Sample records for gadolinium terbium dysprosium

  1. Semiconductor composition containing iron, dysprosium, and terbium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pooser, Raphael C.; Lawrie, Benjamin J.; Baddorf, Arthur P.

    An amorphous semiconductor composition includes 1 to 70 atomic percent iron, 15 to 65 atomic percent dysprosium, 15 to 35 atomic percent terbium, balance X, wherein X is at least one of an oxidizing element and a reducing element. The composition has an essentially amorphous microstructure, an optical transmittance of at least 50% in at least the visible spectrum and semiconductor electrical properties.

  2. Evaluating United States and world consumption of neodymium, dysprosium, terbium, and praseodymium in final products

    NASA Astrophysics Data System (ADS)

    Hart, Matthew

    This paper develops scenarios of future rare-earth-magnet metal (neodymium, dysprosium, terbium, and praseodymium) consumption in the permanent magnets used in wind turbines and hybrid electric vehicles. The scenarios start with naive base-case scenarios for growth in wind-turbine and hybrid-electric-vehicle sales over the period 2011 to 2020, using historical data for each good. These naive scenarios assume that future growth follows time trends in historical data and does not depend on any exogenous variable. Specifically, growth of each technological market follows historical time trends, and the amount of rare earths used per unit of technology remains fixed. The chosen reference year is 2010. Implied consumptions of the rare earth magnet metals are calculated from these scenarios. Assumptions are made for the material composition of permanent magnets, the market share of permanent-magnet wind turbines and vehicles, and magnet weight per unit of technology. Different scenarios estimate how changes in factors like the material composition of magnets, growth of the economy, and the price of a substitute could affect future consumption. Each scenario presents a different method for reducing rare earth consumption and could be interpreted as potential policy choices. In 2010, the consumption (metric tons, rare-earth-oxide equivalent) of each rare-earth-magnet metal was as follows. Total neodymium consumption in the world for both technologies was 995 tons; dysprosium consumption was 133 tons; terbium consumption was 50 tons; praseodymium consumption was zero tons. The base scenario for wind turbines shows there could be strong, exponential growth in the global wind turbine market. New U.S. sales of hybrid vehicles would decline (in line with the current economic recession) while non-U.S. sales increase through 2020. There would be an overall increase in the total amount of magnetic rare earths consumed in the world. Total consumption of each rare earth in the short

  3. Investigation of terbium in the ferroelectric crystal, gadolinium molybdate, as a potential laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crouch, J.E.

    A preliminary non-stimulated study of the laser host combination Gd(2 - x)Tb(x)(MoO4)3 is made. The host material, gadolinium molybdate (GMO), is a ferroelectric/ferroelastic crystal. An investigation of temperature and external electric field affects on the absorption and fluorescence of the crystal did not produce any unusual results. The terbium ion, Tb(3+), peak cross section in GMO for the 5D sub 4 to 7F sub 5 transition is 10 x 10 to the minus twenty first power sq. cm. at 300K. The wavelength of this four level laser transition is 543 nm. (GRA)

  4. Rare Earths; The Fraternal Fifteen (Rev.)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gschneidner, Jr., Karl A.

    1966-01-01

    Rare earths are a set of 15 elements: lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium. They are not rare and not earths; they are metals and quite abundant. They are studied to develop commercial products which are beneficial to mankind, and because some rare earths are important to fission products.

  5. High performance magneto-fluorescent nanoparticles assembled from terbium and gadolinium 1,3-diketones

    PubMed Central

    Zairov, Rustem; Mustafina, Asiya; Shamsutdinova, Nataliya; Nizameev, Irek; Moreira, Beatriz; Sudakova, Svetlana; Podyachev, Sergey; Fattakhova, Alfia; Safina, Gulnara; Lundstrom, Ingemar; Gubaidullin, Aidar; Vomiero, Alberto

    2017-01-01

    Polyelectrolyte-coated nanoparticles consisting of terbium and gadolinium complexes with calix[4]arene tetra-diketone ligand were first synthesized. The antenna effect of the ligand on Tb(III) green luminescence and the presence of water molecules in the coordination sphere of Gd(III) bring strong luminescent and magnetic performance to the core-shell nanoparticles. The size and the core-shell morphology of the colloids were studied using transmission electron microscopy and dynamic light scattering. The correlation between photophysical and magnetic properties of the nanoparticles and their core composition was highlighted. The core composition was optimized for the longitudinal relaxivity to be greater than that of the commercial magnetic resonance imaging (MRI) contrast agents together with high level of Tb(III)-centered luminescence. The tuning of both magnetic and luminescent output of nanoparticles is obtained via the simple variation of lanthanide chelates concentrations in the initial synthetic solution. The exposure of the pheochromocytoma 12 (PC 12) tumor cells and periphery human blood lymphocytes to nanoparticles results in negligible effect on cell viability, decreased platelet aggregation and bright coloring, indicating the nanoparticles as promising candidates for dual magneto-fluorescent bioimaging. PMID:28091590

  6. High performance magneto-fluorescent nanoparticles assembled from terbium and gadolinium 1,3-diketones

    NASA Astrophysics Data System (ADS)

    Zairov, Rustem; Mustafina, Asiya; Shamsutdinova, Nataliya; Nizameev, Irek; Moreira, Beatriz; Sudakova, Svetlana; Podyachev, Sergey; Fattakhova, Alfia; Safina, Gulnara; Lundstrom, Ingemar; Gubaidullin, Aidar; Vomiero, Alberto

    2017-01-01

    Polyelectrolyte-coated nanoparticles consisting of terbium and gadolinium complexes with calix[4]arene tetra-diketone ligand were first synthesized. The antenna effect of the ligand on Tb(III) green luminescence and the presence of water molecules in the coordination sphere of Gd(III) bring strong luminescent and magnetic performance to the core-shell nanoparticles. The size and the core-shell morphology of the colloids were studied using transmission electron microscopy and dynamic light scattering. The correlation between photophysical and magnetic properties of the nanoparticles and their core composition was highlighted. The core composition was optimized for the longitudinal relaxivity to be greater than that of the commercial magnetic resonance imaging (MRI) contrast agents together with high level of Tb(III)-centered luminescence. The tuning of both magnetic and luminescent output of nanoparticles is obtained via the simple variation of lanthanide chelates concentrations in the initial synthetic solution. The exposure of the pheochromocytoma 12 (PC 12) tumor cells and periphery human blood lymphocytes to nanoparticles results in negligible effect on cell viability, decreased platelet aggregation and bright coloring, indicating the nanoparticles as promising candidates for dual magneto-fluorescent bioimaging.

  7. Rare Earth Element Concentrations in Geothermal Wells at the Puna Geothermal Field, Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, Andrew; Zierenberg, Robert

    Rare earth element concentrations in the geothermal wells at the Puna geothermal field, Hawaii. Samples taken from geothermal wells KS-5, KS-6W, KS-9W, KS-14E, and KS-16N. Includes pH and concentrations for Cerium, Dysprosium, Erbium, Europium, Gadolinium, Holmium, Lanthanum, Lutetium, Neodymium, Praseodymium, Samarium, Terbium, Thulium, Yttrium, and Ytterbium. Samples collected on November 11-17, 2016.

  8. Structure, magnetic behavior, and anisotropy of homoleptic trinuclear lanthanoid 8-quinolinolate complexes.

    PubMed

    Chilton, Nicholas F; Deacon, Glen B; Gazukin, Olga; Junk, Peter C; Kersting, Berthold; Langley, Stuart K; Moubaraki, Boujemaa; Murray, Keith S; Schleife, Frederik; Shome, Mahasish; Turner, David R; Walker, Julia A

    2014-03-03

    Three complexes of the form [Ln(III)3(OQ)9] (Ln = Gd, Tb, Dy; OQ = 8-quinolinolate) have been synthesized and their magnetic properties studied. The trinuclear complexes adopt V-shaped geometries with three bridging 8-quinolinolate oxygen atoms between the central and peripheral eight-coordinate metal atoms. The magnetic properties of these three complexes differ greatly. Variable-temperature direct-current (dc) magnetic susceptibility measurements reveal that the gadolinium and terbium complexes display weak antiferromagnetic nearest-neighbor magnetic exchange interactions. This was quantified in the isotropic gadolinium case with an exchangecoupling parameter of J = -0.068(2) cm(-1). The dysprosium compound displays weak ferromagnetic exchange. Variable-frequency and -temperature alternating-current magnetic susceptibility measurements on the anisotropic cases reveal that the dysprosium complex displays single-molecule-magnet behavior, in zero dc field, with two distinct relaxation modes of differing time scales within the same molecule. Analysis of the data revealed anisotropy barriers of Ueff = 92 and 48 K for the two processes. The terbium complex, on the other hand, displays no such behavior in zero dc field, but upon application of a static dc field, slow magnetic relaxation can be observed. Ab initio and electrostatic calculations were used in an attempt to explain the origin of the experimentally observed slow relaxation of the magnetization for the dysprosium complex.

  9. Rare Earth Element Concentrations from Wells at the Don A. Campbell Geothermal Plant, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, Andrew; Zierenberg, Robert

    * Requires permission of originators for use. Rare earth element concentrations in thermal springs from the wells at the Don A. Campbell geothermal plant, Nevada. Samples taken from geothermal wells 85-11, 65-11, 54-11, and 64-11. Includes pH and concentrations for Cerium, Dysprosium, Erbium, Europium, Gadolinium, Holmium, Lanthanum, Lutetium, Neodymium, Praseodymium, Samarium, Terbium, Thulium, Yttrium, and Ytterbium. Samples from Don A. Campbell, Nevada collected on October 14, 2016.

  10. Dysprosium-159 for transmission imaging and bone mineral analysis.

    PubMed

    Rao, D V; Govelitz, G F; Sastry, K S

    1977-01-01

    The suitability of the intense Kalpha x rays of terbium emitted in the electron-capture decay of 159Dy for use in transmission imaging and bone mineral analysis is investigated. It is found that this radionuclide offers all the advantages of radiations from 210 Pb and none of the disadvantages inherent in the use of the latter. Yields of the Kalpha and Kbeta x rays of terbium and the 58-keV gamma rays emitted in 159 Dy decay are determined using a high-resolution Si(Li) photon spectrometer. Attenuation coefficients for these photons in gadolinium (critical) absorber are measured in a narrow-beam geometry. For Tb Kbeta x rays, whose average energy is only about 0.4 keV above the K edge or Gd, our experimental attenuation coefficient is about 10% less than the theoretical value given by Storm and Israel. Transmission images of regular and irregular bones obtained using 159Dy are presented.

  11. Rare-earth doped gadolinia based phosphors for potential multicolor and white light emitting deep UV LEDs.

    PubMed

    Bedekar, Vinila; Dutta, Dimple P; Mohapatra, M; Godbole, S V; Ghildiyal, R; Tyagi, A K

    2009-03-25

    Gadolinium oxide host and europium/dysprosium/terbium doped gadolinium oxide nanoparticles were synthesized using the sonochemical technique. Gadolinium oxide nanocrystals were also co-doped with total 2 mol% of Eu(3+)/Dy(3+),Eu(3+)/Tb(3+),Dy(3+)/Tb(3+), and also Eu(3+)/Dy(3+)/Tb(3+) ions, by the same method. The nanoparticles obtained were characterized using powder x-ray diffraction (XRD), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) techniques. The size of the particles ranged from 15 to 30 nm. The triple doped samples showed multicolor emission on single wavelength excitation. The photoluminescence results were correlated with the lifetime data to get an insight into the luminescence and energy transfer processes taking place in the system. On excitation at 247 nm, the novel nanocrystalline Gd(2)O(3):RE (RE = Dy, Tb) phosphor resulted in having very impressive CIE chromaticity coordinates of x = 0.315 and y = 0.316, and a correlated color temperature of 6508 K, which is very close to standard daylight.

  12. Scanning Electron Microscope-Cathodoluminescence Analysis of Rare-Earth Elements in Magnets.

    PubMed

    Imashuku, Susumu; Wagatsuma, Kazuaki; Kawai, Jun

    2016-02-01

    Scanning electron microscope-cathodoluminescence (SEM-CL) analysis was performed for neodymium-iron-boron (NdFeB) and samarium-cobalt (Sm-Co) magnets to analyze the rare-earth elements present in the magnets. We examined the advantages of SEM-CL analysis over conventional analytical methods such as SEM-energy-dispersive X-ray (EDX) spectroscopy and SEM-wavelength-dispersive X-ray (WDX) spectroscopy for elemental analysis of rare-earth elements in NdFeB magnets. Luminescence spectra of chloride compounds of elements in the magnets were measured by the SEM-CL method. Chloride compounds were obtained by the dropwise addition of hydrochloric acid on the magnets followed by drying in vacuum. Neodymium, praseodymium, terbium, and dysprosium were separately detected in the NdFeB magnets, and samarium was detected in the Sm-Co magnet by the SEM-CL method. In contrast, it was difficult to distinguish terbium and dysprosium in the NdFeB magnet with a dysprosium concentration of 1.05 wt% by conventional SEM-EDX analysis. Terbium with a concentration of 0.02 wt% in an NdFeB magnet was detected by SEM-CL analysis, but not by conventional SEM-WDX analysis. SEM-CL analysis is advantageous over conventional SEM-EDX and SEM-WDX analyses for detecting trace rare-earth elements in NdFeB magnets, particularly dysprosium and terbium.

  13. Cermet electrode

    DOEpatents

    Maskalick, Nicholas J.

    1988-08-30

    Disclosed is a cermet electrode consisting of metal particles of nickel, cobalt, iron, or alloys or mixtures thereof immobilized by zirconia stabilized in cubic form which contains discrete deposits of about 0.1 to about 5% by weight of praseodymium, dysprosium, terbium, or a mixture thereof. The solid oxide electrode can be made by covering a substrate with particles of nickel, cobalt, iron, or mixtures thereof, growing a stabilized zirconia solid oxide skeleton around the particles thereby immobilizing them, contacting the skeleton with a compound of praseodymium, dysprosium, terbium, or a mixture thereof, and heating the skeleton to a temperature of at least 500.degree. C. The electrode can also be made by preparing a slurry of nickel, cobalt, iron, or mixture and a compound of praseodymium, dysprosium, terbium, or a mixture thereof, depositing the slurry on a substrate, heating the slurry to dryness, and growing a stabilized zirconia skeleton around the metal particles.

  14. Dual-mode T1 and T2 magnetic resonance imaging contrast agent based on ultrasmall mixed gadolinium-dysprosium oxide nanoparticles: synthesis, characterization, and in vivo application

    NASA Astrophysics Data System (ADS)

    Tegafaw, Tirusew; Xu, Wenlong; Wasi Ahmad, Md; Baeck, Jong Su; Chang, Yongmin; Bae, Ji Eun; Chae, Kwon Seok; Kim, Tae Jeong; Lee, Gang Ho

    2015-09-01

    A new type of dual-mode T1 and T2 magnetic resonance imaging (MRI) contrast agent based on mixed lanthanide oxide nanoparticles was synthesized. Gd3+ (8S7/2) plays an important role in T1 MRI contrast agents because of its large electron spin magnetic moment resulting from its seven unpaired 4f-electrons, and Dy3+ (6H15/2) has the potential to be used in T2 MRI contrast agents because of its very large total electron magnetic moment: among lanthanide oxide nanoparticles, Dy2O3 nanoparticles have the largest magnetic moments at room temperature. Using these properties of Gd3+ and Dy3+ and their oxide nanoparticles, ultrasmall mixed gadolinium-dysprosium oxide (GDO) nanoparticles were synthesized and their potential to act as a dual-mode T1 and T2 MRI contrast agent was investigated in vitro and in vivo. The D-glucuronic acid coated GDO nanoparticles (davg = 1.0 nm) showed large r1 and r2 values (r2/r1 ≈ 6.6) and as a result clear dose-dependent contrast enhancements in R1 and R2 map images. Finally, the dual-mode imaging capability of the nanoparticles was confirmed by obtaining in vivo T1 and T2 MR images.

  15. White- and blue-light-emitting dysprosium(III) and terbium(III)-doped gadolinium titanate phosphors.

    PubMed

    Antić, Ž; Kuzman, S; Đorđević, V; Dramićanin, M D; Thundat, T

    2017-06-01

    Here we report the synthesis and structural, morphological, and photoluminescence analysis of white- and blue-light-emitting Dy 3 + - and Tm 3 + -doped Gd 2 Ti 2 O 7 nanophosphors. Single-phase cubic Gd 2 Ti 2 O 7 nanopowders consist of compact, dense aggregates of nanoparticles with an average size of ~25 nm for Dy 3 + -doped and ~50 nm for Tm 3 + -doped samples. The photoluminescence results indicated that ultraviolet (UV) light excitation of the Dy 3 + -doped sample resulted in direct generation of white light, while a dominant yellow emission was obtained under blue-light excitation. Intense blue light was obtained for Tm 3 + -doped Gd 2 Ti 2 O 7 under UV excitation suggesting that this material could be used as a blue phosphor. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Fabricating Bis(phthalocyaninato) Terbium SIM into Tetrakis(phthalocyaninato) Terbium SMM with Enhanced Performance through Sodium Coordination.

    PubMed

    Chen, Yuxiang; Liu, Chao; Ma, Fang; Qi, Dongdong; Liu, Qingyun; Sun, Hao-Ling; Jiang, Jianzhuang

    2018-04-23

    The non-peripherally substituted 1,4,8,11,15,18,22,25-octa(butoxy)-phthalocyanine-involved unsymmetrical heteroleptic bis(phthalocyaninato) terbium double-decker, Tb(Pc){H[Pc(α-OC 4 H 9 ) 8 ]} (Pc=unsubstituted phthalocyanine) (1), was revealed to exhibit typical single ion magnet (SIM) behavior with effective energy barrier, 180 K (125 cm -1 ), and blocking temperature, 2 K, due to the severe deviation of the terbium coordination polyhedron from square-antiprismatic geometry. Fabrication of this double-decker compound into the novel tetrakis(phthalocyaninato) terbium pseudo-quadruple-decker Na 2 {Tb(Pc)[Pc(α-OC 4 H 9 ) 8 ]} 2 (2) single molecule magnet (SMM) not only optimizes the coordination polyhedron of terbium ion towards the square-antiprismatic geometry and intensifies the coordination field strength, but more importantly significantly enhances the molecular magnetic anisotropy in the unsymmetrical bis(phthalocyaninato) double-decker unit, along with the change of the counter cation from H + of 1 to Na + of 2, leading to an significantly enhanced magnetic behavior with spin-reversal energy barrier, 528 K (367 cm -1 ), and blocking temperature, 25 K. The present result is surely helpful towards developing novel tetrapyrrole lanthanide SMMs through rational design and self-assembly from bis(tetrapyrrole) lanthanide single ion magnet (SIM) building block. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. MO-G-BRF-07: Optical Characterization of Novel Terbium-Doped Nanophosphors Excited by Clinical Electron and Photon Beams for Potential Use in Molecular Imaging Or Photodynamic Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darafsheh, A; Paik, T; Tenuto, M

    Purpose: Optical properties of terbium (Tb3+)-doped gadolinium trifluoride (GdF3) nanoplates irradiated by electron and photon beams were investigated for their potential as optical probes. The contribution of induced Cerenkov radiation in exciting the nanophosphors was investigated as well. Methods: The emission spectra of Terbium-doped GdF3 dispersed in hexane, embedded in tissue mimicking phantoms were collected by an optical fiber connected to a CCD-coupled spectrograph, while the samples were irradiated by a medical linear accelerator with electron beams of energies 6, 9, 12, 16, and 20 MeV or X-ray beams of energies of 6, and 15 MV. The contribution of inducedmore » Cerenkov radiation in exciting the nanophosphores was investigated in a dedicated experimental apparatus through optical isolation of the samples and also by using 125 kVp X-ray beams whose energy is below the threshold for generating Cerenkov radiation in that medium. Results: Terbium-doped GdF3 nanoplates show characteristic cathodoluminescence emission peaks at 488, 543, 586, and 619 nm, which are responsible for the characteristic f-f transition of terbium ion. In a series of experiments, the contribution of Cerenkov radiation in the luminescence of such nanophosphors was ruled out. Conclusion: We have characterized the optical properties of Terbium-doped GdF3 nanoplates. Such nanocrystals with emission tunability and high surface area that facilitates attachment with targeting reagents are promising in situ light source candidates for molecular imaging or exciting a photosensitizer for ultralow fluence photodynamic therapy. This work is supported by the Department of Radiation Oncology at the University of Pennsylvania, the American Cancer Society through IRG-78-002-28, and the University of Pennsylvania's Nano/Bio Interface Center through NSEC DMR08-32802.« less

  18. Use of terbium as a probe of tRNA tertiary structure and folding.

    PubMed Central

    Hargittai, M R; Musier-Forsyth, K

    2000-01-01

    Lanthanide metals such as terbium have previously been shown to be useful for mapping metal-binding sites in RNA. Terbium binds to the same sites on RNA as magnesium, however, with a much higher affinity. Thus, low concentrations of terbium ions can easily displace magnesium and promote phosphodiester backbone scission. At higher concentrations, terbium cleaves RNA in a sequence-independent manner, with a preference for single-stranded, non-Watson-Crick base-paired regions. Here, we show that terbium is a sensitive probe of human tRNALys,3 tertiary structure and folding. When 1 microM tRNA is used, the optimal terbium ion concentration for detecting Mg2+-induced tertiary structural changes is 50-60 microM. Using these concentrations of RNA and terbium, a magnesium-dependent folding transition with a midpoint (KMg) of 2.6 mM is observed for unmodified human tRNALys,3. At lower Tb3+ concentrations, cleavage is restricted to nucleotides that constitute specific metal-binding pockets. This small chemical probe should also be useful for detecting protein induced structural changes in RNA. PMID:11105765

  19. Superconducting composite with multilayer patterns and multiple buffer layers

    DOEpatents

    Wu, X.D.; Muenchausen, R.E.

    1993-10-12

    An article of manufacture is described including a substrate, a patterned interlayer of a material selected from the group consisting of magnesium oxide, barium-titanium oxide or barium-zirconium oxide, the patterned interlayer material overcoated with a secondary interlayer material of yttria-stabilized zirconia or magnesium-aluminum oxide, upon the surface of the substrate whereby an intermediate article with an exposed surface of both the overcoated patterned interlayer and the substrate is formed, a coating of a buffer layer selected from the group consisting of cerium oxide, yttrium oxide, curium oxide, dysprosium oxide, erbium oxide, europium oxide, iron oxide, gadolinium oxide, holmium oxide, indium oxide, lanthanum oxide, manganese oxide, lutetium oxide, neodymium oxide, praseodymium oxide, plutonium oxide, samarium oxide, terbium oxide, thallium oxide, thulium oxide, yttrium oxide and ytterbium oxide over the entire exposed surface of the intermediate article, and, a ceramic superconductor. 5 figures.

  20. China's rare-earth industry

    USGS Publications Warehouse

    Tse, Pui-Kwan

    2011-01-01

    Introduction China's dominant position as the producer of over 95 percent of the world output of rare-earth minerals and rapid increases in the consumption of rare earths owing to the emergence of new clean-energy and defense-related technologies, combined with China's decisions to restrict exports of rare earths, have resulted in heightened concerns about the future availability of rare earths. As a result, industrial countries such as Japan, the United States, and countries of the European Union face tighter supplies and higher prices for rare earths. This paper briefly reviews China's rare-earth production, consumption, and reserves and the important policies and regulations regarding the production and trade of rare earths, including recently announced export quotas. The 15 lanthanide elements-lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium (atomic numbers 57-71)-were originally known as the rare earths from their occurrence in oxides mixtures. Recently, some researchers have included two other elements-scandium and yttrium-in their discussion of rare earths. Yttrium (atomic number 39), which lies above lanthanum in transition group III of the periodic table and has a similar 3+ ion with a noble gas core, has both atomic and ionic radii similar in size to those of terbium and dysprosium and is generally found in nature with lanthanides. Scandium (atomic number 21) has a smaller ionic radius than yttrium and the lanthanides, and its chemical behavior is intermediate between that of aluminum and the lanthanides. It is found in nature with the lanthanides and yttrium. Rare earths are used widely in high-technology and clean-energy products because they impart special properties of magnetism, luminescence, and strength. Rare earths are also used in weapon systems to obtain the same properties.

  1. [Determination of terbium (III) with EHPG-Tb (III) system by fluorescence spectroscopy].

    PubMed

    Zhao, Chun-gui; Li, Xiao-li; Yang, Bin-sheng

    2007-12-01

    The fluorescence of terbium was sensitized after addition of terbium to the ethylene-N, N'-bis (o-hydioxyphenylglycine) (EHPG) solution. A novel and simple method used for the determination of Tb (III) was developed by means of fluorescence spectroscopy in the presence of EHPG. It was showed that the relative fluorescence intensity is proportional to the concentration of terbium ions, while the molar ratio of terbium to EHPG is less than 1.0 in the system. The maximum wavelengths of excitation and emission are 295 and 547 nm respectively. The optimal range of pH is 7-9. The linear range of detection of the concentration of terbium is from 1.0 x 10(-8) mol x L(-1) to 1.0 x 10(-5) mol x L(-1), with a detection limit of 1.18 x 10(-9) mol x L(-1). The relative standard deviation is still within +/-3% in the presence of other lanthanide ions. The method was applied to the determination of the recoveries of synthetic samples and a rare earth sample with satisfactory results.

  2. Direct determination of graphene quantum dots based on terbium-sensitized luminescence

    NASA Astrophysics Data System (ADS)

    Llorent-Martínez, Eulogio J.; Molina-García, Lucía; Durán, Gema M.; Ruiz-Medina, Antonio; Ríos, Ángel

    2018-06-01

    Graphene quantum dots (GQD) were determined in water samples using terbium-sensitized luminescence (TSL). Terbium ions complex with GQD due to the carboxylic groups that are usually present in these nanomaterials, increasing the luminescence signal of terbium. In Tb(III)-GQD complexes, GQD absorb energy at their characteristic excitation wavelength and transfer it to terbium ion, which emits at its particular emission wavelength. The analytical signal, measured at λexc = 257 nm and λem = 545 nm, increases proportionally to GQD concentration between 50 and 500 μg L-1. Under optimum conditions, the proposed method presents a detection limit of 15 μg L-1 and is selective to GQD in the presence of other nanomaterials of similar size. As GQD are highly water-soluble, they are potential contaminants in environmental or drinking waters water samples, and hence the method was applied to the analysis of different drinking waters which were the target samples for the application of the developed method.

  3. Direct determination of graphene quantum dots based on terbium-sensitized luminescence.

    PubMed

    Llorent-Martínez, Eulogio J; Molina-García, Lucía; Durán, Gema M; Ruiz-Medina, Antonio; Ríos, Ángel

    2018-06-05

    Graphene quantum dots (GQD) were determined in water samples using terbium-sensitized luminescence (TSL). Terbium ions complex with GQD due to the carboxylic groups that are usually present in these nanomaterials, increasing the luminescence signal of terbium. In Tb(III)-GQD complexes, GQD absorb energy at their characteristic excitation wavelength and transfer it to terbium ion, which emits at its particular emission wavelength. The analytical signal, measured at λ exc =257nm and λ em =545nm, increases proportionally to GQD concentration between 50 and 500μgL -1 . Under optimum conditions, the proposed method presents a detection limit of 15μgL -1 and is selective to GQD in the presence of other nanomaterials of similar size. As GQD are highly water-soluble, they are potential contaminants in environmental or drinking waters water samples, and hence the method was applied to the analysis of different drinking waters which were the target samples for the application of the developed method. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Dosimetric properties of dysprosium doped lithium borate glass irradiated by 6 MV photons

    NASA Astrophysics Data System (ADS)

    Ab Rasid, A.; Wagiran, H.; Hashim, S.; Ibrahim, Z.; Ali, H.

    2015-07-01

    Undoped and dysprosium doped lithium borate glass system with empirical formula (70-x) B2O3-30 Li2O-(x) Dy2O3 (x=0.1, 0.3, 0.5, 0.7, 1.0 mol%) were prepared using the melt-quenching technique. The dosimetric measurements were performed by irradiating the samples to 6 MV photon beam using linear accelerator (LINAC) over a dose range of 0.5-5.0 Gy. The glass series of dysprosium doped lithium borate glass produced the best thermoluminescence (TL) glow curve with the highest intensity peak from sample with 1.0 mol% Dy2O3 concentration. Minimum detectable dose was detected at 2.24 mGy, good linearity of regression coefficient, high reproducibility and high sensitivity compared to the undoped glass are from 1.0 mol% dysprosium doped lithium borate glass. The results indicated that the series of dysprosium doped lithium glasses have a great potential to be considered as a thermoluminescence dosimetry (TLD).

  5. Gadolinium toxicity and treatment.

    PubMed

    Ramalho, Joana; Ramalho, Miguel; Jay, Michael; Burke, Lauren M; Semelka, Richard C

    2016-12-01

    Gadolinium based contrast agents (GBCAs) play an important role in the diagnostic evaluation of many patients. The safety of these agents has been once again questioned after gadolinium deposits were observed and measured in brain and bone of patients with normal renal function. This retention of gadolinium in the human body has been termed "gadolinium storage condition". The long-term and cumulative effects of retained gadolinium in the brain and elsewhere are not as yet understood. Recently, patients who report that they suffer from chronic symptoms secondary to gadolinium exposure and retention created gadolinium-toxicity on-line support groups. Their self-reported symptoms have recently been published. Bone and joint complaints, and skin changes were two of the most common complaints. This condition has been termed "gadolinium deposition disease". In this review we will address gadolinium toxicity disorders, from acute adverse reactions to GBCAs to gadolinium deposition disease, with special emphasis on the latter, as it is the most recently described and least known. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. An electrostatic model for the determination of magnetic anisotropy in dysprosium complexes.

    PubMed

    Chilton, Nicholas F; Collison, David; McInnes, Eric J L; Winpenny, Richard E P; Soncini, Alessandro

    2013-01-01

    Understanding the anisotropic electronic structure of lanthanide complexes is important in areas as diverse as magnetic resonance imaging, luminescent cell labelling and quantum computing. Here we present an intuitive strategy based on a simple electrostatic method, capable of predicting the magnetic anisotropy of dysprosium(III) complexes, even in low symmetry. The strategy relies only on knowing the X-ray structure of the complex and the well-established observation that, in the absence of high symmetry, the ground state of dysprosium(III) is a doublet quantized along the anisotropy axis with an angular momentum quantum number mJ=±(15)/2. The magnetic anisotropy axis of 14 low-symmetry monometallic dysprosium(III) complexes computed via high-level ab initio calculations are very well reproduced by our electrostatic model. Furthermore, we show that the magnetic anisotropy is equally well predicted in a selection of low-symmetry polymetallic complexes.

  7. Dysprosium electrodeposition from a hexaalkylguanidinium-based ionic liquid

    NASA Astrophysics Data System (ADS)

    Berger, Claudia A.; Arkhipova, Maria; Maas, Gerhard; Jacob, Timo

    2016-07-01

    The rare-earth element dysprosium (Dy) is an important additive that increases the magnetocrystalline anisotropy of neodymium magnets and additionally prevents from demagnetizing at high temperatures. Therefore, it is one of the most important elements for high-tech industries and is mainly used in permanent magnetic applications, for example in electric vehicles, industrial motors and direct-drive wind turbines. In an effort to develop a more efficient electrochemical technique for depositing Dy on Nd-magnets in contrast to commonly used costly physical vapor deposition, we investigated the electrochemical behavior of dysprosium(iii) trifluoromethanesulfonate in a custom-made guanidinium-based room-temperature ionic liquid (RTIL). We first examined the electrodeposition of Dy on an Au(111) model electrode. The investigation was carried out by means of cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS). The initial stages of metal deposition were followed by in situ scanning tunneling microscopy (STM). CV measurements revealed a large cathodic reduction peak, which corresponds to the growth of monoatomic high islands, based on STM images taken during the initial stages of deposition. XPS identified these deposited islands as dysprosium. A similar reduction peak was also observed on an Nd-Fe-B substrate, and positively identified as deposited Dy using XPS. Finally, we varied the concentration of the Dy precursor, electrolyte flow and temperature during Dy deposition and demonstrated that each of these parameters could be used to increase the thickness of the Dy deposit, suggesting that these parameters could be tuned simultaneously in a temperature-controlled flow cell to enhance the thickness of the Dy layer.The rare-earth element dysprosium (Dy) is an important additive that increases the magnetocrystalline anisotropy of neodymium magnets and additionally prevents from demagnetizing at high temperatures. Therefore, it is one of the most important

  8. A solid-phase extraction method using Transcarpathian clinoptilolite for preconcentration of trace amounts of terbium in water samples.

    PubMed

    Vasylechko, Volodymyr O; Gryshchouk, Galyna V; Zakordonskiy, Victor P; Vyviurska, Olga; Pashuk, Andriy V

    2015-01-01

    In spite of the fact that terbium is one of the rarest elements in the Earth's crust, it is frequently used for the production of high technological materials. At the result, an effective combination of sample preparation procedure and detection method for terbium ions in different matrices is highly required. The solid-phase extraction procedure with natural Transcarpathian clinoptilolite thermally activated at 350 °C was used to preconcentrate trace amounts of terbium ions in aqueous solutions for a final spectrophotometric determination with arsenazo III. Thermogravimetric investigations confirmed the existence of relations between changes that appeared during dehydratation of calcined zeolite and its sorption affinity. Since the maximum of sorption capacity towards terbium was observed at pH 8.25, a borate buffer medium (2.5 · 10(-4) М) was used to maintain ionic force and solution acidity. Terbium was quantitatively removed from the solid-phase extraction column with a 1.0 M solution of sodium chloride (pH 2.5). The linearity of the proposed method was evaluated in the range of 2.5-200 ng · mL(-1) with detection limit 0.75 ng · mL(-1). Due to acceptable recoveries (93.3-102.0 %) and RSD values (6-7.1) from spiked tap water, the developed method can be successfully applied for the determination of trace amounts of terbium ions in the presence of major components of water. Graphical abstractSorption of terbium(III) ions on clinoptilolite.

  9. Dysprosium electrodeposition from a hexaalkylguanidinium-based ionic liquid.

    PubMed

    Berger, Claudia A; Arkhipova, Maria; Maas, Gerhard; Jacob, Timo

    2016-08-07

    The rare-earth element dysprosium (Dy) is an important additive that increases the magnetocrystalline anisotropy of neodymium magnets and additionally prevents from demagnetizing at high temperatures. Therefore, it is one of the most important elements for high-tech industries and is mainly used in permanent magnetic applications, for example in electric vehicles, industrial motors and direct-drive wind turbines. In an effort to develop a more efficient electrochemical technique for depositing Dy on Nd-magnets in contrast to commonly used costly physical vapor deposition, we investigated the electrochemical behavior of dysprosium(iii) trifluoromethanesulfonate in a custom-made guanidinium-based room-temperature ionic liquid (RTIL). We first examined the electrodeposition of Dy on an Au(111) model electrode. The investigation was carried out by means of cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS). The initial stages of metal deposition were followed by in situ scanning tunneling microscopy (STM). CV measurements revealed a large cathodic reduction peak, which corresponds to the growth of monoatomic high islands, based on STM images taken during the initial stages of deposition. XPS identified these deposited islands as dysprosium. A similar reduction peak was also observed on an Nd-Fe-B substrate, and positively identified as deposited Dy using XPS. Finally, we varied the concentration of the Dy precursor, electrolyte flow and temperature during Dy deposition and demonstrated that each of these parameters could be used to increase the thickness of the Dy deposit, suggesting that these parameters could be tuned simultaneously in a temperature-controlled flow cell to enhance the thickness of the Dy layer.

  10. Edwin M. McMillan

    Science.gov Websites

    mixture. The separation of the different components in these compound earths has been no easy task, since terbium and dysprosium in the lanthanides. By irradiating different sorts of heavy atoms with neutrons Berkeley Lab Search Submit Web People Close About the Lab Leadership/Organization Calendar News Center

  11. Relaxation dynamics of dysprosium(III) single molecule magnets.

    PubMed

    Guo, Yun-Nan; Xu, Gong-Feng; Guo, Yang; Tang, Jinkui

    2011-10-21

    Over the past decade, lanthanide compounds have become of increasing interest in the field of Single Molecule Magnets (SMMs) due to the large inherent anisotropy of the metal ions. Heavy lanthanide metal systems, in particular those containing the dysprosium(III) ion, have been extensively employed to direct the formation of a series of SMMs. Although remarkable progress is being made regarding the synthesis and characterization of lanthanide-based SMMs, the understanding and control of the relaxation dynamics of strongly anisotropic systems represents a formidable challenge, since the dynamic behaviour of lanthanide-based SMMs is significantly more complex than that of transition metal systems. This perspective paper describes illustrative examples of pure dysprosium(III)-based SMMs, published during the past three years, showing new and fascinating phenomena in terms of magnetic relaxation, aiming at shedding light on the features relevant to modulating relaxation dynamics of polynuclear lanthanide SMMs. This journal is © The Royal Society of Chemistry 2011

  12. Gadolinium diethylenetriaminopentaacetic acid-loaded chitosan microspheres for gadolinium neutron-capture therapy.

    PubMed

    Saha, Tapan Kumar; Ichikawa, Hideki; Fukumori, Yoshinobu

    2006-12-11

    In order to provide a suitable device that would contain water-soluble drugs, highly water-soluble gadolinium diethylenetriaminopentaacetic acid-loaded chitosan microspheres (CMS-Gd-DTPA) were prepared by the emulsion method using glutaraldehyde as a cross-linker and Span 80 as a surfactant for gadolinium neutron-capture therapy of cancer. The gadolinium content and the mass median diameter of CMS-Gd-DTPA were estimated. The size and morphology of the CMS-Gd-DTPA were strongly influenced by the initial applied weight ratio of Gd-DTPA:chitosan. FTIR spectra showed that the electrostatic interaction between chitosan and Gd-DTPA accelerated the formation of gadolinium-enriched chitosan microspheres. Sufficient amounts of glutaraldehyde and Span 80 were necessary for producing discrete CMS-Gd-DTPA. The CMS-Gd-DTPA having a mass median diameter 11.7microm and 11.6% of gadolinium could be used in Gd-NCT following intratumoral injection.

  13. Development of a Terbium-Sensitized Fluorescence Method for Analysis of Silibinin.

    PubMed

    Ershadi, Saba; Jouyban, Abolghasem; Molavi, Ommoleila; Shayanfar, Ali

    2017-05-01

    Silibinin is a natural flavonoid with potent anticancer properties, as shown in both in vitro and in vivo experiments. Various methods have been used for silibinin analysis. Terbium-sensitized fluorescence methods have been widely used for the determination of drugs in pharmaceutical preparations and biological samples in recent years. The present work is aimed at providing a simple analytical method for the quantitative determination of silibinin in aqueous solutions based on the formation of a fluorescent complex with terbium ion. Terbium concentration, pH, and volume of buffer, the important effective parameters for the determination of silibinin by the proposed method, were optimized using response surface methodology. The fluorescence intensity of silibinin was measured at 545 nm using λex = 334 nm. The developed method was applied for the determination of silibinin in plasma samples after protein precipitation with acetone. Under optimum conditions, the method provided a linear range between 0.10 and 0.50 mg/L, with a coefficient of determination (R2) of 0.997. The LOD and LOQ were 0.034 and 0.112 mg/L, respectively. These results indicate that the developed method is a simple, low-cost, and suitable analytical method for the quantification of silibinin in aqueous solution and plasma samples.

  14. Preparation, characterization and luminescence properties of core-shell ternary terbium composites SiO2(600)@Tb(MABA-Si)•L

    NASA Astrophysics Data System (ADS)

    Ma, Yang-Yang; Li, Wen-Xian; Zheng, Yu-Shan; Bao, Jin-Rong; Li, Yi-Lian; Feng, Li-Na; Yang, Kui-Suo; Qiao, Yan; Wu, An-Ping

    2018-03-01

    Two novel core-shell structure ternary terbium composites SiO2(600)@Tb(MABA-Si)·L(L:dipy/phen) nanometre luminescence materials were prepared by ternary terbium complexes Tb(MABA-Si)·L2·(ClO4)3·2H2O shell grafted onto the surface of SiO2 microspheres. And corresponding ternary terbium complexes were synthesized using (CONH(CH2)3Si(OCH2CH3)3)2 (denoted as MABA-Si) as first ligand and L as second ligand coordinated with terbium perchlorate. The as-synthesized products were characterized by means of IR spectra, 1HNMR, element analysis, molar conductivity, SEM and TEM. It was found that the first ligand MABA-Si of terbium ternary complex hydrolysed to generate the Si-OH and the Si-OH condensate with the Si-OH on the surface of SiO2 microspheres; then ligand MABA-Si grafted onto the surface of SiO2 microspheres. The diameter of SiO2 core of SiO2(600)@Tb(MABA-Si)·L was approximately 600 nm. Interestingly, the luminescence properties demonstrate that the two core-shell structure ternary terbium composites SiO2(600)Tb(MABA-Si)·L(dipy/phen) exhibit strong emission intensities, which are 2.49 and 3.35 times higher than that of the corresponding complexes Tb(MABA-Si)·L2·(ClO4)3·2H2O, respectively. Luminescence decay curves show that core-shell structure ternary terbium composites have longer lifetime. Excellent luminescence properties enable the core-shell materials to have potential applications in medicine, industry, luminescent fibres and various biomaterials fields.

  15. Preparation, characterization and luminescence properties of core-shell ternary terbium composites SiO2(600)@Tb(MABA-Si)•L.

    PubMed

    Ma, Yang-Yang; Li, Wen-Xian; Zheng, Yu-Shan; Bao, Jin-Rong; Li, Yi-Lian; Feng, Li-Na; Yang, Kui-Suo; Qiao, Yan; Wu, An-Ping

    2018-03-01

    Two novel core-shell structure ternary terbium composites SiO 2(600) @Tb(MABA-Si)·L(L:dipy/phen) nanometre luminescence materials were prepared by ternary terbium complexes Tb(MABA-Si)·L 2 ·(ClO 4 ) 3 ·2H 2 O shell grafted onto the surface of SiO 2 microspheres. And corresponding ternary terbium complexes were synthesized using (CONH(CH 2 ) 3 Si(OCH 2 CH 3 ) 3 ) 2 (denoted as MABA-Si) as first ligand and L as second ligand coordinated with terbium perchlorate. The as-synthesized products were characterized by means of IR spectra, 1 HNMR, element analysis, molar conductivity, SEM and TEM. It was found that the first ligand MABA-Si of terbium ternary complex hydrolysed to generate the Si-OH and the Si-OH condensate with the Si-OH on the surface of SiO 2 microspheres; then ligand MABA-Si grafted onto the surface of SiO 2 microspheres. The diameter of SiO 2 core of SiO 2(600) @Tb(MABA-Si)·L was approximately 600 nm. Interestingly, the luminescence properties demonstrate that the two core-shell structure ternary terbium composites SiO 2(600) Tb(MABA-Si)·L(dipy/phen) exhibit strong emission intensities, which are 2.49 and 3.35 times higher than that of the corresponding complexes Tb(MABA-Si)·L 2 ·(ClO 4 ) 3 ·2H 2 O, respectively. Luminescence decay curves show that core-shell structure ternary terbium composites have longer lifetime. Excellent luminescence properties enable the core-shell materials to have potential applications in medicine, industry, luminescent fibres and various biomaterials fields.

  16. Preparation, characterization and luminescence properties of core–shell ternary terbium composites SiO2(600)@Tb(MABA-Si)•L

    PubMed Central

    Ma, Yang-Yang; Zheng, Yu-Shan; Bao, Jin-Rong; Li, Yi-Lian; Feng, Li-Na; Yang, Kui-Suo; Qiao, Yan; Wu, An-Ping

    2018-01-01

    Two novel core–shell structure ternary terbium composites SiO2(600)@Tb(MABA-Si)·L(L:dipy/phen) nanometre luminescence materials were prepared by ternary terbium complexes Tb(MABA-Si)·L2·(ClO4)3·2H2O shell grafted onto the surface of SiO2 microspheres. And corresponding ternary terbium complexes were synthesized using (CONH(CH2)3Si(OCH2CH3)3)2 (denoted as MABA-Si) as first ligand and L as second ligand coordinated with terbium perchlorate. The as-synthesized products were characterized by means of IR spectra, 1HNMR, element analysis, molar conductivity, SEM and TEM. It was found that the first ligand MABA-Si of terbium ternary complex hydrolysed to generate the Si–OH and the Si–OH condensate with the Si–OH on the surface of SiO2 microspheres; then ligand MABA-Si grafted onto the surface of SiO2 microspheres. The diameter of SiO2 core of SiO2(600)@Tb(MABA-Si)·L was approximately 600 nm. Interestingly, the luminescence properties demonstrate that the two core–shell structure ternary terbium composites SiO2(600)Tb(MABA-Si)·L(dipy/phen) exhibit strong emission intensities, which are 2.49 and 3.35 times higher than that of the corresponding complexes Tb(MABA-Si)·L2·(ClO4)3·2H2O, respectively. Luminescence decay curves show that core–shell structure ternary terbium composites have longer lifetime. Excellent luminescence properties enable the core–shell materials to have potential applications in medicine, industry, luminescent fibres and various biomaterials fields. PMID:29657773

  17. Subcellular SIMS imaging of gadolinium isotopes in human glioblastoma cells treated with a gadolinium containing MRI agent

    NASA Astrophysics Data System (ADS)

    Smith, Duane R.; Lorey, Daniel R.; Chandra, Subhash

    2004-06-01

    Neutron capture therapy is an experimental binary radiotherapeutic modality for the treatment of brain tumors such as glioblastoma multiforme. Recently, neutron capture therapy with gadolinium-157 has gained attention, and techniques for studying the subcellular distribution of gadolinium-157 are needed. In this preliminary study, we have been able to image the subcellular distribution of gadolinium-157, as well as the other six naturally abundant isotopes of gadolinium, with SIMS ion microscopy. T98G human glioblastoma cells were treated for 24 h with 25 mg/ml of the metal ion complex diethylenetriaminepentaacetic acid Gd(III) dihydrogen salt hydrate (Gd-DTPA). Gd-DTPA is a contrast enhancing agent used for MRI of brain tumors, blood-brain barrier impairment, diseases of the central nervous system, etc. A highly heterogeneous subcellular distribution was observed for gadolinium-157. The nuclei in each cell were distinctly lower in gadolinium-157 than in the cytoplasm. Even within the cytoplasm the gadolinium-157 was heterogeneously distributed. The other six naturally abundant isotopes of gadolinium were imaged from the same cells and exhibited a subcellular distribution consistent with that observed for gadolinium-157. These observations indicate that SIMS ion microscopy may be a viable approach for subcellular studies of gadolinium containing neutron capture therapy drugs and may even play a major role in the development and validation of new gadolinium contrast enhancing agents for diagnostic MRI applications.

  18. Critical Rare Earths, National Security, and U.S.-China Interactions: A Portfolio Approach to Dysprosium Policy Design

    DTIC Science & Technology

    2015-01-01

    by the graduate fellow’s faculty committee. C O R P O R A T I O N Dissertation Critical Rare Earths, National Security, and U.S.-China Interactions A...Portfolio Approach to Dysprosium Policy Design David L. An Dissertation Critical Rare Earths, National Security, and U.S.-China Interactions A...Permanent Magnet ................................................ xxiv Dysprosium, the Most Critical Rare Earth

  19. Plastic optical fibre sensor for in-vivo radiation monitoring during brachytherapy

    NASA Astrophysics Data System (ADS)

    Woulfe, P.; Sullivan, F. J.; Lewis, E.; O'Keeffe, S.

    2015-09-01

    An optical fibre sensor is presented for applications in real-time in-vivo monitoring of the radiation dose a cancer patient receives during seed implantation in Brachytherapy. The sensor is based on radioluminescence whereby radiation sensitive scintillation material is embedded in the core of a 1mm plastic optical fibre. Three scintillation materials are investigated: thallium-doped caesium iodide (CsI:Tl), terbium-doped gadolinium oxysulphide (Gd2O2S:Tb) and europium-doped lanthanum oxysulphide (La2O2S:Eu). Terbium-doped gadolinium oxysulphide was identified as being the most suitable scintillator and further testing demonstrates its measureable response to different activities of Iodine-125, the radio-active source commonly used in Brachytherapy for treating prostate cancer.

  20. Investigation of terbium scandate as an alternative gate dielectric in fully depleted transistors

    NASA Astrophysics Data System (ADS)

    Roeckerath, M.; Lopes, J. M. J.; Özben, E. Durǧun; Urban, C.; Schubert, J.; Mantl, S.; Jia, Y.; Schlom, D. G.

    2010-01-01

    Terbium scandate thin films were deposited by e-gun evaporation on (100) silicon substrates. Rutherford backscattering spectrometry and x-ray diffraction studies revealed homogeneous chemical compositions of the films. A dielectric constant of 26 and CV-curves with small hystereses were measured as well as low leakage current densities of <1 nA/cm2. Fully depleted n-type field-effect transistors on thin silicon-on-insulator substrates with terbium scandate gate dielectrics were fabricated with a gate-last process. The devices show inverse subthreshold slopes of 80 mV/dec and a carrier mobility for electrons of 225 cm2/V•s was extracted.

  1. An Integrated Rare Earth Elements Supply Chain Strategy

    DTIC Science & Technology

    2011-02-24

    iron boron magnets in Joint Direct Attack Munitions (JDAM) smart bombs; neodymium-yttrium- aluminum - garnet lasers and range finders in multiple weapon...components Europium 63 computer screens, fluorescent lights Gadolinium 64 magnetic applications, phosphors Terbium 65 phosphors, projection TV’s...Defense Stockpile report advised several production delays of weapons systems were caused by lanthanum, cerium, europium and gadolinium supply

  2. Study of Silver Nanoparticles Sensitized Fluorescence and Second-Order Scattering of Terbium(III)-Pefloxacin Mesylate Complex and Determination of Pefloxacin Mesylate

    PubMed Central

    Li, Aiyun; Song, Zhiqiang

    2014-01-01

    α-Keto acid of pefloxacin mesylate (PFLX) can form the complex with Terbium(III). The intramolecular energy from PFLX to Terbium(III) ion takes place when excited, and thus Terbium(III) excited state is formed and then emits the characteristic fluorescence of Terbium(III), locating at 490, 545, 580, and 620 nm. The second-order scattering (SOS) peak at 545 nm also appears for the complex with the exciting wavelength of 273 nm. When the silver nanoparticles are added to the system, the luminescence intensity at 545 nm greatly increased. So, with the adding of nanoparticles to the Terbium(III)-PFLX complex, not only is the intramolecular energy promoted but also the SOS intensity is enhanced. The experimental results show that it is the silver nanoparticles with certain size and certain concentration which can greatly enhance the fluorescence-SOS intensity, and the relative intensity at 545 nm is proportional to the amount of PFLX. Based on this phenomenon, a novel method for the determination of PFLX has been developed and applied to the determination of PFLX in capsule and serum samples. PMID:24892083

  3. Removal of gadolinium by peritoneal dialysis.

    PubMed

    Murashima, M; Drott, H R; Carlow, D; Shaw, L M; Milone, M; Bachman, M; Tsai, D E; Yang, S-L; Bloom, R D

    2008-05-01

    An association between gadolinium-containing contrast and the development of nephrogenic systemic fibrosis (NSF) has been increasingly recognized. For patients receiving hemodialysis (HD) who are exposed to gadolinium, the Federal Drug Administration (FDA) recommends HD to remove this contrast agent in order to minimize the risk of NSF. This study examines if gadolinium can be removed by frequent exchanges by peritoneal dialysis (PD). Following administration of 0.1 mmol/kg of gadodiamide to a patient with end-stage renal disease, the serum clearance of this contrast agent by automated PD was examined. 10 and 15 exchanges of PD using an automated cycler were respectively performed during the first and second 24-hour periods after gadolinium exposure. Serum gadolinium levels were measured 1 hour after the gadolinium administration, then at 24 and 48 hours after PD was initiated. 90% of the gadolinium was removed from the circulation in 2 days with a regimen of 10-15 exchanges per day of PD. For patients on chronic maintenance PD who receive gadolinium, our case suggests that a temporary intensive automated PD regimen, aimed at maximizing clearance of this contrast agent immediately after exposure, could be an effective alternative when institution of HD is problematic.

  4. All-fiber Faraday Devices Based on Terbium-doped Fiber

    NASA Astrophysics Data System (ADS)

    Sun, Lei

    Surface damage is one of the most problematic power limits in high-power fiber laser systems. All-fiber Faraday components are demonstrated as a solution to this problem, since they can be completely fusion-spliced into existing systems, eliminating all glass-air interfaces. Beam filamentation due to self-focusing places another limit on the peak power attainable from fiber laser systems. The limits imposed by this phenomenon are analyzed for the first time. The concept of an effective Verdet constant is proposed and experimentally validated. The effective Verdet constant of light propagation in a fiber includes contributions from the materials in both the core and the cladding. It is measured in a 25-wt% terbium-doped-core phosphate fiber to be --6.2 rad/(Tm) at 1053 nm, which is six times larger than silica fiber. The result agrees well with Faraday rotation theory in optical fiber. A compact all-fiber Faraday isolator and a Faraday mirror are demonstrated. At the core of each of these components is an all-fiber Faraday rotator made of a 4cm-long, 65-wt%-terbium-doped silicate fiber. The effective Verdet constant of the terbium-doped fiber is measured to be -32 rad/(Tm), which is 27x larger than that of silica fiber. This effective Verdet constant is the largest value measured to date in any fiber and is 83% of the Verdet constant of commercially available crystals used in bulk-optics-based isolators. Combining the all-fiber Faraday rotator with fiber polarizers results in a fully fusion-spliced all-fiber isolator whose isolation is measured to be 19 dB. Combining the all-fiber Faraday rotator with a fiber Bragg grating results in an all-fiber Faraday mirror that rotates the polarization state of the reflected light by 88 +/- 4°. An all-fiber optical magnetic field sensor is also demonstrated. It consists of a fiber Faraday rotator and a fiber polarizer. The fiber Faraday rotator uses a 2-cm-long section of 56-wt%-terbium-doped silicate fiber with a Verdet

  5. Sandwich-type tetrakis(phthalocyaninato) dysprosium-cadmium quadruple-decker SMM.

    PubMed

    Wang, Hailong; Qian, Kang; Wang, Kang; Bian, Yongzhong; Jiang, Jianzhuang; Gao, Song

    2011-09-14

    Homoleptic tetrakis[2,3,9,10,16,17,23,24-octa(butyloxy)phthalocyaninato] dysprosium-cadmium quadruple-decker complex 1 was isolated in relatively good yield of 43% from a simple one-pot reaction. This compound represents the first sandwich-type tetrakis(phthalocyaninato) rare earth-cadmium quadruple-decker SMM that has been structurally characterized. This journal is © The Royal Society of Chemistry 2011

  6. Structural, optical and magnetic properties of gadolinium sesquioxide nanobars synthesized via thermal decomposition of gadolinium oxalate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manigandan, R.; Giribabu, K.; Suresh, R.

    2013-10-15

    Graphical abstract: - Highlights: • The cubic Gd{sub 2}O{sub 3} nanobars are synthesized by decomposition of C{sub 6}H{sub 20}Gd{sub 2}O{sub 22}. • The nanoparticles are rectangular bar shape with high porous surface. • The combination of magnetic and optical properties within a single particle. • The Gd{sub 2}O{sub 3} nanobars have tailorable nanostructure, wide bandgap and are paramagnetic. - Abstract: Gadolinium oxide nanobars were obtained by thermal decomposition of gadolinium oxalate, which was synthesized by the chemical precipitation method along with glycerol. The functional group analysis and formation of gadolinium oxide from gadolinium oxalate were characterized by the Fourier transformmore » infrared spectroscopy and thermo gravimetric analyzer. The crystal structure, average crystallite size, and lattice parameter were analyzed by X-ray diffraction technique. Moreover, Raman shifts, elemental composition and morphology of the gadolinium oxide was widely investigated by the laser Raman microscope, X-ray photoelectron spectroscopy, FE-SEM-EDAX and HR-TEM, respectively. Furthermore, the optical properties like band gap, absorbance measurement of the gadolinium oxide were extensively examined. In addition, the paramagnetic property of gadolinium oxide nanobars was explored by the vibrating sample magnetometer.« less

  7. Pathophysiology of gadolinium-associated systemic fibrosis

    PubMed Central

    Drel, Viktor; Gorin, Yves

    2016-01-01

    Systemic fibrosis from gadolinium-based magnetic resonance imaging contrast is a scourge for the afflicted. Although gadolinium-associated systemic fibrosis is a rare condition, the threat of litigation has vastly altered clinical practice. Most theories concerning the etiology of the fibrosis are grounded in case reports rather than experiment. This has led to the widely accepted conjecture that the relative affinity of certain contrast agents for the gadolinium ion inversely correlates with the risk of succumbing to the disease. How gadolinium-containing contrast agents trigger widespread and site-specific systemic fibrosis and how chronicity is maintained are largely unknown. This review highlights experimentally-derived information from our laboratory and others that pertain to our understanding of the pathophysiology of gadolinium-associated systemic fibrosis. PMID:27147669

  8. Superconducting composite with multilayer patterns and multiple buffer layers

    DOEpatents

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    An article of manufacture including a substrate, a patterned interlayer of a material selected from the group consisting of magnesium oxide, barium-titanium oxide or barium-zirconium oxide, the patterned interlayer material overcoated with a secondary interlayer material of yttria-stabilized zirconia or magnesium-aluminum oxide, upon the surface of the substrate whereby an intermediate article with an exposed surface of both the overcoated patterned interlayer and the substrate is formed, a coating of a buffer layer selected from the group consisting of cerium oxide, yttrium oxide, curium oxide, dysprosium oxide, erbium oxide, europium oxide, iron oxide, gadolinium oxide, holmium oxide, indium oxide, lanthanum oxide, manganese oxide, lutetium oxide, neodymium oxide, praseodymium oxide, plutonium oxide, samarium oxide, terbium oxide, thallium oxide, thulium oxide, yttrium oxide and ytterbium oxide over the entire exposed surface of the intermediate article, and, a ceramic superco n FIELD OF THE INVENTION The present invention relates to the field of superconducting articles having two distinct regions of superconductive material with differing in-plane orientations whereby the conductivity across the boundary between the two regions can be tailored. This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  9. Mixed (phthalocyaninato)(Schiff-base) di-dysprosium sandwich complexes. Effect of magnetic coupling on the SMM behavior.

    PubMed

    Wang, Hailong; Liu, Chenxi; Liu, Tao; Zeng, Suyuan; Cao, Wei; Ma, Qi; Duan, Chunying; Dou, Jianmin; Jiang, Jianzhuang

    2013-11-21

    Reaction between Schiff-base ligand and half-sandwich complex M(Pc)(acac) led to the isolation of new sandwich-type mixed (phthalocyaninato)(Schiff-base) di-lanthanide compounds M2(Pc)2(L)H2O (M = Dy, Gd) (1, 2) [H2Pc = metal free phthalocyanine, Hacac = acetylacetone, H2L = N,N'-bis(3-methyloxysalicylidene)benzene-1,2-diamine] with the triple-decker molecular structure clearly revealed by single crystal X-ray diffraction analysis. For the comparative studies, sandwich triple-decker analogues with pure Schiff-base ligand M2(L)3H2O (M = Dy, Gd) (3, 4) were also prepared. Dynamic magnetic measurement result reveals the single-molecule magnet (SMM) nature of the di-dysprosium derivative 1, while the static magnetic investigation over both pure and the diamagnetic diluted samples of this compound discloses the interionic ferromagnetic coupling between the two dysprosium ions, which in turn effectively suppresses the QTM and enhances the energy barrier of this SMM. Nevertheless, comparative studies over the static magnetic properties of the di-dysprosium triple-decker complexes 1 and 3 indicate the stronger magnetic coupling between the two lanthanide ions in mixed (phthalocyaninato)(Schiff-base) species than in the pure Schiff-base triple-decker analogue, suggesting the special coordination sphere around the dysprosium ions in the former compound over the latter one on the more intense inter-ionic ferromagnetic coupling. As a very small step towards understanding the structure-property relationship, the present result will be surely helpful for the design and synthesis of the multinuclear lanthanide-based SMMs with good properties.

  10. Resonance region measurements of dysprosium and rhenium

    NASA Astrophysics Data System (ADS)

    Leinweber, Gregory; Block, Robert C.; Epping, Brian E.; Barry, Devin P.; Rapp, Michael J.; Danon, Yaron; Donovan, Timothy J.; Landsberger, Sheldon; Burke, John A.; Bishop, Mary C.; Youmans, Amanda; Kim, Guinyun N.; Kang, yeong-rok; Lee, Man Woo; Drindak, Noel J.

    2017-09-01

    Neutron capture and transmission measurements have been performed, and resonance parameter analysis has been completed for dysprosium, Dy, and rhenium, Re. The 60 MeV electron accelerator at RPI Gaerttner LINAC Center produced neutrons in the thermal and epithermal energy regions for these measurements. Transmission measurements were made using 6Li glass scintillation detectors. The neutron capture measurements were made with a 16-segment NaI multiplicity detector. The detectors for all experiments were located at ≈25 m except for thermal transmission, which was done at ≈15 m. The dysprosium samples included one highly enriched 164Dy metal, 6 liquid solutions of enriched 164Dy, two natural Dy metals. The Re samples were natural metals. Their capture yield normalizations were corrected for their high gamma attenuation. The multi-level R-matrix Bayesian computer code SAMMY was used to extract the resonance parameters from the data. 164Dy resonance data were analyzed up to 550 eV, other Dy isotopes up to 17 eV, and Re resonance data up to 1 keV. Uncertainties due to resolution function, flight path, burst width, sample thickness, normalization, background, and zero time were estimated and propagated using SAMMY. An additional check of sample-to-sample consistency is presented as an estimate of uncertainty. The thermal total cross sections and neutron capture resonance integrals of 164Dy and Re were determined from the resonance parameters. The NJOY and INTER codes were used to process and integrate the cross sections. Plots of the data, fits, and calculations using ENDF/B-VII.1 resonance parameters are presented.

  11. Use of gadolinium-based magnetic resonance imaging contrast agents and awareness of brain gadolinium deposition among pediatric providers in North America.

    PubMed

    Mithal, Leena B; Patel, Payal S; Mithal, Divakar; Palac, Hannah L; Rozenfeld, Michael N

    2017-05-01

    Numerous recent articles have reported brain gadolinium deposition when using linear but not macrocyclic gadolinium-based contrast agents (GBCAs). To determine the current landscape of gadolinium use among pediatric institutions and the knowledge base of radiologists and referring providers with regard to GBCAs and brain gadolinium deposition. We e-mailed voluntary closed surveys to 5,390 physicians in various pediatric professional societies between January 2016 and March 2016. We used chi-square and Fisher exact tests to compare response distributions among specialties. We found that 80% of surveyed pediatric hospitals use macrocyclic contrast agents. In the last year, 58% switched their agent, most commonly to gadoterate meglumine, with the most common reason being brain gadolinium deposition. Furthermore, surveys indicated that 23% of hospitals are considering switching, and, of these, 83% would switch to gadoterate meglumine; the most common reasons were brain gadolinium deposition and safety. Radiologists were more aware of brain gadolinium deposition than non-radiologist physicians (87% vs. 26%; P<0.0001). Radiologists and referring providers expressed similar levels of concern (95% and 89%). Twelve percent of radiologists and 2% of referring providers reported patients asking about brain gadolinium deposition. Radiologists were significantly more comfortable addressing patient inquiries than referring pediatric physicians (48% vs. 6%; P<0.0001). The number of MRIs requested by referring pediatric physicians correlated with their knowledge of brain gadolinium deposition, contrast agent used by their hospital, and comfort discussing brain gadolinium deposition with patients (P<0.0001). Since the discovery of brain gadolinium deposition, many pediatric hospitals have switched to or plan to switch to a more stable macrocyclic MR contrast agent, most commonly gadoterate meglumine. Despite this, there is need for substantial further education of radiologists and

  12. Selective recognition of dysprosium(III) ions by enhanced chemiluminescence CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Hosseini, Morteza; Ganjali, Mohammad R.; Vaezi, Zahra; Faridbod, Farnoush; Arabsorkhi, Batool; Sheikhha, Mohammad H.

    2014-03-01

    The intensity of emitted light from CdSe quantum dots (QDs)-H2O2 is described as a novel chemiluminescence (CL) reaction for determination of dysprosium. This reaction is based on the catalytic effect of Dy3+ ions, causing a significant increase in the light emission, as a result of the reaction of quantum dots (QDs) with hydrogen peroxide. In the optimum conditions, this method was satisfactorily described by linear calibration curve in the range of 8.3 × 10-7-5.0 × 10-6 M, the detection limit of 6.0 × 10-8 M, and the relative standard deviation for five determinations of 2.5 × 10-6 M Dy3+ 3.2%. The main experimental advantage of the proposed method is its selective to Dy3+ ions compared with common coexisting cations, therefore, it was successfully applied for the determination of dysprosium ions in water samples.

  13. An efficient optical-electrochemical dual probe for highly sensitive recognition of dopamine based on terbium complex functionalized reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Zhou, Zhan; Wang, Qianming

    2014-04-01

    A novel organic-inorganic hybrid sensor based on diethylenetriaminepentaacetic acid (DTPA) modified reduced graphene oxide (RGO-DTPA) chelated with terbium ions allows detection of dopamine (DA) through an emission enhancement effect. Its luminescence, peaking at 545 nm, has been improved by a factor of 25 in the presence of DA (detection limit = 80 nM). In addition, this covalently bonded terbium complex functionalized reduced graphene oxide (RGO-DTPA-Tb) can be successfully assembled on a glassy carbon electrode. The assay performed through differential pulse voltammetry (DPV) yielded obvious peak separation between DA and excessive amounts of the interfering ascorbic acid (AA).A novel organic-inorganic hybrid sensor based on diethylenetriaminepentaacetic acid (DTPA) modified reduced graphene oxide (RGO-DTPA) chelated with terbium ions allows detection of dopamine (DA) through an emission enhancement effect. Its luminescence, peaking at 545 nm, has been improved by a factor of 25 in the presence of DA (detection limit = 80 nM). In addition, this covalently bonded terbium complex functionalized reduced graphene oxide (RGO-DTPA-Tb) can be successfully assembled on a glassy carbon electrode. The assay performed through differential pulse voltammetry (DPV) yielded obvious peak separation between DA and excessive amounts of the interfering ascorbic acid (AA). Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr06156f

  14. Time Evolution of Radiation-Induced Luminescence in Terbium-Doped Silicate Glass

    NASA Technical Reports Server (NTRS)

    West, Michael S.; Winfree, William P.

    1996-01-01

    A study was made on two commercially available terbium-doped silicate glasses. There is an increased interest in silicate glasses doped with rare-earth ions for use in high-energy particle detection and radiographic applications. These glasses are of interest due to the fact that they can be formed into small fiber sensors; a property that can be used to increase the spatial resolution of a detection system. Following absorption of radiation, the terbium ions become excited and then emit photons via 4f-4f electronic transitions as they relax back to the ground state. The lifetime of these transitions is on the order of milliseconds. A longer decay component lasting on the order of minutes has also been observed. While radiative transitions in the 4f shell of rare-earth ions are generally well understood by the Judd-Olfelt theory, the pr'esence of a longer luminescence decay component is not. Experimental evidence that the long decay component is due, in part, to the thermal release of trapped charge carriers will be presented. In addition, a theoretical model describing the time evolution of the radiation-induced luminescence will be presented.

  15. {Delta}I = 2 energy staggering in normal deformed dysprosium nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, M.A.; Brown, T.B.; Archer, D.E.

    1996-12-31

    Very high spin states (I{ge}50{Dirac_h}) have been observed in {sup 155,156,157}Dy. The long regular band sequences, free from sharp backbending effects, observed in these dysprosium nuclei offer the possibility of investigating the occurence of any {Delta}I = 2 staggering in normal deformed nuclei. Employing the same analysis techniques as used in superdeformed nuclei, certain bands do indeed demonstrate an apparent staggering and this is discussed.

  16. Technique for direct measurement of magnetic entropy of solids: Results for dysprosium titanium oxide

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1974-01-01

    A measurement technique was devised which permits direct observation of the magnetic entropy of solids as a function of applied magnetic field. Measurements were made of the magnetic entropy, in the temperature range 2 to 20 K, of polycrystalline samples of dysprosium titanium oxide (Dy2Ti2O7) to determine its suitability for use as the working substance of a magnetic refrigerator. Magnetization measurements were also made at 4.2 K and below to provide additional information on the nature of the compound. The measurements indicated that crystalline electric fields perturbed the ground state of the dysprosium ions, removed the 16-fold degeneracy predicted by Hund's rules, and left only a twofold degeneracy in its place. A positive, temperature independent contribution to the magnetization was observed in the saturation region, which indicated that the doublet ground-state wave function was perturbed by a nearby unpopulated upper energy level.

  17. Efficient green luminescence of terbium oxalate crystals: A case study with Judd-Ofelt theory and single crystal structure analysis and the effect of dehydration on luminescence

    NASA Astrophysics Data System (ADS)

    Alexander, Dinu; Joy, Monu; Thomas, Kukku; Sisira, S.; Biju, P. R.; Unnikrishnan, N. V.; Sudarsanakumar, C.; Ittyachen, M. A.; Joseph, Cyriac

    2018-06-01

    Design and synthesis of Lanthanide based metal organic framework is a frontier area of research owing to their structural diversity enabling specific applications. The luminescence properties of rare earths, tuned by the structural features of Ln-MOFs are investigated extensively. Rare earth oxalates which can be synthesized in a facile method, ensuring the structural features of MOFs with excellent photoluminescence characteristics deserves much attention. This work is the first time report on the single crystal structure and Judd-Ofelt (JO) theoretical analysis - their correlation with the intense and sharp green luminescence of Terbium oxalate crystals. The intense green luminescence observed for Terbium oxalate crystals for a wide range of excitation from DUV to visible region despite the luminescence limiting factors are discussed. The absence of concentration quenching and lifting up of forbidden nature of f-f transitions, allowing direct excitation of Terbium ions is analysed with the help of JO theory and single crystal structure analysis. The JO analysis predicted the asymmetry of Terbium sites, allowing the electric dipole transitions and from the JO intensity parameters, promising spectroscopic parameters - emission cross section, branching ratio, gain band width and gain coefficient of the material were calculated. The single crystal structure analysis revealed the asymmetry of Tb sites and structure of Terbium oxalate is formed by the hydrogen bonded stacking of overlapped six Terbium membered rings connected by the oxalate ligands. The molecularly thick layers thus formed on the crystal surface are imaged by the atomic force microscopy. The presence of water channels in the structure and the effect of lattice water molecules on the luminescence intensity are also investigated.

  18. Neutron Diffraction and Electrical Transport Studies on Magnetic Transition in Terbium at High Pressures and Low Temperatures

    NASA Astrophysics Data System (ADS)

    Thomas, Sarah; Montgomery, Jeffrey; Tsoi, Georgiy; Vohra, Yogesh; Weir, Samuel; Tulk, Christopher; Moreira Dos Santos, Antonio

    2013-06-01

    Neutron diffraction and electrical transport measurements have been carried out on the heavy rare earth metal terbium at high pressures and low temperatures in order to elucidate its transition from a helical antiferromagnetic to a ferromagnetic ordered phase as a function of pressure. The electrical resistance measurements using designer diamonds show a change in slope as the temperature is lowered through the ferromagnetic Curie temperature. The temperature of the ferromagnetic transition decreases at a rate of -16.7 K/GPa till 3.6 GPa, where terbium undergoes a structural transition from hexagonal close packed (hcp) to an α-Sm phase. Above this pressure, the electrical resistance measurements no longer exhibit a change in slope. In order to confirm the change in magnetic phase suggested by the electrical resistance measurements, neutron diffraction measurements were conducted at the SNAP beamline at the Oak Ridge National Laboratory. Measurements were made at pressures to 5.3 GPa and temperatures as low as 90 K. An abrupt increase in peak intensity in the neutron diffraction spectra signaled the onset of magnetic order below the Curie temperature. A magnetic phase diagram of rare earth metal terbium will be presented to 5.3 GPa and 90 K based on these studies.

  19. Spectrofluorimetric determination of cefixime using terbium-danofloxacin probe

    PubMed Central

    Manzoori, Jamshid L.; Amjadi, Mohammad; Soltani, Naser; Jouyban, Abolghasem

    2014-01-01

    Objective(s): Cefixime (Cfx), is a semi-synthetic third-generation oral cephalosporin antibiotic that is prescribed for the treatment of susceptible infections. There are some procedures for the determination of Cfx in pharmaceutical formulations and biological samples. Herein a spectrofluorimetric method was proposed for Cfx determination based on the fluorescence quenching of terbium-danofloxacin (Tb3+-Dano) in the presence of Cfx. Materials and Methods: Cfx was detected based on fluorescence quenching of terbium-danofloxacin (Tb3+-Dano) in the presence of Cfx with maximum excitation and emission wavelengths at 347 nm and 545 nm, respectively. The quenched fluorescence intensity of Tb3+- Dano system is proportional to the concentration of Cfx. The optimum conditions for the determination of Cfx were studied. Results: The maximum response was achieved under optimum conditions of [Tris buffer]= 0.008 mol/l (pH 6.5), [Tb3+]=1×10-4 mol/l and [Dano]=1×10-4 mol/l. The developed method was evaluated in terms of accuracy, precision and limit of detection. The linear concentration ranges for quantification of Cfx were 8.8×10-8-8.8×10-7 mol/l and 1.1×10-7-8.8×10-7 mol/l in standard and human serum samples with the detection limits (S/N=3) of 2.8×10-8 mol/l and 3.9×10-8 mol/l, respectively. The Cfx was determined in pharmaceutical tablets and spiked serum samples and the results were satisfactory. Conclusion: This method is simple, practical and relatively interference-free for determination of Cfx in pharmaceutical tablets and serum samples. PMID:24904718

  20. Gadolinium Distribution in Cerebrospinal Fluid after Administration of a Gadolinium-based MR Contrast Agent in Humans.

    PubMed

    Berger, Florian; Kubik-Huch, Rahel A; Niemann, Tilo; Schmid, Hans Ruedi; Poetzsch, Michael; Froehlich, Johannes M; Beer, Jürg H; Thali, Michael J; Kraemer, Thomas

    2018-05-08

    Purpose To evaluate whether gadolinium penetrates human cerebrospinal fluid (CSF) after MR imaging (MRI) with a gadolinium-based contrast agent (GBCA). Materials and Methods For this retrospective study, the authors analyzed 60 CSF samples from 57 patients (median age, 50 years; range, 3-92 years) who underwent one contrast material-enhanced MRI examination with gadoterate meglumine within 60 days of CSF extraction between January and December 2016. CSF samples from patients who underwent MRI without contrast material administration (n = 22) or those who underwent contrast-enhanced MRI at least 1 year before extraction (n = 2) were analyzed and used as control samples. CSF measurements were performed with inductively coupled plasma mass spectrometry by monitoring the gadolinium 158 isotope. Statistical analyses were performed by using a preliminary Kruskal-Wallis test. Results Higher CSF gadolinium concentrations were detected within the first 8 hours after GBCA administration (mean concentration, 1152 ng/mL ± 734.6). Concentrations were lower between 8 and 48 hours (872 ng/mL ± 586). After 48 hours, gadolinium was almost completely cleared from CSF (121 ng/mL ± 296.3). All but two samples from the 24 control patients (median age, 60.5 years; range, 19-79 years) were negative for the presence of gadolinium. Those samples were from patients who had undergone GBCA-enhanced MRI examination more than a year before CSF extraction (0.1 and 0.2 ng/mL after 1 and 3 years, respectively). The concentrations in patients with chronic renal insufficiency (n = 3), cerebral toxoplasmosis (n = 1), and liver cirrhosis (n = 1) were higher than the mean concentrations. Conclusion Gadoterate meglumine can be detected in human CSF after intravenous administration. © RSNA, 2018.

  1. Accurate Determination of the Dynamical Polarizability of Dysprosium

    NASA Astrophysics Data System (ADS)

    Ravensbergen, C.; Corre, V.; Soave, E.; Kreyer, M.; Tzanova, S.; Kirilov, E.; Grimm, R.

    2018-06-01

    We report a measurement of the dynamical polarizability of dysprosium atoms in their electronic ground state at the optical wavelength of 1064 nm, which is of particular interest for laser trapping experiments. Our method is based on collective oscillations in an optical dipole trap, and reaches unprecedented accuracy and precision by comparison with an alkali atom (potassium) as a reference species. We obtain values of 184.4(2.4) and 1.7(6) a.u. for the scalar and tensor polarizability, respectively. Our experiments have reached a level that permits meaningful tests of current theoretical descriptions and provides valuable information for future experiments utilizing the intriguing properties of heavy lanthanide atoms.

  2. Magnetic relaxation pathways in lanthanide single-molecule magnets.

    PubMed

    Blagg, Robin J; Ungur, Liviu; Tuna, Floriana; Speak, James; Comar, Priyanka; Collison, David; Wernsdorfer, Wolfgang; McInnes, Eric J L; Chibotaru, Liviu F; Winpenny, Richard E P

    2013-08-01

    Single-molecule magnets are compounds that exhibit magnetic bistability caused by an energy barrier for the reversal of magnetization (relaxation). Lanthanide compounds are proving promising as single-molecule magnets: recent studies show that terbium phthalocyanine complexes possess large energy barriers, and dysprosium and terbium complexes bridged by an N2(3-) radical ligand exhibit magnetic hysteresis up to 13 K. Magnetic relaxation is typically controlled by single-ion factors rather than magnetic exchange (whether one or more 4f ions are present) and proceeds through thermal relaxation of the lowest excited states. Here we report polylanthanide alkoxide cage complexes, and their doped diamagnetic yttrium analogues, in which competing relaxation pathways are observed and relaxation through the first excited state can be quenched. This leads to energy barriers for relaxation of magnetization that exceed 800 K. We investigated the factors at the lanthanide sites that govern this behaviour.

  3. Gadolinium accumulation in organs of Sprague-Dawley® rats after implantation of a biodegradable magnesium-gadolinium alloy.

    PubMed

    Myrissa, Anastasia; Braeuer, Simone; Martinelli, Elisabeth; Willumeit-Römer, Regine; Goessler, Walter; Weinberg, Annelie Martina

    2017-01-15

    Biodegradable magnesium implants are under investigation because of their promising properties as medical devices. For enhancing the mechanical properties and the degradation resistance, rare earth elements are often used as alloying elements. In this study Mg10Gd pins were implanted into Sprague-Dawley® rats. The pin volume loss and a possible accumulation of magnesium and gadolinium in the rats' organs and blood were investigated in a long-term study over 36weeks. The results showed that Mg10Gd is a fast disintegrating material. Already 12weeks after implantation the alloy is fragmented to smaller particles, which can be found within the intramedullary cavity and the cortical bones. They disturbed the bone remodeling until the end of the study. The results concerning the elements' distribution in the animals' bodies were even more striking, since an accumulation of gadolinium could be observed in the investigated organs over the whole time span. The most affected tissue was the spleen, with up to 3240μgGd/kg wet mass, followed by the lung, liver and kidney (up to 1040, 685 and 207μgGd/kg). In the brain, muscle and heart, the gadolinium concentrations were much smaller (less than 20μg/kg), but an accumulation could still be detected. Interestingly, blood serum samples showed no accumulation of magnesium and gadolinium. This is the first time that an accumulation of gadolinium in animal organs was observed after the application of a gadolinium-containing degradable magnesium implant. These findings demonstrate the importance of future investigations concerning the distribution of the constituents of new biodegradable materials in the body, to ensure the patients' safety. In the last years, biodegradable Mg alloys are under investigation due to their promising properties as orthopaedic devices used for bone fracture stabilization. Gadolinium as Rare Earth Element enhances the mechanical properties of Mg-Gd alloys but its toxicity in humans is still questionable

  4. Biogenic terbium oxide nanoparticles as the vanguard against osteosarcoma

    NASA Astrophysics Data System (ADS)

    Iram, Sana; Khan, Salman; Ansary, Abu Ayoobul; Arshad, Mohd; Siddiqui, Sahabjada; Ahmad, Ejaz; Khan, Rizwan H.; Khan, Mohd Sajid

    2016-11-01

    The synthesis of inner transition metal nanoparticles via an ecofriendly route is quite difficult. This study, for the first time, reports synthesis of terbium oxide nanoparticles using fungus, Fusarium oxysporum. The biocompatible terbium oxide nanoparticles (Tb2O3 NPs) were synthesized by incubating Tb4O7 with the biomass of fungus F. oxysporum. Multiple physical characterization techniques, such as UV-visible and photoluminescence spectroscopy, TEM, SAED, and zeta-potential were used to confirm the synthesis, purity, optical and surface characteristics, crystallinity, size, shape, distribution, and stability of the nanoemulsion of Tb2O3 NPs. The Tb2O3 NPs were found to inhibit the propagation of MG-63 and Saos-2 cell-lines (IC50 value of 0.102 μg/mL) and remained non-toxic up to a concentration of 0.373 μg/mL toward primary osteoblasts. Cell viability decreased in a concentration-dependent manner upon exposure to 10 nm Tb2O3 NPs in the concentration range 0.023-0.373 μg/mL. Cell toxicity was evaluated by observing changes in cell morphology, cell viability, oxidative stress parameters, and FACS analysis. Morphological examinations of cells revealed cell shrinkage, nuclear condensation, and formation of apoptotic bodies. The level of ROS within the cells-an indicator of oxidative stress was significantly increased. The induction of apoptosis at concentrations ≤ IC50 was corroborated by 4‧,6-diamidino-2-phenylindole dihydrochloride (DAPI) staining (DNA damage and nuclear fragmentation). Flow-cytometric studies indicated that the response was dose dependent with a threshold effect.

  5. Determination of fluoxetine in pharmaceutical and biological samples based on the silver nanoparticle enhanced fluorescence of fluoxetine-terbium complex.

    PubMed

    Lotfi, Ali; Manzoori, Jamshid L

    2016-11-01

    In this study, a simple and sensitive spectrofluorimetric method is presented for the determination of fluoxetine based on the enhancing effect of silver nanoparticles (AgNPs) on the terbium-fluoxetine fluorescence emission. The AgNPs were prepared by a simple reduction method and characterized by UV-Vis spectroscopy and transmission electron microscopy. It was indicated that these AgNPs have a remarkable amplifying effect on the terbium-sensitized fluorescence of fluoxetine. The effects of various parameters such as AgNP and Tb 3+ concentration and the pH of the media were investigated. Under obtained optimal conditions, the fluorescence intensity of the terbium-fluoxetine-AgNP system was enhanced linearly by increasing the concentration of fluoxetine in the range of 0.008 to 19 mg/L. The limit of detection (b + 3s) was 8.3 × 10 -4 mg/L. The interference effects of common species found in real samples were also studied. The method had good linearity, recovery, reproducibility and sensitivity, and was satisfactorily applied for the determination of fluoxetine in tablet formulations, human urine and plasma samples. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. An efficient optical-electrochemical dual probe for highly sensitive recognition of dopamine based on terbium complex functionalized reduced graphene oxide.

    PubMed

    Zhou, Zhan; Wang, Qianming

    2014-05-07

    A novel organic-inorganic hybrid sensor based on diethylenetriaminepentaacetic acid (DTPA) modified reduced graphene oxide (RGO-DTPA) chelated with terbium ions allows detection of dopamine (DA) through an emission enhancement effect. Its luminescence, peaking at 545 nm, has been improved by a factor of 25 in the presence of DA (detection limit = 80 nM). In addition, this covalently bonded terbium complex functionalized reduced graphene oxide (RGO-DTPA-Tb) can be successfully assembled on a glassy carbon electrode. The assay performed through differential pulse voltammetry (DPV) yielded obvious peak separation between DA and excessive amounts of the interfering ascorbic acid (AA).

  7. Perovskite catalysts for oxidative coupling

    DOEpatents

    Campbell, K.D.

    1991-06-25

    Perovskites of the structure A[sub 2]B[sub 2]C[sub 3]O[sub 10] are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

  8. Perovskite catalysts for oxidative coupling

    DOEpatents

    Campbell, Kenneth D.

    1991-01-01

    Perovskites of the structure A.sub.2 B.sub.2 C.sub.3 O.sub.10 are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

  9. Systematic optimization of laser cooling of dysprosium

    NASA Astrophysics Data System (ADS)

    Mühlbauer, Florian; Petersen, Niels; Baumgärtner, Carina; Maske, Lena; Windpassinger, Patrick

    2018-06-01

    We report on an apparatus for cooling and trapping of neutral dysprosium. We characterize and optimize the performance of our Zeeman slower and 2D molasses cooling of the atomic beam by means of Doppler spectroscopy on a 136 kHz broad transition at 626 nm. Furthermore, we demonstrate the characterization and optimization procedure for the loading phase of a magneto-optical trap (MOT) by increasing the effective laser linewidth by sideband modulation. After optimization of the MOT compression phase, we cool and trap up to 10^9 atoms within 3 seconds in the MOT at temperatures of 9 μK and phase space densities of 1.7 \\cdot 10^{-5}, which constitutes an ideal starting point for loading the atoms into an optical dipole trap and for subsequent forced evaporative cooling.

  10. Making two dysprosium atoms rotate —Einstein-de Haas effect revisited

    NASA Astrophysics Data System (ADS)

    Górecki, Wojciech; Rzążewski, Kazimierz

    2016-10-01

    We present a numerical study of the behaviour of two magnetic dipolar atoms trapped in a harmonic potential and exhibiting the standard Einstein-de Haas effect while subject to a time-dependent homogeneous magnetic field. Using a simplified description of the short-range interaction and the full expression for the dipole-dipole forces we show that under experimentally realisable conditions two dysprosium atoms may be pumped to a high (l > 20) value of the relative orbital angular momentum.

  11. Nephrogenic Systemic Fibrosis Manifesting a Decade After Exposure to Gadolinium.

    PubMed

    Larson, Krista N; Gagnon, Amy L; Darling, Melissa D; Patterson, James W; Cropley, Thomas G

    2015-10-01

    Nephrogenic systemic fibrosis (NSF) is a fibrosing skin disorder that develops in patients with kidney failure and has been linked to exposure to gadolinium-containing contrast agents. The time between exposure to gadolinium and the initial presentation of NSF is typically weeks to months but has been documented to be as long as 3½ years. We report a case of NSF developing 10 years after exposure to gadolinium. A long-term hemodialysis patient was exposed to gadolinium several times between 1998 and 2004 during magnetic resonance angiography of his abdominal vessels and arteriovenous fistula. In 2014, he was seen at our clinic with new dermal papules and plaques. Biopsy of affected skin showed thickening of collagen, CD34+ spindle cells, and increased mucin in the dermis, supporting the diagnosis of NSF. The clinical history and histopathological features of this case support the diagnosis of NSF 10 years after exposure to gadolinium. Although the use of gadolinium contrast agents in patients with kidney failure has markedly decreased, patients with exposure to gadolinium years to decades previously may manifest the disease.

  12. Thermoluminescence glow curve deconvolution and trapping parameters determination of dysprosium doped magnesium borate glass

    NASA Astrophysics Data System (ADS)

    Salama, E.; Soliman, H. A.

    2018-07-01

    In this paper, thermoluminescence glow curves of gamma irradiated magnesium borate glass doped with dysprosium were studied. The number of interfering peaks and in turn the number of electron trap levels are determined using the Repeated Initial Rise (RIR) method. At different heating rates (β), the glow curves were deconvoluted into two interfering peaks based on the results of RIR method. Kinetic parameters such as trap depth, kinetic order (b) and frequency factor (s) for each electron trap level is determined using the Peak Shape (PS) method. The obtained results indicated that, the magnesium borate glass doped with dysprosium has two electron trap levels with the average depth energies of 0.63 and 0.79 eV respectively. These two traps have second order kinetic and are formed at low temperature region. The obtained results due to the glow curve analysis could be used to explain some observed properties such as, high thermal fading and light sensitivity for such thermoluminescence material. In this work, systematic procedures to determine the kinetic parameters of any thermoluminescence material are successfully introduced.

  13. Gadolinium photoionization process

    DOEpatents

    Paisner, J.A.; Comaskey, B.J.; Haynam, C.A.; Eggert, J.H.

    1993-04-13

    A method is provided for selective photoionization of the odd-numbered atomic mass gadolinium isotopes 155 and 157. The selective photoionization is accomplished by circular or linear parallel polarized laser beam energy effecting a three-step photoionization pathway.

  14. Gadolinium photoionization process

    DOEpatents

    Paisner, Jeffrey A.; Comaskey, Brian J.; Haynam, Christopher A.; Eggert, Jon H.

    1993-01-01

    A method is provided for selective photoionization of the odd-numbered atomic mass gadolinium isotopes 155 and 157. The selective photoionization is accomplished by circular or linear parallel polarized laser beam energy effecting a three-step photoionization pathway.

  15. A hydrometallurgical process for the recovery of terbium from fluorescent lamps: Experimental design, optimization of acid leaching process and process analysis.

    PubMed

    Innocenzi, Valentina; Ippolito, Nicolò Maria; De Michelis, Ida; Medici, Franco; Vegliò, Francesco

    2016-12-15

    Terbium and rare earths recovery from fluorescent powders of exhausted lamps by acid leaching with hydrochloric acid was the objective of this study. In order to investigate the factors affecting leaching a series of experiments was performed in according to a full factorial plan with four variables and two levels (4 2 ). The factors studied were temperature, concentration of acid, pulp density and leaching time. Experimental conditions of terbium dissolution were optimized by statistical analysis. The results showed that temperature and pulp density were significant with a positive and negative effect, respectively. The empirical mathematical model deducted by experimental data demonstrated that terbium content was completely dissolved under the following conditions: 90 °C, 2 M hydrochloric acid and 5% of pulp density; while when the pulp density was 15% an extraction of 83% could be obtained at 90 °C and 5 M hydrochloric acid. Finally a flow sheet for the recovery of rare earth elements was proposed. The process was tested and simulated by commercial software for the chemical processes. The mass balance of the process was calculated: from 1 ton of initial powder it was possible to obtain around 160 kg of a concentrate of rare earths having a purity of 99%. The main rare earths elements in the final product was yttrium oxide (86.43%) following by cerium oxide (4.11%), lanthanum oxide (3.18%), europium oxide (3.08%) and terbium oxide (2.20%). The estimated total recovery of the rare earths elements was around 70% for yttrium and europium and 80% for the other rare earths. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. In vitro and in vivo dissolution behavior of a dysprosium lithium borate glass designed for the radiation synovectomy treatment of rheumatoid arthritis.

    PubMed

    Conzone, Samuel D; Brown, Roger F; Day, Delbert E; Ehrhardt, Gary J

    2002-05-01

    Dysprosium lithium borate (DyLB) glass microspheres were investigated for use in the radiation synovectomy treatment of rheumatoid arthritis. In vitro testing focused on weight loss and cation dissolution from glass microspheres immersed in simulated synovial fluid (SSF) at 37 degrees C for up to 64 days. In vivo testing was performed by injecting glass microspheres into the stifle joints of Sprague-Dawley rats and monitoring the biodegradability of the microspheres and the tissue response within the joints. The DyLB microspheres reacted nonuniformly in SSF with the majority of lithium and boron being dissolved, whereas nearly all of the dysprosium (>99.7%) remained in the reacted microspheres. Because the DyLB glasses released negligible amounts of dysprosium while reacting with SSF, they are considered safe for radiation synovectomy from the standpoint of unwanted radiation release from the joint capsule. Furthermore, the DyLB microspheres fragmented, degraded, and reacted with body fluids while in the joints of rats without histologic evidence of joint damage. Copyright 2002 Wiley Periodicals, Inc. J Biomed Mater Res 60: 260--268, 2002; DOI 10.1002/jbm.10047

  17. A new macrocyclic terbium(III) complex for use in RNA footprinting experiments

    PubMed Central

    Belousoff, Matthew J.; Ung, Phuc; Forsyth, Craig M.; Tor, Yitzhak; Spiccia, Leone; Graham, Bim

    2009-01-01

    Reaction of terbium triflate with a heptadentate ligand derivative of cyclen, L1 = 2-[7-ethyl-4,10-bis(isopropylcarbamoylmethyl)-1,4,7,10-tetraazacyclododec-1-yl]-N-isopropylacetamide, produced a new synthetic ribonuclease, [Tb(L1)(OTf)(OH2)](OTf)2·MeCN (C1). X-ray crystal structure analysis indicates that the terbium(III) centre in C1 is 9-coordinate, with a capped square-antiprism geometry. Whilst the terbium(III) center is tightly bound by the L1 ligand, two of the coordination sites are occupied by labile water and triflate ligands. In water, the triflate ligand is likely to be displaced, forming [Tb(L1)(OH2)2]3+, which is able to effectively promote RNA cleavage. This complex greatly accelerates the rate of intramolecular transesterification of an activated model RNA phosphodiester, uridine-3′-p-nitrophenylphosphate (UpNP), with kobs = 5.5(1) × 10-2 s-1 at 21°C and pH 7.5, corresponding to an apparent second-order rate constant of 277(5) M-1s-1. By contrast, the analogous complex of an octadentate derivative of cyclen featuring only a single labile coordination site, [Tb(L2)(OH2)](OTf)3 (C2), where L2 = 2-[4,7,10-tris(isopropylcarbamoylmethyl)-1,4,7,10-tetraazacyclododec-1-yl]-N-isopropyl-acetamide, is inactive. [Tb(L1)(OH2)2]3+ is also capable of hydrolyzing short transcripts of the HIV-1 transactivation response (TAR) element, HIV-1 dimerization initiation site (DIS) and ribosomal A-site, as well as formyl methionine transfer RNA (tRNAfMet), albeit at a considerably slower rate than UpNP transesterification (kobs = 2.78(8) × 10-5 M-1s-1 for TAR cleavage at 37°C, pH 6.5, corresponding to an apparent second-order rate constant of 0.56(2) M-1s-1). Cleavage is concentrated at the single-stranded “bulge” regions of these RNA motifs. Exploiting this selectivity, [Tb(L1)(OH2)23+ was successfully employed in footprinting experiments, in which binding of the Tat peptide and neomycin B to the bulge region of the TAR stem-loop was confirmed. PMID:19119812

  18. Gadolinium-Induced Fibrosis.

    PubMed

    Todd, Derrick J; Kay, Jonathan

    2016-01-01

    Gadolinium-based contrast agents (GBCAs), once believed to be safe for patients with renal disease, have been strongly associated with nephrogenic systemic fibrosis (NSF), a severe systemic fibrosing disorder that predominantly afflicts individuals with advanced renal dysfunction. We provide a historical perspective on the appearance and disappearance of NSF, including its initial recognition as a discrete clinical entity, its association with GBCA exposure, and the data supporting a causative relationship between GBCA exposure and NSF. On the basis of this body of evidence, we propose that the name gadolinium-induced fibrosis (GIF) more accurately reflects the totality of knowledge regarding this disease. Use of high-risk GBCAs, such as formulated gadodiamide, should be avoided in patients with renal disease. Restriction of GBCA use in this population has almost completely eradicated new cases of this debilitating condition. Emerging antifibrotic therapies may be useful for patients who suffer from GIF.

  19. Structure of dysprosium(111) dl-tartrate dimer in aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chevela, V.V.; Vulfson, S.G.; Salnikov, Y.I.

    1994-10-01

    The paramagnetic birefringence method was supplemented by numerical simulation to determine the molar paramagnetic-birefringence constant of the dysprosium dl-tartrate dimer Dy{sub 2}(d-L)(l-L){sup 2-} (I), where d-L{sup 4-} and l-L{sup 4-} are the deprotonated d- and l-tartaric acid molecules, respectively. The structure of the ligand and hydration surroundings of I was modeled by molecular mechanic calculations (the Dashevskii-Pylamovatyi model). It is shown that adequate results can be obtained only if one takes into account the coordination of I to the Na{sup +} ion.

  20. Gadolinium Chelate Safety in Pregnancy: Barely Detectable Gadolinium Levels in the Juvenile Nonhuman Primate after in Utero Exposure.

    PubMed

    Prola-Netto, Joao; Woods, Mark; Roberts, Victoria H J; Sullivan, Elinor L; Miller, Christina Ann; Frias, Antonio E; Oh, Karen Y

    2018-01-01

    Purpose To determine whether gadolinium remains in juvenile nonhuman primate tissue after maternal exposure to intravenous gadoteridol during pregnancy. Materials and Methods Gravid rhesus macaques and their offspring (n = 10) were maintained, as approved by the institutional animal care and utilization committee. They were prospectively studied as part of a pre-existing ongoing research protocol to evaluate the effects of maternal malnutrition on placental and fetal development. On gestational days 85 and 135, they underwent placental magnetic resonance imaging after intravenous gadoteridol administration. Amniocentesis was performed on day 135 prior to administration of the second dose of gadoteridol. After delivery, the offspring were followed for 7 months. Tissue samples from eight different organs and from blood were harvested from each juvenile macaque. Gadolinium levels were measured by using inductively coupled plasma mass spectrometry. Results Gadolinium concentration in the amniotic fluid was 0.028 × 10 -5 %ID/g (percentage injected dose per gram of tissue) 50 days after administration of one gadoteridol dose. Gadolinium was most consistently detected in the femur (mean, 2.5 × 10 -5 %ID/g; range, [0.81-4.1] × 10 -5 %ID/g) and liver (mean, 0.15 × 10 -5 %ID/g; range, [0-0.26] × 10 -5 %ID/g). Levels were undetectable in the remaining sampled tissues, with the exception of one juvenile skin sample (0.07 × 10 -5 %ID/g), one juvenile spleen sample (0.039 × 10 -5 %ID/g), and one juvenile brain (0.095 × 10 -5 %ID/g) and kidney (0.13 × 10 -5 %ID/g) sample. Conclusion The presence of gadoteridol in the amniotic fluid after maternal injection enables confirmation that it crosses the placenta. Extremely low levels of gadolinium are found in juvenile macaque tissues after in utero exposure to two doses of gadoteridol, indicating that a very small amount of gadolinium persists after delivery. © RSNA, 2017.

  1. Synthesis and effect of a new Terbium gibberellic complex on the histopathological alteration induced by Gibberellic acid on liver and kidney of mice Mus musculus.

    PubMed

    Seleem, Amin A; Hussein, Belal H M

    2018-03-25

    The objective of this study was to synthesize Gibberellic lanthanide complex and evaluate its biological activity to reduce the Gibberellic acid toxicity on liver and kidney. The new bis(Gibberellic)-nitro-terbium(III) complex was characterized by different analytical methods: elemental analyses, UV-Vis, molar ratio, fluorescence, FT-IR, and TGA-DTA measurements. Thirty newborns were classified into three groups control, Gibberellic acid, and Terbium gibberellic acid complex. Livers and kidneys of studied groups proceed for general histology and immunohistochemical staining of Cyr61, cytochrome C, and TNFR2. From the absorption titration measurements, the binding constants of DNA with Tb(III)-(GA) 2 complex and free ligand were found to be 3.9 × 10 4 and 2.1 × 10 3  m -1 , respectively, with the stoichiometry of 1:1. Hypochromism was observed from the absorption titration experiment which indicates the intercalation of Tb(III)-(GA) 2 complex between the base pairs of DNA. Gibberellic acid-treated group showed alteration in the histological picture of livers and kidneys that accompanied with the reduction in the expression of Cyr61, cyt C, and TNFR2. The amelioration was observed in Gibberellic acid complex with Terbium group. The study concluded that Terbium gibberellic complex is less dangerous effects than Gibberellic acid alone. © 2018 John Wiley & Sons A/S.

  2. Screening of Danofloxacin residue in bovine tissue by terbium-sensitized luminescence on C18 sorbent strips

    USDA-ARS?s Scientific Manuscript database

    Danofloxacin (DANO) residue in bovine muscle was screened at 200 ng/g by terbium-sensitized luminescence (TSL) directly measured on 10x6 mm C18 sorbent strips. The analyte was first adsorbed on sorbent surface by immersion in defatted homogenates. After reagent application and desiccation, TSL was d...

  3. Strategic Materials in the Automobile: A Comprehensive Assessment of Strategic and Minor Metals Use in Passenger Cars and Light Trucks.

    PubMed

    Field, Frank R; Wallington, Timothy J; Everson, Mark; Kirchain, Randolph E

    2017-12-19

    A comprehensive component-level assessment of several strategic and minor metals (SaMMs), including copper, manganese, magnesium, nickel, tin, niobium, light rare earth elements (LREEs; lanthanum, cerium, praseodymium, neodymium, promethium, and samarium), cobalt, silver, tungsten, heavy rare earth elements (yttrium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium), and gold, use in the 2013 model year Ford Fiesta, Focus, Fusion, and F-150 is presented. Representative material contents in cars and light-duty trucks are estimated using comprehensive, component-level data reported by suppliers. Statistical methods are used to accommodate possible errors within the database and provide estimate bounds. Results indicate that there is a high degree of variability in SaMM use and that SaMMs are concentrated in electrical, drivetrain, and suspension subsystems. Results suggest that trucks contain greater amounts of aluminum, nickel, niobium, and silver and significantly greater amounts of magnesium, manganese, gold, and LREEs. We find tin and tungsten use in automobiles to be 3-5 times higher than reported by previous studies which have focused on automotive electronics. Automotive use of strategic and minor metals is substantial, with 2013 vehicle production in the United States, Canada, EU15, and Japan alone accounting for approximately 20% of global production of Mg and Ta and approximately 5% of Al, Cu, and Sn. The data and analysis provide researchers, recyclers, and decision-makers additional insight into the vehicle content of strategic and minor metals of current interest.

  4. Micelle-enhanced and terbium-sensitized spectrofluorimetric determination of gatifloxacin and its interaction mechanism

    NASA Astrophysics Data System (ADS)

    Guo, Changchuan; Wang, Lei; Hou, Zhun; Jiang, Wei; Sang, Lihong

    2009-05-01

    A terbium-sensitized spectrofluorimetric method using an anionic surfactant, sodium dodecyl benzene sulfonate (SDBS), was developed for the determination of gatifloxacin (GFLX). A coordination complex system of GFLX-Tb 3+-SDBS was studied. It was found that SDBS significantly enhanced the fluorescence intensity of the complex (about 11-fold). Optimal experimental conditions were determined as follows: excitation and emission wavelengths of 331 and 547 nm, pH 7.0, 2.0 × 10 -4 mol l -1 terbium (III), and 2.0 × 10 -4 mol l -1 SDBS. The enhanced fluorescence intensity of the system (Δ If) showed a good linear relationship with the concentration of GFLX over the range of 5.0 × 10 -10 to 5.0 × 10 -8 mol l -1 with a correlation coefficient of 0.9996. The detection limit (3 σ) was determined as 6.0 × 10 -11 mol l -1. This method has been successfully applied to the determination of GFLX in pharmaceuticals and human urine/serum samples. Compared with most of other methods reported, the rapid and simple procedure proposed in the text offers higher sensitivity, wider linear range, and better stability. The interaction mechanism of the system is also studied by the research of ultraviolet absorption spectra, surface tension, solution polarity and fluorescence polarization.

  5. Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms.

    PubMed

    Rogosnitzky, Moshe; Branch, Stacy

    2016-06-01

    Gadolinium chelates are widely used as contrast media for magnetic resonance imaging. The approved gadolinium-based contrast agents (GBCAs) have historically been considered safe and well tolerated when used at recommended dosing levels. However, for nearly a decade, an association between GBCA administration and the development of nephrogenic systemic fibrosis (NSF) has been recognized in patients with severe renal impairment. This has led to modifications in clinical practices aimed at reducing the potential and incidence of NSF development. Newer reports have emerged regarding the accumulation of gadolinium in various tissues of patients who do not have renal impairment, including bone, brain, and kidneys. Despite the observations of gadolinium accumulation in tissues regardless of renal function, very limited clinical data regarding the potential for and mechanisms of toxicity is available. This significant gap in knowledge warrants retrospective cohort study efforts, as well as prospective studies that involve gadolinium ion (Gd(3+)) testing in patients exposed to GBCA. This review examines the potential biochemical and molecular basis of gadolinium toxicity, possible clinical significance of gadolinium tissue retention and accumulation, and methods that can limit gadolinium body burden.

  6. Room temperature ferromagnetic gadolinium silicide nanoparticles

    DOEpatents

    Hadimani, Magundappa Ravi L.; Gupta, Shalabh; Harstad, Shane; Pecharsky, Vitalij; Jiles, David C.

    2018-03-06

    A particle usable as T1 and T2 contrast agents is provided. The particle is a gadolinium silicide (Gd5Si4) particle that is ferromagnetic at temperatures up to 290 K and is less than 2 .mu.m in diameter. An MRI contrast agent that includes a plurality of gadolinium silicide (Gd.sub.5Si.sub.4) particles that are less than 1 .mu.m in diameter is also provided. A method for creating gadolinium silicide (Gd5Si4) particles is also provided. The method includes the steps of providing a Gd5Si4 bulk alloy; grinding the Gd5Si4 bulk alloy into a powder; and milling the Gd5Si4 bulk alloy powder for a time of approximately 20 minutes or less.

  7. Magnetic resonance characteristics and susceptibility weighted imaging of the brain in gadolinium encephalopathy.

    PubMed

    Samardzic, Dejan; Thamburaj, Krishnamoorthy

    2015-01-01

    To report the brain imaging features on magnetic resonance imaging (MRI) in inadvertent intrathecal gadolinium administration. A 67-year-old female with gadolinium encephalopathy from inadvertent high dose intrathecal gadolinium administration during an epidural steroid injection was studied with multisequence 3T MRI. T1-weighted imaging shows pseudo-T2 appearance with diffusion of gadolinium into the brain parenchyma, olivary bodies, and membranous labyrinth. Nulling of cerebrospinal fluid (CSF) signal is absent on fluid attenuation recovery (FLAIR). Susceptibility-weighted imaging (SWI) demonstrates features similar to subarachnoid hemorrhage. CT may demonstrate a pseudo-cerebral edema pattern given the high attenuation characteristics of gadolinium. Intrathecal gadolinium demonstrates characteristic imaging features on MRI of the brain and may mimic subarachnoid hemorrhage on susceptibility-weighted imaging. Identifying high dose gadolinium within the CSF spaces on MRI is essential to avoid diagnostic and therapeutic errors. Copyright © 2013 by the American Society of Neuroimaging.

  8. Density of Gadolinium Nitrate Solutions for the High Flux Isotope Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Paul Allen; Lee, Denise L

    2009-05-01

    In late 1992, the High Flux Isotope Reactor (HFIR) was planning to switch the solution contained in the poison injection tank from cadmium nitrate to gadolinium nitrate. The poison injection system is an emergency system used to shut down the reactor by adding a neutron poison to the cooling water. This system must be able to supply a minimum of 69 pounds of gadolinium to the reactor coolant system in order to guarantee that the reactor would become subcritical. A graph of the density of gadolinium nitrate solutions over a concentration range of 5 to 30 wt% and a temperaturemore » range of 15 to 40{sup o}C was prepared. Routine density measurements of the solution in the poison injection tank are made by HFIR personnel, and an adaptation of the original graph is used to determine the gadolinium nitrate concentration. In late 2008, HFIR personnel decided that the heat tracing that was present on the piping for the poison injection system could be removed without any danger of freezing the solution; however, the gadolinium nitrate solution might get as cold as 5{sup o}C. This was outside the range of the current density-concentration correlation, so the range needed to be expanded. This report supplies a new density-concentration correlation that covers the extended temperature range. The correlation is given in new units, which greatly simplifies the calculation that is required to determine the pounds of gadolinium in the tank solution. The procedure for calculating the amount of gadolinium in the HFIR poison injection system is as follows: (1) Calculate the usable volume in the system; (2) Measure the density of the solution; (3) Calculate the gadolinium concentration using the following equation: Gd(lb/ft{sup 3}) = measured density (g/mL) x 34.681 - 34.785; (4) Calculate the amount of gadolinium in the system using the following equation: Amount of Gd(lb) = Gd concentration (lb/ft{sup 3}) x usable volume (ft{sup 3}). The equation in step 3 is exact for a

  9. Structural and magnetic phase transitions in gadolinium under high pressures and low temperatures

    DOE PAGES

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.; ...

    2014-11-07

    High pressure structural transition studies have been carried out on rare earth metal gadolinium in a diamond anvil cell at room temperature to 169 GPa. Gadolinium has been compressed to 38% of its initial volume at this pressure. With increasing pressure, a crystal structure sequence of hcp → Smtype→ dhcp → fcc → dfcc → monoclinic has been observed in our studies on gadolinium. The measured equation of state of gadolinium is presented to 169 GPa at ambient temperature. Magnetic ordering temperature of gadolinium has been studied using designer diamond anvils to a pressure of 25 GP and a temperaturemore » of 10 K. The magnetic ordering temperature has been determined from the four-point electrical resistivity measurements carried out on gadolinium. Furthermore, our experiments show that the magnetic transition temperature decreases with increasing pressure to 19 GPa and then increases when gadolinium is subjected to higher pressures.« less

  10. Structural and magnetic phase transitions in gadolinium under high pressures and low temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.

    High pressure structural transition studies have been carried out on rare earth metal gadolinium in a diamond anvil cell at room temperature to 169 GPa. Gadolinium has been compressed to 38% of its initial volume at this pressure. With increasing pressure, a crystal structure sequence of hcp → Smtype→ dhcp → fcc → dfcc → monoclinic has been observed in our studies on gadolinium. The measured equation of state of gadolinium is presented to 169 GPa at ambient temperature. Magnetic ordering temperature of gadolinium has been studied using designer diamond anvils to a pressure of 25 GP and a temperaturemore » of 10 K. The magnetic ordering temperature has been determined from the four-point electrical resistivity measurements carried out on gadolinium. Furthermore, our experiments show that the magnetic transition temperature decreases with increasing pressure to 19 GPa and then increases when gadolinium is subjected to higher pressures.« less

  11. Structural and magnetic phase transitions in gadolinium under high pressures and low temperatures

    NASA Astrophysics Data System (ADS)

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.; Vohra, Yogesh K.

    2014-10-01

    High pressure structural transition studies have been carried out on rare earth metal gadolinium in a diamond anvil cell at room temperature to 169 GPa. Gadolinium has been compressed to 38% of its initial volume at this pressure. With increasing pressure, a crystal structure sequence of hcp → Sm-type → dhcp → fcc → dfcc → monoclinic has been observed in our studies on gadolinium. The measured equation of state of gadolinium is presented to 169 GPa at ambient temperature. Magnetic ordering temperature of gadolinium has been studied using designer diamond anvils to a pressure of 25 GPa and a temperature of 10 K. The magnetic ordering temperature has been determined from the four-point electrical resistivity measurements carried out on gadolinium. Our experiments show that the magnetic transition temperature decreases with increasing pressure to 19 GPa and then increases when gadolinium is subjected to higher pressures.

  12. Dosimetric properties of dysprosium doped calcium magnesium borate glass subjected to Co-60 gamma ray

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omar, R. S., E-mail: ratnasuffhiyanni@gmail.com; Wagiran, H., E-mail: husin@utm.my; Saeed, M. A.

    Thermoluminescence (TL) dosimetric properties of dysprosium doped calcium magnesium borate (CMB:Dy) glass are presented. This study is deemed to understand the application of calcium as the modifier in magnesium borate glass with the presence of dysprosium as the activator to be performed as TL dosimeter (TLD). The study provides fundamental knowledge of a glass system that may lead to perform new TL glass dosimetry application in future research. Calcium magnesium borate glass systems of (70-y) B{sub 2}O{sub 3} − 20 CaO – 10 MgO-(y) Dy{sub 2}O{sub 3} with 0.05  mol % ≤ y ≤ 0.7  mol % of dyprosium weremore » prepared by melt-quenching technique. The amorphous structure and TL properties of the prepared samples were determined using powder X-ray diffraction (XRD) and TL reader; model Harshaw 4500 respectively. The samples were irradiated to Co-60 gamma source at a dose of 50 Gy. Dosimetric properties such as annealing procedure, time temperature profile (TTP) setting, optimization of Dy{sub 2}O{sub 3} concentration of 0.5 mol % were determined for thermoluminescence dosimeter (TLD) reader used.« less

  13. Synthesis and evaluation of gadolinium complexes based on PAMAM as MRI contrast agents.

    PubMed

    Yan, Guo-Ping; Hu, Bin; Liu, Mai-Li; Li, Li-Yun

    2005-03-01

    Diethylenetriaminepentaacetic acid (DTPA) and pyridoxamine (PM) were incorporated into the amine groups on the surface of ammonia-core poly(amidoamine) dendrimers (PAMAM, Generation 2.0-5.0) to obtain dendritic ligands. These dendritic ligands were reacted with gadolinium chloride to yield the corresponding dendritic gadolinium (Gd) complexes. The dendritic ligands and their gadolinium complexes were characterized by(1)HNMR, IR, UV and elemental analysis. Relaxivity studies showed that the dendritic gadolinium complexes possessed higher relaxation effectiveness compared with the clinically used Gd-DTPA. After administration of the dendritic gadolinium complexes (0.09 mmol kg(-1) ) to rats, magnetic resonance imaging of the liver indicated that the dendritic gadolinium complexes containing pyridoxamine groups enhanced the contrast of the MR images of the liver, provided prolonged intravascular duration and produced highly contrasted visualization of blood vessels.

  14. Structure and luminescence spectra of lutetium and yttrium borates synthesized from ammonium nitrate melt

    NASA Astrophysics Data System (ADS)

    Klassen, Nikolay V.; Shmurak, Semion Z.; Shmyt'ko, Ivan M.; Strukova, Galina K.; Derenzo, Stephen E.; Weber, Marvin J.

    2005-01-01

    Lutetium and yttrium borates doped with europium, terbium, gadolinium, etc. have been synthesized by dissolving initial oxides and nitrates in ammonium nitrate melt and thermal decomposition of the solvent. Annealings in the range of 500-1100°C modified the dimensions of the grains from 2 to 3 nm to more than 100 nm. Significant dependence of the structure of lutetium borate on slight doping with rare earth ions has been found: terbium makes high-temperature vaterite phase preferential at room temperature, whereas europium stabilizes low-temperature calcite phase. Influence of the structure of the borates on the pattern of the luminescence spectra of europium dopant was observed. Possibilities for manufacturing of scintillating lutetium borate ceramics by means of this method of synthesis are discussed.

  15. Identification and characterization of gadolinium(III) complexes in biological tissue extracts.

    PubMed

    Kahakachchi, Chethaka L; Moore, Dennis A

    2010-07-01

    The gadolinium species present in a rat kidney following intravenous administration of a gadolinium-based magnetic resonance contrast agent (Optimark™, Gadoversetamide injection) to a rat was examined in the present study. The major gadolinium species in the supernatant of the rat kidney tissue extracts was determined by reversed-phase liquid chromatography with online inductively coupled plasma optical emission spectrometry (HPLC-ICP-OES). The identity of the compound was established by liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) detection. The principal gadolinium(III) complex in a rat kidney tissue extract was identified as Gd-DTPA-BMEA 24 Hrs and 7 days after a single intravenous injection of Optimark™ (gadoversetamide; Gd-DTPA-BMEA) at a dose of 5 mmol Gd/kg body weight. The study demonstrated for the first time the feasibility of the use of two complementary techniques, HPLC-ICP-OES and HPLC-ESI-MS to study the in vivo behavior of gadolinium-based magnetic resonance contrast media.

  16. Alkali metal and alkali earth metal gadolinium halide scintillators

    DOEpatents

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  17. Gadolinium-enhanced computed tomographic angiography: current status.

    PubMed

    Rosioreanu, Alex; Alberico, Ronald A; Litwin, Alan; Hon, Man; Grossman, Zachary D; Katz, Douglas S

    2005-01-01

    This article reviews the research to date, as well as our clinical experience from two institutions, on gadolinium-enhanced computed tomographic angiography (gCTA) for imaging the body. gCTA may be an appropriate examination for the small percentage of patients who would benefit from noninvasive vascular imaging, but who have contraindications to both iodinated contrast and magnetic resonance imaging. gCTA is more expensive than CTA with iodinated contrast, due to the dose of gadolinium administered, and gCTA has limitations compared with CTA with iodinated contrast, in that parenchymal organs are not optimally enhanced at doses of 0.5 mmol/kg or lower. However, in our experience, gCTA has been a very useful problem-solving examination in carefully selected patients. With the advent of 16-64 detector CT, in combination with bolus tracking, we believe that the overall dose of gadolinium needed for diagnostic CTA examinations, while relatively high, can be safely administered.

  18. Structural and optical characterization of terbium doped ZnGa{sub 2}O{sub 4} thin films deposited by RF magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somasundaram, K.; Department of Physics, Nallamuthu Gounder Mahalingam College, Pollachi-642001; Girija, K. G., E-mail: kgirija@barc.gov.in

    2016-05-23

    Tb{sup 3+} doped ZnGa{sub 2}O{sub 4} nanophosphor (21 nm) has been synthesized via low temperature polyol route and subsequently thin films of the same were deposited on glass and ITO substrates by RF magnetron sputtering. The films were characterized by X-ray Diffraction and luminescence measurements. The XRD pattern showed that Tb{sup 3+} doped ZnGa{sub 2}O{sub 4} nanophosphor has a cubic spinel phase. Luminescence behavior of the nanophosphor and as deposited sputtered film was investigated. The PL emission spectra of nanophosphor gave a broad ZnGa{sub 2}O{sub 4} host emission band along with a strong terbium emission and the thin films showedmore » only broad host emission band and there was no terbium ion emission.« less

  19. Peripheral Substitution: An Easy Way to Tuning the Magnetic Behavior of Tetrakis(phthalocyaninato) Dysprosium(III) SMMs

    PubMed Central

    Shang, Hong; Zeng, Suyuan; Wang, Hailong; Dou, Jianmin; Jiang, Jianzhuang

    2015-01-01

    Two tetrakis(phthalocyaninato) dysprosium(III)-cadmium(II) single-molecule magnets (SMMs) with different extent of phthalocyanine peripheral substitution and therefore different coordination geometry for the Dy ions were revealed to exhibit different SMM behavior, providing an easy way to tuning and controlling the molecular structure and in turn the magnetic properties of tetrakis(tetrapyrrole) lanthanide SMMs through simple tetrapyrrole peripheral substitution. PMID:25744587

  20. Gadolinium-based magnetic resonance imaging contrast agents in interventional radiology.

    PubMed

    Atar, Eli

    2004-07-01

    Gadolinium-based agents are widely used in magnetic resonance imaging as contrast agents. These agents are radio-opaque enough for diagnostic imaging of the vascular tree by using digitally subtracted images as well as for imaging of the biliary system and the urinary tract. The recommended doses for gadolinium do not impair renal function or cause adverse reactions in patients with iodine sensitivity; thus patients with such conditions can safely undergo diagnostic angiography, either by MRI angiography or by catheterization using gadolinium as contrast agent, for diagnostic and therapeutic purposes.

  1. Two-species five-beam magneto-optical trap for erbium and dysprosium

    NASA Astrophysics Data System (ADS)

    Ilzhöfer, P.; Durastante, G.; Patscheider, A.; Trautmann, A.; Mark, M. J.; Ferlaino, F.

    2018-02-01

    We report on the first realization of a two-species magneto-optical trap (MOT) for the highly magnetic erbium and dysprosium atoms. The MOT operates on an intercombination line for the respective species. Owing to the narrow-line character of such a cooling transition and the action of gravity, we demonstrate a trap geometry employing only five beams in the orthogonal configuration. We observe that the mixture is cooled and trapped very efficiently, with up to 5 ×108 Er atoms and 109 Dy atoms at temperatures of about 10 μ K . Our results offer an ideal starting condition for the creation of a dipolar quantum mixture of highly magnetic atoms.

  2. Alaska's rare earth deposits and resource potential

    USGS Publications Warehouse

    Barker, James C.; Van Gosen, Bradley S.

    2012-01-01

    Alaska’s known mineral endowment includes some of the largest and highest grade deposits of various metals, including gold, copper and zinc. Recently, Alaska has also been active in the worldwide search for sources of rare earth elements (REE) to replace exports now being limitedby China. Driven by limited supply of the rare earths, combined with their increasing use in new ‘green’ energy, lighting, transportation, and many other technological applications, the rare earth metals neodymium, europium and, in particular, the heavy rare earth elements terbium, dysprosium and yttrium are forecast to soon be in critical short supply (U.S. Department of Energy, 2010).

  3. Growth Control in Colon Epithelial Cells: Gadolinium Enhances Calcium-Mediated Growth Regulation

    PubMed Central

    Attili, Durga; Jenkins, Brian; Aslam, Muhammad Nadeem; Dame, Michael K.

    2013-01-01

    Gadolinium, a member of the lanthanoid family of transition metals, interacts with calcium-binding sites on proteins and other biological molecules. The overall goal of the present investigation was to determine if gadolinium could enhance calcium-induced epithelial cell growth inhibition in the colon. Gadolinium at concentrations as low as 1–5 µM combined with calcium inhibits proliferation of human colonic epithelial cells more effectively than calcium alone. Gadolinium had no detectable effect on calcium-induced differentiation in the same cells based on change in cell morphology, induction of E-cadherin synthesis, and translocation of E-cadherin from the cytosol to the cell surface. When the colon epithelial cells were treated with gadolinium and then exposed to increased calcium concentrations, movement of extracellular calcium into the cell was suppressed. In contrast, gadolinium treatment had no effect on ionomycin-induced release of stored intracellular calcium into the cytoplasm. Whether these in vitro observations can be translated into an approach for reducing abnormal proliferation in the colonic mucosa (including polyp formation) is not known. These results do, however, provide an explanation for our recent findings that a multi-mineral supplement containing all of the naturally occurring lanthanoid metals including gadolinium are more effective than calcium alone in preventing colon polyp formation in mice on a high-fat diet. PMID:23008064

  4. Growth control in colon epithelial cells: gadolinium enhances calcium-mediated growth regulation.

    PubMed

    Attili, Durga; Jenkins, Brian; Aslam, Muhammad Nadeem; Dame, Michael K; Varani, James

    2012-12-01

    Gadolinium, a member of the lanthanoid family of transition metals, interacts with calcium-binding sites on proteins and other biological molecules. The overall goal of the present investigation was to determine if gadolinium could enhance calcium-induced epithelial cell growth inhibition in the colon. Gadolinium at concentrations as low as 1-5 μM combined with calcium inhibits proliferation of human colonic epithelial cells more effectively than calcium alone. Gadolinium had no detectable effect on calcium-induced differentiation in the same cells based on change in cell morphology, induction of E-cadherin synthesis, and translocation of E-cadherin from the cytosol to the cell surface. When the colon epithelial cells were treated with gadolinium and then exposed to increased calcium concentrations, movement of extracellular calcium into the cell was suppressed. In contrast, gadolinium treatment had no effect on ionomycin-induced release of stored intracellular calcium into the cytoplasm. Whether these in vitro observations can be translated into an approach for reducing abnormal proliferation in the colonic mucosa (including polyp formation) is not known. These results do, however, provide an explanation for our recent findings that a multi-mineral supplement containing all of the naturally occurring lanthanoid metals including gadolinium are more effective than calcium alone in preventing colon polyp formation in mice on a high-fat diet.

  5. Thermodynamic properties of gadolinium in Ga-Sn and Ga-Zn eutectic based alloys

    NASA Astrophysics Data System (ADS)

    Maltsev, Dmitry S.; Volkovich, Vladimir A.; Yamshchikov, Leonid F.; Chukin, Andrey V.

    2016-09-01

    Thermodynamic properties of gadolinium in Ga-Sn and Ga-Zn eutectic based alloys were studied. Temperature dependences of gadolinium activity in the studied alloys were determined at 573-1073 K employing the EMF method. Solubility of gadolinium in the Ga-Sn and Ga-Zn alloys was measured at 462-1073 K using IMCs sedimentation method. Activity coefficients as well as partial and excess thermodynamic functions of gadolinium in the studied alloys were calculated on the basis of the obtained experimental data.

  6. Circularly Polarized Luminescence in Enantiopure Europium and Terbium Complexes with Modular, All-Oxygen Donor Ligands

    PubMed Central

    Seitz, Michael; Do, King; Ingram, Andrew J.; Moore, Evan G.; Muller, Gilles; Raymond, Kenneth N.

    2009-01-01

    Abstract: Circulaly polarized luminescence from terbium(III) complexed and excited by chiral antenna ligands gives strong emission The modular synthesis of three new octadentate, enantiopure ligands are reported - one with the bidentate chelating unit 2-hydroxyisophthalamide (IAM) and two with 1-hydroxy-2-pyridinone (1,2-HOPO) units. A new design principle is introduced for the chiral, non-racemic hexamines which constitute the central backbones for the presented class of ligands. The terbium(III) complex of the IAM ligand, as well as the europium(III) complexes of the 1,2-HOPO ligands are synthesized and characterized by various techniques (NMR, UV, CD, luminescence spectroscopy). All species exhibit excellent stability and moderate to high luminescence efficiency (quantum yields ΦEu = 0.05–0.08 and ΦTb = 0.30–0.57) in aqueous solution at physiological pH. Special focus is put onto the properties of the complexes in regard to circularly polarized luminescence (CPL). The maximum luminescence dissymmetry factors (glum) in aqueous solution are high with |glum|max = 0.08 – 0.40. Together with the very favorable general properties (good stability, high quantum yields, long lifetimes), the presented lanthanide complexes can be considered as good candidates for analytical probes based on CPL in biologically relevant environments. PMID:19639983

  7. Low temperature Voigt effect in the terbium gallium garnet crystal.

    PubMed

    Akbar, Ali; Khalid, Muhammad Waleed; Anwar, Muhammad Sabieh

    2017-11-27

    Magnetic linear birefringence and dichroism are investigated for the paramagnetic terbium gallium garnet (TGG) single crystal in the temperature range 8-100 K. The reciprocal nature is confirmed for the linear birefringence. Furthermore a theoretical model is validated that describes the intermixing of linear and circular birefringence. The ellipticity and rotation of the polarization ellipse are investigated in the light of these measurements. These otherwise minuscule magnetically induced effects are amplified at cryogenic temperatures and are determined by a phase-sensitive technique based on the Fourier decomposition of detected signal intensities. The correspondent measurements also allow us to determine the Curie-Weiss constant corroborating the presence of a magnetically frustrated spin system. Additionally we show how the Voigt geometry enables determining the direction of a magnetic field.

  8. Autofluorescence-Free Live-Cell Imaging Using Terbium Nanoparticles.

    PubMed

    Cardoso Dos Santos, M; Goetz, J; Bartenlian, H; Wong, K-L; Charbonnière, L J; Hildebrandt, N

    2018-04-18

    Fluorescent nanoparticles (NPs) have become irreplaceable tools for advanced cellular and subcellular imaging. While very bright NPs require excitation with UV or visible light, which can create strong autofluorescence of biological components, NIR-excitable NPs without autofluorescence issues exhibit much lower brightness. Here, we show the application of a new type of surface-photosensitized terbium NPs (Tb-NPs) for autofluorescence-free intracellular imaging in live HeLa cells. The combination of exceptionally high brightness, high photostability, and long photoluminecence (PL) lifetimes for highly efficient suppression of the short-lived autofluorescence allowed for time-gated PL imaging of intracellular vesicles over 72 h without toxicity and at extremely low Tb-NP concentrations down to 12 pM. Detection of highly resolved long-lifetime (ms) PL decay curves from small (∼10 μm 2 ) areas within single cells within a few seconds emphasized the unprecedented photophysical properties of Tb-NPs for live-cell imaging that extend well beyond currently available nanometric imaging agents.

  9. Rare earth elements and hypertension risk among housewives: A pilot study in Shanxi Province, China.

    PubMed

    Wang, Bin; Yan, Lailai; Huo, Wenhua; Lu, Qun; Cheng, Zixi; Zhang, Jingxu; Li, Zhiwen

    2017-01-01

    Studies have shown that residents living near rare earth mining areas have high concentrations of rare earth elements (REEs) in their hair. However, the adverse effects of REEs on human health have rarely been the focus of epidemiological studies. The goal of this study was to evaluate the relationship between REEs in hair and the risk of hypertension in housewives. We recruited 398 housewives in Shanxi Province, China, consisting of 163 women with hypertension (cases) and 235 healthy women without hypertension (controls). We analyzed 15 REEs (lanthanum (La), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), Yttrium (Y), cerium (Ce), praseodymium (Pr), and neodymium (Nd)) and calcium (Ca) accumulated in housewives hair over a period of two years. The results revealed that, with the exception of Eu, concentrations of the REEs in hair were higher in the cases than in the controls. The univariate odds ratios (ORs) of the 14 REEs were >1, and four of the REEs (Dy, Tm, Yb, and Y) also had adjusted ORs > 1. The increasing dose-response trends of the four REEs further indicated the potential for increased hypertension risk. Moreover, the REEs were negatively correlated with Ca content in hair. These results might suggest an antagonistic effect of REEs on Ca in the human body. It was concluded that high intake of REEs might increase the risk of hypertension among housewives. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Are gadolinium-based contrast media nephrotoxic? A renal biopsy study.

    PubMed

    Akgun, Hulya; Gonlusen, Gulfiliz; Cartwright, Joiner; Suki, Wadi N; Truong, Luan D

    2006-09-01

    Gadolinium-based contrast media were originally introduced as alternatives to iodinated media for magnetic resonance imaging. Although originally thought to be nonnephrotoxic, gadolinium-based contrast media have recently been reported to be associated with acute renal failure; the mechanism and the underlying renal injury are not completely understood. We report what is, to our knowledge, the first renal biopsy in this context. A 56-year-old patient underwent 2 consecutive vascular imaging procedures in conjunction with gadolinium-based contrast medium administration. A few days later, the patient developed acute renal failure. A renal biopsy showed acute tubular cell injury including patchy tubular cell necrosis, tubular cell degeneration, and marked proliferation of tubular cells, together with mild interstitial edema and interstitial inflammation, but without significant glomerular or vascular changes. During supportive therapy, renal function was partially regained. This case emphasizes the potential nephrotoxicity of gadolinium-based contrast media and suggests that the nephrotoxicity is related to potentially reversible acute tubular cell injury.

  11. Emission beyond 4  μm and mid-infrared lasing in a dysprosium-doped indium fluoride (InF3) fiber.

    PubMed

    Majewski, Matthew R; Woodward, Robert I; Carreé, Jean-Yves; Poulain, Samuel; Poulain, Marcel; Jackson, Stuart D

    2018-04-15

    Optical emission from rare-earth-doped fluoride fibers has thus far been limited to less than 4 μm. We extend emission beyond this limit by employing an indium fluoride (InF 3 ) glass fiber as the host, which exhibits an increased infrared transparency over commonly used zirconium fluoride (ZBLAN). Near-infrared pumping of a dysprosium-doped InF 3 fiber results in broad emission centered around 4.3 μm, representing the longest emission yet achieved from a fluoride fiber. The first laser emission in an InF 3 fiber is also demonstrated from the 3 μm dysprosium transition. Finally, a frequency domain excited state lifetime measurement comparison between fluoride hosts suggests that multiphonon effects are significantly reduced in indium fluoride fiber, paving the way to more efficient, longer wavelength lasers compared to ZBLAN fibers.

  12. Technical aspects of MRI signal change quantification after gadolinium-based contrast agents' administration.

    PubMed

    Ramalho, Joana; Ramalho, Miguel; AlObaidy, Mamdoh; Semelka, Richard C

    2016-12-01

    Over the last 2years several studies have been published regarding gadolinium deposition in brain structures in patients with normal renal function after repeated administrations of gadolinium-based contrast agents (GBCAs). Most of the publications are magnetic resonance imaging (MRI) based retrospective studies, where gadolinium deposition may be indirectly measured by evaluating changes in T1 signal intensity (SI) in brain tissue, particularly in the dentate nucleus (DN) and/or globus pallidi (GP). The direct correlation between T1 signal changes and gadolinium deposition was validated by human pathology studies. However, the variability of the MR equipment and parameters used across different publications, along with the inherent limitations of MRI to assess gadolinium in human tissues should be acknowledged when interpreting those studies. Nevertheless, MRI studies remain essential regarding gadolinium bio-distribution knowledge. The aim of this paper is to overview current knowledge of technical aspects of T1 signal intensity evaluation by MRI and describe confounding factors, with the intention to achieve higher accuracy and maximize reproducibility. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Terbium(III) Modified Fluorescent Carbon Dots for Highly Selective and Sensitive Ratiometry of Stringent.

    PubMed

    Chen, Bin Bin; Liu, Meng Li; Zhan, Lei; Li, Chun Mei; Huang, Cheng Zhi

    2018-03-20

    Highly selective and sensitive detection of guanosine 3'-diphosphate-5'-diphosphate (ppGpp), namely, the stringent in plants or microorganisms responding to strict or extreme environmental conditions such as stress and starvation, which plays an important role in gene expression, rRNA and antibiotics production, regulations of virulence of bacteria, and growth of plants, faces a great challenge owing to its extreme similarity to normal nucleotides. By modifying the surface groups of a facile two-step hydrothermal route prepared carbon dots (CDs) with terbium ions (Tb 3+ ) in this contribution, a novel fluorescent probe with excellent properties such as highly physical and chemical stability, narrow emission and excitation wavelength-independent emission was prepared. The Tb 3+ ions on the surface of CDs cannot only preserve the intrinsic fluorescence (FL) of CDs but also keep its own coordination capacity with rare earth complex, and thus the clamp structure (four phosphate groups) of ppGpp can specific binding with Tb 3+ ions on the surface of CDs to produce antenna effect. Therefore, a highly selective and sensitive fluorescent ratiometry of ppGpp was developed by terbium-modified carbon dots (CDs-Tb) with the limit of detection as low as 50 nM based on the synergistic effect of antenna effect of Tb 3+ ions and specific recognition capacity of CDs. The applicability of this assay was demonstrated by CDs-Tb-based paper sensor for high distinguishing ppGpp from other nucleotides with similar structure.

  14. Dysprosium complexes with mono-/di-carboxylate ligands—From simple dimers to 2D and 3D frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yingjie, E-mail: yzx@ansto.gov.au; Bhadbhade, Mohan; Scales, Nicholas

    2014-11-15

    Four dysprosium (Dy) single carboxylates, a formate, a propionate, a butyrate and an oxalate have been synthesized and structurally characterized. The structure of Dy(HCO{sub 2}){sub 3} (1) contains nine-fold coordinated Dy polyhedra in perfect tricapped trigonal prisms. They are linked through trigonal O atoms forming 1D pillars which are further linked together through tricapped O atoms into a 3D pillared metal organic framework. The network structure is stable up to 360 °C. The structure of [Dy{sub 2}(C{sub 2}O{sub 4}){sub 3}(H{sub 2}O){sub 6}]·2.5H{sub 2}O (2) contains nine-fold coordinated Dy polyhedra linking together through μ{sub 2}-bridging oxalate anions into a 2D hexagonalmore » layered structure. Both [Dy{sub 2}(Pr){sub 6}(H{sub 2}O){sub 4}]·(HPr){sub 0.5} (3) [Pr=(C{sub 2}H{sub 5}CO{sub 2}){sup −1}] and [Dy{sub 2}(Bu){sub 6}(H{sub 2}O){sub 4}] (4) [Bu=(C{sub 3}H{sub 7}CO{sub 2}){sup −1}] have similar di-nuclear structures. The Raman vibration modes of the complexes have been investigated. - Graphical abstract: Four dysprosium (Dy) complexes with formate, propionate, butyrate and oxalate ligands have been synthesized and characterized. The Dy formato complex has a 3D pillared metal organic framework and the structure is stable up to 360 °C whilst the complexes with longer alkyl chained mono-carboxylates possess similar di-nuclear structures. The Dy oxalato complex has a 2D hexagonal (honeycomb-type) structure. Their Raman vibration modes have been investigated. - Highlights: • New Dysprosium complexes with formate, propionate, butyrate and oxalate ligands. • Crystal structures range from dimers to two and three dimensional frameworks. • Vibrational modes have been investigated and correlated to the structures. • The complexes are thermal robust and stable to over 300 °C.« less

  15. Compensated gadolinium-loaded plastic scintillators for thermal neutron detection (and counting)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumazert, Jonathan; Coulon, Romain; Bertrand, Guillaume H. V.

    2015-07-01

    Plastic scintillator loading with gadolinium-rich organometallic complexes shows a high potential for the deployment of efficient and cost-effective neutron detectors. Due to the low-energy photon and electron signature of thermal neutron capture by gadolinium-155 and gadolinium-157, alternative treatment to Pulse Shape Discrimination has to be proposed in order to display a trustable count rate. This paper discloses the principle of a compensation method applied to a two-scintillator system: a detection scintillator interacts with photon radiation and is loaded with gadolinium organometallic compound to become a thermal neutron absorber, while a non-gadolinium loaded compensation scintillator solely interacts with the photon partmore » of the incident radiation. Posterior to the nonlinear smoothing of the counting signals, a hypothesis test determines whether the resulting count rate after photon response compensation falls into statistical fluctuations or provides a robust image of a neutron activity. A laboratory prototype is tested under both photon and neutron irradiations, allowing us to investigate the performance of the overall compensation system in terms of neutron detection, especially with regards to a commercial helium-3 counter. The study reveals satisfactory results in terms of sensitivity and orientates future investigation toward promising axes. (authors)« less

  16. Fine- and hyperfine structure investigations of even configuration system of atomic terbium

    NASA Astrophysics Data System (ADS)

    Stefanska, D.; Elantkowska, M.; Ruczkowski, J.; Furmann, B.

    2017-03-01

    In this work a parametric study of the fine structure (fs) and the hyperfine structure (hfs) for the even-parity configurations of atomic terbium (Tb I) is presented, based in considerable part on the new experimental results. Measurements on 134 spectral lines were performed by laser induced fluorescence (LIF) in a hollow cathode discharge lamp; on this basis, the hyperfine structure constants A and B were determined for 52 even-parity levels belonging to the configurations 4f85d6s2, 4f85d26s or 4f96s6p; in all the cases those levels were involved in the transitions investigated as the lower levels. For 40 levels the hfs was examined for the first time, and for the remaining 12 levels the new measurements supplement our earlier results. As a by-product, also preliminary values of the hfs constants for 84 odd-parity levels were determined (the investigations of the odd-parity levels system in the terbium atom are still in progress). This huge amount of new experimental data, supplemented by our earlier published results, were considered for the fine and hyperfine structure analysis. A multi-configuration fit of 7 configurations was performed, taking into account second-order of perturbation theory, including the effects of closed shell-open shell excitations. Predicted values of the level energies, as well as of magnetic dipole and electric quadrupole hyperfine structure constants A and B, are quoted in cases when no experimental values are available. By combining our experimental data with our own semi-empirical procedure it was possible to identify correctly the lower and upper level of the line 544.1440 nm measured by Childs with the use of the atomic-beam laser-rf double-resonance technique (Childs, J Opt Soc Am B 9;1992:191-6).

  17. Terbium Radionuclides for Theranostics Applications: A Focus On MEDICIS-PROMED

    NASA Astrophysics Data System (ADS)

    Cavaier, R. Formento; Haddad, F.; Sounalet, T.; Stora, T.; Zahi, I.

    A new facility, named CERN-MEDICIS, is under construction at CERN to produce radionuclides for medical applications. In parallel, the MEDICIS-PROMED, a Marie Sklodowska-Curie innovative training network of the Horizon 2020 European Commission's program, is being coordinated by CERN to train young scientists on the production and use of innovative radionuclides and develop a network of experts within Europe. One program within MEDICIS-PROMED is to determine the feasibility of producing innovative radioisotopes for theranostics using a commercial middle-sized high-current cyclotron and the mass separation technology developed at CERN-MEDICIS. This will allow the production of high specific activity radioisotopes not achievable with the common post-processing by chemical separation. Radioisotopes of scandium, copper, arsenic and terbium have been identified. Preliminary studies of activation yield and irradiation parameters optimization for the production of Tb-149 will be described.

  18. Compact all-fiber optical Faraday components using 65-wt%-terbium-doped fiber with a record Verdet constant of -32 rad/(Tm).

    PubMed

    Sun, L; Jiang, S; Marciante, J R

    2010-06-07

    A compact all-fiber Faraday isolator and a Faraday mirror are demonstrated. At the core of each of these components is an all-fiber Faraday rotator made of a 4-cm-long, 65-wt%-terbium-doped silicate fiber. The effective Verdet constant of the terbium-doped fiber is measured to be -32 rad/(Tm), which is 27 x larger than that of silica fiber. This effective Verdet constant is the largest value measured to date in any fiber and is 83% of the Verdet constant of commercially available crystal used in bulk optics-based isolators. Combining the all-fiber Faraday rotator with fiber polarizers results in a fully fusion spliced all-fiber isolator whose isolation is measured to be 19 dB. Combining the all-fiber Faraday rotator with a fiber Bragg grating results in an all-fiber Faraday mirror that rotates the polarization state of the reflected light by 88 +/- 4 degrees .

  19. Theoretical study of some experimentally relevant states of dysprosium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzuba, V. A.; Flambaum, V. V.

    2010-05-15

    Configuration interaction method is used to calculate transition amplitudes and other properties of the low states of dysprosium which are used in cooling and in the study of the time variation of the fine structure constant and violation of fundamental symmetries. The branching ratio for the cooling state to decay to states other than ground states is found to be smaller than 10{sup -4}. The matrix element of the weak interaction between degenerate states at E=19797.96 cm{sup -1} is about 4 Hz which is consistent with the experimental limit |H{sub W}|=|2.3{+-}2.9(stat.){+-}0.7(syst.)| Hz [A. T. Nguyen, D. Budker, D. DeMille, andmore » M. Zolotorev, Phys. Rev. A 56, 3453 (1997)] and points to feasibility of its experimental measurement. Applications include the search for physics beyond the standard model using the parity nonconservation (PNC) isotopic chain approach.« less

  20. [Rapid imaging in orbito-ocular pathology. Contribution of gadolinium].

    PubMed

    Pigeau, I; Legeais, J M; D'Hermies, F; Fayet, B; Leport, M; Abenhaim, A; Guinet, C; Levy, C; Renard, G; Vadrot, D

    1990-01-01

    To evaluate Gradient-Echo Imaging (GEI) in orbito-ocular pathology, 15 volunteers and 34 patients (40 lesions) were examined with GEA T1 and GEA T2 (0.5 T). Results were compared with SE T1 in all cases, with SE T2 in 20 cases and with other imaging modalities (CT). 30 patients were examined before and after injection of gadolinium. Final diagnosis was obtained by surgery or biopsy in 24 cases or by combined results of imaging and clinical findings in 16 cases. Compared with SE, GEA demonstrated a better visualisation of optic nerve, orbital muscles, choroidal-retinal layer, lens capsule and episclera and a better detection of small lesions. It is very helpful for characterisation of lesions containing hemorrhages or paramagnetic components (melanine, gadolinium) or of vascular nature (angioma). Gadolinium was useful for detection of small lesions or characterisation of a few lesions. Thus GEA seems to be an efficient method for the evaluation of orbito-ocular pathology.

  1. Distribution and chemical forms of gadolinium in the brain: a review.

    PubMed

    Kanda, Tomonori; Nakai, Yudai; Hagiwara, Akifumi; Oba, Hiroshi; Toyoda, Keiko; Furui, Shigeru

    2017-11-01

    In the 3 years since residual gadolinium-based contrast agent (GBCA) in the brain was first reported, much has been learned about its accumulation, including the pathway of GBCA entry into the brain, the brain distribution of GBCA and its excretion. Here we review recent progress in understanding the routes of gadolinium deposition in brain structures.

  2. Feasibility and accuracy of dual-layer spectral detector computed tomography for quantification of gadolinium: a phantom study.

    PubMed

    van Hamersvelt, Robbert W; Willemink, Martin J; de Jong, Pim A; Milles, Julien; Vlassenbroek, Alain; Schilham, Arnold M R; Leiner, Tim

    2017-09-01

    The aim of this study was to evaluate the feasibility and accuracy of dual-layer spectral detector CT (SDCT) for the quantification of clinically encountered gadolinium concentrations. The cardiac chamber of an anthropomorphic thoracic phantom was equipped with 14 tubular inserts containing different gadolinium concentrations, ranging from 0 to 26.3 mg/mL (0.0, 0.1, 0.2, 0.4, 0.5, 1.0, 2.0, 3.0, 4.0, 5.1, 10.6, 15.7, 20.7 and 26.3 mg/mL). Images were acquired using a novel 64-detector row SDCT system at 120 and 140 kVp. Acquisitions were repeated five times to assess reproducibility. Regions of interest (ROIs) were drawn on three slices per insert. A spectral plot was extracted for every ROI and mean attenuation profiles were fitted to known attenuation profiles of water and pure gadolinium using in-house-developed software to calculate gadolinium concentrations. At both 120 and 140 kVp, excellent correlations between scan repetitions and true and measured gadolinium concentrations were found (R > 0.99, P < 0.001; ICCs > 0.99, CI 0.99-1.00). Relative mean measurement errors stayed below 10% down to 2.0 mg/mL true gadolinium concentration at 120 kVp and below 5% down to 1.0 mg/mL true gadolinium concentration at 140 kVp. SDCT allows for accurate quantification of gadolinium at both 120 and 140 kVp. Lowest measurement errors were found for 140 kVp acquisitions. • Gadolinium quantification may be useful in patients with contraindication to iodine. • Dual-layer spectral detector CT allows for overall accurate quantification of gadolinium. • Interscan variability of gadolinium quantification using SDCT material decomposition is excellent.

  3. Type of MRI contrast, tissue gadolinium, and fibrosis.

    PubMed

    Do, Catherine; Barnes, Jeffrey L; Tan, Chunyan; Wagner, Brent

    2014-10-01

    It has been presupposed that the thermodynamic stability constant (K(therm)) of gadolinium-based MRI chelates relate to the risk of precipitating nephrogenic systemic fibrosis. The present study compared low-K(therm) gadodiamide with high-K(therm) gadoteridol in cultured fibroblasts and rats with uninephrectomies. Gadolinium content was assessed using scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy in paraffin-embedded tissues. In vitro, fibroblasts demonstrated dose-dependent fibronectin generation, transforming growth factor-β production, and expression of activated myofibroblast stress fiber protein α-smooth muscle actin. There were negligible differences with respect to toxicity or proliferation between the two contrast agents. In the rodent model, gadodiamide treatment led to greater skin fibrosis and dermal cellularity than gadoteridol. In the kidney, both contrast agents led to proximal tubule vacuolization and increased fibronectin accumulation. Despite large detectable gadolinium signals in the spleen, skin, muscle, and liver from the gadodiamide-treated group, contrast-induced fibrosis appeared to be limited to the skin and kidney. These findings support the hypothesis that low-K(therm) chelates have a greater propensity to elicit nephrogenic systemic fibrosis and demonstrate that certain tissues are resistant to these effects.

  4. Characteristics of Gadolinium Oxide Nanoparticles Using Terahertz Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Dongkyu; Maeng, Inhee; Son, Joo-Hiuk

    2009-04-19

    The penetration property of the terahertz electromagnetic (THz) wave is relevant to its use. We used the THz wave spectroscopy system which easily penetrates some materials that do not contain water, e.g., plastic and ceramics. The system has been developed for several purposes, including measuring the properties of semiconductors and bio-materials, and detecting plastic bombs and ceramic knives at airports. It is also used for medical imaging systems, such as magnetic resonance imaging (MRI), at some research institutes. It can show not only the difference in amplitude, but also the difference of the phase of each point of sample. MRImore » technology usually uses contrast agents to enhance the quality of the image. Gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA), made with a heavy metal ion, is commonly used as a clinical MRI contrast agent. Gadolinium oxide (Gd{sub 2}O{sub 3}) nanoparticle is a new contrast agent. It serves to equip the core of each particle with antibodies or ligands. It can freely circulate in blood vessels without amassing in the liver or lungs. This study shows the characteristics of gadolinium oxide nanoparticles to further advance terahertz medical imaging.« less

  5. Optical properties and Faraday effect of ceramic terbium gallium garnet for a room temperature Faraday rotator.

    PubMed

    Yoshida, Hidetsugu; Tsubakimoto, Koji; Fujimoto, Yasushi; Mikami, Katsuhiro; Fujita, Hisanori; Miyanaga, Noriaki; Nozawa, Hoshiteru; Yagi, Hideki; Yanagitani, Takagimi; Nagata, Yutaka; Kinoshita, Hiroo

    2011-08-01

    The optical properties, Faraday effect and Verdet constant of ceramic terbium gallium garnet (TGG) have been measured at 1064 nm, and were found to be similar to those of single crystal TGG at room temperature. Observed optical characteristics, laser induced bulk-damage threshold and optical scattering properties of ceramic TGG were compared with those of single crystal TGG. Ceramic TGG is a promising Faraday material for high-average-power YAG lasers, Yb fiber lasers and high-peak power glass lasers for inertial fusion energy drivers.

  6. Lanthanide Oleates: Chelation, Self-assembly, and Exemplification of Ordered Nanostructured Colloidal Contrast Agents for Medical Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Guozhen; Conn, Charlotte E.; Drummond, Calum J.

    2010-01-12

    Eight lanthanide(III) oleates have been prepared and characterized. The chelation and self-assembly structures of these rare-earth oleates have been studied by elemental analysis, Fourier transfer infrared spectroscopy (FTIR), and X-ray powder diffraction (XRD) analysis. Elemental analysis and FTIR results indicate that three oleate anions are complexed with one lanthanide cation and, with the exception of anhydrous cerium(III) oleate, form either a mono- or a hemihydrate. The X-ray analysis showed that the neat lanthanide soaps have a lamellar bilayer structure at room temperature. The thermal behavior has been investigated by cross-polarized optical microscopy (POM), differential scanning calorimetry (DSC), and thermogravimetric analysismore » (TGA). POM scans showed that all the lanthanide oleates form a lamellar phase in the presence of excess water. Small-angle X-ray scattering (SAXS) and XRD were used to investigate the internal structure of the bulk lanthanide oleates in excess water, and these X-ray results confirmed that the lanthanide oleates do not swell in water. Select lanthanide oleates were dispersed in water to form nonswelling lamellar submicrometer particles, confirmed by dynamic light scattering (DLS) and synchrotron SAXS measurements. NMR results indicated that colloidal dispersions of lanthanide oleates containing paramagnetic ions, such as gadolinium(III), terbium(III), and dysprosium(III), have a significant effect on the longitudinal (T{sub 1}) and transverse (T{sub 2}) relaxation times of protons in water. Time-resolved fluorescence measurements have demonstrated that colloidal dispersions of europium(III) oleate exhibit strong luminescence. The rare earth metal soaps exemplify the potential of self-assembled chelating amphiphiles as contrast agents in medical imaging modalities such as magnetic resonance imaging (MRI) and fluorescence imaging.« less

  7. The dosimetric impact of gadolinium-based contrast media in GBM brain patient plans for a MRI-Linac

    NASA Astrophysics Data System (ADS)

    Bilal Ahmad, Syed; Paudel, Moti Raj; Sarfehnia, Arman; Kim, Anthony; Pang, Geordi; Ruschin, Mark; Sahgal, Arjun; Keller, Brian M.

    2017-08-01

    Dosimetric effects of gadolinium based contrast media (Gadovist) were evaluated for the Elekta MRI linear accelerator using the research version of the Monaco treatment planning system (TPS). In order to represent a gadolinium uptake, the contrast was manually assigned to a phantom as well as to the gross tumour volume (GTV) of 6 glioblastoma multiforme (GBM) patients. A preliminary estimate of the dose enhancement, due to gadolinium, was performed using the phantom irradiated with a single beam. A more complicated assessment was performed for the GBM patients using a 7 field IMRT technique. The material table in Monaco was modified in order to identify the presence of a non-biological material. The dose distribution was modelled using GPUMCD (MC algorithm in Monaco) for an unmodified (or default) material table (DMT) as well as for a modified (or custom) material table (CMT) for both the phantom and patients. Various concentrations ranging between 8 and 157 mg ml-1 were used to represent the gadolinium uptake in the patient’s GTV. It was assumed that the gadolinium concentration remained the same for the entire course of radiation treatment. Results showed that at the tissue-Gadovist interface, inside the phantom, dose scored using the DMT was 7% lower compared to that using the CMT for 157 mg ml-1 concentration of gadolinium. Dosimetric differences in the case of the patient study were measured using the DVH parameters. D 50% was higher by 6% when the DMT was used compared to the CMT for dose modelling for a gadolinium concentration of 157 mg ml-1. This difference decreased gradually with decreasing concentration of gadolinium. It was concluded that dosimetric differences can be quantified in Monaco if the tumour-gadolinium concentration is more than 23 mg ml-1. If the gadolinium concentration is lower than 23 mg ml-1, then a correction for the presence of gadolinium may not be necessary in the TPS.

  8. The dosimetric impact of gadolinium-based contrast media in GBM brain patient plans for a MRI-Linac.

    PubMed

    Ahmad, Syed Bilal; Paudel, Moti Raj; Sarfehnia, Arman; Kim, Anthony; Pang, Geordi; Ruschin, Mark; Sahgal, Arjun; Keller, Brian M

    2017-08-01

    Dosimetric effects of gadolinium based contrast media (Gadovist) were evaluated for the Elekta MRI linear accelerator using the research version of the Monaco treatment planning system (TPS). In order to represent a gadolinium uptake, the contrast was manually assigned to a phantom as well as to the gross tumour volume (GTV) of 6 glioblastoma multiforme (GBM) patients. A preliminary estimate of the dose enhancement, due to gadolinium, was performed using the phantom irradiated with a single beam. A more complicated assessment was performed for the GBM patients using a 7 field IMRT technique. The material table in Monaco was modified in order to identify the presence of a non-biological material. The dose distribution was modelled using GPUMCD (MC algorithm in Monaco) for an unmodified (or default) material table (DMT) as well as for a modified (or custom) material table (CMT) for both the phantom and patients. Various concentrations ranging between 8 and 157 mg ml -1 were used to represent the gadolinium uptake in the patient's GTV. It was assumed that the gadolinium concentration remained the same for the entire course of radiation treatment. Results showed that at the tissue-Gadovist interface, inside the phantom, dose scored using the DMT was 7% lower compared to that using the CMT for 157 mg ml -1 concentration of gadolinium. Dosimetric differences in the case of the patient study were measured using the DVH parameters. D 50% was higher by 6% when the DMT was used compared to the CMT for dose modelling for a gadolinium concentration of 157 mg ml -1 . This difference decreased gradually with decreasing concentration of gadolinium. It was concluded that dosimetric differences can be quantified in Monaco if the tumour-gadolinium concentration is more than 23 mg ml -1 . If the gadolinium concentration is lower than 23 mg ml -1 , then a correction for the presence of gadolinium may not be necessary in the TPS.

  9. Gadolinium-enhanced cardiovascular magnetic resonance: administered dose in relationship to United States Food and Drug Administration (FDA) guidelines.

    PubMed

    Nacif, Marcelo S; Arai, Andrew E; Lima, Joao A C; Bluemke, David A

    2012-02-29

    Myocardial late gadolinium enhancement was originally validated using higher than label-recommended doses of gadolinium chelate. The objective of this study was to evaluate available evidence for various gadolinium dosing regimens used for CMR. The relationship of gadolinium dose warnings (due to nephrogenic systemic fibrosis) announced in 2008 to gadolinium dosing regimens was also examined. We conducted a meta-analysis of peer reviewed publications from January, 2004 to December, 2010. Major subject search headings (MeSh) terms from the National Library of Medicine's PubMed were: contrast media, gadolinium, heart, magnetic resonance imaging; searches were limited to human studies with abstracts published in English. Case reports, review articles, editorials, MRA related papers and all reports that did not indicate gadolinium type or weight-based dose were excluded. For all included references, full text was available to determine the total administered gadolinium dose on a per kg basis. Average and median dose values were weighted by the number of subjects in each study. 399 publications were identified in PubMed; 233 studies matched the inclusion criteria, encompassing 19,934 patients with mean age 54.2 ± 11.4 (range 9.3 to 76 years). 34 trials were related to perfusion testing and 199 to myocardial late gadolinium enhancement. In 2004, the weighted-median and weighted-mean contrast dose were 0.15 and 0.16 ± 0.06 mmol/kg, respectively. Median contrast doses for 2005-2010 were: 0.2 mmol/kg for all years, respectively. Mean contrast doses for the years 2005-2010 were: 0.19 ± 0.03, 0.18 ± 0.04, 0.18 ± 0.10, 0.18 ± 0.03, 0.18 ± 0.04 and 0.18 ± 0.04 mmol/kg, respectively (p for trend, NS). Gadopentetate dimeglumine was the most frequent gadolinium type [114 (48.9%) studies]. No change in mean gadolinium dose was present before, versus after the Food and Drug Administration (FDA) black box warning (p > 0.05). Three multi-center dose ranging trials have been

  10. Method of separating and purifying gadolinium-153

    DOEpatents

    Bray, Lane A [Richland, WA; Corneillie, Todd M [Davis, CA

    2001-01-01

    The present invention is an improvement to the method of separating and purifying gadolinium from a mixture of gadolinium and europium having the steps of (a) dissolving the mixture in an acid; (b) reducing europium+3 to europium+2; and (c) precipitating the europium+2 with a sulfate ion in a superstoichiometric amount; wherein the improvement is achieved by using one or more of the following: (i) the acid is an anoic acid; (ii) the reducing is with zinc metal in the absence of a second metal or with an amount of the second metal that is ineffective in the reducing; (iii) adding a group IIA element after step (c) for precipitating the excess sulfate prior to repeating step (c); (iv) the sulfate is a sulfate salt with a monovalent cation; (v) adding cold europium+3 prior to repeating step (c).

  11. 40 CFR 721.9511 - Silicic acid (H6SiO2O7), magnesium, strontium salt(1:1:2), dysprosium and europium-doped.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9511 Silicic acid (H6SiO2O7), magnesium, strontium salt(1:1:2), dysprosium and europium-doped. (a) Chemical substance and significant new...

  12. Gadolinium: Central Metal of the Lanthanoids

    ERIC Educational Resources Information Center

    Laing, Michael

    2009-01-01

    The physical and chemical properties of gadolinium are compared with those of the other lanthanoids. Some properties are intermediate between those of lanthanum and lutetium; some between those of barium and hafnium; and others (unexpectedly) between those of ytterbium and lutetium. Both the remarkably high molar heat capacity of the metal and the…

  13. Gadolinium Use in Spine Pain Management Procedures for Patients with Contrast Allergies: Results in 527 Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safriel, Yair; Ang, Roberto; Ali, Muhammed

    2008-03-15

    Introduction. To review the safety and efficacy of gadolinium in spine pain management procedures in patients at high risk for a contrast reaction and who are not suitable candidates for the use of standard non-ionic contrast. Methods. We reviewed records over a 61-month period of all image-guided spinal pain management procedures where patients had allergies making them unsuitable candidates for standard non-ionic contrast and where gadolinium was used to confirm needle tip placement prior to injection of medication. Results. Three hundred and four outpatients underwent 527 procedures. A spinal needle was used in all but 41 procedures. Gadolinium was visualizedmore » using portable C-arm fluoroscopy in vivo allowing for confirmation of needle tip location. The gadolinium dose ranged from 0.2 to 10 ml per level. The highest dose received by one patient was 15.83 ml intradiscally during a three-level discogram. Three hundred and one patients were discharged without complication or known delayed complications. One patient had documented intrathecal injection but without sequelae and 2 patients who underwent cervical procedures experienced seizures requiring admission to the intensive care unit. Both the latter patients were discharged without any further complications. Conclusion. Based on our experience we recommend using gadolinium judiciously for needle tip confirmation. We feel more confident using gadolinium in the lumbar spine and in cervical nerve blocks. Gadolinium should probably not be used as an injectate volume expander. The indications for gadolinium use in cervical needle-guided spine procedures are less clear and use of a blunt-tipped needle should be considered.« less

  14. On the specific electrophysical properties of n-InSe single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdinov, A. Sh., E-mail: abdinov-axmed@yahoo.com; Babaeva, R. F., E-mail: babaeva-rena@yandex.ru; Rzaev, R. M., E-mail: abdinov-axmed@yandex.ru

    2016-01-15

    The temperature dependences of physical parameters (the conductivity and the Hall constant) are experimentally investigated for pure indium-selenide (n-InSe) crystals and those lightly doped with rareearth elements (gadolinium, holmium, and dysprosium). It is established that the obtained results depend on the origin of the samples under investigation and prove to be contradictory for different samples. The obtained experimental results are treated taking into account the presence of chaotic large-scale defects and drift barriers caused by them in these samples.

  15. [Gadolinium-based contrast agents for magnetic resonance imaging].

    PubMed

    Carrasco Muñoz, S; Calles Blanco, C; Marcin, Javier; Fernández Álvarez, C; Lafuente Martínez, J

    2014-06-01

    Gadolinium-based contrast agents are increasingly being used in magnetic resonance imaging. These agents can improve the contrast in images and provide information about function and metabolism, increasing both sensitivity and specificity. We describe the gadolinium-based contrast agents that have been approved for clinical use, detailing their main characteristics based on their chemical structure, stability, and safety. In general terms, these compounds are safe. Nevertheless, adverse reactions, the possibility of nephrotoxicity from these compounds, and the possibility of developing nephrogenic systemic fibrosis will be covered in this article. Lastly, the article will discuss the current guidelines, recommendations, and contraindications for their clinical use, including the management of pregnant and breast-feeding patients. Copyright © 2014 SERAM. Published by Elsevier Espana. All rights reserved.

  16. Theoretical study of structure and stability of small gadolinium carboxylate complexes in liquid scintillator solvents.

    PubMed

    Huang, Pin-Wen

    2014-09-01

    The structural properties of three small gadolinium carboxylate complexes in three liquid scintillator solvents (pseudocumene, linear alkylbenzene, and phenyl xylylethane) were theoretically investigated using density functional theory (B3LYP/LC-RECP) and polarizable continuum model (PCM). The average interaction energy between gadolinium atom and carboxylate ligand (E(int)) and the energy difference of the highest singly occupied molecular orbital and lowest unoccupied molecular orbital (Δ(SL)) were calculated to evaluate and compare the relative stability of these complexes in solvents. The calculation results show that the larger (with a longer alkyl chain) gadolinium carboxylate complex has greater stability than the smaller one, while these gadolinium carboxylates in linear alkylbenzene were found to have greater stability than those in the other two solvents.

  17. Characteristics of Gadolinium Oxide Nanoparticles Using Terahertz Spectroscopy (abstract)

    NASA Astrophysics Data System (ADS)

    Lee, Dongkyu; Maeng, Inhee; Oh, Seung Jae; Kim, Taekhoon; Cho, Byung Kyu; Lee, Kwangyeol; Son, Joo-Hiuk

    2009-04-01

    The penetration property of the terahertz electromagnetic (THz) wave is relevant to its use. We used the THz wave spectroscopy system which easily penetrates some materials that do not contain water, e.g., plastic and ceramics. The system has been developed for several purposes, including measuring the properties of semiconductors and bio-materials, and detecting plastic bombs and ceramic knives at airports. It is also used for medical imaging systems, such as magnetic resonance imaging (MRI), at some research institutes. It can show not only the difference in amplitude, but also the difference of the phase of each point of sample. MRI technology usually uses contrast agents to enhance the quality of the image. Gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA), made with a heavy metal ion, is commonly used as a clinical MRI contrast agent. Gadolinium oxide (Gd2O3) nanoparticle is a new contrast agent. It serves to equip the core of each particle with antibodies or ligands. It can freely circulate in blood vessels without amassing in the liver or lungs. This study shows the characteristics of gadolinium oxide nanoparticles to further advance terahertz medical imaging.

  18. Terbium content affects the luminescence properties of ZrO2:Tb nanoparticles for mammary cancer imaging in mice

    NASA Astrophysics Data System (ADS)

    Kaszewski, Jarosław; Borgstrom, Emanuel; Witkowski, Bartłomiej S.; Wachnicki, Łukasz; Kiełbik, Paula; Slonska, Anna; Domino, Malgorzata A.; Narkiewicz, Urszula; Gajewski, Zdzislaw; Hochepied, Jean-François; Godlewski, Michał M.; Godlewski, Marek

    2017-12-01

    The use of nanoparticles in medicine is a rapidly growing research field with numerous potential applications, especially in the field of cancer diagnosis and therapy. Nanoparticles can be intrinsically diagnostic of therapeutic, or they can be conjugated with diagnostic or therapeutic compounds. Nanoparticles may also passively or actively target tumor cells specifically using the enhanced permeation and retention (EPR) effect, or the addition of targeting ligands to their surface. This may provide a diagnostic or/and therapeutic tools to target primary as well as metastatic tumors. The transport, distribution and toxicity of nanoparticles depends greatly on their size and composition, thus every new formulation needs to be extensively researched. This work was focused on the development of Tb-doped ZrO2 nanoparticles (NPs) for application in cancer imaging. Obtained nanoparticles were below 10 nm with very low influence of Tb concentration on size. Terbium stabilization of ZrO2 had influence on the luminescence properties of obtained material. Partially stabilized zirconium dioxide exhibited broad host related emission peaking at 500 nm, disappearing with the terbium content. We confirmed alimentary absorption and wide distribution of luminescent ZrO2:Tb nanoparticles in mice with their gradual accumulation in the experimentally induced mammary cancers. Furthermore, a high concentration of NPs was found within the lung metastases as opposed to healthy lung tissue, where no NPs-related signal was observed.

  19. Toxicological and pharmacological effects of gadolinium and samarium chlorides

    PubMed Central

    Haley, T. J.; Raymond, K.; Komesu, N.; Upham, H. C.

    1961-01-01

    A study has been made of the toxicology and pharmacology of gadolinium and samarium chlorides. The symptoms of acute toxicity following intraperitoneal injection are described. The chronic oral ingestion of both chemicals for 12 weeks produced no effects on growth or the blood picture, and only the male rats receiving gadolinium chloride showed liver damage. The pharmacological responses to both chemicals were mainly depressant on all systems studied, and death was associated with cardiovascular collapse coupled with respiratory paralysis. The greatest damage seen was on abraded skin, where non-healing ulcers were produced by both chemicals, whereas irritation of intact skin and ocular tissues was only transient in nature. PMID:13903826

  20. Porphyrin-containing polyaspartamide gadolinium complexes as potential magnetic resonance imaging contrast agents.

    PubMed

    Yan, Guo-Ping; Li, Zhen; Xu, Wei; Zhou, Cheng-Kai; Yang, Lian; Zhang, Qiao; Li, Liang; Liu, Fan; Han, Lin; Ge, Yuan-Xing; Guo, Jun-Fang

    2011-04-04

    Porphyrin-containing polyaspartamide ligands (APTSPP-PHEA-DTPA) were synthesized by the incorporation of diethylenetriaminepentaacetic acid (DTPA) and 5-(4'-aminophenyl)-10,15,20-tris(4'-sulfonatophenyl) porphyrin, trisodium salt (APTSPP) into poly-α,β-[N-(2-hydroxyethyl)-l-aspartamide] (PHEA). These ligands were further reacted with gadolinium chloride to produce macromolecule-gadolinium complexes (APTSPP-PHEA-DTPA-Gd). Experimental data of (1)H NMR, IR, UV and elemental analysis evidenced the formation of the polyaspartamide ligands and gadolinium complexes. In vitro and in vivo property tests indicated that APTSPP-PHEA-DTPA-Gd possessed noticeably higher relaxation effectiveness, less toxicity to HeLa cells, and significantly higher enhanced signal intensities (SI) of the VX2 carcinoma in rabbits with lower injection dose requirement than that of Gd-DTPA. Moreover, APTSPP-PHEA-DTPA-Gd was found to greatly enhance the contrast of MR images of the VX2 carcinoma, providing prolonged intravascular duration, and distinguished the VX2 carcinoma and normal tissues in rabbits according to MR image signal enhancements. These porphyrin-containing polyaspartamide gadolinium complexes can be used as the candidates of contrast agents for targeted MRI to tumors. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  1. Proton Relaxivity and Magnetic Hyperthermia Evaluation of Gadolinium Doped Nickel Ferrite Nanoparticles as Potential Theranostic Agents.

    PubMed

    Yadavalli, Tejabhiram; Raja, Paradeep; Ramaswamy, Shivaraman; Chandrasekharan, Gopalakrishnan; Chennakesavulu, Ramasamy

    2017-02-01

    This paper outlines the preparation of gadolinium doped nickel ferrite nanoparticles as potential magnetic carriers and longitudinal magnetic resonance imaging contrast agents using hydrothermal method with gadolinium concentration varying from 10% to 40%. A concise effect on the crystal structure was observed at 10% and 20% gadolinium doping, while gadolinium oxide was observed to leach at concentrations exceeding 20%. Further, gadolinium doped nickel ferrites were analyzed for their morphological, magnetic, proton relaxation and magnetic hyperthermia heating properties to understand their potential role as magnetic carrier agents. Low temperature and room temperature magnetic studies conducted on the samples showed comparatively high magnetic saturation with low remanent magnetization. Further, relaxometry studies revealed a high relaxation rate of 6.63 s−1 at a concentration of 0.1 mg/mL. Magnetic hyperthermia studies of the samples at a concentration of 1 mg/mL, assessed that the samples attained a temperature of 68 °C in 240 seconds.

  2. Construction of the energy matrix for complex atoms. Part VIII: Hyperfine structure HPC calculations for terbium atom

    NASA Astrophysics Data System (ADS)

    Elantkowska, Magdalena; Ruczkowski, Jarosław; Sikorski, Andrzej; Dembczyński, Jerzy

    2017-11-01

    A parametric analysis of the hyperfine structure (hfs) for the even parity configurations of atomic terbium (Tb I) is presented in this work. We introduce the complete set of 4fN-core states in our high-performance computing (HPC) calculations. For calculations of the huge hyperfine structure matrix, requiring approximately 5000 hours when run on a single CPU, we propose the methods utilizing a personal computer cluster or, alternatively a cluster of Microsoft Azure virtual machines (VM). These methods give a factor 12 performance boost, enabling the calculations to complete in an acceptable time.

  3. Removal of gadolinium, a neutron poison from the moderator system of nuclear reactors.

    PubMed

    Rufus, A L; Kumar, Padma S; Jeena, K; Velmurugan, S

    2018-01-15

    Gadolinium as gadolinium nitrate is used as neutron poison in the moderator system for regulating and controlling the power generation of Pressurized Heavy Water Reactors (PHWR) and proposed to be used in Advanced Heavy Water Reactors (AHWR) owing to its high neutron absorption cross section. Removal of the added gadolinium nitrate (Gd 3+ and NO 3 - ) from the system after its intended use is done using ion exchange resins. In the present investigation, attempts have been made to optimize the ion exchange process for generation of low radioactive waste and maximize utilization of the ion exchange resins by employing different types of resins and different modes of operation. The investigations revealed that use of mixed bed (MB) resin column consisting of Strong Acid Cation (SAC) resin and Strong Base Anion (SBA) resin followed by SAC resin column is efficient in removing the Gd 3+ and NO 3 - from the system besides maintaining the pH of the moderator system in the desirable regime, where gadolinium does not get precipitated as its hydroxide. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Fluorescent adduct formation with terbium: a novel strategy for transferrin glycoform identification in human body fluids and carbohydrate-deficient transferrin HPLC method validation.

    PubMed

    Sorio, Daniela; De Palo, Elio Franco; Bertaso, Anna; Bortolotti, Federica; Tagliaro, Franco

    2017-02-01

    This paper puts forward a new method for the transferrin (Tf) glycoform analysis in body fluids that involves the formation of a transferrin-terbium fluorescent adduct (TfFluo). The key idea is to validate the analytical procedure for carbohydrate-deficient transferrin (CDT), a traditional biochemical serum marker to identify chronic alcohol abuse. Terbium added to a human body-fluid sample produced TfFluo. Anion exchange HPLC technique, with fluorescence detection (λ exc 298 nm and λ em 550 nm), permitted clear separation and identification of Tf glycoform peaks without any interfering signals, allowing selective Tf sialoforms analysis in human serum and body fluids (cadaveric blood, cerebrospinal fluid, and dried blood spots) hampered for routine test. Serum samples (n = 78) were analyzed by both traditional absorbance (Abs) and fluorescence (Fl) HPLC methods and CDT% levels demonstrated a significant correlation (p < 0.001 Pearson). Intra- and inter-runs CV% was 3.1 and 4.6%, respectively. The cut-off of 1.9 CDT%, related to the HPLC Abs proposed as the reference method, by interpolation in the correlation curve with the present method demonstrated a 1.3 CDT% cut-off. Method comparison by Passing-Bablok and Bland-Altman tests demonstrated Fl versus Abs agreement. In conclusion, the novel method is a reliable test for CDT% analysis and provides a substantial analytical improvement offering important advantages in terms of types of body fluid analysis. Its sensitivity and absence of interferences extend clinical applications being reliable for CDT assay on body fluids usually not suitable for routine test. Graphical Abstract The formation of a transferrin-terbium fluorescent adduct can be used to analyze the transferrin glycoforms. The HPLC method for carbohydrate-deficient transferrin (CDT%) measurement was validated and employed to determine the levels in different body fluids.

  5. Custom Coordination Environments for Lanthanoids: Tripodal Ligands Achieve Near-Perfect Octahedral Coordination for Two Dysprosium-Based Molecular Nanomagnets.

    PubMed

    Lim, Kwang Soo; Baldoví, José J; Jiang, ShangDa; Koo, Bong Ho; Kang, Dong Won; Lee, Woo Ram; Koh, Eui Kwan; Gaita-Ariño, Alejandro; Coronado, Eugenio; Slota, Michael; Bogani, Lapo; Hong, Chang Seop

    2017-05-01

    Controlling the coordination sphere of lanthanoid complexes is a challenging critical step toward controlling their relaxation properties. Here we present the synthesis of hexacoordinated dysprosium single-molecule magnets, where tripodal ligands achieve a near-perfect octahedral coordination. We perform a complete experimental and theoretical investigation of their magnetic properties, including a full single-crystal magnetic anisotropy analysis. The combination of electrostatic and crystal-field computational tools (SIMPRE and CONDON codes) allows us to explain the static behavior of these systems in detail.

  6. Poly[[[μ3-N′-(carboxymethyl)ethylene­di­amine-N,N,N′-triacetato]dysprosium(III)] trihydrate

    PubMed Central

    Zhuang, Xiaomei; Long, Qingping; Wang, Jun

    2010-01-01

    In the title coordination polymer, {[Dy(C10H13N2O8)]·3H2O}n, the dysprosium(III) ion is coordinated by two N atoms and six O atoms from three different (carb­oxy­meth­yl)ethyl­ene­diamine­triacetate ligands in a distorted square-anti­prismatic geometry. The ligands connect the metal atoms, forming layers parallel to the ab plane. O—H⋯O hydrogen bonds further assemble adjacent layers into a three-dimensional supra­molecular network. PMID:21588859

  7. Gadolinium Scandium Gallium Garnet (GSGG) as a Solid-State Laser Host

    DTIC Science & Technology

    1987-07-01

    o*SATI CODSi1.SBEC EM (otne nrvrs fnceayad dniy nb)k ubr ~~~~~~~~ Gadolinium Scandium Gallium Garnet (GSGG)asaSldtteLerHt 17. ABSTRACT 6.SUJCTTEM...certain other garnet materials for replacement. It also addresses the solid-state laser host material Gadolinium Scandium Gal- lium Garnet (GSGG) and its...by neodymium-doped yttrium aluminum garnet (Nd:YAG) or other mate- rials for most applications. In the years after the invention of the ruby laser, in

  8. Magnetic ordering temperatures in rare earth metal dysprosium under ultrahigh pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.

    Magnetic ordering temperatures in heavy rare earth metal Dysprosium (Dy) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to extreme conditions of pressure to 69 GPa and temperature to 10 K. Previous studies using magnetic susceptibility measurements at high pressures were only able to track magnetic ordering temperature till 7 GPa in the hexagonal close packed ( hcp) phase of Dy. Our studies indicate that the magnetic ordering temperature shows an abrupt drop of 80 K at the hcp-Sm phase transition followed by a gradual decrease that continues till 17 GPa. Thismore » is followed by a rapid increase in the magnetic ordering temperatures in the double hexagonal close packed phase and finally leveling off in the distorted face centered cubic phase of Dy. Lastly, our studies reaffirm that 4f-shell remain localized in Dy and there is no loss of magnetic moment or 4f-shell delocalization for pressures up to 69 GPa.« less

  9. Magnetic ordering temperatures in rare earth metal dysprosium under ultrahigh pressures

    DOE PAGES

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.; ...

    2014-04-03

    Magnetic ordering temperatures in heavy rare earth metal Dysprosium (Dy) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to extreme conditions of pressure to 69 GPa and temperature to 10 K. Previous studies using magnetic susceptibility measurements at high pressures were only able to track magnetic ordering temperature till 7 GPa in the hexagonal close packed ( hcp) phase of Dy. Our studies indicate that the magnetic ordering temperature shows an abrupt drop of 80 K at the hcp-Sm phase transition followed by a gradual decrease that continues till 17 GPa. Thismore » is followed by a rapid increase in the magnetic ordering temperatures in the double hexagonal close packed phase and finally leveling off in the distorted face centered cubic phase of Dy. Lastly, our studies reaffirm that 4f-shell remain localized in Dy and there is no loss of magnetic moment or 4f-shell delocalization for pressures up to 69 GPa.« less

  10. Gadolinium Brain Deposition after Macrocyclic Gadolinium Administration: A Pediatric Case-Control Study.

    PubMed

    Tibussek, Daniel; Rademacher, Christin; Caspers, Julian; Turowski, Bernd; Schaper, Jörg; Antoch, Gerald; Klee, Dirk

    2017-10-01

    Purpose To determine whether signal intensity (SI) in T1 sequences as a potential indicator of gadolinium deposition increases after repeated administration of the macrocyclic gadolinium-based contrast agents (GBCAs) gadoteridol and gadoterate meglumine in a pediatric cohort. Materials and Methods This retrospective case-control study of children with brain tumors who underwent nine or more contrast material-enhanced brain magnetic resonance (MR) imaging studies from 2008 to 2015 was approved by the local ethics board. Informed consent was obtained for MR imaging. Twenty-four case patients aged 5-18 years and appropriate control patients with nonpathologic MR neuroimaging findings (and no GBCA administration), matched for age and sex, were inculded. SI was measured on unenhanced T1-weighted MR images for the following five regions of interest (ROIs): the dentate nucleus (DN), pons, substantia nigra (SN), pulvinar thalami, and globus pallidus (GP). Paired t tests were used to compare SI and SI ratios (DN to pons, GP to thalamus) between case patients and control patients. Pearson correlations between relative signal changes and the number of GBCA administrations and total GBCA dose were calculated. Results The mean number of GBCA administrations was 14.2. No significant differences in mean SI for any ROI and no group differences were found when DN-to-pons and GP-to-pulvinar ratios were compared (DN-to-pons ratio in case patients: mean, 1.0083 ± 0.0373 [standard deviation]; DN-to-pons ratio in control patients: mean, 1.0183 ± 0.01917; P = .37; GP-to-pulvinar ratio in case patients: mean, 1.1335 ± 0.04528; and GP-to-pulvinar ratio in control patients: mean, 1.1141 ± 0.07058; P = .29). No correlation was found between the number of GBCA administrations or the total amount of GBCA administered and signal change for any ROI. (Number of GBCA applications: DN: r = -0.254, P = .31; pons: r = -0.097, P = .65; SN: r = -0.194, P = .38; GP: r = -0.175, P = .41; pulvinar: r

  11. Gadolinium Endohedral Metallofullerene-Based MRI Contrast Agents

    NASA Astrophysics Data System (ADS)

    Bolskar, Robert D.

    With the ability to encapsulate and carry the highly paramagnetic Gd3+ ion, gadolinium endohedral metallofullerenes or "gadofullerenes" are being explored as alternatives to the chelate complexes that are currently used for contrast-enhanced magnetic resonance imaging (MRI). Reviewed here are the various water-soluble derivatives of the gadofullerenes Gd@C82, Gd@C60, and Gd3N@C80 that have been investigated as MRI contrast agents. The water proton r1 relaxivities of gadofullerenes can be more than an order of magnitude higher than those of clinically used chelate agents. Gadofullerene relaxivity mechanisms have been studied, and multiple factors are found to contribute to their high relaxivities. In vitro and in vivoT1-weighted MRI tests of gadofullerene derivatives have shown their utility as bright image-enhancing agents. The gadofullerene MRI contrast agents are a promising new and unique style of gadolinium carrier for advanced imaging applications, including cellular and molecular imaging.

  12. Performance assessment of imaging plates for the JHR transfer Neutron Imaging System

    NASA Astrophysics Data System (ADS)

    Simon, E.; Guimbal, P. AB(; )

    2018-01-01

    The underwater Neutron Imaging System to be installed in the Jules Horowitz Reactor (JHR-NIS) is based on a transfer method using a neutron activated beta-emitter like Dysprosium. The information stored in the converter is to be offline transferred on a specific imaging system, still to be defined. Solutions are currently under investigation for the JHR-NIS in order to anticipate the disappearance of radiographic films commonly used in these applications. We report here the performance assessment of Computed Radiography imagers (Imaging Plates) performed at LLB/Orphée (CEA Saclay). Several imaging plate types are studied, in one hand in the configuration involving an intimate contact with an activated dysprosium foil converter: Fuji BAS-TR, Fuji UR-1 and Carestream Flex XL Blue imaging plates, and in the other hand by using a prototypal imaging plate doped with dysprosium and thus not needing any contact with a separate converter foil. The results for these imaging plates are compared with those obtained with gadolinium doped imaging plate used in direct neutron imaging (Fuji BAS-ND). The detection performances of the different imagers are compared regarding resolution and noise. The many advantages of using imaging plates over radiographic films (high sensitivity, linear response, high dynamic range) could palliate its lower intrinsic resolution.

  13. Watt-level dysprosium fiber laser at 315 μm with 73% slope efficiency

    NASA Astrophysics Data System (ADS)

    Woodward, R. I.; Majewski, M. R.; Bharathan, G.; Hudson, D. D.; Fuerbach, A.; Jackson, S. D.

    2018-04-01

    Rare-earth-doped fiber lasers are emerging as promising high-power mid-infrared sources for the 2.6-3.0 {\\mu}m and 3.3-3.8 {\\mu}m regions based on erbium and holmium ions. The intermediate wavelength range, however, remains vastly underserved, despite prospects for important manufacturing and defense applications. Here, we demonstrate the potential of dysprosium-doped fiber to solve this problem, with a simple in-band pumped grating-stabilized linear cavity generating up to 1.06 W at 3.15 {\\mu}m. A slope efficiency of 73% with respect to launched power (77% relative to absorbed power) is achieved: the highest value for any mid-infrared fiber laser to date, to the best of our knowledge. Opportunities for further power and efficiency scaling are also discussed.

  14. Gadolinium Deposition in Human Brain Tissues after Contrast-enhanced MR Imaging in Adult Patients without Intracranial Abnormalities.

    PubMed

    McDonald, Robert J; McDonald, Jennifer S; Kallmes, David F; Jentoft, Mark E; Paolini, Michael A; Murray, David L; Williamson, Eric E; Eckel, Laurence J

    2017-11-01

    Purpose To determine whether gadolinium deposits in neural tissues of patients with intracranial abnormalities following intravenous gadolinium-based contrast agent (GBCA) exposure might be related to blood-brain barrier integrity by studying adult patients with normal brain pathologic characteristics. Materials and Methods After obtaining antemortem consent and institutional review board approval, the authors compared postmortem neuronal tissue samples from five patients who had undergone four to 18 gadolinium-enhanced magnetic resonance (MR) examinations between 2005 and 2014 (contrast group) with samples from 10 gadolinium-naive patients who had undergone at least one MR examination during their lifetime (control group). All patients in the contrast group had received gadodiamide. Neuronal tissues from the dentate nuclei, pons, globus pallidus, and thalamus were harvested and analyzed with inductively coupled plasma mass spectrometry (ICP-MS), transmission electron microscopy with energy-dispersive x-ray spectroscopy, and light microscopy to quantify, localize, and assess the effects of gadolinium deposition. Results Tissues from the four neuroanatomic regions of gadodiamide-exposed patients contained 0.1-19.4 μg of gadolinium per gram of tissue in a statistically significant dose-dependent relationship (globus pallidus: ρ = 0.90, P = .04). In contradistinction, patients in the control group had undetectable levels of gadolinium with ICP-MS. All patients had normal brain pathologic characteristics at autopsy. Three patients in the contrast group had borderline renal function (estimated glomerular filtration rate <45 mL/min/1.73 m 2 ) and hepatobiliary dysfunction at MR examination. Gadolinium deposition in the contrast group was localized to the capillary endothelium and neuronal interstitium and, in two cases, within the nucleus of the cell. Conclusion Gadolinium deposition in neural tissues after GBCA administration occurs in the absence of intracranial

  15. 40 CFR 721.9511 - Silicic acid (H6SiO2O7), magnesium, strontium salt(1:1:2), dysprosium and europium-doped.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Silicic acid (H6SiO2O7), magnesium...), magnesium, strontium salt(1:1:2), dysprosium and europium-doped. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as silicic acid (H6SiO2O7) magnesium...

  16. 40 CFR 721.9511 - Silicic acid (H6SiO2O7), magnesium, strontium salt(1:1:2), dysprosium and europium-doped.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Silicic acid (H6SiO2O7), magnesium...), magnesium, strontium salt(1:1:2), dysprosium and europium-doped. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as silicic acid (H6SiO2O7) magnesium...

  17. 40 CFR 721.9511 - Silicic acid (H6SiO2O7), magnesium, strontium salt(1:1:2), dysprosium and europium-doped.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Silicic acid (H6SiO2O7), magnesium...), magnesium, strontium salt(1:1:2), dysprosium and europium-doped. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as silicic acid (H6SiO2O7) magnesium...

  18. 40 CFR 721.9511 - Silicic acid (H6SiO2O7), magnesium, strontium salt(1:1:2), dysprosium and europium-doped.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Silicic acid (H6SiO2O7), magnesium...), magnesium, strontium salt(1:1:2), dysprosium and europium-doped. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as silicic acid (H6SiO2O7) magnesium...

  19. Gadolinium-based nanoparticles to improve the hadrontherapy performances.

    PubMed

    Porcel, Erika; Tillement, Olivier; Lux, François; Mowat, Pierre; Usami, Noriko; Kobayashi, Katsumi; Furusawa, Yoshiya; Le Sech, Claude; Li, Sha; Lacombe, Sandrine

    2014-11-01

    Nanomedicine is proposed as a novel strategy to improve the performance of radiotherapy. High-Z nanoparticles are known to enhance the effects of ionizing radiation. Recently, multimodal nanoparticles such as gadolinium-based nanoagents were proposed to amplify the effects of x-rays and g-rays and to improve MRI diagnosis. For tumors sited in sensitive tissues, childhood cases and radioresistant cancers, hadrontherapy is considered superior to x-rays and g-rays. Hadrontherapy, based on fast ion radiation, has the advantage of avoiding damage to the tissues behind the tumor; however, the damage caused in front of the tumor is its major limitation. Here, we demonstrate that multimodal gadolinium-based nanoparticles amplify cell death with fast ions used as radiation. Molecular scale experiments give insights into the mechanisms underlying the amplification of radiation effects. This proof-of-concept opens up novel perspectives for multimodal nanomedicine in hadrontherapy, ultimately reducing negative radiation effects in healthy tissues in front of the tumor. Gadolinium-chelating polysiloxane nanoparticles were previously reported to amplify the anti-tumor effects of x-rays and g-rays and to serve as MRI contrast agents. Fast ion radiation-based hadrontherapy avoids damage to the tissues behind the tumor, with a major limitation of tissue damage in front of the tumor. This study demonstrates a potential role for the above nanoagents in optimizing hadrontherapy with preventive effects in healthy tissue and amplified cell death in the tumor. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Self-assembly of Terbium(III)-based metal-organic complexes with two-photon absorbing active

    NASA Astrophysics Data System (ADS)

    Li, Dandan; Shao, Nanqi; Sun, Xianshun; Zhang, Guocui; Li, Shengli; Zhou, Hongping; Wu, Jieying; Tian, Yupeng

    2014-12-01

    Hybrid complexes based on D-π-A type dyes p-aminostyryl-pyridinum and Terbium(III) complex anion (1, 2) have been synthesized by ionic exchange reaction. Meanwhile two different alkyl-substituted amino groups were used as electron donors in organic dyes cations. The synthesized complexes were characterized by element analysis. In addition, the structural features of them were systematic studied by single crystal X-ray diffraction analysis. Their linear properties have been systematically investigated by absorption spectra and fluorescence, the results show that the energy transfer takes place from the trans-4-[4‧-(N,N-diethylamino)styryl]-N-methyl pyridinium (2‧) cation to Tb(III). In addition, complex 2 exhibit a large two-photon absorption coefficient β: 0.044 cm/GW at 710 nm.

  1. Retention of Gadolinium-Based Contrast Agents in Multiple Sclerosis: Retrospective Analysis of an 18-Year Longitudinal Study.

    PubMed

    Forslin, Y; Shams, S; Hashim, F; Aspelin, P; Bergendal, G; Martola, J; Fredrikson, S; Kristoffersen-Wiberg, M; Granberg, T

    2017-07-01

    Gadolinium-based contrast agents have been associated with lasting high T1-weighted signal intensity in the dentate nucleus and globus pallidus, with histopathologically confirmed gadolinium retention. We aimed to longitudinally investigate the relationship of multiple gadolinium-based contrast agent administrations to the Signal Intensity Index in the dentate nucleus and globus pallidus and any associations with cognitive function in multiple sclerosis. The Signal Intensity Index in the dentate nucleus and globus pallidus was retrospectively evaluated on T1-weighted MR imaging in an 18-year longitudinal cohort study of 23 patients with MS receiving multiple gadolinium-based contrast agent administrations and 23 healthy age- and sex-matched controls. Participants also underwent comprehensive neuropsychological testing. Patients with MS had a higher Signal Intensity Index in the dentate nucleus ( P < .001), but not in the globus pallidus ( P = .19), compared with non-gadolinium-based contrast agent-exposed healthy controls by an unpaired t test. Increasing numbers of gadolinium-based contrast agent administrations were associated with an increased Signal Intensity Index in the dentate nucleus (β = 0.45, P < .001) and globus pallidus (β = 0.60, P < .001). This association remained stable with corrections for the age, disease duration, and physical disability for both the dentate nucleus (β = 0.43, P = .001) and globus pallidus (β = 0.58, P < .001). An increased Signal Intensity Index in the dentate nucleus among patients with MS was associated with lower verbal fluency scores, which remained significant after correction for several aspects of disease severity (β = -0.40 P = .013). Our data corroborate previous reports of lasting gadolinium retention in brain tissues. An increased Signal Intensity Index in the dentate nucleus and globus pallidus was associated with lower verbal fluency, which does not prove causality but encourages further studies on cognition

  2. Folate Receptor Targeted Alpha-Therapy Using Terbium-149

    PubMed Central

    Müller, Cristina; Reber, Josefine; Haller, Stephanie; Dorrer, Holger; Köster, Ulli; Johnston, Karl; Zhernosekov, Konstantin; Türler, Andreas; Schibli, Roger

    2014-01-01

    Terbium-149 is among the most interesting therapeutic nuclides for medical applications. It decays by emission of short-range α-particles (Eα = 3.967 MeV) with a half-life of 4.12 h. The goal of this study was to investigate the anticancer efficacy of a 149Tb-labeled DOTA-folate conjugate (cm09) using folate receptor (FR)-positive cancer cells in vitro and in tumor-bearing mice. 149Tb was produced at the ISOLDE facility at CERN. Radiolabeling of cm09 with purified 149Tb resulted in a specific activity of ~1.2 MBq/nmol. In vitro assays performed with 149Tb-cm09 revealed a reduced KB cell viability in a FR-specific and activity concentration-dependent manner. Tumor-bearing mice were injected with saline only (group A) or with 149Tb-cm09 (group B: 2.2 MBq; group C: 3.0 MBq). A significant tumor growth delay was found in treated animals resulting in an increased average survival time of mice which received 149Tb-cm09 (B: 30.5 d; C: 43 d) compared to untreated controls (A: 21 d). Analysis of blood parameters revealed no signs of acute toxicity to the kidneys or liver in treated mice over the time of investigation. These results demonstrated the potential of folate-based α-radionuclide therapy in tumor-bearing mice. PMID:24633429

  3. Myocardial late gadolinium enhancement in specific cardiomyopathies by cardiovascular magnetic resonance: a preliminary experience.

    PubMed

    Silva, Caterina; Moon, James C; Elkington, Andrew G; John, Anna S; Mohiaddin, Raad H; Pennell, Dudley J

    2007-12-01

    Late gadolinium enhancement cardiovascular magnetic resonance (CMR) can visualize myocardial interstitial abnormalities. The aim of this study was to assess whether regions of abnormal myocardium can also be visualized by late enhancement gadolinium CMR in the specific cardiomyopathies. A retrospective review of all referrals for gadolinium CMR with specific cardiomyopathy over 20 months. Nine patients with different specific cardiomyopathies were identified. Late enhancement was demonstrated in all patients, with a mean signal intensity of 390 +/- 220% compared with normal regions. The distribution pattern of late enhancement was unlike the subendocardial late enhancement related to coronary territories found in myocardial infarction. The affected areas included papillary muscles (sarcoid), the mid-myocardium (Anderson-Fabry disease, glycogen storage disease, myocarditis, Becker muscular dystrophy) and the global sub-endocardium (systemic sclerosis, Loeffler's endocarditis, amyloid, Churg-Strauss). Focal myocardial late gadolinium enhancement is found in the specific cardiomyopathies, and the pattern is distinct from that seen in infarction. Further systematic studies are warranted to assess whether the pattern and extent of late enhancement may aid diagnosis and prognostic assessment.

  4. Water quality and quantity of selected springs and seeps along the Colorado River corridor, Utah and Arizona: Arches National Park, Canyonlands National Park, Glen Canyon National Recreation Area, and Grand Canyon National Park, 1997-98

    USGS Publications Warehouse

    Taylor, Howard E.; Spence, John R.; Antweiler, Ronald C.; Berghoff, Kevin; Plowman, Terry I.; Peart, Dale B.; Roth, David A.

    2004-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service conducted an intensive assessment of selected springs along the Colorado River Corridor in Arches National Park, Canyonlands National Park, Glen Canyon National Recreation Area, and Grand Canyon National Park in 1997 and 1998, for the purpose of measuring and evaluating the water quality and quantity of the resource. This study was conducted to establish baseline data for the future evaluation of possible effects from recreational use and climate change. Selected springs and seeps were visited over a study period from 1997 to 1998, during which, discharge and on-site chemical measurements were made at selected springs and seeps, and samples were collected for subsequent chemical laboratory analysis. This interdisciplinary study also includes simultaneous studies of flora and fauna, measured and sampled coincidently at the same sites. Samples collected during this study were transported to U.S. Geological Survey laboratories in Boulder, Colorado, where analyses were performed using state-of-the-art laboratory technology. The location of the selected springs and seeps, elevation, geology, aspect, and onsite measurements including temperature, discharge, dissolved oxygen, pH, and specific conductance, were recorded. Laboratory analyses include determinations for alkalinity, aluminum, ammonium (nitrogen), antimony, arsenic, barium, beryllium, bismuth, boron, bromide, cadmium, calcium, cerium, cesium, chloride, chromium, cobalt, copper, dissolved inorganic carbon, dissolved organic carbon, dysprosium, erbium, europium, fluoride, gadolinium, holmium, iodine, iron, lanthanum, lead, lithium, lutetium, magnesium, manganese, mercury, molybdenum, neodymium, nickel, nitrate (nitrogen), nitrite (nitrogen), phosphate, phosphorus, potassium, praseodymium, rhenium, rubidium, samarium, selenium, silica, silver, sodium, strontium, sulfate, tellurium, terbium, thallium, thorium, thulium, tin, titanium, tungsten

  5. Selected trace elements in the Sacramento River, California: occurrence and distribution.

    PubMed

    Taylor, H E; Antweiler, R C; Roth, D A; Alpers, C N; Dileanis, P

    2012-05-01

    The impact of trace elements from the Iron Mountain Superfund site on the Sacramento River and selected tributaries is examined. The concentration and distribution of many trace elements-including aluminum, arsenic, boron, barium, beryllium, bismuth, cadmium, cerium, cobalt, chromium, cesium, copper, dysprosium, erbium, europium, iron, gadolinium, holmium, potassium, lanthanum, lithium, lutetium, manganese, molybdenum, neodymium, nickel, lead, praseodymium, rubidium, rhenium, antimony, selenium, samarium, strontium, terbium, thallium, thulium, uranium, vanadium, tungsten, yttrium, ytterbium, zinc, and zirconium-were measured using a combination of inductively coupled plasma-mass spectrometry and inductively coupled plasma-atomic emission spectrometry. Samples were collected using ultraclean techniques at selected sites in tributaries and the Sacramento River from below Shasta Dam to Freeport, California, at six separate time periods from mid-1996 to mid-1997. Trace-element concentrations in dissolved (ultrafiltered [0.005-μm pore size]) and colloidal material, isolated at each site from large volume samples, are reported. For example, dissolved Zn ranged from 900 μg/L at Spring Creek (Iron Mountain acid mine drainage into Keswick Reservoir) to 0.65 μg/L at the Freeport site on the Sacramento River. Zn associated with colloidal material ranged from 4.3 μg/L (colloid-equivalent concentration) in Spring Creek to 21.8 μg/L at the Colusa site on the Sacramento River. Virtually all of the trace elements exist in Spring Creek in the dissolved form. On entering Keswick Reservoir, the metals are at least partially converted by precipitation or adsorption to the particulate phase. Despite this observation, few of the elements are removed by settling; instead the majority is transported, associated with colloids, downriver, at least to the Bend Bridge site, which is 67 km from Keswick Dam. Most trace elements are strongly associated with the colloid phase going

  6. Selected trace elements in the Sacramento River, California: Occurrence and distribution

    USGS Publications Warehouse

    Taylor, Howard E.; Antweiler, Ronald C.; Roth, David A.; Dileanis, Peter D.; Alpers, Charles N.

    2012-01-01

    The impact of trace elements from the Iron Mountain Superfund site on the Sacramento River and selected tributaries is examined. The concentration and distribution of many trace elements—including aluminum, arsenic, boron, barium, beryllium, bismuth, cadmium, cerium, cobalt, chromium, cesium, copper, dysprosium, erbium, europium, iron, gadolinium, holmium, potassium, lanthanum, lithium, lutetium, manganese, molybdenum, neodymium, nickel, lead, praseodymium, rubidium, rhenium, antimony, selenium, samarium, strontium, terbium, thallium, thulium, uranium, vanadium, tungsten, yttrium, ytterbium, zinc, and zirconium—were measured using a combination of inductively coupled plasma-mass spectrometry and inductively coupled plasma-atomic emission spectrometry. Samples were collected using ultraclean techniques at selected sites in tributaries and the Sacramento River from below Shasta Dam to Freeport, California, at six separate time periods from mid-1996 to mid-1997. Trace-element concentrations in dissolved (ultrafiltered [0.005-μm pore size]) and colloidal material, isolated at each site from large volume samples, are reported. For example, dissolved Zn ranged from 900 μg/L at Spring Creek (Iron Mountain acid mine drainage into Keswick Reservoir) to 0.65 μg/L at the Freeport site on the Sacramento River. Zn associated with colloidal material ranged from 4.3 μg/L (colloid-equivalent concentration) in Spring Creek to 21.8 μg/L at the Colusa site on the Sacramento River. Virtually all of the trace elements exist in Spring Creek in the dissolved form. On entering Keswick Reservoir, the metals are at least partially converted by precipitation or adsorption to the particulate phase. Despite this observation, few of the elements are removed by settling; instead the majority is transported, associated with colloids, downriver, at least to the Bend Bridge site, which is 67 km from Keswick Dam. Most trace elements are strongly associated with the colloid phase going

  7. Analysis of soft x-ray emission spectra of laser-produced dysprosium, erbium and thulium plasmas

    NASA Astrophysics Data System (ADS)

    Sheil, John; Dunne, Padraig; Higashiguchi, Takeshi; Kos, Domagoj; Long, Elaine; Miyazaki, Takanori; O'Reilly, Fergal; O'Sullivan, Gerard; Sheridan, Paul; Suzuki, Chihiro; Sokell, Emma; White, Elgiva; Kilbane, Deirdre

    2017-03-01

    Soft x-ray emission spectra of dysprosium, erbium and thulium ions created in laser-produced plasmas were recorded with a flat-field grazing-incidence spectrometer in the 2.5-8 nm spectral range. The ions were produced using an Nd:YAG laser of 7 ns pulse duration and the spectra were recorded at various power densities. The experimental spectra were interpreted with the aid of the Cowan suite of atomic structure codes and the flexible atomic code. At wavelengths above 5.5 nm the spectra are dominated by overlapping n = 4 - n = 4 unresolved transition arrays from adjacent ion stages. Below 6 nm, n = 4 - n = 5 transitions also give rise to a series of interesting overlapping spectral features.

  8. Pediatric Patients Demonstrate Progressive T1-Weighted Hyperintensity in the Dentate Nucleus following Multiple Doses of Gadolinium-Based Contrast Agent.

    PubMed

    Roberts, D R; Chatterjee, A R; Yazdani, M; Marebwa, B; Brown, T; Collins, H; Bolles, G; Jenrette, J M; Nietert, P J; Zhu, X

    2016-12-01

    While there have been recent reports of brain retention of gadolinium following gadolinium-based contrast agent administration in adults, a retrospective series of pediatric patients has not previously been reported, to our knowledge. We investigated the relationship between the number of prior gadolinium-based contrast agent doses and increasing T1 signal in the dentate nucleus on unenhanced T1-weighted MR imaging. We hypothesized that despite differences in pediatric physiology and the smaller gadolinium-based contrast agent doses that pediatric patients are typically administered based on weighted-adjusted dosing, the pediatric brain would also demonstrate dose-dependent increasing T1 signal in the dentate nucleus. We included children with multiple gadolinium-based contrast agent administrations at our institution. A blinded reader placed ROIs within the dentate nucleus and adjacent cerebellar white matter. To eliminate reader bias, we also performed automated ROI delineation of the dentate nucleus, cerebellar white matter, and pons. Dentate-to-cerebellar white matter and dentate-to pons ratios were compared with the number of gadolinium-based contrast agent administrations. During 20 years at our institution, 280 patients received at least 5 gadolinium-based contrast agent doses, with 1 patient receiving 38 doses. Sixteen patients met the inclusion/exclusion criteria for ROI analysis. Blinded reader dentate-to-cerebellar white matter ratios were significantly associated with gadolinium-based contrast agent doses (r s = 0.77, P = .001). The dentate-to-pons ratio and dentate-to-cerebellar white matter ratios based on automated ROI placement were also significantly correlated with gadolinium-based contrast agent doses (t = 4.98, P < .0001 and t = 2.73, P < .02, respectively). In pediatric patients, the number of prior gadolinium-based contrast agent doses is significantly correlated with progressive T1-weighted dentate hyperintensity. Definitive confirmation of

  9. The High Radiosensitizing Efficiency of a Trace of Gadolinium-Based Nanoparticles in Tumors

    NASA Astrophysics Data System (ADS)

    Dufort, Sandrine; Le Duc, Géraldine; Salomé, Murielle; Bentivegna, Valerie; Sancey, Lucie; Bräuer-Krisch, Elke; Requardt, Herwig; Lux, François; Coll, Jean-Luc; Perriat, Pascal; Roux, Stéphane; Tillement, Olivier

    2016-07-01

    We recently developed the synthesis of ultrasmall gadolinium-based nanoparticles (GBN), (hydrodynamic diameter <5 nm) characterized by a safe behavior after intravenous injection (renal clearance, preferential accumulation in tumors). Owing to the presence of gadolinium ions, GBN can be used as contrast agents for magnetic resonance imaging (MRI) and as radiosensitizers. The attempt to determine the most opportune delay between the intravenous injection of GBN and the irradiation showed that a very low content of radiosensitizing nanoparticles in the tumor area is sufficient (0.1 μg/g of particles, i.e. 15 ppb of gadolinium) for an important increase of the therapeutic effect of irradiation. Such a promising and unexpected result is assigned to a suited distribution of GBN within the tumor, as revealed by the X-ray fluorescence (XRF) maps.

  10. In vitro radiosensitizing effects of ultrasmall gadolinium based particles on tumour cells.

    PubMed

    Mowat, P; Mignot, A; Rima, W; Lux, F; Tillement, O; Roulin, C; Dutreix, M; Bechet, D; Huger, S; Humbert, L; Barberi-Heyob, M; Aloy, M T; Armandy, E; Rodriguez-Lafrasse, C; Le Duc, G; Roux, S; Perriat, P

    2011-09-01

    Since radiotherapy is widely used in cancer treatment, it is essential to develop strategies which lower the irradiation burden while increasing efficacy and become efficient even in radio resistant tumors. Our new strategy is relying on the development of solid hybrid nanoparticles based on rare-earth such as gadolinium. In this paper, we then evidenced that gadolinium-based particles can be designed to enter efficiently into the human glioblastoma cell line U87 in quantities that can be tuned by modifying the incubation conditions. These sub-5 nm particles consist in a core of gadolinium oxide, a shell of polysiloxane and are functionalized by diethylenetriaminepentaacetic acid (DTPA). Although photoelectric effect is maximal in the [10-100 keV] range, such particles were found to possess efficient in-vitro radiosensitizing properties at an energy of 660 keV by using the "single-cell gel electrophoresis comet assay," an assay that measures the number of DNA damage that occurs during irradiation. Even more interesting, the particles have been evidenced by MTT assays to be also efficient radiosensitizers at an energy of 6 MeV for doses comprised between 2 and 8 Gy. The properties of the gadolinium-based particles give promising opening to a particle-assisted radio-therapy by using irradiation systems already installed in the majority of hospitals.

  11. Gadolinium-Conjugated Gold Nanoshells for Multimodal Diagnostic Imaging and Photothermal Cancer Therapy

    PubMed Central

    Coughlin, Andrew J.; Ananta, Jeyarama S.; Deng, Nanfu; Larina, Irina V.; Decuzzi, Paolo

    2014-01-01

    Multimodal imaging offers the potential to improve diagnosis and enhance the specificity of photothermal cancer therapy. Toward this goal, we have engineered gadolinium-conjugated gold nanoshells and demonstrated that they enhance contrast for magnetic resonance imaging, X-Ray, optical coherence tomography, reflectance confocal microscopy, and two-photon luminescence. Additionally, these particles effectively convert near-infrared light to heat, which can be used to ablate cancer cells. Ultimately, these studies demonstrate the potential of gadolinium-nanoshells for image-guided photothermal ablation. PMID:24115690

  12. Gadolinium-hydrogen ion exchange of zirconium phosphate

    NASA Technical Reports Server (NTRS)

    Liu, D. C.; Power, J. L.

    1972-01-01

    The Gd(+3)/H(+) ion exchange on a commercial zirconium phosphate ion exchanger was investigated in chloride, sulfate, and phosphate solutions of Gd(+3) at gadolinium concentrations of 0.001 to 1 millimole per cc and in the pH range of 0 to 3.5. Relatively low Gd(+3) capacities, in the range of 0.01 to 0.1 millimole per g of ion exchanger were found at room temperature. A significant difference in Gd(+3) sorption was observed, depending on whether the ion exchanger was converted from initial conditions of greater or lesser Gd(+3) sorption than the specific final conditions. Correlations were found between decrease in Gd(+3) capacity and loss of exchanger phosphate groups due to hydrolysis during washing and between increase in capacity and treatment with H3PO4. Fitting of the experimental data to ideal ion exchange equilibrium expressions indicated that each Gd(+3) ion is sorbed on only one site of the ion exchanger. The selectivity quotient was determined to be 2.5 + or - 0.4 at room temperature on gadolinium desorption in chloride solutions.

  13. The Effect of gadolinium on the ESR response of alanine and ammonium tartrate exposed to thermal neutrons.

    PubMed

    Marrale, Maurizio; Brai, Maria; Gennaro, Gaetano; Bartolotta, Antonio; D'Oca, Maria Cristina

    2008-02-01

    Many efforts have been made to develop neutron capture therapy (NCT) for cancer treatment. Among the challenges in using NCT is the characterization of the features of the mixed radiation field and of its components. In this study, we examined the enhancement of the ESR response of pellets of alanine and ammonium tartrate with gadolinium oxide exposed to a thermal neutron beam. In particular, the ESR response of these dosimeters as a function of the gadolinium content inside the dosimeter was analyzed. We found that the addition of gadolinium improves the sensitivity of both alanine and ammonium tartrate. However, the use of gadolinium reduces or abolishes tissue equivalence because of its high atomic number (Z(Gd) = 64). Therefore, it is necessary to find the optimum compromise between the sensitivity to thermal neutrons and the reduction of tissue equivalence. Our analysis showed that a low concentration of gadolinium oxide (of the order of 5% of the total mass of the dosimeter) can enhance the thermal neutron sensitivity more than 13 times with an insignificant reduction of tissue equivalence.

  14. Nanostructured Layered Terbium Hydroxide Containing NASIDs: In Vitro Physicochemical and Biological Evaluations.

    PubMed

    Gu, Qing-Yang; Qiu, Xiao; Liu, Jing-Jing; Fu, Min; Chao, Jian-Ping; Ju, Rui-Jun; Li, Xue-Tao

    2018-08-01

    Diclofenac sodium (abrr. DS) and indomethacin (abrr. IMC) have been intercalated into the layered terbium hydroxide (LTbH) by anion exchange method. Chemical compositions, thermostability, morphology, luminescence property, release behaviors and cytotoxic effects have been investigated. The DS molecules may embed between layers with a bilayered arrangement and the IMC may correspond to a monolayered arrangement. The Tb3+ luminescence in DS-LTbH and IMC-LTbH composites were enhanced compared with LTbH precusor and the luminescence intensity increases with the deprotonation degree. Drug release was measured with HPLC, and LTbH showed sustained release behavior on both drugs. Further In Vitro evaluation were carried out on cancer cells. Cytotoxic effect of LTbH was observed with a sulforhodamine B colorimetric assay on a variety of cancer cell lines, which revealed that the LTbH showed little cytotoxic effect. Results indicate LTbH may offer a potential vehicle as an effective drug delivery system along with diagnostic integration.

  15. Self-assembly of Terbium(III)-based metal-organic complexes with two-photon absorbing active.

    PubMed

    Li, Dandan; Shao, Nanqi; Sun, Xianshun; Zhang, Guocui; Li, Shengli; Zhou, Hongping; Wu, Jieying; Tian, Yupeng

    2014-12-10

    Hybrid complexes based on D-π-A type dyes p-aminostyryl-pyridinum and Terbium(III) complex anion (1, 2) have been synthesized by ionic exchange reaction. Meanwhile two different alkyl-substituted amino groups were used as electron donors in organic dyes cations. The synthesized complexes were characterized by element analysis. In addition, the structural features of them were systematic studied by single crystal X-ray diffraction analysis. Their linear properties have been systematically investigated by absorption spectra and fluorescence, the results show that the energy transfer takes place from the trans-4-[4'-(N,N-diethylamino)styryl]-N-methyl pyridinium (2') cation to Tb(III). In addition, complex 2 exhibit a large two-photon absorption coefficient β: 0.044cm/GW at 710nm. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Gadolinium-loaded Plastic Scintillators for Thermal Neutron Detection using Compensation

    NASA Astrophysics Data System (ADS)

    Dumazert, Jonathan; Coulon, Romain; Hamel, Matthieu; Carrel, Frédérick; Sguerra, Fabien; Normand, Stéphane; Méchin, Laurence; Bertrand, Guillaume H. V.

    2016-06-01

    Plastic scintillator loading with gadolinium-rich organometallic complexes shows a high potential for the deployment of efficient and cost-effective neutron detectors. Due to the low-energy photon and electron signature of thermal neutron capture by Gd-155 and Gd-157, alternative treatment to pulse-shape discrimination has to be proposed in order to display a count rate. This paper discloses the principle of a compensation method applied to a two-scintillator system: a detection scintillator interacts with photon and fast neutron radiation and is loaded with gadolinium organometallic compound to become a thermal neutron absorber, while a not-gadolinium loaded compensation scintillator solely interacts with the fast neutron and photon part of incident radiation. After the nonlinear smoothing of the counting signals, a hypothesis test determines whether the resulting count rate post-background response compensation falls into statistical fluctuations or provides a robust indication of neutron activity. Laboratory samples are tested under both photon and neutron irradiations, allowing the authors to investigate the performance of the overall detection system in terms of sensitivity and detection limits, especially with regards to a similar-active volume He-3 based commercial counter. The study reveals satisfactory figures of merit in terms of sensitivity and directs future investigation toward promising paths.

  17. Tracing gadolinium-based contrast agents from surface water to drinking water by means of speciation analysis.

    PubMed

    Birka, Marvin; Wehe, Christoph A; Hachmöller, Oliver; Sperling, Michael; Karst, Uwe

    2016-04-01

    In recent decades, a significant amount of anthropogenic gadolinium has been released into the environment as a result of the broad application of contrast agents for magnetic resonance imaging (MRI). Since this anthropogenic gadolinium anomaly has also been detected in drinking water, it has become necessary to investigate the possible effect of drinking water purification on these highly polar microcontaminats. Therefore, a novel highly sensitive method for speciation analysis of gadolinium is presented. For that purpose, the hyphenation of hydrophilic interaction liquid chromatography (HILIC) and inductively coupled plasma-mass spectrometry (ICP-MS) was employed. In order to enhance the detection power, sample introduction was carried out by ultrasonic nebulization. In combination with a novel HILIC method using a diol-based stationary phase, it was possible to achieve superior limits of detection for frequently applied gadolinium-based contrast agents below 20pmol/L. With this method, the contrast agents Gd-DTPA, Gd-DOTA and Gd-BT-DO3A were determined in concentrations up to 159pmol/L in samples from several waterworks in a densely populated region of Germany alongside the river Ruhr as well as from a waterworks near a catchment lake. Thereby, the direct impact of anthropogenic gadolinium species being present in the surface water on the amount of anthropogenic gadolinium in drinking water was shown. There was no evidence for the degradation of contrast agents, the release of Gd(3+) or the presence of further Gd species. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Commercializing potassium terbium fluoride, KTF (KTb3F10) faraday crystals for high laser power optical isolator applications

    NASA Astrophysics Data System (ADS)

    Schlichting, Wolfgang; Stevens, Kevin; Foundos, Greg; Payne, Alexis

    2017-10-01

    Many scientific lasers and increasingly industrial laser systems operate in <500W and kW output power regime, require high-performance optical isolators to prevent disruptive light feedback into the laser cavity. The optically active Faraday material is the key optical element inside the isolator. SYNOPTICS has been supplying the laser market with Terbium Gallium Garnet (TGG - Tb3Ga5O12) for many years. It is the most commonly used material for the 650-1100nm range and the key advantages for TGG include its cubic crystal structure for alignment free processing, little to no intrinsic birefringence, and ease of manufacture. However, for high-power laser applications TGG is limited by its absorption at 1064nm and its thermo-optic coefficient, dn/dT. Specifically, thermal lensing and depolarization effects become a limiting factor at high laser powers. While TGG absorption has improved significantly over the past few years, there is an intrinsic limit. Now, SYNOPTICS is commercializing the enhanced new crystal Potassium Terbium Fluoride KTF (KTb3F10) that exhibits much smaller nonlinear refractive index and thermo-optic coefficients, and still exhibits a Verdet constant near that of TGG. This cubic crystal has relatively low absorption and thermo-optic coefficients. It is now fully characterized and available for select production orders. At OPTIFAB in October 2017 we present recent results comparing the performance of KTF to TGG in optical isolators and show SYNOPTICS advances in large volume crystal growth and the production ramp up.

  19. A polymeric fastener can easily functionalize liposome surfaces with gadolinium for enhanced magnetic resonance imaging.

    PubMed

    Smith, Cartney E; Shkumatov, Artem; Withers, Sarah G; Yang, Binxia; Glockner, James F; Misra, Sanjay; Roy, Edward J; Wong, Chun-Ho; Zimmerman, Steven C; Kong, Hyunjoon

    2013-11-26

    Common methods of loading magnetic resonance imaging (MRI) contrast agents into nanoparticles often suffer from challenges related to particle formation, complex chemical modification/purification steps, and reduced contrast efficiency. This study presents a simple, yet advanced process to address these issues by loading gadolinium, an MRI contrast agent, exclusively on a liposome surface using a polymeric fastener. The fastener, so named for its ability to physically link the two functional components together, consisted of chitosan substituted with diethylenetriaminepentaacetic acid (DTPA) to chelate gadolinium, as well as octadecyl chains to stabilize the modified chitosan on the liposome surface. The assembly strategy, mimicking the mechanisms by which viruses and proteins naturally anchor to a cell, provided greater T1 relaxivity than liposomes loaded with gadolinium in both the interior and outer leaflet. Gadolinium-coated liposomes were ultimately evaluated in vivo using murine ischemia models to highlight the diagnostic capability of the system. Taken together, this process decouples particle assembly and functionalization and, therefore, has considerable potential to enhance imaging quality while alleviating many of the difficulties associated with multifunctional particle fabrication.

  20. A Polymeric Fastener can Easily Functionalize Liposome Surfaces with Gadolinium for Enhanced Magnetic Resonance Imaging

    PubMed Central

    Smith, Cartney E.; Shkumatov, Artem; Withers, Sarah G.; Glockner, James F.; Misra, Sanjay; Roy, Edward J.; Wong, Chun-Ho; Zimmerman, Steven C.; Kong, Hyunjoon

    2013-01-01

    Common methods of loading magnetic resonance imaging (MRI) contrast agents into nanoparticles often suffer from challenges related to particle formation, complex chemical modification/purification steps, and reduced contrast efficiency. This study presents a simple, yet advanced process to address these issues by loading gadolinium, an MRI contrast agent, exclusively on a liposome surface using a polymeric fastener. The fastener, so named for its ability to physically link the two functional components together, consisted of chitosan substituted with diethylenetriaminepentaacetic acid (DTPA) to chelate gadolinium, as well as octadecyl chains to stabilize the modified chitosan on the liposome surface. The assembly strategy, mimicking the mechanisms by which viruses and proteins naturally anchor to a cell, provided greater T1 relaxivity than liposomes loaded with gadolinium in both the interior and outer leaflet. Gadolinium-coated liposomes were ultimately evaluated in vivo using murine ischemia models to highlight the diagnostic capability of the system. Taken together, this process decouples particle assembly and functionalization, and therefore has considerable potential to enhance imaging quality while alleviating many of the difficulties associated with multifunctional particle fabrication. PMID:24083377

  1. Optical amplifier operating at 1.3 microns useful for telecommunications and based on dysprosium-doped metal chloride host materials

    DOEpatents

    Page, R.H.; Schaffers, K.I.; Payne, S.A.; Krupke, W.F.; Beach, R.J.

    1997-12-02

    Dysprosium-doped metal chloride materials offer laser properties advantageous for use as optical amplifiers in the 1.3 {micro}m telecommunications fiber optic network. The upper laser level is characterized by a millisecond lifetime, the host material possesses a moderately low refractive index, and the gain peak occurs near 1.31 {micro}m. Related halide materials, including bromides and iodides, are also useful. The Dy{sup 3+}-doped metal chlorides can be pumped with laser diodes and yield 1.3 {micro}m signal gain levels significantly beyond those currently available. 9 figs.

  2. Optical amplifier operating at 1.3 microns useful for telecommunications and based on dysprosium-doped metal chloride host materials

    DOEpatents

    Page, Ralph H.; Schaffers, Kathleen I.; Payne, Stephen A.; Krupke, William F.; Beach, Raymond J.

    1997-01-01

    Dysprosium-doped metal chloride materials offer laser properties advantageous for use as optical amplifiers in the 1.3 .mu.m telecommunications fiber optic network. The upper laser level is characterized by a millisecond lifetime, the host material possesses a moderately low refractive index, and the gain peak occurs near 1.31 .mu.m. Related halide materials, including bromides and iodides, are also useful. The Dy.sup.3+ -doped metal chlorides can be pumped with laser diodes and yield 1.3 .mu.m signal gain levels significantly beyond those currently available.

  3. Gadolinium deposition disease: Initial description of a disease that has been around for a while.

    PubMed

    Semelka, Richard C; Ramalho, Joana; Vakharia, Ami; AlObaidy, Mamdoh; Burke, Lauren M; Jay, Michael; Ramalho, Miguel

    2016-12-01

    To describe the clinical manifestations of presumed gadolinium toxicity in patients with normal renal function. Participants were recruited from two online gadolinium toxicity support groups. The survey was anonymous and individuals were instructed to respond to the survey only if they had evidence of normal renal function, evidence of gadolinium in their system beyond 30days of this MRI, and no pre-existent clinical symptoms and/or signs of this type. 42 subjects responded to the survey (age: 28-69, mean 49.1±22.4years). The most common findings were: central pain (n=15), peripheral pain (n=26), headache (n=28), and bone pain (n=26). Only subjects with distal leg and arm distribution described skin thickening (n=22). Clouded mentation and headache were the symptoms described as persistent beyond 3months in 29 subjects. Residual disease was present in all patients. Twenty-eight patients described symptoms following administration of one brand of Gadolinium-Based Contrast Agent (GBCA), 21 after a single GBCA administration and 7 after multiple GBCA administrations, including: gadopentetate dimeglumine, n=9; gadodiamide, n=4; gadoversetamide, n=4; gadobenate dimeglumine, n=4; gadobutrol, n=1; gadoteridol, n=2; and unknown, n=4. Gadolinium toxicity appears to arise following GBCA administration, which appears to contain clinical features seen in Nephrogenic Systemic Fibrosis, but also features not observed in that condition. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Gadolinium-based Contrast Media, Cerebrospinal Fluid and the Glymphatic System: Possible Mechanisms for the Deposition of Gadolinium in the Brain.

    PubMed

    Taoka, Toshiaki; Naganawa, Shinji

    2018-04-10

    After Kanda's first report in 2014 on gadolinium (Gd) deposition in brain tissue, a considerable number of studies have investigated the explanation for the observation. Gd deposition in brain tissue after repeated administration of gadolinium-based contrast medium (GBCM) has been histologically proven, and chelate stability has been shown to affect the deposition. However, the mechanism for this deposition has not been fully elucidated. Recently, a hypothesis was introduced that involves the 'glymphatic system', which is a coined word that combines 'gl' for glia cell and 'lymphatic' system. According to this hypothesis, the perivascular space functions as a conduit for cerebrospinal fluid to flow into the brain parenchyma. The perivascular space around the arteries allows cerebrospinal fluid to enter the interstitial space of the brain tissue through water channels controlled by aquaporin 4. The cerebrospinal fluid entering the interstitial space clears waste proteins from the tissue. It then flows into the perivascular space around the vein and is discharged outside the brain. In addition to the hypothesis regarding the glymphatic system, some reports have described that after GBCM administration, some of the GBCM distributes through systemic blood circulation and remains in other compartments including the cerebrospinal fluid. It is thought that the GBCM distributed into the cerebrospinal fluid cavity via the glymphatic system may remain in brain tissue for a longer duration compared to the GBCM in systemic circulation. Glymphatic system may of course act as a clearance system for GBCM from brain tissue. Based on these findings, the mechanism for Gd deposition in the brain will be discussed in this review. The authors speculate that the glymphatic system may be the major contributory factor to the deposition and clearance of gadolinium in brain tissue.

  5. Gadolinium-based Contrast Media, Cerebrospinal Fluid and the Glymphatic System: Possible Mechanisms for the Deposition of Gadolinium in the Brain

    PubMed Central

    Taoka, Toshiaki; Naganawa, Shinji

    2018-01-01

    After Kanda’s first report in 2014 on gadolinium (Gd) deposition in brain tissue, a considerable number of studies have investigated the explanation for the observation. Gd deposition in brain tissue after repeated administration of gadolinium-based contrast medium (GBCM) has been histologically proven, and chelate stability has been shown to affect the deposition. However, the mechanism for this deposition has not been fully elucidated. Recently, a hypothesis was introduced that involves the ‘glymphatic system’, which is a coined word that combines ‘gl’ for glia cell and ‘lymphatic’ system. According to this hypothesis, the perivascular space functions as a conduit for cerebrospinal fluid to flow into the brain parenchyma. The perivascular space around the arteries allows cerebrospinal fluid to enter the interstitial space of the brain tissue through water channels controlled by aquaporin 4. The cerebrospinal fluid entering the interstitial space clears waste proteins from the tissue. It then flows into the perivascular space around the vein and is discharged outside the brain. In addition to the hypothesis regarding the glymphatic system, some reports have described that after GBCM administration, some of the GBCM distributes through systemic blood circulation and remains in other compartments including the cerebrospinal fluid. It is thought that the GBCM distributed into the cerebrospinal fluid cavity via the glymphatic system may remain in brain tissue for a longer duration compared to the GBCM in systemic circulation. Glymphatic system may of course act as a clearance system for GBCM from brain tissue. Based on these findings, the mechanism for Gd deposition in the brain will be discussed in this review. The authors speculate that the glymphatic system may be the major contributory factor to the deposition and clearance of gadolinium in brain tissue. PMID:29367513

  6. Highly sensitive detection of dipicolinic acid with a water-dispersible terbium-metal organic framework.

    PubMed

    Bhardwaj, Neha; Bhardwaj, Sanjeev; Mehta, Jyotsana; Kim, Ki-Hyun; Deep, Akash

    2016-12-15

    The sensitive detection of dipicolinic acid (DPA) is strongly associated with the sensing of bacterial organisms in food and many types of environmental samples. To date, the demand for a sensitive detection method for bacterial toxicity has increased remarkably. Herein, we investigated the DPA detection potential of a water-dispersible terbium-metal organic framework (Tb-MOF) based on the fluorescence quenching mechanism. The Tb-MOF showed a highly sensitive ability to detect DPA at a limit of detection of 0.04nM (linear range of detection: 1nM to 5µM) and also offered enhanced selectivity from other commonly associated organic molecules. The present study provides a basis for the application of Tb-MOF for direct, convenient, highly sensitive, and specific detection of DPA in the actual samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Do we need gadolinium-based contrast medium for brain magnetic resonance imaging in children?

    PubMed

    Dünger, Dennis; Krause, Matthias; Gräfe, Daniel; Merkenschlager, Andreas; Roth, Christian; Sorge, Ina

    2018-06-01

    Brain imaging is the most common examination in pediatric magnetic resonance imaging (MRI), often combined with the use of a gadolinium-based contrast medium. The application of gadolinium-based contrast medium poses some risk. There is limited evidence of the benefits of contrast medium in pediatric brain imaging. To assess the diagnostic gain of contrast-enhanced sequences in brain MRI when the unenhanced sequences are normal. We retrospectively assessed 6,683 brain MR examinations using contrast medium in children younger than 16 years in the pediatric radiology department of the University Hospital Leipzig to determine whether contrast-enhanced sequences delivered additional, clinically relevant information to pre-contrast sequences. All examinations were executed using a 1.5-T or a 3-T system. In 8 of 3,003 (95% confidence interval 0.12-0.52%) unenhanced normal brain examinations, a relevant additional finding was detected when contrast medium was administered. Contrast enhancement led to a change in diagnosis in only one of these cases. Children with a normal pre-contrast brain MRI rarely benefit from contrast medium application. Comparing these results to the risks and disadvantages of a routine gadolinium application, there is substantiated numerical evidence for avoiding routine administration of gadolinium in a pre-contrast normal MRI examination.

  8. Accumulation of MRI contrast agents in malignant fibrous histiocytoma for gadolinium neutron capture therapy.

    PubMed

    Fujimoto, T; Ichikawa, H; Akisue, T; Fujita, I; Kishimoto, K; Hara, H; Imabori, M; Kawamitsu, H; Sharma, P; Brown, S C; Moudgil, B M; Fujii, M; Yamamoto, T; Kurosaka, M; Fukumori, Y

    2009-07-01

    Neutron-capture therapy with gadolinium (Gd-NCT) has therapeutic potential, especially that gadolinium is generally used as a contrast medium in magnetic resonance imaging (MRI). The accumulation of gadolinium in a human sarcoma cell line, malignant fibrosis histiocytoma (MFH) Nara-H, was visualized by the MRI system. The commercially available MRI contrast medium Gd-DTPA (Magnevist, dimeglumine gadopentetate aqueous solution) and the biodegradable and highly gadopentetic acid (Gd-DTPA)-loaded chitosan nanoparticles (Gd-nanoCPs) were prepared as MRI contrast agents. The MFH cells were cultured and collected into three falcon tubes that were set into the 3-tesra MRI system to acquire signal intensities from each pellet by the spin echo method, and the longitudinal relaxation time (T1) was calculated. The amount of Gd in the sample was measured by inductively coupled plasma atomic emission spectrography (ICP-AES). The accumulation of gadolinium in cells treated with Gd-nanoCPs was larger than that in cells treated with Gd-DTPA. In contrast, and compared with the control, Gd-DTPA was more effective than Gd-nanoCPs in reducing T1, suggesting that the larger accumulation exerted the adverse effect of lowering the enhancement of MRI. Further studies are warranted to gain insight into the therapeutic potential of Gd-NCT.

  9. Measurement of gamma-ray production from thermal neutron capture on gadolinium for neutrino experiments

    NASA Astrophysics Data System (ADS)

    Yano, Takatomi; 2012B0025 Collaboration; 2014B0126 Collaboration

    2017-02-01

    Recently, several scientific applications of gadolinium are found in neutrino physics experiments. Gadolinium-157 is the nucleus, which has the largest thermal neutron capture cross-section among all stable nuclei. Gadolinium-155 also has the large cross-section. These neutron capture reactions provide the gamma-ray cascade with the total energy of about 8 MeV. This reaction is applied for several neutrino experiments, e.g. reactor neutrino experiments and Gd doped large water Cherenkov detector experiments, to recognize inverse-beta-decay reaction. A good Gd(n,γ) simulation model is needed to evaluate the detection efficiency of the neutron capture reaction, i.e. the efficiency of IBD detection. In this presentation, we will report the development and study status of a Gd(n,γ) calculation model and comparison with our experimental data taken at ANNRI/MLF beam line, J-PARC.

  10. Critical Questions Regarding Gadolinium Deposition in the Brain and Body After Injections of the Gadolinium-Based Contrast Agents, Safety, and Clinical Recommendations in Consideration of the EMA's Pharmacovigilance and Risk Assessment Committee Recommendation for Suspension of the Marketing Authorizations for 4 Linear Agents.

    PubMed

    Runge, Val M

    2017-06-01

    For magnetic resonance, the established class of intravenous contrast media is the gadolinium-based contrast agents. In the 3 decades since initial approval, these have proven in general to be very safe for human administration. However, in 2006, a devastating late adverse reaction to administration of the less stable gadolinium-based contrast agents was identified, nephrogenic systemic fibrosis. The result of actions taken by the European Medicines Agency and the US Food and Drug Administration, stratifying the agents by risk and contraindicating specific agents in severe renal dysfunction, has led to no new cases being identified in North America or Europe. Subsequently, in 2014, long-term deposition in the brain of gadolinium was first shown, after administration of 2 nonionic linear chelates, gadodiamide, and gadopentetate dimeglumine. This has led to an intense focus on the question of in vivo distribution, possible dechelation, and subsequent deposition of gadolinium, together with substantial clarification of the phenomenon as well as stratification of the agents on this basis. This review focuses on 8 critical questions regarding gadolinium deposition in the brain and body, with the answers and discussion therein important for future regulatory decisions and clinical practice. It is now clear that dechelation of gadolinium occurs in vivo with the linear agents and is responsible for this phenomenon, with key experts in the field recommending, except where there is no suitable alternative, a shift in clinical practice from the linear to macrocyclic agents. In addition, on March 10, 2017, the Pharmacovigilance and Risk Assessment Committee of the European Medicines Agency recommended suspension of the marketing authorization for 4 linear gadolinium contrast agents-specifically Omniscan, Optimark, Magnevist, and MultiHance (gadodiamide, gadoversetamide, gadopentetate dimeglumine, and gadobenate dimeglumine)-for intravenous injection. Cited in the report was

  11. Type-II domains in ferroelectric gadolinium molybdate (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohm, J.; Kuersten, H.D.

    Etching (001)-faces of gadolinium molybdate (GMO) reveals new kinds of domains. They are created by a translation, that leaves the spontaneous polarization and the transition parameter invariant. The translation vector is a part of a lattice vector, similar to stacking faults. (auth)

  12. The Effect of Pressure and Temperature on Separation of Free Gadolinium(III) From Gd-DTPA Complex by Nanofiltration-Complexation Method

    NASA Astrophysics Data System (ADS)

    Rahayu, Iman; Anggraeni, Anni; Ukun, MSS; Bahti, Husein H.

    2017-05-01

    Nowdays, the utilization of rare earth elements has been carried out widely in industry and medicine, one of them is gadolinium in Gd-DTPA complex is used as a contrast agent in a magnetic resonance imaging (MRI) diagnostic to increase the visual contrast between normal tissue and diseased. Although the stability of a given complex may be high enough, the complexation step couldnot have been completed, so there is possible to gadolinium(III) in the complex compound. Therefore, the function of that compounds should be dangerous because of the toxicity of gadolinium(III) in human body. So, it is necessarry to separate free gadolinium(III) from Gd-DTPA complex by nanofiltration-complexation. The method of this study is complexing of Gd2O3 with DTPA ligand by reflux and separation of Gd-DTPA complex from gadolinium(III) with a nanofiltration membrane on the variation of pressures(2, 3, 4, 5, 6 bars) and temperature (25, 30, 35, 40 °C) and determined the flux and rejection. The results of this study are the higher of pressures and temperatures, permeation flux are increasing and ion rejections are decreasing and gave the free gadolinium(III) rejection until 86.26%.

  13. Nanoamplifiers synthesized from gadolinium and gold nanocomposites for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Tian, Xiumei; Shao, Yuanzhi; He, Haoqiang; Liu, Huan; Shen, Yingying; Huang, Wenlin; Li, Li

    2013-03-01

    We have synthesized an efficient and highly sensitive nanoamplifier composed of gadolinium-doped silica nanoparticles and gold nanoparticles (AuNPs). Magnetic resonance imaging (MRI) in vitro and in vivo assays revealed enhancement of signal sensitivity, which may be explained by electron transfer between water and gadolinium-doped nanoparticles, apparent in the presence of gold. In vitro and in vivo evaluation demonstrated nanoamplifier incurred minimal cytotoxicity and immunotoxicity, increased stability, and gradual excretion patterns. Tumor targeted properties were preliminarily determined when the nanoamplifier was injected into mouse models of colon cancer liver metastasis. Furthermore, although AuNPs departed from the nanoamplifiers in specific mice tissues, optical and magnetic resonance imaging was efficient, especially in metastatic tumors. These assays validate our nanoamplifier as an effective MRI signal enhancer with sensitive cancer diagnosis potential.We have synthesized an efficient and highly sensitive nanoamplifier composed of gadolinium-doped silica nanoparticles and gold nanoparticles (AuNPs). Magnetic resonance imaging (MRI) in vitro and in vivo assays revealed enhancement of signal sensitivity, which may be explained by electron transfer between water and gadolinium-doped nanoparticles, apparent in the presence of gold. In vitro and in vivo evaluation demonstrated nanoamplifier incurred minimal cytotoxicity and immunotoxicity, increased stability, and gradual excretion patterns. Tumor targeted properties were preliminarily determined when the nanoamplifier was injected into mouse models of colon cancer liver metastasis. Furthermore, although AuNPs departed from the nanoamplifiers in specific mice tissues, optical and magnetic resonance imaging was efficient, especially in metastatic tumors. These assays validate our nanoamplifier as an effective MRI signal enhancer with sensitive cancer diagnosis potential. Electronic supplementary information

  14. Biocompatible Polyhydroxyethylaspartamide-based Micelles with Gadolinium for MRI Contrast Agents

    PubMed Central

    2010-01-01

    Biocompatible poly-[N-(2-hydroxyethyl)-d,l-aspartamide]-methoxypoly(ethyleneglycol)-hexadecylamine (PHEA-mPEG-C16) conjugated with 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid-gadolinium (DOTA-Gd) via ethylenediamine (ED) was synthesized as a magnetic resonance imaging (MRI) contrast agent. Amphiphilic PHEA-mPEG-C16-ED-DOTA-Gd forms micelle in aqueous solution. All the synthesized materials were characterized by proton nuclear magnetic resonance (1H NMR). Micelle size and shape were examined by dynamic light scattering (DLS) and atomic force microscopy (AFM). Micelles with PHEA-mPEG-C16-ED-DOTA-Gd showed higher relaxivities than the commercially available gadolinium contrast agent. Moreover, the signal intensity of a rabbit liver was effectively increased after intravenous injection of PHEA-mPEG-C16-ED-DOTA-Gd. PMID:21170410

  15. Biocompatible Polyhydroxyethylaspartamide-based Micelles with Gadolinium for MRI Contrast Agents

    NASA Astrophysics Data System (ADS)

    Jeong, Sang Young; Kim, Hyo Jeong; Kwak, Byung-Kook; Lee, Ha-Young; Seong, Hasoo; Shin, Byung Cheol; Yuk, Soon Hong; Hwang, Sung-Joo; Cho, Sun Hang

    2010-12-01

    Biocompatible poly-[ N-(2-hydroxyethyl)- d, l-aspartamide]-methoxypoly(ethyleneglycol)-hexadecylamine (PHEA-mPEG-C16) conjugated with 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid-gadolinium (DOTA-Gd) via ethylenediamine (ED) was synthesized as a magnetic resonance imaging (MRI) contrast agent. Amphiphilic PHEA-mPEG-C16-ED-DOTA-Gd forms micelle in aqueous solution. All the synthesized materials were characterized by proton nuclear magnetic resonance (1H NMR). Micelle size and shape were examined by dynamic light scattering (DLS) and atomic force microscopy (AFM). Micelles with PHEA-mPEG-C16-ED-DOTA-Gd showed higher relaxivities than the commercially available gadolinium contrast agent. Moreover, the signal intensity of a rabbit liver was effectively increased after intravenous injection of PHEA-mPEG-C16-ED-DOTA-Gd.

  16. Electron magnetic resonance investigation of gadolinium diffusion in zircon powders

    NASA Astrophysics Data System (ADS)

    de Biasi, R. S.; Grillo, M. L. N.

    2011-11-01

    The electron magnetic resonance (EMR) technique was used to investigate the diffusion of gadolinium in zircon (ZrSiO4) powders. The EMR absorption intensity was measured for several annealing times and three different temperatures of isothermal annealing: 1273, 1323 and 1373 K. The activation energy for diffusion, calculated from the experimental data using a theoretical model based on the Fick equation, was found to be EA=506±5 kJ mol-1. This value is close to the ones for the diffusion of Gd in UO2 and CeO2, but much larger than for the diffusion of gadolinium in a compound with the same crystal structure as zircon, YVO4. This is attributed to a difference in the relative sizes of the ions involved in the diffusion process.

  17. Gadolinium concentration analysis in brain phantom by X-ray fluorescence.

    PubMed

    Almalki, Musaed; Majid, Samir Abdul; Butler, Philip H; Reinisch, Lou

    2010-06-01

    We have measured the X-ray fluorescence from gadolinium as a function of concentration and position in tumors of different sizes and shapes in a head phantom. The gadolinium fluorescence was excited with a 36 GBq Am-241 source. The fluorescence signal was detected with a CdTe detector and a multi-channel analyzer. The fluorescence peak was clearly separated from the scattered X-rays. Concentrations of 5.62-78.63 mg/ml of Gd ion were used in 1, 2, and 3 cm diameter spherical tumors and a 2x4 cm oblate spheroid tumor. The data show trends approaching saturation for the highest concentrations, probably due to reabsorption in the tumor. A comparison of X-ray photographic imaging and densitometer measurements to determine concentration is also presented.

  18. Magnetic study of the low temperature anomalies in the magnetodielectric terbium iron garnet

    NASA Astrophysics Data System (ADS)

    Lahoubi, Mahieddine

    2018-05-01

    The anomalous magnetic properties at low temperatures of terbium iron garnet (TbIG) are analyzed and summarized using neutron powder diffraction (NPD) experiments together with high field magnetization, magnetostriction and specific heat measurements performed on single crystals. Reliable information at both microscopic and macroscopic levels is provided about the significant change of the double umbrella structure observed in the NPD results near 54 K. The positions of the observed maxima at 55-65 K in the paraprocess magnetic susceptibility along the three mean directions and paraprocess of the forced magnetostriction along the easy axis of magnetization 〈111〉 agree with the manifestations of the "low-temperature point" TB predicted by Belov at 58 K. However, the pronounced maximum at 57 K in the excess of specific heat in zero magnetic fields reveals that the Schottky effect causes anomaly at temperature close the TB point. The results are discussed and compared with previous magnetic, magneto-optical and magnetodielectric reports.

  19. Terbium-Aspartic Acid Nanocrystals with Chirality-Dependent Tunable Fluorescent Properties.

    PubMed

    Ma, Baojin; Wu, Yu; Zhang, Shan; Wang, Shicai; Qiu, Jichuan; Zhao, Lili; Guo, Daidong; Duan, Jiazhi; Sang, Yuanhua; Li, Linlin; Jiang, Huaidong; Liu, Hong

    2017-02-28

    Terbium-aspartic acid (Tb-Asp) nanocrystals with chirality-dependent tunable fluorescent properties can be synthesized through a facile synthesis method through the coordination between Tb and Asp. Asp with different chirality (dextrorotation/d and levogyration/l) changes the stability of the coordination center following fluorescent absorption/emission ability differences. Compared with l-Asp, d-Asp can coordinate Tb to form a more stable center, following the higher quantum yield and longer fluorescence life. Fluorescence intensity of Tb-Asp linearly increases with increase ratio of d-Asp in the mixed chirality Tb-Asp system, and the fluorescent properties of Tb-Asp nanocrystals can be tuned by adjusting the chirality ratio. Tb-Asp nanocrystals possess many advantage, such as high biocompatibility, without any color in visible light irradiation, monodispersion with very small size, and long fluorescent life. Those characteristics will give them great potential in many application fields, such as low-cost antifake markers and advertisements using inkjet printers or for molds when dispersed in polydimethylsiloxane. In addition, europium can also be used to synthesize Eu-Asp nanoparticles. Importantly, the facile, low-cost, high-yield, mass-productive "green" process provides enormous advantages for synthesis and application of fluorescent nanocrystals, which will have great impact in nanomaterial technology.

  20. Limit on the temporal variation of the fine-structure constant using atomic dysprosium.

    PubMed

    Cingöz, A; Lapierre, A; Nguyen, A-T; Leefer, N; Budker, D; Lamoreaux, S K; Torgerson, J R

    2007-01-26

    Over 8 months, we monitored transition frequencies between nearly degenerate, opposite-parity levels in two isotopes of atomic dysprosium (Dy). These frequencies are sensitive to variation of the fine-structure constant (alpha) due to relativistic corrections of opposite sign for the opposite-parity levels. In this unique system, in contrast to atomic-clock comparisons, the difference of the electronic energies of the opposite-parity levels can be monitored directly utilizing a rf electric-dipole transition between them. Our measurements show that the frequency variation of the 3.1-MHz transition in (163)Dy and the 235-MHz transition in (162)Dy are 9.0+/-6.7 Hz/yr and -0.6+/-6.5 Hz/yr, respectively. These results provide a rate of fractional variation of alpha of (-2.7+/-2.6) x 10(-15) yr(-1) (1 sigma) without assumptions on constancy of other fundamental constants, indicating absence of significant variation at the present level of sensitivity.

  1. Extreme ultraviolet emission spectra of Gd and Tb ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilbane, D.; O'Sullivan, G.

    2010-11-15

    Theoretical extreme ultraviolet emission spectra of gadolinium and terbium ions calculated with the Cowan suite of codes and the flexible atomic code (FAC) relativistic code are presented. 4d-4f and 4p-4d transitions give rise to unresolved transition arrays in a range of ions. The effects of configuration interaction are investigated for transitions between singly excited configurations. Optimization of emission at 6.775 nm and 6.515 nm is achieved for Gd and Tb ions, respectively, by consideration of plasma effects. The resulting synthetic spectra are compared with experimental spectra recorded using the laser produced plasma technique.

  2. Recovery of methamphetamine associated cardiomyopathy predicted by late gadolinium enhanced cardiovascular magnetic resonance.

    PubMed

    Lopez, Javier E; Yeo, Khung; Caputo, Gary; Buonocore, Michael; Schaefer, Saul

    2009-11-11

    Methamphetamine is known to cause a cardiomyopathy which may be reversible with appropriate medical therapy and cessation of use. Late gadolinium enhancement cardiovascular magnetic resonance (CMR) has been shown to identify fibrosis in ischemic and non-ischemic cardiomyopathies. We present a case of severe methamphetamine-associated cardiomyopathy in which cardiac function recovered after 6 months. Evaluation by CMR using late gadolinium enhancement was notable for an absence of enhancement, suggesting an absence of irreversible myocyte injury and a good prognosis. CMR may be useful to predict recovery in toxin-associated non-ischemic cardiomyopathies.

  3. Recovery of methamphetamine associated cardiomyopathy predicted by late gadolinium enhanced cardiovascular magnetic resonance

    PubMed Central

    2009-01-01

    Methamphetamine is known to cause a cardiomyopathy which may be reversible with appropriate medical therapy and cessation of use. Late gadolinium enhancement cardiovascular magnetic resonance (CMR) has been shown to identify fibrosis in ischemic and non-ischemic cardiomyopathies. We present a case of severe methamphetamine-associated cardiomyopathy in which cardiac function recovered after 6 months. Evaluation by CMR using late gadolinium enhancement was notable for an absence of enhancement, suggesting an absence of irreversible myocyte injury and a good prognosis. CMR may be useful to predict recovery in toxin-associated non-ischemic cardiomyopathies. PMID:19906310

  4. Acute side effects of three commonly used gadolinium contrast agents in the paediatric population.

    PubMed

    Neeley, Chris; Moritz, Michael; Brown, Jeffrey J; Zhou, Yihua

    2016-07-01

    To determine the incidence of acute side effects of three commonly used gadolinium contrast agents in the paediatric population. A retrospective review of medical records was performed to determine the incidence of acute adverse side effects of i.v. gadolinium contrast agents [MultiHance(®) (Bracco Diagnostics Inc., Princeton, NJ), Magnevist(®) (Bayer Healthcare Pharmaceuticals, Wayne, NJ) or Gadavist(®) (Bayer HealthCare Pharmaceuticals)] in paediatric patients. 40 of the 2393 patients who received gadolinium contrast agents experienced acute side effects, representing an incidence of 1.7%. The majority of the acute side effects (in 30 patients) were nausea and vomiting. The incidence was significantly higher in non-sedated patients (2.37% vs 0.7%; p = 0.0018). Furthermore, without sedation, the incidence of both nausea and vomiting was significantly higher in children receiving MultiHance, with a 4.48% incidence of nausea when compared with Magnevist (0.33%, p < 0.0001) and Gadavist (0.28%, p < 0.0001) and a 2.36% incidence of vomiting compared with those for Magnevist (0.50%, p = 0.0054) and Gadavist (0.28%, p = 0.014), whereas no difference was observed between Magnevist and Gadavist within the power of the study. In addition, there was no apparent difference between any of the three contrast agents for the incidence of allergy or other acute side effects detected, given the sample size. The gadolinium contrast agents MultiHance, Magnevist and Gadavist have a low incidence of acute side effects in the paediatric population, a rate that is further reduced in moderately sedated patients. MultiHance demonstrated significantly increased incidence of gastrointestinal symptoms compared with Magnevist and Gadavist. The incidence of acute side effects of three commonly used gadolinium contrast agents was determined in the paediatric population, which can have clinical implications.

  5. Layered gadolinium hydroxides for low-temperature magnetic cooling.

    PubMed

    Abellán, Gonzalo; Espallargas, Guillermo Mínguez; Lorusso, Giulia; Evangelisti, Marco; Coronado, Eugenio

    2015-09-28

    Layered gadolinium hydroxides have revealed to be excellent candidates for cryogenic magnetic refrigeration. These materials behave as pure 2D magnetic systems with a Heisenberg-Ising critical crossover, induced by dipolar interactions. This 2D character and the possibility offered by these materials to be delaminated open the possibility of rapid heat dissipation upon substrate deposition.

  6. Optical properties of zinc borotellurite glass doped with trivalent dysprosium ion

    NASA Astrophysics Data System (ADS)

    Ami Hazlin, M. N.; Halimah, M. K.; Muhammad, F. D.; Faznny, M. F.

    2017-04-01

    The zinc borotellurite doped with dysprosium oxide glass samples with chemical formula {[(TeO2) 0 . 7(B2O3) 0 . 3 ] 0 . 7(ZnO) 0 . 3 } 1 - x(Dy2O3)x (where x=0.01, 0.02, 0.03, 0.04 and 0.05 M fraction) were prepared by using conventional melt quenching technique. The structural and optical properties of the proposed glass systems were characterized by using X-ray diffraction (XRD) spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, and UV-VIS spectroscopy. The amorphous nature of the glass systems is confirmed by using XRD technique. The infrared spectra of the glass systems indicate three obvious absorption bands which are assigned to BO3 and TeO4 vibrational groups. Based on the absorption spectra obtained, the direct and indirect optical band gaps, as well as the Urbach energy were calculated. It is observed that both the direct and indirect optical band gaps increase with the concentration of Dy3+ ions. On the other hand, the Urbach energy is observed to decrease as the concentration of Dy3+ ions increases.

  7. Gadolinium-148 and other spallation production cross section measurements for accelerator target facilities

    NASA Astrophysics Data System (ADS)

    Kelley, Karen Corzine

    At the Los Alamos Neutron Science Center accelerator complex, protons are accelerated to 800 MeV and directed to two tungsten targets, Target 4 at the Weapons Neutron Research facility and the 1L target at the Lujan Center. The Department of Energy requires hazard classification analyses to be performed on these targets and places limits on certain radionuclide inventories in the targets to avoid characterizing the facilities as "nuclear facilities." Gadolinium-148 is a radionuclide created from the spallation of tungsten. Allowed isotopic inventories are particularly low for this isotope because it is an alpha-particle emitter with a 75-year half-life. The activity level of Gadolinium-148 is low, but it encompasses almost two-thirds of the total dose burden for the two tungsten targets based on present yield estimates. From a hazard classification standpoint, this severely limits the lifetime of these tungsten targets. The cross section is not well-established experimentally and this is the motivation for measuring the Gadolinium-148 production cross section from tungsten. In a series of experiments at the Weapons Neutron Research facility, Gadolinium-148 production was measured for 600- and 800-MeV protons on tungsten, tantalum, and gold. These experiments used 3 mum thin tungsten, tantalum, and gold foils and 10 mum thin aluminum activation foils. In addition, spallation yields were determined for many short-lived and long-lived spallation products with these foils using gamma and alpha spectroscopy and compared with predictions of the Los Alamos National Laboratory codes CEM2k+GEM2 and MCNPX. The cumulative Gadolinium-148 production cross section measured from tantalum, tungsten, and gold for incident 600-MeV protons were 15.2 +/- 4.0, 8.31 +/- 0.92, and 0.591 +/- 0.155, respectively. The average production cross sections measured at 800 MeV were 28.6 +/- 3.5, 19.4 +/- 1.8, and 3.69 +/- 0.50 for tantalum, tungsten, and gold, respectively. These cumulative

  8. Crystal structures of two mononuclear complexes of terbium(III) nitrate with the tripodal alcohol 1,1,1-tris-(hy-droxy-meth-yl)propane.

    PubMed

    Gregório, Thaiane; Giese, Siddhartha O K; Nunes, Giovana G; Soares, Jaísa F; Hughes, David L

    2017-02-01

    Two new mononuclear cationic complexes in which the Tb III ion is bis-chelated by the tripodal alcohol 1,1,1-tris-(hy-droxy-meth-yl)propane (H 3 L Et , C 6 H 14 O 3 ) were prepared from Tb(NO 3 ) 3 ·5H 2 O and had their crystal and mol-ecular structures solved by single-crystal X-ray diffraction analysis after data collection at 100 K. Both products were isolated in reasonable yields from the same reaction mixture by using different crystallization conditions. The higher-symmetry complex dinitratobis[1,1,1-tris-(hy-droxy-meth-yl)propane]-terbium(III) nitrate di-meth-oxy-ethane hemisolvate, [Tb(NO 3 ) 2 (H 3 L Et ) 2 ]NO 3 ·0.5C 4 H 10 O 2 , 1 , in which the lanthanide ion is 10-coordinate and adopts an s -bicapped square-anti-prismatic coordination geometry, contains two bidentate nitrate ions bound to the metal atom; another nitrate ion functions as a counter-ion and a half-mol-ecule of di-meth-oxy-ethane (completed by a crystallographic twofold rotation axis) is also present. In product aqua-nitratobis[1,1,1-tris-(hy-droxy-meth-yl)propane]-terbium(III) dinitrate, [Tb(NO 3 )(H 3 L Et ) 2 (H 2 O)](NO 3 ) 2 , 2 , one bidentate nitrate ion and one water mol-ecule are bound to the nine-coordinate terbium(III) centre, while two free nitrate ions contribute to charge balance outside the tricapped trigonal-prismatic coordination polyhedron. No free water mol-ecule was found in either of the crystal structures and, only in the case of 1 , di-meth-oxy-ethane acts as a crystallizing solvent. In both mol-ecular structures, the two tripodal ligands are bent to one side of the coordination sphere, leaving room for the anionic and water ligands. In complex 2 , the methyl group of one of the H 3 L Et ligands is disordered over two alternative orientations. Strong hydrogen bonds, both intra- and inter-molecular, are found in the crystal structures due to the number of different donor and acceptor groups present.

  9. Solid solutions of gadolinium doped zinc oxide nanorods by combined microwave-ultrasonic irradiation assisted crystallization

    NASA Astrophysics Data System (ADS)

    Kiani, Armin; Dastafkan, Kamran; Obeydavi, Ali; Rahimi, Mohammad

    2017-12-01

    Nanocrystalline solid solutions consisting of un-doped and gadolinium doped zinc oxide nanorods were fabricated by a modified sol-gel process utilizing combined ultrasonic-microwave irradiations. Polyvinylpyrrolidone, diethylene glycol, and triethylenetetramine respectively as capping, structure directing, and complexing agents were used under ultrasound dynamic aging and microwave heating to obtain crystalline nanorods. Crystalline phase monitoring, lattice parameters and variation, morphology and shape, elemental analysis, functional groups, reducibility, and the oxidation state of emerged species were examined by PXRD, FESEM, TEM, EDX, FTIR, micro Raman, H2-TPR, and EPR techniques. Results have verified that irradiation mechanism of gelation and crystallization reduces the reaction time, augments the crystal quality, and formation of hexagonal close pack structure of Wurtzite morphology. Besides, dissolution of gadolinium within host lattice involves lattice deformation, unit cell distortion, and angular position variation. Structure related shape and growth along with compositional purity were observed through microscopic and spectroscopic surveys. Furthermore, TPR and EPR studies elucidated more detailed behavior upon exposure to the exerted irradiations and subsequent air-annealing including the formed oxidation states and electron trapping centers, presence of gadolinium, zinc, and oxygen disarrays and defects, as well as alteration in the host unit cell via gadolinium addition.

  10. The network formers role of gadolinium(III) ions in some zinc-borate glass ceramics

    NASA Astrophysics Data System (ADS)

    Bosca, Maria; Pop, Lidia; Pascuta, Petru

    2017-12-01

    EPR and magnetic susceptibility measurements were performed on glass ceramics from the (Gd2O3)x.(B2O3)(60-x).(ZnO)40 system, with 0 ≤ x ≤ 15 mol%, in order to determine the role of gadolinium ions on structural and magnetic properties. At low Gd2O3 contents (x ≤ 1 mol%) the EPR spectra show four resonance lines with effective g-values of ˜ 6, 4.8, 2.8 and 2, typical for Gd3+ ions uniformly distributed in the glass and glass ceramic samples. For higher contents of gadolinium ions (x ≥ 3 mol%) the EPR spectra are dominated by a single broad line centered at g ˜ 2, which can be due to the magnetic clusters containing Gd3+ ions. The magnetic susceptibility data show that the gadolinium ions are involved in superexchange interactions in all the investigated glass ceramics, being antiferromagnetically coupled.

  11. Sensitive and transportable gadolinium-core plastic scintillator sphere for neutron detection and counting

    NASA Astrophysics Data System (ADS)

    Dumazert, Jonathan; Coulon, Romain; Carrel, Frédérick; Corre, Gwenolé; Normand, Stéphane; Méchin, Laurence; Hamel, Matthieu

    2016-08-01

    Neutron detection forms a critical branch of nuclear-related issues, currently driven by the search for competitive alternative technologies to neutron counters based on the helium-3 isotope. The deployment of plastic scintillators shows a high potential for efficient detectors, safer and more reliable than liquids, more easily scalable and cost-effective than inorganic. In the meantime, natural gadolinium, through its 155 and mostly 157 isotopes, presents an exceptionally high interaction probability with thermal neutrons. This paper introduces a dual system including a metal gadolinium core inserted at the center of a high-scale plastic scintillator sphere. Incident fast neutrons are thermalized by the scintillator shell and then may be captured with a significant probability by gadolinium 155 and 157 nuclei in the core. The deposition of a sufficient fraction of the capture high-energy prompt gamma signature inside the scintillator shell will then allow discrimination from background radiations by energy threshold, and therefore neutron detection. The scaling of the system with the Monte Carlo MCNPX2.7 code was carried out according to a tradeoff between the moderation of incident fast neutrons and the probability of slow neutron capture by a moderate-cost metal gadolinium core. Based on the parameters extracted from simulation, a first laboratory prototype for the assessment of the detection method principle has been synthetized. The robustness and sensitivity of the neutron detection principle are then assessed by counting measurement experiments. Experimental results confirm the potential for a stable, highly sensitive, transportable and cost-efficient neutron detector and orientate future investigation toward promising axes.

  12. Ag Nanoparticles-enhanced Fluorescence of Terbium-Deferasirox Complexes for the Highly Sensitive Determination of Deferasirox.

    PubMed

    Abolhasani, Jafar; Naderali, Roza; Hassanzadeh, Javad

    2016-01-01

    We describe the effect of different sized gold and silver nanoparticles on the terbium sensitized fluorescence of deferasirox. It is indicated that silver nanostructures, especially 18 nm Ag nanoparticles (AgNPs), have a remarkable amplifying effect compared to Au nanoparticles. Based on this observation, a highly sensitive and selective method was developed for the determination of deferasirox. Effects of various parameters like AgNPs and Tb(3+) concentration and pH of media were investigated. Under the optimal conditions, a calibration curve was plotted as the fluorescence intensities versus the concentration of deferasirox in the range of 0.1 to 200 nmol L(-1), and detection limit of 0.03 nmol L(-1) was obtained. The method has good linearity, recovery, reproducibility and sensitivity, and was satisfactorily applied for the determination of deferasirox in urine and pharmaceutical samples.

  13. T1 relaxivity of core-encapsulated gadolinium liposomal contrast agents--effect of liposome size and internal gadolinium concentration.

    PubMed

    Ghaghada, Ketan; Hawley, Catherine; Kawaji, Keigo; Annapragada, Ananth; Mukundan, Srinivasan

    2008-10-01

    Long circulating core-encapsulated gadolinium (CE-Gd) liposomal nanoparticles that have surface conjugated polyethylene glycol are a promising platform technology for use as blood pool T1-based magnetic resonance (MR) contrast agents. The objective of this study was to investigate the effect of liposome size and internal (core) Gd concentration on the T1 relaxivity of CE-Gd liposomes. Twelve different liposomal formulations were synthesized and characterized, resulting in a size (50, 100, 200, and 400 nm) and core Gd-concentration (200, 350, and 500 mM) "matrix" of test samples. Subsequently, CE-Gd liposomes were diluted in deionized water (four diluted samples) and molar T1 relaxivity (r1) measurements were performed at 2- and 7-T MR field strengths. The r1 of CE-Gd liposomes was inversely related to the liposome size. The largest change in r1 was observed between liposomes that were extruded through 50- and 100-nm filter membranes. At both field strengths, the variation in internal gadolinium concentration did not show any significant correlation (alpha < or = 0.05) with r1. The size of CE-Gd liposomal nanoparticles significantly affects the T1 relaxivity. An inverse relation was observed between liposome size and T1 relaxivity. The T1 relaxivity did not change significantly with core Gd concentration over the measured concentration range.

  14. Magnetization reversal and inverted magnetoresistance of exchange-biased spin valves with a gadolinium layer

    NASA Astrophysics Data System (ADS)

    Milyaev, M.; Naumova, L.; Chernyshova, T.; Proglyado, V.; Kamensky, I.; Krinitsina, T.; Ryabukhina, M.; Ustinov, V.

    2017-03-01

    FeMn-based spin valves with a gadolinium layer have been fabricated by magnetron sputtering. The magnetoresistive properties of the spin valves have been investigated at temperatures of 80-293 K. Temperature-induced switching between low- and high-resistance magnetic states has been revealed. Realization of the low- or high-resistance states depends on which magnetic moment dominates in the exchange-coupled Gd/CoFe, of Gd or CoFe. It has been shown that the switching temperature depends on the thickness of the gadolinium layer.

  15. Gadolinium-based nanoparticles for highly efficient T1-weighted magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Lim, Eun-Kyung; Kang, Byunghoon; Choi, Yuna; Jang, Eunji; Han, Seungmin; Lee, Kwangyeol; Suh, Jin-Suck; Haam, Seungjoo; Huh, Yong-Min

    2014-06-01

    We developed Pyrene-Gadolinium (Py-Gd) nanoparticles as pH-sensitive magnetic resonance imaging (MRI) contrast agents capable of showing a high-Mr signal in cancer-specific environments, such as acidic conditions. Py-Gd nanoparticles were prepared by coating Py-Gd, which is a complex of gadolinium with pyrenyl molecules, with pyrenyl polyethyleneglycol PEG using a nano-emulsion method. These particles show better longitudinal relaxation time (T1) MR signals in acidic conditions than they do in neutral conditions. Furthermore, the particles exhibit biocompatibility and MR contrast effects in both in vitro and in vivo studies. From these results, we confirm that Py-Gd nanoparticles have the potential to be applied for accurate cancer diagnosis and therapy.

  16. Sensitivity improvement of Cerenkov luminescence endoscope with terbium doped Gd{sub 2}O{sub 2}S nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Xin; Chen, Xueli, E-mail: xlchen@xidian.edu.cn, E-mail: jimleung@mail.xidian.edu.cn; Cao, Xu

    2015-05-25

    Our previous study showed a great attenuation for the Cerenkov luminescence endoscope (CLE), resulting in relatively low detection sensitivity of radiotracers. Here, a kind of radioluminescence nanoparticles (RLNPs), terbium doped Gd{sub 2}O{sub 2}S was mixed with the radionuclide {sup 68}Ga to enhance the intensity of emitted luminescence, which finally improved the detection sensitivity of the CLE by using the radioluminescence imaging technique. With the in vitro and in vivo pseudotumor experiments, we showed that the use of RLNPs mixed with the radionuclide {sup 68}Ga enabled superior sensitivity compared with the radionuclide {sup 68}Ga only, with 50-fold improvement on detection sensitivity,more » which guaranteed meeting the demands of the clinical diagnosis of gastrointestinal tract tumors.« less

  17. Characterization of the reaction products and precipitates at the interface of carbon fiber reinforced magnesium–gadolinium composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yaping; Jiang, Longtao, E-mail: longtaojiang@163.com; Chen, Guoqin

    2016-03-15

    In the present work, carbon fiber reinforced magnesium-gadolinium composite was fabricated by pressure infiltration method. The phase composition, micro-morphology, and crystal structure of reaction products and precipitates at the interface of the composite were investigated. Scanning electron microscopy and energy dispersive spectroscopy analysis revealed the segregation of gadolinium element at the interface between carbon fiber and matrix alloy. It was shown that block-shaped Gd4C5, GdC2 and nano-sized Gd2O3 were formed at the interface during the fabrication process due to the interfacial reaction. Furthermore, magnesium-gadolinium precipitates including needle-like Mg5Gd (or Mg24Gd5) and thin plate-shaped long period stacking-ordered phase, were also observedmore » at the interface and in the matrix near the interface. The interfacial microstructure and bonding mode were influenced by these interfacial products, which were beneficial for the improvement of the interfacial bonding strength. - Highlights: • Gadolinium element segregated on the surface of carbon fibers. • Block-shaped Gd{sub 4}C{sub 5} and GdC{sub 2} were formed at the interface via chemical reaction. • Gadolinium and oxygen reacted at the interface and formed nano-scaled Gd{sub 2}O{sub 3}. • The precipitates formed in the interface were identified to be Mg{sub 5}Gd (or Mg{sub 24}Gd{sub 5}) and plate-shaped long period stacking-ordered phase.« less

  18. Sonochemical synthesis of terbium tungstate for developing high power supercapacitors with enhanced energy densities.

    PubMed

    Sobhani-Nasab, Ali; Rahimi-Nasrabadi, Mehdi; Naderi, Hamid Reza; Pourmohamadian, Vafa; Ahmadi, Farhad; Ganjali, Mohammad Reza; Ehrlich, Hermann

    2018-07-01

    Sonochemically prepared nanoparticles of terbium tungstate (TWNPs) were evaluated through scanning electron microscopy (SEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR), UV-Vis spectroscopy, and the optimal products were further characterized in terms of their electrochemical properties using conventional and continuous cyclic voltammetry (CV, and CCV), galvanostatic charge/discharge technique, and electrochemical impedance spectroscopy (EIS). The CV studies indicated the TWNPs to have specific capacitance (SC) values of 336 and 205 F g -1 at 1 and 200 mV s -1 , and galvanostatic charge-discharge tests revealed the SC of the TWNP-based electrodes to be 300 F g -1 at 1 Ag -1 . Also continuous cyclic voltammetry evaluations proved the sample as having a capacitance retention value of 95.3% after applying 4000 potential cycles. In the light of the results TWNPs were concluded as favorable electrode materials for use in hybrid vehicle systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Simple method for quantification of gadolinium magnetic resonance imaging contrast agents using ESR spectroscopy.

    PubMed

    Takeshita, Keizo; Kinoshita, Shota; Okazaki, Shoko

    2012-01-01

    To develop an estimation method of gadolinium magnetic resonance imaging (MRI) contrast agents, the effect of concentration of Gd compounds on the ESR spectrum of nitroxyl radical was examined. A solution of either 4-oxo-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPONE) or 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPOL) was mixed with a solution of Gd compound and the ESR spectrum was recorded. Increased concentration of gadolinium-diethylenetriamine pentaacetic acid chelate (Gd-DTPA), an MRI contrast agent, increased the peak-to-peak line widths of ESR spectra of the nitroxyl radicals, in accordance with a decrease of their signal heights. A linear relationship was observed between concentration of Gd-DTPA and line width of ESR signal, up to approximately 50 mmol/L Gd-DTPA, with a high correlation coefficient. Response of TEMPONE was 1.4-times higher than that of TEMPOL as evaluated from the slopes of the lines. The response was slightly different among Gd compounds; the slopes of calibration curves for acua[N,N-bis[2-[(carboxymethyl)[(methylcarbamoyl)methyl]amino]ethyl]glycinato(3-)]gadolinium hydrate (Gd-DTPA-BMA) (6.22 μT·L/mmol) and gadolinium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid chelate (Gd-DOTA) (6.62 μT·L/mmol) were steeper than the slope for Gd-DTPA (5.45 μT·L/mmol), whereas the slope for gadolinium chloride (4.94 μT·L/mmol) was less steep than that for Gd-DTPA. This method is simple to apply. The results indicate that this method is useful for rough estimation of the concentration of Gd contrast agents if calibration is carried out with each standard compound. It was also found that the plot of the reciprocal square root of signal height against concentrations of contrast agents could be useful for the estimation if a constant volume of sample solution is taken and measured at the same position in the ESR cavity every time.

  20. Nephrogenic systemic fibrosis (NSF): a late adverse reaction to some of the gadolinium based contrast agents

    PubMed Central

    Marckmann, Peter; Logager, Vibeke B.

    2007-01-01

    Abstract Until recently it was believed that extracellular gadolinium based contrast agents were safe for both the kidneys and all other organs within the dose range up to 0.3 mmol/kg body weight. However, in 2006, it was demonstrated that some gadolinium based contrast agents may trigger the development of nephrogenic systemic fibrosis, a generalised fibrotic disorder, in renal failure patients. Accordingly, the use of gadodiamide and gadopentate dimeglumine for renal failure patients was banned in Europe in spring 2007. The same two compounds should only be used cautiously in patients with moderate renal dysfunction. The current paper reviews the situation (July 2007) regarding gadolinium based contrast agent and the severe delayed reaction to some of these agents. The fear of nephrogenic systemic fibrosis should not lead to a denial of a well indicated enhanced magnetic resonance imaging examination. PMID:17905680

  1. Measurement of gadolinium retention: current status and review from an applied radiation physics perspective.

    PubMed

    Gräfe, James L; McNeill, Fiona E

    2018-06-28

    This article briefly reviews the main measurement techniques for the non-invasive detection of residual gadolinium (Gd) in those exposed to gadolinium-based contrast agents (GBCAs). Approach and Main results: The current status of in vivo Gd measurement is discussed and is put into the context of concerns within the radiology community. The main techniques are based on applied atomic/nuclear medicine utilizing the characteristic atomic and nuclear spectroscopic signature of Gd. The main emission energies are in the 40-200 keV region and require spectroscopic detectors with good energy resolution. The two main techniques, prompt gamma neutron activation analysis and x-ray fluorescence, provide adequate detection limits for in vivo measurement, whilst delivering a low effective radiation dose on the order of a few µSv. Gadolinium is being detected in measureable quantities in people with healthy renal function who have received FDA approved GBCAs. The applied atomic/nuclear medicine techniques discussed in this review will be useful in determining the significance of this retention, and will help on advising future administration protocols.

  2. New limits on variation of the fine-structure constant using atomic dysprosium.

    PubMed

    Leefer, N; Weber, C T M; Cingöz, A; Torgerson, J R; Budker, D

    2013-08-09

    We report on the spectroscopy of radio-frequency transitions between nearly degenerate, opposite-parity excited states in atomic dysprosium (Dy). Theoretical calculations predict that these states are very sensitive to variation of the fine-structure constant α owing to large relativistic corrections of opposite sign for the opposite-parity levels. The near degeneracy reduces the relative precision necessary to place constraints on variation of α, competitive with results obtained from the best atomic clocks in the world. Additionally, the existence of several abundant isotopes of Dy allows isotopic comparisons that suppress common-mode systematic errors. The frequencies of the 754-MHz transition in 164Dy and 235-MHz transition in 162Dy are measured over the span of two years. The linear variation of α is α·/α=(-5.8±6.9([1σ]))×10(-17)  yr(-1), consistent with zero. The same data are used to constrain the dimensionless parameter kα characterizing a possible coupling of α to a changing gravitational potential. We find that kα=(-5.5±5.2([1σ]))×10(-7), essentially consistent with zero and the best constraint to date.

  3. Thermoluminescence properties of lithium magnesium borate glasses system doped with dysprosium oxide.

    PubMed

    Mhareb, M H A; Hashim, S; Ghoshal, S K; Alajerami, Y S M; Saleh, M A; Razak, N A B; Azizan, S A B

    2015-12-01

    We report the impact of dysprosium (Dy(3+)) dopant and magnesium oxide (MgO) modifier on the thermoluminescent properties of lithium borate (LB) glass via two procedures. The thermoluminescence (TL) glow curves reveal a single prominent peak at 190 °C for 0.5 mol% of Dy(3+). An increase in MgO contents by 10 mol% enhances the TL intensity by a factor of 1.5 times without causing any shift in the maximum temperature. This enhancement is attributed to the occurrence of extra electron traps created via magnesium and the energy transfer to trivalent Dy(3+) ions. Good linearity in the range of 0.01-4 Gy with a linear correlation coefficient of 0.998, fading as low as 21% over a period of 3 months, excellent reproducibility without oven annealing and tissue equivalent effective atomic numbers ~8.71 are achieved. The trap parameters, including geometric factor (μg), activation energy (E) and frequency factor (s) associated with LMB:Dy are also determined. These favorable TL characteristics of prepared glasses may contribute towards the development of Li2O-MgO-B2O3 radiation dosimeters. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Magnetic anisotropy of dysprosium(III) in a low-symmetry environment: a theoretical and experimental investigation.

    PubMed

    Bernot, Kevin; Luzon, Javier; Bogani, Lapo; Etienne, Mael; Sangregorio, Claudio; Shanmugam, Muralidharan; Caneschi, Andrea; Sessoli, Roberta; Gatteschi, Dante

    2009-04-22

    A mixed theoretical and experimental approach was used to determine the local magnetic anisotropy of the dysprosium(III) ion in a low-symmetry environment. The susceptibility tensor of the monomeric species having the formula [Dy(hfac)(3)(NIT-C(6)H(4)-OEt)(2)], which contains nitronyl nitroxide (NIT-R) radicals, was determined at various temperatures through angle-resolved magnetometry. These results are in agreement with ab initio calculations performed using the complete active space self-consistent field (CASSCF) method, validating the predictive power of this theoretical approach for complex systems containing rare-earth ions, even in low-symmetry environments. Susceptibility measurements performed with the applied field along the easy axis eventually permitted a detailed analysis of the temperature and field dependence of the magnetization, providing evidence that the Dy ion transmits an antiferromagnetic interaction between radicals but that the Dy-radical interaction is ferromagnetic.

  5. Revisiting the Pharmacokinetic Profiles of Gadolinium-Based Contrast Agents: Differences in Long-Term Biodistribution and Excretion.

    PubMed

    Lancelot, Eric

    2016-11-01

    Gadolinium-based contrast agents (GBCAs) have been used for years for magnetic resonance imaging examinations. Because of their rapid blood clearance, they were considered as very safe products until some of them were shown to induce nephrogenic systemic fibrosis in patients with renal failure and hypersignals on T1-weighted unenhanced brain scans of patients with normal renal function. To date, these adverse effects have been related almost exclusively to the use of low-stability linear agents, which are more prone to release free gadolinium. The aim of the present meta-analysis was to ascertain the existence of a deep compartment for gadolinium storage in the body and to assess whether all the GBCAs present the same toxicokinetic profile. Applying a systematic literature search methodology, all clinical and preclinical studies reporting time-dependent plasma concentrations and renal excretion data of gadolinium were identified and analyzed. Since the individual data were not available, the analysis focused on the average values per groups of subjects or animals, which had received a given GBCA at a given dose. The rate constants of the distribution phase (α), rapid elimination phase (β), and residual excretion phase (γ) of gadolinium were determined in each group from the plasma concentration (Cp) time curves and the relative urinary excretion rate (rER) time curves, taking the 2-hour time point as a reference. Moreover, as bone may represent a reservoir for long-term gadolinium accumulation and slow release into the blood stream, the time curves of the relative concentration in the bone (rCB) of Gd-labeled GBCAs in mice or rats were analyzed taking day 1 concentrations as a reference. The ratio of gadolinium concentrations in the bone marrow (CBM) as compared with the bone (CB) was also calculated. The relative urinary excretion rate (rER) plots revealed a prolonged residual excretion phase of gadolinium in healthy volunteers, consistent with the existence of

  6. Complete Stokes polarimetry of magneto-optical Faraday effect in a terbium gallium garnet crystal at cryogenic temperatures.

    PubMed

    Majeed, Hassaan; Shaheen, Amrozia; Anwar, Muhammad Sabieh

    2013-10-21

    We report the complete determination of the polarization changes caused in linearly polarized incident light due to propagation in a magneto-optically active terbium gallium garnet (TGG) single crystal, at temperatures ranging from 6.3 to 300 K. A 28-fold increase in the Verdet constant of the TGG crystal is seen as its temperature decreases to 6.3 K. In contrast with polarimetry of light emerging from a Faraday material at room temperature, polarimetry at cryogenic temperatures cannot be carried out using the conventional fixed polarizer-analyzer technique because the assumption that ellipticity is negligible becomes increasingly invalid as temperature is lowered. It is shown that complete determination of light polarization in such a case requires the determination of its Stokes parameters, otherwise inaccurate measurements will result with negative implications for practical devices.

  7. Radiation stability of visible and near-infrared optical and magneto-optical properties of terbium gallium garnet crystals.

    PubMed

    Geist, Brian; Ronningen, Reginald; Stolz, Andreas; Bollen, Georg; Kochergin, Vladimir

    2015-04-01

    Perspectives of terbium gallium garnet, Tb₃Ga₅O₁₂ (TGG), for the use of radiation-resistant high magnetic field sensing are studied. Long-term radiation stability of the TGG crystals was analyzed by comparing the optical and magneto-optical properties of a radiation-exposed TGG crystal (equivalent neutron dose 6.3×10¹³ n/cm²) to the properties of TGG control samples. Simulations were also performed to predict radiation damage mechanisms in the TGG crystal. Radiation-induced increase in the absorbance at shorter wavelengths was observed as well as a reduction in the Faraday effect while no degradation of magneto-optical effect was observed when at wavelengths above 600 nm. This suggests that TGG crystal would be a good candidate for use in magneto-optical radiation-resistant magnetic field sensors.

  8. Gadolinium prevents high airway pressure-induced permeability increases in isolated rat lungs.

    PubMed

    Parker, J C; Ivey, C L; Tucker, J A

    1998-04-01

    To determine the initial signaling event in the vascular permeability increase after high airway pressure injury, we compared groups of lungs ventilated at different peak inflation pressures (PIPs) with (gadolinium group) and without (control group) infusion of 20 microM gadolinium chloride, an inhibitor of endothelial stretch-activated cation channels. Microvascular permeability was assessed by using the capillary filtration coefficient (Kfc), a measure of capillary hydraulic conductivity. Kfc was measured after ventilation for 30-min periods with 7, 20, and 30 cmH2O PIP with 3 cmH2O positive end-expiratory pressure and with 35 cmH2O PIP with 8 cmH2O positive end-expiratory pressure. In control lungs, Kfc increased significantly to 1.8 and 3.7 times baseline after 30 and 35 cmH2O PIP, respectively. In the gadolinium group, Kfc was unchanged from baseline (0.060 +/- 0.010 ml . min-1 . cmH2O-1 . 100 g-1) after any PIP ventilation period. Pulmonary vascular resistance increased significantly from baseline in both groups before the last Kfc measurement but was not different between groups. These results suggest that microvascular permeability is actively modulated by a cellular response to mechanical injury and that stretch-activated cation channels may initiate this response through increases in intracellular calcium concentration.

  9. Hyperintense Dentate Nuclei on T1-Weighted MRI: Relation to Repeat Gadolinium Administration

    PubMed Central

    Adin, M.E.; Kleinberg, L.; Vaidya, D.; Zan, E.; Mirbagheri, S.; Yousem, D.M.

    2016-01-01

    BACKGROUND AND PURPOSE A hyperintense appearance of the dentate nucleus on T1-weighted MR images has been related to various clinical conditions, but the etiology remains indeterminate. We aimed to investigate the possible associations between a hyperintense appearance of the dentate nucleus on T1-weighted MR images in patients exposed to radiation and factors including, but not limited to, the cumulative number of contrast-enhanced MR images, amount of gadolinium administration, dosage of ionizing radiation, and patient demographics. MATERIALS AND METHODS The medical records of 706 consecutive patients who were treated with brain irradiation at The Johns Hopkins Medical Institutions between 1995 and 2010 were blindly reviewed by 2 readers. RESULTS One hundred eighty-four subjects were included for dentate nuclei analysis. Among the 184 subjects who cumulatively underwent 2677 MR imaging studies following intravenous gadolinium administration, 103 patients had hyperintense dentate nuclei on precontrast T1-weighted MR images. The average number of gadolinium-enhanced MR imaging studies performed in the group with normal dentate nuclei was significantly lower than that of the group with hyperintense dentate nuclei. The average follow-up time was 62.5 months. No significant difference was observed between hyperintense and normal dentate nuclei groups in terms of exposed radiation dose, serum creatinine and calcium/phosphate levels, patient demographics, history of chemotherapy, and strength of the scanner. No dentate nuclei abnormalities were found on the corresponding CT scans of patients with hyperintense dentate nuclei (n = 44). No dentate nuclei abnormalities were found in 53 healthy volunteers. CONCLUSIONS Repeat performance of gadolinium-enhanced studies likely contributes to a long-standing hyperintense appearance of dentate nuclei on precontrast T1-weighted-MR images. PMID:26294649

  10. The evolution of gadolinium based contrast agents: from single-modality to multi-modality

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Liu, Ruiqing; Peng, Hui; Li, Penghui; Xu, Zushun; Whittaker, Andrew K.

    2016-05-01

    Gadolinium-based contrast agents are extensively used as magnetic resonance imaging (MRI) contrast agents due to their outstanding signal enhancement and ease of chemical modification. However, it is increasingly recognized that information obtained from single modal molecular imaging cannot satisfy the higher requirements on the efficiency and accuracy for clinical diagnosis and medical research, due to its limitation and default rooted in single molecular imaging technique itself. To compensate for the deficiencies of single function magnetic resonance imaging contrast agents, the combination of multi-modality imaging has turned to be the research hotpot in recent years. This review presents an overview on the recent developments of the functionalization of gadolinium-based contrast agents, and their application in biomedicine applications.

  11. Superconducting structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2003-04-01

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  12. Superconducting Structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2005-09-13

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  13. The effects of the porous buffer layer and doping with dysprosium on internal stresses in the GaInP:Dy/por-GaAs/GaAs(100) heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seredin, P. V.; Gordienko, N. N.; Glotov, A. V.

    2009-08-15

    In structures with a porous buffer layer, residual internal stresses caused by a mismatch between the crystal-lattice parameters of the epitaxial GaInP alloy and the GaAs substrate are redistributed to the porous layer that acts as a buffer and is conducive to disappearance of internal stresses. Doping of the epitaxial layer with dysprosium exerts a similar effect on the internal stresses in the film-substrate structure.

  14. Terbium(III)/gold nanocluster conjugates: the development of a novel ratiometric fluorescent probe for mercury(II) and a paper-based visual sensor.

    PubMed

    Qi, Yan-Xia; Zhang, Min; Zhu, Anwei; Shi, Guoyue

    2015-08-21

    In this work, a novel ratiometric fluorescent probe was developed for rapid, highly accurate, sensitive and selective detection of mercury(II) (Hg(2+)) based on terbium(III)/gold nanocluster conjugates (Tb(3+)/BSA-AuNCs), in which bovine serum albumin capped gold nanoclusters (BSA-AuNCs) acted as the signal indicator and terbium(III) (Tb(3+)) was used as the build-in reference. Our proposed ratiometric fluorescent probe exhibited unique specificity toward Hg(2+) against other common environmentally and biologically important metal ions, and had high accuracy and sensitivity with a low detection limit of 1 nM. In addition, our proposed probe was effectively employed to detect Hg(2+) in the biological samples from the artificial Hg(2+)-infected rats. More significantly, an appealing paper-based visual sensor for Hg(2+) was designed by using filter paper embedded with Tb(3+)/BSA-AuNC conjugates, and we have further demonstrated its feasibility for facile fluorescent sensing of Hg(2+) in a visual format, in which only a handheld UV lamp is used. In the presence of Hg(2+), the paper-based visual sensor, illuminated by a handheld UV lamp, would undergo a distinct fluorescence color change from red to green, which can be readily observed with naked eyes even in trace Hg(2+) concentrations. The Tb(3+)/BSA-AuNC-derived paper-based visual sensor is cost-effective, portable, disposable and easy-to-use. This work unveiled a facile approach for accurate, sensitive and selective measuring of Hg(2+) with self-calibration.

  15. Helium defectoscopy of cerium gadolinium ceramics Ce0.8Gd0.2O1.9 with a submicrocrystalline structure in the impurity disorder region

    NASA Astrophysics Data System (ADS)

    Koromyslov, A. V.; Zhiganov, A. N.; Kovalenko, M. A.; Kupryazhkin, A. Ya.

    2013-12-01

    The concentration of impurity anion vacancies formed upon the dissociation of gadolinium-vacancy complexes has been determined using helium defectoscopy of the cerium gadolinium ceramics Ce0.8Gd0.2O1.9 with a submicrocrystalline structure in the temperature range T = 740-1123 K and at saturation pressures ranging from 0.05 to 15 MPa. It has been found that the energy of dissociation of gadoliniumvacancy complexes is E {eff/ D }= 0.26 ± 0.06 eV, and the energy of dissolution of helium in anion vacancies in the impurity disorder region is E P = -0.31 ± 0.09 eV. The proposed mechanism of dissolution has been confirmed by the investigation of the electrical conductivity of the cerium gadolinium ceramics, as well as by the high-speed molecular dynamics simulation of the dissociation of gadolinium-vacancy complexes. It has been assumed that a decrease in the effective dissolution energy in comparison with the results of the previously performed low-temperature investigations is caused by the mutual repulsion of vacancies formed upon the dissociation of gadolinium-vacancy complexes in highly concentrated solutions of gadolinium in CeO2 with increasing temperature.

  16. Light deflection in gadolinium molybdate ferroelastic crystals

    NASA Astrophysics Data System (ADS)

    Staniorowski, Piotr; Bornarel, Jean

    2000-02-01

    The deflection of a He-Ne light beam by polydomain gadolinium molybdate (GMO) crystals has been studied with respect to incidence angle icons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> i on the sample at room temperature. The A and B deflected beams do not cross each other during the icons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> i variation, in contrast to results and calculations previously published. The model using the Fresnel equation confirms this result. The model presented is more accurate for numerical calculation than that using the Huygens construction.

  17. Design of a portable fluoroquinolone analyzer based on terbium-sensitized luminescence

    NASA Astrophysics Data System (ADS)

    Chen, Guoying

    2007-09-01

    A portable fluoroquinolone (FQ) analyzer is designed and prototyped based on terbium-sensitized luminescence (TSL). The excitation source is a 327-nm light emitting diode (LED) operated in pulsed mode; and the luminescence signal is detected by a photomultiplier tube (PMT). In comparison to a conventional xenon flashlamp, an LED is small, light, robust, and energy efficient. More importantly, its narrow emission bandwidth and low residual radiation reduce background signal. In pulse mode, an LED operates at a current 1-2 orders of magnitude lower than that of a xenon flashlamp, thus minimizing electromagnetic interference (EMI) to the detector circuitry. The PMT is gated to minimize its response to the light source. These measures lead to reduced background noise in time domain. To overcome pulse-to-pulse variation signal normalization is implemented based on individual pulse energy. Instrument operation and data processing are controlled by a computer running a custom LabVIEW program. Enrofloxacin (ENRO) is used as a model analyte to evaluate instrument performance. The integrated TSL intensity reveals a linear dependence up to 2 ppm. A 1.1-ppb limit of detection (LOD) is achieved with relative standard deviation (RSD) averaged at 5.1%. The background noise corresponds to ~5 ppb. At 19 lbs, this portable analyzer is field deployable for agriculture, environmental and clinical analyses.

  18. Persistent Luminescence in Non-Eu2+-Doped Compounds: A Review

    PubMed Central

    Van den Eeckhout, Koen; Poelman, Dirk; Smet, Philippe F.

    2013-01-01

    During the past few decades, the research on persistent luminescent materials has focused mainly on Eu2+-doped compounds. However, the yearly number of publications on non-Eu2+-based materials has also increased steadily. By now, the number of known persistent phosphors has increased to over 200, of which over 80% are not based on Eu2+, but rather, on intrinsic host defects, transition metals (manganese, chromium, copper, etc.) or trivalent rare earths (cerium, terbium, dysprosium, etc.). In this review, we present an overview of these non-Eu2+-based persistent luminescent materials and their afterglow properties. We also take a closer look at some remaining challenges, such as the excitability with visible light and the possibility of energy transfer between multiple luminescent centers. Finally, we summarize the necessary elements for a complete description of a persistent luminescent material, in order to allow a more objective comparison of these phosphors. PMID:28811409

  19. Two novel 2D lanthanide sulfate frameworks: Syntheses, structures, and luminescence properties

    NASA Astrophysics Data System (ADS)

    Li, Zhong-Yi; Zhang, Chi; Zhang, Fu-Li; Zhang, Fu-Qiang; Zhang, Xiang-Fei; Li, Su-Zhi; Cao, Guang-Xiu; Zhai, Bin

    2016-03-01

    Two novel lanthanide-sulfate compounds, [Ln2(SO4)3(H2O)8] (Ln = Tb (1) and Dy (2)), have been synthesized under hydrothermal reactions. X-ray crystal structure analyses reveal that 1 and 2 are isomorphous and crystallize in monoclinic C2/c pace group, showing a layered structure. The layers bear a rare quasi-honeycomb metal arrangement, which is fastened by μ3 = η1:η1:η1 and μ2 = η1:η1 sulfates. If assigning the μ3 = η1:η1:η1 sulfate as a 3-connected node and the Ln3+ ion as a 4-connected node, the network can be rationalized as a binodal (3,4)-connected V2O5 topology with a Schäfli symbol of (42·63·8) (42·6). In addition, the infrared, thermogravimetric analysis and luminescent properties were also studied. Complexes 1 and 2 exhibit outstanding thermal stability and characteristic terbium and dysprosium luminescence.

  20. Isolation of 163Ho from dysprosium target material by HPLC for neutrino mass measurements

    DOE PAGES

    Mocko, Veronika; Taylor, Wayne  A.; Nortier, Francois M.; ...

    2015-04-29

    The rare earth isotope 163Ho is of interest for neutrino mass measurements. This report describes the isolation of 163Ho from a proton-irradiated dysprosium target and its purification. A Dy metal target was irradiated with 16 MeV protons for 10 h. After target dissolution, 163Ho was separated from the bulk Dy via cation-exchange high performance liquid chromatography using 70 mmol dm –3 α-hydroxyisobutyric acid as the mobile phase. Subsequent purification of the collected Ho fraction was performed to remove the α-hydroxyisobutyrate chelating agent and to concentrate the Ho in a low ionic strength aqueous matrix. The final solution was characterized bymore » MC-ICP-MS to determine the 163Ho/ 165Ho ratio, 163Ho and the residual Dy content. The HPLC purification process resulted in a decontamination factor 1.4E5 for Dy. As a result, the isolated Ho fraction contained 24.8 ±1.3 ng of 163Ho corresponding to holmium recovery of 72 ± 3%.« less

  1. Collisional perturbation of radio-frequency E1 transitions in an atomic beam of dysprosium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cingoez, A.; Lapierre, Alain; Nguyen, A.-T.

    2005-12-15

    We have studied collisional perturbations of radio-frequency (rf) electric-dipole (E1) transitions between the nearly degenerate opposite-parity levels in atomic dysprosium (Dy) in the presence of 10 to 80 {mu}Torr of H{sub 2}, N{sub 2}, He, Ar, Ne, Kr, and Xe. Collisional broadening and shift of the resonance, as well as the attenuation of the signal amplitude are observed to be proportional to the foreign-gas density with the exception of H{sub 2} and Ne, for which no shifts were observed. Corresponding rates and cross sections are presented. In addition, rates and cross sections for O{sub 2} are extracted from measurements usingmore » air as foreign gas. The primary motivation for this study is the need for accurate determination of the shift rates, which are needed in a laboratory search for the temporal variation of the fine-structure constant [A. T. Nguyen, D. Budker, S. K. Lamoreaux, and J. R. Torgerson, Phys. Rev. A 69, 22105 (2004)].« less

  2. Isolation of 163Ho from dysprosium target material by HPLC for neutrino mass measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mocko, Veronika; Taylor, Wayne  A.; Nortier, Francois M.

    The rare earth isotope 163Ho is of interest for neutrino mass measurements. This report describes the isolation of 163Ho from a proton-irradiated dysprosium target and its purification. A Dy metal target was irradiated with 16 MeV protons for 10 h. After target dissolution, 163Ho was separated from the bulk Dy via cation-exchange high performance liquid chromatography using 70 mmol dm –3 α-hydroxyisobutyric acid as the mobile phase. Subsequent purification of the collected Ho fraction was performed to remove the α-hydroxyisobutyrate chelating agent and to concentrate the Ho in a low ionic strength aqueous matrix. The final solution was characterized bymore » MC-ICP-MS to determine the 163Ho/ 165Ho ratio, 163Ho and the residual Dy content. The HPLC purification process resulted in a decontamination factor 1.4E5 for Dy. As a result, the isolated Ho fraction contained 24.8 ±1.3 ng of 163Ho corresponding to holmium recovery of 72 ± 3%.« less

  3. High-resolution separation of neodymium and dysprosium ions utilizing extractant-impregnated graft-type particles.

    PubMed

    Uchiyama, Shoichiro; Sasaki, Takaaki; Ishihara, Ryo; Fujiwara, Kunio; Sugo, Takanobu; Umeno, Daisuke; Saito, Kyoichi

    2018-01-19

    An efficient method for rare metal recovery from environmental water and urban mines is in high demand. Toward rapid and high-resolution rare metal ion separation, a novel bis(2-ethylhexyl) phosphate (HDEHP)-impregnated graft-type particle as a filler for a chromatography column is proposed. To achieve rapid and high-resolution separation, a convection-flow-aided elution mode is required. The combination of 35 μm non-porous particles and a polymer-brush-rich particle structure minimizes the distance from metal ion binding sites to the convection flow in the column, resulting in minimized diffusional mass transfer resistance and the convection-flow-aided elution mode. The HDEHP-impregnated graft-type non-porous-particle-packed cartridge developed in this study exhibited a higher separation performance for model rare metals, neodymium (III) and dysprosium (III) ions, and a narrower peak at a higher linear velocity, than those of previous HDEHP-impregnated fiber-packed and commercially available Lewatit ® VP OC 1026-packed cartridges. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Suppression of Rabbit VX‐2 Subcutaneous Tumor Growth by Gadolinium Neutron Capture Therapy

    PubMed Central

    Tokita, Nobuhiko; Tokuuye, Koichi; Satoh, Michinao; Churei, Hisahiko; Pechoux, Cécile Le; Kobayashi, Tooru; Kanda, Keiji

    1993-01-01

    VX‐2 tumors growing in hind legs of New Zealand White rabbits (n=4) were exposed to thermal neutrons for 40 min (2.1 × 1012 neutrons cm−2) while one of two hind leg tumors of each rabbit was infused continuously with meglumine gadopentetate through a branch of the left femoral artery. The contralateral (uninfused) tumors served as controls. Although no differential distribution of gadolinium was achieved between the tumor and its adjacent normal tissue, the gadolinium concentration in the infused tumor was approximately 5–6 fold higher than that in the contralateral tumor. Growth of gadolinium‐infused tumors was significantly inhibited compared to that of control tumors (P<0.05) between the 16th and 23rd days after treatment. PMID:8407547

  5. Paramagnetic dysprosium-doped zinc oxide thin films grown by pulsed-laser deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo, Fang-Yuh, E-mail: fangyuhlo@ntnu.edu.tw; Ting, Yi-Chieh; Chou, Kai-Chieh

    2015-06-07

    Dysprosium(Dy)-doped zinc oxide (Dy:ZnO) thin films were fabricated on c-oriented sapphire substrate by pulsed-laser deposition with doping concentration ranging from 1 to 10 at. %. X-ray diffraction (XRD), Raman-scattering, optical transmission spectroscopy, and spectroscopic ellipsometry revealed incorporation of Dy into ZnO host matrix without secondary phase. Solubility limit of Dy in ZnO under our deposition condition was between 5 and 10 at. % according to XRD and Raman-scattering characteristics. Optical transmission spectroscopy and spectroscopic ellipsometry also showed increase in both transmittance in ultraviolet regime and band gap of Dy:ZnO with increasing Dy density. Zinc vacancies and zinc interstitials were identified by photoluminescencemore » spectroscopy as the defects accompanied with Dy incorporation. Magnetic investigations with a superconducting quantum interference device showed paramagnetism without long-range order for all Dy:ZnO thin films, and a hint of antiferromagnetic alignment of Dy impurities was observed at highest doping concentration—indicating the overall contribution of zinc vacancies and zinc interstitials to magnetic interaction was either neutral or toward antiferromagnetic. From our investigations, Dy:ZnO thin films could be useful for spin alignment and magneto-optical applications.« less

  6. Progressing Toward a Cohesive Pediatric 18F-FDG PET/MR Protocol: Is Administration of Gadolinium Chelates Necessary?

    PubMed

    Klenk, Christopher; Gawande, Rakhee; Tran, Vy Thao; Leung, Jennifer Trinh; Chi, Kevin; Owen, Daniel; Luna-Fineman, Sandra; Sakamoto, Kathleen M; McMillan, Alex; Quon, Andy; Daldrup-Link, Heike E

    2016-01-01

    With the increasing availability of integrated PET/MR scanners, the utility and need for MR contrast agents for combined scans is questioned. The purpose of our study was to evaluate whether administration of gadolinium chelates is necessary for evaluation of pediatric tumors on (18)F-FDG PET/MR images. First, in 119 pediatric patients with primary and secondary tumors, we used 14 diagnostic criteria to compare the accuracy of several MR sequences: unenhanced T2-weighted fast spin-echo imaging; unenhanced diffusion-weighted imaging; and-before and after gadolinium chelate contrast enhancement-T1-weighted 3-dimensional spoiled gradient echo LAVA (liver acquisition with volume acquisition) imaging. Next, in a subset of 36 patients who had undergone (18)F-FDG PET within 3 wk of MRI, we fused the PET images with the unenhanced T2-weighted MR images (unenhanced (18)F-FDG PET/MRI) and the enhanced T1-weighted MR images (enhanced (18)F-FDG PET/MRI). Using the McNemar test, we compared the accuracy of the two types of fused images using the 14 diagnostic criteria. We also evaluated the concordance between (18)F-FDG avidity and gadolinium chelate enhancement. The standard of reference was histopathologic results, surgical notes, and follow-up imaging. There was no significant difference in diagnostic accuracy between the unenhanced and enhanced MR images. Accordingly, there was no significant difference in diagnostic accuracy between the unenhanced and enhanced (18)F-FDG PET/MR images. (18)F-FDG avidity and gadolinium chelate enhancement were concordant in 30 of the 36 patients and 106 of their 123 tumors. Gadolinium chelate administration is not necessary for accurate diagnostic characterization of most solid pediatric malignancies on (18)F-FDG PET/MR images, with the possible exception of focal liver lesions. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  7. In vitro comparison of intracranial stent visibility using various concentrations of gadolinium contrast agent under 1.5 T and 3 T MR angiography.

    PubMed

    Chiang, Chen-Hua; Tseng, Ying-Chi; Chen, Ai-Chi; Huang, Yen-Lin; Chen, David Yen-Ting; Chen, Chi-Jen; Lin, Yen-Kuang; Hsu, Hui-Ling

    2017-04-01

    MR angiography (MRA) is an increasingly used evaluation method following intracranial stenting. However, the various artifacts created by the stent limit this technique. The purpose of this study was to investigate the effects of various concentrations of gadolinium contrast agent on the visibility and signal characteristics of two stents using the a contrast enhanced MRA technique. Two intracranial stents (Enterprise and Helistent) were placed in polyvinyl chloride tubes as vascular phantoms. They were filled with six different doses of gadolinium contrast agent (1.0, 2.0, 4.0, 6.0, 8.0, and 10.0 mmol/L dimeglumine gadopentetate, respectively) and imaged using 3 T and 1.5 T MR systems. Relative in-stent signal (RIS) was calculated and artificial luminal narrowing (ALN) was obtained using pixel by pixel analysis. The Enterprise stent, performed in both 1.5 T and 3 T MR systems, showed mean RIS values much less than those for the Helistent for all different doses of gadolinium solution. Increased gadolinium concentration resulted in a gradual reduction in RIS values in the Enterprise group. Also, ALN in the Enterprise group showed no or little change with various gadolinium doses. The Enterprise stent demonstrated good luminal visibility regardless of gadolinium concentration. The relative in-stent signals were more predictable in the Enterprise stent with various doses of gadolinium. Therefore, the Enterprise stent has been shown to provide better in-stent visibility compared with the Helistent using various gadolinium doses. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  8. Study of the Photon Strength Functions for Gadolinium Isotopes with the DANCE Array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dashdorj, D.; Mitchell, G. E.; Baramsai, B.

    2009-03-10

    The gadolinium isotopes are interesting for reactor applications as well as for medicine and astrophysics. The gadolinium isotopes have some of the largest neutron capture cross sections. As a consequence they are used in the control rod in reactor fuel assembly. From the basic science point of view, there are seven stable isotopes of gadolinium with varying degrees of deformation. Therefore they provide a good testing ground for the study of deformation dependent structure such as the scissors mode. Decay gamma rays following neutron capture on Gd isotopes are detected by the DANCE array, which is located at flight pathmore » 14 at the Lujan Neutron Scattering Center at Los Alamos National Laboratory. The high segmentation and close packing of the detector array enable gamma-ray multiplicity measurements. The calorimetric properties of the DANCE array coupled with the neutron time-of-flight technique enables one to gate on a specific resonance of a specific isotope in the time-of-flight spectrum and obtain the summed energy spectrum for that isotope. The singles gamma-ray spectrum for each multiplicity can be separated by their DANCE cluster multiplicity. Various photon strength function models are used for comparison with experimentally measured DANCE data and provide insight for understanding the statistical decay properties of deformed nuclei.« less

  9. Kinetic characteristics of the luminescence decay for industrial yttrium-gadolinium-aluminium garnet based phosphors

    NASA Astrophysics Data System (ADS)

    Lisitsyn, V. M.; Stepanov, S. A.; Valiev, D. T.; Vishnyakova, E. A.; Abdullin, H. A.; Marhabaeva, A. A.; Tulegenova, A. T.

    2016-02-01

    The spectral and decay kinetic characteristics of pulse cathodoluminescence and photoluminescence of phosphors based on yttrium-gadolinium-aluminum garnet were investigated using pulsed optical time resolved spectroscopy.

  10. Geometrically confined ultrasmall gadolinium oxide nanoparticles boost the T1 contrast ability

    NASA Astrophysics Data System (ADS)

    Ni, Kaiyuan; Zhao, Zhenghuan; Zhang, Zongjun; Zhou, Zijian; Yang, Li; Wang, Lirong; Ai, Hua; Gao, Jinhao

    2016-02-01

    High-performance magnetic resonance imaging (MRI) contrast agents and novel contrast enhancement strategies are urgently needed for sensitive and accurate diagnosis. Here we report a strategy to construct a new T1 contrast agent based on the Solomon-Bloembergen-Morgan (SBM) theory. We loaded the ultrasmall gadolinium oxide nanoparticles into worm-like interior channels of mesoporous silica nanospheres (Gd2O3@MSN nanocomposites). This unique structure endows the nanocomposites with geometrical confinement, high molecular tumbling time, and a large coordinated number of water molecules, which results in a significant enhancement of the T1 contrast with longitudinal proton relaxivity (r1) as high as 45.08 mM-1 s-1. Such a high r1 value of Gd2O3@MSN, compared to those of ultrasmall Gd2O3 nanoparticles and gadolinium-based clinical contrast agents, is mainly attributed to the strong geometrical confinement effect. This strategy provides new guidance for developing various high-performance T1 contrast agents for sensitive imaging and disease diagnosis.High-performance magnetic resonance imaging (MRI) contrast agents and novel contrast enhancement strategies are urgently needed for sensitive and accurate diagnosis. Here we report a strategy to construct a new T1 contrast agent based on the Solomon-Bloembergen-Morgan (SBM) theory. We loaded the ultrasmall gadolinium oxide nanoparticles into worm-like interior channels of mesoporous silica nanospheres (Gd2O3@MSN nanocomposites). This unique structure endows the nanocomposites with geometrical confinement, high molecular tumbling time, and a large coordinated number of water molecules, which results in a significant enhancement of the T1 contrast with longitudinal proton relaxivity (r1) as high as 45.08 mM-1 s-1. Such a high r1 value of Gd2O3@MSN, compared to those of ultrasmall Gd2O3 nanoparticles and gadolinium-based clinical contrast agents, is mainly attributed to the strong geometrical confinement effect. This strategy

  11. MRI of normal and abnormal duodenum using Half-Fourier Single-Shot RARE and gadolinium-enhanced spoiled gradient echo sequences.

    PubMed

    Marcos, H B; Semelka, R C; Noone, T C; Woosley, J T; Lee, J K

    1999-07-01

    The objective of this research was two-fold: First, to describe the normal and abnormal MR appearances of the duodenum using combined Half-Fourier Acquisition Single Shot RARE (HASTE) and gadolinium-enhanced standard and fat suppressed spoiled gradient echo (SGE) sequences. The second objective was to assess the ability of these combined sequences to detect and characterize duodenal diseases. MR examinations were performed on fifty consecutive patients with no clinical history of duodenal diseases, who were 1) imaged with HASTE and gadolinium-enhanced standard and fat suppressed SGE sequences and 2) referred to MR examination for reasons other than duodenal diseases, and were reviewed retrospectively to determine the normal MR appearances of the duodenum. A second population of patients with abnormal duodenum who were imaged with the same MR sequences were included in the second part of this study. This population was composed of 20 consecutive patients with subsequently proven duodenal abnormalities, including: malrotation (2), diverticula (4), intussusception (1), sprue (1), polyps (2), neurofibroma (1), lymphoma (1), Zollinger Ellison syndrome (1), metastatic disease (1), Crohn's disease (1), and wall thickening and duodenitis (5). Normal measurements of the duodenum are described. Abnormalities of wall thickness and duodenal masses required combined HASTE and gadolinium-enhanced SGE images to evaluate well. Abnormalities of the bowel lumen (e.g., diverticula and intussusception), and developmental variants (e.g., malrotation), were sufficiently visualized on HASTE images alone. Bowel inflammation was best shown on gadolinium-enhanced fat suppressed SGE images. HASTE and gadolinium-enhanced fat suppressed SGE sequences are complementary techniques for the demonstration of normal and abnormal duodenum. The combined use of both sequences allows evaluation of different aspects of bowel diseases; abnormalities of position, lumen, and contents are well shown on HASTE

  12. Applying Amide Proton Transfer MR Imaging to Hybrid Brain PET/MR: Concordance with Gadolinium Enhancement and Added Value to [18F]FDG PET.

    PubMed

    Sun, Hongzan; Xin, Jun; Zhou, Jinyuan; Lu, Zaiming; Guo, Qiyong

    2018-06-01

    The purpose of this study is to evaluate the diagnostic concordance and metric correlations of amide proton transfer (APT) imaging with gadolinium-enhanced magnetic resonance imaging (MRI) and 2-deoxy-2-[ 18 F-]fluoro-D-glucose ([ 18 F]FDG) positron emission tomography (PET), using hybrid brain PET/MRI. Twenty-one subjects underwent brain gadolinium-enhanced [ 18 F]FDG PET/MRI prospectively. Imaging accuracy was compared between unenhanced MRI, MRI with enhancement, APT-weighted (APTW) images, and PET based on six diagnostic criteria. Among tumors, the McNemar test was further used for concordance assessment between gadolinium-enhanced imaging, APT imaging, and [ 18 F]FDG PET. As well, the relation of metrics between APT imaging and PET was analyzed by the Pearson correlation analysis. APT imaging and gadolinium-enhanced MRI showed superior and similar diagnostic accuracy. APTW signal intensity and gadolinium enhancement were concordant in 19 tumors (100 %), while high [ 18 F]FDG avidity was shown in only 12 (63.2 %). For the metrics from APT imaging and PET, there was significant correlation for 13 hypermetabolic tumors (P < 0.05) and no correlation for the remaining six [ 18 F]FDG-avid tumors. APT imaging can be used to increase diagnostic accuracy with no need to administer gadolinium chelates. APT imaging may provide an added value to [ 18 F]FDG PET in the evaluation of tumor metabolic activity during brain PET/MR studies.

  13. Dual responsive dysprosium-doped hydroxyapatite particles and toxicity reduction after functionalization with folic and glucuronic acids.

    PubMed

    Sánchez Lafarga, Ana Karen; Pacheco Moisés, Fermín P; Gurinov, Andrey; Ortiz, Genaro Gabriel; Carbajal Arízaga, Gregorio Guadalupe

    2015-03-01

    The development of probes for biomedical applications demands materials with low toxicity levels besides fluorescence or magnetic properties to be detected by confocal microscopes or MRI resonators. Several drug delivery systems or other biomedical materials prepared with hydroxyapatite have been proposed, however, toxicity effects might arise when the size of particles is nanometric. In this study, hydroxyapatite functionalized with glucuronic or folic acids presented lower oxidative stress, measured from lipoperoxides and nitric oxide indicators in rats than pure hydroxyapatite. In separated experiments, hydroxyapatite was doped with dysprosium cations by coprecipitation producing a single crystal phase with fluorescent properties easily visualized by confocal microscopy when excited at 488nm. These particles also presented the ability to modify the proton relaxation time in T1 maps collected by magnetic resonance imaging. These modified hydroxyapatite nanoparticles could be candidates to design bimodal probes with low toxicity. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Near-zero thermal expansion in magnetically ordered state in dysprosium at high pressures and low temperatures

    NASA Astrophysics Data System (ADS)

    Hope, Kevin M.; Samudrala, Gopi K.; Vohra, Yogesh K.

    2017-01-01

    The atomic volume of rare earth metal dysprosium (Dy) has been measured up to high pressures of 35 GPa and low temperatures between 200 and 7 K in a diamond anvil cell using angle dispersive X-ray diffraction at a synchrotron source. The hexagonal close-packed (hcp), alpha-Samarium (α-Sm), and double hexagonal close-packed (dhcp) phases are observed to be stable in Dy under high-pressure and low-temperature conditions achieved in our experiments. Dy is known to undergo magnetic ordering below 176 K at ambient pressure with magnetic ordering Néel temperature (TN) that changes rapidly with increasing pressure. Our experimental measurement shows that Dy has near-zero thermal expansion in the magnetically ordered state and normal thermal expansion in the paramagnetic state for all the three known high pressure phases (hcp, α-Sm, and dhcp) to 35 GPa. This near-zero thermal expansion behavior in Dy is observed below the magnetic ordering temperature TN at all pressures up to 35 GPa.

  15. Exploration of dysprosium: the most critical element for Japan

    NASA Astrophysics Data System (ADS)

    Watanabe, Y.

    2012-04-01

    Dysprosium (Dy), one of the heavy rare earth elements, is used mainly as an additive for NdFeB permanent magnets which are installed in various modern industrial products such as voice coil motors in computers, factory automation machinery, hybrid and electric vehicles, home electronics, and wind turbine, to improve heat resistance of the magnets. Dy has been produced about 2,000t per year from the ores from ion adsorption type deposits in southern China. However, the produced amount of Dy was significantly reduced in 2011 in China due to reservation of heavy rare earth resources and protection of natural environment, resulting in soaring of Dy price in the world. In order to respond the increasing demand of Dy, unconventional supply sources are inevitably developed, in addition to heavy rare earth enriched ion adsorption type deposits outside China. Heavy rare earth elements including Dy are dominantly hosted in xenotime, fergusonite, zircon, eudialyte, keiviite, kainosite, iimoriite, etc. Concentration of xenotime is found in placer deposits in Malaysia and India, hydrothermal deposits associated with unconformity-type uranium mineralization (Athabasca basin in Canada, Western Australia), iron-oxide fluorite mineralization (South Africa) and Sn-bearing alkaline granite (Brazil). Zircon and fergusontie concentration is found as igneous and hydrothermal products in peralkaline syenite, alkaline granite and pegmatite (e.g., Nechalacho in Canada). Eudialyte concentration is found in some peralkaline syenite bodies in Greenland, Canada, Sweden and Russia. Among these sources, large Dy resources are estimated in the deposits hosted in peralkaline rocks (Nechalacho: 79,000t, Kvanefjeld: 49,000t, Norra Karr: 15,700t, etc.) compared to the present demand of Dy. Thus, Dy will be supplied from the deposits associated with peralkaline and alkaline deposits in future instead of ion adsorption type deposits in southern China.

  16. Optical spectra and emission characteristics of terbium-doped potassium-lead double chloride crystals (KPb2Cl5:Tb3+)

    NASA Astrophysics Data System (ADS)

    Tkachuk, A. M.; Ivanova, S. E.; Mirzaeva, A. A.; Isaenko, L. I.

    2017-05-01

    Optical transitions in KPb2Cl5:Tb3+ crystals are studied experimentally and theoretically. The absorption cross-section spectra are plotted and the oscillator strengths of transitions from the ground terbium state to excited multiplets are determined. Intensity parameters Ωt for KPC:Tb3+ are determined by the Judd-Ofelt method to be Ω2 = 2.70 × 10-20 cm2, Ω4 = 7.0 × 10-20 cm2, and Ω6 = 0.72 × 10-20 cm2. These values were used to calculate such characteristics of spontaneous radiative transitions as oscillator strengths, probabilities of radiative transitions, and radiative lifetimes. The emission spectra of KPb2Cl5:Tb3+ crystals upon UV excitation and the decay kinetics of luminescence from the excited 5 D 3 and 5 D 4 levels are studied experimentally, the lifetimes of these levels are determined, and the dependences of the rates of nonradiative relaxation from the excited 7 F j ( j = 0-5), 5 D 4, and 5 D 3 levels to lower-lying terbium levels are calculated. It is shown that the population of the 5 D 4 level in KPC:Tb3+ crystals occurs according to a cascade scheme, which leads to quenching of the 5 D 3 level. The calculated data agree well with the known experimental rates of multiphonon nonradiative transitions for Dy:KPC, Nd:KPC, Er:KPC, Tb:KPB, and Nd:KPB crystals. It is shown that transitions in the near-IR (3-6 μm) region in double halide crystals (MPb2Hal5) are almost unquenched and the rates of nonradiative relaxation of excited levels spaced by energy gaps Δ E ji > 1000 cm-1 are W ji NR < 103s-1. This circumstance suggests that it is possible to obtain stimulated emission in KPb2Cl5:RE3+ crystals in the IR spectral region up to 6 μm.

  17. Polythermal investigation of viscosity of solution of metal carboxylates in VIK-grade mixed carboxylic acids: Yttrium and gadolinium carboxylates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezhov, E.A.; Samatov, A.V.; Troyanovskii, L.V.

    Kinematic viscosities have been measured for solutions of yttrium and gadolinium carboxylates in grade VIK mixed carboxylic acids (MCA). It has been established that the optimal fluidity of these metal carboxylate solutions for application to articles is reached at 333 K. A regression model has been developed to describe the concentration and temperature dependences of the viscosity of yttrium- and gadolinium-containing MCA solutions. 2 refs., 3 tabs.

  18. The performance of hafnium and gadolinium self powered neutron detectors in the TREAT reactor

    NASA Astrophysics Data System (ADS)

    Imel, G. R.; Hart, P. R.

    1996-05-01

    The use of gadolinium and hafnium self powered neutron detectors in a transient reactor is described in this paper. The detectors were calibrated to the fission rate of U-235 using calibrated fission chambers; the calibration factors were tested in two reactors in steady state and found to be consistent. Calibration of the detectors in transient reactor conditions was done by using uranium wires that were analyzed by radiochemistry techniques to determine total fissions during the transient. This was correlated to the time-integrated current of the detectors during the transient. A temperature correction factor was derived to account for self-shielding effects in the hafnium and gadolinium detectors. The dynamic response of the detectors under transient conditions was studied, and found to be excellent.

  19. Breakthrough reactions of iodinated and gadolinium contrast media after oral steroid premedication protocol.

    PubMed

    Jingu, Akiko; Fukuda, Junya; Taketomi-Takahashi, Ayako; Tsushima, Yoshito

    2014-10-06

    Adverse reactions to iodinated and gadolinium contrast media are an important clinical issue. Although some guidelines have proposed oral steroid premedication protocols to prevent adverse reactions, some patients may have reactions to contrast media in spite of premedication (breakthrough reaction; BTR).The purpose of this study was to assess the frequency, type and severity of BTR when following an oral steroid premedication protocol. All iodinated and gadolinium contrast-enhanced radiologic examinations between August 2011 and February 2013 for which the premedication protocol was applied in our institution were assessed for BTRs. The protocol was applied to a total of 252 examinations (153 patients, ages 15-87 years; 63 males, 90 females). Of these, 152 were for prior acute adverse reactions to contrast media, 85 were for a history of bronchial asthma, and 15 were for other reasons. There were 198 contrast enhanced CTs and 54 contrast enhanced MRIs. There were nine BTR (4.5%) for iodinated contrast media, and only one BTR (1.9%) for gadolinium contrast media: eight were mild and one was moderate. No patient who had a mild index reaction (IR) had a severe BTR. Incidence of BTRs when following the premedication protocol was low. This study by no means proves the efficacy of premedication, but provides some support for following a premedication protocol to improve safety of contrast-enhanced examinations when prior adverse reactions are mild, or when there is a history of asthma.

  20. Breakthrough reactions of iodinated and gadolinium contrast media after oral steroid premedication protocol

    PubMed Central

    2014-01-01

    Background Adverse reactions to iodinated and gadolinium contrast media are an important clinical issue. Although some guidelines have proposed oral steroid premedication protocols to prevent adverse reactions, some patients may have reactions to contrast media in spite of premedication (breakthrough reaction; BTR). The purpose of this study was to assess the frequency, type and severity of BTR when following an oral steroid premedication protocol. Methods All iodinated and gadolinium contrast-enhanced radiologic examinations between August 2011 and February 2013 for which the premedication protocol was applied in our institution were assessed for BTRs. Results The protocol was applied to a total of 252 examinations (153 patients, ages 15–87 years; 63 males, 90 females). Of these, 152 were for prior acute adverse reactions to contrast media, 85 were for a history of bronchial asthma, and 15 were for other reasons. There were 198 contrast enhanced CTs and 54 contrast enhanced MRIs. There were nine BTR (4.5%) for iodinated contrast media, and only one BTR (1.9%) for gadolinium contrast media: eight were mild and one was moderate. No patient who had a mild index reaction (IR) had a severe BTR. Conclusion Incidence of BTRs when following the premedication protocol was low. This study by no means proves the efficacy of premedication, but provides some support for following a premedication protocol to improve safety of contrast-enhanced examinations when prior adverse reactions are mild, or when there is a history of asthma. PMID:25287952

  1. Polarization selection rules and optical transitions in terbium activated yttrium tantalate phosphor under x-ray, vacuum-ultraviolet, and ultraviolet excitations.

    PubMed

    Nazarov, Mihail; Tsukerblat, Boris; Byeon, Clare Chisu; Arellano, Ivan; Popovici, Elisabeth-Jeanne; Noh, Do Young

    2009-01-01

    The terbium-activated yttrium tantalite (YTaO(4):Tb(3+)) phosphor is of great interest due to the interesting spectroscopic properties of rare earth ions in crystals and also practical use in x-ray imaging. Using the group-theoretical approach, we analyze the selection rules for the transition between Stark components of Tb(3+) in symmetry of the actual crystal field and the polarization for the allowed transitions. The luminescence upon UV, vacuum-ultraviolet (VUV), and x-ray excitation is presented and discussed. The YTaO(4):Tb(3+) phosphors are found to be efficient VUV-excited luminescent materials that could be used not only in x-ray intensifying screens, but also in mercury-free fluorescent lamps or plasma display panels.

  2. Effect of Cu2+ substitution on the structural, magnetic and electrical properties of gadolinium orthoferrite

    NASA Astrophysics Data System (ADS)

    Sai Vandana, C.; Hemalatha Rudramadevi, B.

    2018-04-01

    The pure and copper (Cu) substituted Gadolinium orthoferrites, GdFeO3, GdCu0.1Fe0.9O3, GdCu0.2Fe0.8O3 and GdCu0.3Fe0.7O3 were synthesized by conventional solid state method. The structural, morphological, dielectric, magnetic and impedance properties of Cu substituted Gadolinium orthoferrites have been investigated. The crystallographic phase as well as the substitution of Cu2+ ions in the lattice of GdFeO3 is confirmed from the x-ray diffraction patterns. The Fourier transform infrared spectra exhibit two prominent fundamental absorption peaks at ∼417 cm‑1 and 545 cm‑1. These bands are related to inherent stretching vibrations of metals at octahedral and tetrahedral sites respectively. The coercivity (Hc) and saturation magnetization (Ms) of the synthesized samples at different temperatures were determined from the hysteresis plots. Higher coercive values, 598 Oe and 600 Oe were achieved in GdCu0.1Fe0.9O3 ferrites compared to 527 Oe and 360 Oe in pure GdFeO3 at room temperature (300 K) and low temperature (20 k) respectively. Dielectric dispersion has been observed for gadolinium ferrite samples with Maxwell–Wagner type interfacial polarization. The decrease of dielectric constant and dielectric loss tangent with an increase in frequency was observed. The conduction due to charge hopping between localized states was confirmed from AC conductivity measurements. The composition dependent cationic distributions estimated from XRD, magnetic and electrical studies are in good agreement with each other. The achieved results indicate that the substitution of Cu in gadolinium orthoferrite strongly influences the crystal structure, magnetic and electrical properties thereby making them suitable as multiple state memory devices, transducers, electronic field controlled ferromagnetic resonance devices and spintronic devices.

  3. Application of an oscillation-type linear cadmium telluride detector to enhanced gadolinium K-edge computed tomography

    NASA Astrophysics Data System (ADS)

    Matsukiyo, Hiroshi; Sato, Eiichi; Hagiwara, Osahiko; Abudurexiti, Abulajiang; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Nagao, Jiro; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2011-03-01

    A linear cadmium telluride (CdTe) detector is useful for carrying out energy-discrimination X-ray imaging, including computed tomography (CT). To perform enhanced gadolinium K-edge CT, we used an oscillation-type linear CdTe detector with an energy resolution of 1.2 keV. CT is performed by repeating the linear scan and the rotation of an object. Penetrating X-ray photons from the object are detected by the CdTe detector, and event signals of X-ray photons are produced using charge-sensitive and shaping amplifiers. Both the photon energy and the energy width are selected using a multichannel analyzer, and the number of photons is counted by a counter card. In energy-discrimination CT, tube voltage and current were 80 kV and 20 μA, respectively, and X-ray intensity was 1.55 μGy/s at 1.0 m from the source at a tube voltage of 80 kV. Demonstration of enhanced gadolinium K-edge X-ray CT was carried out by selecting photons with energies just beyond gadolinium K-edge energy of 50.3 keV.

  4. Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI.

    PubMed

    Gong, Enhao; Pauly, John M; Wintermark, Max; Zaharchuk, Greg

    2018-02-13

    There are concerns over gadolinium deposition from gadolinium-based contrast agents (GBCA) administration. To reduce gadolinium dose in contrast-enhanced brain MRI using a deep learning method. Retrospective, crossover. Sixty patients receiving clinically indicated contrast-enhanced brain MRI. 3D T 1 -weighted inversion-recovery prepped fast-spoiled-gradient-echo (IR-FSPGR) imaging was acquired at both 1.5T and 3T. In 60 brain MRI exams, the IR-FSPGR sequence was obtained under three conditions: precontrast, postcontrast images with 10% low-dose (0.01mmol/kg) and 100% full-dose (0.1 mmol/kg) of gadobenate dimeglumine. We trained a deep learning model using the first 10 cases (with mixed indications) to approximate full-dose images from the precontrast and low-dose images. Synthesized full-dose images were created using the trained model in two test sets: 20 patients with mixed indications and 30 patients with glioma. For both test sets, low-dose, true full-dose, and the synthesized full-dose postcontrast image sets were compared quantitatively using peak-signal-to-noise-ratios (PSNR) and structural-similarity-index (SSIM). For the test set comprised of 20 patients with mixed indications, two neuroradiologists scored blindly and independently for the three postcontrast image sets, evaluating image quality, motion-artifact suppression, and contrast enhancement compared with precontrast images. Results were assessed using paired t-tests and noninferiority tests. The proposed deep learning method yielded significant (n = 50, P < 0.001) improvements over the low-dose images (>5 dB PSNR gains and >11.0% SSIM). Ratings on image quality (n = 20, P = 0.003) and contrast enhancement (n = 20, P < 0.001) were significantly increased. Compared to true full-dose images, the synthesized full-dose images have a slight but not significant reduction in image quality (n = 20, P = 0.083) and contrast enhancement (n = 20, P = 0.068). Slightly

  5. Kondo effect and enhanced magnetic properties in gadolinium functionalized carbon nanotube supramolecular complex.

    PubMed

    Ncube, S; Coleman, C; Strydom, A; Flahaut, E; de Sousa, A; Bhattacharyya, S

    2018-05-23

    We report on the enhancement of magnetic properties of multiwalled carbon nanotubes (MWNTs) functionalized with a gadolinium based supramolecular complex. By employing a newly developed synthesis technique we find that the functionalization method of the nanocomposite enhances the strength of magnetic interaction leading to a large effective moment of 15.79 µ B and non-superparamagnetic behaviour unlike what has been previously reported. Saturating resistance at low temperatures is fitted with the numerical renormalization group formula verifying the Kondo effect for magnetic impurities on a metallic electron system. Magnetoresistance shows devices fabricated from aligned gadolinium functionalized MWNTs (Gd-Fctn-MWNTs) exhibit spin-valve switching behaviour of up to 8%. This study highlights the possibility of enhancing magnetic interactions in carbon systems through chemical modification, moreover we demonstrate the rich physics that might be useful for developing spin based quantum computing elements based on one-dimensional (1D) channels.

  6. Imaging of cauda equina edema in lumbar canal stenosis by using gadolinium-enhanced MR imaging: experimental constriction injury.

    PubMed

    Kobayashi, S; Uchida, K; Takeno, K; Baba, H; Suzuki, Y; Hayakawa, K; Yoshizawa, H

    2006-02-01

    It has been reported that disturbance of blood flow arising from circumferential compression of the cauda equina by surrounding tissue plays a major role in the appearance of neurogenic intermittent claudication (NIC) associated with lumbar spinal canal stenosis (LSCS). We created a model of LSCS to clarify the mechanism of enhancement within the cauda equina on gadolinium-enhanced MR images from patients with LSCS. In 20 dogs, a lumbar laminectomy was performed by applying circumferential constriction to the cauda equina by using a silicon tube, to produce 30% stenosis of the circumferential diameter of the dural tube. After 1 and 3 weeks, gadolinium and Evans blue albumin were injected intravenously at the same time. The sections were used to investigate the status of the blood-nerve barrier function under a fluorescence microscope and we compared gadolinium-enhanced MR images with Evans blue albumin distribution in the nerve. The other sections were used for light and transmission electron microscopic study. In this model, histologic examination showed congestion and dilation in many of the intraradicular veins, as well as inflammatory cell infiltration. The intraradicular edema caused by venous congestion and Wallerian degeneration can also occur at sites that are not subject to mechanical compression. Enhanced MR imaging showed enhancement of the cauda equina at the stenosed region, demonstrating the presence of edema. Gadolinium-enhanced MR imaging may be a useful tool for the diagnosis of microcirculatory disorders of the cauda equina associated with LSCS.

  7. Crystal structures of two mononuclear complexes of terbium(III) nitrate with the tripodal alcohol 1,1,1-tris­(hy­droxy­meth­yl)propane

    PubMed Central

    Gregório, Thaiane; Giese, Siddhartha O. K.; Nunes, Giovana G.; Soares, Jaísa F.; Hughes, David L.

    2017-01-01

    Two new mononuclear cationic complexes in which the TbIII ion is bis-chelated by the tripodal alcohol 1,1,1-tris­(hy­droxy­meth­yl)propane (H3 L Et, C6H14O3) were prepared from Tb(NO3)3·5H2O and had their crystal and mol­ecular structures solved by single-crystal X-ray diffraction analysis after data collection at 100 K. Both products were isolated in reasonable yields from the same reaction mixture by using different crystallization conditions. The higher-symmetry complex dinitratobis[1,1,1-tris­(hy­droxy­meth­yl)propane]­terbium(III) nitrate di­meth­oxy­ethane hemisolvate, [Tb(NO3)2(H3 L Et)2]NO3·0.5C4H10O2, 1, in which the lanthanide ion is 10-coordinate and adopts an s-bicapped square-anti­prismatic coordination geometry, contains two bidentate nitrate ions bound to the metal atom; another nitrate ion functions as a counter-ion and a half-mol­ecule of di­meth­oxy­ethane (completed by a crystallographic twofold rotation axis) is also present. In product aqua­nitratobis[1,1,1-tris­(hy­droxy­meth­yl)propane]­terbium(III) dinitrate, [Tb(NO3)(H3 L Et)2(H2O)](NO3)2, 2, one bidentate nitrate ion and one water mol­ecule are bound to the nine-coordinate terbium(III) centre, while two free nitrate ions contribute to charge balance outside the tricapped trigonal-prismatic coordination polyhedron. No free water mol­ecule was found in either of the crystal structures and, only in the case of 1, di­meth­oxy­ethane acts as a crystallizing solvent. In both mol­ecular structures, the two tripodal ligands are bent to one side of the coordination sphere, leaving room for the anionic and water ligands. In complex 2, the methyl group of one of the H3 L Et ligands is disordered over two alternative orientations. Strong hydrogen bonds, both intra- and inter­molecular, are found in the crystal structures due to the number of different donor and acceptor groups present. PMID:28217359

  8. The Influence of Domain Structure on the Faraday Effect in Terbium Garnet Ferrite in the Vicinity of the Magnetic-Compensation Temperature

    NASA Astrophysics Data System (ADS)

    Sokolov, B. Yu.; Sharipov, M. Z.

    2013-12-01

    The temperature dependence of the Faraday effect in terbium garnet ferrite, Tb3Fe5O12, is investigated near its magnetic-compensation temperature, Т с = 249 K. A non-monotonous variation in the value of the Faraday rotation angle Ф is observed in a weak magnetic field as the temperature approaches Т с : the temperature plot of the Faraday rotation angle has two local maxima observed left and right of the magnetic compensation point. A theoretical model is proposed, which follows from the phenomenological theory of domain-boundary displacement under the action of a magnetic field, offering an unambiguous description of the principles of domain-structure influence on the Faraday effect in Tb3Fe5O12 near Т с .

  9. High power single-frequency and frequency-doubled laser with active compensation for the thermal lens effect of terbium gallium garnet crystal.

    PubMed

    Yin, Qiwei; Lu, Huadong; Su, Jing; Peng, Kunchi

    2016-05-01

    The thermal lens effect of terbium gallium garnet (TGG) crystal in a high power single-frequency laser severely limits the output power and the beam quality of the laser. By inserting a potassium dideuterium phosphate (DKDP) slice with negative thermo-optical coefficient into the laser resonator, the harmful influence of the thermal lens effect of the TGG crystal can be effectively mitigated. Using this method, the stable range of the laser is broadened, the bistability phenomenon of the laser during the process of changing the pump power is completely eliminated, the highest output power of an all-solid-state continuous-wave intracavity-frequency-doubling single-frequency laser at 532 nm is enhanced to 30.2 W, and the beam quality of the laser is significantly improved.

  10. Synthesis and characterization of bright green terbium coordination complex derived from 1,4-bis(carbonylmethyl)terephthalate: Structure and luminescence properties

    NASA Astrophysics Data System (ADS)

    Ma, Mengjiao; Li, Congcong; Shu, Dengkun; Wang, Chaohua; Xi, Peng

    2018-02-01

    A photoluminescent terbium (Tb) complex involving a novel benzoic-acid compound with a unique coordinated structure, namely 1,4-bis(carbonylmethyl)terephthalate (BCMT), has been designed and synthesized. The new coordinate structure and energy-transfer mechanism between the ligand and Tb(III) ions were investigated in detail. The results demonstrated that the BCMT-Tb(III) complex shows strong fluorescence intensity (4 × 106 a.u.) and long fluorescence lifetime (1.302 ms), owing to the favorable degree of energy matching between the triplet excited level of the ligand and the resonant level of Tb(III) ions. Based on the analysis of three-dimensional luminescence spectra, the as-prepared Tb(III) complex can be effectively excited in the range of 250-310 nm, and it shows high color purity, with a bright green appearance.

  11. In vitro study of novel gadolinium-loaded liposomes guided by GBI-10 aptamer for promising tumor targeting and tumor diagnosis by magnetic resonance imaging.

    PubMed

    Gu, Meng-Jie; Li, Kun-Feng; Zhang, Lan-Xin; Wang, Huan; Liu, Li-Si; Zheng, Zhuo-Zhao; Han, Nan-Yin; Yang, Zhen-Jun; Fan, Tian-Yuan

    2015-01-01

    Novel gadolinium-loaded liposomes guided by GBI-10 aptamer were developed and evaluated in vitro to enhance magnetic resonance imaging (MRI) diagnosis of tumor. Nontargeted gadolinium-loaded liposomes were achieved by incorporating amphipathic material, Gd (III) [N,N-bis-stearylamidomethyl-N'-amidomethyl] diethylenetriamine tetraacetic acid, into the liposome membrane using lipid film hydration method. GBI-10, as the targeting ligand, was then conjugated onto the liposome surface to get GBI-10-targeted gadolinium-loaded liposomes (GTLs). Both nontargeted gadolinium-loaded liposomes and GTLs displayed good dispersion stability, optimal size, and zeta potential for tumor targeting, as well as favorable imaging properties with enhanced relaxivity compared with a commercial MRI contrast agent (CA), gadopentetate dimeglumine. The use of GBI-10 aptamer in this liposomal system was intended to result in increased accumulation of gadolinium at the periphery of C6 glioma cells, where the targeting extracellular matrix protein tenascin-C is overexpressed. Increased cellular binding of GTLs to C6 cells was confirmed by confocal microscopy, flow cytometry, and MRI, demonstrating the promise of this novel delivery system as a carrier of MRI contrast agent for the diagnosis of tumor. These studies provide a new strategy furthering the development of nanomedicine for both diagnosis and therapy of tumor.

  12. In vitro study of novel gadolinium-loaded liposomes guided by GBI-10 aptamer for promising tumor targeting and tumor diagnosis by magnetic resonance imaging

    PubMed Central

    Gu, Meng-Jie; Li, Kun-Feng; Zhang, Lan-Xin; Wang, Huan; Liu, Li-Si; Zheng, Zhuo-Zhao; Han, Nan-Yin; Yang, Zhen-Jun; Fan, Tian-Yuan

    2015-01-01

    Novel gadolinium-loaded liposomes guided by GBI-10 aptamer were developed and evaluated in vitro to enhance magnetic resonance imaging (MRI) diagnosis of tumor. Nontargeted gadolinium-loaded liposomes were achieved by incorporating amphipathic material, Gd (III) [N,N-bis-stearylamidomethyl-N′-amidomethyl] diethylenetriamine tetraacetic acid, into the liposome membrane using lipid film hydration method. GBI-10, as the targeting ligand, was then conjugated onto the liposome surface to get GBI-10-targeted gadolinium-loaded liposomes (GTLs). Both nontargeted gadolinium-loaded liposomes and GTLs displayed good dispersion stability, optimal size, and zeta potential for tumor targeting, as well as favorable imaging properties with enhanced relaxivity compared with a commercial MRI contrast agent (CA), gadopentetate dimeglumine. The use of GBI-10 aptamer in this liposomal system was intended to result in increased accumulation of gadolinium at the periphery of C6 glioma cells, where the targeting extracellular matrix protein tenascin-C is overexpressed. Increased cellular binding of GTLs to C6 cells was confirmed by confocal microscopy, flow cytometry, and MRI, demonstrating the promise of this novel delivery system as a carrier of MRI contrast agent for the diagnosis of tumor. These studies provide a new strategy furthering the development of nanomedicine for both diagnosis and therapy of tumor. PMID:26316749

  13. Single-molecule magnet behavior in an octanuclear dysprosium(iii) aggregate inherited from helical triangular Dy3 SMM-building blocks.

    PubMed

    Zhang, Li; Zhang, Peng; Zhao, Lang; Wu, Jianfeng; Guo, Mei; Tang, Jinkui

    2016-06-28

    An unprecedented octanuclear dysprosium(iii) cluster with the formula [Dy8L6(μ3-OH)4(μ2-CH3O)2(CH3OH)6(H2O)2]·6H2O·10CH3OH·2CH3CN () based on a nonlinearly tritopic aroylhydrazone ligand H3L has been isolated, realizing the successful linking of pairwise interesting triangular Dy3 SMMs. It is noteworthy that two enantiomers (Λ and Δ configurations) individually behaving as a coordination-induced chirality presented in the Dy3 helicate are connected in the meso Dy8 cluster. Remarkably, alternating-current magnetic susceptibility measurements revealed that the Dy8 cluster shows typical SMM behavior inherited from its Dy3 helical precursor. It is one of the rare polynuclear Lnn SMMs (n > 7) under zero dc field.

  14. Impact of Impaired Renal Function on Gadolinium Retention After Administration of Gadolinium-Based Contrast Agents in a Mouse Model.

    PubMed

    Kartamihardja, A Adhipatria P; Nakajima, Takahito; Kameo, Satomi; Koyama, Hiroshi; Tsushima, Yoshito

    2016-10-01

    The aim of this study was to investigate the impact of impaired renal function on gadolinium (Gd) retention in various organs after Gd-based contrast agent injection. After local animal care and review committee approval, 23 normal mice and 26 with renal failure were divided into 4 treatment groups (Gd-DTPA-BMA, 5 mmol/kg; Gd-DOTA, 5 mmol/kg; GdCl3, 0.02 mmol/kg; and saline, 250 μL). Each agent was intravenously administered on weekdays for 4 weeks. Samples were collected on days 3 (short-term) and 45 (long-term) after the last injection. Gadolinium concentrations were quantified by inductively coupled plasma-mass spectrometry. Three mice with renal failure and 2 normal mice in the GdCl3 group and 1 mouse with renal failure in the Gd-DTPA-BMA group died. In the Gd-DTPA-BMA group, impaired renal function increased short-term Gd retention in the liver, bone, spleen, skin, and kidney (P < 0.01) but did not affect long-term Gd retention. Gd-DTPA-BMA showed higher Gd retention than Gd-DOTA. Although Gd retention in the Gd-DOTA group was generally low, impaired renal function increased only long-term hepatic Gd retention. Hepatic and splenic Gd retentions were significantly higher than other organs' Gd retention in the GdCl3 group (P < 0.01). Renal function did not affect brain Gd retention, regardless of the Gd compound used. The tendency of Gd retention varied according to the agent, regardless of renal function. Although renal impairment increased short-term Gd retention after Gd-DTPA-BMA administration, long-term Gd retention for Gd-based contrast agents was almost unaffected by renal function, suggesting that the chemical structures of retained Gd may not be consistent and some Gd is slowly eliminated after initially being retained.

  15. Near-zero thermal expansion in magnetically ordered state in dysprosium at high pressures and low temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hope, Kevin M.; Samudrala, Gopi K.; Vohra, Yogesh K.

    The atomic volume of rare earth metal Dysprosium (Dy) has been measured up to high pressures of 35 GPa and low temperatures between 200 K and 7 K in a diamond anvil cell using angle dispersive x-ray diffraction at a synchrotron source. The hexagonal close-packed (hcp), alpha-Samarium (α-Sm), and double hexagonal close packed (dhcp) phases are observed to be stable in Dy under high-pressure and low-temperature conditions achieved in our experiments. Dy is known to undergo magnetic ordering below 176 K at ambient pressure with magnetic ordering Néel temperature (T N) that changes rapidly with increasing pressure. Our experimental measurementmore » shows that Dy has near-zero thermal expansion in the magnetically ordered state and normal thermal expansion in the paramagnetic state for all the three known high pressure phases (hcp, α-Sm, and dhcp) to 35 GPa. This near-zero thermal expansion behavior in Dy is observed below the magnetic ordering temperature T N at all pressures up to 35 GPa.« less

  16. Near-zero thermal expansion in magnetically ordered state in dysprosium at high pressures and low temperatures

    DOE PAGES

    Hope, Kevin M.; Samudrala, Gopi K.; Vohra, Yogesh K.

    2017-01-01

    The atomic volume of rare earth metal Dysprosium (Dy) has been measured up to high pressures of 35 GPa and low temperatures between 200 K and 7 K in a diamond anvil cell using angle dispersive x-ray diffraction at a synchrotron source. The hexagonal close-packed (hcp), alpha-Samarium (α-Sm), and double hexagonal close packed (dhcp) phases are observed to be stable in Dy under high-pressure and low-temperature conditions achieved in our experiments. Dy is known to undergo magnetic ordering below 176 K at ambient pressure with magnetic ordering Néel temperature (T N) that changes rapidly with increasing pressure. Our experimental measurementmore » shows that Dy has near-zero thermal expansion in the magnetically ordered state and normal thermal expansion in the paramagnetic state for all the three known high pressure phases (hcp, α-Sm, and dhcp) to 35 GPa. This near-zero thermal expansion behavior in Dy is observed below the magnetic ordering temperature T N at all pressures up to 35 GPa.« less

  17. High-pressure high-temperature phase diagram of gadolinium studied using a boron-doped heater anvil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, J. M.; Samudrala, G. K.; Vohra, Y. K.

    A boron-doped designer heater anvil is used in conjunction with powder x-ray diffraction to collect structural information on a sample of quasi-hydrostatically loaded gadolinium metal up to pressures above 8 GPa and 600 K. The heater anvil consists of a natural diamond anvil that has been surface modified with a homoepitaxially grown chemical-vapor-deposited layer of conducting boron-doped diamond, and is used as a DC heating element. Internally insulating both diamond anvils with sapphire support seats allows for heating and cooling of the high-pressure area on the order of a few tens of seconds. This device is then used to scan the phasemore » diagram of the sample by oscillating the temperature while continuously increasing the externally applied pressure and collecting in situ time-resolved powder diffraction images. In the pressure-temperature range covered in this experiment, the gadolinium sample is observed in its hcp, αSm, and dhcp phases. Under this temperature cycling, the hcp → αSm transition proceeds in discontinuous steps at points along the expected phase boundary. From these measurements (representing only one hour of synchrotron x-ray collection time), a single-experiment equation of state and phase diagram of each phase of gadolinium is presented for the range of 0–10 GPa and 300–650 K.« less

  18. High-pressure high-temperature phase diagram of gadolinium studied using a boron-doped heater anvil

    NASA Astrophysics Data System (ADS)

    Montgomery, J. M.; Samudrala, G. K.; Velisavljevic, N.; Vohra, Y. K.

    2016-04-01

    A boron-doped designer heater anvil is used in conjunction with powder x-ray diffraction to collect structural information on a sample of quasi-hydrostatically loaded gadolinium metal up to pressures above 8 GPa and 600 K. The heater anvil consists of a natural diamond anvil that has been surface modified with a homoepitaxially grown chemical-vapor-deposited layer of conducting boron-doped diamond, and is used as a DC heating element. Internally insulating both diamond anvils with sapphire support seats allows for heating and cooling of the high-pressure area on the order of a few tens of seconds. This device is then used to scan the phase diagram of the sample by oscillating the temperature while continuously increasing the externally applied pressure and collecting in situ time-resolved powder diffraction images. In the pressure-temperature range covered in this experiment, the gadolinium sample is observed in its hcp, αSm, and dhcp phases. Under this temperature cycling, the hcp → αSm transition proceeds in discontinuous steps at points along the expected phase boundary. From these measurements (representing only one hour of synchrotron x-ray collection time), a single-experiment equation of state and phase diagram of each phase of gadolinium is presented for the range of 0-10 GPa and 300-650 K.

  19. Disparate ultrafast dynamics of itinerant and localized magnetic moments in gadolinium metal

    PubMed Central

    Frietsch, B.; Bowlan, J.; Carley, R.; Teichmann, M.; Wienholdt, S.; Hinzke, D.; Nowak, U.; Carva, K.; Oppeneer, P. M.; Weinelt, M.

    2015-01-01

    The Heisenberg–Dirac intra-atomic exchange coupling is responsible for the formation of the atomic spin moment and thus the strongest interaction in magnetism. Therefore, it is generally assumed that intra-atomic exchange leads to a quasi-instantaneous aligning process in the magnetic moment dynamics of spins in separate, on-site atomic orbitals. Following ultrashort optical excitation of gadolinium metal, we concurrently record in photoemission the 4f magnetic linear dichroism and 5d exchange splitting. Their dynamics differ by one order of magnitude, with decay constants of 14 versus 0.8 ps, respectively. Spin dynamics simulations based on an orbital-resolved Heisenberg Hamiltonian combined with first-principles calculations explain the particular dynamics of 5d and 4f spin moments well, and corroborate that the 5d exchange splitting traces closely the 5d spin-moment dynamics. Thus gadolinium shows disparate dynamics of the localized 4f and the itinerant 5d spin moments, demonstrating a breakdown of their intra-atomic exchange alignment on a picosecond timescale. PMID:26355196

  20. K3 Li3 Gd7 (BO3 )9 : A New Gadolinium-Rich Orthoborate for Cryogenic Magnetic Cooling.

    PubMed

    Xia, Mingjun; Shen, Shipeng; Lu, Jun; Sun, Young; Li, Rukang

    2018-03-02

    Magnetic cooling technology based on magnetocaloric effect (MCE) has attracted great interest in obtaining extremely low temperatures, for example, for space exploration. Here, we grew a new gadolinium-rich orthoborate K 3 Li 3 Gd 7 (BO 3 ) 9 (1) as a promising cryogenic magnetic coolant. It exhibits a complicated three dimensional framework constructed from BO 3 groups and gadolinium-oxygen chains. The Gd-O chain consists of two types of clusters of Gd 3 O 20 and Gd 3 O 19 interconnection by Gd(4)O 8 polyhydron. Due to its high gadolinium concentration, a large -ΔS m of 56.6 J kg -1  K -1 for 1 was obtained at 2 K and ΔH=7 T, much larger than that of the commercial benchmark Gd 3 Ga 5 O 12 (GGG) crystal (38.4 J kg -1  K -1 ), suggesting it to be an excellent MCE material. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Transient arterial phase respiratory motion-related artifact in MR imaging of the liver: an analysis of four different gadolinium-based contrast agents.

    PubMed

    Shah, Mansi R; Flusberg, Milana; Paroder, Viktoriya; Rozenblit, Alla M; Chernyak, Victoria

    The purpose was to compare hepatic arterial phase (HAP) respiratory motion artifact (RMA) between gadoxetate, gadobutrol, gadopentetate, and gadobenate. Two hundred cases of each gadolinium agent were included. RMA was assigned using 5-point Likert scale (1=no motion, 5=extreme motion) on precontrast and HAP. RMA increase (increase ≥1 on HAP from precontrast) was the outcome in logistic regression. Odds of RMA increase for gadoxetate were 5.5 (P<.001), 3.6 (P=.034), and 9.5 (P<.001) times higher than gadobutrol, gadopentetate, and gadobenate, respectively. Gadolinium volume and dose were not independent predictors of RMA increase. Gadoxetate has increased odds of RMA compared with other gadolinium agents; tight contrast bolus is not a contributor. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Gadolinium-enhanced inner ear magnetic resonance imaging for evaluation of delayed endolymphatic hydrops, including a bilateral case.

    PubMed

    Fukushima, Munehisa; Oya, Ryohei; Akazawa, Hitoshi; Tsuruta, Yukinori; Inohara, Hidenori

    2016-01-01

    The data suggests that gadolinium-enhanced inner ear MR imaging is useful for diagnosis of delayed endolymphatic hydrops (DEH) because it is independent of inner ear function, and the size of the affected endolymphatic space is clearly enlarged. This study was performed to semi-quantitatively evaluate the endolymphatic space in patients with all types of DEH using gadolinium-enhanced inner ear magnetic resonance (MR) imaging. Seven patients (age range = 21-77 years; five female, two male) with ipsilateral DEH (n = 5), contralateral DEH (n = 1), and bilateral DEH (n = 1). All patients underwent 3T MR imaging 4 h after intravenous injection of gadolinium. Software was used to determine the size of the endolymphatic space. Pure tone audiometry and caloric testing using an electronystagmogram were carried out. One side of the endolymphatic space was dominantly extended in patients with ipsilateral DEH, and both sides of the space were extended in patients with contralateral and bilateral DEH. In patients with ipsilateral DEH, the volume ratio of endolymph to vestibule was 2.5-4.3-times that in the unaffected ear. The volume ratio of endolymph to vestibule was nearly equal in patients with contralateral and bilateral DEH.

  3. Monte Carlo simulation of energy absorbed in phenolic ESR dosimeters added with gadolinium exposed to thermal, epithermal and fast neutrons

    NASA Astrophysics Data System (ADS)

    Longo, A.; Collura, G.; Gallo, S.; Bartolotta, A.; Marrale, M.

    2017-11-01

    In this work analyses of the energy released per unit mass in phenolic compound exposed to neutron beams were performed with the aim of predicting the increase in dose achievable by addition of gadolinium (Gd) inside the pellets. In particular, Monte Carlo (MC) simulations were carried out for IRGANOX® 1076 phenolic compound irradiated with neutron beams with different energy spectra at various depths inside a water phantom. The addition of gadolinium increases sensitivity of phenolic ESR (electron spin resonance) dosimeters to neutrons thanks to the high gadolinium cross section for neutron capture and to the large number of secondary particles (mainly Auger and internal conversion electrons) which are able to release energy inside the sensitive material layers. For small depths in water phantom and low energy neutron spectra the increase in dose due to gadolinium is large (more than a factor 50). The enhancement is smaller in case of epithermal neutron beam, whereas the increase in dose for fast neutrons is less than 50%. In order to have a comparison with other ESR dosimeters the energy released per unit mass in phenolic compound was compared with that calculated in alanine pellets. For thermal neutron beams the energy released in phenolic compound with gadolinium is comparable to that released in alanine for small depths in phantom, whereas it is larger than in alanine for large depths. In case of epithermal and fast neutron beams the energy released in phenolic compound is larger than in alanine samples because the elastic scattering with hydrogen nuclei is more probable for high neutron energies and this phenolic compound is characterized by an higher number of 1H nuclei than alanine. All results here found suggest that these phenolic pellets could be fruitfully used for dosimetric applications in Neutron Capture Therapy.

  4. Renal function, nephrogenic systemic fibrosis and other adverse reactions associated with gadolinium-based contrast media.

    PubMed

    Canga, Ana; Kislikova, Maria; Martínez-Gálvez, María; Arias, Mercedes; Fraga-Rivas, Patricia; Poyatos, Cecilio; de Francisco, Angel L M

    2014-01-01

    Nephrogenic systemic fibrosis is a fibrosing disorder that affects patients with impaired renal function and is associated with the administration of gadolinium-based contrast media used in MRI. Despite being in a group of drugs that were considered safe, report about this potentially serious adverse reaction was a turning point in the administration guidelines of these contrast media. There has been an attempt to establish safety parameters to identify patients with risk factors of renal failure. The close pharmacovigilance and strict observation of current regulations, with special attention being paid to the value of glomerular filtration, have reduced the published cases involving the use of gadolinium-based contrast media. In a meeting between radiologists and nephrologists we reviewed the most relevant aspects currently and recommendations for its prevention.

  5. Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging.

    PubMed

    Alric, Christophe; Taleb, Jacqueline; Le Duc, Géraldine; Mandon, Céline; Billotey, Claire; Le Meur-Herland, Alice; Brochard, Thierry; Vocanson, Francis; Janier, Marc; Perriat, Pascal; Roux, Stéphane; Tillement, Olivier

    2008-05-07

    Functionalized gold nanoparticles were applied as contrast agents for both in vivo X-ray and magnetic resonance imaging. These particles were obtained by encapsulating gold cores within a multilayered organic shell which is composed of gadolinium chelates bound to each other through disulfide bonds. The contrast enhancement in MRI stems from the presence of gadolinium ions which are entrapped in the organic shell, whereas the gold core provides a strong X-ray absorption. This study revealed that these particles suited for dual modality imaging freely circulate in the blood vessels without undesirable accumulation in the lungs, spleen, and liver.

  6. Bioconjugation of luminescent silicon quantum dots to gadolinium ions for bioimaging applications

    NASA Astrophysics Data System (ADS)

    Erogbogbo, Folarin; Chang, Ching-Wen; May, Jasmine L.; Liu, Liwei; Kumar, Rajiv; Law, Wing-Cheung; Ding, Hong; Yong, Ken Tye; Roy, Indrajit; Sheshadri, Mukund; Swihart, Mark T.; Prasad, Paras N.

    2012-08-01

    Luminescent imaging agents and MRI contrast agents are desirable components in the rational design of multifunctional nanoconstructs for biological imaging applications. Luminescent biocompatible silicon quantum dots (SiQDs) and gadolinium chelates can be applied for fluorescence microscopy and MRI, respectively. Here, we report the first synthesis of a nanocomplex incorporating SiQDs and gadolinium ions (Gd3+) for biological applications. The nanoconstruct is composed of a PEGylated micelle, with hydrophobic SiQDs in its core, covalently bound to DOTA-chelated Gd3+. Dynamic light scattering reveals a radius of 85 nm for these nanoconstructs, which is consistent with the electron microscopy results depicting radii ranging from 25 to 60 nm. Cellular uptake of the probes verified that they maintain their optical properties within the intracellular environment. The magnetic resonance relaxivity of the nanoconstruct was 2.4 mM-1 s-1 (in terms of Gd3+ concentration), calculated to be around 6000 mM-1 s-1 per nanoconstruct. These desirable optical and relaxivity properties of the newly developed probe open the door for use of SiQDs in future multimodal applications such as tumour imaging.Luminescent imaging agents and MRI contrast agents are desirable components in the rational design of multifunctional nanoconstructs for biological imaging applications. Luminescent biocompatible silicon quantum dots (SiQDs) and gadolinium chelates can be applied for fluorescence microscopy and MRI, respectively. Here, we report the first synthesis of a nanocomplex incorporating SiQDs and gadolinium ions (Gd3+) for biological applications. The nanoconstruct is composed of a PEGylated micelle, with hydrophobic SiQDs in its core, covalently bound to DOTA-chelated Gd3+. Dynamic light scattering reveals a radius of 85 nm for these nanoconstructs, which is consistent with the electron microscopy results depicting radii ranging from 25 to 60 nm. Cellular uptake of the probes verified that they

  7. Removal of gadolinium nitrate from heavy water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilde, E.W.

    2000-03-22

    Work was conducted to develop a cost-effective process to purify 181 55-gallon drums containing spent heavy water moderator (D2O) contaminated with high concentrations of gadolinium nitrate, a chemical used as a neutron poison during former nuclear reactor operations at the Savannah River Site (SRS). These drums also contain low level radioactive contamination, including tritium, which complicates treatment options. Presently, the drums of degraded moderator are being stored on site. It was suggested that a process utilizing biological mechanisms could potentially lower the total cost of heavy water purification by allowing the use of smaller equipment with less product loss andmore » a reduction in the quantity of secondary waste materials produced by the current baseline process (ion exchange).« less

  8. Studies of MRI relaxivities of gadolinium-labeled dendrons

    NASA Astrophysics Data System (ADS)

    Pan, Hongmu; Daniel, Marie-Christine

    2011-05-01

    In cancer detection, imaging techniques have a great importance in early diagnosis. The more sensitive the imaging technique and the earlier the tumor can be detected. Contrast agents have the capability to increase the sensitivity in imaging techniques such as magnetic resonance imaging (MRI). Until now, gadolinium-based contrast agents are mainly used for MRI, and show good enhancement. But improvement is needed for detection of smaller tumors at the earliest stage possible. The dendrons complexed with Gd(DOTA) were synthesized and evaluated as a new MRI contrast agent. The longitudinal and transverse relaxation effects were tested and compared with commercial drug Magnevist, Gd(DTPA).

  9. Investigation of concentration-dependence of thermodynamic properties of lanthanum, yttrium, scandium and terbium in eutectic LiCl-KCl molten salt

    NASA Astrophysics Data System (ADS)

    Wang, Yafei; Zhou, Wentao; Zhang, Jinsuo

    2016-09-01

    Thermodynamic properties of rare earth metals in LiCl-KCl molten salt electrolyte are crucial to the development of electrochemical separation for the treatment of used nuclear fuels. In the present study, activity coefficient, apparent potential, and diffusion coefficient of lanthanum, yttrium, scandium, and terbium in the molten salt (58 at% LiCl and 42 at% KCl) were calculated by the method of molecular dynamics simulation up to a concentration around 3 at% at temperatures of 723 K and 773 K. It was found that the activity coefficient and the apparent potential increase with the species concentration while diffusion coefficient shows a trend of increase followed by decrease. The calculated results were validated by available measurement data of dilution cases. This research extends the range of data to a wide component and would provide further insight to the pyroprocessing design and safeguards.

  10. The AMBRE Project: r-process element abundances in the Milky Way thin and thick discs

    NASA Astrophysics Data System (ADS)

    Guiglion, Guillaume; de Laverny, Patrick; Recio-Blanco, Alejandra; Worley, C. Clare

    2018-04-01

    Chemical evolution of r-process elements in the Milky Way disc is still a matter of debate. We took advantage of high resolution HARPS spectra from the ESO archive in order to derive precise chemical abundances of 3 r-process elements Eu, Dy & Gd for a sample of 4 355 FGK Milky Way stars. The chemical analysis has been performed thanks to the automatic optimization pipeline GAUGUIN. Based on the [α/Fe] ratio, we chemically characterized the thin and the thick discs, and present here results of these 3 r-process element abundances in both discs. We found an unexpected Gadolinium and Dysprosium enrichment in the thick disc stars compared to Europium, while these three elements track well each other in the thin disc.

  11. STABILIZED RARE EARTH OXIDES FOR A CONTROL ROD AND METHOD OF PREPARATION

    DOEpatents

    McNees, R.A.; Potter, R.A.

    1964-01-14

    A method is given for preparing mixed oxides of the formula MR/sub x/O/ sub 12/ wherein M is tungsten or molybdenum and R is a rare earth in the group consisting of samarium, europium, dysprosium, and gadolinium and x is 4 to 5. Oxides of this formula, and particularly the europiumcontaining species, are useful as control rod material for water-cooled nuclear reactors owing to their stability, favorable nuclear properties, and resistance to hydration. These oxides may be utilized as a dispersion in a stainlesssteel matrix. Preparation of these oxides is effected by blending tungsten oxide or molybdenum oxide with a rare earth oxide, compressing the mixture, and firing at an elevated temperature in an oxygen-containing atmosphere. (AEC)

  12. Insights into the use of gadolinium and gadolinium/boron-based agents in imaging-guided neutron capture therapy applications.

    PubMed

    Deagostino, Annamaria; Protti, Nicoletta; Alberti, Diego; Boggio, Paolo; Bortolussi, Silva; Altieri, Saverio; Crich, Simonetta Geninatti

    2016-05-01

    Gadolinium neutron capture therapy (Gd-NCT) is currently under development as an alternative approach for cancer therapy. All of the clinical experience to date with NCT is done with (10)B, known as boron neutron capture therapy (BNCT), a binary treatment combining neutron irradiation with the delivery of boron-containing compounds to tumors. Currently, the use of Gd for NCT has been getting more attention because of its highest neutron cross-section. Although Gd-NCT was first proposed many years ago, its development has suffered due to lack of appropriate tumor-selective Gd agents. This review aims to highlight the recent advances for the design, synthesis and biological testing of new Gd- and B-Gd-containing compounds with the task of finding the best systems able to improve the NCT clinical outcome.

  13. High-pressure high-temperature phase diagram of gadolinium studied using a boron-doped heater anvil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, J. M.; Samudrala, G. K.; Velisavljevic, N.

    A boron-doped designer heater anvil is used in conjunction with powder x-ray diffraction to collect structural information on a sample of quasi-hydrostatically loaded gadolinium metal up to pressures above 8 GPa and 600 K. The heater anvil consists of a natural diamond anvil that has been surface modified with a homoepitaxially-grown chemical-vapor-deposited layer of conducting boron-doped diamond, and is used as a DC heating element. Internally insulating both diamond anvils with sapphire support seats allows for heating and cooling of the high pressure area on the order of a few tens of seconds. This device is then used to scanmore » the phase diagram of the sample by oscillating the temperature while continuously increasing the externally applied pressure and collecting in situ time-resolved powder diffraction images. In the pressure-temperature range covered in the experiment the gadolinium sample is observed in its hcp, αSm, and dhcp phases. Under this temperature cycling, the hcp→αSm transition proceeds in discontinuous steps at points along the expected phase boundary. Additionally, the unit cell volumes of each phase deviate from the expected thermal expansion behavior just before each transition is observed from the diffraction data. From these measurements (representing only one hour of synchrotron x-ray collection time), a single-experiment equation of state and phase diagram of each phase of gadolinium is presented for the range of 0 - 10 GPa and 300 - 650 K.« less

  14. Quantitative assessment of the rheumatoid synovial microvascular bed by gadolinium-DTPA enhanced magnetic resonance imaging

    PubMed Central

    Gaffney, K.; Cookson, J.; Blades, S.; Coumbe, A.; Blake, D.

    1998-01-01

    OBJECTIVE—To examine the relation between rate of synovial membrane enhancement, intra-articular pressure (IAP), and histologically determined synovial vascularity in rheumatoid arthritis, using gadolinium-DTPA enhanced magnetic resonance imaging (MRI).
METHODS—Dynamic gadolinium-DTPA enhanced MRI was performed in 31 patients with knee synovitis (10 patients IAP study, 21 patients vascular morphometry study). Rate of synovial membrane enhancement was quantified by line profile analysis using the image processing package ANALYZE. IAP was measured using an intra-compartmental pressure monitor system. Multiple synovial biopsy specimens were obtained by a blind biopsy technique. Blood vessels were identified immunohistochemically using the endothelial cell marker QBend30 and quantified (blood vessel numerical density and fractional area).
RESULTS—Median blood vessel numerical density and fractional area were 77.5/mm2 (IQR; 69.3-110.7) and 5.6% (IQR; 3.4-8.5) respectively. The rate of synovial membrane enhancement (median 2.74 signal intensity units/s, IQR 2.0-3.8) correlated with both blood vessel numerical density (r = 0.46, p < 0.05) and blood vessel fractional area (r = 0.55, p < 0.02). IAP did not influence the rate of enhancement.
CONCLUSIONS—Gadolinium-DTPA enhanced MRI may prove to be a valuable technique for evaluating drugs that influence angiogenesis.

 Keywords: magnetic resonance imaging; rheumatoid arthritis; synovitis; vascularity PMID:9640130

  15. High-pressure high-temperature phase diagram of gadolinium studied using a boron-doped heater anvil

    DOE PAGES

    Montgomery, J. M.; Samudrala, G. K.; Velisavljevic, N.; ...

    2016-04-07

    A boron-doped designer heater anvil is used in conjunction with powder x-ray diffraction to collect structural information on a sample of quasi-hydrostatically loaded gadolinium metal up to pressures above 8 GPa and 600 K. The heater anvil consists of a natural diamond anvil that has been surface modified with a homoepitaxially-grown chemical-vapor-deposited layer of conducting boron-doped diamond, and is used as a DC heating element. Internally insulating both diamond anvils with sapphire support seats allows for heating and cooling of the high pressure area on the order of a few tens of seconds. This device is then used to scanmore » the phase diagram of the sample by oscillating the temperature while continuously increasing the externally applied pressure and collecting in situ time-resolved powder diffraction images. In the pressure-temperature range covered in the experiment the gadolinium sample is observed in its hcp, αSm, and dhcp phases. Under this temperature cycling, the hcp→αSm transition proceeds in discontinuous steps at points along the expected phase boundary. Additionally, the unit cell volumes of each phase deviate from the expected thermal expansion behavior just before each transition is observed from the diffraction data. From these measurements (representing only one hour of synchrotron x-ray collection time), a single-experiment equation of state and phase diagram of each phase of gadolinium is presented for the range of 0 - 10 GPa and 300 - 650 K.« less

  16. Hybrid Calcium Phosphate-Polymeric Micelles Incorporating Gadolinium Chelates for Imaging-Guided Gadolinium Neutron Capture Tumor Therapy.

    PubMed

    Mi, Peng; Dewi, Novriana; Yanagie, Hironobu; Kokuryo, Daisuke; Suzuki, Minoru; Sakurai, Yoshinori; Li, Yanmin; Aoki, Ichio; Ono, Koji; Takahashi, Hiroyuki; Cabral, Horacio; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2015-06-23

    Gadolinium (Gd) chelates-loaded nanocarriers have high potential for achieving magnetic resonance imaging (MRI)-guided Gd neutron capture therapy (GdNCT) of tumors. Herein, we developed calcium phosphate micelles hybridized with PEG-polyanion block copolymers, and incorporated with the clinical MRI contrast agent Gd-diethylenetriaminepentaacetic acid (Gd-DTPA/CaP). The Gd-DTPA/CaP were nontoxic to cancer cells at the concentration of 100 μM based on Gd-DTPA, while over 50% of the cancer cells were killed by thermal neutron irradiation at this concentration. Moreover, the Gd-DTPA/CaP showed a dramatically increased accumulation of Gd-DTPA in tumors, leading to the selective contrast enhancement of tumor tissues for precise tumor location by MRI. The enhanced tumor-to-blood distribution ratio of Gd-DTPA/CaP resulted in the effective suppression of tumor growth without loss of body weight, indicating the potential of Gd-DTPA/CaP for safe cancer treatment.

  17. Are gadolinium contrast agents suitable for gadolinium neutron capture therapy?

    PubMed

    De Stasio, Gelsomina; Rajesh, Deepika; Casalbore, Patrizia; Daniels, Matthew J; Erhardt, Robert J; Frazer, Bradley H; Wiese, Lisa M; Richter, Katherine L; Sonderegger, Brandon R; Gilbert, Benjamin; Schaub, Sebastien; Cannara, Rachel J; Crawford, John F; Gilles, Mary K; Tyliszczak, Tolek; Fowler, John F; Larocca, Luigi M; Howard, Steven P; Mercanti, Delio; Mehta, Minesh P; Pallini, Roberto

    2005-06-01

    Gadolinium neutron capture therapy (GdNCT) is a potential treatment for malignant tumors based on two steps: (1) injection of a tumor-specific (157)Gd compound; (2) tumor irradiation with thermal neutrons. The GdNC reaction can induce cell death provided that Gd is proximate to DNA. Here, we studied the nuclear uptake of Gd by glioblastoma (GBM) tumor cells after treatment with two Gd compounds commonly used for magnetic resonance imaging, to evaluate their potential as GdNCT agents. Using synchrotron X-ray spectromicroscopy, we analyzed the Gd distribution at the subcellular level in: (1) human cultured GBM cells exposed to Gd-DTPA or Gd-DOTA for 0-72 hours; (2) intracerebrally implanted C6 glioma tumors in rats injected with one or two doses of Gd-DOTA, and (3) tumor samples from GBM patients injected with Gd-DTPA. In cell cultures, Gd-DTPA and Gd-DOTA were found in 84% and 56% of the cell nuclei, respectively. In rat tumors, Gd penetrated the nuclei of 47% and 85% of the tumor cells, after single and double injection of Gd-DOTA, respectively. In contrast, in human GBM tumors 6.1% of the cell nuclei contained Gd-DTPA. Efficacy of Gd-DTPA and Gd-DOTA as GdNCT agents is predicted to be low, due to the insufficient number of tumor cell nuclei incorporating Gd. Although multiple administration schedules in vivo might induce Gd penetration into more tumor cell nuclei, a search for new Gd compounds with higher nuclear affinity is warranted before planning GdNCT in animal models or clinical trials.

  18. Gadolinium based contrast agents in current practice: Risks of accumulation and toxicity in patients with normal renal function

    PubMed Central

    Ranga, Anju; Agarwal, Yatish; Garg, Kanika J

    2017-01-01

    Despite being decked as the most prized compounds in the nugget box of contrast agents for clinical radiologists, and carrying an indisputable tag of safety of the US Food and Drug Administration for close to three decades, all may not be seemingly well with the family of gadolinium compounds. If the first signs of violations of primum non nocere in relation to gadolinium-based contrast agents (GBCAs) appeared in the millennium year with the first published report of skin fibrosis in patients with compromised renal function, the causal relationship between the development of nephrogenic systemic fibrosis (NSF) and GBCAs, first proposed by two European groups in 2006, further precluded their use in renocompromised patients. The toxicity, pharmacokinetics, and pharmacodynamics of GBCAs, however, has come under hawk-eyed scrutiny with recent reports that gadolinium tends to deposit cumulatively in the brain of patients with normal hepatobiliary function and intact blood–brain barrier. While the jury on the long-term hazard significance of this critical scientific finding is still out, the use of GBCAs must be guided by due clinical diligence, avoidance of repeated doses, and preferring GBCAs with the best safety profiles. PMID:28744073

  19. Reaction of gadolinium chelates with ozone and hydroxyl radicals.

    PubMed

    Cyris, Maike; Knolle, Wolfgang; Richard, Jessica; Dopp, Elke; von Sonntag, Clemens; Schmidt, Torsten C

    2013-09-03

    Gadolinium chelates are used in increasing amounts as contrast agents in magnetic resonance imaging, and their fate in wastewater treatment has recently become the focus of research. Oxidative processes, in particular the application of ozone, are currently discussed or even implemented for advanced wastewater treatment. However, reactions of the gadolinium chelates with ozone are not yet characterized. In this study, therefore, rate constants with ozone were determined for the three commonly used chelates Gd-DTPA, Gd-DTPA-BMA, and Gd-BT-DO3A, which were found to be 4.8 ± 0.88, 46 ± 2.5, and 24 ± 1.5 M(-1) s(-1), respectively. These low rate constants indicate that a direct reaction with ozone in wastewater is negligible. However, application of ozone in wastewater leads to substantial yields of (•)OH. Different methods have been applied and compared for determination of k((•)OH+Gd chelate). From rate constants determined by pulse radiolysis experiments (k((•)OH+Gd-DTPA) = 2.6 ± 0.2 × 10(9) M(-1) s(-1), k((•)OH+Gd-DTPA-BMA) = 1.9 ± 0.7 × 10(9) M(-1) s(-1), k((•)OH+Gd-BT-DO3A) = 4.3 ± 0.2 × 10(9) M(-1) s(-1)), it is concluded that a reaction in wastewater via (•)OH radicals is feasible. Toxicity has been tested for educt and product mixtures of both reactions. Cytotoxicity (MTT test) and genotoxicity (micronuclei assay) were not detectable.

  20. Neuroprotective effect of gadolinium: a stretch-activated calcium channel blocker in mouse model of ischemia-reperfusion injury.

    PubMed

    Gulati, Puja; Muthuraman, Arunachalam; Jaggi, Amteshwar S; Singh, Nirmal

    2013-03-01

    The present study was designed to investigate the potential of gadolinium, a stretch-activated calcium channel blocker in ischemic reperfusion (I/R)-induced brain injury in mice. Bilateral carotid artery occlusion of 12 min followed by reperfusion for 24 h was given to induce cerebral injury in male Swiss mice. Cerebral infarct size was measured using triphenyltetrazolium chloride staining. Memory was assessed using Morris water maze test and motor incoordination was evaluated using rota-rod, lateral push, and inclined beam walking tests. In addition, total calcium, thiobarbituric acid reactive substance (TBARS), reduced glutathione (GSH), and acetylcholinesterase (AChE) activity were also estimated in brain tissue. I/R injury produced a significant increase in cerebral infarct size. A significant loss of memory along with impairment of motor performance was also noted. Furthermore, I/R injury also produced a significant increase in levels of TBARS, total calcium, AChE activity, and a decrease in GSH levels. Pretreatment of gadolinium significantly attenuated I/R-induced infarct size, behavioral and biochemical changes. On the basis of the present findings, we can suggest that opening of stretch-activated calcium channel may play a critical role in ischemic reperfusion-induced brain injury and that gadolinium has neuroprotective potential in I/R-induced injury.

  1. Analytical Interference in Serum Iron Determination Reveals Iron Versus Gadolinium Transmetallation With Linear Gadolinium-Based Contrast Agents

    PubMed Central

    Fretellier, Nathalie; Poteau, Nathalie; Factor, Cécile; Mayer, Jean-François; Medina, Christelle; Port, Marc; Idée, Jean-Marc; Corot, Claire

    2014-01-01

    Objectives The purposes of this study were to evaluate the risk for analytical interference with gadolinium-based contrast agents (GBCAs) for the colorimetric measurement of serum iron (Fe3+) and to investigate the mechanisms involved. Materials and Methods Rat serum was spiked with several concentrations of all molecular categories of GBCAs, ligands, or “free” soluble gadolinium (Gd3+). Serum iron concentration was determined by 2 different colorimetric methods at pH 4.0 (with a Vitros DT60 analyzer or a Cobas Integra 400 analyzer). Secondly, the cause of interference was investigated by (a) adding free soluble Gd3+ or Mn2+ to serum in the presence of gadobenic acid or gadodiamide and (b) electrospray ionization mass spectrometry. Results Spurious decrease in serum Fe3+ concentration was observed with all linear GBCAs (only with the Vitros DT60 technique occurring at pH 4.0) but not with macrocyclic GBCAs or with free soluble Gd3+. Spurious hyposideremia was also observed with the free ligands present in the pharmaceutical solutions of the linear GBCAs gadopentetic acid and gadodiamide (ie, diethylene triamine pentaacetic acid and calcium-diethylene triamine pentaacetic acid bismethylamide, respectively), suggesting the formation of Fe-ligand chelate. Gadobenic acid-induced interference was blocked in a concentration-dependent fashion by adding a free soluble Gd3+ salt. Conversely, Mn2+, which has a lower affinity than Gd3+ and Fe3+ for the ligand of gadobenic acid (ie, benzyloxypropionic diethylenetriamine tetraacetic acid), was less effective (interference was only partially blocked), suggesting an Fe3+ versus Gd3+ transmetallation phenomenon at pH 4.0. Similar results were observed with gadodiamide. Mass spectrometry detected the formation of Fe-ligand with all linear GBCAs tested in the presence of Fe3+ and the disappearance of Fe-ligand after the addition of free soluble Gd3+. No Fe-ligand chelate was found in the case of the macrocyclic GBCA gadoteric

  2. Dysprosium complexes with mono-/di-carboxylate ligands-From simple dimers to 2D and 3D frameworks

    NASA Astrophysics Data System (ADS)

    Zhang, Yingjie; Bhadbhade, Mohan; Scales, Nicholas; Karatchevtseva, Inna; Price, Jason R.; Lu, Kim; Lumpkin, Gregory R.

    2014-11-01

    Four dysprosium (Dy) single carboxylates, a formate, a propionate, a butyrate and an oxalate have been synthesized and structurally characterized. The structure of Dy(HCO2)3 (1) contains nine-fold coordinated Dy polyhedra in perfect tricapped trigonal prisms. They are linked through trigonal O atoms forming 1D pillars which are further linked together through tricapped O atoms into a 3D pillared metal organic framework. The network structure is stable up to 360 °C. The structure of [Dy2(C2O4)3(H2O)6]·2.5H2O (2) contains nine-fold coordinated Dy polyhedra linking together through μ2-bridging oxalate anions into a 2D hexagonal layered structure. Both [Dy2(Pr)6(H2O)4]·(HPr)0.5 (3) [Pr=(C2H5CO2)-1] and [Dy2(Bu)6(H2O)4] (4) [Bu=(C3H7CO2)-1] have similar di-nuclear structures. The Raman vibration modes of the complexes have been investigated.

  3. Stability of Gadolinium-Doped Liquid Organic Scintillators

    NASA Astrophysics Data System (ADS)

    Gromov, M. B.; Kuznetsov, D. S.; Murchenko, A. E.; Novikova, G. Ya.; Obinyakov, B. A.; Oralbaev, A. Yu.; Plakitina, K. V.; Skorokhvatov, M. D.; Sukhotin, S. V.; Chepurnov, A. S.; Etenko, A. V.

    2018-03-01

    The technology of preparing a linear-alkylbenzene-based gadolinium-doped liquid organic scintillator (Gd-LOS) as a target material in reactor antineutrino detectors has been developed. Results of longterm measurements of the light yield of Gd-LOS in contact with acryl and stainless steel are presented, which confirm the compatibility of Gd-LOS with these materials. The measurements were performed for two otherwise identical LOS detectors only differing in wall materials of the sensitive volume: acryl versus stainless steel. The results of measurements over about one year showed almost the same, relatively small decreases in the light yield of both detectors. It is concluded that both structural materials can be used in detector parts contacting with Gd-doped scintillator. Such a long-term parallel comparative test was carried out for the first time.

  4. Analysis of Blood Gadolinium in an Isotope Geochemist Following Contrast MRI

    NASA Astrophysics Data System (ADS)

    Wasylenki, L. E.

    2011-12-01

    Normal brain tissue does not have blood flowing throughout it; instead oxygen diffuses across a blood-brain barrier in order to oxygenate brain cells. Brain tumors, however, do grow blood supplies, so an abnormal distribution of blood in the brain is a key indicator of abnormal cell growth. But how is the distribution of blood in inside the brain observed? The lanthanide ion gadolinium(III) has unpaired 5f-shell electrons and is thus paramagnetic. As such, the presence of Gd causes the nuclei of nearby atoms to relax more quickly when excited to high-energy spin states by pulses of radio-frequency energy than they would without Gd nearby. The signal in magnetic resonance imaging correlates with this nuclear spin relaxation time, so gadolinium's presence in certain body tissues makes those tissues appear as bright areas on MRI images. Gadolinium is therefore commonly injected intravenously just prior to MRI imaging, so that the distribution of blood in and around the brain can be mapped. Gadolinium as a free ion is toxic, so it is injected in a relatively inert form, often as gadoversetamide, in which Gd is tightly bound in nine-fold coordination with N, C, and O. This compound is removed from the blood by the kidneys at a rate that is fast compared to the rate of breakdown of this compound in the blood, thus preventing release of toxic Gd in the bloodstream. But how quickly can the kidneys of an isotope geochemist remove Gd from blood? In this experiment, a single isotope geochemist's wristwatch was synchronized with that of the MRI technician and then left in a dressing room with all other magnetically susceptible objects until after the MRI. The time of intravenous injection of gadoversetamide into the isotopist was recorded by the technician and later transmitted verbally to the isotopist. Following the MRI session, blood samples were collected by self-fingerprick, in a Class 100 trace metal clean lab, from 47 to 281 minutes after intravenous injection. For each

  5. Molecular Orientation of a Terbium(III)-Phthalocyaninato Double-Decker Complex for Effective Suppression of Quantum Tunneling of the Magnetization.

    PubMed

    Yamabayashi, Tsutomu; Katoh, Keiichi; Breedlove, Brian K; Yamashita, Masahiro

    2017-06-15

    Single-molecule magnet (SMM) properties of crystals of a terbium(III)-phthalocyaninato double-decker complex with different molecular packings ( 1 : TbPc₂, 2 : TbPc₂·CH₂Cl₂) were studied to elucidate the relationship between the molecular packing and SMM properties. From single crystal X-ray analyses, the high symmetry of the coordination environment of 2 suggested that the SMM properties were improved. Furthermore, the shorter intermolecular Tb-Tb distance and relative collinear alignment of the magnetic dipole in 2 indicated that the magnetic dipole-dipole interactions were stronger than those in 1 . This was confirmed by using direct current magnetic measurements. From alternating current magnetic measurements, the activation energy for spin reversal for 1 and 2 were similar. However, the relaxation time for 2 is three orders of magnitude slower than that for 1 in the low- T region due to effective suppression of the quantum tunneling of the magnetization. These results suggest that the SMM properties of TbPc₂ highly depend on the molecular packing.

  6. Dramatic impact of the giant local magnetic fields on spin-dependent recombination processes in gadolinium based garnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanov, N. G., E-mail: nikolai.romanov@mail.ioffe.ru; Tolmachev, D. O.; Gurin, A. S.

    2015-06-29

    A giant magnetic field effect on spin-dependent recombination of the radiation-induced defects has been found in cerium doped gadolinium based garnet crystals and ceramics, promising materials for scintillator applications. A sharp and strong increase in the afterglow intensity stimulated by external magnetic field and an evidence of the magnetic field memory have been discovered. The effect was ascribed to huge Gd-induced internal magnetic fields, which suppress the recombination, and cross-relaxation with Gd{sup 3+} ions leading to reorientation of the spins of the electron and hole centers. Thus, the spin system of radiation-induced defects in gadolinium garnet based scintillator materials wasmore » shown to accumulate significant energy which can be released in external magnetic fields.« less

  7. Gadolinium enhanced cardiovascular magnetic resonance in Anderson-Fabry disease. Evidence for a disease specific abnormality of the myocardial interstitium.

    PubMed

    Moon, James C C; Sachdev, Bhavesh; Elkington, Andrew G; McKenna, William J; Mehta, Atul; Pennell, Dudley J; Leed, Philip J; Elliott, Perry M

    2003-12-01

    Anderson-Fabry Disease (AFD), an X-linked disorder of sphingolipid metabolism, is a cause of idiopathic left ventricular hypertrophy but the mechanism of hypertrophy is poorly understood. Gadolinium enhanced cardiovascular magnetic resonance can detect focal myocardial fibrosis. We hypothesised that hyperenhancement would be present in AFD. Eighteen males (mean 43+/-14 years) and eight female heterozygotes (mean 48+/-12 years) with AFD underwent cine and late gadolinium cardiovascular magnetic resonance. Nine male (50%) had myocardial hyperenhancement ranging from 3.4% to 20.6% (mean 7.7+/-5.7%) of total myocardium; in males, percentage hyperenhancement related to LV mass index (r=0.78, P=0.0002) but not to ejection fraction or left ventricular volumes. Lesser hyperenhancement was also found in four (50%) heterozygous females (mean 4.6%). In 12 (92%) patients with abnormal gadolinium uptake, hyperenhancement occurred in the basal infero-lateral wall where, unlike myocardial infarction, it was not sub-endocardial. In two male patients with severe LVH (left ventricular hypertrophy) and systolic impairment there was additional hyperenhancement in other myocardial segments. These observations suggests that myocardial fibrosis occurs in AFD and may contribute to the hypertrophy and the natural history of the disease.

  8. Thermophysical Properties of Matter - The TPRC Data Series. Volume 6. Specific Heat - Nonmetallic Liquids and Gases

    DTIC Science & Technology

    1970-01-01

    dlcarbide (Cr5C2) Heptachromium tricarbide (CrTCj) Chromium chlorides: CrCl2 CrClj Chromium dichloride (CrC^) Chromium trichloride (CrC...methane (see Propane) Dysprosia (see Dysprosium oxide) Dysprosium Dysprosium trichloride hexahydrate (DyClj-6HjO) Dysprosium oxide (DyjOj...Dysprosium sesquioxide (see Dysprosium oxide) Didysprosium trioxide (see Dysprosium oxide) Erbia (see Erbium oxide) Erbium Erbium trichloride

  9. Electrical and Structural Substrate of Arrhythmogenic Right Ventricular Cardiomyopathy Determined Using Noninvasive Electrocardiographic Imaging and Late Gadolinium Magnetic Resonance Imaging.

    PubMed

    Andrews, Christopher M; Srinivasan, Neil T; Rosmini, Stefania; Bulluck, Heerajnarain; Orini, Michele; Jenkins, Sharon; Pantazis, Antonis; McKenna, William J; Moon, James C; Lambiase, Pier D; Rudy, Yoram

    2017-07-01

    Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a significant cause of sudden cardiac death in the young. Improved noninvasive assessment of ARVC and better understanding of the disease substrate are important for improving patient outcomes. We studied 20 genotyped ARVC patients with a broad spectrum of disease using electrocardiographic imaging (a method for noninvasive cardiac electrophysiology mapping) and advanced late gadolinium enhancement cardiac magnetic resonance scar imaging. Compared with 20 healthy controls, ARVC patients had longer ventricular activation duration (median, 52 versus 42 ms; P =0.007) and prolonged mean epicardial activation-recovery intervals (a surrogate for local action potential duration; median, 275 versus 241 ms; P =0.014). In these patients, we observed abnormal and varied epicardial activation breakthrough locations and regions of nonuniform conduction and fractionated electrograms. Nonuniform conduction and fractionated electrograms were present in the early concealed phase of ARVC. Electrophysiological abnormalities colocalized with late gadolinium enhancement scar, indicating a relationship with structural disease. Premature ventricular contractions were common in ARVC patients with variable initiation sites in both ventricles. Premature ventricular contraction rate increased with exercise, and within anatomic segments, it correlated with prolonged repolarization, electric markers of scar, and late gadolinium enhancement (all P <0.001). Electrocardiographic imaging reveals electrophysiological substrate properties that differ in ARVC patients compared with healthy controls. A novel mechanistic finding is the presence of repolarization abnormalities in regions where ventricular ectopy originates. The results suggest a potential role for electrocardiographic imaging and late gadolinium enhancement in early diagnosis and noninvasive follow-up of ARVC patients. © 2017 American Heart Association, Inc.

  10. Switching of the polarization of ferroelectric-ferroelastic gadolinium molybdate in a magnetic field

    NASA Astrophysics Data System (ADS)

    Yakushkin, E. D.

    2017-10-01

    A change in the character of the electric switching of polydomain ferroelectric-ferroelastic gadolinium molybdate in an external magnetic field has been detected. This change has been attributed to a magnetically stimulated increase in the pinning of domain walls. Under certain conditions, the loop of switchable polarization is degenerated into an ellipse characteristic of a linear insulator with leakage current.

  11. Application of 1H and 23Na magic angle spinning NMR spectroscopy to define the HRBC up-taking of MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Calabi, Luisella; Paleari, Lino; Biondi, Luca; Linati, Laura; De Miranda, Mario; Ghelli, Stefano

    2003-09-01

    The up-take of Gd(III) complexes of BOPTA, DTPA, DOTA, EDTP, HPDO3A, and DOTP in HRBC has been evaluated by measuring the lanthanide induced shift (LIS) produced by the corresponding dysprosium complexes (DC) on the MAS-NMR resonances of water protons and free sodium ions. These complexes are important in their use as MRI contrast agents (MRI-CA) in diagnostics. 1H and 23Na MAS-NMR spectra of HRBC suspension, collected at 9.395 T, show only one signal due to extra- and intra-cellular water (or sodium). In MAS spectra, the presence of DC in a cellular compartment produces the LIS of only the nuclei (water proton or sodium) in that cellular compartment and this LIS can be related to the DC concentrations (by the experimental curves of LIS vs. DC concentrations) collected in the physiological solution. To obtain correct results about LIS, the use of MAS technique is mandatory, because it guarantees the only the nuclei staying in the same cellular compartment where the LC is present show the LIS. In all the cases considered, the addition of the DC to HRBC (100% hematocrit) produced a shift of only the extra-cellular water (or sodium) signal and the gradient of concentration ( GC) between extra- and intra-cellular compartments resulted greater than 100:1, when calculated by means of sodium signals. These high values of GC are direct proofs that none of the tested dysprosium complexes crosses the HRBC membrane. Since the DC are iso-structural to the gadolinium complexes the corresponding gadolinium ones (MRI-CA) do not cross the HRBC membrane and, consequently, they are not up-taken in HRBC. The GC values calculated by means of water proton signals resulted much lower than those obtained by sodium signals. This proves that the choice of the isotope is a crucial step in order to use this method in the best way. In fact, GC value depends on the lowest detectable LIS which, in turn, depends on the nature of the LC (lanthanide complex) and the observed isotopes.

  12. Neurosarcoidosis--demonstration of meningeal disease by gadolinium enhanced magnetic resonance imaging.

    PubMed Central

    Khaw, K T; Manji, H; Britton, J; Schon, F

    1991-01-01

    Arriving at a firm diagnosis of neurosarcoidosis continues to pose serious problems, particularly when evidence of granulomatous disease outside the nervous system is lacking. The commonest mode of presentation of neurosarcoidosis is with cranial nerve palsies. Two cases of presumed neurosarcoidosis with cranial nerve palsies showed clear evidence of focal meningeal disease on gadolinium-DTPA enhanced MRI brain scans. Although not specific for sarcoidosis, this technique may be very useful in aiding the diagnosis in suspected cases. Images PMID:1880510

  13. Gadolinium-modulated 19F signals from Perfluorocarbon Nanoparticles as a New Strategy for Molecular Imaging

    PubMed Central

    Neubauer, Anne M.; Myerson, Jacob; Caruthers, Shelton D.; Hockett, Franklin D.; Winter, Patrick M.; Chen, Junjie; Gaffney, Patrick J.; Robertson, J. David; Lanza, Gregory M.; Wickline, Samuel A.

    2008-01-01

    Recent advances in the design of fluorinated nanoparticles for magnetic resonance molecular imaging have enabled specific detection of 19F nuclei, providing unique and quantifiable spectral signatures. However, a pressing need for signal enhancement exists because the total 19F in imaging voxels is often limited. By directly incorporating a relaxation agent (gadolinium) into the lipid monolayer that surrounds the perfluorocarbon, a marked augmentation of the 19F signal from 200nm nanoparticles was achieved. This design increases the magnetic relaxation rate of the 19F nuclei 4-fold at 1.5 T and effects a 125% increase in signal, an effect which is maintained when they are targeted to human plasma clots. By varying the surface concentration of gadolinium, the relaxation effect can be quantitatively modulated to tailor particle properties. This novel strategy dramatically improves the sensitivity and range of 19F MRI/MRS and forms the basis for designing contrast agents capable of sensing their surface chemistry. PMID:18956457

  14. Right ventricular stress-induced perfusion defects and late gadolinium enhancement in coronary artery disease.

    PubMed

    Milks, Michael Wesley; Upadhya, Bharathi; Hall, Michael E; Vasu, Sujethra; Hundley, William Gregory; Stacey, Richard Brandon

    2015-01-01

    The assessment of right ventricular (RV) perfusion defects has remained challenging during vasodilator stress perfusion with cardiovascular magnetic resonance (CMR). The significance of RV signal abnormalities during vasodilator stress perfusion and late gadolinium-enhanced CMR is yet uncertain. Among 61 individuals who underwent adenosine CMR stress testing before cardiac catheterization, we assessed the severity of coronary artery stenoses, mortality, the presence of stress and rest perfusion defects, as well as the presence of late gadolinium enhancement (LGE). Right ventricular stress-induced perfusion defects were positively associated with left anterior descending artery and proximal right coronary artery stenoses but were negatively associated with left circumflex artery stenoses. The presence of RVLGE was associated with mortality, but 77% of those with RVLGE also had left ventricular LGE. Proximal right coronary artery and left anterior descending artery stenoses are positively associated, whereas left circumflex artery stenoses are negatively associated with RV stress-induced perfusion defects. Right ventricular LGE was associated with mortality, but further study is needed to determine whether this is independent of left ventricular LGE.

  15. Effect of solid-phase amorphization on the spectral characteristics of europium-doped gadolinium molybdate

    NASA Astrophysics Data System (ADS)

    Shmurak, S. Z.; Kiselev, A. P.; Kurmasheva, D. M.; Red'Kin, B. S.; Sinitsyn, V. V.

    2010-05-01

    A method is proposed for detecting spectral characteristics of optically inactive molybdates of rare-earth elements by their doping with rare-earth ions whose luminescence lies in the transparency region of all structural modifications of the sample. Gadolinium molybdate is chosen as the object of investigations, while europium ions are used as an optically active and structurally sensitive admixture. It is shown that after the action of a high pressure under which gadolinium molybdate passes to the amorphous state, the spectral characteristics of Gd1.99Eu0.01(MoO4)3 (GMO:Eu) change radically; namely, considerable line broadening is observed in the luminescence spectra and the luminescence excitation spectra, while the long-wave threshold of optical absorption is shifted considerably (by approximately 1.1 eV) towards lower energies. It is found that by changing the structural state of GMO:Eu by solid-state amorphization followed by annealing, the spectral characteristics of the sample can be purposefully changed. This is extremely important for solving the urgent problem of designing high-efficiency light-emitting diodes producing “white” light.

  16. Radiological Hazard of Spallation Products in Accelerator-Driven System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, M.; Stankovskii, A.; Artisyuk, V.

    The central issue underlying this paper is related to elucidating the hazard of radioactive spallation products that might be an important factor affecting the design option of accelerator-driven systems (ADSs). Hazard analysis based on the concept of Annual Limit on Intake identifies alpha-emitting isotopes of rare earths (REs) (dysprosium, gadolinium, and samarium) as the dominant contributors to the overall toxicity of traditional (W, Pb, Pb-Bi) targets. The matter is addressed from several points of view: code validation to simulate their yields, choice of material for the neutron producing targets, and challenging the beam type. The paper quantitatively determines the domainmore » in which the toxicity of REs exceeds that of polonium activation products broadly discussed now in connection with advertising lead-bismuth technology for the needs of ADSs.« less

  17. Effect of temperature and rare-earth doping on charge-carrier mobility in indium-monoselenide crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdinov, A. Sh., E-mail: abdinov-axmed@yandex.ru; Babayeva, R. F., E-mail: Babaeva-Rena@yandex.ru; Amirova, S. I.

    2013-08-15

    In the temperature range T = 77-600 K, the dependence of the charge-carrier mobility ({mu}) on the initial dark resistivity is experimentally investigated at 77 K ({rho}d{sub 0}), as well as on the temperature and the level (N) of rare-earth doping with such elements as gadolinium (Gd), holmium (Ho), and dysprosium (Dy) in n-type indium-monoselenide (InSe) crystals. It is established that the anomalous behavior of the dependences {mu}(T), {mu}({rho}d{sub 0}), and {mu}(N) found from the viewpoint of the theory of charge-carrier mobility in crystalline semiconductors is related, first of all, to partial disorder in indium-monoselenide crystals and can be attributedmore » to the presence of random drift barriers in the free energy bands.« less

  18. Graphene oxide-gadolinium (III) oxide nanoparticle composite: a novel MR contrast agent with high longitudinal and transverse relaxivity

    NASA Astrophysics Data System (ADS)

    Venkatesha, N.; Poojar, Pavan; Geethanath, Sairam; Srivastava, Chandan

    2014-12-01

    Production of bio-compatible contrast agent materials to enhance the sensitivity of the magnetic resonance imaging (MRI) technique is a highly active area in MRI related research. This work illustrates the potential of a new material: graphene oxide-gadolinium (III) oxide nanoparticle (GO-Gd2O3) composite in yielding both transverse (16.3 mM-1 s-1) and longitudinal relaxivity (40 mM-1 s-1) values which are significantly higher than the proton relaxivity values achieved using the gadolinium based contrast agents currently used in MRI. Such high proton relaxivity values can facilitate low dosage of GO-Gd2O3 composite for obtaining both T1 and T2 weighted high signal-to-noise ratio images in MRI.

  19. A comparison of the COG and MCNP codes in computational neutron capture therapy modeling, Part II: gadolinium neutron capture therapy models and therapeutic effects.

    PubMed

    Wangerin, K; Culbertson, C N; Jevremovic, T

    2005-08-01

    The goal of this study was to evaluate the COG Monte Carlo radiation transport code, developed and tested by Lawrence Livermore National Laboratory, for gadolinium neutron capture therapy (GdNCT) related modeling. The validity of COG NCT model has been established for this model, and here the calculation was extended to analyze the effect of various gadolinium concentrations on dose distribution and cell-kill effect of the GdNCT modality and to determine the optimum therapeutic conditions for treating brain cancers. The computational results were compared with the widely used MCNP code. The differences between the COG and MCNP predictions were generally small and suggest that the COG code can be applied to similar research problems in NCT. Results for this study also showed that a concentration of 100 ppm gadolinium in the tumor was most beneficial when using an epithermal neutron beam.

  20. Neutron diffraction and electrical transport studies on magnetic ordering in terbium at high pressures and low temperatures

    DOE PAGES

    Thomas, Sarah A.; Montgomery, Jeffrey M.; Tsoi, Georgiy M.; ...

    2013-06-11

    Neutron diffraction and electrical transport measurements have been carried out on the heavy rare earth metal terbium at high pressures and low temperatures in order to elucidate the onset of ferromagnetic order as a function of pressure. The electrical resistance measurements show a change in slope as the temperature is lowered through the ferromagnetic Curie temperature. The temperature of this ferromagnetic transition decreases from approximately 240 K at ambient pressure at a rate of –16.7 K/GPa up to a pressure of 3.6 GPa, at which point the onset of ferromagnetic order is suppressed. Neutron diffraction measurements as a function ofmore » pressure at temperatures ranging from 90 K to 290 K confirm that the change of slope in the resistance is associated with the ferromagnetic ordering, since this occurs at pressures similar to those determined from the resistance results at these temperatures. Furthermore, a change in ferromagnetic ordering as the pressure is increased above 3.6 GPa is correlated with the phase transition from the ambient hexagonal close packed (hcp) structure to an α-Sm type structure at high pressures.« less

  1. Gadolinium chloride as a contrast agent for imaging wood composite components by magnetic resonance

    Treesearch

    Thomas L. Eberhardt; Chi-Leung So; Andrea Protti; Po-Wah So

    2009-01-01

    Although paramagnetic contrast agents have an established track record in medical uses of magnetic resonance imaging (MRI), only recently has a contrast agent been used for enhancing MRI images of solid wood specimens. Expanding on this concept, wood veneers were treated with a gadolinium-based contrast agent and used in a model system comprising three-ply plywood...

  2. Use of gadolinium chloride as a contrast agent for imaging spruce knots by magnetic resonance

    Treesearch

    Thomas L. Eberhardt; Chi-Leung So; Amy H. Herlihy; Po-Wah So

    2006-01-01

    Treatments of knot-containing spruce wood blocks with a paramagnetic salt, gadolinium (III) chloride, in combination with solvent pretreatments, were evaluated as strategies to enhance the visualization of wood features by magnetic resonance imaging (MRI). Initial experiments with clear wood and excised knot samples showed differences in moisture uptake after...

  3. Workplace testing of the new single sphere neutron spectrometer based on Dysprosium activation foils (Dy-SSS)

    NASA Astrophysics Data System (ADS)

    Bedogni, R.; Gómez-Ros, J. M.; Esposito, A.; Gentile, A.; Chiti, M.; Palacios-Pérez, L.; Angelone, M.; Tana, L.

    2012-08-01

    A photon insensitive passive neutron spectrometer consisting of a single moderating polyethylene sphere with Dysprosium activation foils arranged along three perpendicular axes was designed by CIEMAT and INFN. The device is called Dy-SSS (Dy foil-based Single Sphere Spectrometer). It shows nearly isotropic response in terms of neutron fluence up to 20 MeV. The first prototype, previously calibrated with 14 MeV neutrons, has been recently tested in workplaces having different energy and directional distributions. These are a 2.5 MeV nearly mono-chromatic and mono-directional beam available at the ENEA Frascati Neutron Generator (FNG) and the photo-neutron field produced in a 15 MV Varian CLINAC DHX medical accelerator, located in the Ospedale S. Chiara (Pisa). Both neutron spectra are known through measurements with a Bonner Sphere Spectrometer. In both cases the experimental response of the Dy-SSS agrees with the reference data. Moreover, it is demonstrated that the spectrometric capability of the new device are independent from the directional distribution of the neutron field. This opens the way to a new generation of moderation-based neutron instruments, presenting all advantages of the Bonner sphere spectrometer without the disadvantage of the repeated exposures. This concept is being developed within the NESCOFI@BTF project of INFN (Commissione Scientifica Nazionale 5).

  4. Structural variations in terbium(III) complexes with 1,3-adamantanedicarboxylate and diverse co-ligands

    NASA Astrophysics Data System (ADS)

    Thuéry, Pierre

    2015-07-01

    Terbium nitrate was reacted with 1,3-adamantanedicarboxylic acid (LH2) under solvo-hydrothermal conditions with either N,N-dimethylformamide (DMF) or N,N-dimethylacetamide (DMA) as organic solvents. Hydrolysation of the latter co-solvents resulted in the formation of formate or acetate ions, which are present as co-ligands in the 1D coordination polymer [Tb(L)(HCOO)(H2O)2] (1) and the 2D assembly [Tb(L)(CH3COO)(H2O)] (2). The increase in dimensionality in the latter arises from the higher connectivity provided by acetate versus formate, the L2- ligand being bis-chelating in both cases. The complex [Tb2(L)3(H2O)5][Tb2(L)3(H2O)4]·3H2O (3), another 1D species, crystallizes alongside crystals of 2. Further addition of cucurbit[6]uril (CB6), with DMF as co-solvent, gave the two complexes [Tb2(L)2(CB6)(H2O)6](NO3)2·6H2O (4) and [H2NMe2]2[Tb(L)(HCOO)2]2·CB6·3H2O (5). Complex 4 crystallizes as a 3D framework in which Tb(L)+ chains are connected by tetradentate CB6 molecules, while 5 unites a carboxylate-bridged anionic 2D planar assembly and layers of CB6 molecules with counter-cations held at both portals.

  5. Investigation of energy transfer in terbium doped Y 2SiO5 phosphor particles

    NASA Astrophysics Data System (ADS)

    Salis, M.; Carbonaro, C. M.; Corpino, R.; Anedda, A.; Ricci, P. C.

    2012-07-01

    The kinetics of luminescence of sol-gel synthesized terbium doped Y 2SiO5 (YSO) phosphor particles is investigated in detail with reference to Tb concentration in the 0.001%-10% range. By increasing the dopant concentration, the luminescence profile changes from a blue to a green peaked emission spectrum because of the energy transfer among centers. The inter-center energy transfer mechanism is well accounted for by the Inokuti-Hirayama (IH) kinetic model which is based on a statistical average of inter-center distance dependent decay modes of the donor luminescence. The distribution of the decay modes is implemented from the Förster-Dexter resonance theory of energy transfer by assuming a rate constant for the energy transfer by multipolar interactions between donors and acceptors. However, the experimental results recorded in the low concentration limit show the presence of green emission contributions in the luminescence spectrum which cannot be related to the Tb concentration; for this reason an additional internal energy transfer mechanism, occurring among levels of the same center, is proposed to account for the recorded emission properties. Thus, a new and more exhaustive model which includes both the internal and external energy transfer processes is considered; the proposed model allows a better explanation of the spectroscopic features of Tb related centers in YSO crystals and discloses the critical concentration and the quantum yields of the different energy transfer mechanisms.

  6. Strategies for the preparation of bifunctional gadolinium(III) chelators

    PubMed Central

    Frullano, Luca; Caravan, Peter

    2012-01-01

    The development of gadolinium chelators that can be easily and readily linked to various substrates is of primary importance for the development high relaxation efficiency and/or targeted magnetic resonance imaging (MRI) contrast agents. Over the last 25 years a large number of bifunctional chelators have been prepared. For the most part, these compounds are based on ligands that are already used in clinically approved contrast agents. More recently, new bifunctional chelators have been reported based on complexes that show a more potent relaxation effect, faster complexation kinetics and in some cases simpler synthetic procedures. This review provides an overview of the synthetic strategies used for the preparation of bifunctional chelators for MRI applications. PMID:22375102

  7. SWI enhances vein detection using gadolinium in multiple sclerosis

    PubMed Central

    Mazzoni, Lorenzo N; Moretti, Marco; Grammatico, Matteo; Chiti, Stefano; Massacesi, Luca

    2015-01-01

    Susceptibility weighted imaging (SWI) combined with the FLAIR sequence provides the ability to depict in vivo the perivenous location of inflammatory demyelinating lesions – one of the most specific pathologic features of multiple sclerosis (MS). In addition, in MS white matter (WM) lesions, gadolinium-based contrast media (CM) can increase vein signal loss on SWI. This report focuses on two cases of WM inflammatory lesions enhancing on SWI images after CM injection. In these lesions in fact the CM increased the contrast between the parenchyma and the central vein allowing as well, in one of the two cases, the detection of a vein not visible on the same SWI sequence acquired before CM injection. PMID:25815209

  8. The structural response of gadolinium phosphate to pressure

    DOE PAGES

    Heffernan, Karina M.; Ross, Nancy L.; Spencer, Elinor C.; ...

    2016-06-16

    In this study, accurate elastic constants for gadolinium phosphate (GdPO 4) have been measured by single-crystal high-pressure diffraction methods. The bulk modulus of GdPO 4 determined under hydrostatic conditions, 128.1(8) GPa (K'=5.8(2)), is markedly different from that obtained with GdPO 4 under non-hydrostatic conditions (160(2) GPa), which indicates the importance of shear stresses on the elastic response of this phosphate. Finally, high pressure Raman and diffraction analysis indicate that the PO 4 tetrahedra behave as rigid units in response to pressure and that contraction of the GdPO 4 structure is facilitated by bending/twisting of the Gd–O–P links that result inmore » increased distortion in the GdO 9 polyhedra.« less

  9. Dielectric properties and activation behavior of gadolinium doped nanocrystalline yttrium chromite

    NASA Astrophysics Data System (ADS)

    Sinha, R.; Basu, S.; Meikap, A. K.

    2018-04-01

    Gadolinium doped Yttrium Chromite nanoparticles are synthesized following sol-gel method. The formation of the nanoparticles are confirmed by XRD and TEM measurements. Dielectric permittivity and dielectric loss are estimated within the temperature range 298K to 523K and in the frequency range 20 Hz to 1 MHz. Dielectric permittivity follows the power law ɛ'(f) ∝ Tm. It is observed that the temperature exponent m increases with the decreasing frequency. The temperature variation of resistivity shows that the samples have semiconducting behavior. The activation energy is also measured.

  10. Preparation of 152Gd targets from a small quantity of gadolinium oxide in a pyrochemical reaction

    NASA Astrophysics Data System (ADS)

    Lipski, A. R.

    1995-02-01

    A simple method utilizing small amounts (< 5 mg) of isotopically enriched material for the production of gadolinium targets is discussed. An electrostatically focused e-gun is used in the procedure in which 152Gd 2O 3 powder undergoes reduction-distillation and deposition onto an Fe foil.

  11. High Relaxivity Gadolinium Hydroxypyridonate-Viral Capsid Conjugates: Nano-sized MRI Contrast Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meux, Susan C.; Datta, Ankona; Hooker, Jacob M.

    2007-08-29

    High relaxivity macromolecular contrast agents based on the conjugation of gadolinium chelates to the interior and exterior surfaces of MS2 viral capsids are assessed. The proton nuclear magnetic relaxation dispersion (NMRD) profiles of the conjugates show up to a five-fold increase in relaxivity, leading to a peak relaxivity (per Gd{sup 3+} ion) of 41.6 mM{sup -1}s{sup -1} at 30 MHz for the internally modified capsids. Modification of the exterior was achieved through conjugation to flexible lysines, while internal modification was accomplished by conjugation to relatively rigid tyrosines. Higher relaxivities were obtained for the internally modified capsids, showing that (1) theremore » is facile diffusion of water to the interior of capsids and (2) the rigidity of the linker attaching the complex to the macromolecule is important for obtaining high relaxivity enhancements. The viral capsid conjugated gadolinium hydroxypyridonate complexes appear to possess two inner-sphere water molecules (q = 2) and the NMRD fittings highlight the differences in the local motion for the internal ({tau}{sub RI} = 440 ps) and external ({tau}{sub RI} = 310 ps) conjugates. These results indicate that there are significant advantages of using the internal surface of the capsids for contrast agent attachment, leaving the exterior surface available for the installation of tissue targeting groups.« less

  12. Corrosion resistance of 0Kh18N10T steel in gadolinium nitrate solutions in the liquid regulation of the reactivity of nuclear reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganzha, V.D.; Konoplev, K.A.; Mashchetov, V.P.

    1986-03-01

    This study was carried out in connection with the preparation of the design for the PIK research reactor. The corrosion resistance of 0Kh18N10T steel in gadolinium nitrate solutions was tested in laboratory, ampule, and loop corrosion tests. At all stages of the tests, the authors investigated the effect produced on the corrosion processes by factors related to the technology of preparation of the equipment (mechanical working of the surfaces, welding, sensitizing, annealing, stressed state of the material, cracks, etc.). Ampule tests were conducted in order to determine the effect produced by reactor radiation and shutdown regimes on the corrosion resistancemore » of the steel. Special ampules made of 0Kh18N10T steel were filled with gadolinium nitrate solutions of various concentrations, sealed, and irradiated for a long period in the core of the VVR-M reactor at a temperature of 20-50 degrees C. The results of the tests are shown. The investigations showed that the corrosion of 0Kh18N10T steel in solutions of gadolinium nitrate is uniform, regardless of the state of the surface, the concentration of gadolinium nitrate, the duration of the tests, the action of the reactor radiation under static and dynamic conditions, and the presence of mechanical stresses.« less

  13. A novel cryogenic magnetic refrigerant metal-organic framework based on 1D gadolinium(III) chain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Qun; Li, Peng-Fei; Zou, Zhi-Ming, E-mail: 2014005@glut.edu.cn

    2017-02-15

    A metal-organic framework (MOF) based on gadolinium ion (Gd{sup 3+}) and tricarboxylate ligand, [Gd(BTPCA)(H{sub 2}O)]·2DMF·3H{sub 2}O (Gd-BTPCA) (H{sub 3}BTPCA =1,1′,1′-(benzene-1,3,5-triyl)tripiperidine-4-carboxylic acid; DMF=dimethylformamide), was synthesized and structurally characterized. The adjacent Gd{sup 3+} ions are intraconnected by the carboxylate groups of the BTPCA{sup 3-} ligands to form a 1D Gd{sup 3+} ion chain. The 1D Gd{sup 3+} ion chains are interconnected by the BTPCA{sup 3-} ligands, giving rise to a 3D framework with 1D open channel. The magnetic studies indicate that Gd-BTPCA exhibits weak ferromagnetic interactions, and acts as a cryogenic magnetic refrigerant having the magnetic entropy change (−ΔS{sub m}) of 20.40more » J kg{sup −1} K{sup −1} for ΔH =7 T at 3 K. - Graphical abstract: A 1D gadolinium(III) chains-based metal-organic framework performed ferromagnetic coupling on the magnetic property. Magnetic investigation reveals that Gd-BTPCA exhibits the entropy change (−ΔS{sub m}) of 20.40 J kg{sup −1} K{sup −1} for ΔH =7 T at 3 K. - Highlights: • The MOF based on gadolinium ion and tricarboxylate ligand was synthesized. • This MOF is connected with 1D Gd{sup 3+} ions chain and the carboxylate groups of BTPCA{sup 3-} ligands. • The magnetic studies indicate that the MOF exhibits the weak ferromagnetic interactions. • Magnetic investigation reveals that the MOF exhibits the high entropy change.« less

  14. Influence of acquired obesity on coronary vessel wall late gadolinium enhancement in discordant monozygote twins.

    PubMed

    Makowski, Marcus R; Jansen, Christian H P; Ebersberger, Ullrich; Schaeffter, Tobias; Razavi, Reza; Mangino, Massimo; Spector, Tim D; Botnar, Rene M; Greil, Gerald F

    2017-11-01

    The aim of this study was to investigate the impact of BMI on late gadolinium enhancement (LGE) of the coronary artery wall in identical monozygous twins discordant for BMI. Coronary LGE represents a useful parameter for the detection and quantification of atherosclerotic coronary vessel wall disease. Thirteen monozygote female twin pairs (n = 26) with significantly different BMIs (>1.6 kg/m2) were recruited out of >10,000 twin pairs (TwinsUK Registry). A coronary 3D-T2prep-TFE MR angiogram and 3D-IR-TFE vessel wall scan were performed prior to and following the administration of 0.2 mmol/kg of Gd-DTPA on a 1.5 T MR scanner. The number of enhancing coronary segments and contrast to noise ratios (CNRs) of the coronary wall were quantified. An increase in BMI was associated with an increased number of enhancing coronary segments (5.3 ± 1.5 vs. 3.5 ± 1.6, p < 0.0001) and increased coronary wall enhancement (6.1 ± 1.1 vs. 4.8 ± 0.9, p = 0.0027) compared to matched twins with lower BMI. This study in monozygous twins indicates that acquired factors predisposing to obesity, including lifestyle and environmental factors, result in increased LGE of the coronary arteries, potentially reflecting an increase in coronary atherosclerosis in this female study population. • BMI-discordant twins allow the investigation of the influence of lifestyle factors independent from genetic confounders. • Only thirteen obesity-discordant twins were identified underlining the strong genetic component of BMI. • In female twins, a BMI increase is associated with increased coronary late gadolinium enhancement. • Increased late gadolinium enhancement in the coronary vessel wall potentially reflects increased atherosclerosis.

  15. Compact All-Fiber Optical Faraday Components Using 65-wt%-Terbium-Doped Fiber with a Record Verdet Constant of -32 rad/(Tm)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, L.; Jiang, S.; Maricante, J.R.

    2010-06-04

    A compact all-fiber Faraday isolator and a Faraday mirror are demonstrated. At the core of each of these components is an all-fiber Faraday rotator made of a 4-cm-long, 65-wt%-terbium–doped silicate fiber. The effective Verdet constant of the terbium-doped fiber is measured to be –32 rad/(Tm), which is 27 × larger than that of silica fiber. This effective Verdet constant is the largest value measured to date in any fiber and is 83% of the Verdet constant of commercially available crystal used in bulk optics–based isolators. Combining the all-fiber Faraday rotator with fiber polarizers results in a fully fusion spliced all-fibermore » isolator whose isolation is measured to be 19 dB. Combining the all-fiber Faraday rotator with a fiber Bragg grating results in an all-fiber Faraday mirror that rotates the polarization state of the reflected light by 88 ± 4°.« less

  16. Experimental and theoretical approach on the optical properties of zinc borotellurite glass doped with dysprosium oxide

    NASA Astrophysics Data System (ADS)

    Halimah, M. K.; Ami Hazlin, M. N.; Muhammad, F. D.

    2018-04-01

    A series of glass samples with chemical formula {[(TeO2)0.7(B2O3)0.3]0.7(ZnO)0.3}1 - x(Dy2O3)x where x = 0.01, 0.02, 0.03, 0.04 and 0.05 M fraction were synthesized through conventional melt-quenching method. The most common way to fabricate a glass material is by fusion of two or more component oxides followed by their quenching. This technique is known as melt-quenching technique. Kaur et al. (2016) [1] highlighted that the melt-quenching method able to enhance the mechanical properties like hardness and flexural strength of the material. The nature of the glass systems is proven to be amorphous based on the XRD pattern. The FTIR spectra of the glass systems confirm the existence of five bands which are assigned for the BO4, BO3, TeO4 and TeO3 vibrational groups. The density of the glass systems is increased with the addition of Dy2O3 while the molar volume is found to be inversely proportional to the density of the proposed glass. The optical properties of the glasses are determined through the absorption spectra obtained from the UV-VIS spectrophotometer. From the absorption spectra, the indirect and direct optical band gaps and the Urbach energy are found to be inversely proportional to each other. As the molar fraction of the Dy2O3 increased, the optical band gaps are observed to increase as opposed to the Urbach energy. For this glass system, the values of refractive index, electronic polarizability, oxide ion polarizability and the optical basicity are found to decrease as the addition of the dysprosium oxide is increased. From the emission spectra, two intense blue and yellow emission bands are observed, which correspond to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions of Dy3 + ions respectively. The CIE chromaticity coordinates of the zinc borotellurite glass systems are found to be located in the white light region. Generation of white light The generation of the white light can be achieved by using two emission bands which comprise of the yellow

  17. Synthesis of samarium doped gadolinium oxide nanorods, its spectroscopic and physical properties

    NASA Astrophysics Data System (ADS)

    Boopathi, G.; Gokul Raj, S.; Ramesh Kumar, G.; Mohan, R.; Mohan, S.

    2018-06-01

    One-dimensional samarium doped gadolinium oxide [Sm:Gd2O3] nanorods have been synthesized successfully through co-precipitation technique in aqueous solution. The as-synthesized and calcined products were characterized by using powder X-ray diffraction pattern, Fourier transform Raman spectroscopy, thermogravimetric/differential thermal analysis, scanning electron microscopy with energy-dispersive X-ray analysis, transmission electron microscopy, Fourier transform infrared spectroscopy, Ultraviolet-Visible spectrometry, photoluminescence spectrophotometer and X-ray photoelectron spectroscopy techniques. The obtained results are discussed in detailed manner.

  18. Investigation of suspected Guillain-Barre syndrome in childhood: what is the role for gadolinium enhanced magnetic resonance imaging of the spine?

    PubMed

    Smith, Nicholas; Pereira, John; Grattan-Smith, Padraic

    2014-10-01

    To review the role of gadolinium-enhanced magnetic resonance imaging of the spine in the diagnosis of paediatric Guillain-Barre syndrome and compare it with nerve conduction studies and cerebrospinal fluid analysis. A retrospective review of investigations undertaken in children admitted to our institution with acute Guillain-Barre syndrome over a 10-year period was performed. Seven of eight children (88%) displayed post-gadolinium nerve root enhancement consistent with Guillain-Barre syndrome. This compared with supportive nerve conduction studies in 21/24 children (88%) and cerebrospinal fluid protein analysis consistent with the diagnosis in 16/20 children (80%). Nerve conduction studies are the recognised 'gold standard' technique for confirming a clinical diagnosis of Guillain-Barre syndrome. In this study, a high positive rate was demonstrated. While more experience is necessary, this study and the literature support gadolinium enhanced magnetic resonance imaging of the spine as a valuable, although not necessarily superior, investigation in the diagnosis of Guillain-Barre syndrome. It may be of particular benefit when specialist neurophysiology expertise is unavailable. © 2010 The Authors. Journal compilation © 2010 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  19. Clinical application of a gadolinium-based capsule as an MRI contrast agent in slow transit constipation diagnostics.

    PubMed

    Zhi, M; Zhou, Z; Chen, H; Xiong, F; Huang, J; He, H; Zhang, M; Su, M; Gao, X; Hu, P

    2017-06-01

    As a traditional method for the assessment of colon dynamics, radio-opaque markers (ROMs) are limited in clinical use because of their ionizing radiation. We compared the accuracy and applicability of gadolinium-based capsules with ROMs in the measurement of colon dynamics in healthy controls and slow transit constipation (STC) patients. Seven patients with STC and nine healthy controls under a normal diet orally consumed ROMs and gadolinium-based capsules simultaneously. All subjects underwent X-ray and magnetic resonance imaging (MRI). Healthy control images were acquired at 12, 24, and 48 h, and STC patient images were acquired at 24, 48, and 72 h. The scores based on the position of the labeling capsules and ROMs in the colon and the colon transit times (CTTs) in the two groups were compared. The CTTs obtained via the ROMs were 34.7±17.4 and 67.3±6.5 h in the healthy controls and STC patients, respectively (P<.05). The CTTs obtained via MRI were 30.9±15.9 and 74.1±7.2 h in the healthy controls and STC patients, respectively (P<.05). The CTTs of the STC patients were significantly longer than the healthy controls. The correlation (r s ) between the scores based on the position of the labeling capsule and ROMs in the healthy group and the STC patients was .880 (P<.05) and .889 (P<.05), respectively. As a MRI contrast label, gadolinium-based capsules exhibit results comparable to ROMs in colon motility measurements. © 2017 John Wiley & Sons Ltd.

  20. Evaluation of Novel 64Cu-Labeled Theranostic Gadolinium-Based Nanoprobes in HepG2 Tumor-Bearing Nude Mice

    NASA Astrophysics Data System (ADS)

    Hu, Pengcheng; Cheng, Dengfeng; Huang, Tao; Banizs, Anna B.; Xiao, Jie; Liu, Guobing; Chen, Quan; Wang, Yuenan; He, Jiang; Shi, Hongcheng

    2017-09-01

    Radiation therapy of liver cancer is limited by low tolerance of the liver to radiation. Radiosensitizers can effectively reduce the required radiation dose. AGuIX nanoparticles are small, multifunctional gadolinium-based nanoparticles that can carry radioisotopes or fluorescent markers for single-photon emission computed tomography (SPECT), positron emission tomography (PET), fluorescence imaging, and even multimodality imaging. In addition, due to the high atomic number of gadolinium, it can also serve as a tumor radiation sensitizer. It is critical to define the biodistribution and pharmacokinetics of these gadolinium-based nanoparticles to quantitate the magnitude and duration of their retention within the tumor microenvironment during radiotherapy. Therefore, in this study, we successfully labeled AGuIX with 64Cu through the convenient built-in chelator. The biodistribution studies indicated that the radiotracer 64Cu-AGuIX accumulates to high levels in the HepG2 xenograft of nude mice, suggesting that it would be a potential theranostic nanoprobe for image-guided radiotherapy in HCC. We also used a transmission electron microscope to confirm AGuIX uptake in the HepG2 cells. In radiation therapy studies, a decrease in 18F-FDG uptake was observed in the xenografts of the nude mice irradiated with AGuIX, which was injected 1 h before. These results provide proof-of-concept that AGuIX can be used as a theranostic radiosensitizer for PET imaging to guide radiotherapy for liver cancer.

  1. Evaluation of Novel 64Cu-Labeled Theranostic Gadolinium-Based Nanoprobes in HepG2 Tumor-Bearing Nude Mice.

    PubMed

    Hu, Pengcheng; Cheng, Dengfeng; Huang, Tao; Banizs, Anna B; Xiao, Jie; Liu, Guobing; Chen, Quan; Wang, Yuenan; He, Jiang; Shi, Hongcheng

    2017-09-06

    Radiation therapy of liver cancer is limited by low tolerance of the liver to radiation. Radiosensitizers can effectively reduce the required radiation dose. AGuIX nanoparticles are small, multifunctional gadolinium-based nanoparticles that can carry radioisotopes or fluorescent markers for single-photon emission computed tomography (SPECT), positron emission tomography (PET), fluorescence imaging, and even multimodality imaging. In addition, due to the high atomic number of gadolinium, it can also serve as a tumor radiation sensitizer. It is critical to define the biodistribution and pharmacokinetics of these gadolinium-based nanoparticles to quantitate the magnitude and duration of their retention within the tumor microenvironment during radiotherapy. Therefore, in this study, we successfully labeled AGuIX with 64 Cu through the convenient built-in chelator. The biodistribution studies indicated that the radiotracer 64 Cu-AGuIX accumulates to high levels in the HepG2 xenograft of nude mice, suggesting that it would be a potential theranostic nanoprobe for image-guided radiotherapy in HCC. We also used a transmission electron microscope to confirm AGuIX uptake in the HepG2 cells. In radiation therapy studies, a decrease in 18 F-FDG uptake was observed in the xenografts of the nude mice irradiated with AGuIX, which was injected 1 h before. These results provide proof-of-concept that AGuIX can be used as a theranostic radiosensitizer for PET imaging to guide radiotherapy for liver cancer.

  2. Relaxivity enhancement of aquated Tris(β-diketonate)gadolinium(III) chelates by confinement within ultrashort single-walled carbon nanotubes.

    PubMed

    Law, Justin J; Guven, Adem; Wilson, Lon J

    2014-01-01

    Ultrashort single-walled carbon nanotubes loaded with gadolinium ions (gadonanotubes) have been previously shown to exhibit extremely high T1 -weighted relaxivities (>100 mm(-1) s(-1) ). To further examine the effect of nanoconfinement on the relaxivity of gadolinium-based contrast agents for magnetic resonance imaging, a series of ultrashort single-walled carbon nanotube (US-tube) materials internally loaded with gadolinium chelates have been prepared and studied. US-tubes were loaded with Gd(acac)3  · 2H2 O, Gd(hfac)3  · 2H2 O, and Gd(thd)3 (acac = acetylacetone, hfac = hexafluoroacetylacetone, thd = tetramethylheptanedione). The longitudinal relaxivities of the prepared materials determined at 25°C in a 1.5 T field were 103 mm(-1) s(-1) for Gd(acac)3  · 2H2 O@US-tubes, 105 mm(-1) s(-1) for Gd(hfac)3  · 2H2 O@US-tubes and 26 mm(-1) s(-1) for Gd(thd)3 @US-tubes. Compared with the relaxivities obtained for the unloaded chelates (<10 mm(-1) s(-1) ) as well as accounting for the T1 reduction observed for the empty US-tubes, the boost in relaxivity for chelate-loaded US-tubes is attributed to confinement within the nanotube and depends on the number of coordinated water molecules. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Thermophysical Property Measurements of Liquid Gadolinium by Containerless Methods

    NASA Astrophysics Data System (ADS)

    Ishikawa, T.; Okada, J. T.; Paradis, P.-F.; Watanabe, Y.

    2010-02-01

    Thermophysical properties of liquid gadolinium were measured using non-contact diagnostic techniques with an electrostatic levitator. Over the 1585 K to 1920 K temperature range, the density can be expressed as ρ( T) = 7.41 × 103 - 0.46 ( T - T m) (kg · m-3) where T m = 1585 K, yielding a volume expansion coefficient of 6.2 × 10-5 K-1. In addition, the surface tension data can be fitted as γ( T) = 8.22 × 102 - 0.097( T - T m)(10-3 N · m-1) over the 1613 K to 1803 K span and the viscosity as η( T) = 1.7exp[1.4 × 104/( RT)](10-3 Pa · s) over the same temperature range.

  4. Complex imaging features of accidental cerebral intraventricular gadolinium administration.

    PubMed

    Nayak, Nita B; Huang, Jimmy C; Hathout, Gasser M; Shaba, Wisam; El-Saden, Suzie M

    2013-05-01

    Gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA) is a contrast agent commonly used for enhancing MRI. In this paper, the authors report on 2 cases of postoperative inadvertent administration of Gd-DTPA directly into a ventriculostomy tubing side port that was mistaken for intravenous tubing. Both cases demonstrated a low signal on MRI throughout the ventricular system and dependent portions of the subarachnoid spaces, which was originally believed to be CSF with areas of T1 shortening in the nondependent portions of the subarachnoid spaces, and misinterpreted as basal leptomeningeal enhancement and meningitis. The authors propose that the appearance of profound T1 hypointensity within the ventricles and diffuse susceptibility artifact along the ependyma is pathognomonic of intraventricular Gd-DTPA and should be recognized.

  5. Magnetic blocking in a linear iron(I) complex.

    PubMed

    Zadrozny, Joseph M; Xiao, Dianne J; Atanasov, Mihail; Long, Gary J; Grandjean, Fernande; Neese, Frank; Long, Jeffrey R

    2013-07-01

    Single-molecule magnets that contain one spin centre may represent the smallest possible unit for spin-based computational devices. Such applications, however, require the realization of molecules with a substantial energy barrier for spin inversion, achieved through a large axial magnetic anisotropy. Recently, significant progress has been made in this regard by using lanthanide centres such as terbium(III) and dysprosium(III), whose anisotropy can lead to extremely high relaxation barriers. We contend that similar effects should be achievable with transition metals by maintaining a low coordination number to restrict the magnitude of the d-orbital ligand-field splitting energy (which tends to hinder the development of large anisotropies). Herein we report the first two-coordinate complex of iron(I), [Fe(C(SiMe3)3)2](-), for which alternating current magnetic susceptibility measurements reveal slow magnetic relaxation below 29 K in a zero applied direct-current field. This S =  complex exhibits an effective spin-reversal barrier of Ueff = 226(4) cm(-1), the largest yet observed for a single-molecule magnet based on a transition metal, and displays magnetic blocking below 4.5 K.

  6. Magnetostrictive Vibration Damper and Energy Harvester for Rotating Machinery

    NASA Technical Reports Server (NTRS)

    Deng, Zhangxian; Asnani, Vivake M.; Dapino, Marcelo J.

    2015-01-01

    Vibrations generated by machine driveline components can cause excessive noise and structural damage. Magnetostrictive materials, including Galfenol (iron-gallium alloys) and Terfenol-D (terbium-iron-dysprosium alloys), are able to convert mechanical energy to magnetic energy. A magnetostrictive vibration ring is proposed, which generates electrical energy and dampens vibration, when installed in a machine driveline. A 2D axisymmetric finite element (FE) model incorporating magnetic, mechanical, and electrical dynamics is constructed in COMSOL Multiphysics. Based on the model, a parametric study considering magnetostrictive material geometry, pickup coil size, bias magnet strength, flux path design, and electrical load is conducted to maximize loss factor and average electrical output power. By connecting various resistive loads to the pickup coil, the maximum loss factors for Galfenol and Terfenol-D due to electrical energy loss are identified as 0.14 and 0.34, respectively. The maximum average electrical output power for Galfenol and Terfenol-D is 0.21 W and 0.58 W, respectively. The loss factors for Galfenol and Terfenol-D are increased to 0.59 and 1.83, respectively, by using an L-C resonant circuit.

  7. Magnetic resonance imaging with gadolinium arthrography to assess acetabular cartilage delamination.

    PubMed

    Zaragoza, Edward; Lattanzio, Pierre-Jean; Beaule, Paul E

    2009-01-01

    Recent reports have demonstrated magnetic resonance imaging (MRI) as a promising technique in detecting articular cartilage lesions of the hip joint. The purpose of our study was to evaluate the diagnostic performance of MRI with gadolinium arthrography in detecting acetabular cartilage delamination in patients with pre-arthritic hip pain. 46 patients (48 hips) underwent surgical dislocation of the hip. Mean age was 38.8 (range 17-56). There were 26 males and 20 females. All patients had Magnetic Resonance Imaging with gadolinium arthrography (MRA) before undergoing open hip surgery where the acetabular cartilage was inspected. Acetabular cartilage delamination on MRA was seen on sagittal images as a linear intra-articular filling defect of low signal intensity >1mm in thickness on T1 weighted images and surrounded by contrast. On MRA all hips had a labral tear confirmed at surgery. At surgery 30 hips had evidence of acetabular cartilage delamination, 4 hips had ulceration and 14 had no articular cartilage damage. The majority of labral tears and cartilage damage were located in the antero-superior quadrant. The sensitivity and specificity of MRA detection of cartilage delamination confirmed at surgery were 97% and 84%, respectively. The positive and negative predictive values of the MRA finding were 90% and 94%, respectively. The presence of the acetabular cartilage delamination represents an early stage of articular cartilage degeneration. When evaluating a young adult with hip pain, labral tears in association with cartilage delamination should be considered. MRA represents an effective diagnostic tool.

  8. Liver acquisition with acceleration volume acquisition gadolinium-enhanced magnetic resonance combined with T2 sequences in the diagnosis of local recurrence of rectal cancer.

    PubMed

    Cao, Wuteng; Li, Fangqian; Gong, Jiaying; Liu, Dechao; Deng, Yanhong; Kang, Liang; Zhou, Zhiyang

    2016-11-22

    To investigate the efficacy of liver acquisition with acceleration volume acquisition (LAVA) gadolinium-enhanced magnetic resonance (MR) sequences and to assess its added accuracy in diagnosing local recurrence (LR) of rectal cancer with conventional T2-weighted fast spin echo (FSE) sequences. Pelvic MRI, including T2-weighted FSE sequences, gadolinium-enhanced sequences of LAVA and T1-weighted FSE with fat suppression, was performed on 225 patients with postoperative rectal cancer. Two readers evaluated the presence of LR according to "T2" (T2 sequences only), "T2 + LAVA-Gad" (LAVA and T2 imaging), and "T2 + T1-fs-Gad" (T1 fat suppression-enhanced sequence with T2 images). To evaluate diagnostic efficiency, imaging quality with LAVA and T1-fs-Gad by subjective scores and the signal intensity (SI) ratio. In the result, the SI ratio of LAVA was significantly higher than that of T1-fs-Gad (p = 0.0001). The diagnostic efficiency of "T2 + LAVA-Gad" was better than that of "T2 + T1-fs-Gad" (p = 0.0016 for Reader 1, p = 0.0001 for Reader 2) and T2 imaging only (p = 0.0001 for Reader 1; p = 0.0001 for Reader 2). Therefore, LAVA gadolinium-enhanced MR increases the accuracy of diagnosis of LR from rectal cancer and could replace conventional T1 gadolinium-enhanced sequences in the postoperative pelvic follow-up of rectal cancer.

  9. Amine-reactive forms of a luminescent diethylenetriaminepentaacetic acid chelate of terbium and europium: attachment to DNA and energy transfer measurements.

    PubMed

    Li, M; Selvin, P R

    1997-01-01

    An isothiocyanate form of a lanthanide chelate which is highly luminescent when bound to terbium or europium has been synthesized. The chelate consists of diethylenetriaminepentaacetic acid (DTPA) covalently joined to a chromophore, 7-amino-4-methyl-2(1H)-quinolinone (cs124), and to L-p-aminophenylalanine, in which the aromatic amine was further converted to an isothiocyanate group. Ethylenediamine was also used in place of aminophenylalanine, but the isothiocyanate formed from the aliphatic amine was significantly less reactive. Site-specific attachments to triglycine and to the 5' ends of amine-modified DNA oligomers have been made. In addition, as an alternative method of coupling to macromolecules, DTPA anhydride-cs124 can be used to react specifically with a 5' amine group on base-deprotected synthetic DNA oligomers. Synthesis and purification is relatively straightforward in both cases, and luminescent properties are favorable for several applications, including as nonisotopic labels, as long-lifetime alternatives to fluorophores in imaging and diagnostics and particularly as donors in luminescence resonance energy transfer. Energy transfer measurements are consistent with previously reported measurements using different attachment mechanisms.

  10. A multi-responsive luminescent sensor based on a super-stable sandwich-type terbium(iii)-organic framework.

    PubMed

    Wen, Guo-Xuan; Han, Min-Le; Wu, Xue-Qian; Wu, Ya-Pan; Dong, Wen-Wen; Zhao, Jun; Li, Dong-Sheng; Ma, Lu-Fang

    2016-10-04

    A super-stable multifunctional terbium(iii)-organic framework, namely {[Tb(TATAB) (H 2 O) 2 ]·NMP·H 2 O} n (Tb-MOF, H 3 TATAB = 4,4',4''-s-triazine-1,3,5-triyltri-m-aminobenzoic acid, NMP = N-methyl-2-pyrrolidone) was synthesized. Tb-MOF exhibits a 2D sql structure with binuclear [Tb 2 (COO) 4 (H 2 O) 4 ] 2+ units as 4-connected nodes, and free water and NMP molecules are inserted between 2D layers through hydrogen-bonding interactions, forming a sandwich-type architecture. Observably, such a framework remains intact in a remarkable variety of environments such as common solvents and aqueous solutions with metal cations and inorganic anions, as well as with a pH ranging from 1 to 13. In particular, Tb-MOF can not only detect small organic molecules, metal cations and inorganic anions with high sensitivity and high selectivity, but also can accurately detect explosive 2-nitrophenol, 3-nitrophenol, 4-nitrophenol and 2,4,6-trinitrophenol in water. Its luminescence quenching response to Fe 3+ and Cr 2 O 7 2- ions can be explained in terms of the competitive absorption mechanism. In addition, the luminescence intensity of Tb-MOF is strongly correlated with the pH value in a pH range from 1 to 13. Thus, this material can be potentially used as a multi-responsive luminescent sensor.

  11. Gadolinium Enhanced MR Coronary Vessel Wall Imaging at 3.0 Tesla.

    PubMed

    Kelle, Sebastian; Schlendorf, Kelly; Hirsch, Glenn A; Gerstenblith, Gary; Fleck, Eckart; Weiss, Robert G; Stuber, Matthias

    2010-10-11

    Purpose. We evaluated the influence of the time between low-dose gadolinium (Gd) contrast administration and coronary vessel wall enhancement (LGE) detected by 3T magnetic resonance imaging (MRI) in healthy subjects and patients with coronary artery disease (CAD). Materials and Methods. Four healthy subjects (4 men, mean age 29 ± 3 years and eleven CAD patients (6 women, mean age 61 ± 10 years) were studied on a commercial 3.0 Tesla (T) whole-body MR imaging system (Achieva 3.0 T; Philips, Best, The Netherlands). T1-weighted inversion-recovery coronary magnetic resonance imaging (MRI) was repeated up to 75 minutes after administration of low-dose Gadolinium (Gd) (0.1 mmol/kg Gd-DTPA). Results. LGE was seen in none of the healthy subjects, however in all of the CAD patients. In CAD patients, fifty-six of 62 (90.3%) segments showed LGE of the coronary artery vessel wall at time-interval 1 after contrast. At time-interval 2, 34 of 42 (81.0%) and at time-interval 3, 29 of 39 evaluable segments (74.4%) were enhanced. Conclusion. In this work, we demonstrate LGE of the coronary artery vessel wall using 3.0 T MRI after a single, low-dose Gd contrast injection in CAD patients but not in healthy subjects. In the majority of the evaluated coronary segments in CAD patients, LGE of the coronary vessel wall was already detectable 30-45 minutes after administration of the contrast agent.

  12. Effects of gadolinium-based MRI contrast agents on liver tissue.

    PubMed

    Mercantepe, Tolga; Tümkaya, Levent; Çeliker, Fatma Beyazal; Topal Suzan, Zehra; Çinar, Seda; Akyildiz, Kerimali; Mercantepe, Filiz; Yilmaz, Adnan

    2018-04-01

    MRI with contrast is often used clinically. However, recent studies have reported a high accumulation of gadolinium-based contrast agents (GBCAs) in kidney, liver, and spleen tissues in several mouse models. To compare the effects on liver tissue of gadolinium-based MRI contrast agents in the light of biochemical and histopathological evaluation. Institutional Review Board (IRB)-approved controlled longitudinal study. In all, 32 male Sprague-Dawley rats were divided into a healthy control group subjected to no procedure (Group 1), a sham group (Group 2), a gadodiamide group (Group 3), and a gadoteric acid group (Group 4). Not applicable. Liver tissues removed at the end of the fifth week and evaluated pathologically (scored Knodell's histological activity index [HAI] method by two histopathologists) immunohistochemical (caspase-3 and biochemical tests (AST, ALT, TAS, TOS, and OSI method by Erel et al) were obtained. Differences between groups were analyzed using the nonparametric Kruskal-Wallis test followed by the Tamhane test, and one-way analysis of variance (ANOVA) followed by Turkey's HSD test. An increase was observed in histological activity scores in sections from rats administered gadodiamide and gadoteric acid, and in caspase-3, AST and ALT values (P < 0.05). In contrast, we determined no change in TOS (P = 0.568 and P = 0.094, respectively), TAS (P = 0.151 and P = 0.055, respectively), or OSI (P = 0.949 and P = 0.494, respectively) values. These data suggest that gadodiamide and gadoteric acid trigger hepatocellular necrosis and apoptosis by causing damage in hepatocytes, although no change occurs in total antioxidant and antioxidant capacity. 1 Technical Efficacy: Stage 4 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.

  13. Bi-atrial fibrosis detected using three-dimensional late gadolinium enhancement magnetic resonance imaging in a patient with cardiac sarcoidosis.

    PubMed

    Spence, Stewart; Pena, Elena; Thornhill, Rebecca E; Nery, Pablo B; Birnie, David H

    2018-05-01

    Presented is the case of a 62-year old male with a history of sarcoidosis and sinus node dysfunction, who underwent late gadolinium enhancement magnetic resonance imaging, which demonstrated left ventricular hyperenhancement and bi-atrial fibrosis.

  14. Evaluating the potential of chelation therapy to prevent and treat gadolinium deposition from MRI contrast agents

    DOE PAGES

    Rees, Julian A.; Deblonde, Gauthier J. -P.; An, Dahlia D.; ...

    2018-03-13

    Several MRI contrast agent clinical formulations are now known to leave deposits of the heavy metal gadolinium in the brain, bones, and other organs of patients. This persistent biological accumulation of gadolinium has been recently recognized as a deleterious outcome in patients administered Gd-based contrast agents (GBCAs) for MRI, prompting the European Medicines Agency to recommend discontinuing the use of over half of the GBCAs currently approved for clinical applications. Here, to address this problem, we find that the orally-available metal decorporation agent 3,4,3-LI(1,2-HOPO) demonstrates superior efficacy at chelating and removing Gd from the body compared to diethylenetriaminepentaacetic acid, amore » ligand commonly used in the United States in the GBCA Gadopentetate (Magnevist). Using the radiotracer 153Gd to obtain precise biodistribution data, the results herein, supported by speciation simulations, suggest that the prophylactic or post-hoc therapeutic use of 3,4,3-LI(1,2-HOPO) may provide a means to mitigate Gd retention in patients requiring contrast-enhanced MRI.« less

  15. Evaluating the potential of chelation therapy to prevent and treat gadolinium deposition from MRI contrast agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rees, Julian A.; Deblonde, Gauthier J. -P.; An, Dahlia D.

    Several MRI contrast agent clinical formulations are now known to leave deposits of the heavy metal gadolinium in the brain, bones, and other organs of patients. This persistent biological accumulation of gadolinium has been recently recognized as a deleterious outcome in patients administered Gd-based contrast agents (GBCAs) for MRI, prompting the European Medicines Agency to recommend discontinuing the use of over half of the GBCAs currently approved for clinical applications. Here, to address this problem, we find that the orally-available metal decorporation agent 3,4,3-LI(1,2-HOPO) demonstrates superior efficacy at chelating and removing Gd from the body compared to diethylenetriaminepentaacetic acid, amore » ligand commonly used in the United States in the GBCA Gadopentetate (Magnevist). Using the radiotracer 153Gd to obtain precise biodistribution data, the results herein, supported by speciation simulations, suggest that the prophylactic or post-hoc therapeutic use of 3,4,3-LI(1,2-HOPO) may provide a means to mitigate Gd retention in patients requiring contrast-enhanced MRI.« less

  16. [Combined use of contrast media containing iodine and gadolinium for imaging and intervention : A hitherto widely ignored topic in radiological practice].

    PubMed

    Golder, W

    2012-02-01

    The synchronous use of chemically different contrast media in the same body compartment is a challenge for the radiologist, whether it is scheduled or unexpected. However, to inject contrast media containing iodine and gadolinium at the same time can be a prerequisite for the examination of several organs or organ systems. Unlike other topics of contrast-enhanced imaging procedures, the difficulties encountered with double contrast injections have been widely ignored in the literature. In the absence of reliable data from experimental and clinical studies the radiologist is dependent on case reports, information provided by the contrast media manufacturers, personal communications, mostly scanty personal experiences and a skilful time management, in order to overcome the situation. Only the combination of X-ray, computed tomography and magnetic resonance arthrography can be performed without another thought. However, the more or less synchronous vascular application of contrast media containing iodine and gadolinium requires vigilance. The more seriously ill the patient is, the more caution is advised even if the decision on the combined administration has to be reached urgently. The following overview gives a description of the properties of contrast media containing iodine and gadolinium as far as interactions following simultaneous administration are concerned. Subsequently, the clinically relevant situations and constellations are outlined and analyzed.

  17. Rapid colorimetric sensing of gadolinium by EGCG-derived AgNPs: the development of a nanohybrid bioimaging probe.

    PubMed

    Singh, Rohit Kumar; Mishra, Sourav; Jena, Satyapriya; Panigrahi, Bijayananda; Das, Bhaskar; Jayabalan, Rasu; Parhi, Pankaj Kumar; Mandal, Dindyal

    2018-04-17

    Polyphenol functionalized silver nanoparticles (AgNPs) have been developed and demonstrated as colorimetric sensors for the selective detection of gadolinium. The newly obtained AgNP-Gd3+ conjugates exhibit high aqueous dispersibility and excitation dependent fluorescence emission. The conjugates offer multicolor bioimaging potential owing to their excellent luminescence properties.

  18. A first principles kinetic Monte Carlo investigation of the adsorption and mobility of gadolinium on the (100) surface of tungsten

    NASA Astrophysics Data System (ADS)

    Samin, Adib J.; Zhang, Jinsuo

    2017-05-01

    An accurate characterization of lanthanide adsorption and mobility on tungsten surfaces is important for pyroprocessing. In the present study, the adsorption and diffusion of gadolinium on the (100) surface of tungsten was investigated. It was found that the hollow sites were the most energetically favorable for the adsorption. It was further observed that a magnetic moment was induced following the adsorption of gadolinium on the tungsten surface and that the system with adsorbed hollow sites had the largest magnetization. A pathway for the surface diffusion of gadolinium was determined to occur by hopping between the nearest neighbor hollow sites via the bridge site and the activation energy for the hop was calculated to be 0.75 eV. The surface diffusion process was further assessed using two distinct kinetic Monte Carlo models; one that accounted for lateral adsorbate interactions up to the second nearest neighbor and one that did not account for such interatomic interactions in the adlayer. When the lateral interactions were included in the simulations, the diffusivity was observed to have a strong dependence on coverage (for the coverage values being studied). The effects of lateral interactions were further observed in a one-dimensional simulation of the diffusion equation where the asymmetry in the surface coverage profile upon its approach to a steady state distribution was clear in comparison with the simulations which did not account for those interactions.

  19. The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy

    PubMed Central

    Sancey, L; Kotb, S; Roux, S; Dufort, S; Bianchi, A; Crémillieux, Y; Fries, P; Coll, J-L; Rodriguez-Lafrasse, C; Janier, M; Dutreix, M; Barberi-Heyob, M; Boschetti, F; Denat, F; Louis, C; Porcel, E; Lacombe, S; Le Duc, G; Deutsch, E; Perfettini, J-L; Detappe, A; Verry, C; Berbeco, R; Butterworth, K T; McMahon, S J; Prise, K M; Perriat, P; Tillement, O

    2014-01-01

    A new efficient type of gadolinium-based theranostic agent (AGuIX®) has recently been developed for MRI-guided radiotherapy (RT). These new particles consist of a polysiloxane network surrounded by a number of gadolinium chelates, usually 10. Owing to their small size (<5 nm), AGuIX typically exhibit biodistributions that are almost ideal for diagnostic and therapeutic purposes. For example, although a significant proportion of these particles accumulate in tumours, the remainder is rapidly eliminated by the renal route. In addition, in the absence of irradiation, the nanoparticles are well tolerated even at very high dose (10 times more than the dose used for mouse treatment). AGuIX particles have been proven to act as efficient radiosensitizers in a large variety of experimental in vitro scenarios, including different radioresistant cell lines, irradiation energies and radiation sources (sensitizing enhancement ratio ranging from 1.1 to 2.5). Pre-clinical studies have also demonstrated the impact of these particles on different heterotopic and orthotopic tumours, with both intratumoural or intravenous injection routes. A significant therapeutical effect has been observed in all contexts. Furthermore, MRI monitoring was proven to efficiently aid in determining a RT protocol and assessing tumour evolution following treatment. The usual theoretical models, based on energy attenuation and macroscopic dose enhancement, cannot account for all the results that have been obtained. Only theoretical models, which take into account the Auger electron cascades that occur between the different atoms constituting the particle and the related high radical concentrations in the vicinity of the particle, provide an explanation for the complex cell damage and death observed. PMID:24990037

  20. Penetration and distribution of gadolinium-based contrast agents into the cerebrospinal fluid in healthy rats: a potential pathway of entry into the brain tissue.

    PubMed

    Jost, Gregor; Frenzel, Thomas; Lohrke, Jessica; Lenhard, Diana Constanze; Naganawa, Shinji; Pietsch, Hubertus

    2017-07-01

    Signal hyperintensity on unenhanced MRI in certain brain regions has been reported after multiple administrations of some, but not all, gadolinium-based contrast agents (GBCAs). One potential initial pathway of GBCA entry into the brain, infiltration from blood into the cerebrospinal fluid (CSF), was systematically evaluated in this preclinical study. GBCA infiltration and distribution in the CSF were investigated in healthy rats using repeated fluid-attenuated MRI up to 4 h after high-dose (1.8 mmol/kg) administration of six marketed and one experimental GBCA. Additionally, gadolinium measurements in CSF, blood and brain tissue samples (after 24 h) were performed using inductively coupled plasma mass spectrometry. Enhanced MRI signals in the CSF spaces with similar distribution kinetics were observed for all GBCAs. No substantial differences in the gadolinium concentrations among the marketed GBCAs were found in the CSF, blood or brain tissue. After 4.5 h, the concentration in the CSF was clearly higher than in blood but was almost completely cleared and lower than the brain tissue concentration after 24 h. In contrast to the brain signal hyperintensities, no differences in penetration and distribution into the CSF of healthy rats exist among the marketed GBCAs. • Gadolinium-based contrast agents can cross the blood-CSF barrier. • Fluid-attenuated MRI shows GBCA distribution with CSF flow. • GBCA structure and physicochemical properties do not impact CSF penetration and distribution. • GBCA clearance from CSF was almost complete within 24 h in rats. • CSF is a potential pathway of GBCA entry into the brain.

  1. Gadolinium embedded iron oxide nanoclusters as T1-T2 dual-modal MRI-visible vectors for safe and efficient siRNA delivery

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyong; Zhou, Zijian; Wang, Zhiyong; Xue, Yunxin; Zeng, Yun; Gao, Jinhao; Zhu, Lei; Zhang, Xianzhong; Liu, Gang; Chen, Xiaoyuan

    2013-08-01

    This report illustrates a new strategy of designing a T1-T2 dual-modal magnetic resonance imaging (MRI)-visible vector for siRNA delivery and MRI. Hydrophobic gadolinium embedded iron oxide (GdIO) nanocrystals are self-assembled into nanoclusters in the water phase with the help of stearic acid modified low molecular weight polyethylenimine (stPEI). The resulting water-dispersible GdIO-stPEI nanoclusters possess good stability, monodispersity with narrow size distribution and competitive T1-T2 dual-modal MR imaging properties. The nanocomposite system is capable of binding and delivering siRNA for knockdown of a gene of interest while maintaining its magnetic properties and biocompatibility. This new gadolinium embedded iron oxide nanocluster provides an important platform for safe and efficient gene delivery with non-invasive T1-T2 dual-modal MRI monitoring capability.This report illustrates a new strategy of designing a T1-T2 dual-modal magnetic resonance imaging (MRI)-visible vector for siRNA delivery and MRI. Hydrophobic gadolinium embedded iron oxide (GdIO) nanocrystals are self-assembled into nanoclusters in the water phase with the help of stearic acid modified low molecular weight polyethylenimine (stPEI). The resulting water-dispersible GdIO-stPEI nanoclusters possess good stability, monodispersity with narrow size distribution and competitive T1-T2 dual-modal MR imaging properties. The nanocomposite system is capable of binding and delivering siRNA for knockdown of a gene of interest while maintaining its magnetic properties and biocompatibility. This new gadolinium embedded iron oxide nanocluster provides an important platform for safe and efficient gene delivery with non-invasive T1-T2 dual-modal MRI monitoring capability. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr02797j

  2. The effect of boron and gadolinium burnable poisons on the hot-to-cold reactivity swing of a pressurized water reactor assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galperin, A.; Segev, M.; Radkowsky, A.

    1986-11-01

    Control requirements for advanced pressurized water reactor designs must be met with heavy loadings of burnable poison rods, the required reactivity hold-down typically amounting to 30% or more in a poisoned subassembly. Two apparent choices for poisons are natural boron rods and natural gadolinium rods. Studied and analyzed is the effect of these two poisons on the hot-to-cold reactivity upswing. Compared with an upswing of 2.9% in a nonpoisoned assembly, the upswing in the gadolinium-poisoned assembly is 3.0%, and the upswing in the boron-poisoned assembly is 8.8%. Thus the hot-to-cold control penalty is almost nil for the choice of gadoliniummore » and is considerable for the choice of boron.« less

  3. Self-assembled gemcitabine-gadolinium nanoparticles for magnetic resonance imaging and cancer therapy.

    PubMed

    Li, Lele; Tong, Rong; Li, Mengyuan; Kohane, Daniel S

    2016-03-01

    Nanoparticles with combined diagnostic and therapeutic functions are promising tools for cancer diagnosis and treatment. Here, we demonstrate a theranostic nanoparticle that integrates an active gemcitabine metabolite and a gadolinium-based magnetic resonance imaging agent via a facile supramolecular self-assembly synthesis, where the anti-cancer drug gemcitabine-5'-monophosphate (a phosphorylated active metabolite of the anti-cancer drug gemcitabine) was used to coordinate with Gd(III) to self-assemble into theranostic nanoparticles. The formulation exhibits a strong T1 contrast signal for magnetic resonance imaging of tumors in vivo, with enhanced retention time. Furthermore, the nanoparticles did not require other inert nanocarriers or excipients and thus had an exceptionally high drug loading (55 wt%), resulting in the inhibition of MDA-MB-231 tumor growth in mice. Recent advances in nanoparticle-based drug delivery systems have spurred the development of "theranostic" multifunctional nanoparticles, which combine therapeutic and diagnostic functionalities in a single formulation. Developing simple and efficient synthetic strategies for the construction of nanotheranostics with high drug loading remains a challenge. Here, we demonstrate a theranostic nanoparticle that integrates high loadings of an active gemcitabine metabolite and a gadolinium-based magnetic resonance imaging agent via a facile synthesis. The nanoparticles were better T1 contrast agents than currently used Gd-DTPA and had prolonged retention in tumor. Moreover they exhibited enhanced in vivo antitumor activity compared to free drug in a breast cancer xenograft mouse model. The strategy provides a scalable way to fabricate nanoparticles that enables enhancement of both therapeutic and diagnostic capabilities. Published by Elsevier Ltd.

  4. Usefulness of the advanced neuroimaging protocol based on plain and gadolinium-enhanced constructive interference in steady state images for gamma knife radiosurgery and planning microsurgical procedures for skull base tumors.

    PubMed

    Hayashi, Motohiro; Chernov, Mikhail F; Tamura, Noriko; Yomo, Shoji; Tamura, Manabu; Horiba, Ayako; Izawa, Masahiro; Muragaki, Yoshihiro; Iseki, Hiroshi; Okada, Yoshikazu; Ivanov, Pavel; Régis, Jean; Takakura, Kintomo

    2013-01-01

    Gamma Knife radiosurgery (GKS) is currently performed with 0.1 mm preciseness, which can be designated microradiosurgery. It requires advanced methods for visualizing the target, which can be effectively attained by a neuroimaging protocol based on plain and gadolinium-enhanced constructive interference in steady state (CISS) images. Since 2003, the following thin-sliced images are routinely obtained before GKS of skull base lesions in our practice: axial CISS, gadolinium-enhanced axial CISS, gadolinium-enhanced axial modified time-of-flight (TOF), and axial computed tomography (CT). Fusion of "bone window" CT and magnetic resonance imaging (MRI), and detailed three-dimensional (3D) delineation of the anatomical structures are performed with the Leksell GammaPlan (Elekta Instruments AB). Recently, a similar technique has been also applied to evaluate neuroanatomy before open microsurgical procedures. Plain CISS images permit clear visualization of the cranial nerves in the subarachnoid space. Gadolinium-enhanced CISS images make the tumor "lucid" but do not affect the signal intensity of the cranial nerves, so they can be clearly delineated in the vicinity to the lesion. Gadolinium-enhanced TOF images are useful for 3D evaluation of the interrelations between the neoplasm and adjacent vessels. Fusion of "bone window" CT and MRI scans permits simultaneous assessment of both soft tissue and bone structures and allows 3D estimation and correction of MRI distortion artifacts. Detailed understanding of the neuroanatomy based on application of the advanced neuroimaging protocol permits performance of highly conformal and selective radiosurgical treatment. It also allows precise planning of the microsurgical procedures for skull base tumors.

  5. Investigation of Plutonium and Uranium Precipitation Behavior with Gadolinium as a Neutron Poison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visser, A.E.

    2003-10-17

    The caustic precipitation of plutonium (Pu)-containing solutions has been investigated to determine whether the presence of 3:1 uranium (U):Pu in solutions stored in the H-Canyon Facility at the U.S. Department of Energy's (DOE) Savannah River Site (SRS) would adversely impact the use of gadolinium nitrate (Gd(NO3)3) as a neutron poison. In the past, this disposition strategy has been successfully used to discard solutions containing approximately 100 kg of Pu to the SRS high level waste (HLW) system. In the current experiments, gadolinium (as Gd(NO3)3) was added to samples of a 3:1 U:Pu solution, a surrogate 3 g/L U solution, andmore » a surrogate 3 g/L U with 1 g/L Pu solution. A series of experiments was then performed to observe and characterize the precipitate at selected pH values. Solids formed at pH 4.5 and were found to contain at least 50 percent of the U and 94 percent of the Pu, but only 6 percent of the Gd. As the pH of the solution increased (e.g., pH greater than 14 with 1.2 or 3.6 M sodium hydroxide (NaOH) excess), the precipitate contained greater than 99 percent of the Pu, U, and Gd. After the pH greater than 14 systems were undisturbed for one week, no significant changes were found in the composition of the solid or supernate for each sample. The solids were characterized by X-ray diffraction (XRD) which found sodium diuranate (Na2U2O7) and gadolinium hydroxide (Gd(OH)3) at pH 14. Thermal gravimetric analysis (TGA) indicated sufficient water molecules were present in the solids to thermalize the neutrons, a requirement for the use of Gd as a neutron poison. Scanning electron microscopy (SEM) was also performed and the accompanying back-scattering electron analysis (BSE) found Pu, U, and Gd compounds in all pH greater than 14 precipitate samples. The rheological properties of the slurries at pH greater than 14 were also investigated by performing precipitate settling rate studies and measuring the viscosity and density of the materials. Based

  6. Comparative theoretical study of the structures and stabilities of four typical gadolinium carboxylates in different scintillator solvents.

    PubMed

    Huang, Pin-Wen

    2016-03-01

    The structural properties and stabilities of four typical gadolinium carboxylates (Gd-CBX) in toluene, linear alkyl benzene (LAB), and phenyl xylyl ethane (PXE) solvents were theoretically studied using density functional theory (DFT/B3LYP with the basis sets 6-311G(d) and MWB54) and the polarizable continuum model (PCM). The average Gd-ligand interaction energies (E int, corrected for dispersion) and the values of the energy gap between the highest occupied molecular orbital and lowest unoccupied molecular orbital (ΔHL) for the gadolinium complexes were calculated to compare the relative stabilities of the four Gd-CBX molecules in the three liquid scintillator solvents. According to the calculations, the values of E int and ΔHL for Gd-CBX in LAB are larger than the corresponding values in PXE and toluene. Gd-CBX may therefore be more compatible with LAB than with PXE and toluene. It was also found that, in the three scintillator solvents, the stabilities of the four Gd-CBX molecules increase in the order Gd-2EHA < Gd-2MVA < Gd-pivalate < Gd-TMHA.

  7. Synthesis, photoluminescence and biological properties of terbium(III) complexes with hydroxyketone and nitrogen containing heterocyclic ligands

    NASA Astrophysics Data System (ADS)

    Poonam; Kumar, Rajesh; Boora, Priti; Khatkar, Anurag; Khatkar, S. P.; Taxak, V. B.

    2016-01-01

    The ternary terbium(III) complexes [Tb(HDAP)3ṡbiq], [Tb(HDAP)3ṡdmph] and [Tb(HDAP)3ṡbathophen] were prepared by using methoxy substituted hydroxyketone ligand HDAP (2-hydroxy-4,6-dimethoxyacetophenone) and an ancillary ligand 2,2-biquinoline or 5,6-dimethyl-1,10-phenanthroline or bathophenanthroline respectively. The ligand and synthesized complexes were characterised based on elemental analysis, FT-IR and 1H NMR. Thermal behaviour of the synthesized complexes illustrates the general decomposition patterns of the complexes by thermogravimetric analysis. Photophysical properties such as excitation spectra, emission spectra and luminescence decay curves of the complexes were investigated in detail. The main green emitting peak at 548 nm can be attributed to 5D4 → 7F5 of Tb3+ ion. Thus, these complexes might be used to make a bright green light-emitting diode for display purpose. In addition the in vitro antibacterial activities of HDAP and its Tb(III) complexes against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and antifungal activities against Candida albicans and Aspergillus niger are reported. The Tb3+ complexes were found to be more potent antimicrobial agent as compared to the ligand. Among all these complexes, [Tb(HDAP)3ṡbathophen] exhibited excellent antimicrobial activity which proves its potential usefulness as an antimicrobial agent. Furthermore, in vitro antioxidant activity tests were carried out by using DPPH method which indicates that the complexes have considerable antioxidant activity when compared with the standard ascorbic acid.

  8. Structural, kinetic, and thermodynamic characterization of the interconverting isomers of MS-325, a gadolinium(III)-based magnetic resonance angiography contrast agent.

    PubMed

    Tyeklar, Zoltan; Dunham, Stephen U; Midelfort, Katarina; Scott, Daniel M; Sajiki, Hirano; Ong, Karen; Lauffer, Randall B; Caravan, Peter; McMurry, Thomas J

    2007-08-06

    The amphiphilic gadolinium complex MS-325 ((trisodium-{(2-(R)-[(4,4-diphenylcyclohexyl) phosphonooxymethyl] diethylenetriaminepentaacetato) (aquo)gadolinium(III)}) is a contrast agent for magnetic resonance angiography (MRA). MS-325 comprises a GdDTPA core with an appended phosphodiester moiety linked to a diphenylcyclohexyl group to facilitate noncovalent binding to serum albumin and extension of the plasma half-life in vivo. The chiral DTPA ligand (R) was derived from L-serine, and upon complexation with gadolinium, forms two interconvertible diastereomers, denoted herein as isomers A and B. X-ray crystallography of the tris(ethylenediamine)cobalt(III) salt derivative of isomer A revealed a structure in the polar acentric space group P32. The structure consisted of three independent molecules of the gadolinium complex in the asymmetric unit along with three Delta-[Co(en)3]3+ cations, and it represents an unusual example of spontaneous Pasteur resolution of the cobalt cation. The geometry of the coordination core was best described as a distorted trigonal prism, and the final R factor was 5.6%. The configuration of the chiral central nitrogen of the DTPA core was S. The Gd-water (2.47-2.48 A), the Gd-acetate oxygens (2.34-2.42 A), and the Gd-N bond distances (central N, 2.59-2.63 A; terminal N, 2.74-2.80 A) were similar to other reported GdDTPA structures. The structurally characterized single crystal was one of two interconvertable diastereomers (isomers A and B) that equilibrated to a ratio of 1.81 to 1 at pH 7.4 and were separable at elevated pH by ion-exchange chromatography. The rate of isomerization was highly pH dependent: k1 = (1.45 +/- 0.08) x 102[H+] + (4.16 +/- 0.30) x 105[H+]2; k-1 = (2.57 +/- 0.17) x 102[H+] + (7.54 +/- 0.60) x 105[H+]2.

  9. Microstructural Anisotropy of Magnetocaloric Gadolinium Cylinders: Effect on the Mechanical Properties of the Material

    PubMed Central

    Petrovič, Darja Steiner; Šturm, Roman; Naglič, Iztok; Markoli, Boštjan; Pepelnjak, Tomaž

    2016-01-01

    The development of advanced materials and technologies based on magnetocaloric Gd and its compounds requires an understanding of the dependency of mechanical properties on their underlying microstructure. Therefore, the aim of the study was to characterize microstructural inhomogeneities in the gadolinium that can be used in magnetocaloric refrigeration systems. Microstructures of magnetocaloric gadolinium cylinders were investigated by light microscopy and FE-SEM (Field Emission Scanning Electron Microscopy), EDS (Energy-dispersive X-ray Spectroscopy), and BSE (Back-scattered Electrons) in both the extrusion and the extrusion-transversal directions. XRD (X-ray Diffraction) analyses were performed to reveal the presence of calcium- and fluorine-based compounds. Metallographic characterization showed an oxidized and inhomogeneous microstructure of the cross-sections. The edges and the outer parts of the cylinders were oxidized more intensively on the surfaces directly exposed to the processing tools. Moreover, a significant morphological anisotropy of the non-metallic inclusions was observed. CaF inclusions act as active nucleation sites for internal oxidation. The non-metallic, Ca- and F-containing inclusions can be classified as complex calciumoxyfluorides. The solubility of Er and Yb in the CaF was negligible compared to the Gd matrix and/or the oxide phase. Lower mechanical properties of the material are a consequence of the lower structural integrity due to selective oxidation of surfaces and interfaces. PMID:28773502

  10. Modulation of channel activity and gadolinium block of MscL by static magnetic fields.

    PubMed

    Petrov, Evgeny; Martinac, Boris

    2007-02-01

    The magnetic field of the Earth has for long been known to influence the behaviour and orientation of a variety of living organisms. Experimental studies of the magnetic sense have, however, been impaired by the lack of a plausible cellular and/or molecular mechanism providing meaningful explanation for detection of magnetic fields by these organisms. Recently, mechanosensitive (MS) ion channels have been implied to play a role in magnetoreception. In this study we have investigated the effect of static magnetic fields (SMFs) of moderate intensity on the activity and gadolinium block of MscL, the bacterial MS channel of large conductance, which has served as a model channel to study the basic physical principles of mechanosensory transduction in living cells. In addition to showing that direct application of the magnetic field decreased the activity of the MscL channel, our study demonstrates for the first time that SMFs can reverse the effect of gadolinium, a well-known blocker of MS channels. The results of our study are consistent with a notion that (1) the effects of SMFs on the MscL channels may result from changes in physical properties of the lipid bilayer due to diamagnetic anisotropy of phospholipid molecules and consequently (2) cooperative superdiamagnetism of phospholipid molecules under influence of SMFs could cause displacement of Gd(3+) ions from the membrane bilayer and thus remove the MscL channel block.

  11. Gadolinium(III)-sensitized fluorescence of europium in its mixed-metal compounds with trifluroacetate

    NASA Astrophysics Data System (ADS)

    Kalinovskaya, I. V.; Zadorozhnaya, A. N.

    2017-04-01

    The fluorescence properties of mixed-metal compounds of Eu(III) and Gd(III) with trifluoroacetic acid, Eu1-хGdx(С2F3O2)3·yD·zH2O, where D - 1,10-phenanthroline, 2,2-dipyridil, diphenylguanidine, x = 0, 0.25, 0.5, or 0.7, were studied. Luminescence spectroscopic evidence and the examination of excitation spectra indicate the occurrence of efficient energy transfer from the gadolinium to the europium ion. The greatest promotion of Eu3+ photoluminescence at 615 nm is observed when Eu:Gd = 1:1.

  12. Modification of the crystal structure of gadolinium gallium garnet by helium ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostafiychuk, B. K.; Yaremiy, I. P., E-mail: yaremiy@rambler.ru; Yaremiy, S. I.

    2013-12-15

    The structure of gadolinium gallium garnet (GGG) single crystals before and after implantation by He{sup +} ions has been investigated using high-resolution X-ray diffraction methods and the generalized dynamic theory of X-ray scattering. The main types of growth defects in GGG single crystals and radiation-induced defects in the ion-implanted layer have been determined. It is established that the concentration of dislocation loops in the GGG surface layer modified by ion implantation increases and their radius decreases with an increase in the implantation dose.

  13. Gadolinium for neutron detection in current nuclear instrumentation research: A review

    NASA Astrophysics Data System (ADS)

    Dumazert, J.; Coulon, R.; Lecomte, Q.; Bertrand, G. H. V.; Hamel, M.

    2018-02-01

    Natural gadolinium displays a number of remarkable physical properties: it is a rare earth element, composed of seven stable or quasi-stable isotopes, with an exceptionally high magnetization and a Curie point near room temperature. Its use in the field of nuclear instrumentation historically relates to its efficiency as a neutron poison in power reactors. Gadolinium is indeed the naturally occurring element with the highest interaction probability with neutrons at thermal energy, shared between Gd-157 (15.65%, 254000 b cross section) and Gd-155 (14.8%, 60900 b) isotopes. Considering that neutron capture results in an isotopic change, followed by a radiative rearrangement of nuclear and atomic structures, Gd may be embodied not merely as a neutron poison but as a neutron converter into a prompt photon and an electron source term. Depending on the nature and energy of the reaction products (from a few-keV Auger electrons up to 8 MeV gamma rays) that the detector aims at isolating as an indirect neutron signature, a variety of sensor media and counting methods have been introduced during the last decades. This review first draws a theoretical description of the radiative cascade following Gd(n , γ) capture. The cascade may be subdivided into regions of interest, each corresponding to dedicated detection designs and optimizations whose current status is detailed. This inventory has allowed the authors to extract and benchmark key figures of merit for the definition of a detection scheme: neutron attenuation, neutron sensitivity (cps/nv), gamma rejection, neutron detection limit in a mixed field, intrinsic or extrinsic moderation, and transportability. On this basis, the authors have identified promising paths for Gd-based neutron detection in contemporary instrumentation.

  14. The use of innovative gadolinium-based contrast agent for MR-diagnosis of cancer in the experiment

    NASA Astrophysics Data System (ADS)

    Chernov, V.; Medvedeva, A.; Sinilkin, I.; Zelchan, R.; Grigorev, E.; Frolova, I.; Nam, I.

    2016-02-01

    The present study of the functional suitability and specific activity of the contrast agent gadolinium-based for magnetic resonance imaging demonstrated that the investigated contrast agent intensively accumulates in organs and anatomical structures of the experimental animals. In the model of tumor lesions in animals, study have shown that investigational contrast agent accumulates in the tumor tissue and retained there in for a long enough time.

  15. Geometry of electromechanically active structures in Gadolinium - doped Cerium oxides

    DOE PAGES

    Li, Yuanyuan; Kraynis, Olga; Kas, Joshua; ...

    2016-05-20

    Local distortions from average structure are important in many functional materials, such as electrostrictors or piezoelectrics, and contain clues about their mechanism of work. However, the geometric attributes of these distortions are exceedingly difficult to measure, leading to a gap in knowledge regarding their roles in electromechanical response. This task is particularly challenging in the case of recently reported non-classical electrostriction in Cerium-Gadolinium oxides (CGO), where only a small population of Ce-O bonds that are located near oxygen ion vacancies responds to external electric field. In this study, we used high-energy resolution fluorescence detection (HERFD) technique to collect X-ray absorptionmore » spectra in CGO in situ, with and without an external electric field, coupled with theoretical modeling to characterize three-dimensional geometry of electromechanically active units.« less

  16. Geometry of electromechanically active structures in Gadolinium - doped Cerium oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yuanyuan; Zacharowicz, Renee; Frenkel, Anatoly I., E-mail: igor.lubomirsky@weizmann.ac.il, E-mail: anatoly.frenkel@yu.edu

    2016-05-15

    Local distortions from average structure are important in many functional materials, such as electrostrictors or piezoelectrics, and contain clues about their mechanism of work. However, the geometric attributes of these distortions are exceedingly difficult to measure, leading to a gap in knowledge regarding their roles in electromechanical response. This task is particularly challenging in the case of recently reported non-classical electrostriction in Cerium-Gadolinium oxides (CGO), where only a small population of Ce-O bonds that are located near oxygen ion vacancies responds to external electric field. We used high-energy resolution fluorescence detection (HERFD) technique to collect X-ray absorption spectra in CGOmore » in situ, with and without an external electric field, coupled with theoretical modeling to characterize three-dimensional geometry of electromechanically active units.« less

  17. Adsorption Studies of Gadolinium ion on Graphitic Carbon Nitride

    NASA Astrophysics Data System (ADS)

    Kuila, S. K.; Kundu, T. K.

    2018-03-01

    Bulk graphitic carbon nitride (g-C3N4) is synthesized by thermal decomposition of urea and used as an adsorbent for gadolinium ion (Gd3+) from aqueous solution. Adsorption capacity of g-C3N4 is found to be influenced by initial Gd3+ concentration, solution pH and contact time. Adsorbed Gd3+is separated from g-C3N4 by ultracentrifuge. Initial and Gd ion accumulated g-C3N4 adsorbent are characterized by X-ray diffraction technique (XRD) for phase identification, UV-visible and Fourier transform infrared (FTIR) spectroscopy for adsorption characteristics and optical property, scanning electron microscopy (SEM) for morphological behaviour along with energy dispersive X-ray spectroscopy (EDS) for elemental study. HNO3(0.1M), NaOH (0.1M) and de-ionized water are used for desorption and around 97% quantitative recovery of Gd ion is observed.

  18. Intraoperative Near-Infrared Optical Imaging Can Localize Gadolinium-Enhancing Gliomas During Surgery

    PubMed Central

    Lee, John Y-K.; Thawani, Jayesh P.; Pierce, John; Zeh, Ryan; Martinez-Lage, Maria; Chanin, Michelle; Venegas, Ollin; Nims, Sarah; Learned, Kim; Keating, Jane; Singhal, Sunil

    2016-01-01

    Background Although real-time localization of gliomas has improved with intraoperative image guidance systems, these tools are limited by brain shift, surgical cavity deformation, and expense. Objective To propose a novel method to perform near-infrared (NIR) imaging during glioma resections based on preclinical and clinical investigations, in order to localize tumors and to potentially identify residual disease. Methods Fifteen patients were identified and administered an FDA-approved, NIR contrast agent (Second Window indocyanine green [ICG], 5 mg/kg) prior to surgical resection. An NIR camera was utilized to localize the tumor prior to resection and to visualize surgical margins following resection. Neuropathology and MR imaging data were used to assess the accuracy and precision of NIR-fluorescence in identifying tumor tissue. Results NIR visualization of 15 gliomas (10 glioblastoma multiforme, 1 anaplastic astrocytoma, 2 low grade astrocytoma, 1 juvenile pilocytic astrocytoma, and 1 ganglioglioma) was performed 22.7 hours (mean) after intravenous injection of ICG. During surgery, 12/15 tumors were visualized with the NIR camera. The mean signal-to-background ratio was 9.5 ± 0.8 and fluorescence was noted through the dura to a maximum parenchymal depth of 13 mm. The best predictor of positive fluorescence was enhancement on T1-weighted imaging; this correlated with SBR (P = .03). Non-enhancing tumors did not demonstrate NIR fluorescence. Using pathology as the gold standard, the technique demonstrated a sensitivity of 98% and specificity of 45% to identify tumor in gadolinium-enhancing specimens (n = 71). Conclusion Using Second Window ICG, gadolinium-enhancing tumors can be localized through brain parenchyma intraoperatively. Its utility for margin detection is promising but limited by lower specificity. PMID:27741220

  19. Extraction of Dysprosium Ions with DTPA Functionalized Superparamagnetic Nanoparticles Probed by Energy Dispersive X-ray Fluorescence and TEM/High-Angle Annular Dark Field Imaging.

    PubMed

    Melo, Fernando Menegatti de; Almeida, Sabrina da Nobrega; Uezu, Noemi Saori; Ramirez, Carlos Alberto Ospina; Santos, Antonio Domingues Dos; Toma, Henrique Eisi

    2018-06-01

    The extraction of dysprosium (Dy3+) ions from aqueous solution was carried out successfully, using magnetite (Fe3O4) nanoparticles functionalized with diethylenetriaminepentaacetic acid (MagNP@DTPA). The process was monitored by energy dispersive X-ray fluorescence spectroscopy, as a function of concentration, proceeding according to a Langmuir isotherm with an equilibrium constant of 2.57 × 10-3 g(MagNP) L-1 and a saturation limit of 63.2 mgDy/gMagNP. The presence of paramagnetic Dy3+ ions attached to the superparamagnetic nanoparticles led to an overall decrease of magnetization. By imaging the nanoparticles surface using scanning transmission electron microscopy equipped with high resolution elemental analysis, it was possible to probe the binding of the Dy3+ ions to DTPA, and to show their distribution in a region of negative magnetic field gradients. This finding is coherent with the observed decrease of magnetization, associated with the antiferromagnetic coupling between the lanthanide ions and the Fe3O4 core.

  20. Terbium to Quantum Dot FRET Bioconjugates for Clinical Diagnostics: Influence of Human Plasma on Optical and Assembly Properties

    PubMed Central

    Morgner, Frank; Stufler, Stefan; Geißler, Daniel; Medintz, Igor L.; Algar, W. Russ; Susumu, Kimihiro; Stewart, Michael H.; Blanco-Canosa, Juan B.; Dawson, Philip E.; Hildebrandt, Niko

    2011-01-01

    Förster resonance energy transfer (FRET) from luminescent terbium complexes (LTC) as donors to semiconductor quantum dots (QDs) as acceptors allows extraordinary large FRET efficiencies due to the long Förster distances afforded. Moreover, time-gated detection permits an efficient suppression of autofluorescent background leading to sub-picomolar detection limits even within multiplexed detection formats. These characteristics make FRET-systems with LTC and QDs excellent candidates for clinical diagnostics. So far, such proofs of principle for highly sensitive multiplexed biosensing have only been performed under optimized buffer conditions and interactions between real-life clinical media such as human serum or plasma and LTC-QD-FRET-systems have not yet been taken into account. Here we present an extensive spectroscopic analysis of absorption, excitation and emission spectra along with the luminescence decay times of both the single components as well as the assembled FRET-systems in TRIS-buffer, TRIS-buffer with 2% bovine serum albumin, and fresh human plasma. Moreover, we evaluated homogeneous LTC-QD FRET assays in QD conjugates assembled with either the well-known, specific biotin-streptavidin biological interaction or, alternatively, the metal-affinity coordination of histidine to zinc. In the case of conjugates assembled with biotin-streptavidin no significant interference with the optical and binding properties occurs whereas the histidine-zinc system appears to be affected by human plasma. PMID:22163719

  1. Reverse microemulsion synthesis of layered gadolinium hydroxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Xu, Yadong; Suthar, Jugal; Egbu, Raphael; Weston, Andrew J.; Fogg, Andrew M.; Williams, Gareth R.

    2018-02-01

    A reverse microemulsion approach has been explored for the synthesis of layered gadolinium hydroxide (LGdH) nanoparticles in this work. This method uses oleylamine as a multifunctional agent, acting as surfactant, oil phase and base. 1-butanol is additionally used as a co-surfactant. A systematic study of the key reaction parameters was undertaken, including the volume ratio of surfactant (oleylamine) to water, the reaction time, synthesis temperature, and the amount of co-surfactant (1-butanol) added. It proved possible to obtain pristine LGdH materials at temperatures of 120 °C or below with an oleylamine: water ratio of 1:4. Using larger amounts of surfactant or higher temperatures caused the formation of Gd(OH)3, either as the sole product or as a major impurity phase. The LGdH particles produced have sizes of ca. 200 nm, with this size being largely independent of temperature or reaction time. Adjusting the amount of 1-butanol co-surfactant added permits the size to be varied between 200 and 300 nm.

  2. Gadolinium-Based Contrast Agents for MR Cancer Imaging

    PubMed Central

    Zhou, Zhuxian; Lu, Zheng-Rong

    2013-01-01

    Magnetic resonance imaging (MRI) is a clinical imaging modality effective for anatomical and functional imaging of diseased soft tissues, including solid tumors. MRI contrast agents have been routinely used for detecting tumor at an early stage. Gadolinium based contrast agents are the most commonly used contrast agents in clinical MRI. There have been significant efforts to design and develop novel Gd(III) contrast agents with high relaxivity, low toxicity and specific tumor binding. The relaxivity of the Gd(III) contrast agents can be increased by proper chemical modification. The toxicity of Gd(III) contrast agents can be reduced by increasing the agents’ thermodynamic and kinetic stability, as well as optimizing their pharmacokinetic properties. The increasing knowledge in the field of cancer genomics and biology provides an opportunity for designing tumor-specific contrast agents. Various new Gd(III) chelates have been designed and evaluated in animal models for more effective cancer MRI. This review outlines the design and development, physicochemical properties, and in vivo properties of several classes of Gd(III)-based MR contrast agents for tumor imaging. PMID:23047730

  3. Ferromagnetic coupling in the three-dimensional malonato-bridged gadoliniumIII complex [Gd2(mal)3(H2O)6] (H2mal = malonic acid).

    PubMed

    Hernández-Molina, María; Ruiz-Pérez, Catalina; López, Trinidad; Lloret, Francesc; Julve, Miguel

    2003-09-08

    The novel gadolinium(III) complex of formula [Gd(2)(mal)(3)(H(2)O)(6)] (1) (H(2)mal = 1,3-propanedioic acid) has been prepared and characterized by X-ray diffraction analysis. Crystal data for 1: monoclinic, space group I2/a, a = 11.1064(10) A, b = 12.2524(10) A, c =13.6098(2) A, beta = 92.925(10) degrees, U = 1849.5(3) A(3), Z = 4. Compound 1 is a three-dimensional network made up of malonate-bridged gadolinium(III) ions where the malonate exhibits two bridging modes, eta(5)-bidentate + unidentate and eta(3):eta(3) + bis(unidentate). The gadolinium atom is nine-coordinate with three water molecules and six malonate oxygen atoms from three malonate ligands forming a distorted monocapped square antiprism. The shortest metal-metal separations are 4.2763(3) A [through the oxo-carboxylate bridge] and 6.541(3) A [through the carboxylate in the anti-syn coordination mode]. The value of the angle at the oxo-carboxylate atom is 116.8(2) degrees. Variable-temperature magnetic susceptibility measurements reveal the occurrence of a significant ferromagnetic interaction through the oxo-carboxylate pathway (J = +0.048(1) cm(-1), H = -JS(Gd(1)) x S(Gd(1a))).

  4. Structural, magnetothermal, and magnetotransport properties of single crystal terbium silicon germanide and spontaneous generation of voltage in single crystal gadolinium silicon germanide and gadolinium

    NASA Astrophysics Data System (ADS)

    Zou, Min

    A systematic study of single crystalline Tb5Si2.2Ge1.8, including magnetic field induced crystallographic and magnetic phase transformations, magnetocaloric effect, ferromagnetic short-range correlations, electrical resistivity, magnetoresistance, and spontaneous generation of voltage (SGV) has been presented. A study of SGV in single crystalline Gd5Si2Ge2 and Gd has also been included. The metamagnetic-like transitions and giant magnetocaloric effect were observed with the magnetic field applied parallel to the a- and c-axes, but not the b-axis in a Tb5Si 2.2Ge1.8 single crystal. The in-situ x-ray powder diffraction study indicates that these metamagnetic-like transitions are coupled to a crystallographic phase transformation occurring via strong magnetoelastic interactions. The magnetocrystalline anisotropy plays an important role in this system. Magnetic fields less than 40 kOe can not drive either the magnetic or the crystallographic phase transition to completion for Tb5Si2.2Ge1.8 powder due to the strong single ion anisotropy of Tb. Magnetic field dependencies of the critical temperatures of magnetic phase transitions of Tb5Si2.2Ge1.8 are highly anisotropic for both the main magnetic ordering process occurring around 120 K and a spin reorientation transition at ~70 K. Magnetic-field-induced phase transitions occur with the magnetic field applied isothermally along the a-and b-axes (but not along the c-axis) between 1.8 and 70 K in fields below 70 kOe. Strongly anisotropic thermal irreversibility is observed in the Griffiths phase regime between 120 and 200 K with applied fields ranging from 10 to 1000 Oe. Our data: (1) show that the magnetic and structural phase transitions around 120 K are narrowly decoupled; (2) uncover the anisotropy of ferromagnetic short-range order in the Griffiths phase; and (3) reveal some unusual magnetic domain effects in the long-range ordered state of the Tb5Si2.2Ge1.8 compound. The temperature-magnetic field phase diagrams with field applied along the three major crystallographic directions have been constructed. The positive colossal magnetoresistance (CMR) with a magnitude of ~150% was observed with the magnetic field applied parallel to the a-axis, but not the b- and c-axes in Tb5Si 2.2Ge1.8 single crystals. The electrical resistivity shows a low-temperature high-resistivity behavior (i.e. the resistivity at low temperature is higher after the transformation to the low temperature phase than the resistivity of the phase before the transition) along the a-axis, contrary to those along the b- and c-axes. The positive CMR effect originates from an intrinsic crystallographic phase coexistence state frozen below the Curie Temperature (TC). The differences in the temperature dependencies of electrical resistivities and longitudinal magnetoresistance along the a-axis and those along the b- and c-axes can be explained by the geometry of the phase boundaries at low temperatures, and the inability of the external magnetic field to induce the crystallographic phase transformation along the b- and c-axes. Temperature-induced SGVs were observed along all three principal crystallographic axes of Tb5Si2.2Ge1.8, but not in Gd. Field-induced SGVs were observed with magnetic fields less than 40 kOe applied along the a-axis of Tb5Si2.2Ge1.8, and the c-axis of Gd. The absence of the temperature induced SGV in Gd indicates the key role first-order phase transformations play in the appearance of the effect when temperature varies. The anisotropy of magnetic field induced SGV in Tb5Si2.2Ge1.8 and the existence of field induced SGV in Gd, highlight the importance of the magnetocaloric effect in bringing about the SGV. In single crystal and polycrystalline Gd5Si 2Ge2 during the coupled magneto-structural transformations, reversible and repeatable SGV responses of the materials to the temperature and magnetic field have been observed. The parameters of the response and the magnitude of the signal are anisotropic and rate dependent. The magnitude of the SGV signal, and the critical temperatures and critical magnetic fields at which the SGV occurs vary with the rate of temperature and magnetic field changes.

  5. Validation of the analytical methods in the LWR code BOXER for gadolinium-loaded fuel pins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paratte, J.M.; Arkuszewski, J.J.; Kamboj, B.K.

    1990-01-01

    Due to the very high absorption occurring in gadolinium-loaded fuel pins, calculations of lattices with such pins present are a demanding test of the analysis methods in light water reactor (LWR) cell and assembly codes. Considerable effort has, therefore, been devoted to the validation of code methods for gadolinia fuel. The goal of the work reported in this paper is to check the analysis methods in the LWR cell/assembly code BOXER and its associated cross-section processing code ETOBOX, by comparison of BOXER results with those from a very accurate Monte Carlo calculation for a gadolinium benchmark problem. Initial results ofmore » such a comparison have been previously reported. However, the Monte Carlo calculations, done with the MCNP code, were performed at Los Alamos National Laboratory using ENDF/B-V data, while the BOXER calculations were performed at the Paul Scherrer Institute using JEF-1 nuclear data. This difference in the basic nuclear data used for the two calculations, caused by the restricted nature of these evaluated data files, led to associated uncertainties in a comparison of the results for methods validation. In the joint investigations at the Georgia Institute of Technology and PSI, such uncertainty in this comparison was eliminated by using ENDF/B-V data for BOXER calculations at Georgia Tech.« less

  6. Scarcity of rare earth elements.

    PubMed

    de Boer, M A; Lammertsma, K

    2013-11-01

    Rare earth elements (REEs) are important for green and a large variety of high-tech technologies and are, therefore, in high demand. As a result, supply with REEs is likely to be disrupted (the degree of depends on the REE) in the near future. The 17 REEs are divided into heavy and light REEs. Other critical elements besides REEs, identified by the European Commission, are also becoming less easily available. Although there is no deficiency in the earth's crust of rare earth oxides, the economic accessibility is limited. The increased demand for REEs, the decreasing export from China, and geopolitical concerns on availability contributed to the (re)opening of mines in Australia and the USA and other mines are slow to follow. As a result, short supply of particularly terbium, dysprosium, praseodymium, and neodymium is expected to be problematic for at least the short term, also because they cannot be substituted. Recycling REEs from electronic waste would be a solution, but so far there are hardly any established REE recycling methods. Decreasing the dependency on REEs, for example, by identifying possible replacements or increasing their efficient use, represents another possibility. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Sol-gel-derived hybrid materials multi-doped with rare-earth metal ions

    NASA Astrophysics Data System (ADS)

    Zelazowska, E.; Rysiakiewicz-Pasek, E.; Borczuch-Laczka, M.; Cholewa-Kowalska, K.

    2012-06-01

    Four different hybrid organic-inorganic materials based on TiO2-SiO2 matrices with organic additives and doped with rare-earth metal ions (III) from the group of europium, cerium, terbium, neodymium, dysprosium and samarium, were synthesized by sol-gel method. Tetraethyl orthosilicate, titanium (IV) isopropoxide and organic compounds, such as butyl acrylate, butyl methacrylate, ethyl acetoacetate, ethylene glycol dimethacrylate, ethyl acetate, propylene carbonate, organic solvents and certain inorganic salts were used in the synthesis. The inorganic part of the sols, which were used in the synthesis of all the hybrid materials, was prepared separately and then the organic parts were added. The materials obtained were aged for three weeks at room temperature and then heated in an electric oven for three hours at temperatures of 80 °C-150 °C. Scanning electron microscopy equipped with energy dispersive X-ray spectroscopy (SEM/EDX); X-ray diffraction (XRD); Fourier transform infrared spectroscopy (KBr technique); 29Si magic-angle spinning nuclear magnetic resonance; and fluorescence spectroscopy were used for the examination of morphology, microstructure and luminescence properties, respectively. Photoluminescence properties with relatively intense narrow emission lines of Tb, Eu, Dy, Nd, Sm respectively to the RE-ions doping, were observed for all the hybrid materials.

  8. Amphiphilic complexes of Ho(iii), Dy(iii), Tb(iii) and Eu(iii) for optical and high field magnetic resonance imaging.

    PubMed

    Harris, Michael; Henoumont, Céline; Peeters, Wannes; Toyouchi, Shuichi; Vander Elst, Luce; Parac-Vogt, Tatjana N

    2018-05-29

    Lanthanides, holmium(iii), dysprosium(iii), and terbium(iii), were coordinated to an amphiphilic DOTA bis-coumarin derivative and then further assembled with an amphiphilic europium(iii) DTPA bis-coumarin derivative into mono-disperse micelles. The self-assembled micelles were characterized and assessed for their potential as bimodal contrast agents for high field magnetic resonance and optical imaging applications. All micelles showed a high transverse relaxation (r2) of 46, 34, and 30 s-1 mM-1 at 500 MHz and 37 °C for Dy(iii), Ho(iii) and Tb(iii), respectively, which is a result of the high magnetic moment of these lanthanides and the long rotational correlation time of the micelles. The quantum yield in aqueous solution ranged from 1.8% for Tb/Eu to 1.4% for Dy/Eu and 1.0% for the Ho/Eu micelles. Multi-photon excited emission spectroscopy has shown that due to the two-photon absorption of the coumarin chromophore the characteristic Eu(iii) emission could be observed upon excitation at 800 nm, demonstrating the usefulness of the system for in vivo fluorescence imaging applications. To the best of our knowledge, this is the first example reporting the potential of a holmium(iii) chelate as a negative MRI contrast agent.

  9. Construction of Polynuclear Lanthanide (Ln = Dy(III), Tb(III), and Nd(III)) Cage Complexes Using Pyridine-Pyrazole-Based Ligands: Versatile Molecular Topologies and SMM Behavior.

    PubMed

    Bala, Sukhen; Sen Bishwas, Mousumi; Pramanik, Bhaskar; Khanra, Sumit; Fromm, Katharina M; Poddar, Pankaj; Mondal, Raju

    2015-09-08

    Employment of two different pyridyl-pyrazolyl-based ligands afforded three octanuclear lanthanide(III) (Ln = Dy, Tb) cage compounds and one hexanuclear neodymium(III) coordination cage, exhibiting versatile molecular architectures including a butterfly core. Relatively less common semirigid pyridyl-pyrazolyl-based asymmetric ligand systems show an interesting trend of forming polynuclear lanthanide cage complexes with different coordination environments around the metal centers. It is noteworthy here that construction of lanthanide complex itself is a challenging task in a ligand system as soft N-donor rich as pyridyl-pyrazol. We report herein some lanthanide complexes using ligand containing only one or two O-donors compare to five N-coordinating sites. The resultant multinuclear lanthanide complexes show interesting magnetic and spectroscopic features originating from different spatial arrangements of the metal ions. Alternating current (ac) susceptibility measurements of the two dysprosium complexes display frequency- and temperature-dependent out-of-phase signals in zero and 0.5 T direct current field, a typical characteristic feature of single-molecule magnet (SMM) behavior, indicating different energy reversal barriers due to different molecular topologies. Another aspect of this work is the occurrence of the not-so-common SMM behavior of the terbium complex, further confirmed by ac susceptibility measurement.

  10. Prognostic Value of Late Gadolinium Enhancement Cardiovascular Magnetic Resonance in Cardiac Amyloidosis.

    PubMed

    Fontana, Marianna; Pica, Silvia; Reant, Patricia; Abdel-Gadir, Amna; Treibel, Thomas A; Banypersad, Sanjay M; Maestrini, Viviana; Barcella, William; Rosmini, Stefania; Bulluck, Heerajnarain; Sayed, Rabya H; Patel, Ketna; Mamhood, Shameem; Bucciarelli-Ducci, Chiara; Whelan, Carol J; Herrey, Anna S; Lachmann, Helen J; Wechalekar, Ashutosh D; Manisty, Charlotte H; Schelbert, Eric B; Kellman, Peter; Gillmore, Julian D; Hawkins, Philip N; Moon, James C

    2015-10-20

    The prognosis and treatment of the 2 main types of cardiac amyloidosis, immunoglobulin light chain (AL) and transthyretin (ATTR) amyloidosis, are substantially influenced by cardiac involvement. Cardiovascular magnetic resonance with late gadolinium enhancement (LGE) is a reference standard for the diagnosis of cardiac amyloidosis, but its potential for stratifying risk is unknown. Two hundred fifty prospectively recruited subjects, 122 patients with ATTR amyloid, 9 asymptomatic mutation carriers, and 119 patients with AL amyloidosis, underwent LGE cardiovascular magnetic resonance. Subjects were followed up for a mean of 24±13 months. LGE was performed with phase-sensitive inversion recovery (PSIR) and without (magnitude only). These were compared with extracellular volume measured with T1 mapping. PSIR was superior to magnitude-only inversion recovery LGE because PSIR always nulled the tissue (blood or myocardium) with the longest T1 (least gadolinium). LGE was classified into 3 patterns: none, subendocardial, and transmural, which were associated with increasing amyloid burden as defined by extracellular volume (P<0.0001), with transitions from none to subendocardial LGE at an extracellular volume of 0.40 to 0.43 (AL) and 0.39 to 0.40 (ATTR) and to transmural at 0.48 to 0.55 (AL) and 0.47 to 0.59 (ATTR). Sixty-seven patients (27%) died. Transmural LGE predicted death (hazard ratio, 5.4; 95% confidence interval, 2.1-13.7; P<0.0001) and remained independent after adjustment for N-terminal pro-brain natriuretic peptide, ejection fraction, stroke volume index, E/E', and left ventricular mass index (hazard ratio, 4.1; 95% confidence interval, 1.3-13.1; P<0.05). There is a continuum of cardiac involvement in systemic AL and ATTR amyloidosis. Transmural LGE is determined reliably by PSIR and represents advanced cardiac amyloidosis. The PSIR technique provides incremental information on outcome even after adjustment for known prognostic factors. © 2015 The Authors.

  11. Optical fiber sensor for low dose gamma irradiation monitoring

    NASA Astrophysics Data System (ADS)

    de Andrés, Ana I.; Esteban, Ã.`scar; Embid, Miguel

    2016-05-01

    An optical fiber gamma ray detector is presented in this work. It is based on a Terbium doped Gadolinium Oxysulfide (Gd2O2S:Tb) scintillating powder which cover a chemically etched polymer fiber tip. This etching improves the fluorescence gathering by the optical fiber. The final diameter has been selected to fulfill the trade-off between light gathering and mechanical strength. Powder has been encapsulated inside a microtube where the fiber tip is immersed. The sensor has been irradiated with different air Kerma doses up to 2 Gy/h with a 137Cs source, and the spectral distribution of the fluorescence intensity has been recorded in a commercial grade CCD spectrometer. The obtained signal-to-noise ratio is good enough even for low doses, which has allowed to reduce the integration time in the spectrometer. The presented results show the feasibility for using low cost equipment to detect/measure ionizing radiation as gamma rays are.

  12. Microscopic visualization of metabotropic glutamate receptors on the surface of living cells using bifunctional magnetic resonance imaging probes.

    PubMed

    Mishra, Anurag; Mishra, Ritu; Gottschalk, Sven; Pal, Robert; Sim, Neil; Engelmann, Joern; Goldberg, Martin; Parker, David

    2014-02-19

    A series of bimodal metabotropic glutamate-receptor targeted MRI contrast agents has been developed and evaluated, based on established competitive metabotropic Glu receptor subtype 5 (mGluR5) antagonists. In order to directly visualize mGluR5 binding of these agents on the surface of live astrocytes, variations in the core structure were made. A set of gadolinium conjugates containing either a cyanine dye or a fluorescein moiety was accordingly prepared, to allow visualization by optical microscopy in cellulo. In each case, surface receptor binding was compromised and cell internalization observed. Another approach, examining the location of a terbium analogue via sensitized emission, also exhibited nonspecific cell uptake in neuronal cell line models. Finally, biotin derivatives of two lead compounds were prepared, and the specificity of binding to the mGluR5 cell surface receptors was demonstrated with the aid of their fluorescently labeled avidin conjugates, using both total internal reflection fluorescence (TIRF) and confocal microscopy.

  13. Tunable energy transfer from d 10 heterobimetallic dicyanide(I) donor ions to terbium(III) acceptor ions in luminescent Tb[Ag xAu 1- x(CN) 2] 3 ( x = 0 → 1)

    NASA Astrophysics Data System (ADS)

    Lu, Haiyan; Yson, Renante; Ford, James; Tracy, Henry J.; Carrier, Alora B.; Keller, Aaron; Mullin, Jerome L.; Poissan, Michelle J.; Sawan, Samuel; Patterson, Howard H.

    2007-07-01

    We report on the heterobimetallic system, Tb[Ag xAu 1- x(CN) 2] 3 ( x = 0 → 1), in which sensitization of terbium luminescence occurs by energy transfer from [Ag xAu 1- x(CN) 2] - donor excited states. The donor states have energies which are tunable and dependent on the Ag/Au stoichiometric ratio. We report on their use as donor systems with Tb(III) ions as acceptor ions in energy transfer studies. Luminescence results show that the mixed metal dicyanides with the higher silver loading have a better energy transfer efficiency than the pure Ag(CN)2- and Au(CN)2- donors. The better energy transfer efficiency is due to the greater overlap between the donor emission and acceptor excitation.

  14. Gadolinium-free MR in coarctation-can contrast-enhanced MR angiography be replaced?

    PubMed

    Kalmar, Peter I; Koestenberger, Martin; Marterer, Robert; Tschauner, Sebastian; Sorantin, Erich

    2016-01-01

    To determine the difference in vessel measurements, signal-to-noise ratio (SNR), and voxel size between contrast-enhanced and noncontrast magnetic resonance techniques in patients with coarctation of the aorta (CoA). In 39 patients, vessel size, SNR, and voxel size were compared in cine magnetic resonance imaging (MRI), gadolinium-free magnetic resonance angiography (Gd-free MRA), and contrast-enhanced MRA (ce-MRA). There was no significant difference in measurement and SNR, but there was a significant difference in voxel size (P<.001). Our results show that, in CoA patients, monitoring of vessel size using cine MRI and Gd-free MRA is equivalent to ce-MRA while being less invasive. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Electronic transport in gadolinium atomic-size contacts

    NASA Astrophysics Data System (ADS)

    Olivera, B.; Salgado, C.; Lado, J. L.; Karimi, A.; Henkel, V.; Scheer, E.; Fernández-Rossier, J.; Palacios, J. J.; Untiedt, C.

    2017-02-01

    We report on the fabrication, transport measurements, and density functional theory (DFT) calculations of atomic-size contacts made of gadolinium (Gd). Gd is known to have local moments mainly associated with f electrons. These coexist with itinerant s and d bands that account for its metallic character. Here we explore whether and how the local moments influence electronic transport properties at the atomic scale. Using both scanning tunneling microscope and lithographic mechanically controllable break junction techniques under cryogenic conditions, we study the conductance of Gd when only few atoms form the junction between bulk electrodes made of the very same material. Thousands of measurements show that Gd has an average lowest conductance, attributed to single-atom contact, below 2/e2 h . Our DFT calculations for monostrand chains anticipate that the f bands are fully spin polarized and insulating and that the conduction may be dominated by s , p , and d bands. We also analyze the electronic transport for model nanocontacts using the nonequilibrium Green's function formalism in combination with DFT. We obtain an overall good agreement with the experimental results for zero bias and show that the contribution to the electronic transport from the f channels is negligible and that from the d channels is marginal.

  16. Dissociation and reconstruction of double-decker bis(phthalocyaninato) terbium(III) complex (TbPc2) on Pd(001): A theoretical investigation

    NASA Astrophysics Data System (ADS)

    Liu, Heng; Hu, Yujie; Wang, Hao; Jiang, Bo; Xu, Xuechun; Cai, Yingxiang

    2017-01-01

    The study of molecule dissociation is helpful to disclose the nature of chemical bonds and to extend molecular functions. The double-decker bis(phthalocyaninato) terbium(III) complex (TbPc2) is a promising single-molecule magnet (SMM) which exhibits potential applications in spin-devices. In this study, we investigate the dissociation and reconstruction of TbPc2 on Pd(001) surface. The results show that a single TbPc2 adsorbed on Pd(001) tends to split into Pc/Pd(001)+TbPc. However, the TbPc/Pd(001)+Pc might also be observed in an experimental study due to only a slight difference in their dissociation energy. The TbPc2 molecules on Pd(001) will form a (5×3) reconstruction which is different from the (3×4) reconstruction of PbPc on Pd(001). If the TbPc2 molecules with (5×3) reconstruction is dissociated, this reconstruction will be inherited by its daughter molecules due to strong molecule-substrate interaction. In addition, nudged elastic band (NEB) calculation shows that Tb-down is the stable state of TbPc/Pd(001) and Tb-up is a metastable state. The transition between two states might be utilized to realize TbPc's switch or storage functions.

  17. Dysprosium-Modified Tobacco Mosaic Virus Nanoparticles for Ultra-High-Field Magnetic Resonance and Near-Infrared Fluorescence Imaging of Prostate Cancer.

    PubMed

    Hu, He; Zhang, Yifan; Shukla, Sourabh; Gu, Yuning; Yu, Xin; Steinmetz, Nicole F

    2017-09-26

    The increasing prevalence of ultra-high-field magnetic resonance imaging (UHFMRI) in biomedical research and clinical settings will improve the resolution and diagnostic accuracy of MRI scans. However, better contrast agents are needed to achieve a satisfactory signal-to-noise ratio. Here, we report the synthesis of a bimodal contrast agent prepared by loading the internal cavity of tobacco mosaic virus (TMV) nanoparticles with a dysprosium (Dy 3+ ) complex and the near-infrared fluorescence (NIRF) dye Cy7.5. The external surface of TMV was conjugated with an Asp-Gly-Glu-Ala (DGEA) peptide via a polyethylene glycol linker to target integrin α 2 β 1 . The resulting nanoparticle (Dy-Cy7.5-TMV-DGEA) was stable and achieved a high transverse relaxivity in ultra-high-strength magnetic fields (326 and 399 mM -1 s -1 at 7 and 9.4 T, respectively). The contrast agent was also biocompatible (low cytotoxicity) and targeted PC-3 prostate cancer cells and tumors in vitro and in vivo as confirmed by bimodal NIRF imaging and T 2 -mapping UHFMRI. Our results show that Dy-Cy7.5-TMV-DGEA is suitable for multiscale MRI scanning from the cellular level to the whole body, particularly in the context of UHFMRI applications.

  18. Extension of the energy range of the experimental activation cross-sections data of longer-lived products of proton induced nuclear reactions on dysprosium up to 65MeV.

    PubMed

    Tárkányi, F; Ditrói, F; Takács, S; Hermanne, A; Ignatyuk, A V

    2015-04-01

    Activation cross-sections data of longer-lived products of proton induced nuclear reactions on dysprosium were extended up to 65MeV by using stacked foil irradiation and gamma spectrometry experimental methods. Experimental cross-sections data for the formation of the radionuclides (159)Dy, (157)Dy, (155)Dy, (161)Tb, (160)Tb, (156)Tb, (155)Tb, (154m2)Tb, (154m1)Tb, (154g)Tb, (153)Tb, (152)Tb and (151)Tb are reported in the 36-65MeV energy range, and compared with an old dataset from 1964. The experimental data were also compared with the results of cross section calculations of the ALICE and EMPIRE nuclear model codes and of the TALYS nuclear reaction model code as listed in the latest on-line libraries TENDL 2013. Copyright © 2015. Published by Elsevier Ltd.

  19. Design and development of a Gadolinium-doped water Cherenkov detector

    NASA Astrophysics Data System (ADS)

    Poudyal, Nabin

    This thesis describes a research and development project for neutron capture and detection in Gadolinium doped water. The Sanford Underground Research Facility (SURF) is exploring rare event physics, such as neutrinoless double beta decay (MAJORANA Project) and dark-matter detection (LUX experiment). The success of these experiments requires a careful study and understanding of background radiation, including flux and energy spectrum. The background radiation from surface contamination, radioactive decays of U-238, Th-232, Rn-222 in the surrounding rocks and muon induced neutrons have a large impact on the success of rare-event physics. The main objective of this R&D project is to measure the neutron flux contributing to ongoing experiments at SURF and suppress it by identification and capture method. For this purpose, we first modeled and designed a detector with Geant4 software. The approximate dimension of the detector is determined. The neutron capture percentage of the detector is estimated using Monte Carlo. The energy response of the detector is simulated. Next, we constructed the experimental detector, an acrylic rectangular tank (60cm x 30cm x 30cm), filled with Gadolinium-doped deionized water. The tank is coated with high efficient reflector and then taped with black electrical tape to make it opaque. The voltage dividers attached to PMTs are covered with mu-metal. Two 5-inch Hamamatsu Photomultiplier tubes were attached on both sides facing the tank to collect the Cherenkov light produced in the water. The detector utilizes the principle of Cherenkov light emission by a charged particle moving through a water at a speed higher than the speed of light in the water, hence it has an inherent energy threshold of Cherenkov photon production. This property reduces the lower energy backgrounds. Event data are obtained using the Data Acquisition hardware, Flash Analog to digital converter, along with Multi Instance Data Acquisition software. Post

  20. Anomalous Hall effect in calcium-doped lanthanum cobaltite and gadolinium

    NASA Astrophysics Data System (ADS)

    Baily, Scott Alan

    The physical origin of the anomalous (proportional to magnetization) Hall effect is not very well understood. While many theories account for a Hall effect proportional to the magnetization of a material, these theories often predict effects significantly smaller than those found in ferromagnetic materials. An even more significant deficiency of the conventional theories is that they predict an anomalous Hall resistivity that is proportional to a power of the resistivity, and in the absence of a metal insulator transition cannot account for the anomalous Hall effect that peaks near TC. Recent models based on a geometric, or Berry, phase have had a great deal of success describing the anomalous Hall effect in double-exchange systems (e.g., lanthanum manganite and chromium dioxide). In gadolinium, as in double-exchange magnets, the exchange interaction is mediated by the conduction electrons and the anomalous Hall effect may therefore resemble that of CrO2 and other metallic double-exchange ferromagnets. Lanthanum cobaltite is similar to manganite in many ways, but a strong double-exchange interaction is not present. Calcium-doped lanthanum cobaltite films were found to have the largest anomalous Hall effect of any ferromagnetic metal. The primary purpose of this study is to gain insight into the origin of the anomalous Hall effect with the hope that these theories can be extended to account for the effect in other materials. The Hall resistivity, magnetoresistance, and magnetization of a Gadolinium single crystal were measured in fields up to 30 T. Cobaltite films were grown via laser ablation and characterized by a variety of techniques. Hall resistivity, magnetoresistance, magnetization, and magnetothermopower of L 1-xCaxCoO3 samples with 0.15 < x < 0.4 were measured in fields up to 7 T. The Gd results suggest that Berry's phase contributes partially to the Hall effect near TC. Berry's phase theories hold promise for explaining the large anomalous Hall effect in

  1. Gadolinium oxide nanoplates with high longitudinal relaxivity for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Cho, Minjung; Sethi, Richa; Ananta Narayanan, Jeyarama Subramanian; Lee, Seung Soo; Benoit, Denise N.; Taheri, Nasim; Decuzzi, Paolo; Colvin, Vicki L.

    2014-10-01

    Molecular-based contrast agents for magnetic resonance imaging (MRI) are often characterized by insufficient relaxivity, thus requiring the systemic injection of high doses to induce sufficient contrast enhancement at the target site. In this work, gadolinium oxide (Gd2O3) nanoplates are produced via a thermal decomposition method. The nanoplates have a core diameter varying from 2 to 22 nm, a thickness of 1 to 2 nm and are coated with either an oleic acid bilayer or an octylamine modified poly(acrylic acid) (PAA-OA) polymer layer. For the smaller nanoplates, longitudinal relaxivities (r1) of 7.96 and 47.2 (mM s)-1 were measured at 1.41 T for the oleic acid bilayer and PAA-OA coating, respectively. These values moderately reduce as the size of the Gd2O3 nanoplates increases, and are always larger for the PAA-OA coating. Cytotoxicity studies on human dermal fibroblast cells documented no significant toxicity, with 100% cell viability preserved up to 250 μM for the PAA-OA coated Gd2O3 nanoplates. Given the 10 times increase in longitudinal relaxivity over the commercially available Gd-based molecular agents and the favorable toxicity profile, the 2 nm PAA-OA coated Gd2O3 nanoplates could represent a new class of highly effective T1 MRI contrast agents.Molecular-based contrast agents for magnetic resonance imaging (MRI) are often characterized by insufficient relaxivity, thus requiring the systemic injection of high doses to induce sufficient contrast enhancement at the target site. In this work, gadolinium oxide (Gd2O3) nanoplates are produced via a thermal decomposition method. The nanoplates have a core diameter varying from 2 to 22 nm, a thickness of 1 to 2 nm and are coated with either an oleic acid bilayer or an octylamine modified poly(acrylic acid) (PAA-OA) polymer layer. For the smaller nanoplates, longitudinal relaxivities (r1) of 7.96 and 47.2 (mM s)-1 were measured at 1.41 T for the oleic acid bilayer and PAA-OA coating, respectively. These values

  2. Electronic structure, charge transfer, and intrinsic luminescence of gadolinium oxide nanoparticles: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Zatsepin, D. A.; Boukhvalov, D. W.; Zatsepin, A. F.; Kuznetsova, Yu. A.; Mashkovtsev, M. A.; Rychkov, V. N.; Shur, V. Ya.; Esin, A. A.; Kurmaev, E. Z.

    2018-04-01

    The cubic (c) and monoclinic (m) polymorphs of Gd2O3 were studied using the combined analysis of several materials science techniques - X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) spectroscopy. Density functional theory (DFT) based calculations for the samples under study were performed as well. The cubic phase of gadolinium oxide (c-Gd2O3) synthesized using a precipitation method exhibits spheroidal-like nanoclusters with well-defined edges assembled from primary nanoparticles with an average size of 50 nm, whereas the monoclinic phase of gadolinium oxide (m-Gd2O3) deposited using explosive pyrolysis has a denser structure compared with natural gadolinia. This phase also has a structure composed of three-dimensional complex agglomerates without clear-edged boundaries that are ∼21 nm in size plus a cubic phase admixture of only 2 at.% composed of primary edge-boundary nanoparticles ∼15 nm in size. These atomic features appear in the electronic structure as different defects ([Gd…Osbnd OH] and [Gd…Osbnd O]) and have dissimilar contributions to the charge-transfer processes among the appropriate electronic states with ambiguous contributions in the Gd 5р - O 2s core-like levels in the valence band structures. The origin of [Gd…Osbnd OH] defects found by XPS was well-supported by PL analysis. The electronic and atomic structures of the synthesized gadolinias calculated using DFT were compared and discussed on the basis of the well-known joint OKT-van der Laan model, and good agreement was established.

  3. Magnetic and magnetothermal studies of pure and doped gadolinium silicide nanoparticles for self-controlled hyperthermia applications

    NASA Astrophysics Data System (ADS)

    Alnasir, M. Hisham; Awan, M. S.; Manzoor, Sadia

    2018-03-01

    We report on magnetic and magnetothermal properties of undoped and doped gadolinium silicide (Gd5Si4) nanoparticles with the objective of simultaneously attaining high specific absorption rate (SAR) and low Curie temperature (TC) suitable for self-controlled hyperthermia applications for which TC ∼ 315-320 K. Pellets of doped gadolinium silicide Gd5(Si1-xGex)4 and (Gd1-xRx)5Si4 with R = Ho, Nd and Er and 0 ≤ x ≤ 0.35 were made by arc melting and reduced to nanoparticulate form by surfactant assisted ball milling. Structural and morphological studies were done using X-ray diffraction and scanning electron microscopy respectively. All samples show soft magnetic properties. At low fields there is a ferromagnetic to paramagnetic transition that reduces remanance and coercivity to zero making these materials very attractive for biomedical applications. Zero-field-cooled thermal demagnetization measurements showed that TC of these nanoparticles can be lowered to lie within the limits required for self-controlled hyperthermia by varying the dopant concentration. Specific absorption rates (SAR's) were obtained from magnetothermia measurements made in an ac magnetic field of amplitude 10 Oe and frequency 300 kHz. We have identified samples that have SAR values larger or comparable to those of magnetite and several ferrite nanoparticles, while having Curie temperatures that are low enough for self controlled hyperthermia applications.

  4. Hypophosphatemia is Associated with the Serial Administration of Triple-Dose Gadolinium to Patients for Brain MRI.

    PubMed

    Wolansky, Leo J; Cadavid, Diego; Punia, Vineet; Kim, Soyeon; Cheriyan, Jojy; Haghighi, Mershad; Cook, Stuart D

    2015-01-01

    The purpose of this study is to report a metabolic abnormality associated with frequent, triple-dose Gadolinium (TdGd) use in MS patients during BECOME trial. Potential clinical adverse events and lab abnormalities were monitored at each monthly MRI visit. Hypophosphatemia was defined as phosphate <2.5 mg/dL. Statistical analysis included McNemar's test for pairwise comparisons across visits and generalized estimating equations (GEE) to fit models over time. Eight hundred seventy seven phosphate values were analyzed from the first 12 months. Compared with 4% of subjects at screening, an average of 15.1% (95% confidence interval (CI): 11.4%-19.7%) of patients had hypophosphatemia at visits from months 1 to 12, during which subjects received serial TdGd. Forty four of seventy five (59%) patients developed hypophosphatemia at least once. We also found a significant increasing trend in hypophosphatemia by visit when treatment groups were evaluated together or separately (p < .001). There was a statistically significant decrease in frequency to 9.8% (95% CI: 4.6-19.8%) by month 24 (p = .005) coinciding with a period of less frequent gadolinium administration. Serial TdGd in MS patients, unrelated to immunomodulatory treatment, was associated with increased frequency of hypophosphatemia that progressed with cumulative triple-dose and markedly decreased in second year, with less frequent triple-dose administration. Copyright © 2015 by the American Society of Neuroimaging.

  5. Active extravasation of gadolinium-based contrast agent into the subdural space following lumbar puncture.

    PubMed

    Kothari, Pranay D; Hanser, Evelyn M; Wang, Harrison; Farid, Nikdokht

    2016-01-01

    A 38year-old male presented with cauda equina syndrome following multiple lumbar puncture attempts. Lumbar spine magnetic resonance imaging (MRI) showed a subdural hematoma and an area of apparent contrast enhancement in the spinal canal on sagittal post-contrast images. Axial post-contrast images obtained seven minutes later demonstrated an increase in size and change in shape of the region of apparent contrast enhancement, indicating active extravasation of the contrast agent. This is the first reported case of active extravasation of gadolinium-based contrast agent in the spine. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Determination of amlodipine using terbium-sensitized luminescence in the presence of europium(III) as a co-luminescence reagent.

    PubMed

    Al-Kindy, Salma M Z; Al-Snedi, Abdalla; Suliman, Fakhr Eldin O; Al-Lawati, Haidar A J

    2014-09-01

    A sensitive time-resolved luminescence method for the determination of amlodipine (AM) in methanol and in aqueous solution is described. The method is based on the luminescence sensitization of terbium (Tb(3+) ) by formation of a ternary complex with AM in the presence of tri-n-octylphosphine oxide (TOPO) as co-ligand, dodecylbenzenesulfate as surfactant and europium ion as a co-luminescence reagent. The signal for Tb-AM-TOPO is monitored at λex  = 242 nm and λem  = 550 nm. Optimum conditions for the formation of the complex in aqueous system were 0.015 m Tris (hydroxylmethyl) amino methane buffer, pH 9.0, TOPO (1.0 × 10(-4) m), Eu(3+) (2.0 × 10(-7) m), dodecylbenzenesulfate (0.14%) and 6.0 × 10(-5) m of Tb(3+) , which allows the determination of 10-50 ppb of AM with a limit of detection of 1.2 ppb. The relative standard deviations of the method range between 0.1 and 0.2% indicated excellent reproducibility of the method. The proposed method was successfully applied for the assay of AM in pharmaceutical formulations and in plasma samples. Average recoveries of 98.5 ± 0.2% and 95.2 ± 0.2% were obtained for AM in tablet and plasma samples respectively. Copyright © 2013 John Wiley & Sons, Ltd.

  7. Retention of gadolinium compounds used in magnetic resonance imaging: a critical review and the recommendations of regulatory agencies.

    PubMed

    Martí-Bonmatí, L; Martí-Bonmatí, E

    The Spanish Agency for Drugs and Healthcare Products (AEMPS), based on the recommendations of the European Committee for Risk Assessment in Pharmacovigilance, established on 13 March 2017 that linear gadolinium-based MR contrast media, such as MultiHance, Omniscan, Magnevist (currently not marketed) and Optimark (no longer marketed in Spain), the clinical benefits do not outweigh the potential risks derived from their use. AEMPS recommends to suspend its marketing for general use based on the retention of these compounds in the brain. On the other hand, the AEMPS justifies the maintenance of Primovist and MultiHance for liver studies, and Magnevist of intra-articular administration (not commercialized in Spain), and justified the almost exclusive use of macrocyclic structure contrasts (Gadovist, ProHance and Dotarem). However, this retention is known to be different for each of the contrast media. All existing gadolinium contrasts agents have a distribution phase with tissue retention, due to a very slow exchange, in the interstitium of bone, skin, kidney, brain and other organs. The existence of histological effects or clinical symptoms associated with the accumulation of these trace amounts of gadolinium has not been demonstrated. The major toxicological concern with these contrast agents is related to nephrogenic systemic fibrosis (NSF). Since the safety profiles are mainly related to the interstitial retention space in the tissues, it does not seem justified to actually exclude contrast media that do not have cases related to the NSF. Based on all of this, we disagree with the latest AEMPS recommendation suggesting the marketing stoppage of linear agents without considering the individual retention profiles. This recommendation is not based neither on the data nor existing knowledge about the retention, relaxivity and clinical efficiency of the Gd compounds. It is therefore necessary to carry out prospective studies on the histological and clinical relevance of

  8. Equation of state of zircon- and scheelite-type dysprosium orthovanadates: a combined experimental and theoretical study.

    PubMed

    Paszkowicz, Wojciech; Ermakova, Olga; López-Solano, Javier; Mujica, Andrés; Muñoz, Alfonso; Minikayev, Roman; Lathe, Christian; Gierlotka, Stanisław; Nikolaenko, Irina; Dabkowska, Hanna

    2014-01-15

    Dysprosium orthovanadate, DyVO4, belongs to a family of zircon-type orthovanadates showing a phase transition to scheelite-type structures at moderate pressures below 10 GPa. In the present study, the equations of state (EOSs) for both these phases were determined for the first time using high-pressure x-ray diffraction experiments and ab initio calculations based on the density functional theory. Structural parameters for scheelite-type DyVO4 were calculated from x-ray powder diffraction data as well. The high-pressure experiments were performed under pseudo-hydrostatic conditions at pressures up to 8.44 GPa and 5.5 GPa for the stable zircon-type and metastable (quenched) scheelite-type samples, respectively. Assuming as a compression model the Birch-Murnaghan EOS, we obtained the EOS parameters for both phases. The experimental bulk moduli (K0) for zircon-type and scheelite-type DyVO4 are 118(4) GPa and 153(6) GPa, respectively. Theoretical equations of state were determined by ab initio calculations using the PBE exchange-correlation energy functional of Perdew, Burke, and Ernzerhof. These calculations provide K0 values of 126.1 GPa and 142.9 GPa for zircon-type and scheelite-type DyVO4, respectively. The reliability of the present experimental and theoretical results is supported by (i) the consistency between the values yielded by the two methods (the discrepancy in K0 is as low as about 7% for each of the studied polymorphs) and (ii) their similarity to results obtained under similar compression conditions (hydrostatic or pseudo-hydrostatic) for other rare-earth orthovanadates, such as YVO4 and TbVO4.

  9. Gadolinium-loaded gel scintillators for neutron and antineutrino detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riddle, Catherine Lynn; Akers, Douglas William; Demmer, Ricky Lynn

    A gadolinium (Gd) loaded scintillation gel (Gd-ScintGel) compound allows for neutron and gamma-ray detection. The unique gel scintillator encompasses some of the best features of both liquid and solid scintillators, yet without many of the disadvantages associated therewith. Preferably, the gel scintillator is a water soluble Gd-DTPA compound and water soluble fluorophores such as: CdSe/ZnS (or ZnS) quantum dot (Q-dot) nanoparticles, coumarin derivatives 7-hydroxy-4-methylcoumarin, 7-hydroxy-4-methylcoumarin-3-acetic acid, 7-hydroxycoumarin-3-carboxylic acid, and Alexa Fluor 350 as well as a carbostyril compound, carbostyril 124 in a stable water-based gel, such as methylcellulose or polyacrylamide polymers. The Gd-loaded ScintGel allows for a homogenious distribution ofmore » the Gd-DTPA and the fluorophores, and yields clean fluorescent emission peaks. A moderator, such as deuterium or a water-based clear polymer, can be incorporated in the Gd-ScintGel. The gel scintillators can be used in compact detectors, including neutron and antineutrino detectors.« less

  10. Luminescence properties and electronic structure of Ce{sup 3+}-doped gadolinium aluminum garnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dotsenko, V.P., E-mail: ssclab@ukr.net; Berezovskaya, I.V.; Voloshinovskii, A.S.

    2015-04-15

    Highlights: • The luminescence properties of Ce{sup 3+} ions in (Y, Gd){sub 3}Al{sub 5}O{sub 12} are analyzed. • The Gd{sup 3+} → Y{sup 3+} substitution leads to increasing of Ce{sup 3+} noncubic crystal field splitting parameter. • The excitation spectra for the Ce{sup 3+} emission in GdAG contain bands at 6.67, 7.75, and 9.76 eV. • These features are due to the Ce{sup 3+}-bound exciton formation and O 2p → Al 3s, 3p transitions. • Contributions from Al atoms to the conduction-band density of states are quite essential. - Abstract: Yttrium-gadolinium aluminum garnets (YGdAG) doped with Ce{sup 3+} ions havemore » been prepared by co-precipitation method. The luminescent properties of Ce{sup 3+} ions in Gd{sub 3(1−x)}Ce{sub 3x}Al{sub 5}O{sub 12} (x = 0.01) have been studied upon excitation in the 2–20 eV region. The substitution of Gd{sup 3+} for Y{sup 3+} in the garnet structure results in broadening the emission band and shifting its maximum towards the longer wavelengths. It was found that in addition to the 4f → 5d excitation bands of Ce{sup 3+} ions, the excitation spectra for the Ce{sup 3+} emission contain bands at 6.67, 7.75, and 9.76 eV. These bands are attributed to the Ce{sup 3+}-bound exciton formation and O 2p → Al 3s, 3p transitions, respectively. Although gadolinium states dominate near the bottom of the conduction band of Gd{sub 3}Al{sub 5}O{sub 12}, contributions from Al{sub tetr} and Al{sub oct} atoms to the conduction-band density of states are evaluated as quite essential.« less

  11. Transient Fluorescence Spectroscopy and laser induced fluorescence lifetimes of terbium doped dipicolinic acid

    NASA Astrophysics Data System (ADS)

    Makoui, Anali

    We have investigated the use of deep UV laser induced fluorescence for the sensitive detection and spectroscopic lifetime studies of terbium doped dipicolinic acid (DPA-Tb) and used this to study the optical characteristics of DPA which is a chemical surrounding most bacterial spores. Background absorption spectra, fluorescence spectra, and Excitation Emission Matrix (EEM) spectra were made of the DPA-Tb complex, using both fixed 266 nm wavelength and tunable (220 nm--280 nm) UV laser excitations. Of importance, the fluorescence lifetimes of the four main fluorescence peaks (488 nm, 543 nm, 581 nm, and 618 nm) of the DPA-Tb complex have been measured for the first time to our knowledge. The lifetimes of all the fluorescing lines have been measured as a function of DPA-Tb concentration, solvent pH, and solvent composition, including that for the weakest fluorescing line of DPA-Tb at 618 nm. In addition, a new spectroscopic lifetime measurement technique, which we call "Transient Fluorescence Spectroscopy", was developed. In this technique, a weak, quasi-CW, amplitude modulated UV laser (8.5 kHz) was used to measure the lifetimes of the fluorescence lines, and yields insight into energy transfer and excitation lifetimes within the system. This technique is especially useful when a high power laser is not either available or not suitable. In the latter case, this would be when a high power pulsed deep-UV laser could produce bleaching or destruction of the biological specimen. In addition, this technique simulated the excitation and fluorescence emission of the DPA-Tb using a 4-level energy model, and solved the dynamic transient rate equations to predict the temporal behavior of the DPA-Tb emitted fluorescence. Excellent agreement between the experiments and the simulation were found. This technique has the potential to provide a more accurate value for the fluorescence lifetime values. In addition, with the use of asymmetric excitation waveforms, the dynamic

  12. Prognostic Value of Late Gadolinium Enhancement Cardiovascular Magnetic Resonance in Cardiac Amyloidosis

    PubMed Central

    Fontana, Marianna; Pica, Silvia; Reant, Patricia; Abdel-Gadir, Amna; Treibel, Thomas A.; Banypersad, Sanjay M.; Maestrini, Viviana; Barcella, William; Rosmini, Stefania; Bulluck, Heerajnarain; Sayed, Rabya H.; Patel, Ketna; Mamhood, Shameem; Bucciarelli-Ducci, Chiara; Whelan, Carol J.; Herrey, Anna S.; Lachmann, Helen J.; Wechalekar, Ashutosh D.; Manisty, Charlotte H.; Schelbert, Eric B.; Kellman, Peter; Gillmore, Julian D.; Hawkins, Philip N.

    2015-01-01

    Background— The prognosis and treatment of the 2 main types of cardiac amyloidosis, immunoglobulin light chain (AL) and transthyretin (ATTR) amyloidosis, are substantially influenced by cardiac involvement. Cardiovascular magnetic resonance with late gadolinium enhancement (LGE) is a reference standard for the diagnosis of cardiac amyloidosis, but its potential for stratifying risk is unknown. Methods and Results— Two hundred fifty prospectively recruited subjects, 122 patients with ATTR amyloid, 9 asymptomatic mutation carriers, and 119 patients with AL amyloidosis, underwent LGE cardiovascular magnetic resonance. Subjects were followed up for a mean of 24±13 months. LGE was performed with phase-sensitive inversion recovery (PSIR) and without (magnitude only). These were compared with extracellular volume measured with T1 mapping. PSIR was superior to magnitude-only inversion recovery LGE because PSIR always nulled the tissue (blood or myocardium) with the longest T1 (least gadolinium). LGE was classified into 3 patterns: none, subendocardial, and transmural, which were associated with increasing amyloid burden as defined by extracellular volume (P<0.0001), with transitions from none to subendocardial LGE at an extracellular volume of 0.40 to 0.43 (AL) and 0.39 to 0.40 (ATTR) and to transmural at 0.48 to 0.55 (AL) and 0.47 to 0.59 (ATTR). Sixty-seven patients (27%) died. Transmural LGE predicted death (hazard ratio, 5.4; 95% confidence interval, 2.1–13.7; P<0.0001) and remained independent after adjustment for N-terminal pro-brain natriuretic peptide, ejection fraction, stroke volume index, E/E′, and left ventricular mass index (hazard ratio, 4.1; 95% confidence interval, 1.3–13.1; P<0.05). Conclusions— There is a continuum of cardiac involvement in systemic AL and ATTR amyloidosis. Transmural LGE is determined reliably by PSIR and represents advanced cardiac amyloidosis. The PSIR technique provides incremental information on outcome even after

  13. Metabolomic Analysis of N-acetylcysteine Protection of Injury from Gadolinium-DTPA Contrast Agent in Rats with Chronic Renal Failure.

    PubMed

    Wan, Chuanling; Xue, Rong; Zhan, Youyang; Wu, Yijie; Li, Xiaojing; Pei, Fengkui

    2017-09-01

    Gadolinium-based contrast agents (GBCAs) are frequently used to enhance the diagnostic efficacy of magnetic resonance imaging. On the other hand, the association between GBCA administration in patients with advanced renal disease and nephrogenic systemic fibrosis (NSF) was also noted. NSF is a systemic disorder characterized by widespread tissue fibrosis that may lead to death. N-acetylcysteine (NAC) protects rats from injury induced by gadolinium-based contrast agents, but the underlying mechanisms remain unclear. In this study, a nuclear magnetic resonance-based metabolomic approach was used to systematically investigate the protective effects of NAC on Gd-DTPA-induced injury. Thirty-two male Sprague-Dawley rats were given adenine (200 mg·kg -1 body weight) by oral gavage once a day for 3 weeks to induce chronic renal failure (CRF). NAC (600 mg/L in drinking water for 9 days) pretreatment was initiated 2 days before Gd-DTPA injection (a single tail vein injection, 2 mmol/kg body weight). Serum and liver samples were collected on day 7 after Gd-DTPA injection. By study design, the serum and hepatic metabolic changes of rats were measured in four groups of eight each: CRF, CRF-Gd, CRF-Gd-NAC, and CRF-NAC. Gd-DTPA administration to rats with CRF resulted in disturbances of several metabolic pathways, including glucose, lipid, glutamate, choline, gut microbiota, one-carbon, and purine metabolism. NAC pretreatment reversed the abundance changes of high-density lipoprotein, low-density lipoprotein, very low-density lipoprotein, glutamate, glutamine, oxidized glutathione, choline, phosphocholine, glycerophosphocholine, trimethylamine, and trimethylamine-N-oxide induced by Gd-DTPA. It is noteworthy, however, that the ameliorating effects of NAC on the disturbance of glutamate, choline, and gut microbiota metabolism may be specific to Gd-DTPA. In all, these findings could be potentially useful to decipher the underlying mechanisms of NAC protective effects from the

  14. Heterogeneous intratumoral distribution of gadolinium nanoparticles within U87 human glioblastoma xenografts unveiled by micro-PIXE imaging.

    PubMed

    Carmona, Asuncion; Roudeau, Stéphane; L'Homel, Baptiste; Pouzoulet, Frédéric; Bonnet-Boissinot, Sarah; Prezado, Yolanda; Ortega, Richard

    2017-04-15

    Metallic nanoparticles have great potential in cancer radiotherapy as theranostic drugs since, they serve simultaneously as contrast agents for medical imaging and as radio-therapy sensitizers. As with other anticancer drugs, intratumoral diffusion is one of the main limiting factors for therapeutic efficiency. To date, a few reports have investigated the intratumoral distribution of metallic nanoparticles. The aim of this study was to determine the quantitative distribution of gadolinium (Gd) nanoparticles after direct intratumoral injection within U87 human glioblastoma tumors grafted in mice, using micro-PIXE (Particle Induced X-ray Emission) imaging. AGuIX (Activation and Guiding of Irradiation by X-ray) 3 nm particles composed of a polysiloxane network surrounded by gadolinium chelates were used. PIXE results indicate that the direct injection of Gd nanoparticles in tumors results in their heterogeneous diffusion, probably related to variations in tumor density. All tumor regions contain Gd, but with markedly different concentrations, with a more than 250-fold difference. Also Gd can diffuse to the healthy adjacent tissue. This study highlights the usefulness of mapping the distribution of metallic nanoparticles at the intratumoral level, and proposes PIXE as an imaging modality to probe the quantitative distribution of metallic nanoparticles in tumors from experimental animal models with micrometer resolution. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Safe use of iodinated and gadolinium-based contrast media in current practice in Japan: a questionnaire survey.

    PubMed

    Tsushima, Yoshito; Ishiguchi, Tsuneo; Murakami, Takamichi; Hayashi, Hiromitsu; Hayakawa, Katsumi; Fukuda, Kunihiko; Korogi, Yukunori; Sugimoto, Hideharu; Takehara, Yasuo; Narumi, Yoshifumi; Arai, Yasuaki; Kuwatsuru, Ryohei; Yoshimitsu, Kengo; Awai, Kazuo; Kanematsu, Masayuki; Takagi, Ryo

    2016-02-01

    To help establish consensus on the safe use of contrast media in Japan. Questionnaires were sent to accredited teaching hospitals with radiology residency programs. The reply rate was 45.4% (329/724). For contrast-induced nephropathy (CIN), chronic and acute kidney diseases were considered a risk factor in 96.7 and 93.6%, respectively, and dehydration in 73.9%. As preventive actions, intravenous hydration (89.1%) and reduction of iodinated contrast media dose (86.9%) were commonly performed. For nephrogenic systemic fibrosis (NSF), chronic and acute kidney diseases were considered risk factors in 98.5 and 90.6%, respectively, but use of unstable gadolinium-based contrast media was considered a risk factor in only 55.6%. A renal function test was always (63.5% in iodinated; 65.7% in gadolinium) or almost always (23.1; 19.8%) performed, and estimated glomerular filtration rate (eGFR) was the parameter most frequently used (80.8; 82.6%). For the patients with risk factors for acute adverse reaction (AAR), steroid premedication or/and change of contrast medium were frequent preventive actions, but intravenous steroid administration immediately before contrast media use was still performed. Our questionnaire survey revealed that preventive actions against CIN were properly performed based on patients' eGFR. Preventive actions against NSF and AAR still lacked consensus.

  16. Survey of gadolinium-based contrast agent utilization among the members of the Society for Pediatric Radiology: a Quality and Safety Committee report.

    PubMed

    Blumfield, Einat; Moore, Michael M; Drake, Mary K; Goodman, Thomas R; Lewis, Kristopher N; Meyer, Laura T; Ngo, Thang D; Sammet, Christina; Stanescu, Arta Luana; Swenson, David W; Slovis, Thomas L; Iyer, Ramesh S

    2017-05-01

    Gadolinium-based contrast agents (GBCAs) have been used for magnetic resonance (MR) imaging over the last three decades. Recent reports demonstrated gadolinium retention in patients' brains following intravenous administration. Since gadolinium is a highly toxic heavy metal, there is a potential for adverse effects from prolonged retention or deposition, particularly in children. For this reason, the Society (SPR) for Pediatric Radiology Quality and Safety committee conducted a survey to evaluate the current status of GBCAs usage among pediatric radiologists. To assess the usage of GBCAs among SPR members. An online 15-question survey was distributed to SPR members. Survey questions pertained to the type of GBCAs used, protocoling workflow, requirement of renal function or pregnancy tests, and various clinical indications for contrast-enhanced MRI examinations. A total of 163 survey responses were compiled (11.1% of survey invitations), the majority of these from academic institutions in the United States. Ninety-four percent reported that MR studies are always or usually protocoled by pediatric radiologists. The most common GBCA utilized by survey respondents were Eovist (60.7%), Ablavar (45.4%), Gadovist (38.7%), Magnevist (34.4%) and Dotarem (32.5%). For several clinical indications, survey responses regarding GBCA administration were concordant with American College of Radiology (ACR) Appropriateness Criteria, including seizures, headache and osteomyelitis. For other indications, including growth hormone deficiency and suspected vascular ring, survey responses revealed potential overutilization of GBCAs when compared to ACR recommendations. Survey results demonstrate that GBCAs are administered judiciously in children, yet there is an opportunity to improve their utilization with the goal of reducing potential future adverse effects.

  17. High longitudinal relaxivity of ultra-small gadolinium oxide prepared by microsecond laser ablation in diethylene glycol

    NASA Astrophysics Data System (ADS)

    Luo, Ningqi; Tian, Xiumei; Xiao, Jun; Hu, Wenyong; Yang, Chuan; Li, Li; Chen, Dihu

    2013-04-01

    Ultra-small gadolinium oxide (Gd2O3) can be used as T1-weighted Magnetic Resonance Imaging (MRI) contrast agent own to its high longitudinal relaxivity (r1) and has attracted intensive attention in these years. In this paper, ultra-small Gd2O3 nanoparticles of 3.8 nm in diameter have been successfully synthesized by a microsecond laser ablating a gadolinium (Gd) target in diethylene glycol (DEG). The growth inhibition effect induced by the large viscosity of DEG makes it possible to synthesize ultra-small Gd2O3 by laser ablation in DEG. The r1 value and T1-weighted MR images are measured by a 3.0 T MRI spectroscope. The results show these nanoparticles with a high r1 value of 9.76 s-1 mM-1 to be good MRI contrast agents. We propose an explanation for the high r1 value of ultra-small Gd2O3 by considering the decreasing factor (surface to volume ratio of the nanoparticles, S/V) and the increasing factor (water hydration number of the Gd3+ on Gd2O3 surface, q), which offer a new look into the relaxivity studies of MRI contrast agents. Our research provides a new approach to preparing ultra-small Gd2O3 of high r1 value by laser ablation in DEG and develops the understanding of high relaxivity of ultra-small Gd2O3 MRI contrast agents.

  18. Tumor Xenograft Response to Redox-Active Therapies Assessed by Magnetic Resonance Imaging Using a Thiol-Bearing DOTA Complex of Gadolinium1

    PubMed Central

    Guntle, Gerald P; Jagadish, Bhumasamudram; Mash, Eugene A; Powis, Garth; Dorr, Robert T; Raghunand, Natarajan

    2012-01-01

    Gd-LC6-SH is a thiol-bearing DOTA complex of gadolinium designed to bind plasma albumin at the conserved Cys34 site. The binding of Gd-LC6-SH shows sensitivity to the presence of competing thiols. We hypothesized that Gd-LC6-SH could provide magnetic resonance imaging (MRI) enhancement that is sensitive to tumor redox state and that the prolonged retention of albumin-bound Gd-LC6-SH in vivo can be exploited to identify a saturating dose above which the shortening of MRI longitudinal relaxation time (T1) of tissue is insensitive to the injected gadolinium dose. In the Mia-PaCa-2 pancreatic tumor xenograft model in SCID mice, both the small-molecule Gd-DTPA-BMA and the macromolecule Galbumin MRI contrast agents produced dose-dependent decreases in tumor T1. By contrast, the decreases in tumor T1 provided by Gd-LC6-SH at 0.05 and 0.1 mmol/kg were not significantly different at longer times after injection. SCID mice bearing Mia-PaCa-2 or NCI-N87 tumor xenografts were treated with either the glutathione synthesis inhibitor buthionine sulfoximine or the thiol-oxidizing anticancer drug Imexon, respectively. In both models, there was a significantly greater increase in tumor R1 (=1/T1) 60 minutes after injection of Gd-LC6-SH in drug-treated animals relative to saline-treated controls. In addition, Mercury Orange staining for nonprotein sulfhydryls was significantly decreased by drug treatment relative to controls in both tumor models. In summary, these studies show that thiol-bearing complexes of gadolinium such as Gd-LC6-SH can serve as redox-sensitive MRI contrast agents for detecting differences in tumor redox status and can be used to evaluate the effects of redox-active drugs. PMID:22741038

  19. Target binding improves relaxivity in aptamer-gadolinium conjugates.

    PubMed

    Bernard, Elyse D; Beking, Michael A; Rajamanickam, Karunanithi; Tsai, Eve C; Derosa, Maria C

    2012-12-01

    MRI contrast agents (CA) have been heavily used over the past several decades to enhance the diagnostic value of the obtained images. From a design perspective, two avenues to improve the efficacy of contrast agents are readily evident: optimization of magnetic properties of the CA, and optimization of the pharmacokinetics and distribution of the CA in the patient. Contrast agents consisting of DNA aptamer-gadolinium(III) conjugates provide a single system in which these factors can be addressed simultaneously. In this proof-of-concept study, the 15mer thrombin aptamer was conjugated to diethylenetriaminepentaacetic (DTPA) dianhydride to form a monoamide derivative of the linear open-chain chelate present in the commonly used contrast agent Magnevist(®). The stability of the conjugated DNA aptamer-DTPA-Gd(III) chelate in a transmetallation study using Zn(II) was found to be similar to that reported for DTPA-Gd(III). Relaxivity enhancements of 35 ± 4 and 20 ± 1 % were observed in the presence of thrombin compared to a control protein at fields of 9.4 and 1.5 T, respectively. The inclusion of spacers between the aptamer and the DTPA to eliminate possible steric effects was also investigated but not found to improve the relaxation enhancement achieved in comparison to the unaltered aptamer conjugate.

  20. A pyrophosphate-responsive gadolinium(III) MRI contrast agent.

    PubMed

    Surman, Andrew J; Bonnet, Célia S; Lowe, Mark P; Kenny, Gavin D; Bell, Jimmy D; Tóth, Eva; Vilar, Ramon

    2011-01-03

    This study shows that the relaxivity and optical properties of functionalised lanthanide-DTPA-bis-amide complexes (lanthanide=Gd(3+) and Eu(3+) , DTPA=diethylene triamine pentaacetic acid) can be successfully modulated by addition of specific anions, without direct Ln(3+) /anion coordination. Zinc(II)-dipicolylamine moieties, which are known to bind strongly to phosphates, were introduced in the amide "arms" of these ligands, and the interaction of the resulting Gd-Zn(2) complexes with a range of anions was screened by using indicator displacement assays (IDAs). Considerable selectivity for polyphosphorylated species (such as pyrophosphate and adenosine-5'-triphosphate (ATP)) over a range of other anions (including monophosphorylated anions) was apparent. In addition, we show that pyrophosphate modulates the relaxivity of the gadolinium(III) complex, this modulation being sufficiently large to be observed in imaging experiments. To establish the binding mode of the pyrophosphate and gain insight into the origin of the relaxometric modulation, a series of studies including UV/Vis and emission spectroscopy, luminescence lifetime measurements in H(2) O and D(2) O, (17) O and (31) P NMR spectroscopy and nuclear magnetic resonance dispersion (NMRD) studies were carried out. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Synthesis of gadolinium doped titanium(IV) oxide and their photocatalytic activity to decrease chemical oxygen demand (COD) value of water pollutants

    NASA Astrophysics Data System (ADS)

    Eddy, Diana Rakhmawaty; Dwiyanti, Dina; Rahayu, Iman; Hastiawan, Iwan; Bahti, Husein H.

    2017-05-01

    Pesticides are widely used for the control of plant disease. Unfortunately they are highly toxic to terraneous and aquatic life; this is a particular problem in agricultural areas. TiO2 is widely used for pesticide control because of its photocatalytic activity, but it still has inadequacy in its wide band gap. Alternatively, the wide band gap of TiO2 could be narrowed by modification with rare earth element such as gadolinium, so the photocatalytic activity of TiO2could be significantly enhanced. The purpose of this experiment is to synthesize Gd/TiO2 and its application to reduce COD of water pollutants such as carbosulfan pesticide. This experiment is done by doping gadolinium oxide into titanium tetra isopropoxide by sol-gel method. The crystal structure is characterized by using XRD, shown anatase successfully obtained with the smallest crystallite size is 37.655 nm, indicated optimum calcination time is 4 hours. SEM-EDX result shown morphology of crystal is big aggregates. Photocatalytic activity is tested to carbosulfan pesticide, obtained the COD percent decreases up to 87.88%.

  2. Dysprosium-sensitized chemiluminescence system for the determination of enoxacin in pharmaceutical preparations and biological fluids with flow-injection sampling.

    PubMed

    Sun, Han-wen; Wu, Yuan-yuan; Li, Li-qing

    2009-03-01

    A novel trivalence dysprosium(Dy(3+))-sensitized chemiluminescence method was developed for the first time for the determination of enoxacin (ENX) using flow-injection sampling based on the chemiluminescence (CL) associated with the reaction of the Dy(3+)-cerium(Ce(IV))-S(2)O(3) (2-)-ENX system and the Dy(3+)-MnO(4) (-) S(2)O(3) (2-)-ENX system. The analytical conditions for CL emission were investigated and optimized. The relationship between the CL intensity of ENX and its concentration has good linearity, with a correlation coefficient of 0.9984-0.9994. The limit of detection (LOD, 3sigma) was 0.20 ng/mL for the Dy(3+)-ENX-S(2)O(3)(2-)-Ce(IV)-H(2)SO(4) system and 0.22 ng/mL for the Dy(3+)-ENX-S(2)O(3)(2-)-MnO(4) (-)-HNO(3) system. The relative standard deviation (RSD, n = 11) was 1.8% for 11 determinations of 60 ng/mL ENX. The proposed method was applied to the analysis of ENX in injections, serum and urine samples with a recovery of 98%-105%. A possible mechanism for this sensitized CL reaction is discussed by comparing the CL spectra with the fluorescence emission spectra. The proposed method represents a wide linear range, high sensitivity and accuracy, and can be used for the routine determination of ENX in pharmaceutical preparations and biological fluids. Copyright 2009 John Wiley & Sons, Ltd.

  3. Controllable Fabrication and Optical Properties of Uniform Gadolinium Oxysulfate Hollow Spheres

    PubMed Central

    Chen, Fashen; Chen, Gen; Liu, Tao; Zhang, Ning; Liu, Xiaohe; Luo, Hongmei; Li, Junhui; Chen, Limiao; Ma, Renzhi; Qiu, Guanzhou

    2015-01-01

    Uniform gadolinium oxysulfate (Gd2O2SO4) hollow spheres were successfully fabricated by calcination of corresponding Gd-organic precursor obtained via a facile hydrothermal process. The Gd2O2SO4 hollow spheres have a mean diameter of approximately 550 nm and shell thickness in the range of 30–70 nm. The sizes and morphologies of as-prepared Gd2O2SO4 hollow spheres could be deliberately controlled by adjusting the experimental parameters. Eu-doped Gd2O2SO4 hollow spheres have also been prepared for the property modification and practical applications. The structure, morphology, and properties of as-prepared products were characterized by XRD, TEM, HRTEM, SEM and fluorescence spectrophotometer. Excited with ultraviolet (UV) pump laser, successful downconversion (DC) could be achieved for Eu-doped Gd2O2SO4 hollow spheres. PMID:26671661

  4. Caustic Precipitation of Plutonium Using Gadolinium as the Neutron Poison for Disposition to High Level Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bronikowski, M.G.

    2002-06-24

    Nuclear Materials Management Division (NMMD) has proposed that up to 100 kg of the plutonium (Pu) solutions stored in H-Canyon be precipitated with a nuclear poison and dispositioned to H-Area Tank Farm. The use of gadolinium (Gd) as the poison would greatly reduce the number of additional glass logs resulting from this disposition. This report summarizes the characteristics of the precipitation process and addresses criticality concerns in the Nuclear Criticality Safety Evaluation. No problems were found with the nature of the precipitate or the neutralization process.

  5. Effects of iodinated contrast agent, xylocaine and gadolinium concentration on the signal emitted in magnetic resonance arthrography: a samples study*

    PubMed Central

    da Silva, Yvana Lopes Pinheiro; Costa, Rita Zanlorensi Visneck; Pinho, Kátia Elisa Prus; Ferreira, Ricardo Rabello; Schuindt, Sueliton Miyamoto

    2015-01-01

    Objective To investigate the effects of dilution of paramagnetic contrast agent with iodinated contrast and xylocaine on the signal intensity during magnetic resonance arthrography, and to improve the paramagnetic contrast agent concentration utilized in this imaging modality. Materials and Methods Samples specially prepared for the study with three different concentrations of paramagnetic contrast agent diluted in saline, iodinated contrast agent and xylocaine were imaged with fast spin echo T1-weighted sequences with fat saturation. The samples were placed into flasks and graphical analysis of the signal intensity was performed as a function of the paramagnetic contrast concentration. Results As compared with samples of equal concentrations diluted only with saline, the authors have observed an average signal intensity decrease of 20.67% for iodinated contrast agent, and of 28.34% for xylocaine. However, the increased gadolinium concentration in the samples caused decrease in signal intensity with all the dilutions. Conclusion Minimizing the use of iodinated contrast media and xylocaine and/or the use of a gadolinium concentration of 2.5 mmol/L diluted in saline will improve the sensitivity of magnetic resonance arthrography. PMID:25987746

  6. Diagnostic value of three-dimensional magnetic resonance imaging of inner ear after intratympanic gadolinium injection, and clinical application of magnetic resonance imaging scoring system in patients with delayed endolymphatic hydrops.

    PubMed

    Gu, X; Fang, Z-M; Liu, Y; Lin, S-L; Han, B; Zhang, R; Chen, X

    2014-01-01

    Three-dimensional fluid-attenuated inversion recovery magnetic resonance imaging of the inner ear after intratympanic injection of gadolinium, together with magnetic resonance imaging scoring of the perilymphatic space, were used to investigate the positive identification rate of hydrops and determine the technique's diagnostic value for delayed endolymphatic hydrops. Twenty-five patients with delayed endolymphatic hydrops underwent pure tone audiometry, bithermal caloric testing, vestibular-evoked myogenic potential testing and three-dimensional magnetic resonance imaging of the inner ear after bilateral intratympanic injection of gadolinium. The perilymphatic space of the scanned images was analysed to investigate the positive identification rate of endolymphatic hydrops. According to the magnetic resonance imaging scoring of the perilymphatic space and the diagnostic standard, 84 per cent of the patients examined had endolymphatic hydrops. In comparison, the positive identification rates for vestibular-evoked myogenic potential and bithermal caloric testing were 52 per cent and 72 per cent respectively. Three-dimensional magnetic resonance imaging after intratympanic injection of gadolinium is valuable in the diagnosis of delayed endolymphatic hydrops and its classification. The perilymphatic space scoring system improved the diagnostic accuracy of magnetic resonance imaging.

  7. Diagnosis of Bell palsy with gadolinium magnetic resonance imaging.

    PubMed

    Becelli, R; Perugini, M; Carboni, A; Renzi, G

    2003-01-01

    Bell palsy is a condition resulting from a peripheral edematous compression on the nervous fibers of the facial nerve. This pathological condition often has clinical characteristics of no importance and spontaneously disappears in a short time in a high percentage of cases. Facial palsy concerning cranial nerve VII can also be caused by other conditions such as mastoid fracture, acoustic neurinoma, tumor spread to the temporal lobe (e.g., cholesteatoma), neoformation of the parotid gland, Melkersson-Rosenthal syndrome, and Ramsay-Hunt syndrome. Therefore, it is important to adopt an accurate diagnostic technique allowing the rapid detection of Bell palsy and the exclusion of causes of facial paralysis requiring surgical treatment. Magnetic resonance imaging (MRI) with medium contrast of the skull shows a marked increase in revealing lesions, even of small dimensions, inside the temporal bone and at the cerebellopontine angle. The authors present a clinical case to show the important role played by gadolinium MRI in reaching a diagnosis of Bell palsy in the differential diagnosis of the various conditions that determine paralysis of the facial nerve and in selecting the most suitable treatment or surgery to be adopted.

  8. Gadolinium-enhanced MR images of the growing piglet skeleton: ionic versus nonionic contrast agent.

    PubMed

    Menezes, Nina M; Olear, Elizabeth A; Li, Xiaoming; Connolly, Susan A; Zurakowski, David; Foley, Mary; Shapiro, Frederic; Jaramillo, Diego

    2006-05-01

    To determine whether there are differences in the distribution of ionic and nonionic gadolinium-based contrast agents by evaluating contrast enhancement of the physis, epiphyseal cartilage, secondary ossification center, and metaphysis in the knees of normal piglets. Following approval from the Subcommittee on Research Animal Care, knees of 12 3-week-old piglets were imaged at 3-T magnetic resonance (MR) imaging after intravenous injection of gadoteridol (nonionic contrast agent; n = 6) or gadopentetate dimeglumine (ionic contrast agent; n = 6). Early enhancement evaluation with gradient-echo MR imaging was quantified and compared (Student t test) by means of enhancement ratios. Distribution of contrast material was assessed and compared (Student t test) by means of T1 measurements obtained before and at three 15-minute intervals after contrast agent administration. The relative visibility of the physis, epiphyseal cartilage, secondary ossification center, and metaphysis was qualitatively assessed by two observers and compared (Wilcoxon signed rank test). Differences in matrix content and cellularity that might explain the imaging findings were studied at histologic evaluation. Enhancement ratios were significantly higher for gadoteridol than for gadopentetate dimeglumine in the physis, epiphyseal cartilage, and secondary ossification center (P < .05). After contrast agent administration, T1 values decreased sharply for both agents-but more so for gadoteridol. Additionally, there was less variability in T1 values across structures with this contrast agent. Gadoteridol resulted in greater visibility of the physis, while gadopentetate dimeglumine resulted in greater contrast between the physis and metaphysis (P < .05). The results suggest different roles for the two gadolinium-based contrast agents: The nonionic contrast medium is better suited for evaluating perfusion and anatomic definition in the immature skeleton, while the ionic contrast medium is better for

  9. Gadolinium-enhanced magnetic resonance angiography in renal artery stenosis: comparison with digital subtraction angiography.

    PubMed

    Law, Y M; Tay, K H; Gan, Y U; Cheah, F K; Tan, B S

    2008-04-01

    To evaluate the accuracy of gadolinium-enhanced magnetic resonance angiography in assessing renal artery stenosis compared to catheter digital subtraction angiography. Retrospective study. Singapore General Hospital. Records of patients who underwent magnetic resonance angiography as well as digital subtraction angiography for assessment of renal artery stenosis from January 2003 to December 2005 were reviewed. There were 27 patients (14 male, 13 female) with a mean age of 62 (range, 44-77) years. There were 10 patients with renal transplants; their native renal arteries were not evaluated. Each of the two experienced interventional and body magnetic resonance radiologists, who were blinded to the results, reviewed the digital subtraction angiography and magnetic resonance angiography images respectively. Digital subtraction angiography was used as the standard of reference. A total of 39 renal arteries from these 27 patients were evaluated. One of the arteries was previously stented and could not be assessed with magnetic resonance angiography due to severe artefacts. Of the remaining 38 renal arteries, two were graded as normal, seven as having mild stenosis (<50%), eight as having moderate stenosis (> or =50% but <75%), and 21 as having severe stenosis (> or =75%). Magnetic resonance angiography and digital subtraction angiography were concordant in 89% of the arteries; magnetic resonance angiography overestimated the degree of stenosis in 8% and underestimated it in 3% of them. In the evaluation of clinically significant renal artery stenosis (> or =50%) with magnetic resonance angiography, the overall sensitivity, specificity, positive predictive value, and negative predictive value were 97%, 67%, 90%, and 86% respectively. The sensitivity and specificity of magnetic resonance angiography in transplant renal artery stenosis was 100%. CONCLUSION. Our experience suggested that gadolinium-enhanced magnetic resonance angiography is a sensitive non

  10. Synthesis, characterization, and binding assessment with human serum albumin of three bipyridine lanthanide(III) complexes.

    PubMed

    Aramesh-Boroujeni, Zahra; Bordbar, Abdol-Khalegh; Khorasani-Motlagh, Mozhgan; Sattarinezhad, Elham; Fani, Najme; Noroozifar, Meissam

    2018-05-18

    In this work, the terbium(III), dysprosium(III), and ytterbium(III) complexes containing 2, 2'-bipyridine (bpy) ligand have been synthesized and characterized using CHN elemental analysis, FT-IR, UV-Vis and 1 H-NMR techniques and their binding behavior with human serum albumin (HSA) was studied by UV-Vis, fluorescence and molecular docking examinations. The experimental data indicated that all three lanthanide complexes have high binding affinity to HSA with effective quenching of HSA fluorescence via static mechanism. The binding parameters, the type of interaction, the value of resonance energy transfer, and the binding distance between complexes and HSA were estimated from the analysis of fluorescence measurements and Förster theory. The thermodynamic parameters suggested that van der Waals interactions and hydrogen bonds play an important role in the binding mechanism. While, the energy transfer from HSA molecules to all these complexes occurs with high probability, the order of binding constants (BpyTb > BpyDy > BpyYb) represents the importance of radius of Ln 3+ ion in the complex-HSA interaction. The results of molecular docking calculation and competitive experiments assessed site 3 of HSA, located in subdomain IB, as the most probable binding site for these ligands and also indicated the microenvironment residues around the bound mentioned complexes. The computational results kept in good agreement with experimental data.

  11. Characterization of PAH matrix with monazite stream containing uranium, gadolinium and iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, Sangita, E-mail: sangpal@barc.gov.in; Goswami, D.; Meena, Sher Singh

    2016-05-23

    Uranium (U) gadolinium (Gd) and iron (Fe) containing alkaline waste simulated effluent (relevant to alkaline effluent of monazite ore) has been treated with a novel amphoteric resin viz, Polyamidehydroxamate (PAH) containing amide and hydroxamic acid groups. The resin has been synthesized in an eco-friendly manner by polymerization nad conversion to functional groups characterized by FT-IR spectra and architectural overview by SEM. Coloration of the loaded matrix and de-coloration after extraction of uranium is the special characteristic of the matrix. Effluent streams have been analyzed by ICP-AES, U loaded PAH has been characterized by FT-IR, EXAFS, Gd and Fe by X-raymore » energy values of EDXRF at 6.053 KeVand 6.405 KeV respectively. The remarkable change has been observed in Mössbauer spectrum of Fe-loaded PAH samples.« less

  12. Investigating phase transition temperatures of size separated gadolinium silicide magnetic nanoparticles

    DOE PAGES

    Hunagund, Shivakumar G.; Harstad, Shane M.; El-Gendy, Ahmed A.; ...

    2018-01-11

    Gadolinium silicide (Gd 5Si 4) nanoparticles (NPs) exhibit different properties compared to their parent bulk materials due to finite size, shape, and surface effects. NPs were prepared by high energy ball-milling of the as-cast Gd 5Si 4 ingot and size separated into eight fractions using time sensitive sedimentation in an applied dc magnetic field with average particle sizes ranging from 700 nm to 82 nm. The largest Gd 5Si 4 NPs order ferromagnetically at 316 K. A second anomaly observed at 110 K can be ascribed to a Gd 5Si 3 impurity. Here as the particle sizes decrease, the volumemore » fraction of Gd 5Si 3 phase increases at the expense of the Gd 5Si 4 phase, and the ferromagnetic transition temperature of Gd 5Si 4 is reduced from 316 K to 310 K, while the ordering of the minor phase is independent of the particle size, remaining at 110 K.« less

  13. Investigating phase transition temperatures of size separated gadolinium silicide magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Hunagund, Shivakumar G.; Harstad, Shane M.; El-Gendy, Ahmed A.; Gupta, Shalabh; Pecharsky, Vitalij K.; Hadimani, Ravi L.

    2018-05-01

    Gadolinium silicide (Gd5Si4) nanoparticles (NPs) exhibit different properties compared to their parent bulk materials due to finite size, shape, and surface effects. NPs were prepared by high energy ball-milling of the as-cast Gd5Si4 ingot and size separated into eight fractions using time sensitive sedimentation in an applied dc magnetic field with average particle sizes ranging from 700 nm to 82 nm. The largest Gd5Si4 NPs order ferromagnetically at 316 K. A second anomaly observed at 110 K can be ascribed to a Gd5Si3 impurity. As the particle sizes decrease, the volume fraction of Gd5Si3 phase increases at the expense of the Gd5Si4 phase, and the ferromagnetic transition temperature of Gd5Si4 is reduced from 316 K to 310 K, while the ordering of the minor phase is independent of the particle size, remaining at 110 K.

  14. Investigating phase transition temperatures of size separated gadolinium silicide magnetic nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunagund, Shivakumar G.; Harstad, Shane M.; El-Gendy, Ahmed A.

    Gadolinium silicide (Gd 5Si 4) nanoparticles (NPs) exhibit different properties compared to their parent bulk materials due to finite size, shape, and surface effects. NPs were prepared by high energy ball-milling of the as-cast Gd 5Si 4 ingot and size separated into eight fractions using time sensitive sedimentation in an applied dc magnetic field with average particle sizes ranging from 700 nm to 82 nm. The largest Gd 5Si 4 NPs order ferromagnetically at 316 K. A second anomaly observed at 110 K can be ascribed to a Gd 5Si 3 impurity. Here as the particle sizes decrease, the volumemore » fraction of Gd 5Si 3 phase increases at the expense of the Gd 5Si 4 phase, and the ferromagnetic transition temperature of Gd 5Si 4 is reduced from 316 K to 310 K, while the ordering of the minor phase is independent of the particle size, remaining at 110 K.« less

  15. Monte Carlo calculations of thermal neutron capture in gadolinium: a comparison of GEANT4 and MCNP with measurements.

    PubMed

    Enger, Shirin A; Munck af Rosenschöld, Per; Rezaei, Arash; Lundqvist, Hans

    2006-02-01

    GEANT4 is a Monte Carlo code originally implemented for high-energy physics applications and is well known for particle transport at high energies. The capacity of GEANT4 to simulate neutron transport in the thermal energy region is not equally well known. The aim of this article is to compare MCNP, a code commonly used in low energy neutron transport calculations and GEANT4 with experimental results and select the suitable code for gadolinium neutron capture applications. To account for the thermal neutron scattering from chemically bound atoms [S(alpha,beta)] in biological materials a comparison of thermal neutron fluence in tissue-like poly(methylmethacrylate) phantom is made with MCNP4B, GEANT4 6.0 patch1, and measurements from the neutron capture therapy (NCT) facility at the Studsvik, Sweden. The fluence measurements agreed with MCNP calculated results considering S(alpha,beta). The location of the thermal neutron peak calculated with MCNP without S(alpha,beta) and GEANT4 is shifted by about 0.5 cm towards a shallower depth and is 25%-30% lower in amplitude. Dose distribution from the gadolinium neutron capture reaction is then simulated by MCNP and compared with measured data. The simulations made by MCNP agree well with experimental results. As long as thermal neutron scattering from chemically bound atoms are not included in GEANT4 it is not suitable for NCT applications.

  16. In vitro cellular accumulation of gadolinium incorporated into chitosan nanoparticles designed for neutron-capture therapy of cancer.

    PubMed

    Shikata, Futoshi; Tokumitsu, Hiroyuki; Ichikawa, Hideki; Fukumori, Yoshinobu

    2002-01-01

    The accumulation of gadolinium loaded as gadopentetic acid (Gd-DTPA) in chitosan nanoparticles (Gd-nanoCPs), which were designed for gadolinium neutron-capture therapy (Gd-NCT) for cancer, was evaluated in vitro in cultured cells. Using L929 fibroblast cells, the Gd accumulation for 12 h at 37 degrees C was investigated at Gd concentrations lower than 40 ppm. The accumulation leveled above 20 ppm and reached 18.0+/-2.7 (mean+/-S.D.) microg Gd/10(6) cells at 40 ppm. Furthermore, the corresponding accumulations in B16F10 melanoma cells and SCC-VII squamous cell carcinoma, which were used in the previous Gd-NCT trials in vivo, were 27.1+/-2.9 and 59.8+/-9.8 microg Gd/10(6) cells, respectively, hence explaining the superior growth-suppression in the in vivo trials using SCC-VII cells. The accumulation of Gd-nanoCPs in these cells was 100-200 times higher in comparison to dimeglumine gadopentetate aqueous solution (Magnevist), a magnetic resonance imaging contrast agent. The endocytic uptake of Gd-nanoCPs, strongly holding Gd-DTPA, was suggested from transmission electron microscopy and comparative studies at 4 degrees C and with the solution system. These findings indicated that Gd-nanoCPs had a high affinity to the cells, probably contributing to the long retention of Gd in tumor tissue and leading to the significant suppression of tumor growth in the in vivo studies that were previously reported.

  17. The histological basis of late gadolinium enhancement cardiovascular magnetic resonance in a patient with Anderson-Fabry disease.

    PubMed

    Moon, James C; Sheppard, Mary; Reed, Emma; Lee, Phillip; Elliott, Perry M; Pennell, Dudley J

    2006-01-01

    Anderson-Fabry Disease (AFD) is a storage disease that mimics hypertrophic cardiomyopathy. Late gadolinium enhancement (LGE) by cardiovascular magnetic resonance occurs in approximately 50% of patients in the basal inferolateral LV wall, but how an intracellular storage disease causes focal LGE is unknown. We present a whole-heart histological validation that LGE is caused by focal myocardial collagen scarring. This scarring may be the substrate for electrical re-entry and sudden arrhythmic death. The reasons for this distribution of fibrosis are unclear, but may reflect inhomogeneous left ventricular wall stress.

  18. Synthesis of bulk-size transparent gadolinium oxide–polymer nanocomposites for gamma ray spectroscopy

    PubMed Central

    Cai, Wen; Chen, Qi; Cherepy, Nerine; Dooraghi, Alex; Kishpaugh, David; Chatziioannou, Arion; Payne, Stephen; Xiang, Weidong

    2015-01-01

    Heavy element loaded polymer composites have long been proposed to detect high energy X- and γ-rays upon scintillation. The previously reported bulk composite scintillators have achieved limited success because of the diminished light output resulting from fluorescence quenching and opacity. We demonstrate the synthesis of a transparent nanocomposite comprising gadolinium oxide nanocrystals uniformly dispersed in bulk-size samples at a high loading content. The strategy to avoid luminescence quenching and opacity in the nanocomposite was successfully deployed, which led to the radioluminescence light yield of up to 27 000/MeV, about twice as much as standard commercial plastic scintillators. Nanocomposites monoliths (14 mm diameter by 3 mm thickness) with 31 wt% loading of nanocrystals generated a photoelectric peak for Cs-137 gamma (662 keV) with 11.4% energy resolution. PMID:26478816

  19. In vivo selective cancer-tracking gadolinium eradicator as new-generation photodynamic therapy agent

    PubMed Central

    Zhang, Tao; Lan, Rongfeng; Chan, Chi-Fai; Law, Ga-Lai; Wong, Wai-Kwok; Wong, Ka-Leung

    2014-01-01

    In this work, we demonstrate a modality of photodynamic therapy (PDT) through the design of our truly dual-functional—PDT and imaging—gadolinium complex (Gd-N), which can target cancer cells specifically. In the light of our design, the PDT drug can specifically localize on the anionic cell membrane of cancer cells in which its laser-excited photoemission signal can be monitored without triggering the phototoxic generation of reactive oxygen species—singlet oxygen—before due excitation. Comprehensive in vitro and in vivo studies had been conducted for the substantiation of the effectiveness of Gd-N as such a tumor-selective PDT photosensitizer. This treatment modality does initiate a new direction in the development of “precision medicine” in line with stem cell and gene therapies as tools in cancer therapy. PMID:25453097

  20. Fluorescent lighting with aluminum nitride phosphors

    DOEpatents

    Cherepy, Nerine J.; Payne, Stephen A.; Seeley, Zachary M.; Srivastava, Alok M.

    2016-05-10

    A fluorescent lamp includes a glass envelope; at least two electrodes connected to the glass envelope; mercury vapor and an inert gas within the glass envelope; and a phosphor within the glass envelope, wherein the phosphor blend includes aluminum nitride. The phosphor may be a wurtzite (hexagonal) crystalline structure Al.sub.(1-x)M.sub.xN phosphor, where M may be drawn from beryllium, magnesium, calcium, strontium, barium, zinc, scandium, yttrium, lanthanum, cerium, praseodymium, europium, gadolinium, terbium, ytterbium, bismuth, manganese, silicon, germanium, tin, boron, or gallium is synthesized to include dopants to control its luminescence under ultraviolet excitation. The disclosed Al.sub.(1-x)M.sub.xN:Mn phosphor provides bright orange-red emission, comparable in efficiency and spectrum to that of the standard orange-red phosphor used in fluorescent lighting, Y.sub.2O.sub.3:Eu. Furthermore, it offers excellent lumen maintenance in a fluorescent lamp, and does not utilize "critical rare earths," minimizing sensitivity to fluctuating market prices for the rare earth elements.

  1. Investigation of Structure of Gd and Tb Nuclei using STARS and LiBerACE

    NASA Astrophysics Data System (ADS)

    Bonniwell, Cain; Pauerstein, Ben; Allmond, J. M.; Beausang, C. W.

    2009-10-01

    This experiment, performed at Livermore Berkeley National Lab as a collaboration of Livermore, Berkeley, and the University of Richmond, was designed to investigate the structure of gadolinium and terbium nuclei using the P + 156Gd reaction at E beam = 27 MeV. The experimental design included use of the STARS system for detecting charged particles as well as the LiBerACE clover array for detecting gamma rays. The master gate was set to record particle-gamma as well as gamma-gamma coincidences. The data is currently being analyzed using the RADWARE escl8r software package which has allowed the creation of extensive level schemes for several Gd and Tb nuclei. So far the data suggests new gamma ray transitions as well as new energy states in 154Gd and 155Tb. The project is ongoing, and the results will be presented. This work was supported by the US Department of Energy under grant numbers DE-FG52NA26206 and DE-FG02-05ER41379.

  2. Nanoparticles speckled by ready-to-conjugate lanthanide complexes for multimodal imaging

    NASA Astrophysics Data System (ADS)

    Biju, Vasudevanpillai; Hamada, Morihiko; Ono, Kenji; Sugino, Sakiko; Ohnishi, Takashi; Shibu, Edakkattuparambil Sidharth; Yamamura, Shohei; Sawada, Makoto; Nakanishi, Shunsuke; Shigeri, Yasushi; Wakida, Shin-Ichi

    2015-09-01

    Multimodal and multifunctional contrast agents receive enormous attention in the biomedical imaging field. Such contrast agents are routinely prepared by the incorporation of organic molecules and inorganic nanoparticles (NPs) into host materials such as gold NPs, silica NPs, polymer NPs, and liposomes. Despite their non-cytotoxic nature, the large size of these NPs limits the in vivo distribution and clearance and inflames complex pharmacokinetics, which hinder the regulatory approval for clinical applications. Herein, we report a unique method that combines magnetic resonance imaging (MRI) and fluorescence imaging modalities together in nanoscale entities by the simple, direct and stable conjugation of novel biotinylated coordination complexes of gadolinium(iii) to CdSe/ZnS quantum dots (QD) and terbium(iii) to super paramagnetic iron oxide NPs (SPION) but without any host material. Subsequently, we evaluate the potentials of such lanthanide-speckled fluorescent-magnetic NPs for bioimaging at single-molecule, cell and in vivo levels. The simple preparation and small size make such fluorescent-magnetic NPs promising contrast agents for biomedical imaging.

  3. Reticular Appearance on Gadolinium-enhanced T1- and Diffusion-weighted MRI, and Low Apparent Diffusion Coefficient Values in Microcystic Meningioma Cysts.

    PubMed

    Terada, Yukinori; Toda, Hiroki; Okumura, Ryosuke; Ikeda, Naokado; Yuba, Yoshiaki; Katayama, Toshiro; Iwasaki, Koichi

    2018-03-01

    Microcystic meningioma, a rare meningioma subtype, can present diagnostic difficulty. We aimed to investigate the historadiological properties of microcystic meningioma using conventional magnetic resonance imaging (MRI) and diffusion-weighted imaging (DWI) analysis. We retrospectively analyzed conventional MRI and DWI results of six microcystic meningioma cases by examining their appearance and determining their apparent diffusion coefficient (ADC) values. The ADC values of the intratumoral components were normalized with ADC values of the cerebrospinal fluid in the lateral ventricle (ADC ratios). As cystic formations are frequently associated with microcystic meningiomas, their MRI characteristics were compared with the imaging data from 11 cystic meningiomas of non-microcystic subtypes. We found that cysts in microcystic meningioma tended to have a reticular appearance on DWI, as they did on gadolinium-enhanced T1-weighted imaging. Additionally, these reticular cysts had significantly lower ADC ratios than microcystic non-reticular and non-microcystic cysts. These DWI characteristics likely reflect the histological properties of microcystic meningioma. A reticular appearance on gadolinium-enhanced T1-weighted MRI and DWI, and cyst formation with relatively low ADC values can be diagnostic markers of microcystic meningiomas.

  4. GADOLINIUM OXALATE SOLUBILITY MEASUREMENTS IN NITRIC ACID SOLUTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, R. A.

    2012-03-12

    HB-Line will begin processing Pu solutions during FY2012 that will involve the recovery of Pu using oxalate precipitation and filtration. After the precipitation and filtration processes, the filtrate solution will be transferred from HB-Line to H-Canyon. The presence of excess oxalate and unfiltered Pu oxalate solids in these solutions create a criticality safety issue if they are sent to H-Canyon without controls in H-Canyon. One approach involves H-Canyon receiving the filtrate solution into a tank that is poisoned with soluble gadolinium (Gd). Decomposition of the oxalate will occur within a subsequent H-Canyon vessel. The receipt of excess oxalate into themore » H-Canyon receipt tanks has the potential to precipitate a portion of the Gd poison in the receipt tanks. Because the amount of Gd in solution determines the maximum amount of Pu solids that H-Canyon can receive, H-Canyon Engineering requested that SRNL determine the solubility of Gd in aqueous solutions of 4-10 M nitric acid (HNO{sub 3}), 4-12 g/L Gd, and 0.15-0.25 M oxalic acid (H{sub 2}C{sub 2}O{sub 4}) at 25 °C. The target soluble Gd concentration is 6 g/L. The data indicate that the target can be achieved above 6 M HNO{sub 3} and below 0.25 M H{sub 2}C{sub 2}O{sub 4}. At 25 °C, for 6 M HNO{sub 3}, 11 g/L and 7 g/L Gd are soluble in 0.15 M and 0.25 M H{sub 2}C{sub 2}O{sub 4}, respectively. In 4 M HNO{sub 3}, the Gd solubility drops significantly to 2.5 g/L and 0.8 g/L in 0.15 M and 0.25 M H{sub 2}C{sub 2}O{sub 4}, respectively. The solubility of Gd at 8-10 M HNO{sub 3} exceeds the solubility at 6 M HNO{sub 3}. The data for 4 M HNO{sub 3} showed good agreement with data in the literature. To achieve a target of 6 g/L soluble Gd in solution in the presence of 0.15-0.25 M oxalate, the HNO{sub 3} concentration must be maintained at or above 6 M HNO{sub 3}. The solubility of Gd in 4 M HNO{sub 3} with 0.15 M oxalate at 10 °C is about 1.5 g/L. For 6 M HNO{sub 3} with 0.15 M oxalate, the solubility of

  5. Direct comparison of intra-articular versus intravenous delayed gadolinium-enhanced MRI of hip joint cartilage.

    PubMed

    Zilkens, Christoph; Miese, Falk; Kim, Young-Jo; Jäger, Marcus; Mamisch, Tallal C; Hosalkar, Harish; Antoch, Gerald; Krauspe, Rüdiger; Bittersohl, Bernd

    2014-01-01

    To investigate the potential of delayed gadolinium-enhanced magnetic resonance imaging in cartilage (dGEMRIC) after intra-articular (ia) contrast agent administration at 3 Tesla (T), a paired study comparing intravenous (iv) dGEMRIC (standard) with ia-dGEMRIC was performed. Thirty-five symptomatic patients with suspected cartilage damage underwent ia- and iv-dGEMRIC. MRI was performed with a 3T system wherein the interval between both measurements was 2 weeks. For iv-dGEMRIC, FDA approved Gd-DOTA(-) was injected intravenously 45 min before the MRI scan. For ia-dGEMRIC, 10-20 mL of a 2 mM solution of Gd- DOTA(-) was injected under fluoroscopic guidance 30 min before the MRI scan. Both ia- and iv-dGEMRIC demonstrated the typical T1Gd pattern in hip joint cartilage with increasing values toward the superior regions in acetabular cartilage reflecting the higher glycosaminoglycan (GAG) content in the main weight-bearing area. Correlation analysis revealed a moderate correlation between both techniques (r = 0.439, P-value < 0.001), whereas the T1Gd values for iv-dGEMRIC were significantly higher than those for ia-dGEMRIC. This corresponds with the Bland-Altman plot analysis, which revealed a systemic bias (higher T1Gd values after iv gadolinium application) of ∼70 ms. Ia-dGEMRIC was able to reveal the characteristic T1Gd pattern in hip joint cartilage confirming the sensitivity of ia-dGEMRIC for GAG. In addition, there was a significant correlation between iv-dGEMRIC and ia-dGEMRIC. However, the T1Gd values after ia contrast media application were significantly lower than those after iv application that has to be considered for future studies. Copyright © 2013 Wiley Periodicals, Inc.

  6. Aqueous stability of gadolinium in surface waters receiving sewage treatment plant effluent, Boulder Creek, Colorado.

    PubMed

    Verplanck, Philip L; Taylor, Howard E; Nordstrom, D Kirk; Barber, Larry B

    2005-09-15

    In many surface waters, sewage treatment plant (STP) effluent is a substantial source of both regulated and unregulated contaminants, including a suite of complex organic compounds derived from household chemicals, pharmaceuticals, and industrial and medical byproducts. In addition, STP effluents in some urban areas have also been shown to have a positive gadolinium (Gd) anomaly in the rare earth element (REE) pattern, with the Gd derived from its use in medical facilities. REE concentrations are relatively easy to measure compared to many organic wastewater compounds and may provide a more widely utilized tracer of STP effluents. To evaluate whether sewage treatment plant-associated Gd is a useful tracer of treatment plant effluent, an investigation of the occurrence, fate, and transport of rare earth elements was undertaken. The rare earth element patterns of four of five STP effluents sampled display positive Gd anomalies. The one site that did not have a Gd anomaly serves a small community, population 1200, with no medical facilities. Biosolids from a large metropolitan STP are not enriched in Gd even though the effluent is, suggesting that a substantial fraction of Gd remains in the aqueous phase through routine treatment plant operation. To evaluate whether STP-derived Gd persists in the fluvial environment, a 14-km study reach downstream of an STP was sampled. Gadolinium anomalies were present at all five downstream sites, but the magnitude of the anomaly decreased. Effluent from STPs is a complex mixture of organic and inorganic constituents, and to better understand the chemical interactions and their effect on REEs, the aqueous speciation was modeled using comprehensive chemical analyses of water samples collected downstream of STP input. These calculations suggest that the REEs will likely remain dissolved because phosphate and carbonate complexes dominate over free REE ions. This study supports the application of Gd anomalies as a useful tracer of urban

  7. Aqueous stability of gadolinium in surface waters receiving sewage treatment plant effluent Boulder Creek, Colorado

    USGS Publications Warehouse

    Verplanck, P.L.; Taylor, Howard E.; Nordstrom, D. Kirk; Barber, L.B.

    2005-01-01

    In many surface waters, sewage treatment plant (STP) effluent is a substantial source of both regulated and unregulated contaminants, including a suite of complex organic compounds derived from household chemicals, pharmaceutical, and industrial and medical byproducts. In addition, STP effluents in some urban areas have also been shown to have a positive gadolinium (Gd) anomaly in the rare earth element (REE) pattern, with the Gd derived from its use in medical facilities. REE concentrations are relatively easy to measure compared to many organic wastewater compounds and may provide a more widely utilized tracer of STP effluents. To evaluate whether sewage treatment plant-associated Gd is a useful tracer of treatment plant effluent, an investigation of the occurrence, fate, and transport of rare earth elements was undertaken. The rare earth element patterns of four of five STP effluents sampled display positive Gd anomalies. The one site that did not have a Gd anomaly serves a small community, population 1200, with no medical facilities. Biosolids from a large metropolitan STP are not enriched in Gd even though the effluent is, suggesting that a substantial fraction of Gd remains in the aqueous phase through routine treatment plant operation. To evaluate whether STP-derived Gd persists in the fluvial environment, a 14-km study reach downstream of an STP was sampled. Gadolinium anomalies were present at all five downstream sites, but the magnitude of the anomaly decreased. Effluent from STPs is a complex mixture of organic and inorganic constituents, and to better understand the chemical interactions and their effect on REEs, the aqueous speciation was modeled using comprehensive chemical analyses of water samples collected downstream of STP input. These calculations suggest that the REEs will likely remain dissolved because phosphate and carbonate complexes dominate over free REE ions. This study supports the application of Gd anomalies as a useful tracer of urban

  8. MO-FG-BRA-07: Theranostic Gadolinium-Based AGuIX Nanoparticles for MRI-Guided Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detappe, A; Institut Lumiere-Matiere, Villeurbanne; Nano-H, St-Quentin Fallavier

    2015-06-15

    Purpose: AGuIX are gadolinium-based nanoparticles, initially developed for MRI, that have a potential role in radiation therapy as a radiosensitizer. Our goal is to demonstrate that these nanoparticles can both be used as an MRI contrast agent, as well as to obtain local dose enhancement in a pancreatic tumor when delivered in combination with an external beam irradiation. Methods: We performed in vitro cell uptake and radiosensitization studies of a pancreatic cancer cell line in a low energy (220kVp) beam, a standard clinical 6MV beam (STD) and a flattening filter free clinical 6MV beam (FFF). After injection of 40mM ofmore » nanoparticles, a biodistribution study was performed in vivo on mice with subcutaneous xenograft pancreatic tumors. In vivo radiation therapy studies were performed at the time point of maximum tumor uptake. Results: The concentration of AGuIX nanoparticles in Panc-1 pancreatic cancer cells, determined in vitro by MRI and ICPMS, peaks after 30 minutes with 0.3% of the initial concentration (5mg/g). Clonogenic assays show a significant effect (p<0.05) when the AGuIX are coupled with MV photon irradiation (DEF20%=1.31). Similar AGuIX tumor uptake is found in vivo by both MRI and ICPMS 30 minutes after intravenous injection. For long term survival studies, the choice of the radiation dose is determined with 5 control groups (3mice/group) irradiated with 0, 5, 10, 15, and 20Gy. Afterwards, 4 groups (8mice/group) are used to evaluate the effect of the nanoparticles. A Logrank test is performed as a statistical test to evaluate the effect of the nanoparticles. Conclusion: The combination of the MRI contrast and radiosensitization properties of gadolinium nanoparticles reveals a strong potential for usage with MRI-guided radiation therapy.« less

  9. Aging Effects on the Structural and Magnetic Properties of Terbium-Aluminium Co-doping of Yttrium Iron Garnet Films Prepared Using the Sol-Gel Method

    NASA Astrophysics Data System (ADS)

    Aldbea, Ftema W.; Yusrianto, Efil; Ibrahim, N. B.

    2018-06-01

    The terbium-aluminium co-doped yttrium iron garnet (Tb0.2Y2.8Al1Fe4O12) nanoparticles films, prepared via a sol-gel method, were aged variously for 2 days, 3 days, 4 days and 5 days. The films were deposited on quartz substrates using a spin coating technique then annealed at 900°C in air for 2 h. The microstructural and magnetic properties of the films were measured using an x-ray diffractometer (XRD), a field emission scanning electron microscope and a vibrating sample magnetometer. The XRD results showed that all the resultant films were a single phase regardless of aging time. A change in the lattice parameter's behavior was observed at the longer aging times. At an aging time of 5 days, the films became highly agglomerated and exhibited the greatest thickness value of 458.9 nm. The saturation magnetization, M s, of the films decreased from 31 kA/m to 6 kA/m as the aging time was increased from 2 days to 5 days, due to the increasing Fe-O bond length resulting from larger grain sizes. The increase in aging time to 5 days caused a reduction in the coercivity, H c, of films due to the multi-domain formation.

  10. Band-gap modulation via gallium substitution in cerium doped gadolinium aluminum garnet using a mixed fuel combustion approach

    NASA Astrophysics Data System (ADS)

    Tyagi, Mohit; Pitale, Shreyas S.; Ghosh, Manoranjan; Shinde, Seema

    2014-04-01

    Cerium doped Gadolinium garnets (Gd3AlxGa5-xO12 where 0≤x≤5) are synthesized via combustion synthesis using mixture of urea and glycine fuels. A 4h Post annealing at 1400 oC is found to be necessary for pure phase formation. Lattice spacing variation as a result of partial or total Ga substitution at Al site was mapped by X-ray diffraction. Photoluminescence emission of Ce shifts as a consequence of Ga substitution and therefore suggests a local re-adjustment of crystal field around activator site.

  11. Enhancements in hepatobiliary imaging: the spectrum of gadolinium-ethoxybenzyl diethylenetriaminepentaacetic acid usages in hepatobiliary magnetic resonance imaging.

    PubMed

    Channual, Stephanie; Pahwa, Anokh; Lu, David S; Raman, Steven S

    2016-09-01

    Gadolinium-ethoxybenzyl diethylenetriaminepentaacetic acid (Gd-EOB-DTPA) is a unique hepatocyte-specific contrast agent approved for clinical use in the United States in 2008. Gd-EOB-DTPA-enhanced MR has shown to improve detection and characterization of hepatic lesions. Gd-EOB-DTPA is now being routinely used in daily clinical practice worldwide. Therefore, it is important for radiologists to be familiar with the potential uses and pitfalls of Gd-EOB-DTPA, which extends beyond the assessment of focal hepatic lesions. The purpose of this article is to review the various usages of Gd-EOB-DTPA in hepatobiliary MR imaging.

  12. Gadolinium and didymium (praseodymium/neodymium) cations as capture agents in lightmicroscopical histochemistry of acid and alkaline phosphatase.

    PubMed

    Halbhuber, K J; Zimmermann, N

    1987-01-01

    In previous papers, cerium and lanthanum based methods for light-microscopical detection of acid and alkaline phosphatase activity were proposed. In this paper, the usefulness of other lanthanide cations such as gadolinium and praseodymium/neodymium cations as capture agents in phosphatase histochemistry is tested. It is evident that phosphate ions were sufficiently trapped by these cations. According to the lead and silver multistep procedures earlier described it is possible to visualize alkaline phosphatase activity in the brush borders of the intestine or kidney as well as acid phosphatase activity in the lysosomes. These methods can be recommended.

  13. Gadolinium-doped water cerenkov-based neutron and high energy gamma-ray detector and radiation portal monitoring system

    DOEpatents

    Dazeley, Steven A; Svoboda, Robert C; Bernstein, Adam; Bowden, Nathaniel

    2013-02-12

    A water Cerenkov-based neutron and high energy gamma ray detector and radiation portal monitoring system using water doped with a Gadolinium (Gd)-based compound as the Cerenkov radiator. An optically opaque enclosure is provided surrounding a detection chamber filled with the Cerenkov radiator, and photomultipliers are optically connected to the detect Cerenkov radiation generated by the Cerenkov radiator from incident high energy gamma rays or gamma rays induced by neutron capture on the Gd of incident neutrons from a fission source. The PMT signals are then used to determine time correlations indicative of neutron multiplicity events characteristic of a fission source.

  14. Impact of the Glymphatic System on the Kinetic and Distribution of Gadodiamide in the Rat Brain: Observations by Dynamic MRI and Effect of Circadian Rhythm on Tissue Gadolinium Concentrations.

    PubMed

    Taoka, Toshiaki; Jost, Gregor; Frenzel, Thomas; Naganawa, Shinji; Pietsch, Hubertus

    2018-04-12

    The glymphatic system is a recently hypothesized waste clearance system of the brain in which perivascular space constitutes a pathway similar to the lymphatic system in other body regions. Sleep and anesthesia are reported to influence the activity of the glymphatic system. Because rats are nocturnal animals, the glymphatic system is expected to be more active during the day. We attempted to elucidate the influence of the glymphatic system for intravenously injected gadodiamide in the rat brain by 2 experiments. One was a magnetic resonance imaging (MRI) experiment to evaluate the short-term dynamics of signal intensity changes after gadodiamide administration. The other was a quantification experiment to evaluate the concentration of retained gadolinium within the rat brain after repeated intravenous administration of gadodiamide at different times of day and levels of anesthesia. The imaging experiment was performed on 6 rats that received an intravenous injection of gadodiamide (1 mmol/kg) and dynamic MRI for 3 hours at 2.4-minute intervals. The time course of the signal intensity changes was evaluated for different brain structures. The tissue quantification experiment was performed on 24 rats divided into 4 groups by injection time (morning, late afternoon) and anesthesia (none, short, long) during administration. All animals received gadodiamide (1.8 mmol/kg, 8 times over 2 weeks). Gadolinium concentration of dissected brain tissues was quantified 5 weeks after the last administration by inductively coupled plasma mass spectrometry. In the imaging experiment, muscle and the fourth ventricle showed an instantaneous signal intensity increase immediately after gadodiamide injection. The signal curve of the cerebral cortex and deep cerebellar nuclei reached the peak signal intensity later than the fourth ventricle but earlier than that of the prepontine cistern. In the gadolinium quantification experiment, the concentration in the group with the morning

  15. Co-Precipitation Synthesis of Gadolinium Aluminum Gallium Oxide (GAGG) via Different Precipitants

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Yang, Shenghui; Zhang, Ye; Jiang, Jun; Jiang, Haochuan

    2014-02-01

    In order to obtain a uniform transparent ceramic scintillator, well-dispersed fine starting powders with high-purity, small grain size, spherical morphology and high sinter-ability are necessary. In this study, Ce3+ doped gadolinium aluminum gallium garnet Gd3Al3Ga2O12 (GAGG) powders were synthesized by the co-precipitation method. NH4OH, NH4HCO3 and the mixed solution of NH4OH and NH4HCO3 were used as precipitants, respectively. The precursor composition, phase formation process, microstructure, morphology, particle size distribution and luminescent properties of obtained GAGG powders were measured. The results show that powders prepared using the mixed precipitant exhibit the best microstructural morphology, good sinter-ability and highest luminescent intensity. Pure GAGG polycrystalline powders could be obtained at about 950°C for 1.5 h and the average size of the particles is about 50 nm. The photoluminescence spectrum shows a strong green-yellow emission near 540 nm.

  16. Polydisulfide Manganese(II) Complexes as Non-Gadolinium Biodegradable Macromolecular MRI Contrast Agents

    PubMed Central

    Ye, Zhen; Jeong, Eun-Kee; Wu, Xueming; Tan, Mingqian; Yin, Shouyu; Lu, Zheng-Rong

    2011-01-01

    Purpose To develop safe and effective manganese(II) based biodegradable macromolecular MRI contrast agents. Materials and Methods In this study, we synthesized and characterized two polydisulfide manganese(II) complexes, Mn-DTPA cystamine copolymers and Mn-EDTA cystamine copolymers, as new biodegradable macromolecular MRI contrast agents. The contrast enhancement of the two manganese based contrast agents were evaluated in mice bearing MDA-MB-231 human breast carcinoma xenografts, in comparison with MnCl2. Results The T1 and T2 relaxivities were 4.74 and 10.38 mM−1s−1 per manganese at 3T for Mn-DTPA cystamine copolymers (Mn=30.50 kDa) and 6.41 and 9.72 mM−1s−1 for Mn-EDTA cystamine copolymers (Mn= 61.80 kDa). Both polydisulfide Mn(II) complexes showed significant liver, myocardium and tumor enhancement. Conclusion The manganese based polydisulfide contrast agents have a potential to be developed as alternative non-gadolinium contrast agents for MR cancer and myocardium imaging. PMID:22031457

  17. Gadolinium sulfate modified by formate to obtain optimized magneto-caloric effect.

    PubMed

    Xu, Long-Yang; Zhao, Jiong-Peng; Liu, Ting; Liu, Fu-Chen

    2015-06-01

    Three new Gd(III) based coordination polymers [Gd2(C2H6SO)(SO4)3(H2O)2]n (1), {[Gd4(HCOO)2(SO4)5(H2O)6]·H2O}n (2), and [Gd(HCOO)(SO4)(H2O)]n (3) were obtained by modifying gadolinium sulfate. With the gradual increase of the volume ratio of HCOOH and DMSO in synthesis, the formate anions begin to coordinate with metal centers; this results in the coordination numbers of sulfate anion increasing and the contents of water and DMSO molecules decreasing in target complexes. Accordingly, spin densities both per mass and per volume were enhanced step by step, which are beneficial for the magneto-caloric effect (MCE). Magnetic studies reveal that with the more formate anions present, the larger the negative value of magnetic entropy change (-ΔSm) is. Complex 3 exhibits the largest -ΔSm = 49.91 J kg(-1) K(-1) (189.51 mJ cm(-3) K(-1)) for T = 2 K and ΔH = 7 T among three new complexes.

  18. Acute Respiratory Distress Syndrome after the Use of Gadolinium Contrast Media.

    PubMed

    Park, Jihye; Byun, Il Hwan; Park, Kyung Hee; Lee, Jae-Hyun; Nam, Eun Ji; Park, Jung-Won

    2015-07-01

    Acute respiratory distress syndrome (ARDS) is a medical emergency that threatens life. To this day, ARDS is very rarely reported by iodine contrast media, and there is no reported case of ARDS induced by gadolinium contrast media. Here, we present a case with ARDS after the use of gadobutrol (Gadovist) as a magnetic resonance imaging (MRI) contrast medium. A 26 years old female without any medical history, including allergic diseases and without current use of drugs, visited the emergency room for abdominal pain. Her abdominopelvic computed tomography with iodine contrast media showed a right ovarian cyst and possible infective colitis. Eighty-three hours later, she underwent pelvis MRI after injection of 7.5 mL (0.1 mL/kg body weight) of gadobutrol (Gadovist) to evaluate the ovarian cyst. She soon presented respiratory difficulty, edema of the lips, nausea, and vomiting, and we could hear wheezing upon auscultation. She was treated with dexamethasone, epinephrine, and norepinephrine. Her chest X-ray showed bilateral central bat-wing consolidative appearance. Managed with mechanical ventilation, she was extubated 3 days later and discharged without complications.

  19. Apparent diffusion coefficient for molecular subtyping of non-gadolinium-enhancing WHO grade II/III glioma: volumetric segmentation versus two-dimensional region of interest analysis.

    PubMed

    Thust, S C; Hassanein, S; Bisdas, S; Rees, J H; Hyare, H; Maynard, J A; Brandner, S; Tur, C; Jäger, H R; Yousry, T A; Mancini, L

    2018-03-23

    To investigate if quantitative apparent diffusion coefficient (ADC) measurements can predict genetic subtypes of non-gadolinium-enhancing gliomas, comparing whole tumour against single slice analysis. Volumetric T2-derived masks of 44 gliomas were co-registered to ADC maps with ADC mean (ADC mean ) calculated. For the slice analysis, two observers placed regions of interest in the largest tumour cross-section. The ratio (ADC ratio ) between ADC mean in the tumour and normal appearing white matter was calculated for both methods. Isocitrate dehydrogenase (IDH) wild-type gliomas showed the lowest ADC values throughout (p < 0.001). ADC mean in the IDH-mutant 1p19q intact group was significantly higher than in the IDH-mutant 1p19q co-deleted group (p < 0.01). A volumetric ADC mean threshold of 1201 × 10 -6 mm 2 /s identified IDH wild-type with a sensitivity of 83% and a specificity of 86%; a volumetric ADC ratio cut-off value of 1.65 provided a sensitivity of 80% and a specificity of 92% (area under the curve (AUC) 0.9-0.94). A slice ADC ratio threshold for observer 1 (observer 2) of 1.76 (1.83) provided a sensitivity of 80% (86%), specificity of 91% (100%) and AUC of 0.95 (0.96). The intraclass correlation coefficient was excellent (0.98). ADC measurements can support the distinction of glioma subtypes. Volumetric and two-dimensional measurements yielded similar results in this study. • Diffusion-weighted MRI aids the identification of non-gadolinium-enhancing malignant gliomas • ADC measurements may permit non-gadolinium-enhancing glioma molecular subtyping • IDH wild-type gliomas have lower ADC values than IDH-mutant tumours • Single cross-section and volumetric ADC measurements yielded comparable results in this study.

  20. Fluorimetric determination of some sulfur containing compounds through complex formation with terbium (Tb+3) and uranium (U+3).

    PubMed

    Taha, Elham Anwer; Hassan, Nagiba Yehya; Aal, Fahima Abdel; Fattah, Laila El-Sayed Abdel

    2007-05-01

    Two simple, sensitive and specific fluorimetric methods have been developed for the determination of some sulphur containing compounds namely, Acetylcysteine (Ac), Carbocisteine (Cc) and Thioctic acid (Th) using terbium Tb+3 and uranium U+3 ions as fluorescent probes. The proposed methods involve the formation of a ternary complex with Tb+3 in presence of Tris-buffer method (I) and a binary complex with aqueous uranyl acetate solution method (II). The fluorescence quenching of Tb+3 at 510, 488 and 540 nm (lambda(ex) 250, 241 and 268 nm) and of uranyl acetate at 512 nm (lambda(ex) 240 nm) due to the complex formation was quantitatively measured for Ac, Cc and Th, respectively. The reaction conditions and the fluorescence spectral properties of the complexes have been investigated. Under the described conditions, the proposed methods were applicable over the concentration range (0.2-2.5 microg ml(-1)), (1-4 microg ml(-1)) and (0.5-3.5 microg ml(-1)) with mean percentage recoveries 99.74+/-0.36, 99.70+/-0.52 and 99.43+/-0.23 for method (I) and (0.5-6 microg ml(-1)), (0.5-5 microg ml(-1)), and (1-6 microg ml(-1)) with mean percentage recoveries 99.38+/-0.20, 99.82+/-0.28 and 99.93+/-0.32 for method (II), for the three cited drugs, respectively. The proposed methods were successfully applied for the determination of the studied compounds in bulk powders and in pharmaceutical formulations, as well as in presence of their related substances. The results obtained were found to be in agree statistically with those obtained by official and reported ones. The two methods were validated according to USP guidelines and also assessed by applying the standard addition technique.

  1. Semiempirical Quantum Chemistry Model for the Lanthanides: RM1 (Recife Model 1) Parameters for Dysprosium, Holmium and Erbium

    PubMed Central

    Filho, Manoel A. M.; Dutra, José Diogo L.; Rocha, Gerd B.; Simas, Alfredo M.; Freire, Ricardo O.

    2014-01-01

    Complexes of dysprosium, holmium, and erbium find many applications as single-molecule magnets, as contrast agents for magnetic resonance imaging, as anti-cancer agents, in optical telecommunications, etc. Therefore, the development of tools that can be proven helpful to complex design is presently an active area of research. In this article, we advance a major improvement to the semiempirical description of lanthanide complexes: the Recife Model 1, RM1, model for the lanthanides, parameterized for the trications of Dy, Ho, and Er. By representing such lanthanide in the RM1 calculation as a three-electron atom with a set of 5 d, 6 s, and 6 p semiempirical orbitals, the accuracy of the previous sparkle models, mainly concentrated on lanthanide-oxygen and lanthanide-nitrogen distances, is extended to other types of bonds in the trication complexes’ coordination polyhedra, such as lanthanide-carbon, lanthanide-chlorine, etc. This is even more important as, for example, lanthanide-carbon atom distances in the coordination polyhedra of the complexes comprise about 30% of all distances for all complexes of Dy, Ho, and Er considered. Our results indicate that the average unsigned mean error for the lanthanide-carbon distances dropped from an average of 0.30 Å, for the sparkle models, to 0.04 Å for the RM1 model for the lanthanides; for a total of 509 such distances for the set of all Dy, Ho, and Er complexes considered. A similar behavior took place for the other distances as well, such as lanthanide-chlorine, lanthanide-bromine, lanthanide, phosphorus and lanthanide-sulfur. Thus, the RM1 model for the lanthanides, being advanced in this article, broadens the range of application of semiempirical models to lanthanide complexes by including comprehensively many other types of bonds not adequately described by the previous models. PMID:24497945

  2. White light emission of dysprosium doped lanthanum calcium phosphate oxide and oxyfluoride glasses

    NASA Astrophysics Data System (ADS)

    Luewarasirikul, N.; Kim, H. J.; Meejitpaisan, P.; Kaewkhao, J.

    2017-04-01

    Lanthanum calcium phosphate oxide and oxyfluoride glasses doped with dysprosium oxide were prepared by melt-quenching technique with chemical composition 20La2O3:10CaO:69P2O5:1Dy2O3 and 20La2O3:10CaF2:69P2O5:1Dy2O3. The physical, optical and luminescence properties of the glass samples were studied to evaluate their potential to using as luminescence materials for solid-state lighting applications. The density, molar volume and refractive index of the glass samples were carried out. The optical and luminescence properties were studied by investigating absorption, excitation, and emission spectra of the glass samples. The absorption spectra were investigated in the UV-Vis-NIR region from 300 to 2000 nm. The excitation spectra observed under 574 nm emission wavelength showed the highest peak centered at 349 nm (6H15/2 → 6P7/2). The emission spectra, excited with 349 nm excitation wavelength showed two major peaks corresponding to 482 nm blue emission (4F9/2 → 6H15/2) and 574 nm yellow emission (4F9/2 → 6H13/2). The experimental lifetime were found to be 0.539 and 0.540 for oxide and oxyfluoride glass sample, respectively. The x,y color coordinates under 349 nm excitation wavelength were (0.38, 0.43) for both glass samples, that be plotted in white region of CIE 1931 chromaticity diagram. The CCT values obtained from the glass samples are 4204 K for oxide glass and 4228 K for oxyfluoride glass corresponding to the commercial cool white light (3100-4500 K). Judd-Ofelt theory had also been employed to obtain the J-O parameters (Ω2, Ω4 and Ω6), oscillator strength, radiative transition possibility, stimulated emission cross section and branching ratio. The Ω2 > Ω4 > Ω6 trend of J-O parameters of both glass samples may indicate the good quality of a glass host for using as optical device application. Temperature dependence of emission spectra was studied from 300 K to 10 K and found that the intensity of the emission peak was found to be increased with

  3. Controlled intracellular self-assembly of gadolinium nanoparticles as smart molecular MR contrast agents.

    PubMed

    Cao, Chun-Yan; Shen, Ying-Ying; Wang, Jian-Dong; Li, Li; Liang, Gao-Lin

    2013-01-01

    Herein we developed a new "smart" Gd-based MR contrast agent (i.e., 1) which is susceptive to furin, a protease overexpressed in tumor. Under the action of furin, 1 condenses to form dimers (1-Ds) and the latter self-assemble into gadolinium nanparticles (Gd-NPs). Relaxivity of 1-D is more than 2 folds of those of 1 and magnevist at 1.5 T, and 1.4 folds of that of 1 at 3 T. Intracellular condensation of 1 in furin-overexpressed MDA-MB-468 cells was proven with direct two-photon laser microscopy (TPLM) fluorescence imaging of the cells incubated with the europium analog of 1 (i.e., 2). Intracellular Gd-NPs of 1 were uncovered and characterized for the first time. MRI of MDA-MB-468 tumors showed that 1 has enhanced MR contrast within the tumors than that of its scrambled control 1-Scr.

  4. Diuretic-enhanced gadolinium excretory MR urography: comparison of conventional gradient-echo sequences and echo-planar imaging.

    PubMed

    Nolte-Ernsting, C C; Tacke, J; Adam, G B; Haage, P; Jung, P; Jakse, G; Günther, R W

    2001-01-01

    The aim of this study was to investigate the utility of different gadolinium-enhanced T1-weighted gradient-echo techniques in excretory MR urography. In 74 urologic patients, excretory MR urography was performed using various T1-weighted gradient-echo (GRE) sequences after injection of gadolinium-DTPA and low-dose furosemide. The examinations included conventional GRE sequences and echo-planar imaging (GRE EPI), both obtained with 3D data sets and 2D projection images. Breath-hold acquisition was used primarily. In 20 of 74 examinations, we compared breath-hold imaging with respiratory gating. Breath-hold imaging was significantly superior to respiratory gating for the visualization of pelvicaliceal systems, but not for the ureters. Complete MR urograms were obtained within 14-20 s using 3D GRE EPI sequences and in 20-30 s with conventional 3D GRE sequences. Ghost artefacts caused by ureteral peristalsis often occurred with conventional 3D GRE imaging and were almost completely suppressed in EPI sequences (p < 0.0001). Susceptibility effects were more pronounced on GRE EPI MR urograms and calculi measured 0.8-21.7% greater in diameter compared with conventional GRE sequences. Increased spatial resolution degraded the image quality only in GRE-EPI urograms. In projection MR urography, the entire pelvicaliceal system was imaged by acquisition of a fast single-slice sequence and the conventional 2D GRE technique provided superior morphological accuracy than 2D GRE EPI projection images (p < 0.0003). Fast 3D GRE EPI sequences improve the clinical practicability of excretory MR urography especially in old or critically ill patients unable to suspend breathing for more than 20 s. Conventional GRE sequences are superior to EPI in high-resolution detail MR urograms and in projection imaging.

  5. Anti-EpCAM scFv gadolinium chelate: a novel targeted MRI contrast agent for imaging of colorectal cancer.

    PubMed

    Khantasup, Kannika; Saiviroonporn, Pairash; Jarussophon, Suwatchai; Chantima, Warangkana; Dharakul, Tararaj

    2018-05-08

    The development of targeted contrast agents for magnetic resonance imaging (MRI) facilitates enhanced cancer imaging and more accurate diagnosis. In the present study, a novel contrast agent was developed by conjugating anti-EpCAM humanized scFv with gadolinium chelate to achieve target specificity. The material design strategy involved site-specific conjugation of the chelating agent to scFv. The scFv monomer was linked to maleimide-DTPA via unpaired cysteine at the scFv C-terminus, followed by chelation with gadolinium (Gd). Successful scFv-DTPA conjugation was achieved at 1:10 molar ratio of scFv to maleimide-DTPA at pH 6.5. The developed anti-EpCAM-Gd-DTPA MRI contrast agent was evaluated for cell targeting ability, in vitro serum stability, cell cytotoxicity, relaxivity, and MR contrast enhancement. A high level of targeting efficacy of anti-EpCAM-Gd-DTPA to an EpCAM-overexpressing HT29 colorectal cell was demonstrated by confocal microscopy. Good stability of the contrast agent was obtained and no cytotoxicity was observed in HT29 cells after 48 h incubation with 25-100 µM of Gd. Favorable imaging was obtained using anti-EpCAM-Gd-DTPA, including 1.8-fold enhanced relaxivity compared with Gd-DTPA, and MR contrast enhancement observed after binding to HT29. The potential benefit of this contrast agent for in vivo MR imaging of colorectal cancer, as well as other EpCAM positive cancers, is suggested and warrants further investigation.

  6. Highly transparent cerium doped gadolinium gallium aluminum garnet ceramic prepared with precursors fabricated by ultrasonic enhanced chemical co-precipitation.

    PubMed

    Zhang, Ji-Yun; Luo, Zhao-Hua; Jiang, Hao-Chuan; Jiang, Jun; Chen, Chun-Hua; Zhang, Jing-Xian; Gui, Zhen-Zhen; Xiao, Na

    2017-11-01

    Cerium doped gadolinium gallium aluminum garnet (GGAG:Ce) ceramic precursors have been synthesized with an ultrasonic chemical co-precipitation method (UCC) and for comparison with a traditional chemical co-precipitation method (TCC). The effect of ultra-sonication on the morphology of powders and the transmittance of GGAG:Ce ceramics are studied. The results indicate that the UCC method can effectively improve the homogenization and sinterability of GGAG:Ce powders, which contribute to obtain high transparent GGAG ceramic with the highest transmittance of 81%. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A smart T(1)-weighted MRI contrast agent for uranyl cations based on a DNAzyme-gadolinium conjugate.

    PubMed

    Xu, Weichen; Xing, Hang; Lu, Yi

    2013-11-07

    Rational design of smart MRI contrast agents with high specificity for metal ions remains a challenge. Here, we report a general strategy for the design of smart MRI contrast agents for detecting metal ions based on conjugation of a DNAzyme with a gadolinium complex. The 39E DNAzyme, which has high selectivity for UO2(2+), was conjugated to Gd(III)-DOTA and streptavidin. The binding of UO2(2+) to its 39E DNAzyme resulted in the dissociation of Gd(III)-DOTA from the large streptavidin, leading to a decrease of the T1 correlation time, and a change in the MRI signal.

  8. MRI with intrathecal MRI gadolinium contrast medium administration: a possible method to assess glymphatic function in human brain.

    PubMed

    Eide, Per Kristian; Ringstad, Geir

    2015-11-01

    Recently, the "glymphatic system" of the brain has been discovered in rodents, which is a paravascular, transparenchymal route for clearance of excess brain metabolites and distribution of compounds in the cerebrospinal fluid. It has already been demonstrated that intrathecally administered gadolinium (Gd) contrast medium distributes along this route in rats, but so far not in humans. A 27-year-old woman underwent magnetic resonance imaging (MRI) with intrathecal administration of gadobutrol, which distributed throughout her entire brain after 1 and 4.5 h. MRI with intrathecal Gd may become a tool to study glymphatic function in the human brain.

  9. MRI with intrathecal MRI gadolinium contrast medium administration: a possible method to assess glymphatic function in human brain

    PubMed Central

    Ringstad, Geir

    2015-01-01

    Recently, the “glymphatic system” of the brain has been discovered in rodents, which is a paravascular, transparenchymal route for clearance of excess brain metabolites and distribution of compounds in the cerebrospinal fluid. It has already been demonstrated that intrathecally administered gadolinium (Gd) contrast medium distributes along this route in rats, but so far not in humans. A 27-year-old woman underwent magnetic resonance imaging (MRI) with intrathecal administration of gadobutrol, which distributed throughout her entire brain after 1 and 4.5 h. MRI with intrathecal Gd may become a tool to study glymphatic function in the human brain. PMID:26634147

  10. Band-gap modulation via gallium substitution in cerium doped gadolinium aluminum garnet using a mixed fuel combustion approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyagi, Mohit; Pitale, Shreyas S.; Ghosh, Manoranjan

    2014-04-24

    Cerium doped Gadolinium garnets (Gd{sub 3}Al{sub x}Ga{sub 5−x}O{sub 12} where 0≤x≤5) are synthesized via combustion synthesis using mixture of urea and glycine fuels. A 4h Post annealing at 1400 oC is found to be necessary for pure phase formation. Lattice spacing variation as a result of partial or total Ga substitution at Al site was mapped by X-ray diffraction. Photoluminescence emission of Ce shifts as a consequence of Ga substitution and therefore suggests a local re-adjustment of crystal field around activator site.

  11. Thermal neutron detector based on COTS CMOS imagers and a conversion layer containing Gadolinium

    NASA Astrophysics Data System (ADS)

    Pérez, Martín; Blostein, Juan Jerónimo; Bessia, Fabricio Alcalde; Tartaglione, Aureliano; Sidelnik, Iván; Haro, Miguel Sofo; Suárez, Sergio; Gimenez, Melisa Lucía; Berisso, Mariano Gómez; Lipovetzky, Jose

    2018-06-01

    In this work we will introduce a novel low cost position sensitive thermal neutron detection technique, based on a Commercial Off The Shelf CMOS image sensor covered with a Gadolinium containing conversion layer. The feasibility of the neutron detection technique implemented in this work has been experimentally demonstrated. A thermal neutron detection efficiency of 11.3% has been experimentally obtained with a conversion layer of 11.6 μm. It was experimentally verified that the thermal neutron detection efficiency of this technique is independent on the intensity of the incident thermal neutron flux, which was confirmed for conversion layers of different thicknesses. Based on the experimental results, a spatial resolution better than 25 μm is expected. This spatial resolution makes the proposed technique specially useful for neutron beam characterization, neutron beam dosimetry, high resolution neutron imaging, and several neutron scattering techniques.

  12. Multifunctional gadolinium-based dendritic macromolecules as liver targeting imaging probes.

    PubMed

    Luo, Kui; Liu, Gang; He, Bin; Wu, Yao; Gong, Qingyong; Song, Bin; Ai, Hua; Gu, Zhongwei

    2011-04-01

    The quest for highly efficient and safe contrast agents has become the key factor for successful application of magnetic resonance imaging (MRI). The gadolinium (Gd) based dendritic macromolecules, with precise and tunable nanoscopic sizes, are excellent candidates as multivalent MRI probes. In this paper, a novel series of Gd-based multifunctional peptide dendritic probes (generation 2, 3, and 4) possessing highly controlled structures and single molecular weight were designed and prepared as liver MRI probes. These macromolecular Gd-ligand agents exhibited up to 3-fold increase in T(1) relaxivity comparing to Gd-DTPA complexes. No obvious in vitro cytotoxicity was observed from the measured concentrations. These dendritic probes were further functionalized with multiple galactosyl moieties and led to much higher cell uptake in vitro as demonstrated in T(1)-weighted scans. During in vivo animal studies, the probes provided better signal intensity (SI) enhancement in mouse liver, especially at 60 min post-injection, with the most efficient enhancement from the galactosyl moiety decorated third generation dendrimer. The imaging results were verified with analysis of Gd content in liver tissues. The design strategy of multifunctional Gd-ligand peptide dendritic macromolecules in this study may be used for developing other sensitive MRI probes with targeting capability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Process-Property Relationship for Air Plasma-Sprayed Gadolinium Zirconate Coatings

    NASA Astrophysics Data System (ADS)

    Dwivedi, Gopal; Tan, Yang; Viswanathan, Vaishak; Sampath, Sanjay

    2015-02-01

    The continuous need of elevating operating temperature of gas turbine engines has introduced several challenges with the current state-of-the-art yttria-stabilized zirconia (YSZ)-based thermal barrier coatings (TBCs), requiring examination of new TBC material with high temperature phase stability, lower thermal conductivity, and resistance to environmental ash particles. Gadolinium zirconate (Gd2Zr2O7) (GDZ) has been shown to meet many of these requirements, and has, in fact, been successfully implemented in to engine components. However, several fundamental issues related to the process-ability, toughness, and microstructural differences for GDZ when compared to equivalent YSZ coating. This study seeks to critically address the process-structure-property correlations for plasma-sprayed GDZ coating subjected to controlled parametric exploration. Use of in-flight diagnostics coupled with in situ and ex situ coating property monitoring allows examination and comparison of the process-property interplay and the resultant differences between the two TBC compositions. The results indicate that it is feasible to retain material chemistry and fabricate relevant microstructures of interest with GDZ with concomitant performance advantages such as low conductivity, mechanical compliance, sintering resistance, and suppression of environmentally induced damage from ash particles. This study provides a framework for optimal design and manufacturing of emergent multi-layer and multi-material TBCs.

  14. An integrated logic system for time-resolved fluorescent "turn-on" detection of cysteine and histidine base on terbium (III) coordination polymer-copper (II) ensemble.

    PubMed

    Xue, Shi-Fan; Lu, Ling-Fei; Wang, Qi-Xian; Zhang, Shengqiang; Zhang, Min; Shi, Guoyue

    2016-09-01

    Cysteine (Cys) and histidine (His) both play indispensable roles in many important biological activities. An enhanced Cys level can result in Alzheimer's and cardiovascular diseases. Likewise, His plays a significant role in the growth and repair of tissues as well as in controlling the transmission of metal elements in biological bases. Therefore, it is meaningful to detect Cys and His simultaneously. In this work, a novel terbium (III) coordination polymer-Cu (II) ensemble (Tb(3+)/GMP-Cu(2+)) was proposed. Guanosine monophosphate (GMP) can self-assemble with Tb(3+) to form a supramolecular Tb(3+) coordination polymer (Tb(3+)/GMP), which can be suited as a time-resolved probe. The fluorescence of Tb(3+)/GMP would be quenched upon the addition of Cu(2+), and then the fluorescence of the as-prepared Tb(3+)/GMP-Cu(2+) ensemble would be restored again in the presence of Cys or His. By incorporating N-Ethylmaleimide and Ni(2+) as masking agents, Tb(3+)/GMP-Cu(2+) was further exploited as an integrated logic system and a specific time-resolved fluorescent "turn-on" assay for simultaneously sensing His and Cys was designed. Meanwhile it can also be used in plasma samples, showing great potential to meet the need of practical application. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Influence of gamma-irradiation on the non-isothermal decomposition of calcium-gadolinium oxalate

    NASA Astrophysics Data System (ADS)

    Moharana, S. C.; Praharaj, J.; Bhatta, D.

    Thermal decomposition of co-precipitated unirradiated and irradiated Ca-Gd oxalate has been studied by adopting differential thermal analysis (DTA) and thermogravimetric (TG) techniques. The reaction occurs through two stages corresponding to the decomposition of gadolinium oxalate (Gd-Ox) followed by that of calcium oxalate (Ca-Ox). The kinetic parameters for both the stages are calculated by using solid state reaction models and Coats-Redfern's equation. The co-precipitation as well as irradiation alter the DTA peak temperatures and the kinetic parameters of Ca-Ox. The decomposition of Gd-Ox follows the two dimensional Contracting area (R-2) mechanism, while that of Ca-Ox follows the Avrami-Erofeev (A(2)) mechanism (n =2), which are also exhibited by the co-precipitated and irradiated samples. Co-precipitation decreases the energy of activation and the pre-exponential factor of the individual components but the reverse phenomenon takes place upon irradiation of the co-precipitate. The mechanisms underlying the phenomena are explored.

  16. Luminescence studies of rare earth doped yttrium gadolinium mixed oxide phosphor

    NASA Astrophysics Data System (ADS)

    Som, S.; Choubey, A.; Sharma, S. K.

    2012-09-01

    This paper reports the photoluminescence and thermoluminescence properties of gamma ray induced rare earth doped yttrium gadolinium mixed oxide phosphor. The europium (Eu3+) was used as rare earth dopant. The phosphor was prepared by chemical co-precipitation method according to the formula (Y2-x-yGdx) O3: Euy3+ (x=0.5; y=0.05). The photoluminescence emission spectrum of the prepared phosphor shows intense peaks in the red region at 615 nm for 5D0→7F2 transitions and the photoluminescence excitation spectra show a broad band located around 220-270 nm for the emission wavelength fixed at 615 nm. The thermoluminescence studies were carried out after irradiating the phosphor by gamma rays in the dose range from 100 Gy to 1 KGy. In the thermoluminescence glow curves, one single peak was observed at about 300 °C of which the intensity increases linearly in the studied dose range of gamma rays. The glow peak was deconvoluted by GlowFit program and the kinetic parameters associated with the deconvoluted peaks were calculated. The kinetic parameters were also calculated by various glow curve shape and heating rate methods.

  17. Modelling of the Gadolinium Fuel Test IFA-681 using the BISON Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pastore, Giovanni; Hales, Jason Dean; Novascone, Stephen Rhead

    2016-05-01

    In this work, application of Idaho National Laboratory’s fuel performance code BISON to modelling of fuel rods from the Halden IFA-681 gadolinium fuel test is presented. First, an overview is given of BISON models, focusing on UO2/UO2-Gd2O3 fuel and Zircaloy cladding. Then, BISON analyses of selected fuel rods from the IFA-681 test are performed. For the first time in a BISON application to integral fuel rod simulations, the analysis is informed by detailed neutronics calculations in order to accurately capture the radial power profile throughout the fuel, which is strongly affected by the complex evolution of absorber Gd isotopes. Inmore » particular, radial power profiles calculated at IFE–Halden Reactor Project with the HELIOS code are used. The work has been carried out in the frame of the collaboration between Idaho National Laboratory and Halden Reactor Project. Some slide have been added as an Appendix to present the newly developed PolyPole-1 algorithm for modeling of intra-granular fission gas release.« less

  18. The feasibility of in vivo quantification of bone-gadolinium in humans by prompt gamma neutron activation analysis (PGNAA) following gadolinium-based contrast-enhanced MRI

    NASA Astrophysics Data System (ADS)

    Mostafaei, F.; McNeill, F. E.; Chettle, D. R.; Noseworthy, M. D.; Prestwich, W. V.

    2015-11-01

    The feasibility of using a 238Pu/Be-based in vivo prompt γ-ray neutron activation analysis (IVNAA) system, previously successfully used for measurements of muscle, for the detection of gadolinium (Gd) in bone was presented. Gd is extensively used in contrast agents in MR imaging. We present phantom measurement data for the measurement of Gd in the tibia. Gd has seven naturally occurring isotopes, of which two have extremely large neutron capture cross sections; 155Gd (14.8% natural abundance (NA), σ= 60,900 barns) and 157Gd (15.65% NA, σ= 254,000 barns). Our previous work focused on muscle but this only informs about the short term kinetics of Gd. We studied the possibility of measuring bone, as it may be a long term storage site for Gd. A human simulating bone phantom set was developed. The phantoms were doped with seven concentrations of Gd of concentrations 0.0, 25, 50, 75, 100, 120 and 150 ppm. Additional elements important for neutron activation analysis, Na, Cl and Ca, were also included to create an overall elemental composition consistent with Reference Man. The overall conclusion is that the potential application of this Pu-Be-based prompt in vivo NAA for the monitoring of the storage and retention of Gd in bone is not feasible.

  19. Experimental and theoretical approach on the optical properties of zinc borotellurite glass doped with dysprosium oxide.

    PubMed

    Halimah, M K; Ami Hazlin, M N; Muhammad, F D

    2018-04-15

    A series of glass samples with chemical formula {[(TeO 2 ) 0.7 (B 2 O 3 ) 0.3 ] 0.7 (ZnO) 0.3 } 1-x (Dy 2 O 3 ) x where x=0.01, 0.02, 0.03, 0.04 and 0.05M fraction were synthesized through conventional melt-quenching method. The most common way to fabricate a glass material is by fusion of two or more component oxides followed by their quenching. This technique is known as melt-quenching technique. Kaur et al. (2016) [1] highlighted that the melt-quenching method able to enhance the mechanical properties like hardness and flexural strength of the material. The nature of the glass systems is proven to be amorphous based on the XRD pattern. The FTIR spectra of the glass systems confirm the existence of five bands which are assigned for the BO 4 , BO 3, TeO 4 and TeO 3 vibrational groups. The density of the glass systems is increased with the addition of Dy 2 O 3 while the molar volume is found to be inversely proportional to the density of the proposed glass. The optical properties of the glasses are determined through the absorption spectra obtained from the UV-VIS spectrophotometer. From the absorption spectra, the indirect and direct optical band gaps and the Urbach energy are found to be inversely proportional to each other. As the molar fraction of the Dy 2 O 3 increased, the optical band gaps are observed to increase as opposed to the Urbach energy. For this glass system, the values of refractive index, electronic polarizability, oxide ion polarizability and the optical basicity are found to decrease as the addition of the dysprosium oxide is increased. From the emission spectra, two intense blue and yellow emission bands are observed, which correspond to the 4 F 9/2 → 6 H 15/2 and 4 F 9/2 → 6 H 13/2 transitions of Dy 3+ ions respectively. The CIE chromaticity coordinates of the zinc borotellurite glass systems are found to be located in the white light region. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Role of MRI T2-DRIVE in the assessment of pituitary stalk abnormalities without gadolinium in pituitary diseases.

    PubMed

    Godano, Elisabetta; Morana, Giovanni; Di Iorgi, Natascia; Pistorio, Angela; Allegri, Anna Elsa Maria; Napoli, Flavia; Gastaldi, Roberto; Calcagno, Annalisa; Patti, Giuseppa; Gallizia, Annalisa; Notarnicola, Sara; Giaccardi, Marta; Noli, Serena; Severino, Mariasavina; Tortora, Domenico; Rossi, Andrea; Maghnie, Mohamad

    2018-06-01

    To investigate the role of T2-DRIVE MRI sequence in the accurate measurement of pituitary stalk (PS) size and the identification of PS abnormalities in patients with hypothalamic-pituitary disorders without the use of gadolinium. This was a retrospective study conducted on 242 patients who underwent MRI due to pituitary dysfunction between 2006 and 2015. Among 135 eligible patients, 102 showed eutopic posterior pituitary (PP) gland and 33 showed 'ectopic' PP (EPP). Two readers independently measured the size of PS in patients with eutopic PP at the proximal, midpoint and distal levels on pre- and post-contrast T1-weighted as well as T2-DRIVE images; PS visibility was assessed on pre-contrast T1 and T2-DRIVE sequences in those with EPP. The length, height, width and volume of the anterior pituitary (AP), PP height and length and PP area were analyzed. Significant agreement between the two readers was obtained for T2-DRIVE PS measurements in patients with 'eutopic' PP; a significant difference was demonstrated between the intraclass correlation coefficient calculated on the T2-DRIVE and the T1-pre- and post-contrast sequences. The percentage of PS identified by T2-DRIVE in EPP patients was 72.7% compared to 30.3% of T1 pre-contrast sequences. A significant association was found between the visibility of PS on T2-DRIVE and the height of AP. T2-DRIVE sequence is extremely precise and reliable for the evaluation of PS size and the recognition of PS abnormalities; the use of gadolinium-based contrast media does not add significant information and may thus be avoided. © 2018 European Society of Endocrinology.

  1. Various ligand-coated ultrasmall gadolinium-oxide nanoparticles: Water proton relaxivity and in-vivo T1 MR image

    NASA Astrophysics Data System (ADS)

    Park, Ja Young; Kim, Sung June; Lee, Gang Ho; Jin, Seonguk; Chang, Yongmin; Bae, Ji Eun; Chae, Kwon Seok

    2015-04-01

    Surface coating of nanoparticles with ligands is essential in magnetic resonance imaging (MRI) because of solubility in water and biocompatibility. In this study, five organic molecules were used for surface coating of ultrasmall gadolinium-oxide (Gd2O3) nanoparticles (d avg = 2.0 nm). All of the samples showed large longitudinal (r1) and transverse (r2) water proton relaxivities with r2/r1 ratios that were close to one, corresponding to ideal conditions for T1 MRI contrast agents. Finally, in-vivo T1 MR images were acquired to prove the effectiveness of the surface-coated ultrasmall Gd2O3 nanoparticles as a T1 MRI contrast agent.

  2. Diethylenetriaminepentaacetic acid-gadolinium (DTPA-Gd)-conjugated polysuccinimide derivatives as magnetic resonance imaging contrast agents.

    PubMed

    Lee, Ha Young; Jee, Hye Won; Seo, Sung Mi; Kwak, Byung Kook; Khang, Gilson; Cho, Sun Hang

    2006-01-01

    Biocompatible polysuccinimide (PSI) derivatives conjugated with diethylenetriaminepentaacetic acid gadolinium (DTPA-Gd) were prepared as magnetic resonance imaging (MRI) contrast agents. In this study, we synthesized PSI derivatives incorporating methoxy-poly(ethylene glycol) (mPEG) as hydrophilic ligand, hexadecylamine as hydrophobic ligand, and DTPA-Gd as contrast agent. PSI was synthesized by the polycondensation polymerization of aspartic acid. All the synthesized materials were characterized by proton nuclear magnetic resonance (1H NMR). Critical micellization concentrations were determined using fluorescent probes (pyrene). Micelle size and shape were measured by electro-photometer light scattering (ELS) and atomic force microscopy (AFM). The formed micelle size ranged from 100 to 300 nm. The T1-weighted MR images of the phantom prepared with PSI-mPEG-C16-(DTPA-Gd) were obtained in a 3.0 T clinical MR imager, and the conjugates showed a great potential as MRI contrast agents.

  3. Radioluminescence and optical studies of gadolinium calcium phosphate oxyfluoride glasses doped with Sm3+

    NASA Astrophysics Data System (ADS)

    Meejitpaisan, P.; Insiripong, S.; Kedkaew, C.; Kim, H. J.; Kaewkhao, J.

    2017-08-01

    Sm3+-doped gadolinium calcium phosphate oxyfluoride glasses have been synthesized and investigated their optical, photo and radioluminescence properties. The glasses were prepared by melt quenching technique at 1400 °C. The characteristic absorption bands of Sm3+ ions originating from the 6H5/2 ground state and occurring absorbed photon in visible light (VIS) and near-infrared (NIR) region with clearly observed from absorption spectra. From the photoluminescence (PL), the glasses showed the emission at 561 (4G5/2→6H5/2), 598 (4G5/2→6H7/2), 644 (4G5/2→6H9/2) and 705 nm (4G5/2→6H11/2). The radioluminescence (RL), emission spectra were corresponding to those from PL measurements. From RL measurement, the integral scintillation efficiency of developed glass was determined at 43% when compared with BGO crystal.

  4. Optical fibre luminescence sensor for real-time LDR brachytherapy dosimetry

    NASA Astrophysics Data System (ADS)

    Woulfe, P.; Sullivan, F. J.; O'Keeffe, S.

    2016-05-01

    An optical fibre sensor for monitoring low dose radiation is presented. The sensor is based on a scintillation material embedded within the optical fibre core, which emits visible light when exposed to low level ionising radiation. The incident level of ionising radiation can be determined by analysing the optical emission. An optical fibre sensor is presented, based on radioluminescence whereby radiation sensitive scintillation material, terbium doped gadolinium oxysulphide (Gd2O2S:Tb), is embedded in a cavity of 250μm of a 500μm plastic optical fibre. The sensor is designed for in-vivo monitoring of the radiation dose during radio-active seed implantation for brachytherapy, in prostate cancer treatment, providing oncologists with real-time information of the radiation dose to the target area and/or nearby critical structures. The radiation from the brachytherapy seeds causes emission of visible light from the scintillation material through the process of radioluminescence, which penetrates the fibre, propagating along the optical fibre for remote detection using a multi-pixel photon counter. The sensor demonstrates a high sensitivity to Iodine-125, the radioactive source most commonly used in brachytherapy for treating prostate cancer.

  5. Constructing experimental devices for half-ton synthesis of gadolinium-loaded liquid scintillator and its performance.

    PubMed

    Park, Young Seo; Jang, Yeong Min; Joo, Kyung Kwang

    2018-04-01

    This paper describes in brief features of various experimental devices constructed for half-ton synthesis of gadolinium(Gd)-loaded liquid scintillator (GdLS) and also includes the performances and detailed chemical and physical results of a 0.5% high-concentration GdLS. Various feasibility studies on useful apparatus used for loading Gd into solvents have been carried out. The transmittance, Gd concentration, density, light yield, and moisture content were measured for quality control. We show that with the help of adequate automated experimental devices and tools, it is possible to perform ton scale synthesis of GdLS at moderate laboratory scale without difficulty. The synthesized GdLS was satisfactory to meet chemical, optical, and physical properties and various safety requirements. These synthesizing devices can be expanded into massive scale next-generation neutrino experiments of several hundred tons.

  6. Constructing experimental devices for half-ton synthesis of gadolinium-loaded liquid scintillator and its performance

    NASA Astrophysics Data System (ADS)

    Park, Young Seo; Jang, Yeong Min; Joo, Kyung Kwang

    2018-04-01

    This paper describes in brief features of various experimental devices constructed for half-ton synthesis of gadolinium(Gd)-loaded liquid scintillator (GdLS) and also includes the performances and detailed chemical and physical results of a 0.5% high-concentration GdLS. Various feasibility studies on useful apparatus used for loading Gd into solvents have been carried out. The transmittance, Gd concentration, density, light yield, and moisture content were measured for quality control. We show that with the help of adequate automated experimental devices and tools, it is possible to perform ton scale synthesis of GdLS at moderate laboratory scale without difficulty. The synthesized GdLS was satisfactory to meet chemical, optical, and physical properties and various safety requirements. These synthesizing devices can be expanded into massive scale next-generation neutrino experiments of several hundred tons.

  7. Removal of gadolinium-based contrast agents: adsorption on activated carbon.

    PubMed

    Elizalde-González, María P; García-Díaz, Esmeralda; González-Perea, Mario; Mattusch, Jürgen

    2017-03-01

    Three carbon samples were employed in this work, including commercial (1690 m 2  g -1 ), activated carbon prepared from guava seeds (637 m 2  g -1 ), and activated carbon prepared from avocado kernel (1068 m 2  g -1 ), to study the adsorption of the following gadolinium-based contrast agents (GBCAs): gadoterate meglumine Dotarem®, gadopentetate dimeglumine Magnevist®, and gadoxetate disodium Primovist®. The activation conditions with H 3 PO 4 were optimized using a Taguchi methodology to obtain mesoporous materials. The best removal efficiency by square meter in a batch system in aqueous solution and model urine was achieved by avocado kernel carbon, in which mesoporosity prevails over microporosity. The kinetic adsorption curves were described by a pseudo-second-order equation, and the adsorption isotherms in the concentration range 0.5-6 mM fit the Freundlich equation. The chemical characterization of the surfaces shows that materials with a greater amount of phenolic functional groups adsorb the GBCA better. Adsorption strongly depends on the pH due to the combination of the following factors: contrast agent protonated forms and carbon surface charge. The tested carbon samples were able to adsorb 70-90% of GBCA in aqueous solution and less in model urine. This research proposes a method for the elimination of GBCA from patient urine before its discharge into wastewater.

  8. Self-Gated Late Gadolinium Enhancement at 7T to Image Rats with Reperfused Acute Myocardial Infarction.

    PubMed

    Wang, Lei; Chen, Yushu; Zhang, Bing; Chen, Wei; Wang, Chunhua; Song, Li; Xu, Ziqian; Zheng, Jie; Gao, Fabao

    2018-01-01

    A failed electrocardiography (ECG)-trigger often leads to a long acquisition time (TA) and deterioration in image quality. The purpose of this study was to evaluate and optimize the technique of self-gated (SG) cardiovascular magnetic resonance (CMR) for cardiac late gadolinium enhancement (LGE) imaging of rats with myocardial infarction/reperfusion. Cardiovascular magnetic resonance images of 10 rats were obtained using SG-LGE or ECG with respiration double-gating (ECG-RESP-gating) method at 7T to compare differences in image interference and TA between the two methods. A variety of flip angles (FA: 10°-80°) and the number of repetitions (NR: 40, 80, 150, and 300) were investigated to determine optimal scan parameters of SG-LGE technique based on image quality score and contrast-to-noise ratio (CNR). Self-gated late gadolinium enhancement allowed successful scan in 10 (100%) rats. However, only 4 (40%) rats were successfully scanned with the ECG-RESP-gating method. TAs with SG-LGE varied depending on NR used (TA: 41, 82, 154, and 307 seconds, corresponding to NR of 40, 80, 150, and 300, respectively). For the ECG-RESP-gating method, the average TA was 220 seconds. For SG-LGE images, CNR (42.5 ± 5.5, 43.5 ± 7.5, 54 ± 9, 59.5 ± 8.5, 56 ± 13, 54 ± 8, and 41 ± 9) and image quality score (1.85 ± 0.75, 2.20 ± 0.83, 2.85 ± 0.37, 3.85 ± 0.52, 2.8 ± 0.51, 2.45 ± 0.76, and 1.95 ± 0.60) were achieved with different FAs (10°, 15°, 20°, 25°, 30°, 35°, and 40°, respectively). Optimal FAs of 20°-30° and NR of 80 were recommended. Self-gated technique can improve image quality of LGE without irregular ECG or respiration gating. Therefore, SG-LGE can be used an alternative method of ECG-RESP-gating.

  9. Synthesis route and three different core-shell impacts on magnetic characterization of gadolinium oxide-based nanoparticles as new contrast agents for molecular magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Azizian, Gholamreza; Riyahi-Alam, Nader; Haghgoo, Soheila; Moghimi, Hamid Reza; Zohdiaghdam, Reza; Rafiei, Behrooz; Gorji, Ensieh

    2012-10-01

    Despite its good resolution, magnetic resonance imaging intrinsically has low sensitivity. Recently, contrast agent nanoparticles have been used as sensitivity and contrast enhancer. The aim of this study was to investigate a new controlled synthesis method for gadolinium oxide-based nanoparticle preparation. For this purpose, diethyleneglycol coating of gadolinium oxide (Gd2O3-DEG) was performed using new supervised polyol route, and small particulate gadolinium oxide (SPGO) PEGylation was obtained with methoxy-polyethylene-glycol-silane (550 and 2,000 Da) coatings as SPGO-mPEG-silane550 and 2,000, respectively. Physicochemical characterization and magnetic properties of these three contrast agents in comparison with conventional Gd-DTPA were verified by dynamic light scattering transmission electron microscopy, Fourier transform infrared spectroscopy, inductively coupled plasma, X-ray diffraction, vibrating sample magnetometer, and the signal intensity and relaxivity measurements were performed using 1.5-T MRI scanner. As a result, the nanoparticle sizes of Gd2O3-DEG, SPGO-mPEG-silane550, and SPGO-mPEG-silane2000 could be reached to 5.9, 51.3, 194.2 nm, respectively. The image signal intensity and longitudinal ( r 1) and transverse relaxivity ( r 2) measurements in different concentrations (0.3 to approximately 2.5 mM), revealed the r 2/ r 1 ratios of 1.13, 0.89, 33.34, and 33.72 for Gd-DTPA, Gd2O3-DEG, SPGO-mPEG-silane550, and SPGO-mPEG-silane2000, respectively. The achievement of new synthesis route of Gd2O3-DEG resulted in lower r 2/ r 1 ratio for Gd2O3-DEG than Gd-DTPA and other previous synthesized methods by this and other groups. The smaller r 2/ r 1 ratios of two PEGylated-SPGO contrast agents in our study in comparison with r 2/ r 1 ratio of previous PEGylation ( r 2/ r 1 = 81.9 for mPEG-silane 6,000 MW) showed that these new three introduced contrast agents could potentially be proper contrast enhancers for cellular and molecular MR imaging.

  10. A TEM quantitative evaluation of strengthening in an Mg-RE alloy reinforced with SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabibbo, Marcello, E-mail: m.cabibbo@univpm.it; Spigarelli, Stefano

    2011-10-15

    Magnesium alloys containing rare earth elements are known to have high specific strength, good creep and corrosion resistance up to 523 K. The addition of SiC ceramic particles strengthens the metal matrix composite resulting in better wear and creep resistance while maintaining good machinability. The role of the reinforcement particles in enhancing strength can be quantitatively evaluated using transmission electron microscopy (TEM). This paper presents a quantitative evaluation of the different strengthening contributions, determined through TEM inspections, in an SiC Mg-RE composite alloy containing yttrium, neodymium, gadolinium and dysprosium. Compression tests at temperatures ranging between 290 and 573 K weremore » carried out. The microstructure strengthening mechanism was studied for all the compression conditions. Strengthening was compared to the mechanical results and the way the different contributions were combined is also discussed and justified. - Research Highlights: {yields} TEM yield strengthening terms evaluation on a Mg-RE SiC alloy. {yields} The evaluation has been extended to different compression temperature conditions. {yields} Linear and Quadratic sum has been proposed and validated. {yields} Hall-Petch was found to be the most prominent strengthening contributions.« less

  11. Non-invasive magnetic resonance imaging follow-up of sono-sensitive liposome tumor delivery and controlled release after high-intensity focused ultrasound.

    PubMed

    Fowler, Robert Andrew; Fossheim, Sigrid L; Mestas, Jean-Louis; Ngo, Jacqueline; Canet-Soulas, Emmanuelle; Lafon, Cyril

    2013-12-01

    This work examines the use of lanthanide-based contrast agents and magnetic resonance imaging in monitoring liposomal behavior in vivo. Dysprosium (Dy) and gadolinium (Gd) chelates, Dy-diethylenetriaminepentaacetic acid bismethylamide (Dy-DTPA-BMA) and Gd-DTPA-BMA, were encapsulated in pegylated distearoylphosphatidylethanolamine-based (saturated) liposomes, and then intravenously injected into Copenhagen rats with subcutaneous Dunning AT2 xenografts. Liposome-encapsulated Dy chelate shortens transverse relaxation times (T(2) and T(2)*) of tissue; thus, liposomal accumulation in the tumor can be monitored by observing the decrease in T(2)* relaxation time over time. The tumor was treated at the time of maximum liposomal accumulation (48 h) with confocal, cavitating high-intensity focused ultrasound to induce liposomal payload release. Using liposome-encapsulated Gd chelate at high enough concentrations and saturated liposomal phospholipids induces an exchange-limited longitudinal (T(1)) relaxation when the liposomes are intact; when the liposomes are released, exchange limitation is relieved, thus allowing in vivo observation of payload release as a decrease in tumor T(1). Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  12. Platinum(II)-gadolinium(III) complexes as potential single-molecular theranostic agents for cancer treatment.

    PubMed

    Zhu, Zhenzhu; Wang, Xiaoyong; Li, Tuanjie; Aime, Silvio; Sadler, Peter J; Guo, Zijian

    2014-11-24

    Theranostic agents are emerging multifunctional molecules capable of simultaneous therapy and diagnosis of diseases. We found that platinum(II)-gadolinium(III) complexes with the formula [{Pt(NH3)2Cl}2GdL](NO3)2 possess such properties. The Gd center is stable in solution and the cytoplasm, whereas the Pt centers undergo ligand substitution in cancer cells. The Pt units interact with DNA and significantly promote the cellular uptake of Gd complexes. The cytotoxicity of the Pt-Gd complexes is comparable to that of cisplatin at high concentrations (≥0.1 mM), and their proton relaxivity is higher than that of the commercial magnetic resonance imaging (MRI) contrast agent Gd-DTPA. T1-weighted MRI on B6 mice demonstrated that these complexes can reveal the accumulation of platinum drugs in vivo. Their cytotoxicity and imaging capabilities make the Pt-Gd complexes promising theranostic agents for cancer treatment. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A Broad G Protein-Coupled Receptor Internalization Assay that Combines SNAP-Tag Labeling, Diffusion-Enhanced Resonance Energy Transfer, and a Highly Emissive Terbium Cryptate.

    PubMed

    Levoye, Angélique; Zwier, Jurriaan M; Jaracz-Ros, Agnieszka; Klipfel, Laurence; Cottet, Martin; Maurel, Damien; Bdioui, Sara; Balabanian, Karl; Prézeau, Laurent; Trinquet, Eric; Durroux, Thierry; Bachelerie, Françoise

    2015-01-01

    Although G protein-coupled receptor (GPCR) internalization has long been considered as a major aspect of the desensitization process that tunes ligand responsiveness, internalization is also involved in receptor resensitization and signaling, as well as the ligand scavenging function of some atypical receptors. Internalization thus contributes to the diversity of GPCR-dependent signaling, and its dynamics and quantification in living cells has generated considerable interest. We developed a robust and sensitive assay to follow and quantify ligand-induced and constitutive-induced GPCR internalization but also receptor recycling in living cells. This assay is based on diffusion-enhanced resonance energy transfer (DERET) between cell surface GPCRs labeled with a luminescent terbium cryptate donor and a fluorescein acceptor present in the culture medium. GPCR internalization results in a quantifiable reduction of energy transfer. This method yields a high signal-to-noise ratio due to time-resolved measurements. For various GPCRs belonging to different classes, we demonstrated that constitutive and ligand-induced internalization could be monitored as a function of time and ligand concentration, thus allowing accurate quantitative determination of kinetics of receptor internalization but also half-maximal effective or inhibitory concentrations of compounds. In addition to its selectivity and sensitivity, we provided evidence that DERET-based internalization assay is particularly suitable for characterizing biased ligands. Furthermore, the determination of a Z'-factor value of 0.45 indicates the quality and suitability of DERET-based internalization assay for high-throughput screening (HTS) of compounds that may modulate GPCRs internalization.

  14. Gadolinium oxide decorated multiwalled carbon nanotube/tridoped titania nanocomposites for improved dye degradation under simulated solar light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamba, Gcina; Nanotechnology and Water Sustainability Research Unit, College of Engineering, Science and Technology, University of South Africa Florida Science Campus, 1709 Florida; Mbianda, Xavier Yangkou

    2016-03-15

    Graphical abstract: Illustration of the collaborative effect between MWCNT-Gd and Gd,N,S-TiO{sub 2} towards degradation of AB 74. - Highlights: • MWCNT-Gd/tridoped titania was successfully prepared via a sol-gel method. • XPS revealed the presence of Ti, C, O, S, N and Gd in MWCNT-Gd/Gd,N,S-TiO{sub 2}. • MWCNT-Gd/Gd,N,S-TiO{sub 2} displayed 100% degradation of acid blue 74 in 150 min. • Over 60% TOC removal by MWCNT-Gd/Gd,N,S-TiO{sub 2}. - Abstract: Neodymium/gadolinium/europium, nitrogen and sulphur tridoped titania (Nd/Gd/Eu, N,S-TiO{sub 2}) was hybridised with pre-synthesised gadolinium oxide decorated multiwalled carbon nanotubes (MWCNT-Gd) using a sol–gel method. Subsequent to drying and calcination, composite photocatalysts: MWCNT-Gd/Nd,N,S-TiO{submore » 2}, MWCNT-Gd/Gd,N,S-TiO{sub 2} and MWCNT-Gd/Eu,N,S-TiO{sub 2}, were obtained and characterised using TEM, SEM-EDX, UV–vis, XPS, XRD and FT-IR. Acid blue 74 (AB74) was used as a model dye to investigate the photocatalytic degradation properties of the prepared materials under simulated solar light irradiation. Coupling the different tridoped titania with MWCNT-Gd enhanced their activity compared to MWCNT/TiO{sub 2}, MWCNT-Gd/TiO{sub 2} and MWCNT/Gd,N,S-TiO{sub 2}. MWCNT-Gd/Gd,N,S-TiO{sub 2} showed the highest activity towards AB74 degradation reaching 100% decolourisation after 150 min of irradiation. Total organic carbon analysis revealed that over 50% of the AB74 molecules were completely mineralised after 180 min of irradiation in the presence of MWCNT-Gd/Gd,N,S-TiO{sub 2}.« less

  15. Utility of late gadolinium enhancement in pediatric cardiac MRI.

    PubMed

    Etesami, Maryam; Gilkeson, Robert C; Rajiah, Prabhakar

    2016-07-01

    Late gadolinium enhancement (LGE) cardiac magnetic resonance (MR) imaging sequence is increasingly used in the evaluation of pediatric cardiovascular disorders, and although LGE might be a normal feature at the sites of previous surgeries, it is pathologically seen as a result of extracellular space expansion, either from acute cell damage or chronic scarring or fibrosis. LGE is broadly divided into ischemic and non-ischemic patterns. LGE caused by myocardial infarction occurs in a vascular distribution and always involves the subendocardial portion, progressively involving the outer regions in a waveform pattern. Non-ischemic cardiomyopathies can have a mid-myocardial (either linear or patchy), subepicardial or diffuse subendocardial distribution. Idiopathic dilated cardiomyopathy can have a linear mid-myocardial pattern, while hypertrophic cardiomyopathy can have fine, patchy enhancement in hypertrophied and non-hypertrophied segments as well as right ventricular insertion points. Myocarditis and sarcoidosis have a mid-myocardial or subepicardial pattern of LGE. Fabry disease typically affects the basal inferolateral segment while Danon disease typically spares the septum. Pericarditis is characterized by diffuse or focal pericardial thickening and enhancement. Thrombus, the most common non-neoplastic cardiac mass, is characterized by absence of enhancement in all sequences, while neoplastic masses show at least some contrast enhancement, depending on the pathology. Regardless of the etiology, presence of LGE is associated with a poor prognosis. In this review, we describe the technical modifications required for performing LGE cardiac MR sequence in children, review and illustrate the patterns of LGE in children, and discuss their clinical significance.

  16. Nephrogenic systemic fibrosis and class labeling of gadolinium-based contrast agents by the Food and Drug Administration.

    PubMed

    Yang, Lucie; Krefting, Ira; Gorovets, Alex; Marzella, Louis; Kaiser, James; Boucher, Robert; Rieves, Dwaine

    2012-10-01

    In 2007, the Food and Drug Administration requested that manufacturers of all approved gadolinium-based contrast agents (GBCAs), drugs widely used in magnetic resonance imaging, use nearly identical text in their product labeling to describe the risk of nephrogenic systemic fibrosis (NSF). Accumulating information about NSF risks led to revision of the labeling text for all of these drugs in 2010. The present report summarizes the basis and purpose of this class-labeling approach and describes some of the related challenges, given the evolutionary nature of the NSF risk evidence. The class-labeling approach for presentation of product risk is designed to decrease the occurrence of NSF and to enhance the safe use of GBCAs in radiologic practice. © RSNA, 2012.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaques, Brian; Butt, Darryl P.; Marx, Brian M.

    A carbothermic reduction of the metal oxides in a hydrogen/nitrogen mixed gas stream prior to nitriding in a nitrogen gas stream was used to synthesize uranium nitride at 1500 deg. C, cerium nitride at 1400 deg. C, and dysprosium nitride at 1500 deg. C. Cerium nitride and dysprosium nitride were also synthesized via hydriding and nitriding the metal shavings at 900 deg. C and 1500 deg. C, respectively. Also, a novel ball-milling synthesis route was used to produce cerium nitride and dysprosium nitride from the metal shavings at room temperature. Dysprosium nitride was also produced by reacting the metal shavingsmore » in a high purity nitrogen gas stream at 1300 deg. C. All materials were characterized by phase analysis via X-ray diffraction. Only the high purity materials were further analyzed via chemical analysis to characterize the trace oxygen concentration. (authors)« less

  18. Comparison of MRI properties between derivatized DTPA and DOTA gadolinium-dendrimer conjugates.

    PubMed

    Nwe, K; Bernardo, M; Regino, C A S; Williams, M; Brechbiel, M W

    2010-08-15

    In this report we directly compare the in vivo and in vitro MRI properties of gadolinium-dendrimer conjugates of derivatized acyclic diethylenetriamine-N,N',N',N'',N''-pentaacetic acid (1B4M-DTPA) and macrocyclic 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (C-DOTA). The metal-ligand chelates were pre-formed in alcohol prior to conjugation to the generation 4 PAMAM dendrimer (G4D), and the dendrimer-based agents were purified by Sephadex(R) G-25 column. The analysis and SE-HPLC data indicated chelate to dendrimer ratios of 30:1 and 28:1, respectively. Molar relaxivity measured at pH 7.4, 22 degrees C, and 3T are comparable (29.5 vs 26.9 mM(-1)s(-1)), and both conjugates are equally viable as MRI contrast agents based on the images obtained. The macrocyclic agent however exhibits a faster rate of clearance in vivo (t(1/2)=16 vs 29 min). Our conclusion is that the macrocyclic-based agent is the more suitable agent for in vivo use for these reasons combined with kinetic inertness associated with the Gd(III) DOTA complex stability properties. Published by Elsevier Ltd.

  19. Engineered gadolinium-doped carbon dots for magnetic resonance imaging-guided radiotherapy of tumors.

    PubMed

    Du, Fengyi; Zhang, Lirong; Zhang, Li; Zhang, Miaomiao; Gong, Aihua; Tan, Youwen; Miao, Jiawen; Gong, Yuhua; Sun, Mingzhong; Ju, Huixiang; Wu, Chaoyang; Zou, Shenqiang

    2017-03-01

    The effectiveness of radiotherapy can decrease due to inaccurate positioning of machinery and inherent radioresistance of tumors. To address this issue, we present a novel theranostic nanoplatform based on gadolinium-doped carbon dots (Gd-doped CDs) designed specifically for magnetic resonance imaging (MRI)-guided radiotherapy of tumors. The Gd-doped CDs (∼18 nm) with dispersibility in water and stable photoluminescence were synthesized via a one-step hydrothermal approach. After tail vein injection of the Gd-doped CDs, they exhibited a relatively long circulation time (∼6 h), enabled efficient passive tumor targeting. Gd-doped CDs accumulate in the kidney and could be cleared out of the body from bladder. Importantly, they exhibited favorable biocompatibility with excellent performance in longitudinal relaxivity rate (r 1 ) of 6.45 mM -1 S -1 and radiosensitization enhancements. These results show that Gd-doped CDs are excellent T 1 contrast agents and radiosensitizers, possessing great promise for MRI-guided radiotherapy of tumors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Gadolinium released by the linear gadolinium-based contrast-agent Gd-DTPA decreases the activity of human epithelial Na+ channels (ENaCs).

    PubMed

    Knoepp, Fenja; Bettmer, Joerg; Fronius, Martin

    2017-05-01

    Gadolinium-based-contrast-agents (GBCAs) are used for magnetic-resonance-imaging and associated with renal and cardiovascular adverse reactions caused by released Gd 3+ ions. Gd 3+ is also a modulator of mechano-gated ion channels, including the epithelial Na + channel (ENaC) that is expressed in kidney epithelium and the vasculature. ENaC is important for salt-/water homeostasis and blood pressure regulation and a likely target of released Gd 3+ from GBCAs causing the above-mentioned adverse reactions. Therefore this study examined the effect of Gd 3+ and GBCAs on ENaC's activity. Human αβγENaC was expressed in Xenopus laevis oocytes and exposed to Gd 3+ , linear (Gd-DTPA, Magnevist) or cyclic (Dotarem) GBCAs. Transmembrane ion-currents (I M ) were recorded by the two-electrode-voltage-clamp technique and Gd 3+ -release by Gd-DTPA was confirmed by inductively coupled plasma-mass spectrometry. Gd 3+ exerts biphasic effects on ENaC's activity: ≤0.3mmol/l decreased I M which was preventable by DEPC (modifies histidines). Strikingly Gd 3+ ≥0.4mmol/l increased I M and this effect was prevented by cysteine-modifying MTSEA. Linear Gd-DTPA and Magnevist mimicked the effect of ≤0.3mmol/l Gd 3+ , whereas the chelator DTPA showed no effect. Gd 3+ and Gd-DTPA increased the IC 50 for amiloride, but did not affect ENaC's self-inhibition. Interestingly, cyclic Gd-DOTA (Dotarem) increased I M to a similar extent as its chelator DOTA, suggesting that the chelator rather than released Gd 3+ is responsible for this effect. These results confirm Gd 3+ -release from linear Gd-DTPA and indicate that the released Gd 3+ amount is sufficient to interfere with ENaC's activity to provide putative explanations for GBCA-related adverse effects. Copyright © 2017 Elsevier B.V. All rights reserved.