decay gamma rays following neutron capture on Gd isotopes are detected by the DANCE array, which is located at flight pathmore » 14 at the Lujan Neutron Scattering Center at Los Alamos National Laboratory. The high segmentation and close packing of the detector array enable gamma-ray multiplicity measurements. The calorimetric properties of the DANCE array coupled with the neutron time-of-flight technique enables one to gate on a specific resonance of a specific isotope in the time-of-flight spectrum and obtain the summed energy spectrum for that isotope. The singles gamma-ray spectrum for each multiplicity can be separated by their DANCE cluster multiplicity. Various photon strength function models are used for comparison with experimentally measured DANCE data and provide insight for understanding the statistical decay properties of deformed nuclei.« less

  6. Fluorescence errors in integrating sphere measurements of remote phosphor type LED light sources

    NASA Astrophysics Data System (ADS)

    Keppens, A.; Zong, Y.; Podobedov, V. B.; Nadal, M. E.; Hanselaer, P.; Ohno, Y.

    2011-05-01

    The relative spectral radiant flux error caused by phosphor fluorescence during integrating sphere measurements is investigated both theoretically and experimentally. Integrating sphere and goniophotometer measurements are compared and used for model validation, while a case study provides additional clarification. Criteria for reducing fluorescence errors to a degree of negligibility as well as a fluorescence error correction method based on simple matrix algebra are presented. Only remote phosphor type LED light sources are studied because of their large phosphor surfaces and high application potential in general lighting.

  7. Photoluminescent and Thermoluminescent Studies of Dy3+ and Eu3+ Doped Y2O3 Phosphors.

    PubMed

    Verma, Tarkeshwari; Agrawal, Sadhana

    2018-01-01

    Eu 3+ doped and Dy 3+ codoped yttrium oxide (Y 2 O 3 ) phosphors have been prepared using solid-state reaction technique (SSR). The prepared phosphors were characterized by X-ray diffractometer (XRD), energy dispersive X-ray (EDX) spectroscopy, scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FTIR) techniques. Photoluminescence (PL) and Thermoluminescence (TL) properties were studied in detail. PL emission spectra were recorded for prepared phosphors under excitation wavelength 254 nm, which show a high intense peak at 613 nm for Y 2 O 3 :Dy 3+ , Eu 3+ (1:1.5 mol %) phosphor. The correlated color temperature (CCT) and CIE analysis have been performed for the synthesized phosphors. TL glow curves were recorded for Eu 3+ doped and Dy 3+ codoped phosphors to study the heating rate effect and dose response. The kinetic parameters were calculated using peak shape method for UV and γ exposures through computerized glow curve deconvolution (CGCD) technique. The phosphors show second order kinetics and activation energies varying from 5.823 × 10 - 1 to 18.608 × 10 - 1  eV.

  8. Electrodeposition of Nanocrystalline Cobalt Phosphorous Coatings as a Hard Chrome Alternative

    DTIC Science & Technology

    2014-11-01

    1 ASETSDefense 2014 Electrodeposition of Nanocrystalline Cobalt Phosphorous Coatings as a Hard Chrome Alternative Ruben A. Prado, CEF...COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Electrodeposition of Nanocrystalline Cobalt Phosphorous Coatings as a Hard Chrome Alternative...coatings as a Hard Chrome (EHC) electroplating alternative for DoD manufacturing and repair. – Fully define deposition parameters and properties

  9. Mechano-luminescence studies of nano ZnMgAl10O17:Eu phosphor under UV irradiation

    NASA Astrophysics Data System (ADS)

    Verma, Akshkumar; Verma, Ashish; Panda, Maheswar

    2018-05-01

    ZnMgAl10O17:Eu nano phosphors were prepared successfully, using the combustion route by employing urea as a fuel. The structural, and Morphological, properties were measured using x-ray diffraction (XRD) Scanning electron microscopy (SEM) transition electron microscopy. The BET surface area of sample were found to be of ˜13.92 m2/g. The ML (Mechano-luminescence) were measured to the home made instrument. The phosphor showed more strong and high ML intensity to the without UV irradiated material. Therefore ZnMgAl10O17:Eu2+ phosphor may use as a damage sensor and dosimetry material. The ML emission spectra of the Zn0.99MgAl10O17:Eu0.01 phosphor showed the characteristic Eu2+ emission peaks ˜453nm (blue) originating from the transitions 4f65d1→4f7, Therefore ZnMgAl10O17:Eu2+ phosphor may use as a blue phosphor material.

  10. Geometrically confined ultrasmall gadolinium oxide nanoparticles boost the T1 contrast ability

    NASA Astrophysics Data System (ADS)

    Ni, Kaiyuan; Zhao, Zhenghuan; Zhang, Zongjun; Zhou, Zijian; Yang, Li; Wang, Lirong; Ai, Hua; Gao, Jinhao

    2016-02-01

    High-performance magnetic resonance imaging (MRI) contrast agents and novel contrast enhancement strategies are urgently needed for sensitive and accurate diagnosis. Here we report a strategy to construct a new T1 contrast agent based on the Solomon-Bloembergen-Morgan (SBM) theory. We loaded the ultrasmall gadolinium oxide nanoparticles into worm-like interior channels of mesoporous silica nanospheres (Gd2O3@MSN nanocomposites). This unique structure endows the nanocomposites with geometrical confinement, high molecular tumbling time, and a large coordinated number of water molecules, which results in a significant enhancement of the T1 contrast with longitudinal proton relaxivity (r1) as high as 45.08 mM-1 s-1. Such a high r1 value of Gd2O3@MSN, compared to those of ultrasmall Gd2O3 nanoparticles and gadolinium-based clinical contrast agents, is mainly attributed to the strong geometrical confinement effect. This strategy provides new guidance for developing various high-performance T1 contrast agents for sensitive imaging and disease diagnosis.High-performance magnetic resonance imaging (MRI) contrast agents and novel contrast enhancement strategies are urgently needed for sensitive and accurate diagnosis. Here we report a strategy to construct a new T1 contrast agent based on the Solomon-Bloembergen-Morgan (SBM) theory. We loaded the ultrasmall gadolinium oxide nanoparticles into worm-like interior channels of mesoporous silica nanospheres (Gd2O3@MSN nanocomposites). This unique structure endows the nanocomposites with geometrical confinement, high molecular tumbling time, and a large coordinated number of water molecules, which results in a significant enhancement of the T1 contrast with longitudinal proton relaxivity (r1) as high as 45.08 mM-1 s-1. Such a high r1 value of Gd2O3@MSN, compared to those of ultrasmall Gd2O3 nanoparticles and gadolinium-based clinical contrast agents, is mainly attributed to the strong geometrical confinement effect. This strategy

  11. Synthesis of K2SiF6:Mn4+ phosphor for LED lamp

    NASA Astrophysics Data System (ADS)

    Takarkhede, M. G.; Patil, R. R.; Moharil, S. V.; Joshi, C. P.; Talewar, Rupesh

    2018-05-01

    Now a days red emitting Mn4+ activated dialkali fluorosilicate phosphors have found applications in solid state lighting and displays. In this paper we describe development of K2SiF6 phosphor doped with Mn synthesized by simple method using Si metal powder with addition of oxidizing agent KMnO4. The photoluminescence spectra of K2SiF6:Mn show that emission is in the red region. In addition to this we studied LED spectra by coating the LED with phosphor mixed in different proportions with epoxy.

  12. Thermally stimulated properties in ZnSe:Tb and ZnSe:(Mn, Tb) phosphors

    NASA Astrophysics Data System (ADS)

    Mishra, A. K.; Mishra, S. K.; Pandey, S. P.; Lakshmi Mishra, Kshama

    2018-02-01

    Thermoluminescence studies were performed of ZnSe:Tb and ZnSe:(Mn, Tb) phosphors. A method of preparation for ZnSe phosphors doped with Tb and (Mn, Tb) has been discussed. The thermoluminescence (TL) properties of these phosphors have been studied from 100 to 370 K temperature after exciting by UV radiation (365 nm) at three uniform heating rates 0.4, 0.6 and 0.9 K/s. The trapping parameters like trap depth, lifetime of electrons and capture cross-section have also been determined using various methods.

  13. Combination of carbon dot and polymer dot phosphors for white light-emitting diodes.

    PubMed

    Sun, Chun; Zhang, Yu; Sun, Kai; Reckmeier, Claas; Zhang, Tieqiang; Zhang, XiaoYu; Zhao, Jun; Wu, Changfeng; Yu, William W; Rogach, Andrey L

    2015-07-28

    We realized white light-emitting diodes with high color rendering index (85-96) and widely variable color temperatures (2805-7786 K) by combining three phosphors based on carbon dots and polymer dots, whose solid-state photoluminescence self-quenching was efficiently suppressed within a polyvinyl pyrrolidone matrix. All three phosphors exhibited dominant absorption in the UV spectral region, which ensured the weak reabsorption and no energy transfer crosstalk. The WLEDs showed excellent color stability against the increasing current because of the similar response of the tricolor phosphors to the UV light variation.

  14. Nickel cobalt phosphorous low stress electroplating

    NASA Technical Reports Server (NTRS)

    Engelhaupt, Darell E. (Inventor); Ramsey, Brian D. (Inventor)

    2002-01-01

    An electrolytic plating process is provided for electrodepositing a nickel or nickel cobalt alloy which contains at least about 2% to 25% by atomic volume of phosphorous. The process solutions contains nickel and optionally cobalt sulfate, hypophosphorous acid or a salt thereof, boric acid or a salt thereof, a monodentate organic acid or a salt thereof, and a multidentate organic acid or a salt thereof. The pH of the plating bath is from about 3.0 to about 4.5. An electroplating process is also provided which includes electroplating from the bath a nickel or nickel cobalt phosphorous alloy. This process can achieve a deposit with high microyield of at least about 84 kg/mm.sup.2 (120 ksi) and a density lower than pure nickel of about 8.0 gm/cc. This process can be used to plate a deposit of essentially zero stress at plating temperatures from ambient to 70.degree. C.

  15. Engineered core/shell quantum dots as phosphors for solid-state lighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimov, Victor Ivanovich; Pietryga, Jeffrey Michael; McDaniel, Hunter

    2015-01-14

    Light-emitting diodes (LEDs) for solid state light ing (SSL) typically combine a blue or near- ultraviolet drive LED with one or more dow nconverting phosphors to produce “white” light. Further advances in both efficiency and wh ite-light quality will re quire new phosphors with narrow-band, highly efficient emission, particul arly in the red. A team led by principal investigator Dr. Victor Klim ov of Los Alamos National Labo ratory proposes to develop engineered semiconductor nanocrystal quantum dots (QDs) that combine optimal luminescent properties with long-term stability under ty pical downconverting conditions to enable new performance levels in SSL. The whitemore » LED phosphor industry is estimated to have sales of roughly $400 million in 2018 and would significantly benefit from the development of bright and narrow red-emitting QD phosphors because they woul d enable warmer whites without wasting energy by emission of light beyond the response of the human eye. In order to capitalize on the market opportunity, the LANL team is partnering with a local company called UbiQD that will facilitate US manufacturing.« less

  16. MRI of normal and abnormal duodenum using Half-Fourier Single-Shot RARE and gadolinium-enhanced spoiled gradient echo sequences.

    PubMed

    Marcos, H B; Semelka, R C; Noone, T C; Woosley, J T; Lee, J K

    1999-07-01

    The objective of this research was two-fold: First, to describe the normal and abnormal MR appearances of the duodenum using combined Half-Fourier Acquisition Single Shot RARE (HASTE) and gadolinium-enhanced standard and fat suppressed spoiled gradient echo (SGE) sequences. The second objective was to assess the ability of these combined sequences to detect and characterize duodenal diseases. MR examinations were performed on fifty consecutive patients with no clinical history of duodenal diseases, who were 1) imaged with HASTE and gadolinium-enhanced standard and fat suppressed SGE sequences and 2) referred to MR examination for reasons other than duodenal diseases, and were reviewed retrospectively to determine the normal MR appearances of the duodenum. A second population of patients with abnormal duodenum who were imaged with the same MR sequences were included in the second part of this study. This population was composed of 20 consecutive patients with subsequently proven duodenal abnormalities, including: malrotation (2), diverticula (4), intussusception (1), sprue (1), polyps (2), neurofibroma (1), lymphoma (1), Zollinger Ellison syndrome (1), metastatic disease (1), Crohn's disease (1), and wall thickening and duodenitis (5). Normal measurements of the duodenum are described. Abnormalities of wall thickness and duodenal masses required combined HASTE and gadolinium-enhanced SGE images to evaluate well. Abnormalities of the bowel lumen (e.g., diverticula and intussusception), and developmental variants (e.g., malrotation), were sufficiently visualized on HASTE images alone. Bowel inflammation was best shown on gadolinium-enhanced fat suppressed SGE images. HASTE and gadolinium-enhanced fat suppressed SGE sequences are complementary techniques for the demonstration of normal and abnormal duodenum. The combined use of both sequences allows evaluation of different aspects of bowel diseases; abnormalities of position, lumen, and contents are well shown on HASTE

  17. Rare earth elements recycling from waste phosphor by dual hydrochloric acid dissolution.

    PubMed

    Liu, Hu; Zhang, Shengen; Pan, Dean; Tian, Jianjun; Yang, Min; Wu, Maolin; Volinsky, Alex A

    2014-05-15

    This paper is a comparative study of recycling rare earth elements from waste phosphor, which focuses on the leaching rate and the technical principle. The traditional and dual dissolution by hydrochloric acid (DHA) methods were compared. The method of dual dissolution by hydrochloric acid has been developed. The Red rare earth phosphor (Y0.95Eu0.05)2O3 in waste phosphor is dissolved during the first step of acid leaching, while the Green phosphor (Ce0.67Tb0.33MgAl11O19) and the Blue phosphor (Ba0.9Eu0.1MgAl10O17) mixed with caustic soda are obtained by alkali sintering. The excess caustic soda and NaAlO2 are removed by washing. The insoluble matter is leached by the hydrochloric acid, followed by solvent extraction and precipitation (the DHA method). In comparison, the total leaching rate of the rare earth elements was 94.6% by DHA, which is much higher than 42.08% achieved by the traditional method. The leaching rate of Y, Eu, Ce and Tb reached 94.6%, 99.05%, 71.45%, and 76.22%, respectively. DHA can decrease the consumption of chemicals and energy. The suggested DHA method is feasible for industrial applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Single-crystal phosphors for high-brightness white LEDs/LDs

    NASA Astrophysics Data System (ADS)

    Víllora, Encarnación G.; Arjoca, Stelian; Inomata, Daisuke; Shimamura, Kiyoshi

    2016-03-01

    White light-emitting diodes (wLEDs) are the new environmental friendly sources for general lighting purposes. For applications requiring a high-brightness, current wLEDs present overheating problems, which drastically decrease their emission efficiency, color quality and lifetime. This work gives an overview of the recent investigations on single-crystal phosphors (SCPs), which are proposed as novel alternative to conventional ceramic powder phosphors (CPPs). This totally new approach takes advantage of the superior properties of single-crystals in comparison with ceramic materials. SCPs exhibit an outstanding conversion efficiency and thermal stability up to 300°C. Furthermore, compared with encapsulated CPPs, SCPs possess a superior thermal conductivity, so that generated heat can be released efficiently. The conjunction of all these characteristics results in a low temperature rise of SCPs even under high blue irradiances, where conventional CPPs are overheated or even burned. Therefore, SCPs represent the ideal, long-demanded all-inorganic phosphors for high-brightness white light sources, especially those involving the use of high-density laser-diode beams.

  19. Modeling Phosphorous Losses from Seasonal Manure Application Schemes

    NASA Astrophysics Data System (ADS)

    Menzies, E.; Walter, M. T.

    2015-12-01

    Excess nutrient loading, especially nitrogen and phosphorus, to surface waters is a common and significant problem throughout the United States. While pollution remediation efforts are continuously improving, the most effective treatment remains to limit the source. Appropriate timing of fertilizer application to reduce nutrient losses is currently a hotly debated topic in the Northeastern United States; winter spreading of manure is under special scrutiny. We plan to evaluate the loss of phosphorous to surface waters from agricultural systems under varying seasonal fertilization schemes in an effort to determine the impacts of fertilizers applied throughout the year. The Cayuga Lake basin, located in the Finger Lakes region of New York State, is a watershed dominated by agriculture where a wide array of land management strategies can be found. The evaluation will be conducted on the Fall Creek Watershed, a large sub basin in the Cayuga Lake Watershed. The Fall Creek Watershed covers approximately 33,000 ha in central New York State with approximately 50% of this land being used for agriculture. We plan to use the Soil and Water Assessment Tool (SWAT) to model a number of seasonal fertilization regimes such as summer only spreading and year round spreading (including winter applications), as well as others. We will use the model to quantify the phosphorous load to surface waters from these different fertilization schemes and determine the impacts of manure applied at different times throughout the year. More detailed knowledge about how seasonal fertilization schemes impact phosphorous losses will provide more information to stakeholders concerning the impacts of agriculture on surface water quality. Our results will help farmers and extensionists make more informed decisions about appropriate timing of manure application for reduced phosphorous losses and surface water degradation as well as aid law makers in improving policy surrounding manure application.

  20. Applying Amide Proton Transfer MR Imaging to Hybrid Brain PET/MR: Concordance with Gadolinium Enhancement and Added Value to [18F]FDG PET.

    PubMed

    Sun, Hongzan; Xin, Jun; Zhou, Jinyuan; Lu, Zaiming; Guo, Qiyong

    2018-06-01

    The purpose of this study is to evaluate the diagnostic concordance and metric correlations of amide proton transfer (APT) imaging with gadolinium-enhanced magnetic resonance imaging (MRI) and 2-deoxy-2-[ 18 F-]fluoro-D-glucose ([ 18 F]FDG) positron emission tomography (PET), using hybrid brain PET/MRI. Twenty-one subjects underwent brain gadolinium-enhanced [ 18 F]FDG PET/MRI prospectively. Imaging accuracy was compared between unenhanced MRI, MRI with enhancement, APT-weighted (APTW) images, and PET based on six diagnostic criteria. Among tumors, the McNemar test was further used for concordance assessment between gadolinium-enhanced imaging, APT imaging, and [ 18 F]FDG PET. As well, the relation of metrics between APT imaging and PET was analyzed by the Pearson correlation analysis. APT imaging and gadolinium-enhanced MRI showed superior and similar diagnostic accuracy. APTW signal intensity and gadolinium enhancement were concordant in 19 tumors (100 %), while high [ 18 F]FDG avidity was shown in only 12 (63.2 %). For the metrics from APT imaging and PET, there was significant correlation for 13 hypermetabolic tumors (P < 0.05) and no correlation for the remaining six [ 18 F]FDG-avid tumors. APT imaging can be used to increase diagnostic accuracy with no need to administer gadolinium chelates. APT imaging may provide an added value to [ 18 F]FDG PET in the evaluation of tumor metabolic activity during brain PET/MR studies.

  1. SrMoO4:Er3+-Yb3+ upconverting phosphor for photonic and forensic applications

    NASA Astrophysics Data System (ADS)

    Soni, Abhishek Kumar; Rai, Vineet Kumar

    2016-08-01

    The Er3+-Yb3+ codoped strontium molybdate (SrMoO4) phosphors have been synthesized via chemical co-precipitation method by adding ammonium hydroxide as a base reagent. The phase, crystal structure and formation of spindle-like particles present in the prepared phosphors have been recognized by using the X-ray powder diffraction (XRPD) and Field emission scanning electron microscopy (FE-SEM) techniques. The Fourier transform infrared (FTIR) spectroscopy of the developed phosphors has been analyzed to mark the different functional groups present in synthesized phosphors. The multicolour upconversion emissions observed upon excitation with 980 nm and 808 nm laser diode have been explained on the basis of dopants ions concentration, pump power dependence, energy level structure and decay curve analysis. The colour co-ordinate study confirmed that the codoped phosphor emits non-tunable green colour when excited with the 980 nm laser diode, whereas it shows the colour tunability from yellow to green region upon excitation with the 808 nm laser diode. The applicability of non-tunable green colour emission has been demonstrated in the security ink and latent finger print detection. This shows the utility of the developed phosphors in the photonic and forensic applications.

  2. Planar measurements of spray-induced wall cooling using phosphor thermometry

    NASA Astrophysics Data System (ADS)

    Dragomirov, Plamen; Mendieta, Aldo; Abram, Christopher; Fond, Benoît; Beyrau, Frank

    2018-03-01

    The wall cooling induced by spray impingement is investigated using phosphor thermometry. Thin coatings of zinc oxide (ZnO) phosphor were applied with a transparent chemical binder onto a steel surface. Instantaneous spatially resolved temperatures were determined using the spectral intensity ratio method directly after the injection of UV-grade hexane onto the surface using a commercial gasoline injector. The investigations showed that 2D temperature measurements with high spatial and shot-to-shot precision of, respectively, 0.5 and 0.6 K can be achieved, allowing the accurate resolution of the cooling induced by the spray. The presence of a liquid film over the phosphor coating during measurements showed no noticeable influence on the measured temperatures. However, in some cases a change in the intensity ratio at the spray impingement area, in the form of a permanent "stain", could be observed after multiple injections. The formation of this stain was less likely with increasing annealing time of the coating as well as lower plate operating temperatures during the injection experiments. Finally, the experimental results indicate a noticeable influence of the thickness of the phosphor coating on the measured spray-induced wall cooling history. Hence, for quantitative analysis, a compromise between coating thickness and measurement accuracy needs to be considered for similar applications where the heat transfer rates are very high.

  3. Corrosion free phosphoric acid fuel cell

    DOEpatents

    Wright, Maynard K.

    1990-01-01

    A phosphoric acid fuel cell with an electrolyte fuel system which supplies electrolyte via a wick disposed adjacent a cathode to an absorbent matrix which transports the electrolyte to portions of the cathode and an anode which overlaps the cathode on all sides to prevent corrosion within the cell.

  4. Preliminary study on preparation of BCNO phosphor particles using citric acid as carbon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuryadin, Bebeh W.; Pratiwi, Tripuspita; Faryuni, Irfana D.

    A citric acid was used as a carbon source in the preparation of boron carbon oxy-nitride (BCNO) phosphor particles by a facile process. The preparation process was conducted at relatively low temperature 750 °C and at ambient pressure. The prepared BCNO phosphors showed a high photoluminescence (PL) performance at peak emission wavelength of 470 nm under excitation by a UV light 365 nm. The effects of carbon/boron and nitrogen/boron molar ratios on the PL properties were also investigated. The result showed that the emission spectra with a wavelength peak ranging from 444 nm to 496 nm can be obtained bymore » varying carbon/boron ratios from 0.1 to 0.9. In addition, the observations showed that the BCNO phosphor material has two excitation peaks located at the 365 nm (UV) and 420 nm (blue). Based on these observations, we believe that the citric acid derived BCNO phosphor particles can be a promising inexpensive material for phosphor conversion-based white LED.« less

  5. Cation deficient layered Ruddlesden-Popper-related oxysulfides La2LnMS2O5 (Ln=La, Y; M=Nb, Ta).

    PubMed

    Cario, Laurent; Popa, Aurelian Florin; Lafond, Alain; Guillot-Deudon, Catherine; Kabbour, Houria; Meerschaut, A; Clarke, Simon J; Adamson, Paul

    2007-11-12

    The structures of the new oxysulfide Ruddlesden-Popper phases La2LnMS2O5 (Ln=La, Y; M=Nb, Ta) are reported together with an iodide-containing variant: La3-xNb1+xS2O5I2x (0

  6. Implant decontamination with phosphoric acid during surgical peri-implantitis treatment: a RCT.

    PubMed

    Hentenaar, Diederik F M; De Waal, Yvonne C M; Strooker, Hans; Meijer, Henny J A; Van Winkelhoff, Arie-Jan; Raghoebar, Gerry M

    2017-12-01

    Peri-implantitis is known as an infectious disease that affects the peri-implant soft and hard tissue. Today, scientific literature provides very little evidence for an effective intervention protocol for treatment of peri-implantitis. The aim of the present randomized controlled trial is to evaluate the microbiological and clinical effectiveness of phosphoric acid as a decontaminating agent of the implant surface during surgical peri-implantitis treatment. Peri-implantitis lesions were treated with resective surgical treatment aimed at peri-implant granulation tissue removal, bone recontouring, and pocket elimination. Fifty-three implant surfaces in 28 patients were mechanically cleaned and treated with either 35% phosphoric etching gel (test group) or sterile saline (control group). Microbiological samples were obtained during surgery; clinical parameters were recorded at baseline and at 3 months after treatment. Data were analyzed using multi-variable linear regression analysis and multilevel statistics. Significant immediate reductions in total anaerobic bacterial counts on the implant surface were found in both groups. Immediate reduction was greater when phosphoric acid was used. The difference in log-transformed mean anaerobic counts between both procedures was not statistical significant (p = 0.108), but there were significantly less culture-positive implants after the decontamination procedure in the phosphoric acid group (p = 0.042). At 3 months post-surgery, 75% of the implants in the control group and 63.3% of the implants in the test group showed disease resolution. However, no significant differences in clinical and microbiological outcomes between both groups were found. The application of 35% phosphoric acid after mechanical debridement is superior to mechanical debridement combined with sterile saline rinsing for decontamination of the implant surface during surgical peri-implantitis treatment. However, phosphoric acid as implant surface

  7. Phosphoric acid purification through different raw and activated clay materials (Southern Tunisia)

    NASA Astrophysics Data System (ADS)

    Trabelsi, Wafa; Tlili, Ali

    2017-05-01

    This study concerns the purification of Tunisian phosphoric acid produced by the Tunisian Chemical Group (TCG), using raw and activated clays materials from Southern Tunisia. The Gafsa basin clays samples (Jebel Hamadi (JHM); Jebel Stah (JS) and the El Hamma sample (Jebel Aïdoudi (JAD)) were activated with 3 M, HCl solution. Phosphoric acid purification was performed on raw and activated clays. Mineralogical characterisation was carried out using the X-ray powder diffraction method and infrared absorption spectroscopy. Textural changes between raw and activated clays were identified using SEM observations and specific surface analysis. Jebel Hamadi clays were almost dominated by smectite associated with kaolinite and illite traces, while Jebel Stah and Jebel Aïdoudi clays were composed of the association of smectite, illite and kaolinite. It is worth noting that the position of the smectite (001) reflection increased after the acidic activation in all studied samples, indicating the relaxation of the smectite structure along the c-axis. This was corroborated by the increasing specific surface area of the clay particles with the activation process. The specific surface area was close to 50 m2/g and 200 m2/g, for raw and activated materials, respectively. The maximum phosphoric acid purification was obtained by using activated clays with 3 N HCl for 4 h. This performance correlated with the maximum of the external specific surface area which generated strong acid sites. Furthermore, the best results of phosphoric acids purification from TCG were obtained at a specific consumption equivalent to 30 Kg of clay/ton of P2O5. These results showed that the best phosphoric acid purification was yielded by Jebel Aïdoudi clay. In all cases, the highest organic carbon reduction rates in the phosphoric acid after filtration were obtained at 90°C.

  8. Polythermal investigation of viscosity of solution of metal carboxylates in VIK-grade mixed carboxylic acids: Yttrium and gadolinium carboxylates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezhov, E.A.; Samatov, A.V.; Troyanovskii, L.V.

    Kinematic viscosities have been measured for solutions of yttrium and gadolinium carboxylates in grade VIK mixed carboxylic acids (MCA). It has been established that the optimal fluidity of these metal carboxylate solutions for application to articles is reached at 333 K. A regression model has been developed to describe the concentration and temperature dependences of the viscosity of yttrium- and gadolinium-containing MCA solutions. 2 refs., 3 tabs.

  9. Cathode catalysts for primary phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Alkylation or carbon Vulcan XC-72, the support carbon, was shown to provide the most stable bond type for linking cobalt dehydrodibenzo tetraazannulene (CoTAA) to the surface of the carbon; this result is based on data obtained by cyclic voltammetry, pulse voltammetry and by release of 14C from bonded CoTAA. Half-cell tests at 100 C in 85% phosphoric acid showed that CoTAA bonded to the surface of carbon (Vulcan XC-72) via an alkylation procedure is a more active catalyst than is platinum based on a factor of two improvement in Tafel slope; dimeric CoTAA had catalytic activity equal to platinum. Half-cell tests also showed that bonded CoTAA catalysts do not suffer a loss in potential when air is used as a fuel rather than oxygen. Commercially available polytetrafluroethylene (PTFE) was shown to be unstable in the fuel cell environment with degradation occurring in 2000 hours or less. The PTFE was stressed at 200 C in concentrated phosphoric acid as well as electrochemically stressed in 150 C concentrated phosphoric acid; the surface chemistry of PTFE was observed to change significantly. Radiolabeled PTFE was prepared and used to verify that such chemical changes also occur in the primary fuel cell environment.

  10. Shear bond strength of self-etch adhesives to enamel with additional phosphoric acid etching.

    PubMed

    Lührs, Anne-Katrin; Guhr, Silke; Schilke, Reinhard; Borchers, Lothar; Geurtsen, Werner; Günay, Hüsamettin

    2008-01-01

    This study evaluated the shear bond strength of self-etch adhesives to enamel and the effect of additional phosphoric acid etching. Seventy sound human molars were randomly divided into three test groups and one control group. The enamel surfaces of the control group (n=10) were treated with Syntac Classic (SC). Each test group was subdivided into two groups (each n=10). In half of each test group, ground enamel surfaces were coated with the self-etch adhesives AdheSe (ADH), Xeno III (XE) or Futurabond NR (FNR). In the remaining half of each test group, an additional phosphoric acid etching of the enamel surface was performed prior to applying the adhesives. The shear bond strength was measured with a universal testing machine at a crosshead speed of 1 mm/minute after storing the samples in distilled water at 37 degrees C for 24 hours. Fracture modes were determined by SEM examination. For statistical analysis, one-way ANOVA and the two-sided Dunnett Test were used (p>0.05). Additional phosphoric etching significantly increased the shear bond strength of all the examined self-etch adhesives (p<0.001). The highest shear bond strength was found for FNR after phosphoric acid etching. Without phosphoric acid etching, only FNR showed no significant differences compared to the control (SC). SEM evaluations showed mostly adhesive fractures. For all the self-etch adhesives, a slight increase in mixed fractures occurred after conditioning with phosphoric acid. An additional phosphoric acid etching of enamel should be considered when using self-etch adhesives. More clinical studies are needed to evaluate the long-term success of the examined adhesives.

  11. Synthesis and photoluminescence study in Eu3+:Y2WO6 phosphors

    NASA Astrophysics Data System (ADS)

    Sonali, Mondal, Manisha; Rai, Vineet Kumar

    2018-05-01

    Eu3+ doped Y2WO6 phosphors were synthesized by solid state reaction method. The photoluminescence properties of the Eu3+:Y2WO6 phosphors were studied for different concentration of Eu3+ ions. The luminescence intensity is found maximum at 0.3 mol% of Eu3+ ions. The excitation spectra monitored at ˜617 nm lies in the 220 - 350 nm region occurs due to charge transfer state (CTS) band of the europium-oxygen interactions, which is caused by an electron transfer from oxygen 2p orbital to an empty 4f shell of europium ions. The phosphors effectively excited by ˜393 nm near-ultraviolet (NUV) light gives efficient red emission band (˜ 617 nm) corresponding to 5D0 → 7F2 transition. The concentration dependence photoluminescence study and the mechanisms behind the photoluminescence properties have been explored with the help of suitable energy level diagram. Moreover, the CIE colour coordinate lie in the near white region so the prepared phosphors can be suitably use in making visible downconverter and in making visible light display devices.

  12. The performance of hafnium and gadolinium self powered neutron detectors in the TREAT reactor

    NASA Astrophysics Data System (ADS)

    Imel, G. R.; Hart, P. R.

    1996-05-01

    The use of gadolinium and hafnium self powered neutron detectors in a transient reactor is described in this paper. The detectors were calibrated to the fission rate of U-235 using calibrated fission chambers; the calibration factors were tested in two reactors in steady state and found to be consistent. Calibration of the detectors in transient reactor conditions was done by using uranium wires that were analyzed by radiochemistry techniques to determine total fissions during the transient. This was correlated to the time-integrated current of the detectors during the transient. A temperature correction factor was derived to account for self-shielding effects in the hafnium and gadolinium detectors. The dynamic response of the detectors under transient conditions was studied, and found to be excellent.

  13. Synthesis and luminescence properties of Eu3+-doped KLa(MoO4)2 red-emitting phosphor

    NASA Astrophysics Data System (ADS)

    Zuo, Haoqiang; Liu, Yun; Li, Jinyang; Shi, Xiaolei; Gao, Weiping

    2015-09-01

    Eu3+-doped KLa(MoO4)2 phosphors were synthesized by a simple hydrothermal method. X-ray diffraction (XRD) analysis demonstrated that the as-prepared products were pure monoclinic phase of KLa(MoO4)2. Field emission scanning electron microscopy (FE-SEM) images indicated that the morphology of the prepared phosphors evolved from uniform spherical-like to irregular elliposid-like with increase of the concentration. The photoluminescence (PL) spectra displayed that the phosphors show strong red light around 618 nm, attributed to 5D0 → 7F2 transition of Eu3+ ion under 465 nm excitation, and the optimal Eu3+ doping concentration was about 15 mol.% based on the concentration dependent emission spectra. According to Dexter's theory the electric dipole-dipole interaction (D-D) is the main mechanism for energy transfer between Eu3+ and Eu3+ ions. The CIE chromaticity (x, y) of the phosphors were about (0.65, 0.35) and it is close to the standard red chromaticity of NTSC. Therefore, the phosphors could be used as red phosphors for white light-emitting diodes.

  14. Hybrid 2D photonic crystal-assisted Lu3Al5O12:Ce ceramic-plate phosphor and free-standing red film phosphor for white LEDs with high color-rendering index.

    PubMed

    Park, Hoo Keun; Oh, Ji Hye; Kang, Heejoon; Zhang, Jian; Do, Young Rag

    2015-03-04

    This paper reports the combined optical effects of a two-dimensional (2D) SiNx photonic crystal layer (PCL)-assisted Lu3Al5O12:Ce (LuAG:Ce) green ceramic-plate phosphor (CPP) and a free-standing (Sr,Ca)AlSiN3:Eu red film phosphor to enhance luminous efficacy, color rendering index (CRI), and special CRI (R9) of LuAG:Ce CPP-capped white light-emitting diodes (LEDs) for high-power white LEDs at 350 mA. By introducing the 2D SiNx PCL, the luminous efficacy was improved by a factor of 1.25 and 1.15 compared to that of the conventional flat CPP-capped LED and the thickness-increased CPP-capped LED (with a thickness of 0.15 mm), respectively, while maintaining low color-rendering properties. The combining of the free-standing red film phosphor in the flat CPP-capped, the 2D PCL-assisted CPP-capped, and the thickness-increased CPP-capped LEDs led to enhancement of the CRI and the special CRI (R9); it also led to a decrease of the correlated color temperature (CCT) due to broad wavelength coverage via the addition of red emission. High CRI (94), natural white CCT (4450 K), and acceptable luminous efficacy (71.1 lm/W) were attained from the 2D PCL-assisted LuAG:Ce CPP/free-standing red film phosphor-based LED using a red phosphor concentration of 7.5 wt %. It is expected that the combination of the 2D PCL and the free-standing red film phosphor will be a good candidate for achieving a high-power white CPP-capped LED with excellent CRI.

  15. Breakthrough reactions of iodinated and gadolinium contrast media after oral steroid premedication protocol.

    PubMed

    Jingu, Akiko; Fukuda, Junya; Taketomi-Takahashi, Ayako; Tsushima, Yoshito

    2014-10-06

    Adverse reactions to iodinated and gadolinium contrast media are an important clinical issue. Although some guidelines have proposed oral steroid premedication protocols to prevent adverse reactions, some patients may have reactions to contrast media in spite of premedication (breakthrough reaction; BTR).The purpose of this study was to assess the frequency, type and severity of BTR when following an oral steroid premedication protocol. All iodinated and gadolinium contrast-enhanced radiologic examinations between August 2011 and February 2013 for which the premedication protocol was applied in our institution were assessed for BTRs. The protocol was applied to a total of 252 examinations (153 patients, ages 15-87 years; 63 males, 90 females). Of these, 152 were for prior acute adverse reactions to contrast media, 85 were for a history of bronchial asthma, and 15 were for other reasons. There were 198 contrast enhanced CTs and 54 contrast enhanced MRIs. There were nine BTR (4.5%) for iodinated contrast media, and only one BTR (1.9%) for gadolinium contrast media: eight were mild and one was moderate. No patient who had a mild index reaction (IR) had a severe BTR. Incidence of BTRs when following the premedication protocol was low. This study by no means proves the efficacy of premedication, but provides some support for following a premedication protocol to improve safety of contrast-enhanced examinations when prior adverse reactions are mild, or when there is a history of asthma.

  16. Breakthrough reactions of iodinated and gadolinium contrast media after oral steroid premedication protocol

    PubMed Central

    2014-01-01

    Background Adverse reactions to iodinated and gadolinium contrast media are an important clinical issue. Although some guidelines have proposed oral steroid premedication protocols to prevent adverse reactions, some patients may have reactions to contrast media in spite of premedication (breakthrough reaction; BTR). The purpose of this study was to assess the frequency, type and severity of BTR when following an oral steroid premedication protocol. Methods All iodinated and gadolinium contrast-enhanced radiologic examinations between August 2011 and February 2013 for which the premedication protocol was applied in our institution were assessed for BTRs. Results The protocol was applied to a total of 252 examinations (153 patients, ages 15–87 years; 63 males, 90 females). Of these, 152 were for prior acute adverse reactions to contrast media, 85 were for a history of bronchial asthma, and 15 were for other reasons. There were 198 contrast enhanced CTs and 54 contrast enhanced MRIs. There were nine BTR (4.5%) for iodinated contrast media, and only one BTR (1.9%) for gadolinium contrast media: eight were mild and one was moderate. No patient who had a mild index reaction (IR) had a severe BTR. Conclusion Incidence of BTRs when following the premedication protocol was low. This study by no means proves the efficacy of premedication, but provides some support for following a premedication protocol to improve safety of contrast-enhanced examinations when prior adverse reactions are mild, or when there is a history of asthma. PMID:25287952

  17. Effect of Cu2+ substitution on the structural, magnetic and electrical properties of gadolinium orthoferrite

    NASA Astrophysics Data System (ADS)

    Sai Vandana, C.; Hemalatha Rudramadevi, B.

    2018-04-01

    The pure and copper (Cu) substituted Gadolinium orthoferrites, GdFeO3, GdCu0.1Fe0.9O3, GdCu0.2Fe0.8O3 and GdCu0.3Fe0.7O3 were synthesized by conventional solid state method. The structural, morphological, dielectric, magnetic and impedance properties of Cu substituted Gadolinium orthoferrites have been investigated. The crystallographic phase as well as the substitution of Cu2+ ions in the lattice of GdFeO3 is confirmed from the x-ray diffraction patterns. The Fourier transform infrared spectra exhibit two prominent fundamental absorption peaks at ∼417 cm‑1 and 545 cm‑1. These bands are related to inherent stretching vibrations of metals at octahedral and tetrahedral sites respectively. The coercivity (Hc) and saturation magnetization (Ms) of the synthesized samples at different temperatures were determined from the hysteresis plots. Higher coercive values, 598 Oe and 600 Oe were achieved in GdCu0.1Fe0.9O3 ferrites compared to 527 Oe and 360 Oe in pure GdFeO3 at room temperature (300 K) and low temperature (20 k) respectively. Dielectric dispersion has been observed for gadolinium ferrite samples with Maxwell–Wagner type interfacial polarization. The decrease of dielectric constant and dielectric loss tangent with an increase in frequency was observed. The conduction due to charge hopping between localized states was confirmed from AC conductivity measurements. The composition dependent cationic distributions estimated from XRD, magnetic and electrical studies are in good agreement with each other. The achieved results indicate that the substitution of Cu in gadolinium orthoferrite strongly influences the crystal structure, magnetic and electrical properties thereby making them suitable as multiple state memory devices, transducers, electronic field controlled ferromagnetic resonance devices and spintronic devices.

  18. Reactivity of the cadmium ion in concentrated phosphoric acid solutions.

    PubMed

    De Gyves, J; Gonzales, J; Louis, C; Bessiere, J

    1989-07-01

    The solvation transfer coefficients which characterize the changes of ion reactivity with phosphoric acid concentration have been calculated for cadmium from the constants of the successive chloride complexes, and for silver and diethyldithiophosphate from potentiometric measurements. They evidence the strong desolvation of the cadmium species in concentrated phosphoric acid media, causing a remarkable increase of its reactivity. They allow the results of liquid-liquid extraction, precipitation and flotation reactions to be correctly interpreted and their changes to be foreseen when the reagents are modified.

  19. Synthesis and luminescent properties of Sm3+ doped zinc aluminate phosphor

    NASA Astrophysics Data System (ADS)

    Mahajan, Rubby; Kumar, Sandeep; Prakash, Ram; Kumar, Vinay

    2018-05-01

    Zinc Aluminate (ZnAl2O4) is a well-known wide band gap oxide that belongs to a class of mixed-metal oxides knows as spinels (AB2O4) where A and B are divalent and trivalent cations. Herein, the structural and photoluminescence properties of Sm3+ ion doped with ZnAl2O4 phosphors are reported. The nanophosphors were synthesized via solution combustion synthesis route at temperature 570 °C. The synthesized samples were characterized by X-ray powder diffraction (XRD), Photoluminescence (PL) spectroscopy, and Ultraviolet-visible spectroscopy. The XRD pattern confirms the cubic phase of phosphor. The calculated lattice parameter were found as a = b = c = 8.0517Å and V = 521.85Å3. The crystallite size of the phosphor was calculated using the Debye-Scherrer formula and found to be ˜19 nm. The emission spectrum at excitation wavelength of 401 nm gave the emission peaks at 563 nm, 601 nm, 648 nm, 697 nm corresponding to the transitions 4G5/2→ 6H5/2, 4G5/2→6H7/2, 4G5/2→6H9/2, 4G5/2 → 6H11/2 of Sm3+ ions, respectively. The diffuse reflectance spectrum was used to calculate the band gap of material and found to be 5.12 eV. The CIE coordinates were found to be (x = 0.56, y = 0.40) that falls in the orange red region of the color gamut. The present phosphor may have potential applications as phosphor for near UV WLED for solid state lighting.

  20. Depth-Resolved Multispectral Sub-Surface Imaging Using Multifunctional Upconversion Phosphors with Paramagnetic Properties

    PubMed Central

    Ovanesyan, Zaven; Mimun, L. Christopher; Kumar, Gangadharan Ajith; Yust, Brian G.; Dannangoda, Chamath; Martirosyan, Karen S.; Sardar, Dhiraj K.

    2015-01-01

    Molecular imaging is very promising technique used for surgical guidance, which requires advancements related to properties of imaging agents and subsequent data retrieval methods from measured multispectral images. In this article, an upconversion material is introduced for subsurface near-infrared imaging and for the depth recovery of the material embedded below the biological tissue. The results confirm significant correlation between the analytical depth estimate of the material under the tissue and the measured ratio of emitted light from the material at two different wavelengths. Experiments with biological tissue samples demonstrate depth resolved imaging using the rare earth doped multifunctional phosphors. In vitro tests reveal no significant toxicity, whereas the magnetic measurements of the phosphors show that the particles are suitable as magnetic resonance imaging agents. The confocal imaging of fibroblast cells with these phosphors reveals their potential for in vivo imaging. The depth-resolved imaging technique with such phosphors has broad implications for real-time intraoperative surgical guidance. PMID:26322519

  1. Enhanced luminescence in SrMgAl(x)O(17±δ):yMn4+ composite phosphors.

    PubMed

    Cao, Renping; Sharafudeen, Kaniyarakkal N; Qiu, Jianrong

    2014-01-03

    Red-emitting SrMgAlxO17±δ:yMn(4+) composite phosphors (x=10-100; y=0.05-4.0 mol%) are synthesized by solid-state reaction method in air. Addition of Al2O3 leads to the formation of two concomitant phases, i.e., SrMgAl10O17 and Al2O3 phases in the composite phosphor. Red emission from Mn(4+) ions in the composite phosphors is greatly enhanced due to multiple scattering and absorption of excitation light between SrMgAl10O17 and Al2O3 phases. SrMgAlxO17±δ:yMn(4+) composite phosphors would be a promising candidate as red phosphor in the application of a 397 nm near UV-based W-LED. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Study on effective thermal conductivity of silicone/phosphor composite and its size effect by Lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Li, Lan; Zheng, Huai; Yuan, Chao; Hu, Run; Luo, Xiaobing

    2016-12-01

    The silicone/phosphor composite is widely used in light emitting diode (LED) packaging. The composite thermal properties, especially the effective thermal conductivity, strongly influence the LED performance. In this paper, a lattice Boltzmann model was presented to predict the silicone/phosphor composite effective thermal conductivity. Based on the present lattice Boltzmann model, a random generation method was established to describe the phosphor particle distribution in composite. Benchmarks were conducted by comparing the simulation results with theoretical solutions for simple cases. Then the model was applied to analyze the effective thermal conductivity of the silicone/phosphor composite and its size effect. The deviations between simulation and experimental results are <7 %, when the phosphor volume fraction varies from 0.038 to 0.45. The simulation results also indicate that effective thermal conductivity of the composite with larger particles is higher than that with small particles at the same volume fraction. While mixing these two sizes of phosphor particles provides an extra enhancement for the effective thermal conductivity.

  3. An experimental and theoretical study of new phosphors for full color field emission displays

    NASA Astrophysics Data System (ADS)

    Zhang, Fu-Li

    An in depth study is reported of the cathodoluminescent (CL) properties of three new highly efficiency blue phosphors for field emission display (FED) applications doped with fast activators. The superior performance of a new Eu-doped green SrGa2S4 will also be reported. This work addresses four main topics: (1) a detailed study of the dependence of the luminescent intensity on activator concentration, as a function of electron beam voltage and current density; (2) the optical properties of thew phosphors and the development of a CL efficiency characterization technique using a critical screen weight method, which can obtain maximum light output and improve measurement accuracy; (3) understanding the low voltage CL mechanism associated with nanocrystal size by developing a thin film and disk model based on transportation theory and experimental results; (4) Development of a comprehensive evaluation method of red, green, and blue (RGB) phosphors for full color displays by calculation of luminance ratios, required luminance, and measurements of spectra, efficiency and saturation behavior. For FEDs which combine the best properties of CRT and flat panel displays, the development of efficient phosphors at low voltages and high current densities is shown to be critical to meet the luminance and power requirement demands for portable displays. Of particular importance is the need for a good blue phosphor, and to understand the dependence of the CL efficiency on nanocrystal size, penetration depth, diffusion length and surface recombination rate. This has been obtained from the thin film and disk models and fits to experiment. Comparisons between full color phosphor sets show that the performance of a display can vary by over a factor of three depending on the choice of the RGB set. Other factors that are important for optimizing the performance of FED phosphors are reviewed.

  4. 40 CFR 180.1210 - Phosphorous acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD... exemption from the requirement of a tolerance is established for residues of phosphorous acid and its... and in or on potatoes when applied as a post-harvest treatment at 35,600 ppm or less phosphorous acid...

  5. 40 CFR 180.1210 - Phosphorous acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD... exemption from the requirement of a tolerance is established for residues of phosphorous acid and its... and in or on potatoes when applied as a post-harvest treatment at 35,600 ppm or less phosphorous acid...

  6. Optical fiber sensor for low dose gamma irradiation monitoring

    NASA Astrophysics Data System (ADS)

    de Andrés, Ana I.; Esteban, Ã.`scar; Embid, Miguel

    2016-05-01

    An optical fiber gamma ray detector is presented in this work. It is based on a Terbium doped Gadolinium Oxysulfide (Gd2O2S:Tb) scintillating powder which cover a chemically etched polymer fiber tip. This etching improves the fluorescence gathering by the optical fiber. The final diameter has been selected to fulfill the trade-off between light gathering and mechanical strength. Powder has been encapsulated inside a microtube where the fiber tip is immersed. The sensor has been irradiated with different air Kerma doses up to 2 Gy/h with a 137Cs source, and the spectral distribution of the fluorescence intensity has been recorded in a commercial grade CCD spectrometer. The obtained signal-to-noise ratio is good enough even for low doses, which has allowed to reduce the integration time in the spectrometer. The presented results show the feasibility for using low cost equipment to detect/measure ionizing radiation as gamma rays are.

  7. Application of an oscillation-type linear cadmium telluride detector to enhanced gadolinium K-edge computed tomography

    NASA Astrophysics Data System (ADS)

    Matsukiyo, Hiroshi; Sato, Eiichi; Hagiwara, Osahiko; Abudurexiti, Abulajiang; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Nagao, Jiro; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2011-03-01

    A linear cadmium telluride (CdTe) detector is useful for carrying out energy-discrimination X-ray imaging, including computed tomography (CT). To perform enhanced gadolinium K-edge CT, we used an oscillation-type linear CdTe detector with an energy resolution of 1.2 keV. CT is performed by repeating the linear scan and the rotation of an object. Penetrating X-ray photons from the object are detected by the CdTe detector, and event signals of X-ray photons are produced using charge-sensitive and shaping amplifiers. Both the photon energy and the energy width are selected using a multichannel analyzer, and the number of photons is counted by a counter card. In energy-discrimination CT, tube voltage and current were 80 kV and 20 μA, respectively, and X-ray intensity was 1.55 μGy/s at 1.0 m from the source at a tube voltage of 80 kV. Demonstration of enhanced gadolinium K-edge X-ray CT was carried out by selecting photons with energies just beyond gadolinium K-edge energy of 50.3 keV.

  8. Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI.

    PubMed

    Gong, Enhao; Pauly, John M; Wintermark, Max; Zaharchuk, Greg

    2018-02-13

    There are concerns over gadolinium deposition from gadolinium-based contrast agents (GBCA) administration. To reduce gadolinium dose in contrast-enhanced brain MRI using a deep learning method. Retrospective, crossover. Sixty patients receiving clinically indicated contrast-enhanced brain MRI. 3D T 1 -weighted inversion-recovery prepped fast-spoiled-gradient-echo (IR-FSPGR) imaging was acquired at both 1.5T and 3T. In 60 brain MRI exams, the IR-FSPGR sequence was obtained under three conditions: precontrast, postcontrast images with 10% low-dose (0.01mmol/kg) and 100% full-dose (0.1 mmol/kg) of gadobenate dimeglumine. We trained a deep learning model using the first 10 cases (with mixed indications) to approximate full-dose images from the precontrast and low-dose images. Synthesized full-dose images were created using the trained model in two test sets: 20 patients with mixed indications and 30 patients with glioma. For both test sets, low-dose, true full-dose, and the synthesized full-dose postcontrast image sets were compared quantitatively using peak-signal-to-noise-ratios (PSNR) and structural-similarity-index (SSIM). For the test set comprised of 20 patients with mixed indications, two neuroradiologists scored blindly and independently for the three postcontrast image sets, evaluating image quality, motion-artifact suppression, and contrast enhancement compared with precontrast images. Results were assessed using paired t-tests and noninferiority tests. The proposed deep learning method yielded significant (n = 50, P < 0.001) improvements over the low-dose images (>5 dB PSNR gains and >11.0% SSIM). Ratings on image quality (n = 20, P = 0.003) and contrast enhancement (n = 20, P < 0.001) were significantly increased. Compared to true full-dose images, the synthesized full-dose images have a slight but not significant reduction in image quality (n = 20, P = 0.083) and contrast enhancement (n = 20, P = 0.068). Slightly

  9. Optical enhancement of phosphor-converted wLEDs using glass beads

    NASA Astrophysics Data System (ADS)

    Güner, Tuğrul; Şentürk, Ufuk; Demir, Mustafa M.

    2017-10-01

    YAG:Ce3+ is a yellow-source compound commonly used in phosphor conversion layers for direct coating or remote phosphor configurations in LED illumination. This material, however, suffers from a high correlated color temperature, and low color-rendering index due to its deficiency in the red spectrum. In this study, glass beads (GB) with an average particle diameter of 10 μm were introduced to the conversion layer of a YAG:Ce3+ particulate-filled polydimethylsiloxane matrix composite structure and found to improve the optical features of the resulting composite.

  10. The effects of boric acid and phosphoric acid on the compressive strength of glass-ionomer cements.

    PubMed

    Prentice, Leon H; Tyas, Martin J; Burrow, Michael F

    2006-01-01

    Both boric acid (H3BO3) and phosphoric acid (H3PO4) are components of dental cements, commonly incorporated into glass (as ingredients in the melt) and occasionally added to the powder or liquid components. This study investigated the effect of boric acid addition to an experimental glass-ionomer powder and the effect of phosphoric acid addition to a glass-ionomer liquid on the 24-h compressive strength. Boric acid powder was added in various concentrations to an experimental glass-ionomer powder and, separately, phosphoric acid was added to an experimental glass-ionomer liquid. Powders and liquids were dosed into capsules at various powder:liquid ratios and cements thus formed were assessed for 24-h compressive strength. Incorporation of boric acid in glass-ionomer powder resulted in a pronounced decrease (p < 0.05 at 1% boric acid) in compressive strength. Addition of phosphoric acid produced initially stronger cements (up to 13% increase at 1% phosphoric acid) before also declining. The incorporation of less than 2% w/w phosphoric acid in glass-ionomer liquids may improve cement strengths without compromising clinical usefulness. The incorporation of boric acid in glass-ionomer cements is contraindicated.

  11. Synthesis and luminescent properties of spindle-like CaWO{sub 4}:Sm{sup 3+} phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Yue; Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026; Liu, Yu

    2012-01-15

    Graphical abstract: In this paper, spindle-like CaWO{sub 4}:Sm{sup 3+} phosphors were prepared via a polyvinylpyrrolidone (PVP)-assisted sonochemical process. Dependence of emission intensity on Sm{sup 3+} ions concentration in the CaWO{sub 4}:Sm{sup 3+} phosphor were also calculated via a nonlinear fitting by using the formula y = ax/(1 + bx{sup c}). Highlights: Black-Right-Pointing-Pointer The samples were prepared via a PVP assisted sonochemical process. Black-Right-Pointing-Pointer The color coordinates for 1 mol% Sm{sup 3+} doped CaWO{sub 4} phosphor were calculated. Black-Right-Pointing-Pointer The D-D interaction is responsible for concentration quenching between Sm{sup 3+} ions. Black-Right-Pointing-Pointer The critical energy transfer distances (R{sub c}) were obtained.more » -- Abstract: Spindle-like CaWO{sub 4}:Sm{sup 3+} phosphors were prepared via a Polyvinylpyrrolidone (PVP)-assisted sonochemical process, and characterized by using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and photoluminescence spectroscopy (PL). The XRD results suggested that the prepared samples are single-phase. The FE-SEM images indicated that the prepared CaWO{sub 4}:Sm{sup 3+} phosphors are composed of many spindles with maximum average diameter of 150 nm and maximum average length of 500 nm. Under 404 nm excitation, the characteristic emissions corresponding to {sup 4}G{sub 5/2} {yields} {sup 6}H{sub J} (J = 5/2, 7/2, 9/2 and 11/2) transitions of Sm{sup 3+} in CaWO{sub 4} phosphors were observed. The color coordinates for 1 mol% Sm{sup 3+} doped CaWO{sub 4} phosphor were calculated to be (0.595, 0.404). The fluorescent concentration quenching of Sm{sup 3+} doped spindle-like phosphors was studied based on the Van Uitert's model, and it was found that the electric dipole-dipole (D-D) interaction is the dominant energy transfer mechanism between Sm{sup 3+} ions in the CaWO{sub 4}:Sm{sup 3+} phosphors. The critical energy transfer distance was

  12. Kondo effect and enhanced magnetic properties in gadolinium functionalized carbon nanotube supramolecular complex.

    PubMed

    Ncube, S; Coleman, C; Strydom, A; Flahaut, E; de Sousa, A; Bhattacharyya, S

    2018-05-23

    We report on the enhancement of magnetic properties of multiwalled carbon nanotubes (MWNTs) functionalized with a gadolinium based supramolecular complex. By employing a newly developed synthesis technique we find that the functionalization method of the nanocomposite enhances the strength of magnetic interaction leading to a large effective moment of 15.79 µ B and non-superparamagnetic behaviour unlike what has been previously reported. Saturating resistance at low temperatures is fitted with the numerical renormalization group formula verifying the Kondo effect for magnetic impurities on a metallic electron system. Magnetoresistance shows devices fabricated from aligned gadolinium functionalized MWNTs (Gd-Fctn-MWNTs) exhibit spin-valve switching behaviour of up to 8%. This study highlights the possibility of enhancing magnetic interactions in carbon systems through chemical modification, moreover we demonstrate the rich physics that might be useful for developing spin based quantum computing elements based on one-dimensional (1D) channels.

  13. Tin-Doped Inorganic Amorphous Films for Use as Transparent Monolithic Phosphors.

    PubMed

    Masai, Hirokazu; Miyata, Hiroki; Yamada, Yasuhiro; Okumura, Shun; Yanagida, Takayuki; Kanemitsu, Yoshihiko

    2015-06-10

    Although inorganic crystalline phosphors can exhibit high quantum efficiency, their use in phosphor films has been limited by a reliance on organic binders that have poor durability when exposed to high-power and/or high excitation energy light sources. To address this problem, Sn(2+)-doped transparent phosphate films measuring several micrometers in thickness have been successfully prepared through heat treatment and a subsequent single dip-coating process. The resulting monolithic inorganic amorphous film exhibited an internal quantum efficiency of over 60% and can potentially utilize transmitted light. Analysis of the film's emissivity revealed that its color can be tuned by changing the amount of Mn and Sn added to influence the energy transfer from Sn(2+) to Mn(2+). It is therefore concluded that amorphous films containing such emission centers can provide a novel and viable alternative to conventional amorphous films containing crystalline phosphors in light-emitting devices.

  14. Blue light hazard performance comparison of phosphor-converted LED sources with red quantum dots and red phosphor

    NASA Astrophysics Data System (ADS)

    Zhang, Jingjing; Xie, Bin; Yu, Xingjian; Luo, Xiaobing; Zhang, Tao; Liu, Shishen; Yu, Zhihua; Liu, Li; Jin, Xing

    2017-07-01

    In this study, the blue light hazard performances of phosphor converted-light-emitting diodes (pc-LEDs) with red phosphor and red quantum dots (QDs) were compared and analyzed by spectral optimization, which boosts the minimum attainable blue light hazard efficiency of radiation (BLHER) at high values of color rendering index (CRI) and luminous efficacy of radiation (LER) when the correlated color temperature (CCT) value changes from 1800 to 7800 K. It is found that the minimal BLHER value increases with the increase in the CCT value, and the minimal BLHER values of the two spectral models are nearly the same. Note that the QDs' model has advantages at CCT coverage under the same constraints of CRI and LER. Then, the relationships between minimal BLHER, CRI, CCT, and LER of pc-LEDs with QDs' model were analyzed. It is found that the minimal BLHER values are nearly the same when the CRI value changes from 50 to 90. Therefore, the influence of CRI on minimal BLHER is insignificant. Minimal BLHER increases with the increase in the LER value from 240 to 360 lm/W.

  15. Luminescence studies and infrared emission of erbium-doped calcium zirconate phosphor.

    PubMed

    Tiwari, Neha; Dubey, Vikas

    2016-05-01

    The near-infrared-to-visible upconversion luminescence behaviour of Er(3+)-doped CaZrO3 phosphor is discussed in this manuscript. The phosphor was prepared by a combustion synthesis technique that is suitable for less-time-taking techniques for nanophosphors. The starting materials used for sample preparation were Ca(NO3)2.4H2O, Zr(NO3)4 and Er(NO3)2, and urea was used as a fuel. The prepared sample was characterized by X-ray diffraction (XRD). The surface morphology of prepared phosphor was determined by field emission gun scanning electron microscopy (FEGSEM). The functional group analysis was determined by Fourier transform infrared (FTIR) spectroscopy. All prepared phosphors with variable Er(3+) concentrations (0.5-2.5 mol%) were studied by photoluminescence analysis. It was found that the excitation spectra of the prepared phosphor showed a sharp excitation peak centred at 980 nm. The emission spectra with variable Er(3+) concentrations showed strong peaks in the 555 nm and 567 nm range, with a dominant peak at 555 nm due to the ((2)H(11/2),(4)S(3/2)) transition and a weaker transition at 567 nm associated with 527 nm. Spectrophotometric determination of the peak was evaluated by the Commission Internationale de I'Eclairage (CIE) method These upconverted emissions were attributed to a two-photon process. The excitation wavelength dependence of the upconverted luminescence, together with its time evolution after infrared pulsed excitation, suggested that energy transfer upconversion processes were responsible for the upconversion luminescence. The upconversion mechanisms were studied in detail through laser power dependence. Excited state absorption and energy transfer processes were discussed as possible upconversion mechanisms. The cross-relaxation process in Er(3+) was also investigated. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Phosphoric acid addition effect on the microstructure and magnetic properties of iron-based soft magnetic composites

    NASA Astrophysics Data System (ADS)

    Hsiang, Hsing-I.; Fan, Liang-Fang; Hung, Jia-Jing

    2018-02-01

    The phosphoric acid addition effect on phosphate insulation coating microstructure was investigated in this study. The relationships between the phosphate insulation coating microstructure and temperature resistance, corrosion resistance and magnetic properties of iron-based soft magnetic composites (SMCs) were studied by using SEM, TEM/EDS and FTIR. It was observed that an iron phosphate/carbonyl iron core/shell structure is formed with carbonyl iron powder after phosphatizing treatment. The iron phosphate phase was identified as amorphous and its thickness increased from 30 nm to 60 nm as the phosphoric acid concentration was increased from 1 wt% to 2 wt%. When the phosphoric acid concentration was further increased to 5 wt%, the excess iron phosphate precipitates between the soft magnetic composite particles. The temperature and corrosion resistance and resistivity of the iron-based SMCs can be effectively improved using carbonyl iron powders after phosphatizing. The initial permeability of the iron-based SMCs decreased with increasing phosphoric acid concentration due to thicker insulation layer formation. However, the imaginary permeability below the domain wall displacement resonance frequency decreased with increasing phosphoric acid concentration. The DC-bias superposition characteristic can also be improved by increasing the phosphoric acid concentration. Iron-based SMCs with superior temperature and corrosion resistance, initial permeability, magnetic loss and DC-bias superposition characteristics can be obtained by controlling the phosphoric acid concentration during phosphatizing to adjust the iron phosphate precipitate thickness on the iron powder surface.

  17. Imaging of cauda equina edema in lumbar canal stenosis by using gadolinium-enhanced MR imaging: experimental constriction injury.

    PubMed

    Kobayashi, S; Uchida, K; Takeno, K; Baba, H; Suzuki, Y; Hayakawa, K; Yoshizawa, H

    2006-02-01

    It has been reported that disturbance of blood flow arising from circumferential compression of the cauda equina by surrounding tissue plays a major role in the appearance of neurogenic intermittent claudication (NIC) associated with lumbar spinal canal stenosis (LSCS). We created a model of LSCS to clarify the mechanism of enhancement within the cauda equina on gadolinium-enhanced MR images from patients with LSCS. In 20 dogs, a lumbar laminectomy was performed by applying circumferential constriction to the cauda equina by using a silicon tube, to produce 30% stenosis of the circumferential diameter of the dural tube. After 1 and 3 weeks, gadolinium and Evans blue albumin were injected intravenously at the same time. The sections were used to investigate the status of the blood-nerve barrier function under a fluorescence microscope and we compared gadolinium-enhanced MR images with Evans blue albumin distribution in the nerve. The other sections were used for light and transmission electron microscopic study. In this model, histologic examination showed congestion and dilation in many of the intraradicular veins, as well as inflammatory cell infiltration. The intraradicular edema caused by venous congestion and Wallerian degeneration can also occur at sites that are not subject to mechanical compression. Enhanced MR imaging showed enhancement of the cauda equina at the stenosed region, demonstrating the presence of edema. Gadolinium-enhanced MR imaging may be a useful tool for the diagnosis of microcirculatory disorders of the cauda equina associated with LSCS.

  18. Luminescence properties of red-emission Mg4 Nb2 O9:Eu3+ phosphor.

    PubMed

    Cao, Renping; Cao, Chunyan; Yu, Xiaoguang; Qiu, Jianrong

    2015-03-01

    Red-emitting Mg4 Nb2 O9 :Eu(3+) phosphor is synthesized via a solid-state reaction method in air, and its crystal structure and luminescence are investigated. The phosphor can be excited efficiently by ~ 395 nm light, coupled well with a ~ 395 nm near-ultraviolet chip and emits red light at ~ 613 nm with sharp spectra due to (5) D0  → (7)  F2 transition of the Eu(3+) ion. Mg4 Nb2 O9 :Eu(3+) phosphor sintered at 1350 ºC shows Commission international de I'Eclairage (CIE) chromaticity coordinates of x = 0.6354, y = 0.3592, and is a potential red-emitting phosphor candidate for white light-emitting diodes (W-LEDs) under ~ 395 nm near-ultraviolet LED chip excitation. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Synthesis and luminescence properties of KSrPO4:Eu2+ phosphor for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Palan, C. B.; Bajaj, N. S.; Omanwar, S. K.

    2016-05-01

    The KSrPO4:Eu phosphor was synthesized via solid state method. The structural and morphological characterizations were done through XRD (X-ray diffraction) and SEM (Scanning Electronic Microscope). Additionally, the photoluminescence (PL), thermoluminescence (TL) and optically Stimulated luminescence (OSL) properties of powder KSrPO4:Eu were studied. The PL spectra show blue emission under near UV excitation. It was advocated that KSrPO4:Eu phosphor not only show OSL sensitivity (0.47 times) but also gives faster decay in OSL signals than that of Al2O3:C (BARC) phosphor. The TL glow curve consist of two shoulder peaks and the kinetics parameters such as activation energy and frequency factors were determined by using peak shape method and also photoionization cross-sections of prepared phosphor was calculated. The radiation dosimetry properties such as minimum detectable dose (MDD), dose response and reusability were reported.

  20. Effect of annealing on structural and luminescence properties of Eu3+ doped NaYF4 phosphor

    NASA Astrophysics Data System (ADS)

    Pathak, Trilok K.; Kumar, Ashwini; Swart, H. C.; Kroon, R. E.

    2018-04-01

    Eu3+ doped NaYF4 phosphors have been synthesized by the combustion method. The effect of annealing on the structural, morphological and luminescence properties has been investigated. X-ray diffraction analysis revealed that the Eu3+ doped NaYF4 phosphors consisted of mixed phases: α-phase and β-phase which were affected by the annealing of the phosphor. The surface morphology showed a significant change with annealing in the Eu3+ doped NaYF4 phosphors. The elemental mapping and energy dispersive X-ray spectroscopy spectra proved the formation of the desired materials. The photoluminescence spectra illustrated the optical properties of Eu3+ in the as-prepared and annealed Eu3+ doped NaYF4 phosphors. The intensity of the peaks 5D0 → 7F2 and 5D0 → 7F1 varied in as-prepared and annealed samples. The lifetime of the Eu3+ luminescence at 615 nm was also weakly affected by the Eu3+ doping and annealing temperature.

  1. Influence of pH-control in phosphoric acid treatment of titanium oxide and their powder properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onoda, Hiroaki, E-mail: onoda@kpu.ac.jp; Matsukura, Aki

    Highlights: • The photocatalytic activity was suppressed by phosphoric acid treatment. • The obtained pigment had small particles with sub-micrometer size. • By phosphoric acid treatment, the smoothness of samples improved. - Abstract: Titanium oxide that has the photocatalytic activity is used as a white pigment for cosmetics. A certain degree of sebum on the skin is decomposed by the ultraviolet radiation in sunlight. In this work, titanium oxide was shaken with phosphoric acid at various pH to synthesize a novel white pigment for cosmetics. Their chemical composition, powder properties, photocatalytic activity, color phase, and smoothness were studied. The obtainedmore » materials indicated XRD peaks of titanium oxide, however, these peak intensity became weak by phosphoric acid treatment. These samples without heating and heated at 100 °C included the small particles with sub-micrometer size. The photocatalytic activity of the obtained powders became weak by phosphoric acid treatment at pH 4 and 5 to protect the sebum on the skin.« less

  2. Color deviation controlling of phosphor conformal coating by advanced spray painting technology for white LEDs.

    PubMed

    Yang, Liang; Wang, Simin; Lv, Zhicheng; Liu, Sheng

    2013-04-01

    An advanced phosphor conformal coating technology is proposed, good correlated color temperature (CCT) and chromaticity uniformity samples are fabricated through phosphor spray painting technology. Spray painting technology is also suitable for phosphor conformal coating of whole LED wafers. The samples of different CCTs are obtained through controlling the phosphor film thickness in the range of 6-80 μm; CCT variation of samples can be controlled in the range of ±200 K. The experimental Δuv reveals that the spray painting method can obtain a much smaller CCT variation (Δuv of 1.36e(-3)) than the conventional dispensing method (Δuv of 11.86e(-3)) when the light is emitted at angles from -90° to +90°, and chromaticity area uniformity is also improved significantly.

  3. Contrast and decay of cathodoluminescence from phosphor particles in a scanning electron microscope.

    PubMed

    den Engelsen, Daniel; Harris, Paul G; Ireland, Terry G; Fern, George R; Silver, Jack

    2015-10-01

    Cathodoluminescence (CL) studies are reported on phosphors in a field emission scanning electron microscope (FESEM). ZnO: Zn and other luminescent powders manifest a bright ring around the periphery of the particles: this ring enhances the contrast. Additionally, particles resting on top of others are substantially brighter than underlying ones. These phenomena are explained in terms of the combined effects of electrons backscattered out of the particles, together with light absorption by the substrate. The contrast is found to be a function of the particle size and the energy of the primary electrons. Some phosphor materials exhibit a pronounced comet-like structure at high scan rates in a CL-image, because the particle continues to emit light after the electron beam has moved to a position without phosphor material. Image analysis has been used to study the loss of brightness along the tail and hence to determine the decay time of the materials. The effect of phosphor saturation on the determination of decay times by CL-microscopy was also investigated. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Phosphor chessboard packaging for white LEDs in high efficiency and high color performance

    NASA Astrophysics Data System (ADS)

    Nguyen, Quang-Khoi; Chang, Yu-Yu; Lu, Chun-Yan; Yang, Tsung-Hsun; Chung, Te-Yuan; Sun, Ching-Cherng

    2016-09-01

    We performed the simulation of white LEDs packaging with different chessboard structures of white light converting phosphor layer covered on GaN die chip. Three different types of chessboard structures are called type 1, type 2 and type 3, respectively. The result of investigation according to the phosphor thickness show the increasing of thickness of phosphor layer are, the decreasing of output blue light power are. Meanwhile, the changes of yellow light are neglect. Type 3 shows highest packaging efficiency of 74.3 % compares with packaging efficiency of type 2 and type 1 (72.5 % and 71.3 %, respectively). Type 3 also shows the most effect of forward light. Attention that the type 3 chessboard structure gets packaging efficiency of 74.3 % at color temperature of daylight as well as high saving of phosphor amount. The color temperatures of three types of chessboard structure are higher than 5000 K, so they are suitable for lighting purpose. The angular correlate color temperature deviation (ACCTD) of type 1, type 2 and type 3 are 6500K, 11500K and 17000K, respectively.

  5. In vitro study of novel gadolinium-loaded liposomes guided by GBI-10 aptamer for promising tumor targeting and tumor diagnosis by magnetic resonance imaging.

    PubMed

    Gu, Meng-Jie; Li, Kun-Feng; Zhang, Lan-Xin; Wang, Huan; Liu, Li-Si; Zheng, Zhuo-Zhao; Han, Nan-Yin; Yang, Zhen-Jun; Fan, Tian-Yuan

    2015-01-01

    Novel gadolinium-loaded liposomes guided by GBI-10 aptamer were developed and evaluated in vitro to enhance magnetic resonance imaging (MRI) diagnosis of tumor. Nontargeted gadolinium-loaded liposomes were achieved by incorporating amphipathic material, Gd (III) [N,N-bis-stearylamidomethyl-N'-amidomethyl] diethylenetriamine tetraacetic acid, into the liposome membrane using lipid film hydration method. GBI-10, as the targeting ligand, was then conjugated onto the liposome surface to get GBI-10-targeted gadolinium-loaded liposomes (GTLs). Both nontargeted gadolinium-loaded liposomes and GTLs displayed good dispersion stability, optimal size, and zeta potential for tumor targeting, as well as favorable imaging properties with enhanced relaxivity compared with a commercial MRI contrast agent (CA), gadopentetate dimeglumine. The use of GBI-10 aptamer in this liposomal system was intended to result in increased accumulation of gadolinium at the periphery of C6 glioma cells, where the targeting extracellular matrix protein tenascin-C is overexpressed. Increased cellular binding of GTLs to C6 cells was confirmed by confocal microscopy, flow cytometry, and MRI, demonstrating the promise of this novel delivery system as a carrier of MRI contrast agent for the diagnosis of tumor. These studies provide a new strategy furthering the development of nanomedicine for both diagnosis and therapy of tumor.

  6. In vitro study of novel gadolinium-loaded liposomes guided by GBI-10 aptamer for promising tumor targeting and tumor diagnosis by magnetic resonance imaging

    PubMed Central

    Gu, Meng-Jie; Li, Kun-Feng; Zhang, Lan-Xin; Wang, Huan; Liu, Li-Si; Zheng, Zhuo-Zhao; Han, Nan-Yin; Yang, Zhen-Jun; Fan, Tian-Yuan

    2015-01-01

    Novel gadolinium-loaded liposomes guided by GBI-10 aptamer were developed and evaluated in vitro to enhance magnetic resonance imaging (MRI) diagnosis of tumor. Nontargeted gadolinium-loaded liposomes were achieved by incorporating amphipathic material, Gd (III) [N,N-bis-stearylamidomethyl-N′-amidomethyl] diethylenetriamine tetraacetic acid, into the liposome membrane using lipid film hydration method. GBI-10, as the targeting ligand, was then conjugated onto the liposome surface to get GBI-10-targeted gadolinium-loaded liposomes (GTLs). Both nontargeted gadolinium-loaded liposomes and GTLs displayed good dispersion stability, optimal size, and zeta potential for tumor targeting, as well as favorable imaging properties with enhanced relaxivity compared with a commercial MRI contrast agent (CA), gadopentetate dimeglumine. The use of GBI-10 aptamer in this liposomal system was intended to result in increased accumulation of gadolinium at the periphery of C6 glioma cells, where the targeting extracellular matrix protein tenascin-C is overexpressed. Increased cellular binding of GTLs to C6 cells was confirmed by confocal microscopy, flow cytometry, and MRI, demonstrating the promise of this novel delivery system as a carrier of MRI contrast agent for the diagnosis of tumor. These studies provide a new strategy furthering the development of nanomedicine for both diagnosis and therapy of tumor. PMID:26316749

  7. Real-time method and apparatus for measuring the temperature of a fluorescing phosphor

    DOEpatents

    Britton, Jr., Charles L.; Beshears, David L.; Simpson, Marc L.; Cates, Michael R.; Allison, Steve W.

    1999-01-01

    A method for determining the temperature of a fluorescing phosphor is provided, together with an apparatus for performing the method. The apparatus includes a photodetector for detecting light emitted by a phosphor irradiated with an excitation pulse and for converting the detected light into an electrical signal. The apparatus further includes a differentiator for differentiating the electrical signal and a zero-crossing discrimination circuit that outputs a pulse signal having a pulse width corresponding to the time period between the start of the excitation pulse and the time when the differentiated electrical signal reaches zero. The width of the output pulse signal is proportional to the decay-time constant of the phosphor.

  8. Host sensitized near-infrared emission in Nd3+ doped different alkaline-sodium-phosphate phosphors

    NASA Astrophysics Data System (ADS)

    Balakrishna, A.; Swart, H. C.; Kroon, R. E.; Ntwaeaborwa, O. M.

    2018-04-01

    Near-infrared (NIR) emitting phosphors of different alkaline based sodium-phosphate (MNa[PO4], where M = Mg, Ca, Sr and Ba were prepared by a conventional solution combustion method with fixed doping concentration of Nd3+ (1.0 mol%). The phosphors were characterized by powder X-ray diffraction, field emission scanning electron microscope, Fourier transform infrared spectroscopy, UV-vis spectroscopy and fluorescent spectrophotometry. The optical properties including reflectance, excitation and emission were investigated. The excitation spectra of the phosphors were characterized by a broadband extending from 450 to 900 nm. Upon excitation with a wavelength of 580 nm, the phosphor emits intensely infrared region at 872 nm, 1060 nm and 1325 nm which correspond to the 4F3/2 → 4I9/2, 4F3/2 → 4I11/2 and 4F3/2 → 4I13/2 transitions of Nd3+ ions and were found to vary for the different hosts. The strongest emission wavelength reaches 1060 nm. The most intense emission of Nd3+ was observed from Ca2+ incorporated host. The down conversion emissions of the material fall in the NIR region suggesting that the prepared phosphors have potential application in the development of photonic devices emitting in the NIR.

  9. Red carbon dots-based phosphors for white light-emitting diodes with color rendering index of 92.

    PubMed

    Zhai, Yuechen; Wang, Yi; Li, Di; Zhou, Ding; Jing, Pengtao; Shen, Dezhen; Qu, Songnan

    2018-05-29

    Exploration of solid-state efficient red emissive carbon dots (CDs) phosphors is strongly desired for the development of high performance CDs-based white light-emitting diodes (WLEDs). In this work, enhanced red emissive CDs-based phosphors with photoluminescence quantum yields (PLQYs) of 25% were prepared by embedding red emissive CDs (PLQYs of 23%) into polyvinyl pyrrolidone (PVP). Because of the protection of PVP, the phosphors could preserve strong luminescence under long-term UV excitation or being mixed with conventional packaging materials. By applying the red emissive phosphors as the color conversion layer, WLEDs with high color rendering index of 92 and color coordinate of (0.33, 0.33) are fabricated. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Hydrothermal synthesis infrared to visible upconversion luminescence of SrMoO4: Er3+/Yb3+ phosphor

    NASA Astrophysics Data System (ADS)

    Sinha, Shriya; Kumar, Kaushal

    2018-04-01

    The upconversion emission properties in Er3+/Yb3+ doped SrMoO4 phosphor synthesized via hydrothermal method is investigated upon 980 nm laser light excitation. The crystal structure and morphology of the synthesized phosphor are characterized by X-ray diffraction and field emission scanning electron microscopy. The X-ray diffraction pattern suggests that SrMoO4 phosphor has tetragonal phase structure. The phosphor emits strong green (525 and 552 nm) and red (665 nm) UC emissions along with weak blue (410 and 488 nm) and near infrared (798 nm) emission bands. The color emitted from the phosphor is shifted from yellow to green region with increasing the power density from 15 to 65 W/cm2. The result indicates that the present material is suitable for making infrared to visible up-converts and display devices.

  11. Impact of Impaired Renal Function on Gadolinium Retention After Administration of Gadolinium-Based Contrast Agents in a Mouse Model.

    PubMed

    Kartamihardja, A Adhipatria P; Nakajima, Takahito; Kameo, Satomi; Koyama, Hiroshi; Tsushima, Yoshito

    2016-10-01

    The aim of this study was to investigate the impact of impaired renal function on gadolinium (Gd) retention in various organs after Gd-based contrast agent injection. After local animal care and review committee approval, 23 normal mice and 26 with renal failure were divided into 4 treatment groups (Gd-DTPA-BMA, 5 mmol/kg; Gd-DOTA, 5 mmol/kg; GdCl3, 0.02 mmol/kg; and saline, 250 μL). Each agent was intravenously administered on weekdays for 4 weeks. Samples were collected on days 3 (short-term) and 45 (long-term) after the last injection. Gadolinium concentrations were quantified by inductively coupled plasma-mass spectrometry. Three mice with renal failure and 2 normal mice in the GdCl3 group and 1 mouse with renal failure in the Gd-DTPA-BMA group died. In the Gd-DTPA-BMA group, impaired renal function increased short-term Gd retention in the liver, bone, spleen, skin, and kidney (P < 0.01) but did not affect long-term Gd retention. Gd-DTPA-BMA showed higher Gd retention than Gd-DOTA. Although Gd retention in the Gd-DOTA group was generally low, impaired renal function increased only long-term hepatic Gd retention. Hepatic and splenic Gd retentions were significantly higher than other organs' Gd retention in the GdCl3 group (P < 0.01). Renal function did not affect brain Gd retention, regardless of the Gd compound used. The tendency of Gd retention varied according to the agent, regardless of renal function. Although renal impairment increased short-term Gd retention after Gd-DTPA-BMA administration, long-term Gd retention for Gd-based contrast agents was almost unaffected by renal function, suggesting that the chemical structures of retained Gd may not be consistent and some Gd is slowly eliminated after initially being retained.

  12. Intense blue upconversion emission and intrinsic optical bistability in Tm3+/Yb3+/Zn2+ tridoped YVO4 phosphors

    NASA Astrophysics Data System (ADS)

    Yadav, Manglesh; Mondal, Manisha; Mukhopadhyay, Lakshmi; Rai, Vineet Kumar

    2018-04-01

    Tm3+/Yb3+/Zn2+:yttrium metavanadate (YVO4) phosphors prepared through chemical coprecipitation and the solid state reaction method have been structurally characterized by an x-ray diffraction (XRD) study. Photoluminescence study of the developed phosphors under ultraviolet (UV) and near infrared (NIR) excitation has been performed. The excitation spectrum of the tetragonal zircon type YVO4 phosphors corresponding to the emission at ˜476 nm exhibits a broad excitation peak in the 250-350 nm region, which is due to charge distribution in the {{{{VO}}}4}3- group. Under 980 nm CW diode laser excitation, enhancements of about ˜3000 times and ˜40 times have been observed for the blue band in the tridoped Tm3+Yb3+Zn2+:YVO4 phosphors compared to those of the Tm3+:YVO4 singly and Tm3+/Yb3+:YVO4 codoped phosphors, respectively. A downconversion (DC) emission study shows an enhancement of about ˜50 times for the blue band in the tridoped phosphors compared to that of the singly doped phosphors. Optical bistability (OB) behavior of the developed phosphors has been also investigated upon 980 nm excitation. The calculated Commission Internationale de l’Éclairage (CIE) color coordinates lie in the blue region with 96.5% color purity under 980 nm excitation, having a color temperature of ˜3400 K. Our observations show that the developed phosphors may be suitably used in dual mode luminescence spectroscopy, display devices, and UV LED chips.

  13. Intense blue upconversion emission and intrinsic optical bistability in Tm3+/Yb3+/Zn2+ tridoped YVO4 phosphors.

    PubMed

    Yadav, Manglesh; Mondal, Manisha; Mukhopadhyay, Lakshmi; Rai, Vineet Kumar

    2018-01-22

    Tm 3+ /Yb 3+ /Zn 2+ :yttrium metavanadate (YVO 4 ) phosphors prepared through chemical coprecipitation and the solid state reaction method have been structurally characterized by an x-ray diffraction (XRD) study. Photoluminescence study of the developed phosphors under ultraviolet (UV) and near infrared (NIR) excitation has been performed. The excitation spectrum of the tetragonal zircon type YVO 4 phosphors corresponding to the emission at ∼476 nm exhibits a broad excitation peak in the 250-350 nm region, which is due to charge distribution in the [Formula: see text] group. Under 980 nm CW diode laser excitation, enhancements of about ∼3000 times and ∼40 times have been observed for the blue band in the tridoped Tm 3+ Yb 3+ Zn 2+ :YVO 4 phosphors compared to those of the Tm 3+ :YVO 4 singly and Tm 3+ /Yb 3+ :YVO 4 codoped phosphors, respectively. A downconversion (DC) emission study shows an enhancement of about ∼50 times for the blue band in the tridoped phosphors compared to that of the singly doped phosphors. Optical bistability (OB) behavior of the developed phosphors has been also investigated upon 980 nm excitation. The calculated Commission Internationale de l'Éclairage (CIE) color coordinates lie in the blue region with 96.5% color purity under 980 nm excitation, having a color temperature of ∼3400 K. Our observations show that the developed phosphors may be suitably used in dual mode luminescence spectroscopy, display devices, and UV LED chips.

  14. Surface temperature/heat transfer measurement using a quantitative phosphor thermography system

    NASA Technical Reports Server (NTRS)

    Buck, G. M.

    1991-01-01

    A relative-intensity phosphor thermography technique developed for surface heating studies in hypersonic wind tunnels is described. A direct relationship between relative emission intensity and phosphor temperature is used for quantitative surface temperature measurements in time. The technique provides global surface temperature-time histories using a 3-CCD (Charge Coupled Device) video camera and digital recording system. A current history of technique development at Langley is discussed. Latest developments include a phosphor mixture for a greater range of temperature sensitivity and use of castable ceramics for inexpensive test models. A method of calculating surface heat-transfer from thermal image data in blowdown wind tunnels is included in an appendix, with an analysis of material thermal heat-transfer properties. Results from tests in the Langley 31-Inch Mach 10 Tunnel are presented for a ceramic orbiter configuration and a four-inch diameter hemisphere model. Data include windward heating for bow-shock/wing-shock interactions on the orbiter wing surface, and a comparison with prediction for hemisphere heating distribution.

  15. Tin-Doped Inorganic Amorphous Films for Use as Transparent Monolithic Phosphors

    PubMed Central

    Masai, Hirokazu; Miyata, Hiroki; Yamada, Yasuhiro; Okumura, Shun; Yanagida, Takayuki; Kanemitsu, Yoshihiko

    2015-01-01

    Although inorganic crystalline phosphors can exhibit high quantum efficiency, their use in phosphor films has been limited by a reliance on organic binders that have poor durability when exposed to high-power and/or high excitation energy light sources. To address this problem, Sn2+ -doped transparent phosphate films measuring several micrometers in thickness have been successfully prepared through heat treatment and a subsequent single dip-coating process. The resulting monolithic inorganic amorphous film exhibited an internal quantum efficiency of over 60% and can potentially utilize transmitted light. Analysis of the film’s emissivity revealed that its color can be tuned by changing the amount of Mn and Sn added to influence the energy transfer from Sn2+ to Mn2+. It is therefore concluded that amorphous films containing such emission centers can provide a novel and viable alternative to conventional amorphous films containing crystalline phosphors in light-emitting devices. PMID:26061744

  16. Luminescence properties of phosphate phosphor Ba{sub 3}Y(PO{sub 4}){sub 3}:Sm{sup 3+}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Fu; Liu, Yufeng, E-mail: liuyufeng4@126.com; Tian, Xiaodong

    2015-05-15

    A series of reddish orange-emitting phosphate phosphors Ba{sub 3}Y{sub 1−x}(PO{sub 4}){sub 3}:xSm{sup 3+}(0.01≤x≤0.20) were synthesized by solid-state reaction. X-ray diffraction and photoluminescence spectra were utilized to characterize the structure and luminescence properties of as-synthesized phosphors. The optimized phosphors Ba{sub 3}Y{sub 0.95}(PO{sub 4}){sub 3}:0.05Sm{sup 3+} present several excitation bands from 300 to 500 nm, and exhibit intense reddish orange-emitting properties. The energy transfer type between Sm{sup 3+} ions was confirmed as d–d interaction by using Van Uitert model. The chromatic properties of the typical sample Ba{sub 3}Y(PO{sub 4}){sub 3}:0.05Sm{sup 3+} phosphor have been found to have chromaticity coordinates of (0.583, 0.405),more » which are located in reddish orange region under the excitation of 401 nm. These results indicated that Ba{sub 3}Y(PO{sub 4}){sub 3}:Sm{sup 3+} phosphors have potential applications in the field of lighting and display due to their effective excitation in the near-ultraviolet range. - Graphical abstract: The color coordinates for 5 mol% Sm{sup 3+} doped Ba{sub 3}Y(PO{sub 4}){sub 3} phosphor were calculated to be (0.583, 0.405), which are located in reddish orange region under the excitation of 401 nm. The peaks of Ba{sub 3}Y{sub 0.95}(PO{sub 4}){sub 3}:0.05Sm{sup 3+} phosphor with the highest emission intensity at 600 nm are broader than those of Y{sub 2}O{sub 3}:Eu{sup 3+} and Y{sub 2}O{sub 2}S:Eu{sup 3+} phosphors. All these characteristics suggest that Ba{sub 3}Y(PO{sub 4}){sub 3}:Sm{sup 3+} phosphors are suitable for near-UV (370–410 nm) excitation and can be applicable to near UV-based WLEDs. ▪ - Highlights: • Different concentration Sm{sup 3+}-doped Ba{sub 3}Y(PO{sub 4}){sub 3} phosphors were fabricated by solid state method. • The optimized phosphors present the several excitation bands from 300 to 500 nm. • The Ba{sub 3}Y(PO{sub 4}){sub 3}:Sm{sup 3+} shows bright reddish

  17. Gamma-radiation effects on luminescence properties of Eu3+ activated LaPO4 phosphor

    NASA Astrophysics Data System (ADS)

    Vujčić, Ivica; Gavrilović, Tamara; Sekulić, Milica; Mašić, Slobodan; Putić, Slaviša; Papan, Jelena; Dramićanin, Miroslav D.

    2018-05-01

    Eu3+ activated LaPO4 phosphors were prepared by a high-temperature solid-state method and irradiated to different high-doses gamma-radiation in the 0-4 MGy range. No effects of high-doses of high-energy radiation on phosphor's morphology and structure were observed, as documented by electron microscopy and X-ray diffraction measurements. On the other hand, photoluminescence measurements showed that emission properties of phosphor were affected by gamma-radiation; changes in radiative properties being prominent for absorbed radiation doses up to 250 kGy after which no additional changes are observed. Judd-Ofelt analysis of emission spectra is performed to thoroughly investigate radiative properties of phosphors. Analysis showed that radiative transition probability of Eu3+ emission decreases while non-radiative probability increases upon gamma-irradiation. Quantum efficiency of emission is decreased from about 46% to 35% when Eu3+ doped LaPO4 powders are exposed to gamma-radiation of 250 kGy dose, showing no additional decrease for higher gamma-radiation doses.

  18. LED lamp or bulb with remote phosphor and diffuser configuration with enhanced scattering properties

    DOEpatents

    Tong, Tao; Le Toquin, Ronan; Keller, Bernd; Tarsa, Eric; Youmans, Mark; Lowes, Theodore; Medendorp, Jr., Nicholas W; Van De Ven, Antony; Negley, Gerald

    2014-11-11

    An LED lamp or bulb is disclosed that comprises a light source, a heat sink structure and an optical cavity. The optical cavity comprises a phosphor carrier having a conversions material and arranged over an opening to the cavity. The phosphor carrier comprises a thermally conductive transparent material and is thermally coupled to the heat sink structure. An LED based light source is mounted in the optical cavity remote to the phosphor carrier with light from the light source passing through the phosphor carrier. A diffuser dome is included that is mounted over the optical cavity, with light from the optical cavity passing through the diffuser dome. The properties of the diffuser, such as geometry, scattering properties of the scattering layer, surface roughness or smoothness, and spatial distribution of the scattering layer properties may be used to control various lamp properties such as color uniformity and light intensity distribution as a function of viewing angle.

  19. High-pressure high-temperature phase diagram of gadolinium studied using a boron-doped heater anvil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, J. M.; Samudrala, G. K.; Vohra, Y. K.

    A boron-doped designer heater anvil is used in conjunction with powder x-ray diffraction to collect structural information on a sample of quasi-hydrostatically loaded gadolinium metal up to pressures above 8 GPa and 600 K. The heater anvil consists of a natural diamond anvil that has been surface modified with a homoepitaxially grown chemical-vapor-deposited layer of conducting boron-doped diamond, and is used as a DC heating element. Internally insulating both diamond anvils with sapphire support seats allows for heating and cooling of the high-pressure area on the order of a few tens of seconds. This device is then used to scan the phasemore » diagram of the sample by oscillating the temperature while continuously increasing the externally applied pressure and collecting in situ time-resolved powder diffraction images. In the pressure-temperature range covered in this experiment, the gadolinium sample is observed in its hcp, αSm, and dhcp phases. Under this temperature cycling, the hcp → αSm transition proceeds in discontinuous steps at points along the expected phase boundary. From these measurements (representing only one hour of synchrotron x-ray collection time), a single-experiment equation of state and phase diagram of each phase of gadolinium is presented for the range of 0–10 GPa and 300–650 K.« less

  20. High-pressure high-temperature phase diagram of gadolinium studied using a boron-doped heater anvil

    NASA Astrophysics Data System (ADS)

    Montgomery, J. M.; Samudrala, G. K.; Velisavljevic, N.; Vohra, Y. K.

    2016-04-01

    A boron-doped designer heater anvil is used in conjunction with powder x-ray diffraction to collect structural information on a sample of quasi-hydrostatically loaded gadolinium metal up to pressures above 8 GPa and 600 K. The heater anvil consists of a natural diamond anvil that has been surface modified with a homoepitaxially grown chemical-vapor-deposited layer of conducting boron-doped diamond, and is used as a DC heating element. Internally insulating both diamond anvils with sapphire support seats allows for heating and cooling of the high-pressure area on the order of a few tens of seconds. This device is then used to scan the phase diagram of the sample by oscillating the temperature while continuously increasing the externally applied pressure and collecting in situ time-resolved powder diffraction images. In the pressure-temperature range covered in this experiment, the gadolinium sample is observed in its hcp, αSm, and dhcp phases. Under this temperature cycling, the hcp → αSm transition proceeds in discontinuous steps at points along the expected phase boundary. From these measurements (representing only one hour of synchrotron x-ray collection time), a single-experiment equation of state and phase diagram of each phase of gadolinium is presented for the range of 0-10 GPa and 300-650 K.

  1. Disparate ultrafast dynamics of itinerant and localized magnetic moments in gadolinium metal

    PubMed Central

    Frietsch, B.; Bowlan, J.; Carley, R.; Teichmann, M.; Wienholdt, S.; Hinzke, D.; Nowak, U.; Carva, K.; Oppeneer, P. M.; Weinelt, M.

    2015-01-01

    The Heisenberg–Dirac intra-atomic exchange coupling is responsible for the formation of the atomic spin moment and thus the strongest interaction in magnetism. Therefore, it is generally assumed that intra-atomic exchange leads to a quasi-instantaneous aligning process in the magnetic moment dynamics of spins in separate, on-site atomic orbitals. Following ultrashort optical excitation of gadolinium metal, we concurrently record in photoemission the 4f magnetic linear dichroism and 5d exchange splitting. Their dynamics differ by one order of magnitude, with decay constants of 14 versus 0.8 ps, respectively. Spin dynamics simulations based on an orbital-resolved Heisenberg Hamiltonian combined with first-principles calculations explain the particular dynamics of 5d and 4f spin moments well, and corroborate that the 5d exchange splitting traces closely the 5d spin-moment dynamics. Thus gadolinium shows disparate dynamics of the localized 4f and the itinerant 5d spin moments, demonstrating a breakdown of their intra-atomic exchange alignment on a picosecond timescale. PMID:26355196

  2. K3 Li3 Gd7 (BO3 )9 : A New Gadolinium-Rich Orthoborate for Cryogenic Magnetic Cooling.

    PubMed

    Xia, Mingjun; Shen, Shipeng; Lu, Jun; Sun, Young; Li, Rukang

    2018-03-02

    Magnetic cooling technology based on magnetocaloric effect (MCE) has attracted great interest in obtaining extremely low temperatures, for example, for space exploration. Here, we grew a new gadolinium-rich orthoborate K 3 Li 3 Gd 7 (BO 3 ) 9 (1) as a promising cryogenic magnetic coolant. It exhibits a complicated three dimensional framework constructed from BO 3 groups and gadolinium-oxygen chains. The Gd-O chain consists of two types of clusters of Gd 3 O 20 and Gd 3 O 19 interconnection by Gd(4)O 8 polyhydron. Due to its high gadolinium concentration, a large -ΔS m of 56.6 J kg -1  K -1 for 1 was obtained at 2 K and ΔH=7 T, much larger than that of the commercial benchmark Gd 3 Ga 5 O 12 (GGG) crystal (38.4 J kg -1  K -1 ), suggesting it to be an excellent MCE material. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Transient arterial phase respiratory motion-related artifact in MR imaging of the liver: an analysis of four different gadolinium-based contrast agents.

    PubMed

    Shah, Mansi R; Flusberg, Milana; Paroder, Viktoriya; Rozenblit, Alla M; Chernyak, Victoria

    The purpose was to compare hepatic arterial phase (HAP) respiratory motion artifact (RMA) between gadoxetate, gadobutrol, gadopentetate, and gadobenate. Two hundred cases of each gadolinium agent were included. RMA was assigned using 5-point Likert scale (1=no motion, 5=extreme motion) on precontrast and HAP. RMA increase (increase ≥1 on HAP from precontrast) was the outcome in logistic regression. Odds of RMA increase for gadoxetate were 5.5 (P<.001), 3.6 (P=.034), and 9.5 (P<.001) times higher than gadobutrol, gadopentetate, and gadobenate, respectively. Gadolinium volume and dose were not independent predictors of RMA increase. Gadoxetate has increased odds of RMA compared with other gadolinium agents; tight contrast bolus is not a contributor. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Nanocomposite Phosphor Consisting of CaI2:Eu2+ Single Nanocrystals Embedded in Crystalline SiO2.

    PubMed

    Daicho, Hisayoshi; Iwasaki, Takeshi; Shinomiya, Yu; Nakano, Akitoshi; Sawa, Hiroshi; Yamada, Wataru; Matsuishi, Satoru; Hosono, Hideo

    2017-11-29

    High luminescence efficiency is obtained in halide- and chalcogenide-based phosphors, but they are impractical because of their poor chemical durability. Here we report a halide-based nanocomposite phosphor with excellent luminescence efficiency and sufficient durability for practical use. Our approach was to disperse luminescent single nanocrystals of CaI 2 :Eu 2+ in a chemically stable, translucent crystalline SiO 2 matrix. Using this approach, we successfully prepared a nanocomposite phosphor by means of self-organization through a simple solid-state reaction. Single nanocrystals of 6H polytype (thr notation) CaI 2 :Eu 2+ with diameters of about 50 nm could be generated not only in a SiO 2 amorphous powder but also in a SiO 2 glass plate. The nanocomposite phosphor formed upon solidification of molten CaI 2 left behind in the crystalline SiO 2 that formed from the amorphous SiO 2 under the influence of a CaI 2 flux effect. The resulting nanocomposite phosphor emitted brilliant blue luminescence with an internal quantum efficiency up to 98% upon 407 nm violet excitation. We used cathodoluminescence microscopy, scanning transmission electron microscopy, and Rietveld refinement of the X-ray diffraction patterns to confirm that the blue luminescence was generated only by the CaI 2 :Eu 2+ single nanocrystals. The phosphor was chemically durable because the luminescence sites were embedded in the crystalline SiO 2 matrix. The phosphor is suitable for use in near-ultraviolet light-emitting diodes. The concept for this nanocomposite phosphor can be expected to be effective for improvements in the practicality of poorly durable materials such as halides and chalcogenides.

  5. Gadolinium-enhanced inner ear magnetic resonance imaging for evaluation of delayed endolymphatic hydrops, including a bilateral case.

    PubMed

    Fukushima, Munehisa; Oya, Ryohei; Akazawa, Hitoshi; Tsuruta, Yukinori; Inohara, Hidenori

    2016-01-01

    The data suggests that gadolinium-enhanced inner ear MR imaging is useful for diagnosis of delayed endolymphatic hydrops (DEH) because it is independent of inner ear function, and the size of the affected endolymphatic space is clearly enlarged. This study was performed to semi-quantitatively evaluate the endolymphatic space in patients with all types of DEH using gadolinium-enhanced inner ear magnetic resonance (MR) imaging. Seven patients (age range = 21-77 years; five female, two male) with ipsilateral DEH (n = 5), contralateral DEH (n = 1), and bilateral DEH (n = 1). All patients underwent 3T MR imaging 4 h after intravenous injection of gadolinium. Software was used to determine the size of the endolymphatic space. Pure tone audiometry and caloric testing using an electronystagmogram were carried out. One side of the endolymphatic space was dominantly extended in patients with ipsilateral DEH, and both sides of the space were extended in patients with contralateral and bilateral DEH. In patients with ipsilateral DEH, the volume ratio of endolymph to vestibule was 2.5-4.3-times that in the unaffected ear. The volume ratio of endolymph to vestibule was nearly equal in patients with contralateral and bilateral DEH.

  6. Quantitative surface temperature measurement using two-color thermographic phosphors and video equipment

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M. (Inventor)

    1989-01-01

    A thermal imaging system provides quantitative temperature information and is particularly useful in hypersonic wind tunnel applications. An object to be measured is prepared by coating with a two-color, ultraviolet-activated, thermographic phosphor. The colors emitted by the phosphor are detected by a conventional color video camera. A phosphor emitting blue and green light with a ratio that varies depending on temperature is used so that the intensity of light in the blue and green wavelengths detected by the blue and green tubes in the video camera can be compared. Signals representing the intensity of blue and green light at points on the surface of a model in a hypersonic wind tunnel are used to calculate a ratio of blue to green light intensity which provides quantitative temperature information for the surface of the model.

  7. Monte Carlo simulation of energy absorbed in phenolic ESR dosimeters added with gadolinium exposed to thermal, epithermal and fast neutrons

    NASA Astrophysics Data System (ADS)

    Longo, A.; Collura, G.; Gallo, S.; Bartolotta, A.; Marrale, M.

    2017-11-01

    In this work analyses of the energy released per unit mass in phenolic compound exposed to neutron beams were performed with the aim of predicting the increase in dose achievable by addition of gadolinium (Gd) inside the pellets. In particular, Monte Carlo (MC) simulations were carried out for IRGANOX® 1076 phenolic compound irradiated with neutron beams with different energy spectra at various depths inside a water phantom. The addition of gadolinium increases sensitivity of phenolic ESR (electron spin resonance) dosimeters to neutrons thanks to the high gadolinium cross section for neutron capture and to the large number of secondary particles (mainly Auger and internal conversion electrons) which are able to release energy inside the sensitive material layers. For small depths in water phantom and low energy neutron spectra the increase in dose due to gadolinium is large (more than a factor 50). The enhancement is smaller in case of epithermal neutron beam, whereas the increase in dose for fast neutrons is less than 50%. In order to have a comparison with other ESR dosimeters the energy released per unit mass in phenolic compound was compared with that calculated in alanine pellets. For thermal neutron beams the energy released in phenolic compound with gadolinium is comparable to that released in alanine for small depths in phantom, whereas it is larger than in alanine for large depths. In case of epithermal and fast neutron beams the energy released in phenolic compound is larger than in alanine samples because the elastic scattering with hydrogen nuclei is more probable for high neutron energies and this phenolic compound is characterized by an higher number of 1H nuclei than alanine. All results here found suggest that these phenolic pellets could be fruitfully used for dosimetric applications in Neutron Capture Therapy.

  8. Bluish-green color emitting Ba2Si3O8:Eu2+ ceramic phosphors for white light-emitting diodes.

    PubMed

    Xiao, F; Xue, Y N; Zhang, Q Y

    2009-10-15

    This paper reports on the structural and optical properties of Eu(2+) activated Ba(2)Si(3)O(8) ceramic phosphors synthesized by a sol-gel method. The ceramic phosphors have been characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and fluorescence measurements. The structural characterization results suggest that the as-prepared phosphors are of single phase monoclinic Ba(2)Si(3)O(8) with rod-like morphology. A broad excitation band ranging from 300 to 410 nm matches well with the ultraviolet (UV) radiation of light-emitting diodes (LEDs). Upon 380 nm UV light excitation, these phosphors emit bluish-green emission centered at 500 nm with color coordination (x=0.25, y=0.40). All the obtained results indicate that the Ba(2)Si(3)O(8):Eu(2+) ceramic phosphors are promising bluish-green candidates for the phosphor-converted white LEDs.

  9. Understanding fine sediment and phosphorous delivery in upland catchments

    NASA Astrophysics Data System (ADS)

    Perks, M. T.; Reaney, S. M.

    2013-12-01

    The uplands of UK are heavily impacted by land management including; farming and forestry operations, moorland burning, peat extraction, metal mining, artificial drainage and channelisation. It has been demonstrated that such land management activity may modify hillslope processes, resulting in enhanced runoff generation and changing the spatial distribution and magnitude of erosion. Resultantly, few upland river systems of the UK are operating in a natural state, with land management activity often resulting in increased fluxes of suspended sediment (< 2 mm) and associated pollutants (such as phosphorous). Most recent Environment Agency (EA) data reveals that 60% of monitored water bodies within upland areas of the UK are currently at risk of failing the Water Framework Directive (WFD) due to poor ecological status. In order to prevent the continual degradation of many upland catchments, riverine systems and their diverse ecosystems, a range of measures to control diffuse pollution will need to be implemented. Future mitigation options and measures in the UK may be tested and targeted through the EA's catchment pilot scheme; DEFRA's Demonstration Test Catchment (DTC) programmes and through the catchment restoration fund. However, restoring the physical and biological processes of past conditions in inherently sensitive upland environments is extremely challenging requiring the development of a solid evidence base to determine the effectiveness of resource allocation and to enable reliable and transparent decisions to be made about future catchment operations. Such evidence is rarely collected, with post-implementation assessments often neglected. This paper presents research conducted in the Morland sub-catchment of the River Eden within Cumbria; UK. 80% of this headwater catchment is in upland areas and is dominated by improved grassland and rough grazing. The catchment is heavily instrumented with a range of hydro-meteorological equipment. A high-tech monitoring

  10. Synthesis, Luminescence Properties and Energy Transfer of CaZrO3:Sm3+, Bi3+ Phosphor

    NASA Astrophysics Data System (ADS)

    Cao, Renping; Han, Peng; Luo, Wenjie; Fu, Ting; Luo, Zhiyang; Liu, Pan; Chen, Zhiquan; Yu, Xiaoguang

    2016-07-01

    Novel CaZrO3:Sm3+, Bi3+ phosphor is synthesized by a solid-state reaction method in air and the crystal structures and luminescence properties are investigated. The emission spectrum with excitation 308 nm contains emission of Sm3+ and Bi3+ ions at the same time; however, it only has an emission of Sm3+ ion with excitation 408 nm. Emission intensity of CaZrO3:Sm3+ phosphor can be enhanced about four times owing to energy transfer from the Bi3+ ion to the Sm3+ ion and with the fluxing agent role of Bi3+ ion when Bi3+ ion is co-doped. The possible luminous mechanism is analyzed by energy level diagrams of Bi3+ and Sm3+ ions and the energy transfer process in CaZrO3:Sm3+, Bi3+ phosphor. The experimental results indicate that, hopefully, CaZrO3:Sm3+, Bi3+ phosphor can be used as a reddish orange phosphor candidate for white light-emitting diodes based on near an ultraviolet (~408 nm) chip.

  11. Renal function, nephrogenic systemic fibrosis and other adverse reactions associated with gadolinium-based contrast media.

    PubMed

    Canga, Ana; Kislikova, Maria; Martínez-Gálvez, María; Arias, Mercedes; Fraga-Rivas, Patricia; Poyatos, Cecilio; de Francisco, Angel L M

    2014-01-01

    Nephrogenic systemic fibrosis is a fibrosing disorder that affects patients with impaired renal function and is associated with the administration of gadolinium-based contrast media used in MRI. Despite being in a group of drugs that were considered safe, report about this potentially serious adverse reaction was a turning point in the administration guidelines of these contrast media. There has been an attempt to establish safety parameters to identify patients with risk factors of renal failure. The close pharmacovigilance and strict observation of current regulations, with special attention being paid to the value of glomerular filtration, have reduced the published cases involving the use of gadolinium-based contrast media. In a meeting between radiologists and nephrologists we reviewed the most relevant aspects currently and recommendations for its prevention.

  12. Luminescence characteristics of Dy3+ activated Na 2Sr 2Mg (BO 3)2F 2: Dy 3+ phosphor

    NASA Astrophysics Data System (ADS)

    Wani, Javaid A.; Dhoble, N. S.; Dhoble, S. J.

    2012-11-01

    In this paper, we have reported a new Na 2Sr 2Mg (BO 3)2F 2:Dy 3+ thermoluminescence (TL) phosphor prepared via the wet chemical method. Prepared phosphor was characterized by X-ray powder diffraction, photoluminescence (PL), TL and scanning electronmicroscopy techniques. The scanning electronmicroscopic image of Na 2Sr 2Mg (BO 3)2F 2:Dy 3+ phosphor confirms the micron size of particles. Under the PL study, the characteristic emission spectrum of Dy 3+ corresponding to 4F 9/2→6H 15/2 (481 nm) and 4F 9/2→6H 13/2 (576 nm) transitions was observed. The TL property of the as prepared phosphor was also found to be good. TL intensity of Na 2Sr2Mg(BO 3)F 2:Dy 3+ phosphors at 0.99 kGy exposure of γ-irradiations was compared with standard CaSO 4:Dy phosphor. It was seen that TL intensity of Na 2Sr 2Mg (BO 3)2F 2: Dy 3+ phosphors is 1.1 times less compared with the standard CaSO 4:Dy TL dosimeter phosphor. The kinetic parameters are also discussed in detail. The values of activation energy E (eV) and frequency factor S (s -1) were found to be 0.57 eV and 1.25×106 s-1, respectively.

  13. Effect of variable cerium concentration on photoluminescence behaviour in ZrO2 phosphor synthesized by combustion synthesis method

    NASA Astrophysics Data System (ADS)

    Dubey, Vikas; Kaur, Jagjeet

    2016-05-01

    Present paper reports synthesis and characterization of trivalent cerium (Ce3+) doped zirconium dioxide (ZrO2) phosphors. Effect of variable concentration of cerium on photoluminescence (PL) is studied. Samples were prepared by combustion synthesis technique which is suitable for less time taking techniques also for large scale production for phosphors. Starting material used for sample preparation are Zr(NO3)3 and Ce(NO3)3 and urea used as a fuel. All prepared phosphor with variable concentration of Ce3+ (0.1 to 2mol%) was studied by photoluminescence analysis it is found that the excitation spectra of prepared phosphor shows broad excitation centred at 390nm. The excitation spectra with variable concentration of Ce3+ show strong peaks at 447nm. Spectrophotometric determinations of peaks are evaluated by Commission Internationale de I'Eclairage technique. Using this phosphor, the desired CIE values including emissions throughout the violet (390 nm) and blue (427 nm) of the spectra were achieved. Efficient blue light emitting diodes were fabricated using Ce3+ doped phosphor based on near ultraviolet (NUV) excited LED lights.

  14. Phosphoric acid as an electrolyte additive for lead/acid batteries in electric-vehicle applications

    NASA Astrophysics Data System (ADS)

    Meissner, E.

    The influence of the addition of phosphoric acid to the electrolyte on the performance of gelled lead/acid electric-vehiicle batteries is investigated. This additive reduces the reversible capacity decay of the positive electrode significantly which is observed upon extended cycling when recharge of the battery is performed at low initial rate. This is important when low-rate on-board chargers are used. Pulsed discharge, typical for electric-vehicle application, induces reversible capacity decay more than constant-current discharge at a same depth-of-discharge, as well with as without the addition of phosphoric acid. By contrast, hindrance in presence of H 3PO 4 for both the recharge and the discharge reaction helps to homogenize the state of many individual cells during cycling in long battery strings. Reversible capacity loss, which occurs after extended cycling and when pulsed discharge is applied, can be recovered by a single discharge at very low rate with batteries with and without the addition of phosphoric acid. The discharge-rate dependency of the capacity is significantly reduced when phosphoric acid is added. The pulse discharge behaviour may be better, even if the nominal capacity is reduced. The experimental findings of the influence of phosphoric acid addition is discussed in terms of the aggregate-of-spheres model of reversible capacity decay.

  15. Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging.

    PubMed

    Alric, Christophe; Taleb, Jacqueline; Le Duc, Géraldine; Mandon, Céline; Billotey, Claire; Le Meur-Herland, Alice; Brochard, Thierry; Vocanson, Francis; Janier, Marc; Perriat, Pascal; Roux, Stéphane; Tillement, Olivier

    2008-05-07

    Functionalized gold nanoparticles were applied as contrast agents for both in vivo X-ray and magnetic resonance imaging. These particles were obtained by encapsulating gold cores within a multilayered organic shell which is composed of gadolinium chelates bound to each other through disulfide bonds. The contrast enhancement in MRI stems from the presence of gadolinium ions which are entrapped in the organic shell, whereas the gold core provides a strong X-ray absorption. This study revealed that these particles suited for dual modality imaging freely circulate in the blood vessels without undesirable accumulation in the lungs, spleen, and liver.

  16. Photovoltaic Performance Characterization of Textured Silicon Solar Cells Using Luminescent Down-Shifting Eu-Doped Phosphor Particles of Various Dimensions.

    PubMed

    Ho, Wen-Jeng; Deng, Yu-Jie; Liu, Jheng-Jie; Feng, Sheng-Kai; Lin, Jian-Cheng

    2017-01-01

    This paper reports on efforts to enhance the photovoltaic performance of textured silicon solar cells through the application of a layer of Eu-doped silicate phosphor with particles of various dimensions using the spin-on film technique. We examined the surface profile and dimensions of the Eu-doped phosphors in the silicate layer using optical microscopy with J-image software. Optical reflectance, photoluminescence, and external quantum efficiency were used to characterize the luminescent downshifting (LDS) and light scattering of the Eu-doped silicate phosphor layer. Current density-voltage curves under AM 1.5G simulation were used to confirm the contribution of LDS and light scattering produced by phosphor particles of various dimensions. Experiment results reveal that smaller phosphor particles have a more pronounced effect on LDS and a slight shading of incident light. The application of small Eu-doped phosphor particles increased the conversion efficiency by 9.2% (from 12.56% to 13.86%), far exceeding the 5.6% improvement (from 12.54% to 13.32%) achieved by applying a 250 nm layer of SiO₂ and the 4.5% improvement (from 12.37% to 12.98%) observed in cells with large Eu-doped phosphor particles.

  17. Phosphoric Acid Fuel Cell Technology Status

    NASA Technical Reports Server (NTRS)

    Simons, S. N.; King, R. B.; Prokopius, P. R.

    1981-01-01

    A review of the current phosphoric acid fuel cell system technology development efforts is presented both for multimegawatt systems for electric utility applications and for multikilowatt systems for on-site integrated energy system applications. Improving fuel cell performance, reducing cost, and increasing durability are the technology drivers at this time. Electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, and fuel selection are discussed.

  18. Superlubricity behavior with phosphoric acid-water network induced by rubbing.

    PubMed

    Li, Jinjin; Zhang, Chenhui; Luo, Jianbin

    2011-08-02

    In present work, a superlubricity phenomenon of phosphoric acid (H(3)PO(4)) was found under ambient conditions. An ultralow friction coefficient of about 0.004 between glass/Si(3)N(4) and sapphire/sapphire tribopairs was obtained under the lubrication of a phosphoric acid aqueous solution (pH 1.5) at high contact pressure (the maximum pressure can reach about 1.65 GPa) after a running-in period of about 600 s. The experimental results indicate that the superlow friction state was very stable for more than 3 h. In such a state, solidlike films formed on the two sliding surfaces, which are hydrates of phosphoric acid with a hydrogen-bonded network according to the Raman spectrum. The superlubricity mechanism is mainly attributed to the hydrogen bond effect that forms a hydrated water layer with low shearing strength, and the dipole-dipole effects that form an interfacial Coulomb repulsion force also make some contributions to low friction. This work may help us to introduce a new approach to superlubricity and may lead to the wide application of superlubricity in future technological and biomedical areas.

  19. Bioconjugation of luminescent silicon quantum dots to gadolinium ions for bioimaging applications

    NASA Astrophysics Data System (ADS)

    Erogbogbo, Folarin; Chang, Ching-Wen; May, Jasmine L.; Liu, Liwei; Kumar, Rajiv; Law, Wing-Cheung; Ding, Hong; Yong, Ken Tye; Roy, Indrajit; Sheshadri, Mukund; Swihart, Mark T.; Prasad, Paras N.

    2012-08-01

    Luminescent imaging agents and MRI contrast agents are desirable components in the rational design of multifunctional nanoconstructs for biological imaging applications. Luminescent biocompatible silicon quantum dots (SiQDs) and gadolinium chelates can be applied for fluorescence microscopy and MRI, respectively. Here, we report the first synthesis of a nanocomplex incorporating SiQDs and gadolinium ions (Gd3+) for biological applications. The nanoconstruct is composed of a PEGylated micelle, with hydrophobic SiQDs in its core, covalently bound to DOTA-chelated Gd3+. Dynamic light scattering reveals a radius of 85 nm for these nanoconstructs, which is consistent with the electron microscopy results depicting radii ranging from 25 to 60 nm. Cellular uptake of the probes verified that they maintain their optical properties within the intracellular environment. The magnetic resonance relaxivity of the nanoconstruct was 2.4 mM-1 s-1 (in terms of Gd3+ concentration), calculated to be around 6000 mM-1 s-1 per nanoconstruct. These desirable optical and relaxivity properties of the newly developed probe open the door for use of SiQDs in future multimodal applications such as tumour imaging.Luminescent imaging agents and MRI contrast agents are desirable components in the rational design of multifunctional nanoconstructs for biological imaging applications. Luminescent biocompatible silicon quantum dots (SiQDs) and gadolinium chelates can be applied for fluorescence microscopy and MRI, respectively. Here, we report the first synthesis of a nanocomplex incorporating SiQDs and gadolinium ions (Gd3+) for biological applications. The nanoconstruct is composed of a PEGylated micelle, with hydrophobic SiQDs in its core, covalently bound to DOTA-chelated Gd3+. Dynamic light scattering reveals a radius of 85 nm for these nanoconstructs, which is consistent with the electron microscopy results depicting radii ranging from 25 to 60 nm. Cellular uptake of the probes verified that they

  20. Luminescent properties and energy transfer in the green phosphors LaBSiO5:Tb3+, Ce3+.

    PubMed

    Wang, Zhengliang; Cheng, Ping; He, Pei; Liu, Yong; Zhou, Yayun; Zhou, Qiang

    2015-09-01

    LaBSiO5 phosphors doped with Ce(3+) and Tb(3+) were synthesized using the conventional solid-state method at 1100 °C. The phase purity and luminescent properties of these phosphors are investigated. LaBSiO5:Tb(3+) phosphors show intense green emission, and LaBSiO5 phosphors doped with Ce(3+) show blue-violet emission under UV light excitation. LaBSiO5 phosphors co-doped with Ce(3+) and Tb(3+) exhibit blue-violet and green emission under excitation by UV light. The blue-violet emission is due to the 5d-4f transition of Ce(3+) and the green emission is ascribed to the (5) D4 → (7) F5 transition of Tb(3+). The spectral overlap between the excitation band of Tb(3+) and the emission band of Ce(3+) supports the occurrence of energy transfer from Ce(3+) to Tb(3+), and the energy transfer process was investigated. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Design of a High-Power White Light Source with Colloidal Quantum Dots and Non-Rare-Earth Phosphors

    NASA Astrophysics Data System (ADS)

    Bicanic, Kristopher T.

    This thesis describes the design process of a high-power white light source, using novel phosphor and colloidal quantum dot materials. To incorporate multiple light emitters, we generalized and extended a down-converting layer model. We employed a phosphor mixture comprising of YAG:Ce and K2TiF 6:Mn4+ powders to illustrate the effectiveness of the model. By incorporating experimental photophysical results from the phosphors and colloidal quantum dots, we modeled our system and chose the design suitable for high-power applications. We report a reduction in the correlated color temperature by 600K for phosphor and quantum dot systems, enabling the creation of a warm white light emission at power densities up to 5 kW/cm 2. Furthermore, at this high-power, their emission achieves the digital cinema initiative (DCI) requirements with a luminescence efficacy improvement up to 32% over the stand-alone ceramic YAG:Ce phosphor.

  2. Effects of phosphoric acid on the lead-acid battery reactions

    NASA Astrophysics Data System (ADS)

    Ikeda, Osamu; Iwakura, Chiaki; Yoneyama, Hiroshi; Tamura, Hideo

    1986-10-01

    The addition of a small amount of phosphoric acid to 5 M H2SO4 (commercial electrolyte of lead-acid batteries) results in various positive effects on the lead-acid battery reactions: (1) depression of the corrosion rate of the lead substrate through a preferential formation of alpha-PbO2 on the substrate surface; (2) retardation of hard sulfate formation or of deactivation of active materials; and (3) change in the crystal morphology of PbSO2 formed on the discharge of PbO2. Most of these effects results from chemisorption of phosphoric acid on PbSO4 crystals produced in the discharge process of PbO2.

  3. Removal of gadolinium nitrate from heavy water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilde, E.W.

    2000-03-22

    Work was conducted to develop a cost-effective process to purify 181 55-gallon drums containing spent heavy water moderator (D2O) contaminated with high concentrations of gadolinium nitrate, a chemical used as a neutron poison during former nuclear reactor operations at the Savannah River Site (SRS). These drums also contain low level radioactive contamination, including tritium, which complicates treatment options. Presently, the drums of degraded moderator are being stored on site. It was suggested that a process utilizing biological mechanisms could potentially lower the total cost of heavy water purification by allowing the use of smaller equipment with less product loss andmore » a reduction in the quantity of secondary waste materials produced by the current baseline process (ion exchange).« less

  4. Studies of MRI relaxivities of gadolinium-labeled dendrons

    NASA Astrophysics Data System (ADS)

    Pan, Hongmu; Daniel, Marie-Christine

    2011-05-01

    In cancer detection, imaging techniques have a great importance in early diagnosis. The more sensitive the imaging technique and the earlier the tumor can be detected. Contrast agents have the capability to increase the sensitivity in imaging techniques such as magnetic resonance imaging (MRI). Until now, gadolinium-based contrast agents are mainly used for MRI, and show good enhancement. But improvement is needed for detection of smaller tumors at the earliest stage possible. The dendrons complexed with Gd(DOTA) were synthesized and evaluated as a new MRI contrast agent. The longitudinal and transverse relaxation effects were tested and compared with commercial drug Magnevist, Gd(DTPA).

  5. Thermo and mechanoluminescence of Dy3+ activated K2Mg2(SO4)3 phosphor

    NASA Astrophysics Data System (ADS)

    Panigrahi, A. K.; Dhoble, S. J.; Kher, R. S.; Moharil, S. V.

    2003-08-01

    A solid state diffusion method for the preparation of (K2 : Dy)Mg2(SO4)3 and (K2 : Dy,P)Mg2(SO4)3 phosphors is reported. Thermoluminescence (TL) and mechanoluminescence (ML) characteristics are studied. TL, shown by the (K2 : Dy,P)Mg2(SO4)3 phosphor is 60% as intense as the conventional CaSO4 : Dy phosphor used in the TLD of ionization radiation. It has a linear TL dose response and a negligible fading. These properties of (K2 : Dy,P)Mg2(SO4)3 should be suitable in dosimetry of ionization radiation using TL technique. ML of (K2 : Dy)Mg2(SO4)3 shows one peak which has been observed in ML intensity versus time curve. The ML peak shows the recombination of electrons with free radicals (anion radicals produced by γ-irradiation) released from traps during the mechanical pressure applied on the Dy activated K2Mg2(SO4)3 phosphor. This ML mechanism is proposed for γ-irradiated sulfate based phosphors. It has been found that the total light output, i.e. ML intensity, increases with concentration of dopant, strain rate and irradiation dose of the phosphor. Mechanoluminescence and ML emission spectra of (K2 : Dy)Mg2(SO4)3 were recorded for better understanding of the ML process. The TL and ML measurements have also been performed to elucidate the mechanism of ML. Some correlation between ML and TL has also been found.

  6. Effect of UV irradiation on different types of luminescence of SrAl2 O4 :Eu,Dy phosphors.

    PubMed

    Jha, Piyush

    2016-11-01

    This paper reports the luminescence behavior of Sr 0.097 Al 2 O 4 :Eu 0.01 ,Dy 0.02 phosphors under UV-irradiation. The effect of UV-irradiation on afterglow (AG), thermoluminescence (TL) and mechanoluminescence (ML) of Sr 0.097 Al 2 O 4 :Eu 0.01 ,Dy 0.02 phosphors is investigated. The space group of Sr 0.097 Al 2 O 4 :Eu 0.01 ,Dy 0.02 phosphors is monoclinic P2 1 . The prepared phosphors exhibit a long AG, intense TL and ML. It is found that the AG, ML intensity and TL increase with increasing duration of irradiation time. The ML intensity decreases with successive impact of the load onto the phosphors, whereby the diminished ML intensity can be recovered by UV-irradiation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Combined experimental-numerical identification of radiative transfer coefficients in white LED phosphor layers

    NASA Astrophysics Data System (ADS)

    Akolkar, A.; Petrasch, J.; Finck, S.; Rahmatian, N.

    2018-02-01

    An inverse analysis of the phosphor layer of a commercially available, conformally coated, white LED is done based on tomographic and spectrometric measurements. The aim is to determine the radiative transfer coefficients of the phosphor layer from the measurements of the finished device, with minimal assumptions regarding the composition of the phosphor layer. These results can be used for subsequent opto-thermal modelling and optimization of the device. For this purpose, multiple integrating sphere and gonioradiometric measurements are done to obtain statistical bounds on spectral radiometric values and angular color distributions for ten LEDs belonging to the same color bin of the product series. Tomographic measurements of the LED package are used to generate a tetrahedral grid of the 3D LED geometry. A radiative transfer model using Monte Carlo Ray Tracing in the tetrahedral grid is developed. Using a two-wavelength model consisting of a blue emission wavelength and a yellow, Stokes-shifted re-emission wavelength, the angular color distribution of the LED is simulated over wide ranges of the absorption and scattering coefficients of the phosphor layer, for the blue and yellow wavelengths. Using a two-step, iterative space search, combinations of the radiative transfer coefficients are obtained for which the simulations are consistent with the integrating sphere and gonioradiometric measurements. The results show an inverse relationship between the scattering and absorption coefficients of the phosphor layer for blue light. Scattering of yellow light acts as a distribution and loss mechanism for yellow light and affects the shape of the angular color distribution significantly, especially at larger viewing angles. The spread of feasible coefficients indicates that measured optical behavior of the LEDs may be reproduced using a range of combinations of radiative coefficients. Given that coefficients predicted by the Mie theory usually must be corrected in order

  8. Insights into the use of gadolinium and gadolinium/boron-based agents in imaging-guided neutron capture therapy applications.

    PubMed

    Deagostino, Annamaria; Protti, Nicoletta; Alberti, Diego; Boggio, Paolo; Bortolussi, Silva; Altieri, Saverio; Crich, Simonetta Geninatti

    2016-05-01

    Gadolinium neutron capture therapy (Gd-NCT) is currently under development as an alternative approach for cancer therapy. All of the clinical experience to date with NCT is done with (10)B, known as boron neutron capture therapy (BNCT), a binary treatment combining neutron irradiation with the delivery of boron-containing compounds to tumors. Currently, the use of Gd for NCT has been getting more attention because of its highest neutron cross-section. Although Gd-NCT was first proposed many years ago, its development has suffered due to lack of appropriate tumor-selective Gd agents. This review aims to highlight the recent advances for the design, synthesis and biological testing of new Gd- and B-Gd-containing compounds with the task of finding the best systems able to improve the NCT clinical outcome.

  9. A potential green emitting citrate gel synthesized NaSrBO3:Tb3+ phosphor for display application

    NASA Astrophysics Data System (ADS)

    Bedyal, A. K.; Kumar, Vinay; Swart, H. C.

    2018-04-01

    A potential green emitting NaSrBO3:Tb3+ (1-9 mol%) phosphor was synthesized by a citrate gel combustion method. X-ray diffraction patterns confirmed the monoclinic phase of the phosphor. The phosphor emitted intense green emission under near-UV and electron excitation due to the characteristic transitions 5D4→7F6(488 nm),5D4→7F5(544 nm),5D4→7F4(586 nm) and 5D4→7F3(622 nm) of Tb3+ ions. The optimal molar concentration of Tb3+ ions was found to be 6 mol%, after that concentration quenching occurred. The dipole-dipole interaction was found to be accountable for energy transfer between the Tb3+ ions. X-ray photoelectron spectroscopy was carried out to analyze the chemical states of the elements and suggest that terbium was mostly presented in the (+3) valance state in the phosphor. The approximated Commission Internationale de l‧Eclairage coordinates for the PL (0.31, 0.61) and CL (0.33, 0.57) were found to be very close to the well-known green emitting phosphor. The obtained results suggest that the studied phosphor could be an ultimate choice for green emission in display applications.

  10. Red Emission of SrAl2O4:Mn4+ Phosphor for Warm White Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Chi, N. T. K.; Tuan, N. T.; Lien, N. T. K.; Nguyen, D. H.

    2018-05-01

    In this work, SrAl2O4:Mn4+ phosphor is prepared by co-precipitation. The phase structure, morphology, composition and luminescent performance of the phosphor are investigated in detail with x-ray diffraction, field emission scanning electron microscopy, steady-state photoluminescence (PL) spectra, and temperature-dependent PL measurements. The phosphor shows a strong red emission peak at ˜ 690 nm, which is due to the transition between electronic levels and the electric dipole transition 2Eg to 4A2g of Mn4+ ions located at the sites with D3d local symmetry. The sample doped with 0.04 mol.% Mn4+ exhibits intense red emission with high thermal stability and appropriate International Commission on Illumination (CIE) coordinates (x = 0.6959, y = 0.2737). It is also found that the phosphor absorption in an extended band from 250 nm to 500 nm has three peaks at 320 nm, 405 nm, and 470 nm, which match well with the emission band of ultraviolet (UV) lighting emission diode (LED) or blue LED chips. These results demonstrate that SrAl2O4:Mn4+ phosphor can play the role of activator in narrow red-emitting phosphor, which is potentially useful in UV (˜ 320 nm) or blue (˜ 460 nm) LED.

  11. Upconversion emission study of Er{sup 3+} doped CaMoO{sub 4} phosphor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinha, Shriya, E-mail: Shriya.sinha6@gmail.com; Mahata, Manoj Kumar; Kumar, Kaushal

    2016-05-06

    The infrared to visible upconversion emission in Er{sup 3+} doped CaMoO{sub 4} phosphor has been investigated upon 980 nm diode laser excitation. The X-ray diffraction analysis reveals well crystalline nature and tetragonal phase structure of the prepared phosphor annealed at 800 °C. The Er{sup 3+} doped CaMoO{sub 4} phosphor has shown intense green upconversion emission upon 980 nm didode laser excitation. The green emission bands at 530 nm and 552 nm corresponds to the {sup 2}H{sub 11/2}→{sup 4}I{sub 15/2} and {sup 4}S{sub 3/2}→{sup 4}I{sub 15/2} electronic transitions, respectively of Er{sup 3+} ion. The very weak red emission band around 656more » nm is assigned to the {sup 4}F{sub 9/2}→{sup 4}I{sub 15/2} transition of Er{sup 3+} ion. The CIE color coordinate exhibits the emission color in intense green region, indicating the use of present phosphor in display device applications.« less

  12. High-pressure high-temperature phase diagram of gadolinium studied using a boron-doped heater anvil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, J. M.; Samudrala, G. K.; Velisavljevic, N.

    A boron-doped designer heater anvil is used in conjunction with powder x-ray diffraction to collect structural information on a sample of quasi-hydrostatically loaded gadolinium metal up to pressures above 8 GPa and 600 K. The heater anvil consists of a natural diamond anvil that has been surface modified with a homoepitaxially-grown chemical-vapor-deposited layer of conducting boron-doped diamond, and is used as a DC heating element. Internally insulating both diamond anvils with sapphire support seats allows for heating and cooling of the high pressure area on the order of a few tens of seconds. This device is then used to scanmore » the phase diagram of the sample by oscillating the temperature while continuously increasing the externally applied pressure and collecting in situ time-resolved powder diffraction images. In the pressure-temperature range covered in the experiment the gadolinium sample is observed in its hcp, αSm, and dhcp phases. Under this temperature cycling, the hcp→αSm transition proceeds in discontinuous steps at points along the expected phase boundary. Additionally, the unit cell volumes of each phase deviate from the expected thermal expansion behavior just before each transition is observed from the diffraction data. From these measurements (representing only one hour of synchrotron x-ray collection time), a single-experiment equation of state and phase diagram of each phase of gadolinium is presented for the range of 0 - 10 GPa and 300 - 650 K.« less

  13. Quantitative assessment of the rheumatoid synovial microvascular bed by gadolinium-DTPA enhanced magnetic resonance imaging

    PubMed Central

    Gaffney, K.; Cookson, J.; Blades, S.; Coumbe, A.; Blake, D.

    1998-01-01

    OBJECTIVE—To examine the relation between rate of synovial membrane enhancement, intra-articular pressure (IAP), and histologically determined synovial vascularity in rheumatoid arthritis, using gadolinium-DTPA enhanced magnetic resonance imaging (MRI).
METHODS—Dynamic gadolinium-DTPA enhanced MRI was performed in 31 patients with knee synovitis (10 patients IAP study, 21 patients vascular morphometry study). Rate of synovial membrane enhancement was quantified by line profile analysis using the image processing package ANALYZE. IAP was measured using an intra-compartmental pressure monitor system. Multiple synovial biopsy specimens were obtained by a blind biopsy technique. Blood vessels were identified immunohistochemically using the endothelial cell marker QBend30 and quantified (blood vessel numerical density and fractional area).
RESULTS—Median blood vessel numerical density and fractional area were 77.5/mm2 (IQR; 69.3-110.7) and 5.6% (IQR; 3.4-8.5) respectively. The rate of synovial membrane enhancement (median 2.74 signal intensity units/s, IQR 2.0-3.8) correlated with both blood vessel numerical density (r = 0.46, p < 0.05) and blood vessel fractional area (r = 0.55, p < 0.02). IAP did not influence the rate of enhancement.
CONCLUSIONS—Gadolinium-DTPA enhanced MRI may prove to be a valuable technique for evaluating drugs that influence angiogenesis.

 Keywords: magnetic resonance imaging; rheumatoid arthritis; synovitis; vascularity PMID:9640130

  14. High-pressure high-temperature phase diagram of gadolinium studied using a boron-doped heater anvil

    DOE PAGES

    Montgomery, J. M.; Samudrala, G. K.; Velisavljevic, N.; ...

    2016-04-07

    A boron-doped designer heater anvil is used in conjunction with powder x-ray diffraction to collect structural information on a sample of quasi-hydrostatically loaded gadolinium metal up to pressures above 8 GPa and 600 K. The heater anvil consists of a natural diamond anvil that has been surface modified with a homoepitaxially-grown chemical-vapor-deposited layer of conducting boron-doped diamond, and is used as a DC heating element. Internally insulating both diamond anvils with sapphire support seats allows for heating and cooling of the high pressure area on the order of a few tens of seconds. This device is then used to scanmore » the phase diagram of the sample by oscillating the temperature while continuously increasing the externally applied pressure and collecting in situ time-resolved powder diffraction images. In the pressure-temperature range covered in the experiment the gadolinium sample is observed in its hcp, αSm, and dhcp phases. Under this temperature cycling, the hcp→αSm transition proceeds in discontinuous steps at points along the expected phase boundary. Additionally, the unit cell volumes of each phase deviate from the expected thermal expansion behavior just before each transition is observed from the diffraction data. From these measurements (representing only one hour of synchrotron x-ray collection time), a single-experiment equation of state and phase diagram of each phase of gadolinium is presented for the range of 0 - 10 GPa and 300 - 650 K.« less

  15. Synthesis, energy transfer and tunable emission properties of SrSb2O6:Eu3 +, Bi3 + phosphor

    NASA Astrophysics Data System (ADS)

    Cao, Renping; Fu, Ting; Peng, Dedong; Cao, Chunyan; Ruan, Wen; Yu, Xiaoguang

    2016-12-01

    Host SrSb2O6, SrSb2O6:Bi3 +, SrSb2O6:Eu3 +, and SrSb2O6:Eu3 +, Bi3 + phosphors are synthesized by solid state reaction method in air. Host SrSb2O6 with excitation 254 nm shows weak green-yellow emission in the range of 320-780 nm due to Sb5 + → O2- transition. SrSb2O6:Bi3 + phosphor with excitation 365 nm emits green light within the range 400-650 nm owing to the 3P1 → 1S0 transition of Bi3 + ion. SrSb2O6:Eu3 + phosphor with excitation 254 nm exhibits a systematically varied hue from green to orange-red light by increasing Eu3 + concentration from 0 to 7 mol%, and that with excitation 394 nm only shows orange-red light. The optimal Eu3 + concentration is 4 mol% in SrSb2O6:Eu3 + phosphor. SrSb2O6:Eu3 +, Bi3 + phosphor with excitation 254 and 394 nm emits orange-red light. Emission intensity of SrSb2O6:Eu3 + phosphor may be enhanced > 2 times by co-doping Bi3 + ion because of the fluxing agent and energy transfer roles of Bi3 + ion in SrSb2O6:Eu3 +, Bi3 + phosphor. The luminous mechanism of SrSb2O6:Eu3 +, Bi3 + phosphor is analyzed and explained by the simplified energy level diagrams of Sb2O62 - group, Bi3 + and Eu3 + ions, and energy transfer processes between them.

  16. Generation of White Light from Dysprosium-Doped Strontium Aluminate Phosphor by a Solid-State Reaction Method

    NASA Astrophysics Data System (ADS)

    Sahu, Ishwar Prasad; Bisen, D. P.; Brahme, N.; Tamrakar, Raunak Kumar

    2016-04-01

    A single-host lattice, white light-emitting SrAl2O4:Dy3+ phosphor was synthesized by a solid-state reaction method. The crystal structure of prepared SrAl2O4:Dy3+ phosphor was in a monoclinic phase with space group P21. The chemical composition of the sintered SrAl2O4:Dy3+ phosphor was confirmed by the energy dispersive x-ray spectroscopy technique. Under ultra-violet excitation, the characteristic emissions of Dy3+ are peaking at 475 nm, 573 nm and 660 nm, originating from the transitions of 4F9/2 → 6H15/2, 4F9/2 →&!nbsp; 6H13/2 and 4F9/2 → 6H11/2 in the 4f9 configuration of Dy3+ ions. Commission International de I'Eclairage color coordinates of SrAl2O4:Dy3+ are suitable for white light-emitting phosphor. In order to investigate the suitability of the samples as white color light sources for industrial uses, correlated color temperature (CCT) and color rendering index (CRI) values were calculated. Values of CCT and CRI were found well within the defined acceptable range. Mechanoluminescence (ML) intensity of SrAl2O4:Dy3+ phosphor increased linearly with increasing impact velocity of the moving piston. Thus, the present investigation indicates piezo-electricity was responsible for producing ML in sintered SrAl2O4:Dy3+ phosphor. Decay rates of the exponential decaying period of the ML curves do not change significantly with impact velocity. The photoluminescence and ML results suggest that the synthesized SrAl2O4:Dy3+ phosphor was useful for the white light-emitting diodes and stress sensor respectively.

  17. CaSO4:DY,Mn: A new and highly sensitive thermoluminescence phosphor for versatile dosimetry

    NASA Astrophysics Data System (ADS)

    Bahl, Shaila; Lochab, S. P.; Kumar, Pratik

    2016-02-01

    With the advent of newer techniques for dose reduction coupled with the development of more sensitive detectors, the radiation doses in radiological medical investigation are decreasing. Nevertheless, keeping the tenet in mind that all radiation doses could entail risk, there is a need to develop more sensitive dosimeters capable of measuring low doses. This paper gives the account of the development of a new and sensitive phosphor CaSO4:Dy,Mn and its characterization. The standard production procedure based on the recrystallization method was used to prepare CaSO4:Dy,Mn. The Thermoluminescence (TL) studies were carried out by exposing it with gamma radiation (Cs-137) from 10 μGy to 100 Gy. The theoretical studies to determine the number of peaks and kinetic parameters related to the TL glow peaks in CaSO4:Dy,Mn was performed using the Computerized Glow Curve Deconvolution (CGCD) method. Experiments were performed to determine optimum concentration of the dopants Dysprosium (Dy) and Mangnese (Mn) in the host CaSO4 so that maximum sensitivity of the phosphor may be achieved. The optimum dopant concentration turned out to be 0.1 mol%. As there were two dopants Dy and Mn their relative ratio were varied in steps of 0.025 keeping the concentration of total dopant (Dy and Mn) 0.1 mol% always. The maximum TL intensity was seen in the CaSO4:Dy(0.025),Mn(0.075) combination. The TL sensitivity of this phosphor was found to be about 2 and 1.8 times higher than that of popular phosphor CaSO4:Dy and LiF:Mg,Cu,P (TLD-700H) respectively. This new phosphor CaSO4:Dy,Mn showed fading of 11% which is similar to that of the standard phosphor CaSO4:Dy. The paper concludes that the new, highly sensitive TL phosphor CaSO4:Dy,Mn has shown higher sensitivity and hence the potential to replace commonly used CaSO4:Dy.

  18. Synthesis and luminescence characterization of a new yellowish-orange phosphor: Ba2 B10 O17 :Sm3.

    PubMed

    Li, Jiangong; Yan, Huifang; Yan, Fengmei

    2017-02-01

    A new yellowish-orange emitting phosphor, Ba 2 B 10 O 17 :Sm 3 + for use as a white light-emitting diode (W-LED) was synthesized by a solid-state reaction method. The X-ray diffraction results indicated that a pure Ba 2 B 10 O 17 material was obtained. As a potential yellowish-orange luminescent material for W-LEDs, the Ba 2 B 10 O 17 :Sm 3 + phosphor could be excited effectively by near-ultraviolet (n-UV) light and exhibited yellowish-orange emission centered at 560 nm corresponding to the 4 G 5/2  →  6 H 5/2 transition of Sm 3 + ions. The optimum concentration of Sm 3 + ions in Ba 2 B 10 O 17 , critical transfer distance (Ra) and concentration quenching mechanism of the presented phosphor were investigated. Moreover, CIE chromaticity coordinates and color purity performance of the Ba 2 B 10 O 17 :Sm 3 + phosphor were also discussed. The present work suggests that the Ba 2 B 10 O 17 :Sm 3 + phosphor has potential as a type of yellowish-orange emitting phosphor. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Photovoltaic Performance Characterization of Textured Silicon Solar Cells Using Luminescent Down-Shifting Eu-Doped Phosphor Particles of Various Dimensions

    PubMed Central

    Ho, Wen-Jeng; Deng, Yu-Jie; Liu, Jheng-Jie; Feng, Sheng-Kai; Lin, Jian-Cheng

    2017-01-01

    This paper reports on efforts to enhance the photovoltaic performance of textured silicon solar cells through the application of a layer of Eu-doped silicate phosphor with particles of various dimensions using the spin-on film technique. We examined the surface profile and dimensions of the Eu-doped phosphors in the silicate layer using optical microscopy with J-image software. Optical reflectance, photoluminescence, and external quantum efficiency were used to characterize the luminescent downshifting (LDS) and light scattering of the Eu-doped silicate phosphor layer. Current density-voltage curves under AM 1.5G simulation were used to confirm the contribution of LDS and light scattering produced by phosphor particles of various dimensions. Experiment results reveal that smaller phosphor particles have a more pronounced effect on LDS and a slight shading of incident light. The application of small Eu-doped phosphor particles increased the conversion efficiency by 9.2% (from 12.56% to 13.86%), far exceeding the 5.6% improvement (from 12.54% to 13.32%) achieved by applying a 250 nm layer of SiO2 and the 4.5% improvement (from 12.37% to 12.98%) observed in cells with large Eu-doped phosphor particles. PMID:28772384

  20. Photoluminescence properties of a new orange-red-emitting Sm(3+)-La3SbO7 phosphor.

    PubMed

    Li, Zeng-Mei; Deng, Li-Gang; Zhao, Shan-Cang; Zhang, Shu-Qiu; Guo, Chang-Ying; Liang, Jing-Yun; Yue, Hui; Wan, Chun-Yan

    2016-03-01

    The antimonate compound La3SbO7 has high chemical stability, lattice stiffness and thermal stability. Orange-red-emitting antimonate-based phosphors La3SbO7:xSm(3+) (x = 0.02, 0.05, 0.08, 0.10, 0.15, 0.20 and 0.25) were synthesized. The phase structure and photoluminescence properties of these phosphors were investigated. The emission spectrum obtained on excitation at 407 nm contained exclusively the characteristic emissions of Sm(3+) at 568, 608, 654 and 716 nm, which correspond to the transitions from (4)G5/2 to (6)H5/2, (6)H7/2, (6)H9/2 and (6)H11/2 of Sm(3+), respectively. The strongest emission was located at 608 nm due to the (4)G5/2→(6)H7/2 transition of Sm(3+), generating bright orange-red light. The critical quenching concentration of Sm(3+) in La3SbO7:Sm(3+) phosphor was determined as 10% and the energy transfer between Sm(3+) was found to be through an exchange interaction. The International Commission on Illumination chromaticity coordinates of the La3SbO7:0.10Sm(3+) phosphors are located in the orange-red region. The La3SbO7:Sm(3+) phosphors may be potentially used as red phosphors for white light-emitting diodes. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Hybrid Calcium Phosphate-Polymeric Micelles Incorporating Gadolinium Chelates for Imaging-Guided Gadolinium Neutron Capture Tumor Therapy.

    PubMed

    Mi, Peng; Dewi, Novriana; Yanagie, Hironobu; Kokuryo, Daisuke; Suzuki, Minoru; Sakurai, Yoshinori; Li, Yanmin; Aoki, Ichio; Ono, Koji; Takahashi, Hiroyuki; Cabral, Horacio; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2015-06-23

    Gadolinium (Gd) chelates-loaded nanocarriers have high potential for achieving magnetic resonance imaging (MRI)-guided Gd neutron capture therapy (GdNCT) of tumors. Herein, we developed calcium phosphate micelles hybridized with PEG-polyanion block copolymers, and incorporated with the clinical MRI contrast agent Gd-diethylenetriaminepentaacetic acid (Gd-DTPA/CaP). The Gd-DTPA/CaP were nontoxic to cancer cells at the concentration of 100 μM based on Gd-DTPA, while over 50% of the cancer cells were killed by thermal neutron irradiation at this concentration. Moreover, the Gd-DTPA/CaP showed a dramatically increased accumulation of Gd-DTPA in tumors, leading to the selective contrast enhancement of tumor tissues for precise tumor location by MRI. The enhanced tumor-to-blood distribution ratio of Gd-DTPA/CaP resulted in the effective suppression of tumor growth without loss of body weight, indicating the potential of Gd-DTPA/CaP for safe cancer treatment.

  2. Effect of phosphoric acid on the morphology and tensile properties of halloysite-polyurethane composites

    NASA Astrophysics Data System (ADS)

    Gaaz, Tayser Sumer; Luaibi, Hasan Mohammed; Al-Amiery, Ahmed A.; Kadhum, Abdul Amir H.

    2018-06-01

    The high aspect ratio of nanoscale reinforcements enhances the tensile properties of pure polymer matrix. The composites were first made by adding halloysite nanotubes (HNTs) at low weight percentages of 1, 2, and 3 wt% to thermoplastic polyurethane (TPU). Then, HNTs were phosphoric acid-treated before adding to TPU at same weight percentage to create phosphoric acid HNTs-TPU composites. The samples were fabricated using injection moulding. The HNTs-TPU composites were characterized according to the tensile properties including tensile strength, tensile strain and Young's modulus. The loading has shown its highest tensile values at 2 wt% HNTs loading and same findings are shown with the samples that treated with phosphoric acid. The tensile strength increased to reach 24.65 MPa compare with the 17.7 MPa of the neat TPU showing about 26% improvement. For the phosphoric acid-treated composites, the improvement has reached 35% compared to the neat sample. Regarding the tensile stain, the improvement was about 83% at 2 wt% HNTs loading. For Young's modulus, the results obtained in this study have shown that Young's modulus is linearly improved with either the loading content or the phosphoric acid treated achieving its highest values at 3 wt% HNTs of 14.53 MPa and 16.27 MPa for untreated and treated, respectively. FESEM results showed that HNTs were well dispersed in TPU matrix. Thus, HNTs-TPU has improved tensile properties compared with pure TPU due to the addition of nanofiller.

  3. Are gadolinium contrast agents suitable for gadolinium neutron capture therapy?

    PubMed

    De Stasio, Gelsomina; Rajesh, Deepika; Casalbore, Patrizia; Daniels, Matthew J; Erhardt, Robert J; Frazer, Bradley H; Wiese, Lisa M; Richter, Katherine L; Sonderegger, Brandon R; Gilbert, Benjamin; Schaub, Sebastien; Cannara, Rachel J; Crawford, John F; Gilles, Mary K; Tyliszczak, Tolek; Fowler, John F; Larocca, Luigi M; Howard, Steven P; Mercanti, Delio; Mehta, Minesh P; Pallini, Roberto

    2005-06-01

    Gadolinium neutron capture therapy (GdNCT) is a potential treatment for malignant tumors based on two steps: (1) injection of a tumor-specific (157)Gd compound; (2) tumor irradiation with thermal neutrons. The GdNC reaction can induce cell death provided that Gd is proximate to DNA. Here, we studied the nuclear uptake of Gd by glioblastoma (GBM) tumor cells after treatment with two Gd compounds commonly used for magnetic resonance imaging, to evaluate their potential as GdNCT agents. Using synchrotron X-ray spectromicroscopy, we analyzed the Gd distribution at the subcellular level in: (1) human cultured GBM cells exposed to Gd-DTPA or Gd-DOTA for 0-72 hours; (2) intracerebrally implanted C6 glioma tumors in rats injected with one or two doses of Gd-DOTA, and (3) tumor samples from GBM patients injected with Gd-DTPA. In cell cultures, Gd-DTPA and Gd-DOTA were found in 84% and 56% of the cell nuclei, respectively. In rat tumors, Gd penetrated the nuclei of 47% and 85% of the tumor cells, after single and double injection of Gd-DOTA, respectively. In contrast, in human GBM tumors 6.1% of the cell nuclei contained Gd-DTPA. Efficacy of Gd-DTPA and Gd-DOTA as GdNCT agents is predicted to be low, due to the insufficient number of tumor cell nuclei incorporating Gd. Although multiple administration schedules in vivo might induce Gd penetration into more tumor cell nuclei, a search for new Gd compounds with higher nuclear affinity is warranted before planning GdNCT in animal models or clinical trials.

  4. High color rendering index of remote-type white LEDs with multi-layered quantum dot-phosphor films and short-wavelength pass dichroic filters

    NASA Astrophysics Data System (ADS)

    Yoon, Hee Chang; Oh, Ji Hye; Do, Young Rag

    2014-09-01

    This paper introduces high color rendering index (CRI) white light-emitting diodes (W-LEDs) coated with red emitting (Sr,Ca)AlSiN3:Eu phosphors and yellowish-green emitting AgIn5S8/ZnS (AIS/ZS) quantum dots (QDs) on glass or a short-wavelength pass dichroic filter (SPDF), which transmit blue wavelength regions and reflect yellow wavelength regions. The red emitting (Sr,Ca)AlSiN3:Eu phosphor film is coated on glass and a SPDF using a screen printing method, and then the yellowish-green emitting AIS/ZS QDs are coated on the red phosphor (Sr,Ca)AlSiN3:Eu film-coated glass and SPDF using the electrospray (e-spray) method.To fabricate the red phosphor film, the optimum amount of phosphor is dispersed in a silicon binder to form a red phosphor paste. The AIS/ZS QDs are mixed with dimethylformamide (DMF), toluene, and poly(methyl methacrylate) (PMMA) for the e-spray coating. The substrates are spin-coated with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) to fabricate a conductive surface. The CRI of the white LEDs is improved through inserting the red phosphor film between the QD layer and the glass substrate. Furthermore, the light intensities of the multi-layered phosphor films are enhanced through changing the glass substrate to the SPDF. The correlated color temperatures (CCTs) vary as a function of the phosphor concentration in the phosphor paste. The optical properties of the yellowish-green AIS/ZS QDs and red (Sr,Ca)AlSiN3:Eu phosphors are characterized using photoluminescence (PL), and the multi-layered QD-phosphor films are measured using electroluminescence (EL) with an InGaN blue LED (λmax = 450 nm) at 60 mA.

  5. Gadolinium based contrast agents in current practice: Risks of accumulation and toxicity in patients with normal renal function

    PubMed Central

    Ranga, Anju; Agarwal, Yatish; Garg, Kanika J

    2017-01-01

    Despite being decked as the most prized compounds in the nugget box of contrast agents for clinical radiologists, and carrying an indisputable tag of safety of the US Food and Drug Administration for close to three decades, all may not be seemingly well with the family of gadolinium compounds. If the first signs of violations of primum non nocere in relation to gadolinium-based contrast agents (GBCAs) appeared in the millennium year with the first published report of skin fibrosis in patients with compromised renal function, the causal relationship between the development of nephrogenic systemic fibrosis (NSF) and GBCAs, first proposed by two European groups in 2006, further precluded their use in renocompromised patients. The toxicity, pharmacokinetics, and pharmacodynamics of GBCAs, however, has come under hawk-eyed scrutiny with recent reports that gadolinium tends to deposit cumulatively in the brain of patients with normal hepatobiliary function and intact blood–brain barrier. While the jury on the long-term hazard significance of this critical scientific finding is still out, the use of GBCAs must be guided by due clinical diligence, avoidance of repeated doses, and preferring GBCAs with the best safety profiles. PMID:28744073

  6. Structural and morphological changes in supramolecular-structured polymer electrolyte membrane fuel cell on addition of phosphoric acid

    NASA Astrophysics Data System (ADS)

    Hendrana, S.; Pryliana, R. F.; Natanael, C. L.; Rahayu, I.

    2018-03-01

    Phosphoric acid is one agents used in membrane fuel cell to modify ionic conductivity. Therefore, its distribution in membrane is a key parameter to gain expected conductivity. Efforts have been made to distribute phosphoric acid in a supramolecular-structured membrane prepared with a matrix. To achieve even distribution across bulk of the membrane, the inclusion of the polyacid is carried out under pressurized chamber. Image of scanning electron microscopy (SEM) shows better phosphoric acid distribution for one prepared in pressurized state. It also leads in better performing in ionic conductivity. Moreover, data from differential scanning calorimetry (DSC) indicate that the addition of phosphoric acid is prominent in the change of membrane structure, while morphological changes are captured in SEM images.

  7. Reaction of gadolinium chelates with ozone and hydroxyl radicals.

    PubMed

    Cyris, Maike; Knolle, Wolfgang; Richard, Jessica; Dopp, Elke; von Sonntag, Clemens; Schmidt, Torsten C

    2013-09-03

    Gadolinium chelates are used in increasing amounts as contrast agents in magnetic resonance imaging, and their fate in wastewater treatment has recently become the focus of research. Oxidative processes, in particular the application of ozone, are currently discussed or even implemented for advanced wastewater treatment. However, reactions of the gadolinium chelates with ozone are not yet characterized. In this study, therefore, rate constants with ozone were determined for the three commonly used chelates Gd-DTPA, Gd-DTPA-BMA, and Gd-BT-DO3A, which were found to be 4.8 ± 0.88, 46 ± 2.5, and 24 ± 1.5 M(-1) s(-1), respectively. These low rate constants indicate that a direct reaction with ozone in wastewater is negligible. However, application of ozone in wastewater leads to substantial yields of (•)OH. Different methods have been applied and compared for determination of k((•)OH+Gd chelate). From rate constants determined by pulse radiolysis experiments (k((•)OH+Gd-DTPA) = 2.6 ± 0.2 × 10(9) M(-1) s(-1), k((•)OH+Gd-DTPA-BMA) = 1.9 ± 0.7 × 10(9) M(-1) s(-1), k((•)OH+Gd-BT-DO3A) = 4.3 ± 0.2 × 10(9) M(-1) s(-1)), it is concluded that a reaction in wastewater via (•)OH radicals is feasible. Toxicity has been tested for educt and product mixtures of both reactions. Cytotoxicity (MTT test) and genotoxicity (micronuclei assay) were not detectable.

  8. Defect-Induced Luminescence of a Self-Activated Borophosphate Phosphor

    NASA Astrophysics Data System (ADS)

    Han, Bing; Liu, Beibei; Dai, Yazhou; Zhang, Jie

    2018-05-01

    A self-activated borophosphate phosphor Ba3BPO7 was prepared via typical solid-state reaction in thermal-carbon reduction atmosphere. The structural and luminescence properties were investigated using x-ray powder diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and photoluminescence spectroscopy. Upon excitation with ultraviolet (UV) light, the as-prepared phosphor shows bright greenish-yellow emission with a microsecond-level fluorescence lifetime, which could result from the oxygen vacancies produced in the process of solid-state synthesis. The possible luminescence mechanism is proposed. Through the introduction of defects in the host, this work realizes visible luminescence in a pure borophosphate compound that does not contain any rare earth or transition metal activators, so it is helpful to develop defect-related luminescent materials in view of energy conservation and environmental protection for sustainable development.

  9. Optical properties of Dy3+ doped YBO3 phosphor

    NASA Astrophysics Data System (ADS)

    Nair, Ramya G.; Nigam, Sandeep; Sudarsan, V.; Vatsa, R. K.

    2018-04-01

    Dysprosium doped YBO3 luminescent particleis synthesized via poly-ol method and by subsequent annealing at 800°C. The synthesized material has been characterized for structure properties using powder X-ray diffraction (XRD) and Fourier transform infrared (FTIR)spectroscopy. Photoluminescence properties of these samples are studiedby means of steady state measurements and decay curve. The phosphor shows characteristic transitions of Dy3+ in the excitation and emission spectra. Colour purity is determined in terms of yellow/blue ratio, which is found to be 1.8. The higher ratio of yellow/blue indicates that Dy3+ preferentially occupies the asymmetric site in host lattice. The average lifetime is found to be 1.1ms. The chromatic properties of the phosphor have been found to have chromaticity coordinates x = 0.245, y = 0.274.

  10. Neuroprotective effect of gadolinium: a stretch-activated calcium channel blocker in mouse model of ischemia-reperfusion injury.

    PubMed

    Gulati, Puja; Muthuraman, Arunachalam; Jaggi, Amteshwar S; Singh, Nirmal

    2013-03-01

    The present study was designed to investigate the potential of gadolinium, a stretch-activated calcium channel blocker in ischemic reperfusion (I/R)-induced brain injury in mice. Bilateral carotid artery occlusion of 12 min followed by reperfusion for 24 h was given to induce cerebral injury in male Swiss mice. Cerebral infarct size was measured using triphenyltetrazolium chloride staining. Memory was assessed using Morris water maze test and motor incoordination was evaluated using rota-rod, lateral push, and inclined beam walking tests. In addition, total calcium, thiobarbituric acid reactive substance (TBARS), reduced glutathione (GSH), and acetylcholinesterase (AChE) activity were also estimated in brain tissue. I/R injury produced a significant increase in cerebral infarct size. A significant loss of memory along with impairment of motor performance was also noted. Furthermore, I/R injury also produced a significant increase in levels of TBARS, total calcium, AChE activity, and a decrease in GSH levels. Pretreatment of gadolinium significantly attenuated I/R-induced infarct size, behavioral and biochemical changes. On the basis of the present findings, we can suggest that opening of stretch-activated calcium channel may play a critical role in ischemic reperfusion-induced brain injury and that gadolinium has neuroprotective potential in I/R-induced injury.

  11. The effectiveness of strong afterglow phosphor powder in the detection of fingermarks.

    PubMed

    Liu, Li; Zhang, Zhongliang; Zhang, Limei; Zhai, Yuchun

    2009-01-10

    There are numerous types of fluorescent fingermark powders or reagents used with the visualization of latent fingermarks deposited on multicolored substrate surfaces that can present a contrast problem if developed with regular fingermark powders. The developed fingermarks can show bright fluorescence upon exposure to laser, ultraviolet light and other light sources. These kinds of methods share a common concern, where surfaces and other substrates may fluoresce also. To overcome this concern, we have developed a phosphor powder which offers a strong afterglow effect which aid in the establishment of better fingermark detection. With the advent of a phosphor powder no special devices are required and the results obtained from fresh or a few days aged latent fingermarks left on: non-porous; semi-porous and also on some porous surfaces have been good. The strong afterglow effect offered by phosphor powder is also applicable for cyanoacrylate fumed fingermarks. Lift off and photography procedures of the developed fingermarks are incorporated in this paper.

  12. Analytical Interference in Serum Iron Determination Reveals Iron Versus Gadolinium Transmetallation With Linear Gadolinium-Based Contrast Agents

    PubMed Central

    Fretellier, Nathalie; Poteau, Nathalie; Factor, Cécile; Mayer, Jean-François; Medina, Christelle; Port, Marc; Idée, Jean-Marc; Corot, Claire

    2014-01-01

    Objectives The purposes of this study were to evaluate the risk for analytical interference with gadolinium-based contrast agents (GBCAs) for the colorimetric measurement of serum iron (Fe3+) and to investigate the mechanisms involved. Materials and Methods Rat serum was spiked with several concentrations of all molecular categories of GBCAs, ligands, or “free” soluble gadolinium (Gd3+). Serum iron concentration was determined by 2 different colorimetric methods at pH 4.0 (with a Vitros DT60 analyzer or a Cobas Integra 400 analyzer). Secondly, the cause of interference was investigated by (a) adding free soluble Gd3+ or Mn2+ to serum in the presence of gadobenic acid or gadodiamide and (b) electrospray ionization mass spectrometry. Results Spurious decrease in serum Fe3+ concentration was observed with all linear GBCAs (only with the Vitros DT60 technique occurring at pH 4.0) but not with macrocyclic GBCAs or with free soluble Gd3+. Spurious hyposideremia was also observed with the free ligands present in the pharmaceutical solutions of the linear GBCAs gadopentetic acid and gadodiamide (ie, diethylene triamine pentaacetic acid and calcium-diethylene triamine pentaacetic acid bismethylamide, respectively), suggesting the formation of Fe-ligand chelate. Gadobenic acid-induced interference was blocked in a concentration-dependent fashion by adding a free soluble Gd3+ salt. Conversely, Mn2+, which has a lower affinity than Gd3+ and Fe3+ for the ligand of gadobenic acid (ie, benzyloxypropionic diethylenetriamine tetraacetic acid), was less effective (interference was only partially blocked), suggesting an Fe3+ versus Gd3+ transmetallation phenomenon at pH 4.0. Similar results were observed with gadodiamide. Mass spectrometry detected the formation of Fe-ligand with all linear GBCAs tested in the presence of Fe3+ and the disappearance of Fe-ligand after the addition of free soluble Gd3+. No Fe-ligand chelate was found in the case of the macrocyclic GBCA gadoteric

  13. Blue–green afterglow of BaAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Bao-gai; Ma, Qing-lan; School of Electronics and Information, Nantong University, Jiangsu 226019

    Highlights: • Afterglow can be achieved when Eu{sup 2+} is absent in the DyAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors. • The afterglow of DyAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors is discernible to naked eyes for minutes. • Dy{sup 3+} introduced trap centers are believed to be responsible for the afterglow. - Abstract: Dy{sup 3+} doped barium aluminate (BaAl{sub 2}O{sub 4}:Dy{sup 3+}) phosphors were prepared via the sol–gel combustion route at the ignition temperature of 600 °C. The phosphors were characterized with X-ray diffractometry, scanning electron microscopy, transmission electron microscopy, photoluminescence spectroscopy, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Regardless of themore » absence of Eu{sup 2+} luminescent centers, broadband blue–green afterglow with its peak at about 490 nm was recorded in the BaAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors. The decay profile of the blue–green afterglow can be best fitted into a two-component exponential function with the two lifetime decay constants to be 8.81 and 45.25 s, respectively. The observation of blue–green afterglow from BaAl{sub 2}O{sub 4}:Dy{sup 3+} in the absence of Eu{sup 2+} provides unique opportunity in unveiling the afterglow mechanisms of rare-earth doped alkaline-metal aluminates. Possible mechanisms on the blue–green afterglow in BaAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors are discussed in terms of the Dy{sup 3+} ions introduced trap centers as well as luminescent centers in the crystal lattice.« less

  14. High color rendering index WLED based on YAG:Ce phosphor and CdS/ZnS core/shell quantum dots

    NASA Astrophysics Data System (ADS)

    Shen, Changyu; Li, Ke

    2009-08-01

    White LED combining of blue chip and YAG:Ce phosphor suffers from a red spectral deficiency, resulting in a relatively low value of color rendering index (CRI). In our study, for an effort to improve color rendering properties of YAG:Ce phosphor-based white LEDs, highly luminescent red-orange emitting CdS/ZnS QDs were blended with YAG:Ce phosphors. Core/shell CdS/ZnS quantum dots with the emission wavelength of 618nm, was synthesized by thermal deposition using cadmium oxide and selenium as precursors in a hot lauric acid and hexadecylamine trioctylphosphine oxide hybrid. YAG:Ce phosphor was synthesized by high-temperature solid state reaction at 900-1200°C in a slightly reducing atmosphere for 4 hours. Blends of phosphors and QDs exhibited the prominent spectral evolution with an increasing content of QDs. A hybrid white LED, which combines a blue LED with the blend of YAG phosphor and QDs with a weight ratio of 1.5:1,was demonstrated with an improved CRI value of 86.

  15. WE-D-17A-02: Evaluation of a Two-Dimensional Optical Dosimeter On Measuring Lateral Profiles of Proton Pencil Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsi, W; Lee, T; Schultz, T

    Purpose: To evaluate the accuracy of a two-dimensional optical dosimeter on measuring lateral profiles for spots and scanned fields of proton pencil beams. Methods: A digital camera with a color image senor was utilized to image proton-induced scintillations on Gadolinium-oxysulfide phosphor reflected by a stainless-steel mirror. Intensities of three colors were summed for each pixel with proper spatial-resolution calibration. To benchmark this dosimeter, the field size and penumbra for 100mm square fields of singleenergy pencil-scan protons were measured and compared between this optical dosimeter and an ionization-chamber profiler. Sigma widths of proton spots in air were measured and compared betweenmore » this dosimeter and a commercial optical dosimeter. Clinical proton beams with ranges between 80 mm and 300 mm at CDH proton center were used for this benchmark. Results: Pixel resolutions vary 1.5% between two perpendicular axes. For a pencil-scan field with 302 mm range, measured field sizes and penumbras between two detection systems agreed to 0.5 mm and 0.3 mm, respectively. Sigma widths agree to 0.3 mm between two optical dosimeters for a proton spot with 158 mm range; having widths of 5.76 mm and 5.92 mm for X and Y axes, respectively. Similar agreements were obtained for others beam ranges. This dosimeter was successfully utilizing on mapping the shapes and sizes of proton spots at the technical acceptance of McLaren proton therapy system. Snow-flake spots seen on images indicated the image sensor having pixels damaged by radiations. Minor variations in intensity between different colors were observed. Conclusions: The accuracy of our dosimeter was in good agreement with other established devices in measuring lateral profiles of pencil-scan fields and proton spots. A precise docking mechanism for camera was designed to keep aligned optical path while replacing damaged image senor. Causes for minor variations between emitted color lights will be

  16. Phosphor-Free InGaN White Light Emitting Diodes Using Flip-Chip Technology

    PubMed Central

    Li, Ying-Chang; Chang, Liann-Be; Chen, Hou-Jen; Yen, Chia-Yi; Pan, Ke-Wei; Huang, Bohr-Ran; Kuo, Wen-Yu; Chow, Lee; Zhou, Dan; Popko, Ewa

    2017-01-01

    Monolithic phosphor-free two-color gallium nitride (GaN)-based white light emitting diodes (LED) have the potential to replace current phosphor-based GaN white LEDs due to their low cost and long life cycle. Unfortunately, the growth of high indium content indium gallium nitride (InGaN)/GaN quantum dot and reported LED’s color rendering index (CRI) are still problematic. Here, we use flip-chip technology to fabricate an upside down monolithic two-color phosphor-free LED with four grown layers of high indium quantum dots on top of the three grown layers of lower indium quantum wells separated by a GaN tunneling barrier layer. The photoluminescence (PL) and electroluminescence (EL) spectra of this white LED reveal a broad spectrum ranging from 475 to 675 nm which is close to an ideal white-light source. The corresponding color temperature and color rendering index (CRI) of the fabricated white LED, operated at 350, 500, and 750 mA, are comparable to that of the conventional phosphor-based LEDs. Insights of the epitaxial structure and the transport mechanism were revealed through the TEM and temperature dependent PL and EL measurements. Our results show true potential in the Epi-ready GaN white LEDs for future solid state lighting applications. PMID:28772792

  17. Stability of Gadolinium-Doped Liquid Organic Scintillators

    NASA Astrophysics Data System (ADS)

    Gromov, M. B.; Kuznetsov, D. S.; Murchenko, A. E.; Novikova, G. Ya.; Obinyakov, B. A.; Oralbaev, A. Yu.; Plakitina, K. V.; Skorokhvatov, M. D.; Sukhotin, S. V.; Chepurnov, A. S.; Etenko, A. V.

    2018-03-01

    The technology of preparing a linear-alkylbenzene-based gadolinium-doped liquid organic scintillator (Gd-LOS) as a target material in reactor antineutrino detectors has been developed. Results of longterm measurements of the light yield of Gd-LOS in contact with acryl and stainless steel are presented, which confirm the compatibility of Gd-LOS with these materials. The measurements were performed for two otherwise identical LOS detectors only differing in wall materials of the sensitive volume: acryl versus stainless steel. The results of measurements over about one year showed almost the same, relatively small decreases in the light yield of both detectors. It is concluded that both structural materials can be used in detector parts contacting with Gd-doped scintillator. Such a long-term parallel comparative test was carried out for the first time.

  18. A novel orange-red emitting NaCaVO{sub 4}:Sm{sup 3+} phosphor for solid state lighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Pankaj, E-mail: pankaj79biswas@gmail.com; Kumar, Vinay, E-mail: vinaykdhiman@yahoo.com; Ntwaeaborwa, O. M.

    2016-05-06

    The samarium doped NaCaVO{sub 4} phosphor was synthesized by the combustion method. The X-ray powder diffraction (XRD) analysis confirmed that the phosphor powder crystallized as orthorhombic structure belonging to space group Cmcm. From Williamson-Hall analysis the grain size and microstrain in the powder was estimated. The Fourier- transform infrared (FT-IR) studies further validated the formation of vanadate phase of the phosphor. Photoluminescence (PL) study revealed that the phosphor could be efficiently excited by UV-VIS from 200 nm to 500 nm. The 565 nm, 602 nm, 648 nm and 713 nm emissions were ascribed to {sup 4}G{sub 5/2} to {sup 6}H{submore » J} (J = 5/2, 7/2, 9/2 and 11/2) transitions of the Sm{sup 3+} ion. The present material may be explored as a novel phosphor to be excited by UV light emitting diodes (LEDs) chips for solid-state lighting and display applications.« less

  19. Spectral downshifting from blue to near infer red region in Ce3+-Nd3+ co-doped YAG phosphor

    NASA Astrophysics Data System (ADS)

    Sawala, N. S.; Omanwar, S. K.

    2016-07-01

    The YAG phosphors co-doped with Ce3+-Nd3+ ions by varying concentration of Nd3+ ion from 1 mol% to 15 mol% were successfully synthesized by conventional solid state reaction method. The phosphors were characterized by powder X-ray powder diffraction (XRD) and surface morphology was studied by scanning electronic microscope (SEM). The photoluminescence (PL) properties were studied in near infra red (NIR) and ultra violet visible (UV-VIS) region. The synthesized phosphors can convert a blue region photon (453 nm) into photons of NIR region (1063 nm). The energy transfer (ET) process was studied by time decay curve and PL spectra. The theoretical value of energy transfer efficiency (ETE) was calculated from time decay luminescence measurement and the maximum efficiency approached up to 82.23%. Hence this phosphor could be prime candidate as a downshifting (DS) luminescent convertor (phosphor) in front of crystalline silicon solar cell (c-Si) panels to reduce thermalization loss in the solar cells.

  20. High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting

    PubMed Central

    Song, Young Hyun; Ji, Eun Kyung; Jeong, Byung Woo; Jung, Mong Kwon; Kim, Eun Young; Yoon, Dae Ho

    2016-01-01

    We report on Y3Al5O12: Ce3+ ceramic phosphor plate (CPP) using nano phosphor for high power laser diode (LD) application for white light in automotive lighting. The prepared CPP shows improved luminous properties as a function of Ce3+ concentration. The luminous properties of the Y3Al5O12: Ce3+ CPP nano phosphor are improved when compared to the Y3Al5O12: Ce3+ CPP with bulk phosphor, and hence, the luminous emittance, luminous flux, and conversion efficiency are improved. The Y3Al5O12: Ce3+ CPP with an optimal Ce3+ content of 0.5 mol % shows 2733 lm/mm2 value under high power blue radiant flux density of 19.1 W/mm2. The results indicate that Y3Al5O12: Ce3+ CPP using nano phosphor can serve as a potential material for solid-state laser lighting in automotive applications. PMID:27502730

  1. High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting.

    PubMed

    Song, Young Hyun; Ji, Eun Kyung; Jeong, Byung Woo; Jung, Mong Kwon; Kim, Eun Young; Yoon, Dae Ho

    2016-08-09

    We report on Y3Al5O12: Ce(3+) ceramic phosphor plate (CPP) using nano phosphor for high power laser diode (LD) application for white light in automotive lighting. The prepared CPP shows improved luminous properties as a function of Ce(3+) concentration. The luminous properties of the Y3Al5O12: Ce(3+) CPP nano phosphor are improved when compared to the Y3Al5O12: Ce(3+) CPP with bulk phosphor, and hence, the luminous emittance, luminous flux, and conversion efficiency are improved. The Y3Al5O12: Ce(3+) CPP with an optimal Ce(3+) content of 0.5 mol % shows 2733 lm/mm(2) value under high power blue radiant flux density of 19.1 W/mm(2). The results indicate that Y3Al5O12: Ce(3+) CPP using nano phosphor can serve as a potential material for solid-state laser lighting in automotive applications.

  2. The mechanism of proton conduction in phosphoric acid

    NASA Astrophysics Data System (ADS)

    Vilčiauskas, Linas; Tuckerman, Mark E.; Bester, Gabriel; Paddison, Stephen J.; Kreuer, Klaus-Dieter

    2012-06-01

    Neat liquid phosphoric acid (H3PO4) has the highest intrinsic proton conductivity of any known substance and is a useful model for understanding proton transport in other phosphate-based systems in biology and clean energy technologies. Here, we present an ab initio molecular dynamics study that reveals, for the first time, the microscopic mechanism of this high proton conductivity. Anomalously fast proton transport in hydrogen-bonded systems involves a structural diffusion mechanism in which intramolecular proton transfer is driven by specific hydrogen bond rearrangements in the surrounding environment. Aqueous media transport excess charge defects through local hydrogen bond rearrangements that drive individual proton transfer reactions. In contrast, strong, polarizable hydrogen bonds in phosphoric acid produce coupled proton motion and a pronounced protic dielectric response of the medium, leading to the formation of extended, polarized hydrogen-bonded chains. The interplay between these chains and a frustrated hydrogen-bond network gives rise to the high proton conductivity.

  3. Analysis of Blood Gadolinium in an Isotope Geochemist Following Contrast MRI

    NASA Astrophysics Data System (ADS)

    Wasylenki, L. E.

    2011-12-01

    Normal brain tissue does not have blood flowing throughout it; instead oxygen diffuses across a blood-brain barrier in order to oxygenate brain cells. Brain tumors, however, do grow blood supplies, so an abnormal distribution of blood in the brain is a key indicator of abnormal cell growth. But how is the distribution of blood in inside the brain observed? The lanthanide ion gadolinium(III) has unpaired 5f-shell electrons and is thus paramagnetic. As such, the presence of Gd causes the nuclei of nearby atoms to relax more quickly when excited to high-energy spin states by pulses of radio-frequency energy than they would without Gd nearby. The signal in magnetic resonance imaging correlates with this nuclear spin relaxation time, so gadolinium's presence in certain body tissues makes those tissues appear as bright areas on MRI images. Gadolinium is therefore commonly injected intravenously just prior to MRI imaging, so that the distribution of blood in and around the brain can be mapped. Gadolinium as a free ion is toxic, so it is injected in a relatively inert form, often as gadoversetamide, in which Gd is tightly bound in nine-fold coordination with N, C, and O. This compound is removed from the blood by the kidneys at a rate that is fast compared to the rate of breakdown of this compound in the blood, thus preventing release of toxic Gd in the bloodstream. But how quickly can the kidneys of an isotope geochemist remove Gd from blood? In this experiment, a single isotope geochemist's wristwatch was synchronized with that of the MRI technician and then left in a dressing room with all other magnetically susceptible objects until after the MRI. The time of intravenous injection of gadoversetamide into the isotopist was recorded by the technician and later transmitted verbally to the isotopist. Following the MRI session, blood samples were collected by self-fingerprick, in a Class 100 trace metal clean lab, from 47 to 281 minutes after intravenous injection. For each

  4. White Light Emitting MZr4(PO4)6:Dy3+ (M = Ca, Sr, Ba) Phosphors for WLEDs.

    PubMed

    Nair, Govind B; Dhoble, S J

    2017-03-01

    A series of MZr 4 (PO 4 ) 6 :Dy 3+ (M = Ca, Sr, Ba) phosphors were prepared by the solid state diffusion method. Confirmation of the phase formation and morphological studies were performed by X-ray powder diffraction (XRD) measurements and scanning electron microscopy, respectively. Photoluminescence (PL) properties of these phosphors were thoroughly analyzed and the characteristic emissions of Dy 3+ ions were found to arise from them at an excitation wavelength of 351 nm. The PL emission spectra of the three phosphors were analyzed and compared. The CIE chromaticity coordinates assured that the phosphors produced cool white-light emission and hence, they are potential candidates for UV excited white-LEDs (WLEDs). Graphical Abstract ᅟ.

  5. Effect of particle size and dopant concentration on photophysical properties of Eu3+-doped rare earth oxysulphide phosphor coatings.

    PubMed

    Chakradhar, R P S; Basu, Bharathibai J; Lakshmi, R V

    2011-02-01

    Europium-doped rare-earth oxysulphides (red phosphors) are often used as reference luminophore in pyrene-based pressure sensor coatings for aerodynamic applications. Different red phosphor samples were characterized for their particle size, chemical composition, photoluminescent properties and temperature sensitivity. The red phosphor samples were characterized using energy-dispersive X-ray spectroscopy (EDX) for elemental analysis and scanning electron microscopy (SEM) for morphology and particle size measurement. The particle size was in the range of 1.5-5.7 μm with morphology of hexagonal or spherical shape. It was found that phosphor with higher europium content exhibited higher luminescent emission intensity. The phosphor coatings were prepared by spraying a dispersion of the material in silicone resin. Smooth coatings were obtained by using phosphor samples with smaller particle size. Upon 334 nm excitation, the coatings showed characteristic luminescence 5D0→7FJ (J=0, 1, 2, 3, 4) of the Eu3+ ions. The electronic transition located at 626 nm (5D0→7F2) of Eu3+ ions was stronger than the magnetic dipole transition located at 595 nm (5D0→7F1). Luminescence decay curves obeyed double exponential behaviour. The phosphor samples showed temperature sensitivity of -0.012 to -0.168%/°C in the temperature range of 25-50 °C. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Rare-earth free self-luminescent Ca2KZn2(VO4)3 phosphors for intense white light-emitting diodes.

    PubMed

    Bharat, L Krishna; Jeon, Soo-Kun; Krishna, Kurugundla Gopi; Yu, Jae Su

    2017-02-09

    The commercially available white-light-emitting diodes (WLEDs) are made with a combination of blue LEDs and yellow phosphors. These types of WLEDs lack certain properties which make them meagerly applicable for general illumination and flat panel displays. The solution for such problem is to use near-ultraviolet (NUV) chips as an excitation source because of their high excitation efficiency and good spectral distribution. Therefore, there is an active search for new phosphor materials which can be effectively excited within the NUV wavelength range (350-420 nm). In this work, novel rare-earth free self-luminescent Ca 2 KZn 2 (VO 4 ) 3 phosphors were synthesized by a citrate assisted sol-gel method at low calcination temperatures. Optical properties, internal quantum efficiency and thermal stability as well as morphology and crystal structure of Ca 2 KZn 2 (VO 4 ) 3 phosphors for their application to NUV-based WLEDs were studied. The crystal structure and phase formation were confirmed with XRD patterns and Rietveld refinement. The optical properties of these phosphor materials which can change the NUV excitation into visible yellow-green emissions were studied. The synthesized phosphors were then coated onto the surface of a NUV chip along with a blue phosphor (LiCaPO 4 :Eu 2+ ) to get brighter WLEDs with a color rendering index of 94.8 and a correlated color temperature of 8549 K.

  7. A promising red-emitting phosphor for white-light-emitting diodes prepared by a modified solid-state reaction

    NASA Astrophysics Data System (ADS)

    Ren, Fuqiang; Chen, Donghua

    2010-02-01

    Using urea, boric acid and polyethylene glycol (PEG) as auxiliary reagents, the novel red-emitting phosphors Ca 19Zn 2 (PO 4) 14:Eu 3+ have been successfully synthesized by a modified solid-state reaction. Thermogravimetric (TG) analysis, X-ray diffraction (XRD), transmission electron microscopy (TEM) and photoluminescence (PL) spectra were used to characterize the resulting phosphors. The dependence of the photoluminescence properties of Ca 19Zn 2 (PO 4) 14:Eu 3+ phosphors upon urea, boric acid and PEG concentration and the quadric-sintered temperature were investigated. Luminescent measurements showed that the phosphors can be efficiently excited by ultraviolet (UV) to visible region, emitting a red light with a peak wavelength of 616 nm. The material has potential application as a fluorescent material for ultraviolet light-emitting diodes (UV-LEDs).

  8. Effect of Annealing Time of YAG:Ce3+ Phosphor on White Light Chromaticity Values

    NASA Astrophysics Data System (ADS)

    Abd, Husnen R.; Hassan, Z.; Ahmed, Naser M.; Almessiere, Munirah Abdullah; Omar, A. F.; Alsultany, Forat H.; Sabah, Fayroz A.; Osman, Ummu Shuhada

    2018-02-01

    Yttrium and aluminium nitrate phosphors doped with cerium nitrate and mixed with urea (fuel) are prepared by using microwave-induced combustion synthesis according to the formula Y(3-0.06)Al5O12:0.06Ce3+ (YAG:Ce3+) to produce white light emitting diodes by conversion from blue indium gallium nitride-light emitting diode chips. The sintering time with fixed temperature (1050°C) for phosphor powder was optimized and found to be 5 h. The crystallinity, structure, chemical composition, luminescent properties with varying currents densities and chromaticity were characterized by x-ray diffraction, field emission-scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, photoluminescence emission, electroluminescence and standard CIE 1931 chromaticity diagram, respectively. The energy levels of Ce3+ in YAG were discussed based on its absorption and excitation spectra. The results show that the obtained YAG:Ce3+ phosphor sintered for 5 h has good crystallinity with pure phase, low agglomerate with spherical shaped particles and strong yellow emission, offering cool-white LED with tuneable correlated color temperature and a good color rendering index compared to those prepared by sintering for 2 h and as-prepared phosphor powders.

  9. Activated carbon from peach stones using phosphoric acid activation at medium temperatures.

    PubMed

    Kim, Dong-Su

    2004-01-01

    In the present study, the activation features of phosphoric acid have been investigated using waste peach stones as the raw material in the production of granular activated carbon. Thermogravimetry/differential thermal analysis was conducted to characterize the thermal behavior of peach stone and titration method was used to evaluate the adsorption capacity of the produced activated carbon. It was observed that the iodine value of the activated carbon increased with activation temperature. However, temperatures higher than 500 degrees C caused a thermal destruction, which resulted in the decrease of the adsorption capacity. Activation longer than 1.5 h at 500 degrees C resulted in thermal degradation of the porous structure of the activated carbon. The adsorption capacity was enhanced with increasing of amounts of phosphoric acid, however, excessive phosphoric acid caused a decrease in the iodine value. In addition, it was found that the carbon yields generally decreased with activation temperature and activation time. Scanning electron microscopy analysis was conducted to observe the changes in the poros structure of the activated carbon produced in different temperatures. Activation of carbon by phosphoric acid was found to be superior to that by CaCl2 and gas activation. The activated carbon produced from peach stone was applied as an adsorbent in the treatment of synthesized wastewater containing cadmium ion and its adsorption capacity was found to be as good as that of the commercial one.

  10. Luminescence properties of Ca2 Ga2 SiO7 :RE phosphors for UV white-light-emitting diodes.

    PubMed

    Jiao, Mengmeng; Lv, Wenzhen; Lü, Wei; Zhao, Qi; Shao, Baiqi; You, Hongpeng

    2015-03-16

    A series of Eu(2+) -, Ce(3+) -, and Tb(3+) -doped Ca2 Ga2 SiO7 phosphors is synthesized by using a high-temperature solid-state reaction. The powder X-ray diffraction and structure refinement data indicate that our prepared phosphors are single phased and the phosphor crystalizes in a tetrahedral system with the ${P\\bar 42m}$ (113) space group. The Eu(2+) - and Ce(3+) -doped phosphors both have broad excitation bands, which match well with the UV light-emitting diodes chips. Under irradiation of λ=350 nm, Ca2 Ga2 SiO7 :Eu(2+) and Ca2 Ga2 SiO7 :Ce(3+) , Li(+) have green and blue emissions, respectively. Luminescence of Ca2 Ga2 SiO7 :Tb(3+) , Li(+) phosphor varies with the different Tb(3+) contents. The thermal stability and energy-migration mechanism of Ca2 Ga2 SiO7 :Eu(2+) are also studied. The investigation results indicate that the prepared Ca2 Ga2 SiO7 :Eu(2+) and Ca2 Ga2 SiO7 :Ce(3+) , Li(+) samples show potential as green and blue phosphors, respectively, for UV-excited white-light-emitting diodes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Correlation of Structure, Tunable Colors, and Lifetimes of (Sr, Ca, Ba)Al₂O₄:Eu2+, Dy3+ Phosphors.

    PubMed

    Xie, Qidi; Li, Bowen; He, Xin; Zhang, Mei; Chen, Yan; Zeng, Qingguang

    2017-10-18

    (Sr, Ca, Ba)Al₂O₄:Eu 2+ , Dy 3+ phosphors were prepared via a high temperature solid-state reaction method. The correlation of phase structure, optical properties and lifetimes of the phosphors are investigated in this work. For the (Sr, Ca)Al₂O₄:Eu 2+ ,Dy 3+ phosphors, the different phase formation from monoclinic SrAl₂O₄ phase to hexagonal SrAl₂O₄ phase to monoclinic CaAl₂O₄ phase was observed when the Ca content increased. The emission color of SrAl₂O₄:Eu 2+ , Dy 3+ phosphors varied from green to blue. For the (Sr, Ba)Al₂O₄:Eu 2+ , Dy 3+ phosphors, different phase formation from the monoclinic SrAl₂O₄ phase to the hexagonal BaAl₂O₄ phase was observed, along with a shift of emission wavelength from 520 nm to 500 nm. More interestingly, the decay time of SrAl₂O₄:Eu 2+ , Dy 3+ changed due to the different phase formations. Lifetime can be dramatically shortened by the substitution of Sr 2+ with Ba 2+ cations, resulting in improving the performance of the alternating current light emitting diode (AC-LED). Finally, intense LEDs are successfully obtained by combining these phosphors with Ga(In)N near UV chips.

  12. Photoluminescence and cathodoluminescence properties of Eu{sup 3+} ions activated AMoO{sub 4} (A = Mg, Ca, Sr, Ba) phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Peng; Yu, Jae Su, E-mail: jsyu@khu.ac.kr

    2015-10-15

    Highlights: • Under 393 nm excitation, strong red emission located at 615 nm was observed in all the samples. • The Eu{sup 3+}-activated CaMoO{sub 4} phosphor exhibited the strongest PL properties. • The CIE chromaticity coordinate of Eu{sup 3+}-activated CaMoO{sub 4} phosphor was (0.647,0.352). • The color purity of Eu{sup 3+}-activated CaMoO{sub 4} phosphor was 92.8%. • Strong CL properties were observed in the Eu{sup 3+}-activated CaMoO{sub 4} phosphor. - Abstract: Eu{sup 3+}-activated AMoO{sub 4} (A = Mg, Ca, Sr, Ba) phosphors were synthesized by a solid-state reaction method. Photoluminescence and cathodoluminescence (CL) spectra as well as X-ray diffraction patternsmore » were measured to characterize the fabricated samples. Under 393 nm excitation, strong red emissions located at ∼615 nm corresponding to the {sup 5}D{sub 0} → {sup 7}F{sub 2} transition of Eu{sup 3+} ions were observed in all the samples. Compared with other Eu{sup 3+} ions activated AMoO{sub 4} (A = Mg, Sr, Ba) phosphors, Eu{sup 3+}-activated CaMoO{sub 4} phosphor exhibited the strongest red emission intensity with better Commission Internationale de L’Eclairage chromaticity coordinate and higher color purity. Furthermore, the CL results indicated that the Eu{sup 3+}-activated CaMoO{sub 4} phosphor had excellent luminescence properties.« less

  13. Silicon carbidonitride based phosphors and lighting devices using the same

    DOEpatents

    Li, Yuanqiang; Romanelli, Michael Dennis; Tian, Yongchi

    2013-09-17

    Disclosed herein are novel families of silicon carbidonitride phosphor compositions. In certain embodiments, optimal ranges of carbon content have been identified which provide excellent luminescence and thermal stability characteristics.

  14. Physical evaluation of a needle photostimulable phosphor based CR mammography system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Nicholas W.; Lemmens, Kim; Bosmans, Hilde

    2012-02-15

    Purpose: Needle phosphor based computed radiography (CR) systems promise improved image quality compared to powder phosphor based CR units for x-ray screening mammography. This paper compares the imaging performance of needle CR cassettes, powder based CR cassettes and a well established amorphous selenium (a-Se) based flat panel based mammography system, using consistent beam qualities. Methods: Detector performance was assessed using modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE). Mammography system performance was assessed against levels from the European Guidelines, including threshold gold thickness (c-d), relative signal difference to noise (SdNR) and mean glandular dose,more » for automatic exposure control settings suggested by the manufacturers. The needle based Agfa HM5.0 CR detector was compared against the single sided readout Agfa MM3.0R and dual sided readout Fuji Profect CS powder CR plates using a 28 kV Mo/Rh spectrum, while a 28 kV W/Rh spectrum was used to compare the Agfa HM5.0 against the Siemens MAMMOMAT Inspiration a-Se based system. Results: MTF at 5 mm{sup -1} was 0.16 and 0.24 for the needle CR detector in the fast and slow scan directions, respectively, indicating a slight improvement ({approx}20%) over the two powder CR systems but remained 50% lower than the result at 5 mm{sup -1} for the a-Se detector ({approx}0.55). Structured screen noise was lower for the needle phosphor compared to the powder plates. CR system gain, estimated from the measured absorption fraction and NNPS results, was 6.3 for the (single sided) needle phosphor and 5.1 and 7.2 for the single sided and dual sided powder phosphor systems. Peak DQE at {approx}100 {mu}Gy was 0.47 for the needle system compared to peak DQE figures of 0.33 and 0.46 for the single sided readout powder plates and dual sided readout plates. The high frequency DQE (at 5 mm{sup -1}) was 0.19 for the needle CR plates, a factor

  15. Dramatic impact of the giant local magnetic fields on spin-dependent recombination processes in gadolinium based garnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanov, N. G., E-mail: nikolai.romanov@mail.ioffe.ru; Tolmachev, D. O.; Gurin, A. S.

    2015-06-29

    A giant magnetic field effect on spin-dependent recombination of the radiation-induced defects has been found in cerium doped gadolinium based garnet crystals and ceramics, promising materials for scintillator applications. A sharp and strong increase in the afterglow intensity stimulated by external magnetic field and an evidence of the magnetic field memory have been discovered. The effect was ascribed to huge Gd-induced internal magnetic fields, which suppress the recombination, and cross-relaxation with Gd{sup 3+} ions leading to reorientation of the spins of the electron and hole centers. Thus, the spin system of radiation-induced defects in gadolinium garnet based scintillator materials wasmore » shown to accumulate significant energy which can be released in external magnetic fields.« less

  16. Effect of Phosphoric Acid Pre-etching on Fatigue Limits of Self-etching Adhesives.

    PubMed

    Takamizawa, T; Barkmeier, W W; Tsujimoto, A; Scheidel, D D; Erickson, R L; Latta, M A; Miyazaki, M

    2015-01-01

    The purpose of this study was to use shear bond strength (SBS) and shear fatigue limit (SFL) testing to determine the effect of phosphoric acid pre-etching of enamel and dentin prior to application of self-etch adhesives for bonding resin composite to these substrates. Three self-etch adhesives--1) G- ænial Bond (GC Corporation, Tokyo, Japan); 2) OptiBond XTR (Kerr Corp, Orange, CA, USA); and 3) Scotchbond Universal (3M ESPE Dental Products, St Paul, MN, USA)--were used to bond Z100 Restorative resin composite to enamel and dentin surfaces. A stainless-steel metal ring with an inner diameter of 2.4 mm was used to bond the resin composite to flat-ground (4000 grit) tooth surfaces for determination of both SBS and SFL. Fifteen specimens each were used to determine initial SBS to human enamel/dentin, with and without pre-etching with a 35% phosphoric acid (Ultra-Etch, Ultradent Products Inc, South Jordan, UT, USA) for 15 seconds prior to the application of the adhesives. A staircase method of fatigue testing (25 specimens for each test) was then used to determine the SFL of resin composite bonded to enamel/dentin using a frequency of 10 Hz for 50,000 cycles or until failure occurred. A two-way analysis of variance and Tukey post hoc test were used for analysis of SBS data, and a modified t-test with Bonferroni correction was used for the SFL data. Scanning electron microscopy was used to examine the area of the bonded restorative/tooth interface. For all three adhesive systems, phosphoric acid pre-etching of enamel demonstrated significantly higher (p<0.05) SBS and SFL with pre-etching than it did without pre-etching. The SBS and SFL of dentin bonds decreased with phosphoric acid pre-etching. The SBS and SFL of bonds using phosphoric acid prior to application of self-etching adhesives clearly demonstrated different tendencies between enamel and dentin. The effect of using phosphoric acid, prior to the application of the self-etching adhesives, on SBS and SFL was

  17. Preparation and luminescence properties of orange-red Ba3Y(PO4)3:Sm3+ phosphors

    NASA Astrophysics Data System (ADS)

    Xu, Qiguang; Xu, Denghui; Sun, Jiayue

    2015-04-01

    Ba3Y(PO4)3:Sm3+ phosphors were prepared by a high temperature solid-state reaction in air. X-ray diffraction (XRD), photoluminescence spectra and temperature-dependent emission spectra were utilized to characterize the structure and luminescence properties of the as-prepared phosphor. The results show that the phosphor can be efficiently excited by ultraviolet light and emit a satisfactory orange-red performance, nicely, fitting in well with the widely used UV LED chip. Under 403 nm excitation, the 4G5/2 → 6HJ (J = 5/2, 7/2, 9/2, and 11/2) emissions of Sm3+ are obviously observed. The optimum doping concentration is 5 mol% and corresponding quenching behavior is ascribed to be electric dipole-dipole interaction according to Dexter's theory. The temperature dependent luminescence of Ba3Y(PO4)3:Sm3+ phosphor is also discussed, and the activation energy for thermal quenching is calculated as 0.34 eV. Furthermore, the chromaticity coordinates of Ba3Y(PO4)3:Sm3+ phosphor are calculated to be (0.5558, 0.4380) and the lifetime values of Ba3Y0.995(PO4)3:0.005Sm3+ was 2.45 ms.

  18. Potential of hydrolysis of particulate COD in extended anaerobic conditions to enhance biological phosphorous removal.

    PubMed

    Jabari, P; Yuan, Q; Oleszkiewicz, J A

    2016-11-01

    The effect of anaerobic hydrolysis of particulate COD (pCOD) on biological phosphorous removal in extended anaerobic condition was investigated through (i) sequencing batch reactors (SBR)s with anaerobic hydraulic retention time (HRT) of 0.8, 2, and 4 h; (ii) batch tests using biomass from a full scale biological nutrient removal (BNR) plant; and (iii) activated sludge modeling (BioWin 4.1 simulation). The results from long-term SBRs operation showed that phosphorus removal was correlated to the ratio of filtered COD (FCOD) to total phosphorus (TP) in the influent. Under conditions with low FCOD/TP ratio (average of 20) in the influent, extending anaerobic HRT to 4 h in the presence of pCOD did not significantly improve overall phosphorous removal. During the period with high FCOD/TP ratio (average of 37) in the influent, all SBRs removed phosphorous completely, and the long anaerobic HRT did not have negative effect on overall phosphorous removal. The batch tests also showed that pCOD at different concentration during 4 h test did not affect the rate of anaerobic phosphorus release. The rate of anaerobic hydrolysis of pCOD was significantly low and extending the anaerobic HRT was ineffective. The simulation (BioWin 4.1) of SBRs with low influent FCOD/TP ratio showed that the default kinetics of anaerobic hydrolysis in ASM2d overestimated phosphorous removal in the SBRs (high anaerobic hydrolysis of pCOD). The default anaerobic hydrolysis rate in BioWin 4.1 (ten times lower) could produce similar phosphorous removal to that in the experiment. Results showed that the current kinetics of anaerobic hydrolysis in ASM2d could lead to considerable error in predicting phosphorus removal in processes with extended anaerobic HRT. Biotechnol. Bioeng. 2016;113: 2377-2385. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Red-emitting LaOF:Eu{sup 3+} phosphors: Synthesis, structure and their Judd–Ofelt analysis for LED applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhananjaya, N., E-mail: ndhananjayas@gmail.com; Shivakumara, C.; Saraf, Rohit

    Highlights: • Red-emitting LaOF:Eu{sup 3+} phosphors were synthesized via facile solid state route. • Judd–Ofelt intensity parameters and radiative properties were determined from PL data. • CIE color coordinates of LaOF:Eu{sup 3+} phosphor is close to the commercial red phosphors. • Eu{sup 3+}-activated LaOF phosphor is a potential candidate for the production of red component in white LEDs. - Abstract: In the present study, we have synthesized a series of La{sub 1−x}Eu{sub x}OF (0.01 ≤ x ≤ 0.09) phosphors by the conventional solid-state reaction route at relatively low temperature (500 °C) and shorter duration of 2 h. The compounds weremore » crystallized in the rhombohedral structure with the space group R-3m (No. 166). Upon UV excitation (254 nm), the photoluminescence spectra exhibit characteristic luminescence {sup 5}D{sub 0} → {sup 7}F{sub J} (J = 1, 2, 3, and 4) intra-4f shell Eu{sup 3+} ion transitions. An intense red emission peak at 610 nm was observed due to electric dipole ({sup 5}D{sub 0} → {sup 7}F{sub 2}) transition. Judd–Ofelt theory was employed to evaluate various radiative parameters such as radiative emission rates, lifetime, branching and asymmetry ratios. CIE color coordinates confirmed the red emission of the phosphors. The luminescent results reveal that LaOF:Eu{sup 3+} phosphor can be used as potential candidate for developing red component in white LED applications.« less

  20. Tuning transport selectivity of ionic species by phosphoric acid gradient in positively charged nanochannel membranes.

    PubMed

    Yang, Meng; Yang, Xiaohai; Wang, Kemin; Wang, Qing; Fan, Xin; Liu, Wei; Liu, Xizhen; Liu, Jianbo; Huang, Jin

    2015-02-03

    The transport of ionic species through a nanochannel plays important roles in fundamental research and practical applications of the nanofluidic device. Here, we demonstrated that ionic transport selectivity of a positively charged nanochannel membrane can be tuned under a phosphoric acid gradient. When phosphoric acid solution and analyte solution were connected by the positively charged nanochannel membrane, the faster-moving analyte through the positively charged nanochannel membrane was the positively charged dye (methylviologen, MV(2+)) instead of the negatively charged dye (1,5-naphthalene disulfonate, NDS(2-)). In other words, a reversed ion selectivity of the nanochannel membranes can be found. It can be explained as a result of the combination of diffusion, induced electroosmosis, and induced electrophoresis. In addition, the influencing factors of transport selectivity, including concentration of phosphoric acid, penetration time, and volume of feed solution, were also investigated. The results showed that the transport selectivity can further be tuned by adjusting these factors. As a method of tuning ionic transport selectivity by establishing phosphoric acid gradient, it will be conducive to improving the separation of ionic species.