Sample records for gadoxetic acid gd-eob-dtpa-enhanced

  1. Evaluation of liver function using gadoxetate disodium (Gd-EOB-DTPA) enhanced MR imaging

    NASA Astrophysics Data System (ADS)

    Yamada, Akira; Hara, Takeshi; Li, Feng; Doi, Kunio

    2010-03-01

    Indocyanine green (ICG) is widely used for its clearance test in the evaluation of liver function. Gadoxetate disodium (Gd-EOB-DTPA) is a targeted MR contrast agent partially taken up by hepatocytes. The objective of this study was to evaluate the feasibility of an estimation of the liver function corresponding to plasma disappearance rate of indocyanine green (ICG-PDR) by use of the signal intensity of the liver alone in Gd-EOB-DTPA enhanced MR imaging (EOB-MRI). We evaluated fourteen patients who had EOB-MRI and ICG clearance test within 1 month. 2D-GRE T1 weighted images were obtained at pre contrast, 3 min (equilibrium phase) and 20 min (hepatobiliary phase) after the intravenous administration of Gd-EOB-DTPA, and the mean signal intensity of the liver was measured. The correlation between ICG-PDR and many parameters derived from the signal intensity of the liver in EOB-MRI was evaluated. The correlation coefficient between ICG-PDR and many parameters derived from the signal intensity of the liver in EOBMRI was low and not significant. The estimation of the liver function corresponding to ICG-PDR by use of the signal intensity of the liver alone in EOB-MRI would not be reliable.

  2. Impaired hepatic Gd-EOB-DTPA enhancement after radioembolisation of liver malignancies.

    PubMed

    Powerski, Maciej Janusz; Scheurig-Münkler, Christian; Hamm, Bernd; Gebauer, Bernhard

    2014-08-01

    To evaluate the uptake of the liver-specific magnetic resonance imaging (MRI) contrast agent gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) by functional liver parenchyma after radioembolisation (RE) of hepatic malignancies. Uptake of Gd-EOB-DTPA prior to RE versus 60+/-24d and 126+/-32d after RE was compared in a group of 33 patients with primary or secondary hepatic malignancies. In patients who underwent single-lobe treatment, left and right lobes were compared 59+/-24 days after RE. Gd-EOB-DTPA uptake was determined as follows: ratio of mean signal intensity in liver parenchyma to muscle in Gd-EOB-DTPA-enhanced T1-weighted MRI was subtracted from ratio of mean intensity in liver parenchyma to muscle in unenhanced T1-weighted MRI. Gd-EOB-DTPA uptake in liver parenchyma was 0.845+/-0.29 before RE, 0.615+/-0.38 (P = 0.0022) at day 60+/-24, and 0.739+/-0.30 at day 126+/-32 after RE. In cases of single-lobe treatment, Gd-EOB-DTPA uptake was 0.581+/-0.256 for treated and 0.828+/-0.32 (P = 0.0164) for untreated hepatic lobes. Uptake of Gd-EOB-DTPA by liver parenchyma is impaired after RE, indicating dysfunction of the local hepatic system. These findings suggest that Gd-EOB-DTPA-enhanced MRI has the potential to be used for monitoring liver damage after RE. © 2014 The Royal Australian and New Zealand College of Radiologists.

  3. Gd-EOB-DTPA-enhanced 3.0-Tesla MRI findings for the preoperative detection of focal liver lesions: Comparison with iodine-enhanced multi-detector computed tomography

    NASA Astrophysics Data System (ADS)

    Park, Hyong-Hu; Goo, Eun-Hoe; Im, In-Chul; Lee, Jae-Seung; Kim, Moon-Jib; Kwak, Byung-Joon; Chung, Woon-Kwan; Dong, Kyung-Rae

    2012-12-01

    enhancement was detected in all metastases (30/30). During the arterial and the delayed phases, good overall agreement between the gadoxetic-acid-enhanced MR and CT was observed (x2 test, p < 0.05). For the preoperative detection of focal liver lesions, Gd-EOB-DTPA-enhanced MRI had a higher diagnostic value and higher detection rate than iodine-enhanced MDCT. The arterial and the delayed dynamic enhancement patterns, and the gadoxetic-acid-enhanced MR imaging can provide information on the possible degree of cellular differentiation of a HCC, adenoma or metastatic tumor.

  4. Gd-EOB-DTPA-enhanced magnetic resonance imaging for focal liver lesions in Chinese patients: a multicenter, open-label, phase III study.

    PubMed

    Zeng, Meng-Su; Ye, Hui-Yi; Guo, Liang; Peng, Wei-Jun; Lu, Jian-Ping; Teng, Gao-Jun; Huan, Yi; Li, Ping; Xu, Jian-Rong; Liang, Chang-Hong; Breuer, Josy

    2013-12-01

    Contrast agents help to improve visibility in magnetic resonance (MR) imaging. However, owing to the large interstitial spaces of the liver, there is a reduction in the natural contrast gradient between lesions and healthy tissue. This study was undertaken to evaluate the efficacy and safety of the liver-specific MR imaging contrast agent gadoxetate disodium (Gd-EOB-DTPA) in Chinese patients. This was a single-arm, open-label, multicenter study in patients with known or suspected focal liver lesions referred for contrast-enhanced MR imaging. MR imaging was performed in 234 patients before and after a single intravenous bolus of Gd-EOB-DTPA (0.025 mmol/kg body weight). Images were evaluated by clinical study investigators and three independent, blinded radiologists. The primary efficacy endpoint was sensitivity in lesion detection. Gd-EOB-DTPA improved sensitivity in lesion detection by 9.46% compared with pre-contrast imaging for the average of the three blinded readers (94.78% vs 85.32% for Gd-EOB-DTPA vs pre-contrast, respectively). Improvements in detection were more pronounced in lesions less than 1 cm. Gd-EOB-DTPA improved diagnostic accuracy in lesion classification. This open-label study demonstrated that Gd-EOB-DTPA improves diagnostic sensitivity in liver lesions, particularly in those smaller than 1 cm. Gd-EOB-DTPA also significantly improves the diagnostic accuracy in lesion classification, and furthermore, Gd-EOB-DTPA is safe in Chinese patients with liver lesions.

  5. Gd-EOB-DTPA-enhanced magnetic resonance imaging for bile duct intraductal papillary mucinous neoplasms

    PubMed Central

    Ying, Shi-Hong; Teng, Xiao-Dong; Wang, Zhao-Ming; Wang, Qi-Dong; Zhao, Yi-Lei; Chen, Feng; Xiao, Wen-Bo

    2015-01-01

    AIM: To investigate gadolinium-ethoxybenzyl-diethylenetriamine-pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) of intraductal papillary mucinous neoplasms of the bile duct (IPMN-B). METHODS: The imaging findings of five cases of IPMN-B which were pathologically confirmed at our hospital between March 2012 and May 2013 were retrospectively analyzed. Three of these cases were diagnosed by duodenal endoscopy and biopsy pathology, and two cases were diagnosed by surgical pathology. All five patients underwent enhanced and non-enhanced computed tomography (CT), magnetic resonance cholangiopancreatography, and Gd-EOB-DTPA-enhanced MRI; one case underwent both Gd-EOB-DTPA-enhanced MRI and positron emission tomography-CT. The clinical data and imaging results for these cases were compared and are presented. RESULTS: Conventional imaging showed diffuse dilatation of bile ducts and multiple intraductal polypoid and papillary neoplasms or serrated changes along the bile ducts. In two cases, Gd-EOB-DTPA-enhanced MRI revealed dilated biliary ducts and intraductal tumors, as well as filling defects caused by mucin in the dilated bile ducts in the hepatobiliary phase. Gd-EOB-DTPA-enhanced MRI in one case clearly showed a low-signal tumor in the hepatobiliary phase, similar to what was seen by positron emission tomography-CT. In two patients, routine inspection was unable to discern whether the lesions were inflammation or tumors. However, Gd-EOB-DTPA-enhanced MRI revealed a pattern of gradual enhancement during the hepatobiliary phase, and the signal intensity of the lesions was lower than the surrounding liver parenchyma, suggesting tissue inflammation in both cases, which were confirmed by surgical pathology. CONCLUSION: Gd-EOB-DTPA-enhanced MRI reveals the intraductal mucin component of IPMN-B in some cases and the extent of tumor infiltration beyond the bile ducts in invasive cases. PMID:26167082

  6. Gd-EOB-DTPA-enhanced magnetic resonance imaging for bile duct intraductal papillary mucinous neoplasms.

    PubMed

    Ying, Shi-Hong; Teng, Xiao-Dong; Wang, Zhao-Ming; Wang, Qi-Dong; Zhao, Yi-Lei; Chen, Feng; Xiao, Wen-Bo

    2015-07-07

    To investigate gadolinium-ethoxybenzyl-diethylenetriamine-pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) of intraductal papillary mucinous neoplasms of the bile duct (IPMN-B). The imaging findings of five cases of IPMN-B which were pathologically confirmed at our hospital between March 2012 and May 2013 were retrospectively analyzed. Three of these cases were diagnosed by duodenal endoscopy and biopsy pathology, and two cases were diagnosed by surgical pathology. All five patients underwent enhanced and non-enhanced computed tomography (CT), magnetic resonance cholangiopancreatography, and Gd-EOB-DTPA-enhanced MRI; one case underwent both Gd-EOB-DTPA-enhanced MRI and positron emission tomography-CT. The clinical data and imaging results for these cases were compared and are presented. Conventional imaging showed diffuse dilatation of bile ducts and multiple intraductal polypoid and papillary neoplasms or serrated changes along the bile ducts. In two cases, Gd-EOB-DTPA-enhanced MRI revealed dilated biliary ducts and intraductal tumors, as well as filling defects caused by mucin in the dilated bile ducts in the hepatobiliary phase. Gd-EOB-DTPA-enhanced MRI in one case clearly showed a low-signal tumor in the hepatobiliary phase, similar to what was seen by positron emission tomography-CT. In two patients, routine inspection was unable to discern whether the lesions were inflammation or tumors. However, Gd-EOB-DTPA-enhanced MRI revealed a pattern of gradual enhancement during the hepatobiliary phase, and the signal intensity of the lesions was lower than the surrounding liver parenchyma, suggesting tissue inflammation in both cases, which were confirmed by surgical pathology. Gd-EOB-DTPA-enhanced MRI reveals the intraductal mucin component of IPMN-B in some cases and the extent of tumor infiltration beyond the bile ducts in invasive cases.

  7. Gadolinium Ethoxybenzyl Diethylenetriamine Pentaacetic Acid (Gd-EOB-DTPA)-Enhanced Magnetic Resonance Imaging and Multidetector-Row Computed Tomography for the Diagnosis of Hepatocellular Carcinoma: A Systematic Review and Meta-analysis.

    PubMed

    Ye, Feng; Liu, Jun; Ouyang, Han

    2015-08-01

    The purpose of this meta-analysis was to compare the diagnostic accuracy of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) and multidetector-row computed tomography (MDCT) for hepatocellular carcinoma (HCC).Medline, Cochrane, EMBASE, and Google Scholar databases were searched until July 4, 2014, using combinations of the following terms: gadoxetic acid disodium, Gd-EOB-DTPA, multidetector CT, contrast-enhanced computed tomography, and magnetic resonance imaging. Inclusion criteria were as follows: confirmed diagnosis of primary HCC by histopathological examination of a biopsy specimen; comparative study of MRI using Gd-EOB-DTPA and MDCT for diagnosis of HCC; and studies that provided quantitative outcome data. The pooled sensitivity and specificity of the 2 methods were compared, and diagnostic accuracy was assessed with alternative-free response receiver-operating characteristic analysis.Nine studies were included in the meta-analysis, and a total of 1439 lesions were examined. The pooled sensitivity and specificity for 1.5T MRI were 0.95 and 0.96, respectively, for 3.0T MRI were 0.91 and 0.96, respectively, and for MDCT were 0.74 and 0.93, respectively. The pooled diagnostic odds ratio for 1.5T and 3.0T MRI was 242.96, respectively, and that of MDCT was 33.47. To summarize, Gd-EOB-DTPA-enhanced MRI (1.5T and 3.0T) has better diagnostic accuracy for HCC than MDCT.

  8. Gd-EOB-DTPA-Enhanced MR Guidance in Thermal Ablation of Liver Malignancies

    PubMed Central

    Rosenberg, Christian; Jahn, Andrea; Pickartz, Tilman; Wahnschaffe, Ulrich; Patrzyk, Maciej; Hosten, Norbert

    2014-01-01

    Objective To evaluate the potency of Gd-EOB-DTPA to support hepatic catheter placement in laser ablation procedures by quantifying time-dependent delineation effects for instrumentation and target tumor within liver parenchyma. Monitoring potential influence on online MR thermometry during the ablation procedure is a secondary aim. Materials and Methods 30 cases of MR-guided laser ablation were performed after i.v. bolus injection of gadoxetic acid (0.025 mmol/Kg Gd-EOB-DTPA; Bayer Healthcare, Berlin, Germany). T1-weighted GRE sequences were used for applicator guidance (FLASH 3D) in the catheter placement phase and for therapy monitoring (FLASH 2D) in the therapy phase. SNR and consecutive CNR values were measured for elements of interest plotted over time both for catheter placement and therapy phase and compared with a non-contrast control group of 19 earlier cases. Statistical analysis was realized using the paired Wilcoxon test. Results Sustainable signal elevation of liver parenchyma in the contrast-enhanced group was sufficient to silhouette both target tumor and applicator against the liver. Differences in time dependent CNR alteration were highly significant between contrast-enhanced and non-contrast interventions for parenchyma and target on the one hand (p = 0.020) and parenchyma and instrument on the other hand (p = 0.002). Effects lasted for the whole procedure (monitoring up to 60 min) and were specific for the contrast-enhanced group. Contrasting maxima were seen after median 30 (applicator) and 38 (tumor) minutes, in the potential core time of a multineedle procedure. Contrast influence on T1 thermometry for real-time monitoring of thermal impact was not significant (p = 0.068–0.715). Conclusion Results strongly support anticipated promotive effects of Gd-EOB-DTPA for MR-guided percutaneous liver interventions by proving and quantifying the delineating effects for therapy-relevant elements in the procedure. Time benefit, cost

  9. Gd-EOB-DTPA-enhanced MR guidance in thermal ablation of liver malignancies.

    PubMed

    Rosenberg, Christian; Jahn, Andrea; Pickartz, Tilman; Wahnschaffe, Ulrich; Patrzyk, Maciej; Hosten, Norbert

    2014-01-01

    To evaluate the potency of Gd-EOB-DTPA to support hepatic catheter placement in laser ablation procedures by quantifying time-dependent delineation effects for instrumentation and target tumor within liver parenchyma. Monitoring potential influence on online MR thermometry during the ablation procedure is a secondary aim. 30 cases of MR-guided laser ablation were performed after i.v. bolus injection of gadoxetic acid (0.025 mmol/Kg Gd-EOB-DTPA; Bayer Healthcare, Berlin, Germany). T1-weighted GRE sequences were used for applicator guidance (FLASH 3D) in the catheter placement phase and for therapy monitoring (FLASH 2D) in the therapy phase. SNR and consecutive CNR values were measured for elements of interest plotted over time both for catheter placement and therapy phase and compared with a non-contrast control group of 19 earlier cases. Statistical analysis was realized using the paired Wilcoxon test. Sustainable signal elevation of liver parenchyma in the contrast-enhanced group was sufficient to silhouette both target tumor and applicator against the liver. Differences in time dependent CNR alteration were highly significant between contrast-enhanced and non-contrast interventions for parenchyma and target on the one hand (p = 0.020) and parenchyma and instrument on the other hand (p = 0.002). Effects lasted for the whole procedure (monitoring up to 60 min) and were specific for the contrast-enhanced group. Contrasting maxima were seen after median 30 (applicator) and 38 (tumor) minutes, in the potential core time of a multineedle procedure. Contrast influence on T1 thermometry for real-time monitoring of thermal impact was not significant (p = 0.068-0.715). Results strongly support anticipated promotive effects of Gd-EOB-DTPA for MR-guided percutaneous liver interventions by proving and quantifying the delineating effects for therapy-relevant elements in the procedure. Time benefit, cost effectiveness and oncologic outcome of the described beneficiary effects

  10. Assessment of Gd-EOB-DTPA-enhanced MRI for HCC and dysplastic nodules and comparison of detection sensitivity versus MDCT.

    PubMed

    Inoue, Tatsuo; Kudo, Masatoshi; Komuta, Mina; Hayaishi, Sosuke; Ueda, Taisuke; Takita, Masahiro; Kitai, Satoshi; Hatanaka, Kinuyo; Yada, Norihisa; Hagiwara, Satoru; Chung, Hobyung; Sakurai, Toshiharu; Ueshima, Kazuomi; Sakamoto, Michiie; Maenishi, Osamu; Hyodo, Tomoko; Okada, Masahiro; Kumano, Seishi; Murakami, Takamichi

    2012-09-01

    We aimed to evaluate gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) for the detection of hepatocellular carcinomas (HCCs) and dysplastic nodules (DNs) compared with dynamic multi-detector row computed tomography (MDCT), and to discriminate between HCCs and DNs. Eighty-six nodules diagnosed as HCC or DNs were retrospectively investigated. Gd-EOB-DTPA-enhanced MRI and dynamic MDCT were compared with respect to their diagnostic ability for hypervascular HCCs and detection sensitivity for hypovascular tumors. The ability of hepatobiliary images of Gd-EOB-DTPA-enhanced MRI to discriminate between these nodules was assessed. We also calculated the EOB enhancement ratio of the tumors. For hypervascular HCCs, the diagnostic ability of Gd-EOB-DTPA-enhanced MRI was significantly higher than that of MDCT for tumors less than 2 cm (p = 0.048). There was no difference in the detection of hypervascular HCCs between hepatobiliary phase images of Gd-EOB-DTPA-enhanced MRI (43/45: 96%) and dynamic MDCT (40/45: 89%), whereas the detection sensitivity of hypovascular tumors by Gd-EOB-DTPA-enhanced MRI was significantly higher than that by dynamic MDCT (39/41: 95% vs. 25/41: 61%, p = 0.001). EOB enhancement ratios were decreased in parallel with the degree of differentiation in DNs and HCCs, although there was no difference between DNs and hypovascular well-differentiated HCCs. The diagnostic ability of Gd-EOB-DTPA-enhanced MRI for hypervascular HCCs less than 2 cm was significantly higher than that of MDCT. For hypovascular tumors, the detection sensitivity of hepatobiliary phase images of Gd-EOB-DTPA-enhanced MRI was significantly higher than that of dynamic Gd-EOB-DTPA-enhanced MRI and dynamic MDCT. It was difficult to distinguish between DNs and hypovascular well-differentiated HCCs based on the EOB enhancement ratio.

  11. Dynamic contrast-enhanced magnetic resonance imaging of abdominal solid organ and major vessel: comparison of enhancement effect between Gd-EOB-DTPA and Gd-DTPA.

    PubMed

    Tamada, Tsutomu; Ito, Katsuyoshi; Sone, Teruki; Yamamoto, Akira; Yoshida, Koji; Kakuba, Koki; Tanimoto, Daigo; Higashi, Hiroki; Yamashita, Takenori

    2009-03-01

    To evaluate the differences in enhancement of the abdominal solid organ and the major vessel on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) obtained with gadolinium ethoxybenzyldiethylenetriamine pentaacetic acid (Gd-EOB-DTPA: EOB) and gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA) in the same patients. A total of 13 healthy volunteers underwent repeat assessments of abdominal MR examinations with DCE-MRI using either Gd-DTPA at a dose of 0.1 mmol/kg body weight or EOB at a dose of 0.025 mmol/kg body weight. DCE images were obtained at precontrast injection and in the arterial phase (AP: 25 seconds), portal phase (PP: 70 seconds), and equilibrium phase (EP: 3 minutes). The signal intensities (SIs) of liver at AP, PP, and EP; the SIs of spleen, renal cortex, renal medulla, pancreas, adrenal gland, aorta at AP; and the SIs of portal vein and inferior vena cava (IVC) at PP were defined using region-of-interest measurements, and were used for calculation of signal intensity ratio (SIR). The mean SIRs of liver (0.195+/-0.140), spleen (1.35+/-0.353), renal cortex (1.58+/-0.517), renal medulla (0.548+/-0.259), pancreas (0.540+/-0.183), adrenal gland (1.04+/-0.405), and aorta (2.44+/-0.648) at AP as well as the mean SIRs of portal vein (1.85+/-0.477) and IVC (1.16+/-0.187) at PP in the EOB images were significantly lower than those (0.337+/-0.200, 1.99+/-0.443, 2.01+/-0.474, 0.742+/-0.336, 0.771+/-0.227, 1.26+/-0.442, 3.22+/-1.20, 2.73+/-0.429, and 1.68+/-0.366, respectively) in the Gd-DTPA images (P<0.05 each). There was no significant difference in mean SIR of liver at PP between EOB (0.529+/-0.124) and Gd-DTPA (0.564+/-0.139). Conversely, the mean SIR of liver at EP was significantly higher with EOB (0.576+/-0.167) than with Gd-DTPA (0.396+/-0.093) (P<0.001). Lower arterial vascular and parenchymal enhancement with Gd-EOB, as compared with Gd-DTPA, may require reassessment of its dose, despite the higher late venous phase liver parenchymal

  12. Non-hypervascular hypointense nodules on Gd-EOB-DTPA-enhanced MRI as a predictor of outcomes for early-stage HCC.

    PubMed

    Toyoda, Hidenori; Kumada, Takashi; Tada, Toshifumi; Sone, Yasuhiro; Maeda, Atsuyuki; Kaneoka, Yuji

    2015-01-01

    In patients with hepatocellular carcinoma (HCC), gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) often identifies non-hypervascular hypointense hepatic nodules during the hepatobiliary phase, but their prognostic significance is unclear. We conducted a prospective observational study to investigate the impact of non-hypervascular hypointense hepatic nodules detected by Gd-EOB-DTPA-enhanced MRI on the outcome of patients with early-stage HCC. Post-treatment recurrence and survival rates were analyzed in 138 patients with non-recurrent, early-stage HCC [Barcelona Clinic Liver Cancer (BCLC) stage 0 or A] and Child-Pugh A liver function according to the presence of non-hypervascular hypointense nodules on pretreatment Gd-EOB-DTPA-enhanced MRI. Non-hypervascular hypointense hepatic nodules were detected in 51 (37.0%) patients with early-stage HCC on pretreatment Gd-EOB-DTPA-enhanced MRI. Recurrence rates were significantly higher in patients with non-hypervascular hypointense nodules (p < 0.0001). Based on a multivariate analysis, the presence of non-hypervascular hypointense hepatic nodules on Gd-EOB-DTPA-enhanced MRI was independently associated with an increased recurrence rate, independent of tumor progression or treatment (p = 0.0005). The survival rate was significantly lower in patients with non-hypervascular hypointense nodules on Gd-EOB-DTPA-enhanced MRI (p = 0.0108). In patients with early-stage typical HCC (BCLC 0 or A), the presence of concurrent non-hypervascular hypointense hepatic nodules in the hepatobiliary phase of pretreatment Gd-EOB-DTPA-enhanced MRI is an indicator of higher likelihood of recurrence after treatment and may be a marker for unfavorable outcome.

  13. Detecting liver fibrosis with Gd-EOB-DTPA-enhanced MRI: A confirmatory study.

    PubMed

    Verloh, Niklas; Utpatel, Kirsten; Haimerl, Michael; Zeman, Florian; Beyer, Lukas; Fellner, Claudia; Brennfleck, Frank; Dahlke, Marc H; Stroszczynski, Christian; Evert, Matthias; Wiggermann, Philipp

    2018-04-18

    Strong correlations between the grade of fibrosis and cirrhosis, classified using the Ishak scoring system, and the uptake characteristics of Gd-EOB-DTPA with the relative enhancement (RE) of the liver parenchyma have been reported. To confirm the results of a retrospective analysis, patients undergoing liver surgery were prospectively examined with Gd-EOB-DTPA-enhanced liver 3 Tesla MRI to determine the degree of liver fibrosis. Correlations between the grade of fibrosis and cirrhosis, classified using the Ishak scoring system, and RE were investigated and compared with those derived from an initial retrospective study. After validating the cut-off values in the retrospective study (Ishak ≥ 1, RE-cut-off 0.90; Ishak ≥ 2, RE-cut-off 0.79; Ishak ≥ 4, RE-cut-off 0.60; and Ishak = 6, RE-cut-off 0.47), we showed that Gd-EOB-DTPA has a high sensitivity (≥86%) and a high positive predictive value (≥86%). These results support the use of Gd-EOB-DTPA-enhanced liver MRI as a non-invasive method for determining the degree of liver fibrosis and cirrhosis.

  14. Combining diffusion-weighted MRI with Gd-EOB-DTPA-enhanced MRI improves the detection of colorectal liver metastases.

    PubMed

    Koh, D-M; Collins, D J; Wallace, T; Chau, I; Riddell, A M

    2012-07-01

    To compare the diagnostic accuracy of gadolinium-ethoxybenzyl-diethylenetriaminepentaacetic acid (Gd-EOB-DTPA)-enhanced MRI, diffusion-weighted MRI (DW-MRI) and a combination of both techniques for the detection of colorectal hepatic metastases. 72 patients with suspected colorectal liver metastases underwent Gd-EOB-DTPA MRI and DW-MRI. Images were retrospectively reviewed with unenhanced T(1) and T(2) weighted images as Gd-EOB-DTPA image set, DW-MRI image set and combined image set by two independent radiologists. Each lesion detected was scored for size, location and likelihood of metastasis, and compared with surgery and follow-up imaging. Diagnostic accuracy was compared using receiver operating characteristics and interobserver agreement by kappa statistics. 417 lesions (310 metastases, 107 benign) were found in 72 patients. For both readers, diagnostic accuracy using the combined image set was higher [area under the curve (Az)=0.96, 0.97] than Gd-EOB-DTPA image set (Az=0.86, 0.89) or DW-MRI image set (Az=0.93, 0.92). Using combined image set improved identification of liver metastases compared with Gd-EOB-DTPA image set (p<0.001) or DW-MRI image set (p<0.001). There was very good interobserver agreement for lesion classification (κ=0.81-0.88). Combining DW-MRI with Gd-EOB-DTPA-enhanced T(1) weighted MRI significantly improved the detection of colorectal liver metastases.

  15. Detection of liver metastasis: is diffusion-weighted imaging needed in Gd-EOB-DTPA-enhanced MR imaging for evaluation of colorectal liver metastases?

    PubMed

    Tajima, Taku; Akahane, Masaaki; Takao, Hidemasa; Akai, Hiroyuki; Kiryu, Shigeru; Imamura, Hiroshi; Watanabe, Yasushi; Kokudo, Norihiro; Ohtomo, Kuni

    2012-10-01

    We compared diagnostic ability for detecting hepatic metastases between gadolinium ethoxy benzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) and diffusion-weighted imaging (DWI) on a 1.5-T system, and determined whether DWI is necessary in Gd-EOB-DTPA-enhanced MRI for diagnosing colorectal liver metastases. We assessed 29 consecutive prospectively enrolled patients with suspected metachronous colorectal liver metastases; all patients underwent surgery and had preoperative Gd-EOB-DTPA-enhanced MRI. Overall detection rate, sensitivity for detecting metastases and benign lesions, positive predictive value, and diagnostic accuracy (Az value) were compared among three image sets [unenhanced MRI (DWI set), Gd-EOB-DTPA-enhanced MRI excluding DWI (EOB set), and combined set]. Gd-EOB-DTPA-enhanced MRI yielded better overall detection rate (77.8-79.0 %) and sensitivity (87.1-89.4 %) for detecting metastases than the DWI set (55.9 % and 64.7 %, respectively) for one observer (P < 0.001). No statistically significant difference was seen between the EOB and combined sets, although several metastases were newly detected on additional DWI. Gd-EOB-DTPA-enhanced MRI yielded a better overall detection rate and higher sensitivity for detecting metastases compared with unenhanced MRI. Additional DWI may be able to reduce oversight of lesions in Gd-EOB-DTPA-enhanced 1.5-T MRI for detecting colorectal liver metastases.

  16. Diagnostic value of Gd-EOB-DTPA-enhanced MR cholangiography in non-invasive detection of postoperative bile leakage.

    PubMed

    Kul, Melahat; Erden, Ayşe; Düşünceli Atman, Ebru

    2017-04-01

    To assess the diagnostic value of dynamic T 1 weighted (T1w) gadolinium ethoxybenzyl diethylenetriamine penta-acetic acid (Gd-EOB-DTPA)-enhanced MR cholangiography (MRC) for the detection of active bile leaks. A total of 28 patients with suspected biliary leakage who underwent routine T 2 weighted (T2w) MRC and T1w GD-EOB-DTPA-enhanced MRC at our institution from February 2013 to June 2016 were included in this study. The image sets were retrospectively analyzed in consensus by three radiologists. T1w Gd-EOB-DTPA-enhanced MRC findings were correlated with clinical data, follow-up examinations and findings of invasive/surgical procedures. Patients with positive bile leak findings in Gd-EOB-DTPA-enhanced MRC were divided into hepatobiliary phase (HBP) (20-30 min) and delayed phase (DP) (60-390 min) group according to elapsed time between Gd-EOB-DTPA injection and initial bile leak findings in MRC images. These groups were compared in terms of laboratory test results (total bilirubin, liver enzymes) and the presence of bile duct dilatation in T2w MRC images. In each patient, visualization of bile ducts was sufficient in the HBP. The accuracy, sensitivity and specificity of dynamic Gd-EOB-DTPA-enhanced T1w MRC in the detection of biliary leaks were 92.9%, 90.5% and 100%, respectively (p < 0.001). 19 of 28 patients had bile leak findings in T1w Gd-EOB-DTPA-enhanced MRC [HBP group: N = 7 (36.8%), DP group: N = 12 (63.2%)]. There was no statistically significant difference in terms of laboratory test results and the presence of bile duct dilatation between HBP and DP group (p > 0.05). Three patients, each of them in DP group, showed normal laboratory test results and bile duct diameters. Dynamic T1w Gd-EOB-DTPA-enhanced MRC is a useful non-invasive diagnostic tool to detect bile leak. Advances in knowledge: Prolonged DP imaging may be required for bile leak detection even if visualization of biliary tree is sufficient in HBP and liver function tests

  17. Gd-EOB-DTPA-enhanced magnetic resonance imaging and alpha-fetoprotein predict prognosis of early-stage hepatocellular carcinoma.

    PubMed

    Yamashita, Taro; Kitao, Azusa; Matsui, Osamu; Hayashi, Takehiro; Nio, Kouki; Kondo, Mitsumasa; Ohno, Naoki; Miyati, Tosiaki; Okada, Hikari; Yamashita, Tatsuya; Mizukoshi, Eishiro; Honda, Masao; Nakanuma, Yasuni; Takamura, Hiroyuki; Ohta, Tetsuo; Nakamoto, Yasunari; Yamamoto, Masakazu; Takayama, Tadatoshi; Arii, Shigeki; Wang, XinWei; Kaneko, Shuichi

    2014-11-01

    The survival of patients with hepatocellular carcinoma (HCC) is often individually different even after surgery for early-stage tumors. Gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) has been introduced recently to evaluate hepatic lesions with regard to vascularity and the activity of the organic anion transporter OATP1B3. Here we report that Gd-EOB-DTPA-enhanced MRI (EOB-MRI) in combination with serum alpha-fetoprotein (AFP) status reflects the stem/maturational status of HCC with distinct biology and prognostic information. Gd-EOB-DTPA uptake in the hepatobiliary phase was observed in ∼15% of HCCs. This uptake correlated with low serum AFP levels, maintenance of hepatocyte function with the up-regulation of OATP1B3 and HNF4A expression, and good prognosis. By contrast, HCC showing reduced Gd-EOB-DTPA uptake with high serum AFP levels was associated with poor prognosis and the activation of the oncogene FOXM1. Knockdown of HNF4A in HCC cells showing Gd-EOB-DTPA uptake resulted in the increased expression of AFP and FOXM1 and the loss of OATP1B3 expression accompanied by morphological changes, enhanced tumorigenesis, and loss of Gd-EOB-DTPA uptake in vivo. HCC classification based on EOB-MRI and serum AFP levels predicted overall survival in a single-institution cohort (n=70), and its prognostic utility was validated independently in a multi-institution cohort of early-stage HCCs (n=109). This noninvasive classification system is molecularly based on the stem/maturation status of HCCs and can be incorporated into current staging practices to improve management algorithms, especially in the early stage of disease. © 2014 by the American Association for the Study of Liver Diseases.

  18. Gd-EOB-DTPA-enhanced Magnetic Resonance Imaging and Alpha-fetoprotein Predict Prognosis of Early-Stage Hepatocellular Carcinoma

    PubMed Central

    Yamashita, Taro; Kitao, Azusa; Matsui, Osamu; Hayashi, Takehiro; Nio, Kouki; Kondo, Mitsumasa; Ohno, Naoki; Miyati, Tosiaki; Okada, Hikari; Yamashita, Tatsuya; Mizukoshi, Eishiro; Honda, Masao; Nakanuma, Yasuni; Takamura, Hiroyuki; Ohta, Tetsuo; Nakamoto, Yasunari; Yamamoto, Masakazu; Takayama, Tadatoshi; Arii, Shigeki; Wang, Xin Wei; Kaneko, Shuichi

    2014-01-01

    The survival of patients with hepatocellular carcinoma (HCC) is often individually different even after surgery for early-stage tumors. Gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) has been introduced recently to evaluate hepatic lesions with regard to vascularity and the activity of the organic anion transporter OATP1B3. Here, we report that Gd-EOB-DTPA-enhanced MRI (EOB-MRI) in combination with serum alpha-fetoprotein (AFP) status reflects the stem/maturational status of HCC with distinct biology and prognostic information. Gd-EOB-DTPA uptake in the hepatobiliary phase was observed in approximately 15% of HCCs. This uptake correlated with low serum AFP levels, maintenance of hepatocyte function with the up-regulation of OATP1B3 and HNF4A expression, and good prognosis. By contrast, HCC showing reduced Gd-EOB-DTPA uptake with high serum AFP levels was associated with poor prognosis and the activation of the oncogene FOXM1. Knockdown of HNF4A in HCC cells showing Gd-EOB-DTPA uptake resulted in the increased expression of AFP and FOXM1 and the loss of OATP1B3 expression accompanied by morphological changes, enhanced tumorigenesis, and loss of Gd-EOB-DTPA uptake in vivo. HCC classification based on EOB-MRI and serum AFP levels predicted overall survival in a single-institution cohort (n = 70), and its prognostic utility was validated independently in a multi-institution cohort of early-stage HCCs (n = 109). Conclusion: This non-invasive classification system is molecularly based on the stem/maturation status of HCCs and can be incorporated into current staging practices to improve management algorithms, especially in the early stage of disease. PMID:24700365

  19. Assessment of liver function in primary biliary cirrhosis using Gd-EOB-DTPA-enhanced liver MRI.

    PubMed

    Nilsson, Henrik; Blomqvist, Lennart; Douglas, Lena; Nordell, Anders; Jonas, Eduard

    2010-10-01

    Gd-EOB-DTPA (gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid) is a gadolinium-based hepatocyte-specific contrast agent for magnetic resonance imaging (MRI). The aim of this study was to determine whether the hepatic uptake and excretion of Gd-EOB-DTPA differ between patients with primary biliary cirrhosis (PBC) and healthy controls, and whether differences could be quantified. Gd-EOB-DTPA-enhanced liver MRI was performed in 20 healthy volunteers and 12 patients with PBC. The uptake of Gd-EOB-DTPA was assessed using traditional semi-quantitative parameters (C(max) , T(max) and T(1/2) ), as well as model-free parameters derived after deconvolutional analysis (hepatic extraction fraction [HEF], input-relative blood flow [irBF] and mean transit time [MTT]). In each individual, all parameters were calculated for each liver segment and the median of the segmental values was used to define a global liver median (GLM). Although the PBC patients had relatively mild disease according to their Model for End-stage Liver Disease (MELD), Child-Pugh and Mayo risk scores, they had significantly lower HEF and shorter MTT values compared with the healthy controls. These differences significantly increased with increasing MELD and Child-Pugh scores. Dynamic hepatocyte-specific contrast-enhanced MRI (DHCE-MRI) has a potential role as an imaging-based liver function test. The high spatial resolution of MRI enables hepatic function to be assessed on segmental and sub-segmental levels. © 2010 International Hepato-Pancreato-Biliary Association.

  20. One-stop-shop preoperative evaluation for living liver donors with gadoxetic acid disodium-enhanced magnetic resonance imaging: efficiency and additional benefit.

    PubMed

    Xie, Shuangshuang; Liu, Chenhao; Yu, Zichuan; Ren, Tao; Hou, Jiancun; Chen, Lihua; Huang, Lixiang; Cheng, Yue; Ji, Qian; Yin, Jianzhong; Zhang, Longjiang; Shen, Wen

    2015-12-01

    To explore the efficiency, cost, and time for examination of one-stop-shop gadoxetic acid disodium (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) in preoperative evaluation for parent donors by comparing with multidetector computer tomography combined with conventional MR cholangiopancreatography (MDCT-MRCP). Forty parent donors were evaluated with MDCT-MRCP, and the other 40 sex-, age-, and weight-matched donors with Gd-EOB-DTPA-enhanced MRI. Anatomical variations and graft volume determined by pre- and intra-operative findings, costs and time for imaging were recorded. Image quality was ranked on a 4-point scale and compared between both groups. Gd-EOB-DTPA-enhanced MRI provided better image quality than MDCT-MRCP for the depiction of portal veins and bile ducts by both reviewers (p < 0.05), hepatic veins by one reviewer (p < 0.05), rather hepatic arteries by both reviewers (p < 0.01). Sixty-nine living donors proceeded to liver donation with all anatomical findings accurately confirmed by intra-operative findings. The "in-room" time of Gd-EOB-DTPA-enhanced MRI was 12 min longer than MDCT-MRCP. Gd-EOB-DTPA-enhanced MRI was cheaper than MDCT-MRCP (US$519.72 vs. US$631.85). One-stop-shop Gd-EOB-DTPA-enhanced MRI has similar diagnostic accuracy as MDCT-MRCP and can provide additional benefit in terms of costs and convenience in preoperative evaluation for parent donors. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Gd-EOB-DTPA-enhanced MRI is better than MDCT in decision making of curative treatment for hepatocellular carcinoma.

    PubMed

    Yoo, Sun Hong; Choi, Jong Young; Jang, Jeong Won; Bae, Si Hyun; Yoon, Seung Kew; Kim, Dong Goo; Yoo, Young Kyoung; Rha, Sung Eun; Lee, Young Joon; Jung, Eun Sun

    2013-09-01

    We assessed the change in the therapeutic decision among curative treatments after adding Gd-EOB-DTPA-enhanced MRI to triple-phase MDCT for patients with early-stage HCC. This study retrospectively investigated two groups: 33 pathologically confirmed HCC patients after liver transplantation in group 1; 34 HCC patients without pathology in group 2. In group 1, we simulated the therapeutic decision-making process by pretransplant MDCT and Gd-EOB-DTPA-enhanced MRI. In group 2, including the 34 early-stage HCC patients consecutively enrolled, we investigated the change of therapeutic decision after adding Gd-EOB-DTPA-enhanced MRI to MDCT. In the simulation from group 1, after adding Gd-EOB-DTPA-enhanced MRI, 33.3% (11/33 patients) of treatment decisions were changed from the decision based on MDCT alone. Among 22 patients considered eligible for resection and 33 patients for radiofrequency ablation, the therapeutic decision was changed for 10 patients in the surgical group and 4 patients for the RFA group (45.5 and 12.1%). In group 2, the rate of change in the therapeutic decision after adding Gd-EOB-DTPA-enhanced MRI to MDCT was 41.2% (14/34 patients). In group 1 with explants pathology, the median diameter of HCCs not detected by MDCT but detected by Gd-EOB-DTPA-enhanced MRI was 1.15 cm (0.3-3.0 cm). The median diameter of HCCs seen only in the explanted liver was 1.0 cm (0.3-1.7 cm), and 60.7% of them were well-differentiated HCCs. This study suggests that performing Gd-EOB-DTPA-enhanced MRI before deciding on curative treatment for early-stage HCC may improve the accuracy of treatment decision for early-stage HCC.

  2. Gd-EOB-DTPA-enhanced-MR imaging in the inflammation stage of nonalcoholic steatohepatitis (NASH) in mice.

    PubMed

    Yamada, Tomomi; Obata, Atsushi; Kashiwagi, Yuto; Rokugawa, Takemi; Matsushima, Shuuichi; Hamada, Tadateru; Watabe, Hiroshi; Abe, Kohji

    2016-07-01

    The purpose of this study is to investigate the correlation between the liver kinetics of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) and liver histopathology in a mouse model of NASH by using dynamic contrast-enhanced MRI. Twenty male C57/BL6 mice aged 8weeks were fed a methionine-choline-deficient (MCD) diet for 2, 4 and 6weeks (MCD groups: MCD 2w, 4w, or 6w). Gd-EOB-DTPA-enhanced MR imaging of the liver was performed at 2, 4 and 6weeks after the MCD feeding. The signal intensity of the liver was obtained from dynamic MR images and relative enhancement (RE), and the time to maximum RE (Tmax) and half-life of elimination RE (T1/2) were calculated. After MRI scan, histopathological scores of hepatic steatosis and inflammation and blood biochemistry data, such as aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels, were obtained. Plasma AST and ALT levels were significantly increased in mice fed MCD. Histopathological scores indicated that steatohepatitis progressed with the MCD feeding period from 2 to 6weeks, but significant fibrosis was observed only in mice fed MCD for 6weeks. Gd-EOB-DTPA-enhanced MRI showed that Tmax was significantly prolonged in the livers of the 6-week group compared to the control group (control, 4.0±0.7min; MCD 6w, 12.1±1.6min), although there was no alteration in the 2- and 4-week groups. T1/2 was significantly prolonged in mice fed MCD for 4 and 6weeks compared to the control group (control, 19.9±2.0min; MCD 4w, 46.7±8.7min; MCD 6w, 65.4±8.8min). The parameters of Gd-EOB-DTPA kinetics (Tmax and T1/2) in the liver were positively correlated with the liver histopathological score (steatosis vs Tmax, rho=0.69, P=0.0007; inflammation vs Tmax, rho=0.66, P=0.00155; steatosis vs T1/2, rho=0.77, P<0.0001; inflammation vs T1/2, rho=0.73, P=0.0003). The liver kinetics of Gd-EOB-DTPA correlated well with the inflammation score in the mouse model of NASH, suggesting the possibility of

  3. The target sign in colorectal liver metastases: an atypical Gd-EOB-DTPA "uptake" on the hepatobiliary phase of MR imaging.

    PubMed

    Granata, Vincenza; Catalano, Orlando; Fusco, Roberta; Tatangelo, Fabiana; Rega, Daniela; Nasti, Guglielmo; Avallone, Antonio; Piccirillo, Mauro; Izzo, Francesco; Petrillo, Antonella

    2015-10-01

    To describe the MRI findings in colorectal cancer liver metastases using gadoxetic acid (Gd-EOB-DTPA), with special emphasis on the target feature seen on the hepatobiliary phase. The medical records of 45 colorectal cancer patients with an overall number of 150 liver metastases were reviewed. All patients underwent Gd-EOB-DTPA-enhanced MRI before any kind of treatment. We retrospectively evaluated, for each lesion, the signal intensity on the T1-weighted, T2-weighted, and diffusion-weighted images. Additionally, the enhancement pattern during the arterial-, portal-, equilibrium-, and hepatobiliary-phase was assessed. Fourteen lesions had a pathological correlation. Lesions size was 5-40 mm (mean 15 mm). All metastases were hypointense on T1-w imaging. Ninety-nine lesions (66%) had a central area of very high signal intensity on T2-w imaging. Fifty-one metastases (34%) were hyperintense on the T2-w images. In DWI, all lesions had a restricted diffusion. The mean ADC value was 1.31 × 10(-3) mm(2)/s (range 1.10-1.45 × 10(-3) mm(2)/s). During the arterial-phase imaging, 61 lesions (41%) showed a rim enhancement, while 89 lesions (59%) appeared as hypointense. All lesions had low signal intensity in the portal and equilibrium phase. Thirty-nine percent of the lesions also showed an enhancing rim on the portal-phase images. During the hepatobiliary phase, 80 lesions (53.3%) were hypointense, while 70 lesions (46.7%) had a target appearance. A number of metastases show an atypical contrast medium uptake during the hepatobiliary phase of gadoxetic acid-enhanced MRI, consisting in a target appearance.

  4. Radiation-induced changes in hepatocyte-specific Gd-EOB-DTPA enhanced MRI: potential mechanism.

    PubMed

    Richter, Christian; Seco, Joao; Hong, Ted S; Duda, Dan G; Bortfeld, Thomas

    2014-10-01

    Liver irradiation leads to a decreased uptake of a hepatobiliary directed MRI contrast agent (Gd-EOB-DTPA) as shown in studies performed 1-6 months after proton therapy, stereotactic ablative body radiation therapy and brachytherapy. Therefore, Gd-EOB-DTPA enhanced MRI could potentially be used for in vivo verification of the delivered dose distribution. Achieving this would be highly desirable, especially for particle therapy, where the accuracy and precision of the spatial dose deposition is affected by uncertainties of the range of particles in patients. However, the empirically detected effect needs to be understood before it can be used as a surrogate imaging biomarker for in vivo treatment verification or even liver functionality. Here, we propose a model of the underlying molecular mechanism of this phenomenon and discuss its implications for radiation therapy. We model the multi-step process starting from the immediate response after liver irradiation to the delayed/subsequent signal decrease in Gd-EOB-DTPA enhanced MRI. The model is based on both: (a) Evidence from different previously published reports and (b) a detailed evaluation of intra-hepatic signaling using a pathway analysis to identify potential pathways that are critical in this process. The proposed model provides mechanistic understanding of the reduced signal intensity in Gd-EOB-DTPA enhanced MRI occurring in irradiated liver. We think that establishing this comprehensive model will be of great interest for the field of radiation oncology and can trigger further research. For example, measuring the expression of involved cytokines and specific transport proteins in blood samples and biopsy derived tissue samples and correlating the results with MRI imaging could give important information and may even explain inter-patient variations in MRI signal decrease. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Evaluation of biliary ductal anatomy in potential living liver donors: comparison between MRCP and Gd-EOB-DTPA-enhanced MRI.

    PubMed

    Santosh, D; Goel, A; Birchall, I W; Kumar, A; Lee, K H; Patel, V H; Low, G

    2017-10-01

    To compare magnetic resonance cholangiopancreatography (MRCP) and Gd-EOB-DTPA-enhanced MRI in the evaluation of the biliary anatomy in potential living liver donors (LLDs). A retrospective study was conducted in a tertiary care liver transplant center after obtaining ethics and institutional approvals. A total of 42 potential LLD MRI examinations were performed between November 2013 and March 2016. All patients underwent a standard MRI protocol which included MRCP and Gd-EOB-DTPA-enhanced MRI sequences in a single session. Three abdominal MR radiologists independently reviewed the studies and completed a customized data collection sheet for each MR sequence. The readers subjectively scored the bile duct visualization on each MR sequence on a Likert scale and classified the biliary anatomic configuration. Statistical analysis was performed using intraclass correlation coefficient and the McNemar Chi-square (χ 2 ) test. The 42 potential LLDs included 22 males and 20 females with an age range of 18-60 years. There was 'good' or 'excellent' inter-reader agreement on either MRI examination for the visualization of the first- and second-order ducts and the majority of third-order ducts. 'Good' inter-reader agreement on Gd-EOB-DTPA-enhanced MRI and 'fair' inter-reader agreement on MRCP was noted for the left third-order medial duct. There was significantly better visualization of the cystic duct, left hepatic duct, and right second-order ducts on Gd-EOB-DTPA-enhanced MRI compared with MRCP. A 12.6% improvement in classifying the biliary branch pattern was also observed on Gd-EOB-DTPA-enhanced MRI compared with MRCP (P = 0.03). Gd-EOB-DTPA-enhanced MRI provides additional diagnostic confidence over MRCP in the evaluation of the biliary ductal anatomy in potential LLDs.

  6. Can the biliary enhancement of Gd-EOB-DTPA predict the degree of liver function?

    PubMed

    Okada, Masahiro; Ishii, Kazunari; Numata, Kazushi; Hyodo, Tomoko; Kumano, Seishi; Kitano, Masayuki; Kudo, Masatoshi; Murakami, Takamichi

    2012-06-01

    Excretion of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) in the bile may be related to liver function, because of elimination from the liver after preferential uptake by hepatocytes. The purpose of this study was to investigate the relation between liver and biliary enhancement in patients with or without liver dysfunction, and to compare the tumor-to-liver contrast in these patients. Forty patients [group 1: normal liver and Child-Pugh class A in 20 patients, group 2: Child-Pugh class B in 18 patients and Child-Pugh C in 2] were evaluated. All patients underwent MR imaging of the liver using a 1.5-Tesla system. T1-weighted 3D images were obtained at 5, 10, 15 and 20 minutes after Gd-EOB-DTPA injection. The relation between group 3 (total bilirubin <1.8 mg/dL) and group 4 (total bilirubin ≥1.8 mg/dL) was investigated at 20 minutes. Liver and biliary signals were measured, and compared between groups 1 and 2 or groups 3 and 4. Tumor-to-liver ratio was also evaluated between groups 1 and 2. Scheffe's post-hoc test after two-way repeated-measures ANOVA and Pearson's correlation test were used for statistical analysis. Liver enhancement showed significant difference at all time points between groups 1 and 2. Biliary enhancement did not show a significant difference between groups 1 and 2 at 5 minutes, but did at 10, 15 and 20 minutes. At 20 minutes, significant differences between groups 3 and 4 were seen for liver and biliary enhancement. At all time points, liver enhancement correlated with biliary enhancement in both groups. At 5 minutes and 20 minutes, statistical differences between groups 1 and 2 were seen for tumor-to-liver ratio. The degree of biliary enhancement has a close correlation to that of liver enhancement. It is especially important that insufficient liver enhancement causes lower tumor-to-liver contrast in the hepatobiliary phase of Gd-EOB-DTPA.

  7. Development and validation of a predictor of insufficient enhancement during the hepatobiliary phase of Gd-EOB-DTPA-enhanced magnetic resonance imaging.

    PubMed

    Cui, Enming; Long, Wansheng; Luo, Liangping; Hu, Maoqing; Huang, Liebin; Chen, Xiangmeng

    2017-10-01

    Background Insufficient enhancement of liver parenchyma negatively affects diagnostic accuracy of Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI). Currently, there is no reliable method for predicting insufficient enhancement during the hepatobiliary phase (HBP) in Gd-EOB-DTPA-enhanced MRI. Purpose To develop a predictor for insufficient enhancement of liver parenchyma during HBP in Gd-EOB-DTPA-enhanced MRI. Material and Methods In order to formulate a HBP enhancement test (HBP-ET), clinical factors associated with relative enhancement ratio (RER) of liver parenchyma were retrospectively determined from the datasets of 156 patients (Development group) who underwent Gd-EOB-DTPA-enhanced MRI between November 2012 and May 2015. The independent clinical factors were identified by Pearson's correlation and multiple stepwise regression analysis; the performance of HBP-ET was compared to Child-Pugh score (CPS), Model for End-stage Liver Disease score (MELD), and total bilirubin (TBIL) using receiver operating characteristic (ROC) curve analysis. The datasets of 52 patients (Validation group), which were examined between June 2015 and Oct 2015, were applied to validate the HBP-ET. Results Six biochemical parameters independently influenced RER and were used to develop HBP-ET. The mean HBP-ET score of patients with insufficient enhancement was significantly higher than that of patients with sufficient enhancement ( P < 0.001) in both the Development and Validation groups. HBP-ET (area under the curve [AUC] = 0.895) had better performance in predicting insufficient enhancement than CPS (AUC = 0.707), MELD (AUC = 0.798), and TBIL (AUC = 0.729). Conclusion The HBP-ET is more accurate than routine indicators in predicting insufficient enhancement during HBP, which is valuable to aid clinical decisions.

  8. Non-hypervascular hypointense nodules detected by Gd-EOB-DTPA-enhanced MRI are a risk factor for recurrence of HCC after hepatectomy.

    PubMed

    Toyoda, Hidenori; Kumada, Takashi; Tada, Toshifumi; Niinomi, Takuro; Ito, Takanori; Sone, Yasuhiro; Kaneoka, Yuji; Maeda, Atsuyuki

    2013-06-01

    The gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) often depicts non-hypervascular hypointense hepatic nodules during the hepatobiliary phase in patients with hepatocellular carcinoma (HCC). It is unclear whether the presence of these nodules is associated with HCC recurrence after hepatectomy. We conducted a prospective observational study to investigate the impact of the presence of non-hypervascular hypointense hepatic nodules on the hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI on the recurrence of HCC after hepatectomy. A total of 77 patients who underwent hepatectomy for primary, non-recurrent, hypervascular HCC were prospectively followed up after hepatectomy. Post-operative recurrence rates were compared according to the presence of non-hypervascular hypointense nodules on preoperative Gd-EOB-DTPA-enhanced MRI. Recurrence rates after hepatectomy were higher in patients with non-hypervascular hypointense nodules (risk ratio 1.9396 [1.3615-2.7222]) and the presence of non-hypervascular hypointense nodules was an independent factor associated with postoperative recurrence (risk ratio 2.1767 [1.5089-3.1105]) along with HCC differentiation and portal vein invasion. While no differences were found in the rate of intrahepatic metastasis recurrence based on the preoperative presence of non-hypervascular hypointense hepatic nodules, the rate of multicentric recurrence was significantly higher in patients with preoperative non-hypervascular hypointense hepatic nodules. Patients with preoperative non-hypervascular hypointense hepatic nodules detected during the hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI are at higher risk of HCC recurrence after hepatectomy, mainly due to multicentric recurrence. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  9. Liver enhancement in healthy dogs after gadoxetic acid administration during dynamic contrast-enhanced magnetic resonance imaging.

    PubMed

    Borusewicz, P; Stańczyk, E; Kubiak, K; Spużak, J; Glińska-Suchocka, K; Jankowski, M; Nicpoń, J; Podgórski, P

    2018-05-01

    Dynamic contrast enhanced (DCE)-magnetic resonance imaging (MRI) consists of acquisition of native baseline images, followed by a series of acquisitions performed during and after administration of a contrast medium. DCE-MRI, in conjunction with hepatobiliary-specific contrast media, such as gadoxetic acid (GD-EOB-DTPA), allows for precise characterisation of the enhancement pattern of the hepatic parenchyma following administration of the contrast agent. The aim of the study was to assess the pattern of temporal resolution contrast enhancement of the hepatic parenchyma following administration of GD-EOB-DTPA and to determine the optimal time window for post-contrast assessment of the liver. The study was carried out on eight healthy beagle dogs. MRI was performed using a 1.5T scanner. The imaging protocol included T1 weighted (T1-W) gradient echo (GRE), T2 weighted (T2-W) turbo spin echo (TSE) and dynamic T1-W GRE sequences. The dynamic T1-W sequence was performed using single 10mm thick slices. Regions of interest (ROIs) were chosen and the signal intensity curves were calculated for quantitative image analysis. The mean time to peak for all dogs was 26min. The plateau phase lasted on average 21min. A gradual decrease in the signal intensity of the hepatic parenchyma was observed in all dogs. A DCE-MRI enhancement pattern of the hepatic parenchyma was evident in dogs following the administration of a GD-EOB-DTPA, establishing baseline data for an optimal time window between 26 and 41min after administration of the contrast agent. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Volume change and liver parenchymal signal intensity in Gd-EOB-DTPA-enhanced magnetic resonance imaging after portal vein embolization prior to hepatectomy.

    PubMed

    Akiba, Ayako; Murata, Satoru; Mine, Takahiko; Onozawa, Shiro; Sekine, Tetsuro; Amano, Yasuo; Kawano, Youichi; Uchida, Eiji; Kumita, Shin-ichiro

    2014-01-01

    To investigate the liver volume change and the potential of early evaluation by contrast-enhanced magnetic resonance imaging (MRI) using gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) after portal vein embolization (PVE). Retrospective evaluations of computed tomography (CT) volumetry of total liver and nonembolized areas were performed before and 3 weeks after PVE in 37 cases. The percentage of future liver remnant (%FLR) and the change ratio of %FLR (%FLR ratio) were calculated. Prospective evaluation of signal intensities (SIs) was performed to estimate the role of Gd-EOB-DTPA-enhanced MRI as a predictor of hypertrophy in 16 cases. The SI contrast between embolized and nonembolized areas was calculated 1 week after PVE. The change in SI contrast before and after PVE (SI ratio) was also calculated in 11 cases. %FLR ratio significantly increased, and SI ratio significantly decreased (both P < 0.01). There were significant negative correlations between %FLR and SI contrast and between %FLR and SI ratio (both P < 0.01). Hypertrophy in the nonembolized area after PVE was indicated by CT volumetry, and measurement of SI contrast and SI ratio in Gd-EOB-DTPA-enhanced MRI early after PVE may be useful to predict the potential for hepatic hypertrophy.

  11. Gd-EOB-DTPA-enhanced MRI for monitoring future liver remnant function after portal vein embolization and extended hemihepatectomy: A prospective trial.

    PubMed

    Geisel, Dominik; Raabe, Philip; Lüdemann, Lutz; Malinowski, Maciej; Stockmann, Martin; Seehofer, Daniel; Pratschke, Johann; Hamm, Bernd; Denecke, Timm

    2017-07-01

    To evaluate changes in liver function after right portal vein embolization (PVE) and extended right hemihepatectomy using gadolinium ethoxybenzyl-DTPA-enhanced (Gd-EOB-DTPA) MRI. In this prospective trial, 37 patients undergoing PVE were examined before and 14 and 28 days after PVE and 10 days after extended hemihepatectomy using Gd-EOB-DTPA-enhanced MRI. Lobar volume, kinetic growth rate (KGR), relative enhancement (RE) as well as hepatocellular uptake index (HUI) and fat signal fraction (FSF) were calculated for each lobe. RE of the left liver lobe (LLL) was steadily increasing after PVE and decreased to 0.48 ± 0.19 10 days after surgery, which is significantly lower than 14 days and 28 days post PVE (P < 0.05). KGR was 14.06 ± 9.82%/week for the period from PVE to 14 days after PVE. HUI of the LLL increased steadily after PVE and was significantly higher at both 14 and 28 days after PVE compared to pre PVE (P < 0.05). HUI of the residual liver after surgery was lower than before. Gd-EOB-DTPA-enhanced MRI may be used to monitor the functional increase in the FLR after PVE and to depict the intraoperative liver injury leading to a decrease in liver remnant function. • The most significant FLR volume increase happens within the first 14 days. • No MRI parameter was able to predict the success of FLR growth. • Our data suggest an early resection about 14 days after PVE. • Routine Gd-EOB-DTPA-enhanced MRI might be suitable to replace ICG-test.

  12. Comparison of gadolinium-EOB-DTPA-enhanced and diffusion-weighted liver MRI for detection of small hepatic metastases.

    PubMed

    Shimada, Kotaro; Isoda, Hiroyoshi; Hirokawa, Yuusuke; Arizono, Shigeki; Shibata, Toshiya; Togashi, Kaori

    2010-11-01

    To compare the accuracy of gadolinium ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced MRI with that of diffusion-weighted MRI (DWI) in the detection of small hepatic metastases (2 cm or smaller). Forty-five patients underwent abdominal MRI at 3 T, including T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), heavily T2WI (HASTE), DWI with a b-value of 500 s/mm(2) and contrast-enhanced MRI with Gd-EOB-DTPA. Two groups were assigned and compared: group A (T1WI, T2WI, HASTE and contrast-enhanced study with Gd-EOB-DTPA), and group B (T1WI, T2WI, HASTE and DWI). Two observers independently interpreted the images obtained in a random order. For all hepatic metastases, the diagnostic performance using each imaging set was evaluated by receiver-operating characteristic (ROC) curve analysis. A total of 51 hepatic metastases were confirmed. The area under the ROC curve (Az) of group A was larger than that of group B, and the difference in the mean Az values between the two image sets was statistically significant, whereas, there were three metastases that lay near thin vessels or among multiple cysts and were better visualised in group B than in group A. Gd-EOB-DTPA-enhanced MRI showed higher accuracy in the detection of small metastases than DWI.

  13. Gadoxetate Acid-Enhanced MR Imaging for HCC: A Review for Clinicians

    PubMed Central

    Chanyaputhipong, Jendana; Low, Su-Chong Albert; Chow, Pierce K. H.

    2011-01-01

    Hepatocellular carcinoma (HCC) is increasingly being detected at an earlier stage, owing to the screening programs and regular imaging follow-up in high-risk populations. Small HCCs still pose diagnostic challenges on imaging due to decreased sensitivity and increased frequency of atypical features. Differentiating early HCC from premalignant or benign nodules is important as management differs and has implications on both the quality of life and the overall survival for the patients. Gadoxetate acid (Gd-EOB-DTPA, Primovist®, Bayer Schering Pharma) is a relatively new, safe and well-tolerated liver-specific contrast agent for magnetic resonance (MR) imaging of the liver that has combined perfusion- and hepatocyte-specific properties, allowing for the acquisition of both dynamic and hepatobiliary phase images. Its high biliary uptake and excretion improves lesion detection and characterization by increasing liver-to-lesion conspicuity in the added hepatobiliary phase imaging. To date, gadoxetate acid-enhanced MRI has been mostly shown to be superior to unenhanced MRI, computed tomography, and other types of contrast agents in the detection and characterization of liver lesions. This review article focuses on the evolving role of gadoxetate acid in the characterization of HCC, differentiating it from other mimickers of HCC. PMID:21994860

  14. Health economic evaluation of Gd-EOB-DTPA MRI vs ECCM-MRI and multi-detector computed tomography in patients with suspected hepatocellular carcinoma in Thailand and South Korea.

    PubMed

    Lee, Jeong-Min; Kim, Myeong-Jin; Phongkitkarun, Sith; Sobhonslidsuk, Abhasnee; Holtorf, Anke-Peggy; Rinde, Harald; Bergmann, Karsten

    2016-08-01

    The effectiveness of treatment decisions and economic outcomes of using gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging (Gd-EOB-DTPA-MRI) were compared with extracellular contrast media-enhanced MRI (ECCM-MRI) and multi-detector computed tomography (MDCT) as initial procedures in patients with suspected hepatocellular carcinoma (HCC) in South Korea and Thailand. A decision-tree model simulated the clinical pathway for patients with suspected HCC from the first imaging procedure to a confirmed treatment decision. Input data (probabilities and resource consumptions) were estimated and validated by clinical experts. Costs for diagnostic alternatives and related treatment options were derived from published sources, taking into account both payer's and hospital's perspectives. All experts from Korea and Thailand agreed that Gd-EOB-DTPA-MRI yields the highest diagnostic certainty and minimizes the need for additional confirmatory diagnostic procedures in HCC. In Korea, from the payer's perspective, total cost was USD $3087/patient to reach a confirmed treatment decision using Gd-EOB-DTPA-MRI (vs $3205/patient for MDCT and $3403/patient for ECCM-MRI). From the hospital's perspective, Gd-EOB-DTPA-MRI incurred the lowest cost ($2289/patient vs $2320/patient and $2528/patient, respectively). In Thailand, Gd-EOB-DTPA-MRI was the least costly alternative for the payer ($702/patient vs $931/patient for MDCT and $873/patient for ECCM-MRI). From the hospital's perspective, costs were $1106/patient, $1178/patient, and $1087/patient for Gd-EOB-DTPA-MRI, MDCT, and ECCM-MRI, respectively. Gd-EOB-DTPA-MRI as an initial imaging procedure in patients with suspected HCC provides better diagnostic certainty and relevant statutory health insurance cost savings in Thailand and Korea, compared with ECCM-MRI and MDCT.

  15. Hepatic Hemangiomas: Factors Associated with Pseudo Washout Sign on Gd-EOB-DTPA-enhanced MR Imaging.

    PubMed

    Tateyama, Akihiro; Fukukura, Yoshihiko; Takumi, Koji; Shindo, Toshikazu; Kumagae, Yuichi; Nakamura, Fumihiko

    2016-01-01

    Our study aim was to clarify the characteristics of hemangiomas with pseudo washout sign (PWS) by comparing their features with those of hemangiomas without PWS on gadolinium-ethoxybenzyl-diethylenetriaminepentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance (MR) imaging. We evaluated the features of hemangiomas on Gd-EOB-DTPA-enhanced MR imaging of 70 hepatic hemangiomas in 31 patients, investigating the presence of peripheral or central nodular enhancement, diffuse enhancement, and arterioportal shunt during the arterial phase, fill-in enhancement during the portal venous phase, and PWS, which is low signal intensity during the late phase. We visually assessed the intensity of contrast enhancement of the lesion during the arterial, portal venous, late, and hepatobiliary phases using a 4-grade scale and used the Fisher exact and Mann-Whitney U tests to compare hemangiomas with and without PWS. We observed PWS in 33 (47%) of 70 hemangiomas, which were significantly smaller than the hemangiomas without PWS (17.4 mm ± 20.3 versus 30.1 mm ± 28.5; P = 0.005); more frequent diffuse enhancement in hemangiomas with PWS than those without (21.2% versus 2.7%; P = 0.026); and no significant differences in nodular enhancement (P = 0.231), arterioportal shunt (P = 0.403), or fill-in enhancement (P = 0.357) between hemangiomas with and without PWS. Visually determined grades of tumor contrast enhancement were significantly lower in hemangiomas with PWS during the portal venous (P = 0.007) and late (P < 0.001) phases. Small hemangiomas tend to decrease in signal intensity during the portal venous phase and show PWS during the late phase.

  16. Health economic assessment of Gd-EOB-DTPA MRI versus ECCM-MRI and multi-detector CT for diagnosis of hepatocellular carcinoma in China

    PubMed Central

    He, Xiaoning; Holtorf, Anke-Peggy; Rinde, Harald; Xie, Shuangshuang; Shen, Wen; Hou, Jiancun; Li, Xuehua; Li, Ziping; Lai, Jiaming; Wang, Yuting; Zhang, Lin; Wang, Jian; Li, Xuesong; Ma, Kuansheng; Ye, Feng; Ouyang, Han; Zhao, Hong

    2018-01-01

    Limited data exists in China on the comparative cost of gadolinium ethoxybenzyl diethylenetriamine magnetic resonance imaging (Gd-EOB-DTPA-MRI) with other imaging techniques. This study compared the total cost of Gd-EOB-DTPA-MRI with multidetector computed tomography (MDCT) and extracellular contrast media–enhanced MRI (ECCM-MRI) as initial imaging procedures in patients with suspected hepatocellular carcinoma (HCC). We developed a decision-tree model on the basis of the Chinese clinical guidelines for HCC, which was validated by clinical experts from China. The model compared the diagnostic accuracy and costs of alternative initial imaging procedures. Compared with MDCT and ECCM-MRI, Gd-EOB-DTPA-MRI imaging was associated with higher rates of diagnostic accuracy, i.e. higher proportions of true positives (TP) and true negatives (TN) with lower false positives (FP). Total diagnosis and treatment cost per patient after the initial Gd-EOB-DTPA-MRI evaluation was similar to MDCT (¥30,360 vs. ¥30,803) and lower than that reported with ECCM-MRI (¥30,360 vs. ¥31,465). Lower treatment cost after initial Gd-EOB-DTPA-MRI was driven by reduced utilization of confirmatory diagnostic procedures and unnecessary treatments. The findings reported that Gd-EOB-DTPA-MRI offered higher diagnostic accuracy compared with MDCT and ECCM-MRI at a comparable cost, which indicates Gd-EOB-DTPA-MRI could be the preferred initial imaging procedure for the diagnosis of HCC in China. PMID:29324837

  17. T1 mapping combined with Gd-EOB-DTPA-enhanced magnetic resonance imaging in predicting the pathologic grading of hepatocellular carcinoma.

    PubMed

    Chen, C Y; Chen, J; Xia, C C; Huang, Z X; Song, B

    2017-01-01

    The aim of this study was to investigate the value of Gd-EOB-DTPA-enhanced MRI on hepatobiliary phase (HBP) imaging and T1 mapping sequence in the differentiation of hepatocellular carcinoma (HCC). A total of 45 patients with HCC who were to undergo a resection were enrolled in this study. Gd-EOB-DTPA-enhanced magnetic resonance examination was performed prior to resection. T1 mapping was performed before and 20 min after injection of Gd-EOB-DTPA. T1 values of the lesions were measured on pre-contrast (T1p) and during HBP (T1-HBP) on T1 maps. The signal intensity, the diameter and the margin of HCC lesions on HBP images were analyzed. The reduction in T1 value (T1d) and the reduction rate (ΔT1%) of T1 mapping between pre-contrast and HBP were calculated. The Edmondson-Steiner classification of each lesion was made after surgery. The SPSS software package was used for statistical analysis and the analysis of receiver operator characteristic (ROC) curve and area under the curve (AUC) were carried out by using MedCalc software package. Mean values of T1p and T1-HBP were 1935.4±730.8 ms and 1257.1±529.1 ms, respectively. T1p accuracy (AUC = 0.685, p = 0.037) in predicting pathological grading was similar to that of T1-HBP (AUC = 0.751, p = 0.005). A T1p of 1648.2 ms or greater had a sensitivity and specificity of 85.19% and 61.11%, respectively. A T1-HBP of 1006 ms or greater had a sensitivity and specificity of 81.84% and 61.11%, respectively. The number of HCCs with a non-smooth tumor margin was 20 (44.4%), and a non-smooth tumor margin correlated moderately with the Edmondson-Steiner grade (Spearman r = 0.491, p = 0.041). There was no significant correlation between T1d, ΔT1%, HCC signal intensity on HBP image and lesion diameter with pathologic grading. T1 mapping in pre-contrast and HBP of Gd-EOB-DTPA-enhanced MRI, a non-smooth tumor margin in the HBP of Gd-EOB-DTPA-enhanced MRI, are useful in predicting the pathologic grading of HCC.

  18. Hepatic reaction dose for parenchymal changes on Gd-EOB-DTPA-enhanced magnetic resonance images after stereotactic body radiation therapy for hepatocellular carcinoma.

    PubMed

    Jung, Jinhong; Yoon, Sang Min; Cho, Byungchul; Choi, Young Eun; Kwak, Jungwon; Kim, So Yeon; Lee, Sang-Wook; Ahn, Seung Do; Choi, Eun Kyung; Kim, Jong Hoon

    2016-02-01

    The present study evaluated the threshold dose for hepatic parenchymal changes on gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance (MR) images after stereotactic body radiation therapy (SBRT) for hepatocellular carcinoma (HCC). Twenty patients with available data of follow-up MR images acquired 2-4 months after completion of SBRT were selected among the registered patients. SBRT was performed using multiple coplanar and non-coplanar beams with energies of 6 or 15 MV. All patients were treated with doses of 45 Gy administered in three fractions over 3 consecutive days. For image registration between planning computed tomography (CT) and MR images, landmark-based rigid body registration was performed using MIM software. Seventeen patients were included in the analysis. The median discrepancies between planning CT and MR images in the left-right, anterior-posterior and superior-inferior directions were 1.38 mm, 1.24 mm and 1.72 mm, respectively. The median D50 value for the defect in the hepatobiliary phase of Gd-EOB-DTPA-enhanced MR images after SBRT was 19.8 Gy (range, 14.2-28.7 Gy), with R(2) values ranging from 0.76 to 0.99. The threshold dose for parenchymal changes in the hepatobiliary phase of Gd-EOB-DTPA-enhanced MR images performed 2-4 months after 45 Gy of SBRT in three fractions was approximately 20 Gy. Our results provide the basis for further research on the functional loss of liver parenchyma after SBRT. © 2015 The Royal Australian and New Zealand College of Radiologists.

  19. Diagnostic Value of Gadoxetic Acid-Enhanced MR Imaging to Distinguish HCA and Its Subtype from FNH: A Systematic Review.

    PubMed

    Guo, Yongfei; Li, Wenjuan; Cai, Wenli; Zhang, Yi; Fang, Yijie; Hong, Guobin

    2017-01-01

    Objective: The purpose of this study was to systematically review the diagnostic performance of gadoxetic acid-enhanced magnetic resonance imaging (Gd-EOB-DTPA-MRI) for differentiation of hepatocellular adenoma (HCA) and focal nodular hyperplasia (FNH), as well as HCA classification by using the low signal intensity (SI) in the hepatobiliary phase (HBP). Methods: A systematic process was used to review all published data in MEDLINE database about Gd-EOB-DTPA-MRI applied to differentiation of HCA and FNH, and classification of HCA by using low SI in the HBP. The pooled sensitivity and specificity were calculated to assess the diagnostic value of low SI in the HBP. Results: A review of 45 articles identified 10 eligible studies with a total of 288 HCA lesions. The pooled proportion of low SI in the HBP of HCA were 91% (95% CI: 0.81-0.97). In specific, the subtypes of HCA were 75% (95% CI: 0.64-0.85) for I-HCA, 100% (95% CI: 0.95-1.00) for H-HCA, 92% (95% CI: 0.70-1.00) for U-HCA, and 59% (95% CI: 0.00-1.00) for b-HCA, respectively. The pooled specificity and sensitivity of low SI in the HBP for distinguishing FNH from HCA were 95% (95% CI: 0.92-0.98) and 92% (95% CI: 0.87-0.96), respectively. Conclusion: Low SI in the HBP of Gd-EOB-DTPA-MRI is associated with higher accuracy for distinguishing HCA from FNH. However, the diagnostic accuracy may be overvalued, especially for the diagnosis of subtypes of b-HCA and I-HCA. Therefore, the risk factors and conventional imaging findings should be take into account simultaneously.

  20. Comparison of Different Magnetic Resonance Cholangiography Techniques in Living Liver Donors Including Gd-EOB-DTPA Enhanced T1-Weighted Sequences

    PubMed Central

    Kinner, Sonja; Steinweg, Verena; Maderwald, Stefan; Radtke, Arnold; Sotiropoulos, Georgios; Forsting, Michael; Schroeder, Tobias

    2014-01-01

    Objectives Preoperative evaluation of potential living liver donors (PLLDs) includes the assessment of the biliary anatomy to avoid postoperative complications. Aim of this study was to compare T2-weighted (T2w) and Gd-EOB-DTPA enhanced T1-weighted (T1w) magnetic resonance cholangiography (MRC) techniques in the evaluation of PLLDs. Materials and Methods 30 PLLDs underwent MRC on a 1.5 T Magnetom Avanto (Siemens, Erlangen, Germany) using (A) 2D T2w HASTE (Half Fourier Acquisition Single Shot Turbo Spin Echo) fat saturated (fs) in axial plane, (B) 2D T2w HASTE fs thick slices in coronal plane, (C) free breathing 3D T2w TSE (turbo spin echo) RESTORE (high-resolution navigator corrected) plus (D) maximum intensity projections (MIPs), (E) T2w SPACE (sampling perfection with application optimized contrasts using different flip angle evolutions) plus (F) MIPs and (G) T2w TSE BLADE as well as Gd-EOB-DTPA T1w images without (G) and with (H) inversion recovery. Contrast enhanced CT cholangiography served as reference imaging modality. Two independent reviewers evaluated the biliary tract anatomy on a 5-point scale subjectively and objectively. Data sets were compared using a Mann-Whitney-U-test. Kappa values were also calculated. Results Source images and maximum intensity projections of 3D T2w TSE sequences (RESTORE and SPACE) proved to be best for subjective and objective evaluation directly followed by 2D HASTE sequences. Interobserver variabilities were good to excellent (k = 0.622–0.804). Conclusions 3D T2w sequences are essential for preoperative biliary tract evaluation in potential living liver donors. Furthermore, our results underline the value of different MRCP sequence types for the evaluation of the biliary anatomy in PLLDs including Gd-EOB-DTPA enhanced T1w MRC. PMID:25426932

  1. [Quantitative evaluation of Gd-EOB-DTPA uptake in phantom study for liver MRI].

    PubMed

    Hayashi, Norio; Miyati, Tosiaki; Koda, Wataru; Suzuki, Masayuki; Sanada, Shigeru; Ohno, Naoki; Hamaguchi, Takashi; Matsuura, Yukihiro; Kawahara, Kazuhiro; Yamamoto, Tomoyuki; Matsui, Osamu

    2010-05-20

    Gd-EOB-DTPA is a new liver specific MRI contrast media. In the hepatobiliary phase, contrast media is trapped in normal liver tissue, a normal liver shows high intensity, tumor/liver contrast becomes high, and diagnostic ability improves. In order to indicate the degree of uptake of the contrast media, the enhancement ratio (ER) is calculated. The ER is obtained by calculating (signal intensity (SI) after injection-SI before injection) / SI before injection. However, because there is no linearity between contrast media concentration and SI, ER is not correctly estimated by this method. We discuss a method of measuring ER based on SI and T(1) values using the phantom. We used a column phantom, with an internal diameter of 3 cm, that was filled with Gd-EOB-DTPA diluted solution. Moreover, measurement of the T(1) value by the IR method was also performed. The ER measuring method of this technique consists of the following three components: 1) Measurement of ER based on differences in 1/T(1) values using the variable flip angle (FA) method, 2) Measurement of differences in SI, and 3) Measurement of differences in 1/T(1) values using the IR method. ER values calculated by these three methods were compared. In measurement made using the variable FA method and the IR method, linearity was found between contrast media concentration and ER. On the other hand, linearity was not found between contrast media concentration and SI. For calculation of ER using Gd-EOB-DTPA, a more correct ER is obtained by measuring the T(1) value using the variable FA method.

  2. Diagnostic Value of Gadoxetic Acid-Enhanced MR Imaging to Distinguish HCA and Its Subtype from FNH: A Systematic Review

    PubMed Central

    Guo, Yongfei; Li, Wenjuan; Cai, Wenli; Zhang, Yi; Fang, Yijie; Hong, Guobin

    2017-01-01

    Objective: The purpose of this study was to systematically review the diagnostic performance of gadoxetic acid-enhanced magnetic resonance imaging (Gd-EOB-DTPA-MRI) for differentiation of hepatocellular adenoma (HCA) and focal nodular hyperplasia (FNH), as well as HCA classification by using the low signal intensity (SI) in the hepatobiliary phase (HBP). Methods: A systematic process was used to review all published data in MEDLINE database about Gd-EOB-DTPA-MRI applied to differentiation of HCA and FNH, and classification of HCA by using low SI in the HBP. The pooled sensitivity and specificity were calculated to assess the diagnostic value of low SI in the HBP. Results: A review of 45 articles identified 10 eligible studies with a total of 288 HCA lesions. The pooled proportion of low SI in the HBP of HCA were 91% (95% CI: 0.81-0.97). In specific, the subtypes of HCA were 75% (95% CI: 0.64-0.85) for I-HCA, 100% (95% CI: 0.95-1.00) for H-HCA, 92% (95% CI: 0.70-1.00) for U-HCA, and 59% (95% CI: 0.00-1.00) for b-HCA, respectively. The pooled specificity and sensitivity of low SI in the HBP for distinguishing FNH from HCA were 95% (95% CI: 0.92-0.98) and 92% (95% CI: 0.87-0.96), respectively. Conclusion: Low SI in the HBP of Gd-EOB-DTPA-MRI is associated with higher accuracy for distinguishing HCA from FNH. However, the diagnostic accuracy may be overvalued, especially for the diagnosis of subtypes of b-HCA and I-HCA. Therefore, the risk factors and conventional imaging findings should be take into account simultaneously. PMID:28824299

  3. Tissue gadolinium deposition in hepatorenally impaired rats exposed to Gd-EOB-DTPA: evaluation with inductively coupled plasma mass spectrometry (ICP-MS).

    PubMed

    Sato, Tomohiro; Tamada, Tsutomu; Watanabe, Shigeru; Nishimura, Hirotake; Kanki, Akihiko; Noda, Yasufumi; Higaki, Atsushi; Yamamoto, Akira; Ito, Katsuyoshi

    2015-06-01

    This study was undertaken to quantify tissue gadolinium (Gd) deposition in hepatorenally impaired rats exposed to gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) by means of inductively coupled plasma mass spectrometry (ICP-MS) and to compare differences in Gd distribution among major organs as possible triggers for nephrogenic systemic fibrosis. Five hepatorenally impaired rats (5/6-nephrectomized, with carbon-tetrachloride-induced liver fibrosis) were injected with Gd-EOB-DTPA. Histological assessment was conducted and Gd content of the skin, liver, kidneys, lungs, heart, spleen, diaphragm, and femoral muscle was measured by inductively coupled plasma mass spectrometry (ICP-MS) at 7 days after last injection. In addition, five renally impaired rats were injected with Gd-EOB-DTPA and the degree of tissue Gd deposition was compared with that in the hepatorenally impaired rats. ICP-MS analysis revealed significantly higher Gd deposition in the kidneys, spleen, and liver (p = 0.009-0.047) in the hepatorenally impaired group (42.6 ± 20.1, 17.2 ± 6.1, 8.4 ± 3.2 μg/g, respectively) than in the renally impaired group (17.2 ± 7.7, 5.4 ± 2.1, 2.8 ± 0.7 μg/g, respectively); no significant difference was found for other organs. In the hepatorenally impaired group, Gd was predominantly deposited in the kidneys, followed by the spleen, liver, lungs, skin, heart, diaphragm, and femoral muscle. Histopathological investigation revealed hepatic fibrosis in the hepatorenally impaired group. Compared with renally impaired rats, tissue Gd deposition in hepatorenally impaired rats exposed to Gd-EOB-DTPA was significantly increased in the kidneys, spleen, and liver, probably due to the impairment of the dual excretion pathways of the urinary and biliary systems.

  4. Comparison of contrast-enhanced ultrasonograpy with Gd-EOB-DTPA-enhanced MRI in the diagnosis of liver metastasis from colorectal cancer.

    PubMed

    Shiozawa, Kazue; Watanabe, Manabu; Ikehara, Takashi; Matsukiyo, Yasushi; Kogame, Michio; Kikuchi, Yoshinori; Otsuka, Yuichiro; Kaneko, Hironori; Igarashi, Yoshinori; Sumino, Yasukiyo

    2017-03-04

    To compare contrast-enhanced ultrasonography (CEUS) using Sonazoid with Gd-EOB-DTPA-enhanced MRI (EOB-MRI) in the diagnosis of liver metastases in patients with colorectal cancer. A total of 69 patients diagnosed with or suspected of having liver metastasis were enrolled. These hepatic lesions were diagnosed by histopathological examination after surgical resection or based on follow-up using various imaging modalities. The diagnostic accuracies of CEUS and EOB-MRI were compared. One hundred thirty-three lesions were detected. Of these lesions, 109 were diagnosed as liver metastases. Of the 133 lesions, 90.2% were detected on CEUS, and 98.5% on EOB-MRI. One hundred nine lesions were diagnosed as liver metastasis. The areas under the receiver operating characteristic curve for diagnosis were 0.906 and 0.851 on CEUS and EOB-MRI, respectively (p = 0.41). Sensitivity, specificity, positive predictive value (PPV), negative predictive value, and overall accuracy were 90.8%, 84.5%, 97.1%, 67.1%, and 90.2%, respectively, for CEUS, and 95.4%, 70.8%, 93.7%, 77.3%, and 91%, respectively, for EOB-MRI. CEUS has a higher specificity and PPV for the diagnosis of liver metastasis than EOB-MRI. © 2016 Wiley Periodicals, Inc. J Clin Ultrasound 45:138-144, 2017. © 2016 The Authors Journal of Clinical Ultrasound Published by Wiley Periodicals, Inc.

  5. Comparative evaluation of three-dimensional Gd-EOB-DTPA-enhanced MR fusion imaging with CT fusion imaging in the assessment of treatment effect of radiofrequency ablation of hepatocellular carcinoma.

    PubMed

    Makino, Yuki; Imai, Yasuharu; Igura, Takumi; Hori, Masatoshi; Fukuda, Kazuto; Sawai, Yoshiyuki; Kogita, Sachiyo; Fujita, Norihiko; Takehara, Tetsuo; Murakami, Takamichi

    2015-01-01

    To assess the feasibility of fusion of pre- and post-ablation gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging (Gd-EOB-DTPA-MRI) to evaluate the effects of radiofrequency ablation (RFA) of hepatocellular carcinoma (HCC), compared with similarly fused CT images This retrospective study included 67 patients with 92 HCCs treated with RFA. Fusion images of pre- and post-RFA dynamic CT, and pre- and post-RFA Gd-EOB-DTPA-MRI were created, using a rigid registration method. The minimal ablative margin measured on fusion imaging was categorized into three groups: (1) tumor protruding outside the ablation zone boundary, (2) ablative margin 0-<5.0 mm beyond the tumor boundary, and (3) ablative margin ≥5.0 mm beyond the tumor boundary. The categorization of minimal ablative margins was compared between CT and MR fusion images. In 57 (62.0%) HCCs, treatment evaluation was possible both on CT and MR fusion images, and the overall agreement between them for the categorization of minimal ablative margin was good (κ coefficient = 0.676, P < 0.01). MR fusion imaging enabled treatment evaluation in a significantly larger number of HCCs than CT fusion imaging (86/92 [93.5%] vs. 62/92 [67.4%], P < 0.05). Fusion of pre- and post-ablation Gd-EOB-DTPA-MRI is feasible for treatment evaluation after RFA. It may enable accurate treatment evaluation in cases where CT fusion imaging is not helpful.

  6. Measuring hepatic functional reserve using low temporal resolution Gd-EOB-DTPA dynamic contrast-enhanced MRI: a preliminary study comparing galactosyl human serum albumin scintigraphy with indocyanine green retention.

    PubMed

    Saito, Kazuhiro; Ledsam, Joseph; Sourbron, Steven; Hashimoto, Tsuyoshi; Araki, Yoichi; Akata, Soichi; Tokuuye, Koichi

    2014-01-01

    To investigate if tracer kinetic modelling of low temporal resolution dynamic contrast-enhanced (DCE) MRI with Gd-EOB-DTPA could replace technetium-99 m galactosyl human serum albumin (GSA) single positron emission computed tomography (SPECT) and indocyanine green (ICG) retention for the measurement of liver functional reserve. Twenty eight patients awaiting liver resection for various cancers were included in this retrospective study that was approved by the institutional review board. The Gd-EOB-DTPA MRI sequence acquired five images: unenhanced, double arterial phase, portal phase, and 4 min after injection. Intracellular contrast uptake rate (UR) and extracellular volume (Ve) were calculated from DCE-MRI, along with the ratio of GSA radioactivity of liver to heart-plus-liver and per cent of cumulative uptake from 15-16 min (LHL15 and LU15, respectively) from GSA-scintigraphy. ICG retention at 15 min, Child-Pugh cirrhosis score (CPS) and postoperative Inuyama fibrosis criteria were also recorded. Statistical analysis was with Spearman rank correlation analysis. Comparing MRI parameters with the reference methods, significant correlations were obtained for UR and LHL15, LU15, ICG15 (all 0.4-0.6, P < 0.05); UR and CPS (-0.64, P < 0.001); Ve and Inuyama (0.44, P < 0.05). Measures of liver function obtained by routine Gd-EOB-DTPA DCE-MRI with tracer kinetic modelling may provide a suitable method for the evaluation of liver functional reserve. • Magnetic resonance imaging (MRI) provides new methods of measuring hepatic functional reserve. • DCE-MRI with Gd-EOB-DTPA offers the possibility of replacing scintigraphy. • The analysis method can be used for preoperative liver function evaluation.

  7. The hepatocyte phase of Gd-EOB-DTPA-enhanced MRI in the evaluation of hepatic fibrosis and early liver cirrhosis in a rat model: an experimental study.

    PubMed

    Ma, Chunmei; Liu, Ailian; Wang, Yuanyuan; Geng, Xiaoling; Hao, Li; Song, Qingwei; Sun, Bo; Wang, Heqing; Zhao, Gang

    2014-07-17

    To evaluate the hepatocyte phase of Gd-EOB-DTPA-enhanced MRI in the early diagnosis of hepatic fibrosis and cirrhosis and assessment of liver function in a rat model. In 2 groups of SD rats, liver fibrosis was induced in experimental animals by repetitive carbon tetrachloride injections, while the control group received saline injections. Five experimental rats and 2 control rats were randomly selected at weeks 4, 8, 12. One week after carbon tetrachloride administration, MRI (FIRM T1WI) scan was performed. Gd-EOB-DTPA (0.08mL) was injected into the rat's tail vein and hepatocyte phase images were obtained after 20min. The pre-enhanced phase and hepatocyte phase signal intensities (SI) were measured, and the relative contrast enhancement index (RCEI) was calculated. ANOVA analysis (LSD) of RCEI values in controls (n=6), hepatic fibrosis (n=7), and histopathologically-determined early cirrhosis group (n=6) was performed. RECI values showed a decreasing trend in the control group, hepatic fibrosis and early cirrhosis groups (1.11±0.43, 0.96±0.22, and 0.57±0.33, respectively). While the difference between the control and early cirrhosis groups was statistically significant (p=0.013), there was no significant difference in the hepatic fibrosis group vs the control (p=0.416) and the hepatic fibrosis group vs the early cirrhosis group (p=0.054). Hepatocyte phase RCEI values obtained with Gd-EOB-DTPA-enhanced MRI scan indicate liver injury in hepatic fibrosis and early cirrhosis. RCEI values are helpful for early diagnosis of liver cirrhosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Staging of colorectal liver metastases after preoperative chemotherapy. Diffusion-weighted imaging in combination with Gd-EOB-DTPA MRI sequences increases sensitivity and diagnostic accuracy.

    PubMed

    Macera, Annalisa; Lario, Chiara; Petracchini, Massimo; Gallo, Teresa; Regge, Daniele; Floriani, Irene; Ribero, Dario; Capussotti, Lorenzo; Cirillo, Stefano

    2013-03-01

    To compare the diagnostic accuracy and sensitivity of Gd-EOB-DTPA MRI and diffusion-weighted (DWI) imaging alone and in combination for detecting colorectal liver metastases in patients who had undergone preoperative chemotherapy. Thirty-two consecutive patients with a total of 166 liver lesions were retrospectively enrolled. Of the lesions, 144 (86.8 %) were metastatic at pathology. Three image sets (1, Gd-EOB-DTPA; 2, DWI; 3, combined Gd-EOB-DTPA and DWI) were independently reviewed by two observers. Statistical analysis was performed on a per-lesion basis. Evaluation of image set 1 correctly identified 127/166 lesions (accuracy 76.5 %; 95 % CI 69.3-82.7) and 106/144 metastases (sensitivity 73.6 %, 95 % CI 65.6-80.6). Evaluation of image set 2 correctly identified 108/166 (accuracy 65.1 %, 95 % CI 57.3-72.3) and 87/144 metastases (sensitivity of 60.4 %, 95 % CI 51.9-68.5). Evaluation of image set 3 correctly identified 148/166 (accuracy 89.2 %, 95 % CI 83.4-93.4) and 131/144 metastases (sensitivity 91 %, 95 % CI 85.1-95.1). Differences were statistically significant (P < 0.001). Notably, similar results were obtained analysing only small lesions (<1 cm). The combination of DWI with Gd-EOB-DTPA-enhanced MRI imaging significantly increases the diagnostic accuracy and sensitivity in patients with colorectal liver metastases treated with preoperative chemotherapy, and it is particularly effective in the detection of small lesions.

  9. Measuring hepatic functional reserve using T1 mapping of Gd-EOB-DTPA enhanced 3T MR imaging: A preliminary study comparing with 99mTc GSA scintigraphy and signal intensity based parameters.

    PubMed

    Nakagawa, Masataka; Namimoto, Tomohiro; Shimizu, Kie; Morita, Kosuke; Sakamoto, Fumi; Oda, Seitaro; Nakaura, Takeshi; Utsunomiya, Daisuke; Shiraishi, Shinya; Yamashita, Yasuyuki

    2017-07-01

    To determine the utility of liver T1-mapping on gadolinium-ethoxybenzyl-diethylenetriamine-pentaacetic acid (Gd-EOB-DTPA) enhanced magnetic resonance (MR) imaging for the measurement of liver functional reserve compared with the signal intensity (SI) based parameters, technetium-99m-galactosyl serum albumin ( 99m Tc-GSA) scintigraphy and indocyanine green (ICG) clearance. This retrospective study included 111 patients (Child-Pugh-A 90; -B 21) performed with both Gd-EOB-DTPA enhanced liver MR imaging and 99m Tc-GSA (76 patients with ICG). Receiver operating characteristic (ROC) curve analysis was performed to compare diagnostic performances of T1-relaxation-time parameters [pre-(T1pre) and post-contrast (T1hb) Gd-EOB-DTPA], SI based parameters [relative enhancement (RE), liver-to-muscle-ratio (LMR), liver-to-spleen-ratio (LSR)] and 99m Tc-GSA scintigraphy blood clearance index (HH15)] for Child-Pugh classification. Pearson's correlation was used for comparisons among T1-relaxation-time parameters, SI-based parameters, HH15 and ICG. A significant difference was obtained for Child-Pugh classification with T1hb, ΔT1, all SI based parameters and HH15. T1hb had the highest AUC followed by RE, LMR, LSR, ΔT1, HH15 and T1pre. The correlation coefficients with HH15 were T1pre 0.22, T1hb 0.53, ΔT1 -0.38 of T1 relaxation parameters; RE -0.44, LMR -0.45, LSR -0.43 of SI-based parameters. T1hb was highest for correlation with HH15. The correlation coefficients with ICG were T1pre 0.29, T1hb 0.64, ΔT1 -0.42 of T1 relaxation parameters; RE -0.50, LMR -0.61, LSR -0.58 of SI-based parameters; 0.64 of HH15. Both T1hb and HH15 were highest for correlation with ICG. T1 relaxation time at post-contrast of Gd-EOB-DTPA (T1hb) was strongly correlated with ICG clearance and moderately correlated HH15 with 99m Tc-GSA. T1hb has the potential to provide robust parameter of liver functional reserve. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Is 3-Tesla Gd-EOB-DTPA-Enhanced MRI with Diffusion-Weighted Imaging Superior to 64-Slice Contrast-Enhanced CT for the Diagnosis of Hepatocellular Carcinoma?

    PubMed Central

    Maiwald, Bettina; Lobsien, Donald; Kahn, Thomas; Stumpp, Patrick

    2014-01-01

    Objectives To compare 64-slice contrast-enhanced computed tomography (CT) with 3-Tesla magnetic resonance imaging (MRI) using Gd-EOB-DTPA for the diagnosis of hepatocellular carcinoma (HCC) and evaluate the utility of diffusion-weighted imaging (DWI) in this setting. Methods 3-phase-liver-CT was performed in fifty patients (42 male, 8 female) with suspected or proven HCC. The patients were subjected to a 3-Tesla-MRI-examination with Gd-EOB-DTPA and diffusion weighted imaging (DWI) at b-values of 0, 50 and 400 s/mm2. The apparent diffusion coefficient (ADC)-value was determined for each lesion detected in DWI. The histopathological report after resection or biopsy of a lesion served as the gold standard, and a surrogate of follow-up or complementary imaging techniques in combination with clinical and paraclinical parameters was used in unresected lesions. Diagnostic accuracy, sensitivity, specificity, and positive and negative predictive values were evaluated for each technique. Results MRI detected slightly more lesions that were considered suspicious for HCC per patient compared to CT (2.7 versus 2.3, respectively). ADC-measurements in HCC showed notably heterogeneous values with a median of 1.2±0.5×10−3 mm2/s (range from 0.07±0.1 to 3.0±0.1×10−3 mm2/s). MRI showed similar diagnostic accuracy, sensitivity, and positive and negative predictive values compared to CT (AUC 0.837, sensitivity 92%, PPV 80% and NPV 90% for MRI vs. AUC 0.798, sensitivity 85%, PPV 79% and NPV 82% for CT; not significant). Specificity was 75% for both techniques. Conclusions Our study did not show a statistically significant difference in detection in detection of HCC between MRI and CT. Gd-EOB-DTPA-enhanced MRI tended to detect more lesions per patient compared to contrast-enhanced CT; therefore, we would recommend this modality as the first-choice imaging method for the detection of HCC and therapeutic decisions. However, contrast-enhanced CT was not inferior in our study, so

  11. Features of acute liver congestion on gadoxetate disodium-enhanced MRI in a rat model: Role of organic anion-transporting polypeptide 1A1.

    PubMed

    Shimizu, Akira; Kobayashi, Akira; Motoyama, Hiroaki; Sakai, Hiroshi; Yamada, Akira; Yoshizawa, Akihiko; Momose, Masanobu; Kadoya, Masumi; Miyagawa, Shin-ichi

    2015-09-01

    To evaluate the features of hepatic congestion on gadoxetate disodium (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) and the mechanisms responsible for the radiological findings in a rat model of partial liver congestion. A conventional T1 -weighted spin-echo sequence of the liver was performed using a 1.5T magnetic resonance imager with an 80-mm magnetic aperture for animal studies. We induced regional congestion using partial left lateral hepatic vein ligation (n = 5) and evaluated the following in both congestive liver (CL) and noncongestive liver (non-CL): 1) chronological changes in the relative enhancement (RE) up to 60 minutes after Gd-EOB-DTPA administration, and 2) mRNA and protein expression of rat organic anion transporting protein 1a1 (Oatp1a1). The RE in the CL reached a small peak (18%) at 5 minutes, corresponding to approximately half of the value observed in the non-CL, then slowly decreased in a linear manner thereafter. The degree of RE in the CL was significantly lower than that in the non-CL for up to 30 minutes (P < 0.05). An immunohistological examination showed that Oatp1a1 protein expression was downregulated in the CL. The mRNA level of Oatp1a1 in the CL was significantly upregulated, compared with that in control rat liver (P = 0.046), whereas no significant difference was observed between the CL and the non-CL (P = 0.698). The reduced signal intensity in the CL on Gd-EOB-DTPA-enhanced MRI could be explained by the decreased uptake of Gd-EOB-DTPA via Oatp1a1 protein in the congestive area. © 2015 Wiley Periodicals, Inc.

  12. Qualitative and Quantitative Gadoxetic Acid-enhanced MR Imaging Helps Subtype Hepatocellular Adenomas.

    PubMed

    Tse, Justin R; Naini, Bita V; Lu, David S K; Raman, Steven S

    2016-04-01

    To determine which clinical variables and gadoxetic acid disodium (Gd-EOB-DTPA)-enhanced magnetic resonance (MR) imaging features are associated with histologically proved hepatocellular adenoma (HCA) genotypic subtypes. In this institutional review board-approved and Health Insurance Portability and Accountability Act-compliant study, clinical information and MR images of 49 histologically proved HCAs from January 2002 to December 2013 (21 patients; mean age, 39 years; age range, 15-59 years) were retrospectively reviewed by two radiologists. Qualitative and quantitative imaging features, including the signal intensity ratio relative to liver in each phase, were studied. HCA tissues were stained with subtype-specific markers and subclassified by a pathologist. Clinical and imaging data were correlated with pathologic findings and compared by using Fisher exact or t test, with a Bonferroni correction for multiple comparisons. Forty-nine HCAs were subclassified into 14 inflammatory, 20 hepatocyte nuclear factor (HNF)-1α-mutated, one β-catenin-activated, and 14 unclassified lesions. Intralesional steatosis was exclusively seen in HNF-1α-mutated lesions. Marked hyperintensity on T2-weighted images was seen in 12 of 14 (86%) inflammatory lesions compared with four of 21 (19%) HNF-1α-mutated, seven of 14 (50%) unclassified, and zero of one (0%) β-catenin-activated lesion. Two large lesions (one β-catenin-activated and one unclassified) transformed into hepatocellular carcinomas and were the only lesions to enhance with marked heterogeneity. In the hepatobiliary phase, all HCA subtypes were hypoenhancing compared with surrounding liver parenchyma, and they reached their nadir signal intensity by 10 minutes after the administration of contrast material before plateauing. HNF-1α-mutated lesions had the lowest lesion signal intensity ratio of 0.47 ± 0.09, compared with 0.73 ± 0.18 for inflammatory lesions (P = .0004), 0.82 for the β-catenin-activated lesion, and 0

  13. Liver-fat and liver-function indices derived from Gd-EOB-DTPA-enhanced liver MRI for prediction of future liver remnant growth after portal vein occlusion.

    PubMed

    Barth, Borna K; Fischer, Michael A; Kambakamba, Patryk; Lesurtel, Mickael; Reiner, Caecilia S

    2016-04-01

    To evaluate the use of Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI)-derived fat- and liver function-measurements for prediction of future liver remnant (FLR) growth after portal vein occlusion (PVO) in patients scheduled for major liver resection. Forty-five patients (age, 59 ± 13.9 y) who underwent Gd-EOB-DTPA-enhanced liver MRI within 24 ± 18 days prior to PVO were included in this study. Fat-Signal-Fraction (FSF), relative liver enhancement (RLE) and corrected liver-to-spleen ratio (corrLSR) of the FLR were calculated from in- and out-of-phase (n=42) as well as from unenhanced T1-weighted, and hepatocyte-phase images (n=35), respectively. Kinetic growth rate (KGR, volume increase/week) of the FLR after PVO was the primary endpoint. Receiver operating characteristics analysis was used to determine cutoff values for prediction of impaired FLR-growth. FSF (%) showed significant inverse correlation with KGR (r=-0.41, p=0.008), whereas no significant correlation was found with RLE and corrLSR. FSF was significantly higher in patients with impaired FLR-growth than in those with normal growth (%FSF, 8.1 ± 9.3 vs. 3.0 ± 5.9, p=0.02). ROC-analysis revealed a cutoff-FSF of 4.9% for identification of patients with impaired FLR-growth with a specificity of 82% and sensitivity of 47% (AUC 0.71 [95%CI:0.54-0.87]). Patients with impaired FLR-growth according to the FSF-cutoff showed a tendency towards higher postoperative complication rates (posthepatectomy liver failure in 50% vs. 19%). Liver fat-content, but not liver function derived from Gd-EOB-DTPA-enhanced MRI is a predictor of FLR-growth after PVO. Thus, liver MRI could help in identifying patients at risk for insufficient FLR-growth, who may need re-evaluation of the therapeutic strategy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Enhancements in hepatobiliary imaging: the spectrum of gadolinium-ethoxybenzyl diethylenetriaminepentaacetic acid usages in hepatobiliary magnetic resonance imaging.

    PubMed

    Channual, Stephanie; Pahwa, Anokh; Lu, David S; Raman, Steven S

    2016-09-01

    Gadolinium-ethoxybenzyl diethylenetriaminepentaacetic acid (Gd-EOB-DTPA) is a unique hepatocyte-specific contrast agent approved for clinical use in the United States in 2008. Gd-EOB-DTPA-enhanced MR has shown to improve detection and characterization of hepatic lesions. Gd-EOB-DTPA is now being routinely used in daily clinical practice worldwide. Therefore, it is important for radiologists to be familiar with the potential uses and pitfalls of Gd-EOB-DTPA, which extends beyond the assessment of focal hepatic lesions. The purpose of this article is to review the various usages of Gd-EOB-DTPA in hepatobiliary MR imaging.

  15. A simple and inexpensive system for controlling body temperature in small animal experiments using MRI and the effect of body temperature on the hepatic kinetics of Gd-EOB-DTPA.

    PubMed

    Murase, Kenya; Assanai, Purapan; Takata, Hiroshige; Saito, Shigeyoshi; Nishiura, Motoko

    2013-12-01

    The purpose of this study was to develop a simple and inexpensive system for controlling body temperature in small animal experiments using magnetic resonance imaging (MRI) and to investigate the effect of body temperature on the kinetic behavior of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) in the liver. In our temperature-control system, body temperature was controlled using a feedback-regulated heated or cooled air flow generated by two Futon dryers. The switches of the two Futon dryers were controlled using a digital temperature controller, in which the rectal temperature of a mouse measured by an optical fiber thermometer was used as the input. In experimental studies, male ICR mice aged 8weeks old were used and allocated into 5 groups (39-, 36-, 33-, 30-, and 27-degree groups, n=10), in which the body temperature was maintained at 39 °C, 36 °C, 33 °C, 30 °C, and 27 °C, respectively, using our system. The dynamic contrast-enhanced MRI (DCE-MRI) data were acquired with an MRI system for animal experiments equipped with a 1.5-Tesla permanent magnet, for approximately 43min, after the injection of Gd-EOB-DTPA into the tail vein. After correction of the image shift due to the temperature-dependent drift of the Larmor frequency using the gradient-based image registration method with robust estimation of displacement parameters, the kinetic behavior of Gd-EOB-DTPA was analyzed using an empirical mathematical model. With the use of this approach, the upper limit of the relative enhancement (A), the rates of contrast uptake (α) and washout (β), the parameter related to the slope of early uptake (q), the area under the curve (AUC), the maximum relative enhancement (REmax), the time to REmax (Tmax), and the elimination half-life of the contrast agent (T1/2) were calculated. The body temperature of mice could be controlled well by use of our system. Although there were no significant differences in α, AUC, and q among groups, there

  16. Increase in left liver lobe function after preoperative right portal vein embolisation assessed with gadolinium-EOB-DTPA MRI.

    PubMed

    Geisel, Dominik; Lüdemann, Lutz; Keuchel, Thomas; Malinowski, Maciej; Seehofer, Daniel; Stockmann, Martin; Hamm, Bernd; Gebauer, Bernhard; Denecke, Timm

    2013-09-01

    To prospectively evaluate the early development of regional liver function after right portal vein embolisation (PVE) with Gd-EOB-DTPA-enhanced MRI in patients scheduled for extended right hemihepatectomy. Ten patients who received a PVE before an extended hemihepatectomy were examined before and 14 days after PVE using Gd-EOB-DTPA-enhanced MRI of the liver. In these sequences representative region of interest measurements were performed in the embolised right (RLL) and the non-embolised left liver lobe (LLL). The volume as well as hepatic uptake index (HUI) was calculated independently for each lobe. Relative enhancement 14 days after PVE decreased in the RLL and increased significantly in the LLL (P < 0.05). Average hepatic uptake index (HUI) for RLL was significantly lower 14 days after PVE than before PVE (P < 0.05) and significantly higher for LLL (P < 0.05). A significant shift of contrast uptake from the right to the left liver lobe can be depicted as early as 14 days after right PVE by using Gd-EOB-DTPA-enhanced MRI, which could reflect the redirected portal venous blood flow and the rapid utilisation of a hepatic functional reserve. • Preoperative portal vein embolisation (PVE) is widely performed before right-sided hepatic resection. • PVE increases intravenous contrast medium uptake in the left lobe of liver. • The hepatic uptake index for the left liver lobe increases rapidly after PVE. • Left liver lobe function increase may be visualised by Gd-EOB-DTPA-enhanced MRI.

  17. Threshold doses for focal liver reaction after stereotactic ablative body radiation therapy for small hepatocellular carcinoma depend on liver function: evaluation on magnetic resonance imaging with Gd-EOB-DTPA.

    PubMed

    Sanuki, Naoko; Takeda, Atsuya; Oku, Yohei; Eriguchi, Takahisa; Nishimura, Shuichi; Aoki, Yosuke; Mizuno, Tomikazu; Iwabuchi, Shogo; Kunieda, Etsuo

    2014-02-01

    Focal liver reaction (FLR) appears on radiographic images after stereotactic ablative body radiation therapy (SABR) in patients with hepatocellular carcinoma (HCC) and chronic liver disease. We investigated the threshold dose (TD) of FLR and possible factors affecting the TD on gadoxetate acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI). In 50 patients who were treated with SABR for small HCC and followed up by MRI for >6 months, FLR, seen as a hypointense area, was evaluated on the hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI. The follow-up MRI with the largest extent of FLR was fused to the planning computed tomography (CT) image, and patients with good image fusion concordance were eligible. After delineating the border of the FLR manually, a dose-volume histogram was used to identify the TD for the FLR. Clinical and volumetric factors were analyzed for correlation with the TD. A total of 45 patients were eligible for analysis with a median image fusion concordance of 84.9% (range, 71.6-95.4%). The median duration between SABR and subsequent hepatobiliary phase MRI with the largest extent of FLR was 3 months (range, 1-6 months). The median TD for FLR was 28.0 Gy (range, 22.3-36.4 Gy). On univariate analysis, pre-treatment Child-Pugh (CP) score and platelet count were significantly correlated with the TD. On multiple linear regression analysis, CP score was the only parameter that predicted TD. Median TDs were 30.5 Gy (range, 26.2.3-36.4 Gy) and 25.2 Gy (range, 22.3-27.5 Gy) for patients with CP-A and CP-B disease, respectively. The TD was significantly correlated with baseline liver function. We propose 30 Gy for CP-A disease and 25 Gy for CP-B disease in 5 fractions as TDs for FLR after SABR for patients with HCC and chronic liver disease. Use of these TDs will help to predict potential loss of liver tissue after SABR. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Correlation between Gd-EOB-DTPA-enhanced MR imaging findings and OATP1B3 expression in chemotherapy-associated sinusoidal obstruction syndrome.

    PubMed

    Yoneda, Norihide; Matsui, Osamu; Ikeno, Hiroshi; Inoue, Dai; Yoshida, Kotaro; Kitao, Azusa; Kozaka, Kazuto; Kobayashi, Satoshi; Gabata, Toshifumi; Ikeda, Hiroko; Nakamura, Keishi; Ohta, Tetsuo

    2015-10-01

    We report a female case of sinusoidal obstruction syndrome (SOS) diagnosed pathologically after chemotherapy (Pmab+m-FOLFOX6) for ascending colon cancer with multiple liver metastases, focusing on the findings of gadoxetic acid-enhanced MRI (EOB-MRI) and the organic anion transporting polypeptide 1B3 (OATP1B3) expression of in the liver. The patient was a 75-year-old female. She had received chemotherapy (Pmab+m-FOLFOX6) as six cycles for preoperative chemotherapy. After the preoperative chemotherapy, tumor sizes of hepatic metastases were reduced and hepatobiliary phase of EOB-MRI clearly depicted diffuse reticular hypointensity in the background liver. On the other hand, dynamic CT and/or other sequences of EOB-MRI did not show definite abnormality in the background liver. After the operation, this patient was pathologically confirmed as SOS demonstrating centrilobular congestion, sinusoidal dilatation, and perisinusoidal fibrosis. In normal liver parenchyma, OATP1B3 (uptake transporter of the EOB-MRI) expression is observed predominantly in centrilobular hepatocytes (zone 3). On the other hand, OATP1B3 expression was remarkably reduced because of the damages in the centrilobular (zone 3) hepatocytes in this SOS case. This indicated that EOB-MRI might be extremely sensitive in diagnosing SOS in its early stage.

  19. Clinical usefulness of the ablative margin assessed by magnetic resonance imaging with Gd-EOB-DTPA for radiofrequency ablation of hepatocellular carcinoma.

    PubMed

    Koda, Masahiko; Tokunaga, Shiho; Okamoto, Toshiaki; Hodozuka, Masanori; Miyoshi, Kennichi; Kishina, Manabu; Fujise, Yuki; Kato, Jun; Matono, Tomomitsu; Sugihara, Takaaki; Oyama, Kenji; Hosho, Keiko; Okano, Jun-ichi; Murawaki, Yoshikazu; Kakite, Suguru; Yamashita, Eijiro

    2015-12-01

    The aim of this study was to investigate the feasibility of ablative margin (AM) grading by magnetic resonance imaging (MRI) with Gd-EOB-DTPA administered prior to radiofrequency ablation (RFA), and to identify factors for achieving a sufficient AM and predictors for local tumor progression. A total of 124 hepatocellular carcinomas (HCCs) were treated by RFA after Gd-EOB-DTPA administration. MRI and enhanced CT were performed within seven hours and one month after RFA. The AM assessment was categorized using three grades: AM (+), low-intensity area with continuous high-intensity rim; AM zero, low-intensity area with discontinuous high-intensity rim; and AM (-), low-intensity area extends beyond the high-intensity rim. Patients were followed and local tumor progression was observed. AM (+), AM zero, AM (-), and indeterminate were found in 34, 33, 26, and 31 nodules, respectively. The overall agreement rate between MRI and enhanced CT for the diagnosis of AM was 56.8%. The κ coefficient was 0.326 (p<0.001), indicating moderate agreement. Multivariate logistic regression analysis showed that a significant factor for the achievement of AM (+) on MRI was no contiguous vessels. The cumulative local tumor progression rates (0% at 1, 2, and 3 years) in 33 AM (+) nodules were significantly lower than those (3.6%, 11.5%, and 18.3% at 1, 2, and 3 years respectively) in 32 AM zero nodules. A multivariate Cox proportional hazards model identified tumor size as an independent predictor for local tumor progression. Gd-EOB-DTPA-MRI enabled an early assessment of RFA effectiveness in the majority ofHCC nodules. Local tumor progression was not detected in AM (+) nodules during the follow-up. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  20. Evaluation of Focal Liver Reaction after Proton Beam Therapy for Hepatocellular Carcinoma Examined Using Gd-EOB-DTPA Enhanced Hepatic Magnetic Resonance Imaging.

    PubMed

    Takamatsu, Shigeyuki; Yamamoto, Kazutaka; Maeda, Yoshikazu; Kawamura, Mariko; Shibata, Satoshi; Sato, Yoshitaka; Terashima, Kazuki; Shimizu, Yasuhiro; Tameshige, Yuji; Sasaki, Makoto; Asahi, Satoko; Kondou, Tamaki; Kobayashi, Satoshi; Matsui, Osamu; Gabata, Toshifumi

    2016-01-01

    Proton beam therapy (PBT) achieves good local control for hepatocellular carcinoma (HCC), and toxicity tends to be lower than for photon radiotherapy. Focal liver parenchymal damage in radiotherapy is described as the focal liver reaction (FLR); the threshold doses (TDs) for FLR in the background liver have been analyzed in stereotactic ablative body radiotherapy and brachytherapy. To develop a safer approach for PBT, both TD and liver volume changes are considered clinically important in predicting the extent of damage before treatment, and subsequently in reducing background liver damage. We investigated appearance time, TDs and volume changes regarding FLR after PBT for HCC. Patients who were treated using PBT and were followed up using gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging (Gd-EOB-DTPA MRI) after PBT were enrolled. Sixty-eight lesions in 58 patients were eligible for analysis. MRI was acquired at the end of treatment, and at 1, 2, 3 and 6 months after PBT. We defined the FLR as a clearly depicted hypointense area on the hepatobiliary phase of Gd-EOB-DTPA MRI, and we monitored TDs and volume changes in the FLR area and the residual liver outside of the FLR area. FLR was depicted in all lesions at 3 months after PBT. In FLR expressed as the 2-Gy equivalent dose (α/β = 3 Gy), TDs did not differ significantly (27.0±6.4 CGE [10 fractions [Fr] vs. 30.5±7.3 CGE [20 Fr]). There were also no correlations between the TDs and clinical factors, and no significant differences between Child-Pugh A and B scores. The volume of the FLR area decreased and the residual liver volume increased, particularly during the initial 3 months. This study established the FLR dose for liver with HCC, which might be useful in the prediction of remnant liver volume for PBT.

  1. Comparison of Contrast-Enhanced Ultrasound and Gadolinium-Ethoxybenzyl-Diethylenetriamine Pentaacetic Acid-Enhanced MRI for the Diagnosis of Macroscopic Type of Hepatocellular Carcinoma.

    PubMed

    Iwamoto, Takayuki; Imai, Yasuharu; Kogita, Sachiyo; Igura, Takumi; Sawai, Yoshiyuki; Fukuda, Kazuto; Yamaguchi, Yoshitaka; Matsumoto, Yasushi; Nakahara, Masanori; Morimoto, Osakuni; Seki, Yasushi; Ohashi, Hiroshi; Fujita, Norihiko; Kudo, Masatoshi; Takehara, Tetsuo

    We compared the efficacy of contrast-enhanced ultrasound sonography (CEUS) with sonazoid and gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced MRI for the assessment of macroscopic classification of nodular hepatocellular carcinoma (HCC). Seventy-seven consecutive patients with 79 surgically resected HCCs who underwent both preoperative CEUS and Gd-EOB-DTPA-enhanced MRI were enrolled in this retrospective study. Based on the macroscopic diagnosis of resected specimens, nodules were categorized into the simple nodular (SN) and non-SN type HCC. Two hepatologists independently assessed image datasets of the post-vascular phase of CEUS and hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI to compare their diagnostic performance. Gd-EOB-DTPA-enhanced MRI enabled the evaluation of macroscopic classification in a significantly larger number of nodules than CEUS (78/79 (98.7%) vs. 70/79 (88.6%), p < 0.05). Of 70 nodules that could be evaluated by both modalities, 41 and 29 nodules were pathologically categorized as SN and non-SN, respectively. The areas under the receiver operating characteristic curve (AUC) for non-SN did not differ between CEUS and Gd-EOB-DTPA-enhanced MRI (reader 1: 0.748 for CEUS, 0.808 for MRI; reader 2: 0.759 for CEUS, 0.787 for MRI). The AUC of combined CEUS and Gd-EOB-DTPA-enhanced MRI for SN HCC was 0.855 (reader 1) and 0.824 (reader 2), indicating higher AUC values for the combined modalities. The diagnostic performance for macroscopic classification of nodular HCC of CEUS was comparable with that of Gd-EOB-DTPA-enhanced MRI, although some HCCs could not be evaluated by CEUS owing to lower detectability. The combination of the 2 modalities had a more accurate diagnostic performance. © 2016 S. Karger AG, Basel.

  2. Hepatic function imaging using dynamic Gd-EOB-DTPA enhanced MRI and pharmacokinetic modeling.

    PubMed

    Ning, Jia; Yang, Zhiying; Xie, Sheng; Sun, Yongliang; Yuan, Chun; Chen, Huijun

    2017-10-01

    To determine whether pharmacokinetic modeling parameters with different output assumptions of dynamic contrast-enhanced MRI (DCE-MRI) using Gd-EOB-DTPA correlate with serum-based liver function tests, and compare the goodness of fit of the different output assumptions. A 6-min DCE-MRI protocol was performed in 38 patients. Four dual-input two-compartment models with different output assumptions and a published one-compartment model were used to calculate hepatic function parameters. The Akaike information criterion fitting error was used to evaluate the goodness of fit. Imaging-based hepatic function parameters were compared with blood chemistry using correlation with multiple comparison correction. The dual-input two-compartment model assuming venous flow equals arterial flow plus portal venous flow and no bile duct output better described the liver tissue enhancement with low fitting error and high correlation with blood chemistry. The relative uptake rate Kir derived from this model was found to be significantly correlated with direct bilirubin (r = -0.52, P = 0.015), prealbumin concentration (r = 0.58, P = 0.015), and prothrombin time (r = -0.51, P = 0.026). It is feasible to evaluate hepatic function by proper output assumptions. The relative uptake rate has the potential to serve as a biomarker of function. Magn Reson Med 78:1488-1495, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  3. Evaluation of gadolinium-EOB-DTPA uptake after portal vein embolization: value of an increased flip angle.

    PubMed

    Geisel, Dominik; Lüdemann, Lutz; Wagner, Clemens; Stelter, Lars; Grieser, Christian; Malinowski, Maciej; Stockmann, Martin; Seehofer, Daniel; Hamm, Bernd; Gebauer, Bernhard; Denecke, Timm

    2014-03-01

    The optimal sequence for Gd-EOB-DTPA uptake measurement in the liver with the purpose of liver function measurement is still not defined. To prospectively evaluate the effect of an increased flip angle (FA) of a T1-weighted fat-saturated 3D sequence for the measurement of hepatocyte uptake of Gd-EOB-DTPA magnetic resonance imaging (MRI) after right portal vein embolization (PVE). Ten patients who received a PVE prior to an extended hemihepatectomy were examined 14 days after PVE using Gd-EOB-DTPA enhanced MRI of the liver using the standard FA of 10° and the increased FA of 30°. Relative enhancement of the right liver lobe (RLL) was 0.52 ± 0.12 for 10° and 1.41 ± 0.39 for 30°. Relative enhancement of the left liver lobe (LLL) was 0.58 ± 0.11 for 10° and 2.05 ± 0.61 for 30°. Relative enhancement of the RLL was significantly higher for 30° than for 10° (P = 0.009) and significantly higher in the 30° than in the 10° sequences (P = 0.005) for the LLL. A flip angle of 30° increases the contrast between liver partitions with and without portal venous embolization. Thereby, the sensitivity for differences in uptake intensity is increased. This could be of value for a more exact determination of differences in regional liver function and, consequently, the estimation of the future remnant liver function.

  4. Application of classification trees for the qualitative differentiation of focal liver lesions suspicious for metastasis in gadolinium-EOB-DTPA-enhanced liver MR imaging.

    PubMed

    Schelhorn, J; Benndorf, M; Dietzel, M; Burmeister, H P; Kaiser, W A; Baltzer, P A T

    2012-09-01

    To evaluate the diagnostic accuracy of qualitative descriptors alone and in combination for the classification of focal liver lesions (FLLs) suspicious for metastasis in gadolinium-EOB-DTPA-enhanced liver MR imaging. Consecutive patients with clinically suspected liver metastases were eligible for this retrospective investigation. 50 patients met the inclusion criteria. All underwent Gd-EOB-DTPA-enhanced liver MRI (T2w, chemical shift T1w, dynamic T1w). Primary liver malignancies or treated lesions were excluded. All investigations were read by two blinded observers (O1, O2). Both independently identified the presence of lesions and evaluated predefined qualitative lesion descriptors (signal intensities, enhancement pattern and morphology). A reference standard was determined under consideration of all clinical and follow-up information. Statistical analysis besides contingency tables (chi square, kappa statistics) included descriptor combinations using classification trees (CHAID methodology) as well as ROC analysis. In 38 patients, 120 FLLs (52 benign, 68 malignant) were present. 115 (48 benign, 67 malignant) were identified by the observers. The enhancement pattern, relative SI upon T2w and late enhanced T1w images contributed significantly to the differentiation of FLLs. The overall classification accuracy was 91.3 % (O1) and 88.7 % (O2), kappa = 0.902. The combination of qualitative lesion descriptors proposed in this work revealed high diagnostic accuracy and interobserver agreement in the differentiation of focal liver lesions suspicious for metastases using Gd-EOB-DTPA-enhanced liver MRI. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Gadoxetic acid enhanced MRI for differentiation of FNH and HCA: a single centre experience.

    PubMed

    Grieser, Christian; Steffen, Ingo G; Kramme, Incken-Birthe; Bläker, Hendrik; Kilic, Ergin; Perez Fernandez, Carmen Maria; Seehofer, Daniel; Schott, Eckart; Hamm, Bernd; Denecke, Timm

    2014-06-01

    Evaluation of enhancement characteristics of histopathologically confirmed focal nodular hyperplasias (FNHs) and hepatocellular adenomas (HCAs) with gadoxetic acid-enhanced MRI. Sixty-eight patients with 115 histopathologically proven lesions (FNHs, n=44; HCAs, n=71) examined with gadoxetic acid-enhanced MRI were retrospectively enrolled (standard of reference: surgical resection, n=53 patients (lesions: FNHs, n=37; HCAs, n=53); biopsy, n=15 (lesions: FNHs, n=7; HCAs, n=18)). Two radiologists evaluated all MR images regarding morphological features as well as the vascular and hepatocyte-specific enhancement in consensus. For the hepatobiliary phase, relative enhancement of the lesions and lesion to liver enhancement were significantly lower for HCAs (mean, 48.7 (±48.4)%and 49.4 (±33.9) %) compared to FNHs (159.3 (±92.5) %; and 151.7 (±79) %; accuracy of 89%and 90 %, respectively; P<0.001). Visual strong uptake of FNHs vs. hypointensity of HCAs in the hepatobiliary phase resulted in an accuracy of 92 %. This parameter was superior to all other morphological and dynamic vascular criteria alone and in combination (accuracy, 54–85 %). For differentiation of FNHs and HCAs by means of MRI, gadoxetic acid uptake in the hepatobiliary phase was found to be superior to all other criteria alone and in combination. EOB-MRI is well suited to differentiate FNHs and hepatocellular adenomas. For this purpose hepatobiliary phase is superior to unenhanced and dynamic imaging. Hepatobiliary phase (peripheral) hyper- or isointensity is typical for FNH. Hepatobiliary phase hypointensity is typical for hepatocellular adenomas. EOB-MRI helps to avoid misinterpretations of benign hepatocellular lesions.

  6. 3D T2-weighted and Gd-EOB-DTPA-enhanced 3D T1-weighted MR cholangiography for evaluation of biliary anatomy in living liver donors.

    PubMed

    Cai, Larry; Yeh, Benjamin M; Westphalen, Antonio C; Roberts, John; Wang, Zhen J

    2017-03-01

    To investigate whether the addition of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced 3D T1-weighted MR cholangiography (T1w-MRC) to 3D T2-weighted MRC (T2w-MRC) improves the confidence and diagnostic accuracy of biliary anatomy in living liver donors. Two abdominal radiologists retrospectively and independently reviewed pre-operative MR studies in 58 consecutive living liver donors. The second-order bile duct visualization on T1w- and T2w-MRC images was rated on a 4-point scale. The readers also independently recorded the biliary anatomy and their diagnostic confidence using (1) combined T1w- and T2w-MRC, and (2) T2w-MRC. In the 23 right lobe donors, the biliary anatomy at imaging and the imaging-predicted number of duct orifices at surgery were compared to intra-operative findings. T1w-MRC had a higher proportion of excellent visualization than T2w-MRC, 66% vs. 45% for reader 1 and 60% vs. 31% for reader 2. The median confidence score for biliary anatomy diagnosis was significantly higher with combined T1w- and T2w-MRC than T2w-MRC alone for both readers (Reader 1: 3 vs. 2, p < 0.001; Reader 2: 3 vs. 1, p < 0.001). Compared to intra-operative findings, the accuracy of imaging-predicted number of duct orifices using combined T1w-and T2w-MRC was significantly higher than that using T2w-MRC alone (p = 0.034 for reader 1, p = 0.0082 for reader 2). The addition of Gd-EOB-DTPA-enhanced 3D T1w-MRC to 3D T2w-MRC improves second-order bile duct visualization and increases the confidence in biliary anatomy diagnosis and the accuracy in the imaging-predicted number of duct orifices acquired during right lobe harvesting.

  7. Therapy response assessment after radioembolization of patients with hepatocellular carcinoma--comparison of MR imaging with gadolinium ethoxybenzyl diethylenetriamine penta-acetic acid and gadobutrol.

    PubMed

    Schelhorn, Juliane; Best, Jan; Reinboldt, Marcus P; Gerken, Guido; Ruhlmann, Marcus; Lauenstein, Thomas C; Antoch, Gerald; Kinner, Sonja

    2015-07-01

    To compare the utility of gadolinium ethoxybenzyl diethylenetriamine penta-acetic acid (Gd-EOB-DTPA), a liver-specific magnetic resonance (MR) imaging contrast agent, versus gadobutrol for treatment response evaluation of hepatocellular carcinoma (HCC) after radioembolization. This prospective study included 50 patients with HCC undergoing radioembolization. All patients underwent contrast-enhanced computed tomography (CT) and MR imaging with gadobutrol and Gd-EOB-DTPA on 2 consecutive days before radioembolization and 30 days, 90 days, 180 days, and 270 days after radioembolization. The standard of reference indicating tumor progression was CT combined with either α-fetoprotein or γ-glutamyltransferase. Gadobutrol-enhanced MR imaging, Gd-EOB-DTPA-enhanced MR imaging without late phase imaging (Gd-EOB-DTPA-), and Gd-EOB-DTPA-enhanced MR imaging with late phase imaging (Gd-EOB-DTPA+) were evaluated by 2 radiologists in consensus using a 4-point scale: 1 = definitely no tumor progression; 2 = probably no tumor progression; 3 = probably tumor progression; 4 = definitely tumor progression. Diagnostic accuracy was assessed with receiver operating characteristic analysis. Tumor progression was detected in 14 of 82 study visits according to the reference standard. Pairwise comparison of the area under the curve showed a tendency toward a larger area under the curve for Gd-EOB-DTPA+ compared with gadobutrol (P = .056). Sensitivity and specificity were higher in Gd-EOB-DTPA+ (0.929 and 0.971) than in Gd-EOB-DTPA- (0.786 and 0.941) or gadobutrol (0.643 and 0.956). In 2 cases, tumor progression was detected by Gd-EOB-DTPA+ and by an increase in α-fetoprotein, but not by CT, gadobutrol, or Gd-EOB-DTPA-. Gd-EOB-DTPA+ MR imaging was not inferior to gadobutrol-enhanced MR imaging in therapy response evaluation after radioembolization and may allow a more accurate detection of early HCC recurrence in single cases. Copyright © 2015 SIR. Published by Elsevier Inc. All rights

  8. Preclinical evaluation of severely defective manganese-based nanocrystal as a liver-specific contrast media for MR imaging: comparison with Gd-EOB-DTPA and MnDPDP

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Xiao, Xiao-ping; Shu, Ting; Cai, Jing; Xiao, Xin-lan; Li, Yan-shu; Zhang, Zhong-wei; Tang, Qun

    2018-06-01

    Manganese-based (chemically formulated of KMnF3) nanocrystal was evaluated as a liver-specific contrast agent for MR imaging and its imaging performance was also compared with those of two commercial hepatobiliary contrast media (Gd-EOB-DTPA and MnDPDP). KMnF3 nanocrystal was post-treated using a plasma technique to cause severe defects, leading to appropriate water dispersibility and high relaxivity. Severely defective KMnF3 nanocrystal (SD-KMnF3) has characteristic high tolerance, as evidenced by cytotoxicity on the macrophage cell, and acute and subchronic toxicity on the healthy mouse. SD-KMnF3 showed better hepatic MR imaging as the T 1 relaxation time of the liver decreased to only 17% of the control group, compared to 22% of the control group for Gd-EOB-DTPA (P < 0.01) and 42% of the control group for MnDPDP (P < 0.001). As applied to MR imaging of the allograft orthotopic model of liver cancer, statistical studies demonstrated that SD-KMnF3 significantly improved the tumor’s contrast-to-noise ratio, compared with Gd-EOB-DTPA (P < 0.01) and MnDPDP (P < 0.01) by spin-echo pulse sequence, and even better performance (P < 0.001) by gradient-echo sequence. Our findings indicate that SD-KMnF3 could serve as a hepatic contrast agent for imaging liver cancer such as hepatocarcinoma or metastatic lesions.

  9. Preclinical evaluation of severely defective manganese-based nanocrystal as a liver-specific contrast media for MR imaging: comparison with Gd-EOB-DTPA and MnDPDP.

    PubMed

    Zhang, Yu; Xiao, Xiao-Ping; Shu, Ting; Cai, Jing; Xiao, Xin-Lan; Li, Yan-Shu; Zhang, Zhong-Wei; Tang, Qun

    2018-06-01

    Manganese-based (chemically formulated of KMnF 3 ) nanocrystal was evaluated as a liver-specific contrast agent for MR imaging and its imaging performance was also compared with those of two commercial hepatobiliary contrast media (Gd-EOB-DTPA and MnDPDP). KMnF 3 nanocrystal was post-treated using a plasma technique to cause severe defects, leading to appropriate water dispersibility and high relaxivity. Severely defective KMnF 3 nanocrystal (SD-KMnF 3 ) has characteristic high tolerance, as evidenced by cytotoxicity on the macrophage cell, and acute and subchronic toxicity on the healthy mouse. SD-KMnF 3 showed better hepatic MR imaging as the T 1 relaxation time of the liver decreased to only 17% of the control group, compared to 22% of the control group for Gd-EOB-DTPA (P < 0.01) and 42% of the control group for MnDPDP (P < 0.001). As applied to MR imaging of the allograft orthotopic model of liver cancer, statistical studies demonstrated that SD-KMnF 3 significantly improved the tumor's contrast-to-noise ratio, compared with Gd-EOB-DTPA (P < 0.01) and MnDPDP (P < 0.01) by spin-echo pulse sequence, and even better performance (P < 0.001) by gradient-echo sequence. Our findings indicate that SD-KMnF 3 could serve as a hepatic contrast agent for imaging liver cancer such as hepatocarcinoma or metastatic lesions.

  10. Gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced MR finding of radiation-induced hepatic injury: relationship to absorbed dose and time course after irradiation.

    PubMed

    Okamoto, Daisuke; Nishie, Akihiro; Asayama, Yoshiki; Tajima, Tsuyoshi; Ishigami, Kousei; Kakihara, Daisuke; Nakayama, Tomohiro; Ohga, Saiji; Yoshitake, Tadamasa; Shioyama, Yoshiyuki; Honda, Hiroshi

    2014-07-01

    To evaluate if Gd-EOB-DTPA-enhanced MRI could identify liver tissue damage caused by radiation exposure in patients undergoing external beam radiation therapy. We enrolled 11 patients who underwent Gd-EOB-DTPA-enhanced MRI during or after radiotherapy in which the radiation field included the liver. External beam radiotherapy was delivered through multiple fields using a 10-MV linear accelerator. The hepatobiliary phase images of Gd-EOB-DTPA-enhanced MRI were qualitatively evaluated for the presence of a decreased uptake of Gd-EOB-DTPA in the irradiated area in the liver. Next, signal intensity (SI) ratio of the irradiated area to the non-irradiated liver parenchyma was also calculated. The absorbed dose of the irradiated area in the liver was standardized using equivalent dose in 2Gy fraction (EQD2) and biological effective dose (BED). The results of qualitative analysis were compared with EQD2 or BED, and linear regression analysis was performed between EQD2 or BED and SI ratio. Twenty-two irradiated areas were evaluated. Qualitative analysis revealed a decreased uptake of Gd-EOB-DTPA in 14 areas and no decreased uptake of Gd-EOB-DTPA in eight areas. The thresholds of EQD2 and BED causing a decreased uptake of Gd-EOB-DTPA were considered to be 24 to 29Gy and 29 to 35Gy, respectively. Quantitatively, SI ratio decreased as EQD2 or BED increased (r=0.89, p<0.001), and the inverse relationship between signal enhancement and the absorbed dose in the irradiated area was obtained. One area with EQD2 of 50Gy and BED of 60Gy showed a slightly decreased uptake of Gd-EOB-DTPA on the 40th day but a clearly decreased uptake of Gd-EOB-DTPA on the 123rd day from initiation of radiotherapy. Gd-EOB-DTPA-enhanced MRI described RLI as a decreased uptake of Gd-EOB-DTPA matching the irradiated area. The occurrence of this finding was significantly correlated with the absorbed dose of the irradiated area in the liver. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Prediction of high-stage liver fibrosis using ADC value on diffusion-weighted imaging and quantitative enhancement ratio at the hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI at 1.5 T.

    PubMed

    Harada, Taiyo L; Saito, Kazuhiro; Araki, Yoichi; Matsubayashi, Jun; Nagao, Toshitaka; Sugimoto, Katsutoshi; Tokuuye, Koichi

    2018-05-01

    Background Recently, diffusion-weighted imaging (DWI) and quantitative enhancement ratio measured at the hepatobiliary phase (HBP) of Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI) has been established as an effective method for evaluating liver fibrosis. Purpose To evaluate which is a more favorable surrogate marker in predicting high-stage liver fibrosis, apparently diffusion coefficient (ADC) value or quantitative enhancement ratio measured on HBP. Material and Methods Eighty-three patients with 99 surgically resected hepatic lesions were enrolled in this study. DWI was performed with b-values of 100 and 800 s/mm 2 . Regions of interest were set on ADC map, and the HBP of Gd-EOB-DTPA-enhanced MRI, to calculate ADC value, liver-to-muscle ratio (LMR), liver-to-spleen ratio (LSR), and contrast enhancement index (CEI) of liver. We compared these parameters between low-stage fibrosis (F0, F1, and F2) and high-stage fibrosis (F3 and F4). Receiver operating characteristic analysis was performed to compare the diagnostic performance when distinguishing low-stage fibrosis from high-stage fibrosis. Results LMR and CEI were significantly lower at high-stage fibrosis than at the low stage ( P < 0.01 and P = 0.04, respectively), whereas LSR did not show a significant difference ( P = 0.053). No significant difference was observed in diagnostic performance between LMR and CEI ( P = 0.185). The best sensitivity and specificity, when an LMR of 2.80 or higher was considered to be low-stage fibrosis, were 82.4% and 75.6%, respectively. ADC value showed no significant differences among fibrosis grades ( P = 0.320). Conclusion LMR and CEI were both adequate surrogate parameters to distinguish high-stage fibrosis from low-stage fibrosis.

  12. Presence of non-hypervascular hypointense nodules on Gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging in patients with hepatocellular carcinoma.

    PubMed

    Inoue, Masanori; Ogasawara, Sadahisa; Chiba, Tetsuhiro; Ooka, Yoshihiko; Wakamatsu, Toru; Kobayashi, Kazufumi; Suzuki, Eiichiro; Tawada, Akinobu; Yokosuka, Osamu

    2017-04-01

    Gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) performed before curative therapy for hepatocellular carcinoma (HCC) can distinguish between intrahepatic distant recurrence and hypervascularization. This study aimed to retrospectively evaluate the presence of non-hypervascular hypointense nodules on hepatobiliary phase images from Gd-EOB-DTPA-enhanced MRI as a risk factor of the intrahepatic distant recurrence of early stage HCC following radiofrequency ablation (RFA). A total of 132 patients who underwent preprocedural Gd-EOB-DTPA-enhanced MRI followed by initial RFA were retrospectively analyzed. Post-RFA intrahepatic distant recurrence, which excluded the hypervascularization of non-hypervascular hypointense nodules detected by preprocedural Gd-EOB-DTPA-enhanced MRI, was evaluated according to the presence of non-hypervascular hypointense nodules on preprocedural Gd-EOB-DTPA-enhanced MRI. Intrahepatic distant recurrence rates following RFA were higher in patients with non-hypervascular hypointense nodules (1-year: 22.5%, 2-year: 52.1%, 5-year: 89.1%) compared with in patients without non-hypervascular hypointense nodules (1-year: 7.0%, 2-year: 28.8%, 5-year: 48.7%). The presence of non-hypervascular hypointense nodules was associated with markedly increased cumulative recurrence rates of both identical and different subsegment intrahepatic distant recurrence, being an independent risk factor for post-RFA identical and different subsegment intrahepatic distant recurrence (identical: HR = 2.365, P = 0.027; different: HR = 3.276, P < 0.001). The presence of non-hypervascular hypointense nodules on hepatobiliary phase images from Gd-EOB-DTPA-enhanced MRI obtained prior to RFA is an important predictive factor of intrahepatic distant recurrence following RFA of HCC. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  13. Diagnostic accuracy for macroscopic classification of nodular hepatocellular carcinoma: comparison of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging and angiography-assisted computed tomography.

    PubMed

    Tada, Toshifumi; Kumada, Takashi; Toyoda, Hidenori; Ito, Takanori; Sone, Yasuhiro; Okuda, Seiji; Ogawa, Sadanobu; Igura, Takumi; Imai, Yasuharu

    2015-01-01

    The macroscopic type of hepatocellular carcinoma (HCC) is a predictor of prognosis. We clarified the diagnostic value of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) in the macroscopic classification of nodular hepatocellular carcinoma (HCC) as compared to angiography-assisted computed tomography (CT). A total of 71 surgically resected nodular HCCs with a maximum diameter of ≤5 cm were investigated. HCCs were evaluated preoperatively using Gd-EOB-DTPA-enhanced MRI and angiography-assisted CT. HCCs were pathologically classified as simple nodular (SN), SN with extranodular growth (SN-EG), or confluent multinodular (CMN). SN-EG and CMN were grouped as non-SN. Five readers independently reviewed the images using a five-point scale. We examined the accuracy of both imaging modalities in differentiating between SN and non-SN HCC. Overall, the area under the receiver operating characteristic curve (A z ) for the diagnosis of non-SN did not differ between Gd-EOB-DTPA-enhanced MRI and angiography-assisted CT [0.879 (95% confidence interval (CI), 0.779-0.937) and 0.845 (95% CI, 0.723-0.919), respectively]. For HCCs >2 cm, the A z for Gd-EOB-DTPA-enhanced MRI was greater than 0.9. The sensitivity, specificity, and accuracy of Gd-EOB-DTPA-enhanced MRI for identifying non-SN were equal to or higher than values with angiography-assisted CT in all three categories (all tumors, ≤2 cm, and >2 cm), but the differences were not statistically significant. Using Gd-EOB-DTPA-enhanced MRI to assess the macroscopic findings in nodular HCC was equal or superior to using angiography-assisted CT.

  14. Radiation-induced Liver Injury after 3D-conformal Radiotherapy for Hepatocellular Carcinoma: Quantitative Assessment Using Gd-EOB-DTPA-enhanced MRI.

    PubMed

    Fukugawa, Yoshiyuki; Namimoto, Tomohiro; Toya, Ryo; Saito, Tetsuo; Yuki, Hideaki; Matsuyama, Tomohiko; Ikeda, Osamu; Yamashita, Yasuyuki; Oya, Natsuo

    2017-02-01

    Focal liver reaction (FLR) appears in the hepatobiliary-phase images of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging (Gd-EOB-DTPA-enhanced MRI) following radiotherapy (RT). We investigated the threshold dose (TD) for FLR development in 13 patients with hepatocellular carcinoma (HCC) who underwent three-dimensional conformal radiotherapy (3D-CRT) with 45 Gy in 15 fractions. FLR volumes (FLRVs) were calculated based on planning CT images by referring to fused hepatobiliary- phase images. We also calculated the TD and the irradiated volumes (IVs) of the liver parenchyma at a given dose of every 5 Gy (IVdose) based on a dose-volume histogram (DVH). The median TD was 35.2 Gy. The median IV20, IV25, IV30, IV35, IV40, and IV45 values were 371.1, 274.8, 233.4, 188.6, 145.8, and 31.0 ml, respectively. The median FLRV was 144.9 ml. There was a significant difference between the FLRV and IV20, IV25, and IV45 (p<0.05), but no significant differences between the FLRV and IV30, IV35, or IV40. These results suggest that the threshold dose of the FLR is approx. 35 Gy in HCC patients who undergo 3D-CRT in 15 fractions. The percentage of the whole liver volume receiving a dose of more than 30-40 Gy (V30-40) is a potential candidate optimal DVH parameter for this fractionation schedule.

  15. Use of hepatobiliary phase images in Gd-EOB-DTPA-enhanced MRI of breast cancer hepatic metastasis to predict response to chemotherapy.

    PubMed

    Lee, Hyun Ji; Lee, Chang Hee; Kim, Jeong Woo; Park, Yang Shin; Lee, Jongmee; Kim, Kyeong Ah

    To determine the prognostic value of Gd-EOB-DTPA MRI findings of liver metastasis from breast cancer. 29 metastatic lesions from 12 breast cancer patients who received chemotherapy were retrospectively reviewed. We evaluated hepatobiliary phase of the lesions and classified them as a "target" or "non-target" appearance. The relationship of appearance or SI ratio with tumor response was analyzed. A non-target appearance was more frequent in disease control group than in non-control group [14/18 (77.8%) vs. 4/18 (22.2%)], and it was associated with a better response [p=0.048]. HBP analysis may be useful to predict the response to chemotherapy and survival. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Quantitative assessment of hepatic fibrosis in chronic hepatitis B and C: T1 mapping on Gd-EOB-DTPA-enhanced liver magnetic resonance imaging.

    PubMed

    Pan, Shen; Wang, Xiao-Qi; Guo, Qi-Yong

    2018-05-14

    To assess the accuracy of Look-Locker on gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) for staging liver fibrosis in chronic hepatitis B/C (CHB/C). We prospectively included 109 patients with CHB or CHC who underwent a 3.0-Tesla MRI examination, including T1-weighted and Look-Locker sequences for T1 mapping. Hepatocyte fractions (HeF) and relaxation time reduction rate (RE) were measured for staging liver fibrosis. A receiver operating characteristic analysis using the area under the receiver operating characteristic curve (AUC) was used to compare the diagnostic performance in predicting liver fibrosis between HeF and RE. A total of 73 patients had both pathological results and MRI information. The number of patients in each fibrosis stage was evaluated semiquantitatively according to the METAVIR scoring system: F0, n = 23 (31.5%); F1, n = 19 (26.0%); F2, n = 13 (17.8%); F3, n = 6 (8.2%), and F4, n = 12 (16.4%). HeF by EOB enhancement imaging was significantly correlated with fibrosis stage ( r = -0.808, P < 0.05). AUC values for diagnosis of any (≥ F1), significant (≥ F2) or advanced (≥ F3) fibrosis, and cirrhosis (F4) using HeF were 0.837 (0.733-0.913), 0.890 (0.795-0.951), 0.957 (0.881-0.990), and 0.957 (0.882-0.991), respectively. HeF measurement was more accurate than use of RE in establishing liver fibrosis staging, suggesting that calculation of HeF is a superior noninvasive liver fibrosis staging method. A T1 mapping-based HeF method is an efficient diagnostic tool for the staging of liver fibrosis.

  17. Hepatobiliary MRI: Signal intensity based assessment of liver function correlated to 13C-Methacetin breath test.

    PubMed

    Haimerl, Michael; Probst, Ute; Poelsterl, Stefanie; Beyer, Lukas; Fellner, Claudia; Selgrad, Michael; Hornung, Matthias; Stroszczynski, Christian; Wiggermann, Philipp

    2018-06-13

    Gadoxetic acid (Gd-EOB-DTPA) is a paramagnetic MRI contrast agent with raising popularity and has been used for evaluation of imaging-based liver function in recent years. In order to verify whether liver function as determined by real-time breath analysis using the intravenous administration of 13 C-methacetin can be estimated quantitatively from Gd-EOB-DTPA-enhanced MRI using signal intensity (SI) values. 110 patients underwent Gd-EOB-DTPA-enhanced 3-T MRI and, for the evaluation of liver function, a 13 C-methacetin breath test ( 13 C-MBT). SI values from before (SI pre ) and 20 min after (SI post ) contrast media injection were acquired by T1-weighted volume-interpolated breath-hold examination (VIBE) sequences with fat suppression. The relative enhancement (RE) between the plain and contrast-enhanced SI values was calculated and evaluated in a correlation analysis of 13 C-MBT values to SI post and RE to obtain a SI-based estimation of 13 C-MBT values. The simple regression model showed a log-linear correlation of 13 C-MBT values with SI post and RE (p < 0.001). Stratified by 3 different categories of 13 C-MBT readouts, there was a constant significant decrease in both SI post (p ≤ 0.002) and RE (p ≤ 0.033) with increasing liver disease progression as assessed by the 13 C-MBT. Liver function as determined using real-time 13 C-methacetin breath analysis can be estimated quantitatively from Gd-EOB-DTPA-enhanced MRI using SI-based indices.

  18. Characterization of the biliary tract by virtual ultrasonography constructed by gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging.

    PubMed

    Koizumi, Yohei; Hirooka, Masashi; Ochi, Hironori; Tokumoto, Yoshio; Takechi, Megumi; Hiraoka, Atsushi; Ikeda, Yoshio; Kumagi, Teru; Matsuura, Bunzo; Abe, Masanori; Hiasa, Yoichi

    2015-04-01

    This study aimed at prospectively evaluating bile duct anatomy on ultrasonography and evaluating the safety and utility of radiofrequency ablation (RFA) assisted by virtual ultrasonography from gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI). The institutional review board approved this study, and patients provided written informed consent prior to entry into the study. Bile duct anatomy was assessed in 201 patients who underwent Gd-EOB-DTPA-enhanced MRI for the evaluation of hepatic tumor. Eighty-one of these patients subsequently underwent RFA assisted by ultrasound imaging. In 23 patients, the tumor was located within 5 mm of the central bile duct, as demonstrated by MRI. Virtual ultrasonography constructed by Gd-EOB-enhanced MRI was able to visualize the common bile duct, left hepatic duct, and right hepatic duct in 96.5, 94.0, and 89.6 % of cases, respectively. The target hepatic tumor nodule and biliary duct could be detected with virtual ultrasonography in all patients, and no severe complications occurred. The running pattern of the bile ducts could be recognized on conventional ultrasound by referencing virtual ultrasonography constructed by Gd-EOB-DTPA-enhanced MRI. RFA assisted by this imaging strategy did not result in bile duct injury.

  19. Diagnostic capability of gadoxetate disodium-enhanced liver MRI for diagnosis of hepatocellular carcinoma: comparison with multi-detector CT.

    PubMed

    Toyota, Naoyuki; Nakamura, Yuko; Hieda, Masashi; Akiyama, Naoko; Terada, Hiroaki; Matsuura, Noriaki; Nishiki, Masayo; Kono, Hirotaka; Kohno, Hiroshi; Irei, Toshimitsu; Yoshikawa, Yukinobu; Kuraoka, Kazuya; Taniyama, Kiyomi; Awai, Kazuo

    2013-09-01

    The purpose of this study was to evaluate the diagnostic capability of gadoxetate disodium (Gd-EOB)-MRI for the detection of hepatocellular carcinoma (HCC) compared with multidetector CT (MDCT). Fifty patients with 57 surgically proven HCCs who underwent Gd-EOB-MRI and MDCT from March 2008 to June 2011 were evaluated. Two observers evaluated MR and CT on a lesion-by-lesion basis. We analyzed sensitivity by grading on a 5-point scale, the degree of arterial enhancement and the differences in histological grades in the diffusion-weighted images (DWI). The results showed that the sensitivity of Gd-EOB-MRI was higher than that of MDCT especially for HCCs that were 1 cm in diameter or smaller. The hepatobiliary phase was useful for the detecting of small HCC. We had few cases in which it was difficult to judge HCC in the arterial enhancement between MRI and MDCT. In the diffusion-weighted image, well differentiated HCC tended to show a low signal intensity, and poorly differentiated HCC tended to show a high signal intensity. In moderately differentiated HCC's, the mean diameter of the high signal intensity group was larger than that of the low signal intensity group (24.5 mm vs. 15.8 mm). In conclusion, Gd-EOB-MRI tended to show higher sensitivity compared to MDCT in the detection of HCC.

  20. Hydrothermally synthesized PEGylated calcium phosphate nanoparticles incorporating Gd-DTPA for contrast enhanced MRI diagnosis of solid tumors.

    PubMed

    Mi, Peng; Kokuryo, Daisuke; Cabral, Horacio; Kumagai, Michiaki; Nomoto, Takahiro; Aoki, Ichio; Terada, Yasuko; Kishimura, Akihiro; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2014-01-28

    Organic-inorganic hybrid nanoparticles with calcium phosphate (CaP) core and PEGylated shell were developed to incorporate magnetic resonance imaging (MRI) contrast agent diethylenetriaminepentaacetic acid gadolinium (III) (Gd-DTPA) for noninvasive diagnosis of solid tumors. A two-step preparation method was applied to elaborate hybrid nanoparticles with a z-average hydrodynamic diameter about 80nm, neutral surface ξ-potential and high colloidal stability in physiological environments by self-assembly of poly(ethylene glycol)-b-poly(aspartic acid) block copolymer, Gd-DTPA, and CaP in aqueous solution, followed with hydrothermal treatment. Incorporation into the hybrid nanoparticles allowed Gd-DTPA to show significant enhanced retention ratio in blood circulation, leading to high accumulation in tumor positions due to enhanced permeability and retention (EPR) effect. Moreover, Gd-DTPA revealed above 6 times increase of relaxivity in the nanoparticle system compared to free form, and eventually, selective and elevated contrast enhancements in the tumor positions were observed. These results indicate the high potential of Gd-DTPA-loaded PEGylated CaP nanoparticles as a novel contrast agent for noninvasive cancer diagnosis. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Optimization of hepatobiliary phase delay time of Gd-EOB-DTPA-enhanced magnetic resonance imaging for identification of hepatocellular carcinoma in patients with cirrhosis of different degrees of severity.

    PubMed

    Wu, Jian-Wei; Yu, Yue-Cheng; Qu, Xian-Li; Zhang, Yan; Gao, Hong

    2018-01-21

    To optimize the hepatobiliary phase delay time (HBP-DT) of Gd-EOB-DTPA-enhanced magnetic resonance imaging (GED-MRI) for more efficient identification of hepatocellular carcinoma (HCC) occurring in different degrees of cirrhosis assessed by Child-Pugh (CP) score. The liver parenchyma signal intensity (LPSI), the liver parenchyma (LP)/HCC signal ratios, and the visibility of HCC at HBP-DT of 5, 10, 15, 20, and 25 min ( i.e ., DT-5, DT-10, DT-15, DT-20, and DT-25 ) after injection of Gd-EOB-DTPA were collected and analyzed in 73 patients with cirrhosis of different degrees of severity (including 42 patients suffering from HCC) and 18 healthy adult controls. The LPSI increased with HBP-DT more significantly in the healthy group than in the cirrhosis group ( F = 17.361, P < 0.001). The LP/HCC signal ratios had a significant difference ( F = 12.453, P < 0.001) among various HBP-DT points, as well as between CP-A and CP-B/C subgroups ( F = 9.761, P < 0.001). The constituent ratios of HCC foci identified as obvious hypointensity (+++), moderate hypointensity (++), and mild hypointensity or isointensity (+/-) kept stable from DT-10 to DT-25: 90.6%, 9.4%, and 0.0% in the CP-A subgroup; 50.0%, 50.0%, and 0.0% in the CP-B subgroup; and 0.0%, 0.0%, and 100.0% in the CP-C subgroup, respectively. The severity of liver cirrhosis has significant negative influence on the HCC visualization by GED-MRI. DT-10 is more efficient and practical than other HBP-DT points to identify most of HCC foci emerging in CP-A cirrhosis, as well as in CP-B cirrhosis; but an HBP-DT of 15 min or longer seems more appropriate than DT-10 for visualization of HCC in patients with CP-C cirrhosis.

  2. Non-Hypervascular Hypointense Hepatic Nodules during the Hepatobiliary Phase of Gadolinium-Ethoxybenzyl-Diethylenetriamine Pentaacetic Acid-Enhanced MRI as a Risk Factor of Intrahepatic Distant Recurrence after Radiofrequency Ablation of Hepatocellular Carcinoma.

    PubMed

    Iwamoto, Takayuki; Imai, Yasuharu; Igura, Takumi; Kogita, Sachiyo; Sawai, Yoshiyuki; Fukuda, Kazuto; Yamaguchi, Yoshitaka; Matsumoto, Yasushi; Nakahara, Masanori; Morimoto, Osakuni; Ohashi, Hiroshi; Fujita, Norihiko; Kudo, Masatoshi; Takehara, Tetsuo

    2017-01-01

    Non-hypervascular hypointense hepatic nodules during the hepatobiliary phase of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced MRI have been reported to be associated with intrahepatic distant recurrence (IDR) after hepatectomy or radiofrequency ablation (RFA) for hepatocellular carcinoma (HCC). IDR is categorized into hypervascular transformation of non-hypervascular hypointense hepatic nodules and new intrahepatic recurrence. The aim of this study was to evaluate the relationship between non-hypervascular hypointense hepatic nodules on Gd-EOB-DTPA-enhanced MRI and IDR after RFA, focusing on new intrahepatic recurrence. Ninety-one consecutive patients with 115 HCCs undergoing pretreatment Gd-EOB-DTPA-enhanced MRI and RFA for treatment of HCC were enrolled. Of the 91 patients who underwent RFA for HCC, 24 had non-hypervascular hypointense hepatic nodules on pretreatment Gd-EOB-DTPA-enhanced MRI. Recurrences were observed in 15 and 19 patients with and without non-hypervascular hypointense hepatic nodules, respectively. Of the 15 recurrences in patients with non-hypervascular hypointense hepatic nodules, 10 patients had new intrahepatic recurrences. The cumulative incidence of new intrahepatic recurrence was significantly higher in patients with non-hypervascular hypointense hepatic nodules than in those without non-hypervascular hypointense hepatic nodules (p < 0.0001). Multivariate analysis revealed that the presence of non-hypervascular hypointense hepatic nodules and Child-Pugh score were independent risk factors for new intrahepatic recurrence. Non-hypervascular hypointense hepatic nodules during the hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI were a useful predictive factor for IDR, particularly for new intrahepatic recurrence, after RFA. © 2017 S. Karger AG, Basel.

  3. Technical report: gadoxetate-disodium-enhanced 2D R2* mapping: a novel approach for assessing bile ducts in living donors.

    PubMed

    Fazeli Dehkordy, Soudabeh; Fowler, Kathryn J; Wolfson, Tanya; Igarashi, Saya; Lamas Constantino, Carolina P; Hooker, Jonathan C; Hong, Cheng W; Mamidipalli, Adrija; Gamst, Anthony C; Hemming, Alan; Sirlin, Claude B

    2017-10-31

    Gadoxetate-disodium (Gd-EOB-DTPA)-enhanced 3D T1- weighted (T1w) MR cholangiography (MRC) is an efficient method to evaluate biliary anatomy due to T1 shortening of excreted contrast in the bile. A method that exploits both T1 shortening and T2* effects may produce even greater bile duct conspicuity. The aim of our study is to determine feasibility and compare the diagnostic performance of two-dimensional (2D) T1w multi-echo (ME) spoiled gradient-recalled-echo (SPGR) derived R2* maps against T1w MRC for bile duct visualization in living liver donor candidates. Ten potential living liver donor candidates underwent pretransplant 3T MRI and were included in our study. Following injection of Gd-EOBDTPA and a 20-min delay, 3D T1w MRC and 2D T1w ME SPGR images were acquired. 2D R2* maps were generated inline by the scanner assuming exponential decay. The 3D T1w MRC and 2D R2* maps were retrospectively and independently reviewed in two separate sessions by three radiologists. Visualization of eight bile duct segments was scored using a 4-point ordinal scale. The scores were compared using mixed effects regression model. Imaging was tolerated by all donors and R2* maps were successfully generated in all cases. Visualization scores of 2D R2* maps were significantly higher than 3D T1w MRC for right anterior (p = 0.003) and posterior (p = 0.0001), segment 2 (p < 0.0001), segment 3 (p = 0.0001), and segment 4 (p < 0.0001) ducts. Gd-EOB-DTPA-enhanced 2D R2* mapping is a feasible method for evaluating the bile ducts in living donors and may be a valuable addition to the living liver donor MR protocol for delineating intrahepatic biliary anatomy.

  4. Paramagnetic Gd IIIFe III heterobimetallic complexes of DTPA-bis-salicylamide

    NASA Astrophysics Data System (ADS)

    Aime, S.; Botta, M.; Fasano, M.; Terreno, E.

    1993-08-01

    The reaction between DTPA (diethylenetriaminepenta-acetic acid)-anhydride and p-aminosalicylic acid (PAS) affords a novel ligand, [DTPA(PAS) 2], able to form stable heterobimetallic complexes with Gd 3+ and Fe 3+ ions. The lanthanide ion occupies an internal coordination cage formed by three nitrogen atoms, two carboxylate and two carboxoamido groups of the ligand, whereas the outer salicylic moieties form stable chelate rings with Fe III ions. The stoichiometry of the resulting heterobimetallic complexes, established by measurements of water proton relaxation enhancement, is [(H 2O)-Gd-DTPA(PAS) 2] 2-Fe(H 2O) 2 or [(H 2O)-Gd-DTPA(PAS) 2] 3-Fe depending on the pH of the aqueous solution. The individual contributions to the observed relaxation enhancement from Gd 3+ and Fe 3+ paramagnetic ions have been clearly distinguished and analysed.

  5. Feasibility of gadoteric acid for delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) at the wrist and knee and comparison with Gd-DTPA.

    PubMed

    Rehnitz, Christoph; Klaan, Bastian; Do, Thuy; Barié, Alexander; Kauczor, Hans-Ulrich; Weber, Marc-André

    2017-11-01

    To assess the feasibility of gadoteric acid for delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) and to compare the dGEMRIC values obtained using gadoteric acid with those obtained by an equimolar dose of Gd-DTPA. At 3T, dGEMRIC of the wrist was performed twice using a T 1 -weighted 3D-volumetric interpolated breath-hold examination sequence in 16 healthy volunteers (10 women; mean age 26.0 years) using gadoteric acid first and Gd-DTPA 3 weeks later. In addition, 24 patients with knee pain were examined using gadoteric acid (n = 12; seven women; mean age 45.8 years) or Gd-DTPA (n = 12; four women; mean age 47.1 years). T 1 values, the relative decrease in T 1 , and the delta R1 were compared using t-tests. Interobserver agreement was assessed using the intraclass correlation (ICC) between two independent readers. At the wrist, there was no significant difference in delta R1 values (0.34 ± 0.10/s, 95% confidence interval [0.30;0.38]/s for gadoteric acid and 0.32 ± 0.09 [0.29;0.35]/s for Gd-DTPA, P = 0.24) or the relative decrease in T 1 (0.25 ± 0.06 [0.29;0.35] msec for gadoteric acid and 0.24 ± 0.05 [0.22;0.27] msec for Gd-DTPA, P = 0.35). High observer agreement was found at precontrast (ICC = 0.87, P < 0.001) and postcontrast (ICC = 0.89, P < 0.001). Similarly, at the knee, there was no significant difference in delta R1 (0.39 ± 0.18 [0.32;0.47]/s for gadoteric acid and 0.41 ± 0.09 [0.38;0.45]/s for Gd-DTPA, P = 0.59) or the relative decrease in T 1 (0.30 ± 0.10 [0.26;0.34] msec for gadoteric acid and 0.33 ± 0.05 [0.30;0.35] msec for Gd-DTPA, P = 0.28). High ICCs of 0.96 (P < 0.01) were noted both at precontrast and postcontrast. dGEMRIC using gadoteric acid is feasible and yields comparable values when compared with Gd-DTPA. 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2017;46:1433-1440. © 2017 International Society for Magnetic Resonance in Medicine.

  6. Enhanced conjugation stability and blood circulation time of macromolecular gadolinium-DTPA contrast agent.

    PubMed

    Jenjob, Ratchapol; Kun, Na; Ghee, Jung Yeon; Shen, Zheyu; Wu, Xiaoxia; Cho, Steve K; Lee, Don Haeng; Yang, Su-Geun

    2016-04-01

    In this study, we prepared macromolecular MR T1 contrast agent: pullulan-conjugated Gd diethylene triamine pentaacetate (Gd-DTPA-Pullulan) and estimated residual free Gd(3+), chelation stability in competition with metal ions, plasma and tissue pharmacokinetics, and abdominal MR contrast on rats. Residual free Gd(3+) in Gd-DTPA-Pullulan was measured using colorimetric spectroscopy. The transmetalation of Gd(3+) incubated with Ca(2+) was performed by using a dialysis membrane (MWCO 100-500 Da) and investigated by ICP-OES. The plasma concentration profiles of Gd-DTPA-Pullulan were estimated after intravenous injection at a dose 0.1 mmol/kg of Gd. The coronal-plane abdominal images of normal rats were observed by MR imaging. The content of free Gd(3+), the toxic residual form, was less than 0.01%. Chelation stability of Gd-DTPA-Pullulan was estimated, and only 0.2% and 0.00045% of Gd(3+) were released from Gd-DTPA-Pullulan after 2h incubation with Ca(2+) and Fe(2+), respectively. Gd-DTPA-Pullulan displayed the extended plasma half-life (t1/2,α=0.43 h, t1/2,β=2.32 h), much longer than 0.11h and 0.79 h of Gd-EOB-DTPA. Abdominal MR imaging showed Gd-DTPA-Pullulan maintained initial MR contrast for 30 min. The extended plasma half-life of Gd-DTPA-Pullulan probably allows the prolonged MR acquisition time in clinic with enhanced MR contrast. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Analysis of pharmacokinetics of Gd-DTPA for dynamic contrast-enhanced magnetic resonance imaging.

    PubMed

    Taheri, Saeid; Shah, N Jon; Rosenberg, Gary A

    2016-09-01

    The pharmacokinetics (PK) of the contrast agent Gd-DTPA administered intravenously (i.v.) for contrast-enhanced MR imaging (DCE-MRI) is an important factor for quantitative data acquisition. We studied the effect of various initial bolus doses on the PK of Gd-DTPA and analyzed population PK of a lower dose for intra-subject variations in DCE-MRI. First, fifteen subjects (23-85years, M/F) were randomly divided into four groups for DCE-MRI with different Gd-DTPA dose: group-I, 0.1mmol/kg, n=4; group-II, 0.05mmol/kg, n=4; group-III, 0.025mmol/kg, n=4; and group-IV, 0.0125mmol/kg, n=3. Sequential fast T1 mapping sequence, after a bolus i.v. Gd-DTPA administered, and a linear T1-[Gd-DTPA] relationship were used to estimate the PK of Gd-DTPA. Secondly, MR-acquired PKs of Gd-DTPA from 58 subjects (28-80years, M/F) were collected retrospectively, from an ongoing study of the brain using DCE-MRI with Gd-DTPA at 0.025mmol/kg, to statistically analyze population PK of Gd-DTPA. We found that the PK of Gd-DTPA (i.v. 0.025mmol/kg) had a half-life of 37.3±6.6min, and was a better fit into a linear T1-[Gd-DTPA] relationship than higher doses (up to 0.1mmol/kg). The area under the curve (AUC) for 0.025mmol/kg was 3.37±0.46, which was a quarter of AUC of 0.1mmol/kg. In population analysis, a dose of 0.025mmol/kg of Gd-DTPA provided less than 5% subject-dependent variation in the PK of Gd-DTPA. Administration of 0.025mmol/kg Gd-DTPA enabled us to estimate [Gd-DTPA] from T1 by using a linear relationship that has a lower estimation error compared to a non-linear relationship. DCE-MRI with a quarter dose of Gd-DTPA is more sensitive to detect changes in [Gd-DTPA]. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Does diffusion-weighted imaging improve therapy response evaluation in patients with hepatocellular carcinoma after radioembolization? comparison of MRI using Gd-EOB-DTPA with and without DWI.

    PubMed

    Schelhorn, Juliane; Best, Jan; Reinboldt, Marcus P; Dechêne, Alexander; Gerken, Guido; Ruhlmann, Marcus; Lauenstein, Thomas C; Antoch, Gerald; Kinner, Sonja

    2015-09-01

    To investigate whether additional diffusion-weighted imaging (DWI) improves therapy response evaluation by Gd-EOB magnetic resonance imaging (MRI) in hepatocellular carcinoma (HCC) after radioembolization. Fifty patients with radioembolization for HCC underwent gadobutrol and Gd-EOB MRI with DWI prior to and 30, 90, and 180 days after radioembolization. A combination of gadobutrol MRI, alpha-fetoprotein, and imaging follow-up served as the reference standard. Two radiologists reviewed Gd-EOB alone (Gd-EOB), DWI alone (DWI), and the combination of both (Gd-EOB+DWI) separately and in consensus using a 4-point-scale: 1 = definitely no tumor progression (TP), 2 = probably no TP, 3 = probably TP, 4 = definitely TP. Receiver operating characteristic (ROC) and kappa analysis were performed. Kappa values for Gd-EOB, DWI, and Gd-EOB+DWI ranged between 0.712 and 0.892 (P < 0.001). 30 days after radioembolization three out of 38 patients showed TP, which was missed by DWI in one case. No significant area under the curve (AUC) difference between Gd-EOB (1.0, P = 0.004), DWI (0.881, P = 0.030), and Gd-EOB+DWI (1.0, P = 0.004) was found (P = 0.320). 90 days after radioembolization six out of 28 patients showed TP, which was detected in one patient only by DWI and Gd-EOB+DWI. The AUC did not differ significantly (P = 0.319) between Gd-EOB (0.890, P = 0.004), DWI (1.0, P < 0.001), and Gd-EOB+DWI (1.0, P < 0.001). 180 days after radioembolization five patients showed TP, which in one case was missed by DWI. The AUC did not differ significantly (P1 = 0.322, P2 = 0.369, P3 = 0.350) between Gd-EOB (1.0, P = 0.003), DWI (0.913, P = 0.016), and Gd-EOB+DWI (0.963, P = 0.007). Additional DWI does not substantially improve therapy response evaluation by Gd-EOB MRI in HCC after radioembolization but proved helpful in single cases. © 2014 Wiley Periodicals, Inc.

  9. Comparison of gadopentetic acid (Gd-DTPA) and bromide in a dual-tracer field experiment

    NASA Astrophysics Data System (ADS)

    Dulski, Peter; Möller, Peter; Pekdeger, Asaf

    2011-06-01

    At a test site consisting of a storage pond and connected artificial aquifer, the long-time behaviour of gadopentetic acid (Gd-DTPA) was compared with the classic tracer bromide (Br-) in a 70-day dual-tracer experiment. The mixed tracer solution was injected into the oligotrophic pond, which is separated from the aquifer by an infiltration bank. The water drained from the aquifer was returned to the pond together with additional fresh groundwater, causing reduced concentrations of Gd-DTPA and Br- in the system. Transmetallation of Gd-DTPA by rare earth elements and yttrium was negligible but Cu2+ and Ni2+ might have played a role. Adsorption and/or biodegradation of Gd-DTPA were negligible. The decline of Gd-DTPA/Br ratios by 18% in the pond over 68 days was caused by reversible sorption of Br- in the aquifer, which caused variation of Br- background. Thus, Br- behaves less conservatively than Gd-DTPA in the aquifer. Comparison of both proves the suitability of Gd-chelates as tracers in hydrological studies. The advantage of Gd-DTPA as a tracer is that natural Gd3+ in water can continuously be monitored by analysing the suite of naturally occurring rare-earth elements. Thus, stable organic Gd-chelates are determinable with high precision at very low concentrations.

  10. [Studies on renal damages after extracorporeal shock wave lithotripsy using Gd-DTPA-enhanced dynamic MRI].

    PubMed

    Umekawa, T; Kohri, K; Iguchi, M; Kurita, T

    1991-11-01

    Renal damages after ESWL treatment were examined by Gd-DTPA enhanced dynamic MRI. Gd-DTPA was used as the contrast medium and fast magnetic resonance imaging with suspended respiration using the flip angle of 20 degrees and gradient echo technique at 0.5 Tesla was used for photographing. In normal kidneys, a low intensity band was observed with the passage of Gd-DTPA through the kidney from 1 to 2 minutes after the injection. In patients who underwent ESWL treatment, however, the low intensity band which was observed before ESWL treatment became partly obscure after ESWL treatment. Furthermore, these find changes in the renal parenchyma could not be fully detected by usual MRI which does not use Gd-DTPA. Gd-DTPA enhanced dynamic MRI was considered to be effective for finding the limited dose of shock waves for ESWL treatment.

  11. Dynamic contrast enhanced MRI of the prostate: comparison of gadobutrol and Gd-DTPA.

    PubMed

    Durmus, T; Vollnberg, B; Schwenke, C; Kilic, E; Huppertz, A; Taupitz, M; Franiel, T

    2013-09-01

    To evaluate the enhancement profile of the macrocyclic contrast medium (CM) gadobutrol in comparison to linear CM Gd-DTPA in DCE-MRI of the prostate. In total 53 patients with prostata cancer (PCa) were included, who received a radical prostatectomy after multiparametric MRI of the prostate including DCE-MRI. Using circular regions of interests normal peripheral zone (PZ) and PCa foci > 5 mm in diameter (42 and 34 foci in Gd-DTPA and gadobutrol group, respectively) were analysed in DCE-MRI. Enhancement curves (Type I, II and III) and pharmacokinetic parameters were analyzed qualitatively and quantitatively and compared using mixed linear models (two sided p-values < 0.05 were regarded significant). There was no significant difference in frequencies of curve types I, II or III in the normal PZ (p = 0.63) or in PCa foci (p = 0.75). PCa with a Gleason score ≥ 7 had in comparison to Gleason ≤ 6 significantly more often a Wash-Out-curve (Type III) with both CM (p = 0.02). The relative peak enhancement was in the PZ (Gd-DTPA 1.4 a. u. [1.20; 1.59], gadobutrol 1.58 a. u. [1.37; 1.78]) and in PCa foci (Gd-DTPA 1.56 a. u. [1.41; 1.71], gadobutrol 1.76 a. u. [1.59; 1.94]) significantly higher with gadobutrol (p = 0.04). The pharmacokinetic parameters Ktrans und kep were higher in PCa foci than in PZ (p < 0.0001 and p = 0.002, respectively) without significant difference of the parameter values between both CM (p = 0.65). [corrected] This study is the first systematic comparison of gadobutrol and Gd-DTPA in DCE-MRI of the prostate. The relative peak enhancement is higher using gadobutrol compared to Gd-DTPA in DCE-MRI. There was no statistically significant difference in curve types or the pharmacokinetic parameters in PCa or normal PZ between both CM. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Gd-DTPA-loaded polymer-metal complex micelles with high relaxivity for MR cancer imaging.

    PubMed

    Mi, Peng; Cabral, Horacio; Kokuryo, Daisuke; Rafi, Mohammad; Terada, Yasuko; Aoki, Ichio; Saga, Tsuneo; Takehiko, Ishii; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2013-01-01

    Nanodevices for magnetic resonance imaging of cancer were self-assembled to core-shell micellar structures by metal complex formation of K(2)PtCl(6) with diethylenetriaminepentaacetic acid gadolinium (III) dihydrogen (Gd-DTPA), a T(1)-contrast agent, and poly(ethylene glycol)-b-poly{N-[N'-(2-aminoethyl)-2-aminoethyl]aspartamide} (PEG-b-PAsp(DET)) copolymer in aqueous solution. Gd-DTPA-loaded polymeric micelles (Gd-DTPA/m) showed a hydrodynamic diameter of 45 nm and a core size of 22 nm. Confining Gd-DTPA inside the core of the micelles increased the relaxivity of Gd-DTPA more than 13 times (48 mM(-1) s(-1)). In physiological conditions Gd-DTPA/m sustainedly released Gd-DTPA, while the Pt(IV) complexes remain bound to the polymer. Gd-DTPA/m extended the circulation time in plasma and augmented the tumor accumulation of Gd-DTPA leading to successful contrast enhancement of solid tumors. μ-Synchrotron radiation-X-ray fluorescence results confirmed that Gd-DTPA was delivered to the tumor site by the micelles. Our study provides a facile strategy for incorporating contrast agents, dyes and bioactive molecules into nanodevices for developing safe and efficient drug carriers for clinical application. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Renal damages after extracorporeal shock wave lithotripsy evaluated by Gd-DTPA-enhanced dynamic magnetic resonance imaging.

    PubMed

    Umekawa, T; Kohri, K; Yamate, T; Amasaki, N; Ishikawa, Y; Takada, M; Iguchi, M; Kurita, T

    1992-01-01

    Renal damages after extracorporeal shock wave lithotripsy (ESWL) were evaluated by magnetic resonance imaging (MRI) including Gd-DTPA-enhanced dynamic MRI in 37 patients with renal stone by spin echo methods (T1 and T2-weighted scan) and small tip angle gradient echo method (T2-weighted scan). Sixty-eight percent of the patients had changes in the MRI findings after ESWL. The frequently observed findings were perirenal fluid collection (38%), loss of corticomedullary junction (35%), and increased signal intensity of muscle and other adjacent tissue (34%). Preoperative Gd-DTPA-enhanced dynamic MRI showed low intensity band which suggests Gd-DTPA secretion from the glomerulus into the renal tubulus. In all cases the low intensity band became unclear after ESWL because of renal contusion due to ESWL. MRI, including Gd-DTPA-enhanced dynamic MRI, is considered to be a good procedure for evaluation of renal damages due to ESWL.

  14. Diethylenetriaminepentaacetic acid-gadolinium (DTPA-Gd)-conjugated polysuccinimide derivatives as magnetic resonance imaging contrast agents.

    PubMed

    Lee, Ha Young; Jee, Hye Won; Seo, Sung Mi; Kwak, Byung Kook; Khang, Gilson; Cho, Sun Hang

    2006-01-01

    Biocompatible polysuccinimide (PSI) derivatives conjugated with diethylenetriaminepentaacetic acid gadolinium (DTPA-Gd) were prepared as magnetic resonance imaging (MRI) contrast agents. In this study, we synthesized PSI derivatives incorporating methoxy-poly(ethylene glycol) (mPEG) as hydrophilic ligand, hexadecylamine as hydrophobic ligand, and DTPA-Gd as contrast agent. PSI was synthesized by the polycondensation polymerization of aspartic acid. All the synthesized materials were characterized by proton nuclear magnetic resonance (1H NMR). Critical micellization concentrations were determined using fluorescent probes (pyrene). Micelle size and shape were measured by electro-photometer light scattering (ELS) and atomic force microscopy (AFM). The formed micelle size ranged from 100 to 300 nm. The T1-weighted MR images of the phantom prepared with PSI-mPEG-C16-(DTPA-Gd) were obtained in a 3.0 T clinical MR imager, and the conjugates showed a great potential as MRI contrast agents.

  15. Synthesis and evaluation of novel polysaccharide-Gd-DTPA compounds as contrast agent for MRI

    NASA Astrophysics Data System (ADS)

    Sun, Guoying; Feng, Jianghua; Jing, Fengying; Pei, Fengkui; Liu, Maili

    2003-09-01

    Macromolecular conjugates of two kinds of natural polysaccharides, that from Panax quinquefolium linn (PQPS) and Ganoderma applanatum pat (GAPS), with gadolinium-diethylenetriaminepenta-acetic acid (Gd-DTPA) have been synthesized and characterized by means of FTIR, elementary analysis and ICP-AES. Their stability was investigated by competition study with Ca 2+, EDTA (ethylenediaminetetraacetic acid) and DTPA. Polysaccharide-bound complexes exhibit T1 relaxivities of 1.5-1.7 times that of Gd-DTPA in D 2O at 25°C and 9.4 T. MR imaging of Sprague-Dawley (SD) rats showed remarkable enhancement in rat liver and kidney after i.v. injection of these two complexes: liver parenchyma 60.9±5.6%, 57.8±7.4% at 65-85 min; kidney 144.9±14.5%, 199.9±25.4% at 10-30 min for PQPS-Gd-DTPA, GAPS-Gd-DTPA at gadolinium dose of 0.083 and 0.082 mmol/kg, respectively. Our preliminary in vivo and in vitro study indicates that the two kinds of polysaccharide-bound complexes are potential tissue-specific contrast agents for MRI.

  16. Determination of the MRI contrast agent Gd-DTPA by SEC-ICP-MS.

    PubMed

    Loreti, Valeria; Bettmer, Jörg

    2004-08-01

    The simultaneous determination of Gd(3+) and Gd-DTPA (DTPA: diethylenetriamino-pentaacetic acid), often used as contrast agent, is described. The proposed approach combines size-exclusion chromatography (SEC) and inductively coupled plasma-mass spectrometry (ICP-MS) for element-selective detection in order to determine also high-molecular Gd-complexes if present. This method was applied to the analysis of urine samples of a patient to whom Gd-DTPA was intravenously administered. The results showed that no conversion or adsorption of Gd-DTPA could be observed in any sample, even free Gd(3+) could not be detected. Urine excretion behaviour was monitored and it was proved that Gd-DTPA was almost completely (>99%) excreted by urination within one day. Traces of Gd-DTPA could be measured in hair samples, but extraction with tetramethylammonium hydroxide (TMAH) resulted in degradation of Gd-DTPA.

  17. Contrast enhanced liver MRI in patients with primary sclerosing cholangitis: inverse appearance of focal confluent fibrosis on delayed phase MR images with hepatocyte specific versus extracellular gadolinium based contrast agents.

    PubMed

    Husarik, Daniela B; Gupta, Rajan T; Ringe, Kristina I; Boll, Daniel T; Merkle, Elmar M

    2011-12-01

    To assess the enhancement pattern of focal confluent fibrosis (FCF) on contrast-enhanced hepatic magnetic resonance imaging (MRI) using hepatocyte-specific (Gd-EOB-DTPA) and extracellular (ECA) gadolinium-based contrast agents in patients with primary sclerosing cholangitis (PSC). After institutional review board approval, 10 patients with PSC (6 male, 4 female; 33-61 years) with 13 FCF were included in this retrospective study. All patients had a Gd-EOB-DTPA-enhanced liver MRI exam, and a comparison ECA-enhanced MRI. On each T1-weighted dynamic dataset, the signal intensity (SI) of FCF and the surrounding liver as well as the paraspinal muscle (M) were measured. In the Gd-EOB-DTPA group, hepatocyte phase images were also included. SI FCF/SI M, SI liver/SI M, and [(SI liver - SI FCF)/SI liver] were compared between the different contrast agents for each dynamic phase using the paired Student's t-test. There was no significant difference in SI FCF/SI M in all imaging phases. SI liver/SI M was significantly higher for the Gd-EOB-DTPA group in the delayed phase (P < .001), whereas there was no significant difference in all other imaging phases. In the Gd-EOB-DTPA group, mean [(SI liver - SI FCF)/SI liver] were as follows (values for ECA group in parentheses): unenhanced phase: 0.26 (0.26); arterial phase: 0.01 (-0.31); portal venous phase (PVP): -0.05 (-0.26); delayed phase (DP): 0.14 (-0.54); and hepatocyte phase: 0.26. Differences were significant for the DP (P < .001). On delayed phase MR images the FCF-to-liver contrast is reversed with the lesions appearing hyperintense on ECA enhanced images and hypointense on Gd-EOB-DTPA-enhanced images. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.

  18. Photo-cured PMMA/PEI core/shell nanoparticles surface-modified with Gd-DTPA for T1 MR imaging.

    PubMed

    Ratanajanchai, Montri; Lee, Don Haeng; Sunintaboon, Panya; Yang, Su-Geun

    2014-02-01

    Herein, we introduced amine-functionalized core-shell nanoparticles (Polymethyl methacrylate/Polyethyleneimine; PMMA/PEI) with surface primary amines (3.15×10(5) groups/particle) and uniform size distribution (150-200nm) that were prepared by one-step photo-induced emulsion polymerization. Further PEI-surface was modified with diethylenetriamine pentaacetic acid (DTPA) and introduced with Gd(III). The modified particles possessing DTPA can entrap a high content of Gd(III) ions of over 5.5×10(4)Gd/particle with stable chelation (no release of free Gd) at least 7h. The Gd-DTPA-conjugated core-shell nanoparticles (PMMA/PEI-DTPA-Gd NPs) enhanced the MRI intensity more than Primovist (a commercial hepatic contrast agent). Moreover, the PMMA/PEI-DTPA-Gd NPs showed non-cytotoxicity up to 250μM in normal liver cells. Thus, in vitro data suggested the PMMA/PEI-DTPA-Gd NPs is promising delivery system as a superior MRI contrast agent, especially for hepatic lesion targeted MR imaging. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Biliary tract enhancement in gadoxetic acid-enhanced MRI correlates with liver function biomarkers.

    PubMed

    Noda, Yoshifumi; Goshima, Satoshi; Kajita, Kimihiro; Kawada, Hiroshi; Kawai, Nobuyuki; Koyasu, Hiromi; Matsuo, Masayuki; Bae, Kyongtae T

    2016-11-01

    To evaluate the association between gadoxetic-acid-enhanced magnetic resonance (MR) imaging measurements and laboratory and clinical biomarkers of liver function and fibrosis. One hundred thirty nine consecutive patients with suspected liver disease or liver tumor underwent gadoxetic-acid-enhanced MR imaging. MR imaging measurements during the hepatobiliary phase included biliary tract structure-to-muscle signal intensity ratio (SIR). These measurements were compared with Child-Pugh classification, end-stage liver disease (MELD) score, and aspartate aminotransferase-to-platelet ratio index (APRI). The SIRs of cystic duct and common bile duct were significantly correlated with Child-Pugh classification (P=0.012 for cystic duct and P<0.0001 for common bile duct), MELD score (P=0.0016 and P=0.0033), and APRI (P=0.0022 and P=0.0015). The sensitivity, specificity, and area under the receiver-operating-characteristic curve were: (74%, 88%, 0.86) with the SIR of common bile duct for the detection of patients with Child-Pugh class B or C; (100%, 87%, 0.94) with the SIR of cystic duct for MELD score (>10); (65%, 76%, 0.70) with the SIR of common bile duct for APRI (>1.5). Gadoxetic-acid contrast enhancement of cystic duct and common bile duct could be used as biomarkers to assess liver function. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Temperature effects on separation of Gd3+ from Gd-DTPA-folate using nanofiltration method

    NASA Astrophysics Data System (ADS)

    Rahayu, I.; Indraneli, R. P.; Yuliyati, Y. B.; Anggraeni, A.; Soedjanaatmadja, U. M. S.; Bahti, H. H.

    2018-05-01

    MRI is one of the best techniques in medical diagnostics. Contrast agents are used to improve the visual of organs that are difficult to distinguish through MRI. Gd-DTPA-folate is one of the specific contrast agents against cancer diagnosis, because it has a high affinity to folate receptors. In the complexing Gd-DTPA-folate, does not rule out the complexity step runs imperfectly, so there is still Gd3+ in the Gd-DTPA-folate complex. The separation of Gd3+ from the Gd-DTPA-folate complex is important to eliminate toxic effects on the contrast agent. This study aims to determine the effect of temperature on the separation of Gd-DTPA-folate from Gd3+ with nanofiltration. The method are preparation Gd-DTPA-folate from GdCl3.6H2O and DTPA-folate by reflux method, then separated Gd-DTPA-folate complex from Gd3+ with nanofiltration at variation temperature (40, 41, 42, 43, 44oC ). Then, the values of flux and rejection coefficients were analyzed. The results showed that the optimum temperature for the separation of Gd3+ from Gd-DTPA-folate was achieved at 42.6°C with the rejection coefficient of 24% and the permeate flux of 403 L.m-2.h-1.

  1. Microwave-induced thermoacoustic computed tomography with a clinical contrast agent of NMG2[Gd(DTPA)

    NASA Astrophysics Data System (ADS)

    Qin, Huan; Yang, Sihua; Xing, Da

    2012-01-01

    NMG2[Gd(DTPA)], a clinical contrast agent, was investigated for microwave-induced thermoacoustic computed tomography (CT). Due to ionic conduction and magnetic dipole rotation in the presence of microwave field, microwave energy absorbed by NMG2[Gd(DTPA)] would be transformed to thermoacoustic signals based on the thermoelastic effect. The experimental results demonstrated that NMG2[Gd(DTPA)] at a concentration of 10 mM provided effective enhancement compared with water. The enhancement of NMG2[Gd(DTPA)] for thermoacoustic CT was further demonstrated in invivo tumor-bearing mouse. The theory and experimental results indicate that the clinically available NMG2[Gd(DTPA)] will promote the medical applications of thermoacoustic CT.

  2. Liver Function Assessment by Magnetic Resonance Imaging.

    PubMed

    Ünal, Emre; Akata, Deniz; Karcaaltincaba, Musturay

    2016-12-01

    Liver function assessment by hepatocyte-specific contrast-enhanced magnetic resonance imaging is becoming a new biomarker. Liver function can be assessed by T1 mapping (reduction rate) and signal intensity measurement (relative enhancement ratio) before and after GD-EOB-DTPA (gadoxetic acid) administration, as alternative to Tc-99m galactosyl serum albumin scintigraphy, 99m Tc-labeled mebrofenin scintigraphy, and indocyanine green clearance test. Magnetic resonance imaging assessment of liver function can enable diagnosis of cirrhosis, nonalcoholic fatty liver disease associated fibrosis and steatohepatitis, primary sclerosing cholangitis, toxic hepatitis, and chemotherapy and radiotherapy-related changes, which may be only visible on hepatobiliary phase images. Simple visual assessment of signal intensity at hepatobiliary phase images is important for the diagnosis of different patterns of liver dysfunction including diffuse, lobar, segmental, and subsegmental forms. Furthermore, preoperative assessment of liver function is feasible before oncologic hepatic surgery, which may be important to prevent posthepatectomy liver failure and to estimate future remnant volume. Functional magnetic resonance cholangiography obtained by T1-weighted images at hepatobiliary phase can allow diagnosis of acalculous cholecystitis, biliary leakage, bile reflux to the stomach, sphincter of oddi dysfunction, and lesions with communication to biliary tree. Functional information can be easily obtained when Gd-EOB-DTPA is used for liver magnetic resonance imaging. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Magnetic Resonance Imaging of Acute Reperfused Myocardial Infarction: Intraindividual Comparison of ECIII-60 and Gd-DTPA in a Swine Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin Jiyang; Teng Gaojun; Feng Yi

    2007-04-15

    Purpose. To compare a necrosis-avid contrast agent (NACA) bis-Gd-DTPA-pamoic acid derivative (ECIII-60) after intracoronary delivery with an extracellular agent Gd-DTPA after intravenous injection on magnetic resonance imaging (MRI) in a swine model of acute reperfused myocardial infarction (MI). Methods. Eight pigs underwent 90 min of transcatheter coronary balloon occlusion and 60 min of reperfusion. After intravenous injection of Gd-DTPA at a dose of 0.2 mmol/kg, all pigs were scanned with T1-weighted MRI until the delayed enhancement of MI disappeared. Then they were intracoronarily infused with ECIII-60 at 0.0025 mmol/kg and imaged for 5 hr. Signal intensity, infarct-over-normal contrast ratio andmore » relative infarct size were quantified, compared, and correlated with the results of postmortem MRI and triphenyltetrazolium chloride (TTC) histochemical staining. Results. A contrast ratio over 3.0 was induced by both Gd-DTPA and ECIII-60. However, while the delayed enhancement with Gd-DTPA virtually vanished in 1 hr, ECIII-60 at an 80x smaller dose depicted the MI accurately over 5 hr as proven by ex vivo MRI and TTC staining. Conclusion. Both Gd-DTPA and ECIII-60 strongly enhanced acute MI. Comparing with fading contrast in a narrow time window with intravenous Gd-DTPA, intracoronary ECIII-60 persistently demarcated the acute MI, indicating a potential method for postprocedural assessment of myocardial viability after coronary interventions.« less

  4. Dynamic gadoxetate-enhanced MRI for the assessment of total and segmental liver function and volume in primary sclerosing cholangitis.

    PubMed

    Nilsson, Henrik; Blomqvist, Lennart; Douglas, Lena; Nordell, Anders; Jacobsson, Hans; Hagen, Karin; Bergquist, Annika; Jonas, Eduard

    2014-04-01

    To evaluate dynamic hepatocyte-specific contrast-enhanced MRI (DHCE-MRI) for the assessment of global and segmental liver volume and function in patients with primary sclerosing cholangitis (PSC), and to explore the heterogeneous distribution of liver function in this patient group. Twelve patients with primary sclerosing cholangitis (PSC) and 20 healthy volunteers were examined using DHCE-MRI with Gd-EOB-DTPA. Segmental and total liver volume were calculated, and functional parameters (hepatic extraction fraction [HEF], input relative blood-flow [irBF], and mean transit time [MTT]) were calculated in each liver voxel using deconvolutional analysis. In each study subject, and incongruence score (IS) was constructed to describe the mismatch between segmental function and volume. Among patients, the liver function parameters were correlated to bile duct obstruction and to established scoring models for liver disease. Liver function was significantly more heterogeneously distributed in the patient group (IS 1.0 versus 0.4). There were significant correlations between biliary obstruction and segmental functional parameters (HEF rho -0.24; irBF rho -0.45), and the Mayo risk score correlated significantly with the total liver extraction capacity of Gd-EOB-DTPA (rho -0.85). The study demonstrates a new method to quantify total and segmental liver function using DHCE-MRI in patients with PSC. Copyright © 2013 Wiley Periodicals, Inc.

  5. Primed infusion with delayed equilibrium of Gd.DTPA for enhanced imaging of small pulmonary metastases.

    PubMed

    Kalber, Tammy L; Campbell-Washburn, Adrienne E; Siow, Bernard M; Sage, Elizabeth; Price, Anthony N; Ordidge, Katherine L; Walker-Samuel, Simon; Janes, Sam M; Lythgoe, Mark F

    2013-01-01

    To use primed infusions of the magnetic resonance imaging (MRI) contrast agent Gd.DTPA (Magnevist), to achieve an equilibrium between blood and tissue (eqMRI). This may increase tumor Gd concentrations as a novel cancer imaging methodology for the enhancement of small tumor nodules within the low signal-to-noise background of the lung. A primed infusion with a delay before equilibrium (eqMRI) of the Gd(III) chelator Gd.DTPA, via the intraperitoneal route, was used to evaluate gadolinium tumor enhancement as a function of a bolus injection, which is applied routinely in the clinic, compared to gadolinium maintained at equilibrium. A double gated (respiration and cardiac) spin-echo sequence at 9.4T was used to evaluate whole lungs pre contrast and then at 15 (representative of bolus enhancement), 25 and 35 minutes (representative of eqMRI). This was carried out in two lung metastasis models representative of high and low tumor cell seeding. Lungs containing discrete tumor nodes where inflation fixed and taken for haematoxylin and eosin staining as well as CD34 staining for correlation to MRI. We demonstrate that sustained Gd enhancement, afforded by Gd equilibrium, increases the detection of pulmonary metastases compared to bolus enhancement and those tumors which enhance at equilibrium are sub-millimetre in size (<0.7 mm(2)) with a similar morphology to early bronchoalveolar cell carcinomas. As Gd-chelates are routinely used in the clinic for detecting tumors by MRI, this methodology is readily transferable to the clinic and advances MRI as a methodology for the detection of small pulmonary tumors.

  6. Feasibility of self-gated isotropic radial late-phase MR imaging of the liver.

    PubMed

    Weiss, Jakob; Taron, Jana; Othman, Ahmed E; Grimm, Robert; Kuendel, Matthias; Martirosian, Petros; Ruff, Christer; Schraml, Christina; Nikolaou, Konstantin; Notohamiprodjo, Mike

    2017-03-01

    To evaluate feasibility of a 3D-isotropic self-gated radial volumetric interpolated breath-hold examination (VIBE) for late-phase MRI of the liver. 70 patients were included and underwent liver MRI at 1.5 T. Depending on the diagnosis, either Gd-EOB-DTPA (35 patients) or gadobutrol (35 patients) were administered. During late (gadobutrol) or hepatocyte-specific phase (Gd-EOB-DTPA), a radial prototype sequence was acquired and reconstructed using (1) self-gating with 40 % acceptance (rVIBE 40 ); (2) with 100 % acceptance of the data (rVIBE 100 ) and compared to Cartesian VIBE (cVIBE). Images were assessed qualitatively (image quality, lesion conspicuity, artefacts; 5-point Likert-scale: 5 = excellent; two independent readers) and quantitatively (coefficient-of-variation (CV); contrast-ratio) in axial and coronal reformations. In eight cases only rVIBE provided diagnostic image quality. Image quality of rVIBE 40 was rated significantly superior (p < 0.05) in Gd-EOB-DTPA-enhanced and coronal reformatted examinations as compared to cVIBE. Lesion conspicuity was significantly improved (p < 0.05) in coronal reformatted Gd-EOB-DTPA-enhanced rVIBE 40 in comparison to cVIBE. CV was higher in rVIBE 40 as compared to rVIBE 100 /cVIBE (p < 0.01). Gadobutrol-enhanced rVIBE 40 and cVIBE showed higher contrast-ratios than rVIBE 100 (p < 0.001), whereas no differences were found in Gd-EOB-DTPA-enhanced examinations. Self-gated 3D-isotropic rVIBE provides significantly superior image quality compared to cVIBE, especially in multiplanar reformatted and Gd-EOB-DTPA-enhanced examinations. • Radial VIBE acquisition reduces motion artefacts. • Gd-EOB-DTPA-enhanced scans provide improved image quality. • Non-diagnostic liver MRI examinations may be reduced by radial k-spaces sampling.

  7. Primed Infusion with Delayed Equilibrium of Gd.DTPA for Enhanced Imaging of Small Pulmonary Metastases

    PubMed Central

    Kalber, Tammy L.; Campbell-Washburn, Adrienne E.; Siow, Bernard M.; Sage, Elizabeth; Price, Anthony N.; Ordidge, Katherine L.; Walker-Samuel, Simon

    2013-01-01

    Objectives To use primed infusions of the magnetic resonance imaging (MRI) contrast agent Gd.DTPA (Magnevist), to achieve an equilibrium between blood and tissue (eqMRI). This may increase tumor Gd concentrations as a novel cancer imaging methodology for the enhancement of small tumor nodules within the low signal-to-noise background of the lung. Methods A primed infusion with a delay before equilibrium (eqMRI) of the Gd(III) chelator Gd.DTPA, via the intraperitoneal route, was used to evaluate gadolinium tumor enhancement as a function of a bolus injection, which is applied routinely in the clinic, compared to gadolinium maintained at equilibrium. A double gated (respiration and cardiac) spin-echo sequence at 9.4T was used to evaluate whole lungs pre contrast and then at 15 (representative of bolus enhancement), 25 and 35 minutes (representative of eqMRI). This was carried out in two lung metastasis models representative of high and low tumor cell seeding. Lungs containing discrete tumor nodes where inflation fixed and taken for haematoxylin and eosin staining as well as CD34 staining for correlation to MRI. Results We demonstrate that sustained Gd enhancement, afforded by Gd equilibrium, increases the detection of pulmonary metastases compared to bolus enhancement and those tumors which enhance at equilibrium are sub-millimetre in size (<0.7 mm2) with a similar morphology to early bronchoalveolar cell carcinomas. Conclusion As Gd-chelates are routinely used in the clinic for detecting tumors by MRI, this methodology is readily transferable to the clinic and advances MRI as a methodology for the detection of small pulmonary tumors. PMID:23382996

  8. [Imaging and quantitative measurement of brain extracellular space using MRI Gd-DTPA tracer method].

    PubMed

    He, Qing-yuan; Han, Hong-bin; Xu, Fang-jing-wei; Yan, Jun-hao; Zeng, Jin-jin; Li, Xiao-gang; Fu, Yu; Peng, Yun; Chen, He; Hou, Chao; Xu, Xiao-juan

    2010-04-18

    To observe the diffusion of Gd-DTPA in brain extracellular space (ECS) by magnetic resonance imaging(MRI) and investigate the feasibility of ECS measurement by using MRI tracer method in vivo. 2 microL Gd-DTPA was introduced into ECS by caudate nucleus according to stereotaxic atlas in 8 Sprague Dawley(SD) rats (male, 280-320 g). The MRI scans were performed at 1 h, 3 h, 6 h, 9 h and 12 h respectively after administration. MRI appearances of Gd-DTPA diffusion and distribution was observed and compared. The MRI signal enhancement was measured at each time point. The neuroethology assessment was performed after MRI scanning at 12 h. The injection was accurate at the center of the caudate nucleus in 6 rats, while, at the capsula externa in other 2 rats. Gd-DTPA diffused isotropically after it was introduced into caudate nucleus, which spread into lateral cortex at 3 h. The MRI signal enhancement distributed mainly in the middle cerebral artery territory. A significant difference was found between the signal enhancement ratio at 1 h and that at 3 h in the original point of caudate nucleus (t=95.63, P<0.01), and the signal enhancement attenuated following the exponential power function y=1.7886x(-0.1776) (R2=0.94). In 2 rats with the injection point at capsula externa, Gd-DTPA diffused anisotropically along the fiber track of white matter during 1 h to 3 h, and spread into the lateral cortex at 6 h. The diffusion and clearance of Gd-DTPA in brain ECS could be monitored and measured quantitatively in vivo by MRI tracer method.

  9. Thermodynamic stability and kinetic inertness of a Gd-DTPA bisamide complex grafted onto gold nanoparticles.

    PubMed

    Mogilireddy, Vijetha; Déchamps-Olivier, Isabelle; Alric, Christophe; Laurent, Gautier; Laurent, Sophie; Vander Elst, Luce; Muller, Robert; Bazzi, Rana; Roux, Stéphane; Tillement, Olivier; Chuburu, Françoise

    2015-01-01

    Gold nanoparticles coated by gadolinium (III) chelates (Au@DTDTPA) where DTDTPA is a dithiolated bisamide derivative of diethylenetriamine-N,N,N',N'',N''-pentaacetic acid (DTPA), constituted contrast agents for both X-ray computed tomography and magnetic resonance imaging. In an MRI context, highly stable Gd(3+) complexes are needed for in vivo applications. Thus, knowledge of the thermodynamic stability and kinetic inertness of these chelates, when grafted onto gold nanoparticles, is crucial since bisamide DTPA chelates are usually less suited for Gd(3+) coordination than DTPA. Therefore, these parameters were evaluated by means of potentiometric titrations and relaxivity measurements. The results showed that, when the chelates were grafted onto the nanoparticle, not only their thermodynamic stability but also their kinetic inertness were improved. These positive effects were correlated to the chelate packing at the nanoparticle surface that stabilized the corresponding Gd(3+) complexes and greatly enhanced their kinetic inertness. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Dynamic magnetic resonance imaging of the breast: Comparison of gadobutrol vs. Gd-DTPA.

    PubMed

    Escribano, F; Sentís, M; Oliva, J C; Tortajada, L; Villajos, M; Martín, A; Ganau, S

    To compare the pharmacokinetic profile of gadobutrol versus Gd-DTPA in dynamic contrast-enhanced MRI (DCE-MRI) in patients with breast cancer. Secondary objectives included comparing the safety profiles and diagnostic efficacy of the two contrast agents for detecting additional malignant lesions. This retrospective observational study included 400 patients with histologically confirmed breast cancer; 200 underwent DCE-MRI with Gd-DTPA (Magnevist®) and 200 underwent DCE-MRI with gadobutrol (Gadovist®). Pharmacokinetic parameters and signal intensity were analyzed in a region of interest placed in the area within the lesion that had greatest signal intensity in postcontrast sequences. We compared the two groups on pharmacokinetic variables (K trans , K ep , and V e ), time-signal intensity curves, and the number of additional malignant lesions detected. The relative signal intensity (enhancement) was higher with gadobutrol than with Gd-DTPA. Washout was lower with gadobutrol than with Gd-DTPA (46% vs. 58,29%, respectively; p=0,0323). Values for K trans and K ep were higher for gadobutrol (p=0,001). There were no differences in the number of histologically confirmed additional malignant lesions detected (p=0,387). Relative enhancement is greater with gadobutrol, but washout is more pronounced with Gd-DTPA. The number of additional malignant lesions detected did not differ between the two contrast agents. Both contrasts are safe. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Coupling Gd-DTPA with a bispecific, recombinant protein anti-EGFR-iRGD complex improves tumor targeting in MRI

    PubMed Central

    XIN, XIAOYAN; SHA, HUIZI; SHEN, JINGTAO; ZHANG, BING; ZHU, BIN; LIU, BAORUI

    2016-01-01

    Recombinant anti-epidermal growth factor receptor-internalizing arginine-glycine-aspartic acid (anti-EGFR single-domain antibody fused with iRGD peptide) protein efficiently targets the EGFR extracellular domain and integrin αvβ/β5, and shows a high penetration into cells. Thus, this protein may improve penetration of conjugated drugs into the deep zone of gastric cancer multicellular 3D spheroids. In the present study, a novel tumor-targeting contrast agent for magnetic resonance imaging (MRI) was developed, by coupling gadolinium-diethylene triamine pentaacetate (Gd-DTPA) with the bispecific recombinant anti-EGFR-iRGD protein. The anti-EGFR-iRGD protein was extracted from Escherichia coli and Gd was loaded onto the recombinant protein by chelation using DTPA anhydride. Single-targeting agent anti-EGFR-DTPA-Gd, which served as the control, was also prepared. The results of the present study showed that anti-EGFR-iRGD-DTPA-Gd exhibited no significant cyto toxicity to human gastric carcinoma cells (BGC-823) under the experimental conditions used. Compared with a conventional contrast agent (Magnevist), anti-EGFR-iRGD-DTPA-Gd showed higher T1 relaxivity (10.157/mM/sec at 3T) and better tumor-targeting ability. In addition, the signal intensity and the area under curve for the enhanced signal time in tumor, in vivo, were stronger than Gd-DTPA alone or the anti-EGFR-Gd control. Thus, Gd-labelled anti-EGFR-iRGD has potential as a tumor-targeting contrast agent for improved MRI. PMID:27035336

  12. Gd-DTPA T1 relaxivity in brain tissue obtained by convection-enhanced delivery, magnetic resonance imaging and emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Haar, Peter J.; Broaddus, William C.; Chen, Zhi-jian; Fatouros, Panos P.; Gillies, George T.; Corwin, Frank D.

    2010-06-01

    A common approach to quantify gadolinium (Gd) contrast agents involves measuring the post-contrast change in T1 rate and then using the constant T1 relaxivity R to determine the contrast agent concentration. Because this method is fast and non-invasive, it could be potentially valuable in many areas of brain research. However, to accurately measure contrast agent concentrations in the brain, the T1 relaxivity R of the specific agent must be accurately known. Furthermore, the macromolecular content and compartmentalization of the brain extracellular space (ECS) are expected to significantly alter R from values measured in aqueous solutions. In this study, the T1 relaxivity R of gadolinium-diethylene-triamine penta-acetic acid (Gd-DTPA) was measured following direct interstitial infusions of three different contrast agent concentrations to the parenchyma of rat brains. Changes in magnetic resonance (MR) T1 values were compared to brain slice concentrations determined with inductively coupled plasma atomic emission spectroscopy (ICP-AES) to determine R in 15 rats. Additionally, samples of cerebrospinal fluid, blood and urine were analyzed to evaluate possible Gd-DTPA clearance from the brain. The T1 relaxivity R of Gd-DTPA in the brain ECS was measured to be 5.35 (mM s)-1 in a 2.4 T field. This value is considerably higher than estimations used in studies by other groups. Measurements of brain Gd-DTPA tissue concentrations using MRI and ICP-AES demonstrated a high degree of coincidence. Clearance of Gd-DTPA was minimal at the time point immediately after infusion. These results suggest that the environment of the brain does in fact significantly affect Gd T1 relaxivity, and that MRI can accurately measure contrast agent concentrations when this relaxivity is well characterized.

  13. Noninvasive Assessment of Advanced Fibrosis Based on Hepatic Volume in Patients with Nonalcoholic Fatty Liver Disease.

    PubMed

    Hayashi, Tatsuya; Saitoh, Satoshi; Fukuzawa, Kei; Tsuji, Yoshinori; Takahashi, Junji; Kawamura, Yusuke; Akuta, Norio; Kobayashi, Masahiro; Ikeda, Kenji; Fujii, Takeshi; Miyati, Tosiaki; Kumada, Hiromitsu

    2017-09-15

    Noninvasive liver fibrosis evaluation was performed in patients with nonalcoholic fatty liver disease (NAFLD). We used a quantitative method based on the hepatic volume acquired from gadoxetate disodium-enhanced (Gd-EOB-DTPA-enhanced) magnetic resonance imaging (MRI) for diagnosing advanced fibrosis in patients with NAFLD. A total of 130 patients who were diagnosed with NAFLD and underwent Gd-EOB-DTPA-enhanced MRI were retrospectively included. Histological data were available for 118 patients. Hepatic volumetric parameters, including the left hepatic lobe to right hepatic lobe volume ratio (L/R ratio), were measured. The usefulness of the L/R ratio for diagnosing fibrosis ≥F3-4 and F4 was assessed using the area under the receiver operating characteristic (AUROC) curve. Multiple regression analysis was performed to identify variables (age, body mass index, serum fibrosis markers, and histological features) that were associated with the L/R ratio. The L/R ratio demonstrated good performance in differentiating advanced fibrosis (AUROC, 0.80; 95% confidence interval, 0.72 to 0.88) from cirrhosis (AUROC, 0.87; 95% confidence interval, 0.75 to 0.99). Multiple regression analysis showed that only fibrosis was significantly associated with the L/R ratio (coefficient, 0.121; p<0.0001). The L/R ratio, which is not influenced by pathological parameters other than fibrosis, is useful for diagnosing cirrhosis in patients with NAFLD.

  14. Cost-effectiveness of EOB-MRI for Hepatocellular Carcinoma in Japan.

    PubMed

    Nishie, Akihiro; Goshima, Satoshi; Haradome, Hiroki; Hatano, Etsuro; Imai, Yasuharu; Kudo, Masatoshi; Matsuda, Masanori; Motosugi, Utaroh; Saitoh, Satoshi; Yoshimitsu, Kengo; Crawford, Bruce; Kruger, Eliza; Ball, Graeme; Honda, Hiroshi

    2017-04-01

    The objective of the study was to evaluate the cost-effectiveness of gadoxetic acid-enhanced magnetic resonance imaging (EOB-MRI) in the diagnosis and treatment of hepatocellular carcinoma (HCC) in Japan compared with extracellular contrast media-enhanced MRI (ECCM-MRI) and contrast media-enhanced computed tomography (CE-CT) scanning. A 6-stage Markov model was developed to estimate lifetime direct costs and clinical outcomes associated with EOB-MRI. Diagnostic sensitivity and specificity, along with clinical data on HCC survival, recurrence, treatment patterns, costs, and health state utility values, were derived from predominantly Japanese publications. Parameters unavailable from publications were estimated in a Delphi panel of Japanese clinical experts who also confirmed the structure and overall approach of the model. Sensitivity analyses, including one-way, probabilistic, and scenario analyses, were conducted to account for uncertainty in the results. Over a lifetime horizon, EOB-MRI was associated with lower direct costs (¥2,174,869) and generated a greater number of quality-adjusted life years (QALYs) (9.502) than either ECCM-MRI (¥2,365,421, 9.303 QALYs) or CE-CT (¥2,482,608, 9.215 QALYs). EOB-MRI was superior to the other diagnostic strategies considered, and this finding was robust over sensitivity and scenario analyses. A majority of the direct costs associated with HCC in Japan were found to be costs of treatment. The model results revealed the superior cost-effectiveness of the EOB-MRI diagnostic strategy compared with ECCM-MRI and CE-CT. EOB-MRI could be the first-choice imaging modality for medical care of HCC among patients with hepatitis or liver cirrhosis in Japan. Widespread implementation of EOB-MRI could reduce health care expenditures, particularly downstream treatment costs, associated with HCC. Copyright © 2017 Elsevier HS Journals, Inc. All rights reserved.

  15. Gd-DTPA L-cystine bisamide copolymers as novel biodegradable macromolecular contrast agents for MR blood pool imaging.

    PubMed

    Kaneshiro, Todd L; Ke, Tianyi; Jeong, Eun-Kee; Parker, Dennis L; Lu, Zheng-Rong

    2006-06-01

    The purpose of this study was to synthesize biodegradable Gd-DTPA L-cystine bisamide copolymers (GCAC) as safe and effective, macromolecular contrast agents for magnetic resonance imaging (MRI) and to evaluate their biodegradability and efficacy in MR blood pool imaging in an animal model. Three new biodegradable GCAC with different substituents at the cystine bisamide [R = H (GCAC), CH2CH2CH3 (Gd-DTPA L-cystine bispropyl amide copolymers, GCPC), and CH(CH3)2 (Gd-DTPA cystine bisisopropyl copolymers, GCIC)] were prepared by the condensation copolymerization of diethylenetriamine pentaacetic acid (DTPA) dianhydride with cystine bisamide or bisalkyl amides, followed by complexation with gadolinium triacetate. The degradability of the agents was studied in vitro by incubation in 15 microM cysteine and in vivo with Sprague-Dawley rats. The kinetics of in vivo contrast enhancement was investigated in Sprague-Dawley rats on a Siemens Trio 3 T scanner. The apparent molecular weight of the polydisulfide Gd(III) chelates ranged from 22 to 25 kDa. The longitudinal (T1) relaxivities of GCAC, GCPC, and GCIC were 4.37, 5.28, and 5.56 mM(-1) s(-1) at 3 T, respectively. The polymeric ligands and polymeric Gd(III) chelates readily degraded into smaller molecules in incubation with 15 microM cysteine via disulfide-thiol exchange reactions. The in vitro degradation rates of both the polymeric ligands and macromolecular Gd(III) chelates decreased as the steric effect around the disulfide bonds increased. The agents readily degraded in vivo, and the catabolic degradation products were detected in rat urine samples collected after intravenous injection. The agents showed strong contrast enhancement in the blood pool, major organs, and tissues at a dose of 0.1 mmol Gd/kg. The difference of their in vitro degradability did not significantly alter the kinetics of in vivo contrast enhancement of the agents. These novel GCAC are promising contrast agents for cardiovascular and tumor MRI

  16. Tissue gadolinium deposition in renally impaired rats exposed to different gadolinium-based MRI contrast agents: evaluation with inductively coupled plasma mass spectrometry (ICP-MS).

    PubMed

    Sato, Tomohiro; Ito, Katsuyoshi; Tamada, Tsutomu; Kanki, Akihiko; Watanabe, Shigeru; Nishimura, Hirotake; Tanimoto, Daigo; Higashi, Hiroki; Yamamoto, Akira

    2013-10-01

    To quantify tissue gadolinium (Gd) deposition in renally impaired rats exposed to Gd-EOB-DTPA and other Gd-based MRI contrast agents by means of inductively coupled plasma mass spectrometry (ICP-MS), and to compare the differences in distribution among major organs as possible triggers for nephrogenic systemic fibrosis (NSF). A total of 15 renally impaired rats were injected with Gd-EOB-DTPA, Gd-DTPA-BMA and Gd-HP-DO3A. Gd contents of skin, liver, kidney, lung, heart, spleen, diaphragm and femoral muscle were measured by inductively coupled plasma mass spectrometry (ICP-MS). Histological assessment was also conducted. Tissue Gd deposition in all organs was significantly higher (P=0.005~0.009) in the Gd-DTPA-BMA group than in the Gd-HP-DO3A and Gd-EOB-DTPA groups. In the Gd-DTPA-BMA group, Gd was predominantly deposited in kidney (1306±605.7μg/g), followed by skin, liver, lung, spleen, femoral muscle, diaphragm and heart. Comparing Gd-HP-DO3A and Gd-EOB-DTPA groups, Gd depositions in the kidney, liver and lung were significantly lower (P=0.009~0.011) in the Gd-EOB-DTPA group than in the Gd-HP-DO3A group although no significant differences were seen for any other organs. Gd-EOB-DTPA is a stable and safe Gd-based contrast agent (GBCA) showing lower Gd deposition in major organs in renally impaired rats, compared with other GBCAs. This fact suggests that the risk of NSF onset would be low in the use of Gd-EOB-DTPA. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Effects of the magnetic resonance imaging contrast agent Gd-DTPA on plant growth and root imaging in rice.

    PubMed

    Liu, Zan; Qian, Junchao; Liu, Binmei; Wang, Qi; Ni, Xiaoyu; Dong, Yaling; Zhong, Kai; Wu, Yuejin

    2014-01-01

    Although paramagnetic contrast agents have a wide range of applications in medical studies involving magnetic resonance imaging (MRI), these agents are seldom used to enhance MRI images of plant root systems. To extend the application of MRI contrast agents to plant research and to develop related techniques to study root systems, we examined the applicability of the MRI contrast agent Gd-DTPA to the imaging of rice roots. Specifically, we examined the biological effects of various concentrations of Gd-DTPA on rice growth and MRI images. Analysis of electrical conductivity and plant height demonstrated that 5 mmol Gd-DTPA had little impact on rice in the short-term. The results of signal intensity and spin-lattice relaxation time (T1) analysis suggested that 5 mmol Gd-DTPA was the appropriate concentration for enhancing MRI signals. In addition, examination of the long-term effects of Gd-DTPA on plant height showed that levels of this compound up to 5 mmol had little impact on rice growth and (to some extent) increased the biomass of rice.

  18. Diagnostic significance of gadolinium-DTPA (diethylenetriamine penta-acetic acid) enhanced magnetic resonance imaging in thrombolytic treatment for acute myocardial infarction: its potential in assessing reperfusion.

    PubMed Central

    van der Wall, E E; van Dijkman, P R; de Roos, A; Doornbos, J; van der Laarse, A; Manger Cats, V; van Voorthuisen, A E; Matheijssen, N A; Bruschke, A V

    1990-01-01

    The diagnostic value of gadolinium-DTPA (diethylenetriamine penta-acetic acid) enhanced magnetic resonance imaging in patients treated by thrombolysis for acute myocardial infarction was assessed in 27 consecutive patients who had a first acute myocardial infarction (14 anterior, 13 inferior) and who underwent thrombolytic treatment and coronary arteriography within 4 hours of the onset of symptoms. Magnetic resonance imaging was performed 93 hours (range 15-241) after the onset of symptoms. A Philips Gyroscan (0.5 T) was used, and spin echo measurements (echo time 30 ms) were made before and 20 minutes after intravenous injection of 0.1 mmol/kg gadolinium-DTPA. In all patients contrast enhancement of the infarcted areas was seen after Gd-DTPA. The signal intensities of the infarcted and normal values were used to calculate the intensity ratios. Mean (SD) intensity ratios after Gd-DTPA were significantly increased (1.15 (0.17) v 1.52 (0.29). Intensity ratios were higher in the 17 patients who underwent magnetic resonance imaging more than 72 hours after the onset of symptoms than in the 10 who underwent magnetic resonance imaging earlier, the difference being significantly greater after administration of Gd-DTPA (1.38 (0.12) v 1.61 (0.34). When patients were classified according to the site and size of the infarcted areas, or to reperfusion (n = 19) versus non-reperfusion (n = 8), the intensity ratios both before and after Gd-DTPA did not show significant differences. Magnetic resonance imaging with Gd-DTPA improved the identification of acutely infarcted areas, but with current techniques did not identify patients in whom thrombolytic treatment was successful. Images PMID:2310640

  19. Feasibility of semiautomated MR volumetry using gadoxetic acid-enhanced MRI at hepatobiliary phase for living liver donors.

    PubMed

    Lee, Jeongjin; Kim, Kyoung Won; Kim, So Yeon; Kim, Bohyoung; Lee, So Jung; Kim, Hyoung Jung; Lee, Jong Seok; Lee, Moon Gyu; Song, Gi-Won; Hwang, Shin; Lee, Sung-Gyu

    2014-09-01

    To assess the feasibility of semiautomated MR volumetry using gadoxetic acid-enhanced MRI at the hepatobiliary phase compared with manual CT volumetry. Forty potential live liver donor candidates who underwent MR and CT on the same day, were included in our study. Semiautomated MR volumetry was performed using gadoxetic acid-enhanced MRI at the hepatobiliary phase. We performed the quadratic MR image division for correction of the bias field inhomogeneity. With manual CT volumetry as the reference standard, we calculated the average volume measurement error of the semiautomated MR volumetry. We also calculated the mean of the number and time of the manual editing, edited volume, and total processing time. The average volume measurement errors of the semiautomated MR volumetry were 2.35% ± 1.22%. The average values of the numbers of editing, operation times of manual editing, edited volumes, and total processing time for the semiautomated MR volumetry were 1.9 ± 0.6, 8.1 ± 2.7 s, 12.4 ± 8.8 mL, and 11.7 ± 2.9 s, respectively. Semiautomated liver MR volumetry using hepatobiliary phase gadoxetic acid-enhanced MRI with the quadratic MR image division is a reliable, easy, and fast tool to measure liver volume in potential living liver donors. Copyright © 2013 Wiley Periodicals, Inc.

  20. Preclinical evaluation of Gd-DTPA and gadomelitol as contrast agents in DCE-MRI of cervical carcinoma interstitial fluid pressure.

    PubMed

    Hompland, Tord; Ellingsen, Christine; Rofstad, Einar K

    2012-11-22

    High interstitial fluid pressure (IFP) in the primary tumor is associated with poor disease-free survival in locally advanced cervical carcinoma. A noninvasive assay is needed to identify cervical cancer patients with highly elevated tumor IFP because these patients may benefit from particularly aggressive treatment. It has been suggested that dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with gadolinium diethylene-triamine penta-acetic acid (Gd-DTPA) as contrast agent may provide useful information on the IFP of cervical carcinomas. In this preclinical study, we investigated whether DCE-MRI with contrast agents with higher molecular weights (MW) than Gd-DTPA would be superior to Gd-DTPA-based DCE-MRI. CK-160 human cervical carcinoma xenografts were subjected to DCE-MRI with Gd-DTPA (MW of 0.55 kDa) or gadomelitol (MW of 6.5 kDa) as contrast agent before tumor IFP was measured invasively with a Millar SPC 320 catheter. The DCE-MRI was carried out at a spatial resolution of 0.23 × 0.23 × 2.0 mm³ and a time resolution of 14 s by using a 1.5-T whole-body scanner and a slotted tube resonator transceiver coil constructed for mice. Parametric images were derived from the DCE-MRI recordings by using the Tofts iso-directional transport model and the Patlak uni-directional transport model. When gadomelitol was used as contrast agent, significant positive correlations were found between the parameters of both pharmacokinetic models and tumor IFP. On the other hand, significant correlations between DCE-MRI-derived parameters and IFP could not be detected with Gd-DTPA as contrast agent. Gadomelitol is a superior contrast agent to Gd-DTPA in DCE-MRI of the IFP of CK-160 cervical carcinoma xenografts. Clinical studies attempting to develop DCE-MRI-based assays of the IFP of cervical carcinomas should involve contrast agents with higher MW than Gd-DTPA.

  1. Gadoxetic Acid-Enhanced MRI and Sonoelastography: Non-Invasive Assessments of Chemoprevention of Liver Fibrosis in Thioacetamide-Induced Rats with Sho-Saiko-To

    PubMed Central

    Chen, Ya-Wen; Tsai, Meng-Yuan; Pan, Huay-Ben; Tseng, Hui-Hwa; Hung, Yu-Ting; Chou, Chen-Pin

    2014-01-01

    Background This study aimed to compare the performance of gadoxetic acid -enhanced magnetic resonance imaging (MRI) and sonoelastography in evaluating chemopreventive effects of Sho-Saiko-To (SST) in thioacetamide (TAA)-induced early liver fibrosis in rats. Materials and Methods Ten of Sprague-Dawley rats receiving TAA (200 mg/kg of body weight) intraperitoneal injection were divided into three groups: Group 1 (TAA only, n = 3), Group 2 (TAA +0.25 g/kg SST, n = 4) and Group 3 (TAA+1 g/kg SST, n = 3). Core needle liver biopsy at week 2 and liver specimens after sacrifice at week 6 confirmed liver fibrosis using histological examinations, including Sirius red staining, Ishak and Metavir scoring systems. Gadoxetic acid-enhanced MRI and shear-wave sonoelastography were employed to evaluate liver fibrosis. The expression of hepatic transporter organic anion transporter 1 (Oatp1), multidrug-resistant protein 2 (Mrp2) and alpha-smooth muscle actin (α-Sma) were also analyzed in each group by immunohistochemistry (IHC) and Western blot. Results According to histological grading by Sirius red staining, Ishak scores of liver fibrosis in Groups 1, 2 and 3 were 3, 2 and 1, respectively. As shown in gadoxetic acid-enhanced MRI, the ratio of relative enhancement was significantly lower in Group 1 (1.87±0.21) than in Group 2 of low-dose (2.82±0.25) and Group 3 of high-dose (2.72±0.12) SST treatment at 10 minutes after gadoxetic acid intravenous injection (p<0.05). Sonoelastography showed that the mean difference before and after experiments in Groups 1, 2 and 3 were 4.66±0.1, 4.4±0.57 and 3±0.4 KPa (p<0.1), respectively. Chemopreventive effects of SST reduced the Mrp2 protein level (p<0.01) but not Oatp1 and α-Sma levels. Conclusion Sonoelastography and gadoxetic acid-enhanced MRI could monitor the treatment effect of SST in an animal model of early hepatic fibrosis. PMID:25490034

  2. Hepatobiliary magnetic resonance imaging in patients with liver disease: correlation of liver enhancement with biochemical liver function tests.

    PubMed

    Kukuk, Guido M; Schaefer, Stephanie G; Fimmers, Rolf; Hadizadeh, Dariusch R; Ezziddin, Samer; Spengler, Ulrich; Schild, Hans H; Willinek, Winfried A

    2014-10-01

    To evaluate hepatobiliary magnetic resonance imaging (MRI) using Gd-EOB-DTPA in relation to various liver function tests in patients with liver disorders. Fifty-one patients with liver disease underwent Gd-EOB-DTPA-enhanced liver MRI. Based on region-of-interest (ROI) analysis, liver signal intensity was calculated using the spleen as reference tissue. Liver-spleen contrast ratio (LSCR) and relative liver enhancement (RLE) were calculated. Serum levels of total bilirubin, gamma glutamyl transpeptidase (GGT), aspartate aminotransferase (AST), alanine aminotransferase (ALT), glutamate dehydrogenase (GLDH), lactate dehydrogenase (LDH), serum albumin level (AL), prothrombin time (PT), creatinine (CR) as well as international normalised ratio (INR) and model for end-stage liver disease (MELD) score were tested for correlation with LSCR and RLE. Pre-contrast LSCR values correlated with total bilirubin (r = -0.39; p = 0.005), GGT (r = -0.37; p = 0.009), AST (r = -0.38; p = 0.013), ALT (r = -0.29; p = 0.046), PT (r = 0.52; p < 0.001), GLDH (r = -0.55; p = 0.044), INR (r = -0.42; p = 0.003), and MELD Score (r = -0.53; p < 0.001). After administration of Gd-EOB-DTPA bilirubin (r = -0.45; p = 0.001), GGT (r = -0.40; p = 0.004), PT (r = 0.54; p < 0.001), AST (r = -0.46; p = 0.002), ALT (r = -0.31; p = 0.030), INR (r = -0.45; p = 0.001) and MELD Score (r = -0.56; p < 0.001) significantly correlated with LSCR. RLE correlated with bilirubin (r = -0.40; p = 0.004), AST (r = -0.38; p = 0.013), PT (r = 0.42; p = 0.003), GGT (r = -0.33; p = 0.020), INR (r = -0.36; p = 0.011) and MELD Score (r = -0.43; p = 0.003). Liver-spleen contrast ratio and relative liver enhancement using Gd-EOB-DTPA correlate with a number of routinely used biochemical liver function tests, suggesting that hepatobiliary MRI may serve as a

  3. Gd complexes of macrocyclic diethylenetriaminepentaacetic acid (DTPA) biphenyl-2,2'-bisamides as strong blood-pool magnetic resonance imaging contrast agents.

    PubMed

    Jung, Ki-Hye; Kim, Hee-Kyung; Lee, Gang Ho; Kang, Duk-Sik; Park, Ji-Ae; Kim, Kyeong Min; Chang, Yongmin; Kim, Tae-Jeong

    2011-08-11

    We report the synthesis of macrocyclic DTPA conjugates of 2,2'-diaminobiphenyl and their Gd complexes of the type [Gd(L)(H(2)O)]·xH(2)O (2a,b; L = 1a,b) for use as new MRI blood-pool contrast agents (MRI BPCAs). Pharmacokinetic inertness of 2 compares well with those of analogous Gd-DTPA MRI CAs currently in use. The present system also shows very high stability in human serum. The R(1) relaxivity reaches 10.9 mM(-1) s(-1), which is approximately 3 times as high as that of structurally related Gd-DOTA (R(1) = 3.7 mM(-1) s(-1)). The R(1) relaxivity in HSA goes up to 37.2 mM(-1) s(-1), which is almost twice as high as that of MS-325, a leading BPCA, demonstrating a strong blood pool effect. The in vivo MR images of mice obtained with 2b are coherent, showing strong signal enhancement in heart, abdominal aorta, and small vessels. Even the brain tumor is vividly enhanced for an extended period of time. The structural uniqueness of 2 is that it is neutral in charge and thus makes no resort to electrostatic interaction, supposedly one of the essential factors for the blood-pool effect.

  4. Laser-induced thermotherapy for the treatment of liver metastasis. Correlation of gadolinium-DTPA-enhanced MRI with histomorphologic findings to determine criteria for follow-up monitoring.

    PubMed

    Germer, C; Isbert, C M; Albrecht, D; Ritz, J P; Schilling, A; Roggan, A; Wolf, K J; Müller, G; Buhr, H

    1998-11-01

    To evaluate gadolinium (Gd)-diethylenetriamine-pentaacetic-acid (DTPA)-enhanced magnetic resonance imaging (MRI) for follow-up monitoring of laser-induced thermotherapy (LITT) and to determine a useful examination schedule. LITT of the liver was performed in 55 rabbits using a neodymium: yttrium-aluminum-garnet (Nd:YAG) laser (4-W power output, 840-s exposure time). Gd-DTPA MRI and histologic examinations were performed at different times (0-168 days). Laser-induced lesions underwent regeneration and volume size reduction (69% after 168 days). The correlation coefficient (MR vs. macroscopic analysis) for the mean lesion diameter was r = 0.96. Histology of lesions comprised the four zones that correlated best with MRI findings. Coagulation necroses immediately after LITT was seen as an area of no enhancement on Gd-DTPA MRI. Circular enhancement was first seen 72-96 h after LITT, which was due to early mesenchymal proliferation. Gd-DTPA MRI is a good monitoring procedure for LITT. MRI should be performed 24 and 96 h after LITT.

  5. Gadolinium-DTPA enhanced magnetic resonance imaging of bone cysts in patients with rheumatoid arthritis.

    PubMed Central

    Gubler, F M; Algra, P R; Maas, M; Dijkstra, P F; Falke, T H

    1993-01-01

    OBJECTIVES--To examine the contents of intraosseous cysts in patients with rheumatoid arthritis (RA) through the signal intensity characteristics on gadolinium-DTPA (Gd-DTPA) enhanced magnetic resonance imaging. METHODS--The hand or foot joints of nine patients with the cystic form of RA (where the initial radiological abnormality consisted of intraosseous cysts without erosions) were imaged before and after intravenous administration of Gd-DTPA. A 0.6 unit, T1 weighted spin echo and T2* weighted gradient echo were used to obtain images in at least two perpendicular planes. RESULTS--Most cysts showed a low signal intensity on the non-enhanced T1 weighted (spin echo) images and a high signal intensity on the T2* weighted (gradient echo) images, consistent with a fluid content. No cyst showed an enhancement of signal intensity on the T1 weighted images after intravenous administration of Gd-DTPA, whereas synovium hyperplasia at the site of bony erosions did show an increased signal intensity after Gd-DTPA. Magnetic resonance imaging detected more cysts (as small as 2 mm) than plain films, and the cysts were located truly intraosseously. In six patients no other joint abnormalities were identified by magnetic resonance imaging; the three other patients also showed, after Gd-DTPA administration, an enhanced synovium at the site of bony erosions. CONCLUSIONS--It is suggested that intraosseous bone cysts in patients with RA do not contain hyperaemic synovial proliferation. The bone cysts in patients with the cystic form of RA may be the only joint abnormality. Images PMID:8257207

  6. Paramagnetic perfluorocarbon-filled albumin-(Gd-DTPA) microbubbles for the induction of focused-ultrasound-induced blood-brain barrier opening and concurrent MR and ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Liao, Ai-Ho; Liu, Hao-Li; Su, Chia-Hao; Hua, Mu-Yi; Yang, Hung-Wei; Weng, Yu-Ting; Hsu, Po-Hung; Huang, Sheng-Min; Wu, Shih-Yen; Wang, Hsin-Ell; Yen, Tzu-Chen; Li, Pai-Chi

    2012-05-01

    This paper presents new albumin-shelled Gd-DTPA microbubbles (MBs) that can concurrently serve as a dual-modality contrast agent for ultrasound (US) imaging and magnetic resonance (MR) imaging to assist blood-brain barrier (BBB) opening and detect intracerebral hemorrhage (ICH) during focused ultrasound brain drug delivery. Perfluorocarbon-filled albumin-(Gd-DTPA) MBs were prepared with a mean diameter of 2320 nm and concentration of 2.903×109 MBs ml-1 using albumin-(Gd-DTPA) and by sonication with perfluorocarbon (C3F8) gas. The albumin-(Gd-DTPA) MBs were then centrifuged and the procedure was repeated until the free Gd3+ ions were eliminated (which were detected by the xylenol orange sodium salt solution). The albumin-(Gd-DTPA) MBs were also characterized and evaluated both in vitro and in vivo by US and MR imaging. Focused US was used with the albumin-(Gd-DTPA) MBs to induce disruption of the BBB in 18 rats. BBB disruption was confirmed with contrast-enhanced T1-weighted turbo-spin-echo sequence MR imaging. Heavy T2*-weighted 3D fast low-angle shot sequence MR imaging was used to detect ICH. In vitro US imaging experiments showed that albumin-(Gd-DTPA) MBs can significantly enhance the US contrast in T1-, T2- and T2*-weighted MR images. The r1 and r2 relaxivities for Gd-DTPA were 7.69 and 21.35 s-1mM-1, respectively, indicating that the MBs represent a positive contrast agent in T1-weighted images. In vivo MR imaging experiments on 18 rats showed that focused US combined with albumin-(Gd-DTPA) MBs can be used to both induce disruption of the BBB and detect ICH. To compare the signal intensity change between pure BBB opening and BBB opening accompanying ICH, albumin-(Gd-DTPA) MB imaging can provide a ratio of 5.14 with significant difference (p = 0.026), whereas Gd-DTPA imaging only provides a ratio of 2.13 and without significant difference (p = 0.108). The results indicate that albumin-(Gd-DTPA) MBs have potential as a US/MR dual-modality contrast agent for

  7. Paramagnetic perfluorocarbon-filled albumin-(Gd-DTPA) microbubbles for the induction of focused-ultrasound-induced blood-brain barrier opening and concurrent MR and ultrasound imaging.

    PubMed

    Liao, Ai-Ho; Liu, Hao-Li; Su, Chia-Hao; Hua, Mu-Yi; Yang, Hung-Wei; Weng, Yu-Ting; Hsu, Po-Hung; Huang, Sheng-Min; Wu, Shih-Yen; Wang, Hsin-Ell; Yen, Tzu-Chen; Li, Pai-Chi

    2012-05-07

    This paper presents new albumin-shelled Gd-DTPA microbubbles (MBs) that can concurrently serve as a dual-modality contrast agent for ultrasound (US) imaging and magnetic resonance (MR) imaging to assist blood-brain barrier (BBB) opening and detect intracerebral hemorrhage (ICH) during focused ultrasound brain drug delivery. Perfluorocarbon-filled albumin-(Gd-DTPA) MBs were prepared with a mean diameter of 2320 nm and concentration of 2.903×10(9) MBs ml(-1) using albumin-(Gd-DTPA) and by sonication with perfluorocarbon (C(3)F(8)) gas. The albumin-(Gd-DTPA) MBs were then centrifuged and the procedure was repeated until the free Gd(3+) ions were eliminated (which were detected by the xylenol orange sodium salt solution). The albumin-(Gd-DTPA) MBs were also characterized and evaluated both in vitro and in vivo by US and MR imaging. Focused US was used with the albumin-(Gd-DTPA) MBs to induce disruption of the BBB in 18 rats. BBB disruption was confirmed with contrast-enhanced T(1)-weighted turbo-spin-echo sequence MR imaging. Heavy T(2)*-weighted 3D fast low-angle shot sequence MR imaging was used to detect ICH. In vitro US imaging experiments showed that albumin-(Gd-DTPA) MBs can significantly enhance the US contrast in T(1)-, T(2)- and T(2)*-weighted MR images. The r(1) and r(2) relaxivities for Gd-DTPA were 7.69 and 21.35 s(-1)mM(-1), respectively, indicating that the MBs represent a positive contrast agent in T(1)-weighted images. In vivo MR imaging experiments on 18 rats showed that focused US combined with albumin-(Gd-DTPA) MBs can be used to both induce disruption of the BBB and detect ICH. To compare the signal intensity change between pure BBB opening and BBB opening accompanying ICH, albumin-(Gd-DTPA) MB imaging can provide a ratio of 5.14 with significant difference (p = 0.026), whereas Gd-DTPA imaging only provides a ratio of 2.13 and without significant difference (p = 0.108). The results indicate that albumin-(Gd-DTPA) MBs have potential as a US/MR dual

  8. Gd-EOB-DTPA-enhanced T1ρ imaging vs diffusion metrics for assessment liver inflammation and early stage fibrosis of nonalcoholic steatohepatitis in rabbits.

    PubMed

    Xie, Yuanliang; Zhang, Hongfeng; Jin, Chaoling; Wang, Xiang; Wang, Xiaoqi; Chen, Jingting; Xu, Yikai

    2018-05-01

    To assess the value of T1ρ,T1ρ on hepatobiliary phase (HBP) and diffusion metrics in staging of Non-alcoholic fatty liver disease (NAFLD) activity scores, inflammation, fibrosis in NASH rabbits model. Non-alcoholic steatohepatitis (NASH) rabbits model was induced by feeding a varied duration of high-fat, high-cholesterol diet. T1ρ,T1ρ (HBP) 20min after administration of Gd-EOB-DTPA, and Intravoxel incoherent motion imaging (IVIM) diffusion-weighted imaging were performed on a 3.0T magnetic resonance (MR) imaging unit. The diagnostic value of each parameter for NAS, inflammation and fibrosis severity were determined. T1ρ (r=0.658) and T1ρ (HBP) (r=0.750) have strong association with NASH overall activity, T1ρ (HBP) is strongly relevant to inflammation stage (r=0.812). There was negative association between f and inflammation (r=-0.480), whilst no significant relation between other three parameters (apparent diffusion coefficient (ADC), pseudo-diffusion coefficient (D*) and true diffusion coefficient (D)) and inflammation or overall activity. The areas under the receiver operating characteristic curves (AUCs) of f, ADC, T1ρ and T1ρ-HBP were 0.871, 0.728, 0.849 and 0.949 for differentiating NASH; 0.731, 0.552, 0.925 and 0.922 for G2-3 inflammation; and 0.767, 0.625, 0.816, and 0.882 for S1-2 fibrosis. Comparison of ROC curve showed T1ρ (HBP) had an optimal diagnostic performance for NASH [T1ρ (HBP) vs ADC, AUC:0.949 vs 0.728, P=0.043], inflammation [T1ρ (HBP) vs ADC, AUC:0.922 vs 0.552, P=0.003], fibrosis [T1ρ (HBP) vs ADC, AUC:0.882 vs 0.625, P=0.046]. The combination of T1ρ (HBP)+perfusion fraction (f) showed highest diagnostic value for NASH (AUC:0.971), inflammation (AUC:0.935). Among T1ρ imaging and IVIM diffusion metrics, combination of T1rho (HBP)+f was found to be superior noninvasive imaging biomarker for NASH activity assessment. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Synthesis of DTPA analogues derived from piperidine and azepane: potential contrast enhancement agents for magnetic resonance imaging.

    PubMed

    Chong, H S; Garmestani, K; Bryant, L H; Brechbiel, M W

    2001-11-16

    Two DTPA derivatives (PIP-DTPA and AZEP-DTPA) as potential contrast enhancement agents in MRI are synthesized. The T1 and T2 relaxivities of their corresponding Gd(III) complexes are reported. At clinically relevant field strengths, the relaxivities of the complexes are comparable to that of the contrast agent, Gd(DTPA) which is in clinical use. The serum stability of the (153)Gd-labeled complexes is assessed by measuring the release of (153)Gd from the ligands. The radiolabeled Gd chelates are found to be kinetically stable in human serum for up to at least 14 days without any measurable loss of radioactivity.

  10. Molecular imaging of alpha v beta3 integrin expression in atherosclerotic plaques with a mimetic of RGD peptide grafted to Gd-DTPA.

    PubMed

    Burtea, Carmen; Laurent, Sophie; Murariu, Oltea; Rattat, Dirk; Toubeau, Gérard; Verbruggen, Alfons; Vansthertem, David; Vander Elst, Luce; Muller, Robert N

    2008-04-01

    The integrin alpha v beta3 is highly expressed in atherosclerotic plaques by medial and intimal smooth muscle cells and by endothelial cells of angiogenic microvessels. In this study, we have assessed non-invasive molecular magnetic resonance imaging (MRI) of plaque-associated alpha v beta3 integrin expression on transgenic ApoE-/- mice with a low molecular weight peptidomimetic of Arg-Gly-Asp (mimRGD) grafted to gadolinium diethylenetriaminepentaacetate (Gd-DTPA-g-mimRGD). The analogous compound Eu-DTPA-g-mimRGD was employed for an in vivo competition experiment and to confirm the molecular targeting. The specific interaction of mimRGD conjugated to Gd-DTPA or to 99mTc-DTPA with alpha v beta3 integrin was furthermore confirmed on Jurkat T lymphocytes. The mimRGD was synthesized and conjugated to DTPA. DTPA-g-mimRGD was complexed with GdCl3.6H2O, EuCl3.6H2O, or with [99mTc(CO)3(H2O)3]+. MRI evaluation was performed on a 4.7 T Bruker imaging system. Blood pharmacokinetics of Gd-DTPA-g-mimRGD were assessed in Wistar rats and in c57bl/6j mice. The presence of angiogenic blood vessels and the expression of alpha v beta3 integrin were confirmed in aorta specimens by immunohistochemistry. Gd-DTPA-g-mimRGD produced a strong enhancement of the external structures of the aortic wall and of the more profound layers (possibly tunica media and intima). The aortic lumen seemed to be restrained and distorted. Pre-injection of Eu-DTPA-g-mimRGD diminished the Gd-DTPA-g-mimRGD binding to atherosclerotic plaque and confirmed the specific molecular targeting. A slower blood clearance was observed for Gd-DTPA-g-mimRGD, as indicated by a prolonged elimination half-life and a diminished total clearance. The new compound is potentially useful for the diagnosis of vulnerable atherosclerotic plaques and of other pathologies characterized by alpha v beta3 integrin expression, such as cancer and inflammation. The delayed blood clearance, the significant enhancement of the signal

  11. Gd-DTPA Adsorption on Chitosan/Magnetite Nanocomposites

    NASA Astrophysics Data System (ADS)

    Pylypchuk, Ie. V.; Kołodyńska, D.; Kozioł, M.; Gorbyk, P. P.

    2016-03-01

    The synthesis of the chitosan/magnetite nanocomposites is presented. Composites were prepared by co-precipitation of iron(II) and iron(III) salts by aqueous ammonia in the 0.1 % chitosan solution. It was shown that magnetite synthesis in the chitosan medium does not affect the magnetite crystal structure. The thermal analysis data showed 4.6 % of mass concentration of chitosan in the hybrid chitosan/magnetite composite. In the concentration range of initial Gd-DTPA solution up to 0.4 mmol/L, addition of chitosan to magnetite increases the adsorption capacity and affinity to Gd-DTPA complex. The Langmuir and Freundlich adsorption models were applied to describe adsorption processes. Nanocomposites were characterized by scanning electron microscopy (SEM), differential thermal analysis (DTA), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and specific surface area determination (ASAP) methods.

  12. Single-walled carbon nanotube-loaded doxorubicin and Gd-DTPA for targeted drug delivery and magnetic resonance imaging.

    PubMed

    Yan, Chenyu; Chen, Chengqun; Hou, Lin; Zhang, Huijuan; Che, Yingyu; Qi, Yuedong; Zhang, Xiaojian; Cheng, Jingliang; Zhang, Zhenzhong

    2017-02-01

    An aspargine-glycine-arginine (NGR) peptide modified single-walled carbon nanotubes (SWCNTs) system, developed by a simple non-covalent approach, could be loaded with the anticancer drug doxorubicin (DOX) and magnetic resonance imaging (MRI) contrast agent gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA). This DOX- and Gd-DTPA-loaded NGR functionalized SWCNTs (DOX/NGR-SWCNTs/Gd-DPTA) retained both cytotoxicity of DOX and MRI contrast effect of Gd-DPTA. This drug delivery system showed excellent stability in physiological solutions. This DOX/NGR-SWCNTs/Gd-DPTA system could accumulate in tumors and enter into tumor cells, which facilitated combination chemotherapy with diagnosis of tumor in one system. An excellent in vitro anti-tumor effect was shown in MCF-7 cells treated by DOX/NGR-SWCNTs/Gd-DPTA, compared with DOX solution, DOX/SWCNTs and DOX/SWCNTs/Gd-DPTA. In vivo data of DOX/NGR-SWCNTs/Gd-DPTA group in tumor-bearing mice further confirmed that this system performed much higher tumor targeting capacity and anti-tumor efficacy than other control groups.

  13. Use of gadoxetic acid for computed tomographic cholangiography in healthy dogs.

    PubMed

    Chau, Jennifer; Podadera, Juan M; Young, Alex C; Makara, Mariano A

    2017-07-01

    OBJECTIVE To evaluate the effect of gadoxetic acid (contrast) dose on biliary tract enhancement, determine the optimal time after contrast injection for CT image acquisition, and assess the feasibility of CT cholangiography in sedated dogs. ANIMALS 8 healthy dogs. PROCEDURES The study had 2 parts. In part 1, 4 dogs were anesthetized and underwent CT cholangiography twice. Gadoxetic acid was administered IV at a low dose (0.025 mmol/kg) for the first procedure and high dose (0.3 mmol/kg) for the second procedure. Serial CT scans were obtained at predetermined times after contrast injection. In part 2, 4 dogs were sedated and underwent CT angiography 85 minutes after IV administration of the high contrast dose. Contrast enhancement of the biliary tract on all scans was objectively assessed by measurement of CT attenuation and qualitatively assessed by use of a subjective 4-point scoring system by 3 independent reviewers. All measurements were compared over time and between contrast doses for the dogs of part 1. Subjective measurements were compared between the sedated dogs of part 2 and anesthetized dogs of part 1. RESULTS Enhancement of the biliary tract was positively associated with contrast dose and time after contrast injection. Optimal enhancement was achieved 65 minutes after contrast injection. Subjective visualization of most biliary structures did not differ significantly between sedated and anesthetized dogs. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated CT cholangiography with gadoxetic acid was feasible in sedated dogs. The high contrast dose provided better visualization of biliary structures than the low dose; CT scans should be obtained 65 minutes after contrast injection.

  14. Comparison of triple dose versus standard dose gadolinium-DTPA for detection of MRI enhancing lesions in patients with primary progressive multiple sclerosis.

    PubMed Central

    Filippi, M; Campi, A; Martinelli, V; Colombo, B; Yousry, T; Canal, N; Scotti, G; Comi, G

    1995-01-01

    This study was performed to evaluate whether a triple dose of gadolinium-DTPA (Gd-DTPA) increases the sensitivity of brain MRI for detecting enhancing lesions in patients with primary progressive multiple sclerosis (PPMS). T1 weighted brain MRI was obtained for 10 patients with PPMS in two sessions. In the first session, one scan was obtained five to seven minutes after the injection of 0.1 mmol/kg Gd-DTPA (standard dose). In the second session, six to 24 hours later, one scan before and two scans five to seven minutes and one hour after the injection of 0.3 mmol/kg Gd-DTPA (triple dose) were obtained. Four enhancing lesions were detected in two patients when the standard dose of Gd-DTPA was used. The numbers of enhancing lesions increased to 13 and the numbers of patients with such lesions to five when the triple dose of Gd-DTPA was used and to 14 and six in the one hour delayed scans. The mean contrast ratio for enhancing lesions detected with the triple dose of Gd-DTPA was higher than those for lesions present in both the standard dose (P < 0.0009) and the one hour delayed scans (P = 0.04). These data indicate that with a triple dose of Gd-DTPA many more enhancing lesions can be detected in patients with PPMS. This is important both for planning clinical trials and for detecting the presence of inflammation in vivo in the lesions of such patients. Images PMID:8530944

  15. Comparison of Gadofluorine-M and Gd-DTPA for Non-Invasive Staging of Atherosclerotic Plaque Stability Using MRI

    PubMed Central

    Ronald, John A.; Chen, Yuanxin; Belisle, Andre J.-L.; Hamilton, Amanda M.; Rogers, Kem A.; Hegele, Robert A.; Misselwitz, Bernd; Rutt, Brian K.

    2009-01-01

    Background Inflammation and neovascularization play critical roles in the stability of atherosclerotic plaques. Whole-body quantitative assessment of these plaque features may improve patient risk-stratification for life-threatening thromboembolic events and direct appropriate intervention. Here we determined the utility of the MR contrast agent Gadofluorine-M (GdF) for staging plaque stability and compared this to the conventional agent Gd-DTPA. Methods and Results 5 control and 7 atherosclerotic rabbits were sequentially imaged following administration of Gd-DTPA (0.2 mmol/kg) and GdF (0.1 mmol/kg) using a T1-weighted pulse sequence on a 3T MRI scanner. Diseased aortic wall could be distinguished from normal wall based on wall-to-muscle contrast-to-noise values following GdF administration. RAM-11 (macrophages) and CD-31 (endothelial cells) immunostaining of MR-matched histological sections revealed that GdF accumulation was related to the degree of inflammation at the surface of plaques and the extent of core neovascularization. Importantly, an MR measure of GdF accumulation at both 1 and 24 hours post-injection, but not Gd-DTPA at peak enhancement, was shown to correlate with a quantitative histological morphology index related to these two plaque features. Conclusions GdF-enhanced MRI of atherosclerotic plaques allows non-invasive quantitative information about plaque composition to be acquired at multiple time points post-injection (within 1 and up to 24 hours post-injection). This dramatically widens the imaging window for assessing plaque stability that is currently attainable with clinically approved MR agents, therefore opening the possibility of whole-body (including coronary) detection of unstable plaques in the future and potentially improved mitigation of cataclysmic cardiovascular events. PMID:19808597

  16. Early versus late GD-DTPA MRI enhancement in experimental glioblastomas.

    PubMed

    Farace, Paolo; Tambalo, Stefano; Fiorini, Silvia; Merigo, Flavia; Daducci, Alessandro; Nicolato, Elena; Conti, Giamaica; Degrassi, Anna; Sbarbati, Andrea; Marzola, Pasquina

    2011-03-01

    To compare early versus late enhancement in two glioblastoma models characterized by different infiltrative/edematous patterns. Three weeks after inoculation into nude mice of U87MG and U251 cells, T1-weighted images were acquired early (10.5 min), intermediate (21 min) and late (30.5 min) after a bolus injection of Gd-DTPA at 300 μ mol/kg dosage. EARLY(TH) and LATE(TH) were the corresponding volumes with an enhancement higher than a threshold TH, defined by the mean (μ) and standard deviation (σ) on a contralateral healthy area. ADD(TH) was the enhancing volume found in LATE(TH) but not in EARLY(TH). T2 imaging of both tumors was performed, and T2 mapping of U251. In all tumors, LATE(TH) was significantly higher than EARLY(TH) for TH ranging from μ+σ to μ+5σ. The ADD(TH) /EARLY(TH) ratio was not significantly different when U251 and U87MG tumors were compared. In the U87MG tumors, some enhancement was observed outside the regularly demarcated T2-hyperintense area. In the U251 tumors, irregularly T2 demarcated, a large portion of ADD(μ+3σ) had normal T2 values. At histology, U251 showed a higher infiltrative pattern than U87MG. In these models, the increase over time in the enhancing volume did not depend on the different infiltrative/edematous patterns and was not closely related with edema. Copyright © 2011 Wiley-Liss, Inc.

  17. Staging liver fibrosis in chronic hepatitis B with T1 relaxation time index on gadoxetic acid-enhanced MRI: Comparison with aspartate aminotransferase-to-platelet ratio index and FIB-4.

    PubMed

    Yang, Li; Ding, Ying; Rao, Shengxiang; Chen, Caizhong; Wu, Lifang; Sheng, Ruofan; Fu, Caixia; Zeng, Mengsu

    2017-04-01

    To assess the accuracy of the T 1 relaxation time index on gadoxetic acid-enhanced magnetic resonance imaging (MRI) for staging liver fibrosis in chronic hepatitis B (CHB), in comparison and combination with the aspartate aminotransferase-to-platelet ratio index (APRI) and fibrosis-4 (FIB-4). A retrospective study of gadoxetic acid-enhanced T 1 mapping and serum biochemical tests was performed on 126 CHB patients who underwent gadoxetic acid-enhanced 1.5T MRI, and the histological score used as the gold standard. The reduction rate of T 1 relaxation time before and 20 minutes after gadoxetic acid injection (ΔT 1 , ΔR1%), the contrast uptake rate (K Hep ), APRI, and FIB-4 were calculated. The diagnostic efficacy of ΔT 1 , ΔR1%, K Hep , APRI, and FIB-4 for predicting stage 2 or greater (≥S2), stage 3 or greater (≥S3), and stage 4 (S4) was compared. ΔT 1 (r = -0.513, P < 0.001), ΔR1% (r = -0.626, P < 0.001), K Hep (r = -0.527, P < 0.001), APRI (r = 0.519, P < 0.001), and FIB-4 (r = 0.476, P < 0.001) correlated significantly with fibrosis stages. Areas under the curves (AUCs) of ΔR1% for detecting ≥S2, ≥S3, and S4 were 0.849, 0.827, and 0.809, which were greater than that of APRI (0.763, 0.745, 0.787) and FIB-4 (0.727, 0.738, 0.772), but significant difference was found only in discriminating ≥S2 between ΔR1% and FIB-4 (P = 0.027). The combination of all five indices performed best, with AUC, sensitivity, and specificity of 0.860, 87.21%, and 72.50% for diagnosing ≥S2, 0.878, 82.81%, and 85.48% for ≥S3, and 0.867, 80.00%, and 83.95% for S4. The gadoxetic acid-enhanced T 1 relaxation time index appears to be superior to APRI and FIB-4 for predicting hepatic fibrosis. The combined use of gadoxetic acid-enhanced T 1 mapping, APRI, and FIB-4 may be more reliable for staging liver fibrosis in CHB. 4 J. Magn. Reson. Imaging 2017;45:1186-1194. © 2016 International Society for Magnetic Resonance in Medicine.

  18. The role of equilibrium and kinetic properties in the dissociation of Gd[DTPA-bis(methylamide)] (Omniscan) at near to physiological conditions.

    PubMed

    Baranyai, Zsolt; Brücher, Ernő; Uggeri, Fulvio; Maiocchi, Alessandro; Tóth, Imre; Andrási, Melinda; Gáspár, Attila; Zékány, László; Aime, Silvio

    2015-03-16

    [Gd(DTPA-BMA)] is the principal constituent of Omniscan, a magnetic resonance imaging (MRI) contrast agent. In body fluids, endogenous ions (Zn(2+), Cu(2+), and Ca(2+)) may displace the Gd(3+). To assess the extent of displacement at equilibrium, the stability constants of DTPA-BMA(3-) complexes of Gd(3+), Ca(2+), Zn(2+), and Cu(2+) have been determined at 37 °C in 0.15 M NaCl. The order of these stability constants is as follows: GdL≈CuL>ZnL≫CaL. Applying a simplified blood plasma model, the extent of dissociation of Omniscan (0.35 mM [Gd(DTPA-BMA)]) was found to be 17% by the formation of Gd(PO4), [Zn(DTPA-BMA)](-) (2.4%), [Cu(DTPA-BMA)](-) (0.2%), and [Ca(DTPA-BMA)](-) (17.7%). By capillary electrophoresis, the formation of [Ca(DTPA-BMA)](-) has been detected in human serum spiked with [Gd(DTPA-BMA)] (2.0 mM) at pH 7.4. Transmetallation reactions between [Gd(DTPA-BMA)] and Cu(2+) at 37 °C in the presence of citrate, phosphate, and bicarbonate ions occur by dissociation of the complex assisted by the endogenous ligands. At physiological concentrations of citrate, phosphate, and bicarbonate ions, the half-life of dissociation of [Gd(DTPA-BMA)] was calculated to be 9.3 h at pH 7.4. Considering the rates of distribution and dissociation of [Gd(DTPA-BMA)] in the extracellular space of the body, an open two-compartment model has been developed, which allows prediction of the extent of dissociation of the Gd(III) complex in body fluids depending on the rate of elimination of the contrast agent. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Gd-DTPA-Dopamine-Bisphytanyl Amphiphile: Synthesis, Characterisation and Relaxation Parameters of the Nanoassemblies and Their Potential as MRI Contrast Agents.

    PubMed

    Gupta, Abhishek; Willis, Scott A; Waddington, Lynne J; Stait-Gardner, Tim; de Campo, Liliana; Hwang, Dennis W; Kirby, Nigel; Price, William S; Moghaddam, Minoo J

    2015-09-28

    Here, a new amphiphilic magnetic resonance imaging (MRI) contrast agent, a Gd(III)-chelated diethylenetriaminepentaacetic acid conjugated to two branched alkyl chains via a dopamine spacer, Gd-DTPA-dopamine-bisphytanyl (Gd-DTPA-Dop-Phy), which is readily capable of self-assembling into liposomal nanoassemblies upon dispersion in an aqueous solution, is reported. In vitro relaxivities of the dispersions were found to be much higher than Magnevist, a commercially available contrast agent, at 0.47 T but comparable at 9.40 T. Analysis of variable temperature (17)O NMR transverse relaxation measurements revealed the water exchange of the nanoassemblies to be faster than that previously reported for paramagnetic liposomes. Molecular reorientation dynamics were probed by (1)H NMRD profiles using a classical inner and outer sphere relaxation model and a Lipari-Szabo "model-free" approach. High payloads of Gd(III) ions in the liposomal nanoassemblies made solely from the Gd-DTPA-Dop-Phy amphiphiles, in combination with slow molecular reorientation and fast water exchange makes this novel amphiphile a suitable candidate to be investigated as an advanced MRI contrast agent. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanuki, Naoko; Takeda, Atsuya; Oku, Yohei

    Purpose: Focal liver reaction (FLR) appears on radiographic images after stereotactic ablative body radiation therapy (SABR) in patients with hepatocellular carcinoma (HCC) and chronic liver disease. We investigated the threshold dose (TD) of FLR and possible factors affecting the TD on gadoxetate acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI). Methods and Materials: In 50 patients who were treated with SABR for small HCC and followed up by MRI for >6 months, FLR, seen as a hypointense area, was evaluated on the hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI. The follow-up MRI with the largest extent of FLR was fused to the planning computedmore » tomography (CT) image, and patients with good image fusion concordance were eligible. After delineating the border of the FLR manually, a dose–volume histogram was used to identify the TD for the FLR. Clinical and volumetric factors were analyzed for correlation with the TD. Results: A total of 45 patients were eligible for analysis with a median image fusion concordance of 84.9% (range, 71.6-95.4%). The median duration between SABR and subsequent hepatobiliary phase MRI with the largest extent of FLR was 3 months (range, 1-6 months). The median TD for FLR was 28.0 Gy (range, 22.3-36.4 Gy). On univariate analysis, pre-treatment Child-Pugh (CP) score and platelet count were significantly correlated with the TD. On multiple linear regression analysis, CP score was the only parameter that predicted TD. Median TDs were 30.5 Gy (range, 26.2.3-36.4 Gy) and 25.2 Gy (range, 22.3-27.5 Gy) for patients with CP-A and CP-B disease, respectively. Conclusion: The TD was significantly correlated with baseline liver function. We propose 30 Gy for CP-A disease and 25 Gy for CP-B disease in 5 fractions as TDs for FLR after SABR for patients with HCC and chronic liver disease. Use of these TDs will help to predict potential loss of liver tissue after SABR.« less

  1. Recurrent medulloblastoma: Frequency of tumor enhancement on Gd-DTPA MR imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rollins, N.; Mendelsohn, D.; Mulne, A.

    1990-05-01

    Thirty-two children with medulloblastoma were evaluated postoperatively with conventional and gadolinium-enhanced MR imaging. Eleven patients had abnormal cranial MR studies; nine of these had recurrent tumor. In six patients recurrent tumor enhanced with Gd, while in the other three patients recurrent tumor did not enhance. The remaining two patients had areas of abnormal Gd enhancement that were caused by radiation-induced breakdown of the blood-brain barrier rather than by recurrent tumor. This study shows that not all recurrent medulloblastoma enhances and that the absence of Gd enhancement does not necessarily indicate the absence of recurrent tumor.

  2. Recurrent medulloblastoma: Frequency of tumor enhancement on Gd-DTPA MR imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rollins, N.; Mendelsohn, D.; Mulne, A.

    1990-07-01

    Thirty-two children with medulloblastoma were evaluated postoperatively with conventional and gadolinium-enhanced MR imaging. Eleven patients had abnormal cranial MR studies; nine of these had recurrent tumor. In six patients recurrent tumor enhanced with Gd, while in the other three patients recurrent tumor did not enhance. The remaining two patients had areas of abnormal Gd enhancement that were caused by radiation-induced breakdown of the blood-brain barrier rather than by recurrent tumor. This study shows that not all recurrent medulloblastoma enhances and that the absence of Gd enhancement does not necessarily indicate the absence of recurrent tumor.

  3. Ring-Like Enhancement of Hepatocellular Carcinoma in Gadoxetic Acid-Enhanced Multiphasic Hepatic Arterial Phase Imaging With Differential Subsampling With Cartesian Ordering.

    PubMed

    Ichikawa, Shintaro; Motosugi, Utaroh; Oishi, Naoki; Shimizu, Tatsuya; Wakayama, Tetsuya; Enomoto, Nobuyuki; Matsuda, Masanori; Onishi, Hiroshi

    2018-04-01

    The aim of this study was to evaluate the efficacy of multiphasic hepatic arterial phase (HAP) imaging using DISCO (differential subsampling with Cartesian ordering) in increasing the confidence of diagnosis of hepatocellular carcinoma (HCC). This retrospective study was approved by the institutional review board, and the requirement for informed patient consent was waived. Consecutive patients (from 2 study periods) with malignant liver nodules were examined by gadoxetic acid-enhanced magnetic resonance imaging using either multiphasic (6 phases; n = 135) or single (n = 230) HAP imaging, which revealed 519 liver nodules other than benign ones (HCC, 497; cholangiocarcinoma, 11; metastases, 10; and malignant lymphoma, 1). All nodules were scored in accordance with the Liver Imaging Reporting and Data System (LI-RADS v2014), with or without consideration of ring-like enhancement in multiphasic HAP images as a major feature. In the multiphasic HAP group, 178 of 191 HCCs were scored as LR-3 to LR-5 (3 [1.69%], 85 [47.8%], and 90 [50.6%], respectively). Upon considering ring-like enhancement in multiphasic HAP images as a major feature, 5 more HCCs were scored as LR-5 (95 [53.4%]), which was a significantly more confident diagnosis than that with single HAP images (295 of 306 HCCs scored as LR-3 to LR-5: 13 [4.41%], 147 [49.8%], and 135 [45.8%], respectively; P = 0.0296). There was no significant difference in false-positive or false-negative diagnoses between the multiphasic and single HAP groups (P = 0.8400 and 0.1043, respectively). Multiphasic HAP imaging can improve the confidence of diagnosis of HCCs in gadoxetic acid-enhanced magnetic resonance imaging.

  4. Simple Fabrication of Gd(III)-DTPA-Nanodiamond Particles by Chemical Modification for Use as Magnetic Resonance Imaging (MRI) Contrast Agent

    NASA Astrophysics Data System (ADS)

    Nakamura, Takako; Ohana, Tsuguyori; Yabuno, Hajime; Kasai, Rumiko; Suzuki, Tetsuya; Hasebe, Terumitsu

    2013-01-01

    We have developed a simple and useful process for fabricating nanodiamond (ND) particles modified with an organogadolinium moiety by chemical modification for their use as a magnetic resonance imaging (MRI) contrast agent. The introduction of the organogadolinium moiety on the surface of the ND particles was performed by the condensation of ND and diethylenetriaminepentaacetic acid (DTPA) followed by treatment with GdCl3. The modified surfaces were evaluated by X-ray photoelectron spectroscopy, diffuse reflectance Fourier transform infrared spectroscopy, mass spectroscopy, and inductively coupled plasma atomic emission spectroscopy analyses. MRI experiments on the Gd-DTPA-ND particles indicated their high signal intensity on T1-weighted images.

  5. Intraindividual Crossover Comparison of Gadoxetic Acid Dose for Liver MRI in Normal Volunteers.

    PubMed

    Motosugi, Utaroh; Bannas, Peter; Hernando, Diego; Salmani Rahimi, Mahdi; Holmes, James H; Reeder, Scott B

    2016-01-01

    We performed a quantitative intraindividual comparison of the performance of 0.025- and 0.05-mmol/kg doses for gadoxetic acid-enhanced liver magnetic resonance (MR) imaging. Eleven healthy volunteers underwent liver MR imaging twice, once with a 0.025- and once with a 0.05-mmol/kg dose of gadoxetic acid. MR spectroscopy and 3-dimensional gradient-echo T1-weighted images (3D-GRE) were obtained before and 3, 10, and 20 min after injection of the contrast medium to measure T1 and T2 values and signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) performance. During the dynamic phase, highly time-resolved 3D-GRE was used to estimate the relative CNR (CNRrel) of the hepatic artery and portal vein (PV) to the liver. We used paired t-tests to compare the results of different doses. During the hepatobiliary phase, we observed shorter T1 values and higher SNRs of the liver (P < 0.001) and higher liver-to-PV and liver-to-muscle CNRs (P < 0.002) using 0.05 mmol/kg compared to 0.025 mmol/kg. Increasing the dose to 0.05 mmol/kg yielded a greater T1-shortening effect at 10 min delay even compared with 0.025 mmol/kg at 20 min (P < 0.001). During the dynamic phase, the peak CNRrel for the hepatic artery and portal vein were higher using 0.05 mmol/kg (P = 0.007 to 0.035). Use of gadoxetic acid at a dose of 0.05 mmol/kg leads to significantly higher SNR and CNR performance than with 0.025 mmol/kg. Quantitatively, a 10-min delay may be feasible for hepatobiliary-phase imaging when using 0.05 mmol/kg of gadoxetic acid.

  6. Gadolinium released by the linear gadolinium-based contrast-agent Gd-DTPA decreases the activity of human epithelial Na+ channels (ENaCs).

    PubMed

    Knoepp, Fenja; Bettmer, Joerg; Fronius, Martin

    2017-05-01

    Gadolinium-based-contrast-agents (GBCAs) are used for magnetic-resonance-imaging and associated with renal and cardiovascular adverse reactions caused by released Gd 3+ ions. Gd 3+ is also a modulator of mechano-gated ion channels, including the epithelial Na + channel (ENaC) that is expressed in kidney epithelium and the vasculature. ENaC is important for salt-/water homeostasis and blood pressure regulation and a likely target of released Gd 3+ from GBCAs causing the above-mentioned adverse reactions. Therefore this study examined the effect of Gd 3+ and GBCAs on ENaC's activity. Human αβγENaC was expressed in Xenopus laevis oocytes and exposed to Gd 3+ , linear (Gd-DTPA, Magnevist) or cyclic (Dotarem) GBCAs. Transmembrane ion-currents (I M ) were recorded by the two-electrode-voltage-clamp technique and Gd 3+ -release by Gd-DTPA was confirmed by inductively coupled plasma-mass spectrometry. Gd 3+ exerts biphasic effects on ENaC's activity: ≤0.3mmol/l decreased I M which was preventable by DEPC (modifies histidines). Strikingly Gd 3+ ≥0.4mmol/l increased I M and this effect was prevented by cysteine-modifying MTSEA. Linear Gd-DTPA and Magnevist mimicked the effect of ≤0.3mmol/l Gd 3+ , whereas the chelator DTPA showed no effect. Gd 3+ and Gd-DTPA increased the IC 50 for amiloride, but did not affect ENaC's self-inhibition. Interestingly, cyclic Gd-DOTA (Dotarem) increased I M to a similar extent as its chelator DOTA, suggesting that the chelator rather than released Gd 3+ is responsible for this effect. These results confirm Gd 3+ -release from linear Gd-DTPA and indicate that the released Gd 3+ amount is sufficient to interfere with ENaC's activity to provide putative explanations for GBCA-related adverse effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Diagnostic Performance of Gadoxetic Acid-enhanced Liver MR Imaging versus Multidetector CT in the Detection of Dysplastic Nodules and Early Hepatocellular Carcinoma.

    PubMed

    Kim, Bo Ram; Lee, Jeong Min; Lee, Dong Ho; Yoon, Jeong Hee; Hur, Bo Yun; Suh, Kyung Suk; Yi, Nam-Joon; Lee, Kyung Boon; Han, Joon Koo

    2017-10-01

    Purpose To compare the diagnostic performance of gadoxetic acid-enhanced liver magnetic resonance (MR) imaging with that of contrast material-enhanced multidetector computed tomography (CT) in the detection of borderline hepatocellular nodules in patients with liver cirrhosis and to determine the Liver Imaging Reporting and Data System (LI-RADS) categories of these detected nodules. Materials and Methods The institutional review board approved this retrospective study and waived the informed consent requirement. Sixty-eight patients with pathologically proven dysplastic nodules (DNs) (low-grade DNs, n = 20; high-grade DNs, n = 17), early hepatocellular carcinomas (HCCs) (n = 42), or progressed HCCs (n = 33) underwent gadoxetic acid-enhanced MR imaging and multidetector CT. An additional 57 patients without any DNs or HCCs in the explanted livers were included as control subjects. Three radiologists independently graded the presence of liver nodules on a five-point confidence scale and assigned LI-RADS categories by using imaging findings. Jackknife alternative free-response receiver operating characteristics (JAFROC) software was used to compare the diagnostic accuracy of each modality in lesion detection. Results Reader-averaged figures of merit estimated with JAFROC software to detect hepatocellular nodules were 0.774 for multidetector CT and 0.842 for MR imaging (P = .002). Readers had significantly higher detection sensitivity for early HCCs with MR imaging than with multidetector CT (78.6% vs 52.4% [P = .001], 71.4% vs 50.0% [P = .011], and 73.8% vs 50.0% [P = .001], respectively). A high proportion of overall detected early HCCs at multidetector CT (59.4%) and MR imaging (72.3%) were categorized as LI-RADS category 4. Most early HCCs (76.2%) and high-grade DNs (82.4%) demonstrated hypointensity on hepatobiliary phase images. In total, 30 more LI-RADS category 4 early HCCs were identified with MR imaging than with multidetector CT across all readers

  8. Hybrid core shell nanoparticles entrapping Gd-DTPA and 18F-FDG for simultaneous PET/MRI acquisitions.

    PubMed

    Vecchione, Donatella; Aiello, Marco; Cavaliere, Carlo; Nicolai, Emanuele; Netti, Paolo Antonio; Torino, Enza

    2017-09-01

    Although there has been an improvement in the hardware and software of the PET/MRI system, the development of the nanoprobes exploiting the simultaneous acquisition of the bimodal data is still under investigation. Moreover, few studies on biocompatible and clinically relevant probes are available. This work presents a core-shell polymeric nanocarrier with improved relaxometric properties for simultaneous PET/MRI acquisitions. Core-shell nanoparticles entrapping the Gd-DTPA and 18 F-FDG are obtained by a complex coacervation. The boosting of r 1 of the entrapped Gd-DTPA up to five-times compared with 'free Gd-DTPA', is confirmed by the PET/MRI scan. The sorption of 18 F-FDG into the nanoparticles is studied and designed to be integrated downstream for the production of the tracer.

  9. Real-time tracking of dissociation of hyperpolarized 89Y-DTPA: a model for degradation of open-chain Gd3+ MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Ferguson, Sarah; Niedbalski, Peter; Parish, Christopher; Kiswandhi, Andhika; Kovacs, Zoltan; Lumata, Lloyd

    Gadolinium (Gd) complexes are widely used relaxation-based clinical contrast agents in magnetic resonance imaging (MRI). Gd-based MRI contrast agents with open-chain ligand such as Gd-DTPA, commercially known as magnevist, are less stable compared to Gd complexes with macrocyclic ligands such as GdDOTA (Dotarem). The dissociation of Gd-DPTA into Gd ion and DTPA ligand under certain biological conditions such as high zinc levels can potentially cause kidney damage. Since Gd is paramagnetic, direct NMR detection of the Gd-DTPA dissociation is quite challenging due to ultra-short relaxation times. In this work, we have investigated Y-DTPA as a model for Gd-DPTA dissociation under high zinc content solutions. Using dissolution dynamic nuclear polarization (DNP), the 89Y NMR signal is amplified by several thousand-fold. Due to the the relatively long T1 relaxation time of 89Y which translates to hyperpolarization lifetime of several minutes, the dissociation of Y-DTPA can be tracked in real-time by hyperpolarized 89Y NMR spectroscopy. Dissociation kinetic rates and implications on the degradation of open-chain Gd3+ MRI contrast agents will be discussed. This work was supported by the U.S. Department of Defense Award Number W81XWH-14-1-0048 and by the Robert A. Welch Foundation research Grant Number AT-1877.

  10. Small (≤ 2 cm) hepatocellular carcinoma in patients with chronic liver disease: comparison of gadoxetic acid-enhanced 3.0 T MRI and multiphasic 64-multirow detector CT.

    PubMed

    Hwang, J; Kim, S H; Lee, M W; Lee, J Y

    2012-07-01

    To compare the diagnostic performance of gadoxetic acid-enhanced MRI using 3.0 T with that of multiphasic 64-multirow detector CT (MDCT) for the detection of small (≤2 cm) hepatocellular carcinoma (HCC) in patients with chronic liver disease. A total of 54 patients (44 men, 10 women; age range, 33-81 years) with 59 HCCs (≤2 cm in diameter) who underwent both multiphasic (arterial, portal venous, equilibrium) 64-MDCT and gadoxetic acid-enhanced 3.0 T MRI were enrolled in this study. Two observers independently and randomly reviewed the MR and CT images on a lesion-by-lesion basis. The diagnostic performance of these techniques for the detection of HCC was assessed by alternative free-response receiver operating characteristic (ROC) analysis, in addition to evaluating the sensitivity and positive predictive value. For each observer, the areas under the ROC curve were 0.874 and 0.863 for MRI, respectively, as opposed to 0.660 and 0.687 for CT, respectively. The differences between the two techniques were statistically significant for each observer (p<0.001). The sensitivities (89.8% and 86.4%) of MRI for both observers were significantly higher than those (57.6% and 61.0% for each observer, respectively) of MDCT. No significant difference was seen between the positive predictive values for the two techniques (p>0.05). Gadoxetic acid-enhanced 3.0 T MRI shows a better diagnostic performance than that of 64-MDCT for the detection of small (≤2 cm) HCCs in patients with chronic liver disease.

  11. MRI contrast agent for targeting glioma: interleukin-13 labeled liposome encapsulating gadolinium-DTPA

    PubMed Central

    Liu, Xiaoli; Madhankumar, Achuthamangalam B.; Miller, Patti A.; Duck, Kari A.; Hafenstein, Susan; Rizk, Elias; Slagle-Webb, Becky; Sheehan, Jonas M.; Connor, James R.; Yang, Qing X.

    2016-01-01

    Background Detection of glioma with MRI contrast agent is limited to cases in which the blood-brain barrier (BBB) is compromised as contrast agents cannot cross the BBB. Thus, an early-stage infiltrating tumor is not detectable. Interleukin-13 receptor alpha 2 (IL-13Rα2), which has been shown to be overexpressed in glioma, can be used as a target moiety. We hypothesized that liposomes conjugated with IL-13 and encapsulating MRI contrast agent are capable of passing through an intact BBB and producing MRI contrast with greater sensitivity. Methods The targeted MRI contrast agent was created by encapsulating Magnevist (Gd-DTPA) into liposomes conjugated with IL-13 and characterized by particle size distribution, cytotoxicity, and MRI relaxivity. MR image intensity was evaluated in the brain in normal mice post injection of Gd-DTPA and IL-13-liposome-Gd-DTPA one day apart. The specificity for glioma detection by IL-13-liposome-Gd-DTPA was demonstrated in an intracranial glioma mouse model and validated histologically. Results The average size of IL-13-liposome-Gd-DTPA was 137 ± 43 nm with relaxivity of 4.0 ± 0.4 L/mmole-s at 7 Tesla. No significant cytotoxicity was observed with MTS assay and serum chemistry in mice. The MRI signal intensity was enhanced up to 15% post injection of IL-13-liposome-Gd-DTPA in normal brain tissue following a similar time course as that for the pituitary gland outside of the BBB. MRI enhanced by IL-13-liposome-Gd-DTPA detected small tumor masses in addition to those seen with Magnevist-enhanced MRI. Conclusions IL-13-liposome-Gd-DTPA is able to pass through the uncompromised BBB and detect an early stage glioma that cannot be seen with conventional contrast-enhanced MRI. PMID:26519740

  12. Evaluation of Transient Motion During Gadoxetic Acid-Enhanced Multiphasic Liver Magnetic Resonance Imaging Using Free-Breathing Golden-Angle Radial Sparse Parallel Magnetic Resonance Imaging.

    PubMed

    Yoon, Jeong Hee; Lee, Jeong Min; Yu, Mi Hye; Hur, Bo Yun; Grimm, Robert; Block, Kai Tobias; Chandarana, Hersh; Kiefer, Berthold; Son, Yohan

    2018-01-01

    The aims of this study were to observe the pattern of transient motion after gadoxetic acid administration including incidence, onset, and duration, and to evaluate the clinical feasibility of free-breathing gadoxetic acid-enhanced liver magnetic resonance imaging using golden-angle radial sparse parallel (GRASP) imaging with respiratory gating. In this institutional review board-approved prospective study, 59 patients who provided informed consents were analyzed. Free-breathing dynamic T1-weighted images (T1WIs) were obtained using GRASP at 3 T after a standard dose of gadoxetic acid (0.025 mmol/kg) administration at a rate of 1 mL/s, and development of transient motion was monitored, which is defined as a distinctive respiratory frequency alteration of the self-gating MR signals. Early arterial, late arterial, and portal venous phases retrospectively reconstructed with and without respiratory gating and with different temporal resolutions (nongated 13.3-second, gated 13.3-second, gated 6-second T1WI) were evaluated for image quality and motion artifacts. Diagnostic performance in detecting focal liver lesions was compared among the 3 data sets. Transient motion (mean duration, 21.5 ± 13.0 seconds) was observed in 40.0% (23/59) of patients, 73.9% (17/23) of which developed within 15 seconds after gadoxetic acid administration. On late arterial phase, motion artifacts were significantly reduced on gated 13.3-second and 6-second T1WI (3.64 ± 0.34, 3.61 ± 0.36, respectively), compared with nongated 13.3-second T1WI (3.12 ± 0.51, P < 0.0001). Overall, image quality was the highest on gated 13.3-second T1WI (3.76 ± 0.39) followed by gated 6-second and nongated 13.3-second T1WI (3.39 ± 0.55, 2.57 ± 0.57, P < 0.0001). Only gated 6-second T1WI showed significantly higher detection performance than nongated 13.3-second T1WI (figure of merit, 0.69 [0.63-0.76]) vs 0.60 [0.56-0.65], P = 0.004). Transient motion developed in 40% (23/59) of patients shortly after

  13. In vivo transport of Gd-DTPA2- into human meniscus and cartilage assessed with delayed gadolinium-enhanced MRI of cartilage (dGEMRIC)

    PubMed Central

    2014-01-01

    Background Impaired stability is a risk factor in knee osteoarthritis (OA), where the whole joint and not only the joint cartilage is affected. The meniscus provides joint stability and is involved in the early pathological progress of OA. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) has been used to identify pre-radiographic changes in the cartilage in OA, but has been used less commonly to examine the meniscus, and then using only a double dose of the contrast agent. The purpose of this study was to enable improved early OA diagnosis by investigate the temporal contrast agent distribution in the meniscus and femoral cartilage simultaneously, in healthy volunteers, using 3D dGEMRIC at two different doses of the contrast agent Gd-DTPA2-. Methods The right knee in 12 asymptomatic volunteers was examined using a 3D Look-Locker sequence on two occasions after an intravenous injection of a double or triple dose of Gd-DTPA2- (0.2 or 0.3 mmol/kg body weight). The relaxation time (T1) and relaxation rate (R1 = 1/T1) were measured in the meniscus and femoral cartilage before, and 60, 90, 120 and 180 minutes after injection, and the change in relaxation rate (ΔR1) was calculated. Paired t-test and Analysis of Variance (ANOVA) were used for statistical evaluation. Results The triple dose yielded higher concentrations of Gd-DTPA2- in the meniscus and cartilage than the double dose, but provided no additional information. The observed patterns of ΔR1 were similar for double and triple doses of the contrast agent. ΔR1 was higher in the meniscus than in femoral cartilage in the corresponding compartments at all time points after injection. ΔR1 increased until 90-180 minutes in both the cartilage and the meniscus (p < 0.05), and was lower in the medial than in the lateral meniscus at all time points (p < 0.05). A faster increase in ΔR1 was observed in the vascularized peripheral region of the posterior medial meniscus, than in the avascular central

  14. Brain Delivery of Drug and MRI Contrast Agent: Detection and Quantitative Determination of Brain Deposition of CPT-Glu Using LC-MS/MS and Gd-DTPA Using Magnetic Resonance Imaging.

    PubMed

    Tabanor, Kayann; Lee, Phil; Kiptoo, Paul; Choi, In-Young; Sherry, Erica B; Eagle, Cheyenne Sun; Williams, Todd D; Siahaan, Teruna J

    2016-02-01

    Successful treatment and diagnosis of neurological diseases depend on reliable delivery of molecules across the blood-brain barrier (BBB), which restricts penetration of pharmaceutical drugs and diagnostic agents into the brain. Thus, developing new noninvasive strategies to improve drug delivery across the BBB is critically needed. This study was aimed at evaluating the activity of HAV6 peptide (Ac-SHAVSS-NH2) in improving brain delivery of camptothecin-glutamate (CPT-Glu) conjugate and gadolinium-diethylenetriaminepentaacetate (Gd-DTPA) contrast agent in Sprague-Dawley rats. Brain delivery of both CPT-Glu and Gd-DTPA was evaluated in an in situ rat brain perfusion model in the presence and absence of HAV6 peptide (1.0 mM). Gd-DTPA (0.6 mmol/kg) was intravenously (iv) administered with and without HAV6 peptide (0.019 mmol/kg) in rats. The detection and quantification of CPT-Glu and Gd-DTPA in the brain were carried out by LC-MS/MS and quantitative magnetic resonance imaging (MRI), respectively. Rats perfused with CPT-Glu in combination with HAV6 had significantly higher deposition of drug in the brain compared to CPT-Glu alone. MRI results also showed that administration of Gd-DTPA in the presence of HAV6 peptide led to significant accumulation of Gd-DTPA in various regions of the brain in both the in situ rat brain perfusion and in vivo studies. All observations taken together indicate that HAV6 peptide can disrupt the BBB and enhance delivery of small molecules into the brain.

  15. Brain Delivery of Drug and MRI Contrast Agent: Detection and Quantitative Determination of Brain Deposition of CPT-Glu Using LC-MS/MS and Gd-DTPA Using Magnetic Resonance Imaging

    PubMed Central

    Tabanor, Kayann; Lee, Phil; Kiptoo, Paul; Choi, In-Young; Sherry, Erica B.; Eagle, Cheyenne Sun; Williams, Todd D.; Siahaan, Teruna J.

    2015-01-01

    Successful treatment and diagnosis of neurological diseases depend on reliable delivery of molecules across the blood-brain barrier (BBB), which restricts penetration of pharmaceutical drugs and diagnostic agents into the brain. Thus, developing new non-invasive strategies to improve drug delivery across the BBB is critically needed. This study was aimed at evaluating the activity of HAV6 peptide (Ac-SHAVSS-NH2) in improving brain delivery of camptothecin-glutamate (CPT-Glu) conjugate and gadolinium-diethylenetriaminepentaacetate (Gd-DTPA) contrast agent in Sprague-Dawley rats. Brain delivery of both CPT-Glu and Gd-DTPA was evaluated in an in situ rat brain perfusion model in the presence and absence of HAV6 peptide (1.0 mM). Gd-DTPA (0.6 mmol/kg) was intravenously (i.v.) administered with and without HAV6 peptide (0.019 mmol/kg) in rats. The detection and quantification of CPT-Glu and Gd-DTPA in the brain were carried out by LC-MS/MS and quantitative magnetic resonance imaging (MRI), respectively. Rats perfused with CPT-Glu in combination with HAV6 had significantly higher deposition of drug in the brain compared to CPT-Glu alone. MRI results also showed that administration of Gd-DTPA in the presence of HAV6 peptide led to significant accumulation of Gd-DTPA in various regions of the brain in both the in situ rat brain perfusion and in vivo studies. All observations taken together indicate that HAV6 peptide can disrupt the BBB and enhance delivery of small molecules into the brain. PMID:26705088

  16. Chelating DTPA amphiphiles: ion-tunable self-assembly structures and gadolinium complexes.

    PubMed

    Moghaddam, Minoo J; de Campo, Liliana; Kirby, Nigel; Drummond, Calum J

    2012-10-05

    A series of chelating amphiphiles and their gadolinium (Gd(III)) metal complexes have been synthesized and studied with respect to their neat and lyotropic liquid crystalline phase behavior. These amphiphiles have the ability to form ion-tunable self-assembly nanostructures and their associated Gd(III) complexes have potential as magnetic resonance imaging (MRI) contrast enhancement agents. The amphiphiles are composed of diethylenetriaminepentaacetic acid (DTPA) chelates conjugated to one or two oleyl chain(s) (DTPA-MO and DTPA-BO), or isoprenoid-type chain(s) of phytanyl (DTPA-MP and DTPA-BP). The thermal phase behavior of the neat amphiphiles was examined by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and cross polarizing optical microscopy (POM). Self-assembly of neat amphiphiles and their associated Gd complexes, as well as their lyotropic phase behavior in water and sodium acetate solutions of different ionic strengths, were examined by POM and small and wide angle X-ray scattering (SWAXS). All neat amphiphiles exhibited lamellar structures. The non-complexed amphiphiles showed a variety of lyotropic phases depending on the number and nature of the hydrophobic chain in addition to the ionic state of the hydration. Upon hydration with increased Na-acetate concentration and the subtle changes in the effective headgroup size, the interfacial curvature of the amphiphile increased, altering the lyotropic liquid crystalline structures towards higher order mesophases such as the gyroid (Ia3d) bicontinuous cubic phase. The chelation of Gd with the DTPA amphiphiles resulted in lamellar crystalline structures for all the neat amphiphiles. Upon hydration with water, the Gd-complexed mono-conjugates formed micellar or vesicular self-assemblies, whilst the bis-conjugates transformed only partially into lyotropic liquid crystalline mesophases.

  17. MRI contrast agent for targeting glioma: interleukin-13 labeled liposome encapsulating gadolinium-DTPA.

    PubMed

    Liu, Xiaoli; Madhankumar, Achuthamangalam B; Miller, Patti A; Duck, Kari A; Hafenstein, Susan; Rizk, Elias; Slagle-Webb, Becky; Sheehan, Jonas M; Connor, James R; Yang, Qing X

    2016-05-01

    Detection of glioma with MRI contrast agent is limited to cases in which the blood-brain barrier (BBB) is compromised as contrast agents cannot cross the BBB. Thus, an early-stage infiltrating tumor is not detectable. Interleukin-13 receptor alpha 2 (IL-13Rα2), which has been shown to be overexpressed in glioma, can be used as a target moiety. We hypothesized that liposomes conjugated with IL-13 and encapsulating MRI contrast agent are capable of passing through an intact BBB and producing MRI contrast with greater sensitivity. The targeted MRI contrast agent was created by encapsulating Magnevist (Gd-DTPA) into liposomes conjugated with IL-13 and characterized by particle size distribution, cytotoxicity, and MRI relaxivity. MR image intensity was evaluated in the brain in normal mice post injection of Gd-DTPA and IL-13-liposome-Gd-DTPA one day apart. The specificity for glioma detection by IL-13-liposome-Gd-DTPA was demonstrated in an intracranial glioma mouse model and validated histologically. The average size of IL-13-liposome-Gd-DTPA was 137 ± 43 nm with relaxivity of 4.0 ± 0.4 L/mmole-s at 7 Tesla. No significant cytotoxicity was observed with MTS assay and serum chemistry in mice. The MRI signal intensity was enhanced up to 15% post injection of IL-13-liposome-Gd-DTPA in normal brain tissue following a similar time course as that for the pituitary gland outside of the BBB. MRI enhanced by IL-13-liposome-Gd-DTPA detected small tumor masses in addition to those seen with Magnevist-enhanced MRI. IL-13-liposome-Gd-DTPA is able to pass through the uncompromised BBB and detect an early stage glioma that cannot be seen with conventional contrast-enhanced MRI. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Preparation of PEG-conjugated fullerene containing Gd3+ ions for photodynamic therapy.

    PubMed

    Liu, Jian; Ohta, Shin-Ichi; Sonoda, Akinaga; Yamada, Masatoshi; Yamamoto, Masaya; Nitta, Norihisa; Murata, Kiyoshi; Tabata, Yasuhiko

    2007-01-22

    A novel photosensitizer with magnetic resonance imaging (MRI) activity was designed from fullerene (C(60)) for efficient photodynamic therapy (PDT) of tumor. After chemical conjugation of polyethylene glycol (PEG) to C(60) (C(60)-PEG), diethylenetriaminepentaacetic acid (DTPA) was subsequently introduced to the terminal group of PEG to prepare PEG-conjugated C(60) (C(60)-PEG-DTPA). The C(60)-PEG-DTPA was mixed with gadolinium acetate solution to obtain Gd(3+)-chelated C(60)-PEG (C(60)-PEG-Gd). Following intravenous injection of C(60)-PEG-Gd into tumor-bearing mice, the PDT anti-tumor effect and the MRI tumor imaging were evaluated. The similar O(2)(*-)generation was observed with or without Gd(3+) chelation upon light irradiation. Both of the C(60)-PEG-Gd and Magnevist(R) aqueous solutions exhibited a similar MRI activity. When intravenously injected into tumor-bearing mice, the C(60)-PEG-Gd maintained an enhanced MRI signal at the tumor tissue for a longer time period than Magnevist(R). Injection of C(60)-PEG-Gd plus light irradiation showed significant tumor PDT effect although the effect depended on the timing of light irradiation. The PDT efficacy of C(60)-PEG-Gd was observed at the time when the tumor accumulation was detected by the enhanced intensity of MRI signal. This therapeutic and diagnostic hybrid system is a promising tool to enhance the PDT efficacy for tumor.

  19. The in vivo relaxivity of MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Shuter, Borys

    1999-11-01

    Post-contrast clinical 1H Magnetic Resonance Images have to date been interpreted with little regard for possible variations in the in-vivo properties of injected magnetic pharmaceuticals (contrast agents), particularly in their relaxivity or ability to alter tissue relaxation rates, T2-1 and T 2-1, per unit concentration. The relaxivities of contrast agents have only rarely been measured in-vivo, measurements usually being performed on excised tissues and at magnetic field strengths lower than used in clinical practice. Some researchers have simply assumed that relaxivities determined in homogeneous tissue phantoms were applicable in-vivo. In this thesis, the relaxivities of two contrast agents, Gd-DTPA and Gd-EOB-DTPA, were measured in simple tissue phantoms and in the kidney and liver of intact, but sacrificed, Wistar rats using a clinical MR scanner with a magnetic field of 1.5 Tesla. T1 and T2 were determined from sets of images acquired using a standard clinical spin-echo pulse sequence. The contrast agent concentration in tissue was assessed by radioassay of 153Gd-DTPA or 153Gd-EOB-DTPA, mixed with the normal compound prior to injection. Relaxivity was taken as the slope of a linear regression fit of relaxation rate against Gd concentration. The relaxivities of Gd-EOB-DTPA were similarly determined in normal and biliary- obstructed guinea pigs. Relaxivities in tissue differed significantly from values obtained in simple phantoms. Kidney T1 relaxivity was reduced for both compounds in normal animals. Three days or more of biliary obstruction produced further reductions in kidney T1 relaxivity of Gd-EOB-DTPA, providing strong evidence that disease affects contrast agent relaxivity. Kidney T2 relaxivity was much greater than T1 relaxivity and was also depressed by biliary obstruction. Liver T1 and T 2 relaxivites were increased above phantom values, but were not affected by the biliary obstruction. Water compartmentalisation, macromolecular binding, proton

  20. The MRI-measured arterial input function resulting from a bolus injection of Gd-DTPA in a rat model of stroke slightly underestimates that of Gd-[14C]DTPA and marginally overestimates the blood-to-brain influx rate constant determined by Patlak plots

    PubMed Central

    Nagaraja, Tavarekere N.; Karki, Kishor; Ewing, James R.; Divine, George W.; Fenstermacher, Joseph D.; Patlak, Clifford S.; Knight, Robert A.

    2009-01-01

    The hypothesis that the arterial input function (AIF) of gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) injected by intravenous (iv) bolus and measured by the change in the T1-relaxation rate (ΔR1; R1=1/T1) of superior sagittal sinus blood (AIF-I) approximates the AIF of 14C-labeled Gd-DTPA measured in arterial blood (AIF*) was tested in a rat stroke model (n=13). Contrary to the hypothesis, the initial part of the ΔR1-time curve was underestimated, and the area under the normalized curve for AIF-I was about 15% lower than that for AIF*, the reference AIF. Hypothetical AIF’s for Gd-DTPA (AIF-II) were derived from the AIF* values and averaged to obtain AIF-III. Influx rate constants (Ki) and proton distribution volumes at zero time (Vp+Vo) were estimated with Patlak plots of AIF-I, -II and -III and tissue ΔR1 data. For the regions of interest, the Ki’s estimated with AIF-I were slightly but not significantly higher than those obtained with AIF-II and AIF-III. In contrast, Vp+Vo was significantly higher when calculated with AIF-I. Similar estimates of Ki and Vp+Vo were obtained with AIF-II and AIF-III. In summary, AIF-I underestimated the reference AIF (AIF*); this shortcoming had little effect on the Ki calculated by Patlak plot but produced a significant overestimation of Vp+Vo. PMID:20512853

  1. Ultrahigh-field imaging of the biliary tract at 7 T: initial results of gadoxetic acid-enhanced magnetic resonance cholangiography.

    PubMed

    Fischer, Anja; Kraff, Oliver; Orzada, Stephan; Nensa, Felix; Schäfer, Lena C; Ladd, Mark E; Umutlu, Lale; Lauenstein, Thomas C

    2014-05-01

    The objectives of this study were to assess the feasibility of magnetic resonance cholangiography (MRC) using biliary-secreted gadoxetic acid at 7 T and to compare it with T2-weighted (w) MRC at 3 T. Ten healthy volunteers were examined on a 7-T whole-body magnetic resonance system. T2-weighted turbo-spin-echo sequence, T1-w volume-interpolated breath-hold examination (VIBE), and fast low-angle shot (FLASH) with inversion recovery (IR) were acquired in coronal orientation. For dynamic imaging, gadoxetic acid was administrated and data were collected for a period of 5 to 40 minutes after injection. The volunteers underwent subsequent T2-w respiratory-gated MRC at 3 T. For qualitative analysis, a 5-point scale was used. Contrast ratios (CRs) were calculated for quantitative assessment. Contrast-enhanced T1-w MRC at 7 T showed a homogeneous depiction of the intrahepatic and extrahepatic biliary tract with a maximum enhancement of 20 minutes after contrast. Volume-interpolated breath-hold examination and FLASH IR provided a good image quality for the intrahepatic (VIBE, 3.60; FLASH IR, 3.67) and extrahepatic bile ducts (VIBE, 3.50; FLASH IR, 3.72). The quantitative analysis revealed high CR values for FLASH IR (intrahepatic CR, 0.41; extrahepatic CR, 0.45) because of an effective suppression of hepatic tissue and vessels. The T2-w TSE at 7 T showed only a poor image quality without diagnostic potential (intrahepatic, 2.22; extrahepatic, 1.93). Seven-tesla VIBE and FLASH revealed superiority in the depiction of the intrahepatic bile ducts, whereas 3-T MRC was superior in the delineation of the extrahepatic biliary tract. Our results demonstrate the feasibility of contrast-enhanced imaging of the biliary ducts at 7 T.

  2. Investigating intracranial tumour growth patterns with multiparametric MRI incorporating Gd-DTPA and USPIO-enhanced imaging.

    PubMed

    Boult, Jessica K R; Borri, Marco; Jury, Alexa; Popov, Sergey; Box, Gary; Perryman, Lara; Eccles, Suzanne A; Jones, Chris; Robinson, Simon P

    2016-11-01

    High grade and metastatic brain tumours exhibit considerable spatial variations in proliferation, angiogenesis, invasion, necrosis and oedema. Vascular heterogeneity arising from vascular co-option in regions of invasive growth (in which the blood-brain barrier remains intact) and neoangiogenesis is a major challenge faced in the assessment of brain tumours by conventional MRI. A multiparametric MRI approach, incorporating native measurements and both Gd-DTPA (Magnevist) and ultrasmall superparamagnetic iron oxide (P904)-enhanced imaging, was used in combination with histogram and unsupervised cluster analysis using a k-means algorithm to examine the spatial distribution of vascular parameters, water diffusion characteristics and invasion in intracranially propagated rat RG2 gliomas and human MDA-MB-231 LM2-4 breast adenocarcinomas in mice. Both tumour models presented with higher ΔR 1 (the change in transverse relaxation rate R 1 induced by Gd-DTPA), fractional blood volume (fBV) and apparent diffusion coefficient than uninvolved regions of the brain. MDA-MB-231 LM2-4 tumours were less densely cellular than RG2 tumours and exhibited substantial local invasion, associated with oedema, whereas invasion in RG2 tumours was minimal. These additional features were reflected in the more heterogeneous appearance of MDA-MB-231 LM2-4 tumours on T 2 -weighted images and maps of functional MRI parameters. Unsupervised cluster analysis separated subregions with distinct functional properties; areas with a low fBV and relatively impermeable blood vessels (low ΔR 1 ) were predominantly located at the tumour margins, regions of MDA-MB-231 LM2-4 tumours with relatively high levels of water diffusion and low vascular permeability and/or fBV corresponded to histologically identified regions of invasion and oedema, and areas of mismatch between vascular permeability and blood volume were identified. We demonstrate that dual contrast MRI and evaluation of tissue diffusion properties

  3. Acceleration of natural-abundance solid-state MAS NMR measurements on bone by paramagnetic relaxation from gadolinium-DTPA

    NASA Astrophysics Data System (ADS)

    Mroue, Kamal H.; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H.; Morris, Michael D.; Ramamoorthy, Ayyalusamy

    2014-07-01

    Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA = Diethylene triamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the 1H T1 values were calculated from data collected by 1H spin-inversion recovery method detected in natural-abundance 13C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the 1H T1 values can be successfully reduced by a factor of 3.5 using as low as 10 mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the 13C CPMAS spectra. These results obtained from 13C-detected CPMAS experiments were further confirmed using 1H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans.

  4. Acceleration of natural-abundance solid-state MAS NMR measurements on bone by paramagnetic relaxation from gadolinium-DTPA.

    PubMed

    Mroue, Kamal H; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H; Morris, Michael D; Ramamoorthy, Ayyalusamy

    2014-07-01

    Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA=Diethylene triamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the (1)H T1 values were calculated from data collected by (1)H spin-inversion recovery method detected in natural-abundance (13)C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the (1)H T1 values can be successfully reduced by a factor of 3.5 using as low as 10mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the (13)C CPMAS spectra. These results obtained from (13)C-detected CPMAS experiments were further confirmed using (1)H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Hepatic Phospholipidosis Is Associated with Altered Hepatobiliary Function as Assessed by Gadoxetate Dynamic Contrast-enhanced Magnetic Resonance Imaging.

    PubMed

    Lenhard, Stephen C; Lev, Mally; Webster, Lindsey O; Peterson, Richard A; Goulbourne, Christopher N; Miller, Richard T; Jucker, Beat M

    2016-01-01

    To determine if amiodarone induces hepatic phospholipidosis (PLD) sufficient to detect changes in hepatobiliary transporter function as assessed by gadoxetate dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), rats were orally dosed with vehicle (1% methyl cellulose) or amiodarone (300 mg/kg/day) for 7 consecutive days. Gadoxetate DCE-MRI occurred at baseline, day 7, and following a 2-week washout of amiodarone. At day 7, the gadoxetate washout rate was significantly decreased compared to the vehicle group. Blood chemistry analysis revealed no significant changes in liver enzymes (alanine aminotransferase [ALT]/aspartate aminotransferase [AST]/alkaline phosphatase [ALP]), bilirubin, or bile acids between vehicle or amiodarone groups. Hepatic PLD was confirmed in all rats treated with amiodarone at day 7 by transmission electron microscopy. Following the 2-week washout, there was no ultrastructural evidence of hepatic PLD in rats and the gadoxetate washout rate returned to baseline levels. This is the first study to show the application of gadoxetate DCE-MRI to detect hepatobiliary functional changes associated with PLD and offer a potential new technique with clinical utility in patients suspected of having PLD. These results also suggest PLD itself has functional consequences on hepatobiliary function in the absence of biomarkers of toxicity, given the cause/effect relationship between PLD and function has not been fully established. © The Author(s) 2015.

  6. Detection of hepatocellular carcinoma in transgenic mice by Gd-DTPA- and rhodamine 123-conjugated human serum albumin nanoparticles in T1 magnetic resonance imaging.

    PubMed

    Watcharin, Waralee; Schmithals, Christian; Pleli, Thomas; Köberle, Verena; Korkusuz, Hüdayi; Hübner, Frank; Waidmann, Oliver; Zeuzem, Stefan; Korf, Horst-Werner; Terfort, Andreas; Gelperina, Svetlana; Vogl, Thomas J; Kreuter, Jörg; Piiper, Albrecht

    2015-02-10

    Nanoparticle (NP)-based contrast agents that enable high resolution anatomic T1-weighted magnetic resonance imaging (MRI) offer the prospect of improving differential diagnosis of liver tumors such as hepatocellular carcinoma (HCC). In the present study, we investigated the possibility of employing novel non-toxic human serum albumin nanoparticles conjugated with Gd-DTPA and rhodamine 123 (Gd-Rho-HSA-NPs) for the detection of HCC by T1-weighted MRI. In addition, the influence of surface coating of the NPs with poloxamine 908, which alters the absorptive behavior of NPs and changes their distribution between the liver and tumor was examined. MRI of transgenic mice with endogenously formed HCCs following intravenous injection of Gd-Rho-HSA-NPs revealed a strong negative contrast of the tumors. Contrasting of the HCCs by NP-enhanced MRI required less Gd as compared to gadolinium-ethoxybenzyl-diethylenetriaminepentaacetic acid-enhanced MRI, which currently provides the most sensitive detection of HCC in patients. Immunohistochemical analyses revealed that the Gd-Rho-HSA-NPs were localized to macrophages, which were - similar to HCC in patients - fewer in number in HCC as compared to the liver tissue, which is in agreement with the negative contrasting of HCC in Gd-Rho-HSA-NP-enhanced MRI. Poloxamine-coated NPs showed lower accumulation in the tumor macrophages and caused a longer lasting enhancement of the MRI signal. These data indicate that Gd-Rho-HSA-NPs enable sensitive detection of HCC by T1-weighted MRI in mice with endogenous HCC through their uptake by macrophages. Poloxamine coating of the NPs delayed the tumor localization of the NPs. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. The Effect of Pressure and Temperature on Separation of Free Gadolinium(III) From Gd-DTPA Complex by Nanofiltration-Complexation Method

    NASA Astrophysics Data System (ADS)

    Rahayu, Iman; Anggraeni, Anni; Ukun, MSS; Bahti, Husein H.

    2017-05-01

    Nowdays, the utilization of rare earth elements has been carried out widely in industry and medicine, one of them is gadolinium in Gd-DTPA complex is used as a contrast agent in a magnetic resonance imaging (MRI) diagnostic to increase the visual contrast between normal tissue and diseased. Although the stability of a given complex may be high enough, the complexation step couldnot have been completed, so there is possible to gadolinium(III) in the complex compound. Therefore, the function of that compounds should be dangerous because of the toxicity of gadolinium(III) in human body. So, it is necessarry to separate free gadolinium(III) from Gd-DTPA complex by nanofiltration-complexation. The method of this study is complexing of Gd2O3 with DTPA ligand by reflux and separation of Gd-DTPA complex from gadolinium(III) with a nanofiltration membrane on the variation of pressures(2, 3, 4, 5, 6 bars) and temperature (25, 30, 35, 40 °C) and determined the flux and rejection. The results of this study are the higher of pressures and temperatures, permeation flux are increasing and ion rejections are decreasing and gave the free gadolinium(III) rejection until 86.26%.

  8. Triple dose of gadolinium-DTPA and delayed MRI in patients with benign multiple sclerosis.

    PubMed Central

    Filippi, M; Capra, R; Campi, A; Colombo, B; Prandini, F; Marcianò, N; Gasparotti, R; Comi, G

    1996-01-01

    OBJECTIVES--To evaluate whether a triple dose of gadolinium-DTPA (Gd-DTPA) or delayed MRI increase the number, size, and conspicuousness of enhancing lesions in patients with benign multiple sclerosis. METHODS--T1 weighted brain MRI was carried out on 20 patients with benign multiple sclerosis (expanded disability status scale < 3 with a disease duration > 10 years) in two sessions. In the first session, one scan was obtained before and two scans five to seven minutes and 20-30 minutes after the injection of 0.1 mmol/kg Gd-DTPA (standard dose). In the second session, six to 24 hours later, the same procedure was repeated with 0.3 mmol/kg Gd-DTPA (triple dose). RESULTS--Nine enhancing lesions were found in seven patients (35%) using the standard dose of Gd-DTPA. The numbers of enhancing lesions increased to 13 (P = 0.03) and the number of patients with such lesions to eight (40%) on the delayed standard dose scans. On the early triple dose scans, we found 19 enhancing lesions in 10 patients (50%). The number of enhancing lesions was significantly higher (P = 0.01) than that obtained with the early standard dose. The number of enhancing lesions was 18 and the number of "active" patients 11 (55%) on the delayed triple dose scans. The enhancing areas increased progressively from the early standard dose scans to the delayed triple dose scans. The contrast ratios of the lesions detected in early standard dose scans was lower than those of lesions present in the early (P = 0.01) and delayed (P = 0.04) triple dose scans. CONCLUSIONS--More enhancing lesions were detected in patients with benign multiple sclerosis with both delay of MRI and the use of triple dose of Gd-DTPA suggesting that the amount of inflammation in the lesions of such patients is mild and heterogeneous. Images PMID:8778257

  9. Magnetic Resonance Imaging-Based Assessment of Gadolinium-Conjugated Diethylenetriamine Penta-Acetic Acid Test-Infusion in Detecting Dysfunction of Convection-Enhanced Delivery Catheters.

    PubMed

    van Putten, Erik H P; Wembacher-Schröder, Eva; Smits, Marion; Dirven, Clemens M F

    2016-05-01

    In a phase 1 trial conducted at our institute, convection-enhanced delivery (CED) was used to administrate the Delta-24-RGD adenovirus in patients with a recurrent glioblastoma multiforme. Infusion of the virus was preceded by a gadolinium-conjugated diethylenetriamine penta-acetic acid (Gd-DTPA) test-infusion. In the present study, we analyzed the results of Gd-DTPA test infusion through 50 catheters. Thirteen adults with a recurrent glioblastoma multiforme were enrolled in a larger phase 1 multicenter, dose-finding study, in which a conditionally replication-competent adenovirus was administered by CED. Up to 4 infusion catheters per patient were placed intra- and/or peritumorally. Before infusion of the virus, a Gd-DTPA infusion was performed for 6 hours, directly followed by a MRI scan. The MRIs were evaluated for catheter position, Gd-DTPA distribution outcome, and contrast leakage. Leakage of Gd-DTPA into the cerebrospinal fluid was detected in 17 of the 50 catheters (34%). Sulcus crossing was the most frequent cause of leakage. In 8 cases, leakage could only be detected on the fluid-attenuated inversion recovery sequence. Nonleaking catheters showed a significantly larger Gd-DTPA distribution fraction (volume of distribution/volume of infusion) than leaking catheters (P = 0.009). A significantly lower volume of distribution/volume of infusion was observed in intratumoral catheters, compared with peritumoral catheters (P = 0.004). Gd-DTPA test infusion did not result in significant changes in Karnofsky Performance Score and Neurological Status. Pre-CED treatment infusion of Gd-DTPA is an adequate and safe method to identify dysfunctional catheters. The use of an optimized drug delivery catheter is necessary to reduce leakage and improve the efficacy of intracerebral drug infusion. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Gadoxetate Disodium-Enhanced MRI to Differentiate Dysplastic Nodules and Grade of Hepatocellular Carcinoma: Correlation With Histopathology.

    PubMed

    Channual, Stephanie; Tan, Nelly; Siripongsakun, Surachate; Lassman, Charles; Lu, David S; Raman, Steven S

    2015-09-01

    The objective of our study was to determine quantitative differences to differentiate low-grade from high-grade dysplastic nodules (DNs) and low-grade from high-grade hepatocellular carcinomas (HCCs) using gadoxetate disodium-enhanced MRI. A retrospective study of 149 hepatic nodules in 127 consecutive patients who underwent gadoxetic acid-enhanced MRI was performed. MRI signal intensities (SIs) of the representative lesion ROI and of ROIs in liver parenchyma adjacent to the lesion were measured on unenhanced T1-weighted imaging and on dynamic contrast-enhanced MRI in the arterial, portal venous, delayed, and hepatobiliary phases. The relative SI of the lesion was calculated for each phase as the relative intensity ratio as follows: [mass SI / liver SI]. Of the 149 liver lesions, nine (6.0%) were low-grade DNs, 21 (14.1%) were high-grade DNs, 83 (55.7%) were low-grade HCCs, and 36 (24.2%) were high-grade HCCs. The optimal cutoffs for differentiating low-grade DNs from high-grade DNs and HCCs were an unenhanced to arterial SI of ≥ 0 or a relative SI on T2-weighted imaging of ≤ 1.5, with a positive predictive value (PPV) of 99.2% and accuracy of 88.6%. The optimal cutoffs for differentiating low-grade HCCs from high-grade HCCs were a relative hepatobiliary SI of ≤ 0.5 or a relative T2 SI of ≥ 1.5, with a PPV of 81.0% and an accuracy of 60.5%. Gadoxetate disodium-enhanced MRI allows quantitative differentiation of low-grade DNs from high-grade DNs and HCCs, but significant overlap was seen between low-grade HCCs and high-grade HCCs.

  11. Quantitative Assessment of Liver Function Using Gadoxetate-Enhanced Magnetic Resonance Imaging

    PubMed Central

    Georgiou, Leonidas; Penny, Jeffrey; Nicholls, Glynis; Woodhouse, Neil; Blé, François-Xavier; Hubbard Cristinacce, Penny L.; Naish, Josephine H.

    2017-01-01

    Objective The objective of this study was to use noninvasive dynamic contrast-enhanced magnetic resonance imaging (MRI) techniques to study, in vivo, the distribution and elimination of the hepatobiliary contrast agent gadoxetate in the human body and characterize the transport mechanisms involved in its uptake into hepatocytes and subsequent efflux into the bile using a novel tracer kinetic model in a group of healthy volunteers. Materials and Methods Ten healthy volunteers (age range, 18–29 years), with no history of renal or hepatic impairment, were recruited via advertisement. Participants attended 2 MRI visits (at least a week apart) with gadoxetate as the contrast agent. Dynamic contrast-enhanced MRI data were acquired for approximately 50 minutes with a 3-dimensional gradient-echo sequence in the axial plane, at a temporal resolution of 6.2 seconds. Data from regions of interest drawn in the liver were analyzed using the proposed 2-compartment uptake and efflux model to provide estimates for the uptake rate of gadoxetate in hepatocytes and its efflux rate into the bile. Reproducibility statistics for the 2 visits were obtained to examine the robustness of the technique and its dependence in acquisition time. Results Eight participants attended the study twice and were included into the analysis. The resulting images provided the ability to simultaneously monitor the distribution of gadoxetate in multiple organs including the liver, spleen, and kidneys as well as its elimination through the common bile duct, accumulation in the gallbladder, and excretion in the duodenum. The mean uptake (ki) and efflux (kef) rates in hepatocytes, for the 2 visits using the 50-minute acquisition, were 0.22 ± 0.05 and 0.017 ± 0.006/min, respectively. The hepatic extraction fraction was estimated to be 0.19 ± 0.04/min. The variability between the 2 visits within the group level (95% confidence interval; ki: ±0.02/min, kef: ±0.004/min) was lower compared with the

  12. A case of unresectable combined hepatocellular cholangiocarcinoma showing favorable response to LFP therapy.

    PubMed

    Kato, Sayuri; Takeuchi, Yasuto; Wada, Nozomu; Morimoto, Yuuki; Kuwaki, Kenji; Ohnishi, Hideki; Nakamura, Shinichiro; Shiraha, Hidenori; Takaki, Akinobu; Okada, Hiroyuki

    2016-01-01

    A woman in her 50s was admitted to our hospital because of multiple tumors detected in her liver. She was diagnosed with combined hepatocellular cholangiocarcinoma using gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) and biopsy of the liver tumors. We judged the tumors to be unresectable because they were found in both lobes of the liver, with a tumor thrombus being found in the main left portal vein. The pathological findings showed that the tumors exhibited characteristics of hepatocellular carcinoma. Therefore, sorafenib was administered;however, 6 months later, the disease progressed. Consequently, she received second-line chemotherapy with a one-shot intra-arterial injection of cisplatin, but this too was ineffective, and her general condition worsened. As hence, we changed the regimen to 5-fluorouracil continuous infusion and consecutive low dose cisplatin (LFP) therapy. After one cycle of chemotherapy with LFP, Gd-EOB-DTPA-enhanced MRI showed markedly decreased sizes and numbers of tumors. To date, she has completed six cycles of LFP therapy, and almost all her tumors are no longer visible on MRI. She has recovered to a good state and has achieved long-term survival. Thus, this case indicates that although LFP therapy is generally selected for cases of advanced hepatocellular carcinoma, it also appears to be effective for long-term disease control in cases of hepatocellular cholangiocarcinoma.

  13. Separation of Gd-humic complexes and Gd-based magnetic resonance imaging contrast agent in river water with QAE-Sephadex A-25 for the fractionation analysis.

    PubMed

    Matsumiya, Hiroaki; Inoue, Hiroto; Hiraide, Masataka

    2014-10-01

    Gadolinium complexed with naturally occurring, negatively charged humic substances (humic and fulvic acids) was collected from 500 mL of sample solution onto a column packed with 150 mg of a strongly basic anion-exchanger (QAE-Sephadex A-25). A Gd-based magnetic resonance imaging contrast agent (diethylenetriamine-N,N,N',N″,N″-pentaacetato aquo gadolinium(III), Gd-DTPA(2-)) was simultaneously collected on the same column. The Gd-DTPA complex was desorbed by anion-exchange with 50mM tetramethylammonium sulfate, leaving the Gd-humic complexes on the column. The Gd-humic complexes were subsequently dissociated with 1M nitric acid to desorb the humic fraction of Gd. The two-step desorption with small volumes of the eluting agents allowed the 100-fold preconcentration for the fractionation analysis of Gd at low ng L(-1) levels by inductively coupled plasma-mass spectrometry (ICP-MS). On the other hand, Gd(III) neither complexed with humic substances nor DTPA, i.e., free species, was not sorbed on the column. The free Gd in the effluent was preconcentrated 100-fold by a conventional solid-phase extraction with an iminodiacetic acid-type chelating resin and determined by ICP-MS. The proposed analytical fractionation method was applied to river water samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Synthesis of Tumor-avid Photosensitizer-Gd(III)DTPA conjugates: impact of the number of gadolinium units in T1/T2 relaxivity, intracellular localization, and photosensitizing efficacy.

    PubMed

    Goswami, Lalit N; White, William H; Spernyak, Joseph A; Ethirajan, Manivannan; Chen, Yihui; Missert, Joseph R; Morgan, Janet; Mazurchuk, Richard; Pandey, Ravindra K

    2010-05-19

    To develop novel bifunctional agents for tumor imaging (MR) and photodynamic therapy (PDT), certain tumor-avid photosensitizers derived from chlorophyll-a were conjugated with variable number of Gd(III)aminobenzyl DTPA moieties. All the conjugates containing three or six gadolinium units showed significant T(1) and T(2) relaxivities. However, as a bifunctional agent, the 3-(1'-hexyloxyethyl)pyropheophorbide-a (HPPH) containing 3Gd(III) aminophenyl DTPA was most promising with possible applications in tumor-imaging and PDT. Compared to HPPH, the corresponding 3- and 6Gd(III)aminobenzyl DTPA conjugates exhibited similar electronic absorption characteristics with a slightly decreased intensity of the absorption band at 660 nm. However, compared to HPPH, the excitation of the broad "Soret" band (near 400 nm) of the corresponding 3Gd(III)aminobenzyl-DTPA analogues showed a significant decrease in the fluorescence intensity at 667 nm.

  15. Assessment of gadoxetate DCE-MRI as a biomarker of hepatobiliary transporter inhibition

    PubMed Central

    Ulloa, Jose L; Stahl, Simone; Yates, James; Woodhouse, Neil; Kenna, J Gerry; Jones, Huw B; Waterton, John C; Hockings, Paul D

    2013-01-01

    Drug-induced liver injury (DILI) is a clinically important adverse drug reaction, which prevents the development of many otherwise safe and effective new drugs. Currently, there is a lack of sensitive and specific biomarkers that can be used to predict, assess and manage this toxicity. The aim of this work was to evaluate gadoxetate-enhanced MRI as a potential novel biomarker of hepatobiliary transporter inhibition in the rat. Initially, the volume fraction of extracellular space in the liver was determined using gadopentetate to enable an estimation of the gadoxetate concentration in hepatocytes. Using this information, a compartmental model was developed to characterise the pharmacokinetics of hepatic uptake and biliary excretion of gadoxetate. Subsequently, we explored the impact of an investigational hepatobiliary transporter inhibitor on the parameters of the model in vivo in rats. The investigational hepatobiliary transporter inhibitor reduced both the rate of uptake of gadoxetate into the hepatocyte, k1, and the Michaelis–Menten constant, Vmax, characterising its excretion into bile, whereas KM values for biliary efflux were increased. These effects were dose dependent and correlated with effects on plasma chemistry markers of liver dysfunction, in particular bilirubin and bile acids. These results indicate that gadoxetate-enhanced MRI provides a novel functional biomarker of inhibition of transporter-mediated hepatic uptake and clearance in the rat. Since gadoxetate is used clinically, the technology has the potential to provide a translatable biomarker of drug-induced perturbation of hepatic transporters that may also be useful in humans to explore deleterious functional alterations caused by transporter inhibition. Copyright © 2013 John Wiley & Sons, Ltd. PMID:23564602

  16. Distance measurements in Au nanoparticles functionalized with nitroxide radicals and Gd(3+)-DTPA chelate complexes.

    PubMed

    Yulikov, Maxim; Lueders, Petra; Warsi, Muhammad Farooq; Chechik, Victor; Jeschke, Gunnar

    2012-08-14

    Nanosized gold particles were functionalised with two types of paramagnetic surface tags, one having a nitroxide radical and the other one carrying a DTPA complex loaded with Gd(3+). Selective measurements of nitroxide-nitroxide, Gd(3+)-nitroxide and Gd(3+)-Gd(3+) distances were performed on this system and information on the distance distribution in the three types of spin pairs was obtained. A numerical analysis of the dipolar frequency distributions is presented for Gd(3+) centres with moderate magnitudes of zero-field splitting, in the range of detection frequencies and resonance fields where the high-field approximation is only roughly valid. The dipolar frequency analysis confirms the applicability of DEER for distance measurements in such complexes and gives an estimate for the magnitudes of possible systematic errors due to the non-ideality of the measurement of the dipole-dipole interaction.

  17. In vivo magnetic resonance imaging of atherosclerotic lesions with a newly developed Evans blue-DTPA-gadolinium contrast medium in apolipoprotein-E-deficient mice.

    PubMed

    Yasuda, Satoshi; Ikuta, Kenjiro; Uwatoku, Toyokazu; Oi, Keiji; Abe, Kohtaro; Hyodo, Fuminori; Yoshimitsu, Kengo; Sugimura, Kohtaro; Utsumi, Hideo; Katayama, Yoshiki; Shimokawa, Hiroaki

    2008-01-01

    Magnetic resonance imaging (MRI) contrast agents that specifically detect atherosclerotic plaque may be useful for the noninvasive detection of the plaque. We have recently developed a new contrast agent, Evans blue-DTPA-gadolinium (EB-DTPA-Gd), which selectively accumulates vascular lesions with endothelial removal. In this study, we examined whether EB-DTPA-Gd is also useful for in vivo imaging of atherosclerotic plaques. We used male apolipoprotein-E-deficient (ApoE-/-) mice of different ages (3, 6 and 12 months old) and age-matched male wild-type mice. After a single intravenous administration of EB-DTPA-Gd (160 microM/kg body weight), MRI T(1) signal was obtained in vivo. Increased signal intensity in the aortic wall was noted within 10-20 min after intravenous injection of EB-DTPA-Gd and was maintained for 30 min. The MRI enhancement in the aorta of ApoE-/- mice was increased in accordance with age, whereas no such enhancement was noted in wild-type mice. Histological examination demonstrated that there was a topological correlation between the site of MRI enhancement and that of atherosclerotic plaque. These results indicate that EB-DTPA-Gd is a useful MRI contrast medium for the in vivo detection of atherosclerotic plaques. Copyright (c) 2007 S. Karger AG, Basel.

  18. [Aerosolized gadolinium-DTPA for demonstration of pulmonary ventilation in magnetic resonance tomography].

    PubMed

    Haage, P; Adam, G; Misselwitz, B; Karaagac, S; Pfeffer, J G; Glowinski, A; Döhmen, S; Tacke, J; Günther, R W

    2000-04-01

    Magnetic resonance assessment of lung ventilation with aerosolized Gd-DTPA. Eleven experimental procedures were carried out in a domestic pig model. The intubated pigs were aerosolized for 30 minutes with an aqueous formulation of Gd-DTPA. The contrast agent aerosol was generated by a small particle aerosol generator. Imaging was performed on a 1.5 T MR imager using a T1-weighted turbo spin echo sequence with respiratory gating (TR 141 ms, TE 8.5 ms, 6 averages, slice thickness 10 mm). Pulmonary signal intensities before and after ventilation were measured in peripheral portions of both lungs. Immediately after ventilation with aerosolized Gd-DTPA, the signal intensity in both lungs increased significantly in all animals with values up to 237% above baseline (mean 139% +/- 48%), but with in some cases considerable regional intra- and interindividual intensity differences. Distinctive parenchymal enhancement was readily visualized in all eleven cases with good spatial resolution. The presented data indicate that Gd-DTPA in aerosolized form can be used to demonstrate pulmonary ventilation in large animals with lung volumes comparable to man. Further experimental trials are necessary to improve reproducibility and to define the scope of this method for depicting lung disease.

  19. A novel contrast agent with rare earth-doped up-conversion luminescence and Gd-DTPA magnetic resonance properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Qing; Wei Daixu; Cheng Jiejun

    2012-08-15

    The magnetic-luminescent multifunctional nanoparticles based on Gd-DTPA and NaYF{sub 4}:Yb, Er were successfully synthesized by the conjugation of activated DTPA and silica-coated/surface-aminolated NaYF{sub 4}:Yb, Er nanoparticles through EDC/NHS coupling chemistry. The as-prepared products were characterized by powder X-ray diffraction, transmission electron microscopy, dynamic light scattering, energy dispersive X-ray analysis, and fourier transform infrared spectrometry. The room-temperature upconversion luminescent spectra and T{sub 1}-weighted maps of the obtained nanoparticles were carried out by 980 nm NIR light excitation and a 3T MR imaging scanner, respectively. The results indicated that the as-synthesized multifunctional nanoparticles with small size, highly solubility in water, and bothmore » high MR relaxivities and upconversion luminescence may have potential usage for MR imaging in future. - Graphical abstract: We have synthesized magnetic-luminescent multifunctional nanoparticles based on Gd-DTPA and NaYF4:Yb, Er by the conjugation of activated DTPA and silica-coated/surface-aminolated NaYF4:Yb, Er nanoparticles through EDC/NHS coupling chemistry. Highlights: Black-Right-Pointing-Pointer A novel magnetic-luminescent multifunctional nanoparticles are synthesized. Black-Right-Pointing-Pointer The nanoparticles are highly efficient for luminescence and T{sub 1}-weighted MR imaging. Black-Right-Pointing-Pointer The nanoparticles are small in size and highly solubility in water. Black-Right-Pointing-Pointer The nanoparticles hold great potential usage for future biomedical engineering.« less

  20. Respiratory Motion-Resolved Compressed Sensing Reconstruction of Free-Breathing Radial Acquisition for Dynamic Liver Magnetic Resonance Imaging.

    PubMed

    Chandarana, Hersh; Feng, Li; Ream, Justin; Wang, Annie; Babb, James S; Block, Kai Tobias; Sodickson, Daniel K; Otazo, Ricardo

    2015-11-01

    This study aimed to demonstrate feasibility of free-breathing radial acquisition with respiratory motion-resolved compressed sensing reconstruction [extra-dimensional golden-angle radial sparse parallel imaging (XD-GRASP)] for multiphase dynamic gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced liver imaging, and to compare image quality to compressed sensing reconstruction with respiratory motion-averaging (GRASP) and prior conventional breath-held Cartesian-sampled data sets [BH volume interpolated breath-hold examination (VIBE)] in same patients. In this Health Insurance Portability and Accountability Act-compliant prospective study, 16 subjects underwent free-breathing continuous radial acquisition during Gd-EOB-DTPA injection and had prior BH-VIBE available. Acquired data were reconstructed using motion-averaging GRASP approach in which consecutive 84 spokes were grouped in each contrast-enhanced phase for a temporal resolution of approximately 14 seconds. Additionally, respiratory motion-resolved reconstruction was performed from the same k-space data by sorting each contrast-enhanced phase into multiple respiratory motion states using compressed sensing algorithm named XD-GRASP, which exploits sparsity along both the contrast-enhancement and respiratory-state dimensions.Contrast-enhanced dynamic multiphase XD-GRASP, GRASP, and BH-VIBE images were anonymized, pooled together in a random order, and presented to 2 board-certified radiologists for independent evaluation of image quality, with higher score indicating more optimal examination. The XD-GRASP reconstructions had significantly (all P < 0.05) higher overall image quality scores compared to GRASP for early arterial (reader 1: 4.3 ± 0.6 vs 3.31 ± 0.6; reader 2: 3.81 ± 0.8 vs 3.38 ± 0.9) and late arterial (reader 1: 4.5 ± 0.6 vs 3.63 ± 0.6; reader 2: 3.56 ± 0.5 vs 2.88 ± 0.7) phases of enhancement for both readers. The XD-GRASP also had higher overall image

  1. Optimization of the reference region method for dual pharmacokinetic modeling using Gd-DTPA/MRI and (18) F-FDG/PET.

    PubMed

    Poulin, Éric; Lebel, Réjean; Croteau, Étienne; Blanchette, Marie; Tremblay, Luc; Lecomte, Roger; Bentourkia, M'hamed; Lepage, Martin

    2015-02-01

    The combination of MRI and positron emission tomography (PET) offers new possibilities for the development of novel methodologies. In pharmacokinetic image analysis, the blood concentration of the imaging compound as a function of time, [i.e., the arterial input function (AIF)] is required for MRI and PET. In this study, we tested whether an AIF extracted from a reference region (RR) in MRI can be used as a surrogate for the manually sampled (18) F-FDG AIF for pharmacokinetic modeling. An MRI contrast agent, gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) and a radiotracer, (18) F-fluorodeoxyglucose ((18) F-FDG), were simultaneously injected in a F98 glioblastoma rat model. A correction to the RR AIF for Gd-DTPA is proposed to adequately represent the manually sampled AIF. A previously published conversion method was applied to convert this AIF into a (18) F-FDG AIF. The tumor metabolic rate of glucose (TMRGlc) calculated with the manually sampled (18) F-FDG AIF, the (18) F-FDG AIF converted from the RR AIF and the (18) F-FDG AIF converted from the corrected RR AIF were found not statistically different (P>0.05). An AIF derived from an RR in MRI can be accurately converted into a (18) F-FDG AIF and used in PET pharmacokinetic modeling. © 2014 Wiley Periodicals, Inc.

  2. A Microfluidic Platform to design crosslinked Hyaluronic Acid Nanoparticles (cHANPs) for enhanced MRI

    NASA Astrophysics Data System (ADS)

    Russo, Maria; Bevilacqua, Paolo; Netti, Paolo Antonio; Torino, Enza

    2016-11-01

    Recent advancements in imaging diagnostics have focused on the use of nanostructures that entrap Magnetic Resonance Imaging (MRI) Contrast Agents (CAs), without the need to chemically modify the clinically approved compounds. Nevertheless, the exploitation of microfluidic platforms for their controlled and continuous production is still missing. Here, a microfluidic platform is used to synthesize crosslinked Hyaluronic Acid NanoParticles (cHANPs) in which a clinically relevant MRI-CAs, gadolinium diethylenetriamine penta-acetic acid (Gd-DTPA), is entrapped. This microfluidic process facilitates a high degree of control over particle synthesis, enabling the production of monodisperse particles as small as 35 nm. Furthermore, the interference of Gd-DTPA during polymer precipitation is overcome by finely tuning process parameters and leveraging the use of hydrophilic-lipophilic balance (HLB) of surfactants and pH conditions. For both production strategies proposed to design Gd-loaded cHANPs, a boosting of the relaxation rate T1 is observed since a T1 of 1562 is achieved with a 10 μM of Gd-loaded cHANPs while a similar value is reached with 100 μM of the relevant clinical Gd-DTPA in solution. The advanced microfluidic platform to synthesize intravascularly-injectable and completely biocompatible hydrogel nanoparticles entrapping clinically approved CAs enables the implementation of straightforward and scalable strategies in diagnostics and therapy applications.

  3. Development of Bifunctional Gadolinium-Labeled Superparamagnetic Nanoparticles (Gd-MnMEIO) for In Vivo MR Imaging of the Liver in an Animal Model.

    PubMed

    Kuo, Yu-Ting; Chen, Chiao-Yun; Liu, Gin-Chung; Wang, Yun-Ming

    2016-01-01

    Liver tumors are common and imaging methods, particularly magnetic resonance imaging (MRI), play an important role in their non-invasive diagnosis. Previous studies have shown that detection of liver tumors can be improved by injection of two different MR contrast agents. Here, we developed a new contrast agent, Gd-manganese-doped magnetism-engineered iron oxide (Gd-MnMEIO), with enhancement effects on both T1- and T2-weighted MR images of the liver. A 3.0T clinical MR scanner equipped with transmit/receiver coil for mouse was used to obtain both T1-weighted spoiled gradient-echo and T2-weighted fast spin-echo axial images of the liver before and after intravenous contrast agent injection into Balb/c mice with and without tumors. After pre-contrast scanning, six mice per group were intravenously injected with 0.1 mmol/kg Gd-MnMEIO, or the control agents, i.e., Gd-DTPA or SPIO. The scanning time points for T1-weighted images were 0.5, 5, 10, 15, 20, 25, and 30 min after contrast administration. The post-enhanced T2-weighted images were then acquired immediately after T1-weighted acquisition. We found that T1-weighted images were positively enhanced by both Gd-DTPA and Gd-MnMEIO and negatively enhanced by SPIO. The enhancement by both Gd-DTPA and Gd-MnMEIO peaked at 0.5 min and gradually declined thereafter. Gd-MnMEIO (like Gd-DTPA) enhanced T1-weighted images and (like SPIO) T2-weighted images. Marked vascular enhancement was clearly visible on dynamic T1-weighted images with Gd-MnMEIO. In addition, the T2 signal was significantly decreased at 30 min after administration of Gd-MnMEIO. Whereas the effects of Gd-MnMEIO and SPIO on T2-weighted images were similar (p = 0.5824), those of Gd-MnMEIO and Gd-DTPA differed, with Gd-MnMEIO having a significant T2 contrast effect (p = 0.0086). Our study confirms the feasibility of synthesizing an MR contrast agent with both T1 and T2 shortening effects and using such an agent in vivo. This agent enables tumor detection and

  4. Gadolinium diethylenetriaminopentaacetic acid-loaded chitosan microspheres for gadolinium neutron-capture therapy.

    PubMed

    Saha, Tapan Kumar; Ichikawa, Hideki; Fukumori, Yoshinobu

    2006-12-11

    In order to provide a suitable device that would contain water-soluble drugs, highly water-soluble gadolinium diethylenetriaminopentaacetic acid-loaded chitosan microspheres (CMS-Gd-DTPA) were prepared by the emulsion method using glutaraldehyde as a cross-linker and Span 80 as a surfactant for gadolinium neutron-capture therapy of cancer. The gadolinium content and the mass median diameter of CMS-Gd-DTPA were estimated. The size and morphology of the CMS-Gd-DTPA were strongly influenced by the initial applied weight ratio of Gd-DTPA:chitosan. FTIR spectra showed that the electrostatic interaction between chitosan and Gd-DTPA accelerated the formation of gadolinium-enriched chitosan microspheres. Sufficient amounts of glutaraldehyde and Span 80 were necessary for producing discrete CMS-Gd-DTPA. The CMS-Gd-DTPA having a mass median diameter 11.7microm and 11.6% of gadolinium could be used in Gd-NCT following intratumoral injection.

  5. Transient Severe Motion Artifact Related to Gadoxetate Disodium-Enhanced Liver MRI: Frequency and Risk Evaluation at a German Institution.

    PubMed

    Well, Lennart; Rausch, Vanessa Hanna; Adam, Gerhard; Henes, Frank Oliver; Bannas, Peter

    2017-07-01

    Purpose  Varying frequencies (5 - 18 %) of contrast-related transient severe motion (TSM) imaging artifacts during gadoxetate disodium-enhanced arterial phase liver MRI have been reported. Since previous reports originated from the United States and Japan, we aimed to determine the frequency of TSM at a German institution and to correlate it with potential risk factors and previously published results. Materials and Methods  Two age- and sex-matched groups were retrospectively selected (gadoxetate disodium n = 89; gadobenate dimeglumine n = 89) from dynamic contrast-enhanced MRI examinations in a single center. Respiratory motion-related artifacts in non-enhanced and dynamic phases were assessed independently by two readers blinded to contrast agents on a 4-point scale. Scores of ≥ 3 were considered as severe motion artifacts. Severe motion artifacts in arterial phases were considered as TSM if scores in all other phases were < 3. Potential risk factors for TSM were evaluated via logistic regression analysis. Results  For gadoxetate disodium, the mean score for respiratory motion artifacts was significantly higher in the arterial phase (2.2 ± 0.9) compared to all other phases (1.6 ± 0.7) (p < 0.05). The frequency of TSM was significantly higher with gadoxetate disodium (n = 19; 21.1 %) than with gadobenate dimeglumine (n = 1; 1.1 %) (p < 0.001). The frequency of TSM at our institution is similar to some, but not all previously published findings. Logistic regression analysis did not show any significant correlation between TSM and risk factors (all p > 0.05). Conclusion  We revealed a high frequency of TSM after injection of gadoxetate disodium at a German institution, substantiating the importance of a diagnosis-limiting phenomenon that so far has only been reported from the United States and Japan. In accordance with previous studies, we did not identify associated risk factors for TSM. Key Points:

  6. Equilibrium and NMR studies on GdIII, YIII, CuII and ZnII complexes of various DTPA-N,N''-bis(amide) ligands. Kinetic stabilities of the gadolinium(III) complexes.

    PubMed

    Jászberényi, Zoltán; Bányai, István; Brücher, Ernö; Király, Róbert; Hideg, Kálmán; Kálai, Tamás

    2006-02-28

    Three DTPA-derivative ligands, the non-substituted DTPA-bis(amide) (L(0)), the mono-substituted DTPA-bis(n-butylamide) (L(1)) and the di-substituted DTPA-bis[bis(n-butylamide)] (L(2)) were synthesized. The stability constants of their Gd3+ complexes (GdL) have been determined by pH-potentiometry with the use of EDTA or DTPA as competing ligands. The endogenous Cu2+ and Zn2+ ions form ML, MHL and M(2)L species. For the complexes CuL(0) and CuL(1) the dissociation of the amide hydrogens (CuLH(-1)) has also been detected. The stability constants of complexes formed with Gd3+, Cu2+ and Zn2+ increase with an increase in the number of butyl substituents in the order ML(0) < ML(1) < ML(2). NMR studies of the diamagnetic YL(0) show the presence of four diastereomers formed by changing the chirality of the terminal nitrogens of their enantiomers. At 323 K, the enantiomerization process, involving the racemization of central nitrogen, falls into the fast exchange range. By the assignment and interpretation of 1H and 13C NMR spectra, the fractions of the diastereomers were found to be equal at pH = 5.8 for YL(0). The kinetic stabilities of GdL(0), GdL(1) and GdL(2) have been characterized by the rates of the exchange reactions occurring between the complexes and Eu3+, Cu2+ or Zn2+. The rates of reaction with Eu3+ are independent of the [Eu3+] and increase with increasing [H+], indicating the rate determining role of the proton assisted dissociation of complexes. The rates of reaction with Cu2+ and Zn2+ increase with rising metal ion concentration, which shows that the exchange can take place with direct attack of Cu2+ or Zn2+ on the complex, via the formation of a dinuclear intermediate. The rates of the proton, Cu2+ and Zn2+ assisted dissociation of Gd3+ complexes decrease with increasing number of the n-butyl substituents, which is presumably the result of steric hindrance hampering the formation or dissociation of the intermediates. The kinetic stabilities of GdL(0) and Gd

  7. MRI and quantitative autoradiographic studies following bolus injections of unlabeled and 14C-labeled gadolinium-diethylenetriamine-pentaacetic acid in a rat model of stroke yield similar distribution volumes and blood-to-brain influx rate constants

    PubMed Central

    Nagaraja, Tavarekere N.; Ewing, James R.; Karki, Kishor; Jacobs, Paul E.; Divine, George W.; Fenstermacher, Joseph D.; Patlak, Clifford S.; Knight, Robert A.

    2012-01-01

    In previous studies on a rat model of transient cerebral ischemia, the blood and brain concentrations of gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) following intravenous bolus injection were repeatedly assessed by dynamic contrast-enhanced (DCE)-MRI, and blood-to-brain influx rate constants (Ki) were calculated from Patlak plots of the data in areas with blood–brain barrier (BBB) opening. For concurrent validation of these findings, after completing the DCE-MRI study, radiolabeled sucrose or α-aminoisobutyric acid was injected intravenously, and the brain disposition and Ki values were calculated by quantitative autoradiography (QAR) assay employing the single-time equation. To overcome two of the shortcomings of this comparison, the present experiments were carried out with a radiotracer virtually identical to Gd-DTPA, Gd-[14C]DTPA, and Ki was calculated from both sets of data by the single-time equation. The protocol included 3 h of middle cerebral artery occlusion and 2.5 h of reperfusion in male Wistar rats (n = 15) preceding the DCE-MRI Gd-DTPA and QAR Gd-[14C]DTPA measurements. In addition to Ki, the tissue-to-blood concentration ratios, or volumes of distribution (VR), were calculated. The regions of BBB opening were similar on the MRI maps and autoradiograms. Within them, VR was nearly identical for Gd-DTPA and Gd-[14C]DTPA, and Ki was slightly, but not significantly, higher for Gd-DTPA than for Gd-[14C]DTPA. The Ki values were well correlated (r = 0.67; p = 0.001). When the arterial concentration–time curve of Gd-DTPA was adjusted to match that of Gd-[14C]DTPA, the two sets of Ki values were equal and statistically comparable with those obtained previously by Patlak plots (the preferred, less model-dependent, approach) of the same data (p = 0.2–0.5). These findings demonstrate that this DCE-MRI technique accurately measures the Gd-DTPA concentration in blood and brain, and that Ki estimates based on such data are good quantitative

  8. Gd-complexes of macrocyclic DTPA conjugates of 1,1'-bis(amino)ferrocenes as high relaxivity MRI blood-pool contrast agents (BPCAs).

    PubMed

    Kim, Hee-Kyung; Park, Ji-Ae; Kim, Kyeong Min; Nasiruzzaman, Sk Md; Kang, Duk-Sik; Lee, Jongmin; Chang, Yongmin; Kim, Tae-Jeong

    2010-11-28

    We report the synthesis of macrocyclic DTPA conjugates of 1,1'-bis(amino)ferrocenes (1a-b) and their Gd-complexes [Gd(L)(H(2)O)] (2a-b, L = 1a-b) for use as new MRI blood-pool contrast agents. High R(1) relaxivity in HSA as well as high thermodynamic and kinetic stabilities is observed for 2a.

  9. Novel functionalized pyridine-containing DTPA-like ligand. Synthesis, computational studies and characterization of the corresponding Gd(III) complex.

    PubMed

    Artali, Roberto; Botta, Mauro; Cavallotti, Camilla; Giovenzana, Giovanni B; Palmisano, Giovanni; Sisti, Massimo

    2007-08-07

    A novel pyridine-containing DTPA-like ligand, carrying additional hydroxymethyl groups on the pyridine side-arms, was synthesized in 5 steps. The corresponding Gd(III) complex, potentially useful as an MRI contrast agent, was prepared and characterized in detail by relaxometric methods and its structure modeled by computational methods.

  10. Induction of sister chromatid exchange in the presence of gadolinium-DTPA and its reduction by dimethyl sulfoxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamazaki, Etsuo; Fukuda, Hozumi; Shibuya, Hitoshi

    The authors investigate the frequency of sister chromatid exchange (SCE) after the addition of gadolinium (Gd)-DTPA to venous blood samples. Venous blood was obtained from nonsmokers. Samples were incubated with Gd-DTPA alone or in combination with mitomycin C, cytarabine, and dimethyl sulfoxide (DMSO), and then evaluated for SCEs. The frequency of SCE increased with the concentration of Gd-DTPA and as each chemotherapeutic agent was added. Sister chromatid exchange frequencies were lower when the blood was treated with a combination of Gd-DTPA and DMSO compared with Gd-DTPA alone. The increase in frequency of SCE seen after the addition of Gd-DTPA wasmore » decreased by the addition of DMSO, indicating the production of hydroxyl radicals. The effect likely is dissociation-related. 14 refs., 6 tabs.« less

  11. Hybrid Calcium Phosphate-Polymeric Micelles Incorporating Gadolinium Chelates for Imaging-Guided Gadolinium Neutron Capture Tumor Therapy.

    PubMed

    Mi, Peng; Dewi, Novriana; Yanagie, Hironobu; Kokuryo, Daisuke; Suzuki, Minoru; Sakurai, Yoshinori; Li, Yanmin; Aoki, Ichio; Ono, Koji; Takahashi, Hiroyuki; Cabral, Horacio; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2015-06-23

    Gadolinium (Gd) chelates-loaded nanocarriers have high potential for achieving magnetic resonance imaging (MRI)-guided Gd neutron capture therapy (GdNCT) of tumors. Herein, we developed calcium phosphate micelles hybridized with PEG-polyanion block copolymers, and incorporated with the clinical MRI contrast agent Gd-diethylenetriaminepentaacetic acid (Gd-DTPA/CaP). The Gd-DTPA/CaP were nontoxic to cancer cells at the concentration of 100 μM based on Gd-DTPA, while over 50% of the cancer cells were killed by thermal neutron irradiation at this concentration. Moreover, the Gd-DTPA/CaP showed a dramatically increased accumulation of Gd-DTPA in tumors, leading to the selective contrast enhancement of tumor tissues for precise tumor location by MRI. The enhanced tumor-to-blood distribution ratio of Gd-DTPA/CaP resulted in the effective suppression of tumor growth without loss of body weight, indicating the potential of Gd-DTPA/CaP for safe cancer treatment.

  12. Respiratory Motion-Resolved Compressed Sensing Reconstruction of Free-Breathing Radial Acquisition for Dynamic Liver MRI

    PubMed Central

    Chandarana, Hersh; Feng, Li; Ream, Justin; Wang, Annie; Babb, James S; Block, Kai Tobias; Sodickson, Daniel K; Otazo, Ricardo

    2015-01-01

    Purpose Demonstrate feasibility of free-breathing radial acquisition with respiratory motion-resolved compressed sensing (CS) reconstruction (XD-GRASP) for multiphase dynamic Gd-EOB-DTPA enhanced liver imaging, and compare image quality to CS reconstruction with respiratory motion-averaging (GRASP) and prior conventional breath-held Cartesian-sampled datasets (BH-VIBE) in same patients. Subjects and Methods In this HIPAA-compliant prospective study, 16 subjects underwent free-breathing continuous radial acquisition during Gd-EOB-DTPA injection, and had prior BH-VIBE exam available. Acquired data were reconstructed using motion-averaging GRASP approach, in which consecutive 84-spokes were grouped in each contrast-enhanced phase for a temporal resolution of ~14 seconds. Additionally, respiratory motion-resolved reconstruction was performed from the same k-space data, by sorting each contrast-enhanced phase into multiple respiratory motion states using compressed sensing algorithm named XD-GRASP, which exploits sparsity along both the contrast-enhancement and respiratory-state dimensions. Contrast-enhanced dynamic multi-phase XD-GRASP, GRASP, and BH-VIBE images were anonymized, pooled together in a random order and presented to two board-certified radiologists for independent evaluation of image quality, with higher score indicating more optimal exam. Results XD-GRASP reconstructions had significantly (all p<0.05) higher overall image quality scores compared to GRASP for early arterial (Reader 1: 4.3 ± 0.6 vs. 3.31 ± 0.6 ; Reader 2: 3.81 ± 0.8 vs. 3.38 ± 0.9) and late arterial (Reader 1: 4.5 ± 0.6 vs. 3.63 ± 0.6; Reader 2: 3.56 ± 0.5 vs. 2.88 ± 0.7) phases of enhancement for both readers. XD-GRASP also had higher overall image quality score in portal venous phase which was significant for Reader 1 (4.44 ± 0.5 vs. 3.75 ± 0.8; p=0.002). In addition, XD-GRASP had higher overall image quality score compared to BH-VIBE for early (Reader 1: 4.3±0.6 vs. 3.88±0

  13. Reduction in respiratory motion artefacts on gadoxetate-enhanced MRI after training technicians to apply a simple and more patient-adapted breathing command.

    PubMed

    Gutzeit, Andreas; Matoori, Simon; Froehlich, Johannes M; von Weymarn, Constantin; Reischauer, Carolin; Kolokythas, Orpheus; Goyen, Matthias; Hergan, Klaus; Meissnitzer, Matthias; Forstner, Rosemarie; Soyka, Jan D; Doert, Aleksis; Koh, Dow-Mu

    2016-08-01

    To investigate whether a trained group of technicians using a modified breathing command during gadoxetate-enhanced liver MRI reduces respiratory motion artefacts compared to non-trained technicians using a traditional breathing command. The gadoxetate-enhanced liver MR images of 30 patients acquired using the traditional breathing command and the subsequent 30 patients after training the technicians to use a modified breathing command were analyzed. A subgroup of patients (n = 8) underwent scans both by trained and untrained technicians. Images obtained using the traditional and modified breathing command were compared for the presence of breathing artefacts [respiratory artefact-based image quality scores from 1 (best) to 5 (non-diagnostic)]. There was a highly significant improvement in the arterial phase image quality scores in patients using the modified breathing command compared to the traditional one (P < 0.001). The percentage of patients with severe and extensive breathing artefacts in the arterial phase decreased from 33.3 % to 6.7 % after introducing the modified breathing command (P = 0.021). In the subgroup that underwent MRI using both breathing commands, arterial phase image quality improved significantly (P = 0.008) using the modified breathing command. Training technicians to use a modified breathing command significantly improved arterial phase image quality of gadoxetate-enhanced liver MRI. • A modified breathing command reduced respiratory artefacts on arterial-phase gadoxetate-enhanced MRI (P < 0.001). • The modified command decreased severe and extensive arterial-phase breathing artefacts (P = 0.021). • Training technicians to use a modified breathing command improved arterial-phase images.

  14. Gd-Complexes of New Arylpiperazinyl Conjugates of DTPA-Bis(amides): Synthesis, Characterization and Magnetic Relaxation Properties.

    PubMed

    Ba-Salem, Abdullah O; Ullah, Nisar; Shaikh, M Nasiruzzaman; Faiz, Mohamed; Ul-Haq, Zaheer

    2015-04-29

    Two new DTPA-bis(amide) based ligands conjugated with the arylpiperazinyl moiety were synthesized and subsequently transformed into their corresponding Gd(III) complexes 1 and 2 of the type [Gd(L)H2O]·nH2O. The relaxivity (R1) of these complexes was measured, which turned out to be comparable with that of Omniscan®, a commercially available MRI contrast agent. The cytotoxicity studies of these complexes indicated that they are non-toxic, which reveals their potential and physiological suitability as MRI contrast agents. All the synthesized ligands and complexes were characterized with the aid of analytical and spectroscopic methods, including elemental analysis, 1H-NMR, FT-IR, XPS and fast atom bombardment (FAB) mass spectrometry.

  15. Metabolomic Analysis of N-acetylcysteine Protection of Injury from Gadolinium-DTPA Contrast Agent in Rats with Chronic Renal Failure.

    PubMed

    Wan, Chuanling; Xue, Rong; Zhan, Youyang; Wu, Yijie; Li, Xiaojing; Pei, Fengkui

    2017-09-01

    Gadolinium-based contrast agents (GBCAs) are frequently used to enhance the diagnostic efficacy of magnetic resonance imaging. On the other hand, the association between GBCA administration in patients with advanced renal disease and nephrogenic systemic fibrosis (NSF) was also noted. NSF is a systemic disorder characterized by widespread tissue fibrosis that may lead to death. N-acetylcysteine (NAC) protects rats from injury induced by gadolinium-based contrast agents, but the underlying mechanisms remain unclear. In this study, a nuclear magnetic resonance-based metabolomic approach was used to systematically investigate the protective effects of NAC on Gd-DTPA-induced injury. Thirty-two male Sprague-Dawley rats were given adenine (200 mg·kg -1 body weight) by oral gavage once a day for 3 weeks to induce chronic renal failure (CRF). NAC (600 mg/L in drinking water for 9 days) pretreatment was initiated 2 days before Gd-DTPA injection (a single tail vein injection, 2 mmol/kg body weight). Serum and liver samples were collected on day 7 after Gd-DTPA injection. By study design, the serum and hepatic metabolic changes of rats were measured in four groups of eight each: CRF, CRF-Gd, CRF-Gd-NAC, and CRF-NAC. Gd-DTPA administration to rats with CRF resulted in disturbances of several metabolic pathways, including glucose, lipid, glutamate, choline, gut microbiota, one-carbon, and purine metabolism. NAC pretreatment reversed the abundance changes of high-density lipoprotein, low-density lipoprotein, very low-density lipoprotein, glutamate, glutamine, oxidized glutathione, choline, phosphocholine, glycerophosphocholine, trimethylamine, and trimethylamine-N-oxide induced by Gd-DTPA. It is noteworthy, however, that the ameliorating effects of NAC on the disturbance of glutamate, choline, and gut microbiota metabolism may be specific to Gd-DTPA. In all, these findings could be potentially useful to decipher the underlying mechanisms of NAC protective effects from the

  16. Quantitative Assessment of Liver Function Using Gadoxetate-Enhanced Magnetic Resonance Imaging: Monitoring Transporter-Mediated Processes in Healthy Volunteers.

    PubMed

    Georgiou, Leonidas; Penny, Jeffrey; Nicholls, Glynis; Woodhouse, Neil; Blé, François-Xavier; Hubbard Cristinacce, Penny L; Naish, Josephine H

    2017-02-01

    The objective of this study was to use noninvasive dynamic contrast-enhanced magnetic resonance imaging (MRI) techniques to study, in vivo, the distribution and elimination of the hepatobiliary contrast agent gadoxetate in the human body and characterize the transport mechanisms involved in its uptake into hepatocytes and subsequent efflux into the bile using a novel tracer kinetic model in a group of healthy volunteers. Ten healthy volunteers (age range, 18-29 years), with no history of renal or hepatic impairment, were recruited via advertisement. Participants attended 2 MRI visits (at least a week apart) with gadoxetate as the contrast agent. Dynamic contrast-enhanced MRI data were acquired for approximately 50 minutes with a 3-dimensional gradient-echo sequence in the axial plane, at a temporal resolution of 6.2 seconds. Data from regions of interest drawn in the liver were analyzed using the proposed 2-compartment uptake and efflux model to provide estimates for the uptake rate of gadoxetate in hepatocytes and its efflux rate into the bile. Reproducibility statistics for the 2 visits were obtained to examine the robustness of the technique and its dependence in acquisition time. Eight participants attended the study twice and were included into the analysis. The resulting images provided the ability to simultaneously monitor the distribution of gadoxetate in multiple organs including the liver, spleen, and kidneys as well as its elimination through the common bile duct, accumulation in the gallbladder, and excretion in the duodenum. The mean uptake (ki) and efflux (kef) rates in hepatocytes, for the 2 visits using the 50-minute acquisition, were 0.22 ± 0.05 and 0.017 ± 0.006/min, respectively. The hepatic extraction fraction was estimated to be 0.19 ± 0.04/min. The variability between the 2 visits within the group level (95% confidence interval; ki: ±0.02/min, kef: ±0.004/min) was lower compared with the individual variability (repeatability; ki: ±0

  17. Phosphinic derivative of DTPA conjugated to a G5 PAMAM dendrimer: an 17O and 1H relaxation study of its Gd(III) complex.

    PubMed

    Lebdusková, Petra; Sour, Angélique; Helm, Lothar; Tóth, Eva; Kotek, Jan; Lukes, Ivan; Merbach, André E

    2006-07-28

    A DTPA-based chelate containing one phosphinate group was conjugated to a generation 5 polyamidoamine (PAMAM) dendrimer via a benzylthiourea linkage. The Gd(III) complex of this novel conjugate has potential as a contrast agent for magnetic resonance imaging (MRI). The chelates bind Gd3+via three nitrogen atoms, four carboxylates and one phosphinate oxygen, and one water molecule completes the inner coordination sphere. The monomer Gd(III) chelates bearing nitrobenzyl and aminobenzyl groups ([Gd(DTTAP-bz-NO2)(H2O)]2- and [Gd(DTTAP-bz-NH2)(H2O)]2-) as well as the dendrimeric Gd(III) complex G5-(Gd(DTTAP))63) were studied by multiple-field, variable temperature 17O and 1H NMR. The rate of water exchange is faster than that of [Gd(DTPA)(H2O)]2- and very similar on the two monomeric complexes (8.9 and 8.3 x 10(6) s-1 for [Gd(DTTAP-bz-NO2)(H2O)]2- and [Gd(DTTAP-bz-NH2)(H2O)]2-, respectively), while it is decreased on the dendrimeric conjugate (5.0 x 10(6) s-1). The Gd(III) complex of the dendrimer conjugate has a relaxivity of 26.8 mM-1 s-1 at 37 degrees C and 0.47 T (corresponding to 1H Larmor frequency of 20 MHz). Given the contribution of the second sphere water molecules to the overall relaxivity, this value is slightly higher than those reported for similar size dendrimers. The experimental 17O and 1H NMR data were fitted to the Solomon-Bloembergen-Morgan equations extended with a contribution from second coordination sphere water molecules. The rotational dynamics of the dendrimeric conjugate was described in terms of global and local motions with the Lipari-Szabo approach.

  18. Chlorophyll-a analogues conjugated with aminobenzyl-DTPA as potential bifunctional agents for magnetic resonance imaging and photodynamic therapy.

    PubMed

    Li, Guolin; Slansky, Adam; Dobhal, Mahabeer P; Goswami, Lalit N; Graham, Andrew; Chen, Yihui; Kanter, Peter; Alberico, Ronald A; Spernyak, Joseph; Morgan, Janet; Mazurchuk, Richard; Oseroff, Allan; Grossman, Zachary; Pandey, Ravindra K

    2005-01-01

    A clinically relevant photosensitizer, 3-devinyl-3-(1-hexyloxyethyl)pyropheophorbide-a (HPPH, a chlorophyll-a derivative), was conjugated with Gd(III)-aminobenzyl-diethylenetriaminepentaacetic acid (DTPA), an experimental magnetic resonance (MR) imaging agent. In vivo reflectance spectroscopy confirmed tumor uptake of HPPH-aminobenzyl-Gd(III)-DTPA conjugate was higher than free HPPH administered intraveneously (iv) to C3H mice with subcutaneously (sc) implanted radiation-induced fibrosarcoma (RIF) tumor cells. In other experiments, Sprague-Dawley (SD) rats with sc implanted Ward Colon Carcinoma cells yielded markedly increased MR signal intensities from tumor regions-of-interest (ROIs) 24 h post-iv injection of HPPH-aminobenzyl-Gd(III)-DTPA conjugate as compared to unconjugated HPPH. In both in vitro (RIF tumor cells) and in vivo (mice bearing RIF tumors and rats bearing Ward Colon tumors) the conjugate produced significant increases in tumor conspicuity at 1.5 T and retained therapeutic efficacy following PDT. Also synthesized were a series of novel bifunctional agents containing two Gd(III) atoms per HPPH molecule that remained tumor-avid and PDT-active and yielded improved MR tumor conspicuity compared to their corresponding mono-Gd(III) analogues. Administered iv at a MR imaging dose of 10 micromol/kg, these conjugates produced severe skin phototoxicity. However, by replacing the hexyl group of the pyropheophorbide-a with a tri(ethylene glycol) monomethyl ether (PEG-methyl ether), these conjugates produced remarkable MR tumor enhancement at 8 h post-iv injection, significant tumoricidal activity (80% of mice were tumor-free on day 90), and reduced skin phototoxicity compared to their corresponding hexyl ether analogues. The poor water-solubility characteristic of these conjugates was resolved by incorporation into a liposomal formulation. This paper presents the synthesis of tumor-avid contrast enhancing agents for MR imaging and thus represents an important

  19. A novel contrast agent with rare earth-doped up-conversion luminescence and Gd-DTPA magnetic resonance properties

    NASA Astrophysics Data System (ADS)

    Lu, Qing; Wei, Daixu; Cheng, Jiejun; Xu, Jianrong; Zhu, Jun

    2012-08-01

    The magnetic-luminescent multifunctional nanoparticles based on Gd-DTPA and NaYF4:Yb, Er were successfully synthesized by the conjugation of activated DTPA and silica-coated/surface-aminolated NaYF4:Yb, Er nanoparticles through EDC/NHS coupling chemistry. The as-prepared products were characterized by powder X-ray diffraction, transmission electron microscopy, dynamic light scattering, energy dispersive X-ray analysis, and fourier transform infrared spectrometry. The room-temperature upconversion luminescent spectra and T1-weighted maps of the obtained nanoparticles were carried out by 980 nm NIR light excitation and a 3T MR imaging scanner, respectively. The results indicated that the as-synthesized multifunctional nanoparticles with small size, highly solubility in water, and both high MR relaxivities and upconversion luminescence may have potential usage for MR imaging in future.

  20. Graphene Oxide and Gadolinium-Chelate Functionalized Poly(lactic acid) Nanocapsules Encapsulating Perfluorooctylbromide for Ultrasound/Magnetic Resonance Bimodal Imaging Guided Photothermal Ablation of Cancer.

    PubMed

    Li, Zhenglin; Ke, Hengte; Wang, Jinrui; Miao, Zhaohua; Yue, Xiuli

    2016-03-01

    This paper successfully fabricated a novel multifunctional theranostic agent (PFOB@PLA/GO/Gd-DTPA NCs) by loading perfluorooctylbromide (PFOB) into poly(lactic acid) (PLA) nanocapsules (NCs) followed by surface functionalization with graphene oxide (GO) and gadolinium-chelate (Gd-DTPA). It was found that the resulting nanoagent could serve as a contrast agent simultaneously to enhance ultrasound (US) and magnetic resonance imaging (MRI). Benefiting from the strong absorption in the near infrared (NIR) region, the nanocapsules could efficiently kill cancer cells under NIR laser irradiation. Thus, such a single theranostic agent with the combination of realtime US imaging and high-resolution MR imaging could achieve great therapeutic effectiveness without systemic damage to the body. In addition, the cytotoxicity assay on HUVEC cells revealed a good biocompatibility of PFOB@PLA/GO/Gd-DTPA NCs, showing that the versatile nanocapsule system may hold great potential as an effective nanoplatform for contrast enhanced imaging guided photothermal therapy.

  1. Functional gadoxetate disodium-enhanced MRI in patients with primary sclerosing cholangitis (PSC).

    PubMed

    Hinrichs, Heiko; Hinrichs, Jan B; Gutberlet, Marcel; Lenzen, Henrike; Raatschen, Hans-Juergen; Wacker, Frank; Ringe, Kristina I

    2016-04-01

    To assess the value of variable flip angle-based T1 liver mapping on gadoxetate disodium-enhanced MRI in patients with primary sclerosing cholangitis (PSC) for evaluation of global and segmental liver function, and determine a possible correlation with disease severity. Sixty-one patients (19 female, 42 male; mean age 41 years) with PSC were included in this prospective study. T1 mapping was performed using a 3D-spoiled GRE sequence (flip angles 5°, 15°, 20°, 30°) before, 16 (HP1) and 132 min (HP2) after contrast injection. T1 values were measured and compared (Wilcoxon-Test) by placing ROIs in each liver segment. The mean reduction of T1 relaxation time at HP1 and HP2 was calculated and correlated with liver function tests (LFTs), MELD, Mayo Risk and Amsterdam Scores (Spearman correlation). Significant changes of T1 relaxation times between non-enhanced and gadoxetate disodium-enhanced MRI at HP1 and HP2 could be observed in all liver segments (p < 0.0001). A significant correlation of T1 reduction could be observed with LFTs, MELD and Mayo Risk Score (p < 0.05). T1 mapping of the liver using a variable flip angle-based sequence is a feasible technique to evaluate liver function on a global level, and may be extrapolated on a segmental level in patients with PSC. • T1 mapping enables evaluation of global liver function in PSC. • T1 relaxation time reduction correlates with the MELD and MayoRisk Score. • Extrapolated, T1 mapping may allow for segmental evaluation of liver function.

  2. Distinguishing liver haemangiomas from metastatic tumours using gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced diffusion-weighted imaging at 1.5T MRI.

    PubMed

    Saito, Kazuhiro; Yoshimura, Nobutaka; Shirota, Natsuhiko; Saguchi, Toru; Sugimoto, Katsutoshi; Tokuuye, Koichi

    2016-10-01

    The aim of this study to evaluate the effectiveness of enhanced diffusion-weighted imaging (DWI) for distinguishing liver haemangiomas from metastatic tumours (mets). This study included 23 patients with 27 haemangiomas and 26 patients with 46 mets. Breath-holding diffusion-weighted imaging (DWI) (b-values of 0, 50, 100, 150, 200, 400 and 800 s/mm 2 ) were obtained before and 20 min after injection of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA). Lesion contrast-to-noise ratios (CNRs) were calculated. The data were processed using the bi-exponential model of intravoxel incoherent motion (IVIM). Receiver operating characteristic analysis was performed to compare the diagnostic performance when distinguishing haemangioma from mets. The CNRs of haemangioma and mets at post-contrast enhancement increased. All IVIM parameters for liver haemangioma and mets showed no significant differences between pre- and post-contrast enhancement. The highest A z value of CNR and IVIM parameters occurred at a post-contrast b-value of 0 s/mm 2 and true diffusion (D). The highest qualitative evaluation occurred at a b-value of 800 s/mm 2 . The sensitivity and specificity, with a CNR of 100 or higher at a post-contrast b-value of 0 s/mm 2 and considered to be haemangioma, were 89% and 67% (<10 mm, 91%, 77%) respectively. The sensitivity and specificity, when D was higher than 1.4 × 10 -3 mm 2 /s, were 74% and 83% (<10 mm, 64%, 77%) respectively. The sensitivity and specificity of qualitative evaluation by enhanced DWI were 74% and 76% (<10 mm, 64%, 80%) respectively. The accuracy of the CNR was highest with b = 0; however, examination at high b-values had advantages in the qualitative evaluation of some small-size lesions. © 2016 The Royal Australian and New Zealand College of Radiologists.

  3. Immediate Adverse Reactions to Gadolinium-Based MR Contrast Media: A Retrospective Analysis on 10,608 Examinations.

    PubMed

    Granata, Vincenza; Cascella, Marco; Fusco, Roberta; dell'Aprovitola, Nicoletta; Catalano, Orlando; Filice, Salvatore; Schiavone, Vincenzo; Izzo, Francesco; Cuomo, Arturo; Petrillo, Antonella

    2016-01-01

    Background and Purpose. Contrast media (CM) for magnetic resonance imaging (MRI) may determine the development of acute adverse reactions. Objective was to retrospectively assess the frequency and severity of adverse reactions associated with gadolinium-based contrast agents (GBCAs) injection in patients who underwent MRI. Material and Methods. At our center 10608 MRI examinations with CM were performed using five different GBCAs: Gd-BOPTA (MultiHance), Gd-DTPA (Magnevist), Gd-EOBDTPA (Primovist), Gd-DOTA (Dotarem), and Gd-BTDO3A (Gadovist). Results. 32 acute adverse reactions occurred, accounting for 0.3% of all administration. Twelve reactions were associated with Gd-DOTA injection (0.11%), 9 with Gd-BOPTA injection (0.08%), 6 with Gd-BTDO3A (0.056%), 3 with Gd-EOB-DTPA (0.028%), and 2 with Gd-DTPA (0.018%). Twenty-four reactions (75.0%) were mild, four (12.5%) moderate, and four (12.5%) severe. The most severe reactions were seen associated with use of Gd-BOPTA, with 3 severe reactions in 32 total reactions. Conclusion. Acute adverse reactions are generally rare with the overall adverse reaction rate of 0.3%. The most common adverse reactions were not severe, consisting in skin rash and hives.

  4. Differences in perilymphatic space enhancement and adverse inflammatory reaction after intratympanic injection of two different gadolinium agents: A 9.4-T magnetic resonance imaging study.

    PubMed

    Park, Mina; Lee, Ho Sun; Kim, Hyeonjin; Oh, Seung Ha; Lee, Jun Ho; Suh, Myung-Whan

    2016-03-01

    To compare the inner ear enhancement after intratympanic injection of two widely used gadolinium (Gd) agents by 9.4 T micro-magnetic resonance imaging (MRI) and to investigate the effects of Gd on the inner ear. Twelve ears of six rats received intratympanic administration of 1/5 diluted Gd agents: gadoterate meglumine (Gd-DTPA) for the left ear and gadodiamide (Gd-DTPA-BMA) for the right ear. MRI was performed every 30 min from 1 to 4 h after administration. The normalized signal intensity was evaluated by quantitative analysis at each cochlear fluid compartment. Eight, six, and seven ears treated with Gd-DTPA, Gd-DPTA-BMA, and nothing as controls, respectively, were processed for histological evaluation after MRI. After hematoxylin & eosin staining, adverse inflammatory reactions were evaluated for turbid aggregation and lymphocytes. The perilymphatic enhancement of Gd-DTPA was superior to that of Gd-DTPA-BMA regardless of cochlear turn, compartment, and time point. Inflammatory reactions were found in 4/8 (50.0%) and 4/6 (66.6%) ears administered Gd-DTPA and Gd-DTPA-BMA, respectively. Regardless of the contrast agent used, inflammatory reactions were most definite in the scala tympani of the basal turn, i.e., near the round window. Slightly greater inflammatory reactions were observed in ears injected with Gd-DTPA-BMA compared to Gd-DTPA although the difference was not statistically significant. No inflammatory reaction was observed in any of the seven controls. The auditory brainstem response threshold was 11.8 ± 2.5 dB SPL before IT Gd injection and it did not change for up to 5 days (15.4 ± 6.6 dB SPL) post-injection. Gd-DTPA was superior to Gd-DTPA-BMA for visualization of the inner ear. Administration of diluted Gd agents intratympanically may induce considerable inflammatory reactions in the inner ear. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Contrast-enhanced computed tomography plus gadolinium-ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging for gross classification of hepatocellular carcinoma.

    PubMed

    Chen, Chuang; Zhao, Hui; Fu, Xu; Huang, LuoShun; Tang, Min; Yan, XiaoPeng; Sun, ShiQuan; Jia, WenJun; Mao, Liang; Shi, Jiong; Chen, Jun; He, Jian; Zhu, Jin; Qiu, YuDong

    2017-05-02

    Accurate gross classification through imaging is critical for determination of hepatocellular carcinoma (HCC) patient prognoses and treatment strategies. The present retrospective study evaluated the utility of contrast-enhanced computed tomography (CE-CT) combined with gadolinium-ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging (EOB-MRI) for diagnosis and classification of HCCs prior to surgery. Ninety-four surgically resected HCC nodules were classified as simple nodular (SN), SN with extranodular growth (SN-EG), confluent multinodular (CMN), or infiltrative (IF) types. SN-EG, CMN and IF samples were grouped as non-SN. The abilities of the two imaging modalities to differentiate non-SN from SN HCCs were assessed using the EOB-MRI hepatobiliary phase and CE-CT arterial, portal, and equilibrium phases. Areas under the ROC curves for non-SN diagnoses were 0.765 (95% confidence interval [CI]: 0.666-0.846) for CE-CT, 0.877 (95% CI: 0.793-0.936) for EOB-MRI, and 0.908 (95% CI: 0.830-0.958) for CE-CT plus EOB-MRI. Sensitivities, specificities, and accuracies with respect to identification of non-SN tumors of all sizes were 71.4%, 81.6%, and 75.5% for CE-CT; 96.4%, 78.9%, and 89.3% for EOB-MRI; and 98.2%, 84.2%, and 92.5% for CE-CT plus EOB-MRI. These results show that CE-CT combined with EOB-MRI offers a more accurate imaging evaluation for HCC gross classification than either modality alone.

  6. Solid dispersions of the penta-ethyl ester prodrug of diethylenetriaminepentaacetic acid (DTPA): Formulation design and optimization studies

    PubMed Central

    Yang, Yu-Tsai; Di Pasqua, Anthony J.; Zhang, Yong; Sueda, Katsuhiko; Jay, Michael

    2015-01-01

    The penta-ethyl ester prodrug of diethylenetriaminepentaacetic acid (DTPA), which exists as an oily liquid, was incorporated into a solid dispersion for oral administration by the solvent evaporation method using blends of polyvinylpyrrolidone (PVP), Eudragit® RL PO and α-tocopherol. D-optimal mixture design was used to optimize the formulation. Formulations that had a high concentration of both Eudragit® RL PO and α-tocopherol exhibited low water absorption and enhanced stability of the DTPA prodrug. Physicochemical properties of the optimal formulation were evaluated using Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). In vitro release of the prodrug was evaluated using the USP Type II apparatus dissolution method. DSC studies indicated that the matrix had an amorphous structure, while FTIR spectrometry showed that DTPA penta-ethyl ester and excipients did not react with each other during formation of the solid dispersion.. Dissolution testing showed that the optimized solid dispersion exhibited a prolonged release profile, which could potentially result in a sustained delivery of DTPA penta-ethyl to enhance bioavailability. In conclusion, DTPA penta-ethyl ester was successfully incorporated into a solid matrix with high drug loading and improved stability compared to prodrug alone. PMID:24047113

  7. Magnetic nanoparticles modified with DTPA-AMC-rare earth for fluorescent and magnetic resonance dual mode imaging.

    PubMed

    Liu, Zengchen; Li, Bo; Wang, Baodui; Yang, Zhengyin; Wang, Qin; Li, Tianrong; Qin, Dongdong; Li, Yong; Wang, Mingfang; Yan, Mihui

    2012-07-28

    In the present study, we report new water-soluble cell fluorescence imaging and contrast agents that are based on DTPA-AMC(7-amino-4-methyl coumarin)-Eu(3+) and DTPA-AMC(7-amino-4-methyl coumarin)-Gd(3+) compounds conjugated to Fe(3)O(4) NPs via a PEG-NH(2) linker. The novel Fe(3)O(4) NP-conjugates present two main advantages for cell fluorescence labelling: water solubility and targeting ability. The in vitro experiments demonstrate that water-soluble Fe(3)O(4) NPs-DBI-PEG-NH-DTPA-AMC(7-amino-4-methyl coumarin)-Eu(3+) has excellent cell permeating activity. Moreover, the relaxation rate test of Fe(3)O(4) NPs-DBI-PEG-NH-DTPA-AMC(7-amino-4-methyl coumarin)-Gd(3+) shows a higher T1 relaxation effect than traditional DTPA-Gd(3+) MRI agents. According to in vivo liver MRI experiments, better contrast of the liver was achieved after addition of Fe(3)O(4) NPs-DBI-PEG-NH-DTPA-AMC(7-amino-4-methyl coumarin)-Gd(3+). The results will provide a significant guide for researchers exploring the biomedical applications of superparamagnetic Fe(3)O(4) NPs.

  8. Selective modification of NMR relaxation time in human colorectal carcinoma by using gadolinium-diethylenetriaminepentaacetic acid conjugated with monoclonal antibody 19-9.

    PubMed Central

    Curtet, C; Tellier, C; Bohy, J; Conti, M L; Saccavini, J C; Thedrez, P; Douillard, J Y; Chatal, J F; Koprowski, H

    1986-01-01

    Monoclonal antibody 19-9 (mAb 19-9) against human colon adenocarcinoma was conjugated with gadolinium X diethylenetriaminepentaacetic acid (Gd X DTPA) and used as a contrast agent in nuclear magnetic resonance (NMR) in an effort to improve tumor target selectivity in nude mice. The data indicate that Gd X DTPA-mAb 19-9 in solution decreased the T1 relaxation of water protons at 90 MHz in direct proportion to the gadolinium concentration, and this effect was greater than in Gd X DTPA solutions. T1 relaxation time at 90 MHz, measured in tumors removed from nude mice 24 hr after injection of Gd X DTPA-mAb 19-9 (Gd, 20 mumol/kg; 16 DTPA molecules per mAb molecule), was significantly decreased (by 15%) as compared with the control group. Similar results were obtained in tumors from mice injected with Gd X DTPA-mAb 19-9 solutions in which Gd was used at 2, 6, or 10 mumol/kg (16 DTPA molecules per mAb molecule). These doses are lower than those commonly used for Gd X DTPA (10-100 mumol/kg) as contrast agent. Tumor localization by the Gd X DTPA-mAb 19-9 complex containing radioactive Gd (0.3 microCi/microgram of 153Gd) to confirm scintigraphy revealed significant concentrations of the complex (5% of the injected dose per gram of tissue) in the tumor. Scan images recorded in planar scintigraphy at day 5 showed good visualization of tumors. Images PMID:3459174

  9. Tumor characterization in small animals using magnetic resonance-guided dynamic contrast enhanced diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Lin, Yuting; Thayer, Dave; Nalcioglu, Orhan; Gulsen, Gultekin

    2011-10-01

    We present a magnetic resonance (MR)-guided near-infrared dynamic contrast enhanced diffuse optical tomography (DCE-DOT) system for characterization of tumors using an optical contrast agent (ICG) and a MR contrast agent [Gd-diethylenetriaminepentaacetic acid (DTPA)] in a rat model. Both ICG and Gd-DTPA are injected and monitored simultaneously using a combined MRI-DOT system, resulting in accurate co-registration between two imaging modalities. Fisher rats bearing R3230 breast tumor are imaged using this hybrid system. For the first time, enhancement kinetics of the exogenous contrast ICG is recovered from the DCE-DOT data using MR anatomical a priori information. As tumors grow, they undergo necrosis and the tissue transforms from viable to necrotic. The results show that the physiological changes between viable and necrotic tissue can be differentiated more accurately based on the ICG enhancement kinetics when MR anatomical information is utilized.

  10. Surface enhanced Raman scattering of amino acids assisted by gold nanoparticles and Gd(3+) ions.

    PubMed

    López-Neira, Juan Pablo; Galicia-Hernández, José Mario; Reyes-Coronado, Alejandro; Pérez, Elías; Castillo-Rivera, Francisco

    2015-05-07

    The surface enhanced raman scattering (SERS) signal from the l-tyrosine (tyr) molecule adsorbed on gold nanoparticles (Au-tyr) is compared with the SERS signal assisted by the presence of gadolinium ions (Gd(3+)) coordinated with the Au-tyr system. An enhancement factor of the SERS signal in the presence of Gd(3+) ions was ∼5 times higher than that produced by l-tyrosine adsorbed on gold nanoparticles. The enhancement of the SERS signal can be attributed to a corresponding increase in the local electric field due to the presence of Gd(3+) ions in the vicinity of a gold dimer configuration. This scenario was confirmed by solving numerically Maxwell equations, showing an increase of 1 order of magnitude in the local electric scattered field when the Gd(3+) ion is located in between a gold dimer compared with naked gold nanoparticles.

  11. Non-invasive breast biopsy method using GD-DTPA contrast enhanced MRI series and F-18-FDG PET/CT dynamic image series

    NASA Astrophysics Data System (ADS)

    Magri, Alphonso William

    This study was undertaken to develop a nonsurgical breast biopsy from Gd-DTPA Contrast Enhanced Magnetic Resonance (CE-MR) images and F-18-FDG PET/CT dynamic image series. A five-step process was developed to accomplish this. (1) Dynamic PET series were nonrigidly registered to the initial frame using a finite element method (FEM) based registration that requires fiducial skin markers to sample the displacement field between image frames. A commercial FEM package (ANSYS) was used for meshing and FEM calculations. Dynamic PET image series registrations were evaluated using similarity measurements SAVD and NCC. (2) Dynamic CE-MR series were nonrigidly registered to the initial frame using two registration methods: a multi-resolution free-form deformation (FFD) registration driven by normalized mutual information, and a FEM-based registration method. Dynamic CE-MR image series registrations were evaluated using similarity measurements, localization measurements, and qualitative comparison of motion artifacts. FFD registration was found to be superior to FEM-based registration. (3) Nonlinear curve fitting was performed for each voxel of the PET/CT volume of activity versus time, based on a realistic two-compartmental Patlak model. Three parameters for this model were fitted; two of them describe the activity levels in the blood and in the cellular compartment, while the third characterizes the washout rate of F-18-FDG from the cellular compartment. (4) Nonlinear curve fitting was performed for each voxel of the MR volume of signal intensity versus time, based on a realistic two-compartment Brix model. Three parameters for this model were fitted: rate of Gd exiting the compartment, representing the extracellular space of a lesion; rate of Gd exiting a blood compartment; and a parameter that characterizes the strength of signal intensities. Curve fitting used for PET/CT and MR series was accomplished by application of the Levenburg-Marquardt nonlinear regression

  12. Gadolinium-enhanced 7.0 T magnetic resonance imaging assessment of the aqueous inflow in rat eyes in vivo.

    PubMed

    Li, Lu; Yuan, Yuxiang; Chen, Liwen; Li, Mu; Ji, Pingting; Gong, Jieling; Zhao, Yin; Zhang, Hong

    2017-09-01

    The goal of this study was to calculate the anterior chamber volume and assess aqueous inflow in rat eyes in vivo, under anesthetic condition. Gadolinium-contrast agent (Gd-DTPA, 234.5 mg/ml) was administered to Sprague-Dawley rat eyes via anterior chamber injection or instillation of 234.5 or 117.25 mg/ml Gd-DTPA in 0.2% azone as eye drops, and changes of Gd signal visualized by 7.0 T magnetic resonance imaging (MRI). The safety of local application of Gd-DTPA and azone were performed after MRI scanning. The anterior chamber injection of Gd-DTPA (234.5 mg/ml) group was used for anterior chamber volume and aqueous inflow calculating. Serial changes in Gd-DTPA relative concentration in the anterior chamber was determined based on the initial Gd signal gray values and the initial relative concentration of Gd-DTPA after anterior chamber Gd-DTPA injection. The mean aqueous inflow in rat eyes in vivo was assessed based on changes in Gd-DTPA relative concentration and the anterior chamber volume. Eye drops of Gd-DTPA (234.5 mg/ml) in 0.2% azone readily allowed safe assessment of the aqueous inflow by 7.0 T MRI. Under anesthetic condition in vivo, the mean anterior chamber volume (ACV) in rats was 8493.6 ± 657.4 μm 3 , no differences were observed in the aqueous inflow measured by topical instillation of 234.5 mg/ml Gd-DTPA in 0.2% azone (0.182 ± 0.011 μl/min) between that measured by anterior chamber injection (0.165 ± 0.041 μl/min, P > 0.05), Timolol reduced aqueous inflow to 0.124 ± 0.020 μl/min (P < 0.05). Our results indicated that Gd-enhanced 7.0 T MRI allows evaluation of the Gd signal variation and anterior chamber volume in rats in vivo. The aqueous inflow calculation via non-invasive local application of 234.5 mg/ml Gd-DTPA can be assessed by the variability of relative concentration of Gd-DTPA in anterior chamber and ACV in vivo, under anesthetic condition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Lectin conjugates as biospecific contrast agents for MRI. Coupling of Lycopersicon esculentum agglutinin to linear water-soluble DTPA-loaded oligomers.

    PubMed

    Pashkunova-Martic, Irena; Kremser, Christian; Galanski, Markus; Schluga, Petra; Arion, Vladimir; Debbage, Paul; Jaschke, Werner; Keppler, Bernhard

    2011-06-01

    Magnetic resonance imaging (MRI) requires synthesis of contrast media bearing targeting groups and numerous gadolinium chelating groups generating high relaxivity. This paper explores the results of linking the gadolinium chelates to the targeting group, a protein molecule, via various types of linkers. Polycondensates of diethylenetriaminepentaacetic acid (DTPA) with either diols or diamines were synthesised and coupled to the targeting group, a lectin (Lycopersicon esculentum agglutinin, tomato lectin) which binds with high affinity to specific oligosaccharide configurations in the endothelial glycocalyx. The polycondensates bear up to four carboxylic groups per constitutive unit. Gd-chelate bonds are created through dative interactions with the unshared pair of electrons on each oxygen and nitrogen atom on DTPA. This is mandatory for complexation of Gd(III) and avoidance of the severe toxicity of free gadolinium ions. The polymer-DTPA compounds were characterised by (1)H NMR and mass spectrometry. The final lectin-DTPA-polycondensate conjugates were purified by fast protein liquid chromatography (FPLC). The capacity for specific binding was assessed, and the MRI properties were examined in order to evaluate the use of these oligomers as components of selective perfusional contrast agents.

  14. Porphyrin-containing polyaspartamide gadolinium complexes as potential magnetic resonance imaging contrast agents.

    PubMed

    Yan, Guo-Ping; Li, Zhen; Xu, Wei; Zhou, Cheng-Kai; Yang, Lian; Zhang, Qiao; Li, Liang; Liu, Fan; Han, Lin; Ge, Yuan-Xing; Guo, Jun-Fang

    2011-04-04

    Porphyrin-containing polyaspartamide ligands (APTSPP-PHEA-DTPA) were synthesized by the incorporation of diethylenetriaminepentaacetic acid (DTPA) and 5-(4'-aminophenyl)-10,15,20-tris(4'-sulfonatophenyl) porphyrin, trisodium salt (APTSPP) into poly-α,β-[N-(2-hydroxyethyl)-l-aspartamide] (PHEA). These ligands were further reacted with gadolinium chloride to produce macromolecule-gadolinium complexes (APTSPP-PHEA-DTPA-Gd). Experimental data of (1)H NMR, IR, UV and elemental analysis evidenced the formation of the polyaspartamide ligands and gadolinium complexes. In vitro and in vivo property tests indicated that APTSPP-PHEA-DTPA-Gd possessed noticeably higher relaxation effectiveness, less toxicity to HeLa cells, and significantly higher enhanced signal intensities (SI) of the VX2 carcinoma in rabbits with lower injection dose requirement than that of Gd-DTPA. Moreover, APTSPP-PHEA-DTPA-Gd was found to greatly enhance the contrast of MR images of the VX2 carcinoma, providing prolonged intravascular duration, and distinguished the VX2 carcinoma and normal tissues in rabbits according to MR image signal enhancements. These porphyrin-containing polyaspartamide gadolinium complexes can be used as the candidates of contrast agents for targeted MRI to tumors. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  15. Gadolinium-Functionalized Peptide Amphiphile Micelles for Multimodal Imaging of Atherosclerotic Lesions

    PubMed Central

    2016-01-01

    The leading causes of morbidity and mortality globally are cardiovascular diseases, and nanomedicine can provide many improvements including disease-specific targeting, early detection, and local delivery of diagnostic agents. To this end, we designed fibrin-binding, peptide amphiphile micelles (PAMs), achieved by incorporating the targeting peptide cysteine-arginine-glutamic acid-lysine-alanine (CREKA), with two types of amphiphilic molecules containing the gadoliniuim (Gd) chelator diethylenetriaminepentaacetic acid (DTPA), DTPA-bis(stearylamide)(Gd), and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[(poly(ethylene glycol) (PEG))-2000]-DTPA(Gd) (DSPE-PEG2000-DTPA(Gd)). The material characteristics of the resulting nanoparticle diagnostic probes, clot-binding properties in vitro, and contrast enhancement and safety for dual, optical imaging–magnetic resonance imaging (MRI) were evaluated in the atherosclerotic mouse model. Transmission electron micrographs showed a homogenous population of spherical micelles for formulations containing DSPE-PEG2000-DTPA(Gd), whereas both spherical and cylindrical micelles were formed upon mixing DTPA-BSA(Gd) and CREKA amphiphiles. Clot-binding assays confirmed DSPE-PEG2000-DTPA(Gd)-based CREKA micelles targeted clots over 8-fold higher than nontargeting (NT) counterpart micelles, whereas no difference was found between CREKA and NT, DTPA-BSA(Gd) micelles. However, in vivo MRI and optical imaging studies of the aortas and hearts showed fibrin specificity was conferred by the peptide ligand without much difference between the nanoparticle formulations or shapes. Biodistribution studies confirmed that all micelles were cleared through both the reticuloendothelial system and renal clearance, and histology showed no signs of necrosis. In summary, these studies demonstrate the successful synthesis, and the molecular imaging capabilities of two types of CREKA-Gd PAMs for atherosclerosis. Moreover, we demonstrate the differences in

  16. Evaluation of intraaxial enhancing brain tumors on magnetic resonance imaging: intraindividual crossover comparison of gadobenate dimeglumine and gadopentetate dimeglumine for visualization and assessment, and implications for surgical intervention.

    PubMed

    Kuhn, Matthew J; Picozzi, Piero; Maldjian, Joseph A; Schmalfuss, Ilona M; Maravilla, Kenneth R; Bowen, Brian C; Wippold, Franz J; Runge, Val M; Knopp, Michael V; Wolansky, Leo J; Gustafsson, Lars; Essig, Marco; Anzalone, Nicoletta

    2007-04-01

    The goal in this article was to compare 0.1 mmol/kg doses of gadobenate dimeglumine (Gd-BOPTA) and gadopentetate dimeglumine, also known as gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA), for enhanced magnetic resonance (MR) imaging of intraaxial brain tumors. Eighty-four patients with either intraaxial glioma (47 patients) or metastasis (37 patients) underwent two MR imaging examinations at 1.5 tesla, one with Gd-BOPTA as the contrast agent and the other with Gd-DTPA. The interval between fully randomized contrast medium administrations was 2 to 7 days. The T1-weighted spin echo and T2-weighted fast spin echo images were acquired before administration of contrast agents and T1-weighted spin echo images were obtained after the agents were administered. Acquisition parameters and postinjection acquisition times were identical for the two examinations in each patient. Three experienced readers working in a fully blinded fashion independently evaluated all images for degree and quality of available information (lesion contrast enhancement, lesion border delineation, definition of disease extent, visualization of the lesion's internal structures, global diagnostic preference) and quantitative enhancement (that is, the extent of lesion enhancement after contrast agent administration compared with that seen before its administration [hereafter referred to as percent enhancement], lesion/brain ratio, and contrast/noise ratio). Differences were tested with the Wilcoxon signed-rank test. Reader agreement was assessed using kappa statistics. Significantly better diagnostic information/imaging performance (p < 0.0001, all readers) was obtained with Gd-BOPTA for all visualization end points. Global preference for images obtained with Gd-BOPTA was expressed for 42 (50%), 52 (61.9%), and 56 (66.7%) of 84 patients (readers 1, 2, and 3, respectively) compared with images obtained with Gd-DTPA contrast in four (4.8%), six (7.1%), and three (3.6%) of 84 patients. Similar

  17. Mechanical delivery of aerosolized gadolinium-DTPA for pulmonary ventilation assessment in MR imaging.

    PubMed

    Haage, P; Adam, G; Karaagac, S; Pfeffer, J; Glowinski, A; Döhmen, S; Günther, R W

    2001-04-01

    To evaluate a new technique with mechanical administration of aerosolized gadolinium (Gd)-DTPA for MR visualization of lung ventilation. Ten experimental procedures were performed in six domestic pigs. Gd-DTPA was aerosolized by a small-particle generator. The intubated animals were mechanically aerosolized with the nebulized contrast agent and studied on a 1.5-T MR imager. Respiratory gated T1-weighted turbo spin-echo images were obtained before, during, and after contrast administration. Pulmonary signal intensity (SI) changes were calculated for corresponding regions of both lungs. Homogeneity of aerosol distribution was graded independently by two radiologists. To achieve a comparable SI increase as attained in previous trials that used manual aerosol ventilation, a ventilation period of 20 minutes (formerly 30 minutes) was sufficient. Mean SI changes of 116% were observed after that duration. Contrast delivery was rated evenly distributed in all cases by the reviewers. The feasibility of applying Gd-DTPA as a contrast agent to demonstrate pulmonary ventilation in large animals has been described before. The results of this refined technique substantiate the potential of Gd-based ventilation MR imaging by improving aerosol distribution and shortening the nebulization duration in the healthy lung.

  18. Assessment of sequence dependent geometric distortion in contrast-enhanced MR images employed in stereotactic radiosurgery treatment planning.

    PubMed

    Pappas, Eleftherios P; Seimenis, Ioannis; Dellios, Dimitrios; Kollias, Georgios; Lampropoulos, Kostas I; Karaiskos, Pantelis

    2018-06-25

    This work focuses on MR-related sequence dependent geometric distortions, which are associated with B 0 inhomogeneity and patient-induced distortion (susceptibility differences and chemical shift effects), in MR images used in stereotactic radiosurgery (SRS) applications. Emphasis is put on characterizing distortion at target brain areas identified by gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA) paramagnetic contrast agent uptake. A custom-made phantom for distortion detection was modified to accommodate two small cylindrical inserts, simulating small brain targets. The inserts were filled with Gd-DTPA solutions of various concentrations (0-20 mM). The phantom was scanned at 1.5 T unit using both the reversed read gradient polarity (to determine the overall distortion as reflected by the inserts centroid offset) and the field mapping (to determine B 0 inhomogeneity related distortion in the vicinity of the inserts) techniques. Post-Gd patient images involving a total of 10 brain metastases/targets were also studied using a similar methodology. For the specific imaging conditions, contrast agent presence was found to evidently affect phantom insert position, with centroid offset extending up to 0.068 mm mM -1 (0.208 ppm mM -1 ). The Gd-DTPA induced distortion in patient images was of the order of 0.5 mm for the MRI protocol used, in agreement with the phantom results. Total localization uncertainty of metastases-targets in patient images ranged from 0.35 mm to 0.87 mm, depending on target location, with an average value of 0.54 mm (2.24 ppm). This relative wide range of target localization uncertainty results from the fact that the B 0 inhomogeneity distortion vector in a specific location may add to or partly counterbalance Gd-DTPA induced distortion, thus increasing or decreasing, respectively, the total sequence dependent distortion. Although relatively small, the sequence dependent distortion in Gd-DTPA enhanced brain images can be

  19. Complex imaging features of accidental cerebral intraventricular gadolinium administration.

    PubMed

    Nayak, Nita B; Huang, Jimmy C; Hathout, Gasser M; Shaba, Wisam; El-Saden, Suzie M

    2013-05-01

    Gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA) is a contrast agent commonly used for enhancing MRI. In this paper, the authors report on 2 cases of postoperative inadvertent administration of Gd-DTPA directly into a ventriculostomy tubing side port that was mistaken for intravenous tubing. Both cases demonstrated a low signal on MRI throughout the ventricular system and dependent portions of the subarachnoid spaces, which was originally believed to be CSF with areas of T1 shortening in the nondependent portions of the subarachnoid spaces, and misinterpreted as basal leptomeningeal enhancement and meningitis. The authors propose that the appearance of profound T1 hypointensity within the ventricles and diffuse susceptibility artifact along the ependyma is pathognomonic of intraventricular Gd-DTPA and should be recognized.

  20. Hyperfine coupling constants on inner-sphere water molecules of Gd(III)-based MRI contrast agents.

    PubMed

    Esteban-Gómez, David; de Blas, Andrés; Rodríguez-Blas, Teresa; Helm, Lothar; Platas-Iglesias, Carlos

    2012-11-12

    Herein we present a theoretical investigation of the hyperfine coupling constants (HFCCs) on the inner-sphere water molecules of [Gd(H(2)O)(8)](3+) and different Gd(III)-based magnetic resonance imaging contrast agents such as [Gd(DOTA)(H(2)O)](-), [Gd(DTPA)(H(2)O)](2-), [Gd(DTPA-BMA)(H(2)O)] and [Gd(HP-DO3A)(H(2)O)]. DFT calculations performed on the [Gd(H(2)O)(8)](3+) model system show that both hybrid-GGA functionals (BH&HLYP, B3PW91 and PBE1PBE) and the hybrid meta-GGA functional TPSSh provide (17)O HFCCs in close agreement with the experimental data. The use of all-electron relativistic approaches based on the DKH2 approximation and the use of relativistic effective core potentials (RECP) provide results of essentially the same quality. The accurate calculation of HFCCs on the [Gd(DOTA)(H(2)O)](-), [Gd(DTPA)(H(2)O)](2-), [Gd(DTPA-BMA)(H(2)O)] and [Gd(HP-DO3A)(H(2)O)] complexes requires an adequate description of solvent effects. This was achieved by using a mixed cluster/continuum approach that includes explicitly two second-sphere water molecules. The calculated isotropic (17)O HFCCs (A(iso)) fall within the range 0.40-0.56 MHz, and show deviations from the corresponding experimental values typically lower than 0.05 MHz. The A(iso) values are significantly affected by the distance between the oxygen atom of the coordinated water molecule and the Gd(III) ion, as well as by the orientation of the water molecule plane with respect to the Gd-O vector. (1)H HFCCs of coordinated water molecules and (17)O HFCCs of second-sphere water molecules take values close to zero. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Usefulness of combining gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging and contrast-enhanced ultrasound for diagnosing the macroscopic classification of small hepatocellular carcinoma.

    PubMed

    Kobayashi, Tomoki; Aikata, Hiroshi; Hatooka, Masahiro; Morio, Kei; Morio, Reona; Kan, Hiromi; Fujino, Hatsue; Fukuhara, Takayuki; Masaki, Keiichi; Ohno, Atsushi; Naeshiro, Noriaki; Nakahara, Takashi; Honda, Yohji; Murakami, Eisuke; Kawaoka, Tomokazu; Tsuge, Masataka; Hiramatsu, Akira; Imamura, Michio; Kawakami, Yoshiiku; Hyogo, Hideyuki; Takahashi, Shoichi; Chayama, Kazuaki

    2015-11-01

    Non-simple nodules in hepatocellular carcinoma (HCC) correlate with poor prognosis. Therefore, we examined the diagnostic ability of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging (EOB-MRI) and contrast-enhanced ultrasound (CEUS) for diagnosing the macroscopic classification of small HCCs. A total of 85 surgically resected nodules (≤30 mm) were analyzed. HCCs were pathologically classified as simple nodular (SN) and non-SN. By evaluating hepatobiliary phase (HBP) of EOB-MRI and Kupffer phase of CEUS, the diagnostic abilities of both modalities to correctly distinguish between SN and non-SN were compared. Forty-six nodules were diagnosed as SN and the remaining 39 nodules as non-SN. The area under the ROC curve (AUROCs, 95% confidence interval) for the diagnosis of non-SN were EOB-MRI, 0.786 (0.682-0.890): CEUS, 0.784 (0.679-0.889), in combination, 0.876 (0.792-0.959). The sensitivity, specificity, and accuracy were 64.1%, 95.7%, and 81.2% in EOB-MRI, 56.4%, 97.8%, and 78.8% in CEUS, and 84.6%, 95.7%, and 90.6% in combination, respectively. High diagnostic ability was obtained when diagnosed in both modalities combined. The sensitivity was especially statistically significant compared to CEUS. Combined diagnosis by EOB-MRI and CEUS can provide high-quality imaging assessment for determining non-SN in small HCCs. • Non-SN has a higher frequency of MVI and intrahepatic metastasis than SN. • Macroscopic classification is useful to choose the treatment strategy for small HCCs. • Diagnostic ability for macroscopic findings of EOB-MRI and CEUS were statistically equal. • The diagnosis of macroscopic findings by individual modality has limitations. • Combined diagnosis of EOB-MRI and CEUS provides high diagnostic ability.

  2. A simple polyol-free synthesis route to Gd2O3 nanoparticles for MRI applications: an experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Ahrén, Maria; Selegård, Linnéa; Söderlind, Fredrik; Linares, Mathieu; Kauczor, Joanna; Norman, Patrick; Käll, Per-Olov; Uvdal, Kajsa

    2012-08-01

    Chelated gadolinium ions, e.g., Gd-DTPA, are today used clinically as contrast agents for magnetic resonance imaging (MRI). An attractive alternative contrast agent is composed of gadolinium oxide nanoparticles as they have shown to provide enhanced contrast and, in principle, more straightforward molecular capping possibilities. In this study, we report a new, simple, and polyol-free way of synthesizing 4-5-nm-sized Gd2O3 nanoparticles at room temperature, with high stability and water solubility. The nanoparticles induce high-proton relaxivity compared to Gd-DTPA showing r 1 and r 2 values almost as high as those for free Gd3+ ions in water. The Gd2O3 nanoparticles are capped with acetate and carbonate groups, as shown with infrared spectroscopy, near-edge X-ray absorption spectroscopy, X-ray photoelectron spectroscopy and combined thermogravimetric and mass spectroscopy analysis. Interpretation of infrared spectroscopy data is corroborated by extensive quantum chemical calculations. This nanomaterial is easily prepared and has promising properties to function as a core in a future contrast agent for MRI.

  3. Factors predicting aggressiveness of non-hypervascular hepatic nodules detected on hepatobiliary phase of gadolinium ethoxybenzyl diethylene-triamine-pentaacetic-acid magnetic resonance imaging.

    PubMed

    Kanefuji, Tsutomu; Takano, Toru; Suda, Takeshi; Akazawa, Kouhei; Yokoo, Takeshi; Kamimura, Hiroteru; Kamimura, Kenya; Tsuchiya, Atsunori; Takamura, Masaaki; Kawai, Hirokazu; Yamagiwa, Satoshi; Aoyama, Hidefumi; Nomoto, Minoru; Terai, Shuji

    2015-04-21

    To establish a prognostic formula that distinguishes non-hypervascular hepatic nodules (NHNs) with higher aggressiveness from less hazardous one. Seventy-three NHNs were detected in gadolinium ethoxybenzyl diethylene-triamine-pentaacetic-acid magnetic resonance imaging (Gd-EOB-DTPA-MRI) study and confirmed to change 2 mm or more in size and/or to gain hypervascularity. All images were interpreted independently by an experienced, board-certified abdominal radiologist and hepatologist; both knew that the patients were at risk for hepatocellular carcinoma development but were blinded to the clinical information. A formula predicting NHN destiny was developed using a generalized estimating equation model with thirteen explanatory variables: age, gender, background liver diseases, Child-Pugh class, NHN diameter, T1-weighted imaging/T2-weighted imaging detectability, fat deposition, lower signal intensity in arterial phase, lower signal intensity in equilibrium phase, α-fetoprotein, des-γ-carboxy prothrombin, α-fetoprotein-L3, and coexistence of classical hepatocellular carcinoma. The accuracy of the formula was validated in bootstrap samples that were created by resampling of 1000 iterations. During a median follow-up period of 504 d, 73 NHNs with a median diameter of 9 mm (interquartile range: 8-12 mm) grew or shrank by 68.5% (fifty nodules) or 20.5% (fifteen nodules), respectively, whereas hypervascularity developed in 38.4% (twenty eight nodules). In the fifteen shrank nodules, twelve nodules disappeared, while 11.0% (eight nodules) were stable in size but acquired vascularity. A generalized estimating equation analysis selected five explanatories from the thirteen variables as significant factors to predict NHN progression. The estimated regression coefficients were 0.36 for age, 6.51 for lower signal intensity in arterial phase, 8.70 or 6.03 for positivity of hepatitis B virus or hepatitis C virus, 9.37 for des-γ-carboxy prothrombin, and -4.05 for fat

  4. Magnetoresistance enhancement in Gd- Y bilayers

    NASA Astrophysics Data System (ADS)

    Freitas, P. P.; From, M.; Melo, L. V.; Plaskett, T. S.

    1991-02-01

    Gd-Y-Gd bilayers were prepared that show a magnetoresistance enhancement when the non-magnetic Y layer separations is 11 or 32 Å. This oscillatory behavior of the magnetoresistance versus Y thickness is tentatively related to oscillations in the interlayer coupling.

  5. Is MRI of the Liver Needed During Routine Preoperative Workup for Colorectal Cancer?

    PubMed

    Kang, Sung Il; Kim, Duck-Woo; Cho, Jai Young; Park, Jihoon; Lee, Kyung Ho; Son, Il Tae; Oh, Heung-Kwon; Kang, Sung-Bum

    2017-09-01

    The clinical efficacy of gadoxetic acid-enhanced liver MRI as a routine preoperative procedure for all patients with colorectal cancer remains unclear. The purpose of this study was to evaluate the efficacy of preoperative gadoxetic acid-enhanced liver MRI for the diagnosis of liver metastasis in patients with colorectal cancer. This was a retrospective analysis from a prospective cohort database. All of the patients were from a subspecialty practice at a tertiary referral hospital. Patients who received preoperative gadoxetic acid-enhanced liver MRI after CT and attempted curative surgery for colorectal cancer were included. The number of equivocal hepatic lesions based on CT and gadoxetic acid-enhanced liver MRI and diagnostic use of the gadoxetic acid-enhanced liver MRI were measured. We reviewed the records of 690 patients with colorectal cancer. Equivocal hepatic lesions were present in 17.2% of patients based on CT and in 4.5% based on gadoxetic acid-enhanced liver MRI. Among 496 patients with no liver metastasis based on CT, gadoxetic acid-enhanced liver MRI detected equivocal lesions in 15 patients and metastasis in 3 patients. Among 119 patients who had equivocal liver lesions on CT, gadoxetic acid-enhanced liver MRI indicated hepatic lesions in 103 patients (86.6%), including 90 with no metastasis and 13 with metastasis. Among 75 patients who had liver metastasis on CT, gadoxetic acid-enhanced liver MRI indicated that the hepatic lesions in 2 patients were benign, in contrast to CT findings. The initial surgical plans for hepatic lesions according to CT were changed in 17 patients (3%) after gadoxetic acid-enhanced liver MRI. This study was limited by its retrospective design. The clinical efficacy of gadoxetic acid-enhanced liver MRI as a routine preoperative procedure for all patients with colorectal cancer is low, in spite of its high diagnostic value for detecting liver metastasis. However, this study showed gadoxetic acid-enhanced liver MRI was

  6. MR-Guided Freehand Biopsy of Liver Lesions With Fast Continuous Imaging Using a 1.0-T Open MRI Scanner: Experience in 50 Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischbach, Frank, E-mail: frank.fischbach@med.ovgu.de; Bunke, Juergen; Thormann, Markus

    2011-02-15

    The purpose of this study was to assess a new open system with a field-strength of 1.0 T for the feasibility of liver biopsy using the freehand technique with fast continuous imaging. Fifty patients with focal liver lesions measuring 5 to 30 mm in diameter were included in the study. Guidance and monitoring was performed using a 1.0-T open magnetic resonance (MR) scanner (Panorama HFO; Philips Healthcare, Best, The Netherlands). With fast continuous imaging using a T1-weighted (T1W) gradient echo (GRE) sequence after administration of gadolinium (Gd)-EOB-DTPA, the needle was placed into the lesion. An interface for interactive dynamic viewingmore » in two perpendicular planes prevented needle deviations T2-weighted turbo spin echo (TSE) fat-suppressed sequence was added to rule out postinterventional hematoma or biloma. All lesions were visible on the interventional images. Biopsy was technically successful, and solid specimens were obtained in all cases. Forty-six patients showed a histopathologic pattern other than native liver tissue, thus confirming correct position of the needle. Time between determination of the lesion and performance of the control scan was on average 18 min. No major complications were recorded. MR guidance with the new 1-T open system must be considered an attractive alternative for liver punction. An interface for dynamic imaging of needle guidance and T1W-GRE imaging with administration of Gd-EOB-DTPA for contrast enhancement allows the pinpoint puncture of liver lesions.« less

  7. Characterization of Severe Arterial Phase Respiratory Motion Artifact on Gadoxetate Disodium-Enhanced MRI - Assessment of Interrater Agreement and Reliability.

    PubMed

    Ringe, Kristina Imeen; Luetkens, Julian A; Fimmers, Rolf; Hammerstingl, Renate Maria; Layer, Günter; Maurer, Martin H; Nähle, Claas Philip; Michalik, Sabine; Reimer, Peter; Schraml, Christina; Schreyer, Andreas G; Stumpp, Patrick; Vogl, Thomas J; Wacker, Frank K; Willinek, Winfried; Kukuk, Guido Mattias

    2018-04-01

     To assess the interrater agreement and reliability of experienced abdominal radiologists in the characterization and grading of arterial phase gadoxetate disodium-related respiratory motion artifact on liver MRI.  This prospective multicenter study was initiated by the working group for abdominal imaging within the German Roentgen Society (DRG), and approved by the local IRB of each participating center. 11 board-certified radiologists independently reviewed 40 gadoxetate disodium-enhanced liver MRI datasets. Motion artifacts in the arterial phase were assessed on a 5-point scale. Interrater agreement and reliability were calculated using the intraclass correlation coefficient (ICC) and Kendall coefficient of concordance (W), with p < 0.05 deemed significant.  The ICC for interrater agreement and reliability were 0.983 (CI 0.973 - 0.990) and 0.985 (CI 0.978 - 0.991), respectively (both p < 0.0001), indicating excellent agreement and reliability. Kendall's W for interrater agreement was 0.865. A severe motion artifact, defined as a mean motion score ≥ 4 in the arterial phase was observed in 12 patients. In these specific cases, a motion score ≥ 4 was assigned by all readers in 75 % (n = 9/12 cases).  Differentiation and grading of arterial phase respiratory motion artifact is possible with a high level of inter-/intrarater agreement and interrater reliability, which is crucial for assessing the incidence of this phenomenon in larger multicenter studies.   · Inter- and intrarater agreement for motion artifact scoring is excellent among experienced readers.. · Interrater reliability for motion artifact scoring is excellent among experienced readers.. · Characterization of severe motion artifacts proved feasible in this multicenter study.. · Ringe KI, Luetkens JA, Fimmers R et al. Characterization of Severe Arterial Phase Respiratory Motion Artifact on Gadoxetate Disodium-Enhanced MRI - Assessment of Interrater Agreement

  8. Synthesis and physicochemical characterization of carbon backbone modified [Gd(TTDA)(H2O)]2- derivatives.

    PubMed

    Chang, Ya-Hui; Chen, Chiao-Yun; Singh, Gyan; Chen, Hsing-Yin; Liu, Gin-Chung; Goan, Yih-Gang; Aime, Silvio; Wang, Yun-Ming

    2011-02-21

    The present study was designed to exploit optimum lipophilicity and high water-exchange rate (k(ex)) on low molecular weight Gd(III) complexes to generate high bound relaxivity (r(1)(b)), upon binding to the lipophilic site of human serum albumin (HSA). Two new carbon backbone modified TTDA (3,6,10-tri(carboxymethyl)-3,6,10-triazadodecanedioic acid) derivatives, CB-TTDA and Bz-CB-TTDA, were synthesized. The complexes [Gd(CB-TTDA)(H(2)O)](2-) and [Gd(Bz-CB-TTDA)(H(2)O)](2-) both display high stability constant (log K(GdL) = 20.28 and 20.09, respectively). Furthermore, CB-TTDA (log K(Gd/Zn) = 4.22) and Bz-CB-TTDA (log K(Gd/Zn) = 4.12) exhibit superior selectivity of Gd(III) against Zn(II) than those of TTDA (log K(Gd/Zn) = 2.93), EPTPA-bz-NO(2) (log K(Gd/Zn) = 3.19), and DTPA (log K(Gd/Zn) = 3.76). However, the stability constant values of [Gd(CB-TTDA)(H(2)O)](2-) and [Gd(Bz-CB-TTDA)(H(2)O)](2-) are lower than that of MS-325. The parameters that affect proton relaxivity have been determined in a combined variable temperature (17)O NMR and NMRD study. The water exchange rates are comparable for the two complexes, 232 × 10(6) s(-1) for [Gd(CB-TTDA)(H(2)O)](2-) and 271 × 10(6) s(-1) for [Gd(Bz-CB-TTDA)(H(2)O)](2-). They are higher than those of [Gd(TTDA)(H(2)O)](2-) (146 × 10(6) s(-1)), [Gd(DTPA)(H(2)O)](2-) (4.1 × 10(6) s(-1)), and MS-325 (6.1 × 10(6) s(-1)). Elevated stability and water exchange rate indicate that the presence of cyclobutyl on the carbon backbone imparts rigidity and steric constraint to [Gd(CB-TTDA)(H(2)O)](2-)and [Gd(Bz-CB-TTDA)(H(2)O)](2-). In addition, the major objective for selecting the cyclobutyl is to tune the lipophilicity of [Gd(Bz-CB-TTDA)(H(2)O)](2-). The binding affinity of [Gd(Bz-CB-TTDA)(H(2)O)](2-) to HSA was evaluated by ultrafiltration study across a membrane with a 30 kDa MW cutoff, and the first three stepwise binding constants were determined by fitting the data to a stoichiometric model. The binding association constants (K

  9. Optimal gadolinium dose level for magnetic resonance imaging (MRI) contrast enhancement of U87-derived tumors in athymic nude rats for the assessment of photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Cross, Nathan; Varghai, Davood; Flask, Chris A.; Feyes, Denise K.; Oleinick, Nancy L.; Dean, David

    2009-02-01

    This study aims to determine the effect of varying gadopentetate dimeglumine (Gd-DTPA) dose on Dynamic Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI) tracking of brain tumor photodynamic therapy (PDT) outcome. Methods: We injected 2.5 x 105 U87 cells (derived from human malignant glioma) into the brains of six athymic nude rats. After 9, 12, and 13 days DCE-MRI images were acquired on a 9.4 T micro-MRI scanner before and after administration of 100, 150, or 200 μL of Gd-DTPA. Results: Tumor region normalized DCE-MRI scan enhancement at peak was: 1.217 over baseline (0.018 Standard Error [SE]) at the 100 μL dose, 1.339 (0.013 SE) at the 150 μL dose, and 1.287 (0.014 SE) at the 200 μL dose. DCE-MRI peak tumor enhancement at the 150 μL dose was significantly greater than both the 100 μL dose (p < 3.323E-08) and 200 μL dose (p < 0.0007396). Discussion: In this preliminary study, the 150 μL Gd-DTPA dose provided the greatest T1 weighted contrast enhancement, while minimizing negative T2* effects, in DCE-MRI scans of U87-derived tumors. Maximizing Gd-DTPA enhancement in DCE-MRI scans may assist development of a clinically robust (i.e., unambiguous) technique for PDT outcome assessment.

  10. Dynamic Contrast-Enhanced Magnetic Resonance Imaging of the Metastatic Potential of Melanoma Xenografts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ovrebo, Kirsti Marie; Ellingsen, Christine; Galappathi, Kanthi

    2012-05-01

    Purpose: Gadolinium diethylene-triamine penta-acetic acid (Gd-DTPA)-based dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has been suggested as a useful noninvasive method for characterizing the physiologic microenvironment of tumors. In the present study, we investigated whether Gd-DTPA-based DCE-MRI has the potential to provide biomarkers for hypoxia-associated metastatic dissemination. Methods and Materials: C-10 and D-12 melanoma xenografts were used as experimental tumor models. Pimonidazole was used as a hypoxia marker. A total of 60 tumors were imaged, and parametric images of K{sup trans} (volume transfer constant of Gd-DTPA) and v{sub e} (fractional distribution volume of Gd-DTPA) were produced by pharmacokinetic analysis of themore » DCE-MRI series. The host mice were killed immediately after DCE-MRI, and the primary tumor and the lungs were resected and prepared for histologic assessment of the fraction of pimonidazole-positive hypoxic tissue and the presence of lung metastases, respectively. Results: Metastases were found in 11 of 26 mice with C-10 tumors and 14 of 34 mice with D-12 tumors. The primary tumors of the metastatic-positive mice had a greater fraction of hypoxic tissue (p = 0.00031, C-10; p < 0.00001, D-12), a lower median K{sup trans} (p = 0.0011, C-10; p < 0.00001, D-12), and a lower median v{sub e} (p = 0.014, C-10; p = 0.016, D-12) than the primary tumors of the metastatic-negative mice. Conclusions: These findings support the clinical attempts to establish DCE-MRI as a method for providing biomarkers for tumor aggressiveness and suggests that primary tumors characterized by low K{sup trans} and low v{sub e} values could have a high probability of hypoxia-associated metastatic spread.« less

  11. The kinetics of lanthanide complexation by EDTA and DTPA in lactate media.

    PubMed

    Nash, K L; Brigham, D; Shehee, T C; Martin, A

    2012-12-28

    The interaction of trivalent lanthanide and actinide cations with polyaminopolycarboxylic acid complexing agents in lactic acid buffer systems is an important feature of the chemistry of the TALSPEAK process for the separation of trivalent actinides from lanthanides. To improve understanding of metal ion coordination chemistry in this process, the results of an investigation of the kinetics of lanthanide complexation by ethylenediamine-N,N,N',N'-tetraacetic acid (EDTA) and diethylenetriamine-N,N,N',N'',N''-pentaacetic acid (DTPA) in 0.3 M lactic acid/0.3 M ionic strength solution are reported. Progress of the reaction was monitored using the distinctive visible spectral changes attendant to lanthanide complexation by the colorimetric indicator ligand Arsenazo III, which enables the experiment but plays no mechanistic role. Under the conditions of these experiments, the reactions occur in a time regime suitable for study by stopped-flow spectrophotometric techniques. Experiments have been conducted as a function of EDTA/DTPA ligand concentration, total lactic acid concentration, and pH. The equilibrium perturbation reaction proceeds as a first order approach to equilibrium over a wide range of conditions, allowing the simultaneous determination of complex formation and dissociation rate constants. The rate of the complexation reaction has been determined for the entire lanthanide series (except Pm(3+)). The predominant pathway for lanthanide-EDTA and lanthanide-DTPA dissociation is inversely dependent on the total lactate concentration; the complex formation reaction demonstrates a direct dependence on [H(+)]. Unexpectedly, the rate of the complex formation reaction is seen in both ligand systems to be fastest for Gd(3+). Correlation of these results indicates that in 0.3 M lactate solutions the exchange of lanthanide ions between lactate complexes and the polyaminopolycarboxylate govern the process.

  12. [High resolution functional magnetic resonance tomography with Gd-DTPA eyedrops in diagnosis of lacrimal apparatus diseases].

    PubMed

    Hoffmann, K T; Anders, N; Hosten, N; Holschbach, A; Walkow, T; Sörensen, R; Hartmann, C; Felix, R

    1998-08-01

    Both dacryocystography and dacryoscintigraphy are well established in the evaluation of stenoses of the lacrimal drainage system. They provide limited information about the ductal anatomy itself and about periductal structures. MR imaging was evaluated for its capability to directly visualize the lacrimal drainage system in detail and simultaneously provide functional characterization of dacryostenosis. Twenty-seven lacrimal drainage systems of 23 patients suffering from epiphora were examined in an MR unit before and after conjunctival and intravenous application of Gd-DTPA using a surface coil. Dacryostenosis was found in 23 of 27 lacrimal systems. Stenoses were localized to the canalicular (n = 3), saccular (n = 8), and ductal (n = 12) level, and were classified as stenosis or occlusion. MR imaging with conjunctival contrast application allows within one examination both detailed morphological and functional assessment of the lacrimal drainage system with depiction of surrounding structures. Limitations arise mainly from demands on technical and patient-related preconditions.

  13. Accumulation of MRI contrast agents in malignant fibrous histiocytoma for gadolinium neutron capture therapy.

    PubMed

    Fujimoto, T; Ichikawa, H; Akisue, T; Fujita, I; Kishimoto, K; Hara, H; Imabori, M; Kawamitsu, H; Sharma, P; Brown, S C; Moudgil, B M; Fujii, M; Yamamoto, T; Kurosaka, M; Fukumori, Y

    2009-07-01

    Neutron-capture therapy with gadolinium (Gd-NCT) has therapeutic potential, especially that gadolinium is generally used as a contrast medium in magnetic resonance imaging (MRI). The accumulation of gadolinium in a human sarcoma cell line, malignant fibrosis histiocytoma (MFH) Nara-H, was visualized by the MRI system. The commercially available MRI contrast medium Gd-DTPA (Magnevist, dimeglumine gadopentetate aqueous solution) and the biodegradable and highly gadopentetic acid (Gd-DTPA)-loaded chitosan nanoparticles (Gd-nanoCPs) were prepared as MRI contrast agents. The MFH cells were cultured and collected into three falcon tubes that were set into the 3-tesra MRI system to acquire signal intensities from each pellet by the spin echo method, and the longitudinal relaxation time (T1) was calculated. The amount of Gd in the sample was measured by inductively coupled plasma atomic emission spectrography (ICP-AES). The accumulation of gadolinium in cells treated with Gd-nanoCPs was larger than that in cells treated with Gd-DTPA. In contrast, and compared with the control, Gd-DTPA was more effective than Gd-nanoCPs in reducing T1, suggesting that the larger accumulation exerted the adverse effect of lowering the enhancement of MRI. Further studies are warranted to gain insight into the therapeutic potential of Gd-NCT.

  14. Design, synthesis, and evaluation of VEGFR-targeted macromolecular MRI contrast agent based on biotin-avidin-specific binding.

    PubMed

    Liu, Yongjun; Wu, Xiaoyun; Sun, Xiaohe; Wang, Dan; Zhong, Ying; Jiang, Dandan; Wang, Tianqi; Yu, Dexin; Zhang, Na

    2017-01-01

    Developing magnetic resonance imaging (MRI) contrast agents with high relaxivity and specificity was essential to increase MRI diagnostic sensitivity and accuracy. In this study, the MRI contrast agent, vascular endothelial growth factor receptor (VEGFR)-targeted poly (l-lysine) (PLL)-diethylene triamine pentacetate acid (DTPA)-gadolinium (Gd) (VEGFR-targeted PLL-DTPA-Gd, VPDG), was designed and prepared to enhance the MRI diagnosis capacity of tumor. Biotin-PLL-DTPA-Gd was synthesized first, then, VEGFR antibody was linked to biotin-PLL-DTPA-Gd using biotin-avidin reaction. In vitro cytotoxicity study results showed that VPDG had low toxicity to MCF-7 cells and HepG2 cells at experimental concentrations. In cell uptake experiments, VPDG could significantly increase the internalization rates (61.75%±5.22%) in VEGFR-positive HepG2 cells compared to PLL-DTPA-Gd (PDG) (25.16%±4.71%, P <0.05). In MRI studies in vitro, significantly higher T1 relaxivity (14.184 mM -1 s -1 ) was observed compared to Magnevist ® (4.9 mM -1 s -1 ; P <0.01). Furthermore, in vivo MRI study results showed that VPDG could significantly enhance the tumor signal intensity and prolong the diagnostic time (from <1 h to 2.5 h). These results indicated that macromolecular VPDG was a promising MRI contrast agent and held great potential for molecular diagnosis of tumor.

  15. Design, synthesis, and evaluation of VEGFR-targeted macromolecular MRI contrast agent based on biotin–avidin-specific binding

    PubMed Central

    Liu, Yongjun; Wu, Xiaoyun; Sun, Xiaohe; Wang, Dan; Zhong, Ying; Jiang, Dandan; Wang, Tianqi; Yu, Dexin; Zhang, Na

    2017-01-01

    Developing magnetic resonance imaging (MRI) contrast agents with high relaxivity and specificity was essential to increase MRI diagnostic sensitivity and accuracy. In this study, the MRI contrast agent, vascular endothelial growth factor receptor (VEGFR)-targeted poly (l-lysine) (PLL)-diethylene triamine pentacetate acid (DTPA)-gadolinium (Gd) (VEGFR-targeted PLL-DTPA-Gd, VPDG), was designed and prepared to enhance the MRI diagnosis capacity of tumor. Biotin-PLL-DTPA-Gd was synthesized first, then, VEGFR antibody was linked to biotin-PLL-DTPA-Gd using biotin–avidin reaction. In vitro cytotoxicity study results showed that VPDG had low toxicity to MCF-7 cells and HepG2 cells at experimental concentrations. In cell uptake experiments, VPDG could significantly increase the internalization rates (61.75%±5.22%) in VEGFR-positive HepG2 cells compared to PLL-DTPA-Gd (PDG) (25.16%±4.71%, P<0.05). In MRI studies in vitro, significantly higher T1 relaxivity (14.184 mM−1 s−1) was observed compared to Magnevist® (4.9 mM−1 s−1; P<0.01). Furthermore, in vivo MRI study results showed that VPDG could significantly enhance the tumor signal intensity and prolong the diagnostic time (from <1 h to 2.5 h). These results indicated that macromolecular VPDG was a promising MRI contrast agent and held great potential for molecular diagnosis of tumor. PMID:28765707

  16. Rapid and reversible enhancement of blood–brain barrier permeability using lysophosphatidic acid

    PubMed Central

    On, Ngoc H; Savant, Sanjot; Toews, Myron; Miller, Donald W

    2013-01-01

    The present study characterizes the effects of lysophosphatidic acid (LPA) on blood–brain barrier (BBB) permeability focusing specifically on the time of onset, duration, and magnitude of LPA-induced changes in cerebrovascular permeability in the mouse using both magnetic resonance imaging (MRI) and near infrared fluorescence imaging (NIFR). Furthermore, potential application of LPA for enhanced drug delivery to the brain was also examined by measuring the brain accumulation of radiolabeled methotrexate. Exposure of primary cultured brain microvessel endothelial cells (BMECs) to LPA produced concentration-dependent increases in permeability that were completely abolished by clostridium toxin B. Administration of LPA disrupted BBB integrity and enhanced the permeability of small molecular weight marker gadolinium diethylenetriaminepentaacetate (Gd-DTPA) contrast agent, the large molecular weight permeability marker, IRdye800cwPEG, and the P-glycoprotein efflux transporter probe, Rhodamine 800 (R800). The increase in BBB permeability occurred within 3 minutes after LPA injection and barrier integrity was restored within 20 minutes. A decreased response to LPA on large macromolecule BBB permeability was observed after repeated administration. The administration of LPA also resulted in 20-fold enhancement of radiolabeled methotrexate in the brain. These studies indicate that administration of LPA in combination with therapeutic agents may increase drug delivery to the brain. PMID:24045401

  17. Immune Rejection after Pancreatic Islet Cell Transplantation: In Vivo Dual Contrast-enhanced MR Imaging in a Mouse Model

    PubMed Central

    Wang, Ping; Schuetz, Christian; Ross, Alana; Dai, Guangping; Markmann, James F.

    2013-01-01

    Purpose: To detect adoptively transferred immune attack in a mouse model of islet cell transplantation by using a long-circulating paramagnetic T1 contrast agent, a protected graft copolymer (PGC) that is covalently linked to gadolinium–diethylenetriaminepentaacetic acid with fluorescein isothiocyanate (Gd-DTPA-F), which accumulates in the sites of inflammation that are characterized by vascular disruption. Materials and Methods: All animal experiments were performed in compliance with institutional guidelines and approved by the subcommittee on research animal care. Six nonobese diabetic severe combined immunodeficiency mice received transplanted human islet cells under the kidney capsule and adoptively transferred 5 × 106 splenocytes from 6-week-old nonobese diabetic mice. These mice also served as control subjects for comparison of pre- and postadoptive transfer MR imaging results. Mice that received phosphate-buffered saline solution only were included as nonadoptive-transfer control subjects (n = 2). In vivo magnetic resonance (MR) imaging was performed before and 17 hours after intravenous injections of PGC-Gd-DTPA-F, followed by histologic examination. Statistical differences were analyzed by means of a paired Student t test and repeated two-way analysis of variance. Results: MR imaging results showed significantly greater accumulation of PGC-Gd-DTPA-F in the graft area after immune attack initiated by adoptive transfer of splenocytes compared with that of the same area before the transfer (T1, 137.2 msec ± 39.3 and 239.5 msec ± 17.6, respectively; P < .001). These results were confirmed at histologic examination, which showed considerable leakage of the contrast agent into the islet cell interstitium. Conclusion: PGC-Gd-DTPA-F–enhanced MR imaging allows for the in vivo assessment of vascular damage of the graft T cell challenge. © RSNA, 2012 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.12121129/-/DC1 PMID:23264346

  18. Enhanced Delivery of Plasmid Encoding Interleukin-12 Gene by Diethylene Triamine Penta-Acetic Acid (DTPA)-Conjugated PEI Nanoparticles.

    PubMed

    Dehshahri, Ali; Sadeghpour, Hossein; Keykhaee, Maryam; Khalvati, Bahman; Sheikhsaran, Fatemeh

    2016-05-01

    Recombinant therapeutic proteins have been considered as an efficient category of medications used for the treatment of various diseases. Despite their effectiveness, there are some reports on the systemic adverse effects of recombinant therapeutic proteins limiting their wide clinical applications. Among different cytokines used for cancer immunotherapy, interleukin-12 (IL-12) has shown great ability as a powerful antitumor and antiangiogenic agent. However, significant toxic reactions following the systemic administration of IL-12 have led researchers to seek for alternative approaches such as the delivery and local expression of the IL-12 gene inside the tumor tissues. In order to transfer the plasmid encoding IL-12 gene, the most extensively investigated polycationic polymer, polyethylenimine (PEI), was modified by diethylene triamine penta-acetic acid (DTPA) to modulate the hydrophobic-hydrophilic balance of the polymer as well as its toxicity. DTPA-conjugated PEI derivatives were able to form complexes in the size range around 100-180 nm with great condensation ability and protection of the plasmid against enzymatic degradation. The highest gene transfer ability was achieved by the DTPA-conjugated PEI at the conjugation degree of 0.1 % where the level of IL-12 production increased up to twofold compared with that of the unmodified PEI. Results of the present study demonstrated that modulation of the surface positive charge of PEI along with the improvement of the polymer hydrophobic balance could be considered as a successful strategy to develop safe and powerful nanocarriers.

  19. A multi-center preclinical study of gadoxetate DCE-MRI in rats as a biomarker of drug induced inhibition of liver transporter function

    PubMed Central

    Lenhard, Stephen C.; Yerby, Brittany; Forsgren, Mikael F.; Liachenko, Serguei; Johansson, Edvin; Pilling, Mark A.; Peterson, Richard A.; Yang, Xi; Williams, Dominic P.; Ungersma, Sharon E.; Morgan, Ryan E.; Brouwer, Kim L. R.; Jucker, Beat M.; Hockings, Paul D.

    2018-01-01

    Drug-induced liver injury (DILI) is a leading cause of acute liver failure and transplantation. DILI can be the result of impaired hepatobiliary transporters, with altered bile formation, flow, and subsequent cholestasis. We used gadoxetate dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), combined with pharmacokinetic modelling, to measure hepatobiliary transporter function in vivo in rats. The sensitivity and robustness of the method was tested by evaluating the effect of a clinical dose of the antibiotic rifampicin in four different preclinical imaging centers. The mean gadoxetate uptake rate constant for the vehicle groups at all centers was 39.3 +/- 3.4 s-1 (n = 23) and 11.7 +/- 1.3 s-1 (n = 20) for the rifampicin groups. The mean gadoxetate efflux rate constant for the vehicle groups was 1.53 +/- 0.08 s-1 (n = 23) and for the rifampicin treated groups was 0.94 +/- 0.08 s-1 (n = 20). Both the uptake and excretion transporters of gadoxetate were statistically significantly inhibited by the clinical dose of rifampicin at all centers and the size of this treatment group effect was consistent across the centers. Gadoxetate is a clinically approved MRI contrast agent, so this method is readily transferable to the clinic. Conclusion: Rate constants of gadoxetate uptake and excretion are sensitive and robust biomarkers to detect early changes in hepatobiliary transporter function in vivo in rats prior to established biomarkers of liver toxicity. PMID:29771932

  20. A novel fluorescent probe (dtpa-bis(cytosine)) for detection of Eu(III) in rare earth metal ions

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Ren, Peipei; Liu, Guanhong; Song, Youtao; Bu, Naishun; Wang, Jun

    2018-03-01

    In this paper, a novel fluorescent probe, dtpa-bis(cytosine), was designed and synthesized for detecting europium (Eu3 +) ion. Upon addition of Eu3 + ions into the dtpa-bis(cytosine) solution, the fluorescence intensity can strongly be enhanced. Conversely, adding other rare earth metal ions, such as Y3 +, Ce3 +, Pr3 +, Nd3 +, Sm3 +, Gd3 +, Tb3 +, Dy3 +, Ho3 +, Er3 +, Yb3 + and Lu3 +, into dtpa-bis(cytosine) solution, the fluorescence intensity is decreased slightly. Some parameters affecting the fluorescence intensity of dtpa-bis(cytosine) solution in the presence of Eu3 + ions were investigated, including solution pH value, Eu3 + ion concentration and interfering substances. The detection mechanism of Eu3 + ion using dtpa-bis(cytosine) as fluorescent probe was proposed. Under optimum conditions, the fluorescence emission intensities of EuIII-dtpa-bis(cytosine) at 375 nm in the concentration range of 0.50 × 10- 5 mol • L- 1-5.00 × 10- 5 mol • L- 1 of Eu3 + ion display a better linear relationship. The limit of detection (LOD) was determined as 8.65 × 10- 7 mol • L- 1 and the corresponding correlation coefficient (R2) of the linear equation is 0.9807. It is wished that the proposed method could be applied for sensitively and selectively detecting Eu3 + ion.

  1. Pharmacokinetics and Magnetic Resonance Imaging of Biodegradable Macromolecular Blood-Pool Contrast Agent PG-Gd in Non-Human Primates: A Pilot Study

    PubMed Central

    Tian, Mei; Wen, Xiaoxia; Jackson, Edward F.; Ng, Chaan; Uthamanthil, Rajesh; Liang, Dong; Gelovani, Juri G.; Li, Chun

    2012-01-01

    The purpose of this study was to evaluate poly(L-glutamic acid)-benzyl-DTPA-Gd (PG-Gd), a new biodegradable macromolecular magnetic resonance imaging contrast agent, for its pharmacokinetics and MRI enhancement in nonhuman primates. Studies were performed in rhesus monkeys at intravenous doses of 0.01, 0.02, and 0.08 mmol Gd/kg. T1-weighted MR images were acquired at 1.5T using fast spoiled gradient recalled echo and fast spin echo imaging protocols. The small-molecule contrast agent Magnevist was used as a control. PG-Gd in the monkey showed a bi-exponential disposition. The initial blood concentrations within 2 hours of PG-Gd administration were much higher than for those of Magnevist. The high blood concentration of PG-Gd was consistent with the MR imaging data, which showed prolonged circulation of PG-Gd in the blood pool. Enhancement of blood vessels and organs with a high blood perfusion (heart, liver, and kidney) was clearly visualized at 2 hours after contrast injection at the three doses used. A greater than proportional increase of the area under the blood concentration-time curve was observed when the administered single dose was increased from 0.01 mmol/kg to 0.08 mmol/kg. By 2 days after PG-Gd injection, the contrast agent was mostly cleared from all major organs, including kidney. The mean residence time was 15 hours at the 0.08 mmol/kg dose. A similar pharmacokinetic profile was observed in mice, with a mean residence time of 5.4 hours and a volume of distribution at steady-state of 85.5 mL/kg, indicating that the drug was mainly distributed in the blood compartment. Based on this pilot study, further investigations on potential systemic toxicity of PG-Gd in both rodents and large animals are needed before testing this agent in humans. PMID:21861289

  2. Spectroscopic studies on interaction of BSA and Eu(III) complexes with H5ph-dtpa and H5dtpa ligands

    NASA Astrophysics Data System (ADS)

    Kong, Deyong; Qin, Cui; Fan, Ping; Li, Bing; Wang, Jun

    2015-04-01

    An novel aromatic aminopolycarboxylic acid ligand, N-(2-N,N-Dicarboxymethylaminophenyl) ethylenediamine-N,N‧,N‧-triacetic acid (H5ph-dtpa), was synthesized by improving experimental method and its corresponding Eu(III) complex, Na2[EuIII(ph-dtpa)(H2O)]·6H2O, was successfully prepared through heat-refluxing method. As a comparison, the Eu(III) complex with diethylenetriamine-N,N,N‧,N‧,N″-pentaacetic acid (H5dtpa) ligand, Na2[EuIII(dtpa)(H2O)]·6H2O, was also prepared by the same method. And then, the interaction between prepared Eu(III) complexes ([EuIII(dtpa)(H2O)]2- and [EuIII(ph-dtpa)(H2O)]2-) and bovine serum albumin (BSA) in aqueous solution were studied by the combination of ultraviolet-visible (UV-vis), fluorescence and circular dichroism (CD) spectroscopies. In addition, the binding sites of Eu(III) complexes ([EuIII(dtpa)(H2O)]2- and [EuIII(ph-dtpa)(H2O)]2-) to BSA molecules were also estimated by synchronous fluorescence. Moreover, the theoretical and experimental results show that the Van der Waals, hydrogen bond and π-π stacking interactions are the mainly impulse to the reaction. The binding distances (r) between Eu(III) complexes ([EuIII(dtpa)(H2O)]2- and [EuIII(ph-dtpa)(H2O)]2-) and BSA were obtained according to Förster's non-radiative energy transfer theory. Also, the determined UV-vis absorption spectroscopy, synchronous fluorescence and circular dichroism (CD) spectra showed that the conformation of BSA could be changed in the presence of Eu(III) complexes. The obtained results can help understand the action mode between rare earth metal complexes of aminopolycarboxylic acid ligands with BSA and they are also expected to provide important information of designs of new inspired drugs.

  3. Integrin αvβ3-targeted dynamic contrast-enhanced magnetic resonance imaging using a gadolinium-loaded polyethylene gycol-dendrimer-cyclic RGD conjugate to evaluate tumor angiogenesis and to assess early antiangiogenic treatment response in a mouse xenograft tumor model.

    PubMed

    Chen, Wei-Tsung; Shih, Tiffany Ting Fang; Chen, Ran-Chou; Tu, Shin-Yang; Hsieh, Wen-Yuen; Yang, Pang-Chyr

    2012-01-01

    The purpose of this study was to validate an integrin αvβ3-targeted magnetic resonance contrast agent, PEG-G3-(Gd-DTPA)6-(cRGD-DTPA)2, for its ability to detect tumor angiogenesis and assess early response to antiangiogenic therapy using dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI). Integrin αvβ3-positive U87 cells and control groups were incubated with fluorescein-labeled cRGD-conjugated dendrimer, and the cellular attachment of the dendrimer was observed. DCE MRI was performed on mice bearing KB xenograft tumors using either PEG-G3-(Gd-DTPA)6-(cRGD-DTPA)2 or PEG-G3-(Gd-DTPA)6-(cRAD-DTPA)2. DCE MRI was also performed 2 hours after anti-integrin αvβ3 monoclonal antibody treatment and after bevacizumab treatment on days 3 and 6t. Using DCE MRI, the 30-minute contrast washout percentage was significantly lower in the cRGD-conjugate injection groups. The enhancement patterns were different between the two contrast injection groups. In the antiangiogenic therapy groups, a rapid increase in 30-minute contrast washout percentage was observed in both the LM609 and bevacizumab treatment groups, and this occurred before there was an observable decrease in tumor size. The integrin αvβ3 targeting ability of PEG-G3-(Gd-DTPA)6-(cRGD-DTPA)2 in vitro and in vivo was demonstrated. The 30-minute contrast washout percentage is a useful parameter for examining tumor angiogenesis and for the early assessment of antiangiogenic treatment response.

  4. In Vitro Longitudinal Relaxivity Profile of Gd(ABE-DTTA), an Investigational Magnetic Resonance Imaging Contrast Agent

    PubMed Central

    Varga-Szemes, Akos; Kiss, Pal; Rab, Andras; Suranyi, Pal; Lenkey, Zsofia; Simor, Tamas; Bryant, Robert G.; Elgavish, Gabriel A.

    2016-01-01

    Purpose MRI contrast agents (CA) whose contrast enhancement remains relatively high even at the higher end of the magnetic field strength range would be desirable. The purpose of this work was to demonstrate such a desired magnetic field dependency of the longitudinal relaxivity for an experimental MRI CA, Gd(ABE-DTTA). Materials and Methods The relaxivity of 0.5mM and 1mM Gd(ABE-DTTA) was measured by Nuclear Magnetic Relaxation Dispersion (NMRD) in the range of 0.0002 to 1T. Two MRI and five NMR instruments were used to cover the range between 1.5 to 20T. Parallel measurement of a Gd-DTPA sample was performed throughout as reference. All measurements were carried out at 37°C and pH 7.4. Results The relaxivity values of 0.5mM and 1mM Gd(ABE-DTTA) measured at 1.5, 3, and 7T, within the presently clinically relevant magnetic field range, were 15.3, 11.8, 12.4 s-1mM-1 and 18.1, 16.7, and 13.5 s-1mM-1, respectively. The control 4 mM Gd-DTPA relaxivities at the same magnetic fields were 3.6, 3.3, and 3.0 s-1mM-1, respectively. Conclusions The longitudinal relaxivity of Gd(ABE-DTTA) measured within the presently clinically relevant field range is three to five times higher than that of most commercially available agents. Thus, Gd(ABE-DTTA) could be a practical choice at any field strength currently used in clinical imaging including those at the higher end. PMID:26872055

  5. Gadolinium-conjugated PLA-PEG nanoparticles as liver targeted molecular MRI contrast agent.

    PubMed

    Chen, Zhijin; Yu, Dexin; Liu, Chunxi; Yang, Xiaoyan; Zhang, Na; Ma, Chunhong; Song, Jibin; Lu, Zaijun

    2011-09-01

    A nanoparticle magnetic resonance imaging (MRI) contrast agent targeted to liver was developed by conjugation of gadolinium (Gd) chelate groups onto the biocompatible poly(l-lactide)-block-poly (ethylene glycol) (PLA-PEG) nanoparticles. PLA-PEG conjugated with diethylenetriaminopentaacetic acid (DTPA) was used to formulate PLA-PEG-DTPA nanoparticles by solvent diffusion method, and then Gd was loaded onto the nanoparticles by chelated with the unfolding DTPA on the surface of the PLA-PEG-DTPA nanoparticles. The mean size of the nanoparticles was 265.9 ± 6.7 nm. The relaxivity of the Gd-labeled nanoparticles was measured, and the distribution in vivo was evaluated in rats. Compared with conventional contrast agent (Magnevist), the Gd-labeled PLA-PEG nanoparticles showed significant enhancement both on liver targeting ability and imaging signal intensity. The T(1) and T(2) relaxivities per [Gd] of the Gd-labeled nanoparticles was 18.865 mM(-1) s(-1) and 24.863 mM(-1) s(-1) at 3 T, respectively. In addition, the signal intensity in vivo was stronger comparing with the Gd-DTPA and the T(1) weight time was lasting for 4.5 h. The liver targeting efficiency of the Gd-labeled PLA-PEG nanoparticles in rats was 14.57 comparing with Magnevist injection. Therefore, the Gd-labeled nanoparticles showed the potential as targeting molecular MRI contrast agent for further clinical utilization.

  6. Diagnostic Accuracy of Preoperative Gadoxetic Acid–enhanced 3-T MR Imaging for Malignant Liver Lesions by Using Ex Vivo MR Imaging–matched Pathologic Findings as the Reference Standard1

    PubMed Central

    Costa, Eduardo A. C.; Cunha, Guilherme M.; Smorodinsky, Emmanuil; Cruite, Irene; Tang, An; Marks, Robert M.; Clark, Lisa; Wolfson, Tanya; Gamst, Anthony; Sicklick, Jason K.; Hemming, Alan; Peterson, Michael R.; Middleton, Michael S.; Sirlin, Claude B.

    2016-01-01

    Purpose To determine per-lesion sensitivity and positive predictive value (PPV) of gadoxetic acid–enhanced 3-T magnetic resonance (MR) imaging for the diagnosis of malignant lesions by using matched (spatially correlated) hepatectomy pathologic findings as the reference standard. Materials and Methods In this prospective, institutional review board–approved, HIPAA-compliant study, 20 patients (nine men, 11 women; mean age, 59 years) with malignant liver lesions who gave written informed consent underwent preoperative gadoxetic acid–enhanced 3-T MR imaging for surgical planning. Two image sets were independently analyzed by three readers to detect liver lesions (set 1 without and set 2 with hepatobiliary phase [HBP] images). Hepatectomy specimen ex vivo MR imaging assisted in matching gadoxetic acid–enhanced 3-T MR imaging findings with pathologic findings. Interreader agreement was assessed by using the Cohen k coefficient. Per-lesion sensitivity and PPV were calculated. Results Cohen k values were 0.64–0.76 and 0.57–0.84, and overall per-lesion sensitivity was 45% (42 of 94 lesions) to 56% (53 of 94 lesions) and 58% (55 of 94 lesions) to 64% (60 of 94 lesions) for sets 1 and 2, respectively. The addition of HBP imaging did not affect interreader agreement but significantly improved overall sensitivity for one reader (P < .05) and almost for another (P = .05). Sensitivity for 0.2–0.5-cm lesions was 0% (0 of 26 lesions) to 8% (two of 26 lesions) for set 1 and 4% (one of 26 lesions) to 12% (three of 26 lesions) for set 2. Sensitivity for 0.6–1.0-cm lesions was 28% (nine of 32 lesions) to 59% (19 of 32 lesions) for set 1 and 66% (21 of 32 lesions) to 69% (22 of 32 lesions) for set 2. Sensitivity for lesions at least 1.0 cm in diameter was at least 81% (13 of 16 lesions) for set 1 and was not improved for set 2. PPV was 98% (56 of 57 lesions) to 100% (60 of 60 lesions) for all readers without differences between image sets or lesion size. Conclusion

  7. Pharmacokinetic and in vivo evaluation of a self-assembled gadolinium(III)-iron(II) contrast agent with high relaxivity.

    PubMed

    Parac-Vogt, Tatjana N; Vander Elst, Luce; Kimpe, Kristof; Laurent, Sophie; Burtéa, Carmen; Chen, Feng; Van Deun, Rik; Ni, Yicheng; Muller, Robert N; Binnemans, Koen

    2006-01-01

    A high-molecular weight tetrametallic supramolecular complex [(Ln-DTPA-phen)3Fe]- (Ln = Gd, Eu, La) has been obtained upon self-assembly around one iron(II) ion of three 1,10-phenantroline-based molecules substituted in 5'-position with the polyaminocarboxylate diethylenetriamine-N,N,N',N',N'-pentaacetate, DTPA-phen(4-). The ICP-MS measurements indicated that the lanthanide:iron ratio is 3:1. Photoluminescence spectra of [Eu-DTPA-phen](-) and of [(Eu-DTPA-phen)3Fe]- are nearly identical, implying that the first coordination sphere of the lanthanide(III) ion has not been changed upon coordination of phenantroline unit to iron(II) ion. NMRD measurements revealed that at 20 MHz and 310 K the relaxivity of the [(Gd-DTPA-phen)3Fe]- is equal to 9.5 +/- 0.3 s(-1) mM(-1) of Gd (28.5 s(-1) per millimole per liter of complex) which is significantly higher than that for Gd-DTPA (3.9 s(-1) mM(-1)). The pharmacokinetic parameters of [(Gd-DTPA-phen)3Fe]- in rats indicate that the elimination of [(Gd-DTPA-phen)3Fe]- is significantly slower than that of Gd-DTPA and is correlated with a reduced volume of distribution. The low volume of distribution and the longer elimination time (T(e1/2)) suggest that the agent is confined to the blood compartment, so it could have an important potential as a blood pool contrast agent. The biodistribution profile of [(Gd-DTPA-phen)3Fe]- 2 h after injection indicates significantly higher concentrations of [(Gd-DTPA-phen)3Fe]- as compared with Gd-DTPA in kidney, liver, lungs, heart and spleen. The images obtained on rats by MR angiography show the enhancement of the abdominal blood vessels. The signal intensity reaches a maximum of 55% at 7 min post-contrast and remains around 25% after 90 min. MRI-histomorphological correlation studies of [Gd-DTPA-phen]- and [(Gd-DTPA-phen)3Fe]- showed that both agents displayed potent contrast enhancement in organs including the liver. The necrosis avidity tests indicated that, in contrast to the [Gd-DTPA

  8. Role of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging in the management of hepatocellular carcinoma: consensus at the Symposium of the 48th Annual Meeting of the Liver Cancer Study Group of Japan.

    PubMed

    Kudo, Masatoshi; Matsui, Osamu; Sakamoto, Michiie; Kitao, Azusa; Kim, Tonsok; Ariizumi, Shun-ichi; Ichikawa, Tomoaki; Kobayashi, Satoshi; Imai, Yasuharu; Izumi, Namiki; Fujinaga, Yasunari; Arii, Shigeki

    2013-01-01

    We summarize here the consensus reached at the Symposium of the 48th Annual Meeting of the Liver Cancer Study Group of Japan held in Kanazawa on July 20th and 21st, 2012, on the role of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging (EOB-MRI) in the management of hepatocellular carcinoma (HCC). Currently, dynamic CT is the first choice of imaging modality when HCC is suspected. EOB-MRI is useful for differentiation and definitive diagnosis of HCC when dynamic CT/MRI does not show conclusive findings for HCC. In addition, contrast- enhanced ultrasound with Sonazoid is useful for making a decision on whether or not to treat a hypovascular lesion <1 cm when the nodules are shown with low intensity in the hepatocyte phase of EOB-MRI. Furthermore, EOB-MRI should be performed in selected cases of HCC ultrahigh-risk groups every 3-4 months, or EOB-MRI should be performed at least once at the first visit in all HCC ultrahigh-risk groups. Copyright © 2013 S. Karger AG, Basel.

  9. Registration of parametric dynamic F-18-FDG PET/CT breast images with parametric dynamic Gd-DTPA breast images

    NASA Astrophysics Data System (ADS)

    Magri, Alphonso; Krol, Andrzej; Lipson, Edward; Mandel, James; McGraw, Wendy; Lee, Wei; Tillapaugh-Fay, Gwen; Feiglin, David

    2009-02-01

    This study was undertaken to register 3D parametric breast images derived from Gd-DTPA MR and F-18-FDG PET/CT dynamic image series. Nonlinear curve fitting (Levenburg-Marquardt algorithm) based on realistic two-compartment models was performed voxel-by-voxel separately for MR (Brix) and PET (Patlak). PET dynamic series consists of 50 frames of 1-minute duration. Each consecutive PET image was nonrigidly registered to the first frame using a finite element method and fiducial skin markers. The 12 post-contrast MR images were nonrigidly registered to the precontrast frame using a free-form deformation (FFD) method. Parametric MR images were registered to parametric PET images via CT using FFD because the first PET time frame was acquired immediately after the CT image on a PET/CT scanner and is considered registered to the CT image. We conclude that nonrigid registration of PET and MR parametric images using CT data acquired during PET/CT scan and the FFD method resulted in their improved spatial coregistration. The success of this procedure was limited due to relatively large target registration error, TRE = 15.1+/-7.7 mm, as compared to spatial resolution of PET (6-7 mm), and swirling image artifacts created in MR parametric images by the FFD. Further refinement of nonrigid registration of PET and MR parametric images is necessary to enhance visualization and integration of complex diagnostic information provided by both modalities that will lead to improved diagnostic performance.

  10. Improved paramagnetic chelate for molecular imaging with MRI

    NASA Astrophysics Data System (ADS)

    Winter, Patrick; Athey, Phillip; Kiefer, Garry; Gulyas, Gyongyi; Frank, Keith; Fuhrhop, Ralph; Robertson, David; Wickline, Samuel; Lanza, Gregory

    2005-05-01

    The relaxivity and transmetallation of two lipophilic paramagnetic chelates incorporated onto perfluorocarbon nanoparticles, i.e., gadolinium-methoxy-tetraazacyclododecane-tetraacetic acid phosphatidylethanolamine (Gd-MeO-DOTA-PE) and gadolinium-methoxy-tetraazacyclododecane-tetraacetic acid triglycine phosphatidylethanolamine (Gd-MeO-DOTA-triglycine-PE (Gd-MeO-DOTA-triglycine-PE)), were compared to a prototypic gadolinium-diethylene-triamine-pentaacetic acid bis-oleate (Gd-DTPA-BOA) paramagnetic formulation. Nanoparticles with MeO-DOTA-based chelates demonstrated higher relaxivity (40% higher for Gd-MeO-DOTA-PE and 55% higher for Gd-MeO-DOTA-triglycine-PE) and less transmetallation than the original Gd-DTPA-BOA-based agent.

  11. Spectroscopic studies on interaction of BSA and Eu(III) complexes with H5ph-dtpa and H5dtpa ligands.

    PubMed

    Kong, Deyong; Qin, Cui; Fan, Ping; Li, Bing; Wang, Jun

    2015-04-05

    An novel aromatic aminopolycarboxylic acid ligand, N-(2-N,N-Dicarboxymethylaminophenyl) ethylenediamine-N,N',N'-triacetic acid (H5ph-dtpa), was synthesized by improving experimental method and its corresponding Eu(III) complex, Na2[EuIII(ph-dtpa)(H2O)]·6H2O, was successfully prepared through heat-refluxing method. As a comparison, the Eu(III) complex with diethylenetriamine-N,N,N',N',N″-pentaacetic acid (H5dtpa) ligand, Na2[Eu(III)(dtpa)(H2O)]·6H2O, was also prepared by the same method. And then, the interaction between prepared Eu(III) complexes ([EuIII(dtpa)(H2O)]2- and [EuIII(ph-dtpa)(H2O)]2-) and bovine serum albumin (BSA) in aqueous solution were studied by the combination of ultraviolet-visible (UV-vis), fluorescence and circular dichroism (CD) spectroscopies. In addition, the binding sites of Eu(III) complexes ([EuIII(dtpa)(H2O)]2- and [EuIII(ph-dtpa)(H2O)]2-) to BSA molecules were also estimated by synchronous fluorescence. Moreover, the theoretical and experimental results show that the Van der Waals, hydrogen bond and π-π stacking interactions are the mainly impulse to the reaction. The binding distances (r) between Eu(III) complexes ([EuIII(dtpa)(H2O)]2- and [EuIII(ph-dtpa)(H2O)]2-) and BSA were obtained according to Förster's non-radiative energy transfer theory. Also, the determined UV-vis absorption spectroscopy, synchronous fluorescence and circular dichroism (CD) spectra showed that the conformation of BSA could be changed in the presence of Eu(III) complexes. The obtained results can help understand the action mode between rare earth metal complexes of aminopolycarboxylic acid ligands with BSA and they are also expected to provide important information of designs of new inspired drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. A novel fluorescent probe (dtpa-bis(cytosine)) for detection of Eu(III) in rare earth metal ions.

    PubMed

    Yang, Fan; Ren, Peipei; Liu, Guanhong; Song, Youtao; Bu, Naishun; Wang, Jun

    2018-03-15

    In this paper, a novel fluorescent probe, dtpa-bis(cytosine), was designed and synthesized for detecting europium (Eu 3+ ) ion. Upon addition of Eu 3+ ions into the dtpa-bis(cytosine) solution, the fluorescence intensity can strongly be enhanced. Conversely, adding other rare earth metal ions, such as Y 3+ , Ce 3+ , Pr 3+ , Nd 3+ , Sm 3+ , Gd 3+ , Tb 3+ , Dy 3+ , Ho 3+ , Er 3+ , Yb 3+ and Lu 3+ , into dtpa-bis(cytosine) solution, the fluorescence intensity is decreased slightly. Some parameters affecting the fluorescence intensity of dtpa-bis(cytosine) solution in the presence of Eu 3+ ions were investigated, including solution pH value, Eu 3+ ion concentration and interfering substances. The detection mechanism of Eu 3+ ion using dtpa-bis(cytosine) as fluorescent probe was proposed. Under optimum conditions, the fluorescence emission intensities of Eu III -dtpa-bis(cytosine) at 375nm in the concentration range of 0.50×10 -5 mol∙L -1 -5.00×10 -5 mol∙L -1 of Eu 3+ ion display a better linear relationship. The limit of detection (LOD) was determined as 8.65×10 -7 mol∙L -1 and the corresponding correlation coefficient (R 2 ) of the linear equation is 0.9807. It is wished that the proposed method could be applied for sensitively and selectively detecting Eu 3+ ion. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Quantitative assessment of the rheumatoid synovial microvascular bed by gadolinium-DTPA enhanced magnetic resonance imaging

    PubMed Central

    Gaffney, K.; Cookson, J.; Blades, S.; Coumbe, A.; Blake, D.

    1998-01-01

    OBJECTIVE—To examine the relation between rate of synovial membrane enhancement, intra-articular pressure (IAP), and histologically determined synovial vascularity in rheumatoid arthritis, using gadolinium-DTPA enhanced magnetic resonance imaging (MRI).
METHODS—Dynamic gadolinium-DTPA enhanced MRI was performed in 31 patients with knee synovitis (10 patients IAP study, 21 patients vascular morphometry study). Rate of synovial membrane enhancement was quantified by line profile analysis using the image processing package ANALYZE. IAP was measured using an intra-compartmental pressure monitor system. Multiple synovial biopsy specimens were obtained by a blind biopsy technique. Blood vessels were identified immunohistochemically using the endothelial cell marker QBend30 and quantified (blood vessel numerical density and fractional area).
RESULTS—Median blood vessel numerical density and fractional area were 77.5/mm2 (IQR; 69.3-110.7) and 5.6% (IQR; 3.4-8.5) respectively. The rate of synovial membrane enhancement (median 2.74 signal intensity units/s, IQR 2.0-3.8) correlated with both blood vessel numerical density (r = 0.46, p < 0.05) and blood vessel fractional area (r = 0.55, p < 0.02). IAP did not influence the rate of enhancement.
CONCLUSIONS—Gadolinium-DTPA enhanced MRI may prove to be a valuable technique for evaluating drugs that influence angiogenesis.

 Keywords: magnetic resonance imaging; rheumatoid arthritis; synovitis; vascularity PMID:9640130

  14. Gd3+-DTPA-bis (N-methylamine) - anionic linear globular Dendrimer-G1; a more efficient MRI contrast media.

    PubMed

    Ghalandarlaki, N; Mohammadi, T D; Agha Babaei, R; Tabasi, M A; Keyhanvar, P; Mehravi, B; Yaghmaei, P; Cohan, R A; Ardestani, M S

    2014-02-01

    By advancing of molecular imaging techniques, magnetic resonance imaging (MRI) is becoming an increasingly important tool in early diagnosis. Researchers have found new ways to increase contrast of MRI images.Therefore some types of drug known as contrast media are produced. Contrast media improve the visibility of internal body structures in MRI images. Gadodiamide (Omniscan®) is one of these contrast media which is produced commercially and used clinically. In this study Gadodiamide was first synthesized and then qualitative and quantitative methods were carried out to ensure the proper synthesis of this drug then to increase the efficiency of this contrast medium use dendrimer that is one kind of nano particle. This dendrimer has a polyethylene glycol (PEG) core and citric acid branches. After dendrimer attached to Gadodiamide to ensure the proper efficient connection between them the stability studies were carried out and cytotoxicity of the drug was evaluated. Finally, after ensuring the non-toxicity of the drug, in vivo studies (injected into mice) MR imaging was performed to examine the impact of synthesis drug on the resolution of image.The result obtained from this study demonstrated that the attachment of Gadodiamide to dendrimer reduces its cytotoxicity and also improved resolution of image. Also the new contrast media (Gd3+-DTPA- bis [N-methylamine] - Dendrimer) - unlike Omniscan® - is biodegradable and able to enter the HEPG2 cell line. The results confirm the hypothesis that using dendrimer to synthesize this new nano contrast medium increases its effectiveness. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Development of a Gd(III)-based receptor-induced magnetization enhancement (RIME) contrast agent for β-glucuronidase activity profiling.

    PubMed

    Chen, Shih-Hsien; Kuo, Yu-Ting; Singh, Gyan; Cheng, Tian-Lu; Su, Yu-Zheng; Wang, Tzu-Pin; Chiu, Yen-Yu; Lai, Jui-Jen; Chang, Chih-Ching; Jaw, Twei-Shiun; Tzou, Shey-Cherng; Liu, Gin-Chung; Wang, Yun-Ming

    2012-11-19

    β-Glucuronidase is a key lysosomal enzyme and is often overexpressed in necrotic tumor masses. We report here the synthesis of a pro receptor-induced magnetization enhancement (pro-RIME) magnetic resonance imaging (MRI) contrast agent ([Gd(DOTA-FPβGu)]) for molecular imaging of β-glucuronidase activity in tumor tissues. The contrast agent consists of two parts, a gadolinium complex and a β-glucuronidase substrate (β-d-glucopyranuronic acid). The binding association constant (KA) of [Gd(DOTA-FPβGu)] is 7.42 × 10(2), which is significantly lower than that of a commercially available MS-325 (KA = 3.0 × 10(4)) RIME contrast agent. The low KA value of [Gd(DOTA-FPβGu)] is due to the pendant β-d-glucopyranuronic acid moiety. Therefore, [Gd(DOTA-FPβGu)] can be used for detection of β-glucuronidase through RIME modulation. The detail mechanism of enzymatic activation of [Gd(DOTA-FPβGu)] was elucidated by LC-MS. The kinetics of β-glucuronidase catalyzed hydrolysis of [Eu(DOTA-FPβGu)] at pH 7.4 best fit the Miechalis-Menten kinetic mode with Km = 1.38 mM, kcat = 3.76 × 10(3), and kcat/Km = 2.72 × 10(3) M(-1) s(-1). The low Km value indicates high affinity of β-glucuronidase for [Gd(DOTA-FPβGu)] at physiological pH. Relaxometric studies revealed that T1 relaxivity of [Gd(DOTA-FPβGu)] changes in response to the concentration of β-glucuronidase. Consistent with the relaxometric studies, [Gd(DOTA-FPβGu)] showed significant change in MR image signal in the presence of β-glucuronidase and HSA. In vitro and in vivo MR images demonstrated appreciable differences in signal enhancement in the cell lines and tumor xenografts in accordance to their expression levels of β-glucuronidase.

  16. Design, synthesis and evaluation of a new Mn - Contrast agent for MR imaging of myocardium based on the DTPA-phenylpentadecanoic acid complex

    NASA Astrophysics Data System (ADS)

    Belyanin, Maxim L.; Stepanova, Elena V.; Valiev, Rashid R.; Filimonov, Victor D.; Usov, Vladimir Y.; Borodin, Oleg Y.; Ågren, Hans

    2016-11-01

    In the present paper we describe the first synthesis and evaluation of a novel Mn (II) complex (DTPA-PPDA Mn (II)) which contains a C-15 fatty acid moiety that has high affinity to the heart muscle. The complexation energy of DTPA-PPDA Mn (II) evaluated by quantum chemistry methodology indicates that it essentially exceeds the corresponding value for the known DTPA Mn (II) complex. Molecular docking revealed that the affinity of the designed complex to the heart-type transport protein H-FABP well exceeds that of lauric acid. Phantom experiments in low-field MRI the designed contrast agent provides MR imaging comparable to gadopentetic acid.

  17. Magnetic resonance imaging of osteosarcoma using a bis(alendronate)-based bone-targeted contrast agent.

    PubMed

    Ge, Pingju; Sheng, Fugeng; Jin, Yiguang; Tong, Li; Du, Lina; Zhang, Lei; Tian, Ning; Li, Gongjie

    2016-12-01

    Magnetic resonance (MR) is currently used for diagnosis of osteosarcoma but not well even though contrast agents are administered. Here, we report a novel bone-targeted MR imaging contrast agent, Gd 2 -diethylenetriaminepentaacetate-bis(alendronate) (Gd 2 -DTPA-BA) for the diagnosis of osteosarcoma. It is the conjugate of a bone cell-seeking molecule (i.e., alendronate) and an MR imaging contrast agent (i.e., Gd-DTPA). Its physicochemical parameters were measured, including pK a , complex constant, and T 1 relaxivity. Its bone cell-seeking ability was evaluated by measuring its adsorption on hydroxyapatite. Hemolysis was investigated. MR imaging and biodistribution of Gd 2 -DTPA-BA and Gd-DTPA were studied on healthy and osteosarcoma-bearing nude mice. Gd 2 -DTPA-BA showed high adsorption on hydroxyapatite, the high MR relaxivity (r 1 ) of 7.613mM -1 s -1 (2.6 folds of Gd-DTPA), and no hemolysis. The MR contrast effect of Gd 2 -DTPA-BA was much higher than that of Gd-DTPA after intravenous injection to the mice. More importantly, the MR imaging of osteosarcoma was significantly improved by Gd 2 -DTPA-BA. The signal intensity of Gd 2 -DTPA-BA reached 120.3% at 50min, equal to three folds of Gd-DTPA. The bone targeting index (bone/blood) of Gd 2 -DTPA-BA in the osteosarcoma-bearing mice was very high to 130 at 180min. Furthermore, the contrast enhancement could also be found in the lung due to metastasis of osteosarcoma. Gd 2 -DTPA-BA plays a promising role in the diagnoses of osteosacomas, including the primary bone tumors and metastases. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. [Application of anoptomagnetic probe Gd-DO3A-EA-FITC in imaging and analyzing the brain interstitial space].

    PubMed

    Li, Y Q; Sheng, Y; Liang, L; Zhao, Y; Li, H Y; Bai, N; Wang, T; Yuan, L; Han, H B

    2018-04-18

    To investigate the application of the optical magnetic bimodal molecular probe Gd-DO3A-ethylthiouret-fluorescein isothiocyanate (Gd -DO3A-EA-FITC) in brain tissue imaging and brain interstitial space (ISS). In the study, 24 male SD rats were randomly divided into 3 groups, including magnetic probe group (n=6), optical probe group (n=6) and optical magnetic bimodal probe group (n=12), then the optical magnetic bimodal probe group was divided equally into magnetic probe subgroup (n=6) and optical probe subgroup (n=6). Referencing the brain stereotaxic atlas, the coronal globus pallidus as center level, the probes including gadolinium-diethylene triamine pentaacetic acid (Gd-DTPA), fluorescein isothiocyanate (FITC) and Gd-DO3A-EA-FITC of 2 μL (10 mmol/L) were injected into the caudate nucleus respectively, magnetic resonance imaging (MRI) was performed in the magnetic probe group and magnetic probe subgroup to image the dynamic diffusion and distribution of the probes in the brain ISS, a self-developed brain ISS image processing system was used to measure the diffusion coefficient, clearance, volume fraction and half-time in these two groups. Laser scanning confocal microscope (LSCM) was performed in vitro in the optical probe group and optical probe subgroup for fluorescence imaging at the time points 2 hours after the injection of the probe, and the distribution in the oblique sagittal slice was compared with the result of the first two groups. For the magnetic probe group and magnetic probe subgroup, there were the same imaging results between the probes of Gd-DTPA and Gd-DO3A-EA-FITC. The diffusion parameters of Gd-DTPA and Gd-DO3A-EA-FITC were as follows: the average diffusion coefficients [(3.31±0.11)×10 -4 mm 2 /s vs. (3.37±0.15)×10 -4 mm 2 /s, t=0.942, P=0.360], the clearance [(3.04±0.37) mmol/L vs. (2.90±0.51) mmol/L, t=0.640, P=0.531], the volume fractions (17.18%±0.14% vs. 17.31%±0.15%, t=1.961, P=0.068), the half-time [(86.58±3.31) min vs. (84

  19. Ion-pairing HPLC methods to determine EDTA and DTPA in small molecule and biological pharmaceutical formulations.

    PubMed

    Wang, George; Tomasella, Frank P

    2016-06-01

    Ion-pairing high-performance liquid chromatography-ultraviolet (HPLC-UV) methods were developed to determine two commonly used chelating agents, ethylenediaminetetraacetic acid (EDTA) in Abilify® (a small molecule drug with aripiprazole as the active pharmaceutical ingredient) oral solution and diethylenetriaminepentaacetic acid (DTPA) in Yervoy® (a monoclonal antibody drug with ipilimumab as the active pharmaceutical ingredient) intravenous formulation. Since the analytes, EDTA and DTPA, do not contain chromophores, transition metal ions (Cu 2+ , Fe 3+ ) which generate highly stable metallocomplexes with the chelating agents were added into the sample preparation to enhance UV detection. The use of metallocomplexes with ion-pairing chromatography provides the ability to achieve the desired sensitivity and selectivity in the development of the method. Specifically, the sample preparation involving metallocomplex formation allowed sensitive UV detection. Copper was utilized for the determination of EDTA and iron was utilized for the determination of DTPA. In the case of EDTA, a gradient mobile phase separated the components of the formulation from the analyte. In the method for DTPA, the active drug substance, ipilimumab, was eluted in the void. In addition, the optimization of the concentration of the ion-pairing reagent was discussed as a means of enhancing the retention of the aminopolycarboxylic acids (APCAs) including EDTA and DTPA and the specificity of the method. The analytical method development was designed based on the chromatographic properties of the analytes, the nature of the sample matrix and the intended purpose of the method. Validation data were presented for the two methods. Finally, both methods were successfully utilized in determining the fate of the chelates.

  20. Gadolinium-loaded polymeric nanoparticles modified with Anti-VEGF as multifunctional MRI contrast agents for the diagnosis of liver cancer.

    PubMed

    Liu, Yongjun; Chen, Zhijin; Liu, Chunxi; Yu, Dexin; Lu, Zaijun; Zhang, Na

    2011-08-01

    Molecular imaging is essential to increase the sensitivity and selectivity of cancer diagnosis especially in the early stage of tumor. Here, we designed a novel multifunctional polymeric nanoparticle contrast agent (Anti-VEGF PLA-PEG-PLL-Gd NP) simultaneously modified with Gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) and anti-vascular endothelial growth factor (VEGF) antibody to deliver Gd-DTPA to the tumor area and achieve the early diagnosis of hepatocellular carcinoma (HCC). The Anti-VEGF PLA-PEG-PLL-Gd NPs exhibited high T(1) relaxivity and no obvious cytotoxicity under the experimental concentrations in human hepatocellular carcinoma (HepG2) cells. The results of in vitro cell uptake experiments demonstrated that the uptake process of NPs was both concentration and time depended. Compared with non-targeted NPs, the Anti-VEGF antibody modified NPs showed much higher cell uptake in the HepG2 cells. During in vivo studies, the targeted NPs showed significantly signal intensity enhancement at the tumor site (mouse hepatocarcinoma tumor, H22) compared with non-targeted NPs and Gd-DTPA injection in tumor-bearing mice and the imaging time was significantly prolonged from less than an hour (Gd-DTPA injection group) to 12 h. These results demonstrated that this novel MRI contrast agent Anti-VEGF PLA-PEG-PLL-Gd NPs showed great potential in the early diagnosis of liver tumors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Anti-EpCAM scFv gadolinium chelate: a novel targeted MRI contrast agent for imaging of colorectal cancer.

    PubMed

    Khantasup, Kannika; Saiviroonporn, Pairash; Jarussophon, Suwatchai; Chantima, Warangkana; Dharakul, Tararaj

    2018-05-08

    The development of targeted contrast agents for magnetic resonance imaging (MRI) facilitates enhanced cancer imaging and more accurate diagnosis. In the present study, a novel contrast agent was developed by conjugating anti-EpCAM humanized scFv with gadolinium chelate to achieve target specificity. The material design strategy involved site-specific conjugation of the chelating agent to scFv. The scFv monomer was linked to maleimide-DTPA via unpaired cysteine at the scFv C-terminus, followed by chelation with gadolinium (Gd). Successful scFv-DTPA conjugation was achieved at 1:10 molar ratio of scFv to maleimide-DTPA at pH 6.5. The developed anti-EpCAM-Gd-DTPA MRI contrast agent was evaluated for cell targeting ability, in vitro serum stability, cell cytotoxicity, relaxivity, and MR contrast enhancement. A high level of targeting efficacy of anti-EpCAM-Gd-DTPA to an EpCAM-overexpressing HT29 colorectal cell was demonstrated by confocal microscopy. Good stability of the contrast agent was obtained and no cytotoxicity was observed in HT29 cells after 48 h incubation with 25-100 µM of Gd. Favorable imaging was obtained using anti-EpCAM-Gd-DTPA, including 1.8-fold enhanced relaxivity compared with Gd-DTPA, and MR contrast enhancement observed after binding to HT29. The potential benefit of this contrast agent for in vivo MR imaging of colorectal cancer, as well as other EpCAM positive cancers, is suggested and warrants further investigation.

  2. A novel paramagnetic substrate for detecting myeloperoxidase activity in vivo.

    PubMed

    Shazeeb, Mohammed S; Xie, Yang; Gupta, Suresh; Bogdanov, Alexei A

    2012-01-01

    Bis-phenylamides and bis-hydroxyindolamides of diethylenetriaminepentaacetic acid-gadolinium (DTPA(Gd)) are paramagnetic reducing substrates of peroxidases that enable molecular imaging of peroxidase activity in vivo. Specifically, gadolinium chelates of bis-5-hydroxytryptamide-DTPA (bis-5HT-DTPA(Gd)) have been used to image localized inflammation in animal models by detecting neutrophil-derived myeloperoxidase (MPO) activity at the inflammation site. However, in other preclinical disease models, bis-5HT-DTPA(Gd) presents technical challenges due to its limited solubility in vivo. Here we report a novel MPO-sensing probe obtained by replacing the reducing substrate serotonin (5-HT) with 5-hydroxytryptophan (HTrp). Characterization of the resulting probe (bis-HTrp-DTPA(Gd)) in vitro using nuclear magnetic resonance spectroscopy and enzyme kinetic analysis showed that bis-HTrp-DTPA(Gd) (1) improves solubility in water; (2) acts as a substrate for both horseradish peroxidase and MPO enzymes; (3) induces cross-linking of proteins in the presence of MPO; (4) produces oxidation products, which bind to plasma proteins; and (5) unlike bis-5HT-DTPA(Gd), does not follow first-order reaction kinetics. In vivo magnetic resonance imaging (MRI) in mice demonstrated that bis-HTrp-DTPA(Gd) was retained for up to 5 days in MPO-containing sites and cleared faster than bis-5HT-DTPA(Gd) from MPO-negative sites. Bis-HTrp-DTPA(Gd) should offer improvements for MRI of MPO-mediated inflammation in vivo, especially in high-field MRI, which requires a higher dose of contrast agent.

  3. Nephrogenic Systemic Fibrosis Risk After Liver Magnetic Resonance Imaging With Gadoxetate Disodium in Patients With Moderate to Severe Renal Impairment

    PubMed Central

    Lauenstein, Thomas; Ramirez-Garrido, Francisco; Kim, Young Hoon; Rha, Sung Eun; Ricke, Jens; Phongkitkarun, Sith; Boettcher, Joachim; Gupta, Rajan T.; Korpraphong, Pornpim; Tanomkiat, Wiwatana; Furtner, Julia; Liu, Peter S.; Henry, Maren; Endrikat, Jan

    2015-01-01

    Objective The objective of this study was to assess the risk of gadoxetate disodium in liver imaging for the development of nephrogenic systemic fibrosis (NSF) in patients with moderate to severe renal impairment. Materials and Methods We performed a prospective, multicenter, nonrandomized, open-label phase 4 study in 35 centers from May 2009 to July 2013. The study population consisted of patients with moderate to severe renal impairment scheduled for liver imaging with gadoxetate disodium. All patients received a single intravenous bolus injection of 0.025-mmol/kg body weight of liver-specific gadoxetate disodium. The primary target variable was the number of patients who develop NSF within a 2-year follow-up period. Results A total of 357 patients were included, with 85 patients with severe and 193 patients with moderate renal impairment, which were the clinically most relevant groups. The mean time period from diagnosis of renal disease to liver magnetic resonance imaging (MRI) was 1.53 and 5.46 years in the moderate and severe renal impairment cohort, respectively. Overall, 101 patients (28%) underwent additional contrast-enhanced MRI with other gadolinium-based MRI contrast agents within 12 months before the start of the study or in the follow-up. No patient developed symptoms conclusive of NSF within the 2-year follow-up. Conclusions Gadoxetate disodium in patients with moderate to severe renal impairment did not raise any clinically significant safety concern. No NSF cases were observed. PMID:25756684

  4. Widespread anthropogenic Gd anomalies in waters. Preliminary results on a small Mediterranean drainage basin (Thau Lagoon, France)

    NASA Astrophysics Data System (ADS)

    ELBAZ-POULICHET, F.; SEIDEL, J.

    2001-05-01

    Recent evidence of perturbation of REE signature marked by pronounced positive Gd anomalies have been found in surface waters of densely populated and industrialised regions, in Germany and Japan. This study presents REE data in water from a small Mediterranean basin (the Thau lagoon) located on the southwestern French Mediterranean coast, which is a densely populated region.. Positive Gd anomalies (up to 5) are observed in the major river feeding the lagoon and in the lagoon where the highest values are encountered in the close vicinity of the continental sources. The systematic and concomitant observation of similar anomalies, in sewage treatment plant effluents, suggests that they have an anthropogenic origin. The suspended load does not display any Gd anomaly indicating that the Gd input occurs mainly in the dissolved phase. In addition, the appearance of Gd anomaly is not accompanied by an overall increase of REE concentrations. The gadopentetic acid, Gd(DTPA)2- used as a contrasting agent in magnetic resonance imaging could account for such anomalies but remains to be confirmed. Finally positive Gd anomalies appear a common feature in waters of densely populated regions with high standard of living . These anomalies may have an application in water resource management as a tracer of anthropogenic impacts.

  5. Drug-carrying microbubbles as a theranostic tool in convection-enhanced delivery for brain tumor therapy.

    PubMed

    Chen, Pin-Yuan; Yeh, Chih-Kuang; Hsu, Po-Hung; Lin, Chung-Yin; Huang, Chiung-Yin; Wei, Kuo-Chen; Liu, Hao-Li

    2017-06-27

    Convection-enhanced delivery (CED) is a promising technique for infusing a therapeutic agent through a catheter with a pressure gradient to create bulk flow for improving drug spread into the brain. So far, gadopentetate dimeglumine (Gd-DTPA) is the most commonly applied surrogate agent for predicting drug distribution through magnetic resonance imaging (MRI). However, Gd-DTPA provides only a short observation duration, and concurrent infusion provides an indirect measure of the exact drug distribution. In this study, we propose using microbubbles as a contrast agent for MRI monitoring, and evaluate their use as a drug-carrying vehicle to directly monitor the infused drug. Results show that microbubbles can provide excellent detectability through MRI relaxometry and accurately represent drug distribution during CED infusion. Compared with the short half-life of Gd-DTPA (1-2 hours), microbubbles allow an extended observation period of up to 12 hours. Moreover, microbubbles provide a sufficiently high drug payload, and glioma mice that underwent a CED infusion of microbubbles carrying doxorubicin presented considerable tumor growth suppression and a significantly improved survival rate. This study recommends microbubbles as a new theranostic tool for CED procedures.

  6. Gd2O3 nanoparticles stabilized by hydrothermally modified dextrose for positive contrast magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Babić-Stojić, Branka; Jokanović, Vukoman; Milivojević, Dušan; Požek, Miroslav; Jagličić, Zvonko; Makovec, Darko; Arsikin, Katarina; Paunović, Verica

    2016-04-01

    Gd2O3 nanoparticles of a few nm in size and their agglomerates dispersed in dextrose derived polymer template were synthesized by hydrothermal treatment. The produced nanosized material was investigated by TEM, FTIR spectroscopy, SQUID measurements and NMR relaxometry. Biological evaluation of this material was done by crystal violet and MTT assays to determine the cell viability. Longitudinal and transverse NMR relaxivities of water diluted Gd2O3 nanoparticle dispersions measured at the magnetic field of 1.5 T, estimated to be r1(Gd2O3)=9.6 s-1 mM-1 in the Gd concentration range 0.1-30 mM and r2(Gd2O3)=17.7 s-1 mM-1 in the lower concentration range 0.1-0.8 mM, are significantly higher than the corresponding relaxivities measured for the standard contrast agent r1(Gd-DTPA)=4.1 s-1 mM-1 and r2(Gd-DTPA)=5.1 s-1 mM-1. The ratio of the two relaxivities for Gd2O3 nanoparticles r2/r1=1.8 is suitable for T1-weighted imaging. Good MRI signal intensities of the water diluted Gd2O3 nanoparticle dispersions were recorded at lower Gd concentrations 0.2-0.8 mM. The Gd2O3 samples did not exert any significant cytotoxic effects at Gd concentrations of 0.2 mM and below. These properties of the produced Gd2O3 nanoparticles in hydrothermally modified dextrose make them promising for potential application in MRI for the design of a positive MRI contrast agent.

  7. Effect of intravenous gadolinium-DTPA on diffusion-weighted imaging for prostate lesions and normal tissue at 3.0-Tesla magnetic resonance imaging.

    PubMed

    Liu, Xiaohang; Zhou, Liangping; Peng, Weijun; Qian, Min

    2011-06-01

    Post-contrast diffusion-weighted imaging (DWI) is occasionally necessary when the results of the pre-contrast DWI differ from that of the dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), however, the effects of contrast material on DWI image and apparent diffusion coefficient (ADC) values have not been fully examined. To assess whether the administration of gadolinium-DTPA (Gd-DTPA) significantly affects the DWI of prostate lesions or normal tissue at the 3.0 Tesla magnetic resonance imaging (3.0 T MRI). Fifty-one patients with 52 prostate lesions, including 32 prostate cancer (25 in the peripheral zone [PZ] and seven that could not be confidently located) and 20 benign lesions (11 in PZ and nine in central grand [CG]), underwent echo-planar imaging (EPI)-DWI with b values of 0, 1000 s/mm(2) before and after administration of Gd-DTPA at 3.0 T MRI. Regions of interest (ROI) were drawn in all lesions, 42 normal PZ, 44 CG tissue and air to calculate the signal-to-noise ratio (SNR) and ADC values of lesions and normal tissue, and contrast-to-noise ratio (CNR) of lesions for pre- and post-contrast images. Statistical differences between pre- and post-contrast data were assessed by use of a paired t test. No significant differences between pre- and post-contrast images were found in the CNR of lesions and SNR of all the tissue except CG, which showed a statistically significant decline (9.6%, p < 0.0001) in SNR after contrast relative to the pre-contrast images. The post-contrast ADC values were statistically significantly lower than pre-contrast for prostate cancer (0.80 ± 0.11 mm(2)/s Vs 0.89 ± 0.12 mm(2)/s, p < 0.0001) and benign lesions (1.14 ± 0.30 mm(2)/s vs. 1.2 ± 0.29 mm(2)/s, p < 0.0001). No significant differences were detected for normal tissue. The administration of Gd-DTPA can slightly affect the DWI image quality of the prostate and reduce the ADC value of lesions at 3.0T MRI. Applications of post-contrast DWI require caution in

  8. Improved labelling of DTPA- and DOTA-conjugated peptides and antibodies with 111In in HEPES and MES buffer.

    PubMed

    Brom, Maarten; Joosten, Lieke; Oyen, Wim Jg; Gotthardt, Martin; Boerman, Otto C

    2012-01-27

    In single photon emission computed tomography [SPECT], high specific activity of 111In-labelled tracers will allow administration of low amounts of tracer to prevent receptor saturation and/or side effects. To increase the specific activity, we studied the effect of the buffer used during the labelling procedure: NaAc, NH4Ac, HEPES and MES buffer. The effect of the ageing of the 111InCl3 stock and cadmium contamination, the decay product of 111In, was also examined in these buffers. Escalating amounts of 111InCl3 were added to 1 μg of the diethylene triamine pentaacetic acid [DTPA]- and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid [DOTA]-conjugated compounds (exendin-3, octreotide and anti-carbonic anhydrase IX [CAIX] antibody). Five volumes of 2-(N-morpholino)ethanesulfonic acid [MES], 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid [HEPES], NH4Ac or NaAc (0.1 M, pH 5.5) were added. After 20 min at 20°C (DTPA-conjugated compounds), at 95°C (DOTA-exendin-3 and DOTA-octreotide) or at 45°C (DOTA-anti-CAIX antibody), the labelling efficiency was determined by instant thin layer chromatography. The effect of the ageing of the 111InCl3 stock on the labelling efficiency of DTPA-exendin-3 as well as the effect of increasing concentrations of Cd2+ (the decay product of 111In) were also examined. Specific activities obtained for DTPA-octreotide and DOTA-anti-CAIX antibody were five times higher in MES and HEPES buffer. Radiolabelling of DTPA-exendin-3, DOTA-exendin-3 and DTPA-anti-CAIX antibody in MES and HEPES buffer resulted in twofold higher specific activities than that in NaAc and NH4Ac. Labelling of DTPA-exendin-3 decreased with 66% and 73% for NaAc and NH4Ac, respectively, at day 11 after the production date of 111InCl3, while for MES and HEPES, the maximal decrease in the specific activity was 10% and 4% at day 11, respectively. The presence of 1 pM Cd2+ in the labelling mixture of DTPA-exendin-3 in NaAc and NH4Ac markedly reduced the labelling

  9. Gadolinium-encapsulating iron oxide nanoprobe as activatable NMR/MRI contrast agent.

    PubMed

    Santra, Santimukul; Jativa, Samuel D; Kaittanis, Charalambos; Normand, Guillaume; Grimm, Jan; Perez, J Manuel

    2012-08-28

    Herein we report a novel gadolinium-encapsulating iron oxide nanoparticle-based activatable NMR/MRI nanoprobe. In our design, Gd-DTPA is encapsulated within the poly(acrylic acid) (PAA) polymer coating of a superparamagnetic iron oxide nanoparticle (IO-PAA), yielding a composite magnetic nanoprobe (IO-PAA-Gd-DTPA) with quenched longitudinal spin-lattice magnetic relaxation (T(1)). Upon release of the Gd-DTPA complex from the nanoprobe's polymeric coating in acidic media, an increase in the T(1) relaxation rate (1/T(1)) of the composite magnetic nanoprobe was observed, indicating a dequenching of the nanoprobe with a corresponding increase in the T(1)-weighted MRI signal. When a folate-conjugated nanoprobe was incubated in HeLa cells, a cancer cell line overexpressing folate receptors, an increase in the 1/T(1) signal was observed. This result suggests that, upon receptor-mediated internalization, the composite magnetic nanoprobe degraded within the cell's lysosome acidic (pH 5.0) environment, resulting in an intracellular release of Gd-DTPA complex with subsequent T(1) activation. In addition, when an anticancer drug (Taxol) was coencapsulated with the Gd-DTPA within the folate receptor targeting composite magnetic nanoprobe, the T(1) activation of the probe coincided with the rate of drug release and corresponding cytotoxic effect in cell culture studies. Taken together, these results suggest that our activatable T(1) nanoagent could be of great importance for the detection of acidic tumors and assessment of drug targeting and release by MRI.

  10. Molecular MRI of Cardiomyocyte Apoptosis with Simultaneous Delayed Enhancement MRI Distinguishes Apoptotic and Necrotic Myocytes In Vivo: Potential for Midmyocardial Salvage in Acute Ischemia

    PubMed Central

    Sosnovik, David E.; Garanger, Elisabeth; Aikawa, Elena; Nahrendorf, Matthias; Figuiredo, Jose-Luiz; Dai, Guangping; Reynolds, Fred; Rosenzweig, Anthony; Weissleder, Ralph; Josephson, Lee

    2009-01-01

    Background A novel dual contrast molecular MRI technique to image both cardiomyocyte (CM) apoptosis and necrosis in-vivo within 4-6 hours of ischemia is presented. The technique utilizes the annexin-based nanoparticle AnxCLIO-Cy5.5 (apoptosis) and simultaneous delayed enhancement (DE) imaging with a novel gadolinium chelate, Gd-DTPA-NBD (necrosis). Methods and Results Mice with transient coronary ligation were injected intravenously at the onset of reperfusion with AnxCLIO-Cy5.5 (n=7) or the control probe Inact_CLIO-Cy5.5 (n=6). T2* weighted MR images (9.4 Tesla) were acquired within 4-6 hours of reperfusion. The contrast-to-noise ratio (CNR) between injured and uninjured myocardium was measured. The mice were then injected with Gd-DTPA-NBD and DE imaging was performed within 10-30 minutes. Uptake of AnxCLIO-Cy5.5 was most prominent in the midmyocardium and was significantly greater than that of Inact_CLIO-Cy5.5 (CNR 8.82 +/− 1.5 versus 3.78 +/− 1.1, p < 0.05). Only 21 +/− 3% of the myocardium with accumulation of AnxCLIO-Cy5.5 showed DE of Gd-DTPA-NBD. Wall thickening was significantly reduced in segments with DE and/or transmural accumulation of AnxCLIO-Cy5.5 (p < 0.001). Fluorescence microscopy of AnxCLIO-Cy5.5 and immunohistochemistry of Gd-DTPA-NBD confirmed the presence of large numbers of apoptotic but potentially viable CMs (AnxCLIO-Cy5.5 positive, Gd-DTPA-NBD negative) in the midmyocardium. Conclusions A novel technique to image CM apoptosis and necrosis in-vivo within 4-6 hours of injury is presented, and reveals large areas of apoptotic but viable myocardium in the midmyocardium. Strategies to salvage the numerous apoptotic but potentially viable CMs in the midmyocardium in acute ischemia should be investigated. PMID:19920044

  11. Design and synthesis of a novel lanthanide fluorescent probe (TbIII-dtpa-bis(2,6-diaminopurine)) and its application to the detection of uric acid in urine sample.

    PubMed

    Yang, Fan; Yu, Zhiyue; Li, Xinyi; Ren, Peipei; Liu, Guanhong; Song, Youtao; Wang, Jun

    2018-06-03

    In this study, a novel fluorescent probe, Tb III -dtpa-bis(2,6-diaminopurine) (Tb-dtpa-bdap), is designed based on the principle of complementary base pairing and synthesized for uric acid detection. The synthesized fluorescent probe is characterized by 1 H NMR, 13 C NMR, infra-red (IR) spectrum and ultraviolet-visible (UV-vis) spectra. It is found that the fluorescence of Tb-dtpa-bdap solution can be quenched obviously in the presence of uric acid. The affecting factors, including solution acidity, uric acid concentration and interfering substances, on the detection of uric acid using this probe are examined. Under optimized conditions, the fluorescence intensities of Tb-dtpa-bdap solution towards different uric acid concentrations show a linear response in the range from 1.00 × 10 -5  mol·L -1 to 5.00 × 10 -5  mol·L -1 with a linear correlation coefficient (R 2 ) of 0.9877. And the obtained limit of detection (LOD) is about 5.80 × 10 -6  mol·L -1 , which is lower than the level of uric acid in actual urine. The mechanism on the detection of uric acid by using Tb-dtpa-bdap is inferred from the experimental results. The facts demonstrate that the proposed fluorescent probe can be successfully applied for the determination of uric acid in human urine samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. NMR relaxometric properties and cytotoxicity of Gd2O3 nanoparticle suspensions in an organic liquid

    NASA Astrophysics Data System (ADS)

    Babić-Stojić, Branka; Jokanović, Vukoman; Milivojević, Dušan; Požek, Miroslav; Jagličić, Zvonko; Makovec, Darko; Arsikin, Katarina; Paunović, Verica

    2014-10-01

    Gd2O3 nanoparticles and their agglomerates from approximately 10 to 80 nm in size suspended in an organic liquid were synthesized via polyol route. The reaction between diethylene glycol and added acetic acid, which occurred simultaneously with the synthesis of Gd2O3 nanoparticles, was catalyzed by sodium bisulfate to transform as much as possible diethylene glycol in corresponding ester at the end of complete reaction. The produced nanosized material of gadolinium oxide was investigated by TEM, DLS, FTIR spectroscopy, and NMR relaxometry. Biological evaluation of this material was done by MTT and crystal violet assays to determine the cell viability. Longitudinal and transverse relaxivities of water-diluted Gd2O3 nanoparticle suspensions estimated to be r 1 = 13.6 and r 2 = 14.7 s-1 mM-1 are about three times higher compared to the relaxivities obtained for standard contrast agent Gd-DTPA (Magnevist). Good MRI signal intensities of the water-diluted Gd2O3 nanoparticle suspensions were recorded in the Gd concentration range 0.2-0.3 mM for which the suspensions were not toxic exhibiting simultaneously higher signal intensities than those for Magnevist in the Gd concentration range 0.4-1 mM for which this standard contrast agent was not toxic. These properties make the produced Gd2O3 nanoparticle material promising for potential application as MRI contrast agent.

  13. Convection-enhanced delivery of M13 bacteriophage to the brain

    PubMed Central

    Ksendzovsky, Alexander; Walbridge, Stuart; Saunders, Richard C.; Asthagiri, Ashok R.; Heiss, John D.; Lonser, Russell R.

    2013-01-01

    Object Recent studies indicate that M13 bacteriophage, a very large nanoparticle, binds to β-amyloid and α-synuclein proteins, leading to plaque disaggregation in models of Alzheimer and Parkinson disease. To determine the feasibility, safety, and characteristics of convection-enhanced delivery (CED) of M13 bacteriophage to the brain, the authors perfused primate brains with bacteriophage. Methods Four nonhuman primates underwent CED of M13 bacteriophage (900 nm) to thalamic gray matter (4 infusions) and frontal white matter (3 infusions). Bacteriophage was coinfused with Gd-DTPA (1 mM), and serial MRI studies were performed during infusion. Animals were monitored for neurological deficits and were killed 3 days after infusion. Tissues were analyzed for bacteriophage distribution. Results Real-time T1-weighted MRI studies of coinfused Gd-DTPA during infusion demonstrated a discrete region of perfusion in both thalamic gray and frontal white matter. An MRI-volumetric analysis revealed that the mean volume of distribution (Vd) to volume of infusion (Vi) ratio of M13 bacteriophage was 2.3 ± 0.2 in gray matter and 1.9 ± 0.3 in white matter. The mean values are expressed ± SD. Immunohistochemical analysis demonstrated mean Vd:Vi ratios of 2.9 ± 0.2 in gray matter and 2.1 ± 0.3 in white matter. The Gd-DTPA accurately tracked M13 bacteriophage distribution (the mean difference between imaging and actual bacteriophage Vd was insignificant [p > 0.05], and was −2.2% ± 9.9% in thalamic gray matter and 9.1% ± 9.5% in frontal white matter). Immunohistochemical analysis revealed evidence of additional spread from the initial delivery site in white matter (mean Vd:Vi, 16.1 ± 9.1). All animals remained neurologically intact after infusion during the observation period, and histological studies revealed no evidence of toxicity. Conclusions The CED method can be used successfully and safely to distribute M13 bacteriophage in the brain. Furthermore, additional white

  14. Convection-enhanced delivery of M13 bacteriophage to the brain.

    PubMed

    Ksendzovsky, Alexander; Walbridge, Stuart; Saunders, Richard C; Asthagiri, Ashok R; Heiss, John D; Lonser, Russell R

    2012-08-01

    Recent studies indicate that M13 bacteriophage, a very large nanoparticle, binds to β-amyloid and α-synuclein proteins, leading to plaque disaggregation in models of Alzheimer and Parkinson disease. To determine the feasibility, safety, and characteristics of convection-enhanced delivery (CED) of M13 bacteriophage to the brain, the authors perfused primate brains with bacteriophage. Four nonhuman primates underwent CED of M13 bacteriophage (900 nm) to thalamic gray matter (4 infusions) and frontal white matter (3 infusions). Bacteriophage was coinfused with Gd-DTPA (1 mM), and serial MRI studies were performed during infusion. Animals were monitored for neurological deficits and were killed 3 days after infusion. Tissues were analyzed for bacteriophage distribution. Real-time T1-weighted MRI studies of coinfused Gd-DTPA during infusion demonstrated a discrete region of perfusion in both thalamic gray and frontal white matter. An MRI-volumetric analysis revealed that the mean volume of distribution (Vd) to volume of infusion (Vi) ratio of M13 bacteriophage was 2.3 ± 0.2 in gray matter and 1.9 ± 0.3 in white matter. The mean values are expressed ± SD. Immunohistochemical analysis demonstrated mean Vd:Vi ratios of 2.9 ± 0.2 in gray matter and 2.1 ± 0.3 in white matter. The Gd-DTPA accurately tracked M13 bacteriophage distribution (the mean difference between imaging and actual bacteriophage Vd was insignificant [p > 0.05], and was -2.2% ± 9.9% in thalamic gray matter and 9.1% ± 9.5% in frontal white matter). Immunohistochemical analysis revealed evidence of additional spread from the initial delivery site in white matter (mean Vd:Vi, 16.1 ± 9.1). All animals remained neurologically intact after infusion during the observation period, and histological studies revealed no evidence of toxicity. The CED method can be used successfully and safely to distribute M13 bacteriophage in the brain. Furthermore, additional white matter spread after infusion cessation

  15. Design and synthesis of novel adenine fluorescence probe based on Eu(III) complexes with dtpa-bis(guanine) ligand

    NASA Astrophysics Data System (ADS)

    Tian, Fengyun; Jiang, Xiaoqing; Dou, Xuekai; Wu, Qiong; Wang, Jun; Song, Youtao

    2017-05-01

    A novel adenine (Ad) fluorescence probe (EuIII-dtpa-bis(guanine)) was designed and synthesized by improving experimental method based on the Eu(III) complex and dtpa-bis(guanine) ligand. The dtpa-bis(guanine) ligand was first synthesized by the acylation action between dtpaa and guanine (Gu), and the corresponding Eu(III) complex was successfully prepared through heat-refluxing method with dtpa-bis(guanine) ligand. As a novel fluorescence probe, the EuIII-dtpa-bis(guanine) complex can detect adenine (Ad) with characteristics of strong targeting, high specificity and high recognition ability. The detection mechanism of the adenine (Ad) using this probe in buffer solution was studied by ultraviolet-visible (UV-vis) and fluorescence spectroscopy. When the EuIII-dtpa-bis(guanine) was introduced to the adenine (Ad) solution, the fluorescence emission intensity was significantly enhanced. However, adding other bases such as guanine (Gu), xanthine (Xa), hypoxanthine (Hy) and uric acid (Ur) with similar composition and structure to that of adenine (Ad) to the EuIII-dtpa-bis(guanine) solution, the fluorescence emission intensities are nearly invariable. Meanwhile, the interference of guanine (Gu), xanthine (Xa), hypoxanthine (Hy) and uric acid (Ur) on the detection of the adenine using EuIII-dtpa-bis(guanine) probe was also studied. It was found that presence of these bases does not affect the detection of adenine (Ad). A linear response of fluorescence emission intensities of EuIII-dtpa-bis(guanine) at 570 nm as a function of adenine (Ad) concentration in the range of 0.00-5.00 × 10- 5 mol L- 1 was observed. The detection limit is about 4.70 × 10- 7 mol L- 1.

  16. Gadolinium-Encapsulating Iron Oxide Nanoprobe as Activatable NMR/MRI Contrast Agent

    PubMed Central

    Santra, Santimukul; Jativa, Samuel D.; Kaittanis, Charalambos; Normand, Guillaume; Grimm, Jan; Perez, J. Manuel

    2012-01-01

    Herein we report a novel gadolinium-encapsulating iron oxide nanoparticle-based activatable NMR/MRI nanoprobe. In our design, Gd-DTPA is encapsulated within the polyacrylic acid (PAA) polymer coating of a superparamagnetic iron oxide nanoparticle (IO-PAA) yielding a composite magnetic nanoprobe (IO-PAA-Gd-DTPA) with quenched longitudinal spin-lattice magnetic relaxation (T1). Upon release of the Gd-DTPA complex from the nanoprobe's polymeric coating in acidic media, an increase in the T1 relaxation rate (1/T1) of the composite magnetic nanoprobe was observed, indicating a dequenching of the nanoprobe with a corresponding increase in the T1-weighted MRI signal. When a folate-conjugated nanoprobe was incubated in HeLa cells, a cancer cell line overexpressing folate receptors, an increase in the 1/T1 signal was observed. This result suggests that upon receptor-mediated internalization, the composite magnetic nanoprobe degraded within the cell's lysosome acidic (pH = 5.0) environment, resulting in an intracellular release of Gd-DTPA complex with subsequent T1 activation. No change in T1 was observed when the Gd-DTPA complex was chemically conjugated on the surface of the nanoparticle's polymeric coating or when encapsulated in the polymeric coating of a non-magnetic nanoparticle. These results confirmed that the observed (T1) quenching of the composite magnetic nanoprobe is due to the encapsulation and close proximity of the Gd ion to the nanoparticles superparamagnetic iron oxide (IO) core. In addition, when an anticancer drug (Taxol) was co-encapsulated with the Gd-DTPA within the folate receptor targeting composite magnetic nanoprobe, the T1 activation of the probe coincide with the rate of drug release and corresponding cytotoxic effect in cell culture studies. Taken together, these results suggest that our activatable T1 nanoagent could be of great importance for the detection of acidic tumors and assessment of drug targeting and release by MRI. PMID:22809405

  17. Upconverting rare-earth nanoparticles with a paramagnetic lanthanide complex shell for upconversion fluorescent and magnetic resonance dual-modality imaging

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Ji, Lei; Zhang, Bingbo; Yin, Peihao; Qiu, Yanyan; Song, Daqian; Zhou, Juying; Li, Qi

    2013-05-01

    Multi-modal imaging based on multifunctional nanoparticles is a promising alternative approach to improve the sensitivity of early cancer diagnosis. In this study, highly upconverting fluorescence and strong relaxivity rare-earth nanoparticles coated with paramagnetic lanthanide complex shells and polyethylene glycol (PEGylated UCNPs@DTPA-Gd3+) are synthesized as dual-modality imaging contrast agents (CAs) for upconverting fluorescent and magnetic resonance dual-modality imaging. PEGylated UCNPs@DTPA-Gd3+ with sizes in the range of 32-86 nm are colloidally stable. They exhibit higher longitudinal relaxivity and transverse relaxivity in water (r1 and r2 values are 7.4 and 27.8 s-1 per mM Gd3+, respectively) than does commercial Gd-DTPA (r1 and r2 values of 3.7 and 4.6 s-1 per mM Gd3+, respectively). They are found to be biocompatible. In vitro cancer cell imaging shows good imaging contrast of PEGylated UCNPs@DTPA-Gd3+. In vivo upconversion fluorescent imaging and T1-weighted MRI show excellent enhancement of both fluorescent and MR signals in the livers of mice administered PEGylated UCNPs@DTPA-Gd3+. All the experimental results indicate that the synthesized PEGylated UCNPs@DTPA-Gd3+ present great potential for biomedical upconversion of fluorescent and magnetic resonance dual-modality imaging applications.

  18. Biocompatible Nanocomplexes for Molecular Targeted MRI Contrast Agent

    NASA Astrophysics Data System (ADS)

    Chen, Zhijin; Yu, Dexin; Wang, Shaojie; Zhang, Na; Ma, Chunhong; Lu, Zaijun

    2009-07-01

    Accurate diagnosis in early stage is vital for the treatment of Hepatocellular carcinoma. The aim of this study was to investigate the potential of poly lactic acid-polyethylene glycol/gadolinium-diethylenetriamine-pentaacetic acid (PLA-PEG/Gd-DTPA) nanocomplexes using as biocompatible molecular magnetic resonance imaging (MRI) contrast agent. The PLA-PEG/Gd-DTPA nanocomplexes were obtained using self-assembly nanotechnology by incubation of PLA-PEG nanoparticles and the commercial contrast agent, Gd-DTPA. The physicochemical properties of nanocomplexes were measured by atomic force microscopy and photon correlation spectroscopy. The T1-weighted MR images of the nanocomplexes were obtained in a 3.0 T clinical MR imager. The stability study was carried out in human plasma and the distribution in vivo was investigated in rats. The mean size of the PLA-PEG/Gd-DTPA nanocomplexes was 187.9 ± 2.30 nm, and the polydispersity index was 0.108, and the zeta potential was -12.36 ± 3.58 mV. The results of MRI test confirmed that the PLA-PEG/Gd-DTPA nanocomplexes possessed the ability of MRI, and the direct correlation between the MRI imaging intensities and the nano-complex concentrations was observed ( r = 0.987). The signal intensity was still stable within 2 h after incubation of the nanocomplexes in human plasma. The nanocomplexes gave much better image contrast effects and longer stagnation time than that of commercial contrast agent in rat liver. A dose of 0.04 mmol of gadolinium per kilogram of body weight was sufficient to increase the MRI imaging intensities in rat livers by five-fold compared with the commercial Gd-DTPA. PLA-PEG/Gd-DTPA nanocomplexes could be prepared easily with small particle sizes. The nanocomplexes had high plasma stability, better image contrast effect, and liver targeting property. These results indicated that the PLA-PEG/Gd-DTPA nanocomplexes might be potential as molecular targeted imaging contrast agent.

  19. Antibacterial activity of synthetic curcumin derivatives: 3,5-bis(benzylidene)-4-piperidone (EF24) and EF24-dimer linked via diethylenetriaminepentacetic acid (EF2DTPA).

    PubMed

    Vilekar, Prachi; King, Catherine; Lagisetty, Pallavi; Awasthi, Vibhudutta; Awasthi, Shanjana

    2014-04-01

    Curcumin is well known for its antimicrobial and anti-inflammatory properties. However, since systemic absorption and bioavailability of curcumin from gastrointestinal tract is considerably poor, synthetic curcuminoids are being developed as better alternatives. Two curcumin derivatives: 3,5-bis(benzylidene)-4-piperidone (EF24) and EF24-dimer linked via diethylenetriaminepentacetic acid (EF2DTPA), were included in this study. We investigated the antibacterial activity of EF24 and EF2DTPA against Gram-negative (Escherichia coli) and Gram-positive (Enterococcus faecalis, Staphylococcus aureus) bacteria. We also studied the effects of EF24 and EF2DTPA on uptake and localization of pHrodo-labeled E. coli in the acidic compartments (phagolysosomes) of dendritic cells (DCs) under in vitro conditions. Our results demonstrate that treatment with EF24 and EF2DTPA directly suppresses the bacterial growth. However, these compounds do not affect the bacterial uptake or localization in the DCs.

  20. Glypican-1-antibody-conjugated Gd-Au nanoclusters for FI/MRI dual-modal targeted detection of pancreatic cancer.

    PubMed

    Huang, Xin; Fan, Chengqi; Zhu, Huanhuan; Le, Wenjun; Cui, Shaobin; Chen, Xin; Li, Wei; Zhang, Fulei; Huang, Yong; Sh, Donglu; Cui, Zheng; Shao, Chengwei; Chen, Bingdi

    2018-01-01

    Pancreatic cancer (PC) has a poor prognosis with high mortality, due to the lack of effective early diagnostic and prognostic tools. In order to target and diagnose PC, we developed a dual-modal imaging probe using Glypican-1 (GPC-1) antibody conjugated with Gd-Au nanoclusters (NCs; Gd-Au-NC-GPC-1). GPC-1 is a type of cell surface heparan sulfate proteoglycan, which is often highly expressed in PC. The probe was successfully prepared with a hydrodynamic diameter ranging from 13.5 to 24.4 nm. Spectral characteristics showed absorption at 280 nm and prominent emission at 650 nm. Confocal microscopic imaging showed effective detection of GPC-1 highly expressed PC cells by Gd-Au-NC-GPC-1, which was consistent with flow cytometry results. In vitro relaxivity characterization demonstrated that the r1 value of the probe was 17.722 s -1 mM -1 Gd, which was almost 4 times higher compared with that of Gd-diethylenetriaminepentacetate (DTPA; r1 value =4.6 s -1 mM -1 Gd). Gd-Au-NC-GPC-1 exhibited similar magnetic resonance (MR) signals when compared to Gd-DTPA even at lower Gd concentrations. Much higher MR signals were registered in PC cells (COLO-357) compared with normal cells (293T). Furthermore, Gd-Au-NC-GPC-1 could effectively detect PC cells in vivo by dual-modal fluorescence imaging/magnetic resonance imaging (FI/MRI) at 30 minutes postinjection. In addition, Gd-Au-NC-GPC-1 did not show significant biotoxicity to normal cells at tested concentrations both in vitro and in vivo. Gd-Au-NC-GPC-1 has demonstrated to be a promising dual-modal FI/MRI contrast agent for targeted diagnosis of PC.

  1. In vivo cleavage rate of a dextran-bound magnetic resonance imaging contrast agent: preparation and intravascular pharmacokinetic characteristics in the rabbit.

    PubMed

    Hals, Petter Arnt; Sontum, Per Christian; Holtz, Eckart; Klaveness, Jo; Rongved, Pål

    2013-02-01

    Earlier described dextran-based contrast agents for magnetic resonance imaging (MRI) comprising the gadolinium chelate diethylenetriamine pentaacetic acid (GdDTPA, 1) have shown significantly shorter in vivo contrast duration in rat than what would be expected from the initial average molecular weight (Mw) of the dextran fraction (71.4 kD). To investigate this further, four dextran fractions with given initial average molecular weight (Mw) of 10.4, 41.0, 71.4 and 580 kD were used as starting material to prepare products 2-5 where one of the carboxylic acid functionalities in GdDTPA was used as a direct covalent ester linker to hydroxyl groups in dextrans. A fifth derivative (6) was an amide-ester bound β-alanine-DTPAGd conjugate with dextran having Mw 71.4 kD. The reference compound GdDTPA (1) and gadoliniumlabelled dextran derivatives 2-6 were injected intravenously in rabbits. Pharmacokinetic parameters showed that when GdDTPA is ester-bound directly to dextran hydroxyls, the cleavage rates of 2-5 were only moderately dependent on the molecular weights of the dextrans, having blood pool half-lives comparable to the low-molecular reference compound (t 1/2,β 0.3 - 0.5 hrs.). Presence of a β-alanine spacer in 6 prolonged the plasma half-life t 1/2,β to 6.9 hours, rendering a blood residence time suitable for blood pool slow release of GdDTPA. Biological cleavage regenerates the clinically acceptable carrier dextran and the β-alanine derivative of GdDTPA, pointing at a clinically acceptable product class for blood-pool contrast in MRI.

  2. Simple method for quantification of gadolinium magnetic resonance imaging contrast agents using ESR spectroscopy.

    PubMed

    Takeshita, Keizo; Kinoshita, Shota; Okazaki, Shoko

    2012-01-01

    To develop an estimation method of gadolinium magnetic resonance imaging (MRI) contrast agents, the effect of concentration of Gd compounds on the ESR spectrum of nitroxyl radical was examined. A solution of either 4-oxo-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPONE) or 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPOL) was mixed with a solution of Gd compound and the ESR spectrum was recorded. Increased concentration of gadolinium-diethylenetriamine pentaacetic acid chelate (Gd-DTPA), an MRI contrast agent, increased the peak-to-peak line widths of ESR spectra of the nitroxyl radicals, in accordance with a decrease of their signal heights. A linear relationship was observed between concentration of Gd-DTPA and line width of ESR signal, up to approximately 50 mmol/L Gd-DTPA, with a high correlation coefficient. Response of TEMPONE was 1.4-times higher than that of TEMPOL as evaluated from the slopes of the lines. The response was slightly different among Gd compounds; the slopes of calibration curves for acua[N,N-bis[2-[(carboxymethyl)[(methylcarbamoyl)methyl]amino]ethyl]glycinato(3-)]gadolinium hydrate (Gd-DTPA-BMA) (6.22 μT·L/mmol) and gadolinium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid chelate (Gd-DOTA) (6.62 μT·L/mmol) were steeper than the slope for Gd-DTPA (5.45 μT·L/mmol), whereas the slope for gadolinium chloride (4.94 μT·L/mmol) was less steep than that for Gd-DTPA. This method is simple to apply. The results indicate that this method is useful for rough estimation of the concentration of Gd contrast agents if calibration is carried out with each standard compound. It was also found that the plot of the reciprocal square root of signal height against concentrations of contrast agents could be useful for the estimation if a constant volume of sample solution is taken and measured at the same position in the ESR cavity every time.

  3. Gd-labeled glycol chitosan as a pH-responsive magnetic resonance imaging agent for detecting acidic tumor microenvironments.

    PubMed

    Nwe, Kido; Huang, Ching-Hui; Tsourkas, Andrew

    2013-10-24

    Neoplastic lesions can create a hostile tumor microenvironment with low extracellular pH. It is commonly believed that these conditions can contribute to tumor progression as well as resistance to therapy. We report the development and characterization of a pH-responsive magnetic resonance imaging contrast agent for imaging the acidic tumor microenvironment. The preparation included the conjugation of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid 1-(2,5-dioxo-1-pyrrolidinyl) ester (DOTA-NHS) to the surface of a water-soluble glycol chitosan (GC) polymer, which contains pH-titrable primary amines, followed by gadolinium complexation (GC-NH2-GdDOTA). GC-NH2-GdDOTA had a chelate-to-polymer ratio of approximately1:24 and a molar relaxivity of 9.1 mM(-1) s(-1). GC-NH2-GdDOTA demonstrated pH-dependent cellular association in vitro compared to the control. It also generated a 2.4-fold enhancement in signal in tumor-bearing mice 2 h postinjection. These findings suggest that glycol chitosan coupled with contrast agents can provide important diagnostic information about the tumor microenvironment.

  4. In-vivo imaging of blood-brain barrier permeability using positron emission tomography with 2-amino-[3-11C]isobutyric acid.

    PubMed

    Okada, Maki; Kikuchi, Tatsuya; Okamura, Toshimitsu; Ikoma, Yoko; Tsuji, Atsushi B; Wakizaka, Hidekatsu; Kamakura, Tomoo; Aoki, Ichio; Zhang, Ming-Rong; Kato, Koichi

    2015-12-01

    The blood-brain barrier (BBB) limits the entry of some therapeutics into the brain, resulting in reduced efficacy. BBB-opening techniques have been developed to enhance the entry into the brain. However, a noninvasive, highly sensitive and quantitative method for evaluating the changes in BBB permeability induced by such techniques is needed to optimize treatment protocols. We evaluated 2-amino-[3-C]isobutyric acid ([3-C]AIB) as a PET probe to quantify BBB permeability in model rats. BBB opening was induced by a lipopolysaccharide injection or focused ultrasound (FUS) sonication. [3-C]AIB distribution in the brain was evaluated by autoradiography and PET and compared with that of Evans blue, a traditional BBB permeability marker. Kinetics of [3-C]AIB was compared with that of gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA)-enhanced MRI. The unidirectional blood-brain transfer constant (Ki) of [3-C]AIB was estimated using the Patlak plot. [3-C]AIB uptake in the lesion area was significantly higher than that in the control area and radioactivity colocalized with Evans blue in both models. [3-C]AIB uptake in the FUS-sonicated region decreased over time after sonication. The ratio of [3-C]AIB accumulation in the FUS-treated to the contralateral side increased during the experimental period, whereas that of the Gd-DTPA intensity reached a maximum at 10 min after injection and decreased thereafter. The [3-C]AIB Ki values were significantly higher in the lesion area than the control area. [3-C]AIB PET is a promising, highly sensitive and quantitative imaging method for assessment of BBB permeability.

  5. Method for enhancing cell penetration of Gd3+-based MRI contrast agents by conjugation with hydrophobic fluorescent dyes.

    PubMed

    Yamane, Takehiro; Hanaoka, Kenjiro; Muramatsu, Yasuaki; Tamura, Keita; Adachi, Yusuke; Miyashita, Yasushi; Hirata, Yasunobu; Nagano, Tetsuo

    2011-11-16

    Gadolinium ion (Gd(3+)) complexes are commonly used as magnetic resonance imaging (MRI) contrast agents to enhance signals in T(1)-weighted MR images. Recently, several methods to achieve cell-permeation of Gd(3+) complexes have been reported, but more general and efficient methodology is needed. In this report, we describe a novel method to achieve cell permeation of Gd(3+) complexes by using hydrophobic fluorescent dyes as a cell-permeability-enhancing unit. We synthesized Gd(3+) complexes conjugated with boron dipyrromethene (BDP-Gd) and Cy7 dye (Cy7-Gd), and showed that these conjugates can be introduced efficiently into cells. To examine the relationship between cell permeability and dye structure, we further synthesized a series of Cy7-Gd derivatives. On the basis of MR imaging, flow cytometry, and ICP-MS analysis of cells loaded with Cy7-Gd derivatives, highly hydrophobic and nonanionic dyes were effective for enhancing cell permeation of Gd(3+) complexes. Furthermore, the behavior of these Cy7-Gd derivatives was examined in mice. Thus, conjugation of hydrophobic fluorescent dyes appears to be an effective approach to improve the cell permeability of Gd(3+) complexes, and should be applicable for further development of Gd(3+)-based MRI contrast agents.

  6. Evaluation of liver function using gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid enhanced magnetic resonance imaging based on a three-dimensional volumetric analysis system.

    PubMed

    Kudo, Masashi; Gotohda, Naoto; Sugimoto, Motokazu; Kobayashi, Tatsushi; Kojima, Motohiro; Takahashi, Shinichiro; Konishi, Masaru; Hayashi, Ryuichi

    2018-06-02

    Magnetic resonance imaging with gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (EOB-MRI) is a diagnostic modality for liver tumors. Three-dimensional (3D) volumetric analysis systems using EOB-MRI data are used to simulate liver anatomy for surgery. This study was conducted to investigate clinical utility of a 3D volumetric analysis system on EOB-MRI to evaluate liver function. Between August 2014 and December 2015, 181 patients underwent laboratory and radiological exams as standardized preoperative evaluation for liver surgery. The liver-spleen contrast-enhanced ratio (LSR) was measured by a semi-automated 3D volumetric analysis system on EOB-MRI. First, the inter-evaluator variability of the calculated LSR was evaluated. Additionally, a subset of liver surgical specimens was evaluated histologically by using immunohistochemical staining. Finally, the correlations between the LSR and grading systems of liver function, laboratory data, or histological findings were analyzed. The inter-evaluator correlation coefficient of the measured LSR was 0.986. The mean LSR was significantly correlated with the Child-Pugh score (p = 0.014) and the ALBI score (p < 0.001). Significant correlations were also observed between the LSR and indocyanine green retention rate at 15 min (r = - 0.601, p < 0.001), between the LSR and liver fibrosis stage (r = - 0.556, p < 0.001), and between the LSR and liver steatosis grade (r = - 0.396, p < 0.001). The LSR calculated by a 3D volumetric analysis system on EOB-MRI was highly reproducible and was shown to be correlated with liver function parameters and liver histology. These data suggest that this imaging modality can be a reliable tool to evaluate liver function.

  7. In vivo evaluation of neutron capture therapy effectivity using calcium phosphate-based nanoparticles as Gd-DTPA delivery agent.

    PubMed

    Dewi, Novriana; Mi, Peng; Yanagie, Hironobu; Sakurai, Yuriko; Morishita, Yasuyuki; Yanagawa, Masashi; Nakagawa, Takayuki; Shinohara, Atsuko; Matsukawa, Takehisa; Yokoyama, Kazuhito; Cabral, Horacio; Suzuki, Minoru; Sakurai, Yoshinori; Tanaka, Hiroki; Ono, Koji; Nishiyama, Nobuhiro; Kataoka, Kazunori; Takahashi, Hiroyuki

    2016-04-01

    A more immediate impact for therapeutic approaches of current clinical research efforts is of major interest, which might be obtained by developing a noninvasive radiation dose-escalation strategy, and neutron capture therapy represents one such novel approach. Furthermore, some recent researches on neutron capture therapy have focused on using gadolinium as an alternative or complementary for currently used boron, taking into account several advantages that gadolinium offers. Therefore, in this study, we carried out feasibility evaluation for both single and multiple injections of gadolinium-based MRI contrast agent incorporated in calcium phosphate nanoparticles as neutron capture therapy agent. In vivo evaluation was performed on colon carcinoma Col-26 tumor-bearing mice irradiated at nuclear reactor facility of Kyoto University Research Reactor Institute with average neutron fluence of 1.8 × 10(12) n/cm(2). Antitumor effectivity was evaluated based on tumor growth suppression assessed until 27 days after neutron irradiation, followed by histopathological analysis on tumor slice. The experimental results showed that the tumor growth of irradiated mice injected beforehand with Gd-DTPA-incorporating calcium phosphate-based nanoparticles was suppressed up to four times higher compared to the non-treated group, supported by the results of histopathological analysis. The results of antitumor effectivity observed on tumor-bearing mice after neutron irradiation indicated possible effectivity of gadolinium-based neutron capture therapy treatment.

  8. Development of the Plutonium-DTPA Biokinetic Model.

    PubMed

    Konzen, Kevin; Brey, Richard

    2015-06-01

    Estimating radionuclide intakes from bioassays following chelation treatment presents a challenge to the dosimetrist due to the observed excretion enhancement of the particular radionuclide of concern where no standard biokinetic model exists. This document provides a Pu-DTPA biokinetic model that may be used for making such determination for plutonium intakes. The Pu-DTPA biokinetic model is intended to supplement the standard recommended biokinetic models. The model was used to evaluate several chelation strategies that resulted in providing recommendations for effective treatment. These recommendations supported early treatment for soluble particle inhalations and an initial 3-day series of DTPA treatments for wounds. Several late chelation strategies were also compared where reduced treatment frequencies proved to be as effective as multiple treatments. The Pu-DTPA biokinetic model can be used to assist in estimating initial intakes of transuranic radionuclides and for studying the effects of different treatment strategies.

  9. A gadolinium(III) complex of a carboxylic-phosphorus acid derivative of diethylenetriamine covalently bound to inulin, a potential macromolecular MRI contrast agent.

    PubMed

    Lebdusková, Petra; Kotek, Jan; Hermann, Petr; Vander Elst, Luce; Muller, Robert N; Lukes, Ivan; Peters, Joop A

    2004-01-01

    A novel conjugate of a polysaccharide and a Gd(III) chelate with potential as contrast agent for magnetic resonance imaging (MRI) was synthesized. The structure of the chelate was derived from H5DTPA by replacing the central pendant arm by a phosphinic acid functional group, which was covalently bound to the polysaccharide inulin. On the average, each monosaccharide unit of the inulin was attached to approximately one (0.9) chelate moiety. The average molecular weight is 23110 and the average number of Gd3+ ions per molecule is 24. The ligand binds the Gd3+ ion in an octadentate fashion via three nitrogen atoms, four carboxylate oxygen atoms, and one P-O oxygen atom, and its first coordination sphere is completed by a water molecule. This compound shows promising properties for application as a contrast agent for MRI thanks to a favorable residence lifetime of this water molecule (170 ns at 298 K), a relatively long rotational correlation time (866 ps at 298 K), and the presence of two water molecules in the second coordination sphere of the Gd3+ ion. Furthermore, its stability toward transmetalation with Zn(II) is as high as that of the clinically used [Gd(DTPA)(H2O)]2-.

  10. Gadolinium-Loaded Solid Lipid Nanoparticles as a Tumor-Absorbable Contrast Agent for Early Diagnosis of Colorectal Tumors Using Magnetic Resonance Colonography.

    PubMed

    Sun, Jihong; Zhang, Shizheng; Jiang, Shaojie; Bai, Weixian; Liu, Fei; Yuan, Hong; Ji, Jiansong; Luo, Jingfeng; Han, Guocan; Chen, Lumin; Jin, Yin; Hu, Peng; Yu, Lei; Yang, Xiaoming

    2016-09-01

    Magnetic resonance (MR) contrast agents focusing on special functions are required to improve cancer diagnosis, particularly in the early stages. Here, we designed multifunctional solid lipid nanoparticles (SLNs) with simultaneous loading of gadolinium (Gd) diethylenetriaminepentaacetic acid (Gd-DTPA) and octadecylamine fluorescein isothiocyanate (FITC) to obtain Gd-FITC-SLNs as a tumor-absorbable nanoparticle contrast agent for the histological confirmation of MR imaging (MRI) findings. Colorectal tumors were evaluated in vitro and in vivo via direct uptake of this contrast agent, which displayed reasonable T1 relaxivity and no significant cytotoxicity at the experimental concentrations in human colon carcinoma cells (HT29) and mouse colon carcinoma cells (CT26). In vitro cell uptake experiments demonstrated that contrast agent absorption by the two types of cancer cells was concentration-dependent in the safe concentration range. During in vivo MRI, transrectal infusion of Gd-FITC-SLNs showed more significant enhancement at the tumor site compared with the infusion of Gd-DTPA in female C57/BL mice with azoxymethane/dextran sulfate sodium-induced colorectal highgrade intraepithelial neoplasia. Subsequent confocal fluorescence microscopy demonstrated Gd-FITC-SLNs as highly concentrated green fluorescent spots distributed from the tumor capsule into the tumor. This study establishes the "proof-of-principle" of a new MRI technique wherein colorectal tumors are enhanced via direct absorption or uptake of the nanoparticle contrast agent.

  11. Highly stabilized gadolinium chelates functionalized on metal nanoparticles as magnetic resonance imaging contrast agent

    NASA Astrophysics Data System (ADS)

    Siddiqui, Talha S.

    Magnetic resonance imaging (MRI) is a non-invasive method for imaging and diagnosing tissue damage, organ function and the vascular system. Magnevist(TM) a complex of diethylenetriaminepentaacetic acid (DTPA) and Gd3+ is a clinically approved contrast agent for MRI. A derivative of DTPA was formed by the addition of two cysteine groups (DTPA-L-Cys) through amide linkage. The Gd complex of this ligand bonds with the silver surfaces through the cysteine thiols. GdDTPA-L-Cys was bound to ˜10nm diameter Ag nanoparticles for use as a multifunctional MRI contrast agent. The ligand and complex were characterized by 1H and 13C NMR, ESI-MS and IR spectroscopy. The silver construct was characterized by TEM, TGA and UV-Vis absorption spectra. The per metal complex r1 relaxivity of GdDTPA-L-Cys{Ag} greater than that of Magnavist(TM) with the same molarity for both compounds. The synthesis of a DTPA derivative is described that allows it to bind to silver or gold nanoparticles through a single thiol linkage (DTPASH). The resulting Gd complex, GdDTPASH, was bound to Ag nanoparticles to create a single monolayer on the surface. The construct was further stabilized in buffered solution with the addition of a thiolated PEG chain. The highly stabilized nanoparticle construct delivers a high payload of Gd compelex and is an effective T1 brightening agent. The production of this type of construct opens the way for engineered multimodal MRI contrast agents.

  12. Development of the Plutonium-DTPA biokinetic model

    DOE PAGES

    Konzen, Kevin; Brey, Richard

    2015-06-01

    Estimating radionuclide intakes from bioassays following chelation treatment presents a challenge to the dosimetrist due to the observed excretion enhancement of the particular radionuclide of concern, where no standard biokinetic model exists. This document provides a Pu-DTPA biokinetic model that may be used for making such determination for plutonium intakes. The Pu-DTPA biokinetic model is intended to supplement the standard recommended biokinetic models. The model was used to evaluate several chelation strategies that resulted in providing recommendations for effective treatment. These recommendations supported early treatment for soluble particle inhalations and an initial 3-day treatment series of DTPA treatments for wounds.more » Several late chelation strategies were also compared where reduced treatment frequencies proved to be as effective as multiple treatments. Furthermore, the Pu-DTPA biokinetic model can be used to assist in estimating initial intakes of transuranic radionuclides, and for studying the effects of different treatment strategies.« less

  13. Synthesis and evaluation of gadolinium complexes based on PAMAM as MRI contrast agents.

    PubMed

    Yan, Guo-Ping; Hu, Bin; Liu, Mai-Li; Li, Li-Yun

    2005-03-01

    Diethylenetriaminepentaacetic acid (DTPA) and pyridoxamine (PM) were incorporated into the amine groups on the surface of ammonia-core poly(amidoamine) dendrimers (PAMAM, Generation 2.0-5.0) to obtain dendritic ligands. These dendritic ligands were reacted with gadolinium chloride to yield the corresponding dendritic gadolinium (Gd) complexes. The dendritic ligands and their gadolinium complexes were characterized by(1)HNMR, IR, UV and elemental analysis. Relaxivity studies showed that the dendritic gadolinium complexes possessed higher relaxation effectiveness compared with the clinically used Gd-DTPA. After administration of the dendritic gadolinium complexes (0.09 mmol kg(-1) ) to rats, magnetic resonance imaging of the liver indicated that the dendritic gadolinium complexes containing pyridoxamine groups enhanced the contrast of the MR images of the liver, provided prolonged intravascular duration and produced highly contrasted visualization of blood vessels.

  14. Comparison of MRI properties between derivatized DTPA and DOTA gadolinium-dendrimer conjugates.

    PubMed

    Nwe, K; Bernardo, M; Regino, C A S; Williams, M; Brechbiel, M W

    2010-08-15

    In this report we directly compare the in vivo and in vitro MRI properties of gadolinium-dendrimer conjugates of derivatized acyclic diethylenetriamine-N,N',N',N'',N''-pentaacetic acid (1B4M-DTPA) and macrocyclic 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (C-DOTA). The metal-ligand chelates were pre-formed in alcohol prior to conjugation to the generation 4 PAMAM dendrimer (G4D), and the dendrimer-based agents were purified by Sephadex(R) G-25 column. The analysis and SE-HPLC data indicated chelate to dendrimer ratios of 30:1 and 28:1, respectively. Molar relaxivity measured at pH 7.4, 22 degrees C, and 3T are comparable (29.5 vs 26.9 mM(-1)s(-1)), and both conjugates are equally viable as MRI contrast agents based on the images obtained. The macrocyclic agent however exhibits a faster rate of clearance in vivo (t(1/2)=16 vs 29 min). Our conclusion is that the macrocyclic-based agent is the more suitable agent for in vivo use for these reasons combined with kinetic inertness associated with the Gd(III) DOTA complex stability properties. Published by Elsevier Ltd.

  15. Gadolinium heteropoly complex K 17[Gd(P 2W 17O 61) 2] as a potential MRI contrast agent

    NASA Astrophysics Data System (ADS)

    Sun, Guoying; Feng, Jianghua; Wu, Huifeng; Pei, Fengkui; Fang, Ke; Lei, Hao

    2004-10-01

    Gadolinium heteropoly complex K17[Gd(P2W17O61)2] has been evaluated by in vitro and in vivo experiments as a potential contrast agent for magnetic resonance imaging (MRI). The thermal analysis and conductivity study indicate that this complex has good thermal stability and wide pH stability range. The T1 relaxivity is 7.59 mM-1 s-1 in aqueous solution and 7.97 mM-1 s-1 in 0.725 mmol l-1 bovine serum albumin (BSA) solution at 25 °C and 9.39 T, respectively. MR imaging of three male Sprague-Dawley rats showed remarkable enhancement in rat liver after intravenous injection, which persisted longer than with Gd-DTPA. The signal intensity increased by 57.1±16.9% during the whole imaging period at 0.082 mmol kg-1dose. Our preliminary in vitro and in vivo studies indicate that K17[Gd(P2W17O61)2] is a potential liver-specific MRI contrast agent.

  16. Feasibility of dose enhancement assessment: Preliminary results by means of Gd-infused polymer gel dosimeter and Monte Carlo study.

    PubMed

    Santibáñez, M; Guillen, Y; Chacón, D; Figueroa, R G; Valente, M

    2018-04-11

    This work reports the experimental development of an integral Gd-infused dosimeter suitable for Gd dose enhancement assessment along with Monte Carlo simulations applied to determine the dose enhancement by radioactive and X-ray sources of interest in conventional and electronic brachytherapy. In this context, capability to elaborate a stable and reliable Gd-infused dosimeter was the first goal aimed at direct and accurate measurements of dose enhancement due to Gd presence. Dose-response was characterized for standard and Gd-infused PAGAT polymer gel dosimeters by means of optical transmission/absorbance. The developed Gd-infused PAGAT dosimeters demonstrated to be stable presenting similar dose-response as standard PAGAT within a linear trend up to 13 Gy along with good post-irradiation readout stability verified at 24 and 48 h. Additionally, dose enhancement was evaluated for Gd-infused PAGAT dosimeters by means of Monte Carlo (PENELOPE) simulations considering scenarios for isotopic and X-ray generator sources. The obtained results demonstrated the feasibility of obtaining a maximum enhancement around of (14 ± 1)% for 192 Ir source and an average enhancement of (70 ± 13)% for 241 Am. However, dose enhancement up to (267 ± 18)% may be achieved if suitable filtering is added to the 241 Am source. On the other hand, optimized X-ray spectra may attain dose enhancements up to (253 ± 22) %, which constitutes a promising future alternative for replacing radioactive sources by implementing electronic brachytherapy achieving high dose levels. Copyright © 2018. Published by Elsevier Ltd.

  17. Semi-automatic detection of Gd-DTPA-saline filled capsules for colonic transit time assessment in MRI

    NASA Astrophysics Data System (ADS)

    Harrer, Christian; Kirchhoff, Sonja; Keil, Andreas; Kirchhoff, Chlodwig; Mussack, Thomas; Lienemann, Andreas; Reiser, Maximilian; Navab, Nassir

    2008-03-01

    Functional gastrointestinal disorders result in a significant number of consultations in primary care facilities. Chronic constipation and diarrhea are regarded as two of the most common diseases affecting between 2% and 27% of the population in western countries 1-3. Defecatory disorders are most commonly due to dysfunction of the pelvic floor or the anal sphincter. Although an exact differentiation of these pathologies is essential for adequate therapy, diagnosis is still only based on a clinical evaluation1. Regarding quantification of constipation only the ingestion of radio-opaque markers or radioactive isotopes and the consecutive assessment of colonic transit time using X-ray or scintigraphy, respectively, has been feasible in clinical settings 4-8. However, these approaches have several drawbacks such as involving rather inconvenient, time consuming examinations and exposing the patient to ionizing radiation. Therefore, conventional assessment of colonic transit time has not been widely used. Most recently a new technique for the assessment of colonic transit time using MRI and MR-contrast media filled capsules has been introduced 9. However, due to numerous examination dates per patient and corresponding datasets with many images, the evaluation of the image data is relatively time-consuming. The aim of our study was to develop a computer tool to facilitate the detection of the capsules in MRI datasets and thus to shorten the evaluation time. We present a semi-automatic tool which provides an intensity, size 10, and shape-based 11,12 detection of ingested Gd-DTPA-saline filled capsules. After an automatic pre-classification, radiologists may easily correct the results using the application-specific user interface, therefore decreasing the evaluation time significantly.

  18. Mannose-coated gadolinium liposomes for improved magnetic resonance imaging in acute pancreatitis.

    PubMed

    Tian, Bing; Liu, Ri; Chen, Shiyue; Chen, Luguang; Liu, Fang; Jia, Guorong; Dong, Yinmei; Li, Jing; Chen, Huaiwen; Lu, Jianping

    2017-01-01

    Acute pancreatitis (AP) is an acute inflammatory condition of the pancreas. The symptoms, treatment, and prognosis of mild and severe AP are different, and severe AP is a potentially life-threatening disease with a high incidence of complications and high mortality rate. Thus, it is urgent to develop an effective approach to reliably discriminate between mild and severe AP. We have developed novel gadolinium-diethylenetriaminepentaacetic (Gd-DTPA)-loaded mannosylated liposomes (named thereafter M-Gd-NL) that preferably target macrophages in AP. The targeting ability of M-Gd-NL toward macrophages in AP and its ability to discriminate between mild and severe AP were evaluated. The liposomes were of desired particle size (~100 nm), Gd-DTPA encapsulation efficiency (~85%), and stability. M-Gd-NL and non-targeted Gd-DTPA-loaded liposomes (Gd-NL) exhibited increased relaxivity compared with Gd-DTPA. Compared with Gd-NL and Gd-DTPA, M-Gd-NL showed increased uptake in macrophages, resulting in increased T 1 imaging ability both in vitro (macrophage cell line) and in vivo (severe AP model). Importantly, M-Gd-NL had the ability to discriminate between mild and severe AP, as reflected by a significantly higher T 1 magnetic resonance imaging signal in severe AP than in mild AP. M-Gd-NL did not show severe organ toxicity in rats. Our data suggest that M-Gd-NL had enhanced magnetic resonance imaging ability by targeting macrophages in AP and good ability to discriminate between mild and severe AP. We believe that M-Gd-NL could shed new light on the diagnosis of AP in the near future.

  19. Polyethylene glycol-covered ultra-small Gd2O3 nanoparticles for positive contrast at 1.5 T magnetic resonance clinical scanning

    NASA Astrophysics Data System (ADS)

    Fortin, Marc-André; Petoral, Rodrigo M., Jr.; Söderlind, Fredrik; Klasson, A.; Engström, Maria; Veres, Teodor; Käll, Per-Olof; Uvdal, Kajsa

    2007-10-01

    The size distribution and magnetic properties of ultra-small gadolinium oxide crystals (US-Gd2O3) were studied, and the impact of polyethylene glycol capping on the relaxivity constants (r1, r2) and signal intensity with this contrast agent was investigated. Size distribution and magnetic properties of US-Gd2O3 nanocrystals were measured with a TEM and PPMS magnetometer. For relaxation studies, diethylene glycol (DEG)-capped US-Gd2O3 nanocrystals were reacted with PEG-silane (MW 5000). Suspensions were adequately dialyzed in water to eliminate traces of Gd3+ and surfactants. The particle hydrodynamic radius was measured with dynamic light scattering (DLS) and the proton relaxation times were measured with a 1.5 T MRI scanner. Parallel studies were performed with DEG-Gd2O3 and PEG-silane-SPGO (Gd2O3,< 40 nm diameter). The small and narrow size distribution of US-Gd2O3 was confirmed with TEM (~3 nm) and DLS. PEG-silane-US-Gd2O3 relaxation parameters were twice as high as for Gd-DTPA and the r2/r1 ratio was 1.4. PEG-silane-SPGO gave low r1 relaxivities and high r2/r1 ratios, less compatible with positive contrast agent requirements. Higher r1 were obtained with PEG-silane in comparison to DEG-Gd2O3. Treatment of DEG-US-Gd2O3 with PEG-silane provides enhanced relaxivity while preventing aggregation of the oxide cores. This study confirms that PEG-covered Gd2O3 nanoparticles can be used for positively contrasted MR applications requiring stability, biocompatible coatings and nanocrystal functionalization.

  20. Liposomal temozolomide drug delivery using convection enhanced delivery.

    PubMed

    Nordling-David, Mirjam M; Yaffe, Roni; Guez, David; Meirow, Hadar; Last, David; Grad, Etty; Salomon, Sharona; Sharabi, Shirley; Levi-Kalisman, Yael; Golomb, Gershon; Mardor, Yael

    2017-09-10

    Even though some progress in diagnosis and treatment has been made over the years, there is still no definitive treatment available for Glioblastoma multiforme (GBM). Convection-enhanced delivery (CED), a continuous infusion-mediated pressure gradient via intracranial catheters, studied in clinical trials, enables in situ drug concentrations several orders of magnitude greater than those achieved by systemic administration. We hypothesized that the currently limited efficacy of CED could be enhanced by a liposomal formulation, thus achieving enhanced drug localization to the tumor site with minimal toxicity. We hereby describe a novel approach for treating GBM by CED of liposomes containing the known chemotherapeutic agent, temozolomide (TMZ). A new technique for encapsulating TMZ in hydrophilic (PEGylated) liposomes, characterized by nano-size (121nm), low polydispersity index (<0.13) and with near-neutral charge (-ʒ,0.2mV), has been developed. Co-infusion of PEGylated Gd-DTPA liposomes and TMZ-liposomes by CED in GBM bearing rats, resulted in enhanced tumor detection with longer residence time than free Gd-DTPA. Treatment of GBM-bearing rats with either TMZ solution or TMZ-liposomes resulted in greater tumor inhibition and significantly higher survival. However, the longer survival and smaller tumor volumes exhibited by TMZ liposomal treatment in comparison to TMZ in solution were insignificant (p<0.053); and only significantly lower edema volumes were observed. Thus, there are no clear-cut advantages to use a liposomal delivery system of TMZ via CED over a drug solution. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Avidin-dendrimer-(1B4M-Gd)(254): a tumor-targeting therapeutic agent for gadolinium neutron capture therapy of intraperitoneal disseminated tumor which can be monitored by MRI.

    PubMed

    Kobayashi, H; Kawamoto, S; Saga, T; Sato, N; Ishimori, T; Konishi, J; Ono, K; Togashi, K; Brechbiel, M W

    2001-01-01

    Peritoneal carcinomatosis is a late stage in cancer progress, for which no effective therapeutic modality exists. Targeting therapeutic agents to disseminated lesions may be a promising modality for treating peritoneal carcinomatosis. Gadolinium ((157,155)Gd) is known to generate Auger and internal conversion electrons efficiently by irradiation with a neutron beam. Auger electrons from neutron-activated Gd(III) are strongly cytotoxic, but only when Gd(III) atoms have been internalized into the cells. In the present investigation, we have developed a quickly internalizing tumor-targeting system to deliver large quantities of Gd(III) atoms into tumor cells to generate the Auger emission with an external neutron beam. Simultaneously, one would be able to image its biodistribution by MRI with a shortened T1 relaxation time. Avidin-G6-(1B4M-Gd)(254) (Av-G6Gd) was synthesized from generation-6 polyamidoamine dendrimer, biotin, avidin, and 2-(p-isothiocyanatobenzyl)-6-methyl-diethylenetriaminepentaacetic acid (1B4M). The Av-G6Gd was radiolabeled with Gd(III) doped with (153)Gd. All of the 1B4M's on the conjugate were fully saturated with Gd(III) atoms. An in vitro internalization study showed that Av-G6Gd accumulated and was internalized into SHIN3 cells (a human ovarian cancer) 50- and 3.5-fold greater than Gd-DTPA (Magnevist) and G6-(1B4M-Gd)(256) (G6Gd). In addition, accumulation of Gd(III) in the cells was detected by the increased signal on T1-weighted MRI. A biodistribution study was performed in nude mice bearing intraperitoneally disseminated SHIN3 tumors. Av-G6Gd showed specific accumulation in the SHIN3 tumor (103% ID/g) 366- and 3.4-fold greater than Gd-DTPA (0.28% ID/g, p < 0.001) and G6Gd (30% ID/g, p < 0.001) 1 day after i.p. injection. Seventy-eight percent of the tumor-related radioactivity of Av-G6Gd in the SHIN3 tumor was located inside the cells. The SHIN3 tumor-to-normal tissue ratio was greater than 17:1 in all organs and increased up to 638:1 at 1

  2. Three-dimensional imaging of the aortic vessel wall using an elastin-specific magnetic resonance contrast agent.

    PubMed

    Makowski, Marcus R; Preissel, Anne; von Bary, Christian; Warley, Alice; Schachoff, Sylvia; Keithan, Alexandra; Cesati, Richard R; Onthank, David C; Schwaiger, Markus; Robinson, Simon P; Botnar, René M

    2012-07-01

    The aim of this study was to demonstrate the feasibility of high-resolution 3-dimensional aortic vessel wall imaging using a novel elastin-specific magnetic resonance contrast agent (ESMA) in a large animal model. The thoracic aortic vessel wall of 6 Landrace pigs was imaged using a novel ESMA and a nonspecific control agent. On day 1, imaging was performed before and after the administration of a nonspecific control agent, gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA; Bayer Schering AG, Berlin, Germany). On day 3, identical scans were repeated before and after the administration of a novel ESMA (Lantheus Medical Imaging, North Billerica, Massachusetts). Three-dimensional inversion recovery gradient echo delayed-enhancement imaging and magnetic resonance (MR) angiography of the thoracic aortic vessel wall were performed on a 1.5-T MR scanner (Achieva; Philips Medical Systems, the Netherlands). The signal-to-noise ratio and the contrast-to-noise ratio of arterial wall enhancement, including the time course of enhancement, were assessed for ESMA and Gd-DTPA. After the completion of imaging sessions, histology, electron microscopy, and inductively coupled plasma mass spectroscopy were performed to localize and quantify the gadolinium bound to the arterial vessel wall. Administration of ESMA resulted in a strong enhancement of the aortic vessel wall on delayed-enhancement imaging, whereas no significant enhancement could be measured with Gd-DTPA. Ninety to 100 minutes after the administration of ESMA, significantly higher signal-to-noise ratio and contrast-to-noise ratio could be measured compared with the administration of Gd-DTPA (45.7 ± 9.6 vs 13.2 ± 3.5, P < 0.05 and 41.9 ± 9.1 vs 5.2 ± 2.0, P < 0.05). A significant correlation (0.96; P < 0.01) between area measurements derived from ESMA scans and aortic MR angiography scans could be found. Electron microscopy and inductively coupled plasma mass spectroscopy confirmed the colocalization of ESMA with

  3. Species-dependent chelation of (241)Am by DTPA Di-ethyl ester.

    PubMed

    Huckle, James E; Sadgrove, Matthew P; Mumper, Russell J; Jay, Michael

    2015-04-01

    Diethylenetriaminepentaacetic acid (DTPA) is an FDA-approved chelating agent for enhancing the elimination of transuranic elements such as americium from the body. Early access to therapy minimizes deposition of these radionuclides in tissues such as the bone. Due to its poor oral bioavailability, DTPA is administered as an IV injection, delaying access. Therefore, a diethyl-ester analog of DTPA, named C2E2, was synthesized as a means to increase oral absorption. As a hexadentate ligand, it was hypothesized that C2E2 was capable of binding americium directly. Therefore, the protonation constants and americium stability constant for C2E2 were determined by potentiometric titration and a solvent extraction method, respectively. C2E2 was shown to bind americium with a log K of 19.6. The concentrations of C2E2, its metabolite C2E1, and DTPA required to achieve effective binding in rat, beagle, and human plasma were studied in vitro. Dose response curves for each ligand were established, and the 50% maximal effective concentrations were determined for each species. As expected, higher concentrations of C2E2 were required to achieve the same degree of binding as DTPA. The results indicated that chelation in beagle plasma is more representative of the human response than rats. Finally, the pharmacokinetics of C2E2 were investigated in beagles, and the data was fit to a two-compartment model with elimination from the central compartment, along with first-order absorption. Based on the in vitro data, a 100 mg kg dose of C2E2 can be expected to have an effective duration of action of 3.8 h in beagles.

  4. Species-Dependent Chelation of 241Am by DTPA Di-ethyl Ester

    PubMed Central

    Huckle, James E.; Sadgrove, Matthew P.; Mumper, Russell J.; Jay, Michael

    2014-01-01

    Diethylenetriaminepentaacetic acid (DTPA) is an FDA approved chelating agent for enhancing the elimination of transuranic elements such as americium from the body. Early access to therapy minimizes deposition of these radionuclides in tissues such as the bone. Due to its poor oral bioavailability, DTPA is administered as an IV injection, delaying access. Therefore a diethyl-ester analog of DTPA, named C2E2, was synthesized as a means to increase oral absorption. As a hexadentate ligand, it was hypothesized that C2E2 was capable of binding americium directly. Therefore, the protonation constants and americium stability constant for C2E2 were determined by potentiometric titration and a solvent extraction method, respectively. C2E2 was shown to bind americium with a log K of 19.6. The concentrations of C2E2, its metabolite C2E1, and DTPA required to achieve effective binding in rat, beagle, and human plasma were studied in vitro. Dose response curves for each ligand were established and the 50% maximal effective concentrations were determined for each species. As expected, higher concentrations of C2E2 were required to achieve the same degree of binding as DTPA. The results indicated that chelation in beagle plasma is more representative of the human response than rats. Finally, the pharmacokinetics of C2E2 were investigated in beagles and the data was fit to a two-compartment model with elimination from the central compartment, along with first-order absorption. Based on the in vitro data, a 100 mg kg−1 dose of C2E2 can be expected to have an effective duration of action of 3.8 hours in beagles. PMID:25706138

  5. Improved tumor-targeting MRI contrast agents: Gd(DOTA) conjugates of a cycloalkane-based RGD peptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Ji-Ae, E-mail: jpark@kirams.re.kr; Lee, Yong Jin; Ko, In Ok

    2014-12-12

    Highlights: • Development of improved tumor-targeting MRI contrast agents. • To increase the targeting ability of RGD, we developed cycloalkane-based RGD peptides. • Gd(DOTA) conjugates of cycloalkane-based RGD peptide show improved tumor signal enhancement in vivo MR images. - Abstract: Two new MRI contrast agents, Gd-DOTA-c(RGD-ACP-K) (1) and Gd-DOTA-c(RGD-ACH-K) (2), which were designed by incorporating aminocyclopentane (ACP)- or aminocyclohexane (ACH)-carboxylic acid into Gd-DOTA (gadolinium-tetraazacyclo dodecanetetraacetic acid) and cyclic RGDK peptides, were synthesized and evaluated for tumor-targeting ability in vitro and in vivo. Binding affinity studies showed that both 1 and 2 exhibited higher affinity for integrin receptors than cyclic RGDyKmore » peptides, which were used as a reference. These complexes showed high relaxivity and good stability in human serum and have the potential to improve target-specific signal enhancement in vivo MR images.« less

  6. Clinical Feasibility of Free-Breathing Dynamic T1-Weighted Imaging With Gadoxetic Acid-Enhanced Liver Magnetic Resonance Imaging Using a Combination of Variable Density Sampling and Compressed Sensing.

    PubMed

    Yoon, Jeong Hee; Yu, Mi Hye; Chang, Won; Park, Jin-Young; Nickel, Marcel Dominik; Son, Yohan; Kiefer, Berthold; Lee, Jeong Min

    2017-10-01

    The purpose of the study was to investigate the clinical feasibility of free-breathing dynamic T1-weighted imaging (T1WI) using Cartesian sampling, compressed sensing, and iterative reconstruction in gadoxetic acid-enhanced liver magnetic resonance imaging (MRI). This retrospective study was approved by our institutional review board, and the requirement for informed consent was waived. A total of 51 patients at high risk of breath-holding failure underwent dynamic T1WI in a free-breathing manner using volumetric interpolated breath-hold (BH) examination with compressed sensing reconstruction (CS-VIBE) and hard gating. Timing, motion artifacts, and image quality were evaluated by 4 radiologists on a 4-point scale. For patients with low image quality scores (<3) on the late arterial phase, respiratory motion-resolved (extradimension [XD]) reconstruction was additionally performed and reviewed in the same manner. In addition, in 68.6% (35/51) patients who had previously undergone liver MRI, image quality and motion artifacts on dynamic phases using CS-VIBE were compared with previous BH-T1WIs. In all patients, adequate arterial-phase timing was obtained at least once. Overall image quality of free-breathing T1WI was 3.30 ± 0.59 on precontrast and 2.68 ± 0.70, 2.93 ± 0.65, and 3.30 ± 0.49 on early arterial, late arterial, and portal venous phases, respectively. In 13 patients with lower than average image quality (<3) on the late arterial phase, motion-resolved reconstructed T1WI (XD-reconstructed CS-VIBE) significantly reduced motion artifacts (P < 0.002-0.021) and improved image quality (P < 0.0001-0.002). In comparison with previous BH-T1WI, CS-VIBE with hard gating or XD reconstruction showed less motion artifacts and better image quality on precontrast, arterial, and portal venous phases (P < 0.0001-0.013). Volumetric interpolated breath-hold examination with compressed sensing has the potential to provide consistent, motion-corrected free-breathing dynamic T

  7. A neutral polydisulfide containing Gd(III) DOTA monoamide as a redox-sensitive biodegradable macromolecular MRI contrast agent.

    PubMed

    Ye, Zhen; Zhou, Zhuxian; Ayat, Nadia; Wu, Xueming; Jin, Erlei; Shi, Xiaoyue; Lu, Zheng-Rong

    2016-01-01

    This work aims to develop safe and effective gadolinium (III)-based biodegradable macromolecular MRI contrast agents for blood pool and cancer imaging. A neutral polydisulfide containing macrocyclic Gd-DOTA monoamide (GOLS) was synthesized and characterized. In addition to studying the in vitro degradation of GOLS, its kinetic stability was also investigated in an in vivo model. The efficacy of GOLS for contrast-enhanced MRI was examined with female BALB/c mice bearing 4T1 breast cancer xenografts. The pharmacokinetics, biodistribution, and metabolism of GOLS were also determined in mice. GOLS has an apparent molecular weight of 23.0 kDa with T1 relaxivities of 7.20 mM(-1) s(-1) per Gd at 1.5 T, and 6.62 mM(-1) s(-1) at 7.0 T. GOLS had high kinetic inertness against transmetallation with Zn(2+) ions, and its polymer backbone was readily cleaved by L-cysteine. The agent showed improved efficacy for blood pool and tumor MR imaging. The structural effect on biodistribution and in vivo chelation stability was assessed by comparing GOLS with Gd(HP-DO3A), a negatively charged polydisulfide containing Gd-DOTA monoamide GODC, and a polydisulfide containing Gd-DTPA-bisamide (GDCC). GOLS showed high in vivo chelation stability and minimal tissue deposition of gadolinium. The biodegradable macromolecular contrast agent GOLS is a promising polymeric contrast agent for clinical MR cardiovascular imaging and cancer imaging. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Synthesis, 99m Tc-labeling, and preliminary biological evaluation of DTPA-melphalan conjugates.

    PubMed

    Wang, Jianjun; Yang, Wenjiang; Xue, Jinquan; Zhang, Yanhua; Liu, Yu

    2017-12-01

    Melphalan (MFL) is a typical nitrogen mustard for the treatment of many types of cancer. For the purpose to develop novel 99m Tc-labeled tumor imaging agents with SPECT, MFL was directly labeled by 99m Tc using diethylene triamine pentacetate acid (DTPA) as bifunctional chelating agent. The novel ligands were successfully synthesized by conjugation of DTPA to MFL to get monosubstituted DTPA-MFL and bis-substituted DTPA-2MFL. Radiolabeling was performed in high yield to get 99m Tc-DTPA-MFL and 99m Tc-DTPA-2MFL, respectively, which were hydrophilic and stable at room temperature. The high initial tumor uptake with retention, good tumor/muscle ratios, and satisfactory scintigraphic images suggested the potential of 99m Tc-DTPA-MFL and 99m Tc-DTPA-2MFL for tumor imaging. However, the slow normal tissue clearance would be a great obstacle. Further modification on the linker and/or 99m Tc-chelate to improve the tumor targeting efficacy and in vivo kinetic profiles is currently in progress. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Redesign of negatively charged 111In-DTPA-octreotide derivative to reduce renal radioactivity.

    PubMed

    Oshima, Nobuhiro; Akizawa, Hiromichi; Kawashima, Hidekazu; Zhao, Songji; Zhao, Yan; Nishijima, Ken-Ichi; Kitamura, Yoji; Arano, Yasushi; Kuge, Yuji; Ohkura, Kazue

    2017-05-01

    Radiolabeled octreotide derivatives have been studied as diagnostic and therapeutic agents for somatostatin receptor-positive tumors. To prevent unnecessary radiation exposure during their clinical application, the present study aimed to develop radiolabeled peptides which could reduce radioactivity levels in the kidney at both early and late post-injection time points by introducing a negative charge with an acidic amino acid such as L-aspartic acid (Asp) at a suitable position in 111 In-DTPA-conjugated octreotide derivatives. Biodistribution of the radioactivity was evaluated in normal mice after administration of a novel radiolabeled peptide by a counting method. The radiolabeled species remaining in the kidney were identified by comparing their HPLC data with those obtained by alternative synthesis. The designed and synthesized radiolabeled peptide 111 In-DTPA-d-Phe -1 -Asp 0 -d-Phe 1 -octreotide exhibited significantly lower renal radioactivity levels than those of the known 111 In-DTPA-d-Phe 1 -octreotide at 3 and 24h post-injection. The radiolabeled species in the kidney at 24h after the injection of new octreotide derivative represented 111 In-DTPA-d-Phe-OH and 111 In-DTPA-d-Phe-Asp-OH as the metabolites. Their radiometabolites and intact 111 In-DTPA-conjugated octreotide derivative were observed in urine within 24h post-injection. The present study provided a new example of an 111 In-DTPA-conjugated octreotide derivative having the characteristics of both reduced renal uptake and shortened residence time of radioactivity in the kidney. It is considered that this kinetic control was achieved by introducing a negative charge on the octreotide derivative thereby suppressing the reabsorption in the renal tubules and affording the radiometabolites with appropriate lipophilicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Characterization of a heat-tolerant Chlorella sp. GD mutant with enhanced photosynthetic CO2 fixation efficiency and its implication as lactic acid fermentation feedstock.

    PubMed

    Lee, Tse-Min; Tseng, Yu-Fei; Cheng, Chieh-Lun; Chen, Yi-Chuan; Lin, Chih-Sheng; Su, Hsiang-Yen; Chow, Te-Jin; Chen, Chun-Yen; Chang, Jo-Shu

    2017-01-01

    Fermentative production of lactic acid from algae-based carbohydrates devoid of lignin has attracted great attention for its potential as a suitable alternative substrate compared to lignocellulosic biomass. A Chlorella sp. GD mutant with enhanced thermo-tolerance was obtained by mutagenesis using N -methyl- N '-nitro- N -nitrosoguanidine to overcome outdoor high-temperature inhibition and it was used as a feedstock for fermentative lactic acid production. The indoor experiments showed that biomass, reducing sugar content, photosynthetic O 2 evolution rate, photosystem II activity ( F v / F m and F v '/ F m '), and chlorophyll content increased as temperature, light intensity, and CO 2 concentration increased. The mutant showed similar DIC affinity and initial slope of photosynthetic light response curve (α) as that of the wild type but had higher dissolved inorganic carbon (DIC) utilization capacity and maximum photosynthesis rate ( P max ). Moreover, the PSII activity ( F v '/ F m ') in the mutant remained normal without acclimation process after being transferred to photobioreactor. This suggests that efficient utilization of incident high light and enhanced carbon fixation with its subsequent flux to carbohydrates accumulation in the mutant contributes to higher sugar and biomass productivity under enriched CO 2 condition. The mutant was cultured outdoors in a photobioreactor with 6% CO 2 aeration in hot summer season in southern Taiwan. The harvested biomass was subjected to separate hydrolysis and fermentation (SHF) for lactic acid production with carbohydrate concentration equivalent to 20 g/L glucose using the lactic acid-producing bacterium Lactobacillus plantarum 23. The conversion rate and yield of lactic acid were 80% and 0.43 g/g Chlorella biomass, respectively. These results demonstrated that the thermo-tolerant Chlorella mutant with high photosynthetic efficiency and biomass productivity under hot outdoor condition is an efficient fermentative

  11. [Diffusion of fluorescent and magnetic molecular probes in brain interstitial space].

    PubMed

    Li, Huai-ye; Zhao, Yue; Zuo, Long; Fu, Yu; Li, Nan; Yuan, Lan; Zhang, Shu-jia; Han, Hong-bin

    2015-08-18

    To compare the diffusion properties of fluorescent probes dextran-tetramethylrhodamine (DT) and lucifer yellow CH (LY) and magnetic probe gadolinium-diethylene triamine pentaacetic acid (Gd-DTPA) in porous media and to screen out a suitable fluorescent probe for optical imaging of brain interstitial space (ISS). Agarose gels sample were divided into DT group, LY group and Gd-DTPA group, and the corresponding molecular probes were imported in each group. The dynamic diffusions of DT and LY in agarose gels at different time points (15, 30, 45, 60, 90, and 120 min) were scanned with laser scanning confocal microscope, the dynamic diffusion of Gd-DTPA was imaged with magnetic resonance imaging. The average diffusion speed of LY were demonstrated to be consistent with those of Gd-DTPA. The LY was introduced into caudate putamen of 18 rats, respectively, the diffusion of LY in the sequential slices of rat brain at different time points (0.5, 1, 2, 3, 7, 11 h) were scanned, and the results were compared with those of rats' brain with Gd-DTPA imported and imaged in vivo with magnetic resonance imaging. The diffusions of the three probes were isotropic in the agarose gels, and the average diffusion speeds of DT, LY and Gd-DTPA were: (0.07±0.02)×10(-2) mm2/s, (1.54±0.47)×10(-2) mm2/s, (1.45±0.50)×10(-2) mm2/s, respectively. The speed of DT was more slower than both LY and Gd-DTPA (ANOVA, F=367.15, P<0.001; Post-Hoc LSD, P<0.001), and there was no significant difference between the speeds of LY and Gd-DTPA (Post-Hoc LSD, P=0.091). The variation tendency of diffusion area of DT was different with both that of LY and that of Gd-DTPA (Bonferroni correction, α=0.0125, P<0.001), and there was no significant difference between LY and Gd-DTPA (Bonferroni correction, α=0.0125, P=0.203), in analysis by repeated measures data of ANOVA. The diffusions of LY and Gd-DTPA were anisotropy in rat caudate putamen,and the average diffusion speeds of LY and Gd-DTPA were: (1.03±0.29)

  12. A choline derivate-modified nanoprobe for glioma diagnosis using MRI

    NASA Astrophysics Data System (ADS)

    Li, Jianfeng; Huang, Shixian; Shao, Kun; Liu, Yang; An, Sai; Kuang, Yuyang; Guo, Yubo; Ma, Haojun; Wang, Xuxia; Jiang, Chen

    2013-04-01

    Gadolinium (Gd) chelate contrast-enhanced magnetic resonance imaging (MRI) is a preferred method of glioma detection and preoperative localisation because it offers high spatial resolution and non-invasive deep tissue penetration. Gd-based contrast agents, such as Gd-diethyltriaminepentaacetic acid (DTPA-Gd, Magnevist), are widely used clinically for tumor diagnosis. However, the Gd-based MRI approach is limited for patients with glioma who have an uncompromised blood-brain barrier (BBB). Moreover, the rapid renal clearance and non-specificity of such contrast agents further hinders their prevalence. We present a choline derivate (CD)-modified nanoprobe with BBB permeability, glioma specificity and a long blood half-life. Specific accumulation of the nanoprobe in gliomas and subsequent MRI contrast enhancement are demonstrated in vitro in U87 MG cells and in vivo in a xenograft nude model. BBB and glioma dual targeting by this nanoprobe may facilitate precise detection of gliomas with an uncompromised BBB and may offer better preoperative and intraoperative tumor localization.

  13. Comparison of MRI properties between derivatized DTPA and DOTA gadolinium-dendrimer conjugates

    PubMed Central

    Nwe, K.; Bernardo, M; Regino, C. A. S.; Williams, M; Brechbiel, M. W.

    2010-01-01

    In this report we directly compare the in vivo and in vitro MRI properties of gadolinium-dendrimer conjugates of derivatized acyclic diethylenetriamine-N,N’,N’,N’’, N’’-pentaacetic acid (1B4M-DTPA) and macrocyclic 1,4,7,10-tetraazacyclododecane-N,N’,N’’,N’’’-tetraacetic acid (C-DOTA). The metal-ligand chelates were pre-formed in alcohol prior to conjugation to the generation 4 PAMAM dendrimer (G4D), and the dendrimer-based agents were purified by Sephadex® G-25 column. The analysis and SE-HPLC data indicated chelate to dendrimer ratios of 30:1 and 28:1 respectively. Molar relaxivity measured at pH 7.4, 22°C, and 3T are comparable (29.5 vs. 26.9 mM−1s−1), and both conjugates are equally viable as MRI contrast agents based on the images obtained. The macrocyclic agent however exhibits a faster rate of clearance in vivo (t1/2 = 16 vs. 29 min.). Our conclusion is that the macrocyclic-based agent is the more suitable agent for in vivo use for these reasons combined with kinetic inertness associated with the Gd(III) DOTA complex stability properties. PMID:20663676

  14. In silico Driven Redesign of a Clinically Relevant Antibody for the Treatment of GD2 Positive Tumors

    PubMed Central

    Ahmed, Mahiuddin; Goldgur, Yehuda; Hu, Jian; Guo, Hong-Fen; Cheung, Nai-Kong V.

    2013-01-01

    Ganglioside GD2 is a cell surface glycolipid that is highly expressed on cancer cells of neuroectodermal origin, including neuroblastoma, retinoblastoma, melanoma, sarcomas, brain tumors and small cell lung cancer. Monoclonal antibodies (MoAb) that target GD2 have shown clinical efficacy in the treatment of GD2 expressing tumors, and are expected to be the new standard of care for the treatment of pediatric neuroblastoma. In this study, the crystal structure of anti-GD2 murine MoAb 3F8 was solved to 1.65 Å resolution and used as a template for molecular docking simulations of its antigen, the penta-saccharide head group of GD2. Molecular docking revealed a binding motif composed of 12 key interacting amino acid side-chains, involving an extensive network of interactions involving main-chain and side-chain hydrogen bonding, two Pi – CH interactions, and an important charged interaction between Arg95 of the H3 loop with the penultimate sialic acid residue of GD2. Based on in silico scanning mutagenesis of the 12 interacting amino acids from the docked 3F8:GD2 model, a single point mutation (Heavy Chain: Gly54Ile) was engineered into a humanized 3F8 (hu3F8) MoAb and found to have a 6–9 fold enhancement in antibody-dependent cell-mediated cytotoxicity of neuroblastoma and melanoma cell lines. With enhanced tumor-killing properties, the re-engineered hu3F8 has the potential be a more effective antibody for the treatment of GD2-positive tumors. PMID:23696816

  15. The efficacies of pure LICAM(C) and DTPA for enhancing the elimination of plutonium-238 and americium-241 from rats after their inhalation as nitrate.

    PubMed

    Stradling, G N; Stather, J W; Gray, S A; Moody, J C; Ellender, M; Hodgson, A

    1989-01-01

    After the inhalation of 238Pu and 241Am as nitrate, the repeated administration of DTPA is far superior to that of LICAM(C) for enhancing their elimination from the body. The therapeutic efficacies of these chelating agents are however similar after intravenous injection of 238Pu as citrate. It is concluded that DTPA should remain the agent of choice for treating persons contaminated internally with transportable forms of these actinides.

  16. Pharmacokinetics of Chiral Dendrimer-Triamine-Coordinated Gd-MRI Contrast Agents Evaluated by in Vivo MRI and Estimated by in Vitro QCM.

    PubMed

    Miyake, Yuka; Ishikawa, Syungo; Kimura, Yu; Son, Aoi; Imai, Hirohiko; Matsuda, Tetsuya; Yamada, Hisatsugu; Toshimitsu, Akio; Kondo, Teruyuki

    2015-12-18

    Recently, we developed novel chiral dendrimer-triamine-coordinated Gd-MRI contrast agents (Gd-MRI CAs), which showed longitudinal relaxivity (r₁) values about four times higher than that of clinically used Gd-DTPA (Magnevist(®), Bayer). In our continuing study of pharmacokinetic differences derived from both the chirality and generation of Gd-MRI CAs, we found that the ability of chiral dendrimer Gd-MRI CAs to circulate within the body can be directly evaluated by in vitro MRI (7 T). In this study, the association constants (K(a)) of chiral dendrimer Gd-MRI CAs to bovine serum albumin (BSA), measured and calculated with a quartz crystal microbalance (QCM) in vitro, were found to be an extremely easy means for evaluating the body-circulation ability of chiral dendrimer Gd-MRI CAs. The K(a) values of S-isomeric dendrimer Gd-MRI CAs were generally greater than those of R-isomeric dendrimer Gd-MRI CAs, which is consistent with the results of our previous MRI study in vivo.

  17. Pharmacokinetics of Chiral Dendrimer-Triamine-Coordinated Gd-MRI Contrast Agents Evaluated by in Vivo MRI and Estimated by in Vitro QCM

    PubMed Central

    Miyake, Yuka; Ishikawa, Syungo; Kimura, Yu; Son, Aoi; Imai, Hirohiko; Matsuda, Tetsuya; Yamada, Hisatsugu; Toshimitsu, Akio; Kondo, Teruyuki

    2015-01-01

    Recently, we developed novel chiral dendrimer-triamine-coordinated Gd-MRI contrast agents (Gd-MRI CAs), which showed longitudinal relaxivity (r1) values about four times higher than that of clinically used Gd-DTPA (Magnevist®, Bayer). In our continuing study of pharmacokinetic differences derived from both the chirality and generation of Gd-MRI CAs, we found that the ability of chiral dendrimer Gd-MRI CAs to circulate within the body can be directly evaluated by in vitro MRI (7 T). In this study, the association constants (Ka) of chiral dendrimer Gd-MRI CAs to bovine serum albumin (BSA), measured and calculated with a quartz crystal microbalance (QCM) in vitro, were found to be an extremely easy means for evaluating the body-circulation ability of chiral dendrimer Gd-MRI CAs. The Ka values of S-isomeric dendrimer Gd-MRI CAs were generally greater than those of R-isomeric dendrimer Gd-MRI CAs, which is consistent with the results of our previous MRI study in vivo. PMID:26694418

  18. Biocompatibility of Gd-Loaded Chitosan-Hyaluronic Acid Nanogels as Contrast Agents for Magnetic Resonance Cancer Imaging

    PubMed Central

    Gheran, Cecilia Virginia; Rigaux, Guillaume; Callewaert, Maité; Berquand, Alexandre; Chuburu, Françoise; Voicu, Sorina Nicoleta; Dinischiotu, Anca

    2018-01-01

    Although the research on nanogels incorporating Gd chelates for theranostic applications has grown exponentially in recent years, knowledge about their biocompatibility is limited. We compared the biocompatibility of Gd-loaded hyaluronic acid-chitosan-based nanogels (GdCA⊂CS-TPP/HA) with two chitosan concentrations (2.5 and 1.5 mg·mL−1 respectively) using SVEC4-10 murine lymph node endothelial cells. The sulforhodamine B method and released lactate dehydrogenase (LDH) activity were used as cell viability tests. Reactive oxygen species (ROS), reduced glutathione (GSH) and malondialdehyde (MDA) were measured by spectrophotometric and fluorimetric methods. Nrf-2 protein expression was evaluated by Western blot analysis and genotoxicity by alkaline comet assay. After 24 h, the cells viability was not affected by all types and doses of nanogels. The increase of ROS induced a low decrease of GSH concentration and a time-dependent raise of MDA one was produced by citric GdDOTA⊂CS-TPP/HA with a chitosan concentration of 1.5 mg·mL−1, at the highest dose applied. None of the tested nanogels induced changes in Nrf-2 protein expression. A slight but significant genotoxic effect was caused only by citric GdDOTA⊂CS-TPP/HA where CS concentration was 1.5 mg·mL−1. Our results showed a better biocompatibility with lymph node endothelial cells for Gd-loaded hyaluronic acid-chitosan based nanogels with a concentration in chitosan of 2.5 mg·mL−1. PMID:29597306

  19. Preclinical evaluation of biodegradable macromolecular contrast agents for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Feng, Yi

    Macromolecular contrast agents have been shown to be superior to small molecular weight contrast agents for MRI in blood pool imaging, tumor diagnosis and grading. However, none has been approved by the FDA because they circulate in the bloodstream much longer than small molecular weight contrast agents and result in high tissue accumulation of toxic Gd(III) ions. Biodegradable macromolecular contrast agents (BMCA) were invented to alleviate the toxic accumulation. They have a cleavable disulfide bond based backbone that can be degraded in vivo and excreted out of the body via renal filtration. Furthermore, the side chain of the backbone can be modified to achieve various degradation rates. Three BMCA, (Gd-DTPA)-cystamine copolymers (GDCC), Gd-DTPA cystine copolymers (GDCP), and Gd-DTPA cystine diethyl ester copolymers (GDCEP), were evaluated as blood pool contrast agents in a rat model. They have excellent blood pool enhancement, preferred pharmacokinetics, and only minimal long-term tissue retention of toxic Gd(III) ions. GDCC and GDCP, the lead agents with desired degradation rates, with molecular weights of 20 KDa and 70 KDa, were chosen for dynamic contrast enhanced MRI (DCE-MRI) to differentiate human prostate tumor models of different malignancy and growth rates. GDCC and GDCP could differentiate these tumor models, providing more accurate estimations of plasma volume, flow leakage rate, and permeability surface area product than a small molecular weight contrast agent Gd-DTPA-BMA when compared to the prototype macromolecular contrast agent albumin-Gd-DTPA. GDCC was favored for its neutral charge side chain and reasonable uptake rate by the tumors. GDCC with a molecular weight of 40 KDa (GDCC-40, above the renal filtration cutoff size) was used to assess the efficacy of two photothermal therapies (interstitial and indocyanine green enhanced). GDCC-40 provided excellent tumor enhancement shortly after its injection. Acute tumor response (4 hr) after therapies

  20. Formation of Gd coordination polymer with 1D chains mediated by Bronsted acidic ionic liquids

    NASA Astrophysics Data System (ADS)

    Luo, Qianqian; Han, Ying; Lin, Hechun; Zhang, Yuanyuan; Duan, Chungang; Peng, Hui

    2017-03-01

    One dimensional coordination polymer Gd[(SO4)(NO3)(C2H6SO)2] (1) is prepared through the mediation of Bronsted acid ionic liquid, which crystallized in the monoclinic space of C2/c. In this polymer, adjacent Gd atoms are linked by two SO42- ions to generate a 1-D chain, and all oxygen atoms in SO42- groups are connected to three nearest Gd atoms in μ3:η1:η1:η2 fashion. Gd, S and N from SO42- and NO3- are precisely coplanar. The planar is coordinated by a pair of DMSO molecules, which is parallel and linked by hydrogen bonding to form a three-dimensional supramolecular network. Magnetic susceptibility measurement of 1 reveals weak antiferromagnetic interactions between the Gd (III) ions. It exhibits relatively large magneto-caloric effect with -ΔSm=28.8 J Kg-1 K-1 for ΔH=7 T.

  1. Regional Myocardial Blood Volume and Flow: First-Pass MR Imaging with Polylysine-Gd-DTPA

    PubMed Central

    Wilke, Norbert; Kroll, Keith; Merkle, Hellmut; Wang, Ying; Ishibashi, Yukata; Xu, Ya; Zhang, Jiani; Jerosch-Herold, Michael; Mühler, Andreas; Stillman, Arthur E.; Bassingthwaighte, James B.; Bache, Robert; Ugurbil, Kamil

    2010-01-01

    The authors investigated the utility of an intravascular magnetic resonance (MR) contrast agent, poly-L-lysine-gadolinium diethylenetriaminepentaacetic acid (DTPA), for differentiating acutely ischemic from normally perfused myocardium with first-pass MR imaging. Hypoperfused regions, identified with microspheres, on the first-pass images displayed significantly decreased signal intensities compared with normally perfused myocardium (P < .0007). Estimates of regional myocardial blood content, obtained by measuring the ratio of areas under the signal intensity-versus-time curves in tissue regions and the left ventricular chamber, averaged 0.12 mL/g ± 0.04 (n = 35), compared with a value of 0.11 mL/g ± 0.05 measured with radiolabeled albumin in the same tissue regions. To obtain MR estimates of regional myocardial blood flow, in situ calibration curves were used to transform first-pass intensity-time curves into content-time curves for analysis with a multiple-pathway, axially distributed model. Flow estimates, obtained by automated parameter optimization, averaged 1.2 mL/min/g ± 0.5 [n = 29), compared with 1.3 mL/min/g ± 0.3 obtained with tracer microspheres in the same tissue specimens at the same time. The results represent a combination of T1-weighted first-pass imaging, intravascular relaxation agents, and a spatially distributed perfusion model to obtain absolute regional myocardial blood flow and volume. PMID:7766986

  2. An albumin-based gold nanocomposites as potential dual mode CT/MRI contrast agent

    NASA Astrophysics Data System (ADS)

    Zhao, Wenjing; Chen, Lina; Wang, Zhiming; Huang, Yuankui; Jia, Nengqin

    2018-02-01

    In pursuit of the biological detection applications, recent years have witnessed the prosperity of novel multi-modal nanoprobes. In this study, biocompatible bovine serum albumin (BSA)-coated gold nanoparticles (Au NPs) containing Gd (III) as the contrast agent for both X-ray CT and T1-weighted MR imaging is reported. Firstly, the Au NPs with BSA coating (Au@BSA) was prepared through a moderate one-pot reduction route in the presence of hydrazine hydrate as reducer. Sequentially, the BSA coating enables modification of diethylenetriaminepentaacetic acid (DTPA) as well as targeting reagent hyaluronic acid (HA), and further chelation of Gd (III) ions led to the formation of biomimetic nanoagent HA-targeted Gd-Au NPs (HA-targeted Au@BSA-Gd-DTPA). Several techniques were used to thoroughly characterize the formed HA-targeted Gd-Au NPs. As expected, the as-prepared nanoagent with mean diameter of 13.82 nm exhibits not only good colloid stablility and water dispersibility, but also satisfying low cytotoxicity and hemocompatibility in the tested concentration range. Additionally, for the CT phantoms, the obtained nanocomplex shows an improved contrast in CT scanning than that of Au@BSA as well as small molecule iodine-based CT contrast agents such as iopromide. Meanwhile, for the T1-weighted MRI images, there is a linear increase of contrast with concentration of Gd for the two cases of HA-targeted Gd-Au NPs and Magnevist. Strikingly, the nanoagent we explored displays a relatively higher r1 relaxivity than that of commercial MR contrast agents. Therefore, this newly constructed nanoagent could be used as contrast agents for synergistically enhanced X-ray CT and MR phantoms, holding promising potential for future biomedical applications.

  3. Gadolinium-loaded gel scintillators for neutron and antineutrino detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riddle, Catherine Lynn; Akers, Douglas William; Demmer, Ricky Lynn

    A gadolinium (Gd) loaded scintillation gel (Gd-ScintGel) compound allows for neutron and gamma-ray detection. The unique gel scintillator encompasses some of the best features of both liquid and solid scintillators, yet without many of the disadvantages associated therewith. Preferably, the gel scintillator is a water soluble Gd-DTPA compound and water soluble fluorophores such as: CdSe/ZnS (or ZnS) quantum dot (Q-dot) nanoparticles, coumarin derivatives 7-hydroxy-4-methylcoumarin, 7-hydroxy-4-methylcoumarin-3-acetic acid, 7-hydroxycoumarin-3-carboxylic acid, and Alexa Fluor 350 as well as a carbostyril compound, carbostyril 124 in a stable water-based gel, such as methylcellulose or polyacrylamide polymers. The Gd-loaded ScintGel allows for a homogenious distribution ofmore » the Gd-DTPA and the fluorophores, and yields clean fluorescent emission peaks. A moderator, such as deuterium or a water-based clear polymer, can be incorporated in the Gd-ScintGel. The gel scintillators can be used in compact detectors, including neutron and antineutrino detectors.« less

  4. Gd2O3-doped silica @ Au nanoparticles for in vitro imaging cancer biomarkers using surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Xiao, Lifu; Tian, Xiumei; Harihar, Sitaram; Li, Qifei; Li, Li; Welch, Danny R.; Zhou, Anhong

    2017-06-01

    There has been an interest in developing multimodal approaches to combine the advantages of individual imaging modalities, as well as to compensate for respective weaknesses. We previously reported a composite nano-system composed of gadolinium-doped mesoporous silica nanoparticle and gold nanoparticle (Gd-Au NPs) as an efficient MRI contrast agent for in vivo cancer imaging. However, MRI lacks sensitivity and is unsuitable for in vitro cancer detection. Thus, here we performed a study to use the Gd-Au NPs for detection and imaging of a widely recognized human cancer biomarker, epidermal growth factor receptor (EGFR), in individual human cancer cells with surface-enhanced Raman scattering (SERS). The Gd-Au NPs were sequentially conjugated with a monoclonal antibody recognizing EGFR and a Raman reporter molecule, 4-meraptobenzoic acid (MBA), to generate a characteristic SERS signal at 1075 cm- 1. By spatially mapping the SERS intensity at 1075 cm- 1, cellular distribution of EGFR and its relocalization on the plasma membrane were measured in situ. In addition, the EGFR expression levels in three human cancer cell lines (S18, A431 and A549) were measured using this SERS probe, which were consistent with the comparable measurements using immunoblotting and immunofluorescence. Our SERS results show that functionalized Gd-Au NPs successfully targeted EGFR molecules in three human cancer cell lines and monitored changes in single cell EGFR distribution in situ, demonstrating its potential to study cell activity under physiological conditions. This SERS study, combined with our previous MRI study, suggests the Gd-Au nanocomposite is a promising candidate contrast agent for multimodal cancer imaging.

  5. Trapping effect on a small molecular drug with vascular-disrupting agent CA4P in rodent H22 hepatic tumor model: in vivo magnetic resonance imaging and postmortem inductively coupled plasma atomic emission spectroscopy.

    PubMed

    Gao, Meng; Yao, Nan; Huang, Dejian; Jiang, Cuihua; Feng, Yuanbo; Li, Yue; Lou, Bin; Peng, Fei; Sun, Ziping; Ni, Yicheng; Zhang, Jian

    2015-06-01

    The aim of the present study is to verify the trapping effect of combretastatin A-4-phosphate (CA4P) on small molecular drugs in rodent tumors. Mice with H22 hepatocarcinoma were randomized into groups A and B. Magnetic resonance imaging (MRI) of T1WI, T2WI, and DWI was performed as baseline. Mice in group A were injected with Gd-DTPA and PBS. Mice in group B were injected with Gd-DTPA and CA4P. All mice undergo CE-T1WI at 0 h, 3 h, 6 h, 12 h, and 24 h. Enhancing efficacy of the two groups on CE-T1WI was compared with the signal-to-noise ratio (SNR) calculated. Concentrations of gadolinium measured by ICP-AES in the tumor were compared between groups. On the early CE-T1WI, tumors were equally enhanced in both groups. On the delayed CE-T1WI, the enhancing effect of group A was weaker than that of group B. The SNR and the concentration of gadolinium within the tumor of group A were lower than that of group B at 6 h, 12 h, and 24 h after administration. This study indicates that CA4P could improve the retention of Gd-DTPA in the tumor and MRI allowed dynamically monitoring trapping effects of CA4P on local retention of Gd-DTPA as a small molecular drug.

  6. Enhancement in magnetocaloric properties of ErCrO3 via A-site Gd substitution

    NASA Astrophysics Data System (ADS)

    Shi, Jianhang; Yin, Shiqi; Seehra, Mohindar S.; Jain, Menka

    2018-05-01

    Rare earth chromites (RCrO3) continue to be of considerable interest due to their intriguing physical properties such as spin-reorientation, multiferroicity, and magnetocaloric effect. In this paper, we compare the structural, magnetic, and magnetocaloric properties of bulk ErCrO3 with those of bulk Er0.33Gd0.67CrO3, the latter obtained by Gd substitution at the A-site (Er-site) and report substantial enhancement in the magnetocaloric response by Gd substitution. The samples prepared by the citrate route were structurally characterized at room temperature using x-ray diffraction (XRD), Raman spectroscopy, and scanning electron microscopy. The XRD measurements refined by Rietveld analysis indicate that both samples crystallized in the orthorhombically distorted perovskite structure with Pbnm space group. Magnetic measurements on both samples were carried out between 5 K and 300 K in magnetic fields up to 7 T and show that TNC r (where Cr3+ orders) for Er0.33Gd0.67CrO3 is enhanced to 155 K vs. 133 K for ErCrO3 with analogous changes in the other magnetic parameters. Isothermal magnetization M vs. H data at different temperatures were used to determine changes in the magnetic entropy ( -ΔS ) and relative cooling power (RCP) for the two samples showing considerable improvement with Gd substitution in bulk ErCrO3. The maximum value of -ΔS for Er0.33Gd0.67CrO3 is 27.6 J kg-1 K-1 at 5 K and 7 T with a RCP of 531.1 J kg-1, in comparison to maximum -ΔS = 10.7 J kg-1 K-1 at 15 K with an RCP of 416.4 J kg-1 for ErCrO3 at 7 T.

  7. Enhanced ferromagnetic properties in Nd and Gd co-doped BiFeO3 ceramics

    NASA Astrophysics Data System (ADS)

    Jena, A. K.; Chelvane, J. Arout; Mohanty, J.

    2018-05-01

    Structural, optical and magnetic properties of Nd3+ and Gd3+ doped BiFeO3 were studied. X-ray diffraction studies confirmed that all the co-doped Bi1-x-yNdxGdyFeO3 samples are polycrystalline in nature crystallizing in rhombohedral type structure (Space group: R3c). In addition to this presence of residual phases like Bi2Fe4O9, Bi25FeO40 were also observed. Raman spectra confirms the structural distortion in co-doped ceramics. Band gap of samples decrease from 2.08eV to 1.95eV with increase in Gd concentration. Room temperature magnetization measurement indicated enhancement of magnetic properties with increase in Gd concentration.

  8. Systematic theoretical investigation of the zero-field splitting in Gd(III) complexes: Wave function and density functional approaches

    NASA Astrophysics Data System (ADS)

    Khan, Shehryar; Kubica-Misztal, Aleksandra; Kruk, Danuta; Kowalewski, Jozef; Odelius, Michael

    2015-01-01

    The zero-field splitting (ZFS) of the electronic ground state in paramagnetic ions is a sensitive probe of the variations in the electronic and molecular structure with an impact on fields ranging from fundamental physical chemistry to medical applications. A detailed analysis of the ZFS in a series of symmetric Gd(III) complexes is presented in order to establish the applicability and accuracy of computational methods using multiconfigurational complete-active-space self-consistent field wave functions and of density functional theory calculations. The various computational schemes are then applied to larger complexes Gd(III)DOTA(H2O)-, Gd(III)DTPA(H2O)2-, and Gd(III)(H2O)83+ in order to analyze how the theoretical results compare to experimentally derived parameters. In contrast to approximations based on density functional theory, the multiconfigurational methods produce results for the ZFS of Gd(III) complexes on the correct order of magnitude.

  9. Essential roles of integrin-mediated signaling for the enhancement of malignant properties of melanomas based on the expression of GD3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohkawa, Yuki; Miyazaki, Sayaka; Miyata, Maiko

    2008-08-15

    We reported that ganglioside GD3 enhances cell proliferation and invasion of melanomas causing stronger tyrosine-phosphorylation of p130Cas and paxillin after stimulation with fetal calf serum. Besides signals via growth factor/receptor, adhesion signals via integrin might be also enhanced by GD3. Here, roles of integrin-mediated signaling in the cell proliferation and invasion, and in the activation of adaptor molecules were examined, showing that integrin was also important for the cell growth and invasion. p130Cas and paxillin underwent stronger tyrosine-phosphorylation in GD3+ cells than in GD3- cells during the adhesion in the absence of serum. On the other hand, no proteins underwentmore » tyrosine phosphorylation in GD3+ and GD3- cells in a suspension state when stimulated with fetal calf serum. These results suggested that integrin-mediated signaling is essential in the effects of GD3 on the malignant properties of melanomas. Co-localization of GD3 and integrin at the focal adhesion supported these results.« less

  10. Antitumoral activity and toxicity of PEG-coated and PEG-folate-coated pH-sensitive liposomes containing ¹⁵⁹Gd-DTPA-BMA in Ehrlich tumor bearing mice.

    PubMed

    Soares, Daniel Crístian Ferreira; Cardoso, Valbert Nascimento; de Barros, André Luís Branco; de Souza, Cristina Maria; Cassali, Geovanni Dantas; de Oliveira, Mônica Cristina; Ramaldes, Gilson Andrade

    2012-01-23

    In the present study, PEG-coated pH-sensitive and PEG-folate-coated pH-sensitive liposomes containing the ¹⁵⁹Gd-DTPA-BMA were prepared and radiolabeled through neutron activation technique, aiming to study the in vivo antitumoral activity and toxicity on mice bearing a previously-developed solid Ehrlich tumor. The treatment efficacy was verified through tumoral volume increase and histomorphometry studies. The toxicity of formulations was investigated through animal weight variations, as well as hematological and biochemical tests. The results showed that after 31 days of treatment, animals treated with radioactive formulations had a lower increase in tumor volume and a significantly higher percentage of necrosis compared with controls revealed by histomorphometry studies. Furthermore, mice treated with radioactive formulations exhibited lower weight gain without significant hematological or biochemical changes, except for toxicity to hepatocytes which requires more detailed studies. From the results obtained to date, we believe that the radioactive formulations can be considered potential therapeutic agents for cancer. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Table-like magnetocaloric effect and enhanced refrigerant capacity in crystalline Gd55Co35Mn10 alloy melt spun ribbons

    NASA Astrophysics Data System (ADS)

    Mo, H. Y.; Zhong, X. C.; Jiao, D. L.; Liu, Z. W.; Zhang, H.; Qiu, W. Q.; Ramanujan, R. V.

    2018-06-01

    Gd55Co35Mn10 ribbons were prepared by melt-spinning and subsequent crystallization treatment. Crystallization resulted in the precipitation of the Gd3Co-type and Gd12Co7-type phases in the amorphous matrix. Under a magnetic field change of 0-5 T, a table-like magnetocaloric effect, with a maximum magnetic entropy change (- ΔSM) max of 5.46Jkg-1K-1 in the temperature range of 137-180 K and enhanced refrigerant capacity (RC) of 536.4Jkg-1, was achieved in Gd55Co35Mn10 ribbons crystallized at 600 K for 30 min. The table-like (- ΔSM) max feature and enhanced RC values make Gd55Co35Mn10 crystallized ribbons promising for Ericsson-cycle magnetic refrigeration in the temperature range from 137 to 180 K.

  12. Alteration of Electrostatic Surface Potential Enhances Affinity and Tumor Killing Properties of Anti-ganglioside GD2 Monoclonal Antibody hu3F8.

    PubMed

    Zhao, Qi; Ahmed, Mahiuddin; Guo, Hong-fen; Cheung, Irene Y; Cheung, Nai-Kong V

    2015-05-22

    Ganglioside GD2 is highly expressed on neuroectodermal tumors and an attractive therapeutic target for antibodies that have already shown some clinical efficacy. To further improve the current antibodies, which have modest affinity, we sought to improve affinity by using a combined method of random mutagenesis and in silico assisted design to affinity-mature the anti-GD2 monoclonal antibody hu3F8. Using yeast display, mutants in the Fv with enhanced binding over the parental clone were FACS-sorted and cloned. In silico modeling identified the minimal key interacting residues involved in the important charged interactions with the sialic acid groups of GD2. Two mutations, D32H (L-CDR1) and E1K (L-FR1) altered the electrostatic surface potential of the antigen binding site, allowing for an increase in positive charge to enhance the interaction with the negatively charged GD2-pentasaccharide headgroup. Purified scFv and IgG mutant forms were then tested for antigen specificity by ELISA, for tissue specificity by immunohistochemistry, for affinity by BIACORE, for antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-mediated cytotoxicity in vitro, and for anti-tumor efficacy in xenografted humanized mice. The nearly 7-fold improvement in affinity of hu3F8 with a single D32H (L-CDR1) mutation translated into a ∼12-fold improvement in NK92MI-transfected CD16-mediated ADCC, a 6-fold improvement in CD32-mediated ADCC, and a 2.5-fold improvement in complement-mediated cytotoxicity while maintaining restricted normal tissue cross-reactivity and achieving substantial improvement in tumor ablation in vivo. Despite increasing GD2 affinity, the double mutation D32H (L-CDR1) and E1K (L-FR1) did not further improve anti-tumor efficacy. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Gd2O3-doped silica @ Au nanoparticles for in vitro imaging cancer biomarkers using surface-enhanced Raman scattering.

    PubMed

    Xiao, Lifu; Tian, Xiumei; Harihar, Sitaram; Li, Qifei; Li, Li; Welch, Danny R; Zhou, Anhong

    2017-06-15

    There has been an interest in developing multimodal approaches to combine the advantages of individual imaging modalities, as well as to compensate for respective weaknesses. We previously reported a composite nano-system composed of gadolinium-doped mesoporous silica nanoparticle and gold nanoparticle (Gd-Au NPs) as an efficient MRI contrast agent for in vivo cancer imaging. However, MRI lacks sensitivity and is unsuitable for in vitro cancer detection. Thus, here we performed a study to use the Gd-Au NPs for detection and imaging of a widely recognized human cancer biomarker, epidermal growth factor receptor (EGFR), in individual human cancer cells with surface-enhanced Raman scattering (SERS). The Gd-Au NPs were sequentially conjugated with a monoclonal antibody recognizing EGFR and a Raman reporter molecule, 4-meraptobenzoic acid (MBA), to generate a characteristic SERS signal at 1075cm -1 . By spatially mapping the SERS intensity at 1075cm -1 , cellular distribution of EGFR and its relocalization on the plasma membrane were measured in situ. In addition, the EGFR expression levels in three human cancer cell lines (S18, A431 and A549) were measured using this SERS probe, which were consistent with the comparable measurements using immunoblotting and immunofluorescence. Our SERS results show that functionalized Gd-Au NPs successfully targeted EGFR molecules in three human cancer cell lines and monitored changes in single cell EGFR distribution in situ, demonstrating its potential to study cell activity under physiological conditions. This SERS study, combined with our previous MRI study, suggests the Gd-Au nanocomposite is a promising candidate contrast agent for multimodal cancer imaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Acetylation Suppresses the Proapoptotic Activity of GD3 Ganglioside

    PubMed Central

    Malisan, Florence; Franchi, Luigi; Tomassini, Barbara; Ventura, Natascia; Condò, Ivano; Rippo, Maria Rita; Rufini, Alessandra; Liberati, Laura; Nachtigall, Claudia; Kniep, Bernhard; Testi, Roberto

    2002-01-01

    GD3 synthase is rapidly activated in different cell types after specific apoptotic stimuli. De novo synthesized GD3 accumulates and contributes to the apoptotic program by relocating to mitochondrial membranes and inducing the release of apoptogenic factors. We found that sialic acid acetylation suppresses the proapoptotic activity of GD3. In fact, unlike GD3, 9-O-acetyl-GD3 is completely ineffective in inducing cytochrome c release and caspase-9 activation on isolated mitochondria and fails to induce the collapse of mitochondrial transmembrane potential and cellular apoptosis. Moreover, cells which are resistant to the overexpression of the GD3 synthase, actively convert de novo synthesized GD3 to 9-O-acetyl-GD3. The coexpression of GD3 synthase with a viral 9-O-acetyl esterase, which prevents 9-O-acetyl-GD3 accumulation, reconstitutes GD3 responsiveness and apoptosis. Finally, the expression of the 9-O-acetyl esterase is sufficient to induce apoptosis of glioblastomas which express high levels of 9-O-acetyl-GD3. Thus, sialic acid acetylation critically controls the proapoptotic activity of GD3. PMID:12486096

  15. A novel paramagnetic substrate for detecting myeloperoxidase activity in vivo

    PubMed Central

    Shazeeb, Mohammed S.; Xie, Yang; Gupta, Suresh; Bogdanov, Alexei A.

    2013-01-01

    Bis-phenylamides and bis-hydroxyindolamides of DTPA(Gd) are paramagnetic reducing substrates of peroxidases that enable molecular imaging of peroxidase activity in vivo. Specifically, bis-5HT-DTPA(Gd) has been used to image localized inflammation in animal models by detecting neutrophil derived myeloperoxidase (MPO) activity at the inflammation site. However, in other pre-clinical disease models, bis-5HT-DTPA(Gd) presents technical challenges due to its limited solubility in vivo. Here, we report a novel MPO sensing probe obtained by replacing the reducing substrate serotonin (5HT) with 5-hydroxytryptophan (HTrp). Characterization of the resulting probe (bis-HTrp-DTPA(Gd)) in vitro using NMR spectroscopy and enzyme kinetic analysis showed that bis-HTrp-DTPA(Gd): 1) improves solubility in water; 2) acts as a substrate for both HRP and MPO enzymes; 3) induces cross linking of proteins in the presence of MPO; 4) produces oxidation products which bind to plasma proteins and; 5) unlike bis-5HT-DTPA(Gd), does not follow first order reaction kinetics. In vivo MR imaging in mice demonstrated that bis-HTrp-DTPA(Gd) was retained for up to five days in MPO-containing sites and cleared faster than bis-5HT-DTPA(Gd) from MPO-negative sites. In conclusion, bis-HTrp-DTPA(Gd) should offer improvements for MR imaging of MPO-mediated inflammation in vivo especially in high-field MRI, which requires higher dose of contrast agent. PMID:22954188

  16. Intraparenchymal ultrasound application and improved distribution of infusate with convection-enhanced delivery in rodent and nonhuman primate brain.

    PubMed

    Mano, Yui; Saito, Ryuta; Haga, Yoichi; Matsunaga, Tadao; Zhang, Rong; Chonan, Masashi; Haryu, Shinya; Shoji, Takuhiro; Sato, Aya; Sonoda, Yukihiko; Tsuruoka, Noriko; Nishiyachi, Keisuke; Sumiyoshi, Akira; Nonaka, Hiroi; Kawashima, Ryuta; Tominaga, Teiji

    2016-05-01

    OBJECT Convection-enhanced delivery (CED) is an effective drug delivery method that delivers high concentrations of drugs directly into the targeted lesion beyond the blood-brain barrier. However, the drug distribution attained using CED has not satisfactorily covered the entire targeted lesion in tumors such as glioma. Recently, the efficacy of ultrasound assistance was reported for various drug delivery applications. The authors developed a new ultrasound-facilitated drug delivery (UFD) system that enables the application of ultrasound at the infusion site. The purpose of this study was to demonstrate the efficacy of the UFD system and to examine effective ultrasound profiles. METHODS The authors fabricated a steel bar-based device that generates ultrasound and enables infusion of the aqueous drug from one end of the bar. The volume of distribution (Vd) after infusion of 10 ml of 2% Evans blue dye (EBD) into rodent brain was tested with different frequencies and applied voltages: 252 kHz/30 V; 252 kHz/60 V; 524 kHz/13 V; 524 kHz/30 V; and 524 kHz/60 V. In addition, infusion of 5 mM gadopentetate dimeglumine (Gd-DTPA) was tested with 260 kHz/60 V, the distribution of which was evaluated using a 7-T MRI unit. In a nonhuman primate (Macaca fascicularis) study, 300 μl of 1 mM Gd-DTPA/EBD was infused. The final distribution was evaluated using MRI. Two-sample comparisons were made by Student t-test, and 1-way ANOVA was used for multiple comparisons. Significance was set at p < 0.05. RESULTS After infusion of 10 μl of EBD into the rat brain using the UFD system, the Vds of EBD in the UFD groups were significantly larger than those of the control group. When a frequency of 252 kHz was applied, the Vd of the group in which 60 V was applied was significantly larger than that of the group in which 30 V was used. When a frequency of 524 kHz was applied, the Vd tended to increase with application of a higher voltage; however, the differences were not significant (1-way

  17. Enhancement of β-phase in PVDF films embedded with ferromagnetic Gd 5Si 4 nanoparticles for piezoelectric energy harvesting

    DOE PAGES

    Harstad, Shane; D’Souza, Noel; Soin, Navneet; ...

    2017-01-04

    Self-polarized Gd5Si4-polyvinylidene fluoride (PVDF) nanocomposite films have been synthesized via a facile phase-inversion technique. For the 5 wt% Gd 5Si 4-PVDF films, the enhancement of the piezoelectric β-phase and crystallinity are confirmed using Fourier transform infrared (FTIR) spectroscopy (phase fraction, FβFβ, of 81% as compared to 49% for pristine PVDF) and differential scanning calorimetry (crystallinity, ΔXcΔXc, of 58% as compared to 46% for pristine PVDF), respectively. The Gd5Si4 magnetic nanoparticles, prepared using high-energy ball milling were characterized using Dynamic Light Scattering and Vibrating Sample Magnetometry (VSM) to reveal a particle size of ~470 nm with a high magnetization of 11more » emu/g. The VSM analysis of free-standing Gd5Si4-PVDF films revealed that while the pristine PVDF membrane shows weak diamagnetic behavior, the Gd5Si4-PVDF films loaded at 2.5 wt% and 5 wt% Gd 5Si 4 show enhanced ferromagnetic behavior with paramagnetic contribution from Gd5Si3 phase. The interfacial interactions between Gd5Si4 and PVDF results in the preferential crystallization of the β-phase as confirmed via the shift in the CH 2 asymmetric and symmetric stretching vibrations in the FTIR. These results confirm the magnetic Gd 5Si 4 nanoparticles embedded in the PVDF membrane lead to an increased β-phase fraction, which paves the way for future efficient energy harvesting applications using a combination of magnetic and piezoelectric effects.« less

  18. Enhancement of 𝜷-phase in PVDF films embedded with ferromagnetic Gd5Si4 nanoparticles for piezoelectric energy harvesting

    NASA Astrophysics Data System (ADS)

    Harstad, Shane; D'Souza, Noel; Soin, Navneet; El-Gendy, Ahmed A.; Gupta, Shalabh; Pecharsky, Vitalij K.; Shah, Tahir; Siores, Elias; Hadimani, Ravi L.

    2017-05-01

    Self-polarized Gd5Si4-polyvinylidene fluoride (PVDF) nanocomposite films have been synthesized via a facile phase-inversion technique. For the 5 wt% Gd5Si4-PVDF films, the enhancement of the piezoelectric β-phase and crystallinity are confirmed using Fourier transform infrared (FTIR) spectroscopy (phase fraction, Fβ, of 81% as compared to 49% for pristine PVDF) and differential scanning calorimetry (crystallinity, Δ Xc , of 58% as compared to 46% for pristine PVDF), respectively. The Gd5Si4 magnetic nanoparticles, prepared using high-energy ball milling were characterized using Dynamic Light Scattering and Vibrating Sample Magnetometry (VSM) to reveal a particle size of ˜470 nm with a high magnetization of 11 emu/g. The VSM analysis of free-standing Gd5Si4-PVDF films revealed that while the pristine PVDF membrane shows weak diamagnetic behavior, the Gd5Si4-PVDF films loaded at 2.5 wt% and 5 wt% Gd5Si4 show enhanced ferromagnetic behavior with paramagnetic contribution from Gd5Si3 phase. The interfacial interactions between Gd5Si4 and PVDF results in the preferential crystallization of the β-phase as confirmed via the shift in the CH2 asymmetric and symmetric stretching vibrations in the FTIR. These results confirm the magnetic Gd5Si4 nanoparticles embedded in the PVDF membrane lead to an increased β-phase fraction, which paves the way for future efficient energy harvesting applications using a combination of magnetic and piezoelectric effects.

  19. Enhancement of β-phase in PVDF films embedded with ferromagnetic Gd 5Si 4 nanoparticles for piezoelectric energy harvesting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harstad, Shane; D’Souza, Noel; Soin, Navneet

    Self-polarized Gd5Si4-polyvinylidene fluoride (PVDF) nanocomposite films have been synthesized via a facile phase-inversion technique. For the 5 wt% Gd 5Si 4-PVDF films, the enhancement of the piezoelectric β-phase and crystallinity are confirmed using Fourier transform infrared (FTIR) spectroscopy (phase fraction, FβFβ, of 81% as compared to 49% for pristine PVDF) and differential scanning calorimetry (crystallinity, ΔXcΔXc, of 58% as compared to 46% for pristine PVDF), respectively. The Gd5Si4 magnetic nanoparticles, prepared using high-energy ball milling were characterized using Dynamic Light Scattering and Vibrating Sample Magnetometry (VSM) to reveal a particle size of ~470 nm with a high magnetization of 11more » emu/g. The VSM analysis of free-standing Gd5Si4-PVDF films revealed that while the pristine PVDF membrane shows weak diamagnetic behavior, the Gd5Si4-PVDF films loaded at 2.5 wt% and 5 wt% Gd 5Si 4 show enhanced ferromagnetic behavior with paramagnetic contribution from Gd5Si3 phase. The interfacial interactions between Gd5Si4 and PVDF results in the preferential crystallization of the β-phase as confirmed via the shift in the CH 2 asymmetric and symmetric stretching vibrations in the FTIR. These results confirm the magnetic Gd 5Si 4 nanoparticles embedded in the PVDF membrane lead to an increased β-phase fraction, which paves the way for future efficient energy harvesting applications using a combination of magnetic and piezoelectric effects.« less

  20. Magnetic resonance and confocal imaging of solute penetration into the lens reveals a zone of restricted extracellular space diffusion.

    PubMed

    Vaghefi, Ehsan; Walker, Kerry; Pontre, Beau P; Jacobs, Marc D; Donaldson, Paul J

    2012-06-01

    It has been proposed that in the absence of blood supply, the ocular lens operates an internal microcirculation system that delivers nutrients to internalized fiber cells faster and more efficiently than would occur by passive diffusion alone. To visualize the extracellular space solute fluxes potentially generated by this system, bovine lenses were organ cultured in artificial aqueous humor (AAH) for 4 h in the presence or absence of two gadolinium-based contrast agents, ionic Gd(3+), or a chelated form of Gd(3+), Gd-diethylenetriamine penta-acetic acid (Gd-DTPA; mol mass = 590 Da). Contrast reagent penetration into the lens core was monitored in real time using inversion recovery-spin echo (IR-SE) magnetic resonance imaging (MRI), while steady-state accumulation of [Gd-DTPA](-2) was also determined by calculating T1 values. After incubation, lenses were fixed and cryosectioned, and sections were labeled with the membrane marker wheat germ agglutinin (WGA). Sections were imaged by confocal microscopy using standard and reflectance imaging modalities to visualize the fluorescent WGA label and gadolinium reagents, respectively. Real-time IR-SE MRI showed rapid penetration of Gd(3+) into the outer cortex of the lens and a subsequent bloom of signal in the core. These two areas of signal were separated by an area in the inner cortex that limited entry of Gd(3+). Similar results were obtained for Gd-DTPA, but the penetration of the larger negatively charged molecule into the core could only be detected by calculating T1 values. The presence of Gd-DTPA in the extracellular space of the outer cortex and core, but its apparent absence from the inner cortex was confirmed using reflectance imaging of equatorial sections. In axial sections, Gd-DTPA was associated with the sutures, suggesting these structures provide a pathway from the surface, across the inner cortex barrier to the lens core. Our studies have revealed inner and outer boundaries of a zone within which a

  1. Dissolved indium and rare earth elements in three Japanese rivers and Tokyo Bay: Evidence for anthropogenic Gd and In

    NASA Astrophysics Data System (ADS)

    Nozaki, Yoshiyuki; Lerche, Dorte; Alibo, Dia Sotto; Tsutsumi, Makoto

    2000-12-01

    New data on the dissolved (<0.04 μm) rare earth elements (REEs) and In in the Japanese Ara, Tama, and Tone river-estuaries and Tokyo Bay are presented. Unique shale-normalized REE patterns with a distinct positive Gd anomalies and a strong heavy-REE enrichment were seen throughout the data. The dissolved Gd anomaly is caused by local anthropogenic input mainly due to recent use of Gado-pentetic acid as a medical agent for magnetic resonance imaging (MRI) in hospitals. The heavy-REE enrichment may be attributed to fractionation during weathering and transport in the upstream of the rivers, and only partially to removal of light- and middle-REE enriched river colloids by the use of a new ultrafiltration technique. Dissolved In concentrations in the Japanese rivers are extraordinarily high as compared to those in the pristine Chao Phraya river of Thailand reported elsewhere (Nozaki et al., in press). Like Gd, the high dissolved In in the study area can also be ascribed to recent use of In-containing organic compound, In(DTPA) 2- in medical diagnosis. Thus, in the highly populated and industrialized area, dissolved heavy metal concentrations in rivers and estuaries may be significantly perturbed by human activities and the fate of those anthropogenic soluble substances in the marine environment needs to be investigated further.

  2. Tumor-Microenvironment Relaxivity-Changeable Gd-Loaded Poly(L-lysine)/Carboxymethyl Chitosan Nanoparticles as Cancer-Recognizable Magnetic Resonance Imaging Contrast Agents.

    PubMed

    Jiang, Dandan; Zhang, Xiaopeng; Yu, Dexin; Xiao, Yanan; Wang, Tianqi; Su, Zhihui; Liu, Yongjun; Zhang, Na

    2017-03-01

    Magnetic resonance imaging (MRI) contrast agents with tumor-microenvironment changeable relaxivity are effective to increase the sensitivity and selectivity of MRI in tumor diagnosis. In this study, pH-sensitive Gd-loaded Poly(L-lysine)/ Carboxymethyl Chitosan Nanoparticles (Gd-PCNPs) were developed as relaxivity-changeable MRI contrast agents based on the "on–off" switchable strategy. The "on–off" switchable nano-contrast agents were capable of releasing Gd3+ in response to physical stimulation, with structure transformed. Gd-PCNPs could responsively disassemble in an acidic tumor-microenvironment and increase the exchange of protons between water molecules and Gd3+ ions, thus selectively enhance the relaxivity in tumor area. Gd-PCNPs were self-assembled via electrostatic interaction between poly(L-lysine)-diethylenetriamine pentaacetic acid-gadolinium and pH-sensitive carboxymethyl chitosan (CMCS). Gd-PCNPs exhibited spherical shape with uniform particle size distribution (166.00 ± 1 .71 nm) and negative zeta potential (–13.2 ± 4.7 mV). The relaxivity of Gd-PCNPs increased from 6.618 mM–1 · s–1 to 10.008 mM–1 · s–1 when the pH values decrease from 7.4 to 6.0, which was higher than Magnevist® (3.924 mM–1 · s–1 at both pH 7.4 and 6.0 (p <0 05). The changeable relaxivity of Gd/PCNPs would result in enhanced tumor/normal tissue signal contrast, which was verified by in vivo MRI test. In vivo MRI test showed that the signal of Gd-PCNPs was significantly enhanced with prolonged imaging time in tumor tissue compared to Magnevist® (p <0 05). Furthermore, Gd-PCNPs exhibited unobvious in vitro cytotoxicity under the experimental concentrations in B16 cells. No obvious damage was observed in the different tissues of mice. These results indicated that the relaxivity-changeable Gd-PCNPs exhibited demonstrated sensitivity and selectivity in tumor diagnosis with a great potential as a novel MRI contrast agent.

  3. Reductive dehalogenation of 3,5-dibromo-4-hydroxybenzoate by an aerobic strain of Delftia sp. EOB-17.

    PubMed

    Chen, Kai; Jian, Shanshan; Huang, Linglong; Ruan, Zhepu; Li, Shunpeng; Jiang, Jiandong

    2015-12-01

    To confirm the reductive dehalogenation ability of the aerobic strain of Delftia sp. EOB-17, finding more evidences to support the hypothesis that reductive dehalogenation may occur extensively in aerobic bacteria. Delftia sp. EOB-17, isolated from terrestrial soil contaminated with halogenated aromatic compounds, completely degraded 0.2 mM DBHB in 28 h and released two equivalents of bromides under aerobic conditions in the presence of sodium succinate. LC-MS analysis revealed that DBHB was transformed to 4-hydroxybenzoate via 3-bromo-4-hydroxybenzoate by successive reductive dehalogenation. Highly conserved DBHB-degrading genes, including reductive dehalogenase gene (bhbA3) and the extra-cytoplasmic binding receptor gene (bhbB3), were also found in strain EOB-17 by genome sequencing. The optimal temperature and pH for DBHB reductive dehalogenation activity are 30 °C and 8, respectively, and 0.1 mM Cd(2+), Cu(2+), Hg(2+) and Zn(2+) strongly inhibited dehalogenation activity. The aerobic strain of Delftia sp. EOB-17 was confirmed to reductively dehalogenate DBHB under aerobic conditions, providing another evidence to support the hypothesis that reductive dehalogenation occurs extensively in aerobic bacteria.

  4. Effect of intravenous gadolinium-DTPA on diffusion-weighted imaging of brain tumors: a short temporal interval assessment.

    PubMed

    Li, Xiang; Qu, Jin-Rong; Luo, Jun-Peng; Li, Jing; Zhang, Hong-Kai; Shao, Nan-Nan; Kwok, Keith; Zhang, Shou-Ning; Li, Yan-le; Liu, Cui-Cui; Zee, Chi-Shing; Li, Hai-Liang

    2014-09-01

    To determine the effect of intravenous administration of gadolinium (Gd) contrast medium (Gd-DTPA) on diffusion-weighted imaging (DWI) for the evaluation of normal brain parenchyma vs. brain tumor following a short temporal interval. Forty-four DWI studies using b values of 0 and 1000 s/mm(2) were performed before, immediately after, 1 min after, 3 min after, and 5 min after the administration of Gd-DTPA on 62 separate lesions including 15 meningioma, 17 glioma and 30 metastatic lesions. The signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and apparent diffusion coefficient (ADC) values of the brain tumor lesions and normal brain tissues were measured on pre- and postcontrast images. Statistical analysis using paired t-test between precontrast and postcontrast data were obtained on three brain tumors and normal brain tissue. The SNR and CNR of brain tumors and the SNR of normal brain tissue showed no statistical differences between pre- and postcontrast (P > 0.05). The ADC values on the three cases of brain tumors demonstrated significant initial increase on the immediate time point (P < 0.01) and decrease on following the 1 min time point (P < 0.01) after contrast. Significant decrease of ADC value was still found at 3min and 5min time point in the meningioma group (P < 0.01) with gradual normalization over time. The ADC values of normal brain tissues demonstrated significant initial elevation on the immediately postcontrast DWI sequence (P < 0.01). Contrast medium can cause a slight but statistically significant change on the ADC value within a short temporal interval after the contrast administration. The effect is both time and lesion-type dependent. © 2013 Wiley Periodicals, Inc.

  5. 64Cu-DOTATATE PET for Neuroendocrine Tumors: A Prospective Head-to-Head Comparison with 111In-DTPA-Octreotide in 112 Patients.

    PubMed

    Pfeifer, Andreas; Knigge, Ulrich; Binderup, Tina; Mortensen, Jann; Oturai, Peter; Loft, Annika; Berthelsen, Anne Kiil; Langer, Seppo W; Rasmussen, Palle; Elema, Dennis; von Benzon, Eric; Højgaard, Liselotte; Kjaer, Andreas

    2015-06-01

    Neuroendocrine tumors (NETs) can be visualized using radiolabeled somatostatin analogs. We have previously shown the clinical potential of (64)Cu-DOTATATE in a small first-in-human feasibility study. The aim of the present study was, in a larger prospective design, to compare on a head-to-head basis the performance of (64)Cu-DOTATATE and (111)In-diethylenetriaminepentaacetic acid (DTPA)-octreotide ((111)In-DTPA-OC) as a basis for implementing (64)Cu-DOTATATE as a routine. We prospectively enrolled 112 patients with pathologically confirmed NETs of gastroenteropancreatic or pulmonary origin. All patients underwent both PET/CT with (64)Cu-DOTATATE and SPECT/CT with (111)In-DTPA-OC within 60 d. PET scans were acquired 1 h after injection of 202 MBq (range, 183-232 MBq) of (64)Cu-DOTATATE after a diagnostic contrast-enhanced CT scan. Patients were followed for 42-60 mo for evaluation of discrepant imaging findings. The McNemar test was used to compare the diagnostic performance. Eighty-seven patients were congruently PET- and SPECT-positive. No SPECT-positive cases were PET-negative, whereas 10 false-negative SPECT cases were identified using PET. The diagnostic sensitivity and accuracy of (64)Cu-DOTATATE (97% for both) were significantly better than those of (111)In-DTPA-OC (87% and 88%, respectively, P = 0.017). In 84 patients (75%), (64)Cu-DOTATATE identified more lesions than (111)In-DTPA-OC and always at least as many. In total, twice as many lesions were detected with (64)Cu-DOTATATE than with (111)In-DTPA-OC. Moreover, in 40 of 112 cases (36%) lesions were detected by (64)Cu-DOTATATE in organs not identified as disease-involved by (111)In-DTPA-OC. With these results, we demonstrate that (64)Cu-DOTATATE is far superior to (111)In-DTPA-OC in diagnostic performance in NET patients. Therefore, we do not hesitate to recommend implementation of (64)Cu-DOTATATE as a replacement for (111)In-DTPA-OC. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  6. Subcellular SIMS imaging of gadolinium isotopes in human glioblastoma cells treated with a gadolinium containing MRI agent

    NASA Astrophysics Data System (ADS)

    Smith, Duane R.; Lorey, Daniel R.; Chandra, Subhash

    2004-06-01

    Neutron capture therapy is an experimental binary radiotherapeutic modality for the treatment of brain tumors such as glioblastoma multiforme. Recently, neutron capture therapy with gadolinium-157 has gained attention, and techniques for studying the subcellular distribution of gadolinium-157 are needed. In this preliminary study, we have been able to image the subcellular distribution of gadolinium-157, as well as the other six naturally abundant isotopes of gadolinium, with SIMS ion microscopy. T98G human glioblastoma cells were treated for 24 h with 25 mg/ml of the metal ion complex diethylenetriaminepentaacetic acid Gd(III) dihydrogen salt hydrate (Gd-DTPA). Gd-DTPA is a contrast enhancing agent used for MRI of brain tumors, blood-brain barrier impairment, diseases of the central nervous system, etc. A highly heterogeneous subcellular distribution was observed for gadolinium-157. The nuclei in each cell were distinctly lower in gadolinium-157 than in the cytoplasm. Even within the cytoplasm the gadolinium-157 was heterogeneously distributed. The other six naturally abundant isotopes of gadolinium were imaged from the same cells and exhibited a subcellular distribution consistent with that observed for gadolinium-157. These observations indicate that SIMS ion microscopy may be a viable approach for subcellular studies of gadolinium containing neutron capture therapy drugs and may even play a major role in the development and validation of new gadolinium contrast enhancing agents for diagnostic MRI applications.

  7. In-vitro Gd-DTPA Relaxometry Studies in Oxygenated Venous Human Blood and Aqueous Solution at 3 and 7T

    PubMed Central

    Kalavagunta, Chaitanya; Michaeli, Shalom; Metzger, Gregory J.

    2014-01-01

    In-vitro T1 and T2* relaxivities (r1 and r2*) of Gd-DTPA (GaD) in oxygenated human venous blood (OVB) and aqueous solution (AS) at 3T and 7T were calculated. GaD concentrations ([GaD]) in OVB and AS were prepared in the range 0–5 mM. All measurements were acquired at 37±2 °C. At both 3T and 7T, a linear relationship was observed between [GaD] and R1 in both AS and OVB. At 7T, r1 in AS decreased by 7.5% (p = 0.045) while there was a negligible change in OVB. With respect to R2*, a linear relationship with [GaD] was only observed in AS, while a more complex relationship was observed in OVB; quadratic below and linear above 2 mM at both field strengths. There was a significant increase of over four-fold in r2* with GaD in OVB at 7T (for [GaD] above 2mM, p ≪0.01) as compared to 3T. Furthermore, in comparison to r1, r2* in AS was less than two-fold higher at both field strengths while in OVB it was ~twenty-fold and ~ninety-fold higher at 3T and 7T, respectively. This observation emphasizes the importance of r2* knowledge at high magnetic fields, ≥3T. The comparison between r1 and r2* presented in this work is crucial in the design and optimization of high field MRI studies making use of paramagnetic contrast agents. This is especially true in multiple compartment systems such as blood where r2* dramatically increases while r1 remains relatively constant with increasing magnetic field strength. PMID:24523062

  8. Feasibility of texture analysis for the assessment of biochemical changes in meniscal tissue on T1 maps calculated from delayed gadolinium-enhanced magnetic resonance imaging of cartilage data: comparison with conventional relaxation time measurements.

    PubMed

    Mayerhoefer, Marius E; Welsch, Goetz H; Riegler, Georg; Mamisch, Tallal C; Materka, Andrzej; Weber, Michael; El-Rabadi, Karem; Friedrich, Klaus M; Dirisamer, Albert; Trattnig, Siegfried

    2010-09-01

    To (1) establish the feasibility of texture analysis for the in vivo assessment of biochemical changes in meniscal tissue on delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC), and (2) compare textural with conventional T1 relaxation time measurements calculated from dGEMRIC data ("T1(Gd) relaxation times"). We enrolled 10 asymptomatic volunteers (7 men and 3 women; mean age, 27.2 +/- 4.5 years), without a history of meniscus damage, in our study. MRI of the right knee was performed at 3.0 T. An isotropic, 3-dimensional (3D), double-echo steady-state sequences was used for morphologic evaluation, and a dual flip angle 3D gradient echo sequence was used for T1(Gd) mapping. All MRI scans were performed 90 minutes after injection of 0.2 mmol/kg of Gd-diethylenetriamine pentaacetic acid (DTPA), and subsequently, during application of a compressive force (50% of the body weight) in the axial direction. Regions of interest, covering the central portions of the posterior horn of the medial meniscus, were defined on 3 adjacent sagittal sections. Based on the relaxation time maps, mean T1(Gd), as well as the T1(Gd) texture features derived from the co-occurrence matrix (COC: Angular Second Moment, Entropy, Inverse Difference Moment) and wavelet transform (WAV: WavEnLL, WavEnHL, WavEnHH, WavEnLH), were calculated. Paired t tests were used to assess differences between baseline and compression, and intraclass correlation coefficients (ICC) were calculated to establish the intrarater reliability of the measurements. Mean T1(Gd) (-67.3 ms, P = 0.011), Angular Second Moment (-0.0002, P = 0.009), Entropy (+0.033, P = 0.025), WavEnLL (+1011.16, P = 0.002), WavEnHL (+18.64, P = 0.012), and WavEnLH (+72.74, P = 0.035) differed significantly between baseline and compression. Intrarater reliability was substantial for mean T1(Gd) relaxation times (ICC = 0.99-1.0), and also for T1(Gd) co-occurrence matrix (ICC = 0.63-0.92) and WAV (ICC = 0.86-0.98) features

  9. Biodegradable gadolinium-chelated cationic poly(urethane amide) copolymers for gene transfection and magnetic resonance imaging.

    PubMed

    Gao, Xiaolong; Wang, Gangmin; Shi, Ting; Shao, Zhihong; Zhao, Peng; Shi, Donglu; Ren, Jie; Lin, Chao; Wang, Peijun

    2016-08-01

    Theranostic nano-polyplexes containing gene and imaging agents hold a great promise for tumor diagnosis and therapy. In this work, we develop a group of new gadolinium (Gd)-chelated cationic poly(urethane amide)s for gene delivery and T1-weighted magnetic resonance (MR) imaging. Cationic poly(urethane amide)s (denoted as CPUAs) having multiple disulfide bonds, urethane and amide linkages were synthesized by stepwise polycondensation reaction between 1,4-bis(3-aminopropyl)piperazine and a mixture of di(4-nitrophenyl)-2, 2'-dithiodiethanocarbonate (DTDE-PNC) and diethylenetriaminepentaacetic acid (DTPA) dianhydride at varied molar ratios. Then, Gd-chelated CPUAs (denoted as GdCPUAs) were produced by chelating Gd(III) ions with DTPA residues of CPUAs. These GdCPUAs could condense gene into nanosized and positively-charged polyplexes in a physiological condition and, however, liberated gene in an intracellular reductive environment. In vitro transfection experiments revealed that the GdCPUA at a DTDE-PNC/DTPA residue molar ratio of 85/15 induced the highest transfection efficiency in different cancer cells. This efficiency was higher than that yielded with 25kDa branched polyethylenimine as a positive control. GdCPUAs and their polyplexes exhibited low cytotoxicity when an optimal transfection activity was detected. Moreover, GdCPUAs may serve as contrast agents for T1-weighted magnetic resonance imaging. The results of this work indicate that biodegradable Gd-chelated cationic poly(urethane amide) copolymers have high potential for tumor theranostics. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Superparamagnetic And Paramagnetic MRI Contrast Agents: Application Of Rapid Magnetic Resonance Imaging To Assess Renal Function

    NASA Astrophysics Data System (ADS)

    Carvlin, Mark J.; Renshaw, Perry F.; Arger, Peter; Kundel, Harold L.; Dougherty, Larry; Axel, Leon; Kassab, Eleanor; Moore, Bethanne

    1988-06-01

    The paramagnetic chelate complex, gadolinium-diethylene-triamine-pentaacetic acid, Gd-DTPA, and superparamagnetic particles, such as those composed of dextran coated magnetite, function as magnetic resonance contrast agents by changing the relaxation rates, 1/T1 and 1/T2. The effects that these agents have upon MR signal intensity are determined by: the inherent biophysical properties of the tissue being imaged, the concentration of the contrast agent and the data acquisition scheme (pulse sequence parameters) employed. Following the time course of MR signal change in the first minutes after the injection of contrast agent(s) allows a dynamic assessment of organ functions in a manner analogous to certain nuclear medicine studies. In order to study renal function, sequential MR fast scan images, gradient echo (TR=35/TE=7 msec, flip angle=25 degrees), were acquired, one every 12 seconds, after intravenous injection of Gd-DTPA and/or dextran-magnetite. Gd-DTPA, which is freely filtered at the glomerulus and is neither secreted nor reabsorbed, provides information concerning renal perfusion, glomerular filtration and tubular concentrating ability. Dextran-magnetite (200 A diameter), which is primarily contained within the intravascular space shortly after injection, provides information on blood flow to and distribution within the kidney. The MR signal change observed after administration of contrast agents varied dramatically depending upon the agents injected and the imaging parameters used. Hence a broad range of physiolgic processes may be described using these techniques, i.e. contrast agent enhanced functional MR examinations.

  11. Ocular pharmacokinetic study using T₁ mapping and Gd-chelate- labeled polymers.

    PubMed

    Shi, Xianfeng; Liu, Xin; Wu, Xueming; Lu, Zheng-Rong; Li, S Kevin; Jeong, Eun-Kee

    2011-12-01

    Recent advances in drug discovery have led to the development of a number of therapeutic macromolecules for treatment of posterior eye diseases. We aimed to investigate the clearance of macromolecular contrast probes (polymers conjugated with Gd-chelate) in the vitreous after intravitreal injections with the recently developed ms-DSEPI-T12 MRI and to examine the degradation of disulfide-containing biodegradable polymers in the vitreous humor in vivo. Intravitreal injections of model contrast agents poly[N-(2-hydroxypropyl)methacrylamide]-GG-1,6-hexanediamine-(Gd-DO3A), biodegradable (Gd-DTPA)-cystine copolymers, and MultiHance were performed in rabbits; their distribution and elimination from the vitreous after injections were determined by MRI. Times for macromolecular contrast agents to decrease to half their initial concentrations in the vitreous ranged from 0.4-1.3 days post-injection. Non-biodegradable polymers demonstrated slower vitreal clearance than those of disulfide-biodegradable polymers. Biodegradable polymers had similar clearance as MultiHance. Usefulness of T(1) mapping and ms-DSEPI-T12 MRI to study ocular pharmacokinetics was demonstrated. Results suggest an enzymatic degradation mechanism for the disulfide linkage in polymers in the vitreous leading to breakup of polymers in vitreous humor over time.

  12. Developing a physiologically based approach for modeling plutonium decorporation therapy with DTPA.

    PubMed

    Kastl, Manuel; Giussani, Augusto; Blanchardon, Eric; Breustedt, Bastian; Fritsch, Paul; Hoeschen, Christoph; Lopez, Maria Antonia

    2014-11-01

    To develop a physiologically based compartmental approach for modeling plutonium decorporation therapy with the chelating agent Diethylenetriaminepentaacetic acid (Ca-DTPA/Zn-DTPA). Model calculations were performed using the software package SAAM II (©The Epsilon Group, Charlottesville, Virginia, USA). The Luciani/Polig compartmental model with age-dependent description of the bone recycling processes was used for the biokinetics of plutonium. The Luciani/Polig model was slightly modified in order to account for the speciation of plutonium in blood and for the different affinities for DTPA of the present chemical species. The introduction of two separate blood compartments, describing low-molecular-weight complexes of plutonium (Pu-LW) and transferrin-bound plutonium (Pu-Tf), respectively, and one additional compartment describing plutonium in the interstitial fluids was performed successfully. The next step of the work is the modeling of the chelation process, coupling the physiologically modified structure with the biokinetic model for DTPA. RESULTS of animal studies performed under controlled conditions will enable to better understand the principles of the involved mechanisms.

  13. A critical remark on the applicability of E-OBS European gridded temperature data set for validating control climate simulations

    NASA Astrophysics Data System (ADS)

    Kyselý, Jan; Plavcová, Eva

    2010-12-01

    The study compares daily maximum (Tmax) and minimum (Tmin) temperatures in two data sets interpolated from irregularly spaced meteorological stations to a regular grid: the European gridded data set (E-OBS), produced from a relatively sparse network of stations available in the European Climate Assessment and Dataset (ECA&D) project, and a data set gridded onto the same grid from a high-density network of stations in the Czech Republic (GriSt). We show that large differences exist between the two gridded data sets, particularly for Tmin. The errors tend to be larger in tails of the distributions. In winter, temperatures below the 10% quantile of Tmin, which is still far from the very tail of the distribution, are too warm by almost 2°C in E-OBS on average. A large bias is found also for the diurnal temperature range. Comparison with simple average series from stations in two regions reveals that differences between GriSt and the station averages are minor relative to differences between E-OBS and either of the two data sets. The large deviations between the two gridded data sets affect conclusions concerning validation of temperature characteristics in regional climate model (RCM) simulations. The bias of the E-OBS data set and limitations with respect to its applicability for evaluating RCMs stem primarily from (1) insufficient density of information from station observations used for the interpolation, including the fact that the stations available may not be representative for a wider area, and (2) inconsistency between the radii of the areal average values in high-resolution RCMs and E-OBS. Further increases in the amount and quality of station data available within ECA&D and used in the E-OBS data set are essentially needed for more reliable validation of climate models against recent climate on a continental scale.

  14. Macromolecular and Dendrimer Based Magnetic Resonance Contrast Agents

    PubMed Central

    Bumb, Ambika; Brechbiel, Martin W.; Choyke, Peter

    2010-01-01

    Magnetic resonance imaging (MRI) is a powerful imaging modality that can provide an assessment of function or molecular expression in tandem with anatomic detail. Over the last 20–25 years, a number of gadolinium based MR contrast agents have been developed to enhance signal by altering proton relaxation properties. This review explores a range of these agents from small molecule chelates, such as Gd-DTPA and Gd-DOTA, to macromolecular structures composed of albumin, polylysine, polysaccharides (dextran, inulin, starch), poly(ethylene glycol), copolymers of cystamine and cystine with GD-DTPA, and various dendritic structures based on polyamidoamine and polylysine (Gadomers). The synthesis, structure, biodistribution and targeting of dendrimer-based MR contrast agents are also discussed. PMID:20590365

  15. Liposomes Containing Gadodiamide: Preparation, Physicochemical Characterization, and In Vitro Cytotoxic Evaluation.

    PubMed

    Maia, Ana Luiza Chaves; Fernandes, Christian; de Oliveira, Cynthia Nara Pereira; Teixeira, Claudia Salviano; Oliveira, Mariana Silva; Soares, Daniel Cristian Ferreira; Ramaldes, Gilson Andrade

    2017-01-01

    The aim of this study was to develop, characterize and assess the cytotoxic activity of pHsensitive (pHL-Gd), stealth pH-sensitive (SpHL-Gd), and conventional (convL-Gd) liposomes containing gadodiamide (Gd-DTPA-BMA). Formulations were prepared by reverse-phase evaporation method and their physicochemical properties were evaluated by means of particle size, zeta potential, and Gd-DTPA-BMA entrapment. SpHL-Gd was considered being the most promising liposome, since it combines stealth and fusogenic characteristics that might contribute to achieve higher therapeutic efficiency. Their drug encapsulation percentages have been optimized satisfactorily. The addition of Gd-DTPA-BMA at 125 μmol/mL in the SpHL-Gd preparation allowed obtaining liposomes with appropriate encapsulation percentage (20.3 ± 0.1%) and entrapment (25.4 ± 0.1 μmol/mL). The cytotoxic studies on the 4T1 breast cancer cell line demonstrated that liposomes-loaded with Gd-DTPA-BMA inhibited cancer cell. pHL-Gd and SpHL-Gd liposomes showed higher activity than convL-Gd and free Gd-DTPA-BMA, indicating that the pH-sensitive characteristic was important to improve intracellular delivery. The presence of polyethylene glycol (PEG) in the SpHL-Gd formulation did not affect the pH-sensitivity and internalization. Therefore, the results of this study suggest the feasibility of liposomes containing Gd-DTPA-BMA as a new promising controlled delivery system. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Dissociation kinetics of open-chain and macrocyclic gadolinium(III)-aminopolycarboxylate complexes related to magnetic resonance imaging: catalytic effect of endogenous ligands.

    PubMed

    Baranyai, Zsolt; Pálinkás, Zoltán; Uggeri, Fulvio; Maiocchi, Alessandro; Aime, Silvio; Brücher, Ernő

    2012-12-14

    The kinetics of the metal exchange reactions between open-chain Gd(DTPA)(2-) and Gd(DTPA-BMA), macrocyclic Gd(DOTA)(-) and Gd(HP-DO3A) complexes, and Cu(2+)  ions were investigated in the presence of endogenous citrate, phosphate, carbonate and histidinate ligands in the pH range 6-8 in NaCl (0.15 M) at 25 °C. The rates of the exchange reactions of Gd(DTPA)(2-) and Gd(DTPA-BMA) are independent of the Cu(2+) concentration in the presence of citrate and the reactions occur via the dissociation of Gd(3+)  complexes catalyzed by the citrate ions. The HCO(3)(-)/CO(3)(2-) and H(2)PO(4)(-) ions also catalyze the dissociation of complexes. The rates of the dissociation of Gd(DTPA-BMA), catalyzed by the endogenous ligands, are about two orders of magnitude higher than those of the Gd(DTPA)(2-). In fact near to physiological conditions the bicarbonate and carbonate ions show the largest catalytic effect, that significantly increase the dissociation rate of Gd(DTPA-BMA) and make the higher pH values (when the carbonate ion concentration is higher) a risk-factor for the dissociation of complexes in body fluids. The exchange reactions of Gd(DOTA)(-) and Gd(HP-DO3A) with Cu(2+) occur through the proton assisted dissociation of complexes in the pH range 3.5-5 and the endogenous ligands do not affect the dissociation rates of complexes. More insights into the interaction scheme between Gd(DTPA-BMA) and Gd(DTPA)(2-) and endogenous ligands have been obtained by acquiring the (13)C NMR spectra of the corresponding diamagnetic Y(III)-complexes, indicating the increase of the rates of the intramolecular rearrangements in the presence of carbonate and citrate ions. The herein reported results may have implications in the understanding of the etiology of nephrogenic systemic fibrosis, a rare disease that has been associated to the administration of Gd-containing agents to patients with impaired renal function. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Improvements to the gridding of precipitation data across Europe under the E-OBS scheme

    NASA Astrophysics Data System (ADS)

    Cornes, Richard; van den Besselaar, Else; Jones, Phil; van der Schrier, Gerard; Verver, Ge

    2016-04-01

    Gridded precipitation data are a valuable resource for analyzing past variations and trends in the hydroclimate. Such data also provide a reference against which model simulations may be driven, compared and/or adjusted. The E-OBS precipitation dataset is widely used for such analyses across Europe, and is particularly valuable since it provides a spatially complete, daily field across the European domain. In this analysis, improvements to the E-OBS precipitation dataset will be presented that aim to provide a more reliable estimate of grid-box precipitation values, particularly in mountainous areas and in regions with a relative sparsity of input station data. The established three-stage E-OBS gridding scheme is retained, whereby monthly precipitation totals are gridded using a thin-plate spline; daily anomalies are gridded using indicator kriging; and the final dataset is produced by multiplying the two grids. The current analysis focuses on improving the monthly thin-plate spline, which has overall control on the final daily dataset. The results from different techniques are compared and the influence on the final daily data is assessed by comparing the data against gridded country-wide datasets produced by various National Meteorological Services

  18. Evaluation of Marrow Perfusion in the Femoral Head by Dynamic Magnetic Resonance Imaging

    PubMed Central

    Tsukamoto, Hiroshi; Kang, Young S.; Jones, Lynne C.; Cova, Maria; Herold, Christian J.; McVeigh, Elliot; Hungerford, David S.; Zerhouni, Elias A.

    2007-01-01

    Rationale and Objectives There is a continuing need for a greater sensitivity of magnetic resonance imaging (MRI) in the diagnosis of avascular necrosis (AVN). Previously, it was demonstrated that a dynamic MRI method, with gadolinium-DTPA (Gd-DTPA) enhancement, can detect acute changes not seen on spin-echo images after arterial occlusion in a dog model. Because venous congestion appears to be a more directly relevant hemodynamic abnormality in a majority of clinical AVN cases, the authors extended the dynamic MRI technique to study changes in venous occlusion. Methods Dynamic MRI of the proximal femur was performed in five adult dogs before and after unilateral ligation of common iliac and lateral circumflex veins. Sixteen sequential gradient-recalled pulse sequence (GRASS) images (time resolution = 45 mseconds, echo time = 9 mseconds, flip angle = 65°) were obtained immediately after a bolus intravenous injection of 0.2 mmol/kg of Gd-DTPA. Simultaneous measurements of regional blood flow were made using the radioactive microsphere method. Results After venous ligation, there was a 25% to 45% decrease in the degree of enhancement compared with preligation values on the ligated side. The decrease in cumulative enhancement (integrated over the entire time course) was statistically significant. The occlusion technique was verified by confirming a statistically significant decrease in blood flow determined by the microsphere method. Conclusions Dynamic Gd-DTPA-enhanced fast MRI technique can detect acute changes in bone marrow perfusion due to venous occlusion. This technique may have applications in the early detection of nontraumatic AVN. PMID:1601616

  19. Are gadolinium contrast agents suitable for gadolinium neutron capture therapy?

    PubMed

    De Stasio, Gelsomina; Rajesh, Deepika; Casalbore, Patrizia; Daniels, Matthew J; Erhardt, Robert J; Frazer, Bradley H; Wiese, Lisa M; Richter, Katherine L; Sonderegger, Brandon R; Gilbert, Benjamin; Schaub, Sebastien; Cannara, Rachel J; Crawford, John F; Gilles, Mary K; Tyliszczak, Tolek; Fowler, John F; Larocca, Luigi M; Howard, Steven P; Mercanti, Delio; Mehta, Minesh P; Pallini, Roberto

    2005-06-01

    Gadolinium neutron capture therapy (GdNCT) is a potential treatment for malignant tumors based on two steps: (1) injection of a tumor-specific (157)Gd compound; (2) tumor irradiation with thermal neutrons. The GdNC reaction can induce cell death provided that Gd is proximate to DNA. Here, we studied the nuclear uptake of Gd by glioblastoma (GBM) tumor cells after treatment with two Gd compounds commonly used for magnetic resonance imaging, to evaluate their potential as GdNCT agents. Using synchrotron X-ray spectromicroscopy, we analyzed the Gd distribution at the subcellular level in: (1) human cultured GBM cells exposed to Gd-DTPA or Gd-DOTA for 0-72 hours; (2) intracerebrally implanted C6 glioma tumors in rats injected with one or two doses of Gd-DOTA, and (3) tumor samples from GBM patients injected with Gd-DTPA. In cell cultures, Gd-DTPA and Gd-DOTA were found in 84% and 56% of the cell nuclei, respectively. In rat tumors, Gd penetrated the nuclei of 47% and 85% of the tumor cells, after single and double injection of Gd-DOTA, respectively. In contrast, in human GBM tumors 6.1% of the cell nuclei contained Gd-DTPA. Efficacy of Gd-DTPA and Gd-DOTA as GdNCT agents is predicted to be low, due to the insufficient number of tumor cell nuclei incorporating Gd. Although multiple administration schedules in vivo might induce Gd penetration into more tumor cell nuclei, a search for new Gd compounds with higher nuclear affinity is warranted before planning GdNCT in animal models or clinical trials.

  20. Diethylentriaminepenta acetic acid glucose conjugates as a cell permeable iron chelator.

    PubMed

    Mosayebnia, Mona; Shafiee-Ardestani, Mehdi; Pasalar, Parvin; Mashayekhi, Mojgan; Amanlou, Massoud

    2014-01-01

    To find out whether DTPA-DG complex can enhance clearance of intracellular free iron. Diethylenetriaminepentaacetic acid-D-deoxy-glucosamine (DTPA-DG) was synthesized and examined for its activity as a cell-permeable iron chelator in human hepatocellular carcinoma (HEPG2) cell line exposed to high concentration of iron sulfate and compared with deferoxamine (DFO), a prototype iron chelator. The effect of DTPA-DG on cell viability was monitored using the 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide MTT assay as well. There was a significant increase of iron level after iron overload induction in HEPG2 cell culture. DTPA-DG presented a remarkable capacity to iron burden reducing with estimated 50% inhibitory concentration value of 65.77 nM. In fact, glycosyl moiety was gained access of DTPA to intracellular iron deposits through glucose transporter systems. DTPA-DG, more potent than DFO to sequester deposits of free iron with no profound toxic effect. The results suggest the potential of DTPA-DG in chelating iron and permitting its excretion from primary organ storage.

  1. Characterization of GdFFD, a d-Amino Acid-containing Neuropeptide That Functions as an Extrinsic Modulator of the Aplysia Feeding Circuit*

    PubMed Central

    Bai, Lu; Livnat, Itamar; Romanova, Elena V.; Alexeeva, Vera; Yau, Peter M.; Vilim, Ferdinand S.; Weiss, Klaudiusz R.; Jing, Jian; Sweedler, Jonathan V.

    2013-01-01

    During eukaryotic translation, peptides/proteins are created using l-amino acids. However, a d-amino acid-containing peptide (DAACP) can be produced through post-translational modification via an isomerase enzyme. General approaches to identify novel DAACPs and investigate their function, particularly in specific neural circuits, are lacking. This is primarily due to the difficulty in characterizing this modification and due to the limited information on neural circuits in most species. We describe a multipronged approach to overcome these limitations using the sea slug Aplysia californica. Based on bioinformatics and homology to known DAACPs in the land snail Achatina fulica, we targeted two predicted peptides in Aplysia, GFFD, similar to achatin-I (GdFAD versus GFAD, where dF stands for d-phenylalanine), and YAEFLa, identical to fulyal (YdAEFLa versus YAEFLa), using stereoselective analytical methods, i.e. MALDI MS fragmentation analysis and LC-MS/MS. Although YAEFLa in Aplysia was detected only in an all l-form, we found that both GFFD and GdFFD were present in the Aplysia CNS. In situ hybridization and immunolabeling of GFFD/GdFFD-positive neurons and fibers suggested that GFFD/GdFFD might act as an extrinsic modulator of the feeding circuit. Consistent with this hypothesis, we found that GdFFD induced robust activity in the feeding circuit and elicited egestive motor patterns. In contrast, the peptide consisting of all l-amino acids, GFFD, was not bioactive. Our data indicate that the modification of an l-amino acid-containing neuropeptide to a DAACP is essential for peptide bioactivity in a motor circuit, and thus it provides a functional significance to this modification. PMID:24078634

  2. Orally administered DTPA penta-ethyl ester for the decorporation of inhaled 241Am

    PubMed Central

    Sueda, Katsuhiko; Sadgrove, Matthew P.; Huckle, James E.; Leed, Marina G. D.; Weber, Waylon M.; Doyle-Eisele, Melanie; Guilmette, Raymond A.; Jay, Michael

    2014-01-01

    Diethylenetriaminepentaacetic acid (DTPA) is an effective decorporation agent to facilitate the elimination of radionuclides from the body, but its permeability-limited oral bioavailability limits its utility in mass-casualty emergencies. To overcome this limitation, a prodrug strategy using the penta-ethyl ester form of DTPA is under investigation. Pharmacokinetic and biodistribution studies were conducted in rats by orally administering [14C]DTPA penta-ethyl ester, and this prodrug and its hydrolysis products were analyzed as a single entity. Compared to a previous reporting of intravenously administered DTPA, the oral administration of this prodrug resulted in a sustained plasma concentration profile with higher plasma exposure and lower clearance. An assessment of the urine composition revealed that the bioactivation was extensive but incomplete, with no detectable levels of the penta- or tetra-ester forms. Tissue distribution at 12 h was limited, with approximately 73% of the administered dose being associated with the gastrointestinal tract. In the efficacy study, rats were exposed to aerosols of 241Am nitrate before receiving a single oral treatment of the prodrug. The urinary excretion of 241Am was found to be 19% higher than with the control. Consistent with prior reports of DTPA, the prodrug was most effective when the treatment delays were minimized. PMID:24619514

  3. Effects of Y/Gd Ratio and Boron Excess on Vacuum Ultraviolet Characteristics and Morphology of (Y,Gd)BO3:Eu Phosphor Particles Prepared by Spray Pyrolysis

    NASA Astrophysics Data System (ADS)

    Koo, Hye Young; Jung, Dae Soo; Hong, Seung Kwon; Kang, Yun Chan; Jung, Kyeong Youl

    2007-06-01

    (Y1-xGdx)BO3:Eu (0≤ x≤ 1) phosphor particles were prepared by spray pyrolysis. The optimal amount of boric acid for the high photoluminescence intensity of there particles differed depending on the molar ratio of Y to Gd. With decreasing Y/Gd molar ratio, an increasing amount of excess boric acid was required. The difference in excess quantity of boric acid, which was demanded for the highest photoluminescence intensity according to the Y/Gd ratio, influenced the morphology and mean size of the (Y,Gd)BO3:Eu phosphor particles. The (Y1-xGdx)BO3:Eu (0≤ x≤ 1) phosphor particles had a regular morphology. The mean sizes of the GdBO3:Eu and YBO3:Eu phosphor particles were 1.4 and 1 μm, respectively. The high reactivity of boron and yttrium components produced YBO3:Eu phosphor particles with high photoluminescence intensities by spray pyrolysis using a spray solution with a stoichiometric amount of boric acid.

  4. Folic acid-conjugated GdPO4:Tb3+@SiO2 Nanoprobe for folate receptor-targeted optical and magnetic resonance bi-modal imaging

    NASA Astrophysics Data System (ADS)

    Xu, Xianzhu; Zhang, Xiaoying; Wu, Yanli

    2016-11-01

    Both fluorescent and magnetic nanoprobes have great potential applications for diagnostics and therapy. In the present work, a folic acid-conjugated and silica-modified GdPO4:Tb3+ (GdPO4:Tb3+@SiO2-FA) dual nanoprobe was strategically designed and synthesized for the targeted dual-modality optical and magnetic resonance (MR) imaging via a facile aqueous method. Their structural, optical, and magnetic properties were determined using transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR), ultraviolet-visible spectra (UV-Vis), photoluminescence (PL), and superconducting quantum interference device (SQUID). These results indicated that GdPO4:Tb3+@SiO2-FA were uniform monodisperse core-shell structured nanorods (NRs) with an average length of 200 nm and an average width of 25 nm. The paramagnetic property of the synthesized GdPO4:Tb3+@SiO2-FA NRs was confirmed with its linear hysteresis plot (M-H). In addition, the NRs displayed an obvious T1-weighted effect and thus it could potentially serve as a T1-positive contrast agent. The NRs emitted green lights due to the 5D4 → 7F5 transition of the Tb3+. The in vitro assays with NCI-H460 lung cancer cells and human embryonic kidney cell line 293T cells indicated that the GdPO4:Tb3+@SiO2-FA nanoprobe could specifically bind the cells bearing folate receptors (FR). The MTT assay of the NRs revealed that its cytotoxicity was very low. Further in vivo MRI experiments distinctively depict enhanced anatomical features in a xenograft tumor. These results suggest that the GdPO4:Tb3+@SiO2-FA NPs have excellent imaging and cell-targeting abilities for the folate receptor-targeted dual-modality optical and MR imaging and can be potentially used as the nanoprobe for bioimaging.

  5. Impact of Impaired Renal Function on Gadolinium Retention After Administration of Gadolinium-Based Contrast Agents in a Mouse Model.

    PubMed

    Kartamihardja, A Adhipatria P; Nakajima, Takahito; Kameo, Satomi; Koyama, Hiroshi; Tsushima, Yoshito

    2016-10-01

    The aim of this study was to investigate the impact of impaired renal function on gadolinium (Gd) retention in various organs after Gd-based contrast agent injection. After local animal care and review committee approval, 23 normal mice and 26 with renal failure were divided into 4 treatment groups (Gd-DTPA-BMA, 5 mmol/kg; Gd-DOTA, 5 mmol/kg; GdCl3, 0.02 mmol/kg; and saline, 250 μL). Each agent was intravenously administered on weekdays for 4 weeks. Samples were collected on days 3 (short-term) and 45 (long-term) after the last injection. Gadolinium concentrations were quantified by inductively coupled plasma-mass spectrometry. Three mice with renal failure and 2 normal mice in the GdCl3 group and 1 mouse with renal failure in the Gd-DTPA-BMA group died. In the Gd-DTPA-BMA group, impaired renal function increased short-term Gd retention in the liver, bone, spleen, skin, and kidney (P < 0.01) but did not affect long-term Gd retention. Gd-DTPA-BMA showed higher Gd retention than Gd-DOTA. Although Gd retention in the Gd-DOTA group was generally low, impaired renal function increased only long-term hepatic Gd retention. Hepatic and splenic Gd retentions were significantly higher than other organs' Gd retention in the GdCl3 group (P < 0.01). Renal function did not affect brain Gd retention, regardless of the Gd compound used. The tendency of Gd retention varied according to the agent, regardless of renal function. Although renal impairment increased short-term Gd retention after Gd-DTPA-BMA administration, long-term Gd retention for Gd-based contrast agents was almost unaffected by renal function, suggesting that the chemical structures of retained Gd may not be consistent and some Gd is slowly eliminated after initially being retained.

  6. Gd-functionalised Au nanoparticles as targeted contrast agents in MRI: relaxivity enhancement by polyelectrolyte coating.

    PubMed

    Warsi, Muhammad Farooq; Adams, Ralph W; Duckett, Simon B; Chechik, Victor

    2010-01-21

    Monolayer-protected, Gd(3+)-functionalised gold nanoparticles with enhanced spin-lattice relaxivity (r(1)) were prepared; adsorption of polyelectrolytes on these materials further increased r(1) and ligand exchange with a biotin-derivatised disulfide led to a prototype avidin-targeted contrast agent.

  7. Gadolinium Enhanced MR Coronary Vessel Wall Imaging at 3.0 Tesla.

    PubMed

    Kelle, Sebastian; Schlendorf, Kelly; Hirsch, Glenn A; Gerstenblith, Gary; Fleck, Eckart; Weiss, Robert G; Stuber, Matthias

    2010-10-11

    Purpose. We evaluated the influence of the time between low-dose gadolinium (Gd) contrast administration and coronary vessel wall enhancement (LGE) detected by 3T magnetic resonance imaging (MRI) in healthy subjects and patients with coronary artery disease (CAD). Materials and Methods. Four healthy subjects (4 men, mean age 29 ± 3 years and eleven CAD patients (6 women, mean age 61 ± 10 years) were studied on a commercial 3.0 Tesla (T) whole-body MR imaging system (Achieva 3.0 T; Philips, Best, The Netherlands). T1-weighted inversion-recovery coronary magnetic resonance imaging (MRI) was repeated up to 75 minutes after administration of low-dose Gadolinium (Gd) (0.1 mmol/kg Gd-DTPA). Results. LGE was seen in none of the healthy subjects, however in all of the CAD patients. In CAD patients, fifty-six of 62 (90.3%) segments showed LGE of the coronary artery vessel wall at time-interval 1 after contrast. At time-interval 2, 34 of 42 (81.0%) and at time-interval 3, 29 of 39 evaluable segments (74.4%) were enhanced. Conclusion. In this work, we demonstrate LGE of the coronary artery vessel wall using 3.0 T MRI after a single, low-dose Gd contrast injection in CAD patients but not in healthy subjects. In the majority of the evaluated coronary segments in CAD patients, LGE of the coronary vessel wall was already detectable 30-45 minutes after administration of the contrast agent.

  8. Complications in complexation kinetics for lanthanides with DTPA using dye probe molecules in aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsson, K.; Cullen, T. D.; Mezyk, S. P.

    The complexation kinetics for the polyaminopolycarboxylic ligand DTPA to lanthanides in acidic aqueous solution were investigated using the dye ligand displacement technique and stopped-flow spectroscopy. Significant rate differences were obtained for different dye probes used, indicating that the kinetics of the dissociation of the dye molecule significantly impacts the overall measured kinetics when using this common methodology. The conditions of the solution also influenced the dye-lanthanide-DTPA interactions, which reconciled previously disparate data in the literature.

  9. Complications in complexation kinetics for lanthanides with DTPA using dye probe molecules in aqueous solution

    DOE PAGES

    Larsson, K.; Cullen, T. D.; Mezyk, S. P.; ...

    2017-05-17

    The complexation kinetics for the polyaminopolycarboxylic ligand DTPA to lanthanides in acidic aqueous solution were investigated using the dye ligand displacement technique and stopped-flow spectroscopy. Significant rate differences were obtained for different dye probes used, indicating that the kinetics of the dissociation of the dye molecule significantly impacts the overall measured kinetics when using this common methodology. The conditions of the solution also influenced the dye-lanthanide-DTPA interactions, which reconciled previously disparate data in the literature.

  10. Target binding improves relaxivity in aptamer-gadolinium conjugates.

    PubMed

    Bernard, Elyse D; Beking, Michael A; Rajamanickam, Karunanithi; Tsai, Eve C; Derosa, Maria C

    2012-12-01

    MRI contrast agents (CA) have been heavily used over the past several decades to enhance the diagnostic value of the obtained images. From a design perspective, two avenues to improve the efficacy of contrast agents are readily evident: optimization of magnetic properties of the CA, and optimization of the pharmacokinetics and distribution of the CA in the patient. Contrast agents consisting of DNA aptamer-gadolinium(III) conjugates provide a single system in which these factors can be addressed simultaneously. In this proof-of-concept study, the 15mer thrombin aptamer was conjugated to diethylenetriaminepentaacetic (DTPA) dianhydride to form a monoamide derivative of the linear open-chain chelate present in the commonly used contrast agent Magnevist(®). The stability of the conjugated DNA aptamer-DTPA-Gd(III) chelate in a transmetallation study using Zn(II) was found to be similar to that reported for DTPA-Gd(III). Relaxivity enhancements of 35 ± 4 and 20 ± 1 % were observed in the presence of thrombin compared to a control protein at fields of 9.4 and 1.5 T, respectively. The inclusion of spacers between the aptamer and the DTPA to eliminate possible steric effects was also investigated but not found to improve the relaxation enhancement achieved in comparison to the unaltered aptamer conjugate.

  11. Heavy metal uptake and leaching from polluted soil using permeable barrier in DTPA-assisted phytoextraction.

    PubMed

    Zhao, Shulan; Shen, Zhiping; Duo, Lian

    2015-04-01

    Application of sewage sludge (SS) in agriculture is an alternative technique of disposing this waste. But unreasonable application of SS leads to excessive accumulation of heavy metals in soils. A column experiment was conducted to test the availability of heavy metals to Lolium perenne grown in SS-treated soils following diethylene triamine penta acetic acid (DTPA) application at rates of 0, 10 and 20 mmol kg(-1) soil. In order to prevent metal leaching in DTPA-assisted phytoextraction process, a horizontal permeable barrier was placed below the treated soil, and its effectiveness was also assessed. Results showed that DTPA addition significantly increased metal uptake by L. perenne shoots and metal leaching. Permeable barriers increased metal concentrations in plant shoots and effectively decreased metal leaching from the treated soil. Heavy metals in SS-treated soils could be gradually removed by harvesting L. perenne many times in 1 year and adding low dosage of DTPA days before each harvest.

  12. Magnetic and transport properties of sputtered Gd-Y multilayers

    NASA Astrophysics Data System (ADS)

    Freitas, P. P.; From, M.; Melo, L. V.; Plaskett, T. S.

    1991-04-01

    Gd-Y-Gd multilayers were prepared that show a magnetoresistance enhancement for an Y layer separation of 30 Å. This magnetoresistance enhancement is an interface effect and occurs in samples where some degree of antiferromagnetic coupling is present.

  13. Delayed gadolinium-enhanced MRI of the fibrocartilage disc of the temporomandibular joint--a feasibility study.

    PubMed

    Pittschieler, Elisabeth; Szomolanyi, Pavol; Schmid-Schwap, Martina; Weber, Michael; Egerbacher, Monika; Traxler, Hannes; Trattnig, Siegfried

    2014-12-01

    To 1) test the feasibility of delayed Gadolinium-Enhanced Magnetic Resonance Imaging of Cartilage (dGEMRIC) at 3 T in the temporomandibular joint (TMJ) and 2) to determine the optimal delay for measurements of the TMJ disc after i.v. contrast agent (CA) administration. MRI of the right and left TMJ of six asymptomatic volunteers was performed at 3 T using a dedicated coil. 2D inversion recovery (2D-IR) sequences were performed at 4 time points covering 120 minutes and 3D gradient-echo (3D GRE) dual flip-angle sequences were performed at 14 time points covering 130 minutes after the administration of 0.2 mmol/kg of Gd-diethylenetriamine pentaacetic acid ion (Gd-DTPA)(2-), i.e., 0.4 mL of Magnevist™ per kg body weight. Pair-wise tests were used to assess differences between pre-and post-contrast T1 values. 2D-IR sequences showed a statistically significant drop (p<0.001) in T1 values after i.v. CA administration. The T1 drop of 50% was reached 60 minutes after bolus injection in the TMJ disc. The 3D GRE dual flip-angle sequences confirmed these results and show plateau of T1 after 60 minutes. T1(Gd) maps calculated from dGEMRIC data allow in vivo assessment of the fibrocartilage disc of the TMJ. The recommended measurement time for dGEMRIC in the TMJ after i.v. CA administration is from 60 to 120 minutes. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Use of DTPA for increasing the rate of elimination of plutonium-238 and americium-241 from rodents after their inhalation as the nitrates.

    PubMed

    Stather, J W; Stradling, G N; Gray, S A; Moody, J; Hodgson, A

    1985-11-01

    This study has shown that: both inhaled (2 mumol/kg) and injected (30 mumol/kg) diethylenetriaminepenta-acetic acid (DTPA) can reduce the lung deposit of 238 Pu and 241 Am inhaled as nitrate to about 1% of that in untreated controls; injection of DTPA is more effective than aerosolized DTPA for reducing deposits of 238Pu and 241Am in the liver and skeleton; combined treatment involving early inhalation of DTPA followed by repeated intravenous injections is likely to be the most effective treatment for workers who have accidentally inhaled plutonium and americium nitrates.

  15. Silicon-Induced UV Transparency in Phosphate Glasses and Its Application to the Enhancement of the UV Type B Emission of Gd3.

    PubMed

    Jiménez, José A

    2017-05-10

    The silicon route to improve the ultraviolet (UV) transparency in phosphate glasses is investigated and further exploited to enhance the UV type B (280-320 nm) emission of gadolinium(III) relevant for biomedical applications. The glasses were synthesized with a barium phosphate composition by melt-quenching in ambient atmosphere and the optical properties investigated by optical absorption and photoluminescence (PL) spectroscopy including emission decay kinetics. An improvement in the UV transparency was gradually developed for the glasses melted merely with increasing amounts of Si powder. A particular PL in the visible was also exhibited for such glasses under excitation at 275 nm, consistent with the presence of Si-induced defects. For Si-Gd codoped glasses, the UV transparency was likewise manifested, while the UV emission from Gd 3+ around 312 nm was enhanced with the increase in Si concentration (up to ∼6.7 times). Moreover, along with the Gd 3+ PL intensity enhancement, a linear correlation was revealed between the increase in decay times for the Gd 3+6 P 7/2 -emitting state and the amount of silicon. It is then suggested that the improved PL properties of gadolinium(III) originate from the increased UV transparency of the host and the consequent precluding of a nonradiative energy transfer from Gd 3+ to the matrix. Accordingly, a role of Si as PL quenching inhibitor is supported. The demonstrated efficacy of the Si-Gd codoping concept realized by a facile glass synthesis procedure may appeal to the application of the UV-emitting glasses for phototherapy lamps.

  16. Dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) for the assessment of Pc 4-sensitized photodynamic therapy of a U87-derived glioma model in the athymic nude rat

    NASA Astrophysics Data System (ADS)

    Anka, Ali; Thompson, Paul; Mott, Eric; Sharma, Rahul; Zhang, Ruozhen; Cross, Nathan; Sun, Jiayang; Flask, Chris A.; Oleinick, Nancy L.; Dean, David

    2010-02-01

    Introduction: Dynamic Contrast-Enhanced-Magnetic Resonance Imaging (DCE-MRI) may provide a means of tracking the outcome of Pc 4-sensitized photodynamic therapy (PDT) in deeply placed lesions (e.g., brain tumors). We previously determined that 150 μL of gadolinium (Gd-DTPA) produces optimal enhancement of U87-derived intracerebral tumors in an athymic nude rat glioma model. We wish to determine how consistently DCE-MRI enhancement will detect an increase in Gd-enhancement of these tumors following Pc 4-PDT. Methods: We injected 2.5 x 105 U87 cells into the brains of 6 athymic nude rats. After 7-8 days pre-Pc 4 PDT peri-tumor DCE-MRI images were acquired on a 7.0T microMRI scanner before and after administration of 150 μL Gd. DCE-MRI scans were repeated on Days 11, 12, and 13 following Pc 4-PDT (Day 8 or 9). Results: Useful DCE-MRI data were obtained for these animals before and after Pc 4- PDT. In the pre-Pc 4-PDT DCE-MRI scans an average normalized peak Gd enhancement was observed in tumor tissue that was 1.297 times greater than baseline (0.035 Standard Error [SE]). The average normalized peak Gd enhancement in the tumor tissue in the scan following PDT (Day 11) was 1.537 times greater than baseline (0.036 SE), a statistically significant increase in enhancement (p = 0.00584) over the pre-PDT level. Discussion: A 150 μL Gd dose appears to provide an unambiguous increase in signal indicating Pc 4-PDT-induced necrosis of the U87-derived tumor. Our DCEMRI protocol may allow the development of a clinically robust, unambiguous, non-invasive technique for the assessment of PDT outcome.

  17. Delayed gadolinium-enhanced MRI of the fibrocartilage disc of the temporomandibular joint – a feasibility study

    PubMed Central

    Pittschieler, Elisabeth; Szomolanyi, Pavol; Schmid-Schwap, Martina; Weber, Michael; Egerbacher, Monika; Traxler, Hannes; Trattnig, Siegfried

    2014-01-01

    Objective To 1) test the feasibility of delayed Gadolinium-Enhanced Magnetic Resonance Imaging of Cartilage (dGEMRIC) at 3 T in the temporomandibular joint (TMJ) and 2) to determine the optimal delay for measurements of the TMJ disc after i.v. contrast agent (CA) administration. Design MRI of the right and left TMJ of six asymptomatic volunteers was performed at 3 T using a dedicated coil. 2D inversion recovery (2D-IR) sequences were performed at 4 time points covering 120 minutes and 3D gradient-echo (3D GRE) dual flip-angle sequences were performed at 14 time points covering 130 minutes after the administration of 0.2 mmol/kg of Gd-diethylenetriamine pentaacetic acid ion (Gd-DTPA)2-, i.e., 0.4 mL of Magnevist™ per kg body weight. Pair-wise tests were used to assess differences between pre-and post-contrast T1 values. Results 2D-IR sequences showed a statistically significant drop (p < 0.001) in T1 values after i.v. CA administration. The T1 drop of 50% was reached 60 minutes after bolus injection in the TMJ disc. The 3D GRE dual flip-angle sequences confirmed these results and show plateau of T1 after 60 minutes. Conclusions T1(Gd) maps calculated from dGEMRIC data allow in vivo assessment of the fibrocartilage disc of the TMJ. The recommended measurement time for dGEMRIC in the TMJ after i.v. CA administration is from 60 to 120 minutes. PMID:25131629

  18. Ocular Pharmacokinetic Study Using T1 Mapping and Gd-Chelate-Labeled Polymers

    PubMed Central

    Shi, Xianfeng; Liu, Xin; Wu, Xueming; Lu, Zheng-Rong; Li, S. Kevin

    2011-01-01

    Purpose Recent advances in drug discovery have led to the development of a number of therapeutic macromolecules for treatment of posterior eye diseases. We aimed to investigate the clearance of macromolecular contrast probes (polymers conjugated with Gd-chelate) in the vitreous after intravitreal injections with the recently developed ms-DSEPI-T12 MRI and to examine the degradation of disulfide-containing biodegradable polymers in the vitreous humor in vivo. Methods Intravitreal injections of model contrast agents poly[N-(2-hydroxypropyl)methacrylamide]-GG-1,6-hexanediamine-(Gd-DO3A), biodegradable (Gd-DTPA)-cystine copolymers, and MultiHance were performed in rabbits; their distribution and elimination from the vitreous after injections were determined by MRI. Results Times for macromolecular contrast agents to decrease to half their initial concentrations in the vitreous ranged from 0.4–1.3 days post-injection. Non-biodegradable polymers demonstrated slower vitreal clearance than those of disulfide-biodegradable polymers. Biodegradable polymers had similar clearance as MultiHance. Conclusions Usefulness of T1 mapping and ms-DSEPI-T12 MRI to study ocular pharmacokinetics was demonstrated. Results suggest an enzymatic degradation mechanism for the disulfide linkage in polymers in the vitreous leading to breakup of polymers in vitreous humor over time. PMID:21691891

  19. Influence of Annealing Temperature and Gd and Eu Concentrations on Structure and Luminescence Properties of (Y,Gd)BO3:Eu3+ Phosphors Prepared by Sol-Gel Method

    NASA Astrophysics Data System (ADS)

    Lien, N. T. K.; Thang, N. V.; Hung, N. D.; Cuong, N. D.; Kien, N. D. T.; Thang, C. X.; Vuong, P. H.; Viet, D. X.; Khoi, N. T.; Huy, P. T.

    2017-06-01

    Red-emitting Eu3+-doped (Y,Gd)BO3 phosphors have been synthesized by a sol-gel process using metal oxides and boric acid as starting materials and citric acid as chelating agent. The main factors affecting the structure and luminescence properties of the product, such as sintering temperature, chemical composition, and Eu3+ doping concentration, were investigated. X-ray diffraction (XRD) analysis indicated that the phosphors begin to crystallize at sintering temperature of 700°C and become phase pure at 900°C. The average size of the phosphor particles after sintering at 1000°C was determined to be about 30 nm to 50 nm. The (Y,Gd)BO3:Eu3+ phosphors were found to exhibit strong red emission at 611 nm and 625 nm corresponding to the 5D0-7F2 transitions of Eu3+ in the host lattice. The photoluminescence intensity was enhanced by posttreatment at 900°C and remained unchanged at 1000°C. It was also found that the optimal concentration of Gd3+ ions for Eu3+ emission was 35%, and no concentration quenching of the photoluminescence was observed even at Eu3+ doping concentration up to 30%.

  20. Preparation, spectroscopic and high field NMR relaxometry studies of gadolinium(III) complexes with the asymmetric tetraamine 1,4,7,11-tetraazaundecane

    NASA Astrophysics Data System (ADS)

    Hatzipanayioti, Despina; Veneris, Antonis

    2009-10-01

    The reaction of Gd(III) with asymmetric tetramine 1,4,7,11-tetraazaundecane (2,2,3-tet, L1) ligand has been studied via NMR spectroscopy. The ligand proton longitudinal relaxation rates ( R1) have been used to estimate the distances of these protons from the Gd(III) center, in Gd(III)- L1 reaction solutions, in H 2O/D 2O 5/1 mixtures. Two Gd(III) complexes [Gd(III)( L1)(NH 3)(H 2O) 4](CH 3COO) 3·2H 2O ( 1) and [Gd(III)( L1)(NH 3)(H 2O) 2]Cl 3·EtOH ( 2) have been isolated and characterized by elemental analyses, TGA, IR, NMR and relaxometry measurements. The NMR relaxation measurements of 2 in aqueous solutions have been performed, under various temperature or concentration conditions, and compared with those of the commercial contrast agents Gd(III)-DTPA and Gd(III)-DTPA-BMA. It has also been studied the influence of (i) the Gd(III) inner-sphere water molecule number ( q) alteration and (ii) the steric constraint enhancement on the metal site, over the relaxation rate values of the parent aqueous solution of Gd(III)-2,2,3-tet, and of the aqueous solutions of 2.

  1. Magnetic Resonance Imaging of Liver Metastasis.

    PubMed

    Karaosmanoglu, Ali Devrim; Onur, Mehmet Ruhi; Ozmen, Mustafa Nasuh; Akata, Deniz; Karcaaltincaba, Musturay

    2016-12-01

    Liver magnetic resonance imaging (MRI) is becoming the gold standard in liver metastasis detection and treatment response assessment. The most sensitive magnetic resonance sequences are diffusion-weighted images and hepatobiliary phase images after Gd-EOB-DTPA. Peripheral ring enhancement, diffusion restriction, and hypointensity on hepatobiliary phase images are hallmarks of liver metastases. In patients with normal ultrasonography, computed tomography (CT), and positron emission tomography (PET)-CT findings and high clinical suspicion of metastasis, MRI should be performed for diagnosis of unseen metastasis. In melanoma, colon cancer, and neuroendocrine tumor metastases, MRI allows confident diagnosis of treatment-related changes in liver and enables differential diagnosis from primary liver tumors. Focal nodular hyperplasia-like nodules in patients who received platinum-based chemotherapy, hypersteatosis, and focal fat can mimic metastasis. In cancer patients with fatty liver, MRI should be preferred to CT. Although the first-line imaging for metastases is CT, MRI can be used as a problem-solving method. MRI may be used as the first-line method in patients who would undergo curative surgery or metastatectomy. Current limitation of MRI is low sensitivity for metastasis smaller than 3mm. MRI fingerprinting, glucoCEST MRI, and PET-MRI may allow simpler and more sensitive diagnosis of liver metastasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. A small MRI contrast agent library of gadolinium(III)-encapsulated supramolecular nanoparticles for improved relaxivity and sensitivity**

    PubMed Central

    Chen, Kuan-Ju; Wolahan, Stephanie M.; Wang, Hao; Hsu, Chao-Hsiung; Chang, Hsing-Wei; Durazo, Armando; Hwang, Lian-Pin; Garcia, Mitch A.; Jiang, Ziyue Karen; Wu, Lily

    2010-01-01

    We introduce a new category of nanoparticle-based T1 MRI contrast agents (CAs) by encapsulating paramagnetic chelated gadolinium(III), i.e., Gd3+·DOTA, through supramolecular assembly of molecular building blocks that carry complementary molecular recognition motifs, including adamantane (Ad) and β-cyclodextrin (CD). A small library of Gd3+·DOTA-encapsulated supramolecular nanoparticles (Gd3+·DOTA⊂SNPs) was produced by systematically altering the molecular building block mixing ratios. A broad spectrum of relaxation rates was correlated to the resulting Gd3+·DOTA⊂SNP library. Consequently, an optimal synthetic formulation of Gd3+·DOTA⊂SNPs with an r1 of 17.3 s−1mM−1 (ca. 4-fold higher than clinical Gd3+ chelated complexes at high field strengths) was identified. T1-weighted imaging of Gd3+·DOTA⊂SNPs exhibits an enhanced sensitivity with a contrast-to-noise ratio (C/N ratio) ca. 3.6 times greater than that observed for free Gd3+·DTPA. A Gd3+·DOTA⊂SNPs solution was injected into foot pads of mice, and MRI was employed to monitor dynamic lymphatic drainage of the Gd3+·DOTA⊂SNPs-based CA. We observe an increase in signal intensity of the brachial lymph node in T1-weighted imaging after injecting Gd3+·DOTA⊂SNPs but not after injecting Gd3+·DTPA. The MRI results are supported by ICP-MS analysis ex vivo. These results show that Gd3+·DOTA⊂SNPs not only exhibits enhanced relaxivity and high sensitivity but also can serve as a potential tool for diagnosis of cancer metastasis. PMID:21167594

  3. Optical and relaxometric properties of monometallic (Eu(III), Tb(III), Gd(III)) and heterobimetallic (Re(I)/Gd(III)) systems based on a functionalized bipyridine-containing acyclic ligand.

    PubMed

    Leygue, Nadine; Boulay, Alexandre; Galaup, Chantal; Benoist, Eric; Laurent, Sophie; Vander Elst, Luce; Mestre-Voegtlé, Béatrice; Picard, Claude

    2016-05-17

    A series of lanthanide complexes of [LnL(H2O)](2-) composition where Ln = Eu(III), Tb(III) or Gd(III) has been studied for determining their photophysical and relaxometric properties in aqueous solution. The bifunctional ligand L (H5BPMNTA) is an acyclic chelator based on a central functionalized 2,2'-bipyridine core and two iminodiacetate coordinating arms. The mono-aqua Eu(III) and Tb(III) complexes display attractive spectroscopic properties with an excitation wavelength at 316 nm, similar excited state lifetimes and overall quantum yields (in the ranges 0.5-0.6 ms and 10-13%, respectively) in Tris buffer (pH 7.4). The proton longitudinal relaxivity, r1, of the Gd(III) complex is 4.4 mM(-1) s(-1) at 20 MHz and 310 K, which is comparable to that of the clinically used Gd-DTPA (Magnevist®). Interestingly, the water exchange rate between the coordination site and the bulk solvent is very fast (Kex = 2.6 × 10(8) s(-1) at 310 K). The ability of the complex to bind non-covalently to human serum albumin (HSA) was also examined by relaxometric measurements. We also report the synthesis and properties of a bimetallic complex based on Gd-BPMNTA and Re(I)(bpy)(CO)3 components. In this system, the Re core exhibits interesting photophysical properties (λem = 588 nm, Φ = 1.4%) and the Gd-BPMNTA core displays improved relaxivity (r1 = 6.6 mM(-1) s(-1) at 20 MHz and 310 K), due to an increase of the rotational correlation time. Besides these appealing optical and relaxometric properties, the presence of a reactive function on the structure proposes this potential dual imaging probe for conjugation to biomolecules or nanomaterials.

  4. Fluorescence-tagged amphiphilic brush copolymer encapsulated Gd2O3 core-shell nanostructures for enhanced T 1 contrast effect and fluorescent imaging

    NASA Astrophysics Data System (ADS)

    Wang, Fenghe; Peng, Erwin; Liu, Feng; Li, Pingjing; Fong Yau Li, Sam; Xue, Jun Min

    2016-10-01

    To obtain suitable T 1 contrast agents for magnetic resonance imaging (MRI) application, aqueous Gd2O3 nanoparticles (NPs) with high longitudinal relativity (r 1) are demanded. High quality Gd2O3 NPs are usually synthesized through a non-hydrolytic route which requires post-synthetic modification to render the NPs water soluble. The current challenge is to obtain aqueous Gd2O3 NPs with high colloidal stability and enhanced r 1 relaxivity. To overcome this challenge, fluorescence-tagged amphiphilic brush copolymer (AFCP) encapsulated Gd2O3 NPs were proposed as suitable T 1 contrast agents. Such a coating layer provided (i) superior aqueous stability, (ii) biocompatibility, as well as (iii) multi-modality (conjugation with fluorescence dye). The polymeric coating layer thickness was simply adjusted by varying the phase-transfer parameters. By reducing the coating thickness, i.e. the distance between the paramagnetic centre and surrounding water protons, the r 1 relaxivity could be enhanced. In contrast, a thicker polymeric layer coating prevents Gd3+ ions leakage, thus improving its biocompatibility. Therefore, it is important to strike a balance between the biocompatibility and the r 1 relaxivity behaviour. Lastly, by conjugating fluorescence moiety, an additional imaging modality was enabled, as demonstrated from the cell-labelling experiment.

  5. Oxygen diffusion in Gd-doped mixed oxides

    DOE PAGES

    Galvin, C. O. T.; Cooper, M. W. D.; Rushton, M. J. D.; ...

    2017-10-23

    Molecular dynamics simulations have been performed to investigate oxygen transport in (U xPu x-1) 0.95Gd 0.05O 1.975, (U xTh x-1) 0.95Gd 0.05O 1.975 and (Pu xTh x-1) 0.95Gd 0.05O 1.975 between 1000 and 3200 K. Oxygen diffusivity and corresponding activation energies are examined and compared to values for the undoped (U xPu x-1)O 2, (U xTh x-1)O 2 and (Pu xTh x-1)O 2 systems where compositions between end members display enhanced diffusivity. Below the superionic transition oxygen diffusivity for the Gd doped systems is orders of magnitude greater compared to their undoped counterparts. But, enhanced diffusivity for doped mixed actinidemore » cation compositions is not observed compared to doped end members. Furthermore, changes in activation energy suggest changes in diffusion regime, which correspond to the creation of thermally activated oxygen defects.« less

  6. Oxygen diffusion in Gd-doped mixed oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galvin, C. O. T.; Cooper, M. W. D.; Rushton, M. J. D.

    Molecular dynamics simulations have been performed to investigate oxygen transport in (U xPu x-1) 0.95Gd 0.05O 1.975, (U xTh x-1) 0.95Gd 0.05O 1.975 and (Pu xTh x-1) 0.95Gd 0.05O 1.975 between 1000 and 3200 K. Oxygen diffusivity and corresponding activation energies are examined and compared to values for the undoped (U xPu x-1)O 2, (U xTh x-1)O 2 and (Pu xTh x-1)O 2 systems where compositions between end members display enhanced diffusivity. Below the superionic transition oxygen diffusivity for the Gd doped systems is orders of magnitude greater compared to their undoped counterparts. But, enhanced diffusivity for doped mixed actinidemore » cation compositions is not observed compared to doped end members. Furthermore, changes in activation energy suggest changes in diffusion regime, which correspond to the creation of thermally activated oxygen defects.« less

  7. The effects of intramolecular H-bond formation on the stability constant and water exchange rate of the Gd(III)-diethylenetriamine-N'-(3-amino-1,1-propylenephosphonic)-N, N,N'',N''-tetraacetate complex.

    PubMed

    Baranyai, Zsolt; Gianolio, Eliana; Ramalingam, Kondareddiar; Swenson, Rolf; Ranganathan, Ramachandran; Brücher, E; Aime, Silvio

    2007-01-01

    The binding interaction of metal chelates to biological macromolecules, though driven by properly devoted recognition synthons, may cause dramatic changes in some property associated with the coordination cage such as the thermodynamic stability or the exchange rate of the metal coordinated water. Such changes are due to electrostatic and H-bonding interactions involving atoms of the coordination cage and atoms of the biological molecule at the binding site. To mimic this type of H-bonding interactions, lanthanide(III) complexes with a DTPA-monophosphonate ligand bearing a propylamino moiety (H6NP-DTPA) were synthesized. Their thermodynamic stabilities and the exchange lifetime of the coordinated water molecule (for the Gd-complex) were compared with those of the analog complexes with DTPA and the parent DTPA-monophosphonate derivative (H6P-DTPA). It was found that the intramolecular H-bond between the epsilon-amino group and the phosphonate moiety in NP-DTPA complexes causes displacements of electric charges in their coordination cage that are markedly pH dependent. In turn, this affects the characteristic properties of the coordination cage. In particular it results in a marked elongation of the exchange lifetime of the coordinated water molecule. (c) 2007 John Wiley & Sons, Ltd.

  8. Stable and rigid DTPA-like paramagnetic tags suitable for in vitro and in situ protein NMR analysis.

    PubMed

    Chen, Jia-Liang; Zhao, Yu; Gong, Yan-Jun; Pan, Bin-Bin; Wang, Xiao; Su, Xun-Cheng

    2018-02-01

    Organic synthesis of a ligand with high binding affinities for paramagnetic lanthanide ions is an effective way of generating paramagnetic effects on proteins. These paramagnetic effects manifested in high-resolution NMR spectroscopy are valuable dynamic and structural restraints of proteins and protein-ligand complexes. A paramagnetic tag generally contains a metal chelating moiety and a reactive group for protein modification. Herein we report two new DTPA-like tags, 4PS-PyDTTA and 4PS-6M-PyDTTA that can be site-specifically attached to a protein with a stable thioether bond. Both protein-tag adducts form stable lanthanide complexes, of which the binding affinities and paramagnetic tensors are tunable with respect to the 6-methyl group in pyridine. Paramagnetic relaxation enhancement (PRE) effects of Gd(III) complex on protein-tag adducts were evaluated in comparison with pseudocontact shift (PCS), and the results indicated that both 4PS-PyDTTA and 4PS-6M-PyDTTA tags are rigid and present high-quality PREs that are crucially important in elucidation of the dynamics and interactions of proteins and protein-ligand complexes. We also show that these two tags are suitable for in-situ protein NMR analysis.

  9. In vitro cellular accumulation of gadolinium incorporated into chitosan nanoparticles designed for neutron-capture therapy of cancer.

    PubMed

    Shikata, Futoshi; Tokumitsu, Hiroyuki; Ichikawa, Hideki; Fukumori, Yoshinobu

    2002-01-01

    The accumulation of gadolinium loaded as gadopentetic acid (Gd-DTPA) in chitosan nanoparticles (Gd-nanoCPs), which were designed for gadolinium neutron-capture therapy (Gd-NCT) for cancer, was evaluated in vitro in cultured cells. Using L929 fibroblast cells, the Gd accumulation for 12 h at 37 degrees C was investigated at Gd concentrations lower than 40 ppm. The accumulation leveled above 20 ppm and reached 18.0+/-2.7 (mean+/-S.D.) microg Gd/10(6) cells at 40 ppm. Furthermore, the corresponding accumulations in B16F10 melanoma cells and SCC-VII squamous cell carcinoma, which were used in the previous Gd-NCT trials in vivo, were 27.1+/-2.9 and 59.8+/-9.8 microg Gd/10(6) cells, respectively, hence explaining the superior growth-suppression in the in vivo trials using SCC-VII cells. The accumulation of Gd-nanoCPs in these cells was 100-200 times higher in comparison to dimeglumine gadopentetate aqueous solution (Magnevist), a magnetic resonance imaging contrast agent. The endocytic uptake of Gd-nanoCPs, strongly holding Gd-DTPA, was suggested from transmission electron microscopy and comparative studies at 4 degrees C and with the solution system. These findings indicated that Gd-nanoCPs had a high affinity to the cells, probably contributing to the long retention of Gd in tumor tissue and leading to the significant suppression of tumor growth in the in vivo studies that were previously reported.

  10. Preparation of Gd Loaded Liquid Scintillator for Daya Bay Neutrino Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding Yayun; Zhang Zhiyong

    2010-05-12

    Gadolinium loaded liquid scintillator (Gd-LS) is an excellent target material for reactor antineutrino experiments. Ideal Gd-LS should have long attenuation length, high light yield, long term stability, low toxicity, and should be compatible with the material used to build the detector. We have developed a new Gd-LS recipe in which carboxylic acid 3,5,5-trimethylhexanoic acid is used as the complexing ligand to gadolinium, 2,5-diphenyloxazole (PPO) and 1,4-bis[2-methylstyryl]benzene (bis-MSB) are used as primary fluor and wavelength shifter, respectively. The scintillator base is linear alkyl benzene (LAB). Eight hundred liters of Gd-LS has been synthesized and tested in a prototype detector. Results showmore » that the Gd-LS has high quality and is suitable for underground experiments in large quantity. Large scale production facility has been built. A full batch production of 4 t Gd-LS has been produced and monitored for several months. The production of 180 t Gd-LS will be carried out in the near future.« less

  11. Preparation of Gd Loaded Liquid Scintillator for Daya Bay Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Ya-yun, Ding; Zhi-yong, Zhang

    2010-05-01

    Gadolinium loaded liquid scintillator (Gd-LS) is an excellent target material for reactor antineutrino experiments. Ideal Gd-LS should have long attenuation length, high light yield, long term stability, low toxicity, and should be compatible with the material used to build the detector. We have developed a new Gd-LS recipe in which carboxylic acid 3,5,5-trimethylhexanoic acid is used as the complexing ligand to gadolinium, 2,5-diphenyloxazole (PPO) and 1,4-bis[2-methylstyryl]benzene (bis-MSB) are used as primary fluor and wavelength shifter, respectively. The scintillator base is linear alkyl benzene (LAB). Eight hundred liters of Gd-LS has been synthesized and tested in a prototype detector. Results show that the Gd-LS has high quality and is suitable for underground experiments in large quantity. Large scale production facility has been built. A full batch production of 4 t Gd-LS has been produced and monitored for several months. The production of 180 t Gd-LS will be carried out in the near future.

  12. Effective combination treatment of GD2-expressing neuroblastoma and Ewing's sarcoma using anti-GD2 ch14.18/CHO antibody with Vγ9Vδ2+ γδT cells.

    PubMed

    Fisher, Jonathan P H; Flutter, Barry; Wesemann, Florian; Frosch, Jennifer; Rossig, Claudia; Gustafsson, Kenth; Anderson, John

    Gamma delta T lymphocytes (γδT cells) have pleiotropic properties including innate cytotoxicity, which make them attractive effectors for cancer immunotherapy. Combination treatment with zoledronic acid and IL-2 can activate and expand the most common subset of blood γδT, which express the Vγ9Vδ2 T cell receptor (TCR) (Vδ2 T cells). Vγ9Vδ2 T cells are equipped for antibody-dependent cell-mediated cytotoxicity (ADCC) through expression of the low-affinity FcγR CD16. GD2 is a highly ranked tumor associated antigen for immunotherapy due to bright expression on the cell surface, absent expression on normal tissues and availability of therapeutic antibodies with known efficacy in neuroblastoma. To explore the hypothesis that zoledronic acid, IL-2 and anti-GD2 antibodies will synergize in a therapeutic combination, we evaluated in vitro cytotoxicity and tumor growth inhibition in the GD2 expressing cancers neuroblastoma and Ewing's sarcoma. Vδ2 T cells exert ADCC against GD2-expressing Ewing's sarcoma and neuroblastoma cell lines, an effect which correlates with the brightness of GD2 expression. In an immunodeficient mouse model of small established GD2-expressing Ewing's sarcoma or neuroblastoma tumors, the combination of adoptively transferred Vδ2+ T cells, expanded in vitro with zoledronic acid and IL-2, with anti-GD2 antibody ch14.18/CHO, and with systemic zoledronic acid, significantly suppressed tumor growth compared to antibody or γδT cell-free controls. Combination treatment using ch14.18/CHO, zoledronic acid and IL-2 is more effective than their use in isolation. The already-established safety profiles of these agents make testing of the combination in GD2 positive cancers such as neuroblastoma or Ewing's sarcoma both rational and feasible.

  13. Effective combination treatment of GD2-expressing neuroblastoma and Ewing's sarcoma using anti-GD2 ch14.18/CHO antibody with Vγ9Vδ2+ γδT cells

    PubMed Central

    Fisher, Jonathan P H; Flutter, Barry; Wesemann, Florian; Frosch, Jennifer; Rossig, Claudia; Gustafsson, Kenth; Anderson, John

    2016-01-01

    Gamma delta T lymphocytes (γδT cells) have pleiotropic properties including innate cytotoxicity, which make them attractive effectors for cancer immunotherapy. Combination treatment with zoledronic acid and IL-2 can activate and expand the most common subset of blood γδT, which express the Vγ9Vδ2 T cell receptor (TCR) (Vδ2 T cells). Vγ9Vδ2 T cells are equipped for antibody-dependent cell-mediated cytotoxicity (ADCC) through expression of the low-affinity FcγR CD16. GD2 is a highly ranked tumor associated antigen for immunotherapy due to bright expression on the cell surface, absent expression on normal tissues and availability of therapeutic antibodies with known efficacy in neuroblastoma. To explore the hypothesis that zoledronic acid, IL-2 and anti-GD2 antibodies will synergize in a therapeutic combination, we evaluated in vitro cytotoxicity and tumor growth inhibition in the GD2 expressing cancers neuroblastoma and Ewing's sarcoma. Vδ2 T cells exert ADCC against GD2-expressing Ewing's sarcoma and neuroblastoma cell lines, an effect which correlates with the brightness of GD2 expression. In an immunodeficient mouse model of small established GD2-expressing Ewing's sarcoma or neuroblastoma tumors, the combination of adoptively transferred Vδ2+ T cells, expanded in vitro with zoledronic acid and IL-2, with anti-GD2 antibody ch14.18/CHO, and with systemic zoledronic acid, significantly suppressed tumor growth compared to antibody or γδT cell-free controls. Combination treatment using ch14.18/CHO, zoledronic acid and IL-2 is more effective than their use in isolation. The already-established safety profiles of these agents make testing of the combination in GD2 positive cancers such as neuroblastoma or Ewing's sarcoma both rational and feasible. PMID:26942051

  14. Synthesis route and three different core-shell impacts on magnetic characterization of gadolinium oxide-based nanoparticles as new contrast agents for molecular magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Azizian, Gholamreza; Riyahi-Alam, Nader; Haghgoo, Soheila; Moghimi, Hamid Reza; Zohdiaghdam, Reza; Rafiei, Behrooz; Gorji, Ensieh

    2012-10-01

    Despite its good resolution, magnetic resonance imaging intrinsically has low sensitivity. Recently, contrast agent nanoparticles have been used as sensitivity and contrast enhancer. The aim of this study was to investigate a new controlled synthesis method for gadolinium oxide-based nanoparticle preparation. For this purpose, diethyleneglycol coating of gadolinium oxide (Gd2O3-DEG) was performed using new supervised polyol route, and small particulate gadolinium oxide (SPGO) PEGylation was obtained with methoxy-polyethylene-glycol-silane (550 and 2,000 Da) coatings as SPGO-mPEG-silane550 and 2,000, respectively. Physicochemical characterization and magnetic properties of these three contrast agents in comparison with conventional Gd-DTPA were verified by dynamic light scattering transmission electron microscopy, Fourier transform infrared spectroscopy, inductively coupled plasma, X-ray diffraction, vibrating sample magnetometer, and the signal intensity and relaxivity measurements were performed using 1.5-T MRI scanner. As a result, the nanoparticle sizes of Gd2O3-DEG, SPGO-mPEG-silane550, and SPGO-mPEG-silane2000 could be reached to 5.9, 51.3, 194.2 nm, respectively. The image signal intensity and longitudinal ( r 1) and transverse relaxivity ( r 2) measurements in different concentrations (0.3 to approximately 2.5 mM), revealed the r 2/ r 1 ratios of 1.13, 0.89, 33.34, and 33.72 for Gd-DTPA, Gd2O3-DEG, SPGO-mPEG-silane550, and SPGO-mPEG-silane2000, respectively. The achievement of new synthesis route of Gd2O3-DEG resulted in lower r 2/ r 1 ratio for Gd2O3-DEG than Gd-DTPA and other previous synthesized methods by this and other groups. The smaller r 2/ r 1 ratios of two PEGylated-SPGO contrast agents in our study in comparison with r 2/ r 1 ratio of previous PEGylation ( r 2/ r 1 = 81.9 for mPEG-silane 6,000 MW) showed that these new three introduced contrast agents could potentially be proper contrast enhancers for cellular and molecular MR imaging.

  15. Complexation of Curium(III) with DTPA at 10–70 °C: Comparison with Eu(III)–DTPA in Thermodynamics, Luminescence, and Coordination Modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Guoxin; Zhang, Zhiyong; Martin, Leigh R.

    Separation of trivalent actinides (An(III)) from trivalent lanthanides (Ln(III)) is a challenging task because of their nearly identical chemical properties. Diethylenetriaminepentaacetate (DTPA), a key reagent used in the TALSPEAK process that effectively separates An(III) from Ln(III), is believed to play a critical role in the An(III)/Ln(III) separation. However, the underlying principles for the separation based on the difference in the complexation of DTPA with An(III) and Ln(III) remain unclear. In this work, the complexation of DTPA with Cm(III) at 10-70 ºC was investigated by spectrophotometry, luminescence spectroscopy, and microcalorimetry, in conjunction with computational methods. The binding strength, the enthalpy ofmore » complexation, the coordination modes, and the luminescence properties are compared between the Cm(III)-DTPA and Eu(III)-DTPA systems. The experimental and computational data have demonstrated that the difference between Cm(III) and Eu(III) in the binding strength with DTPA can be attributed to the stronger covalence bonding between Cm(III) and the nitrogen donors of DTPA.« less

  16. Application of Paramagnetically Tagged Molecules for Magnetic Resonance Imaging of Biofilm Mass Transport Processes▿

    PubMed Central

    Ramanan, B.; Holmes, W. M.; Sloan, W. T.; Phoenix, V. R.

    2010-01-01

    Molecules become readily visible by magnetic resonance imaging (MRI) when labeled with a paramagnetic tag. Consequently, MRI can be used to image their transport through porous media. In this study, we demonstrated that this method could be applied to image mass transport processes in biofilms. The transport of a complex of gadolinium and diethylenetriamine pentaacetic acid (Gd-DTPA), a commercially available paramagnetic molecule, was imaged both in agar (as a homogeneous test system) and in a phototrophic biofilm. The images collected were T1 weighted, where T1 is an MRI property of the biofilm and is dependent on Gd-DTPA concentration. A calibration protocol was applied to convert T1 parameter maps into concentration maps, thus revealing the spatially resolved concentrations of this tracer at different time intervals. Comparing the data obtained from the agar experiment with data from a one-dimensional diffusion model revealed that transport of Gd-DTPA in agar was purely via diffusion, with a diffusion coefficient of 7.2 × 10−10 m2 s−1. In contrast, comparison of data from the phototrophic biofilm experiment with data from a two-dimensional diffusion model revealed that transport of Gd-DTPA inside the biofilm was by both diffusion and advection, equivalent to a diffusion coefficient of 1.04 × 10−9 m2 s−1. This technology can be used to further explore mass transport processes in biofilms, either by using the wide range of commercially available paramagnetically tagged molecules and nanoparticles or by using bespoke tagged molecules. PMID:20435773

  17. Quantitative MRI reveals the elderly ischemic brain is susceptible to increased early blood–brain barrier permeability following tissue plasminogen activator related to claudin 5 and occludin disassembly

    PubMed Central

    Kaur, Jaspreet; Tuor, Ursula I; Zhao, Zonghang; Barber, Philip A

    2011-01-01

    Great uncertainty exists as to whether aging enhances the detrimental effects of tissue plasminogen activator (tPA) on vascular integrity of the ischemic brain. We hypothesized that tPA treatment would augment ischemic injury by causing increased blood–brain barrier (BBB) breakdown as determined by quantitative serial T1 and T2 magnetic resonance imaging (MRI), and the transfer constant for gadolinium-diethylenetriamine penta-acetic acid (Gd-DTPA) from blood to brain in aged (18 to 20 months) compared with young (3 to 4 months) Wistar rats after middle cerebral artery occlusion, mediated through the acute disassembly of claudin 5 and occludin. Increased T2 values over the first hour of postreperfusion were independently augmented following treatment with tPA (P<0.001) and aging (P<0.01), supporting a synergistic effect of tPA on the aged ischemic brain. Blood–brain barrier permeability for Gd-DTPA (KGd) was substantial following reperfusion in all animal groups and was exacerbated by tPA treatment in the elderly rat (P<0.001). The frequency of hematoma formation was proportionately increased in the elderly ischemic brain (P<0.05). Both tPA and age independently increased claudin 5 and occludin phosphorylation during ischemia. Early BBB permeability detected by quantitative MRI following ischemic stroke is enhanced by increased age and tPA and is related to claudin 5 and occludin phosphorylation. PMID:21610723

  18. Geometrical confinement of Gd(DOTA) molecules within mesoporous silicon nanoconstructs for MR imaging of cancer

    PubMed Central

    Gizzatov, Ayrat; Stigliano, Cinzia; Ananta, Jeyerama S.; Sethi, Richa; Xu, Rong; Guven, Adem; Ramirez, Maricela; Shen, Haifa; Sood, Anil; Ferrari, Mauro; Wilson, Lon J.; Liu, Xuewu; Decuzzi, Paolo

    2015-01-01

    Porous silicon has been used for the delivery of therapeutic and imaging agents in several biomedical applications. Here, mesoporous silicon nanoconstructs (SiMPs) with a discoidal shape and a sub-micrometer size (1,000 × 400 nm) have been conjugated with gadolinium-tetraazacyclododecane tetraacetic acid Gd(DOTA) molecules and proposed as contrast agents for Magnetic Resonance Imaging. The surface of the SiMPs with different porosities – small pore (SP: ~ 5 nm) and huge pore (HP: ~ 40 nm) – and of bulk, non-porous silica beads (1,000 nm in diameter) have been modified with covalently attached (3-aminopropyl)triethoxysilane (APTES) groups, conjugated with DOTA molecules, and reacted with an aqueous solution of GdCl3. The resulting Gd(DOTA) molecules confined within the small pores of the Gd-SiMPs achieve longitudinal relaxivities r1 of ~ 17 (mM·s)−1, which is 4 times greater than for free Gd(DOTA). This enhancement is ascribed to the confinement and stable chelation of Gd(DOTA) molecules within the SiMP mesoporous matrix. The resulting nanoconstructs possess no cytotoxicity and accumulate in ovarian tumors up to 2% of the injected dose per gram tissue, upon tail vein injection. All together this data suggests that Gd-SiMPs could be efficiently used for MR vascular imaging in cancer and other diseases. PMID:24931336

  19. Geometrical confinement of Gd(DOTA) molecules within mesoporous silicon nanoconstructs for MR imaging of cancer.

    PubMed

    Gizzatov, Ayrat; Stigliano, Cinzia; Ananta, Jeyerama S; Sethi, Richa; Xu, Rong; Guven, Adem; Ramirez, Maricela; Shen, Haifa; Sood, Anil; Ferrari, Mauro; Wilson, Lon J; Liu, Xuewu; Decuzzi, Paolo

    2014-09-28

    Porous silicon has been used for the delivery of therapeutic and imaging agents in several biomedical applications. Here, mesoporous silicon nanoconstructs (SiMPs) with a discoidal shape and a sub-micrometer size (1000×400nm) have been conjugated with gadolinium-tetraazacyclododecane tetraacetic acid Gd(DOTA) molecules and proposed as contrast agents for Magnetic Resonance Imaging. The surface of the SiMPs with different porosities - small pore (SP: ∼5nm) and huge pore (HP: ∼40nm) - and of bulk, non-porous silica beads (1000nm in diameter) have been modified with covalently attached (3-aminopropyl)triethoxysilane (APTES) groups, conjugated with DOTA molecules, and reacted with an aqueous solution of GdCl3. The resulting Gd(DOTA) molecules confined within the small pores of the Gd-SiMPs achieve longitudinal relaxivities r1 of ∼17 (mMs)(-)(1), which is 4 times greater than for free Gd(DOTA). This enhancement is ascribed to the confinement and stable chelation of Gd(DOTA) molecules within the SiMP mesoporous matrix. The resulting nanoconstructs possess no cytotoxicity and accumulate in ovarian tumors up to 2% of the injected dose per gram tissue, upon tail vein injection. All together this data suggests that Gd-SiMPs could be efficiently used for MR vascular imaging in cancer and other diseases. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. GD3/proteosome vaccines induce consistent IgM antibodies against the ganglioside GD3.

    PubMed

    Livingston, P O; Calves, M J; Helling, F; Zollinger, W D; Blake, M S; Lowell, G H

    1993-09-01

    The gangliosides of melanoma and other tumours of neuroectodermal origin are suitable targets for immune intervention with tumour vaccines. The optimal vaccines in current use contain ganglioside plus bacillus Calmette-Guérin and induce considerable morbidity. We have screened a variety of new adjuvants in the mouse, and describe one antigen-delivery system, proteosomes, which is especially effective. Highly hydrophobic Neisserial outer membrane proteins (OMP) form multimolecular liposome-like vesicular structures termed proteosomes which can readily incorporate amphiphilic molecules such as GD3 ganglioside. The optimal GD3/proteosome vaccine formulation for induction of GD3 antibodies in the mouse is determined. Interestingly, the use of potent immunological adjuvants in addition to proteosomes augments the IgM and IgG antibody titres against OMP in these vaccines but GD3 antibody titres are unaffected. The application of proteosomes to enhance the immune response to GD3 extends the concept of the proteosome immunopotentiating system from lipopeptides to amphipathic carbohydrate epitopes such as cell-surface gangliosides. The demonstrated safety of meningococcal OMP in humans and the data in mice presented here suggest that proteosome vaccines have potential for augmenting the immunogenicity of amphipathic tumour antigens in humans.

  1. Assessment of Myocardial Remodeling Using an Elastin/Tropoelastin Specific Agent with High Field Magnetic Resonance Imaging (MRI).

    PubMed

    Protti, Andrea; Lavin, Begoña; Dong, Xuebin; Lorrio, Silvia; Robinson, Simon; Onthank, David; Shah, Ajay M; Botnar, Rene M

    2015-08-13

    Well-defined inflammation, proliferation, and maturation phases orchestrate the remodeling of the injured myocardium after myocardial infarction (MI) by controlling the formation of new extracellular matrix. The extracellular matrix consists mainly of collagen but also fractions of elastin. It is thought that elastin is responsible for maintaining elastic properties of the myocardium, thus reducing the risk of premature rupture. An elastin/tropoelastin-specific contrast agent (Gd-ESMA) was used to image tropoelastin and mature elastin fibers for in vivo assessment of extracellular matrix remodeling post-MI. Gd-ESMA enhancement was studied in a mouse model of myocardial infarction using a 7 T MRI scanner and results were compared to those achieved after injection of a nonspecific control contrast agent, gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA). In the infarcted tissue, Gd-ESMA uptake (measured as R1 relaxation rate) steadily increased from day 3 to day 21 as a result of the synthesis of elastin/tropoelastin. R1 values were in good agreement with histological findings. A similar R1 behavior was observed in the remote myocardium. No mature cross-linked elastin was found at any time point. In contrast, Gd-DTPA uptake was only observed in the infarct with no changes in R1 values between 3 and 21 days post-MI. We demonstrate the feasibility of in vivo imaging of extracellular matrix remodeling post-MI using a tropoelastin/elastin binding MR contrast agent, Gd-ESMA. We found that tropoelastin is the main contributor to the increased MRI signal at late stages of MI where its augmentation in areas of infarction was in good agreement with the R1 increase. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  2. Spectral management and morphology evolution of β-NaGdF4:Yb3+,Er3+ by tuning the concentration of citric acid

    NASA Astrophysics Data System (ADS)

    Yao, Lu; Xu, Dekang; Lin, Hao; Yang, Shenghong; Zhang, Yueli

    2018-05-01

    β-NaGdF4:Yb3+,Er3+ upconversion (UC) particles were prepared by a facile hydrothermal process with assistance of citric acid (CA). The morphologies of β-NaGdF4 UC particles were controlled by changing the doses of CA in precursor. With an increase CA concentration in precursor, increase sizes of crystals were observed, resulting in the increasing of luminescence intensity. The energy transfer ET mechanism was analyzed in detail.

  3. 111In-BnDTPA-F3: an Auger electron-emitting radiotherapeutic agent that targets nucleolin

    PubMed Central

    2012-01-01

    Introduction The F3 peptide (KDEPQRRSARLSAKPAPPKPEPKPKKAPAKK), a fragment of the human high mobility group protein 2, binds nucleolin. Nucleolin is expressed in the nuclei of normal cells but is also expressed on the membrane of some cancer cells. The goal was to investigate the use of 111In-labeled F3 peptide for Auger electron-targeted radiotherapy. Methods F3 was labeled with fluorescein isothiocyanate (FITC) for confocal microscopy and conjugated to p-SCN-benzyl-diethylenetriaminepentaacetic acid (BnDTPA) for labeling with 111In to form 111In-BnDTPA-F3. MDA-MB-231-H2N (231-H2N) human breast cancer cells were exposed to 111In-BnDTPA-F3 and used in cell fractionation, γH2AX immunostaining (a marker of DNA double-strand breaks), and clonogenic assays. In vivo, biodistribution studies of 111In-BnDTPA-F3 were performed in 231-H2N xenograft-bearing mice. In tumor growth delay studies, 111In-BnDTPA-F3 (3 μg, 6 MBq/μg) was administered intravenously to 231-H2N xenograft-bearing mice once weekly for 3 weeks. Results Membrane-binding of FITC-F3 was observed in 231-H2N cells, and there was co-localization of FITC-F3 with nucleolin in the nuclei. After exposure of 231-H2N cells to 111In-BnDTPA-F3 for 2 h, 1.7% of 111In added to the medium was membrane-bound. Of the bound 111In, 15% was internalized, and of this, 37% was localized in the nucleus. Exposure of 231-H2N cells to 111In-BnDTPA-F3 (1 μM, 6 MBq/μg) resulted in a dose-dependent increase in γH2AX foci and in a significant reduction of clonogenic survival compared to untreated cells or cells exposed to unlabeled BnDTPA-F3 (46 ± 4.1%, 100 ± 1.8%, and 132 ± 7.7%, respectively). In vivo, tumor uptake of 111In-BnDTPA-F3 (3 μg, 6 MBq/μg) at 3-h post-injection was 1% of the injected dose per gram (%ID/g), and muscle uptake was 0.5%ID/g. In tumor growth delay studies, tumor growth rate was reduced 19-fold compared to untreated or unlabeled BnDTPA-F3-treated mice (p = 0.023). Conclusion 111In-BnDTPA-F3 is

  4. 111In-BnDTPA-F3: an Auger electron-emitting radiotherapeutic agent that targets nucleolin.

    PubMed

    Cornelissen, Bart; Waller, Andrew; Target, Carol; Kersemans, Veerle; Smart, Sean; Vallis, Katherine A

    2012-02-20

    The F3 peptide (KDEPQRRSARLSAKPAPPKPEPKPKKAPAKK), a fragment of the human high mobility group protein 2, binds nucleolin. Nucleolin is expressed in the nuclei of normal cells but is also expressed on the membrane of some cancer cells. The goal was to investigate the use of 111In-labeled F3 peptide for Auger electron-targeted radiotherapy. F3 was labeled with fluorescein isothiocyanate (FITC) for confocal microscopy and conjugated to p-SCN-benzyl-diethylenetriaminepentaacetic acid (BnDTPA) for labeling with 111In to form 111In-BnDTPA-F3. MDA-MB-231-H2N (231-H2N) human breast cancer cells were exposed to 111In-BnDTPA-F3 and used in cell fractionation, γH2AX immunostaining (a marker of DNA double-strand breaks), and clonogenic assays. In vivo, biodistribution studies of 111In-BnDTPA-F3 were performed in 231-H2N xenograft-bearing mice. In tumor growth delay studies, 111In-BnDTPA-F3 (3 μg, 6 MBq/μg) was administered intravenously to 231-H2N xenograft-bearing mice once weekly for 3 weeks. Membrane-binding of FITC-F3 was observed in 231-H2N cells, and there was co-localization of FITC-F3 with nucleolin in the nuclei. After exposure of 231-H2N cells to 111In-BnDTPA-F3 for 2 h, 1.7% of 111In added to the medium was membrane-bound. Of the bound 111In, 15% was internalized, and of this, 37% was localized in the nucleus. Exposure of 231-H2N cells to 111In-BnDTPA-F3 (1 μM, 6 MBq/μg) resulted in a dose-dependent increase in γH2AX foci and in a significant reduction of clonogenic survival compared to untreated cells or cells exposed to unlabeled BnDTPA-F3 (46 ± 4.1%, 100 ± 1.8%, and 132 ± 7.7%, respectively). In vivo, tumor uptake of 111In-BnDTPA-F3 (3 μg, 6 MBq/μg) at 3-h post-injection was 1% of the injected dose per gram (%ID/g), and muscle uptake was 0.5%ID/g. In tumor growth delay studies, tumor growth rate was reduced 19-fold compared to untreated or unlabeled BnDTPA-F3-treated mice (p = 0.023). 111In-BnDTPA-F3 is internalized into 231-H2N cells and translocates

  5. Omega-3 polyunsaturated fatty acid blood biomarkers increase linearly in men and women after tightly controlled intakes of 0.25, 0.5, and 1 g/d of EPA + DHA.

    PubMed

    Patterson, Ashley C; Chalil, Alan; Aristizabal Henao, Juan J; Streit, Isaac T; Stark, Ken D

    2015-12-01

    Blood levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been related to coronary heart disease risk. Understanding the response of EPA + DHA in blood to dietary intake of EPA + DHA would facilitate the use of blood measures as markers of adherence and enable the development of dietary recommendations. The objective of this study is examine the blood response to intakes of EPA + DHA ≤1 g/d with an intervention designed for dietary adherence. It was hypothesized this relationship would be linear and that intakes of EPA + DHA <1 g/d would result in blood levels below those associated with the highest level of protection for cardiovascular events. Background EPA + DHA intake of men and women (n = 20) was determined by food frequency questionnaire and adherence was monitored by weekly fingertip blood sampling for fatty acid determinations. Participants consumed nutraceuticals to achieve intakes of 0.25 g/d and 0.5 g/d EPA + DHA for successive four-week periods. A subgroup (n = 5) had intakes of 1.0 g/d EPA + DHA for an additional 4 weeks. Fatty acid composition of whole blood, erythrocytes, and plasma phospholipids were determined at each time point. Blood levels of EPA and DHA increased linearly in these pools. A comprehensive review of the literature was used to verify the blood-intake relationship. Blood levels of long chain omega-3 polyunsaturated fatty acids reached blood levels associated with the highest levels of primary cardiac arrest reduction and sudden cardiac death risk only with intakes of 1.0 g/d of EPA + DHA. The blood biomarker response to intakes of EPA + DHA ≤1 g/d is linear in a small but highly adherent study sample and this information can assist in determining adherence in clinical studies and help identify dietary intake targets from associations between blood and disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. In vivo immunotoxicity evaluation of Gd2O3 nanoprobes prepared by laser ablation in liquid for MRI preclinical applications

    NASA Astrophysics Data System (ADS)

    Tian, Xiumei; Guan, Xiaoying; Luo, Ningqi; Yang, Fanwen; Chen, Dihu; Peng, Ye; Zhu, Jixiang; He, Fupo; Li, Li; Chen, Xiaoming

    2014-09-01

    Gd2O3 nanoprobes prepared by laser ablation in liquid can be used as magnetic resonance imaging contrast agent. However, their immunotoxicity in vivo remains unknown. In this article, the in vitro biocompatibility of the Gd2O3 nanoprobe was evaluated in terms of cell uptake, cell viability, and apoptosis. In vivo immunotoxicity was detected by monitoring the levels of the immunity mediator, cluster of differentiation (CD) markers in Balb/c mice. The results show that no in vitro cytotoxicity was observed, and no significant changes in the expression levels of CD206 and CD69 between the nanoprobe-injected group and the Gd-DTPA group in mice were observed. Importantly, the immunotoxicity data revealed significant differences in the expression levels of CD40, CD80, CD11b, and reactive oxygen species. In addition, transmission electron microscopy images showed that few Gd2O3 nanoprobes were localized in phagosomes by the endocytic pathway. In conclusion, the toxic effects of our Gd2O3 nanoprobe may be due to endocytosis during which the microstructure or ultrastructure of cells is slightly damaged and induces the generation of an oxidative stress reaction that further stimulates the innate immune response. Therefore, it is important to use a sensitive assay for the in vivo immunotoxicity measurements to evaluate the risk assessment of Gd2O3-based biomaterials at the molecular level.

  7. MRI-based assessment of liver perfusion and hepatocyte injury in the murine model of acute hepatitis.

    PubMed

    Byk, Katarzyna; Jasinski, Krzysztof; Bartel, Zaneta; Jasztal, Agnieszka; Sitek, Barbara; Tomanek, Boguslaw; Chlopicki, Stefan; Skorka, Tomasz

    2016-12-01

    To assess alterations in perfusion and liver function in the concanavalin A (ConA)-induced mouse model of acute liver failure (ALF) using two magnetic resonance imaging (MRI)-based methods: dynamic contrast-enhanced MRI (DCE-MRI) with Gd-EOB-DTPA contrast agent and arterial spin labelling (ASL). BALB/c mice were studied using a 9.4 T MRI system. The IntraGateFLASH TM and FAIR-EPI pulse sequences were used for optimum mouse abdomen imaging. The average perfusion values for the liver of the control and ConA group were equal to 245 ± 20 and 200 ± 32 ml/min/100 g (p = 0.008, respectively). DCE-MRI showed that the time to the peak of the image enhancement was 6.14 ± 1.07 min and 9.72 ± 1.69 min in the control and ConA group (p < 0.001, respectively), while the rate of the contrast wash-out in the control and ConA group was 0.037 ± 0.008 and 0.021 ± 0.008 min -1 (p = 0.004, respectively). These results were consistent with hepatocyte injury in the ConA-treated mice as confirmed by histopathological staining. Both the ASL and DCE-MRI techniques represent a reliable methodology to assess alterations in liver perfusion and hepatocyte integrity in murine hepatitis.

  8. Gadolinium Accumulation in the Deep Cerebellar Nuclei and Globus Pallidus After Exposure to Linear but Not Macrocyclic Gadolinium-Based Contrast Agents in a Retrospective Pig Study With High Similarity to Clinical Conditions.

    PubMed

    Boyken, Janina; Frenzel, Thomas; Lohrke, Jessica; Jost, Gregor; Pietsch, Hubertus

    2018-05-01

    The aim of this retrospective study was to determine the gadolinium (Gd) concentration in different brain areas in a pig cohort that received repeated administration of Gd-based contrast agents (GBCAs) at standard doses over several years, comparable with a clinical setting. Brain tissue was collected from 13 Göttingen mini pigs that had received repeated intravenous injections of gadopentetate dimeglumine (Gd-DTPA; Magnevist) and/or gadobutrol (Gadovist). The animals have been included in several preclinical imaging studies since 2008 and received cumulative Gd doses ranging from 7 to 129 mmol per animal over an extended period. Two animals with no history of administration of GBCA were included as controls. Brain autopsies were performed not earlier than 8 and not later than 38 months after the last GBCA application. Tissues from multiple brain areas including cerebellar and cerebral deep nuclei, cerebellar and cerebral cortex, and pons were analyzed for Gd using inductively coupled plasma mass spectrometry. Of the 13 animals, 8 received up to 48 injections of gadobutrol and Gd-DTPA and 5 received up to 29 injections of gadobutrol only. In animals that had received both Gd-DTPA and gadobutrol, a median (interquartile range) Gd concentration of 1.0 nmol/g tissue (0.44-1.42) was measured in the cerebellar nuclei and 0.53 nmol/g (0.29-0.62) in the globus pallidus. The Gd concentration in these areas in gadobutrol-only animals was 50-fold lower with median concentrations of 0.02 nmol/g (0.01-0.02) for cerebellar nuclei and 0.01 nmol/g (0.01-0.01) for globus pallidus and was comparable with control animals with no GBCA history. Accordingly, in animals that received both GBCAs, the amount of residual Gd correlated with the administered dose of Gd-DTPA (P ≤ 0.002) but not with the total Gd dose, consisting of Gd-DTPA and gadobutrol. The Gd concentration in cortical tissue and in the pons was very low (≤0.07 nmol/g tissue) in all animals analyzed. Multiple exposure

  9. Magnetization reversal in Py/Gd heterostructures

    NASA Astrophysics Data System (ADS)

    Lapa, Pavel N.; Ding, Junjia; Pearson, John E.; Novosad, Valentine; Jiang, J. S.; Hoffmann, Axel

    2017-07-01

    Using a combination of magnetometry and magnetotransport techniques, we studied temperature and magnetic-field behavior of magnetization in Py/Gd heterostructures. It was shown quantitatively that proximity with Py enhances magnetic order of Gd. Micromagnetic simulations demonstrate that a spin-flop transition observed in a Py/Gd bilayer is due to exchange-spring rotation of magnetization in the Gd layer. Transport measurements show that the magnetoresistance of a [Py(2 nm ) /Gd (2 nm ) ] 25 multilayer changes sign at the compensation temperature and below 20 K. The positive magnetoresistance above the compensation temperature can be attributed to an in-plane domain wall, which appears because of the structural inhomogeneity of the film over its thickness. By measuring the angular dependence of resistance, we are able to determine the angle between magnetizations in the multilayer and the magnetic field at different temperatures. The measurements reveal that, due to a change in the chemical thickness profile, a noncollinear magnetization configuration is only stable in magnetic fields above 10 kOe.

  10. Magnetization reversal in Py/Gd heterostructures

    DOE PAGES

    Lapa, Pavel N.; Ding, Junjia; Pearson, John E.; ...

    2017-07-13

    Here, using a combination of magnetometry and magnetotransport techniques, we studied temperature and magnetic-field behavior of magnetization in Py/Gd heterostructures. It was shown quantitatively that proximity with Py enhances magnetic order of Gd. Micromagnetic simulations demonstrate that a spin-flop transition observed in a Py/Gd bilayer is due to exchange-spring rotation of magnetization in the Gd layer. Transport measurements show that the magnetoresistance of a [Py(2nm)/Gd(2nm)] 25 multilayer changes sign at the compensation temperature and below 20 K. The positive magnetoresistance above the compensation temperature can be attributed to an in-plane domain wall, which appears because of the structural inhomogeneity ofmore » the film over its thickness. By measuring the angular dependence of resistance, we are able to determine the angle between magnetizations in the multilayer and the magnetic field at different temperatures. The measurements reveal that, due to a change in the chemical thickness profile, a noncollinear magnetization configuration is only stable in magnetic fields above 10 kOe.« less

  11. [Acellular vaccines (DTPa/dTpa) against whooping cough, protection duration].

    PubMed

    Rigo-Medrano, M Vicenta; Mendoza-García, José L; Gimeno-Gascón, Adelina; Roda-Ramón, Jorge; Cremades-Bernabeú, Israel; Antequera-Rodríguez, Pedro; Alcalá-Minagorre, Pedro J; Ortiz-de la Tabla, Victoria; Rodríguez-Díaz, Juan Carlos

    2016-01-01

    An increase in whooping cough in most of the developed countries has been detected in the last decade. To determine whether the administration of dTpa vaccine instead of DTPa fifth dose is contributing to the appearance of these cases. A descriptive study based on cases of whooping cough reported during an epidemic period in the city of Alicante in the first 5 months of 2014. Only pertussis cases confirmed by PCR were included in the study, and only those vaccinated with 5 doses were included in the analysis of the period of protection. A total of 104 cases of pertussis confirmed by PCR were reported, with 85 cases (82%) having had 5 doses of vaccine. The mean time and standard deviation (SD) of protection was 2.1±1.1 years with dTpa, and 5.1±1.5 years with DTPa (p<.001). In the protection, adjusted for age, it was observed that, after 3 years, only 47.6% of people vaccinated with dTpa were still protected, while people vaccinated with DTPa were 100% protected (P<.001). This study found that people who were properly vaccinated against pertussis and received their last re-vaccination dose with dTpa had a shorter period of protection than those who were vaccinated with DTPa. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  12. Calcium and zinc DTPA administration for internal contamination with plutonium-238 and americium-241.

    PubMed

    Kazzi, Ziad N; Heyl, Alexander; Ruprecht, Johann

    2012-08-01

    The accidental or intentional release of plutonium or americium can cause acute and long term adverse health effects if they enter the human body by ingestion, inhalation, or injection. These effects can be prevented by rapid removal of these radionuclides by chelators such as calcium or zinc diethylenetriaminepentaacetate (calcium or zinc DTPA). These compounds have been shown to be efficacious in enhancing the elimination of members of the actinide family particularly plutonium and americium when administered intravenously or by nebulizer. The efficacy and adverse effects profile depend on several factors that include the route of internalization of the actinide, the type, and route time of administration of the chelator, and whether the calcium or zinc salt of DTPA is used. Current and future research efforts should be directed at overcoming limitations associated with the use of these complex drugs by using innovative methods that can enhance their structural and therapeutic properties.

  13. Enhanced critical currents in (Gd,Y)Ba2Cu3Ox superconducting tapes with high levels of Zr addition

    NASA Astrophysics Data System (ADS)

    Selvamanickam, V.; Chen, Y.; Shi, T.; Liu, Y.; Khatri, N. D.; Liu, J.; Yao, Y.; Xiong, X.; Lei, C.; Soloveichik, S.; Galstyan, E.; Majkic, G.

    2013-03-01

    The critical current and structural properties of (Gd,Y)BaCuO tapes made by metal organic chemical vapor deposition (MOCVD) with Zr addition levels up to 30 at.% have been investigated. The reduction in critical current beyond the previously optimized Zr addition level of 7.5 at.% was found to be due to structural deterioration of the (Gd,Y)Ba2Cu3Ox film. By a modified MOCVD process, enhanced critical current densities have been achieved with high levels of Zr addition, including 3.83 MA cm-2 in 15 at.% Zr-added 1.1 μm thick film at 77 K in zero magnetic field. Critical currents as high as 1072 A/12 mm have been reached in (Gd,Y)BaCuO tapes with 15 at.% Zr addition at 30 K in a field of 3 T applied perpendicular to the tape, corresponding to a pinning force value of 268 GN m-3. The enhanced critical currents achievable with a high density of nanoscale defects by employing high levels of second-phase additions enable the performance targets needed for the use of HTS tapes in coil applications involving high magnetic fields at temperatures below 50 K to be met.

  14. Enhanced photoluminescence of Gd2O3:Eu3+ nanophosphors with alkali (M=Li+, Na+, K+) metal ion co-doping.

    PubMed

    Dhananjaya, N; Nagabhushana, H; Nagabhushana, B M; Rudraswamy, B; Shivakumara, C; Narahari, K; Chakradhar, R P S

    2012-02-01

    Gd(1.95)Eu(0.04)M(0.01)O(3) (M=Li(+), Na(+), K(+)) nanophosphors have been synthesized by a low temperature solution combustion (LSC) method. Powder X-ray diffraction pattern (PXRD), scanning electron microscopy (SEM), UV-vis and photoluminescence (PL) measurements were carried out to characterize their structural and luminescent properties. The excitation and emission spectra indicated that the phosphor could be well excited by UV light (243 nm) and emit red light about 612 nm. The effect of alkali co-dopant on PL properties has been examined. The results showed that incorporation of Li(+), Na(+) and K(+) in to Gd(2)O(3):Eu(3+) phosphor would lead to a remarkable increase of photoluminescence. The PL intensity of Gd(2)O(3):Eu(3+) phosphor was improved evidently by co-doping with Li(+) ions whose radius is less than that of Gd(3+) and hardly with Na(+), K(+) whose radius is larger than that of Gd(3+). The effect of co-dopants on enhanced luminescence was mainly regarded as the result of a suitable local distortion of crystal field surrounding the Eu(3+) activator. These results will play an important role in seeking some more effective co-dopants. Copyright © 2011. Published by Elsevier B.V.

  15. Dynamic Contrast-Enhanced MRI of Gd-albumin Delivery to the Rat Hippocampus In Vivo by Convection-Enhanced Delivery

    PubMed Central

    Kim, Jung Hwan; Astary, Garrett W.; Nobrega, Tatiana L.; Kantorovich, Svetlana; Carney, Paul R.; Mareci, Thomas H.; Sarntinoranont, Malisa

    2013-01-01

    Convection enhanced delivery (CED) shows promise in treating neurological diseases due to its ability to circumvent the blood-brain barrier (BBB) and deliver therapeutics directly to the parenchyma of the central nervous system (CNS). Such a drug delivery method may be useful in treating CNS disorders involving the hippocampus such temporal lobe epilepsy and gliomas; however, the influence of anatomical structures on infusate distribution is not fully understood. As a surrogate for therapeutic agents, we used gadolinium-labeled-albumin (Gd-albumin) tagged with Evans blue dye to observe the time dependence of CED infusate distributions into the rat dorsal and ventral hippocampus in vivo with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). For finer anatomical detail, final distribution volumes (Vd) of the infusate were observed with high-resolution T1-weighted MR imaging and light microscopy of fixed brain sections. Dynamic images demonstrated that Gd-albumin preferentially distributed within the hippocampus along neuroanatomical structures with less fluid resistance and less penetration was observed in dense cell layers. Furthermore, significant leakage into adjacent cerebrospinal fluid (CSF) spaces such as the hippocampal fissure, velum interpositum and midbrain cistern occurred toward the end of infusion. Vd increased linearly with infusion volume (Vi) at a mean Vd/Vi ratio of 5.51 ± 0.55 for the dorsal hippocampus infusion and 5.30 ± 0.83 for the ventral hippocampus infusion. This study demonstrated the significant effects of tissue structure and CSF space boundaries on infusate distribution during CED. PMID:22687936

  16. Continuous intraputamenal convection-enhanced delivery in adult rhesus macaques.

    PubMed

    Fan, Xiaotong; Nelson, Brian D; Ai, Yi; Stiles, David K; Gash, Don M; Hardy, Peter A; Zhang, Zhiming

    2015-12-01

    Assessing the safety and feasibility of chronic delivery of compounds to the brain using convection-enhanced delivery (CED) is important for the further development of this important therapeutic technology. The objective of this study was to follow and model the distribution of a compound delivered by CED into the putamen of rhesus monkeys. The authors sequentially implanted catheters into 4 sites spanning the left and right putamen in each of 6 rhesus monkeys. The catheters were connected to implanted pumps, which were programmed to deliver a 5-mM solution of the MRI contrast agent Gd-DTPA at 0.1 μl/minute for 7 days and 0.3 μl/minute for an additional 7 days. The animals were followed for 28 days per implant cycle during which they were periodically examined with MRI. All animals survived the 4 surgeries with no deficits in behavior. Compared with acute infusion, the volume of distribution (Vd) increased 2-fold with 7 days of chronic infusion. Increasing the flow rate 3-fold over the next week increased the Vd an additional 3-fold. Following withdrawal of the compound, the half-life of Gd-DTPA in the brain was estimated as 3.1 days based on first-order pharmacokinetics. Histological assessment of the brain showed minimal tissue damage limited to the insertion site. These results demonstrate several important features in the development of a chronically implanted pump and catheter system: 1) the ability to place catheters accurately in a predetermined target; 2) the ability to deliver compounds in a chronic fashion to the putamen; and 3) the use of MRI and MR visible tracers to follow the evolution of the infusion volume over time.

  17. Synthesis of Gd2O3:Eu nanoplatelets for MRI and fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Maalej, Nabil M.; Qurashi, Ahsanulhaq; Assadi, Achraf Amir; Maalej, Ramzi; Shaikh, Mohammed Nasiruzzaman; Ilyas, Muhammad; Gondal, Mohammad A.

    2015-05-01

    We synthesized Gd2O3 and Gd2O3 doped by europium (Eu) (2% to 10%) nanoplatelets using the polyol chemical method. The synthesized nanoplatelets were characterized by X-ray diffraction (XRD), FESEM, TEM, and EDX techniques. The optical properties of the synthesized nanoplatelets were investigated by photoluminescence spectroscopy. We also studied the magnetic resonance imaging (MRI) contrast enhancement of T1 relaxivity using 3 T MRI. The XRD for Gd2O3 revealed a cubic crystalline structure. The XRD of Gd2O3:Eu3+ nanoplatelets were highly consistent with Gd2O3 indicating the total incorporation of the Eu3+ ions in the Gd2O3 matrix. The Eu doping of Gd2O3 produced red luminescence around 612 nm corresponding to the radiative transitions from the Eu-excited state 5D0 to the 7F2. The photoluminescence was maximal at 5% Eu doping concentration. The stimulated CIE chromaticity coordinates were also calculated. Judd-Ofelt analysis was used to obtain the radiative properties of the sample from the emission spectra. The MRI contrast enhancement due to Gd2O3 was compared to DOTAREM commercial contrast agent at similar concentration of gadolinium oxide and provided similar contrast enhancement. The incorporation of Eu, however, decreased the MRI contrast due to replacement of gadolinium by Eu.

  18. Synthesis of Gd2O3:Eu nanoplatelets for MRI and fluorescence imaging.

    PubMed

    Maalej, Nabil M; Qurashi, Ahsanulhaq; Assadi, Achraf Amir; Maalej, Ramzi; Shaikh, Mohammed Nasiruzzaman; Ilyas, Muhammad; Gondal, Mohammad A

    2015-01-01

    We synthesized Gd2O3 and Gd2O3 doped by europium (Eu) (2% to 10%) nanoplatelets using the polyol chemical method. The synthesized nanoplatelets were characterized by X-ray diffraction (XRD), FESEM, TEM, and EDX techniques. The optical properties of the synthesized nanoplatelets were investigated by photoluminescence spectroscopy. We also studied the magnetic resonance imaging (MRI) contrast enhancement of T1 relaxivity using 3 T MRI. The XRD for Gd2O3 revealed a cubic crystalline structure. The XRD of Gd2O3:Eu(3+) nanoplatelets were highly consistent with Gd2O3 indicating the total incorporation of the Eu(3+) ions in the Gd2O3 matrix. The Eu doping of Gd2O3 produced red luminescence around 612 nm corresponding to the radiative transitions from the Eu-excited state (5)D0 to the (7)F2. The photoluminescence was maximal at 5% Eu doping concentration. The stimulated CIE chromaticity coordinates were also calculated. Judd-Ofelt analysis was used to obtain the radiative properties of the sample from the emission spectra. The MRI contrast enhancement due to Gd2O3 was compared to DOTAREM commercial contrast agent at similar concentration of gadolinium oxide and provided similar contrast enhancement. The incorporation of Eu, however, decreased the MRI contrast due to replacement of gadolinium by Eu.

  19. Investigating intracranial tumour growth patterns with multiparametric MRI incorporating Gd‐DTPA and USPIO‐enhanced imaging

    PubMed Central

    Borri, Marco; Jury, Alexa; Popov, Sergey; Box, Gary; Perryman, Lara; Eccles, Suzanne A.; Jones, Chris; Robinson, Simon P.

    2016-01-01

    Abstract High grade and metastatic brain tumours exhibit considerable spatial variations in proliferation, angiogenesis, invasion, necrosis and oedema. Vascular heterogeneity arising from vascular co‐option in regions of invasive growth (in which the blood–brain barrier remains intact) and neoangiogenesis is a major challenge faced in the assessment of brain tumours by conventional MRI. A multiparametric MRI approach, incorporating native measurements and both Gd‐DTPA (Magnevist) and ultrasmall superparamagnetic iron oxide (P904)‐enhanced imaging, was used in combination with histogram and unsupervised cluster analysis using a k‐means algorithm to examine the spatial distribution of vascular parameters, water diffusion characteristics and invasion in intracranially propagated rat RG2 gliomas and human MDA‐MB‐231 LM2–4 breast adenocarcinomas in mice. Both tumour models presented with higher ΔR 1 (the change in transverse relaxation rate R 1 induced by Gd‐DTPA), fractional blood volume (fBV) and apparent diffusion coefficient than uninvolved regions of the brain. MDA‐MB‐231 LM2–4 tumours were less densely cellular than RG2 tumours and exhibited substantial local invasion, associated with oedema, whereas invasion in RG2 tumours was minimal. These additional features were reflected in the more heterogeneous appearance of MDA‐MB‐231 LM2–4 tumours on T 2‐weighted images and maps of functional MRI parameters. Unsupervised cluster analysis separated subregions with distinct functional properties; areas with a low fBV and relatively impermeable blood vessels (low ΔR 1) were predominantly located at the tumour margins, regions of MDA‐MB‐231 LM2–4 tumours with relatively high levels of water diffusion and low vascular permeability and/or fBV corresponded to histologically identified regions of invasion and oedema, and areas of mismatch between vascular permeability and blood volume were identified. We demonstrate that dual contrast MRI

  20. Sub-10 nm Water-Dispersible β-NaGdF4:X% Eu3+ Nanoparticles with Enhanced Biocompatibility for in Vivo X-ray Luminescence Computed Tomography.

    PubMed

    Zhang, Wenli; Shen, Yingli; Liu, Miao; Gao, Peng; Pu, Huangsheng; Fan, Li; Jiang, Ruibin; Liu, Zonghuai; Shi, Feng; Lu, Hongbing

    2017-11-22

    As a novel molecular and functional imaging modality, X-ray luminescence computed tomography (XLCT) has shown its potentials in biomedical and preclinic applications. However, there are still some limitations of X-ray-excited luminescent materials, such as low luminescence efficiency, poor biocompatibility, and cytotoxicity, making in vivo XLCT imaging quite challenging. In this study, for the very first time, we present on using sub-10 nm β-NaGdF 4 :X% Eu 3+ nanoparticles with poly(acrylic acid) (PAA) surface modification, which demonstrate outstanding luminescence efficiency, uniform size distribution, water dispersity, and biosafety, as the luminescent probes for in vivo XLCT application. The pure hexagonal phase (β-) NaGdF 4 has been successfully synthesized and characterized by X-ray powder diffraction (XRD) and transmission electron microscopy (TEM), and then the results of X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectrometry  (EDX), and elemental mapping further confirm Eu 3+ ions doped into NaGdF 4 host. Under X-ray excitation, the β-NaGdF 4 nanoparticles with a doping level of 15% Eu 3+ exhibited the most efficient luminescence intensity. Notably, the doping level of Eu 3+ has no effect on the crystal phase and morphology of the NaGdF 4 -based host. Afterward, β-NaGdF 4 :15% Eu 3+ nanoparticles were modified with PAA to enhance the water dispersity and biocompatibility. The compatibility of in vivo XLCT imaging using such nanoparticles was systematically studied via in vitro cytotoxicity, physical phantom, and in vivo imaging experiments. The ultralow cytotoxicity of PAA-modified nanoparticles, which is confirmed by over 80% cell viability of SH-SY5Y cells when treated by high nanoparticle concentration of 200 μg/mL, overcome the major obstacle for in vivo application. In addition, the high luminescence intensity of PAA-modified nanoparticles enables the location error of in vivo XLCT imaging less than 2 mm, which is

  1. Enhancement of luminescence emission from GdVO{sub 4}:Er{sup 3+}/Yb{sup 3+} phosphor by Li{sup +} co-doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavrilović, Tamara V.; Jovanović, Dragana J., E-mail: draganaj@vinca.rs; Lojpur, Vesna M.

    2014-09-15

    This paper demonstrates the effects of Li{sup +} co-doping on the structure, morphology, and luminescence properties of GdVO{sub 4}:Er{sup 3+}/Yb{sup 3+} phosphor prepared using a high-temperature solid-state chemistry method. The GdVO{sub 4}:Er{sup 3+}/Yb{sup 3+} powders synthesized with the Li{sup +} co-dopant (in concentrations of 0, 5, 10, and 15 mol%) are characterized by X-ray powder diffraction, scanning electron microscopy, and photoluminescence spectroscopy. Structural analysis showed that powders co-doped with Li{sup +} have larger crystallite sizes and slightly smaller crystal lattice parameters than powders prepared without Li{sup +} ions. Photoluminescence down-conversion (345-nm excitation) and up-conversion (980-nm excitation) spectra show characteristic Er{supmore » 3+} emissions, with the most intense bands peaking at 525 nm ({sup 2}H{sub 11/2}→{sup 4}I{sub 15/2} transition) and 552 nm ({sup 4}S{sub 3/2}→{sup 4}I{sub 15/2}). The intensity of up-conversion emission from GdVO{sub 4}:Er{sup 3+}/Yb{sup 3+} is enhanced (by a factor of four) by co-doping with 5 mol% of Li{sup +} ions. The mechanisms responsible for this emission enhancement are discussed. - Graphical abstract: UC emission spectra for GdVO{sub 4}:1.5-mol% Er{sup 3+}/20-mol% Yb{sup 3+} powders co-doped with different concentrations of Li{sup +} ions, recorded under 980-nm excitation. - Highlights: • 5-mol% Li{sup +} co-doped powders have 400% enhanced up-conversion emission intensity. • 15-mol% Li{sup +} co-doping produces 40% higher emission in down-conversion. • Li{sup +} co-doped powders have larger crystallite size and smaller lattice parameters.« less

  2. Enzyme-Sensitive MR Imaging Targeting Myeloperoxidase Identifies Active Inflammation in Experimental Rabbit Atherosclerotic Plaques

    PubMed Central

    Ronald, John A.; Chen, John W.; Chen, Yuanxin; Hamilton, Amanda M.; Rodriguez, Elisenda; Reynolds, Fred; Hegele, Robert A.; Rogers, Kem A.; Querol, Manel; Bogdanov, Alexei; Weissleder, Ralph; Rutt, Brian K.

    2009-01-01

    Background Inflammation undermines the stability of atherosclerotic plaques, rendering them susceptible to acute rupture, the cataclysmic event that underlies clinical expression of this disease. Myeloperoxidase (MPO) is a central inflammatory enzyme secreted by activated macrophages, and is involved in multiple stages of plaque destabilization and patient outcome. We report here that a unique functional in vivo magnetic resonance (MR) agent can visualize MPO activity in atherosclerotic plaques in a rabbit model. Methods and Results We performed MR imaging of the thoracic aorta of New Zealand white (NZW) rabbits fed a cholesterol (n=11) or normal (n=4) diet up to 2 hours after injection of the MPO sensor bis-5HT-DTPA(Gd) (MPO(Gd)), the conventional agent, DTPA(Gd), or an MPO (Gd) analog, bis-tyr-DTPA(Gd), as controls. Delayed MPO(Gd) images (2 hour post injection) showed focal areas of increased contrast (>2-fold) in diseased wall, but not in normal wall (p=0.84), compared to both DTPA(Gd) (n=11; p<0.001) and bis-tyr-DTPA(Gd) (n=3; p<0.05). Biochemical assays confirmed that diseased wall possessed three-fold elevated MPO activity compared to normal wall (p<0.01). Areas detected by MPO(Gd) imaging co-localized and correlated with MPO-rich areas infiltrated by macrophages on histopathological evaluations (r=0.91, p<0.0001). While macrophages were the main source of MPO, not all macrophages secreted MPO, suggesting that distinct subpopulations contribute differently to atherogenesis and supporting our functional approach. Conclusions Our study represents a unique approach in the detection of inflammation in atherosclerotic plaques by examining macrophage function and the activity of an effector enzyme, to noninvasively provide both anatomic and functional information in vivo. PMID:19652086

  3. Respiratory clearance of 99mTc-DTPA and pulmonary involvement in sarcoidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dusser, D.J.; Collignon, M.A.; Stanislas-Leguern, G.

    1986-09-01

    To investigate the relationships between the respiratory epithelial clearance of micronic aerosolized /sup 99m/Tc-DTPA (RC-DTPA) and pulmonary function, serum angiotensin-converting enzyme (SACE), and lymphocytic alveolitis in patients with sarcoidosis, RC-DTPA was measured in 49 nonsmokers with pulmonary sarcoidosis and 38 normal nonsmokers. Pulmonary involvement was evaluated on chest roentgenograms (type O = normal, type I = hilar adenopathies, type II = hilar adenopathies associated with parenchymal shadows, type III = parenchymal shadows without adenopathy) and by pulmonary function tests. Serum angiotensin-converting enzyme was determined, and a bronchoalveolar lavage was performed for alveolar lymphocyte differential counting (Ly%). RC-DTPA was increased (greatermore » than or equal to 1.96%/min) in 12 of 31 patients with type II or III involvement but was normal in all 18 patients with type O or I involvement (p = 0.002). Patients with increased RC-DTPA had low FVC, TLC, FEV1, and resting Pao2 (p less than 0.05); resting and exercise AaPo2 were increased (p less than 0.05), but RC-DTPA correlated negatively with FEV1 (p less than 0.01), Pao2 at rest (p less than 0.005), and DLCO (p less than 0.05) and positively with resting and exercise AaPO2 (p less than 0.01). In patients with increased RC-DTPA (42 +/- 17%), Ly% did not differ from Ly% in patients with normal RC-DTPA (34 +/- 16%). SACE was increased in patients with increased RC-DTPA (56 +/- 26 U/ml versus 38 +/- 16 U/ml; p = 0.007) and correlated positively with RC-DTPA (p less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)« less

  4. Ustur whole body case 0269: demonstrating effectiveness of i.v. CA-DTPA for Pu.

    PubMed

    James, A C; Sasser, L B; Stuit, D B; Glover, S E; Carbaugh, E H

    2007-01-01

    This whole body donation case (USTUR Registrant) involved a single acute inhalation of an acidic Pu(NO3)4 solution in the form of an aerosol 'mist'. Chelation treatment with intravenously (i.v.) Ca-EDTA was initiated on the day of the intake, and continued intermittently over 6 months. After 2.5 y with no further treatment, a course of i.v. Ca-DTPA was administered. A total of 400 measurements of 239+240Pu excreted in urine were recorded; starting on the first day (both before and during the initial Ca-EDTA chelation) and continuing for 37 y. This sampling included all intervals of chelation. In addition, 91 measurements of 239+240Pu-in-feces were recorded over this whole period. The Registrant died about 38 y after the intake, at age 79 y, with extensive carcinomatosis secondary to adenocarcinoma of the prostate gland. At autopsy, all major soft tissue organs were harvested for radiochemical analyses of their 238Pu, 239+240Pu and 241Am content. Also, all types of bone (comprising about half the skeleton) were harvested for radiochemical analyses, as well as samples of skin, subcutaneous fat and muscle. This comprehensive data set has been applied to derive 'chelation-enhanced' transfer rates in the ICRP Publication 67 plutonium biokinetic model, representing the behaviour of blood-borne and tissue-incorporated plutonium during intervals of therapy. The resulting model of the separate effects of i.v. Ca-EDTA and Ca-DTPA chelation shows that the therapy administered in this case succeeded in reducing substantially the long-term burden of plutonium in all body organs, except for the lungs. The calculated reductions in organ content at the time of death are approximately 40% for the liver, 60% for other soft tissues (muscle, skin, glands, etc.), 50% for the kidneys and 50% for the skeleton. Essentially, all of the substantial reduction in skeletal burden occurred in trabecular bone. This modelling exercise demonstrated that 3-y-delayed Ca-DTPA therapy was as effective

  5. A Feasibility Study to Determine Whether Clinical Contrast Enhanced Magnetic Resonance Imaging can Detect Increased Bladder Permeability in Patients with Interstitial Cystitis.

    PubMed

    Towner, Rheal A; Wisniewski, Amy B; Wu, Dee H; Van Gordon, Samuel B; Smith, Nataliya; North, Justin C; McElhaney, Rayburt; Aston, Christopher E; Shobeiri, S Abbas; Kropp, Bradley P; Greenwood-Van Meerveld, Beverley; Hurst, Robert E

    2016-03-01

    Interstitial cystitis/bladder pain syndrome is a bladder pain disorder associated with voiding symptomatology and other systemic chronic pain disorders. Currently diagnosing interstitial cystitis/bladder pain syndrome is complicated as patients present with a wide range of symptoms, physical examination findings and clinical test responses. One hypothesis is that interstitial cystitis symptoms arise from increased bladder permeability to urine solutes. This study establishes the feasibility of using contrast enhanced magnetic resonance imaging to quantify bladder permeability in patients with interstitial cystitis. Permeability alterations in bladder urothelium were assessed by intravesical administration of the magnetic resonance imaging contrast agent Gd-DTPA (Gd-diethylenetriaminepentaacetic acid) in a small cohort of patients. Magnetic resonance imaging signal intensity in patient and control bladders was compared regionally and for entire bladders. Quantitative assessment of magnetic resonance imaging signal intensity indicated a significant increase in signal intensity in anterior bladder regions compared to posterior regions in patients with interstitial cystitis (p <0.01) and significant increases in signal intensity in anterior bladder regions (p <0.001). Kurtosis (shape of probability distribution) and skewness (measure of probability distribution asymmetry) were associated with contrast enhancement in total bladders in patients with interstitial cystitis vs controls (p <0.05). Regarding symptomatology interstitial cystitis cases differed significantly from controls on the SF-36®, PUF (Pelvic Pain and Urgency/Frequency) and ICPI (Interstitial Cystitis Problem Index) questionnaires with no overlap in the score range in each group. ICSI (Interstitial Cystitis Symptom Index) differed significantly but with a slight overlap in the range of scores. Data suggest that contrast enhanced magnetic resonance imaging provides an objective, quantifiable measurement

  6. Distribution of Gd(III) ions at the graphene oxide/water interface.

    PubMed

    Amirov, Rustem R; Shayimova, Julia; Dimiev, Ayrat M

    2018-10-01

    Graphene oxide (GO) have emerged recently as a novel material for sorbing metal cations from aqueous media. However, the literature data on sorption capacity differ by more than one order in magnitude, and the nature of the chemical bonding between GO and metal cations remains unclear. In this work we show that Gd 3+ ions are bound to GO by both coordinate-covalent bonding and electrostatic attraction with prevailing the former. We provide the complete account for the GO sorption toward Gd 3+ as the function of the Gd 3+ /GO ratio and pH of solution. The upper limits of the strong bonding are determined as 0.70 and 0.16 mmol(Gd 3+ )/g(GO) in the neutral and in the intrinsically acidic solutions, respectively. At large excess of Gd 3+ in the neutral solutions, the sorption capacity reaches 1.45 mmol(Gd 3+ )/g(GO). The effectiveness of water, hydrochloric acid and EDTA as desorbing eluents is compared. We experimentally demonstrate the existence of the Gd 3+ concentration gradient within the diffuse layer at the GO/water interface, and its exponential character on the distance from the GO surface. The thickness of the diffuse layer and the position of the slipping plane are estimated. Such characteristics, typical for colloid systems, show that in solutions, GO flakes form distinct phase, even though they are just one atom thick. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Fluorescence-enhanced europium complexes for the assessment of renal function

    NASA Astrophysics Data System (ADS)

    Chinen, Lori K.; Galen, Karen P.; Kuan, K. T.; Dyszlewski, Mary E.; Ozaki, Hiroaki; Sawai, Hiroaki; Pandurangi, Raghootama S.; Jacobs, Frederick G.; Dorshow, Richard B.; Rajagopalan, Raghavan

    2008-02-01

    Real-time, non-invasive assessment of glomerular filtration rate (GFR) is essential not only for monitoring critically ill patients at the bedside, but also for staging and monitoring patients with chronic kidney disease. In our pursuit to develop exogenous luminescent probes for dynamic optical monitoring of GFR, we have prepared and evaluated Eu 3+ complexes of several diethylenetriamine pentaacetate (DTPA)-monoamide ligands bearing molecular "antennae" to enhance metal fluorescence via the intramolecular ligand-metal fluorescence resonance energy transfer (FRET) process. The results show that Eu-DTPA-monoamide complex 13a, which contains a quinoxanlinyl antenna, exhibits large (c.a. 2700-fold) Eu 3+ fluorescence enhancement over Eu-DTPA (4c). Indeed, complex 13a exhibits the highest fluorescent enhancement observed thus far in the DTPA-type metal complexes. The renal clearance profile of the corresponding radioactive 111In complex 13c is similar to that of 111In-DTPA, albeit 13c clears slower than 111In-DTPA. The biodistribution data indicates that 13c, and, by inference, 13a clear via a complex mechanism that includes glomerular filtration.

  8. Permeability of ferret trachea in vitro to {sup 99m}{Tc}-DTPA and [{sup 14}C]antipyrine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanafi, Z.; Webber, S.E.; Widdicombe, J.G.

    1994-09-01

    Platelet-activating factor (PAF) and vasoactive drugs were tested on permeability of ferret trachea in vitro by measuring fluxes of {sup 99m}{Tc}-diethylenetriamine pentaacetic acid ({sup 99m}{Tc}-DTPA; hydrophilic) and [{sup 14}C]antipyrine ([{sup 14}C]AP; lipophilic) across the tracheal wall. Tracheae were bathed on both sides with Krebs-Henseleit buffer, with luminal buffer containing either {sup 99m}{Tc}-DTPA or [{sup 14}C]AP. Luminal and abluminal radioactivities, potential difference, and tracheal smooth muscle tone were measured. Baseline {sup 99m}{Tc}-DTPA and [{sup 14}C]AP permeability coefficients were - 4.7 {+-} 0.6 (SE) x 10{sup {minus}7} and -2.2 {+-} 0.1 x 10{sup {minus}5} cm/s, respectively. PAF (10 {mu}M) increased permeability tomore » {sup 99m}{Tc}-DTPA to -35.3 {+-} 7.6 x 10{sup {minus}7} cm/s (P < 0.05), but permeability to [{sup 14}C]AP did not change, suggesting that paracellular but not transcellular transport was affected. Abluminal and luminal applications of methacholine (MCh, 20 {mu}M), phenylephrine (PE, 100 {mu}M), and albuterol (Alb, 100 {mu}M) caused no change in permeability to {sup 99m}{Tc}-DTPA before or after exposure to luminal PAF, but abluminal histamine (Hist, 10 {mu}M) significantly increased permeability. Abluminal Hist decreased permeability to [{sup 14}C]AP before and after exposure to PAF. MCh, PE, and Hist increased smooth muscle tone; Alb and PAF had no effect. Thus, only PAF and Hist altered permeability to {sup 99m}{Tc}-DTPA, and MCh, PE, and Hist changed smooth muscle tone. Tracheal permeability changes were greater for the hydrophilic than for the lipophilic agent. 37 refs., 11 figs., 1 tab.« less

  9. Correlation Between Bile Reflux Gastritis and Biliary Excreted Contrast Media in the Stomach.

    PubMed

    Hyun, Jong Jin; Yeom, Suk Keu; Shim, Euddeum; Cha, Jaehyung; Choi, Inyoung; Lee, Seung Hwa; Chung, Hwan Hoon; Cha, Sang Hoon; Lee, Chang Hee

    This study aimed to evaluate the relationship between biliary excreted contrast media in the stomach and the presence of bile reflux gastritis. Consecutive 111 patients who underwent both gadoxetic acid-enhanced magnetic resonance cholangiography (gadoxetic MRC) and gastric endoscopy were included in this study. We performed a review of the gadoxetic-MRC image sets acquired 60 minutes after intravenous injection of contrast media and endoscopic images. We recorded amount of contrast media in the stomach. The sensitivity, specificity, and accuracy of duodenogastric bile reflux diagnosis were evaluated for the gadoxetic MRC. Statistical analysis was performed using the Fisher exact test and the linear-by-linear association test. Among the 111 patients, 39 had 60-minute delayed images showing the presence of contrast media in the stomach. Of these 39 patients, 13 had bile reflux gastritis and 5 showed bile in the stomach without evidence of erythematous gastritis. Of the 72 patients who did not show contrast media in the stomach, none had bile reflux gastritis and 2 patients showed bile staining in the stomach without evidence of erythematous gastritis. Bile reflux gastritis was significantly more frequent in patients with contrast media in the stomach on gadoxetic MRC than in those without. Patients with high-grade extension of contrast media in the stomach had significantly frequent bile reflux gastritis than did those with low-grade extension. Biliary excreted contrast media in the stomach on 60-minute delayed gadoxetic MRC has a correlation with the presence of bile reflux gastritis on endoscopic examination.

  10. Orally Administered DTPA Di-ethyl Ester for Decorporation of 241Am in dogs: Assessment of Safety and Efficacy in an Inhalation-Contamination Model

    PubMed Central

    Huckle, James E.; Sadgrove, Matthew P.; Pacyniak, Erik; Leed, Marina G. D.; Weber, Waylon M.; Doyle-Eisele, Melanie; Guilmette, Raymond A.; Agha, Bushra J.; Susick, Robert L.; Mumper, Russell J.; Jay, Michael

    2016-01-01

    Purpose Currently two injectable products of diethylenetriaminepentaacetic acid (DTPA) are U.S. Food and Drug Administration (FDA) approved for decorporation of 241Am, however, an oral product is considered more amenable in a mass casualty situation. The diethyl ester of DTPA, named C2E2, is being developed as an oral drug for treatment of internal radionuclide contamination. Materials and methods Single dose decorporation efficacy of C2E2 administered 24-hours post contamination was determined in beagle dogs using a 241Am nitrate inhalation contamination model. Single and multiple dose toxicity studies in beagle dogs were performed as part of an initial safety assessment program. In addition, the genotoxic potential of C2E2 was evaluated by the in vitro bacterial reverse mutation Ames test, mammalian cell chromosome aberration cytogenetic assay and an in vivo micronucleus test. Results Oral administration of C2E2 significantly increased 241Am elimination over untreated controls and significantly reduced the retention of 241Am in tissues, especially liver, kidney, lung and bone. Daily dosing of 200 mg/kg/day for 10 days was well tolerated in dogs. C2E2 was found to be neither mutagenic or clastogenic. Conclusions The di-ethyl ester of DTPA (C2E2) was shown to effectively enhance the elimination of 241Am after oral administration in a dog inhalation-contamination model and was well tolerated in toxicity studies. PMID:25912343

  11. In vivo tumor characterization using both MR and optical contrast agents with a hybrid MRI-DOT system

    NASA Astrophysics Data System (ADS)

    Lin, Yuting; Ghijsen, Michael; Thayer, David; Nalcioglu, Orhan; Gulsen, Gultekin

    2011-03-01

    Dynamic contrast enhanced MRI (DCE-MRI) has been proven to be the most sensitive modality in detecting breast lesions. Currently available MR contrast agent, Gd-DTPA, is a low molecular weight extracellular agent and can diffuse freely from the vascular space into interstitial space. Due to this reason, DCE-MRI has low sensitivity in differentiating benign and malignant tumors. Meanwhile, diffuse optical tomography (DOT) can be used to provide enhancement kinetics of an FDA approved optical contrast agent, ICG, which behaves like a large molecular weight optical agent due to its binding to albumin. The enhancement kinetics of ICG may have a potential to distinguish between the malignant and benign tumors and hence improve the specificity. Our group has developed a high speed hybrid MRI-DOT system. The DOT is a fully automated, MR-compatible, multi-frequency and multi-spectral imaging system. Fischer-344 rats bearing subcutaneous R3230 tumor are injected simultaneously with Gd-DTPA (0.1nmol/kg) and IC-Green (2.5mg/kg). The enhancement kinetics of both contrast agents are recorded simultaneously with this hybrid MRI-DOT system and evaluated for different tumors.

  12. [[111In]-DTPA-D-phenylalanine octreotide SPECT for the scintigraphic imaging of enhanced somatostatin-receptor density in endocrine ophthalmopathy].

    PubMed

    Cordes, M; Hosten, N; Gräf, K J; Wenzel, K W; Venz, S; Keske, U; Eichstädt, H; Felix, R

    1994-01-01

    Recently, [111In]-DTPA-D-phenylalanine-octreotide was introduced for clinical use. This radioligand binds specifically to somatostatin receptors and is suitable for SPECT examinations. The aim of this study was to clarify whether an increased somatostatin receptor density can be imaged and quantified in patients with endocrine ophthalmopathy (e.o.). 7 patients between 34 and 55 years with e.o. at stages III to VI and 4 controls between 38 and 63 years were examined. All patients and controls received approximately 200 MBq [111In]-DTPA-D-phenylalanine-octreotide by IV injection. A SPECT examination was performed 4 hours after injection and a normalised tracer uptake (A(n)) was calculated for both orbitae. In patients with e.o. the values of A(n) were significantly higher compared with controls (P = 0.002). There was a correlation between A(n) and exophthalmus stages according to Hertel with r = 0.844 (P = 0.001). These results indicate that [111In]-DTPA-D-phenylalanine-octreotide SPECT might be useful for the in vivo assessment of an increased somatostatin receptor density in e.o. These findings could have an impact on the treatment with somatostatin analogous in e.o.

  13. Preparation and effect of thermal treatment on Gd2O3:SiO2 nanocomposite

    NASA Astrophysics Data System (ADS)

    Ahlawat, Rachna

    2015-04-01

    Rare earth oxides have been extensively investigated due to their fascinating properties such as enhanced luminescence efficiency, lower lasing threshold, high-performance luminescent devices, drug-carrying vehicle, contrast agent in magnetic resonance imaging (MRI), up-conversion materials, catalysts and time-resolved fluorescence (TRF) labels for biological detection etc. Nanocomposites of silica gadolinium oxide have been successfully synthesized by sol-gel process using hydrochloric acid as a catalyst. Gd(NO3)3ṡ6H2O and tetraethyl orthosilicate (TEOS) were used as precursors to obtain powdered form of gadolinum oxide:silica (Gd2O3:SiO2) composite. The powdered samples having 2.8 mol% Gd2O3 were annealed at 500°C and 900°C temperature for 6 h and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and transmission electron microscope (TEM). The effect of annealing on the phase evolution of the composite system has been discussed in detail. It was found that the sintering of gadolinium precursor plays a pivotal role to obtain crystalline phase of Gd2O3. Cubic phase of gadolinium oxide was developed for annealed sample at 900°C (6 h) with an average grain size 12 nm.

  14. Optimizing Water Exchange Rates and Rotational Mobility for High-Relaxivity of a Novel Gd-DO3A Derivative Complex Conjugated to Inulin as Macromolecular Contrast Agents for MRI.

    PubMed

    Granato, Luigi; Vander Elst, Luce; Henoumont, Celine; Muller, Robert N; Laurent, Sophie

    2018-02-01

    Thanks to the understanding of the relationships between the residence lifetime τ M of the coordinated water molecules to macrocyclic Gd-complexes and the rotational mobility τ R of these structures, and according to the theory for paramagnetic relaxation, it is now possible to design macromolecular contrast agents with enhanced relaxivities by optimizing these two parameters through ligand structural modification. We succeeded in accelerating the water exchange rate by inducing steric compression around the water binding site, and by removing the amide function from the DOTA-AA ligand [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid mono(p-aminoanilide)] (L) previously designed. This new ligand 10[2(1-oxo-1-p-propylthioureidophenylpropyl]-1,4,7,10-tetraazacyclodecane-1,4,7-tetraacetic acid (L 1 ) was then covalently conjugated to API [O-(aminopropyl)inulin] to get the complex API-(GdL 1 )x with intent to slow down the rotational correlation time (τ R ) of the macromolecular complex. The evaluation of the longitudinal relaxivity at different magnetic fields and the study of the 17 O-NMR at variable temperature of the low-molecular-weight compound (GdL 1 ) showed a slight decrease of the τ M value (τM310 = 331 ns vs. τM310 = 450 ns for the GdL complex). Consequently to the increase of the size of the API-(GdL 1 )x complex, the rotational correlation time becomes about 360 times longer compared to the monomeric GdL 1 complex (τ R  = 33,700 ps), which results in an enhanced proton relaxivity. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  15. Release of Gd-ions from peralkaline borosilicate glass in pure water for neutrino detection in Water-Cherenkov Detectors

    NASA Astrophysics Data System (ADS)

    Dongol, R.; Sundaram, S. K.

    2017-09-01

    The addition of Gadolinium (Gd)-based salt, specially GdCl3, in the Water Cherenkov Detectors (WCDs) enhances the sensitivity to neutrino detection. However, the unwanted Cl-based byproducts, significantly reduces the transparency of water and sensitivity of WCDs. An alternative method, to introduce Gd-ions in the WCDs, is through Gd-release from a custom designed Gd-doped glass, when in contact with water. This can potentially eliminate the use of Gd-based salts and byproducts. In this work, we report the Gd-ions release for a Gd-doped peralkaline (Na/Al > 1) borosilicate glass, which closely represents photomultiplier tube (PMT) glass composition used in WCDs. The purpose of the paper is to show that the Gd-ion release from a custom designed glass in the form of beads or powders is feasible and could be used as a controlled Gd-source in future WCDs to enhance neutrino detection. In addition, we present our results of Gd-solubility in the base glass composition.

  16. Evaluation of diclofenac prodrugs for enhancing transdermal delivery.

    PubMed

    Lobo, Shabbir; Li, Henan; Farhan, Nashid; Yan, Guang

    2014-03-01

    Abstract Objective: The purpose of this study was to evaluate the approach of using diclofenac acid (DA) prodrugs for enhancing transdermal delivery. Methanol diclofenac ester (MD), ethylene glycol diclofenac ester (ED), glycerol diclofenac ester (GD) and 1,3-propylene glycol diclofenac ester (PD) were synthesized and evaluated for their physicochemical properties such as solubilities, octanol/water partition coefficients, stratum corneum/water partition coefficients, hydrolysis rates and bioconversion rates. In vitro fluxes across human epidermal membrane (HEM) in the Franz diffusion cell were determined on DA-, MD-, ED-, GD- and PD-saturated aqueous solutions. The formation of GD and ED led to the prodrugs with higher aqueous solubilities and lower partition coefficients than those of the parent drug. Prodrugs with improved aqueous solubility showed better fluxes across HEM in aqueous solution than that of the parent drug, with GD showing the highest aqueous solubility and also the highest flux. There is a linear relationship between the aqueous solubility and flux for DA, ED and PD, but GD and MD deviated from the linear line. Diclofenac prodrugs with improved hydrophilicity than the parent drug could be utilized for enhancing transdermal diclofenac delivery.

  17. Effect of Lime, Humic Acid and Moisture Regime on the Availability of Zinc in Alfisol

    PubMed Central

    Naik, Sushanta Kumar; Das, Dilip Kumar

    2007-01-01

    Lime and humic acid application can play an important role in the availability of zinc in paddy soils. We conducted laboratory incubation experiments on a rice growing soil (Alfisol) to determine the effect of lime, humic acid and different moisture regimes on the availability of Zn. Addition of half doses of liming material (powdered lime stone) recorded highest values of DTPA-Zn followed by no lime and 100% of lime requirement throughout the incubation period. With the progress of incubation, DTPA-Zn increased slightly during the first week and then decreased thereafter. The highest DTPA-extractable Zn content of 2.85 mg/kg was found in the treatment Zn10 L1/2 at 7 days of incubation, showing 17.3 % increase in DTPA-Zn content over its corresponding treatment of Zn alone (Zn10L0). The DTPA-Zn concentration increased with the application of humic acid compared with no humic acid throughout 35 days of the incubation period and the peak value obtained was 3.12 mg/kg in the treatment Zn10 HA2 at 14 days after incubation, showing 50 % increase in Zn content over its corresponding treatment of Zn alone (Zn10HA0). The application of 0.2% humic acid compared with 0.1% resulted in greater increase in DTPA-Zn concentration in soil application. During the 35 days of incubation, highest values of DTPA-Zn were recorded in soil maintained at saturated compared to water logged conditions. However, under alternate wetting and drying condition the DTPA-Zn content gradually decreased up to 21 days and thereafter increased slowly. PMID:17704853

  18. The interplay of T1- and T2-relaxation on T1-weighted MRI of hMSCs induced by Gd-DOTA-peptides.

    PubMed

    Cao, Limin; Li, Binbin; Yi, Peiwei; Zhang, Hailu; Dai, Jianwu; Tan, Bo; Deng, Zongwu

    2014-04-01

    Three Gd-DOTA-peptide complexes with different peptide sequence are synthesized and used as T1 contrast agent to label human mesenchymal stem cells (hMSCs) for magnetic resonance imaging study. The peptides include a universal cell penetrating peptide TAT, a linear MSC-specific peptide EM7, and a cyclic MSC-specific peptide CC9. A significant difference in labeling efficacy is observed between the Gd-DOTA-peptides as well as a control Dotarem. All Gd-DOTA-peptides as well as Dotarem induce significant increase in T1 relaxation rate which is in favor of T1-weighted MR imaging. Gd-DOTA-CC9 yields the maximum labeling efficacy but poor T1 contrast enhancement. Gd-DOTA-EM7 yields the minimum labeling efficacy but better T1 contrast enhancement. Gd-DOTA-TAT yields a similar labeling efficacy as Gd-DOTA-CC9 and similar T1 contrast enhancement as Gd-DOTA-EM7. The underlying mechanism that governs T1 contrast enhancement effect is discussed. Our results suggest that T1 contrast enhancement induced by Gd-DOTA-peptides depends not only on the introduced cellular Gd content, but more importantly on the effect that Gd-DOTA-peptides exert on the T1-relaxation and T2-relaxation processes/rates. Both T1 and particularly T2 relaxation rate have to be taken into account to interpret T1 contrast enhancement. In addition, the interpretation has to be based on cellular instead of aqueous longitudinal and transverse relaxivities of Gd-DOTA-peptides. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Simultaneous (68)Ga-DOTA-TOC PET/MRI with gadoxetate disodium in patients with neuroendocrine tumor.

    PubMed

    Hope, Thomas A; Pampaloni, Miguel Hernandez; Nakakura, Eric; VanBrocklin, Henry; Slater, James; Jivan, Salma; Aparici, Carina Mari; Yee, Judy; Bergsland, Emily

    2015-08-01

    To evaluate a simultaneous PET/MRI approach to imaging patients with neuroendocrine tumor using a combination of (68)Ga-DOTA-TOC as a PET contrast agent and gadoxetate disodium as a hepatobiliary MRI contrast agent. Ten patients with neuroendocrine tumor with known or suspected hepatic disease were imaged using a (68)Ga-DOTA-TOC PET/CT immediately followed by a 3.0T time-of-flight PET/MRI, using a combined whole body and liver specific imaging. The presence of lesions and DOTA-TOC avidity were assessed on CT, PET from PET/CT, diffusion weighted imaging, hepatobiliary phase imaging (HBP), and PET from PET/MRI. Maximum standardized uptake values (SUVmax) in hepatic lesions and nodal metastases were compared between PET/CT and PET/MRI, as were detection rates using each imaging approach. A total of 101 hepatic lesions were identified, 47 of which were DOTA-TOC avid and able to be individually measured on both PET/CT and PET/MRI. HBP imaging had a higher sensitivity for detection of hepatic lesions compared to CT or PET (99% vs. 46% and 64%, respectively; p values <0.001). There was a strong correlation between SUVmax of liver lesions obtained with PET/CT compared to PET/MR imaging (Pearson's correlation = 0.91). For nodal disease, CT had a higher sensitivity compared to whole body MRI (p = 0.015), although PET acquired from PET/MRI detected slightly more lesions compared to PET from PET/CT. A simultaneous PET/MRI using both (68)Ga-DOTA-TOC and gadoxetate disodium was successful in whole body staging of patients with neuroendocrine tumor. HBP imaging had an increased detection rate for hepatic metastases.

  20. Gd{sup 3+} incorporated ZnO nanoparticles: A versatile material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Surender, E-mail: surender40@gmail.com; Sahare, P.D.

    Graphical abstract: - Highlights: • Chemically synthesized Gd{sup 3+} doped ZnO nanoparticles. • The broad visible emission of the ZnO is dependent on the surface defects and can be tailored by Gd{sup 3+} doing. • PL and magnetic properties are modified by Gd{sup 3+} doping. • Photocatalysis experiment reveals that the ZnO: Gd{sup 3+} degrades the Rh B dye faster than the undoped ZnO. - Abstract: Gd{sup 3+} doped ZnO nanoparticles are synthesized by wet chemical route method and investigated through structural, optical, magnetic and photocatalytic properties. Transmission Electron Microscopy technique has been performed on undoped and Gd{sup 3+} dopedmore » ZnO nanoparticles. X-ray diffraction, X-ray photoelectron spectroscopy and Raman analyses are carried out in order to examine the desired phase formation and substitution of Gd{sup 3+} in the ZnO matrix. Gd{sup 3+} doped ZnO nanoparticles show enhanced photoluminescent and ferromagnetic properties as compared to undoped ZnO. The broad visible emission of ZnO is found to be largely dependent on the surface defects and these surface defects can be tailored by Gd{sup 3+} doping concentration. Furthermore, Gd{sup 3+} doped ZnO nanoparticles also show improved photocatalytic properties as compared with undoped ZnO nanoparticles under ultraviolet irradiation.« less

  1. Image-guided convection-enhanced delivery of muscimol to the primate brain

    PubMed Central

    Heiss, John D.; Walbridge, Stuart; Asthagiri, Ashok R.; Lonser, Russell R.

    2009-01-01

    Object Muscimol is a potent γ-aminobutyric acid-A receptor agonist (GABAA) that temporarily and selectively suppresses neurons. Targeted muscimol-suppression of neuronal structures could provide insight into the pathophysiology and treatment of a variety of neurologic disorders. To determine if muscimol delivered to the brain by convection-enhanced delivery (CED) could be monitored using a co-infused surrogate magnetic resonance (MR)-imaging tracer, we perfused the striata of primates with tritiated muscimol and gadolinium-DTPA. Methods Three primates underwent convective co-infusion of 3H-muscimol (0.8 μM) and gadolinium-DTPA (−5 mM) into the bilateral striata. Primates underwent serial MR-imaging during infusion and animals were sacrificed immediately after infusion. Post-mortem quantitative autoradiography and histological analysis was performed. Results MR-imaging revealed that infusate (tritiated muscimol and gadolinium-DTPA) distribution was clearly discernible from the non-infused parenchyma. Real-time MR-imaging of the infusion revealed the precise region of anatomic perfusion in each animal. Imaging analysis during infusion revealed that the distribution volume of infusate linearly increased (R=0.92) with volume of infusion. Overall, the mean (±S.D.) volume of distribution to volume of infusion ratio was 8.2±1.3. Autoradiographic analysis revealed that MR-imaging of gadolinium-DTPA closely correlated with the distribution of 3H-muscimol and precisely estimated its volume of distribution (mean difference in volume of distribution, 7.4%). Quantitative autoradiograms revealed that muscimol was homogeneously distributed over the perfused region in a square-shaped concentration profile. Conclusions Muscimol can be effectively delivered to clinically relevant volumes of the primate brain. Moreover, the distribution of muscimol can be tracked by co-infusion of gadolinium-DTPA using MR-imaging. The ability to accurately monitor and control the anatomic

  2. Extracellular diffusion quantified by magnetic resonance imaging during rat C6 glioma cell progression.

    PubMed

    Song, G; Luo, T; Dong, L; Liu, Q

    2017-07-03

    Solution reflux and edema hamper the convection-enhanced delivery of the standard treatment for glioma. Therefore, a real-time magnetic resonance imaging (MRI) method was developed to monitor the dosing process, but a quantitative analysis of local diffusion and clearance parameters has not been assessed. The objective of this study was to compare diffusion into the extracellular space (ECS) at different stages of rat C6 gliomas, and analyze the effects of the extracellular matrix (ECM) on the diffusion process. At 10 and 20 days, after successful glioma modeling, gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) was introduced into the ECS of rat C6 gliomas. Diffusion parameters and half-life of the reagent were then detected using MRI, and quantified according to the mathematical model of diffusion. The main ECM components [chondroitin sulfate proteoglycans (CSPGs), collagen IV, and tenascin C] were detected by immunohistochemical and immunoblot analyses. In 20-day gliomas, Gd-DTPA diffused more slowly and derived higher tortuosity, with lower clearance rate and longer half-life compared to 10-day gliomas. The increased glioma ECM was associated with different diffusion and clearance parameters in 20-day rat gliomas compared to 10-day gliomas. ECS parameters were altered with C6 glioma progression from increased ECM content. Our study might help better understand the glioma microenvironment and provide benefits for interstitial drug delivery to treat brain gliomas.

  3. Nano-assemblies of cationic mPEG brush block copolymers with gadolinium polyoxotungstate [Gd(W5O18)2]9- form stable, high relaxivity MRI contrast agents.

    PubMed

    Ly, Joanne; Li, Yuhuan; Vu, Mai N; Moffat, Bradford A; Jack, Kevin S; Quinn, John F; Whittaker, Michael R; Davis, Thomas P

    2018-04-19

    Polyoxometalates (POMs) incorporating paramagnetic ions, such as gadolinium, show promise as contrast agents for application in magnetic resonance imaging (MRI). Specifically, [Gd(W5O18)2]9- (denoted as GdWO) has been reported to have a higher relaxivity than commercially available contrast agents, but it's clinical utility has been limited by the intrinsic instability of POMs at physiological pH (7.4). In the current report we present a stability study on neat GdWO and nano-assemblies of block copolymers with GdWO in the pH range 5.0-7.4 to assess their suitability as MRI contrast agents. Neat GdWO only maintained structural stability between pH 5.4 and 6.4, and demonstrated poor MRI contrast at pH 7.4. To address this pH instability, GdWO was self-assembled with cationic mPEG brush block copolymers containing 20 or 40 units derived from the cationic monomer, 2-dimethylaminoethyl methacrylate (DMAEMA). Nano-assemblies with different charge ratios were synthesised and characterised according to their size, stability, contrasting properties and toxicity. The longitudinal relaxivity (r1) of the nano-assemblies was found to be dependent on the charge ratio, but not on the length of the cationic polymer block. Further investigation of PDMAEMA20 nano-assemblies demonstrated that they were stable over the pH range 5.0-7.4, exhibiting a higher r1 than either neat GdWO (2.77 s-1 mM-1) or clinical MRI contrast agent Gd-DTPA (4.1 s-1 mM-1) at pH 7.4. Importantly, the nano-assembly with the lowest charge ratio (0.2), showed the highest r1 (12.1 s-1 mM-1) whilst, stabilising GdWO over the pH range studied, eliciting low toxicity with MDA-MB231 cells.

  4. High-Affinity GD2-Specific CAR T Cells Induce Fatal Encephalitis in a Preclinical Neuroblastoma Model

    PubMed Central

    Richman, Sarah A.; Nunez-Cruz, Selene; Moghimi, Babak; Li, Lucy Z.; Gershenson, Zachary T.; Mourelatos, Zissimos; Barrett, David M.; Grupp, Stephan A.; Milone, Michael C.

    2018-01-01

    The GD2 ganglioside, which is abundant on the surface of neuroblastoma cells, is targeted by an FDA-approved therapeutic monoclonal antibody and is an attractive tumor-associated antigen for cellular immunotherapy. Chimeric antigen receptor (CAR)–modified T cells can have potent antitumor activity in B-cell malignancies, and trials to harness this cytolytic activity toward GD2 in neuroblastoma are under way. In an effort to enhance the antitumor activity of CAR T cells that target GD2, we generated variant CAR constructs predicted to improve the stability and the affinity of the GD2-binding, 14G2a-based, single-chain variable fragment (scFv) of the CAR and compared their properties in vivo. We included the E101K mutation of GD2 scFv (GD2-E101K) that has enhanced antitumor activity against a GD2+ human neuroblastoma xenograft in vivo. However, this enhanced antitumor efficacy in vivo was concomitantly associated with lethal central nervous system (CNS) toxicity comprised of extensive CAR T-cell infiltration and proliferation within the brain and neuronal destruction. The encephalitis was localized to the cerebellum and basal regions of the brain that display low amounts of GD2. Our results highlight the challenges associated with target antigens that exhibit shared expression on critical normal tissues. Despite the success of GD2-specific antibody therapies in the treatment of neuroblastoma, the fatal neurotoxicity of GD2-specific CAR T-cell therapy observed in our studies suggests that GD2 may be a difficult target antigen for CAR T-cell therapy without additional strategies that can control CAR T-cell function within the CNS. PMID:29180536

  5. Is DTPA a good competing chelating agent for Th(IV) in human serum and suitable in targeted alpha therapy?

    PubMed

    Le Du, Alicia; Sabatié-Gogova, Andrea; Morgenstern, Alfred; Montavon, Gilles

    2012-04-01

    The interaction between thorium and human serum components was studied using difference ultraviolet spectroscopy (DUS), ultrafiltration and high-pressure-anion exchange chromatography (HPAEC) with external inductively conducted plasma mass spectrometry (ICP-MS) analysis. Experimental data are compared with modelling results based on the law of mass action. Human serum transferrin (HSTF) interacts strongly with Th(IV), forming a ternary complex including two synergistic carbonate anions. This complex governs Th(IV) speciation under blood serum conditions. Considering the generally used Langmuir-type model, values of 10(33.5) and 10(32.5) were obtained for strong and weak sites, respectively. We showed that trace amounts of diethylene triamine pentaacetic acid (DTPA) cannot complex Th(IV) in the blood serum at equilibrium. Unexpectedly this effect is not related to the competition with HSTF but is due to the strong competition with major divalent metal ions for DTPA. However, Th-DTPA complex was shown to be stable for a few hours when it is formed before addition in the biological medium; this is related to the high kinetic stability of the complex. This makes DTPA a potential chelating agent for synthesis of (226)Th-labelled biomolecules for application in targeted alpha therapy. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Lanthanide chelates of (bis)-hydroxymethyl-substituted DTTA with potential application as contrast agents in magnetic resonance imaging.

    PubMed

    Silvério, Sara; Torres, Susana; Martins, André F; Martins, José A; André, João P; Helm, Lothar; Prata, M Isabel M; Santos, Ana C; Geraldes, Carlos F G C

    2009-06-28

    A novel bis-hydroxymethyl-substituted DTTA chelator N'-Bz-C(4,4')-(CH(2)OH)(2)-DTTA () and its DTPA analogue C(4,4')-(CH(2)OH)(2)-DTPA () were synthesized and characterized. A variable-temperature (1)H NMR spectroscopy study of the solution dynamics of their diamagnetic (La) and paramagnetic (Sm, Eu) Ln(3+) complexes showed them to be rigid when compared with analogous Ln(3+)-DTTA and Ln(3+)-DTPA complexes, as a result of their C(4,4')-(CH(2)OH)(2) ligand backbone substitution. The parameters that govern the water (1)H relaxivity of the [Gd()(H(2)O)(2)](-) and [Gd()(H(2)O)](2-) complexes were obtained by (17)O and (1)H NMR relaxometry. While the relaxometric behaviour of the [Gd()(H(2)O)](2-) complex is very similar to the parent [Gd(DTPA)(H(2)O)](2-) system, the [Gd()(H(2)O)(2)](-) complex displays higher relaxivity, due to the presence of two inner sphere water molecules and an accelerated, near optimal water exchange rate. The [Gd()(H(2)O)(2)](-) complex interacts weakly with human serum albumin (HSA), and its fully bound relaxivity is limited by slow water exchange, as monitored by (1)H NMR relaxometry. This complex interacts weakly with phosphate, but does not form ternary complexes with bidentate bicarbonate and l-lactate anions, indicating that the two inner-sphere water molecules of the [Gd()(H(2)O)(2)](-) complex are not located in adjacent positions in the coordination sphere of the Gd(3+) ion. The transmetallation reaction rate of [Gd()(H(2)O)(2)](-) with Zn(2+) in phosphate buffer solution (pH 7.0) was measured to be similar to that of the backbone unsubstituted [Gd(DTTA-Me)(H(2)O)(2)](-), but twice faster than for [Gd(DTPA-BMA)(H(2)O)]. The in vivo biodistribution studies of the (153)Sm(3+)-labelled ligand () in Wistar rats reveal slow blood elimination and short term fixation in various organs, indicating some dissociation. The bis-hydroxymethyl-substituted DTTA skeleton can be seen as a new lead for the synthesis of high relaxivity contrast agents

  7. Rapid fabrication of carbon quantum dots as multifunctional nanovehicles for dual-modal targeted imaging and chemotherapy.

    PubMed

    Chiu, Sheng-Hui; Gedda, Gangaraju; Girma, Wubshet Mekonnen; Chen, Jem-Kun; Ling, Yong-Chien; Ghule, Anil V; Ou, Keng-Liang; Chang, Jia-Yaw

    2016-12-01

    Herein, we synthesized an S, N, and Gd tri-element doped magnetofluorescent carbon quantum dots (GdNS@CQDs) within 10min by using a one-pot microwave method. Our results showed that these magnetofluorescent GdNS@CQDs have excellent fluorescent and magnetic properties. Moreover, GdNS@CQDs exhibited high stability at physiological conditions and ionic strength. These magnetofluorescent GdNS@CQDs were conjugated with a folic acid, denoted as FA-GdNS@CQDs, for targeting dual modal fluorescence/magnetic resonance (MR) imaging. The in vitro and in vivo studies confirmed the high biocompatibility and low toxicity of FA-GdNS@CQDs. FA-GdNS@CQDs enhanced the MR response as compared to that for commercial Gd-DTPA. The targeting capabilities of FA-GdNS@CQDs were confirmed in HeLa and HepG2 cells using in vitro fluorescence and MR dual modality imaging. Additionally, an anticancer drug, doxorubicin, was incorporated into the FA-GdNS@CQDs forming FA-GdNS@CQDs-DOX, which enables targeted drug delivery. Importantly, the prepared FA-GdNS@CQDs-DOX showed a high quantity of doxorubicin loading capacity (about 80%) and pH-sensitive drug release. The uptake into cancer cells and the intracellular location of the FA-GdNS@CQDs were observed by confocal laser scanning microscopy. We also successfully demonstrated in vivo fluorescence bio imaging of the FA-GdNS@CQDs, using zebrafish as an animal model. In this manuscript, we reported a facial, rapid, and environmental friendly method to fabricate hetero atoms including gadolinium, nitrogen, and sulfur doped multi-functional magnetofluorescent carbon quantum dots (GdNS@CQDs) nanocomposite. These multifunctional GdNS@CQDs were conjugated with a folic acid for targeting dual modal fluorescence/magnetic resonance imaging. Additionally, an anticancer drug, doxorubicin, was incorporated into the nanocomposite forming FA-GdNS@CQDs-DOX, which enables targeted drug delivery. We have developed GdNS@CQDs with integrated functions for simultaneous in

  8. Self-patterning Gd nano-fibers in Mg-Gd alloys

    DOE PAGES

    Li, Yangxin; Wang, Jian; Chen, Kaiguo; ...

    2016-12-07

    Manipulating the shape and distribution of strengthening units, e.g. particles, fibers, and precipitates, in a bulk metal, has been a widely applied strategy of tailoring their mechanical properties. Here, we report self-assembled patterns of Gd nano-fibers in Mg-Gd alloys for the purpose of improving their strength and deformability. 1-nm Gd nano-fibers, with amore » $$\\langle$$c$$\\rangle$$ -rod shape, are formed and hexagonally patterned in association with Gd segregations along dislocations that nucleated during hot extrusion. Such Gd-fiber patterns are able to regulate the relative activities of slips and twinning, as a result, overcome the inherent limitations in strength and ductility of Mg alloys. Finally, this nano-fiber patterning approach could be an effective method to engineer hexagonal metals.« less

  9. Self-patterning Gd nano-fibers in Mg-Gd alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yangxin; Wang, Jian; Chen, Kaiguo

    Manipulating the shape and distribution of strengthening units, e.g. particles, fibers, and precipitates, in a bulk metal, has been a widely applied strategy of tailoring their mechanical properties. Here, we report self-assembled patterns of Gd nano-fibers in Mg-Gd alloys for the purpose of improving their strength and deformability. 1-nm Gd nano-fibers, with amore » $$\\langle$$c$$\\rangle$$ -rod shape, are formed and hexagonally patterned in association with Gd segregations along dislocations that nucleated during hot extrusion. Such Gd-fiber patterns are able to regulate the relative activities of slips and twinning, as a result, overcome the inherent limitations in strength and ductility of Mg alloys. Finally, this nano-fiber patterning approach could be an effective method to engineer hexagonal metals.« less

  10. The efficacies of pure LICAM(C) and DTPA on the retention of plutonium-238 and americium-241 in rats after their inhalation as nitrate and intravenous injection as citrate.

    PubMed

    Stradling, G N; Stather, J W; Gray, S A; Moody, J C; Ellender, M; Hodgson, A; Volf, V; Taylor, D M; Wirth, P; Gaskin, P W

    1989-10-01

    The pure carboxylated catechoyl amide LICAM(C) and the calcium and zinc salts of diethylenetriaminepenta-acetic acid (DTPA), were tested for efficacy for removing 238Pu and 241Am from rats after inhalation of the nitrate or intravenous injection of the citrate. The results were compared with the efficacy of methylated LICAM(C) used in previous experiments. It was shown that: (1) after inhalation of 238Pu nitrate, DTPA was far superior to pure LICAM(C); (2) after intravenous injection of 238Pu citrate, the infusion of DTPA plus LICAM(C) was only marginally more effective than DTPA alone; and (3) after inhalation or intravenous injection of 238Pu plus 241Am, the efficacy of pure LICAM(C) was only marginally more effective than the methylated form and neither form was effective for the decorporation of 241Am. It was concluded that DTPA, at present, remains the chelating agent of choice for treating persons accidentally contaminated with transportable forms of Pu and Am.

  11. Controlled nanocrystallinity in Gd nanobowls leads to magnetization of 226 emu/g

    NASA Astrophysics Data System (ADS)

    Ertas, Y. N.; Bouchard, L.-S.

    2017-03-01

    Gadolinium (Gd) metal is of great interest in applications such as contrast-enhanced MRI and magnetic cooling. However, it is generally difficult to produce oxide-free and highly magnetic Gd nanoparticles due to the aggressively reactive nature of Gd with oxygen. Herein, we utilized a nanofabrication route and optimization of experimental conditions to produce highly magnetic air-stable oxide-free Gd nanoparticles. The nanobowls displayed the highest saturation magnetization to date for Gd, reaching 226.4 emu/g at 2 K. The crystalline composition of Gd is found to affect the observed magnetization values: the higher magnetization is observed for nanoparticles that have a lower content of the paramagnetic face-centered cubic (fcc) phase and a greater content of the ferromagnetic hexagonal close-packed (hcp) phase. The relative fcc content was found to depend on the deposition rate of the Gd metal during the nanofabrication process, thereby correlating with altered magnetization.

  12. Multifunctional hydroxyapatite/Na(Y/Gd)F4:Yb3+,Er3+ composite fibers for drug delivery and dual modal imaging.

    PubMed

    Liu, Min; Liu, Hui; Sun, Shufen; Li, Xuejiao; Zhou, Yanmin; Hou, Zhiyao; Lin, Jun

    2014-02-04

    Porous hydroxyapatite (HAp) composite fibers functionalized with up-conversion (UC) luminescent and magnetic Na(Y/Gd)F4:Yb(3+),Er(3+) nanocrystals (NCs) have been fabricated via electrospinning. After transferring hydrophobic oleic acid-capped Na(Y/Gd)F4:Yb(3+),Er(3+) NCs into aqueous solution, these water-dispersible NCs were dispersed into precursor electrospun solution containing CTAB. Na(Y/Gd)F4:Yb(3+),Er(3+)@HAp composite fibers were fabricated by the high temperature treatment of the electrospun Na(Y/Gd)F4:Yb(3+),Er(3+) NCs decorated precursor fibers. The biocompatibility test on MC 3T3-E1 cells using MTT assay shows that the HAp composite fibers have negligible cytotoxity, which reveals the HAp composite fibers could be a drug carrier for drug delivery. Because the contrast brightening is enhanced at increased concentrations of Gd(3+), the HAp composite fibers can serve as T1 magnetic resonance imaging contrast agents. In addition, the composites uptaken by MC 3T3-E1 cells present the UC luminescent emission of Er(3+) under the excitation of a 980 nm near-infrared laser. The above findings reveal Na(Y/Gd)F4:Yb(3+),Er(3+)@HAp composite fibers have potential applications in drug storage/release and magnetic resonance/UC luminescence imaging.

  13. Stability and trapping of magnetic resonance imaging contrast agents during high-intensity focused ultrasound ablation therapy.

    PubMed

    Hijnen, Nicole M; Elevelt, Aaldert; Grüll, Holger

    2013-07-01

    The purpose of this study was to investigate the use of Gd-DTPA shortly before magnetic resonance guided high-intensity focused ultrasound MR-HIFU thermal ablation therapy with respect to dissociation, trapping, and long-term deposition of gadolinium (Gd) in the body. Magnetic resonance-HIFU ablation treatment was conducted in vivo on both rat muscle and subcutaneous tumor (9L glioma) using a clinical 3T MR-HIFU system equipped with a small-animal coil setup. A human equivalent dose of gadopentetate dimeglumine (Gd-DTPA) (0.6 mmol/kg of body weight) was injected via a tail vein catheter just before ablation (≤5 minutes). Potential trapping of the contrast agent in the ablated area was visualized through the acquisition of R1 maps of the target location before and after therapy. The animals were sacrificed 2 hours or 14 days after the injection (n = 4 per group, a total of 40 animals). Subsequently, the Gd content in the tissue and carcass was determined using inductively coupled plasma techniques to investigate the biodistribution. Temporal trapping of Gd-DTPA in the coagulated tissue was observed on the R1 maps acquired within 2 hours after the ablation, an effect confirmed by the inductively coupled plasma analysis (3 times more Gd was found in the treated muscle volume than in the control muscle tissue). Two weeks after the therapy, the absolute amount of Gd present in the coagulated tissue was low compared with the amount present in the kidneys 14 days after the injection (ablated muscle, 0.009% ± 0.002% ID/g; kidney, 0.144% ± 0.165% ID/g). There was no significant increase in Gd content in the principal target organs for translocated Gdions (liver, spleen, and bone) or in the entire carcasses between the HIFU- and sham-treated animals. Finally, an in vivo relaxivity of 4.6 mmols was found in the HIFU-ablated volume, indicating intact Gd-DTPA. Magnetic resonance-HIFU treatment does not induce the dissociation of Gd-DTPA. In small-tissue volumes, no

  14. Gd³⁺ Tethered Gold Nanorods for Combined Magnetic Resonance Imaging and Photo-Thermal Therapy.

    PubMed

    Pitchaimani, Arunkumar; Duong, Tuyen; Nguyen, Thanh; Maurmann, Leila; Key, Jaehong; Bossmann, Stefan H; Aryal, Santosh

    2017-04-01

    Near infrared (NIR) mediated photothermal therapy and magnetic resonance imaging (MRI) are promising treatment and imaging modalities in the field of cancer theranostics. Gold nanorods are the first choice of materials for NIR-mediated photothermal therapy due to their strong localized surface plasmon resonance (LSPR) at NIR region. Similarly, gadolinium based MRI contrast agents have an ability to increase the ionic and molecular relaxivity, thereby enhancing the solvent proton relaxation rate resulting in contrast enhancement. Herein, the effort has been made to engineer a dual front theranostic agent with combined photothermal and magnetic resonance imaging capacity using gadolinium tethered gold nanorods (Gd3+-AuNR). NIR-responsive gold nanorods were surface fabricated by means of Au-thiol interaction using a thiolated macrocyclic chelator that chelates Gd3+ ions, and further stabilized by thiolated polyethylene glycol (PEG-SH). The magnetic properties of the Gd3+-AuNR displayed an enhanced r 1 relaxivity of 12.1 mM–1s–1, with higher biological stability, and contrast enhancement in both solution state and in cell pellets. In-vitro (cell-free) and ex-vivo (on pig skin) analysis of the Gd3+-AuNR shows enhanced photothermal properties as equivalent to that of the raw AuNR. Furthermore, Gd3+-AuNR showed competent cellular entry and intracellular distribution as revealed by hyperspectral microscopy. In addition, Gd3+-AuNR also exhibits significant thermal ablation of B16–F10 cells in the presence of NIR. Thus, Gd3+-AuNR features a significant theranostic potential with combined photothermal and imaging modality, suggesting a great potential in anticancer therapy.

  15. Effect of tin ions on enhancing the intensity of narrow luminescence line at 311 nm of Gd3+ ions in Li2Osbnd PbOsbnd P2O5 glass system

    NASA Astrophysics Data System (ADS)

    Gandhi, Y.; Rajanikanth, P.; Sundara Rao, M.; Ravi Kumar, V.; Veeraiah, N.; Piasecki, M.

    2016-07-01

    This study is mainly focused on enriching the UVB 311 narrow emission band of Gd3+ ions in Li2Osbnd PbOsbnd P2O5 glasses doped with 1.0 mol% of Gd2O3 and mixed with different concentrations of SnO2 (0-7.0 mol%). The emission spectra SnO2 free glasses exhibited intense narrow UVB band at 311 nm due to 6P7/2 → 8S7/2 transition of Gd3+ ions when excited at 273 nm. The intensity of this band is found to be enhanced nearly four times when the glasses are mixed with 3.0 mol% of SnO2. The reasons for this enhancement have been explored in the light of energy transfer from Sn4+ to Gd3+ ions with the help of rate equations. The declustering of Gd3+ ions (that reduce cross relaxation losses) by tin ions is also found to the other reason for such enrichment. The 311 nm radiation is an efficient in the treatment of various skin diseases and currently it is one of the most desirable and commonly utilised UVB in the construction of phototherapy devices.

  16. Reaction of gadolinium chelates with ozone and hydroxyl radicals.

    PubMed

    Cyris, Maike; Knolle, Wolfgang; Richard, Jessica; Dopp, Elke; von Sonntag, Clemens; Schmidt, Torsten C

    2013-09-03

    Gadolinium chelates are used in increasing amounts as contrast agents in magnetic resonance imaging, and their fate in wastewater treatment has recently become the focus of research. Oxidative processes, in particular the application of ozone, are currently discussed or even implemented for advanced wastewater treatment. However, reactions of the gadolinium chelates with ozone are not yet characterized. In this study, therefore, rate constants with ozone were determined for the three commonly used chelates Gd-DTPA, Gd-DTPA-BMA, and Gd-BT-DO3A, which were found to be 4.8 ± 0.88, 46 ± 2.5, and 24 ± 1.5 M(-1) s(-1), respectively. These low rate constants indicate that a direct reaction with ozone in wastewater is negligible. However, application of ozone in wastewater leads to substantial yields of (•)OH. Different methods have been applied and compared for determination of k((•)OH+Gd chelate). From rate constants determined by pulse radiolysis experiments (k((•)OH+Gd-DTPA) = 2.6 ± 0.2 × 10(9) M(-1) s(-1), k((•)OH+Gd-DTPA-BMA) = 1.9 ± 0.7 × 10(9) M(-1) s(-1), k((•)OH+Gd-BT-DO3A) = 4.3 ± 0.2 × 10(9) M(-1) s(-1)), it is concluded that a reaction in wastewater via (•)OH radicals is feasible. Toxicity has been tested for educt and product mixtures of both reactions. Cytotoxicity (MTT test) and genotoxicity (micronuclei assay) were not detectable.

  17. Supine lung clearance of Tc-99m DTPA and HMPAO aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chia-Hung Kao; Hui-Tzu Lin; Shu-Ling Yu

    1995-07-01

    The speed of Tc-99m DTPA/HMPAO radioaerosol clearance from the lungs that is represented as a slope from lungs to blood was measured in 23 male normal controls using commercial lung radioaerosol delivery units in the supine position in order to avoid the influences of gravity. The right lung was selected and three regions of interest were created for equal subdivisions of the upper, middle, and lower third. The results show that the clearance of Tc-99m DTPA/HMPAO aerosols in the upper lung is lowest. The difference between upper and lower lungs for Tc-99m DTPA/HMPAO aerosol clearances are significant. The clearance ofmore » Tc-99m DTPA aerosols was significantly faster than those of Tc-99m HMPAO in any region. The authors conclude that, although the effect of gravity disappears in the supine position in our study, the differences of aerosol clearance in different regions are still significant. Lipophilic Tc-99m HMPAO aerosols were slower than those of hydrophilic Tc-99m DTPA, which suggests there are at least two different mechanisms. 22 refs., 2 figs., 1 tab.« less

  18. Spectroscopy of Gd 153 and Gd 157 using the ( p , d γ ) reaction

    DOE PAGES

    Ross, T. J.; Hughes, R. O.; Allmond, J. M.; ...

    2014-10-31

    Low-spin single quasineutron levels in 153Gd and 157Gd have been studied following the 154Gd(p,d-γ ) 153Gd and 158Gd(p,d-γ ) 157Gd reactions. A combined Si telescope and high-purity germanium array was utilized, allowing d-γ and d-γ-γ coincidence measurements. Almost all of the established low-excitation-energy, low-spin structures were confirmed in both 153Gd and 157Gd. Several new levels and numerous new rays are observed in both nuclei, particularly for E x ≥1 MeV. Lastly, residual effects of a neutron subshell closure at N = 64 are observed in the form of a large excitation energy gap in the single quasineutron level schemes.

  19. Spectroscopy of Gd 153 and Gd 157 using the ( p , d γ ) reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, T. J.; Hughes, R. O.; Allmond, J. M.

    Low-spin single quasineutron levels in 153Gd and 157Gd have been studied following the 154Gd(p,d-γ ) 153Gd and 158Gd(p,d-γ ) 157Gd reactions. A combined Si telescope and high-purity germanium array was utilized, allowing d-γ and d-γ-γ coincidence measurements. Almost all of the established low-excitation-energy, low-spin structures were confirmed in both 153Gd and 157Gd. Several new levels and numerous new rays are observed in both nuclei, particularly for E x ≥1 MeV. Lastly, residual effects of a neutron subshell closure at N = 64 are observed in the form of a large excitation energy gap in the single quasineutron level schemes.

  20. Safety assessment of nanoparamagnetic contrast agents with different coatings for molecular MRI

    NASA Astrophysics Data System (ADS)

    Azizian, Gholamreza; Riyahi-Alam, Nader; Haghgoo, Soheila; Saffari, Mojtaba; Zohdiaghdam, Reza; Gorji, Ensieh

    2013-04-01

    Despite the wide application of gadolinium as a contrast agent for magnetic resonance imaging (MRI), there is a serious lack of information on its toxicity. Gadolinium and gadolinium oxide (Gd-oxide) are used as contrast agents for magnetic resonance imaging (MRI). There are methods for reducing toxicity of these materials, such as core nanoparticles coating or conjugating. Therefore, for toxicity evaluation, we compared the viability of commercial contrast agents in MRI (Gd-DTPA) and three nanoparticles with the same core Gd2O3 and small particulate gadolinium oxide or SPGO (< 40 nm) but different coatings of diethyleneglycol (DEG) as Gd2O3-DEG and methoxy polyethylene glycol-silane (mPEG-silane: 550 and 2000 Dalton) as SPGO-mPEG-silane550 and SPGO-mPEG-silane2000, respectively, in the SK-MEL3 cell line, by light microscopy, MTT assay using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide, and the LDH assay detecting lactate dehydrogenase activity. The viability values were not statistically different between the three nanoparticles and Gd-DTPA. The MTT and LDH assay results showed that Gd2O3-DEG nanoparticles were more toxic than Gd-DTPA and other nanoparticles. Also, SPGO-mPEG-silane2000 was more biocompatible than other nanoparticles. The obtained results did not show any significant increase in cytotoxicity of the nanoparticles and Gd-DTPA, neither dose-dependent nor time-dependent. Therefore, DEG and PEG, due to their considerable properties and irregular sizes (different molecular weights), were selected as the useful surface covering materials of nanomagnetic particles that could reveal noticeable relaxivity and biocompatibility characteristics.

  1. Time domain simulation of Gd3+-Gd3+ distance measurements by EPR

    NASA Astrophysics Data System (ADS)

    Manukovsky, Nurit; Feintuch, Akiva; Kuprov, Ilya; Goldfarb, Daniella

    2017-07-01

    Gd3+-based spin labels are useful as an alternative to nitroxides for intramolecular distance measurements at high fields in biological systems. However, double electron-electron resonance (DEER) measurements using model Gd3+ complexes featured a low modulation depth and an unexpected broadening of the distance distribution for short Gd3+-Gd3+ distances, when analysed using the software designed for S = 1/2 pairs. It appears that these effects result from the different spectroscopic characteristics of Gd3+—the high spin, the zero field splitting (ZFS), and the flip-flop terms in the dipolar Hamiltonian that are often ignored for spin-1/2 systems. An understanding of the factors affecting the modulation frequency and amplitude is essential for the correct analysis of Gd3+-Gd3+ DEER data and for the educated choice of experimental settings, such as Gd3+ spin label type and the pulse parameters. This work uses time-domain simulations of Gd3+-Gd3+ DEER by explicit density matrix propagation to elucidate the factors shaping Gd3+ DEER traces. The simulations show that mixing between the |+½, -½> and |-½, +½> states of the two spins, caused by the flip-flop term in the dipolar Hamiltonian, leads to dampening of the dipolar modulation. This effect may be mitigated by a large ZFS or by pulse frequency settings allowing for a decreased contribution of the central transition and the one adjacent to it. The simulations reproduce both the experimental line shapes of the Fourier-transforms of the DEER time domain traces and the trends in the behaviour of the modulation depth, thus enabling a more systematic design and analysis of Gd3+ DEER experiments.

  2. Non-invasive magnetic resonance imaging follow-up of sono-sensitive liposome tumor delivery and controlled release after high-intensity focused ultrasound.

    PubMed

    Fowler, Robert Andrew; Fossheim, Sigrid L; Mestas, Jean-Louis; Ngo, Jacqueline; Canet-Soulas, Emmanuelle; Lafon, Cyril

    2013-12-01

    This work examines the use of lanthanide-based contrast agents and magnetic resonance imaging in monitoring liposomal behavior in vivo. Dysprosium (Dy) and gadolinium (Gd) chelates, Dy-diethylenetriaminepentaacetic acid bismethylamide (Dy-DTPA-BMA) and Gd-DTPA-BMA, were encapsulated in pegylated distearoylphosphatidylethanolamine-based (saturated) liposomes, and then intravenously injected into Copenhagen rats with subcutaneous Dunning AT2 xenografts. Liposome-encapsulated Dy chelate shortens transverse relaxation times (T(2) and T(2)*) of tissue; thus, liposomal accumulation in the tumor can be monitored by observing the decrease in T(2)* relaxation time over time. The tumor was treated at the time of maximum liposomal accumulation (48 h) with confocal, cavitating high-intensity focused ultrasound to induce liposomal payload release. Using liposome-encapsulated Gd chelate at high enough concentrations and saturated liposomal phospholipids induces an exchange-limited longitudinal (T(1)) relaxation when the liposomes are intact; when the liposomes are released, exchange limitation is relieved, thus allowing in vivo observation of payload release as a decrease in tumor T(1). Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  3. Fully automatic region of interest selection in glomerular filtration rate estimation from 99mTc-DTPA renogram.

    PubMed

    Lin, Kun-Ju; Huang, Jia-Yann; Chen, Yung-Sheng

    2011-12-01

    Glomerular filtration rate (GFR) is a common accepted standard estimation of renal function. Gamma camera-based methods for estimating renal uptake of (99m)Tc-diethylenetriaminepentaacetic acid (DTPA) without blood or urine sampling have been widely used. Of these, the method introduced by Gates has been the most common method. Currently, most of gamma cameras are equipped with a commercial program for GFR determination, a semi-quantitative analysis by manually drawing region of interest (ROI) over each kidney. Then, the GFR value can be computed from the scintigraphic determination of (99m)Tc-DTPA uptake within the kidney automatically. Delineating the kidney area is difficult when applying a fixed threshold value. Moreover, hand-drawn ROIs are tedious, time consuming, and dependent highly on operator skill. Thus, we developed a fully automatic renal ROI estimation system based on the temporal changes in intensity counts, intensity-pair distribution image contrast enhancement method, adaptive thresholding, and morphological operations that can locate the kidney area and obtain the GFR value from a (99m)Tc-DTPA renogram. To evaluate the performance of the proposed approach, 30 clinical dynamic renograms were introduced. The fully automatic approach failed in one patient with very poor renal function. Four patients had a unilateral kidney, and the others had bilateral kidneys. The automatic contours from the remaining 54 kidneys were compared with the contours of manual drawing. The 54 kidneys were included for area error and boundary error analyses. There was high correlation between two physicians' manual contours and the contours obtained by our approach. For area error analysis, the mean true positive area overlap is 91%, the mean false negative is 13.4%, and the mean false positive is 9.3%. The boundary error is 1.6 pixels. The GFR calculated using this automatic computer-aided approach is reproducible and may be applied to help nuclear medicine physicians in

  4. LAT1 targeted delivery of methionine based imaging probe derived from M(III) metal ions for early diagnosis of proliferating tumours using molecular imaging modalities.

    PubMed

    Hazari, Puja Panwar; Prakash, Surbhi; Meena, Virendra K; Jaswal, Ambika; Khurana, Harleen; Mishra, Surabhi Kirti; Bhonsle, Hemanth Kumar; Singh, Lokendra; Mishra, Anil K

    2015-01-01

    We investigated the potential of DTPA-bis(Methionine), a target specific amino acid based probe for detection of L-type amino acid transporters (LAT1) known to over express in proliferating tumours using multimodality imaging. The ligand, DTPA-bis(Met) was readily converted to lanthanide complexes and was found capable of targeting cancer cells using multimodality imaging. DTPA-bis(Met) complexes were synthesized and characterized by mass spectroscopy. MR longitudinal relaxivity, r₁ = 4.067 ± 0.31 mM⁻¹s⁻¹ and transverse relaxivity, r₂ = 8.61 ± 0.07 mM⁻¹s⁻¹ of Gd(III)-DTPA-bis(Met) were observed at pH 7.4 at 7 T. Bright, localized fluorescence of Eu(III)-DTPA-bis(Met) was observed with standard microscopy and displacement studies indicated ligand functionality. K(D) value determined for Eu(III)-DTPA-bis(Met) on U-87 MG cells was found to be 17.3 pM and showed appreciable fluorescence within the cells. Radio HPLC showed a radiochemical purity more than 95% (specific activity = 400-500 MBq/μmol, labelling efficiency 78 %) for ⁶⁸Ga(III)-DTPA-bis(Met). Pre-treatment of xenografted U-87 MG athymic mice with ⁶⁸Ga(III)-DTPA-bis(Met) following unlabelled L-methionine administration reduced tumour uptake by 10-folds in Micro PET. These data support the specific binding of ⁶⁸Ga(III)-DTPA-bis(Met) to the LAT1 transporter. To summarize, this agent possesses high stability in biological environment and exhibits effective interaction with its LAT1 transporters giving high accumulation in tumour area, excellent tumour/non-tumour ratio and low non-specific retention in vivo.

  5. P16.31THERANOSTIC APPLICATION OF WATER-SOLUBLE GADOLINIUM FULLERENE (GD@FUL) IN EXPERIMENTAL GLIOMA MODEL

    PubMed Central

    Shevtsov, M.; Nikolaev, B.; Marchenko, Y.; Yakovleva, L.; Dobrodumov, A.; Török, G.; Pitkin, E.; Lebedev, V.

    2014-01-01

    Glioblastoma multiforme (GMB) is a highly invasive brain tumour with poor prognosis. Alternative treatments offering a better outcome are needed. Novel approach could be based on gadofullerenes that can be used as diagnostic MR imaging contrast agent and as a therapeutic drug. Water soluble gadofullerene Gd@Ful with composition Gd@C82(OH)x x ≥20 was synthesized for theranostic study. Nanosuspensions of Gd@Ful were used for magnetic relaxation measurements in vitro and for MR imaging of a rat with intracranially implanted C6 glioma. Gd@Ful was shown to reduce proton relaxation times in vitro, and provide dual contrast of T1- and T2-weighted images in a rat brain tumour model after paramagnetic intravenous delivery. Magnetic relaxation times and relaxivity of water protons under action of Gd@Ful were strongly shortened due to cluster formation and increase of motional correlation times of protons in the vicinity of the fulleren cage. The Gd@Ful administration promoted the improvement of glioma contrast enhancement at T2-weighted images due to accumulation of paramagnetic substance at the tumour site. The contrast efficiency of Gd@Ful corresponds to the characteristics of negative contrast agent. Retention of the Gd@Ful in the C6 glioma provides not only the tumor contrast enhancement but also has a high therapeutic relevance. We observed the increased survival rates in animals that were intravenously administered with Gd@Ful. Thus, in experimental group the survival was 75% higher then in the control group, constituting 34.2 ± 9.94 and 19.5 ± 3.02 days respectively (P < 0.001). The Gd@Ful solution is shown to be a contrast enhancer with high anti-tumour therapeutic potency.

  6. Targeting the GD3 acetylation pathway selectively induces apoptosis in glioblastoma

    PubMed Central

    Birks, Suzanne M.; Danquah, John Owusu; King, Linda; Vlasak, Reinhardt; Gorecki, Dariusz C.; Pilkington, Geoffrey J.

    2011-01-01

    The expression of ganglioside GD3, which plays crucial roles in normal brain development, decreases in adults but is upregulated in neoplastic cells, where it regulates tumor invasion and survival. Normally a buildup of GD3 induces apoptosis, but this does not occur in gliomas due to formation of 9-O-acetyl GD3 by the addition of an acetyl group to the terminal sialic acid of GD3; this renders GD3 unable to induce apoptosis. Using human biopsy-derived glioblastoma cell cultures, we have carried out a series of molecular manipulations targeting GD3 acetylation pathways. Using immunocytochemistry, flow cytometry, western blotting, and transwell assays, we have shown the existence of a critical ratio between GD3 and 9-O-acetyl GD3, which promotes tumor survival. Thus, we have demonstrated for the first time in primary glioblastoma that cleaving the acetyl group restores GD3, resulting in a reduction in tumor cell viability while normal astrocytes remain unaffected. Additionally, we have shown that glioblastoma viability is reduced due to the induction of mitochondrially mediated apoptosis and that this occurs after mitochondrial membrane depolarization. Three methods of cleaving the acetyl group using hemagglutinin esterase were investigated, and we have shown that the baculovirus vector transduces glioma cells as well as normal astroctyes with a relatively high efficacy. A recombinant baculovirus containing hemagglutinin esterase could be developed for the clinic as an adjuvant therapy for glioma. PMID:21807667

  7. NOTE: The effects of paramagnetic contrast agents on metabolite protons in aqueous solution

    NASA Astrophysics Data System (ADS)

    Murphy, Philip S.; Leach, Martin O.; Rowland, Ian J.

    2002-03-01

    The longitudinal (R1) and transverse (R2) relaxivities of the clinically used contrast agents Gd(DTPA)2-, Gd(DOTA)- and Gd(DTPA-BMA) have been determined in mixed aqueous metabolite solutions for choline, creatine and N-acetylaspartate. Measurements were performed at 1.5 T using a STEAM sequence on 25 mM metabolite solutions at pH = 7.4 and 22 °C. The data showed that for all the contrast agents and metabolites, R1 ~ R2. The largest range of relaxivity values was found for Gd(DTPA)2-, where R2 = 6.8 +/- 0.3 mM-1 s-1 for choline and 1.5 +/- 0.4 mM-1 s-1 for N-acetylaspartate. Variation in relaxivity values was attributed primarily to differences between the charges of the paramagnetic agent and metabolite. The maximum potential influence of the contrast agents on in vivo metabolite signals was calculated using the measured relaxivities.

  8. Grape seed and linseed, alone and in combination, enhance unsaturated fatty acids in the milk of Sarda dairy sheep.

    PubMed

    Correddu, F; Gaspa, G; Pulina, G; Nudda, A

    2016-03-01

    This study evaluated the effect of dietary inclusion of grape seed and linseed, alone or in combination, on sheep milk fatty acids (FA) profile using 24 Sarda dairy ewes allocated to 4 isoproductive groups. Groups were randomly assigned to 4 dietary treatments consisting of a control diet (CON), a diet including 300 g/d per animal of grape seed (GS), a diet including 220 g/d per animal of extruded linseed (LIN), and a diet including a mix of 300 g/d per animal of grape seed and 220 g/d per animal of extruded linseed (MIX). The study lasted 10 wk, with a 2-wk adaptation period and an 8-wk experimental period. Milk FA composition was analyzed in milk samples collected in the last 4 wk of the trial. The milk concentration of saturated fatty acids (SFA) decreased and that of unsaturated, monounsaturated, and polyunsaturated fatty acids (UFA, MUFA, and PUFA, respectively) increased in GS, LIN, and MIX groups compared with CON. The MIX group showed the lowest values of SFA and the highest of UFA, MUFA, and PUFA. Milk from ewes fed linseed (LIN and MIX) showed an enrichment of vaccenic acid (VA), oleic acid (OA), α-linolenic acid (LNA), and cis-9,trans-11 conjugated linoleic acid (CLA) compared with milk from the CON group. The GS group showed a greater content of milk oleic acid (OA) and linoleic acid (LA) and tended to show a greater content of VA and cis-9,trans-11 CLA than the CON group. The inclusion of grape seed and linseed, alone and in combination, decreased the milk concentration of de novo synthesized FA C10:0, C12:0, and C14:0, with the MIX group showing the lowest values. In conclusion, grape seed and linseed could be useful to increase the concentration of FA with potential health benefits, especially when these ingredients are included in combination in the diet. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. A Pictorial Review of Hepatobiliary Magnetic Resonance Imaging With Hepatocyte-Specific Contrast Agents: Uses, Findings, and Pitfalls of Gadoxetate Disodium and Gadobenate Dimeglumine.

    PubMed

    Scali, Elena P; Walshe, Triona; Tiwari, Hina Arif; Harris, Alison C; Chang, Silvia D

    2017-08-01

    Magnetic resonance imaging (MRI) has a well-established role as a highly specific and accurate modality for characterizing benign and malignant focal liver lesions. In particular, contrast-enhanced MRI using hepatocyte-specific contrast agents (HSCAs) improves lesion detection and characterization compared to other imaging modalities and MRI techniques. In this pictorial review, the mechanism of action of gadolinium-based MRI contrast agents, with a focus on HSCAs, is described. The clinical indications, protocols, and emerging uses of the 2 commercially available combined contrast agents available in the United States, gadoxetate disodium and gadobenate dimeglumine, are discussed. The MRI features of these agents are compared with examples of focal hepatic masses, many of which have been obtained within the same patient therefore allowing direct lesion comparison. Finally, the pitfalls in the use of combined contrast agents in liver MRI are highlighted. Copyright © 2016 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  10. Enhancement of encaged electron concentration by Sr(2+) doping and improvement of Gd(3+) emission through controlling encaged anions in conductive C12A7 phosphors.

    PubMed

    Zhang, Meng; Liu, Yuxue; Zhu, Hancheng; Yan, Duanting; Yang, Jian; Zhang, Xinyang; Liu, Chunguang; Xu, Changshan

    2016-07-28

    Conductive C12A7:0.1%Gd(3+),y%Sr(2+) powders with different Sr(2+) doping concentrations have been prepared in a H2 atmosphere by a solid state method in combination with subsequent UV-irradiation. The encaged electron concentration could be modulated through tuning Sr(2+) doping and its maximum value reaches 2.3 × 10(19) cm(-3). This is attributed to the competition between enhanced uptake and the release of the encaged anions during their formation and diffusion processes and the suppression of encaged electrons generation due to the increased encaged OH(-) anions and the decreased encaged O(2-) anions. Although there exists encaged electrons and different encaged anions (O(2-), H(-) and OH(-)) in C12A7 conductive powders prepared through the hydrogen route, a dominant local environment around Gd(3+) could be observed using electron spin resonance (ESR) detection. It can be ascribed to the stronger coupling of the encaged OH(-) to the framework of C12A7 than those of the encaged electrons, O(2-) and H(-) anions. In addition, emission of Gd(3+) ions is enhanced under UV or low voltage electron beam excitation and a new local environment around Gd(3+) ions appears through the thermal annealing in air because of the decrease of the encaged OH(-) anions and the increase of the encaged O(2-) anions. Our results suggested that Sr(2+) doping in combination with thermal annealing in air is an effective strategy for increasing the conductive performance and enhancing the emission of rare earth ions doped into C12A7 conductive phosphors for low-voltage field emission displays (FEDs).

  11. Synthesis and Physicochemical Characterization of a Diethyl Ester Prodrug of DTPA and Its Investigation as an Oral Decorporation Agent in Rats.

    PubMed

    Huckle, James E; Sadgrove, Matthew P; Leed, Marina G D; Yang, Yu-Tsai; Mumper, Russell J; Semelka, Richard C; Jay, Michael

    2016-07-01

    The increasing threats of nuclear terrorism have made the development of medical countermeasures a priority for international security. Injectable formulations of diethylenetriaminepentaacetic acid (DTPA) have been approved by the FDA; however, an oral formulation is more amenable in a mass casualty situation. Here, the diethyl ester of DTPA, named C2E2, is investigated for potential as an oral treatment for internal radionuclide contamination. C2E2 was synthesized and characterized using NMR, MS, and elemental analysis. The physiochemical properties of solubility, lipophilicity, and stability were investigated in order to predict its oral bioavailability. Finally, an animal efficacy study was conducted in Sprague Dawley rats pre-contaminated by intramuscular injection with (241)Am(NO3)3 to establish effectiveness of the therapy via the oral route. Synthesis of C2E2 yielded a crystalline powder with high solubility and improved lipophilicity over DTPA. The ester was stable in both simulated gastric and intestinal fluids over the anticipated time course of absorption. Capsules containing C2E2 were demonstrated to be stable for 12 months under accelerated stability conditions. After a single dose, C2E2 enhanced the elimination of (241)Am in a dose-dependent manner. Significant improvement was seen in both total (241)Am decorporation and reduction of (241)Am liver and skeletal burden. C2E2 was concluded to be effective when orally administered to (241)Am-contaminated rats. It may therefore have potential for medical countermeasure in treating humans contaminated with (241)Am or other transuranic elements. An oral capsule or powder for reconstitution may be suitable formulations for future development based on the physiochemical properties and anticipated dose required for efficacy.

  12. Serial nonenhancing magnetic resonance imaging scans of high grade glioblastoma multiforme.

    PubMed Central

    Moore-Stovall, J.; Venkatesh, R.

    1993-01-01

    Magnetic resonance imaging (MRI) from clinical experience has proven to be superior to all other diagnostic imaging modalities, including computed tomography (CT) in the detection of intracranial neoplasms. Although glioblastoma multiforme presents a challenge for all diagnostic imaging modalities including MRI, MRI is paramount to CT in detecting subtle abnormal water accumulation in brain tissue caused by tumor even before there is disruption of the blood brain barrier. Currently, clinical research and investigational trials on nonionic gadolinium contrast agents have proven that nonionic gadolinium HP-DO3A (ProHance) contrast agents have lower osmolality and greater stability, which make them superior compounds to gadolinium diethylenetriamine-pentacetic acid (Gd-DTPA). Therefore, the nonionic gadolinium contrasts have been safely administered more rapidly, in higher or multiple doses for contrast enhanced MRI without adverse side effects or changes in serum iron or total bilirubin, and the intensity of the area of enhancement and number of lesions detected were superior to that of Gd-DTPA (Magnevist) at the standard dose (0.1 mmol/Kg). Perhaps if the nonionic gadolinium contrast agent, ProHance, had been approved by the Food and Drug Administration (FDA) when this MRI was performed in 1990 it would have aided in providing contrast enhancement and visualization of the tumor lesion to assist in patient diagnosis and management. Magnetic resonance imaging also provides unique multiplanar capabilities that allow for optimal visualization of the temporal and occipital lobes of the brain without bone interference.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9A Figure 9B Figure 10 Figure 11 Figure 12 Figure 13 PMID:8382751

  13. Relative blood volume measurements by magnetic resonance imaging facilitate detection of testicular torsion.

    PubMed

    Cheng, H C; Khan, M A; Bogdanov, A; Kwong, K; Weissleder, R

    1997-12-01

    The authors determine the utility of relative blood volume measurements (rBV) using a blood pool marker for magnetic resonance imaging (MRI) in detection of early testicular torsion. Testicular torsion was induced in rats by counterclockwise 720 degrees rotation and fixation of the testis in the scrotum. MPEG-PL-DTPA-Gd enhanced MRI (30 mumol Gd/kg bolus injection) was performed 1 hour after torsion at 1.5 T using fat-suppressed three-dimensional fast spoiled gradient-recalled sequence for relative blood volume measurement and three-dimensional time-of-flight sequence for MR angiography (MRA). The rBV of the torqued testes was significantly lower (13.3% +/- 13.5%) than that of testes with sham operation (97.7% +/- 5.3%; P < 0.05). Rats with testicular torsion showed larger regions of ischemia than did animals with sham operation (63.4% +/- 13.0% versus 4.0% +/- 2.8% of all pixels in testis; P < 0.01). The MRA of testicular torsion showed engorgement of the distal testicular vein as a sign of venous compression or total disappearance of the testicular vein, indicating arterial insufficiency. The authors conclude that MPEG-PL-DTPA-Gd can be used to obtain functional (rBV), morphologic (tunica enhancement), and angiographic (venous engorgement, arterial compromise) findings that should improve the diagnosis of testicular torsion in the acute setting.

  14. Application of a biodegradable macromolecular contrast agent in dynamic contrast enhanced MRI for assessing the efficacy of indocyanine green enhanced photothermal cancer therapy

    PubMed Central

    Feng, Yi; Emerson, Lyska; Jeong, Eun-Kee; Parker, Dennis L.; Lu, Zheng-Rong

    2009-01-01

    Purpose To investigate the effectiveness of a polydisulfide-based biodegradable macromolecular contrast agent, (Gd-DTPA)-cystamine copolymers (GDCC), in assessing the efficacy of indocyanine green enhanced photothermal cancer therapy using dynamic contrast enhanced MRI (DCE-MRI). Materials and Methods Breast cancer xenografts in mice were injected with indocyanine green and irradiated with laser. The efficacy was assessed using DCE-MRI with GDCC of 40 KDa (GDCC-40) at 4 hours and 7 days after the treatment. The uptake of GDCC-40 by the tumors was fit to a two-compartment model to obtain tumor vascular parameters, including fractional plasma volume (fPV), endothelium transfer coefficient (KPS), and permeability surface area product (PS). Results GDCC-40 resulted in similar tumor vascular parameters at three doses with larger standard deviations at lower doses. The values of fPV, KPS and PS of the treated tumors were smaller (p < 0.05) than those of untreated tumors at 4 hours after the treatment and recovered to pretreatment values (p > 0.05) at 7 days after the treatment. Conclusion DCE-MRI with GDCC-40 is effective for assessing tumor early response to dye-enhanced photothermal therapy and detecting tumor relapse after the treatment. GDCC-40 has a potential to non-invasively monitor anticancer therapies with DCE-MRI. PMID:19629979

  15. Cerebrospinal fluid flow abnormalities in patients with neoplastic meningitis. An evaluation using /sup 111/In-DTPA ventriculography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grossman, S.A.; Trump, D.L.; Chen, D.C.

    1982-11-01

    Cerebrospinal fluid flow dynamics were evaluated by /sup 111/In-diethylenetriamine pentaacetic acid (/sup 111/In-DTPA) ventriculography in 27 patients with neoplastic meningitis. Nineteen patients (70 percent) had evidence of cerebrospinal fluid flow disturbances. These occurred as ventricular outlet obstructions, abnormalities of flow in the spinal canal, or flow distrubances over the cortical convexities. Tumor histology, physical examination, cerebrospinal fluid analysis, myelograms, and computerized axial tomographic scans were not sufficient to predict cerebrospinal fluid flow patterns. These data indicate that cerebrospinal fluid flow abnormalities are common in patients with neoplastic meningitis and that /sup 111/In-DTPA cerebrospinal fluid flow imaging is useful in characterizingmore » these abnormalities. This technique provides insight into the distribution of intraventricularly administered chemotherapy and may provide explanations for treatment failure and drug-induced neurotoxicity in patients with neoplastic meningitis.« less

  16. Study of ocular transport of drugs released from an intravitreal implant using magnetic resonance imaging.

    PubMed

    Kim, Hyuncheol; Lizak, Martin J; Tansey, Ginger; Csaky, Karl G; Robinson, Michael R; Yuan, Peng; Wang, Nam Sun; Lutz, Robert J

    2005-02-01

    Ensuring optimum delivery of therapeutic agents in the eye requires detailed information about the transport mechanisms and elimination pathways available. This knowledge can guide the development of new drug delivery devices. In this study, we investigated the movement of a drug surrogate, Gd-DTPA (Magnevist) released from a polymer-based implant in rabbit vitreous using T1-weighted magnetic resonance imaging (MRI). Intensity values in the MRI data were converted to concentration by comparison with calibration samples. Concentration profiles approaching pseudosteady state showed gradients from the implant toward the retinal surface, suggesting that diffusion was occurring into the retinal-choroidal-scleral (RCS) membrane. Gd-DTPA concentration varied from high values near the implant to lower values distal to the implant. Such regional concentration differences throughout the vitreous may have clinical significance when attempting to treat ubiquitous eye diseases using a single positional implant. We developed a finite element mathematical model of the rabbit eye and compared the MRI experimental concentration data with simulation concentration profiles. The model utilized a diffusion coefficient of Gd-DTPA in the vitreous of 2.8 x 10(-6) cm2 s(-1) and yielded a diffusion coefficient for Gd-DTPA through the simulated composite posterior membrane (representing the retina-choroidsclera membrane) of 6.0 x 10(-8) cm2 s(-1). Since the model membrane was 0.03-cm thick, this resulted in an effective membrane permeability of 2.0 x 10(-6) cm s(-1). Convective movement of Gd-DTPA was shown to have minimal effect on the concentration profiles since the Peclet number was 0.09 for this system.

  17. Tumor-penetrating Peptide Conjugated and Doxorubicin Loaded T1-T2 Dual Mode MRI Contrast Agents Nanoparticles for Tumor Theranostics

    PubMed Central

    Gao, Lipeng; Yu, Jing; Liu, Yang; Zhou, Jinge; Sun, Lei; Wang, Jing; Zhu, Jianzhong; Peng, Hui; Lu, Weiyue; Yu, Lei; Yan, Zhiqiang; Wang, Yiting

    2018-01-01

    The conventional chemotherapeutics could not be traced in vivo and provide timely feedback on the clinical effectiveness of drugs. Methods: In this study, a tumor-penetrating peptide RGERPPR (RGE) modified, Gd-DTPA conjugated, and doxorubicin (DOX) loaded Fe3O4@SiO2@mSiO2 nanoparticle drug delivery system (Fe3O4@SiO2@mSiO2/DOX-(Gd-DTPA)-PEG-RGE NPs) was prepared for tumor theranostics. Results: The Fe3O4@SiO2@mSiO2/DOX-(Gd-DTPA)-PEG-RGE NPs showed a z-average hydrodynamic diameter of about 90 nm, and a pH-sensitive DOX release profile. The 3 T MRI results confirmed the relaxivity of the NPs (r1 = 6.13 mM-1S-1, r2 = 36.89 mM-1S-1). The in vitro cellular uptake and cytotoxicity assays on U87MG cells confirmed that the conjugation of RGERPPR played a significant role in increasing the cellular uptake and cytotoxicity of the NPs. The near-infrared fluorescence in vivo imaging results showed that the NPs could be significantly accumulated in the U87MG tumor tissue, which should result from the mediation of the tumor-penetrating peptide RGERPPR. The MRI results showed that the NPs offered a T1-T2 dual mode contrast imaging effect which would lead to a more precise diagnosis. Compared with unmodified NPs, the RGE-modified NPs showed significantly enhanced MR imaging signal in tumor tissue and antitumor effect, which should also be attributed to the tumor penetrating ability of RGERPPR peptide. Furthermore, the Hematoxylin and Eosin (H&E) staining and TUNEL assay proved that the NPs produced obvious cell apoptosis in tumor tissue. Conclusions: These results indicated that Fe3O4@SiO2@mSiO2/DOX-(Gd-DTPA)-PEG-RGE NPs are an effective targeted delivery system for tumor theranostics, and should have a potential value in the personalized treatment of tumor. PMID:29290795

  18. Influence of an organic acid blend and essential oil blend, individually or in combination, on growth performance, carcass parameters, apparent digestibility, intestinal microflora and intestinal morphology of broilers.

    PubMed

    Basmacioğlu-Malayoğlu, H; Ozdemir, P; Bağriyanik, H A

    2016-04-01

    This study aimed to evaluate the influence of an organic acid (OA) and essential oil (EO) blends, individually or in combination, on growth performance, carcass parameters, apparent digestibility, intestinal microflora and intestinal morphology of broilers. A total of 480 one-d-old male Ross 308 chicks were randomly assigned to 4 treatments consisting of 4 replicates each (n = 30 birds in each replicate). Dietary treatments consisted of a basal diet (control), and basal diet supplemented with 2 g/kg OA blend (OAB), 300 mg/kg EO blend (EOB), or with 2 g/kg OA and 300 mg/kg EO blend (OAB-EOB) for 42 d. The dietary supplementation with EO blend or in combination with OA blend increased body weight gain and improved feed efficiency as compared to control. Dietary treatments had no significant effects on feed consumption or relative organ weights of broilers. The OAB diet increased carcass yield compared to the control diet but the lowest carcass yield occurred with the OAB-EOB combination. Birds fed on EOB and OAB-EOB diets had lower ileum Escherichia coli counts than birds fed on the control diet. There was no significant effect of treatments on apparent digestibility at 16-21 d but the EOB and OAB-EOB diets increased apparent digestibility of dry matter and crude protein during the finisher period (d 37-42) compared to the control diet. Birds fed on the EOB and OAB-EOB diets had greater villus height in the ileum at 21 and 42 d of age and had lower crypt depth in the ileum at 42 d of age than birds given the control diet. In conclusion, beneficial effects of the use of EO blend individually or in combination with the OA blend were observed but the OA blend alone was ineffective. Furthermore, the use of the combination of OA and EO was more effective, in some respects, than their individual use.

  19. WE-FG-202-10: Assessing Hepatocellular Carcinoma (HCC) Response to SBRT Using DCE-MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Y; Buckstein, M; Chao, M

    2016-06-15

    Purpose: To investigate the feasibility of using DCE-MRI to assess treatment response of HCC to SBRT. Methods: For seven liver HCC patients treated by photon SBRT with radiation dose ranging from 35 to 50 Gy in 5 fractions, T1-weighted DCE-MRI was performed before and at 1–3 months after the treatment. Each study included one pre-contrast and five post Gd-EOB-DTPA-enhanced imaging series. The target tumor and the liver were manually outlined on the arterial phase images. Then, a regional deformable image registration was applied to align liver volumes at different phases in order to compensate respiratory and cardiac motions. An unsupervisedmore » fuzzy c-means clustering technique was carried out to partition the tumor voxels into a number of groups based on their enhancement patterns over time. The representative kinetic curve of the tumor was selected as the one with the maximum enhancement. Six semi-quantitative features were extracted to depict the maximum contrast enhancement, uptake rate, washout rate, time to peak, the area under the kinetic curve (AUKC), as well as the ratio of the most enhanced area in each tumor. The change of these feature values after SBRT was compared using Wann-Whiteney test to characterize the tumor response to RT. Results: Eight HCCs from these seven patients were included in this retrospective study, in which four were identified to respond well to SBRT. The responding tumors showed reduced enhancement after SBRT while the non-responding tumors had steady or even enhanced kinetic dynamics. The median AUKC change after SBRT was −0.65 for responding tumors and 1.0165 for non-responding tumors (p=0.029) Conclusion: The preliminary results demonstrate that DCE-MRI has the potential to monitor the effects of SBRT in patients with HCC. We are expanding our database and developing more quantitative imaging biomarkers in the future study.« less

  20. Assessment of alveolar epithelial permeability in Behçet's disease with 99mTc-DTPA aerosol scintigraphy.

    PubMed

    Gumuser, Fikriye G; Pirildar, Timur; Batok, Dilek; Sakar, Aysin; Ruksen, Ebru; Sayit, Elvan

    2008-06-01

    Behçet's disease (BD) is a multisystem disorder characterized by vasculitis, and consists of a triad of recurrent ulcers of the oral and genital mucosa with relapsing uveitis. The prevalance of pulmonary involvement varies in the range of 1-10% in various studies and its complications are severe and life threatening. In this study, we investigated the changes of pulmonary epithelial permeability of patients with BD using technetium-99m diethylene triamine penta-acetic acid ((99m)Tc-DTPA) aerosol scintigraphy, so as to begin the therapy regimen as soon as possible. Twenty-one nonsmoking patients with BD (8 women, 13 men; mean age 38.67 +/- 8.86 years) and 15 healthy volunteer nonsmoking controls (8 women, 7 men; mean age 50.87 +/- 12.45 years) underwent (99m)Tc-DTPA aerosol inhalation scintigraphy and pulmonary function tests (PFTs). Subjects inhaled 1480 MBq of (99m)Tc-DTPA for 4 min in the supine position. Scintigraphic data were recorded dynamically (1 frame/min) in the posterior projection on a 64 x 64 matrix for a 30-min period using a double-headed gamma camera (Infinia, GE, Tirat Hacarmel, Israel) equipped with a low-energy all-purpose parallel hole collimator. Half time of (99m)Tc-DTPA clearance (T (1/2)) was calculated by placing a mono-exponential fit on the curves. Penetration index (PI) was also calculated by dividing the peripheral total counts by the sum of the peripheral and central total counts on the first minute image, in order to quantify the distribution of the inhaled aerosol. The clearance half time of (99m)Tc-DTPA radioaerosols in the BD patients (24.81 +/- 6.22 min) was faster than in the normal control group (46.53 +/- 22.41 min) (P = 0.004). There was also a significant difference between PI of the patients with BD (0.15 +/- 0.03) and that of the controls (0.21 +/- 0.06) (P = 0.002). No correlation was found between the mean T (1/2) values of (99m)Tc-DTPA clearance or the spirometric measurements in the BD patients. Penetration indices

  1. Reference tissue quantification of DCE-MRI data without a contrast agent calibration

    NASA Astrophysics Data System (ADS)

    Walker-Samuel, Simon; Leach, Martin O.; Collins, David J.

    2007-02-01

    The quantification of dynamic contrast-enhanced (DCE) MRI data conventionally requires a conversion from signal intensity to contrast agent concentration by measuring a change in the tissue longitudinal relaxation rate, R1. In this paper, it is shown that the use of a spoiled gradient-echo acquisition sequence (optimized so that signal intensity scales linearly with contrast agent concentration) in conjunction with a reference tissue-derived vascular input function (VIF), avoids the need for the conversion to Gd-DTPA concentration. This study evaluates how to optimize such sequences and which dynamic time-series parameters are most suitable for this type of analysis. It is shown that signal difference and relative enhancement provide useful alternatives when full contrast agent quantification cannot be achieved, but that pharmacokinetic parameters derived from both contain sources of error (such as those caused by differences between reference tissue and region of interest proton density and native T1 values). It is shown in a rectal cancer study that these sources of uncertainty are smaller when using signal difference, compared with relative enhancement (15 ± 4% compared with 33 ± 4%). Both of these uncertainties are of the order of those associated with the conversion to Gd-DTPA concentration, according to literature estimates.

  2. Dielectric properties of (SWCNTs)x GdBa2CuO7-δ superconductor nanocomposites

    NASA Astrophysics Data System (ADS)

    Anas, M.; Ebrahim, S.; Eldeen, I. G.; Awad, R.; Abou-Aly, A. I.

    2017-11-01

    Gd-123 superconducting phase was prepared by solid-state reaction technique. Single-walled carbon nanotubes (SWCNTs) were added in Gd-123 superconducting matrix with different concentrations during the final sintering process to obtain (SWCNTs)x GdBa2Cu3O7-δ (x = 0.0-0.1 wt.%) nanoparticles-superconductor composite. The influence of SWCNTs addition on the phase formation, structural, morphological, superconducting and dielectric properties of Gd-123 phase was investigated. It was found that SWCNTs addition enhance the phase formation and does not change the crystal structure of the host Gd-123 superconducting phase. The superconducting properties of Gd-123 samples were improved after the addition of SWCNTs up to x = 0.06 wt.% due to the enhancement in intergrain connectivity by healing up of micro-cracks and reduction of defects, while these properties were retarded with further increase in x. The dielectric response of (SWCNTs)x Gd-123 superconducting phase with x = 0.0, 0.01, 0.04, 0.05, 0.06 and 0.1 wt.% was measured from 100 KHz to 5 MHz at 77 K. The results reveal that for both real (𝜀‧) and imaginary (𝜀″) parts of dielectric constant, the frequency of dispersion increased by increasing SWCNTs amount up to 0.06 wt.%, then this frequency shifted to lower values for x > 0.06 wt.%. The results were discussed according to the presence and interference of both interfacial and dipolar polarizations.

  3. Transport of gadolinium- and arsenic-based pharmaceuticals in saturated soil under various redox conditions.

    PubMed

    Menahem, Adi; Dror, Ishai; Berkowitz, Brian

    2016-02-01

    The release of pharmaceuticals and personal care products (PPCPs) to the soil-water environment necessitates understanding of PPCP transport behavior under conditions that account for dynamic flow and varying redox states. This study investigates the transport of two organometallic PPCPs, Gd-DTPA and roxarsone (arsenic compound) and their metal salts (Gd(NO3)3, AsNaO2); Gd-DTPA is used widely as a contrasting agent for MRI, while roxarsone is applied extensively as a food additive in the broiler poultry industry. Here, we present column experiments using sand and Mediterranean red sandy clay soil, performed under several redox conditions. The metal salts were almost completely immobile. In contrast, transport of Gd-DTPA and roxarsone was affected by the soil type. Roxarsone was also affected by the different redox conditions, showing delayed breakthrough curves as the redox potential became more negative due to biological activity (chemically-strong reducing conditions did not affect the transport). Mechanisms that include adsorptive retardation for aerobic and nitrate-reducing conditions, and non-adsorptive retardation for iron-reducing, sulfate-reducing and biologically-strong reducing conditions, are suggested to explain the roxarsone behavior. Gd-DTPA is found to be a stable complex, with potential for high mobility in groundwater systems, whereas roxarsone transport through groundwater systems is affected by redox environments, demonstrating high mobility under aerobic and nitrate-reducing conditions and delayed transport under iron-reducing, sulfate-reducing and biologically-strong reducing conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Thermodynamic and kinetic study of scandium(III) complexes of DTPA and DOTA: a step toward scandium radiopharmaceuticals.

    PubMed

    Pniok, Miroslav; Kubíček, Vojtěch; Havlíčková, Jana; Kotek, Jan; Sabatie-Gogová, Andrea; Plutnar, Jan; Huclier-Markai, Sandrine; Hermann, Petr

    2014-06-23

    Diethylenetriamine-N,N,N',N'',N''-pentaacetic acid (DTPA) and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) scandium(III) complexes were investigated in the solution and solid state. Three (45)Sc NMR spectroscopic references suitable for aqueous solutions were suggested: 0.1 M Sc(ClO4)3 in 1 M aq. HClO4 (δSc =0.0 ppm), 0.1 M ScCl3 in 1 M aq. HCl (δSc =1.75 ppm) and 0.01 M [Sc(ox)4](5-) (ox(2-) = oxalato) in 1 M aq. K2C2O4 (δSc =8.31 ppm). In solution, [Sc(dtpa)](2-) complex (δSc = 83 ppm, Δν = 770 Hz) has a rather symmetric ligand field unlike highly unsymmetrical donor atom arrangement in [Sc(dota)](-) anion (δSc = 100 ppm, Δν = 4300 Hz). The solid-state structure of K8[Sc2(ox)7]⋅13 H2O contains two [Sc(ox)3](3-) units bridged by twice "side-on" coordinated oxalate anion with Sc(3+) ion in a dodecahedral O8 arrangement. Structures of [Sc(dtpa)](2-) and [Sc(dota)](-) in [(Hguanidine)]2[Sc(dtpa)]⋅3 H2O and K[Sc(dota)][H6 dota]Cl2⋅4 H2O, respectively, are analogous to those of trivalent lanthanide complexes with the same ligands. The [Sc(dota)](-) unit exhibits twisted square-antiprismatic arrangement without an axial ligand (TSA' isomer) and [Sc(dota)](-) and (H6 dota)(2+) units are bridged by a K(+) cation. A surprisingly high value of the last DOTA dissociation constant (pKa =12.9) was determined by potentiometry and confirmed by using NMR spectroscopy. Stability constants of scandium(III) complexes (log KScL 27.43 and 30.79 for DTPA and DOTA, respectively) were determined from potentiometric and (45)Sc NMR spectroscopic data. Both complexes are fully formed even below pH 2. Complexation of DOTA with the Sc(3+) ion is much faster than with trivalent lanthanides. Proton-assisted decomplexation of the [Sc(dota)](-) complex (τ1/2 =45 h; 1 M aq. HCl, 25 °C) is much slower than that for [Ln(dota)](-) complexes. Therefore, DOTA and its derivatives seem to be very suitable ligands for scandium

  5. Brain tumor enhancement in magnetic resonance imaging at 3 tesla: intraindividual comparison of two high relaxivity macromolecular contrast media with a standard extracellular gd-chelate in a rat brain tumor model.

    PubMed

    Fries, Peter; Runge, Val M; Bücker, Arno; Schürholz, Hellmut; Reith, Wolfgang; Robert, Philippe; Jackson, Carney; Lanz, Titus; Schneider, Günther

    2009-04-01

    The aim of this study was to evaluate lesion enhancement (LE) and contrast-to-noise ratio (CNR) properties of P846, a new intermediate sized, high relaxivity Gd-based contrast agent at 3 Tesla in a rat brain glioma model, and to compare this contrast agent with a high relaxivity, macromolecular compound (P792), and a standard extracellular Gd-chelate (Gd-DOTA). Seven rats with experimental induced brain glioma were evaluated using 3 different contrast agents, with each MR examination separated by at least 24 hours. The time between injections assured sufficient clearance of the agent from the tumor, before the next examination. P792 (Gadomelitol, Guerbet, France) and P846 (a new compound from Guerbet Research) are macromolecular and high relaxivity contrast agents with no protein binding, and were compared with the extracellular agent Gd-DOTA (Dotarem, Guerbet, France). T1w gradient echo sequences (TR/TE 200 milliseconds/7.38 milliseconds, flip angle = 90 degrees , acquisition time: 1:42 minutes:sec, voxel size: 0.2 x 0.2 x 2.0 mm, FOV = 40 mm, acquisition matrix: 256 x 256) were acquired before and at 5 consecutive time points after each intravenous contrast injection in the identical slice orientation, using a dedicated 4-channel head array animal coil. The order of contrast media injection was randomized, with however Gd-DOTA used either as the first or second contrast agent. Contrast agent dose was adjusted to compensate for the different T1 relaxivities of the 3 agents. Signal-to-noise ratio, CNR, and LE were evaluated using region-of-interest analysis. A veterinary histopathologist confirmed the presence of a glioma in each subject, after completion of the imaging study. P792 showed significantly less LE as compared with Gd-DOTA within the first 7 minutes after contrast agent injection (P < 0.05) with, however, reaching comparable LE values at 9 minutes after injection (P = 0.07). However, P792 provided significantly less CNR as compared with Gd-DOTA (P < 0

  6. Effect of increased surface tension and assisted ventilation on /sup 99m/Tc-DTPA clearance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jefferies, A.L.; Kawano, T.; Mori, S.

    1988-02-01

    Experiments were performed to determine the effects of conventional mechanical ventilation (CMV) and high-frequency oscillation (HFO) on the clearance of technetium-99m-labeled diethylenetriamine pentaacetate (/sup 99m/Tc-DTPA) from lungs with altered surface tension properties. A submicronic aerosol of /sup 99m/Tc-DTPA was insufflated into the lungs of anesthetized, tracheotomized rabbits before and 1 h after the administration of the aerosolized detergent dioctyl sodium sulfosuccinate (OT). Rabbits were ventilated by one of four methods: 1) spontaneous breathing; 2) CMV at 12 cmH2O mean airway pressure (MAP); 3) HFO at 12 cmH2O MAP; 4) HFO at 16 cmH2O MAP. Administration of OT resulted in decreasedmore » arterial PO2 (PaO2), increased lung wet-to-dry weight ratios, and abnormal lung pressure-volume relationships, compatible with increased surface tension. /sup 99m/Tc-DTPA clearance was accelerated after OT in all groups. The post-OT rate of clearance (k) was significantly faster (P less than 0.05) in the CMV at 12 cmH2O MAP (k = 7.57 +/- 0.71%/min (SE)) and HFO at 16 cmH2O MAP (k = 6.92 +/- 0.61%/min) groups than in the spontaneously breathing (k = 4.32 +/- 0.55%/min) and HFO at 12 cmH2O MAP (4.68 +/- 0.63%/min) groups. The clearance curves were biexponential in the former two groups. We conclude that pulmonary clearance of /sup 99m/Tc-DTPA is accelerated in high surface tension pulmonary edema, and this effect is enhanced by both conventional ventilation and HFO at high mean airway pressure.« less

  7. SmedGD 2.0: The Schmidtea mediterranea genome database

    PubMed Central

    Robb, Sofia M.C.; Gotting, Kirsten; Ross, Eric; Sánchez Alvarado, Alejandro

    2016-01-01

    Planarians have emerged as excellent models for the study of key biological processes such as stem cell function and regulation, axial polarity specification, regeneration, and tissue homeostasis among others. The most widely used organism for these studies is the free-living flatworm Schmidtea mediterranea. In 2007, the Schmidtea mediterranea Genome Database (SmedGD) was first released to provide a much needed resource for the small, but growing planarian community. SmedGD 1.0 has been a depository for genome sequence, a draft assembly, and related experimental data (e.g., RNAi phenotypes, in situ hybridization images, and differential gene expression results). We report here a comprehensive update to SmedGD (SmedGD 2.0) that aims to expand its role as an interactive community resource. The new database includes more recent, and up-to-date transcription data, provides tools that enhance interconnectivity between different genome assemblies and transcriptomes, including next generation assemblies for both the sexual and asexual biotypes of S. mediterranea. SmedGD 2.0 (http://smedgd.stowers.org) not only provides significantly improved gene annotations, but also tools for data sharing, attributes that will help both the planarian and biomedical communities to more efficiently mine the genomics and transcriptomics of S. mediterranea. PMID:26138588

  8. "Facilitated" amino acid transport is upregulated in brain tumors.

    PubMed

    Miyagawa, T; Oku, T; Uehara, H; Desai, R; Beattie, B; Tjuvajev, J; Blasberg, R

    1998-05-01

    The goal of this study was to determine the magnitude of "facilitated" amino acid transport across tumor and brain capillaries and to evaluate whether amino acid transporter expression is "upregulated" in tumor vessels compared to capillaries in contralateral brain tissue. Aminocyclopentane carboxylic acid (ACPC), a non-metabolized [14C]-labeled amino acid, and a reference molecule for passive vascular permeability, [67Ga]-gallium-diethylenetriaminepentaacetic acid (Ga-DTPA), were used in these studies. Two experimental rat gliomas were studied (C6 and RG2). Brain tissue was rapidly processed for double label quantitative autoradiography 10 minutes after intravenous injection of ACPC and Ga-DTPA. Parametric images of blood-to-brain transport (K1ACPC and K1Ga-DTPA, microL/min/g) produced from the autoradiograms and the histology were obtained from the same tissue section. These three images were registered in an image array processor; regions of interest in tumor and contralateral brain were defined on morphologic criteria (histology) and were transferred to the autoradiographic images to obtain mean values. The facilitated component of ACPC transport (deltaK1ACPC) was calculated from the K1ACPC and K1Ga-DTPA data, and paired comparisons between tumor and contralateral brain were performed. ACPC flux, K1ACPC, across normal brain capillaries (22.6 +/- 8.1 microL/g/min) was >200-fold greater than that of Ga-DTPA (0.09 +/- 0.04 microL/g/min), and this difference was largely (approximately 90%) due to facilitated ACPC transport. Substantially higher K1ACPC values compared to corresponding K1DTPA values were also measured in C6 and RG2 gliomas. The deltaK1ACPC values for C6 glioma were more than twice that of contralateral brain cortex. K1ACPC and deltaK1ACPC values for RG2 gliomas was not significantly higher than that of contralateral cortex, although a approximately 2-fold difference in facilitated transport is obtained after normalization for differences in capillary

  9. Synthesis and Luminescence Properties of Transparent Nanocrystalline GdF3:Tb Glass-Ceramic Scintillator.

    PubMed

    Lee, Gyuhyon; Savage, Nicholas; Wagner, Brent; Zhang, Yuelan; Jacobs, Benjamin; Menkara, Hisham; Summers, Christopher; Kang, Zhitao

    2014-03-01

    Transparent glass-ceramic containing rare-earth doped halide nanocrystals exhibits enhanced luminescence performance. In this study, a glass-ceramic with Tb doped gadolinium fluoride nanocrystals embedded in an aluminosilicate glass matrix is investigated for X-ray imaging applications. The nanocrystalline glass-ceramic scintillator was prepared by a melt-quench method followed by an anneal. The GdF 3 :Tb nanocrystals precipitated within the oxide glass matrix during the processing and their luminescence and scintillation properties were investigated. In this nanocomposite scintillator system, the incorporation of high atomic number Gd compound into the glass matrix increases the X-ray stopping power of the glass scintillator, and effective energy transfer between Gd 3+ and Tb 3+ ions in the nanocrystals enhances the scintillation efficiency.

  10. Synthesis and Luminescence Properties of Transparent Nanocrystalline GdF3:Tb Glass-Ceramic Scintillator

    PubMed Central

    Lee, Gyuhyon; Savage, Nicholas; Wagner, Brent; Zhang, Yuelan; Jacobs, Benjamin; Menkara, Hisham; Summers, Christopher; Kang, Zhitao

    2014-01-01

    Transparent glass-ceramic containing rare-earth doped halide nanocrystals exhibits enhanced luminescence performance. In this study, a glass-ceramic with Tb doped gadolinium fluoride nanocrystals embedded in an aluminosilicate glass matrix is investigated for X-ray imaging applications. The nanocrystalline glass-ceramic scintillator was prepared by a melt-quench method followed by an anneal. The GdF3:Tb nanocrystals precipitated within the oxide glass matrix during the processing and their luminescence and scintillation properties were investigated. In this nanocomposite scintillator system, the incorporation of high atomic number Gd compound into the glass matrix increases the X-ray stopping power of the glass scintillator, and effective energy transfer between Gd3+ and Tb3+ ions in the nanocrystals enhances the scintillation efficiency. PMID:24610960

  11. Gd-EDDA/HYNIC-RGD as an MR molecular probe imaging integrin alphanubeta3 receptor-expressed tumor-MR molecular imaging of angiogenesis.

    PubMed

    Huo, Tianlong; Du, Xiangke; Zhang, Sen; Liu, Xia; Li, Xubing

    2010-02-01

    The aim of this study is to develop a novel MR probe containing arginine-glycine-aspartic acid (RGD) motif for imaging integrin alphanubeta3 receptor-expressed tumor. Commercially available HYNIC-RGD conjugated with co-ligand EDDA was labeled with Gd(3+), and the mixture was isolated and purified by solid phase extract (SPE) to get the entire probe Gd-EDDA/HYNIC-RGD. Human hepatocellular carcinoma (HHCC) cell line BEL-7402 was cultured and the cells harvested and suspended in serum-free Dulbecco's modified Eagle medium (DMEM) were subcutaneously inoculated into athymic nude mice for tumor growth. In vitro cell binding assay to integrin alphanubeta3 receptor and cell viability experiments were conducted. The in vivo imaging of the three arms of xenografts were performed by MR scan with a dedicated animal coil at time points of 0, 30, 60, 90min and 24-h post-intravenous injection (p.i.). Three arms of nude mice then were sacrificed for histological examination to confirm the imaging results. Gd-EDDA/HYNIC-RGD was successfully isolated by SPE and validity was verified on signal enhancement through in vitro and in vivo experiments. The nude mice model bearing HHCC was well established. There was approx. 30% signal enhancement on T1WI FSE images at 90min post-intravenous injection of the Gd-EDDA/HYNIC-RGD compared with baseline, and the signal to time curve is straightforward over time in the span of 0-90min p.i., while the control arms do not show this tendency. Gd-EDDA/HYNIC-RGD has the potential to serve as an MR probe detecting integrin alphanubeta3 receptor-expressed tumor. Copyright (c) 2008 Elsevier Ireland Ltd. All rights reserved.

  12. Magnetic structures and magnetocaloric effect in R VO4 (R =Gd , Nd )

    NASA Astrophysics Data System (ADS)

    Palacios, E.; Evangelisti, M.; Sáez-Puche, R.; Dos Santos-García, A. J.; Fernández-Martínez, F.; Cascales, C.; Castro, M.; Burriel, R.; Fabelo, O.; Rodríguez-Velamazán, J. A.

    2018-06-01

    We report the magnetic properties and magnetic structure of the zircon-type compound GdVO4, together with the magnetic structure of the isostructural NdVO4. At T ≃2.5 K, GdVO4 undergoes a phase transition to antiferromagnetic Gz, driven mainly by the exchange interactions, while the magnetic anisotropy and dipolar interactions are minor contributions. Near the liquid-helium boiling temperature, the magnetocaloric effect of GdVO4 is nearly as large as that of the structurally closely related GdPO4. It is noteworthy that GdVO4 has been recently proposed as a good passive regenerator in Gifford-McMahon cryocoolers, since adding a magnetization-demagnetization stage to the cryocooler refrigeration cycle would increase its efficiency for liquefying helium. NdVO4 is a canted Gz-type antiferromagnet and shows enhancement of the magnetic reflections in neutron diffraction below ca. 500 mK, due to the polarization of the Nd nuclei by the hyperfine field.

  13. Functionalized multimodal ZnO@Gd2O3 nanosystems to use as perspective contrast agent for MRI

    NASA Astrophysics Data System (ADS)

    Babayevska, Nataliya; Florczak, Patryk; Woźniak-Budych, Marta; Jarek, Marcin; Nowaczyk, Grzegorz; Zalewski, Tomasz; Jurga, Stefan

    2017-05-01

    The main aim of this research was the synthesis of the multimodal hybrid ZnO@Gd2O3 nanostructures as prospective contrast agent for Magnetic Resonance Imaging (MRI) for bio-medical applications. The nanoparticles surface was functionalized by organosilicon compounds (OSC) then, by folic acid (FA) as targeting agent and doxorubicin (Dox) as chemotherapeutic agent. Doxorubicin and folic acid were attached to the nanoparticles surface by amino groups as well as due to attractive physical interactions. The morphology and crystallography of the nanostructures were studied by HRTEM and SAXS techniques. After ZnO nanoparticles surface modification by Gd3+ and annealing at 900 °C, ZnO@Gd2O3 nanostructures are polydispersed with size 30-100 nm. NMR (Nuclear Magnetic Resonance) studies of ZnO@Gd2O3 were performed on fractionated particles with size up to 50 nm. Fourier transform infrared spectroscopy (FTIR), UV-vis spectroscopy, zeta-potential measurements and energy dispersive X-ray analysis (EDX) showed that functional groups have been effectively bonded onto the nanoparticles surface. The high adsorption capacity of folic acid (up to 20%) and doxorubicin (up to 40%) on nanoparticles was reached upon 15 min of adsorption process in a temperature-dependent manner. The nuclear magnetic resonance (NMR) relaxation measurements confirmed that the obtained ZnO@Gd2O3 nanostructures could be good contrast agents, useful for magnetic resonance imaging.

  14. Magnetic resonance imaging of mass transport and structure inside a phototrophic biofilm.

    PubMed

    Ramanan, Baheerathan; Holmes, William M; Sloan, William T; Phoenix, Vernon R

    2013-05-01

    The aim of this study was to utilize magnetic resonance imaging (MRI) to image structural heterogeneity and mass transport inside a biofilm which was too thick for photon based imaging. MRI was used to map water diffusion and image the transport of the paramagnetically tagged macromolecule, Gd-DTPA, inside a 2.5 mm thick cyanobacterial biofilm. The structural heterogeneity of the biofilm was imaged at resolutions down to 22 × 22 μm, enabling the impact of biofilm architecture on the mass transport of both water and Gd-DTPA to be investigated. Higher density areas of the biofilm correlated with areas exhibiting lower relative water diffusion coefficients and slower transport of Gd-DTPA, highlighting the impact of biofilm structure on mass transport phenomena. This approach has potential for shedding light on heterogeneous mass transport of a range of molecular mass molecules in biofilms.

  15. High sensitivity of gold nanoparticles co-doped with Gd2O3 mesoporous silica nanocomposite to nasopharyngeal carcinoma cells

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Zhang, Songjin; Tian, Xiumei; Liu, Chufeng; Zhang, Lei; Hu, Wenyong; Shao, Yuanzhi; Li, Li

    2016-10-01

    Nanoprobes for combined optical and magnetic resonance imaging have tremendous potential in early cancer diagnosis. Gold nanoparticles (AuNPs) co-doped with Gd2O3 mesoporous silica nanocomposite (Au/Gd@MCM-41) can produce pronounced contrast enhancement for T1 weighted image in magnetic resonance imaging (MRI). Here, we show the remarkably high sensitivity of Au/Gd@MCM-41 to the human poorly differentiated nasopharyngeal carcinoma (NPC) cell line (CNE-2) using fluorescence lifetime imaging (FLIM). The upconversion luminescences from CNE-2 and the normal nasopharyngeal (NP) cells (NP69) after uptake of Au/Gd@MCM-41 show the characteristic of two-photon-induced-radiative recombination of the AuNPs. The presence of the Gd3+ ion induces a much shorter luminescence lifetime in CNE-2 cells. The interaction between AuNPs and Gd3+ ion clearly enhances the optical sensitivity of Au/Gd@MCM-41 to CNE-2. Furthermore, the difference in the autofluorescence between CNE-2 and NP69 cells can be efficiently demonstrated by the emission lifetimes of Au/Gd@MCM-41 through the Forster energy transfers from the endogenous fluorophores to AuNPs. The results suggest that Au/Gd@MCM-41 may impart high optical resolution for the FLIM imaging that differentiates normal and high-grade precancers.

  16. NaGd(MoO4)2 nanocrystals with diverse morphologies: controlled synthesis, growth mechanism, photoluminescence and thermometric properties.

    PubMed

    Li, Anming; Xu, Dekang; Lin, Hao; Yang, Shenghong; Shao, Yuanzhi; Zhang, Yueli

    2016-08-10

    Pure tetragonal phase, uniform and well-crystallized sodium gadolinium molybdate (NaGd(MoO4)2) nanocrystals with diverse morphologies, e.g. nanocylinders, nanocubes and square nanoplates have been selectively synthesized via oleic acid-mediated hydrothermal method. The phase, structure, morphology and composition of the as-synthesized products are studied. Contents of both sodium molybdate and oleic acid of the precursor solutions are found to affect the morphologies of the products significantly, and oleic acid plays a key role in the morphology-controlled synthesis of NaGd(MoO4)2 nanocrystals with diverse morphologies. Growth mechanism of NaGd(MoO4)2 nanocrystals is proposed based on time-dependent morphology evolution and X-ray diffraction analysis. Morphology-dependent down-shifting photoluminescence properties of NaGd(MoO4)2: Eu(3+) nanocrystals, and upconversion photoluminescence properties of NaGd(MoO4)2: Yb(3+)/Er(3+) and Yb(3+)/Tm(3+) nanoplates are investigated in detail. Charge transfer band in the down-shifting excitation spectra shows a slight blue-shift, and the luminescence intensities and lifetimes of Eu(3+) are decreased gradually with the morphology of the nanocrystals varying from nanocubes to thin square nanoplates. Upconversion energy transfer mechanisms of NaGd(MoO4)2: Yb(3+)/Er(3+), Yb(3+)/Tm(3+) nanoplates are proposed based on the energy level scheme and power dependence of upconversion emissions. Thermometric properties of NaGd(MoO4)2: Yb(3+)/Er(3+) nanoplates are investigated, and the maximum sensitivity is determined to be 0.01333 K(-1) at 285 K.

  17. NaGd(MoO4)2 nanocrystals with diverse morphologies: controlled synthesis, growth mechanism, photoluminescence and thermometric properties

    PubMed Central

    Li, Anming; Xu, Dekang; Lin, Hao; Yang, Shenghong; Shao, Yuanzhi; Zhang, Yueli

    2016-01-01

    Pure tetragonal phase, uniform and well-crystallized sodium gadolinium molybdate (NaGd(MoO4)2) nanocrystals with diverse morphologies, e.g. nanocylinders, nanocubes and square nanoplates have been selectively synthesized via oleic acid-mediated hydrothermal method. The phase, structure, morphology and composition of the as-synthesized products are studied. Contents of both sodium molybdate and oleic acid of the precursor solutions are found to affect the morphologies of the products significantly, and oleic acid plays a key role in the morphology-controlled synthesis of NaGd(MoO4)2 nanocrystals with diverse morphologies. Growth mechanism of NaGd(MoO4)2 nanocrystals is proposed based on time-dependent morphology evolution and X-ray diffraction analysis. Morphology-dependent down-shifting photoluminescence properties of NaGd(MoO4)2: Eu3+ nanocrystals, and upconversion photoluminescence properties of NaGd(MoO4)2: Yb3+/Er3+ and Yb3+/Tm3+ nanoplates are investigated in detail. Charge transfer band in the down-shifting excitation spectra shows a slight blue-shift, and the luminescence intensities and lifetimes of Eu3+ are decreased gradually with the morphology of the nanocrystals varying from nanocubes to thin square nanoplates. Upconversion energy transfer mechanisms of NaGd(MoO4)2: Yb3+/Er3+, Yb3+/Tm3+ nanoplates are proposed based on the energy level scheme and power dependence of upconversion emissions. Thermometric properties of NaGd(MoO4)2: Yb3+/Er3+ nanoplates are investigated, and the maximum sensitivity is determined to be 0.01333 K−1 at 285 K. PMID:27506629

  18. Transcriptional reprogramming underpins enhanced plant growth promotion by the biocontrol fungus Trichoderma hamatum GD12 during antagonistic interactions with Sclerotinia sclerotiorum in soil.

    PubMed

    Shaw, Sophie; Le Cocq, Kate; Paszkiewicz, Konrad; Moore, Karen; Winsbury, Rebecca; de Torres Zabala, Marta; Studholme, David J; Salmon, Deborah; Thornton, Christopher R; Grant, Murray R

    2016-12-01

    The free-living soil fungus Trichoderma hamatum strain GD12 is notable amongst Trichoderma strains in both controlling plant diseases and stimulating plant growth, a property enhanced during its antagonistic interactions with pathogens in soil. These attributes, alongside its markedly expanded genome and proteome compared with other biocontrol and plant growth-promoting Trichoderma strains, imply a rich potential for sustainable alternatives to synthetic pesticides and fertilizers for the control of plant disease and for increasing yields. The purpose of this study was to investigate the transcriptional responses of GD12 underpinning its biocontrol and plant growth promotion capabilities during antagonistic interactions with the pathogen Sclerotinia sclerotiorum in soil. Using an extensive mRNA-seq study capturing different time points during the pathogen-antagonist interaction in soil, we show that dynamic and biphasic signatures in the GD12 transcriptome underpin its biocontrol and plant (lettuce) growth-promoting activities. Functional predictions of differentially expressed genes demonstrate the enrichment of transcripts encoding proteins involved in transportation and oxidation-reduction reactions during both processes and an over-representation of siderophores. We identify a biphasic response during biocontrol characterized by a significant induction of transcripts encoding small-secreted cysteine-rich proteins, secondary metabolite-producing gene clusters and genes unique to GD12. These data support the hypothesis that Sclerotinia biocontrol is mediated by the synthesis and secretion of antifungal compounds and that GD12's unique reservoir of uncharacterized genes is actively recruited during the effective biological control of a plurivorous plant pathogen. © 2016 The Authors. Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley & Sons Ltd.

  19. Lung function declines in patients with pulmonary sarcoidosis and increased respiratory epithelial permeability to sup 99m Tc-DTPA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chinet, T.; Dusser, D.; Labrune, S.

    1990-02-01

    Respiratory epithelial clearance of {sup 99m}Tc-DTPA (RC-Tc-DTPA) and pulmonary function tests (PFT) were determined at intervals of 6 or 12 months in 37 untreated, nonsmoking patients with sarcoidosis over a period of 6 to 36 months. PFT included the measurements of total lung capacity (TLC), vital capacity (VC), FEV1, and diffusing capacity for carbon monoxide. No difference was found between the respiratory clearance of {sup 113m}In-DTPA (2.25 +/- 1.00%/min) and RC-Tc-DTPA (2.29 +/- 1.11%/min) in eight patients with pulmonary sarcoidosis. Pulmonary function decreased 15% or more in at least 2 function tests during 11 follow-up periods, but it remained stablemore » during 47 follow-up periods. In patients whose lung function deteriorated, RC-Tc-DTPA increased to 3.51 +/- 1.55%/min; in contrast, in patients whose lung function remained stable, regardless of the initial values, RC-Tc-DTPA was normal (1.00 +/- 0.50%/min; p less than 0.001). In eight patients who were treated with corticosteroids, RC-Tc-DTPA decreased from 3.48 +/- 1.31%/min to 1.56 +/- 0.64%/min (p less than 0.001), and PFT improved. We conclude that in nonsmokers with pulmonary sarcoidosis, increased RC-Tc-DTPA is not related to dissociation of 99mTc from DTPA, RC-Tc-DTPA is increased when pulmonary function decreases, and, when increased, RC-Tc-DTPA decreases with corticosteroid therapy.« less

  20. Neuronavigation-guided focused ultrasound-induced blood-brain barrier opening: A preliminary study in swine

    NASA Astrophysics Data System (ADS)

    Liu, Hao-Li; Tsai, Hong-Chieh; Lu, Yu-Jen; Wei, Kuo-Chen

    2012-11-01

    FUS-induced BBB opening is a promising technique for noninvasive and local delivery of drugs into the brain. Here we propose the novel use of a neuronavigation system to guide the FUS-induced BBB opening procedure, and investigate its feasibility in vivo in large animals. We developed an interface between the neuronavigator and FUS to allow guidance of the focal energy produced by the FUS transducer. The system was tested in 29 pigs by more than 40 sonication procedures and evaluated by MRI. Gd-DTPA concentration was quantitated in vivo by MRI R1 relaxometry and compared by ICP-OES assay. Brain histology after FUS exposure was investigated by HE and TUNEL staining. Neuronavigation could successfully guide the focal beam with comparable precision to neurosurgical stereotactic procedures (2.3 ± 0.9 mm). FUS pressure of 0.43 MPa resulted in consistent BBB-opening. Neuronavigation-guided BBB-opening increased Gd-DTPA deposition by up to 1.83 mM (140% increase). MR relaxometry demonstrated high correlation to ICP-OES measurements (r2 = 0.822), suggesting that Gd-DTPA deposition can be directly measured by imaging. Neuronavigation could provide sufficient precision for guiding FUS to temporally and locally open the BBB. Gd-DTPA deposition in the brain could be quantified by MR relaxometry, providing a potential tool for the in vivo quantification of therapeutic agents in CNS disease treatment.