Science.gov

Sample records for gafchromic ebt film

  1. Technical Note: Homogeneity of Gafchromic EBT2 film

    SciTech Connect

    Hartmann, Bernadette; Martisikova, Maria; Jaekel, Oliver

    2010-04-15

    Purpose: The self-developing Gafchromic EBT film is a radiochromic film, widely used for relative photon dosimetry. Recently, the manufacturer has replaced the well-investigated EBT film by the new Gafchromic EBT2 film. It has the same sensitive component and, in addition, it contains a yellow marker dye in order to protect the film against ambient light exposure and to serve as a base for corrections of small differences in film response. Furthermore, the configuration of the film layers as well as the binder material have been changed in comparison to the EBT film. When investigating the properties of EBT2 film, all characteristics were found to be similar to those of EBT film, except for the film response homogeneity. Thus, in this article special focus was put on examining the homogeneity of EBT2 film. Methods: A scan protocol established for EBT film and published previously was used. The uniformity of the film coloration was investigated for unirradiated and irradiated EBT2 film sheets. The dose response of EBT2 film was measured and the influence of film inhomogeneities on dose determination was evaluated. Results: Inhomogeneities in pixel values of up to {+-}3.7% within one film were detected. The relative inhomogeneities were found to be approximately independent of the dose. Nonuniformities of the film response lead to uncertainties in dose determination of {+-}8.7% at 1 Gy. When using net optical densities for dose calibration, uncertainties in dose determination amount to more than {+-}6%. Conclusions: EBT2 films from the lot investigated in this study show response inhomogeneities, which lead to uncertainties in dose determination exceeding the commonly accepted tolerance levels. It is important to test further EBT2 lots regarding homogeneity before using the film in clinical routine.

  2. Comparing three UV wavelengths for pre-exposing Gafchromic EBT2 and EBT3 films.

    PubMed

    Katsuda, Toshizo; Gotanda, Rumi; Gotanda, Tatsuhiro; Akagawa, Takuya; Tanki, Nobuyoshi; Kuwano, Tadao; Yabunaka, Kouichi

    2015-01-01

    Gafchromic films are used for X-ray dose measurements during diagnostic examinations and have begun to be used for three-dimensional X-ray dose measurements using the high-resolution characteristics of Gafchromic films for computed tomography. However, the problem of unevenness in Gafchromic film active layers needs to be resolved. Double exposures using X-rays are performed during therapeutic radiology, although this is difficult for a diagnostic examination because of a heel effect. Thus, it has been suggested that ultraviolet (UV) radiation be used as a substitute for X-rays. However, the appropriate UV wavelength has not been determined. Thus, we conducted this study to decide an appropriate UV wavelength. UV peak wavelengths of 245 nm (UV-A), 310 nm (UV-B), and 365 nm (UV-C) were used to irradiate EBT2 and EBT3 films. Each UV wavelength was irradiated for 5, 15, 30, and 60 min, and irradiation was then repeated every 60 min up to 360 min. Gafchromic films were scanned after every irradiation using a flatbed scanner. Images were split into RGB images, and red images were analyzed using ImageJ, version 1.44, image analysis software. A region of interest (ROI) one-half inch in diameter was placed in the center of subtracted Gafchromic film images, and UV irradiation times were plotted against mean pixel values. There were reactions in the front and back of Gafchromic EBT3 and the back of Gafchromic EBT2 with UV-A and UV-B. However, UV-C resulted in some reactions in both sides of Gafchromic EBT2 and EBT3. The UV-A and UV-B wavelengths should be used. PMID:26699578

  3. Solar ultraviolet radiation response of EBT2 Gafchromic, radiochromic film.

    PubMed

    Butson, Ethan T; Yu, Peter K N; Butson, Martin J

    2013-11-01

    Measurement of solar ultraviolet (UV) radiation is an important aspect of dosimetry for the improved knowledge of UV exposure and its associated health related issues. EBT2 Gafchromic film has been designed by its manufacturers as an improved tool for ionizing radiation dosimetry. The film is stated as exhibiting a significant reduction in UV response. However, results have shown that when exposed to UV from the 'bottom side' i.e. from the thick laminate side, the film exhibits a sensitivity to solar UV radiation which is both measurable and accurate for UV dosimetry. Films were irradiated in this position to known solar UV exposures and results are quantified showing a reproducibility of measurement to within ±7% (1 SD) when compared to calibrated UV meters. With an exposure of 20 J cm(-2) broad spectrum solar UV, the films net OD change was found to be 0.248 OD ± 0.021 OD when analysing the results using the red channel region of an Epson V700 desktop scanner. This was compared to 0.0294 OD ± 0.0053 OD change with exposure to the same UV exposure from the top side. This means that solar UV dosimetry can be performed using EBT2 Gafchromic film utilizing the underside of the film for dosimetry. The main advantages of this film type for measurement of UV exposure is the visible colour change and thus easy analysis using a desktop scanner as well as its uniformity in response and its robust physical strength for use in outside exposure situations. PMID:24113466

  4. Evaluation of Gafchromic EBT-XD film, with comparison to EBT3 film, and application in high dose radiotherapy verification.

    PubMed

    Palmer, Antony L; Dimitriadis, Alexis; Nisbet, Andrew; Clark, Catharine H

    2015-11-21

    There is renewed interest in film dosimetry for the verification of dose delivery of complex treatments, particularly small fields, compared to treatment planning system calculations. A new radiochromic film, Gafchromic EBT-XD, is available for high-dose treatment verification and we present the first published evaluation of its use. We evaluate the new film for MV photon dosimetry, including calibration curves, performance with single- and triple-channel dosimetry, and comparison to existing EBT3 film. In the verification of a typical 25 Gy stereotactic radiotherapy (SRS) treatment, compared to TPS planned dose distribution, excellent agreement was seen with EBT-XD using triple-channel dosimetry, in isodose overlay, maximum 1.0 mm difference over 200-2400 cGy, and gamma evaluation, mean passing rate 97% at 3% locally-normalised, 1.5 mm criteria. In comparison to EBT3, EBT-XD gave improved evaluation results for the SRS-plan, had improved calibration curve gradients at high doses, and had reduced lateral scanner effect. The dimensions of the two films are identical. The optical density of EBT-XD is lower than EBT3 for the same dose. The effective atomic number for both may be considered water-equivalent in MV radiotherapy. We have validated the use of EBT-XD for high-dose, small-field radiotherapy, for routine QC and a forthcoming multi-centre SRS dosimetry intercomparison. PMID:26512917

  5. Evaluation of gafchromic EBT film for intensity modulated radiation therapy dose distribution verification

    PubMed Central

    Sankar, A.; Kurup, P. G. Goplakrishna; Murali, V.; Ayyangar, Komanduri M.; Nehru, R. Mothilal; Velmurugan, J.

    2006-01-01

    This work was undertaken with the intention of investigating the possibility of clinical use of commercially available self-developing radiochromic filmGafchromic EBT film – for IMRT dose verification. The dose response curves were generated for the films using VXR-16 film scanner. The results obtained with EBT films were compared with the results of Kodak EDR2 films. It was found that the EBT film has a linear response between the dose ranges of 0 and 600 cGy. The dose-related characteristics of the EBT film, like post-irradiation color growth with time, film uniformity and effect of scanning orientation, were studied. There is up to 8.6% increase in the color density between 2 and 40 h after irradiation. There was a considerable variation, up to 8.5%, in the film uniformity over its sensitive region. The quantitative difference between calculated and measured dose distributions was analyzed using Gamma index with the tolerance of 3% dose difference and 3 mm distance agreement. EDR2 films showed good and consistent results with the calculated dose distribution, whereas the results obtained using EBT were inconsistent. The variation in the film uniformity limits the use of EBT film for conventional large field IMRT verification. For IMRT of smaller field size (4.5 × 4.5 cm), the results obtained with EBT were comparable with results of EDR2 films. PMID:21206669

  6. Important considerations for radiochromic film dosimetry with flatbed CCD scanners and EBT GAFCHROMIC[reg] film

    SciTech Connect

    Lynch, Bart D.; Kozelka, Jakub; Ranade, Manisha K.; Li, Jonathan G.; Simon, William E.; Dempsey, James F.

    2006-12-15

    In this study, we present three significant artifacts that have the potential to negatively impact the accuracy and precision of film dosimetry measurements made using GAFCHROMIC[reg] EBT radiochromic film when read out with CCD flatbed scanners. Films were scanned using three commonly employed instruments: a Macbeth TD932 spot densitometer, an Epson Expression 1680 CCD array scanner, and a Microtek ScanMaker i900 CCD array scanner. For the two scanners we assessed the variation in optical density (OD) of GAFCHROMIC EBT film with scanning bed position, angular rotation of the film with respect to the scan line direction, and temperature inside the scanner due to repeated scanning. Scanning uniform radiochromic films demonstrated a distinct bowing effect in profiles in the direction of the CCD array with a nonuniformity of up to 17%. Profiles along a direction orthogonal to the CCD array demonstrated a 7% variation. A strong angular dependence was found in measurements made with the flatbed scanners; the effect could not be reproduced with the spot densitometer. An IMRT quality assurance film was scanned twice rotating the film 90 deg. between the scans. For films scanned on the Epson scanner, up to 12% variation was observed in unirradiated EBT films rotated between 0 deg. and 90 deg. , which decreased to approximately 8% for EBT films irradiated to 300 cGy. Variations of up to 80% were observed for films scanned with the Microtek scanner. The scanners were found to significantly increase the film temperature with repeated scanning. Film temperature between 18 and 33 deg. C caused OD changes of approximately 7%. Considering these effects, we recommend adherence to a strict scanning protocol that includes: maintaining the orientation of films scanned on flatbed scanners, limiting scanning to the central portion of the scanner bed, and limiting the number of consecutive scans to minimize changes in OD caused by film heating.

  7. Use of Gafchromic ® EBT films in heavy ion therapy

    NASA Astrophysics Data System (ADS)

    Martišíková, M.; Ackermann, B.; Klemm, S.; Jäkel, O.

    2008-06-01

    Properties of a new type of radiochromic film—Gafchromic EBT—were investigated with respect to its use in heavy ion therapy. For this purpose not only radiation imaging, but also quantitative dosimetry is desirable. Improvements with respect to older types of Gafchromic films as well as an excellent spatial resolution make it to a promising candidate to be used in scanned medical ion beams. First, the influence of several effects and parameters on the net optical density measured using a commercial flatbed scanner was analyzed. Here the scanner resolution, the light scattering effect, the longtime development of the film and multiple evaluations of the film were investigated. Methods to reduce the influence of the largest sources of distortions were proposed. In carbon ion beams, the signal was observed to be equal or lower than in photon beams at the same dose, depending on the linear energy transfer. This behavior, known also for other dosimetric media, is caused by a local (microscopic) saturation which occurs around highly ionizing ion tracks. However, the overall darkening of the film was found not to saturate in the region of clinically used doses and beyond.

  8. SU-E-T-76: Comparing Homogeneity Between Gafchromic Film EBT2 and EBT3

    SciTech Connect

    Mizuno, H; Sumida, I; Ogawa, K; Tanaka, A

    2014-06-01

    Purpose: We found out that homogeneity of EBT2 was different among lot numbers in previous study. Variation in local homogeneity of EBT3 among several lot numbers has not been reported. In this study, we investigated film homogeneity of Gafcrhomic EBT3 films compared with EBT2 films. Methods: All sheets from five lots were cut into 12 pieces to investigate film homogeneity, and were irradiated at 0.5, 2, and 3 Gy. To investigate intra- and inter-sheet uniformity, five sheets from five lots were exposed to 2 Gy: intra-sheet uniformity was evaluated by the coefficient of variation of homogeneity for all pieces of a single sheet, and inter-sheet uniformity was evaluated by the coefficient of variation of homogeneity among the same piece numbers in the five sheets. To investigate the difference of ADC value in various doses, a single sheet from each of five lots was irradiated at 0.5 Gy and 3 Gy in addition to 2 Gy. A scan resolution of 72 dots per inch (dpi) and color depth of 48-bit RGB were used. Films were analyzed by the inhouse software; Average of ADC value in center ROI and profile X and Y axis were measured. Results and Conclusion: Intra-sheet uniformity of non-irradiated EBT2 films were ranged from 0.1% to 0.4%, however that of irradiated EBT2 films were ranged from 0.2% to 1.5%. On the other hand, intra-sheet uniformity of irradiated and non-irradiated EBT3 films were from 0.2% to 0.6%. Inter-sheet uniformity of all films were less than 0.5%. It was interesting point that homogeneity of EBT3 between no-irradiated and irradiated films were similar value, whereas EBT2 had dose dependence of homogeneity in ADC value evaluation. These results suggested that EBT3 homogeneity was corrected by this feature.

  9. Technical Note: Initial characterization of the new EBT-XD Gafchromic film

    SciTech Connect

    Grams, Michael P. Gustafson, Jon M.; Long, Kenneth M.; Fong de los Santos, Luis E.

    2015-10-15

    Purpose: To assess the dosimetric accuracy and energy dependence of the new EBT-eXtended Dose (XD) Gafchromic film and to compare the lateral response artifact (LRA) between EBT-XD and EBT3 film. Methods: EBT3 and EBT-XD calibration curves were created by exposing films to known doses from 0 to 3000 cGy using a 6 MV beam. To assess the accuracy and dynamic range of EBT-XD, a 60° enhanced dynamic wedge (EDW) was used to deliver a dose range of approximately 200–2900 cGy. Comparison to treatment planning system (TPS) calculation was made using a gamma analysis with 2%/2 mm passing criteria. To assess and compare the LRA between EBT3 and EBT-XD, 21 × 21 cm{sup 2} open fields delivered doses of 1000, 2000, and 3000 cGy to both types of film. Films were placed at the center of the scanner, and ratios of measured to TPS predicted doses were calculated at 50 and 80 mm lateral from the scanner center in order to quantitatively assess the LRA. To evaluate the energy dependence of EBT-XD film, seven known doses ranging from 400 to 3000 cGy were delivered using both 6 and 18 MV beams and the resulting optical densities (ODs) compared. Results: The gamma passing rate was 99.1% for the 6 MV EDW delivery. EBT-XD film exhibited minimal LRA (<1%) up to 3000 cGy. In contrast, EBT3 demonstrated an under-response of 11.3% and 22.7% at lateral positions of 50 and 80 mm, respectively, for the 3000 cGy exposure. Differences between ODs of the EBT-XD films exposed to known doses from 6 to 18 MV beams were <0.8% suggesting minimal energy dependence throughout this energy range. Conclusions: The LRA of EBT-XD is greatly reduced when compared to EBT3. This in combination with its accuracy from 0 to 3000 cGy and minimal energy dependence from 6 to 18 MV makes EBT-XD film well suited for dosimetric measurements in high dose SRS/SBRT applications.

  10. Quality assurance of alpha-particle dosimetry using peeled-off Gafchromic EBTfilm

    NASA Astrophysics Data System (ADS)

    Ng, C. Y. P.; Chun, S. L.; Yu, K. N.

    2016-08-01

    A novel alpha-particle dosimetry technique using Gafchromic EBT3 film has recently been proposed for calibrating the activity of alpha-emitting radiopharmaceuticals. In the present paper, we outlined four measures which could further help assure the quality of the method. First, we suggested an alternative method in fabricating the peeled-off EBT3 film. Films with a chosen size were cut from the original films and all the edges were sealed with silicone. These were immersed into deionized water for 19 d and the polyester covers of the EBT3 films could then be easily peeled off. The active layers in these peeled-off EBT3 films remained intact, and these films could be prepared reproducibly with ease. Second, we proposed a check on the integrity of the peeled-off film by comparing the responses of the pristine and peeled-off EBT3 films to the same X-ray irradiation. Third, we highlighted the importance of scanning directions of the films. The "landscape" and "portrait" scanning directions were defined as the scanning directions perpendicular and parallel to the long edge of the original EBT3 films, respectively. Our results showed that the responses were different for different scanning directions. As such, the same scanning direction should be used every time. Finally, we cautioned the need to confirm the uniformity of the alpha-particle source used for calibration. Radiochromic films are well known for their capability of providing two-dimensional dosimetric information. As such, EBT3 films could also be conveniently used to check the uniformity of the alpha-particle source.

  11. Clinical use of EBT model Gafchromic trade mark sign film in radiotherapy

    SciTech Connect

    Fiandra, Christian; Ricardi, Umberto; Ragona, Riccardo; Anglesio, Silvia; Romana Giglioli, Francesca; Calamia, Elisa; Lucio, Francesco

    2006-11-15

    The Gafchromic trade mark sign EBT was recently introduced in film dosimetry for external beam therapy (EBT). The high spatial resolution, weak energy dependence, and near-tissue equivalence of EBT films make them suitable for measurement of dose distributions in radiotherapy, especially intensity-modulated radiation therapy (IMRT). Starting with a sensitometric curve and dose uncertainty relative to the flatbed scanner, the goal of this study was to find an efficient method of correcting for light scattering, and to compare dose distribution supplied by Gafchromic trade mark sign EBT with the distribution obtained with a 2D ion-chamber detector system. Light scattering was analyzed for different levels of dose, and was found to depend on the red-scale value as well as the position of the pixel on the scanner. Many 'uniform' films were exposed at different levels of dose to create a two-dimensional matrix correction to take this effect into account. The dose distribution obtained for three clinical beams (10x10, 15x15 cm open fields and 12x12 cm wedge 60 deg. field) were in agreement with those supplied by the 2D array. Gamma index <1 (using 5 mm distance and 5% dose as constraints) for the three fields considered was reached in an average of 98% of the points.

  12. Gafchromic EBT2 film dosimetry in reflection mode with a novel plan-based calibration method

    SciTech Connect

    Mendez, I.; Hartman, V.; Hudej, R.; Strojnik, A.; Casar, B.

    2013-01-15

    Purpose:A dosimetric system formed by Gafchromic EBT2 radiochromic film and Epson Expression 10000XL flatbed scanner was commissioned for dosimetry. In this paper, several open questions concerning the commissioning of radiochromic films for dosimetry were addressed: (a) is it possible to employ this dosimetric system in reflection mode; (b) if so, can the methods used in transmission mode also be used in reflection mode; (c) is it possible to obtain accurate absolute dose measurements with Gafchromic EBT2 films; (d) which calibration method should be followed; (e) which calibration models should be used; and (f) does three-color channel dosimetry offer a significant improvement over single channel dosimetry. The purpose of this paper is to help clarify these questions. Methods: In this study, films were scanned in reflection mode, the effect of surrounding film was evaluated and the feasibility of EBT2 film dosimetry in reflection mode was studied. EBT2's response homogeneity has been reported to lead to excessive dose uncertainties. To overcome this problem, a new plan-based calibration method was implemented. Plan-based calibration can use every pixel and each of the three color channels of the scanned film to obtain the parameters of the calibration model. A model selection analysis was conducted to select lateral correction and sensitometric curve models. The commonly used calibration with fragments was compared with red-channel plan-based calibration and with three-channel plan-based calibration. Results: No effect of surrounding film was found in this study. The film response inhomogeneity in EBT2 films was found to be important not only due to differences in the fog but also due to differences in sensitivity. The best results for lateral corrections were obtained using absolute corrections independent of the dose. With respect to the sensitometric curves, an empirical polynomial fit of order 4 was found to obtain results equivalent to a gamma

  13. Gafchromic EBT3 film dosimetry in electron beams - energy dependence and improved film read-out.

    PubMed

    Sipilä, Petri; Ojala, Jarkko; Kaijaluoto, Sampsa; Jokelainen, Ilkka; Kosunen, Antti

    2016-01-01

    For megavoltage photon radiation, the fundamental dosimetry characteristics of Gafchromic EBT3 film were determined in 60Co gamma ray beam with addition of experimental and Monte Carlo (MC)-simulated energy dependence of the film for 6 MV photon beam and 6 MeV, 9 MeV, 12 MeV, and 16 MeV electron beams in water phantom. For the film read-out, two phase correction of scanner sensitivity was applied: a matrix correction for scanning area and dose-dependent correction by iterative procedure. With these corrections, the uniformity of response can be improved to be within ± 50 pixel values (PVs). To improve the read-out accuracy, a procedure with flipped film orientations was established. With the method, scanner uniformity can be improved further and dust particles, scratches and/or dirt on scan-ner glass can be detected and eliminated. Responses from red and green channels were averaged for read-out, which decreased the effect of noise present in values from separate channels. Since the signal level with the blue channel is considerably lower than with other channels, the signal variation due to different perturbation effects increases the noise level so that the blue channel is not recommended to be used for dose determination. However, the blue channel can be used for the detection of emulsion thickness variations for film quality evaluations with unexposed films. With electron beams ranging from 6 MeV to 16 MeV and at reference measurement conditions in water, the energy dependence of the EBT3 film is uniform within 0.5%, with uncertainties close to 1.6% (k = 2). Including 6 MV photon beam and the electron beams mentioned, the energy dependence is within 1.1%. No notable differences were found between the experimental and MC-simulated responses, indicating negligible change in intrinsic energy dependence of the EBT3 film for 6 MV photon beam and 6 MeV-16 MeV electron beams. Based on the dosimetric characteristics of the EBT3 film, the read-out procedure established

  14. SU-E-T-322: The Evaluation of the Gafchromic EBT3 Film in Low Dose 6 MV X-Ray Beams with Different Scanning Modes

    SciTech Connect

    Lee, H; Sung, J; Yoon, M; Kim, D; Chung, W

    2014-06-01

    Purpose: We have evaluated the response of the Gafchromic EBT3 film in low dose for 6 MV x-ray beams with two scanning modes, the reflection scanning mode and the transmission scanning mode. Methods: We irradiated the Gafcromic EBT3 film using a 60 degree enhanced dynamic wedge (EDW) with 6 MV x-ray beams from Clinac iX Linear accelerator (Varian Medical Systems, Palo Alto, CA). The irradiated Gafchromic EBT3 film was scanned with different scanning modes, the reflection scanning mode and the transmission scanning mode. The scanned Gafchromic EBT3 film was analyzed with MATLAB. Results: When 7.2 cGy was irradiated to the Gafchromic EBT3 film, the uncertainty was 0.54 cGy with reflection scanning mode and was 0.88 cGy with transmission scanning mode. When 24 cGy was irradiated to the Gafchromic EBT3 film, the uncertainty was similar to the case of 7.2 cGy irradiation showing 0.51 cGy of uncertainty with reflection scanning mode and 0.87 cGy of uncertainty with transmission scanning mode. The result suggests that the reflection mode should be used in Gafchromic EBT3 film for low irradiation. Conclusion: The result suggests that the reflection mode should be used in Gafchromic EBT3 film for low irradiation.

  15. EBT GAFCHROMIC{sup TM} film dosimetry in compensator-based intensity modulated radiation therapy

    SciTech Connect

    Vaezzadeh, Seyedali; Allahverdi, Mahmoud; Nedaie, Hasan A.; Ay, Mohammadreza; Shirazi, Alireza; Yarahmadi, Mehran

    2013-07-01

    The electron benefit transfer (EBT) GAFCHROMIC films possess a number of features making them appropriate for high-quality dosimetry in intensity-modulated radiation therapy (IMRT). Compensators to deliver IMRT are known to change the beam-energy spectrum as well as to produce scattered photons and to contaminate electrons; therefore, the accuracy and validity of EBT-film dosimetry in compensator-based IMRT should be investigated. Percentage-depth doses and lateral-beam profiles were measured using EBT films in perpendicular orientation with respect to 6 and 18 MV photon beam energies for: (1) different thicknesses of cerrobend slab (open, 1.0, 2.0, 4.0, and 6.0 cm), field sizes (5×5, 10×10, and 20×20 cm{sup 2}), and measurement depths (D{sub max}, 5.0 and 10.0 cm); and (2) step-wedged compensator in a solid phantom. To verify results, same measurements were implemented using a 0.125 cm{sup 3} ionization chamber in a water phantom and also in Monte Carlo simulations using the Monte Carlo N-particle radiation transport computer code. The mean energy of photons was increased due to beam hardening in comparison with open fields at both 6 and 18 MV energies. For a 20×20 cm{sup 2} field size of a 6 MV photon beam and a 6.0 cm thick block, the surface dose decreased by about 12% and percentage-depth doses increased up to 3% at 30.0 cm depth, due to the beam-hardening effect induced by the block. In contrast, at 18 MV, the surface dose increased by about 8% and depth dose reduced by 3% at 30.0 cm depth. The penumbral widths (80% to 20%) increase with block thickness, field size, and beam energy. The EBT film results were in good agreement with the ionization chamber dose profiles and Monte Carlo N-particle radiation transport computer code simulation behind the step-wedged compensator. Also, there was a good agreement between the EBT-film and the treatment-planning results on the anthropomorphic phantom. The EBT films can be accurately used as a 2D dosimeter for dose

  16. A dosimetry method in the transverse plane of HDR Ir-192 brachytherapy source using gafchromic EBT2 film.

    PubMed

    Uniyal, S C; Sharma, S D; Naithani, U C

    2012-04-01

    Radiochromic film dosimetry is increasingly used in brachytherapy applications for its higher resolution ability as compared to other experimental methods. The present study was aimed to assess the accuracy and suitability of use of the improved radiochromic film model, Gafchromic EBT2, to evaluate the dose distribution in the transverse plane of microselectron HDR (192)Ir source. A specially designed and locally fabricated Polymethyl methacrylate (PMMA) phantom was used in this work for the experimental measurement of dose distribution around the source in its transverse plane. The AAPM TG-43U1 recommended radial dose function, g (r), and dose rate constant, Λ, for the source were measured using Gafchromic EBT2 film and thermoluminescent dosimeters (TLD). The EBT2 film measured dosimetric quantities were validated against their values obtained from the TLD measurements and previously published values for the same source available in literature. The dose rate constant and radial dose function for microselectron HDR (192)Ir source obtained from Gafchromic EBT2 film measurements are in agreement with their TLD measured results within 3.9% and 2.8% respectively. They also agree within the accepted range of uncertainty with their experimental and Monte Carlo calculated results reported in literature. This work demonstrates the suitability of using Gafchromic EBT2 film dosimetry in characterization of dose distribution in the transverse plane of HDR Ir-192 source. This is a more efficient method than TLD dosimetry at discrete and distant positions. Relative to TLD dosimetry, it is found to be better reproducible, easy to use and a less expensive method of dosimetry.

  17. Dosimetric characterization of GafChromic EBT film and its implication on film dosimetry quality assurance

    NASA Astrophysics Data System (ADS)

    Fuss, Martina; Sturtewagen, Eva; DeWagter, Carlos; Georg, Dietmar

    2007-07-01

    The suitability of radiochromic EBT film was studied for high-precision clinical quality assurance (QA) by identifying the dose response for a wide range of irradiation parameters typically modified in highly-conformal treatment techniques. In addition, uncertainties associated with varying irradiation conditions were determined. EBT can be used for dose assessment of absorbed dose levels as well as relative dosimetry when compared to absolute absorbed dose calibrated using ionization chamber results. For comparison, a silver halide film (Kodak EDR-2) representing the current standard in film dosimetry was included. As an initial step a measurement protocol yielding accurate and precise results was established for a flatbed transparency scanner (Epson Expression 1680 Pro) that was utilized as a film reading instrument. The light transmission measured by the scanner was found to depend on the position of the film on the scanner plate. For three film pieces irradiated with doses of 0 Gy, ~1 Gy and ~7 Gy, the pixel values measured in portrait or landscape mode differed by 4.7%, 6.2% and 10.0%, respectively. A study of 200 film pieces revealed an excellent sheet-to-sheet uniformity. On a long time scale, the optical development of irradiated EBT film consisted of a slow but steady increase of absorbance which was not observed to cease during 4 months. Sensitometric curves of EBT films obtained under reference conditions (SSD = 95 cm, FS = 5 × 5 cm2, d = 5 cm) for 6, 10 and 25 MV photon beams did not show any energy dependence. The average separation between all curves was only 0.7%. The variation of the depth d (range 2-25 cm) in the phantom did not affect the dose response of EBT film. Also the influence of the radiation field size (range 3 × 3-40 × 40 cm2) on the sensitometric curve was not significant. For EDR-2 films maximum differences between the calibration curves reached 7-8% for X6MV and X25MV. Radiochromic EBT film, in combination with a flatbed scanner

  18. Evaluation of the Gafchromic{sup Registered-Sign} EBT2 film for the dosimetry of radiosurgical beams

    SciTech Connect

    Larraga-Gutierrez, Jose M.; Garcia-Hernandez, Diana; Garcia-Garduno, Olivia A.; Galvan de la Cruz, Olga O.; Ballesteros-Zebadua, Paola; Esparza-Moreno, Karina P.

    2012-10-15

    Purpose: Radiosurgery uses small fields and high-radiation doses to treat intra- and extracranial lesions in a single session. The lack of a lateral electronic equilibrium and the presence of high-dose gradients in these fields are challenges for adequate measurements. The availability of radiation detectors with the high spatial resolution required is restricted to only a few. Stereotactic diodes and EBT radiochromic films have been demonstrated to be good detectors for small-beam dosimetry. Because the stereotactic diode is the standard measurement for the dosimetry of radiosurgical beams, the goal of this work was to perform measurements with the radiochromic film Gafchromic{sup Registered-Sign} EBT2 and compare its results with a stereotactic diode. Methods: Total scatter factors, tissue maximum, and off-axis ratios from a 6 MV small photon beams were measured using EBT2 radiochromic film in a water phantom. The film-measured data were evaluated by comparing it with the data measured with a stereotactic field diode (IBA-Dosimetry). Results: The film and diode measurements had excellent agreement. The differences between the detectors were less than or equal to 2.0% for the tissue maximum and the off-axis ratios. However, for the total scatter factors, there were significant differences, up to 4.9% (relative to the reference field), for field sizes less than 1.0 cm. Conclusions: This work found that the Gafchromic{sup Registered-Sign} EBT2 film is adequate for small photon beam measurements, particularly for tissue maximum and off-axis ratios. However, careful attention must be taken when measuring output factors of small beams below 1.0 cm due to the film's energy dependence. The measurement differences may be attributable to the film's active layer composition because EBT2 incorporates higher Z elements (i.e., bromide and potassium), hence revealing a potential energy dependence for the dosimetry of small photon beams.

  19. Impact of gamma analysis parameters on dose evaluation using Gafchromic EBT2 films

    NASA Astrophysics Data System (ADS)

    Lee, Seu-Ran; Park, Ji-Yeon; Suh, Tae-Suk; Park, Hae-Jin; Lee, Jeong-Woo; Jung, Won-Gyun

    2012-10-01

    To recommend optimal gamma analysis parameters (grid size and search range) for detecting dose errors, we evaluated the impact of gamma models and parameters on dose verification in volumetric modulated fields. Delivered doses were verified under open, 45° wedged, and volumetric modulated fields for prostate, anal, head and neck, and brain cancer by using Gafchromic EBT2 films for gamma evaluation. Two gamma models (a conventional method and a modified method to compensate for unintended dose errors caused by misalignments between reference and evaluated matrixes) were employed. The variation in the detected dose errors was evaluated in each gamma model for different grid sizes (0.5, 1, and 2 mm) and search ranges (1, 2, and 4 mm) applied to determine distant-to-agreement. The dose discrepancy of each evaluation was qualitatively and quantitatively evaluated using a pass ratio in analysis software developed in-house. The modified gamma model with a small search range and grid size showed a higher pass ratio than the conventional model in volumetric modulated arc therapy. The pass ratio for 2 mm grid size decreased by over 40% as compared to that for 1 mm grid size. The pass ratio decreased by more than 30% as the search range was increased from 1 mm to 4 mm. Therefore, 1 mm grid size and 1 mm search range may be appropriate to evaluate dose errors in modulated fields after using the modified gamma model.

  20. Investigation of absorption spectra of Gafchromic EBT2 film's components and their impact on UVR dosimetry

    NASA Astrophysics Data System (ADS)

    Aydarous, Abdulkadir

    2016-05-01

    The absorption spectra of the EBT2 film's components were investigated in conjunction with its use for UVA dosimetry. The polyester (topside) and adhesive layers of the EBT2 film have been gently removed. Gafchromic™ EBT2 films with and without the protected layers (polyester and adhesive) were exposed to UVR of 365 nm for different durations. Thereafter, the UV-visible spectra were measured using a UV-visible spectrophotometer (Model Spectro Dual Split Beam, UVS-2700). Films were digitized using a Nikon CanoScan 9000F Mark II flatbed scanner. The dosimetric characteristics including film's uniformity, reproducibility and post-irradiation development were investigated. The color development of EBT2 and new modified EBT2 (EBT2-M) films irradiated with UVA was relatively stable (less than 1%) immediately after exposure. Based on this study, the sensitivity of EBT2 to UVR with wavelength between ~350 nm and ~390 nm can significantly be enhanced if the adhesive layer (~25 μm) is removed. The polyester layer plays almost no part on absorbing UVR with wavelength between ~320 nm and ~390 nm. Furthermore, various sensitivities for the EBT2-M film has been established depending on the wavelength of analysis.

  1. Determination of dosimetric perturbations caused by aneurysm clip in stereotactic radiosurgery using gel phantoms and EBT-Gafchromic films

    SciTech Connect

    Geso, M.; Ackerly, T.; Brown, S.; Chua, Z.; He, C.; Wong, C. J.; Powell, C. E.; Ho, A.; Qiao, G.; Solomon, D. H.; Patterson, W.; Droege, J. M.

    2008-02-15

    Some radiotherapy patients are treated with titanium surgical aneurysm clips in the radiation field. This is of particular importance for stereotactic radiosurgery brain treatments, where the length of the blade of the clip may be comparable to the size of the radiation field. This study seeks to determine the extent of the dosimetric effects caused by surgical clips in stereotactic radiosurgery, using polyacrylamide gel phantoms and EBT type Gafchromic films. Using gel phantoms scanned with magnetic resonance imaging scanner, dose enhancement of around 20% was noted at distances less than 2 mm away from the clip surface. Gafchromic films showed about 6% variations in the dose up to few millimeters from the clip. These experimental results confirmed results predicted by Monte Carlo simulation techniques for higher density material surgical clips such as lead and platinum. Moreover, these experimental measurements clearly indicate dose reduction due to radiation attenuation behind the clip of about 4%.

  2. Characterizing the marker-dye correction for Gafchromic EBT2 film: A comparison of three analysis methods

    SciTech Connect

    McCaw, Travis J.; Micka, John A.; DeWerd, Larry A.

    2011-10-15

    Purpose: Gafchromic EBT2 film has a yellow marker dye incorporated into the active layer of the film that can be used to correct the film response for small variations in thickness. This work characterizes the effect of the marker-dye correction on the uniformity and uncertainty of dose measurements with EBT2 film. The effect of variations in time postexposure on the uniformity of EBT2 is also investigated. Methods: EBT2 films were used to measure the flatness of a {sup 60}Co field to provide a high-spatial resolution evaluation of the film uniformity. As a reference, the flatness of the {sup 60}Co field was also measured with Kodak EDR2 films. The EBT2 films were digitized with a flatbed document scanner 24, 48, and 72 h postexposure, and the images were analyzed using three methods: (1) the manufacturer-recommended marker-dye correction, (2) an in-house marker-dye correction, and (3) a net optical density (OD) measurement in the red color channel. The field flatness was calculated from orthogonal profiles through the center of the field using each analysis method, and the results were compared with the EDR2 measurements. Uncertainty was propagated through a dose calculation for each analysis method. The change in the measured field flatness for increasing times postexposure was also determined. Results: Both marker-dye correction methods improved the field flatness measured with EBT2 film relative to the net OD method, with a maximum improvement of 1% using the manufacturer-recommended correction. However, the manufacturer-recommended correction also resulted in a dose uncertainty an order of magnitude greater than the other two methods. The in-house marker-dye correction lowered the dose uncertainty relative to the net OD method. The measured field flatness did not exhibit any unidirectional change with increasing time postexposure and showed a maximum change of 0.3%. Conclusions: The marker dye in EBT2 can be used to improve the response uniformity of the film

  3. Developing a novel method to analyse Gafchromic EBT2 films in intensity modulated radiation therapy quality assurance.

    PubMed

    Hu, Yunfei; Wang, Yang; Fogarty, Gerald; Liu, Guilin

    2013-12-01

    Recently individual intensity modulated radiation therapy quality assurances (IMRT QA) have been more and more performed with Gafchromic™ EBT series films processed in red-green-blue (R-G-B) channel due to their extremely high spatial resolution. However, the efficiency of this method is relatively low, as for each box of film, a calibration curve must be established prior to the film being used for measurement. In this study, the authors find a novel method to process the Gafchromic™ EBT series, that is, to use the 16-bit greyscale channel to process the exposed film rather than the conventional 48-bit R-G-B channel, which greatly increases the efficiency and even accuracy of the whole IMRT procedure. The main advantage is that when processed in greyscale channel, the Gafchromic™ EBT2 films exhibits a linear relationship between the net pixel value and the dose delivered. This linear relationship firstly reduces the error in calibration-curve fitting, and secondly saves the need of establishing a calibration curve for each box of films if it is only to be used for relative measurements. Clinical testing for this novel method was carried out in two radiation therapy centres that involved a total of 743 IMRT cases, and 740 cases passed the 3 mm 3 % gamma analysis criteria. The cases were also tested with small ionization chambers (cc-13) and the results were convincing. Consequently the authors recommend the use of this novel method to improve the accuracy and efficiency of individual IMRT QA procedure using Gafchromic EBT2 films.

  4. Variations in dose distribution and optical properties of Gafchromic{sup TM} EBT2 film according to scanning mode

    SciTech Connect

    Park, Soah; Kang, Sei-Kwon; Cheong, Kwang-Ho; Hwang, Taejin; Kim, Haeyoung; Han, Taejin; Lee, Me-Yeon; Kim, KyoungJu; Bae, Hoonsik; Su Kim, Hyeong; Han Kim, Jung; Jae Oh, Seung; Suh, Jin-Suck

    2012-05-15

    Purpose: The authors aim was to investigate the effects of using transmission and reflection scanning modes, the film orientation during scanning, and ambient room light on a dosimetry system based on the Gafchromic{sup TM} EBT2 film model. Methods: For calibration, the films were cut to 3 x 3 cm{sup 2} and irradiated from 20 to 700 cGy at the depth of maximum dose using 6 and 10 MV photon beams in a 10 x 10 cm{sup 2} field size. Absolute dose calibration of the linear accelerator was done according to the TRS398 protocol. An FG65-G ionization chamber was used to monitor the dose while irradiating the films in solid water. The film pieces were scanned with an EPSON Expression 1680 Pro flatbed scanner in transmission and reflection modes. Authors investigated the effect of orientation on films and examined the optical properties of EBT2 film using an ellipsometer and an ultraviolet (UV)/visible spectrometer to explain the dosimetric dependence of the film on orientation during the scanning process. To investigate the effect of ambient room light, films were preirradiated in 6 and 10 MV photon beams with intensity-modulated radiotherapy (IMRT) quality assurance (QA) plans, and then exposed to room light, either directly for 2 days in a workroom or for 2 months in a film box. Gamma index pass criteria of (3%, 3 mm) were used. Results: The dose response curves based on net optical density (NOD) indicated that the reflection scanning mode can provide a better dose sensitivity than the transmission scanning mode, whereas the standard deviation of the dose is greater in reflection mode than in transmission mode. When the film was rotated 90 deg. from the portrait orientation, the average dose of the EBT2 film decreased by 11.5-19.6% in transmission mode and by 1.5-2.3% in reflection mode. Using an ellipsometer, variation of the refractive index of EBT2 film--the birefringence property--was found to be the largest between 45 deg. (1.72 and 1.71) and 135 deg. (1.8 and 1

  5. The use of new GAFCHROMIC EBT film for {sup 125}I seed dosimetry in Solid Water phantom

    SciTech Connect

    Chiu-Tsao, Sou-Tung; Medich, David; Munro, John III

    2008-08-15

    Radiochromic film dosimetry has been extensively used for intravascular brachytherapy applications for near field within 1 cm from the sources. With the recent introduction of new model of radiochromic films, GAFCHROMIC EBT, with higher sensitivity than earlier models, it is promising to extend the distances out to 5 cm for low dose rate (LDR) source dosimetry. In this study, the use of new model GAFCHROMIC EBT film for {sup 125}I seed dosimetry in Solid Water was evaluated for radial distances from 0.06 cm out to 5 cm. A multiple film technique was employed for four {sup 125}I seeds (Implant Sciences model 3500) with NIST traceable air kerma strengths. Each experimental film was positioned in contact with a {sup 125}I seed in a Solid Water phantom. The products of the air kerma strength and exposure time ranged from 8 to 3158 U-h, with the initial air kerma strength of 6 U in a series of 25 experiments. A set of 25 calibration films each was sequentially exposed to one {sup 125}I seed at about 0.58 cm distance for doses from 0.1 to 33 Gy. A CCD camera based microdensitometer, with interchangeable green (520 nm) and red (665 nm) light boxes, was used to scan all the films with 0.2 mm pixel resolution. The dose to each {sup 125}I calibration film center was calculated using the air kerma strength of the seed (incorporating decay), exposure time, distance from seed center to film center, and TG43U1S1 recommended dosimetric parameters. Based on the established calibration curve, dose conversion from net optical density was achieved for each light source. The dose rate constant was determined as 0.991 cGy U{sup -1} h{sup -1} ({+-}6.9%) and 1.014 cGy U{sup -1} h{sup -1} ({+-}6.8%) from films scanned using green and red light sources, respectively. The difference between these two values was within the uncertainty of the measurement. Radial dose function and 2D anisotropy function were also determined. The results obtained using the two light sources corroborated each

  6. A dosimetric study of small photon fields using polymer gel and Gafchromic EBT films

    SciTech Connect

    Hassani, Hossein; Nedaie, Hassan Ali; Zahmatkesh, Mohammad Hassan; Shirani, Kaveh

    2014-04-01

    The use of small field sizes is increasingly becoming important in radiotherapy particularly since the introduction of stereotactic radiosurgery and intensity-modulated radiation therapy techniques. The reliable measurement of delivered dose from such fields with conventional dosimeters, such as ionization chambers, is a challenging task. In this work, methacrylic and ascorbic acid in gelatin initiated by copper polymer gel dosimeters are employed to measure dose in 3 dimensions. Field sizes of 5 × 5 mm{sup 2}, 10 × 10 mm{sup 2}, 20 × 20 mm{sup 2}, and 30 × 30 mm{sup 2} are investigated for a 6-MV x-rays. The results show an agreement with Gafchromic film, with some variation in measured doses near the edge of the fields, where the film data decrease more rapidly than the other methods. Dose penumbra widths obtained with gel dosimeters and Gafchormic film were generally in agreement with each other. The results of this work indicate that polymer gel dosimetry could be invaluable for the quantification of the 3-dimensional dose distribution in small field size.

  7. Evaluation of GafChromic EBT prototype B for external beam dose verification

    SciTech Connect

    Todorovic, M.; Fischer, M.; Cremers, F.; Thom, E.; Schmidt, R.

    2006-05-15

    The capability of the new GafChromic EBT prototype B for external beam dose verification is investigated in this paper. First the general characteristics of this film (dose response, postirradiation coloration, influence of calibration field size) were derived using a flat-bed scanner. In the dose range from 0.1 to 8 Gy, the sensitivity of the EBT prototype B film is ten times higher than the response of the GafChromic HS, which so far was the GafChromic film with the highest sensitivity. Compared with the Kodak EDR2 film, the response of the EBT is higher by a factor of 3 in the dose range from 0.1 to 8 Gy. The GafChromic EBT almost does not show a temporal growth of the optical density and there is no influence of the chosen calibration field size on the dose response curve obtained from this data. A MatLab program was written to evaluate the two-dimensional dose distributions from treatment planning systems and GafChromic EBT film measurements. Verification of external beam therapy (SRT, IMRT) using the above-mentioned approach resulted in very small differences between the planned and the applied dose. The GafChromic EBT prototype B together with the flat-bed scanner and MatLab is a successful approach for making the advantages of the GafChromic films applicable for verification of external beam therapy.

  8. SU-E-T-637: Age and Batch Dependence of Gafchromic EBT Films in Photon and Proton Beam Dosimetry

    SciTech Connect

    Das, I; Akino, Y

    2014-06-15

    Purpose: Gafchrmoic films have undergone significant changes in characteristic over time reflected by HS, EBT, EBT2, EBT3 name. Interand intra- EBT film variability have been studied and found to be significant. However, age and lot/batch type have not been studied in various radiation beams that are investigated in this study. Methods: Thirteen sets of films; 2 EBT, 6 EBT2 and 5 EBT3 films with different lot number and expiration date were acquired. Films were cut longitudinally in 3 cm width and sandwiched between two solid water slabs that were placed in a water phantom to eliminate air gap. Each set of films were irradiated longitudinally at dmax with 6 and 15 MV photon beams as well as in reference condition (16 cm range, 10 cm SOBP) in our uniform scanning proton beam. Films were scanned using an Epson flatbed scanner (ES-10000G) after 48 hours to achieve full polymerization. The profiles were compared with the depth-dose measured with ionization chamber and net optical density (net OD) were calculated. Results: The net OD versus dose for EBT, EBT2 and EBT3 films of different age showed similar trend but with different slope. Even after calibration, differences are clearly visible in net OD in proton and photon beams. A net OD difference of nearly 0.5 is observed in photon but this was limited to 0.2–0.3 in proton beam. This relates to 20% and 15% dosimetric difference in photon and proton beam respectively over age and type of film. Conclusion: Net OD related to dose is dependent on the age and lot of the film in both photon and proton beams. It is concluded that before any set of film is used, a calibration film should be used for a meaningful dosimetry. The expired films showed larger OD variation compared to unexpired films.

  9. Quantitative analysis of dose distribution to determine optimal width of respiratory gating window using Gafchromic EBT2 film

    NASA Astrophysics Data System (ADS)

    Lee, Sung Hyun; Kim, Kum Bae; Kim, Mi-Sook; Yoo, Hyung-Jun; Park, Seungwoo; Jung, Haijo; Ji, Young Hoon; Yi, Chul-Young

    2013-02-01

    The purpose of this study was to determine the dependence of the dose distribution on the width of the respiratory gating window by using radiochromic Gafchromic EBT2 film. An in-house three-dimensional breathing simulator was used with a 4-s cycle and a 3-cm movement. The gamma index and the 50, 95, and 20-80% dose distributions were individually analyzed with regard to static, 100 (full motion), 60, 40, 30, 20, and 15% respiratory gating windows. In addition, dose differences based on the different extents of exposure were compared and analyzed along with total beam delivery time. Dose distributions became increasingly similar to the static value with decreasing respiratory gating window width. The extent differences from the static case for the low-dose region were not significant; neither were the extent differences for the high-dose region and 30, 20, and 15% gating windows (P = 0.388, 0.275, respectively). However, the 40% gating window showed a significant difference (P = 0.001). Moreover, the treatment time for the 30% gating window was reduced by more than half compared to that for the 15% gating window. Thus, the 30% window would be a reasonable choice for maximizing the range of the gating window while markedly decreasing the dose difference and the treatment time.

  10. Dose calculation of megavoltage IMRT using convolution kernels extracted from GafChromic EBT film-measured pencil beam profiles

    NASA Astrophysics Data System (ADS)

    Naik, Mehul S.

    Intensity-modulated radiation therapy (IMRT) is a 3D conformal radiation therapy technique that utilizes either a multileaf intensity-modulating collimator (MIMiC used with the NOMOS Peacock system) or a multileaf collimator (MLC) on a conventional linear accelerator for beam intensity modulation to afford increased conformity in dose distributions. Due to the high-dose gradient regions that are effectively created, particular emphasis should be placed in the accurate determination of pencil beam kernels that are utilized by pencil beam convolution algorithms employed by a number of commercial IMRT treatment planning systems (TPS). These kernels are determined from relatively large field dose profiles that are typically collected using an ion chamber during commissioning of the TPS, while recent studies have demonstrated improvements in dose calculation accuracy when incorporating film data into the commissioning measurements. For this study, it has been proposed that the shape of high-resolution dose kernels can be extracted directly from single pencil beam (beamlet) profile measurements acquired using high-precision dosimetric film in order to accurately compute dose distributions, specifically for small fields and the penumbra regions of the larger fields. The effectiveness of GafChromic EBT film as an appropriate dosimeter to acquire the necessary measurements was evaluated and compared to the conventional silver-halide Kodak EDR2 film. Using the NOMOS Peacock system, similar dose kernels were extracted through deconvolution of the elementary pencil beam profiles using the two different types of films. Independent convolution-based calculations were performed using these kernels, resulting in better agreement with the measured relative dose profiles, as compared to those determined by CORVUS TPS' finite-size pencil beam (FSPB) algorithm. Preliminary evaluation of the proposed method in performing kernel extraction for an MLC-based IMRT system also showed

  11. Comparison of dosimeter response: ionization chamber, TLD, and Gafchromic EBT2 film in 3D-CRT, IMRT, and SBRT techniques for lung cancer

    NASA Astrophysics Data System (ADS)

    Fitriandini, A.; Wibowo, W. E.; Pawiro, S. A.

    2016-03-01

    This research was conducted by measuring point dose in the target area (lungs), heart, and spine using four dosimeters (PTW N30013, Exradin A16, TLD, and the Gafchromic EBT2 film). The measurement was performed in CIRS 002LFC thorax phantom. The main objective of this study was to compare the dosimetry of those different systems. Dose measurements performed only in a single fraction of irradiation. The measurements result shown that TLD has the least accuracy and precision. As the effect of volume averaging, ionization chamber reaches the discrepancy value up to -13.30% in the target area. EBT2 film has discrepancy value of <1% in the 3D-CRT and IMRT techniques. This dosimeter is proposed to be an appropriate alternative dosimeter to be used at point dose verification.

  12. A study on rectal dose measurement in phantom and in vivo using Gafchromic EBT3 film in IMRT and CyberKnife treatments of carcinoma of prostate

    PubMed Central

    Ganapathy, K.; Kurup, P. G. G.; Murali, V.; Muthukumaran, M.; Subramanian, S. Balaji; Velmurugan, J.

    2013-01-01

    The objective of this study is to check the feasibility of in vivo rectal dose measurement in intensity-modulated radiotherapy (IMRT) and CyberKnife treatments for carcinoma prostate. An in-house pelvis phantom made with bee's wax was used in this study. Two cylindrical bone equivalent materials were used to simulate the femur. Target and other critical structures associated with carcinoma prostate were delineated on the treatment planning images by the radiation oncologist. IMRT treatment plan was generated in Oncentra Master Plan treatment planning system and CyberKnife treatment plan was generated in Multiplan treatment planning system. Dose measurements were carried out in phantom and in patient using Gafchromic EBT3 films. RIT software was used to analyze the dose measured by EBT3 films. The measured doses using EBT3 films were compared with the TPS-calculated dose along the anterior rectal wall at multiple points. From the in-phantom measurements, it is observed that the difference between calculated and measured dose was mostly within 5%, except for a few measurement points. The difference between calculated and measured dose in the in-patient measurements was higher than 5% in regions which were away from the target. Gafchromic EBT3 film is a suitable detector for in vivo rectal dose measurements as it offers the possibility of analyzing the dose at multiple points. In addition, the method of extending this in vivo rectal dose measurement technique as a tool for patient-specific quality assurance check is also analyzed. PMID:24049320

  13. Feasibility of EBT Gafchromic films for comparison exercises among standard beta radiation fields.

    PubMed

    Benavente, J A; Meira-Belo, L C; Reynaldo, S R; da Silva, T A

    2012-12-01

    The feasibility of using radiochromic films to verify the metrological coherence among standard beta radiation fields was evaluated. Exercises were done between two Brazilian metrology laboratories in beta fields from (90)Sr/(90)Y, (85)Kr and (147)Pm radiation sources. Results showed that the radiochromic film was useful for field mapping aiming uniformity and alignment verification and it was not reliable for absorbed dose measurements only for (147)Pm beta field.

  14. Analysis of the EBT3 Gafchromic film irradiated with 6 MV photons and 6 MeV electrons using reflective mode scanners.

    PubMed

    Farah, Nicolas; Francis, Ziad; Abboud, Marie

    2014-09-01

    We explore in our study the effects of electrons and X-rays irradiations on the newest version of the Gafchromic EBT3 film. Experiments are performed using the Varian "TrueBeam 1.6" medical accelerator delivering 6 MV X-ray photons and 6 MeV electron beams as desired. The main interest is to compare the responses of EBT3 films exposed to two separate beams of electrons and photons, for radiation doses ranging up to 500 cGy. The analysis is done on a flatbed EPSON 10000 XL scanner and cross checked on a HP Scanjet 4850 scanner. Both scanners are used in reflection mode taking into account landscape and portrait scanning positions. After thorough verifications, the reflective scanning method can be used on EBT3 as an economic alternative to the transmission method which was also one of the goals of this study. A comparison is also done between single scan configuration including all samples in a single A4 (HP) or A3 (EPSON) format area and multiple scan procedure where each sample is scanned separately on its own. The images analyses are done using the ImageJ software. Results show significant influence of the scanning configuration but no significant differences between electron and photon irradiations for both single and multiple scan configurations. In conclusion, the film provides a reliable relative dose measurement method for electrons and photons irradiations in the medical field applications.

  15. SU-E-T-121: Dosimetric Characterization of Gafchromic Film EBT3 Using Vidar DosimetryPro Advantage RED and EPSON Expression 10000XL Scanners

    SciTech Connect

    Medina, L; Adrada, A; Filipuzzi, M; Garrigo, E; Venencia, C

    2014-06-01

    Purpose: The purpose of this paper is to characterize EBT3 using two types of scanner, analyzing the factors of influence of each dosimetry system. Methods: The film used in this study was GAFCHROMIC EBT3, the films were exposed at a dose range between 0Gy a 9Gy in a solid water phantom, SSD=100cm, 5cm depth and perpendicularly to the 6MV photon beam generated by a Novalis TX linear accelerator equipped with an HDMLC. A Farmer type ion chamber TN30013 (PTW) was used to determine the dose delivered to the film. The films were digitized with a scanner EPSON expression 10000XL and the VIDAR DosimetryPro Adventage RED. Software RIT113v6.1 was used for construction of the calibration curve and analysis. The film characteristics investigated were: response at different dose levels, sensitivity to orientation and side and resolution through the results of the spatial response function by analyzing a step pattern. Additionally, 20 IMRT treatment fields were measured with both scanner and compared with calculated dose using gamma index analysis (3%-3mm). Results: The OD obtained for dose level 2Gy in the orientation portrait of the film on the scanner EPSON is (0,222±0,19) and for Vidar RED (0,252±0,10) and landscape is for EPSON (0,211±0,25) and for Vidar RED (0,250±0,11) . The orientation dependence with respect to film side is about 0,09% for EPSON and about 0.03% for VIDAR. The spatial response function increase in response to the Gaussian function FWHM EPSON scanner (0.18mm) compared with VIDAR scanner function (less than 0.06mm) was observed. We analyzed 20 total plan dose distributions the number of pixels with gamma>1 (3%-3mm) was 0.7%±1.2 [0.1%; 2.82%] for EBT3-VIDAR y 2%±2.9 [0.2%; 3.5%] for EBT3-EPSON. Conclusion: VIDAR scanner shows better sensitivity. EBT3 film shows a different response between portrait and landscape orientation. Step pattern is better reproduce by VIDAR scanner.

  16. SU-E-T-269: Quality Assurance of Spine Volumetric Modulated Arc Therapy with Flattening Filter Free Beams Using Gafchromic EBT3 Films

    SciTech Connect

    Choi, Y; Cho, B; Kwak, J; Ahn, S; Choi, E; Kim, J; Song, S; Yoon, S; Kim, Y; Kim, S; Park, J

    2014-06-01

    Purpose: We implemented the Gafchromic film-based patient specific QA of volumetric modulated arc therapy (VMAT) with flattening-filter free (FFF) beams for spine metastases and validated the accuracy of fast arc delivery. Methods: EBT3 films and a homemade cylindrical QA phantom were employed for dosimetric verification of VMATs. For 14 FFF VMAT plans (10 with 10-MV FFF beams and 4 with 6-MV FFF beams), the doses were recalculated on the phantom and delivered by a TrueBeam STx accelerator equipped with a high-definition 120 leaf MLC. The EBT3 films were scanned using an Epson 10000XL scanner through the FilmQA Pro software. All the irradiated film images were converted to dose map using a calibration response curve. The resulting dose map of film measurement was compared with treatment plan and evaluated using gamma analysis with dose tolerance of 2% within 2 mm. In addition, the point-dose measurement in the phantom using an ion chamber was evaluated as a reference in a ratio of measured and planned doses. Results: The gamma pass rates averaged over all FFF plans for composite-field measurements were 96.0 ± 3.6% (88.9%–99.5%). When adopting a tolerance level of 3% - 3 mm, the gamma pass rates were improved with the ranges from 98% to 100%. In addition, dose profiles and dose distributions showed that spinal cord was protected by the rapid dose fall-off and by delivering the treatment with high precision. In point-dose measurements, the average differences between the measured and planned doses were 0.5% ± 1.0% of the prescription dose. Conclusion: We demonstrated that Gafchromic EBT3 film would be an effective patient-specific QA tool, especially for VMAT of spine SBRT with treatment of small fields and highly gradient dose distributions. The results of film QA verified that the dosimetric accuracy of spine SBRT utilizing RapidArc with FFF beams in our institution is reliable.

  17. Investigation of the gafchromic film—EBT2: Features for UVR measurements

    NASA Astrophysics Data System (ADS)

    Abukassem, I.; Bero, M. A.

    2014-04-01

    Important improvement in applied ultraviolet radiation (UVR) dosimetry is achieved using passive detector based on chemical or biological products. These kinds of UVR detectors change their optical properties in correlation with the dose. This work aims to investigate the gafchromic film EBT2 properties under high UVA radiation dose comparable with long exposure to solar radiations. Measurements showed that about 90% of UVA radiation beam is absorbed in single films sheet (285 μm thickness). The EBT2 film components show good stability under high ultraviolet radiation dose. The increase in film visible spectrum absorbance, under UVA irradiation, is due to the decrease in the film active and topcoat layers transmittance and not of the polyester layers degradation. The change in film absorbance at 633 nm, after UVA dose of 112 kJ/m2, is about two and half times more than the initial value of unexposed film A0, 633 nm (A0, 633 nm≈0.6). The phenomenon of post-exposure stability for the studied EBT2 film is found reproducible and has a small impact on the measurement accuracy (≈ 1%). The studied EBT2 film absorbance changes depend on the applied UVR dose and not on the irradiance level. Relative divergence between the film responses, measured at different dose rates, is lower than 5% for a wide irradiance range. This dependency is justified by the variation of local responsivity in the film and also the irradiation source stability. The response linearity of the gafchromic film EBT2 has been confirmed over a wide dose rate range in the UVA spectrum.

  18. Comparison of Gafchromic EBT2 and EBT3 for patient-specific quality assurance: Cranial stereotactic radiosurgery using volumetric modulated arc therapy with multiple noncoplanar arcs

    SciTech Connect

    Fiandra, Christian; Fusella, Marco; Filippi, Andrea Riccardo; Ricardi, Umberto; Ragona, Riccardo; Giglioli, Francesca Romana; Mantovani, Cristina

    2013-08-15

    Purpose: Patient-specific quality assurance in volumetric modulated arc therapy (VMAT) brain stereotactic radiosurgery raises specific issues on dosimetric procedures, mainly represented by the small radiation fields associated with the lack of lateral electronic equilibrium, the need of small detectors and the high dose delivered (up to 30 Gy). Gafchromic{sup TM} EBT2 and EBT3 films may be considered the dosimeter of choice, and the authors here provide some additional data about uniformity correction for this new generation of radiochromic films.Methods: A new analysis method using blue channel for marker dye correction was proposed for uniformity correction both for EBT2 and EBT3 films. Symmetry, flatness, and field-width of a reference field were analyzed to provide an evaluation in a high-spatial resolution of the film uniformity for EBT3. Absolute doses were compared with thermoluminescent dosimeters (TLD) as baseline. VMAT plans with multiple noncoplanar arcs were generated with a treatment planning system on a selected pool of eleven patients with cranial lesions and then recalculated on a water-equivalent plastic phantom by Monte Carlo algorithm for patient-specific QA. 2D quantitative dose comparison parameters were calculated, for the computed and measured dose distributions, and tested for statistically significant differences.Results: Sensitometric curves showed a different behavior above dose of 5 Gy for EBT2 and EBT3 films; with the use of inhouse marker-dye correction method, the authors obtained values of 2.5% for flatness, 1.5% of symmetry, and a field width of 4.8 cm for a 5 × 5 cm{sup 2} reference field. Compared with TLD and selecting a 5% dose tolerance, the percentage of points with ICRU index below 1 was 100% for EBT2 and 83% for EBT3. Patients analysis revealed statistically significant differences (p < 0.05) between EBT2 and EBT3 in the percentage of points with gamma values <1 (p= 0.009 and p= 0.016); the percent difference as well as

  19. Radiochromic film dosimetry: considerations on precision and accuracy for EBT2 and EBT3 type films.

    PubMed

    Dreindl, Ralf; Georg, Dietmar; Stock, Markus

    2014-05-01

    Gafchromic® EBT2 film is a widely used dosimetric tool for quality assurance in radiation therapy. In 2012 EBT3 was presented as a replacement for EBT2 films. The symmetric structure of EBT3 films to reduce face-up/down dependency as well as the inclusion of a matte film surface to frustrate Newton Ring artifacts present the most prominent improvements of EBT3 films. The aim of this study was to investigate the characteristics of EBT3 films, to benchmark the films against the known EBT2-features and to evaluate the dosimetric behavior over a time period greater than 6 months. All films were irradiated to clinical photon beams (6 MV, 10 MV and 18 MV) on an Elekta Synergy Linac equipped with a Beam Modulator MLC in solid water phantom slabs. Film digitalization was done with a flatbed transparency scanner (Type Epson Expression 1680 Pro). MATLAB® was used for further statistical calculations and image processing. The investigations on post-irradiation darkening, film orientation, film uniformity and energy dependency resulted in negligible differences between EBT2 and EBT3 film. A minimal improvement in face-up/down dependence was found for EBT3. The matte film surface of EBT3 films turned out to be a practical feature as Newton rings could be eliminated completely. Considering long-term behavior (> 6 months) a shift of the calibration curve for EBT2 and EBT3 films due to changes in the dynamic response of the active component was observed. In conclusion, the new EBT3 film yields comparable results to its predecessor EBT2. The general advantages of radiochromic film dosimeters are completed by high film homogeneity, low energy dependence for the observed energy range and a minimized face-up/down dependence. EBT2 dosimetry-protocols can also be used for EBT3 films, but the inclusion of periodical recalibration-interval (e.g. once a quarter) is recommended for protocols of both film generations. PMID:24055395

  20. Comparison of methods for the measurement of radiation dose distributions in high dose rate (HDR) brachytherapy: Ge-doped optical fiber, EBT3 Gafchromic film, and PRESAGE{sup Registered-Sign} radiochromic plastic

    SciTech Connect

    Palmer, A. L.; Di Pietro, P.; Alobaidli, S.; Issa, F.; Doran, S.; Bradley, D.; Nisbet, A.

    2013-06-15

    Purpose: Dose distribution measurement in clinical high dose rate (HDR) brachytherapy is challenging, because of the high dose gradients, large dose variations, and small scale, but it is essential to verify accurate treatment planning and treatment equipment performance. The authors compare and evaluate three dosimetry systems for potential use in brachytherapy dose distribution measurement: Ge-doped optical fibers, EBT3 Gafchromic film with multichannel analysis, and the radiochromic material PRESAGE{sup Registered-Sign} with optical-CT readout. Methods: Ge-doped SiO{sub 2} fibers with 6 {mu}m active core and 5.0 mm length were sensitivity-batched and their thermoluminescent properties used via conventional heating and annealing cycles. EBT3 Gafchromic film of 30 {mu}m active thickness was calibrated in three color channels using a nominal 6 MV linear accelerator. A 48-bit transmission scanner and advanced multichannel analysis method were utilized to derive dose measurements. Samples of the solid radiochromic polymer PRESAGE{sup Registered-Sign }, 60 mm diameter and 100 mm height, were analyzed with a parallel beam optical CT scanner. Each dosimetry system was used to measure the dose as a function of radial distance from a Co-60 HDR source, with results compared to Monte Carlo TG-43 model data. Each system was then used to measure the dose distribution along one or more lines through typical clinical dose distributions for cervix brachytherapy, with results compared to treatment planning system (TPS) calculations. Purpose-designed test objects constructed of Solid Water and held within a full-scatter water tank were utilized. Results: All three dosimetry systems reproduced the general shape of the isolated source radial dose function and the TPS dose distribution. However, the dynamic range of EBT3 exceeded those of doped optical fibers and PRESAGE{sup Registered-Sign }, and the latter two suffered from unacceptable noise and artifact. For the experimental

  1. Dosimetric verification of stereotactic radiosurgery/stereotactic radiotherapy dose distributions using Gafchromic EBT3

    SciTech Connect

    Cusumano, Davide; Fumagalli, Maria L.; Marchetti, Marcello; Fariselli, Laura; De Martin, Elena

    2015-10-01

    Aim of this study is to examine the feasibility of using the new Gafchromic EBT3 film in a high-dose stereotactic radiosurgery and radiotherapy quality assurance procedure. Owing to the reduced dimensions of the involved lesions, the feasibility of scanning plan verification films on the scanner plate area with the best uniformity rather than using a correction mask was evaluated. For this purpose, signal values dispersion and reproducibility of film scans were investigated. Uniformity was then quantified in the selected area and was found to be within 1.5% for doses up to 8 Gy. A high-dose threshold level for analyses using this procedure was established evaluating the sensitivity of the irradiated films. Sensitivity was found to be of the order of centiGray for doses up to 6.2 Gy and decreasing for higher doses. The obtained results were used to implement a procedure comparing dose distributions delivered with a CyberKnife system to planned ones. The procedure was validated through single beam irradiation on a Gafchromic film. The agreement between dose distributions was then evaluated for 13 patients (brain lesions, 5 Gy/die prescription isodose ~80%) using gamma analysis. Results obtained using Gamma test criteria of 5%/1 mm show a pass rate of 94.3%. Gamma frequency parameters calculation for EBT3 films showed to strongly depend on subtraction of unexposed film pixel values from irradiated ones. In the framework of the described dosimetric procedure, EBT3 films proved to be effective in the verification of high doses delivered to lesions with complex shapes and adjacent to organs at risk.

  2. Absolute dosimetric characterization of Gafchromic EBT3 and HDv2 films using commercial flat-bed scanners and evaluation of the scanner response function variability

    NASA Astrophysics Data System (ADS)

    Chen, S. N.; Gauthier, M.; Bazalova-Carter, M.; Bolanos, S.; Glenzer, S.; Riquier, R.; Revet, G.; Antici, P.; Morabito, A.; Propp, A.; Starodubtsev, M.; Fuchs, J.

    2016-07-01

    Radiochromic films (RCF) are commonly used in dosimetry for a wide range of radiation sources (electrons, protons, and photons) for medical, industrial, and scientific applications. They are multi-layered, which includes plastic substrate layers and sensitive layers that incorporate a radiation-sensitive dye. Quantitative dose can be retrieved by digitizing the film, provided that a prior calibration exists. Here, to calibrate the newly developed EBT3 and HDv2 RCFs from Gafchromic™, we used the Stanford Medical LINAC to deposit in the films various doses of 10 MeV photons, and by scanning the films using three independent EPSON Precision 2450 scanners, three independent EPSON V750 scanners, and two independent EPSON 11000XL scanners. The films were scanned in separate RGB channels, as well as in black and white, and film orientation was varied. We found that the green channel of the RGB scan and the grayscale channel are in fact quite consistent over the different models of the scanner, although this comes at the cost of a reduction in sensitivity (by a factor ˜2.5 compared to the red channel). To allow any user to extend the absolute calibration reported here to any other scanner, we furthermore provide a calibration curve of the EPSON 2450 scanner based on absolutely calibrated, commercially available, optical density filters.

  3. Absolute dosimetric characterization of Gafchromic EBT3 and HDv2 films using commercial flat-bed scanners and evaluation of the scanner response function variability.

    PubMed

    Chen, S N; Gauthier, M; Bazalova-Carter, M; Bolanos, S; Glenzer, S; Riquier, R; Revet, G; Antici, P; Morabito, A; Propp, A; Starodubtsev, M; Fuchs, J

    2016-07-01

    Radiochromic films (RCF) are commonly used in dosimetry for a wide range of radiation sources (electrons, protons, and photons) for medical, industrial, and scientific applications. They are multi-layered, which includes plastic substrate layers and sensitive layers that incorporate a radiation-sensitive dye. Quantitative dose can be retrieved by digitizing the film, provided that a prior calibration exists. Here, to calibrate the newly developed EBT3 and HDv2 RCFs from Gafchromic™, we used the Stanford Medical LINAC to deposit in the films various doses of 10 MeV photons, and by scanning the films using three independent EPSON Precision 2450 scanners, three independent EPSON V750 scanners, and two independent EPSON 11000XL scanners. The films were scanned in separate RGB channels, as well as in black and white, and film orientation was varied. We found that the green channel of the RGB scan and the grayscale channel are in fact quite consistent over the different models of the scanner, although this comes at the cost of a reduction in sensitivity (by a factor ∼2.5 compared to the red channel). To allow any user to extend the absolute calibration reported here to any other scanner, we furthermore provide a calibration curve of the EPSON 2450 scanner based on absolutely calibrated, commercially available, optical density filters. PMID:27475550

  4. Poster — Thur Eve — 26: Evaluation of lens dose from anterior electron beams: comparison of Pinnacle and Gafchromic EBT3 film

    SciTech Connect

    Sanier, M; Wronski, M; Yeboah, C

    2014-08-15

    The purpose of this work is twofold: 1) to measure dose profiles under lead shielding at the level of the lens for a range of clinical electron energies via film dosimetry; and, 2) to assess the validity of the Pinnacle treatment planning system (TPS) in calculating the penumbral doses under lead shielding with the heterogeneous electron algorithm. First, a film calibration curve that spanned the electron energies of interest, 6–18MeV, was created. Next, EBT3 film and lead shielding were incorporated into a solid water phantom with the film positioned 7mm below the lead and a variable thickness of bolus on top. This geometry was reproduced in the Pinnacle TPS and used to calculate dose profiles using the heterogeneous electron algorithm. The measured vs. calculated dose profiles were normalized to d{sub max} in a homogeneous phantom with no lead shielding and compared. Pinnacle consistently overestimated the dose distal to the lead shielding with significant discrepancies occurring near the edge of the lead shield reaching 25% at the edge and 35% in the open field region. The film measurements showed that a minimum lead margin of 5mm extending beyond the diameter of the lens is required to adequately shield the lens to ≤10% of the dose at d{sub max}. These measurements allow for a reasonable estimate of the dose to the lens from anterior electron beams. They also allow for clinicians to assess the extent of the lead margin required to reduce the lens dose to an acceptable amount prior to radiotherapy treatment.

  5. Characterization of the effect of MRI on Gafchromic film dosimetry.

    PubMed

    Reyhan, Meral L; Chen, Ting; Zhang, Miao

    2015-01-01

    Magnetic resonance (MR) imaging of Gafchromic film causes perturbation to absolute dosimetry measurements; the purpose of this work was to characterize the perturbation and develop a correction method for it. Three sets of Gafchromic EBT2 film were compared: radiation (control), radiation followed by MR imaging (RAD + B), and MR imaging followed by radiation (B + RAD). The T1-weighted and T2-weighted MR imaging was performed using a 1.5T scanner with the films wedged between two chicken legs. Doses from 0 to 800 cGy were delivered with a 6MV linac. The time interval between radiation and MR imaging was less than 10 min. Film calibration was generated from the red channel. Microscopic imaging was performed on two pieces of film. The effect of specific absorption rate (SAR) was determined by exposing another three sets of films to low, medium, and high levels of SAR through a series of pulse sequences. No discernible preferential alignment was detected on the microscopic images of the irradiated film exposed to MRI. No imaging artifacts were introduced by Gafchromic film on any MR images. On average, 4% dose difference was observed between B + RAD or RAD + B and the control, using the same calibration curve. The pixel values between the B + RAD or RAD + B and the control films were found to follow a linear relationship pixel(Control) = 1.02 × pixel(B + RAD or RAD + B). By applying this correction, the average dose error was reduced to approximately 2%. The SAR experiment revealed a dose overestimation with increasing SAR even when the correction was applied. It was concluded that MR imaging introduces perturbation on Gafchromic film dose measurements by 4% on average, compared to calibrating the film without the presence of MRI. This perturbation can be corrected by applying a linear correction to the pixel values. Additionally, Gafchromic film did not introduce any imaging artifacts in any of the MR images acquired.

  6. Dose-response curve of EBT, EBT2, and EBT3 radiochromic films to synchrotron-produced monochromatic x-ray beams

    SciTech Connect

    Brown, Thomas A. D.; Hogstrom, Kenneth R.; Alvarez, Diane; Matthews, Kenneth L. II; Ham, Kyungmin; Dugas, Joseph P.

    2012-12-15

    Purpose: This work investigates the dose-response curves of GAFCHROMIC{sup Registered-Sign} EBT, EBT2, and EBT3 radiochromic films using synchrotron-produced monochromatic x-ray beams. EBT2 film is being utilized for dose verification in photoactivated Auger electron therapy at the Louisiana State University Center for Advanced Microstructures and Devices (CAMD) synchrotron facility. Methods: Monochromatic beams of 25, 30, and 35 keV were generated on the tomography beamline at CAMD. Ion chamber depth-dose measurements were used to determine the dose delivered to films irradiated at depths from 0.7 to 8.5 cm in a 10 Multiplication-Sign 10 Multiplication-Sign 10-cm{sup 3} polymethylmethacrylate phantom. AAPM TG-61 protocol was applied to convert measured ionization into dose. Films were digitized using an Epson 1680 Professional flatbed scanner and analyzed using the net optical density (NOD) derived from the red channel. A dose-response curve was obtained at 35 keV for EBT film, and at 25, 30, and 35 keV for EBT2 and EBT3 films. Calibrations of films for 4 MV x-rays were obtained for comparison using a radiotherapy accelerator at Mary Bird Perkins Cancer Center. Results: The sensitivity (NOD per unit dose) of EBT film at 35 keV relative to that for 4-MV x-rays was 0.73 and 0.76 for doses 50 and 100 cGy, respectively. The sensitivity of EBT2 film at 25, 30, and 35 keV relative to that for 4-MV x-rays varied from 1.09-1.07, 1.23-1.17, and 1.27-1.19 for doses 50-200 cGy, respectively. For EBT3 film the relative sensitivity was within 3% of unity for all three monochromatic x-ray beams. Conclusions: EBT and EBT2 film sensitivity showed strong energy dependence over an energy range of 25 keV-4 MV, although this dependence becomes weaker for larger doses. EBT3 film shows weak energy dependence, indicating that it would be a better dosimeter for kV x-ray beams where beam hardening effects can result in large changes in the effective energy.

  7. Measuring solar UV radiation with EBT radiochromic film.

    PubMed

    Butson, Ethan T; Cheung, Tsang; Yu, Peter K N; Butson, Martin J

    2010-10-21

    Ultraviolet radiation dosimetry has been performed with the use of a radiochromic film dosimeter called Gafchromic EBT for solar radiation exposure. The film changes from a clear colour to blue colour when exposed to ultraviolet radiation and results have shown that the colour change is reproducible within ±10% at 5 kJ m(-2) UV exposure under various conditions of solar radiation. Parameters tested included changes in season (summer versus winter exposure), time of day, as well as sky conditions such as cloudy skies versus clear skies. As the radiochromic films' permanent colour change occurs in the visible wavelengths the film can be analysed with a desktop scanner with the most sensitive channel for analysis being the red component of the signal. Results showed that an exposure of 5 kJ m(-2) (approximately 1 h exposure in full sun during summer) produced an approximate 0.28 change in the net OD when analysed in reflection mode on the desktop scanner which is significant darkening. The main advantages of this film type, and thus the new EBT2 film which has replaced EBT for measurement of UV exposure, is the visible colour change and thus easy analysis using a desktop scanner, its uniformity in response and its robust physical strength for use in outside exposure situations. PMID:20858922

  8. Comparison of EBT and EBT3 RadioChromic Film Usage in Parotid Cancer Radiotherapy

    PubMed Central

    Bahreyni Toossi, M.T.; Khorshidi, F.; Ghorbani, M.; Mohamadian, N.; Davenport, D.

    2016-01-01

    Background EBT and EBT3 radioChromic films have been used in radiotherapy dosimetry for years. Objective The aim of the current study is to compare EBT and EBT3 radioChromic films in dosimetry of radiotherapy fields for treatment of parotid cancer. Methods Calibrations of EBT and EBT3 films were performed with identical setups using a 6 MV photon beam of a Siemens Primus linac. Skin dose was measured at different points in the right anterior oblique (RAO) and right posterior oblique (RPO) fields by EBT and EBT3 films on a RANDO phantom. Results While dosimetry was performed with the same conditions for the two film types for calibration and in phantom in parotid cancer radiotherapy, the measured net optical density (NOD) in EBT film was found to be higher than that from EBT3 film. The minimum difference between these two films under calibration conditions was about 2.9% (for 0.2 Gy) with a maximum difference of 35.5% (for 0.5 Gy). In the therapeutic fields of parotid cancer radiotherapy at different points, the measured dose from EBT film was higher than the EBT3 film. In these fields the minimum and maximum measured dose differences were 16.0% and 25.5%, respectively. Conclusion EBT film demonstrates higher NOD than EBT3 film. This effect may be related to the higher sensitivity of EBT film over EBT3 film. However, the obtained dose differences between these two films in low dose range can be due to the differences in fitting functions applied following the calibration process. PMID:27026949

  9. Measurement of low-energy backscatter factors using GAFCHROMIC film and OSLDs.

    PubMed

    Mart, Chris J; Elson, Howard R; Lamba, Michael A S

    2012-01-01

    Some of the lowest voltages used in radiotherapy are termed Grenz and superficial X-rays of ~ 20 and ~ 100 kVp, respectively. Dosimetrically, the surface doses from these beams are calculated with the use of a free in-air air kerma measurement combined with a backscatter factor and the appropriate ratio of mass energy absorption coefficients from the measurement material to water. Alternative tools to the standard ion chamber for measuring the BSF are GAFCHROMIC EBT2 film and optically stimulated luminescent dosimeter (OSLD) crystals made from Al2O3. The scope of this project included making three different backscatter measurements with an Xstrahl-D3100 X-ray unit on the Grenz ray and superficial settings. These measurements were with OSLDs, GAFCHROMIC EBT2 film, and a PTW ionization chamber. The varied measurement methods allowed for intercomparison to determine the accuracy of the results. The ion chamber measurement was the least accurate, as expected from previous experimental findings. GAFCHROMIC EBT2 film proved to be a useful tool which gave reasonable results, and Landauer OSLDs showed good results for smaller field sizes and an increasing overresponse with larger fields. The specific backscatter factors for this machine demonstrated values about 5% higher than the universal values suggested by the AAPM and IPEMB codes of practice for the 100 kVp setting. The 20 kvp measured data from both techniques showed general agreement with those found in the BJR Supplement No. 10, indicating that this unit's Grenz ray spectrum is similar to those used in previous experimental work.

  10. Skin Dosimetry in Radiotherapy of Breast Cancer: a Comparison between EBT and EBT3 Radiochromic Films

    PubMed Central

    Bahreyni Toosi, M.T.; Mohamadian, N.; Ghorbani, M.; Khorshidi, F.; Akbari, F.; Knaup, C.

    2016-01-01

    Objective Radiochromic EBT3 film is a later generation of radiochromic films. The aim of this study is to compare EBT and EBT3 radiochromic films in radiotherapy fields of breast cancer. Methods A RANDO phantom was irradiated by a 6 MV Siemens Primus linac with medial and lateral fields of radiotherapy of breast cancer. Dosimetry was performed in various points in the fields using EBT and EBT3 films. Films were scanned by a Microtek color scanner. Dose values from two films in corresponding points were compared. Results In the investigation of calibration, net optical density (NOD) of EBT radiochromic is more than the EBT3 radiochromic film. The highest percentage difference between NODs of two films is related to 0.75 Gy and equals to 14.19%. The lowest value is related to 0.2 Gy dose and is equal to 3.31%. The highest percentage difference between two films on the RANDO phantom in breast cancer fields is 13.51% and the minimum value is equal to 0.33%. Conclusion From the comparison between the two films, most of the points show differences in dose in the measurements in fields of breast cancer radiotherapy. These differences are attributed to the thickness of the active layers, the overall thickness of the films, and the difference in the calibration fitted functions. The advantage of EBT film over EBT3 is a higher sensitivity; on the other hand EBT3 film allows to use its both sides in the scanning process and it is a new version of this film type. PMID:27672625

  11. Skin Dosimetry in Radiotherapy of Breast Cancer: a Comparison between EBT and EBT3 Radiochromic Films

    PubMed Central

    Bahreyni Toosi, M.T.; Mohamadian, N.; Ghorbani, M.; Khorshidi, F.; Akbari, F.; Knaup, C.

    2016-01-01

    Objective Radiochromic EBT3 film is a later generation of radiochromic films. The aim of this study is to compare EBT and EBT3 radiochromic films in radiotherapy fields of breast cancer. Methods A RANDO phantom was irradiated by a 6 MV Siemens Primus linac with medial and lateral fields of radiotherapy of breast cancer. Dosimetry was performed in various points in the fields using EBT and EBT3 films. Films were scanned by a Microtek color scanner. Dose values from two films in corresponding points were compared. Results In the investigation of calibration, net optical density (NOD) of EBT radiochromic is more than the EBT3 radiochromic film. The highest percentage difference between NODs of two films is related to 0.75 Gy and equals to 14.19%. The lowest value is related to 0.2 Gy dose and is equal to 3.31%. The highest percentage difference between two films on the RANDO phantom in breast cancer fields is 13.51% and the minimum value is equal to 0.33%. Conclusion From the comparison between the two films, most of the points show differences in dose in the measurements in fields of breast cancer radiotherapy. These differences are attributed to the thickness of the active layers, the overall thickness of the films, and the difference in the calibration fitted functions. The advantage of EBT film over EBT3 is a higher sensitivity; on the other hand EBT3 film allows to use its both sides in the scanning process and it is a new version of this film type.

  12. Evaluation and optimization of the new EBT2 radiochromic film dosimetry system for patient dose verification in radiotherapy

    NASA Astrophysics Data System (ADS)

    Richley, L.; John, A. C.; Coomber, H.; Fletcher, S.

    2010-05-01

    A new radiochromic film, the yellow Gafchromic EBT2, has been marketed as a drop-in replacement for the discontinued blue EBT film. In order to verify the manufacturer's claims prior to clinical use, EBT2 was characterized in transmission, and the less commonly used, reflection modes with an Epson Expression 10000XL A3 flatbed scanner. The red channel was confirmed to provide the greatest sensitivity and was used for all measurements. The post-irradiation darkening of the film was investigated, and the relative response was found to be dose dependent with higher doses stabilizing earlier than lower doses. After 13 h all dose levels had stabilized to within 1% of their value at 24 h. Uniformity of irradiated EBT2 films was within 0.8% and 1.2% (2SD of signal), in reflection and transmission modes, respectively. The light scattering effect, arising from the structure and thickness of EBT2, was found to give rise to an apparent scanner non-uniformity of up to 5.5% in signal. In reflection mode, differences of up to 1.2% were found between the signal obtained from a small film fragment (5 × 5 cm2) and the signal obtained from the same fragment bordered by extra film. Further work is needed to determine the origin of this effect, as there will be implications for reflection dosimetry of intensity modulated fields; reflection mode cannot yet be regarded as a viable alternative to transmission mode. Our results suggest that EBT2 film is a valid alternative, rather than a direct replacement for EBT film.

  13. SU-E-T-445: Lateral Optical Density Variation in Flatbed Scanners in Combination with Gafchromic Film

    SciTech Connect

    Battum, LJ van; Heukelom, S

    2014-06-01

    Purpose This study investigates the origin of lateral optical density (OD) variation for Gafchromic film (EBT and EBT2) scanned in transmission mode with Epson flatbed scanners (1680 Expression Pro and 10000XL). Effects investigated are: cross talk, optical path length and polarization. Methods Cross talk has been examined with triangular shaped light-transmission sheets with OD ranging from 0 to opaque. Optical path length has been studied with absorptive and reflective OD-filters (OD range 0.2 to 2.0). Dependency on light-polarization on the scanner read out has been investigated using linear polarizer sheets. All experiments have been performed at centre scanner position (norm point) and at several lateral scan positions, without and with (un)irradiated EBT-film. Dose values used ranged between 0.2 to 9 Gy, yielding an OD-range between 0.25 to 1.1. Results The lateral OD variation is dose dependent and increases up to 14% at most lateral position for dose up to 9 Gy. Cross talk effect contributes to 0.5% in clinical used OD ranges but equals 2% for extreme high dose gradients. Film induced optical path length will effect the lateral OD variation up to 3% at most lateral points. Light polarization is inherent present in these scanners due to multiple reflection on mirrors. In addition film induced polarization is the most important effect generating the observed lateral OD variation. Both Gafchromic film base and sensitive layer have polarizing capabilities; for the sensitive layer its influence is dose dependent. Conclusions Lateral OD variation origins from optical physics (i.e. polarization and reflection) related to scanner and film construction. Cross talk can be ignored in film dosimetry for clinical used dose values and gradients. Therefore it is recommended to determine the lateral OD variation per film type and scanner.

  14. Investigation of EBT2 and EBT3 films for proton dosimetry in the 4-20 MeV energy range.

    PubMed

    Reinhardt, S; Würl, M; Greubel, C; Humble, N; Wilkens, J J; Hillbrand, M; Mairani, A; Assmann, W; Parodi, K

    2015-03-01

    Radiochromic films such as Gafchromic EBT2 or EBT3 films are widely used for dose determination in radiation therapy because they offer a superior spatial resolution compared to any other digital dosimetric 2D detector array. The possibility to detect steep dose gradients is not only attractive for intensity-modulated radiation therapy with photons but also for intensity-modulated proton therapy. Their characteristic dose rate-independent response makes radiochromic films also attractive for dose determination in cell irradiation experiments using laser-driven ion accelerators, which are currently being investigated as future medical ion accelerators. However, when using these films in ion beams, the energy-dependent dose response in the vicinity of the Bragg peak has to be considered. In this work, the response of these films for low-energy protons is investigated. To allow for reproducible and background-free irradiation conditions, the films were exposed to mono-energetic protons from an electrostatic accelerator, in the 4-20 MeV energy range. For comparison, irradiation with clinical photons was also performed. It turned out that in general, EBT2 and EBT3 films show a comparable performance. For example, dose-response curves for photons and protons with energies as low as 11 MeV show almost no differences. However, corrections are required for proton energies below 11 MeV. Care has to be taken when correction factors are related to an average LET from depth-dose measurements, because only the dose-averaged LET yields similar results as obtained in mono-energetic measurements.

  15. Characteristics of Gafchromic XR-RV2 radiochromic film

    SciTech Connect

    Blair, Andrew; Meyer, Juergen

    2009-07-15

    Gafchromic XR-RV2 is a revised version of the obsolete Gafchromic XR-R-type radiochromic film. This article investigates the dose response, energy response, postexposure growth, and polarizing effects of this film after exposure to ionizing radiation in the diagnostic energy range. The effect of bit depth on scanning was also investigated. Films were scanned using an Epson Expression 10000XL document scanner or an X-Rite model 301 spot densitometer. Color channel analysis was performed. The film showed usable response in the air kerma range of 1-1000 cGy, although by 1500 cGy the film appeared saturated when using the red color channel on a document scanner. The film response varied by 11% between 60 and 96 kVp and 3.5% between 96 and 125 kVp for doses above 1 Gy. Postexposure growth was found to be approximately logarithmic and fairly stable after 24 h. Films stored under office lighting exhibited around twice the density growth compared with film stored in a dark environment. The film showed strong orientation dependence when scanned using a polarized light source. A 48 bit scan provided no increase in sensitivity over 24 bits. Gafchromic XR-RV2 film is a radiochromic film ideally suited for measurement of wide dose ranges at diagnostic energies. The energy dependence of this film limits its accuracy for dosimetry of unknown energy beams. For the document scanners used in this study a 24 bit scan was more than sufficient compared to a 48 bit scan. This is likely to be the case for most document scanners where electrical noise prevents higher bit depths from increasing the sensitivity of measurements.

  16. Verification of Gamma Knife extend system based fractionated treatment planning using EBT2 film

    SciTech Connect

    Natanasabapathi, Gopishankar; Bisht, Raj Kishor

    2013-12-15

    Purpose: This paper presents EBT2 film verification of fractionated treatment planning with the Gamma Knife (GK) extend system, a relocatable frame system for multiple-fraction or serial multiple-session radiosurgery.Methods: A human head shaped phantom simulated the verification process for fractionated Gamma Knife treatment. Phantom preparation for Extend Frame based treatment planning involved creating a dental impression, fitting the phantom to the frame system, and acquiring a stereotactic computed tomography (CT) scan. A CT scan (Siemens, Emotion 6) of the phantom was obtained with following parameters: Tube voltage—110 kV, tube current—280 mA, pixel size—0.5 × 0.5 and 1 mm slice thickness. A treatment plan with two 8 mm collimator shots and three sectors blocking in each shot was made. Dose prescription of 4 Gy at 100% was delivered for the first fraction out of the two fractions planned. Gafchromic EBT2 film (ISP Wayne, NJ) was used as 2D verification dosimeter in this process. Films were cut and placed inside the film insert of the phantom for treatment dose delivery. Meanwhile a set of films from the same batch were exposed from 0 to 12 Gy doses for calibration purposes. An EPSON (Expression 10000 XL) scanner was used for scanning the exposed films in transparency mode. Scanned films were analyzed with inhouse written MATLAB codes.Results: Gamma index analysis of film measurement in comparison with TPS calculated dose resulted in high pass rates >90% for tolerance criteria of 1%/1 mm. The isodose overlay and linear dose profiles of film measured and computed dose distribution on sagittal and coronal plane were in close agreement.Conclusions: Through this study, the authors propose treatment verification QA method for Extend frame based fractionated Gamma Knife radiosurgery using EBT2 film.

  17. EBT2 film as a depth-dose measurement tool for radiotherapy beams over a wide range of energies and modalities

    SciTech Connect

    Arjomandy, Bijan; Tailor, Ramesh; Zhao Li; Devic, Slobodan

    2012-02-15

    Purpose: One of the fundamental parameters used for dose calculation is percentage depth-dose, generally measured employing ionization chambers. There are situations where use of ion chambers for measuring depth-doses is difficult or problematic. In such cases, radiochromic film might be an alternative. The EBT-2 model GAFCHROMIC film was investigated as a potential tool for depth-dose measurement in radiotherapy beams over a broad range of energies and modalities. Methods: Pieces of the EBT-2 model GAFCHROMIC EBT2 film were exposed to x-ray, electron, and proton beams used in radiotherapy. The beams employed for this study included kilovoltage x-rays (75 kVp), {sup 60}Co gamma-rays, megavoltage x-rays (18 MV), electrons (7 and 20 MeV), and pristine Bragg-peak proton beams (126 and 152 MeV). At each beam quality, film response was measured over the dose range of 0.4-8.0 Gy, which corresponds to optical densities ranging from 0.05 to 0.4 measured with a flat-bed document scanner. To assess precision in depth-dose measurements with the EBT-2 model GAFCHROMIC film, uncertainty in measured optical density was investigated with respect to variation in film-to-film and scanner-bed uniformity. Results: For most beams, percentage depth-doses measured with the EBT-2 model GAFCHROMIC film show an excellent agreement with those measured with ion chambers. Some discrepancies are observed in case of (i) kilovoltage x-rays at larger depths due to beam-hardening, and (ii) proton beams around Bragg-peak due to quenching effects. For these beams, an empirical polynomial correction produces better agreement with ion-chamber data. Conclusions: The EBT-2 model GAFCHROMIC film is an excellent secondary dosimeter for measurement of percentage depth-doses for a broad range of beam qualities and modalities used in radiotherapy. It offers an easy and efficient way to measure beam depth-dose data with a high spatial resolution.

  18. Note: Calibration of EBT3 radiochromic film for measuring solar ultraviolet radiation

    SciTech Connect

    Chun, S. L.; Yu, P. K. N.

    2014-10-01

    Solar (UVA + UVB) exposure was assessed using the Gafchromic EBT3 film. The coloration change was represented by the net reflective optical density (Net ROD). Through calibrations against a UV-tube lamp, operational relationships were obtained between Net ROD and the (UVA + UVB) exposures (in J cm⁻²p or J m⁻²). The useful range was from ~0.2 to ~30 J cm⁻². The uniformity of UV irradiation was crucial for an accurate calibration. For solar exposures ranging from 2 to 11 J cm⁻², the predicted Net ROD agreed with the recorded values within 9%, while the predicted exposures agreed with the recorded values within 15%.

  19. Changes of the optical characteristics of radiochromic films in the transition from EBT3 to EBT-XD films

    NASA Astrophysics Data System (ADS)

    Schoenfeld, Andreas A.; Wieker, Soeren; Harder, Dietrich; Poppe, Bjoern

    2016-07-01

    A new type of radiochromic film, the EBT-XD film, has been introduced with the aim to reduce the orientation effect and the lateral response artifact occurring in the use of radiochromic films together with flatbed scanners. The task of the present study is to quantify the changes of optical characteristics involved with the transition from the well-known EBT3 films to the new EBT-XD films, using the optical bench arrangement already applied by Schoenfeld et al (2014 Phys. Med. Biol. 59 3575-97). Largely reduced polarization effects and the almost complete loss of the anisotropy of the scattered light produced in a radiation-exposed film have been observed. The Rayleigh-Debye-Gans theory is used to understand these optical changes as arising from the reduced length-to-width ratio of the LiPCDA polymer crystals in the active layer of the EBT-XD film. The effect of these changes on the flatbed scanning artifacts will be shortly addressed, but treated in more detail in a further paper.

  20. Outdoor solar UVA dose assessment with EBT2 radiochromic film using spectrophotometer and densitometer measurements.

    PubMed

    Abukassem, I; Bero, M A

    2015-04-01

    Direct measurements of solar ultraviolet radiations (UVRs) have an important role in the protection of humans against UVR hazard. This work presents simple technique based on the application of EBT2 GAFCHROMIC(®) film for direct solar UVA dose assessment. It demonstrates the effects of different parts of the solar spectrum (UVB, visible and infrared) on performed UVA field measurements and presents the measurement uncertainty budget. The gradient of sunlight exposure level permitted the authors to establish the mathematical relationships between the measured solar UVA dose and two measured quantities: the first was the changes in spectral absorbance at the wavelength 633 nm (A633) and the second was the optical density (OD). The established standard relations were also applied to calculate the solar UVA dose variations during the whole day; 15 min of exposure each hour between 8:00 and 17:00 was recorded. Results show that both applied experimental methods, spectrophotometer absorbance and densitometer OD, deliver comparable figures for EBT2 solar UVA dose assessment with relative uncertainty of 11% for spectral absorbance measurements and 15% for OD measurements. PMID:25500756

  1. A protocol for EBT3 radiochromic film dosimetry using reflection scanning

    SciTech Connect

    Papaconstadopoulos, Pavlos Hegyi, Gyorgy; Seuntjens, Jan; Devic, Slobodan

    2014-12-15

    Purpose: To evaluate the performance of the EBT3 radiochromic film dosimetry system using reflection measurements and to suggest a calibration protocol for precise and accurate reflection film dosimetry. Methods: A set of 14 Gafchromic EBT3 film pieces were irradiated to various doses ranging from 0 to 8 Gy and subsequently scanned using both the reflection and transmission mode. Scanning resolution varied from 50 to 508 dpi (0.5–0.05 mm/pixel). Both the red and green color channels of scanned images were used to relate the film response to the dose. A sensitivity, uncertainty, and accuracy analysis was performed for all scanning modes and color channels. The total uncertainty, along with the fitting and experimental uncertainty components, was identified and analyzed. A microscope resolution target was used to evaluate possible resolution losses under reflection scanning. The calibration range was optimized for reflection scanning in the low (<2 Gy) and high (>2 Gy) dose regions based on the reported results. Results: Reflection scanning using the red channel exhibited the highest sensitivity among all modes, being up to 150% higher than transmission mode in the red channel for the lowest dose level. Furthermore, there was no apparent loss in resolution between the two modes. However, higher uncertainties and reduced accuracy were observed for the red channel under reflection mode, especially at dose levels higher than 2 Gy. These uncertainties were mainly attributed to saturation effects which were translated in poor fitting results. By restricting the calibration to the 0–2 Gy dose range, the situation is reversed and the red reflection mode was superior to the transmission mode. For higher doses, the green channel in reflection mode presented comparable results to the red transmission. Conclusions: A two-color reflection scanning protocol can be suggested for EBT3 radiochromic film dosimetry using the red channel for doses less than 2 Gy and the green

  2. Poster — Thur Eve — 53: Novel Technique for the Measurement of Ultra-Superficial Doses Using Gafchromic Film

    SciTech Connect

    Marcos, M.; Devic, S.

    2014-08-15

    Purpose: Dose build-up and electron contamination are two closely related quantities with important implications in radiotherapy, yet they are quite difficult to measure with great certainty. We present a novel technique for measuring ultra-superficial doses. Method and Materials: We used Gafchromic EBT-3 film which have an effective point of measurement of roughly 153 micros (effective depth in water). By peeling off one of the polyester layers, the active layer becomes the top layer and we obtain a film with a effective point of measurement of 15 microns (effective depth in water). A film calibration was performed using a 180 kVp orthovoltage beam. Since the active layer of the film may have been compressed or perturbed during the peeling of clear polyester we use a triple-channel film calibration technique to minimize the effects of non-uniformity in the active layer. We measured surface doses of orthovoltage beams with lead cutouts in place to introduce contaminant photoelectrons. Results: Our measurements show that the dose enhancement near the edges of the lead were about 125% relative to central axis for 6 cm diameter cutouts up to 170% for 2 cm diameter cutouts, which were within 5% of our EGSnrc based Monte Carlo simulations.

  3. Direct measurement of absorbed dose to water in HDR {sup 192}Ir brachytherapy: Water calorimetry, ionization chamber, Gafchromic film, and TG-43

    SciTech Connect

    Sarfehnia, Arman; Kawrakow, Iwan; Seuntjens, Jan

    2010-04-15

    Purpose: Gafchromic film and ionometric calibration procedures for HDR {sup 192}Ir brachytherapy sources in terms of dose rate to water are presented and the experimental results are compared to the TG-43 protocol as well as with the absolute dose measurement results from a water calorimetry-based primary standard. Methods: EBT-1 Gafchromic films, an A1SL Exradin miniature Shonka thimble type chamber, and an SI HDR 1000 Plus well-type chamber (Standard Imaging, Inc., Middleton, WI) with an ADCL traceable S{sub k} calibration coefficient (following the AAPM TG-43 protocol) were used. The Farmer chamber and Gafchromic film measurements were performed directly in water. All results were compared to direct and absolute absorbed dose to water measurements from a 4 deg. C stagnant water calorimeter. Results: Based on water calorimetry, the authors measured the dose rate to water to be 361{+-}7 {mu}Gy/(h U) at a 55 mm source-to-detector separation. The dose rate normalized to air-kerma strength for all the techniques agree with the water calorimetry results to within 0.83%. The overall 1-sigma uncertainty on water calorimetry, ionization chamber, Gafchromic film, and TG-43 dose rate measurement amounts to 1.90%, 1.44%, 1.78%, and 2.50%, respectively. Conclusions: This work allows us to build a more realistic uncertainty estimate for absorbed dose to water determination using the TG-43 protocol. Furthermore, it provides the framework necessary for a shift from indirect HDR {sup 192}Ir brachytherapy dosimetry to a more accurate, direct, and absolute measurement of absorbed dose to water.

  4. Under-response correction for EBT3 films in the presence of proton spread out Bragg peaks.

    PubMed

    Fiorini, F; Kirby, D; Thompson, J; Green, S; Parker, D J; Jones, B; Hill, M A

    2014-06-01

    We present a study of the under-response of the new Gafchromic EBT3 films and a procedure to accurately perform 2D and 3D proton dosimetry measurements for both pristine and spread out Bragg peaks (SOBP) of any energy. These new films differ from the previous EBT2 generation by a slightly different active layer composition, which we show has not effected appreciably their response. The procedure and the beam quality correction factor curve have been benchmarked using 29 MeV modulated proton beams. In order to show the correction to apply when EBT3 films are used as treatment verification tools in anthropomorphic phantoms, two simulation studies involving clinical energies are presented: a SOBP for eye treatments and a SOBP to treat 20 cm deep and 5 cm thick tumours. We find maximum under-responses of 37%, 30% and 7.7% for the modulated 29 MeV beam, eye and deep tumour treatment, respectively, which were attained close to the end of the peak tails, due to a higher proportion of very low energy protons. The maximum deviations between corrected and uncorrected doses were for the three cases, respectively, 20.7%, 8.3% and 2.1% of the average dose across flat region of the SOBP. These values were obtained close to the distal edge of the SOBPs, where the proportion of low energy protons was not as high as on the tail, but there still was a number of protons high enough to deposit a reasonable amount of dose in the films.

  5. SU-E-T-12: A Feasibility Study of Patient Specific QA Using Gafchromic Film of Dynamic Feathering in Junctions of Craniospinal Irradiation

    SciTech Connect

    Stanford, J; Duggar, W; Yang, C

    2014-06-01

    Purpose: Cranio-spinal irradiation is the most complicated format of the conventional external beam radiation therapy because it involves matches of non-coplanar beams which are susceptible to daily setup errors. This study explores the efficacy of Gafchromic film dosimetry to quantitatively verify the junctions for cranio-spinal radiation feathered with field in field technique. Methods: 15cm in thickness of solid water phantom was scanned vertically and exported to the Pinnacle TPS as primary phantom data set. A patient cranio-spinal plan, consisted of two bilateral whole brain beams dynamically matched with a posterior spinal beam using field in field technique, was transferred to the phantom and recalculated for one fraction with set monitor units identical to the original plan. Next, planar dose distribution on the phantom was exported to the FilmQA Pro 2013 software (Ashland, Inc.) in binary format for comparison with the measured dose distribution. An EBT2 film was sandwiched in the middle of the phantom and the phantom was set up according to the QA plan based on the room laser system. The shifts instructions associated with the patient original plan were made and the beams from the patient original plan delivered to the solid water phantom via the record and verify system in QA mode. The dose distribution from the measured film was compared with the planned reference distribution using gamma analysis and profile comparison. Results: Gamma passing rate of 91 % with DTA 3mm and 5% dose difference was obtained within the junction region, significantly greater passing rate above 95 % was obtained in the homogeneous region of the brain field. Conclusion: This study confirms that Gafchromic film dosimetry can be used to validate the efficacy of FIF feathering technique for cranio-spinal treatment. FIF technique with Gafchromic dosimetry may now be the new standard for delivering efficient and accurate cranio-spinal radiation with confidence.

  6. Characterization of differences in calculated and actual measured skin doses to canine limbs during stereotactic radiosurgery using Gafchromic film

    SciTech Connect

    Walters, Jerri; Ryan, Stewart; Harmon, Joseph F.

    2012-07-01

    Accurate calculation of absorbed dose to the skin, especially the superficial and radiosensitive basal cell layer, is difficult for many reasons including, but not limited to, the build-up effect of megavoltage photons, tangential beam effects, mixed energy scatter from support devices, and dose interpolation caused by a finite resolution calculation matrix. Stereotactic body radiotherapy (SBRT) has been developed as an alternative limb salvage treatment option at Colorado State University Veterinary Teaching Hospital for dogs with extremity bone tumors. Optimal dose delivery to the tumor during SBRT treatment can be limited by uncertainty in skin dose calculation. The aim of this study was to characterize the difference between measured and calculated radiation dose by the Varian Eclipse (Varian Medical Systems, Palo Alto, CA) AAA treatment planning algorithm (for 1-mm, 2-mm, and 5-mm calculation voxel dimensions) as a function of distance from the skin surface. The study used Gafchromic EBT film (International Specialty Products, Wayne, NJ), FilmQA analysis software, a limb phantom constructed from plastic water Trade-Mark-Sign (fluke Biomedical, Everett, WA) and a canine cadaver forelimb. The limb phantom was exposed to 6-MV treatments consisting of a single-beam, a pair of parallel opposed beams, and a 7-beam coplanar treatment plan. The canine forelimb was exposed to the 7-beam coplanar plan. Radiation dose to the forelimb skin at the surface and at depths of 1.65 mm and 1.35 mm below the skin surface were also measured with the Gafchromic film. The calculation algorithm estimated the dose well at depths beyond buildup for all calculation voxel sizes. The calculation algorithm underestimated the dose in portions of the buildup region of tissue for all comparisons, with the most significant differences observed in the 5-mm calculation voxel and the least difference in the 1-mm voxel. Results indicate a significant difference between measured and calculated data

  7. SU-D-304-03: Small Field Proton Dosimetry Using MicroDiamond and Gafchromic Film

    SciTech Connect

    Andersen, A; Das, I; Coutinho, L

    2015-06-15

    Purpose: Certain dosimetric characteristics continue to make proton beam therapy an appealing modality for cancer treatment. The proton Bragg peak allows for conformal radiation dose delivery to the target while reducing dose to normal tissue and organs. As field sizes become very small the benefit of the Bragg peak is diminished due to loss of transverse equilibrium along the central beam axis. Furthermore, aperture scattering contributes additional dose along the central axis. These factors warrant the need for accurate small field dosimetry. In this study small field dosimetry was performed using two different methods. Methods: Small field dosimetry measurements were performed using a PTW microdiamond detector and Gafchromic EBT2 film for aperture sizes ranging from 0.5cm to 10cm and a proton range in water of 10cm to 27cm. The measurements were analyzed and then compared to each other and to reference dosimetry data acquired with a Markus chamber. Results: A decrease in normalized output is observed at small field sizes and at larger ranges in water using both measurement methods. Also, a large variation is observed between the output measurements by microdiamond and film at very small field sizes. At the smallest aperture, normalized output ranged from 0.16 to 0.72 and the percent difference between both measurement methods ranged from 36% to 70% depending on proton range. At field sizes above 5cm the film and microdiamond agree within 3%. Conclusion: Although both measurement methods exhibit a general decrease in output factor at small field sizes, dosimetric measurements for small fields using these two methods can vary significantly. Dosimetry under standard conditions is not sufficient to correctly model the dose distributions and outputs factors for small field sizes, additional small field measurements should be performed.

  8. The Use of TLD and Gafchromic Film to Assure Submillimeter Accuracy for Image-Guided Radiosurgery

    SciTech Connect

    Ho, Anthony K. Gibbs, Iris C.; Chang, Steve D.; Main, Bill; Adler, John R.

    2008-04-01

    The Cyberknife is an image-guided radiosurgical system. It uses a compact X-band 6-MV linear accelerator mounted on a robotic arm to deliver radiosurgical doses. While routine quality assurance (QA) is essential for any radiosurgery system, QA plays an even more vital role for the Cyberknife system, due to the complexity of the system and the wide range of applications. This paper presents a technique for performing quality assurance using thermoluminescence detectors (TLDs) and Gafchromic films that is intended to be specific for the Cyberknife. However, with minor modification, the proposed method can also be used for QA of other radiosurgery systems. Our initial QA procedure for the CyberKnife utilized a 30 x 30 x 11-cm solid water phantom containing a planar array of slots for 1x 1 x 1-mm TLDs on a 2-mm grid. With the objective of significantly simplifying CyberKnife QA, a new procedure for verification was developed, which uses much fewer TLDs than the prior solid water phantom technique. This new method requires only that the system target dose to the center of a cluster of 7 TLDs. In a prior study with Gafchromic films, conducted at 3 different Cyberknife facilities, the mean clinically relevant error was demonstrated to be 0.7 mm. A similar Gafchromic film analysis replicated these error measurements as part of the present investigation. It cannot be emphasized enough the importance of implementing routine QA to verify the accuracy of any radiosurgery system. Our quality assurance procedure tests the treatment planning system, as well as the entire treatment delivery including the image targeting system and the robot system. Either TLDs or Gafchromic films may be used for QA test of a radiosurgery system. Using both methods for measurement has the advantage independently verifying the accuracy of the system. This approach, which is routinely in used at our institution, has repeatedly confirmed the submillimeter targeting accuracy of our Cyberknife.

  9. Practical IMRT QA dosimetry using Gafchromic film: a quick start guide.

    PubMed

    Bennie, Nick; Metcalfe, Peter

    2016-06-01

    This work outlines a method for using Gafchromic film for dosimetry purposes, by scanning it with currently available commercial scanners. The scanners used were: Epson V800, Epson V700, Epson V37 series, specifically a V370 and a Canon multi-function office printer/scanner. The Epson scanners have 16 bit RGB resolution, the Canon has 8 bit RGB (Red Green Blue) resolution, and the V800 and V700 allow scanning in transmission mode. The V700 uses an Epson White Cold Cathode Florescent Lamp; the recently released V800 uses an Epson light emitting diode (LED) light source, while the V37 series uses a reflective mode and the Epson LED light source. The Epson V37 series scanners are designed for non-professional use so the cost has been kept at a low "entry level" point, so they would be a suitable option for a department wanting to use Gafchromic film or with limited needs that did not justify a more sophisticated and expensive unit. Note that the V800 or V700 scanners are not expensive in context, costing approximately the same as a 25 sheet box of Gafchromic film. The Canon was included to demonstrate that a scanner with 8 bit RGB resolution can be used for dosimetry. These general multi-function units are available in most departments, and they would allow Gafchromic film to be evaluated as a dosimetry tool without a significant investment. Furthermore, they are generally capable of scanning large format film (425 × 350 mm) in one part. Although this is not necessary for dosimetry, it is often useful for machine QA, where dividing the film into two parts to ensure accurate measurements is not practical. Moreover, this analytical method uses software that is freely or commonly available, particularly the image processing package ImageJ. Note ImageJ v1.48 was the version used. The results demonstrate that this method used with the scanners evaluated is a practical method of using Gafchromic film as a dosimeter for IMRT QA.

  10. Use of GafChromic film to diagnose laser generated proton beams

    SciTech Connect

    Hey, D. S.; Key, M. H.; Mackinnon, A. J.; MacPhee, A. G.; Patel, P. K.; Freeman, R. R.; Van Woerkom, L. D.; Castaneda, C. M.

    2008-05-15

    A calibration of three types of GafChromic radiochromic film (HS, MD-55, and HD-810) was carried out on the Crocker Nuclear Laboratory's 76 in. cyclotron at UC Davis over doses ranging from 0.001 to 15 kGy. The film was digitized with a scanning microdensitometer with which it was scanned twice with two different filters to increase the film's effective dynamic range. We demonstrate how this calibrated film can be used to measure the spectrum and total energy of a laser generated proton beam. This technique was applied to an experiment on the 10 J, 100 fs Callisto laser at Lawrence Livermore National Laboratory. The resulting proton spectrum was compared to that obtained by simultaneous measurement of Ti nuclear activation; the two methods give the same proton beam slope temperature and agree in number of protons to within 27%.

  11. Gafchromic film as a fast visual indicator of radiation exposure of first responders.

    PubMed

    Oren, Unal; Rääf, Christopher L; Mattsson, Sören

    2012-06-01

    Three types of Gafchromic films have been studied to investigate their potential for use as a visually readable dosemeter for persons acting as first responders in connection with radiological or nuclear emergencies. The two most sensitive film types show a pronounced variation in sensitivity by photon energy and are therefore not suitable for use in cases of unknown exposures. The third film type tested (RTQA2), which is intended for quality control in radiation therapy has a sensitivity that is independent of the radiation quality, and is therefore considered as the most optimal for visual reading in situ. Tests carried out on a group of 10 human observers showed that absorbed doses down to 40 mGy can be detected by the eye. Read by a portable densitometer, qualitative absorbed dose estimates down to 9 mGy can be achieved. The colour change is obtained instantaneously, giving first responders immediate information about the presence of beta-, gamma- and X-ray radiation.

  12. Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors

    SciTech Connect

    Karsch, L.; Beyreuther, E.; Burris-Mog, T.; Kraft, S.; Richter, C.; Zeil, K.; Pawelke, J.

    2012-05-15

    Purpose: The use of laser accelerators in radiation therapy can perhaps increase the low number of proton and ion therapy facilities in some years due to the low investment costs and small size. The laser-based acceleration technology leads to a very high peak dose rate of about 10{sup 11} Gy/s. A first dosimetric task is the evaluation of dose rate dependence of clinical dosimeters and other detectors. Methods: The measurements were done at ELBE, a superconductive linear electron accelerator which generates electron pulses with 5 ps length at 20 MeV. The different dose rates are reached by adjusting the number of electrons in one beam pulse. Three clinical dosimeters (TLD, OSL, and EBT radiochromic films) were irradiated with four different dose rates and nearly the same dose. A faraday cup, an integrating current transformer, and an ionization chamber were used to control the particle flux on the dosimeters. Furthermore two diamond detectors were tested. Results: The dosimeters are dose rate independent up to 410{sup 9} Gy/s within 2% (OSL and TLD) and up to 1510{sup 9} Gy/s within 5% (EBT films). The diamond detectors show strong dose rate dependence. Conclusions: TLD, OSL dosimeters, and EBT films are suitable for pulsed beams with a very high pulse dose rate like laser accelerated particle beams.

  13. Alternate calibration method of radiochromic EBT3 film for quality assurance verification of clinical radiotherapy treatments

    NASA Astrophysics Data System (ADS)

    Park, Soah; Kang, Sei-Kwon; Cheong, Kwang-Ho; Hwang, Taejin; Yoon, Jai-Woong; Koo, Taeryool; Han, Tae Jin; Kim, Haeyoung; Lee, Me Yeon; Bae, Hoonsik; Kim, Kyoung Ju

    2016-07-01

    EBT3 film is utilized as a dosimetry quality assurance tool for the verification of clinical radiotherapy treatments. In this work, we suggest a percentage-depth-dose (PDD) calibration method that can calibrate several EBT3 film pieces together at different dose levels because photon beams provide different dose levels at different depths along the axis of the beam. We investigated the feasibility of the film PDD calibration method based on PDD data and compared the results those from the traditional film calibration method. Photon beams at 6 MV were delivered to EBT3 film pieces for both calibration methods. For the PDD-based calibration, the film pieces were placed on solid phantoms at the depth of maximum dose (dmax) and at depths of 3, 5, 8, 12, 17, and 22 cm, and a photon beam was delivered twice, at 100 cGy and 400 cGy, to extend the calibration dose range under the same conditions. Fourteen film pieces, to maintain their consistency, were irradiated at doses ranging from approximately 30 to 400 cGy for both film calibrations. The film pieces were located at the center position on the scan bed of an Epson 1680 flatbed scanner in the parallel direction. Intensity-modulated radiation therapy (IMRT) plans were created, and their dose distributions were delivered to the film. The dose distributions for the traditional method and those for the PDD-based calibration method were evaluated using a Gamma analysis. The PDD dose values using a CC13 ion chamber and those obtained by using a FC65-G Farmer chamber and measured at the depth of interest produced very similar results. With the objective test criterion of a 1% dosage agreement at 1 mm, the passing rates for the four cases of the three IMRT plans were essentially identical. The traditional and the PDD-based calibrations provided similar plan verification results. We also describe another alternative for calibrating EBT3 films, i.e., a PDD-based calibration method that provides an easy and time-saving approach

  14. Comparison of vidar dosimetry advantage pro and epson perfection V700 scanner in densitometry of radiochomic EBT2 film in measurement of high dose gradient

    NASA Astrophysics Data System (ADS)

    Bura, W.; Tangboonduangjit, P.; Damrongkijudom, N.

    2016-03-01

    Nowadays the radiochromic film is widely used to obtain dose distribution in two dimensions with high spatial resolution, less energy dependence and near tissue equivalent. It can be a commissioning tool to verify high dose gradient of dose distribution for IMRT and VMAT techniques. However, the film scanner could affect the accuracy of dose distribution if lack of precaution. In this study, the comparison between Epson perfection V700 and Vidar Dosimetry Pro Advantage (RED) is evaluated in terms of the capability to verify the 2D dose distribution for conventional and VMAT techniques. The Gafchromic® EBT2 films were read from two types of scanners (Epson perfection V700 and Vidar Dosimetry Pro Advantage) for volumetric modulated radiation therapy (VMAT) dosimetry. The software for analyzing the results of Epson perfection V700 and Vidar Dosimetry Pro Advantage are SNC Patient software and Omnipro’ IMRT software, respectively. Comparisons between measured and calculated dose distributions are reported as %passing rate and the gamma index for tolerance parameters of 3% and 3mm. The study found that the %passing rate obtained from Vidar scanner and Epson V700 scanner compared with Eclipse treatment planning system is more than 98% with the criteria of (3%/3mm).

  15. Evaluation of the uncertainty in an EBT3 film dosimetry system utilizing net optical density.

    PubMed

    León Marroquin, Elsa Y; Herrera González, José A; Camacho López, Miguel A; Villarreal Barajas, José E; García-Garduño, Olivia A

    2016-01-01

    Radiochromic film has become an important tool to verify dose distributions for intensity-modulated radiotherapy (IMRT) and quality assurance (QA) procedures. A new radiochromic film model, EBT3, has recently become available, whose composition and thickness of the sensitive layer are the same as those of previous EBT2 films. However, a matte polyester layer was added to EBT3 to prevent the formation of Newton's rings. Furthermore, the symmetrical design of EBT3 allows the user to eliminate side-orientation dependence. This film and the flatbed scanner, Epson Perfection V750, form a dosimetry system whose intrinsic characteristics were studied in this work. In addition, uncertainties associated with these intrinsic characteristics and the total uncertainty of the dosimetry system were determined. The analysis of the response of the radiochromic film (net optical density) and the fitting of the experimental data to a potential function yielded an uncertainty of 2.6%, 4.3%, and 4.1% for the red, green, and blue channels, respectively. In this work, the dosimetry system presents an uncertainty in resolving the dose of 1.8% for doses greater than 0.8 Gy and less than 6 Gy for red channel. The films irradiated between 0 and 120 Gy show differences in the response when scanned in portrait or landscape mode; less uncertainty was found when using the portrait mode. The response of the film depended on the position on the bed of the scanner, contributing an uncertainty of 2% for the red, 3% for the green, and 4.5% for the blue when placing the film around the center of the bed of scanner. Furthermore, the uniformity and reproducibility radiochromic film and reproducibility of the response of the scanner contribute less than 1% to the overall uncertainty in dose. Finally, the total dose uncertainty was 3.2%, 4.9%, and 5.2% for red, green, and blue channels, respectively. The above uncertainty values were obtained by mini-mizing the contribution to the total dose uncertainty

  16. Evaluation of the uncertainty in an EBT3 film dosimetry system utilizing net optical density.

    PubMed

    León Marroquin, Elsa Y; Herrera González, José A; Camacho López, Miguel A; Villarreal Barajas, José E; García-Garduño, Olivia A

    2016-01-01

    Radiochromic film has become an important tool to verify dose distributions for intensity-modulated radiotherapy (IMRT) and quality assurance (QA) procedures. A new radiochromic film model, EBT3, has recently become available, whose composition and thickness of the sensitive layer are the same as those of previous EBT2 films. However, a matte polyester layer was added to EBT3 to prevent the formation of Newton's rings. Furthermore, the symmetrical design of EBT3 allows the user to eliminate side-orientation dependence. This film and the flatbed scanner, Epson Perfection V750, form a dosimetry system whose intrinsic characteristics were studied in this work. In addition, uncertainties associated with these intrinsic characteristics and the total uncertainty of the dosimetry system were determined. The analysis of the response of the radiochromic film (net optical density) and the fitting of the experimental data to a potential function yielded an uncertainty of 2.6%, 4.3%, and 4.1% for the red, green, and blue channels, respectively. In this work, the dosimetry system presents an uncertainty in resolving the dose of 1.8% for doses greater than 0.8 Gy and less than 6 Gy for red channel. The films irradiated between 0 and 120 Gy show differences in the response when scanned in portrait or landscape mode; less uncertainty was found when using the portrait mode. The response of the film depended on the position on the bed of the scanner, contributing an uncertainty of 2% for the red, 3% for the green, and 4.5% for the blue when placing the film around the center of the bed of scanner. Furthermore, the uniformity and reproducibility radiochromic film and reproducibility of the response of the scanner contribute less than 1% to the overall uncertainty in dose. Finally, the total dose uncertainty was 3.2%, 4.9%, and 5.2% for red, green, and blue channels, respectively. The above uncertainty values were obtained by mini-mizing the contribution to the total dose uncertainty

  17. Characterization of GafChromic XR-RV2 film and comparator strip using a flatbed scanner in reflection mode

    SciTech Connect

    Mendoza-Moctezuma, A. I.

    2010-12-07

    Interventional cardiology procedures are an effective alternative for the reestablishment of correct sanguineous circulation in the heart. However, this kind of procedures exposes to the patients to a relatively high radiation doses. Usually, the surface peak skin dose is evaluated using a visual scale with a comparator strip, nevertheless, even if the comparator strip provides a simple and quick method for estimating the dose it has an uncertainty of {+-}25%. For this reason, a better evaluation method is needed. The objective of our project is to determine the surface peak skin dose of interventional cardiology procedures using GafChromic XR-RV2 film together with a commercial flatbed scanner in reflection mode. Here we report a protocol to handle GafChromic XR-RV2 film using a commercial flat bed scanner in reflection mode aiming at an uncertainty of {+-}3%.

  18. SU-E-T-176: Examination of Surface Dose Enhancement Using Radiochromic EBT3-Films in a Cylindrical Setup

    SciTech Connect

    Failing, T; Chofor, N; Poppinga, D; Schoenfeld, A; Poppe, B; Willborn, K

    2014-06-01

    Purpose: This study was undertaken to optimize the measurement techniques with radiochromic EBT3 films to offer accurate surface dose measurements and at the same time high resolution depth dose curves of the backscattering from high Z materials. Methods: Radiochromic EBT3 films (Ashland ISP, Wayne, USA) were wrapped around a PET hollow cylinder with a diameter of 41.5 mm and fixed upon the surface of a lead block. The setup was immersed in water and exposed to a dose of 2 Gy at 6MV acceleration voltage using a Siemens Primus linear accelerator. Water reference measurements were undertaken under equal conditions. An Epson Expression 10000 XL flatbed scanner (Epson, Suwa, Japan) with a preset resolution of 72 dpi was used for digitization. Results: The dose enhancement could be measured with a high resolution of measurement points along the axis normal to the lead surface. A dose enhancement of 70 % was measured at a distance of 134 μm from the lead surface. The data has been compared with results presented by Das et al (Med. Phys. 16(3) (1989)) and is consistent within the uncertainty of the measurements. The results are in consistence with the results from time-tested EBT3 setups, i.e. normal-to-beam EBT3 film stacks and parallel to beam EBT3-films. Conclusion: The cylindrical film setup offers a powerful tool for surface measurements. The advantages of a stacked film setup and a parallel to beam setup could be combined.

  19. Characterization of a Gafchromic film for the two-dimensional profile measurement of low-energy heavy-ion beams

    NASA Astrophysics Data System (ADS)

    Yuri, Yosuke; Narumi, Kazumasa; Yuyama, Takahiro

    2016-08-01

    The feasibility of the transverse intensity distribution measurement of low-energy (keV/u range) heavy-ion beams using radiochromic films is experimentally explored. We employ a Gafchromic radiochromic film, HD-V2, whose active layer is not laminated by a surface-protection layer. The coloration response of films irradiated with several ion beams is characterized in terms of optical density (OD) by reading the films with a general-purpose scanner. To explore the energy dependence of the film response widely, the kinetic energy of the beams is varied from 1.5 keV/u to 27 MeV/u. We have found that the coloration of HD-V2 films is induced by irradiation with low-energy ion beams of the order of 10 keV/u. The range of the beams is considerably shorter than the thickness of the film's active layer. The dependence of OD response on ion species is also discussed. We demonstrate that the Gafchromic film used here is useful for measuring the intensity distribution of such low-energy ion beams.

  20. Calibration of EBT2 film using a red-channel PDD method in combination with a modified three-channel technique

    SciTech Connect

    Chang, Liyun; Ho, Sheng-Yow; Lee, Tsair-Fwu; Yeh, Shyh-An; Ding, Hueisch-Jy; Chen, Pang-Yu

    2015-10-15

    Purpose: Ashland Inc. EBT2 and EBT3 films are widely used in quality assurance for radiation therapy; however, there remains a relatively high degree of uncertainty [B. Hartmann, M. Martisikova, and O. Jakel, “Homogeneity of Gafchromic EBT2 film,” Med. Phys. 37, 1753–1756 (2010)]. Micke et al. (2011) recently improved the spatial homogeneity using all color channels of a flatbed scanner; however, van Hoof et al. (2012) pointed out that the corrected nonuniformity still requires further investigation for larger fields. To reduce the calibration errors and the uncertainty, the authors propose a new red-channel percentage-depth-dose method in combination with a modified three-channel technique. Methods: For the ease of comparison, the EBT2 film image used in the authors’ previous study (2012) was reanalyzed using different approaches. Photon beams of 6-MV were delivered to two different films at two different beam on times, resulting in the absorption doses of ranging from approximately 30 to 300 cGy at the vertical midline of the film, which was set to be coincident with the central axis of the beam. The film was tightly sandwiched in a 30{sup 3}-cm{sup 3} polystyrene phantom, and the pixel values for red, green, and blue channels were extracted from 234 points on the central axis of the beam and compared with the corresponding depth doses. The film was first calibrated using the multichannel method proposed by Micke et al. (2010), accounting for nonuniformities in the scanner. After eliminating the scanner and dose-independent nonuniformities, the film was recalibrated via the dose-dependent optical density of the red channel and fitted to a power function. This calibration was verified via comparisons of the dose profiles extracted from the films, where three were exposed to a 60° physical wedge field and three were exposed to composite fields, and all of which were measured in a water phantom. A correction for optical attenuation was implemented, and

  1. Gafchromic XR-QA2 film as a complementary dosimeter for hand-monitoring in CTF-guided biopsies.

    PubMed

    Sarmento, Sandra; Pereira, Joana; Sousa, Maria José; Cunha, Luís; Dias, Anabela G; Pereira, Miguel F; Oliveira, Augusto D; Cardoso, João V; Santos, Luis M; Gouvêa, Margarida; Lencart, Joana; Alves, João G; Santos, João A M

    2016-01-01

    Computed tomography fluoroscopy (CTF) is a useful imaging technique to guide biopsies, particularly lung biopsies, but it also has the potential for very high hand exposures, despite use of quick-check method and needle holders whenever feasible. Therefore, reliable monitoring is crucial to ensure the safe use of CTF. This is a challenge, because ring dosimeters monitor exposure only at the base of one finger, while the fingertips may be exposed to the highly collimated CT beam. In this work we have explored the possibility of using Gafchromic XR-QA2 self-developing film as a complementary dosimeter to quantify hand exposure during CTF-guided biopsies. A glove used in a previous study and designed to contain 11 TLDs was adapted to include Gafchromic strips 7 mm wide, covering the fingers. A total of 22 biopsies were successfully performed wearing this GafTLD glove under sterile gloves, and the IR reported no difficulty or reduction of dexterity while wearing it. Comparison of dose distributions obtained from digitization of the Gafchromic film strips and absolute Hp(0.07) readings from TLDs showed good agreement, despite some positional uncertainty due to relative movement. Per procedure, doses at the base of the ring finger can be as low as 3%-8% of hand dose maximum. Accumulated dose at the base of the ring finger was four times lower than the dose maximum. PMID:26894341

  2. Photon beam dosimetry with EBT3 film in heterogeneous regions: Application to the evaluation of dose-calculation algorithms

    NASA Astrophysics Data System (ADS)

    Jung, Hyunuk; Kum, Oyeon; Han, Youngyih; Park, Byungdo; Cheong, Kwang-Ho

    2014-12-01

    For a better understanding of the accuracy of state-of-the-art-radiation therapies, 2-dimensional dosimetry in a patient-like environment will be helpful. Therefore, the dosimetry of EBT3 films in non-water-equivalent tissues was investigated, and the accuracy of commercially-used dose-calculation algorithms was evaluated with EBT3 measurement. Dose distributions were measured with EBT3 films for an in-house-designed phantom that contained a lung or a bone substitute, i.e., an air cavity (3 × 3 × 3 cm3) or teflon (2 × 2 × 2 cm3 or 3 × 3 × 3 cm3), respectively. The phantom was irradiated with 6-MV X-rays with field sizes of 2 × 2, 3 × 3, and 5 × 5 cm2. The accuracy of EBT3 dosimetry was evaluated by comparing the measured dose with the dose obtained from Monte Carlo (MC) simulations. A dose-to-bone-equivalent material was obtained by multiplying the EBT3 measurements by the stopping power ratio (SPR). The EBT3 measurements were then compared with the predictions from four algorithms: Monte Carlo (MC) in iPlan, acuros XB (AXB), analytical anisotropic algorithm (AAA) in Eclipse, and superposition-convolution (SC) in Pinnacle. For the air cavity, the EBT3 measurements agreed with the MC calculation to within 2% on average. For teflon, the EBT3 measurements differed by 9.297% (±0.9229%) on average from the Monte Carlo calculation before dose conversion, and by 0.717% (±0.6546%) after applying the SPR. The doses calculated by using the MC, AXB, AAA, and SC algorithms for the air cavity differed from the EBT3 measurements on average by 2.174, 2.863, 18.01, and 8.391%, respectively; for teflon, the average differences were 3.447, 4.113, 7.589, and 5.102%. The EBT3 measurements corrected with the SPR agreed with 2% on average both within and beyond the heterogeneities with MC results, thereby indicating that EBT3 dosimetry can be used in heterogeneous media. The MC and the AXB dose calculation algorithms exhibited clinically-acceptable accuracy (<5%) in

  3. A method for multichannel dosimetry with EBT3 radiochromic films

    SciTech Connect

    Pérez Azorín, Jose Fernando

    2014-06-15

    Purpose: An improved method for multichannel dosimetry is presented. This method explicitly takes into account the information provided by the unexposed image of the film. Methods: The method calculates the dose by applying a couple of perturbations to the scanned dose, one dependent and the other independent on the color channel. The method has been compared with previous multichannel and two single channel methods (red and green) against measurements using two different tests: first, five percentage depth dose profiles covering a wide range of doses; second, the dose map perpendicular to the beam axis for a 15 × 15cm{sup 2} square field. Finally, the results of 30 IMRT quality assurances tests are presented. All tests have been evaluated using the gamma analysis. Results: The coefficient of variation was found to be similar for all methods in a wide range of doses. The results of the proposed method are more in agreement with the experimental measurements and with the treatment planning system. Furthermore, the differences in the mean gamma pass rates are statistically significant. Conclusions: The improved multichannel dosimetric method is able to remove many of the common disturbances usually present in radiochromic films and improves the gamma analysis results compared with the other three methods.

  4. Calibration of EBT2 film by the PDD method with scanner non-uniformity correction

    NASA Astrophysics Data System (ADS)

    Chang, Liyun; Chui, Chen-Shou; Ding, Hueisch-Jy; Hwang, Ing-Ming; Ho, Sheng-Yow

    2012-09-01

    The EBT2 film together with a flatbed scanner is a convenient dosimetry QA tool for verification of clinical radiotherapy treatments. However, it suffers from a relatively high degree of uncertainty and a tedious film calibration process for every new lot of films, including cutting the films into several small pieces, exposing with different doses, restoring them back and selecting the proper region of interest (ROI) for each piece for curve fitting. In this work, we present a percentage depth dose (PDD) method that can accurately calibrate the EBT2 film together with the scanner non-uniformity correction and provide an easy way to perform film dosimetry. All films were scanned before and after the irradiation in one of the two homemade 2 mm thick acrylic frames (one portrait and the other landscape), which was located at a fixed position on the scan bed of an Epson 10 000XL scanner. After the pre-irradiated scan, the film was placed parallel to the beam central axis and sandwiched between six polystyrene plates (5 cm thick each), followed by irradiation of a 20 × 20 cm2 6 MV photon beam. Two different beams on times were used on two different films to deliver a dose to the film ranging from 32 to 320 cGy. After the post-irradiated scan, the net optical densities for a total of 235 points on the beam central axis on the films were auto-extracted and compared with the corresponding depth doses that were calculated through the measurement of a 0.6 cc farmer chamber and the related PDD table to perform the curve fitting. The portrait film location was selected for routine calibration, since the central beam axis on the film is parallel to the scanning direction, where non-uniformity correction is not needed (Ferreira et al 2009 Phys. Med. Biol. 54 1073-85). To perform the scanner non-uniformity calibration, the cross-beam profiles of the film were analysed by referencing the measured profiles from a Profiler™. Finally, to verify our method, the films were

  5. Evaluation of Multiple-Sampling Function used with a Microtek flatbed scanner for Radiation Dosimetry Calibration of EBT2 Film

    NASA Astrophysics Data System (ADS)

    Chang, Liyun; Ho, Sheng-Yow; Ding, Hueisch-Jy; Hwang, Ing-Ming; Chen, Pang-Yu; Lee, Tsair-Fwu

    2016-10-01

    The radiochromic EBT2 film is a widely used quality assurance device for radiation therapy. This study evaluated the film calibration performance of the multiple-sampling function, a function of the ScanWizard Pro scanning software provided by the manufacturer, when used with Microtek 9800XL plus (9800XL+) flatbed scanner. By using the PDD method, each one of the eight EBT2 films, four delivered by 290 monitor unit (MU) and four by 88 MU via 6-MV photon beams, was tightly sandwiched in a 303-cm3 water equivalent polystyrene phantom prior to irradiation. Before and after irradiation, all films were scanned using the Microtek 9800XL+ scanner with five different modes of the multiple-sampling function, which could generate the image with the averaged result of multiple-sampling. The net optical densities (netOD) on the beam central axis of film were assigned to corresponding depth doses for calibration. For each sampling mode with either delivered MU, the depth-dose uncertainty of a single film from repeated scans and that of a single scan of the four films were analyzed. Finally, the calibration error and the combined calibration uncertainty between film determined depth-doses and delivered depth-doses were calculated and evaluated for each sampling mode. All standard deviations and the calibration error were demonstrated to be unrelated to the number of sampling lines. The calibration error of the 2-line and 16-line mode was within 3 cGy and better than that of the other modes. The combined uncertainty of the 2-line mode was the lowest, which was generally less than 6 cGy except for the delivered dose around 100 cGy. The evaluation described herein revealed that the EBT2 film calibrated with the 2-line mode has relatively lower error, scanning time and combined uncertianty. Therefore, it is recommended for routine EBT2 film calibration and verification of treatment plans.

  6. VERIFICATION OF INDICATED SKIN ENTRANCE AIR KERMA FOR CARDIAC X-RAY-GUIDED INTERVENTION USING GAFCHROMIC FILM.

    PubMed

    Nilsson Althén, J; Sandborg, M

    2016-06-01

    The aim of this work was to verify the indicated maximum entrance surface air kerma (ESAK) using a GE Innova IGS 520 imaging system during cardiac interventional procedures. Gafchromic XR RV3 films were used for the patient measurements to monitor the maximum ESAK. The films were scanned and calibrated to measure maximum ESAK. Thermoluminescent dosemeters were used to measure the backscatter factor from an anthropomorphic thorax phantom. The measured backscatter factor, 1.53, was in good agreement with Monte Carlo simulations but higher than the one used by the imaging system, 1.20. The median of the ratio between indicated maximum ESAK and measured maximum ESAK was 0.68. In this work, the indicated maximum ESAK by the imaging system's dose map model underestimates the measured maximum ESAK by 32 %. The threshold ESAK for follow-up procedures for patient with skin dose in excess of 2 Gy will be reduced to 1.4 Gy. PMID:26541185

  7. SU-E-T-32: An Application of GafChromic RTQA2 Film to the Patient Specified Quality Assurance

    SciTech Connect

    Peng, J; Hu, W

    2014-06-01

    Purpose: GafChromic RTQA2 film is known as a quality assurance (QA) tool for light field and radiation field verification. This study is attempted to apply the RTQA2 film to the patient specified quality assurance. Methods: Pre-irradiated and post-irradiated RTQA2 films were scanned in a reflection mode using a flatbed scanner. A plan-based dose calibration method utilized the mapping information of calculated dose image and measured film image to create a dose vs. pixel value calibration model. This model was used to calibrate the measured film image from the pixel value (gray value) image to the dose image. The dose agreement between calculated and measured dose images were analyzed using the gamma analysis. To evaluate the feasibility of this method, three clinical approved RapidArc cases (one abdomen cancer and two head-and-neck cancer patients) were tested. The tolerance of 3% dose difference and 3 mm distance to agreement (DTA) and gamma index ≤ 1 were set for the analysis. Results: The calibrated film dose image from measurement was successfully compared to the predicted dose image from the commercial treatment planning. The gamma analysis results showed good consistency. Gamma passing rates were 99.02%, 94.84%, and 98.33% for the three patients, respectively. Conclusion: The plan based calibration method has the feasibility for dose verification without shortages of film batch and development time variation.

  8. Implementation of a program for quality assurance on leaf positioning accuracy using Gafchromic® RTQA2 films

    PubMed Central

    Girardi, Andrea; Anglesio, Silvia; Amadore, Gianluca; Trevisiol, Edoardo; Redda, Maria Grazia Ruo

    2014-01-01

    In radiotherapy treatments the correct dose delivery to the target volume and the consequent conservation of healthy tissues is affected by multileaf collimator (MLC) leaf positioning accuracy and reproducibility, mostly in intensity-modulated radiation therapy (IMRT): For this reason a quality assurance (QA) program is necessary to ensure the best treatment possible to each patient. The aim of this study is the implementation of a method using Gafchromic® RTQA 2 films to perform routine QA on the MLC, both for qualitative and quantitative analysis. A flatbed document scanner (Epson 10000XL) was used in conjunction with radiochromic detector; a scanning protocol was firstly defined to improve readout accuracy. RTQA2 films were irradiated with 6 MV X-rays at different dose levels to obtain calibration curve. To evaluate the leaf positioning accuracy in different conditions, a rhomboidal shape and a field consisting in three rectangular segments were selected. The images quantitative analysis was handled with a program developed in MATLAB to evaluate the differences between expected and measured leaves positions. The reproducibility and global uncertainty of the method were estimated to be equal to 0.5% and 0.6 mm, respectively. Moreover, a qualitative test was performed: A garden picket fence field, consisting in multiple segments 2 × 22 cm2, was realized setting known leaves shifts to test the method sensitivity. The picket fence test shows that the method is able to detect displacements equal to 1 mm. The results suggest that Gafchromic® RTQA2 films represent a reliable tool to perform MLC routine QA. PMID:24872610

  9. Wax boluses and accuracy of EBT and RTQA radiochromic film detectors in radiotherapy with the JINR Phasotron proton beam

    PubMed Central

    Borowicz, Dorota Maria; Malicki, Julian; Mytsin, Gennady; Shipulin, Konstantin

    2013-01-01

    Aim To present the results obtained using radiochromic films EBT and RTQA 1010P for the reconstruction the dose distributions for targets irradiated by proton beam and modified by wax boluses. Background In Medico-Technical Complex at the Joint Institute for Nuclear Research in Dubna implemented technology of wax boluses. Materials and methods Wax boluses are easier to make and they give better dose distributions than boluses made from modeling clay previously used at our center. We irradiated two imaginary targets, one shaped as a cylinder and the other one as two cuboids. The evaluated calibration curve was used for calculation of the dose distributions measured by the EBT and RTQA radiochromic film. In both cases, the measured dose distributions were compared to the dose distributions calculated by the treatment planning system (TPS). We also compared dose distributions using three different conformity indices at a 95% isodose. Results Better target coverage and better compliance of measurements (semiconductor detectors and radiochromic films) with calculated doses was obtained for cylindrical target than for cuboidal target. The 95% isodose covered well the tumor for both target shapes, while for cuboidal target larger volume around the target received therapeutic dose, due to the complicated target shape. The use wax boluses provided to be effective tool in modifying proton beam to achieve appropriate shape of isodose distribution. Conclusion EBT film yielded the best visual matching. Both EBT and RTQA films confirmed good conformity between calculated and measured doses, thus confirming that wax boluses used to modify the proton beam resulted in good dose distributions. PMID:24936315

  10. Improving the energy response of external beam therapy (EBT) GafChromic{sup TM} dosimetry films at low energies (≤100 keV)

    SciTech Connect

    Bekerat, H. Devic, S.; DeBlois, F.; Singh, K.; Sarfehnia, A.; Seuntjens, J.; Shih, Shelley; Yu, Xiang; Lewis, D.

    2014-02-15

    Purpose: Purpose of this work is to investigate the effects of varying the active layer composition of external beam therapy (EBT) GafChromic{sup TM} films on the energy dependence of the film, as well as try to develop a new prototype with more uniform energy response at low photon energies (⩽100 keV). Methods: First, the overall energy response (S{sub AD,} {sub W}(Q)) of different commercial EBT type film models that represent the three different generations produced to date, i.e., EBT, EBT2, and EBT3, was investigated. Pieces of each film model were irradiated to a fixed dose of 2 Gy to water for a wide range of beam qualities and the corresponding S{sub AD,} {sub W}(Q) was measured using a flatbed document scanner. Furthermore, the DOSRZnrc Monte Carlo code was used to determine the absorbed dose to water energy dependence of the film, f(Q). Moreover, the intrinsic energy dependence, k{sub bq}(Q), for each film model was evaluated using the corresponding S{sub AD,} {sub W}(Q) and f(Q). In the second part of this study, the authors investigated the effects of changing the chemical composition of the active layer on S{sub AD,} {sub W}(Q). Finally, based on these results, the film manufacturer fabricated several film prototypes and the authors evaluated their S{sub AD,} {sub W}(Q). Results: The commercial EBT film model shows an under response at all energies below 100 keV reaching 39% ± 4% at about 20 keV. The commercial EBT2 and EBT3 film models show an under response of about 27% ± 4% at 20 keV and an over response of about 16% ± 4% at 40 keV.S{sub AD,} {sub W}(Q) of the three commercial film models at low energies show strong correlation with the corresponding f{sup −1}(Q) curves. The commercial EBT3 model with 4% Cl in the active layer shows under response of 22% ± 4% at 20 keV and 6% ± 4% at about 40 keV. However, increasing the mass percent of chlorine makes the film more hygroscopic which may affect the stability of the film's readout. The

  11. Three-dimensional dose distribution in contrast-enhanced digital mammography using Gafchromic XR-QA2 films: Feasibility study

    NASA Astrophysics Data System (ADS)

    Hwang, Yi-Shuan; Lin, Yu-Ying; Cheung, Yun-Chung; Tsai, Hui-Yu

    2014-11-01

    This study was aimed to establish three-dimensional dose distributions for contrast-enhanced digital mammography (CEDM) using self-developed Gafchromic XR-QA2 films. Dose calibration and distribution evaluations were performed on a full-field digital mammography unit with dual energy (DE) contrast-enhanced option. Strategy for dose calibration of films in the DE mode was based on the data obtained from common target/filter/kVp combinations used clinically and the dose response model modified from Rampado's model. Dose derived from films were also verified by measured data from an ionization chamber. The average difference of dose was 8.9% in the dose range for clinical uses. Three-dimensional dose distributions were estimated using triangular acrylic phantom equipped with the mammography system. Five pieces of film sheets were separately placed between the acrylic slabs to evaluate the dose distribution at different depths. After normalizing the dose in each pixel to the maximum dose at the top-center position of the acrylic, normalized dose distribution for transverse, coronal and sagittal planes, could thus be obtained. The depth dose distribution evaluated in this study may further serve as a reference for evaluating the patient glandular dose at different depths based on the entrance exposure information.

  12. Characterization of the proton beam from an IBA Cyclone 18/9 with radiochromic film EBT2

    NASA Astrophysics Data System (ADS)

    Sansaloni, F.; Lagares, J. I.; Arce, P.; Llop, J.; Perez, J. M.

    2012-12-01

    The use of radiochromic films is widespread in different areas of medical physics like radiotherapy and hadrontherapy; however, radiochromic films have been scarcely used in the characterization of proton or deuteron beams generated in biomedical cyclotrons. In this paper the radiochromic film EBT2 was used to study the beam size and the proton beam energy of an IBA Cyclone 18/9 cyclotron. The results indicate that the beam size can be easily measured at a very low expense; however, an accurate determination of the beam energy might require the implementation of certain experimental improvements.

  13. A study of GafChromic XR Type R film response with reflective-type densitometers and economical flatbed scanners.

    PubMed

    Thomas, G; Chu, R Y L; Rabe, Frank

    2003-01-01

    The GafChromic XR Type R film is a relatively new product for recording high radiation dose in interventional radiological procedures. Means of measuring the film response were studied in this investigation. Two handheld reflective-type densitometers of different models were compared in the range of 0-8 Gy. They were found to be in excellent agreement. Five reflective flatbed scanners of different models were compared by a simple preliminary test. Their widely differed performances suggest the need of testing a scanner before using it for dosimetry measurement. A selected scanner was further tested for its ability to measure radiation in the range of 0-8 Gy and for the development of a scanning protocol. This experiment suggested the inclusion of a calibration pattern with known exposures and a black reference step in the scanning of a film in RGB mode. Then the red component of this image should be used for dosimetry computation. This method was compared to the use of a red acetate filter. The latter was demonstrated to be a possible alternative for measurement below 5 Gy and when there is no software ability to split an image into color components.

  14. Phantom dosimetric study of nondivergent aluminum tissue compensator using ion chamber, TLD, and gafchromic film.

    PubMed

    Kinhikar, Rajesh A; Tambe, Chandrashekhar M; Upreti, Ritu R; Patkar, Sachin; Patil, Kalpana; Deshpande, Deepak D

    2008-01-01

    Anatomic contour irregularity and tissue inhomogeneity in head-and-neck radiotherapy can lead to significant dose inhomogeneity due to the presence of hot and cold spots across the treatment volumes. Missing tissue compensators (TCs) can overcome this dose inhomogeneity. The current study examines the capacity of 2-dimensional (2D) custom aluminum TCs fabricated at our hospital to improve the dose homogeneity across the treatment volume. The dosimetry of the 2D custom TCs was carried out in a specially designed head-and-neck phantom for anterior-posterior (AP) and posterior-anterior (PA) fields with an ion chamber, thermoluminscence dosimeters (TLDs), and film. The results were compared for compensated and uncompensated plans generated from the Eclipse treatment planning system. On average, open-field plans contained peak doses of 117%, optimally wedged-plans contained peak doses of 113%, and custom-compensated plans contained peak doses of 105%. The dose variation between prescribed and measured dose at midplane of the phantom was observed as high as 17%, which was reduced to 3.2% for the customized TC during ionometric measurements. It was further confirmed with TLDs, in a sagittal plane, that the high-dose region of 13.3% was reduced to 2.3%. The measurements carried out with the ion chamber, TLDs, and film were found in good agreement with each other and with Eclipse. Thus, a custom-made 2D TC is capable of reducing hot spots to improve overall dose homogeneity across the treatment volume.

  15. Phantom Dosimetric Study of Nondivergent Aluminum Tissue Compensator Using Ion Chamber, TLD, and Gafchromic Film

    SciTech Connect

    Kinhikar, Rajesh A. Tambe, Chandrashekhar M.; Upreti, Ritu R.; Patkar, Sachin; Patil, Kalpana; Deshpande, Deepak D.

    2008-01-01

    Anatomic contour irregularity and tissue inhomogeneity in head-and-neck radiotherapy can lead to significant dose inhomogeneity due to the presence of hot and cold spots across the treatment volumes. Missing tissue compensators (TCs) can overcome this dose inhomogeneity. The current study examines the capacity of 2-dimensional (2D) custom aluminum TCs fabricated at our hospital to improve the dose homogeneity across the treatment volume. The dosimetry of the 2D custom TCs was carried out in a specially designed head-and-neck phantom for anterior-posterior (AP) and posterior-anterior (PA) fields with an ion chamber, thermoluminscence dosimeters (TLDs), and film. The results were compared for compensated and uncompensated plans generated from the Eclipse treatment planning system. On average, open-field plans contained peak doses of 117%, optimally wedged-plans contained peak doses of 113%, and custom-compensated plans contained peak doses of 105%. The dose variation between prescribed and measured dose at midplane of the phantom was observed as high as 17%, which was reduced to 3.2% for the customized TC during ionometric measurements. It was further confirmed with TLDs, in a sagittal plane, that the high-dose region of 13.3% was reduced to 2.3%. The measurements carried out with the ion chamber, TLDs, and film were found in good agreement with each other and with Eclipse. Thus, a custom-made 2D TC is capable of reducing hot spots to improve overall dose homogeneity across the treatment volume.

  16. Poster — Thur Eve — 39: Feasibility of Commissioning HybridArc with the Delta 4 two plane diode phantom: comparisons with Gafchromic Film

    SciTech Connect

    Bojechko, C.; Ploquin, N.; Hudson, A.; Sayous, Y.

    2014-08-15

    HybridArc is a relatively novel radiation therapy technique which combines optimized dynamic conformai arcs (DCA) and intensity modulated radiation therapy (IMRT). HybridArc has possible dosimetry and efficiency advantages over stand alone DCA and IMRT treatments and can be readily implemented on any linac capable of DCA and IMRT, giving strong motivation to commission the modality. The Delta4 phantom (Scandidos, Uppsala, Sweden) has been used for IMRT and VMAT clinical dosimetric verification making it a candidate for HybridArc commissioning. However the HybridArc modality makes use of several non co-planar arcs which creates setup issues due to the geometry of the Delta4, resulting in possible phantom gantry collisions for plans with non-zero couch angles. An analysis was done determining the feasibility of using the Delta4 fixed at 0° couch angle compared with results obtained using Gafchromic ETB2 film (Ashland, Covington Kentucky) in an anthropomorphic phantom at the planned couch angles. A gamma index analysis of the measured and planned dose distributions was done using Delta4 and DoseLab Pro (Mobius Medical Systems, Houston Texas) software. For both arc and IMRT sub-fields there is reasonable correlation between the gamma index found from the Delta4 and Gafchromic film. All results show the feasibility of using the Delta4 for HybridArc commissioning.

  17. Multidimensional dosimetry of {sup 106}Ru eye plaques using EBT3 films and its impact on treatment planning

    SciTech Connect

    Heilemann, G. Kostiukhina, N.

    2015-10-15

    Purpose: The purpose of this study was to establish a method to perform multidimensional radiochromic film measurements of {sup 106}Ru plaques and to benchmark the resulting dose distributions against Monte Carlo simulations (MC), microdiamond, and diode measurements. Methods: Absolute dose rates and relative dose distributions in multiple planes were determined for three different plaque models (CCB, CCA, and COB), and three different plaques per model, using EBT3 films in an in-house developed polystyrene phantom and the MCNP6 MC code. Dose difference maps were generated to analyze interplaque variations for a specific type, and for comparing measurements against MC simulations. Furthermore, dose distributions were validated against values specified by the manufacturer (BEBIG) and microdiamond and diode measurements in a water scanning phantom. Radial profiles were assessed and used to estimate dosimetric margins for a given combination of representative tumor geometry and plaque size. Results: Absolute dose rates at a reference depth of 2 mm on the central axis of the plaque show an agreement better than 5% (10%) when comparing film measurements (MCNP6) to the manufacturer’s data. The reproducibility of depth-dose profile measurements was <7% (2 SD) for all investigated detectors and plaque types. Dose difference maps revealed minor interplaque deviations for a specific plaque type due to inhomogeneities of the active layer. The evaluation of dosimetric margins showed that for a majority of the investigated cases, the tumor was not completely covered by the 100% isodose prescribed to the tumor apex if the difference between geometrical plaque size and tumor base ≤4 mm. Conclusions: EBT3 film dosimetry in an in-house developed phantom was successfully used to characterize the dosimetric properties of different {sup 106}Ru plaque models. The film measurements were validated against MC calculations and other experimental methods and showed a good agreement with

  18. How flatbed scanners upset accurate film dosimetry

    NASA Astrophysics Data System (ADS)

    van Battum, L. J.; Huizenga, H.; Verdaasdonk, R. M.; Heukelom, S.

    2016-01-01

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2-2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner’s transmission mode, with red-green-blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner’s optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film.

  19. How flatbed scanners upset accurate film dosimetry.

    PubMed

    van Battum, L J; Huizenga, H; Verdaasdonk, R M; Heukelom, S

    2016-01-21

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2-2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner's transmission mode, with red-green-blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner's optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film.

  20. Comparative dose evaluations between XVI and OBI cone beam CT systems using Gafchromic XRQA2 film and nanoDot optical stimulated luminescence dosimeters

    SciTech Connect

    Giaddui, Tawfik; Cui Yunfeng; Galvin, James; Yu Yan; Xiao Ying

    2013-06-15

    Purpose: To investigate the effect of energy (kVp) and filters (no filter, half Bowtie, and full Bowtie) on the dose response curves of the Gafchromic XRQA2 film and nanoDot optical stimulated luminescence dosimeters (OSLDs) in CBCT dose fields. To measure surface and internal doses received during x-ray volume imager (XVI) (Version R4.5) and on board imager (OBI) (Version 1.5) CBCT imaging protocols using these two types of dosimeters. Methods: Gafchromic XRQA2 film and nanoDot OSLD dose response curves were generated at different kV imaging settings used by XVI (software version R4.5) and OBI (software version 1.5) CBCT systems. The settings for the XVI system were: 100 kVp/F0 (no filter), 120 kVp/F0, and 120 kVp/F1 (Bowtie filter), and for the OBI system were: 100 kVp/full fan, 125 kVp/full fan, and 125 kVp/half fan. XRQA2 film was calibrated in air to air kerma levels between 0 and 11 cGy and scanned using reflection scanning mode with the Epson Expression 10000 XL flat-bed document scanner. NanoDot OSLDs were calibrated on phantom to surface dose levels between 0 and 14 cGy and read using the inLight{sup TM} MicroStar reader. Both dosimeters were used to measure in field surface and internal doses in a male Alderson Rando Phantom. Results: Dose response curves of XRQA2 film and nanoDot OSLDs at different XVI and OBI CBCT settings were reported. For XVI system, the surface dose ranged between 0.02 cGy in head region during fast head and neck scan and 4.99 cGy in the chest region during symmetry scan. On the other hand, the internal dose ranged between 0.02 cGy in the head region during fast head and neck scan and 3.17 cGy in the chest region during chest M20 scan. The average (internal and external) dose ranged between 0.05 cGy in the head region during fast head and neck scan and 2.41 cGy in the chest region during chest M20 scan. For OBI system, the surface dose ranged between 0.19 cGy in head region during head scan and 4.55 cGy in the pelvis region during

  1. Measurement of absorbed dose to water around an electronic brachytherapy source. Comparison of two dosimetry systems: lithium formate EPR dosimeters and radiochromic EBT2 film

    NASA Astrophysics Data System (ADS)

    Adolfsson, Emelie; White, Shane; Landry, Guillaume; Lund, Eva; Gustafsson, Håkan; Verhaegen, Frank; Reniers, Brigitte; Carlsson Tedgren, Åsa; Alm Carlsson, Gudrun

    2015-05-01

    Interest in high dose rate (HDR) electronic brachytherapy operating at 50 kV is increasing. For quality assurance it is important to identify dosimetry systems that can measure the absorbed doses in absolute terms which is difficult in this energy region. In this work a comparison is made between two dosimetry systems, EPR lithium formate dosimeters and radiochromic EBT2 film. Both types of dosimeters were irradiated simultaneously in a PMMA phantom using the Axxent EBS. Absorbed dose to water was determined at distances of 10 mm, 30 mm and 50 mm from the EBS. Results were traceable to different primary standards as regards to absorbed dose to water (EPR) and air kerma (EBT2). Monte Carlo simulations were used in absolute terms as a third estimate of absorbed dose to water. Agreement within the estimated expanded (k = 2) uncertainties (5% (EPR), 7% (EBT2)) was found between the results at 30 mm and 50 mm from the x-ray source. The same result was obtained in 4 repetitions of irradiation, indicating high precision in the measurements with both systems. At all distances, agreement between EPR and Monte Carlo simulations was shown as was also the case for the film measurements at 30mm and 50mm. At 10mm the geometry for the film measurements caused too large uncertainty in measured values depending on the exact position (within sub-mm distances) of the EBS and the 10 mm film results were exculded from comparison. This work has demonstrated good performance of the lithium formate EPR dosimetry system in accordance with earlier experiments at higher photon energies (192Ir HDR brachytherapy). It was also highlighted that there might be issues regarding the energy dependence and intrinsic efficiency of the EBT2 film that need to be considered for measurements using low energy sources.

  2. Evaluation of the incident directional dependence of radiochromic film by use of Monte Carlo simulation and measurement.

    PubMed

    Yuasa, Yuki; Kawamura, Shinji; Shiinoki, Takehiro; Uehara, Takuya; Koike, Masahiro; Kanzaki, Ryuji; Hanazawa, Hideki; Takahashi, Shotaro; Shibuya, Keiko

    2016-07-01

    In high-precision radiotherapy, absolute and relative doses are evaluated for patient-specific intensity-modulated radiation therapy (IMRT) quality assurance (QA). In our institution, we use GAFCHROMIC EBT3 (EBT3) for relative dose evaluation in IMRT QA. We usually use two directional film configurations, which are in the axial and sagittal planes. The QA in our institution shows some differences between the gamma pass rates in the axial and sagittal directions. The purpose of this study was to evaluate the incident directional dependence of EBT3 by using the percent depth dose (PDD) and the off-center ratio (OCR) between EBT3 films positioned perpendicular to the beam axis and along the beam axis. Furthermore, we compared the PDD in EBT3 films positioned perpendicular to the beam axis and the PDD by using an ionization chamber. In addition, PDDs in water phantoms with and without EBT3 films were calculated by Monte Carlo simulation. The results showed that the PDD in EBT3 films positioned perpendicular to the beam axis increased with the depth from the phantom surface. Monte Carlo simulation showed the same trend as did the film measurements. The OCR results were slightly different at dose levels below 20 %. The OCR in EBT3 films positioned along the beam axis was higher than that perpendicular to the beam axis. Thus, we conclude that EBT3 film has incident directional dependence. In IMRT QA, the gamma analysis results may be affected by the incident directional dependence of EBT3 film. PMID:27010193

  3. Dosimetry for small fields in stereotactic radiosurgery using gafchromic MD-V2-55 film, TLD-100 and alanine dosimeters.

    PubMed

    Massillon-J L, Guerda; Cueva-Prócel, Diego; Díaz-Aguirre, Porfirio; Rodríguez-Ponce, Miguel; Herrera-Martínez, Flor

    2013-01-01

    This work investigated the suitability of passive dosimeters for reference dosimetry in small fields with acceptable accuracy. Absorbed dose to water rate was determined in nine small radiation fields with diameters between 4 and 35 mm in a Leksell Gamma Knife (LGK) and a modified linear accelerator (linac) for stereotactic radiosurgery treatments. Measurements were made using Gafchromic film (MD-V2-55), alanine and thermoluminescent (TLD-100) dosimeters and compared with conventional dosimetry systems. Detectors were calibrated in terms of absorbed dose to water in (60)Co gamma-ray and 6 MV x-ray reference (10×10 cm(2)) fields using an ionization chamber calibrated at a standards laboratory. Absorbed dose to water rate computed with MD-V2-55 was higher than that obtained with the others dosimeters, possibly due to a smaller volume averaging effect. Ratio between the dose-rates determined with each dosimeter and those obtained with the film was evaluated for both treatment modalities. For the LGK, the ratio decreased as the dosimeter size increased and remained constant for collimator diameters larger than 8 mm. The same behaviour was observed for the linac and the ratio increased with field size, independent of the dosimeter used. These behaviours could be explained as an averaging volume effect due to dose gradient and lack of electronic equilibrium. Evaluation of the output factors for the LGK collimators indicated that, even when agreement was observed between Monte Carlo simulation and measurements with different dosimeters, this does not warrant that the absorbed dose to water rate in the field was properly known and thus, investigation of the reference dosimetry should be an important issue. These results indicated that alanine dosimeter provides a high degree of accuracy but cannot be used in fields smaller than 20 mm diameter. Gafchromic film can be considered as a suitable methodology for reference dosimetry. TLD dosimeters are not appropriate in fields

  4. Dosimetry for Small Fields in Stereotactic Radiosurgery Using Gafchromic MD-V2-55 Film, TLD-100 and Alanine Dosimeters

    PubMed Central

    Massillon-JL, Guerda; Cueva-Prócel, Diego; Díaz-Aguirre, Porfirio; Rodríguez-Ponce, Miguel; Herrera-Martínez, Flor

    2013-01-01

    This work investigated the suitability of passive dosimeters for reference dosimetry in small fields with acceptable accuracy. Absorbed dose to water rate was determined in nine small radiation fields with diameters between 4 and 35 mm in a Leksell Gamma Knife (LGK) and a modified linear accelerator (linac) for stereotactic radiosurgery treatments. Measurements were made using Gafchromic film (MD-V2-55), alanine and thermoluminescent (TLD-100) dosimeters and compared with conventional dosimetry systems. Detectors were calibrated in terms of absorbed dose to water in 60Co gamma-ray and 6 MV x-ray reference (10×10 cm2) fields using an ionization chamber calibrated at a standards laboratory. Absorbed dose to water rate computed with MD-V2-55 was higher than that obtained with the others dosimeters, possibly due to a smaller volume averaging effect. Ratio between the dose-rates determined with each dosimeter and those obtained with the film was evaluated for both treatment modalities. For the LGK, the ratio decreased as the dosimeter size increased and remained constant for collimator diameters larger than 8 mm. The same behaviour was observed for the linac and the ratio increased with field size, independent of the dosimeter used. These behaviours could be explained as an averaging volume effect due to dose gradient and lack of electronic equilibrium. Evaluation of the output factors for the LGK collimators indicated that, even when agreement was observed between Monte Carlo simulation and measurements with different dosimeters, this does not warrant that the absorbed dose to water rate in the field was properly known and thus, investigation of the reference dosimetry should be an important issue. These results indicated that alanine dosimeter provides a high degree of accuracy but cannot be used in fields smaller than 20 mm diameter. Gafchromic film can be considered as a suitable methodology for reference dosimetry. TLD dosimeters are not appropriate in fields

  5. Small field diode correction factors derived using an air core fibre optic scintillation dosimeter and EBT2 film

    NASA Astrophysics Data System (ADS)

    Ralston, Anna; Liu, Paul; Warrener, Kirbie; McKenzie, David; Suchowerska, Natalka

    2012-05-01

    There is no commercially available real-time dosimeter that can accurately measure output factors for field sizes down to 4 mm without the use of correction factors. Silicon diode detectors are commonly used but are not dosimetrically water equivalent, resulting in energy dependence and fluence perturbation. In contrast, plastic scintillators are nearly dosimetrically water equivalent. A fibre optic dosimeter (FOD) with a 0.8 mm3 plastic scintillator coupled to an air core light guide was used to measure the output factors for Novalis/BrainLab stereotactic cones of diameter 4-30 mm and Novalis MLC fields of width 5-100 mm. The FOD data matched the output factors measured by a 0.125 cm3 Semiflex ion chamber for the MLC fields above 30 mm and those measured with the EBT2 radiochromic film for the cones and MLC fields below 30 mm. Relative detector readings were obtained with four diode types (IBA SFD, EFD, PFD, PTW 60012) for the same fields. Empirical diode correction factors were determined by taking the ratio of FOD output factors to diode relative detector readings. The diodes were found to over-respond by 3%-16% for the smallest field. There was good agreement between different diodes of the same model number.

  6. Developing new extension of GafChromic RTQA2 film to patient quality assurance field using a plan-based calibration method

    NASA Astrophysics Data System (ADS)

    Peng, Jiayuan; Zhang, Zhen; Wang, Jiazhou; Xie, Jiang; Chen, Junchao; Hu, Weigang

    2015-10-01

    GafChromic RTQA2 film is a type of radiochromic film designed for light field and radiation field alignment. The aim of this study is to extend the application of RTQA2 film to the measurement of patient specific quality assurance (QA) fields as a 2D relative dosimeter. Pre-irradiated and post-irradiated RTQA2 films were scanned in reflection mode using a flatbed scanner. A plan-based calibration (PBC) method utilized the mapping information of the calculated dose image and film grayscale image to create a dose versus pixel value calibration model. This model was used to calibrate the film grayscale image to the film relative dose image. The dose agreement between calculated and film dose images were analyzed by gamma analysis. To evaluate the feasibility of this method, eight clinically approved RapidArc cases (one abdomen cancer and seven head-and-neck cancer patients) were tested using this method. Moreover, three MLC gap errors and two MLC transmission errors were introduced to eight Rapidarc cases respectively to test the robustness of this method. The PBC method could overcome the film lot and post-exposure time variations of RTQA2 film to get a good 2D relative dose calibration result. The mean gamma passing rate of eight patients was 97.90%  ±  1.7%, which showed good dose consistency between calculated and film dose images. In the error test, the PBC method could over-calibrate the film, which means some dose error in the film would be falsely corrected to keep the dose in film consistent with the dose in the calculated dose image. This would then lead to a false negative result in the gamma analysis. In these cases, the derivative curve of the dose calibration curve would be non-monotonic which would expose the dose abnormality. By using the PBC method, we extended the application of more economical RTQA2 film to patient specific QA. The robustness of the PBC method has been improved by analyzing the monotonicity of the derivative of the

  7. Precise radiochromic film dosimetry using a flat-bed document scanner

    SciTech Connect

    Devic, Slobodan; Seuntjens, Jan; Sham, Edwin; Podgorsak, Ervin B.; Schmidtlein, C. Ross; Kirov, Assen S.; Soares, Christopher G.

    2005-07-15

    In this study, a measurement protocol is presented that improves the precision of dose measurements using a flat-bed document scanner in conjunction with two new GafChromic registered film models, HS and Prototype A EBT exposed to 6 MV photon beams. We established two sources of uncertainties in dose measurements, governed by measurement and calibration curve fit parameters contributions. We have quantitatively assessed the influence of different steps in the protocol on the overall dose measurement uncertainty. Applying the protocol described in this paper on the Agfa Arcus II flat-bed document scanner, the overall one-sigma dose measurement uncertainty for an uniform field amounts to 2% or less for doses above around 0.4 Gy in the case of the EBT (Prototype A), and for doses above 5 Gy in the case of the HS model GafChromic registered film using a region of interest 2x2 mm{sup 2} in size.

  8. External Beam Therapy (EBT)

    MedlinePlus

    ... Physician Resources Professions Site Index A-Z External Beam Therapy (EBT) External beam therapy (EBT) is a ... follow-up should I expect? What is external beam therapy and how is it used? External beam ...

  9. SU-E-T-44: Angular Dependence of Surface Dose Enhancement Measured On Several Inhomogeneities Using Radiochromic EBT3 Films

    SciTech Connect

    Jansen, A; Schoenfeld, A; Poppinga, D; Chofor, N; Poppe, B

    2014-06-01

    Purpose: The quantification of the relative surface dose enhancement in dependence on the angle of incidence and the atomic number Z of the surface material. Methods: Experiments were performed with slabs made of aluminum, titanium, copper, silver, dental gold and lead. The metal slabs with equal sizes of 1.0×8.0×8.8mm{sup 3} were embedded in an Octavius 4D phantom (PTW Freiburg, Germany). Radiochromic EBT3 films were used to measure the surface dose for angles of incidence ranging from 0° to 90°. The setup with the metals slabs at the isocenter was irradiated with acceleration voltages of 6MV and 10MV. Water reference measurements were taken under equal conditions. Results: The surface dose enhancement is highest for angles of incidence below 30° and drops significantly for higher. The surface dose enhancement produced by lead and dental gold at 6MV showed a peak of 65%. At 90°, the surface dose enhancement dropped to 15% for both materials. The surface dose enhancements for silver, copper, titanium and aluminum were 45%, 32%, 22% and 12% at 0°, respectively. At an angle of incidence of 80°, the values dropped to 22%, 18%, 12% und 6%. The values for 10MV were very similar. Lead and dental gold showed peaks of 65% und 60%. Their values dropped to 18% at an angle of 90°. The surface dose enhancements for silver, copper, titanium and aluminum were 45%, 30%, 20% and 8% at 0°. At 80° the values dropped to 30%, 20%, 12% and 5%. A dependence of the magnitude of the surface dose enhancement on the atomic number of the surface material can be seen, which is in consistence with literature. Conclusion: The results show that the surface dose enhancements near implant materials with high Z-values should be taken into consideration in radio therapy, even when the angle of incidence is flat.

  10. Poster — Thur Eve — 30: 4D VMAT dose calculation methodology to investigate the interplay effect: experimental validation using TrueBeam Developer Mode and Gafchromic film

    SciTech Connect

    Teke, T; Milette, MP; Huang, V; Thomas, SD

    2014-08-15

    The interplay effect between the tumor motion and the radiation beam modulation during a VMAT treatment delivery alters the delivered dose distribution from the planned one. This work present and validate a method to accurately calculate the dose distribution in 4D taking into account the tumor motion, the field modulation and the treatment starting phase. A QUASAR™ respiratory motion phantom was 4D scanned with motion amplitude of 3 cm and with a 3 second period. A static scan was also acquired with the lung insert and the tumor contained in it centered. A VMAT plan with a 6XFFF beam was created on the averaged CT and delivered on a Varian TrueBeam and the trajectory log file was saved. From the trajectory log file 10 VMAT plans (one for each breathing phase) and a developer mode XML file were created. For the 10 VMAT plans, the tumor motion was modeled by moving the isocentre on the static scan, the plans were re-calculated and summed in the treatment planning system. In the developer mode, the tumor motion was simulated by moving the couch dynamically during the treatment. Gafchromic films were placed in the QUASAR phantom static and irradiated using the developer mode. Different treatment starting phase were investigated (no phase shift, maximum inhalation and maximum exhalation). Calculated and measured isodose lines and profiles are in very good agreement. For each starting phase, the dose distribution exhibit significant differences but are accurately calculated with the methodology presented in this work.

  11. Evaluation of two-dimensional bolus effect of immobilization/support devices on skin doses: A radiochromic EBT film dosimetry study in phantom

    SciTech Connect

    Chiu-Tsao, Sou-Tung; Chan, Maria F.

    2010-07-15

    Purpose: In this study, the authors have quantified the two-dimensional (2D) perspective of skin dose increase using EBT film dosimetry in phantom in the presence of patient immobilization devices during conventional and IMRT treatments. Methods: For 6 MV conventional photon field, the authors evaluated and quantified the 2D bolus effect on skin doses for six different common patient immobilization/support devices, including carbon fiber grid with Mylar sheet, Orfit carbon fiber base plate, balsa wood board, Styrofoam, perforated AquaPlast sheet, and alpha-cradle. For 6 and 15 MV IMRT fields, a stack of two film layers positioned above a solid phantom was exposed at the air interface or in the presence of a patient alpha-cradle. All the films were scanned and the pixel values were converted to doses based on an established calibration curve. The authors determined the 2D skin dose distributions, isodose curves, and cross-sectional profiles at the surface layers with or without the immobilization/support device. The authors also generated and compared the dose area histograms (DAHs) and dose area products from the 2D skin dose distributions. Results: In contrast with 20% relative dose [(RD) dose relative to d{sub max} on central axis] at 0.0153 cm in the film layer for 6 MV 10x10 cm{sup 2} open field, the average RDs at the same depth in the film layer were 71%, 69%, 55%, and 57% for Orfit, balsa wood, Styrofoam, and alpha-cradle, respectively. At the same depth, the RDs were 54% under a strut and 26% between neighboring struts of a carbon fiber grid with Mylar sheet, and between 34% and 56% for stretched perforated AquaPlast sheet. In the presence of the alpha-cradle for the 6 MV (15 MV) IMRT fields, the hot spot doses at the effective measurement depths of 0.0153 and 0.0459 cm were 140% and 150% (83% and 89%), respectively, of the isocenter dose. The enhancement factor was defined as the ratio of a given DAH parameter (minimum dose received in a given area) with

  12. SU-E-J-194: Dynamic Tumor Tracking End-To-End Testing Using a 4D Thorax Phantom and EBT3 Films

    SciTech Connect

    Su, Z; Wu, J; Li, Z; Mamalui-Hunter, M

    2014-06-01

    Purpose: To quantify the Vero linac dosimetric accuracy of the tumor dynamic tracking treatment using EBT3 film embedded in a 4D thorax phantom. Methods: A dynamic thorax phantom with tissue equivalent materials and a film insert were used in this study. The thorax phantom was scanned in 4DCT mode with a viscoil embedded in its film insert composed of lung equivalent material. Dynamic tracking planning was performed using the 50% phase CT set with 5 conformal beams at gantry angles of 330, 15, 60, 105 and 150 degrees. Each field is a 3cm by 3cm square centered at viscoil since there was no solid mass target. Total 3 different 1–2cos4 motion profiles were used with varied motion magnitude and cycle frequency. Before treatment plan irradiation, a 4D motion model of the target was established using a series of acquired fluoroscopic images and infrared markers motion positions. During irradiation, fluoroscopic image monitoring viscoil motion was performed to verify model validity. The irradiated films were scanned and the dose maps were compared to the planned Monte Carlo dose distributions. Gamma analyses using 3%–3mm, 2%–3mm, 3%–2mm, 2%–2mm criteria were performed and presented. Results: For each motion pattern, a 4D motion model was built successfully and the target tracking performance was verified with fluoroscopic monitoring of the viscoil motion and its model predicted locations. The film gamma analysis showed the average pass rates among the 3 motion profiles are 98.14%, 96.2%, 91.3% and 85.61% for 3%–3mm, 2%–3mm, 3%–2mm, 2%–2mm criteria. Conclusion: Target dynamic tracking was performed using patient-like breathing patterns in a 4D thorax phantom with EBT3 film insert and a viscoil. There was excellent agreement between acquired and planned dose distributions for all three target motion patterns. This study performed end-to-end testing and verified the treatment accuracy of tumor dynamic tracking.

  13. Optimizing the dynamic range extension of a radiochromic film dosimetry system

    SciTech Connect

    Devic, Slobodan; Tomic, Nada; Soares, Christopher G.; Podgorsak, Ervin B.

    2009-02-15

    The authors present a radiochromic film dosimetry protocol for a multicolor channel radiochromic film dosimetry system consisting of the external beam therapy (EBT) model GAFCHROMIC film and the Epson Expression 1680 flat-bed document scanner. Instead of extracting only the red color channel, the authors are using all three color channels in the absorption spectrum of the EBT film to extend the dynamic dose range of the radiochromic film dosimetry system. By optimizing the dose range for each color channel, they obtained a system that has both precision and accuracy below 1.5%, and the optimized ranges are 0-4 Gy for the red channel, 4-50 Gy for the green channel, and above 50 Gy for the blue channel.

  14. Radiochromic film dosimetry of HDR {sup 192}Ir source radiation fields

    SciTech Connect

    Aldelaijan, Saad; Mohammed, Huriyyah; Tomic, Nada; Liang Liheng; DeBlois, Francois; Sarfehnia, Arman; Abdel-Rahman, Wamied; Seuntjens, Jan; Devic, Slobodan

    2011-11-15

    Purpose: A radiochromic film based dosimetry system for high dose rate (HDR) Iridium-192 brachytherapy source was described. A comparison between calibration curves established in water and Solid Water was provided. Methods: Pieces of EBT-2 model GAFCHROMIC film were irradiated in both water and Solid Water with HDR {sup 192}Ir brachytherapy source in a dose range from 0 to 50 Gy. Responses of EBT-2 GAFCHROMIC film were compared for irradiations in water and Solid Water by scaling the dose between media through Monte Carlo calculated conversion factor for both setups. To decrease uncertainty in dose delivery due to positioning of the film piece with respect to the radiation source, traceable calibration irradiations were performed in a parallel-opposed beam setup. Results: The EBT-2 GAFCHROMIC film based dosimetry system described in this work can provide an overall one-sigma dose uncertainty of 4.12% for doses above 1 Gy. The ratio of dose delivered to the sensitive layer of the film in water to the dose delivered to the sensitive layer of the film in Solid Water was calculated using Monte Carlo simulations to be 0.9941 {+-} 0.0007. Conclusions: A radiochromic film based dosimetry system using only the green color channel of a flatbed document scanner showed superior precision if used alone in a dose range that extends up to 50 Gy, which greatly decreases the complexity of work. In addition, Solid Water material was shown to be a viable alternative to water in performing radiochromic film based dosimetry with HDR {sup 192}Ir brachytherapy sources.

  15. I-125 ROPES eye plaque dosimetry: Validation of a commercial 3D ophthalmic brachytherapy treatment planning system and independent dose calculation software with GafChromic{sup ®} EBT3 films

    SciTech Connect

    Poder, Joel; Corde, Stéphanie

    2013-12-15

    Purpose: The purpose of this study was to measure the dose distributions for different Radiation Oncology Physics and Engineering Services, Australia (ROPES) type eye plaques loaded with I-125 (model 6711) seeds using GafChromic{sup ®} EBT3 films, in order to verify the dose distributions in the Plaque Simulator™ (PS) ophthalmic 3D treatment planning system. The brachytherapy module of RADCALC{sup ®} was used to independently check the dose distributions calculated by PS. Correction factors were derived from the measured data to be used in PS to account for the effect of the stainless steel ROPES plaque backing on the 3D dose distribution.Methods: Using GafChromic{sup ®} EBT3 films inserted in a specially designed Solid Water™ eye ball phantom, dose distributions were measured three-dimensionally both along and perpendicular to I-125 (model 6711) loaded ROPES eye plaque's central axis (CAX) with 2 mm depth increments. Each measurement was performed in full scatter conditions both with and without the stainless steel plaque backing attached to the eye plaque, to assess its effect on the dose distributions. Results were compared to the dose distributions calculated by Plaque Simulator™ and checked independently with RADCALC{sup ®}.Results: The EBT3 film measurements without the stainless steel backing were found to agree with PS and RADCALC{sup ®} to within 2% and 4%, respectively, on the plaque CAX. Also, RADCALC{sup ®} was found to agree with PS to within 2%. The CAX depth doses measured using EBT3 film with the stainless steel backing were observed to result in a 4% decrease relative to when the backing was not present. Within experimental uncertainty, the 4% decrease was found to be constant with depth and independent of plaque size. Using a constant dose correction factor of T= 0.96 in PS, where the calculated dose for the full water scattering medium is reduced by 4% in every voxel in the dose grid, the effect of the plaque backing was accurately

  16. Linearization of dose-response curve of the radiochromic film dosimetry system

    SciTech Connect

    Devic, Slobodan; Tomic, Nada; Aldelaijan, Saad; DeBlois, Francois; Seuntjens, Jan; Chan, Maria F.; Lewis, Dave

    2012-08-15

    Purpose: Despite numerous advantages of radiochromic film dosimeter (high spatial resolution, near tissue equivalence, low energy dependence) to measure a relative dose distribution with film, one needs to first measure an absolute dose (following previously established reference dosimetry protocol) and then convert measured absolute dose values into relative doses. In this work, we present result of our efforts to obtain a functional form that would linearize the inherently nonlinear dose-response curve of the radiochromic film dosimetry system. Methods: Functional form [{zeta}= (-1){center_dot}netOD{sup (2/3)}/ln(netOD)] was derived from calibration curves of various previously established radiochromic film dosimetry systems. In order to test the invariance of the proposed functional form with respect to the film model used we tested it with three different GAFCHROMIC Trade-Mark-Sign film models (EBT, EBT2, and EBT3) irradiated to various doses and scanned on a same scanner. For one of the film models (EBT2), we tested the invariance of the functional form to the scanner model used by scanning irradiated film pieces with three different flatbed scanner models (Epson V700, 1680, and 10000XL). To test our hypothesis that the proposed functional argument linearizes the response of the radiochromic film dosimetry system, verification tests have been performed in clinical applications: percent depth dose measurements, IMRT quality assurance (QA), and brachytherapy QA. Results: Obtained R{sup 2} values indicate that the choice of the functional form of the new argument appropriately linearizes the dose response of the radiochromic film dosimetry system we used. The linear behavior was insensitive to both film model and flatbed scanner model used. Measured PDD values using the green channel response of the GAFCHROMIC Trade-Mark-Sign EBT3 film model are well within {+-}2% window of the local relative dose value when compared to the tabulated Cobalt-60 data. It was also

  17. Dosimetry of very high energy electrons (VHEE) for radiotherapy applications: using radiochromic film measurements and Monte Carlo simulations.

    PubMed

    Subiel, A; Moskvin, V; Welsh, G H; Cipiccia, S; Reboredo, D; Evans, P; Partridge, M; DesRosiers, C; Anania, M P; Cianchi, A; Mostacci, A; Chiadroni, E; Di Giovenale, D; Villa, F; Pompili, R; Ferrario, M; Belleveglia, M; Di Pirro, G; Gatti, G; Vaccarezza, C; Seitz, B; Isaac, R C; Brunetti, E; Wiggins, S M; Ersfeld, B; Islam, M R; Mendonca, M S; Sorensen, A; Boyd, M; Jaroszynski, D A

    2014-10-01

    Very high energy electrons (VHEE) in the range from 100-250 MeV have the potential of becoming an alternative modality in radiotherapy because of their improved dosimetry properties compared with MV photons from contemporary medical linear accelerators. Due to the need for accurate dosimetry of small field size VHEE beams we have performed dose measurements using EBT2 Gafchromic® film. Calibration of the film has been carried out for beams of two different energy ranges: 20 MeV and 165 MeV from conventional radio frequency linear accelerators. In addition, EBT2 film has been used for dose measurements with 135 MeV electron beams produced by a laser-plasma wakefield accelerator. The dose response measurements and percentage depth dose profiles have been compared with calculations carried out using the general-purpose FLUKA Monte Carlo (MC) radiation transport code. The impact of induced radioactivity on film response for VHEEs has been evaluated using the MC simulations. A neutron yield of the order of 10(-5) neutrons cm(-2) per incident electron has been estimated and induced activity due to radionuclide production is found to have a negligible effect on total dose deposition and film response. Neutron and proton contribution to the equivalent doses are negligible for VHEE. The study demonstrates that EBT2 Gafchromic film is a reliable dosimeter that can be used for dosimetry of VHEE. The results indicate an energy-independent response of the dosimeter for 20 MeV and 165 MeV electron beams and has been found to be suitable for dosimetry of VHEE.

  18. Dosimetry of very high energy electrons (VHEE) for radiotherapy applications: using radiochromic film measurements and Monte Carlo simulations.

    PubMed

    Subiel, A; Moskvin, V; Welsh, G H; Cipiccia, S; Reboredo, D; Evans, P; Partridge, M; DesRosiers, C; Anania, M P; Cianchi, A; Mostacci, A; Chiadroni, E; Di Giovenale, D; Villa, F; Pompili, R; Ferrario, M; Belleveglia, M; Di Pirro, G; Gatti, G; Vaccarezza, C; Seitz, B; Isaac, R C; Brunetti, E; Wiggins, S M; Ersfeld, B; Islam, M R; Mendonca, M S; Sorensen, A; Boyd, M; Jaroszynski, D A

    2014-10-01

    Very high energy electrons (VHEE) in the range from 100-250 MeV have the potential of becoming an alternative modality in radiotherapy because of their improved dosimetry properties compared with MV photons from contemporary medical linear accelerators. Due to the need for accurate dosimetry of small field size VHEE beams we have performed dose measurements using EBT2 Gafchromic® film. Calibration of the film has been carried out for beams of two different energy ranges: 20 MeV and 165 MeV from conventional radio frequency linear accelerators. In addition, EBT2 film has been used for dose measurements with 135 MeV electron beams produced by a laser-plasma wakefield accelerator. The dose response measurements and percentage depth dose profiles have been compared with calculations carried out using the general-purpose FLUKA Monte Carlo (MC) radiation transport code. The impact of induced radioactivity on film response for VHEEs has been evaluated using the MC simulations. A neutron yield of the order of 10(-5) neutrons cm(-2) per incident electron has been estimated and induced activity due to radionuclide production is found to have a negligible effect on total dose deposition and film response. Neutron and proton contribution to the equivalent doses are negligible for VHEE. The study demonstrates that EBT2 Gafchromic film is a reliable dosimeter that can be used for dosimetry of VHEE. The results indicate an energy-independent response of the dosimeter for 20 MeV and 165 MeV electron beams and has been found to be suitable for dosimetry of VHEE. PMID:25207591

  19. EBT reactor analysis

    SciTech Connect

    Uckan, N. A.; Jaeger, E. F.; Santoro, R. T.; Spong, D. A.; Uckan, T.; Owen, L. W.; Barnes, J. M.; McBride, J. B.

    1983-08-01

    This report summarizes the results of a recent ELMO Bumpy Torus (EBT) reactor study that includes ring and core plasma properties with consistent treatment of coupled ring-core stability criteria and power balance requirements. The principal finding is that constraints imposed by these coupling and other physics and technology considerations permit a broad operating window for reactor design optimization. Within this operating window, physics and engineering systems analysis and cost sensitivity studies indicate that reactors with <..beta../sub core/> approx. 6 to 10%, P approx. 1200 to 1700 MW(e), wall loading approx. 1.0 to 2.5 MW/m/sup 2/, and recirculating power fraction (including ring-sustaining power and all other reactors auxiliaries) approx. 10 to 15% are possible. A number of concept improvements are also proposed that are found to offer the potential for further improvement of the reactor size and parameters. These include, but are not limited to, the use of: (1) supplementary coils or noncircular mirror coils to improve magnetic geometry and reduce size, (2) energetic ion rings to improve ring power requirements, (3) positive potential to enhance confinement and reduce size, and (4) profile control to improve stability and overall fusion power density.

  20. Energy dependence of response of new high sensitivity radiochromic films for megavoltage and kilovoltage radiation energies

    SciTech Connect

    Chiu-Tsao, S.-T.; Ho Yunsil; Shankar, Ravi; Wang Lin; Harrison, Louis B.

    2005-11-15

    The purpose of this paper is to evaluate the energy dependence of the response of two new high sensitivity models of radiochromic films EBT and XR-QA. We determined the dose response curves of these films for four different radiation sources, namely, 6 MV photon beams (6 MVX), Ir-192, I-125, and Pd-103. The first type (EBT) is designed for intensity modulated radiation therapy (IMRT) dosimetry, and the second type (XR-QA) is designed for kilovoltage dosimetry. All films were scanned using red (665 nm) and green (520 nm) light sources in a charge-coupled device-based densitometer. The dose response curves [net optical density (NOD) versus dose] were plotted and compared for different radiation energies and light sources. Contrary to the early GAFCHROMIC film types (such as models XR, HS, MD55-2, and HD810), the net optical densities of both EBT and XR-QA were higher with a green (520 nm) than those with a red (665 nm) light source due to the different absorption spectrum of the new radiochromic emulsion. Both film types yield measurable optical densities for doses below 2 Gy. EBT film response is nearly independent of radiation energy, within the uncertainty of measurement. The NOD values of EBT film at 1 and 2 Gy are 0.13 and 0.25 for green, and 0.1 and 0.17 for red, respectively. In contrast, the XR-QA film sensitivity varies with radiation energy. The doses required to produce NOD of 0.5 are 6.9, 5.4, 0.7, and 0.9 Gy with green light and 19, 13, 1.7, and 1.5 Gy with red light, for 6 MVX, Ir-192, I-125, and Pd-103, respectively. EBT film was found to have minimal photon energy dependence of response for the energies tested and is suitable for dosimetry of radiation with a wide energy spectrum, including primary and scattered radiation. XR-QA film is promising for kilovoltage sources with a narrow energy spectra. The new high sensitivity radiochromic films are promising tools in radiation dosimetry.

  1. Dosimetric response of radiochromic films to protons of low energies in the Bragg peak region

    NASA Astrophysics Data System (ADS)

    Battaglia, M. C.; Schardt, D.; Espino, J. M.; Gallardo, M. I.; Cortés-Giraldo, M. A.; Quesada, J. M.; Lallena, A. M.; Miras, H.; Guirado, D.

    2016-06-01

    One of the major advantages of proton or ion beams, applied in cancer treatment, is their excellent depth-dose profile exhibiting a low dose in the entrance channel and a distinct dose maximum (Bragg peak) near the end of range in tissue. In the region of the Bragg peak, where the protons or ions are almost stopped, experimental studies with low-energy particle beams and thin biological samples may contribute valuable information on the biological effectiveness in the stopping region. Such experiments, however, require beam optimization and special dosimetry techniques for determining the absolute dose and dose homogeneity for very thin biological samples. At the National Centre of Accelerators in Seville, one of the beam lines at the 3 MV Tandem Accelerator was equipped with a scattering device, a special parallel-plate ionization chamber with very thin electrode foils and target holders for cell cultures. In this work, we present the calibration in absolute dose of EBT3 films [Gafchromic radiotherapy films, http://www.ashland.com/products/gafchromic-radiotherapy-films] for proton energies in the region of the Bragg peak, where the linear energy transfer increases and becomes more significant for radiobiology studies, as well as the response of the EBT3 films for different proton energy values. To irradiate the films in the Bragg peak region, the energy of the beam was degraded passively, by interposing Mylar foils of variable thickness to place the Bragg peak inside the active layer of the film. The results obtained for the beam degraded in Mylar foils are compared with the dose calculated by means of the measurement of the beam fluence with an ionization chamber and the energy loss predicted by srim2008 code.

  2. A universal dose–response curve for radiochromic films

    SciTech Connect

    Martín-Viera Cueto, J. A. Parra Osorio, V.; Moreno Sáiz, C.; Navarro Guirado, F.; Casado Villalón, F. J.; Galán Montenegro, P.

    2015-01-15

    Purpose: This paper presents a model for dose–response curves of radiochromic films. It is based on a modified version of single-hit model to take into account the growth experienced by lithium salt of pentacosa-10,12-diynoic acid polymers after irradiation. Methods: Polymer growth in radiochromic films is a critical phenomenon that can be properly described by means of percolation theory to provide an appropriate distribution function for polymer sizes. Resulting functional form is a power function featuring a critical exponent and two adjustable parameters. Moreover, these parameters act as scaling factors setting a natural scale for sensitometric curves where the dependence on channel sensitivity is removed. A unique reduced response curve is then obtained from all the color channels describing film behavior independently of film dosimetry system. Results: Resulting functional form has been successfully tested in several sensitometric curves from different Gafchromic EBT models, providing excellent agreement with experimental data in a wide dose range up to about 40 Gy and low dose uncertainty. Conclusions: The model presented in this paper describes accurately the sensitometric curves of radiochromic films in wide dose ranges covering all typical ranges used in external radiotherapy. Resulting dose uncertainty is low enough to render a reasonably good performance in clinical applications. Due to cross-correlation, only one of the adjustable parameters is totally independent and characterizes film batches.

  3. Characterization of Al2O3 optically stimulated luminescence films for 2D dosimetry using a 6 MV photon beam

    NASA Astrophysics Data System (ADS)

    Ahmed, M. F.; Shrestha, N.; Schnell, E.; Ahmad, S.; Akselrod, M. S.; Yukihara, E. G.

    2016-11-01

    This work evaluates the dosimetric properties of newly developed optically stimulated luminescence (OSL) films, fabricated with either Al2O3:C or Al2O3:C,Mg, using a prototype laser scanning reader, a developed image reconstruction algorithm, and a 6 MV therapeutic photon beam. Packages containing OSL films (Al2O3:C and Al2O3:C,Mg) and a radiochromic film (Gafchromic EBT3) were irradiated using a 6 MV photon beam using different doses, field sizes, with and without wedge filter. Dependence on film orientation of the OSL system was also tested. Diode-array (MapCHECK) and ionization chamber measurements were performed for comparison. The OSLD film doses agreed with the MapCHECK and ionization chamber data within the experimental uncertainties (<2% at 1.5 Gy). The system background and minimum detectable dose (MDD) were  <0.5 mGy, and the dose response was approximately linear from the MDD up to a few grays (the linearity correction was  <10% up to ~2–4 Gy), with no saturation up to 30 Gy. The dose profiles agreed with those obtained using EBT3 films (analyzed using the triple channel method) in the high dose regions of the images. In the low dose regions, the dose profiles from the OSLD films were more reproducible than those from the EBT3 films. We also demonstrated that the OSL film data are independent on scan orientation and field size over the investigated range. The results demonstrate the potential of OSLD films for 2D dosimetry, particularly for the characterization of small fields, due to their wide dynamic range, linear response, resolution and dosimetric properties. The negligible background and potential simple calibration make these OSLD films suitable for remote audits. The characterization presented here may motivate further commercial development of a 2D dosimetry system based on the OSL from Al2O3:C or Al2O3:C,Mg.

  4. INVESTIGATION OF A PLASMA MODE IN EBTS.

    SciTech Connect

    HERSHCOVITCH,A.

    2000-11-06

    A plasma related mode has been identified when EBTS operated with long trap length. The mode frequency scaling showed monotonic increased with confinement time. Initial scaling qualitatively suggested the mode to an electron beam driven ion cyclotron instability. However, a more quantitative evaluation is indicative of a drift mode. Nevertheless, the possibility of a structure mode, though unlikely, can not be completely excluded. The process of proper instability identification and stabilization is described.

  5. EBT data acquisition system control facilities

    SciTech Connect

    Burris, R.D.

    1982-01-01

    A multicomputer, multitask data acquisition and analysis system has been implemented for the Elmo Bumpy Torus (EBT) experiment in controlled fusion. This document describes the control features of the computer system, including the provision of time and date to all computers, the control of data file names, the maintenance of critical data bases, and the control of various tasks. The physical control of the experiment itself, through the provision of voltages or the sensing of conditions, is not described in this document.

  6. Development and characterization of a three-dimensional radiochromic film stack dosimeter for megavoltage photon beam dosimetry

    SciTech Connect

    McCaw, Travis J. Micka, John A.; DeWerd, Larry A.

    2014-05-15

    Purpose: Three-dimensional (3D) dosimeters are particularly useful for verifying the commissioning of treatment planning and delivery systems, especially with the ever-increasing implementation of complex and conformal radiotherapy techniques such as volumetric modulated arc therapy. However, currently available 3D dosimeters require extensive experience to prepare and analyze, and are subject to large measurement uncertainties. This work aims to provide a more readily implementable 3D dosimeter with the development and characterization of a radiochromic film stack dosimeter for megavoltage photon beam dosimetry. Methods: A film stack dosimeter was developed using Gafchromic{sup ®} EBT2 films. The dosimeter consists of 22 films separated by 1 mm-thick spacers. A Virtual Water™ phantom was created that maintains the radial film alignment within a maximum uncertainty of 0.3 mm. The film stack dosimeter was characterized using simulations and measurements of 6 MV fields. The absorbed-dose energy dependence and orientation dependence of the film stack dosimeter were investigated using Monte Carlo simulations. The water equivalence of the dosimeter was determined by comparing percentage-depth-dose (PDD) profiles measured with the film stack dosimeter and simulated using Monte Carlo methods. Film stack dosimeter measurements were verified with thermoluminescent dosimeter (TLD) microcube measurements. The film stack dosimeter was also used to verify the delivery of an intensity-modulated radiation therapy (IMRT) procedure. Results: The absorbed-dose energy response of EBT2 film differs less than 1.5% between the calibration and film stack dosimeter geometries for a 6 MV spectrum. Over a series of beam angles ranging from normal incidence to parallel incidence, the overall variation in the response of the film stack dosimeter is within a range of 2.5%. Relative to the response to a normally incident beam, the film stack dosimeter exhibits a 1% under-response when the

  7. EBT-P proposed reference design report

    SciTech Connect

    Boch, A.L.

    1980-01-01

    This report describes the proposed reference design for the EBT-P proof-of-principle test device. The device described is a result of broad studies by many participating organizations from industry and from Department of Energy-sponsored fusion research groups, some working together and some in competitive studies, but all with the goal of defining a device at minimum cost and with maximum probability of meeting its goals. This design work is based upon advances in experimental and theoretical understanding of EBT achieved at Oak Ridge National Laboratory. The strategy adopted permits an initial test and validation of the key scaling properties of the ELMO Bumpy Torus concept, with a degree of built-in flexibility to extend the performance parameters toward the condition for containing a fusion reactor plasma. This will lead the way, then, to determination of a later power break-even demonstration and an eventual fusion reactor that can exploit the special high power-density and steady-state properties of the EBT concept.

  8. Fractionated stereotactic radiotherapy: A method to evaluate geometric and dosimetric uncertainties using radiochromic films

    SciTech Connect

    Coscia, Gianluca; Vaccara, Elena; Corvisiero, Roberta; Cavazzani, Paolo; Ruggieri, Filippo Grillo; Taccini, Gianni

    2009-07-15

    In the authors' hospital, stereotactic radiotherapy treatments are performed with a Varian Clinac 600C equipped with a BrainLAB m3 micro-multileaf-collimator generally using the dynamic conformal arc technique. Patient immobilization during the treatment is achieved with a fixation mask supplied by BrainLAB, made with two reinforced thermoplastic sheets fitting the patient's head. With this work the authors propose a method to evaluate treatment geometric accuracy and, consequently, to determine the amount of the margin to keep in the CTV-PTV expansion during the treatment planning. The reproducibility of the isocenter position was tested by simulating a complete treatment on the anthropomorphic phantom Alderson Rando, inserting in between two phantom slices a high sensitivity Gafchromic EBT film, properly prepared and calibrated, and repeating several treatment sessions, each time removing the fixing mask and replacing the film inside the phantom. The comparison between the dose distributions measured on films and computed by TPS, after a precise image registration procedure performed by a commercial piece of software (FILMQA, 3cognition LLC (Division of ISP), Wayne, NJ), allowed the authors to measure the repositioning errors, obtaining about 0.5 mm in case of central spherical PTV and about 1.5 mm in case of peripheral irregular PTV. Moreover, an evaluation of the errors in the registration procedure was performed, giving negligible values with respect to the quantities to be measured. The above intrinsic two-dimensional estimate of treatment accuracy has to be increased for the error in the third dimension, but the 2 mm margin the authors generally use for the CTV-PTV expansion seems adequate anyway. Using the same EBT films, a dosimetric verification of the treatment planning system was done. Measured dose values are larger or smaller than the nominal ones depending on geometric irradiation conditions, but, in the authors' experimental conditions, always

  9. Film based verification of calculation algorithms used for brachytherapy planning-getting ready for upcoming challenges of MBDCA

    PubMed Central

    Bielęda, Grzegorz; Skowronek, Janusz; Mazur, Magdalena

    2016-01-01

    Purpose Well-known defect of TG-43 based algorithms used in brachytherapy is a lack of information about interaction cross-sections, which are determined not only by electron density but also by atomic number. TG-186 recommendations with using of MBDCA (model-based dose calculation algorithm), accurate tissues segmentation, and the structure's elemental composition continue to create difficulties in brachytherapy dosimetry. For the clinical use of new algorithms, it is necessary to introduce reliable and repeatable methods of treatment planning systems (TPS) verification. The aim of this study is the verification of calculation algorithm used in TPS for shielded vaginal applicators as well as developing verification procedures for current and further use, based on the film dosimetry method. Material and methods Calibration data was collected by separately irradiating 14 sheets of Gafchromic® EBT films with the doses from 0.25 Gy to 8.0 Gy using HDR 192Ir source. Standard vaginal cylinders of three diameters were used in the water phantom. Measurements were performed without any shields and with three shields combination. Gamma analyses were performed using the VeriSoft® package. Results Calibration curve was determined as third-degree polynomial type. For all used diameters of unshielded cylinder and for all shields combinations, Gamma analysis were performed and showed that over 90% of analyzed points meets Gamma criteria (3%, 3 mm). Conclusions Gamma analysis showed good agreement between dose distributions calculated using TPS and measured by Gafchromic films, thus showing the viability of using film dosimetry in brachytherapy.

  10. Film based verification of calculation algorithms used for brachytherapy planning-getting ready for upcoming challenges of MBDCA

    PubMed Central

    Bielęda, Grzegorz; Skowronek, Janusz; Mazur, Magdalena

    2016-01-01

    Purpose Well-known defect of TG-43 based algorithms used in brachytherapy is a lack of information about interaction cross-sections, which are determined not only by electron density but also by atomic number. TG-186 recommendations with using of MBDCA (model-based dose calculation algorithm), accurate tissues segmentation, and the structure's elemental composition continue to create difficulties in brachytherapy dosimetry. For the clinical use of new algorithms, it is necessary to introduce reliable and repeatable methods of treatment planning systems (TPS) verification. The aim of this study is the verification of calculation algorithm used in TPS for shielded vaginal applicators as well as developing verification procedures for current and further use, based on the film dosimetry method. Material and methods Calibration data was collected by separately irradiating 14 sheets of Gafchromic® EBT films with the doses from 0.25 Gy to 8.0 Gy using HDR 192Ir source. Standard vaginal cylinders of three diameters were used in the water phantom. Measurements were performed without any shields and with three shields combination. Gamma analyses were performed using the VeriSoft® package. Results Calibration curve was determined as third-degree polynomial type. For all used diameters of unshielded cylinder and for all shields combinations, Gamma analysis were performed and showed that over 90% of analyzed points meets Gamma criteria (3%, 3 mm). Conclusions Gamma analysis showed good agreement between dose distributions calculated using TPS and measured by Gafchromic films, thus showing the viability of using film dosimetry in brachytherapy. PMID:27648087

  11. EBT-S 28-GHz, 200-kW, CW, mixed-mode, quasi-optical plasma heating system

    SciTech Connect

    White, T.L.; Kimrey, H.D.; Bigelow, T.S.; Bates, D.D.; Eason, H.O.

    1984-07-01

    The ELMO Bumpy Torus-Scale (EBT-S) 28-GHz, 200-kW, cw, plasma heating system consists of a gyrotron oscillator, an oversized waveguide two-bend transmission system, and a quasi-optical mixed-mode microwave distribution manifold that feeds microwave power to the 24 plasma loads of the EBT-S fusion experiment. Balancing power to the 24 loads of the EBT-S fusion experiment. Balancing power to the 24 loads was achieved by adjusting the areas at 24 coupling irises. System performance is easily measured using system calorimetry. The distribution manifold mixed-mode power transmission, reflection, and loss coefficients are 89%, 6%, and 5%, respectively. The overall system efficiency (plasma power/gyrotron power) is 80%, but with some modifications to the distribution manifold we believe the ultimate efficiency can approach 90%. The system reliability is outstanding with a world's record 1 x 10/sup 5/ kW h of 28-GHz energy delivered to the EBT-S device with well over 1 x 10/sup 3/ operating hours.

  12. EBT: an alternate concept to tokamaks and mirrors

    SciTech Connect

    Glowienka, J.C.

    1980-01-01

    The ELMO Bumpy Torus (EBT) is a hybrid magnetic trap formed by a series of toroidally connected simple mirrors. It differs from a tokamak, the present main-line approach, in that plasma stability and heating are obtained in a current-free geometry by the application of steady-state, high power, electron cyclotron resonance heating (ECH) producing a steady-state plasma. The primary motivation for EBT confinement research is the potential for a steady-state, highly accessible reactor with high ..beta... In the present EBT-I/S device, electron confinement has been observed to agree with the predictions of theory. The major emphasis of the experimental program is on the further scaling of plasma parameters in the EBT-I/S machine with ECH frequency (10.6, 18, and 28 GHz), resonant magnetic field (0.3, 0.6, and 1 T), and heating power (30, 60, and 200 kW). In addition, substantial efforts are under way or planned in the areas of ion cyclotron heating, neutral beam heating, plasma-wall interactions, impurity control, synchrotron radiation, and divertors. Recently, EBT has been selected as the first alternative concept to be advanced to the proof-of-principle stage; this entails a major device scale-up to allow a reasonable extrapolation to a DT-burning facility. The status and future plans of the EBT program, in particular the proof-of-principle experiment (EBT-P), are discussed.

  13. A prototype, glassless densitometer traceable to primary optical standards for quantitative radiochromic film dosimetry

    SciTech Connect

    Rosen, B. S. Hammer, C. G.; Kunugi, K. A.; DeWerd, L. A.; Soares, C. G.

    2015-07-15

    Purpose: To evaluate a prototype densitometer traceable to primary optical standards and compare its performance to an EPSON Expression{sup ®} 10000XL flatbed scanner (the Epson) for quantitative radiochromic film (RCF) dosimetry. Methods: A prototype traceable laser densitometry system (LDS) was developed to mitigate common film scanning artifacts, such as positional scan dependence and high noise in low-dose regions, by performing point-based measurements of RCF suspended in free-space using coherent light. The LDS and the Epson optical absorbance scales were calibrated up to 3 AU, using reference materials calibrated at a primary standards laboratory and a scanner calibration factor (SCF). Calibrated optical density (OD) was determined for 96 Gafchromic{sup ®} EBT3 film segments before and after irradiation to one of 16 dose levels between 0 and 10 Gy, exposed to {sup 60}Co in a polymethyl-methacrylate (PMMA) phantom. The sensitivity was determined at each dose level and at two rotationally orthogonal readout orientations to obtain the sensitometric response of each RCF dosimetry system. LDS rotational scanning dependence was measured at nine angles between 0°and 180°, due to the expected interference between coherent light and polarizing EBT3 material. The response curves were fit to the analytic functions predicted by two physical response models: the two-parameter single-hit model and the four-parameter percolation model. Results: The LDS and the Epson absorbance measurements were linear to primary optical standards to within 0.2% and 0.3% up to 2 and 1 AU, respectively. At higher densities, the LDS had an over-response (2.5% at 3 AU) and the Epson an under-response (3.1% and 9.8% at 2 and 3 AU, respectively). The LDS and the Epson SCF over the applicable range were 0.968% ± 0.2% and 1.561% ± 0.3%, respectively. The positional scan dependence was evaluated on each digitizer and shown to be mitigated on the LDS, as compared to the Epson. Maximum EBT3

  14. Electron heating and confinemet measurements in EBT-S using Thomson scattering

    SciTech Connect

    Bighel, L.; Cobble, J.A.

    1980-09-01

    Thomson scattering of ruby laser light was used to measure electron temperatures and densities in the ELMO Bumpy Torus-Scale (EBT-S) at Oak Ridge National Laboratory. The measurements were made primarily during May 1980, although some were taken during January 1980. The scattering system, which was designed for very low electron density measurements, features a 14-J ruby laser, a high-throughput spectrometer, and 15% quantum efficiency photomultipliers. The measured electron densities lie in the range 5 X 10/sup 11/ cm/sup -3/ to 2.2 X 10/sup 12/ cm/sup -3/ with electron temperatures from 50 to 500 eV. The radial profiles of T/sub e/ and n/sub e/ are reasonably flat over an 8-cm region from the plasma center outward. The dependence of T/sub e/ and n/sub e/ on microwave power input and on background pressure is discussed. The electron data are used to derive approximate values of the energy confinement time.

  15. EBT2 dosimetry of x-rays produced by the electron beam from a Plasma Focus for medical applications

    SciTech Connect

    Ceccolini, E.; Mostacci, D.; Sumini, M.; Rocchi, F.; Tartari, A.; Mariotti, F.

    2012-09-01

    The electron beam emitted from the back of Plasma Focus devices is being studied as a radiation source for intraoperative radiation therapy applications. A Plasma Focus device is being developed to this aim, to be utilized as an x-ray source. The electron beam is driven to impinge on 50 {mu}m brass foil, where conversion x-rays are generated. Measurements with gafchromic film are performed to analyse the attenuation of the x-rays beam and to predict the dose given to the culture cell in radiobiological experiments to follow.

  16. 49 CFR 40.233 - What are the requirements for proper use and care of EBTs?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Testing Sites, Forms, Equipment and... calibration checks on the EBT, the tolerances within which the EBT is regarded as being in proper calibration... inspection, maintenance, and calibration requirements and intervals for the EBT. (b) As the manufacturer,...

  17. Elevation (typical EBT Coal Hopper Car) with scale. 3 Bay ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation (typical EBT Coal Hopper Car) with scale. 3 Bay Steel Hopper Car with side extensions raising coal carrying capacity to 80,000 pounds. Note cars on either side lack extensions limiting their coal capacity to 70,000 pounds - East Broad Top Railroad & Coal Company, State Route 994, West of U.S. Route 522, Rockhill Furnace, Huntingdon County, PA

  18. SU-E-T-205: Improving Quality Assurance of HDR Brachytherapy: Verifying Agreement Between Planned and Delivered Dose Distributions Using DICOM RTDose and Advanced Film Dosimetry

    SciTech Connect

    Palmer, A L; Bradley, D A; Nisbet, A

    2014-06-01

    Purpose: HDR brachytherapy is undergoing significant development, and quality assurance (QA) checks must keep pace. Current recommendations do not adequately verify delivered against planned dose distributions: This is particularly relevant for new treatment planning system (TPS) calculation algorithms (non TG-43 based), and an era of significant patient-specific plan optimisation. Full system checks are desirable in modern QA recommendations, complementary to device-centric individual tests. We present a QA system incorporating TPS calculation, dose distribution export, HDR unit performance, and dose distribution measurement. Such an approach, more common in external beam radiotherapy, has not previously been reported in the literature for brachytherapy. Methods: Our QA method was tested at 24 UK brachytherapy centres. As a novel approach, we used the TPS DICOM RTDose file export to compare planned dose distribution with that measured using Gafchromic EBT3 films placed around clinical brachytherapy treatment applicators. Gamma analysis was used to compare the dose distributions. Dose difference and distance to agreement were determined at prescription Point A. Accurate film dosimetry was achieved using a glass compression plate at scanning to ensure physically-flat films, simultaneous scanning of known dose films with measurement films, and triple-channel dosimetric analysis. Results: The mean gamma pass rate of RTDose compared to film-measured dose distributions was 98.1% at 3%(local), 2 mm criteria. The mean dose difference, measured to planned, at Point A was -0.5% for plastic treatment applicators and -2.4% for metal applicators, due to shielding not accounted for in TPS. The mean distance to agreement was 0.6 mm. Conclusion: It is recommended to develop brachytherapy QA to include full-system verification of agreement between planned and delivered dose distributions. This is a novel approach for HDR brachytherapy QA. A methodology using advanced film

  19. Poster — Thur Eve — 42: Radiochromic film calibration for low-energy seed brachytherapy dose measurement

    SciTech Connect

    Morrison, H; Menon, G; Sloboda, R

    2014-08-15

    The purpose of this study was to investigate the accuracy of radiochromic film calibration procedures used in external beam radiotherapy when applied to I-125 brachytherapy sources delivering higher doses, and to determine any necessary modifications to achieve similar accuracy in absolute dose measurements. GafChromic EBT3 film was used to measure radiation doses upwards of 35 Gy from 6 MV, 75 kVp and (∼28 keV) I-125 photon sources. A custom phantom was used for the I-125 irradiations to obtain a larger film area with nearly constant dose to reduce the effects of film heterogeneities on the optical density (OD) measurements. RGB transmission images were obtained with an Epson 10000XL flatbed scanner, and calibration curves relating OD and dose using a rational function were determined for each colour channel and at each energy using a non-linear least square minimization method. Differences found between the 6 MV calibration curve and those for the lower energy sources are large enough that 6 MV beams should not be used to calibrate film for low-energy sources. However, differences between the 75 kVp and I-125 calibration curves were quite small; indicating that 75 kVp is a good choice. Compared with I-125 irradiation, this gives the advantages of lower type B uncertainties and markedly reduced irradiation time. To obtain high accuracy calibration for the dose range up to 35 Gy, two-segment piece-wise fitting was required. This yielded absolute dose measurement accuracy above 1 Gy of ∼2% for 75 kVp and ∼5% for I-125 seed exposures.

  20. Advanced radiochromic film methodologies for quantitative dosimetry of small and nonstandard fields

    NASA Astrophysics Data System (ADS)

    Rosen, Benjamin S.

    Radiotherapy treatments with small and nonstandard fields are increasing in use as collimation and targeting become more advanced, which spare normal tissues while increasing tumor dose. However, dosimetry of small and nonstandard fields is more difficult than that of conventional fields due to loss of lateral charged-particle equilibrium, tight measurement setup requirements, source occlusion, and the volume-averaging effect of conventional dosimeters. This work aims to create new small and nonstandard field dosimetry protocols using radiochromic film (RCF) in conjunction with novel readout and analysis methodologies. It also is the intent of this work to develop an improved understanding of RCF structure and mechanics for its quantitative use in general applications. Conventional digitization techniques employ white-light, flatbed document scanners or scanning-laser densitometers which are not optimized for RCF dosimetry. A point-by-point precision laser densitometry system (LDS) was developed for this work to overcome the film-scanning artifacts associated with the use of conventional digitizers, such as positional scan dependence, off-axis light scatter, glass bed interference, and low signal-to-noise ratios. The LDS was shown to be optically traceable to national standards and to provide highly reproducible density measurements. Use of the LDS resulted in increased agreement between RCF dose measurements and the single-hit detector model of film response, facilitating traceable RCF calibrations based on calibrated physical quantities. GafchromicRTM EBT3 energy response to a variety of reference x-ray and gamma-ray beam qualities was also investigated. Conventional Monte Carlo methods are not capable of predicting film intrinsic energy response to arbitrary particle spectra. Therefore, a microdosimetric model was developed to simulate the underlying physics of the radiochromic mechanism and was shown to correctly predict the intrinsic response relative to a

  1. Configurational analysis of an EBT reactor in various magnetic geometries

    SciTech Connect

    Owen, L.W.; Uckan, N.A.

    1980-01-01

    Optimization of vacuum field particle confinement in an ELMO Bumpy Torus (EBT) reactor has been considered. Several methods of improving the efficient utilization of magnetic fields and the particle confinement characteristics of a reactor have been analyzed. These include the use of (1) magnets with a large mirror ratio, (2) high field Nb/sub 3/Sn or Nb/sub 3/Sn/NbTi hybrid mirror coils, (3) split-wedge mirror coils, (4) aspect ratio enhancement (ARE) coils, and (5) recently developed field symmetrizing (SYM) coils. Of these, particle drift orbits and three-dimensional tensor pressure equilibrium calculations have shown that the ARE and SYM coils used in conjunction with high field magnets offer the most promise of good plasma performance in a smaller size (up to 50%) EBT reactor. The relative merits of each magnetic configuration are discussed, and the design characteristics are given.

  2. EBT reactor characteristics consistent with stability and power balance requirements

    SciTech Connect

    Uckan, N.A.; Santoro, R.T.

    1983-01-01

    This paper summarizes the results of a recent EBT reactor study that includes both ring and core plasma properties and consistent treatment of coupled ring-core stability criteria and power balance requirements. The principal finding is that constraints imposed by these coupling and other physics and technology considerations permit a broad operating window for reactor design optimization. A number of concept improvements are also proposed that are found to offer the potential for further improvement of the reactor size and parameters.

  3. Measurement of gold nanofilm dose enhancement using unlaminated radiochromic film

    SciTech Connect

    Rakowski, Joseph T. Snyder, Michael G.; Hillman, Yair; Laha, Suvra S.; Lawes, Gavin; Buczek, Matthew G.; Tucker, Mark A.; Liu, Fangchao; Mao, Guangzhao

    2015-10-15

    Purpose: Bombarding high-Z material with x-ray radiation releases Auger electrons and Coster–Kronig electrons, along with deeper penetrating fluorescent x-rays and photoelectrons. The Auger and Coster–Kronig electron penetration distance is on the order of nanometers to micrometers in water or tissue, creating a large dose enhancement accompanied by a RBE greater than 1 at the cellular level. The authors’ aim is to measure the gold nanofilm dose enhancement factor (DEF) at the cellular level with unlaminated radiochromic film via primary 50 kVp tungsten x-ray spectrum interaction, similar to an electronic brachytherapy spectrum. Methods: Unlaminated Gafchromic{sup ®} EBT2 film and Monte Carlo modeling were combined to derive DEF models. Gold film of thickness 23.1 ±  4.3 nm and surface roughness of 1.2 ± 0.2 nm was placed in contact with unlaminated radiochromic film in a downstream orientation and exposed to a 50 kVp tungsten bremsstrahlung, mean energy 19.2 keV. Film response correction factors were derived by Monte Carlo modeling of electron energy deposition in the film’s active layer, and by measuring film energy dependence from 4.5 keV to 50 kVp. Results: The measured DEF within a 13.6 μm thick water layer was 0.29 with a mean dose of 94 ± 9.4 cGy from Au emissions and 324 ± 32.4 cGy from the 50 kVp primary beam. Monte Carlo derived correction factors allowed determination of Au contributed dose in shallower depths at 0.25 μm intervals. Maximum DEF of 18.31 was found in the first 0.25 μm water depth. Conclusions: Dose enhancement from Au nanofilm can be measured at the cellular level using unlaminated radiochromic film. Complementing the measured dose value with Monte Carlo calculations allows estimation of dose enhancement at depth increments within the cellular range.

  4. Radiochromic film calibration for low-energy seed brachytherapy dose measurement

    SciTech Connect

    Morrison, Hali Menon, Geetha; Sloboda, Ron S.

    2014-07-15

    Purpose: Radiochromic film dosimetry is typically performed for high energy photons and moderate doses characterizing external beam radiotherapy (XRT). The purpose of this study was to investigate the accuracy of previously established film calibration procedures used in XRT when applied to low-energy, seed-based brachytherapy at higher doses, and to determine necessary modifications to achieve similar accuracy in absolute dose measurements. Methods: Gafchromic EBT3 film was used to measure radiation doses upwards of 35 Gy from 75 kVp, 200 kVp, 6 MV, and (∼28 keV) I-125 photon sources. For the latter irradiations a custom phantom was built to hold a single I-125 seed. Film pieces were scanned with an Epson 10000XL flatbed scanner and the resulting 48-bit RGB TIFF images were analyzed using both FilmQA Pro software andMATLAB. Calibration curves relating dose and optical density via a rational functional form for all three color channels at each irradiation energy were determined with and without the inclusion of uncertainties in the measured optical densities and dose values. The accuracy of calibration curve variations obtained using piecewise fitting, a reduced film measurement area for I-125 irradiation, and a reduced number of dose levels was also investigated. The energy dependence of the film lot used was also analyzed by calculating normalized optical density values. Results: Slight differences were found in the resulting calibration curves for the various fitting methods used. The accuracy of the calibration curves was found to improve at low doses and worsen at high doses when including uncertainties in optical densities and doses, which may better represent the variability that could be seen in film optical density measurements. When exposing the films to doses > 8 Gy, two-segment piecewise fitting was found to be necessary to achieve similar accuracies in absolute dose measurements as when using smaller dose ranges. When reducing the film measurement

  5. EBT-P gamma-ray shielding system

    SciTech Connect

    Gohar, Y.

    1981-12-01

    An elaborate study was carried out for the coil and biological shield of the ELMO Bumpy Torus proof-of-principle (EBT-P) device. A three-dimensional scoping study for the coil shield was performed for four different shielding options to define the heat load for each component and check the compliance with the design criterion of 10 watts maximum heat per coil from the gamma ray sources. Also, a detailed biological dose survey was performed which included: (a) the dose equivalent inside and outside the building, (b) the dose equivalent from the two mazes of the machine room, and (c) the skyshine contribution to the dose equivalent.

  6. Measurement of computed tomography dose profile with pitch variation using Gafchromic XR-QA2 and thermoluminescence dosimeter (TLD)

    NASA Astrophysics Data System (ADS)

    Purwaningsih, S.; Lubis, L. E.; Pawiro, S. A.; Soejoko, D. S.

    2016-03-01

    This research was aimed to check the patterns of dose profile on adult and pediatric head scan. We compared measurement result on dose profile along the z- axis rotation at peripheries and center phantom with a variety of pitch, i.e. 0.75, 1, 1.5 for adult and pediatric head protocol, keeping the rest of the scan parameters constant. Measurements were performed on homogeneous, cylindrical PMMA phantom with diameters of 16 and 10 cm using XR-QA2 Gafchromic film and TLD as dosimeters. The measurement result indicated a decrease in the dose about 50% and 47% for adult and pediatric head scan with the increase of pitch. For 0.75 value of pitch adult head scan, dose range for each position were (2.4 - 5.0) cGy, (3.1 - 5.3) cGy, (2.2 - 4.5) cGy, (2.8 - 5.3) cGy, and (3.3 - 5.6) cGy for position of center, 3, 6, 9 and 12 o'clock peripheral phantom position respectively. Dose profile for adult and pediatric head scan protocols has pattern curve with the maximum dose in the middle and tendency of symmetry near the edges, with different the plateau length along z- axis direction in accordance to the measurement position in the phantom.

  7. Two-point model for electron transport in EBT

    SciTech Connect

    Chiu, S.C.; Guest, G.E.

    1980-01-01

    The electron transport in EBT is simulated by a two-point model corresponding to the central plasma and the edge. The central plasma is assumed to obey neoclassical collisionless transport. The edge plasma is assumed turbulent and modeled by Bohm diffusion. The steady-state temperatures and densities in both regions are obtained as functions of neutral influx and microwave power. It is found that as the neutral influx decreases and power increases, the edge density decreases while the core density increases. We conclude that if ring instability is responsible for the T-M mode transition, and if stability is correlated with cold electron density at the edge, it will depend sensitively on ambient gas pressure and microwave power.

  8. SU-E-T-447: Electronic Brachytherapy (EBT) Treatment of Cervical Cancer - First Clinical Experience

    SciTech Connect

    Johnson, D; Johnson, M; Thompson, J; Ahmad, S; Chan, L; Hausen, H

    2014-06-01

    Purpose: To study the first trial patient in which an electronic brachytherapy (EBT) x-ray source is utilized for treatment of cervical cancer. Methods: During patient treatment, a miniaturized x-ray source was used in combination with a customized titanium tandem and ovoid applicator set. The semi-specialized source was modeled with formalisms outlined by AAMP Task Group 43. Multiple models were used to compensate for variable attenuation conditions as a function of source positions. Varian Brachyvision treatment planning software was utilized on CT data sets for dose calculations prior to treatment delivery. The dose was prescribed to “point A” as defined by American Brachytherapy society. Additional treatments plans were created from those clinically utilized in patient care and were recalculated for an existing Ir-192 source model. Dose volume histograms (DVH) and point dose calculations were compared between the modalities for the clinical condition present in patients treated with EBT. Results: Clinical treatment times, though longer than those typically experienced by Ir-192 users, were manageable. Instantaneous dose rates at personal positions within the treatment vault were lower than those measured during intra operative radiation therapy and breast EBT treatments. Due to lower average photon energy in EBT, dose gradients within the treatment plans were as expected steeper than those observed in Ir-192 based brachytherapy. DVH comparisons between Ir-192 and EBT treatments showed an expected decrease in the integral dose to normal tissues of interest for EBT. In comparing plans created for EBT delivery with those calculated for Ir-192, average dose values for EBT were more than 4%, 11%, and 9% lower at predefined bladder, rectum and “point B” positions, respectively. Conclusion: For the first time, we have demonstrated that the utilizing electronic brachytherapy system for tandem and ovoid based treatment of cancer of the cervix is feasible, and

  9. Measurements of the microwave power in the wall at EBT-I/S

    SciTech Connect

    Rasmussen, D.A.; Batchelor, D.B.; Hankins, O.E.

    1982-01-01

    An understanding of the microwave propagation and absorption in Elmo bumpy torus is critical because the plasma production, the heating, and the stabilization provided by the hot electron rings are dependent on these processes. A microwave power balance model was proposed earlier for EBT. This paper will describe a series of simple experiments designed to test this model by comparing its predictions and assumptions to both calorimetric and broad beam antenna measurements of microwave power at the wall in EBT-I/S.

  10. SAXS and ATR-FTIR studies on EBT-TSX mixtures in their sol-gel phases.

    PubMed

    Hirun, Namon; Rugmai, Supagorn; Sangfai, Tanatchaporn; Tantishaiyakul, Vimon

    2012-11-01

    Our previous study demonstrated that mixtures of tamarind seed xyloglucan (TSX) with appropriate concentrations of eriochrome black T (EBT) produced a gel that could be of benefit for medical use. Here, the sol-gel systems of various fresh and aged mixtures were further investigated using rheological measurements. The nanostructural changes of EBT-TSX sol-gel phases were analyzed using SAXS. The interactions between EBT and TSX in the sol and gel states were examined using ATR-FTIR. SAXS data analysis demonstrated that the mixture containing lower concentration of EBT formed rod-like structures and that with higher concentrations of EBT produced flat particles. The sizes of the TSX structures from the aged mixtures in the gel stage were larger than those from the same mixtures in the sol state. ATR-FTIR spectral changes revealed that the azo and sulfonic acid groups of EBT interacted with the TSX, and the characteristic spectrum of the sulfonic acid group of EBT could discriminate between the sol and gel state of the EBT-TSX systems. The interactions between EBT and TSX may cause conformational changes to TSX and facilitate the sol-gel transition or formation of a gel.

  11. SAXS and ATR-FTIR studies on EBT-TSX mixtures in their sol-gel phases.

    PubMed

    Hirun, Namon; Rugmai, Supagorn; Sangfai, Tanatchaporn; Tantishaiyakul, Vimon

    2012-11-01

    Our previous study demonstrated that mixtures of tamarind seed xyloglucan (TSX) with appropriate concentrations of eriochrome black T (EBT) produced a gel that could be of benefit for medical use. Here, the sol-gel systems of various fresh and aged mixtures were further investigated using rheological measurements. The nanostructural changes of EBT-TSX sol-gel phases were analyzed using SAXS. The interactions between EBT and TSX in the sol and gel states were examined using ATR-FTIR. SAXS data analysis demonstrated that the mixture containing lower concentration of EBT formed rod-like structures and that with higher concentrations of EBT produced flat particles. The sizes of the TSX structures from the aged mixtures in the gel stage were larger than those from the same mixtures in the sol state. ATR-FTIR spectral changes revealed that the azo and sulfonic acid groups of EBT interacted with the TSX, and the characteristic spectrum of the sulfonic acid group of EBT could discriminate between the sol and gel state of the EBT-TSX systems. The interactions between EBT and TSX may cause conformational changes to TSX and facilitate the sol-gel transition or formation of a gel. PMID:22652217

  12. S3C: EBT Steady-State Shooting code description and user's guide

    SciTech Connect

    Downum, W.B.

    1983-09-01

    The Oak Ridge National Laboratory (ORNL) one-dimensional (1-D) Steady-State Shooting code (S3C) for ELMO Bumpy Torus (EBT) plasmas is described. Benchmark calculations finding the steady-state density and electron and ion temperature profiles for a known neutral density profile and known external energy sources are carried out. Good agreement is obtained with results from the ORNL Radially Resolved Time Dependent 1-D Transport code for an EBT-Q type reactor. The program logic is described, along with the physics models in each code block and the variable names used. Sample input and output files are listed, along with the main code.

  13. Total skin electron therapy (TSET): A reimplementation using radiochromic films and IAEA TRS-398 code of practice

    SciTech Connect

    Schiapparelli, P.; Zefiro, D.; Massone, F.; Taccini, G.

    2010-07-15

    Purpose: The aim of this work is to present an updated implementation of total skin electron therapy (TSET) using IAEA TRS-398 code of practice for absolute dosimetry and taking advantage of the use of radiochromic films. The optimization of quality control tests is also included. Methods: A Varian 2100 C/D linear accelerator equipped with the special procedure HDTSe{sup -} (high dose rate total skin electron mode, E=6 MeV) was employed to perform TSET irradiations using the modified Stanford technique. The commissioning was performed following the AAPM report 23 recommendations. In particular, for dual-field beams irradiation, the optimal tilt angle was investigated and the dose distribution in the treatment plane was measured. For a complete six dual-field beams irradiation, the treatment skin dose on the surface of a cylindrical phantom was evaluated by radiochromic films and the B factor which relates the single dual-field skin dose to the six dual-field skin dose was assessed. Since the TRS-398 reference conditions do not meet the requirements of TSET absolute dosimetry, GafChromic EBT films were also employed to check and validate the application of the protocol. Simplified procedures were studied to verify beam constancy in PMMA phantoms without the more difficult setup of total skin irradiation. Results: The optimized geometrical setup for dual-field beams was: Tilt angle={+-}19 deg., SSD=353 cm, and the beam degrader (200x100x1 cm{sup 3}) placed at 320 cm from the source. As regards to dose homogeneity in the treatment plane, for dual-field beams irradiation, the mean relative dose value was 97%{+-}5% (normalizing to 100% at the calibration point level). For six dual-field beams irradiation, the multiplication factor B was 2.63. In addition, beam quality, dose rate, and bremsstrahlung contribution were also suitable for TSET treatments. The TRS-398 code of practice was used for TSET dosimetry, as dose measurements performed by ionization chamber and

  14. 7 CFR 274.8 - Functional and technical EBT system requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the industry; (B) Software controls, placed at either the terminal or central computer or both, that... user access and identification codes. EBT system software controls shall include separate checks... processing centers; (C) Software programming changes shall be dual controlled to the extent possible;...

  15. 7 CFR 274.8 - Functional and technical EBT system requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the industry; (B) Software controls, placed at either the terminal or central computer or both, that... user access and identification codes. EBT system software controls shall include separate checks... processing centers; (C) Software programming changes shall be dual controlled to the extent possible;...

  16. 7 CFR 274.8 - Functional and technical EBT system requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the industry; (B) Software controls, placed at either the terminal or central computer or both, that... user access and identification codes. EBT system software controls shall include separate checks... processing centers; (C) Software programming changes shall be dual controlled to the extent possible;...

  17. EBT reactor systems analysis and cost code: description and users guide (Version 1)

    SciTech Connect

    Santoro, R.T.; Uckan, N.A.; Barnes, J.M.; Driemeyer, D.E.

    1984-06-01

    An ELMO Bumpy Torus (EBT) reactor systems analysis and cost code that incorporates the most recent advances in EBT physics has been written. The code determines a set of reactors that fall within an allowed operating window determined from the coupling of ring and core plasma properties and the self-consistent treatment of the coupled ring-core stability and power balance requirements. The essential elements of the systems analysis and cost code are described, along with the calculational sequences leading to the specification of the reactor options and their associated costs. The input parameters, the constraints imposed upon them, and the operating range over which the code provides valid results are discussed. A sample problem and the interpretation of the results are also presented.

  18. EBT Fidelity Trajectories Across Training Cohorts Using the Interagency Collaborative Team Strategy.

    PubMed

    Chaffin, Mark; Hecht, Debra; Aarons, Greg; Fettes, Danielle; Hurlburt, Michael; Ledesma, Karla

    2016-03-01

    The Interdisciplinary Collaborative Team (ICT) strategy uses front-line providers as adaptation, training and quality control agents for multi-agency EBT implementation. This study tests whether an ICT transmits fidelity to subsequent provider cohorts. SafeCare was implemented by home visitors from multiple community-based agencies contracting with child welfare. Client-reported fidelity trajectories for 5,769 visits, 957 clients and 45 providers were compared using three-level growth models. Provider cohorts trained and live-coached by the ICT attained benchmark fidelity after 12 weeks, and this was sustained. Hispanic clients reported high cultural competency, supporting a cultural adaptation crafted by the ICT.

  19. EBT Fidelity Trajectories Across Training Cohorts Using the Interagency Collaborative Team Strategy

    PubMed Central

    Hecht, Debra; Aarons, Greg; Fettes, Danielle; Hurlburt, Michael; Ledesma, Karla

    2015-01-01

    The Interdisciplinary Collaborative Team (ICT) strategy uses front-line providers as adaptation, training and quality control agents for multi-agency EBT implementation. This study tests whether an ICT transmits fidelity to subsequent provider cohorts. SafeCare was implemented by home visitors from multiple community-based agencies contracting with child welfare. Client-reported fidelity trajectories for 5,769 visits, 957 clients and 45 providers were compared using three-level growth models. Provider cohorts trained and live-coached by the ICT attained benchmark fidelity after 12 weeks, and this was sustained. Hispanic clients reported high cultural competency, supporting a cultural adaptation crafted by the ICT. PMID:25586878

  20. Validation of fast Monte Carlo dose calculation in small animal radiotherapy with EBT3 radiochromic films

    NASA Astrophysics Data System (ADS)

    Noblet, C.; Chiavassa, S.; Smekens, F.; Sarrut, D.; Passal, V.; Suhard, J.; Lisbona, A.; Paris, F.; Delpon, G.

    2016-05-01

    In preclinical studies, the absorbed dose calculation accuracy in small animals is fundamental to reliably investigate and understand observed biological effects. This work investigated the use of the split exponential track length estimator (seTLE), a new kerma based Monte Carlo dose calculation method for preclinical radiotherapy using a small animal precision micro irradiator, the X-RAD 225Cx. Monte Carlo modelling of the irradiator with GATE/GEANT4 was extensively evaluated by comparing measurements and simulations for half-value layer, percent depth dose, off-axis profiles and output factors in water and water-equivalent material for seven circular fields, from 20 mm down to 1 mm in diameter. Simulated and measured dose distributions in cylinders of water obtained for a 360° arc were also compared using dose, distance-to-agreement and gamma-index maps. Simulations and measurements agreed within 3% for all static beam configurations, with uncertainties estimated to 1% for the simulation and 3% for the measurements. Distance-to-agreement accuracy was better to 0.14 mm. For the arc irradiations, gamma-index maps of 2D dose distributions showed that the success rate was higher than 98%, except for the 0.1 cm collimator (92%). Using the seTLE method, MC simulations compute 3D dose distributions within minutes for realistic beam configurations with a clinically acceptable accuracy for beam diameter as small as 1 mm.

  1. SU-E-T-37: An Optical Investigation Into the Polarization and Scattering Effects Underlying the Artifacts of Radiochromic Film Dosimetry with Commercial Flatbed Scanners

    SciTech Connect

    Schoenfeld, A; Poppinga, D; Poppe, B; Harder, D; Doerner, K

    2014-06-01

    Purpose: This study aims to investigate the optical properties of radiochromic EBT3 films on exposure to polarized incident light. Methods: An optical table setup was used to investigate the properties of exposed and unexposed EBT3 films. The films were placed with their long side horizontally and illuminated with polarized incident white light. The polarization of light with the electrical vector pointing vertically is referred to as 0°, accordingly horizontal orientation corresponds to 90°. The light transmission was measured depending on the polarization angle of the incident light and the polarization of a polarizer in front of the detector. Secondly, the scattering properties of exposed and unexposed films were measured by placing a plane convex lens behind the films and a screen in its focal plane. Thereby, the distribution of the scattering angles appears as an intensity map on the screen. The distributions of scattering angles caused by EBT3 films and by neutral density filters were compared. Results: EBT3 films show a strong dependence of the light transmission on the polarization of the incident light. With both polarizers parallel, a peak transmission was found at 90° orientation of the polarizers. With the rear polarizer at right angles with the front polarizer, peak transmissions were found at front polarizer orientations 45° and 135°. The scattering appears to be anisotropic with a preference direction parallel to the long side of the film. The portion of scattered light and the half value scattering angle both increase with the dose on the film. Conclusion: EBT3 films show dose dependent changes in polarized light transmission and anisotropic light scattering. These effects impair the light absorption measurements on exposed films performed with commercial flatbed scanners and are causing the well-known artifacts of radiochromic film dosimetry with flatbed scanners, the “orientation effect” and the “parabola effect”.

  2. The artefacts of radiochromic film dosimetry with flatbed scanners and their causation by light scattering from radiation-induced polymers.

    PubMed

    Schoenfeld, Andreas A; Poppinga, Daniela; Harder, Dietrich; Doerner, Karl-Joachim; Poppe, Bjoern

    2014-07-01

    Optical experiments and theoretical considerations have been undertaken in order to understand the causes of the 'orientation effect' and the 'parabola effect', the artefacts impairing the desired light absorption measurement on radiochromic EBT3 films with flatbed scanners. EBT3 films exposed to doses up to 20.9 Gy were scanned with an Epson Expression 10000XL flatbed scanner in landscape and portrait orientation. The horizontally and vertically polarized light components of the scanner were determined, and another Epson Expression 10000XL flatbed scanner was disassembled to examine its optical components. The optical properties of exposed and unexposed EBT3 films were studied with incident polarized and unpolarized white light, and the transmitted red light was investigated for its polarization and scattering properties including the distribution of the scattering angles. Neutral density filters were studied for comparison. Guidance was sought from the theory of light scattering from rod-like macromolecular structures. The drastic dose-dependent variation of the transmitted total light current as function of the orientation of front and rear polarizers, interpreted by light scattering theory, shows that the radiation-induced polymerization of the monomers of EBT3 films produces light scattering oscillators preferably polarized at right angles with the coating direction of the film. The directional distribution of the scattered light is partly anisotropic, with a preferred scattering plane at right angles with the coating direction, indicating light scattering from stacks of coherently vibrating oscillators piled up along the monomer crystals. The polyester carrier film also participates in these effects. The 'orientation' and 'parabola' artefacts due to flatbed scanning of radiochromic films can be explained by the interaction of the polarization-dependent and anisotropic light scattering from exposed and unexposed EBT3 films with the quantitative difference

  3. On multichannel film dosimetry with channel-independent perturbations

    SciTech Connect

    Méndez, I. Peterlin, P.; Hudej, R.; Strojnik, A.; Casar, B.

    2014-01-15

    Purpose: Different multichannel methods for film dosimetry have been proposed in the literature. Two of them are the weighted mean method and the method put forth byMicke et al. [“Multichannel film dosimetry with nonuniformity correction,” Med. Phys. 38, 2523–2534 (2011)] and Mayer et al. [“Enhanced dosimetry procedures and assessment for EBT2 radiochromic film,” Med. Phys. 39, 2147–2155 (2012)]. The purpose of this work was to compare their results and to develop a generalized channel-independent perturbations framework in which both methods enter as special cases. Methods: Four models of channel-independent perturbations were compared: weighted mean, Micke–Mayer method, uniform distribution, and truncated normal distribution. A closed-form formula to calculate film doses and the associated type B uncertainty for all four models was deduced. To evaluate the models, film dose distributions were compared with planned and measured dose distributions. At the same time, several elements of the dosimetry process were compared: film type EBT2 versus EBT3, different waiting-time windows, reflection mode versus transmission mode scanning, and planned versus measured dose distribution for film calibration and for γ-index analysis. The methods and the models described in this study are publicly accessible through IRISEU. Alpha 1.1 ( http://www.iriseu.com ). IRISEU. is a cloud computing web application for calibration and dosimetry of radiochromic films. Results: The truncated normal distribution model provided the best agreement between film and reference doses, both for calibration and γ-index verification, and proved itself superior to both the weighted mean model, which neglects correlations between the channels, and the Micke–Mayer model, whose accuracy depends on the properties of the sensitometric curves. With respect to the selection of dosimetry protocol, no significant differences were found between transmission and reflection mode scanning

  4. Decolorization and detoxification of Congo red and textile industry effluent by an isolated bacterium Pseudomonas sp. SU-EBT.

    PubMed

    Telke, Amar A; Joshi, Swati M; Jadhav, Sheetal U; Tamboli, Dhawal P; Govindwar, Sanjay P

    2010-04-01

    The 16S rRNA sequence and biochemical characteristics revealed the isolated organism as Pseudomonas sp. SU-EBT. This strain showed 97 and 90% decolorization of a recalcitrant dye, Congo red (100 mg l(-1)) and textile industry effluent with 50% reduction in COD within 12 and 60 h, respectively. The optimum pH and temperature for the decolorization was 8.0 and 40 degrees C, respectively. Pseudomonas sp. SU-EBT was found to tolerate the dye concentration up to 1.0 g l(-1). Significant induction in the activity of intracellular laccase suggested its involvement in the decolorization of Congo red. The metabolites formed after decolorization of Congo red, such as p-dihydroxy biphenyl, 8-amino naphthol 3-sulfonic acid and 3-hydroperoxy 8-nitrosonaphthol were characterized using FTIR and GC-MS. Phytotoxicity study revealed nontoxic nature of the degradation metabolites to Sorghum bicolor, Vigna radiata, Lens culinaris and Oryza sativa plants as compared to Congo red and textile industry effluent. Pseudomonas sp. SU-EBT decolorized several individual textile dyes, dye mixtures and textile industry effluent, thus it is a useful strain for the development of effluent treatment methods in textile processing industries.

  5. A feasibility study using radiochromic films for fast neutron 2D passive dosimetry

    NASA Astrophysics Data System (ADS)

    Brady, Samuel L.; Gunasingha, Rathnayaka; Yoshizumi, Terry T.; Howell, Calvin R.; Crowell, Alexander S.; Fallin, Brent; Tonchev, Anton P.; Dewhirst, Mark W.

    2010-09-01

    The objective of this paper is threefold: (1) to establish sensitivity of XRQA and EBT radiochromic films to fast neutron exposure; (2) to develop a film response to radiation dose calibration curve and (3) to investigate a two-dimensional (2D) film dosimetry technique for use in establishing an experimental setup for a radiobiological irradiation of mice and to assess the dose to the mice in this setup. The films were exposed to a 10 MeV neutron beam via the 2H(d,n)3He reaction. The XRQA film response was a factor of 1.39 greater than EBT film response to the 10 MeV neutron beam when exposed to a neutron dose of 165 cGy. A film response-to-soft tissue dose calibration function was established over a range of 0-10 Gy and had a goodness of fit of 0.9926 with the calibration data. The 2D film dosimetry technique estimated the neutron dose to the mice by measuring the dose using a mouse phantom and by placing a piece of film on the exterior of the experimental mouse setup. The film results were benchmarked using Monte Carlo and aluminum (Al) foil activation measurements. The radiochromic film, Monte Carlo and Al foil dose measurements were strongly correlated, and the film within the mouse phantom agreed to better than 7% of the externally mounted films. These results demonstrated the potential application of radiochromic films for passive 2D neutron dosimetry.

  6. Improving analysis of radiochromic films

    NASA Astrophysics Data System (ADS)

    Baptista Neto, A. T.; Meira-Belo, L. C.; Faria, L. O.

    2014-02-01

    An appropriate radiochromic film should respond uniformly throughout its surface after exposure to a uniform radiation field. The evaluation of radiochromic films may be carried out, for example, by measuring color intensities in film-based digitized images. Fluctuations in color intensity may be caused by many different factors such as optical structure of the film's active layer, defects in structure of the film, scratches and external agents, such as dust. The use of high spatial resolution during film scanning should also increase microscopic uniformity. Since the average is strongly influenced by extreme values, the use of other statistical tools, for which this problem becomes inconspicuous, optimizes the application of higher spatial resolution as well as reduces standard deviations. This paper compares the calibration curves of the XR-QA2 Gafchromic® radiochromic film based on three different methods: the average of all color intensity readings, the median of these same readings and the average of readings that fall between the first and third quartiles. Results indicate that a higher spatial resolution may be adopted whenever the calibration curve is based on tools less influenced by extreme values such as those generated by the factors mentioned above.

  7. Evaluation of material heterogeneity dosimetric effects using radiochromic film for COMS eye plaques loaded with {sup 125}I seeds (model I25.S16)

    SciTech Connect

    Acar, Hilal; Chiu-Tsao, Sou-Tung; Oezbay, Ismail; Kemikler, Goenuel; Tuncer, Samuray

    2013-01-15

    Purpose: (1) To measure absolute dose distributions in eye phantom for COMS eye plaques with {sup 125}I seeds (model I25.S16) using radiochromic EBT film dosimetry. (2) To determine the dose correction function for calculations involving the TG-43 formalism to account for the presence of the COMS eye plaque using Monte Carlo (MC) method specific to this seed model. (3) To test the heterogeneous dose calculation accuracy of the new version of Plaque Simulator (v5.3.9) against the EBT film data for this seed model. Methods: Using EBT film, absolute doses were measured for {sup 125}I seeds (model I25.S16) in COMS eye plaques (1) along the plaque's central axis for (a) uniformly loaded plaques (14-20 mm in diameter) and (b) a 20 mm plaque with single seed, and (2) in off-axis direction at depths of 5 and 12 mm for all four plaque sizes. The EBT film calibration was performed at {sup 125}I photon energy. MC calculations using MCNP5 code for a single seed at the center of a 20 mm plaque in homogeneous water and polystyrene medium were performed. The heterogeneity dose correction function was determined from the MC calculations. These function values at various depths were entered into PS software (v5.3.9) to calculate the heterogeneous dose distributions for the uniformly loaded plaques (of all four sizes). The dose distributions with homogeneous water assumptions were also calculated using PS for comparison. The EBT film measured absolute dose rate values (film) were compared with those calculated using PS with homogeneous assumption (PS Homo) and heterogeneity correction (PS Hetero). The values of dose ratio (film/PS Homo) and (film/PS Hetero) were obtained. Results: The central axis depth dose rate values for a single seed in 20 mm plaque measured using EBT film and calculated with MCNP5 code (both in ploystyrene phantom) were compared, and agreement within 9% was found. The dose ratio (film/PS Homo) values were substantially lower than unity (mostly between 0.8 and 0

  8. In vivo dosimetry with radiochromic films in low-voltage intraoperative radiotherapy of the breast

    SciTech Connect

    Avanzo, M.; Rink, A.; Dassie, A.; Massarut, S.; Roncadin, M.; Borsatti, E.; Capra, E.

    2012-05-15

    Purpose: EBT2 radiochromic films were studied and used for in vivo dosimetry in targeted intraoperative radiotherapy (TARGIT), a technique in which the Intrabeam system (Carl Zeiss, Oberkochen, Germany) is used to perform intraoperative partial breast irradiation with x-rays of 50 kV{sub p}. Methods: The energy of the radiation emitted by the Intrabeam with the different spherical applicators, under 1 and 2 cm of solid water, and under the tungsten impregnated rubber used for shielding of the heart in TARGIT of the breast, was characterized with measurements of half-value layer (HVL). The stability of response of EBT2 was verified inside this range of energies. EBT2 films were calibrated using the red and green channels of the absorption spectrum in the 0-20 Gy dose range delivered by the Intrabeam x-rays. The dependence of film response on temperature during irradiation was measured. For in vivo dosimetry, pieces of radiochromic films wrapped in sterile envelopes were inserted after breast conserving surgery and before TARGIT into the excision cavity, on the skin and on the shielded pectoralis fascia for treatments of the left breast. Results: HVLs of the Intrabeam in TARGIT of the breast correspond to effective energies of 20.7-36.3 keV. The response of EBT2 was constant inside this range of energies. We measured the dose to the target tissue and to organs at risk in 23 patients and obtained an average dose of 13.52 {+-} 1.21 Gy to the target tissue. Dose to the skin in close proximity to the applicator was 2.22 {+-} 0.97 Gy, 0.29 {+-} 0.17 Gy at 5-10 cm from the applicator, and 0.08 {+-} 0.07 Gy at more than 10 cm from the applicator. Dose to the pectoral muscle for left breast treatment was 0.57 {+-} 0.23 Gy. Conclusions: Our results show that EBT2 films are accurate at the beam energies, dose range, and irradiation temperature found in TARGIT and that in vivo dosimetry in TARGIT with EBT2 films wrapped in sterile envelopes is a feasible procedure. Measured

  9. Development of simple high-precision two-dimensional dose-distribution measurement method for proton beam therapy using imaging plate and EBT3.

    PubMed

    Mori, Yutaro; Isobe, Tomonori; Yamaguchi, Yoshiki; Takei, Hideyuki; Kamizawa, Satoshi; Terunuma, Toshiyuki; Sato, Eisuke; Takada, Kenta; Tadano, Kiichi; Yoshimura, Yousuke; Sakurai, Hideyuki; Sakae, Takeji

    2016-09-01

    Although there are several two-dimensional (2D) dose-distribution measurement methods using proton beam therapy, they all have drawbacks; hence, there is no standard method established worldwide. The purpose of this study was to develop a simple, high-precision 2D distribution measurement method for proton beam therapy that uses an imaging plate and EBT3. First, we expanded the maximum readable dose (saturation dose) in the imaging plate. The method involves (i) the control of the fading phenomenon by an annealing process and (ii) the control of the photostimulated luminescence (PSL) phenomenon using a longpass filter (LPF). In method (i), upon heating at 80 °C, the PSL became 0.485 times the room temperature, and in method (ii), we attenuated the PSL by a factor of 0.245 using an LPF. Thus, by combining methods (i) and (ii), we expanded the saturation dose to 2 Gy. Thus, it was possible to measure the imaging plate and EBT3 in the same dose range. We simultaneously measured the percent depth dose using imaging plate and EBT3. We defined a correction factor to match the measured values-which had a reduced sensitivity because of the linear energy transfer (LET) dependence of the imaging plate and EBT3-with reference data and developed a correction factor function. Subsequently, by defining the relative LET dependence of imaging plate and EBT3 as the relative sensitivity and converting the relationship imaging plate between the relative sensitivity and correction factor into a function, we obtained a sensitivity-correction function. By employing this function, measurements with the same accuracy as the reference data were performed using the imaging plate and EBT3. PMID:27470695

  10. Comparative Analysis of Different Measurement Techniques for MLC Characterization: Preliminary Results

    SciTech Connect

    Larraga-Gutierrez, J. M.; Ballesteros-Zebadua, P.; Garcia-Garduno, O. A.; Martinez-Davalos, A.; Rodriguez-Villafuerte, M.; Moreno-Jimenez, S.; Celis, M. A.

    2008-08-11

    Radiation transmission, leakage and beam penumbra are essential dosimetric parameters related to the commissioning of a multileaf collimation system. This work shows a comparative analysis of commonly used film detectors: X-OMAT V2 and EDR2 radiographic films, and GafChromic EBT registered radiochromic film. The results show that X-OMAT over-estimates radiation leakage and 80-20% beam penumbra. However, according to the reference values reported by the manufacturer for these dosimetric parameters, all three films are adequate for MLC dosimetric characterization, but special care must be taken when X-OMAT V2 film is used due to its low energy photon dependence.

  11. Spectrophotometric determination of β-adrenergic antagonists drugs via ion-pair complex formation using MO and EBT

    NASA Astrophysics Data System (ADS)

    El-Didamony, A. M.; Shehata, A. M.

    2014-09-01

    Two simple, rapid and sensitive spectrophotometric methods have been proposed for the assay of bisoprolol fumarate (BSF), propranolol hydrochloride (PRH), and timolol maleate (TIM) either in bulk or in pharmaceutical formulations. The methods are based on the reaction of the selected drugs with methyl orange (MO) and eriochrome black T in acidic buffers, after extracting in dichloromethane and measured quantitatively with maximum absorption at 428 and 518 nm for MO and EBT, respectively. The analytical parameters and their effects on the reported systems are investigated. The extracts are intensely colored and very stable at room temperature. The calibration graphs were linear over the concentration range of 0.8-6.4, 0.4-3.6, 0.8-5.6 μg/mL for BSF, PRH, and TIM, respectively, with MO and 0.8-6.4, 0.4-3.2, and 0.8-8.0 μg/mL for BSF, PRH, and TIM, respectively, with EBT. The stoichiometry of the complexes was found to be 1 : 1 in all cases. The proposed methods were successfully extended to pharmaceutical preparations. Excipients used as additive in commercial formulations did not interfere in the analysis. The proposed methods can be recommended for quality control and routine analysis where time, cost effectiveness and high specificity of analytical technique are of great importance.

  12. Visible absorption properties of radiation exposed XR type-T radiochromic film.

    PubMed

    Butson, Martin J; Cheung, Tsang; Yu, Peter K N

    2004-10-01

    The visible absorption spectra of Gafchromic XR type-T radiochromic film have been investigated to analyse the dosimetry characteristics of the film with visible light densitometers. Common densitometers can use photospectrometry, fluorescent light (broad-band visible), helium neon (632 nm), light emitting diode (LED) or other specific bandwidth spectra. The visible absorption spectra of this film when exposed to photon radiation show peaks at 676 nm and 618 nm at 2 Gy absorbed doses which shift to slightly lower wavelengths (662 nm and 612 nm at 8 Gy absorbed dose) at higher doses. This is similar to previous models of Gafchromic film such as MD-55-2 and HS but XR type-T also includes a large absorption at lower visible wavelengths due to 'yellow' dyes placed within the film to aid with visible recognition of the film exposure level. The yellow dye band pass is produced at approximately 520 nm to 550 nm and absorbs wavelengths lower than this value within the visible spectrum. This accounts for the colour change from yellow to brown through the added absorption in the red wavelengths with radiation exposure. The film produces a relatively high dose sensitivity with up to 0.25 OD units per Gy change at 672 nm at 100 kVp x-ray energy. Variations in dose sensitivity can be achieved by varying wavelength analysis.

  13. 49 CFR 40.243 - What is the procedure for an alcohol screening test using an EBT or non-evidential breath ASD?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false What is the procedure for an alcohol screening test using an EBT or non-evidential breath ASD? 40.243 Section 40.243 Transportation Office of the...-evidential breath ASD? As the BAT or STT, you must take the following steps: (a) Select, or allow...

  14. 49 CFR 40.243 - What is the procedure for an alcohol screening test using an EBT or non-evidential breath ASD?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false What is the procedure for an alcohol screening test using an EBT or non-evidential breath ASD? 40.243 Section 40.243 Transportation Office of the...-evidential breath ASD? As the BAT or STT, you must take the following steps: (a) Select, or allow...

  15. 49 CFR 40.243 - What is the procedure for an alcohol screening test using an EBT or non-evidential breath ASD?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false What is the procedure for an alcohol screening test using an EBT or non-evidential breath ASD? 40.243 Section 40.243 Transportation Office of the...-evidential breath ASD? As the BAT or STT, you must take the following steps: (a) Select, or allow...

  16. 49 CFR 40.243 - What is the procedure for an alcohol screening test using an EBT or non-evidential breath ASD?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false What is the procedure for an alcohol screening test using an EBT or non-evidential breath ASD? 40.243 Section 40.243 Transportation Office of the...-evidential breath ASD? As the BAT or STT, you must take the following steps: (a) Select, or allow...

  17. 49 CFR 40.243 - What is the procedure for an alcohol screening test using an EBT or non-evidential breath ASD?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false What is the procedure for an alcohol screening test using an EBT or non-evidential breath ASD? 40.243 Section 40.243 Transportation Office of the...-evidential breath ASD? As the BAT or STT, you must take the following steps: (a) Select, or allow...

  18. Correcting scan-to-scan response variability for a radiochromic film-based reference dosimetry system

    SciTech Connect

    Lewis, David; Devic, Slobodan

    2015-10-15

    Purpose: In radiochromic film dosimetry systems, measurements are usually obtained from film images acquired on a CCD-based flatbed scanner. The authors investigated factors affecting scan-to-scan response variability leading to increased dose measurement uncertainty. Methods: The authors used flatbed document scanners to repetitively scan EBT3 radiochromic films exposed to doses 0–1000 cGy, together with three neutral density filters and three blue optical filters. Scanning was performed under two conditions: scanner lid closed and scanner lid opened/closed between scans. The authors also placed a scanner in a cold room at 9 °C and later in a room at 22 °C and scanned EBT3 films to explore temperature effects. Finally, the authors investigated the effect of altering the distance between the film and the scanner’s light source. Results: Using a measurement protocol to isolate the contribution of the CCD and electronic circuitry of the scanners, the authors found that the standard deviation of response measurements for the EBT3 film model was about 0.17% for one scanner and 0.09% for the second. When the lid of the first scanner was opened and closed between scans, the average scan-to-scan difference of responses increased from 0.12% to 0.27%. Increasing the sample temperature during scanning changed the RGB response values by about −0.17, −0.14, and −0.05%/°C, respectively. Reducing the film-to-light source distance increased the RBG response values about 1.1, 1.3, and 1.4%/mm, respectively. The authors observed that films and film samples were often not flat with some areas up to 8 mm away from the scanner’s glass window. Conclusions: In the absence of measures to deal with the response irregularities, each factor the authors investigated could lead to dose uncertainty >2%. Those factors related to the film-to-light source distance could be particularly impactful since the authors observed many instances where the curl of film samples had the

  19. Comparison of dose accuracy between film and two-dimensional detectors in intensity-modulated radiation therapy

    NASA Astrophysics Data System (ADS)

    Onishi, Yuichi; Nakayama, Shinichi; Watanabe, Shinsaku; Kaneshige, Souichirou; Monzen, Hajime; Matsumoto, Kenji; Shintani, Naoya; Kamomae, Takeshi

    2015-07-01

    We constructed seven intensity-modulated radiation therapy (IMRT) treatment plans for prostate cancer (49 irradiation fields which contained seven randomly-sampled patients and seven fields) and evaluated the dose distributions by using a radiochromic film (EBT3 film) and a 2D detector. We superposed the calculated dose distribution of the IMRT treatment plan on EBT3 film and the 2D detector results and then compared those with the γ-analysis pass rate. The relative positions of the beam and the detector were varied; the results of the analysis of the superior-inferior (SI) direction potentially differed, depending on the detector position, under an irradiation beam with the same fluence map. The detector was moved over a range of' 8 mm in the SI direction in 1-mm step increments, measurement were made at each position, and the results were analyzed. The γ-analysis compared the dose distributions from EBT3 film and the radiation treatment planning system (RTPS) for each patient and field; the pass rate with the γ-analysis from 98 to 100% was 2.04%. When we compared the dose distributions of the 2D detector and the RTPS, the pass rate from 98 to 100% was 63.2%. The mean values for the ?-analysis pass rates for EBT3 film and the 2D detector were 94.2 and 97.6%, respectively. Volume averaging of the data indicated a mean pass rate and standard deviation of 98.6 and 0.91%, respectively, and a pass rate of more than 96% for all positions. A 2D detector can, therefore, be used as an alternative apparatus for IMRT dose verification.

  20. In vivo and phantom measurements versus Eclipse TPS prediction of near surface dose for SBRT treatments

    NASA Astrophysics Data System (ADS)

    Cho, Gwi A.; Ralston, Anna; Tin, Mo Mo; Martin, Darren; Pickard, Sheila; Kim, J.-H.; Tse, Regina

    2014-03-01

    This study reports on Gafchromic EBT2 film skin dose measurements for lung stereotactic body radiotherapy. These measurements were compared to near surface skin doses predicted by Eclipse treatment planning system (TPS) using the Analytical Anisotropic Algorithm (AAA) for a 6 MV photon beam. The accuracy of the predicted near surface dose for 3×3, 5×5 and 10×10 cm2 fields was assessed using an Attix chamber and EBT2 film in a Virtual Water phantom and compared to Monte Carlo calculation. The maximum near surface dose and its location were identified from the patient's treatment plan. For phantom measurements, the TPS dose (nominal 0 mm depth) was higher than the Attix chamber data by up to 24.0 % but in closer agreement with the EBT2 film measurement, which was up to 10.3 % higher than the Attix data. The MC calculated dose values were higher than the Attix data by up to 3.5% for the depths up to 2 mm. The maximum patient skin dose estimated from in vivo EBT2 film measurements was 7.5 - 19.5 Gy per course and depended on the number of overlapping fields, beam weight and/or contact with immobilisation devices. The TPS predicted dose for patient plans was mostly higher than the in vivo dose, by as much as 69.3%, but in two cases was lower, by as much as -23.1%.

  1. A comparison of TPS and different measurement techniques in small-field electron beams

    SciTech Connect

    Donmez Kesen, Nazmiye Cakir, Aydin; Okutan, Murat; Bilge, Hatice

    2015-04-01

    In recent years, small-field electron beams have been used for the treatment of superficial lesions, which requires small circular fields. However, when using very small electron fields, some significant dosimetric problems may occur. In this study, dose distributions and outputs of circular fields with dimensions of 5 cm and smaller, for nominal energies of 6, 9, and 15 MeV from the Siemens ONCOR Linac, were measured and compared with data from a treatment planning system using the pencil-beam algorithm in electron beam calculations. All dose distribution measurements were performed using the Gafchromic EBT film; these measurements were compared with data that were obtained from the Computerized Medical Systems (CMS) XiO treatment planning system (TPS), using the gamma-index method in the PTW VeriSoft software program. Output measurements were performed using the Gafchromic EBT film, an Advanced Markus ion chamber, and thermoluminescent dosimetry (TLD). Although the pencil-beam algorithm is used to model electron beams in many clinics, there is no substantial amount of detailed information in the literature about its use. As the field size decreased, the point of maximum dose moved closer to the surface. Output factors were consistent; differences from the values obtained from the TPS were, at maximum, 42% for 6 and 15 MeV and 32% for 9 MeV. When the dose distributions from the TPS were compared with the measurements from the Gafchromic EBT films, it was observed that the results were consistent for 2-cm diameter and larger fields, but the outputs for fields of 1-cm diameter and smaller were not consistent. In CMS XiO TPS, calculated using the pencil-beam algorithm, the dose distributions of electron treatment fields that were created with circular cutout of a 1-cm diameter were not appropriate for patient treatment and the pencil-beam algorithm is not convenient for monitor unit (MU) calculations in electron dosimetry.

  2. An investigation into factors affecting the precision of CT radiation dose profile width measurements using radiochromic films

    SciTech Connect

    Li, Baojun Behrman, Richard H.

    2015-04-15

    Purpose: To investigate the impact of x-ray beam energy, exposure intensity, and flat-bed scanner uniformity and spatial resolution on the precision of computed tomography (CT) beam width measurements using Gafchromic XR-QA2 film and an off-the-shelf document scanner. Methods: Small strips of Gafchromic film were placed at isocenter in a CT scanner and exposed at various x-ray beam energies (80–140 kVp), exposure levels (50–400 mA s), and nominal beam widths (1.25, 5, and 10 mm). The films were scanned in reflection mode on a Ricoh MP3501 flat-bed document scanner using several spatial resolution settings (100 to 400 dpi) and at different locations on the scanner bed. Reflection measurements were captured in digital image files and radiation dose profiles generated by converting the image pixel values to air kerma through film calibration. Beam widths were characterized by full width at half maximum (FWHM) and full width at tenth maximum (FWTM) of dose profiles. Dependences of these parameters on the above factors were quantified in percentage change from the baselines. Results: The uncertainties in both FWHM and FWTM caused by varying beam energy, exposure level, and scanner uniformity were all within 4.5% and 7.6%, respectively. Increasing scanner spatial resolution significantly increased the uncertainty in both FWHM and FWTM, with FWTM affected by almost 8 times more than FWHM (48.7% vs 6.5%). When uncalibrated dose profiles were used, FWHM and FWTM were over-estimated by 11.6% and 7.6%, respectively. Narrower beam width appeared more sensitive to the film calibration than the wider ones (R{sup 2} = 0.68 and 0.85 for FWHM and FWTM, respectively). The global and maximum local background variations of the document scanner were 1.2%. The intrinsic film nonuniformity for an unexposed film was 0.3%. Conclusions: Measurement of CT beam widths using Gafchromic XR-QA2 films is robust against x-ray energy, exposure level, and scanner uniformity. With proper film

  3. SU-E-CAMPUS-T-06: Radiochromic Film Analysis Based On Principal Components

    SciTech Connect

    Wendt, R

    2014-06-15

    Purpose: An algorithm to convert the color image of scanned EBT2 radiochromic film [Ashland, Covington KY] into a dose map was developed based upon a principal component analysis. The sensitive layer of the EBT2 film is colored so that the background streaks arising from variations in thickness and scanning imperfections may be distinguished by color from the dose in the exposed film. Methods: Doses of 0, 0.94, 1.9, 3.8, 7.8, 16, 32 and 64 Gy were delivered to radiochromic films by contact with a calibrated Sr-90/Y-90 source. They were digitized by a transparency scanner. Optical density images were calculated and analyzed by the method of principal components. The eigenimages of the 0.94 Gy film contained predominantly noise, predominantly background streaking, and background streaking plus the source, respectively, in order from the smallest to the largest eigenvalue. Weighting the second and third eigenimages by −0.574 and 0.819 respectively and summing them plus the constant 0.012 yielded a processed optical density image with negligible background streaking. This same weighted sum was transformed to the red, green and blue space of the scanned images and applied to all of the doses. The curve of processed density in the middle of the source versus applied dose was fit by a twophase association curve. A film was sandwiched between two polystyrene blocks and exposed edge-on to a different Y-90 source. This measurement was modeled with the GATE simulation toolkit [Version 6.2, OpenGATE Collaboration], and the on-axis depth-dose curves were compared. Results: The transformation defined using the principal component analysis of the 0.94 Gy film minimized streaking in the backgrounds of all of the films. The depth-dose curves from the film measurement and simulation are indistinguishable. Conclusion: This algorithm accurately converts EBT2 film images to dose images while reducing noise and minimizing background streaking. Supported by a sponsored research

  4. Radiochromic films for dental CT dosimetry: a feasibility study.

    PubMed

    Rampado, O; Bianchi, S D; Peruzzo Cornetto, A; Rossetti, V; Ropolo, R

    2014-02-01

    Dental CT dose evaluations are commonly performed using thermoluminescent dosimeters (TLD) inside anthropomorphic phantoms. Radiochromic films with good sensitivity in the X-ray diagnostic field have recently been developed and are commercially available as GAFCHROMIC XR-QA. There are potential advantages in the use of radiochromic films such as a more comprehensive dosimetry thanks to the adjustable size of the film samples. The purpose of this study was to investigate the feasibility of using radiochromic films for dental CT dose evaluations. Film samples were cut with a width of 5mm and a length of 25 mm (strips), the same size as the Alderson Rando anthropomorphic phantom holes used in this study. Dental CT dose measurements were performed using simultaneously both TLD and radiochromic strips in the same phantom sites. Two equipment types were considered for dental CT examinations: a 16 slice CT and a cone beam CT. Organ equivalent doses were then obtained averaging the measurements from the sites of the same organ and effective doses were calculated using ICRP 103 weighting factors. The entire procedure was repeated four times for each CT in order to compare also the repeatability of the two dosimeter types. A linear correlation was found between the absorbed dose evaluated with radiochromic films and with TLD, with slopes of 0.930 and 0.944 (correlation r>0.99). The maximum difference between the two dosimeter's measurements was 25%, whereas the average difference was 7%. The measurement repeatability was comparable for the two dosimeters at cumulative doses above 15 mGy (estimated uncertainty at 1 sigma level of about 5%), whereas below this threshold radiochromic films show a greater dispersion of data, of about 10% at 1 sigma level. We obtained, using respectively Gafchromic and TLD measurements, effective dose values of 107 μSv and 117 μSv (i.e. difference of 8.6%) for the cone beam CT and of 523 μSv and 562 μSv (i.e. difference of 7%) for the

  5. EBT ring physics

    SciTech Connect

    Uckan, N.A.

    1980-04-01

    This workshop attempted to evaluate the status of the current experimental and theoretical understanding of hot electron ring properties. The dominant physical processes that influence ring formation, scaling, and their optimal behavior are also studied. Separate abstracts were prepared for each of the 27 included papers. (MOW)

  6. SU-E-T-123: Dosimetric Comparison Between Portrait and Landscape Orientations in Radiochromic Film Dosimetry

    SciTech Connect

    Kakinohana, Y; Toita, T; Kasuya, G; Ariga, T; Heianna, J; Murayama, S

    2014-06-01

    Purpose: To compare the dosimetric properties of radiochromic films with different orientation. Methods: A sheet of EBT3 film was cut into eight pieces with the following sizes: 15×15 cm2 (one piece), 5x15 cm{sup 2} (two) and 4×5 cm{sup 2} (five). A set of two EBT3 sheets was used at each dose level. Two sets were used changing the delivered doses (1 and 2 Gy). The 5×15 cm{sup 2} pieces were rotated by 90 degrees in relation to each other, such that one had landscape orientation and the other had portrait orientation. All 5×15 cm2 pieces were irradiated with their long side aligned with the x-axis of the radiation field. The 15×15 cm{sup 2} pieces were irradiated rotated at 90 degrees to each other. Five pieces, (a total of ten from two sheets) were used to obtain a calibration curve. The irradiated films were scanned using an Epson ES-2200 scanner and were analyzed using ImageJ software. In this study, no correction was applied for the nonuniform scanner signal that is evident in the direction of the scanner lamp. Each film piece was scanned both in portrait and landscape orientations. Dosimetric comparisons of the beam profiles were made in terms of the film orientations (portrait and landscape) and scanner bed directions (perpendicular and parallel to the scanner movement). Results: In general, portrait orientation exhibited higher noise than landscape and was adversely affected to a great extent by the nonuniformity in the direction of the scanner lamp. A significant difference in the measured field widths between the perpendicular and parallel directions was found for both orientations. Conclusion: Without correction for the nonuniform scanner signal in the direction of the scanner lamp, a landscape orientation is preferable. A more detailed investigation is planned to evaluate quantitatively the effect of orientation on the dosimetric properties of a film.

  7. Characterization of small-field stereotactic radiosurgery beams with modern detectors

    NASA Astrophysics Data System (ADS)

    Tyler, Madelaine; Liu, Paul Z. Y.; Chan, Kin Wa; Ralston, Anna; McKenzie, David R.; Downes, Simon; Suchowerska, Natalka

    2013-11-01

    To derive accurate beam models for stereotactic radiosurgery (SRS) planning it is necessary to characterize the beam with dosimetric measurements. The aim of this study is to identify the best detectors for each task in the characterization process. Output ratios, beam profiles and percentage depth doses were measured for SRS cone diameters of 5-45 mm. Commercially available and emerging detectors were used: Gafchromic EBT2 film, an air-core fibre optic dosimeter (FOD) (developed at Royal Prince Alfred Hospital, Sydney), an IBA stereotactic field diode, a PTW 60012 electron diode and an IBA cc01 small volume thimble ion chamber. Analysis of the measured data supported by baseline Monte Carlo simulation data, led to the following recommendations: (1) water-equivalent detectors (Gafchromic EBT2 film or FOD) are the preferred choice for SRS dosimetry, (2) ion chambers (including small volume chambers with high-density central electrodes) should be avoided due to volume averaging effects and energy dependence, (3) if diodes are used, corrections must be made to account for their over-response in small fields.

  8. Dosimetric validation of a commercial Monte Carlo based IMRT planning system

    SciTech Connect

    Grofsmid, Dennis; Dirkx, Maarten; Marijnissen, Hans; Woudstra, Evert; Heijmen, Ben

    2010-02-15

    Purpose: Recently a commercial Monte Carlo based IMRT planning system (Monaco version 1.0.0) was released. In this study the dosimetric accuracy of this new planning system was validated. Methods: Absolute dose profiles, depth dose curves, and output factors calculated by Monaco were compared with measurements in a water phantom. Different static on-axis and off-axis fields were tested at various source-skin distances for 6, 10, and 18 MV photon beams. Four clinical IMRT plans were evaluated in a water phantom using a linear diode detector array and another six IMRT plans for different tumor sites in solid water using a 2D detector array. In order to evaluate the accuracy of the dose engine near tissue inhomogeneities absolute dose distributions were measured with Gafchromic EBT film in an inhomogeneous slab phantom. For an end-to-end test a four-field IMRT plan was applied to an anthropomorphic lung phantom with a simulated tumor peripherally located in the right lung. Gafchromic EBT film, placed in and around the tumor area, was used to evaluate the dose distribution. Results: Generally, the measured and the calculated dose distributions agreed within 2% dose difference or 2 mm distance-to-agreement. But mainly at interfaces with bone, some larger dose differences could be observed. Conclusions: Based on the results of this study, the authors concluded that the dosimetric accuracy of Monaco is adequate for clinical introduction.

  9. Optically stimulated luminescence (OSL) of carbon-doped aluminum oxide (Al{sub 2}O{sub 3}:C) for film dosimetry in radiotherapy

    SciTech Connect

    Schembri, V.; Heijmen, B. J. M.

    2007-06-15

    Introduction and Purpose: Conventional x-ray films and radiochromic films have inherent challenges for high precision radiotherapy dosimetry. Here we have investigated basic characteristics of optically stimulated luminescence (OSL) of irradiated films containing carbon-doped aluminum oxide (Al{sub 2}O{sub 3}:C) for dosimetry in therapeutic photon and electron beams. Materials and Methods: The OSL films consist of a polystyrene sheet, with a top layer of a mixture of single crystals of Al{sub 2}O{sub 3}:C, ground into a powder, and a polyester base. The total thickness of the films is 0.3 mm. Measurements have been performed in a water equivalent phantom, using 4, 6, 10, and 18 MV photon beams, and 6-22 MeV electron beams. The studies include assessment of the film response (acquired OSL signal/delivered dose) on delivered dose (linearity), dose rate (1-6 Gy/min), beam quality, field size and depth (6 MV, ranges 4x4-30x30 cm{sup 2}, d{sub max}-35 cm). Doses have been derived from ionization chamber measurements. OSL films have also been compared with conventional x-ray and GafChromic films for dosimetry outside the high dose area, with a high proportion of low dose scattered photons. In total, 787 OSL films have been irradiated. Results: Overall, the OSL response for electron beams was 3.6% lower than for photon beams. Differences between the various electron beam energies were not significant. The 6 and 18 MV photon beams differed in response by 4%. No response dependencies on dose rate were observed. For the 6 MV beam, the field size and depth dependencies of the OSL response were within {+-}2.5%. The observed inter-film response variation for films irradiated with the same dose varied from 1% to 3.2% (1 SD), depending on the measurement day. At a depth of 20 cm, 5 cm outside the 20x20 cm{sup 2} 6 and 18 MV beams, an over response of 17% was observed. In contrast to GafChromic and conventional x-ray films, the response of the Al{sub 2}O{sub 3}:C films is linear

  10. Film Reviews.

    ERIC Educational Resources Information Center

    Lance, Larry M.; Atwater, Lynn

    1987-01-01

    Reviews four Human Sexuality films and videos. These are: "Personal Decisions" (Planned Parenthood Federation of America, 1985); "The Touch Film" (Sterling Production, 1986); "Rethinking Rape" (Film Distribution Center, 1985); "Not A Love Story" (National Film Board of Canada, 1981). (AEM)

  11. Dosimetry verification on VMAT and IMRT radiotherapy techniques: In the case of prostate cancer

    NASA Astrophysics Data System (ADS)

    Maulana, A.; Pawiro, S. A.

    2016-03-01

    Radiotherapy treatment depends on the accuracy of the dose delivery to patients, the purpose of the study is to verify the dose in IMRT and VMAT technique in prostate cancer cases correspond to TPS dose using phantom base on ICRU No.50. The dose verification of the target and OAR was performed by placing the TLD Rod LiF100 and EBT2 Gafchromic film at slab hole of pelvic part of the Alderson RANDO phantom for prostate cancer simulation. The Exposed TLDs was evaluated using the TLD Reader Harshaw while EBT2 film was scanned using Epson scanner. The point dose measurements were compared between planned dose and measured dose at target volume and OAR. The result is the dose difference at target volume, bladder and rectum for IMRT and VMAT are less than 5%. On the other hand, the dose difference at the Femoral head is more than 5% for both techniques because the location of OAR already in low gradient dose. Furthermore, the difference dose of the target volume for IMRT technique tends to be smaller than VMAT either for TLD and EBT2 film detectors. From the measurement showed that the delivered dose on the phantom simulation match with ICRU No.50 criteria.

  12. Small Radiation Beam Dosimetry for Radiosurgery of Trigeminal Neuralgia: One Case Analysis

    SciTech Connect

    Garcia-Garduno, O. A.; Larraga-Gutierrez, J. M.; Rodriguez-Villafuerte, M.; Martinez-Davalos, A.; Moreno-Jimenez, S.; Suarez-Campos, J. J.; Celis, M. A.

    2008-08-11

    The use of small radiation beams for trigeminal neuralgia (TN) treatment requires high precision and accuracy in dose distribution calculations and delivery. Special attention must be kept on the type of detector to be used. In this work, the use of GafChromic EBT registered radiochromic and X-OMAT V2 radiographic films for small radiation beam characterization is reported. The dosimetric information provided by the films (total output factors, tissue maximum ratios and off axis ratios) is compared against measurements with a shielded solid state (diode) reference detector. The film dosimetry was used for dose distribution calculations for the treatment of trigeminal neuralgia radiosurgery. Comparison of the isodose curves shows that the dosimetry produced with the X-OMAT radiographic film overestimates the dose distributions in the penumbra region.

  13. Dosimetry of Strontium eye applicator: Comparison of Monte Carlo calculations and radiochromic film measurements

    NASA Astrophysics Data System (ADS)

    Laoues, M.; Khelifi, R.; Moussa, A. S.

    2015-01-01

    Strontium-90 eye applicators are a beta-ray emitter with a relatively high-energy (maximum energy about 2.28 MeV and average energy about 0.9 MeV). These applicators come in different shapes and dimensions; they are used for the treatment of eye diseases. Whenever, radiation is used in treatment, dosimetry is essential. However, knowledge of the exact dose distribution is a critical decision-making to the outcome of the treatment. The main aim of our study is to simulate the dosimetry of the SIA.20 eye applicator with Monte Carlo GATE 6.1 platform and to compare the calculated results with those measured with EBT2 films. This means that GATE and EBT2 were used to quantify the surface and depths dose- rate, the relative dose profile and the dosimetric parameters in according to international recommendations. Calculated and measured results are in good agreement and they are consistent with the ICRU and NCS recommendations.

  14. Solid-state fermentation: tool for bioremediation of adsorbed textile dyestuff on distillery industry waste-yeast biomass using isolated Bacillus cereus strain EBT1.

    PubMed

    Kadam, Avinash A; Kamatkar, Jeevan D; Khandare, Rahul V; Jadhav, Jyoti P; Govindwar, Sanjay P

    2013-02-01

    Bioremediation of textile dyestuffs under solid-state fermentation (SSF) using industrial wastes as substrate pose an economically feasible, promising, and eco-friendly alternative. The purpose of this study was to adsorb Red M5B dye, a sample of dyes mixture and a real textile effluent on distillery industry waste-yeast biomass (DIW-YB) and its further bioremediation using Bacillus cereus EBT1 under SSF. Textile dyestuffs were allowed to adsorb on DIW-YB. DIW-YB adsorbed dyestuffs were decolorized under SSF by using B. cereus. Enzyme analysis was carried out to ensure decolorization of Red M5B. Metabolites after dye degradation were analyzed using UV-Vis spectroscopy, FTIR, HPLC, and GC-MS. DIW-YB showed adsorption of Red M5B, dyes mixture and a textile wastewater sample up to 87, 70, and 81 %, respectively. DIW-YB adsorbed Red M5B was decolorized up to 98 % by B. cereus in 36 h. Whereas B. cereus could effectively reduce American Dye Manufacture Institute value from DIW-YB adsorbed mixture of textile dyes and textile wastewater up to 70 and 100 %, respectively. Induction of extracellular enzymes such as laccase and azoreductase suggests their involvement in dye degradation. Repeated utilization of DIW-YB showed consistent adsorption and ADMI removal from textile wastewater up to seven cycles. HPLC and FTIR analysis confirms the biodegradation of Red M5B. GC-MS analysis revealed the formation of new metabolites. B. cereus has potential to bioremediate adsorbed textile dyestuffs on DIW-YB. B. cereus along with DIW-YB showed enhanced decolorization performance in tray bioreactor which suggests its potential for large-scale treatment procedures.

  15. Poster — Thur Eve — 20: CTDI Measurements using a Radiochromic Film-based clinical protocol

    SciTech Connect

    Quintero, C.; Bekerat, H.; DeBlois, F.; Tomic, N.; Devic, S.; Seuntjens, J.

    2014-08-15

    The purpose of the study was evaluating accuracy and reproducibility of a radiochromic film-based protocol to measure computer tomography dose index (CTDI) as a part of annual QA on CT scanners and kV-CBCT systems attached to linear accelerators. Energy dependence of Gafchromic XR-QA2 ® film model was tested over imaging beam qualities (50 – 140 kVp). Film pieces were irradiated in air to known values of air-kerma (up to 10 cGy). Calibration curves for each beam quality were created (Film reflectance change Vs. Air-kerma in air). Film responses for same air-kerma values were compared. Film strips were placed into holes of a CTDI phantom and irradiated for several clinical scanning protocols. Film reflectance change was converted into dose to water and used to calculate CTDIvol values. Measured and tabulated CTDIvol values were compared. Average variations of ±5.2% in the mean film reflectance change were observed in the energy range of 80 to 140 keV, and 11.1% between 50 and 140 keV. Measured CTDI values were in average 10% lower than tabulated CTDI values for CT-simulators, and 44% higher for CBCT systems. Results presented a mean variation for the same machine and protocol of 2.6%. Variation of film response is within ±5% resulting in ±15% systematic error in dose estimation if a single calibration curve is used. Relatively large discrepancy between measured and tabulated CTDI values strongly support the trend towards replacing CTDI value with equilibrium dose measurement in the center of cylindrical phantom, as suggested by TG- 111.

  16. Is It Possible to Publish a Calibration Function for Radiochromic Film?

    PubMed Central

    Chan, Maria F.; Lewis, David; Yu, Xiang

    2016-01-01

    Purpose To assess the possibility of using a public calibration function for radiochromic film dosimetry in dose QA of highly conformal treatment plans. Methods EBT3 film calibration strips (3.5 × 20 cm2 from lots A101212 and A011713) were exposed on a Varian Trilogy at a facility to a 10 × 10 cm2 open field at doses of 80, 160, 320 cGy using 6MV photons. Together with a strip of unexposed film from the same lot the exposed films were digitized in a single scan using different Epson 10,000 XL scanners at two different facilities. The dose-response data for each color-channel from each facility were generated using the same calibration function X(D) = a + b/(D − c), where X(D) is the response at dose D and a, b and c are the coefficients. Different batches of EBT3 film were exposed to a VMAT beam. These films, plus two reference strips exposed to doses of zero and 160 cGy, were digitized on the scanners at the two facilities. Using the multi-channel dosimetry method and One-scan protocol (Med Phys, 39:6339–49, 2012) the recorded doses on the VMAT films were calculated and the results were compared with the VMAT plan using a Gamma index of 3%/3 mm. Results The passing rates obtained for dose maps calculated for all combinations of VMAT images and calibration functions were nearly unchanged, using the One-scan protocol. Also, in all cases a passing rate of >99% was obtained for Gamma index of 3%/3 mm. On the other hand, if the One-scan protocol was not employed, the dose maps for VMAT images and calibration functions from different scanners showed poor correlation with the treatment plan. This is probably due to the scan-to-scan variability. Conclusions The authors have found that it is feasible to use a public calibration function for a given radiochromic film lot using the same methodology, One-scan protocol, for patient-specific QA. PMID:27642545

  17. Micrometer-resolved film dosimetry using a microscope in microbeam radiation therapy

    SciTech Connect

    Bartzsch, Stefan Oelfke, Uwe; Lott, Johanna; Welsch, Katrin; Bräuer-Krisch, Elke

    2015-07-15

    Purpose: Microbeam radiation therapy (MRT) is a still preclinical tumor therapy approach that uses arrays of a few tens of micrometer wide parallel beams separated by a few 100 μm. The production, measurement, and planning of such radiation fields are a challenge up to now. Here, the authors investigate the feasibility of radiochromic film dosimetry in combination with a microscopic readout as a tool to validate peak and valley doses in MRT, which is an important requirement for a future clinical application of the therapy. Methods: Gafchromic{sup ®} HD-810 and HD-V2 films are exposed to MRT fields at the biomedical beamline ID17 of the European Synchrotron Radiation Facility (ESRF) and are afterward scanned with a microscope. The measured dose is compared with Monte Carlo calculations. Image analysis tools and film handling protocols are developed that allow accurate and reproducible dosimetry. The performance of HD-810 and HD-V2 films is compared and a detailed analysis of the resolution, noise, and energy dependence is carried out. Measurement uncertainties are identified and analyzed. Results: The dose was measured with a resolution of 5 × 1000 μm{sup 2} and an accuracy of 5% in the peak and between 10% and 15% in the valley region. As main causes for dosimetry uncertainties, statistical noise, film inhomogeneities, and calibration errors were identified. Calibration errors strongly increase at low doses and exceeded 3% for doses below 50 and 70 Gy for HD-V2 and HD-810 films, respectively. While the grain size of both film types is approximately 2 μm, the statistical noise in HD-V2 is much higher than in HD-810 films. However, HD-810 films show a higher energy dependence at low photon energies. Conclusions: Both film types are appropriate for dosimetry in MRT and the microscope is superior to the microdensitometer used before at the ESRF with respect to resolution and reproducibility. However, a very careful analysis of the image data is required

  18. SU-E-T-223: Investigation of the Accuracy of Two-Dimensional Dose Distributions Measurement From High-Dose-Rate Brachytherapy Ir-192 Source Using Multiple-Diode-Array Detector (MapCheck2)

    SciTech Connect

    Taguenang, J; De La Fuente, T Herman; Ahmad, S; Ali, I

    2014-06-01

    Purpose: To investigate the dosimetric accuracy of multiple-diode-array detector (Mapcheck2) for high-dose-rate brachytherapy Ir-192 source. The two-dimensional (2D) dose distributions measured with MapCheck2 were validated with EBT2 Gafchromic film measurement and AAPM task-group- 43 (TG-43) modeling. Methods: 2D-dose distributions from Ir-192 source were measured with MapCheck2 and EBT2-films. MapCheck2 response was corrected for effects: directional dependence, diode and phantom heterogeneity. Optical density growth of the film was controlled by synchronized scanning of the film exposed to Ir-192 and calibration films exposed to 6 MV linac beams. Similarly, MapCheck2 response was calibrated to dose using 6 MV beams. An empirical model was developed for the dose distributions measured with Mapcheck2 that considered directional, diode and phantom heterogeneity corrections. The dose deposited in solid-state-detectors was modeled using a cavity theory model for the diode. This model was then validated with measurements using EBT2-films and calculations with TG-43. Results: The response of MapCheck2 has been corrected for different effects including: (a) directional dependence of 0–20% over angular range 0o–90o, (b) phantom heterogeneity (3%) and (c) diode heterogeneity (9%). The corrected dose distributions measured with MapCheck2 agreed well with the measured dose distributions from EBT2-film and with calculations using TG-43 within 5% over a wide range of dose levels and rates. The advantages of MapCheck2 include less noisy, linear and stable response compared with film. The response of MapCheck2 exposed to 192Ir-source showed no energy dependence similar to its response to MV energy beam. Detection spatial-resolution of individual diodes was 0.8×0.8 mm2, however, 2DMapCheck2 resolution is limited by distance between diodes (7.07 mm). Conclusion: The dose distribution measured with MapCheck2 agreed well within 5% with that measured using EBT2-films; and

  19. Radiochromic film based dosimetry of image-guidance procedures on different radiotherapy modalities.

    PubMed

    Nobah, Ahmad; Aldelaijan, Saad; Devic, Slobodan; Tomic, Nada; Seuntjens, Jan; Al-Shabanah, Mohammed; Moftah, Belal

    2014-11-08

    In this work we compare doses from imaging procedures performed on today's state-of-the-art integrated imaging systems using a reference radiochromic film dosimetry system. Skin dose and dose profile measurements from different imaging systems were performed using radiochromic films at different anatomical sites on a humanoid RANDO phantom. EBT3 film was used to measure imaging doses from a TomoTherapy MVCT system, while XRQA2 film was used for dose measurements from kilovoltage imaging systems (CBCT on 21eX and TrueBeam Varian linear accelerators and CyberKnife stereoscopic orthogonal imagers). Maximum measured imaging doses in cGy at head, thorax, and pelvis regions were respectively 0.50, 1.01, and 4.91 for CBCT on 21eX, 0.38, 0.84, and 3.15 for CBCT on TrueBeam, 4.33, 3.86, and 6.50 for CyberKnife imagers, and 3.84, 1.90, and 2.09 for TomoTherapy MVCT. In addition, we have shown how an improved calibration system of XRQA2 film can achieve dose uncertainty level of better than 2% for doses above 0.25 cGy. In addition to simulation-based studies in literature, this study provides the radiation oncology team with data necessary to aid in their decision about imaging frequency for image-guided radiation therapy protocols.

  20. Film Boxes.

    ERIC Educational Resources Information Center

    Osterer, Irv

    2002-01-01

    Presents an art lesson in which students created three-dimensional designs for 35mm film packages to improve graphic arts learning. Describes how the students examined and created film boxes using QuarkXPress software. (CMK)

  1. Film Reviews

    ERIC Educational Resources Information Center

    Dowling, John, Ed.

    1976-01-01

    Reviews five instructional films on: P-N junctions; crystal diodes; nuclear fusion research; Schlieren photography; and the energy crisis; including discussions of solar, nuclear, and fossil fuel energy. Also lists numerous other available films. (MLH)

  2. Nanocomposite films

    DOEpatents

    Mitlin, David; , Ophus, Colin; Evoy, Stephane; Radmilovic, Velimir; Mohammadi, Reza; Westra, Ken; Nelson-Fitzpatrick, Nathaniel; Lee, Zonghoon

    2010-07-20

    A thin-film composition of nanocrystal molybdenum in an amorphous metallic matrix may be formed by co-sputtering Mo with aluminum or nickel. NEMS cantilevers may be formed from the film. The films exhibit high nanoindentation hardness and a reduction in roughness and intrinsic stress, while maintaining resistivity in the metallic range.

  3. On Film

    ERIC Educational Resources Information Center

    Watts, Marty

    2006-01-01

    In this article, the author discusses the role of window films in enhancing indoor air quality in schools. Historically, window film has been used to reduce temperatures in buildings prone to overheating. Too much solar energy entering through windows makes occupants uncomfortable and air conditioning more costly. Film has been a simple solution…

  4. Humanistic Films.

    ERIC Educational Resources Information Center

    Gaffney, Maureen, Ed.

    1981-01-01

    Designed for media specialists and educators, this issue includes seven articles focusing on humanistic films for children. Following a brief editorial encouraging the ideals of humanism, the first article presents an analysis of seven films with positive sex-role models. Included is a model for evaluating children's films. The second article…

  5. SU-F-BRE-03: Consideration of a Track-Interaction Model for Radiochromic Film Response

    SciTech Connect

    Rosen, B; DeWerd, L

    2014-06-15

    Purpose: Conventional methods for characterizing the energy response of radiochromic film (RCF) typically involve assessing changes in response when exposed to various beam qualities and use Monte Carlo to determine absorbed dose. These methods represent RCF as a dose integrator of a homogeneous energy deposition volume. Apparent film saturation, nonlinearity, and intrinsic energy dependence are unpredicted with conventional methods. Recent work has shown significant RCF intrinsic energy dependence, which limits its use in absolute dosimetry. This work introduces a track-interaction model (TIM) for RCF and assesses its ability to predict total energy response. Methods: A TIM based on Katz single-hit theory was developed to accumulate energy flux along particle tracks within active crystals, represented as (1×1×20)um{sup 3} prisms about the Gafchromic™ EBT3 active volume using MCNP5 and Matlab. Energy flux contributed to film response only if near the threshold energy for polymerization in polydiacetylenes (2.5eV/monomer). Energy deposition in excess of maximum efficiency represented crystal saturation and did not contribute to film response. The TIM was applied to RCF exposed in air to various monoenergetic photon beams and Co-60. Geometric distribution of energy flux was found for each beam quality in a (1×1)mm{sup 2} RCF area. RCF response relative to Co-60 absorbed dose-to-water (S-TIM) was determined and compared to published values (S-PUB). Results: TIM successfully predicted that lower energy radiation is less effective at inducing polymerization, though the magnitude of the phenomenon was overpredicted. S-TIM was −29% and +20% for 20 and 40 keV, respectively. This agreed qualitatively with S-PUB of −27% and +16%. TIM-generated sensitometric curves contained the non-linearity and saturation apparent in RCF. Conclusion: This work indicates the possibility for TIMs to predict changes in RCF response to various energies. Future work will refine TIM by

  6. Evaluation of spatial resolution in image acquisition by optical flatbed scanners for radiochromic film dosimetry

    NASA Astrophysics Data System (ADS)

    Asero, G.; Greco, C.; Gueli, A. M.; Raffaele, L.; Spampinato, S.

    2016-03-01

    Introduction: Radiochromic films are two-dimensional dosimeters that do not require developing and give values of absorbed dose with accuracy and precision. Since this dosimeter colours directly after irradiation, it can be digitized with commercial optical flatbed scanners to obtain a calibration curve that links blackening of the film with dose. Although the film has an intrinsic high spatial resolution, the scanner determines the actual resolution of this dosimeter, in particular the "dot per inch" (dpi) parameter. The present study investigates the effective spatial resolution of a scanner used for Gafchromic® XR-QA2 film (designed for radiology Quality Assurance) analysis. Material and methods: The quantitative evaluation of the resolution was performed with the Modulation Transfer Function (MTF) method, comparing the nominal resolution with the experimental one. The analysis was performed with two procedures. First, the 1951 USAF resolution test chart, a tool that tests the performance of optical devices, was used. Secondly, a combined system of mammography X-ray tube, XR-QA2 film and a bar pattern object was used. In both cases the MTF method has been applied and the results were compared. Results: The USAF and the film images have been acquired with increasing dpi and a standard protocol for radiochromic analysis, to evaluate horizontal and vertical and resolution. The effective resolution corresponds to the value of the MTF at 50%. In both cases and for both procedures, it was verified that, starting from a dpi value, the effective resolution saturates. Conclusion: The study found that, for dosimetric applications, the dpi of the scanner have to be adjusted to a reasonable value because, if too high, it requires high scanning and computational time without providing additional information.

  7. Build-up material requirements in clinical dosimetry during total body irradiation treatments.

    PubMed

    Butson, Martin; Pope, Dane; Haque, Mamoon; Chen, Tom; Song, Guangli; Whitaker, May

    2016-01-01

    Total body irradiation (TBI) treatments are mainly used in a preparative regimen for hematopoietic stem cell (or bone marrow) transplantation. Our standard clinical regimen is a 12 Gy/6 fraction bi-daily technique using 6MV X-rays at a large extended source to surface distance (SSD). This work investigates and quantifies the dose build-up characteristics and thus the requirements for bolus used for in vivo dosimetry for TBI applications. Percentage dose build-up characteristics of photon beams have been investigated at large extended SSDs using ionization chambers and Gafchromic film. Open field measurements at different field sizes and with differing scatter conditions such as the introduction of standard Perspex scattering plates at different distances to the measurement point were made in an effort to determine the required bolus/build-up material required for accurate determination of applied dose. Percentage surface dose values measured for open fields at 300 cm SSD were found to range from 20% up to 65.5% for fields 5 cm × 5 cm to 40 cm × 40 cm, respectively. With the introduction of 1 cm Perspex scattering plates used in TBI treatments, the surface dose values increased up to 83-90% (93-97% at 1 mm depth), depending on the position of the Perspex scattering plate compared to the measurement point. Our work showed that at least 5 mm water equivalent bolus/scatter material should be placed over the EBT3 film for accurate dose assessment for TBI treatments. Results also show that a small but measurable decrease in measured dose occurred with 5 mm water equivalent thick bolus material of areas '3 cm(2). As such, we recommend that 3 cm × 3 cm × 5 mm bolus build-up is the smallest size that should be placed over EBT3 Gafchromic film when used for accurate in vivo dosimetry for TBI applications.

  8. Build-up material requirements in clinical dosimetry during total body irradiation treatments.

    PubMed

    Butson, Martin; Pope, Dane; Haque, Mamoon; Chen, Tom; Song, Guangli; Whitaker, May

    2016-01-01

    Total body irradiation (TBI) treatments are mainly used in a preparative regimen for hematopoietic stem cell (or bone marrow) transplantation. Our standard clinical regimen is a 12 Gy/6 fraction bi-daily technique using 6MV X-rays at a large extended source to surface distance (SSD). This work investigates and quantifies the dose build-up characteristics and thus the requirements for bolus used for in vivo dosimetry for TBI applications. Percentage dose build-up characteristics of photon beams have been investigated at large extended SSDs using ionization chambers and Gafchromic film. Open field measurements at different field sizes and with differing scatter conditions such as the introduction of standard Perspex scattering plates at different distances to the measurement point were made in an effort to determine the required bolus/build-up material required for accurate determination of applied dose. Percentage surface dose values measured for open fields at 300 cm SSD were found to range from 20% up to 65.5% for fields 5 cm × 5 cm to 40 cm × 40 cm, respectively. With the introduction of 1 cm Perspex scattering plates used in TBI treatments, the surface dose values increased up to 83-90% (93-97% at 1 mm depth), depending on the position of the Perspex scattering plate compared to the measurement point. Our work showed that at least 5 mm water equivalent bolus/scatter material should be placed over the EBT3 film for accurate dose assessment for TBI treatments. Results also show that a small but measurable decrease in measured dose occurred with 5 mm water equivalent thick bolus material of areas '3 cm(2). As such, we recommend that 3 cm × 3 cm × 5 mm bolus build-up is the smallest size that should be placed over EBT3 Gafchromic film when used for accurate in vivo dosimetry for TBI applications. PMID:27217628

  9. Build-up material requirements in clinical dosimetry during total body irradiation treatments

    PubMed Central

    Butson, Martin; Pope, Dane; Haque, Mamoon; Chen, Tom; Song, Guangli; Whitaker, May

    2016-01-01

    Total body irradiation (TBI) treatments are mainly used in a preparative regimen for hematopoietic stem cell (or bone marrow) transplantation. Our standard clinical regimen is a 12 Gy/6 fraction bi-daily technique using 6MV X-rays at a large extended source to surface distance (SSD). This work investigates and quantifies the dose build-up characteristics and thus the requirements for bolus used for in vivo dosimetry for TBI applications. Percentage dose build-up characteristics of photon beams have been investigated at large extended SSDs using ionization chambers and Gafchromic film. Open field measurements at different field sizes and with differing scatter conditions such as the introduction of standard Perspex scattering plates at different distances to the measurement point were made in an effort to determine the required bolus/build-up material required for accurate determination of applied dose. Percentage surface dose values measured for open fields at 300 cm SSD were found to range from 20% up to 65.5% for fields 5 cm × 5 cm to 40 cm × 40 cm, respectively. With the introduction of 1 cm Perspex scattering plates used in TBI treatments, the surface dose values increased up to 83–90% (93–97% at 1 mm depth), depending on the position of the Perspex scattering plate compared to the measurement point. Our work showed that at least 5 mm water equivalent bolus/scatter material should be placed over the EBT3 film for accurate dose assessment for TBI treatments. Results also show that a small but measurable decrease in measured dose occurred with 5 mm water equivalent thick bolus material of areas '3 cm2. As such, we recommend that 3 cm × 3 cm × 5 mm bolus build-up is the smallest size that should be placed over EBT3 Gafchromic film when used for accurate in vivo dosimetry for TBI applications. PMID:27217628

  10. Emittance dependence on anode morphology of an ion beam provided by laser ablation

    NASA Astrophysics Data System (ADS)

    Velardi, L.; Delle Side, D.; Nassisi, V.

    2014-07-01

    In this work, we studied the characteristics of ion beams generated by Platone accelerator in different anode configurations. The accelerator is a laser ion source with two gaps which accelerate the ions in cascade. The laser is a ns pulsed KrF able to apply irradiances of 109-1010 W/cm2. The target ablated was pure disk of Cu. The accelerating voltage applied in this work was 60 kV. The emittance evaluation was performed by the pepper pot method utilizing radio-chromic films, EBT Gafchromic, as sensible targets. The study was performed by varying the geometric configuration of the anode (the extracting electrode), modifying the hole morphology, e.g. a plane and curved grid were mounted in order to change the extraction configuration. The results were compared with the ones obtained with the extraction hole without any grid. For the normalized emittance the lowest value was 0.20π mm mrad.

  11. On the Emittance dependence on anode morphology of laser induced ion beams

    NASA Astrophysics Data System (ADS)

    Velardi, L.; Delle Side, D.; Nassisi, V.

    2014-04-01

    In this work, we studied the characteristics of ion beams generated by PLATONE accelerator in different anode configurations. The accelerator is a laser ion source with two gaps which accelerate the ions in cascade. The laser is an excimer KrF able to work at irradiances of 108-1010 W/cm2. The target ablated was disk of Cu. The accelerating voltage applied in this work was 60 kV. The emittance evaluation was performed by the pepper pot method utilising radio-chromic films, EBT Gafchromic, as sensible targets. The study was performed by varying the geometric configuration of the anode (the extracting electrode), modifying the hole morphology. A plane and curved grids were mounted in order to change the extraction configuration. The results were compared with the ones obtained with the extraction hole without any grid. For the normalized emittance the lowest value found was 0.20 π mm mrad.

  12. Development of Laser Plasma X-ray Microbeam Irradiation System and Radiation Biological Application

    NASA Astrophysics Data System (ADS)

    Sato, Katsutoshi; Nishikino, Masaharu; Numasaki, Hodaka; Kawachi, Tetsuya; Teshima, Teruki; Nishimura, Hiroaki

    Laser plasma x-ray source has the features such as ultra short pulse, high brilliance, monochromaticity, and focusing ability. These features are excellent compared with conventional x-ray source. In order to apply the laser plasma x-ray source to the biomedical study and to more closely research the radiobilogical responce of the cancer cell such as radiation induced bystander effect, we have developed x-ray microbeam system using laser plasma x-ray source. The absorbed dose of laser plasma x-ray was estimated with Gafchromic EBT film and DNA double strand breaks on the cells were detected by immunofluorescence staining. When the cells were irradiated with laser plasma x-ray, the circular regions existing γ-H2AX positive cells were clearly identified. The usefulness of the laser plasma x-ray on the radiobiological study was proved in this research.

  13. Anodic films

    SciTech Connect

    Muller, R.H.

    1983-08-01

    Surface layers are formed on many metals by anodic reaction. Such layers include the products of charge and discharge in many storage batteries, dielectric films used in electronic and optical circuits and display devices, layers responsible for passivity and corrosion protection, and films generated in metal shaping and finishing operations such as anodization, coloring, electropolishing, electrochemical machining and deburring. Anodic films are formed by solid-solid transformations or by dissolution-precipitation processes. Film properties and mechanisms of formation can be determined in situ by a number of optical techniques which have recently become available.

  14. Film ispalators

    SciTech Connect

    Startsev, Aleksandr V; Stoilov, Yurii Yu

    2002-05-31

    New physical objects, ispalators based on free soap films, exhibit persistent flows of the soap solution in open and closed volumes in air with additions of gases of the C{sub 8}F{sub 18} type (p = 20 Torr) at temperature drops on the films of the order of tenths and hundredths of kelvin. The flows move continuously at a velocity of 5 - 20 cm s{sup -1}. It is found that the parts of an inclined ispalator film show anomalous behaviour upon heating: their weight increases and they move downward over the film, whereas the unheated parts of the film move upward. Continuous radial vortex flows accompanied by the formation and washing of the regions of a thin black film are observed on circular films in closed volumes upon their uniform external cooling by evaporating water for 5 - 10 hours. The rapid flows make film ispalators the efficient heat carriers, which operate at small temperature drops (tenths and hundredths of kelvin) and surpass copper in the amount of thermal energy being transferred. The outlook for the further study and applications of film ispalators for detecting thermal fields and laser radiation is discussed. (laser applications and other topics in quantum electronics)

  15. Dosimetric effect by shallow air cavities in high energy electron beams.

    PubMed

    Zarza-Moreno, M; Carreira, P; Madureira, L; Miras Del Rio, H; Salguero, F J; Leal, A; Teixeira, N; Jesus, A P; Mora, G

    2014-03-01

    This study evaluates the dosimetric impact caused by an air cavity located at 2 mm depth from the top surface in a PMMA phantom irradiated by electron beams produced by a Siemens Primus linear accelerator. A systematic evaluation of the effect related to the cavity area and thickness as well as to the electron beam energy was performed by using Monte Carlo simulations (EGSnrc code), Pencil Beam algorithm and Gafchromic EBT2 films. A home-PMMA phantom with the same geometry as the simulated one was specifically constructed for the measurements. Our results indicate that the presence of the cavity causes an increase (up to 70%) of the dose maximum value as well as a shift forward of the position of the depth-dose curve, compared to the homogeneous one. Pronounced dose discontinuities in the regions close to the lateral cavity edges are observed. The shape and magnitude of these discontinuities change with the dimension of the cavity. It is also found that the cavity effect is more pronounced (6%) for the 12 MeV electron beam and the presence of cavities with large thickness and small area introduces more significant variations (up to 70%) on the depth-dose curves. Overall, the Gafchromic EBT2 film measurements were found in agreement within 3% with Monte Carlo calculations and predict well the fine details of the dosimetric change near the cavity interface. The Pencil Beam calculations underestimate the dose up to 40% compared to Monte Carlo simulations; in particular for the largest cavity thickness (2.8 cm).

  16. SU-E-T-560: Commissioning An HDR Freiburg Flap Applicator for Skin Lesion Treatment

    SciTech Connect

    Dou, K; Li, B; Lerma, F; Aroumougame, V; Sarfaraz, M; Laser, B; Jacobs, M

    2014-06-01

    Purpose: Flexible Freiburg flap used with high dose rate afterloaders is easy to cut into any size for any body site and to dwell with a precise source position, conforms to curved skin surface and then to the planned target. However, unlike intracavity or interstitial situations, incomplete scatter environment due to flap applicators exposed to air might lead to dose difference between the delivered and planned. This research is focused on the dose deviation of incomplete scatter versus full scatter. Methods: A 12x12 cm of Freiburg flap applicator was used for the validation. A Nucletron Oncentra Brachy Ver. 4.3 treatment planning system (TPS) was used for treatment planning. However, no heterogeneity correction incorporated into the brachytherap TPS needs to be considered. A Philips Brilliance CT Big Bore was employed for CT scan. Radiation was delivered using a Nucletron HDR remote afterloader system. A 10cm bolus was used to cover the flap for obtaining a full scatter. An OSL, ion chamber, and Gafchromic EBT2 film were used for commissioning the flap applicator. Results: The applicator calibration at 5mm depth was performed using an OSL dosimeter. Applicator source dwelling positions with 1D and 2D array exposed to and recorded by Gafchromic EBT2 film showed an agreement within 1mm. 1D array of Freiburg flap exhibited 4.2% cooler in dose with incomplete scatter than full scatter. 2D array showed 7.1% lower in dose for incomplete scatter than full scatter. The deviation was found more than 10% beyond 8cm in depth. Conclusion: Significant dose deviation caused by the incomplete scatter environment was found to be 7.1% at 1cm depth. This deviation was increased with increasing depth. The inaccuracy resulted from the incomplete scatter can be fixed by either placing a bolus on the top of the flap or making the plan at least 7% hotter.

  17. About Films.

    ERIC Educational Resources Information Center

    Christman, Robert; Krockover, Gerald H.

    1984-01-01

    Lists and briefly describes 46 college-level films. Films are arranged in the following categories: volcanism and earthquakes; plate tectonics; energy, water, and environmental concerns; petroleum and coal; astronomy; space exploration, space shuttle; paleontology; geomorphology; and mineralogy, petrology, and economic geology. (BC)

  18. Thin Film?

    NASA Astrophysics Data System (ADS)

    Kariper, İ. Afşin

    2014-09-01

    This study focuses on the critical surface tension of lead sulfite (PbSO3) crystalline thin film produced with chemical bath deposition on substrates (commercial glass).The PbSO3 thin films were deposited at room temperature at different deposition times. The structural properties of the films were defined and examined according to X-ray diffraction (XRD) and the XRD results such as dislocation density, average grain size, and no. of crystallites per unit area. Atomic force microscopy was used to measure the film thickness and the surface properties. The critical surface tension of the PbSO3 thin films was measured with an optical tensiometer instrument and calculated using the Zisman method. The results indicated that the critical surface tension of films changed in accordance with the average grain size and film thickness. The film thickness increased with deposition time and was inversely correlated with surface tension. The average grain size increased according to deposition time and was inversely correlated with surface tension.

  19. Film Makers On Film Making.

    ERIC Educational Resources Information Center

    Geduld, Harry M., Ed.

    This collection includes essays by and interviews with more than 30 film-makers, both classic and contemporary, on the subjects of their major interests and procedures in making films. The directors are: Louis Lumiere, Cecil Hepworth, Edwin S. Porter, Mack Sennett, David W. Griffith, Robert Flaherty, Charles Chaplin, Eric von Stroheim, Dziga…

  20. Dosimetric characterization of CyberKnife radiosurgical photon beams using polymer gels

    SciTech Connect

    Pantelis, E.; Antypas, C.; Petrokokkinos, L.; Karaiskos, P.; Papagiannis, P.; Kozicki, M.; Georgiou, E.; Sakelliou, L.; Seimenis, I.

    2008-06-15

    Dose distributions registered in water equivalent, polymer gel dosimeters were used to measure the output factors and off-axis profiles of the radiosurgical photon beams employed for CyberKnife radiosurgery. Corresponding measurements were also performed using a shielded silicon diode commonly employed for CyberKnife commissioning, the PinPoint ion chamber, and Gafchromic EBT films, for reasons of comparison. Polymer gel results of this work for the output factors of the 5, 7.5, and 10 mm diameter beams are (0.702{+-}0.029), (0.872{+-}0.039), and (0.929{+-}0.041), respectively. Comparison of polymer gel and diode measurements shows that the latter overestimate output factors of the two small beams (5% for the 5 mm beam and 3% for the 7.5 mm beams). This is attributed to the nonwater equivalence of the high atomic number silicon material of the diode detector. On the other hand, the PinPoint chamber is found to underestimate output factors up to 10% for the 5 mm beam due to volume averaging effects. Polymer gel and EBT film output factor results are found in close agreement for all beam sizes, emphasizing the importance of water equivalence and fine detector sensitive volume for small field dosimetry. Relative off-axis profile results are in good agreement for all dosimeters used in this work, with noticeable differences observed only in the PinPoint estimate of the 80%-20% penumbra width, which is relatively overestimated.

  1. SU-F-18C-10: Clinical Implementation of Radiochromic Film Based CTDI Measurements

    SciTech Connect

    Quintero, C; Seuntjens, J; Devic, S; Tomic, N; DeBlois, F

    2014-06-15

    Purpose: To evaluate accuracy and reproducibility of a radiochromic film-based protocol to measure computer tomography dose index (CTDI) as a part of annual QA on CT scanners and kV CBCT systems attached to linear accelerators. Methods: Energy dependence of Gafchromic XR-QA2(R) film model was tested over imaging beam qualities (50 – 140 kVp). Film pieces were irradiated in air to known values of air kerma in air (up to 10 cGy). Change in film reflectance was determined with an in-house written code using images produced by a flatbed document scanner. Calibration curves for each beam quality were created, and film responses for same air-kerma values were compared.Sets of film strips were placed into holes of a CTDI phantom and irradiated for several clinical scanning protocols on CT-simulators and CBCT systems. Film reflectance change was converted into dose to water and used to calculate CTDIvol values. Measured CTDIvol values were compared to tabulated CTDIvol values. Results: Average variations of ±5.2% in the mean film reflectance change were observed in the energy range of 80 to 140 keV, and 11.1% between 50 and 140 keV. The averaged measured CTDI values presented a mean variation for the same machine and protocol of 2.6%. However, measured CTDI values were in average 10% lower than tabulated CTDI values for CT-simulators, and 44% higher for CBCT systems. Conclusion: We found that in relatively broad range of beam qualities used in diagnostic radiology variation of film response is within ±5% resulting in ±15% systematic error in dose estimates if a single calibration curve is used. Relatively large discrepancy between measured and tabulated CTDI values for different protocols and imaging systems used within radiotherapy department strongly support the trend towards replacing CTDI value with equilibrium dose measurement in the center of cylindrical phantom as suggested by TG-111. This work was supported by the Natural Sciences and Engineering Research

  2. Polymer films

    DOEpatents

    Granick, Steve; Sukhishvili, Svetlana A.

    2008-12-30

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  3. Polymer films

    DOEpatents

    Granick, Steve; Sukhishvili, Svetlana A.

    2004-05-25

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  4. Piezoelectric Film.

    ERIC Educational Resources Information Center

    Garrison, Steve

    1992-01-01

    Presents activities that utilize piezoelectric film to familiarize students with fundamental principles of electricity. Describes classroom projects involving chemical sensors, microbalances, microphones, switches, infrared sensors, and power generation. (MDH)

  5. Film Reviews

    ERIC Educational Resources Information Center

    Ladd, George T.

    1974-01-01

    Briefly describes films about the following topics: water cycles, the energy crisis, the eruption of Mt. Aetna, the hot springs of Yellowstone National Park, and methods of using pine cones to determine the ages of ancient civilizations. (MLH)

  6. Development of radiochromic film for spatially quantitative dosimetric analysis of indirect ionizing radiation fields

    NASA Astrophysics Data System (ADS)

    Brady, Samuel Loren

    Two types of radiochromic films (RCF) were characterized for this work: EBT and XRQA film. Both films were investigated for: radiation interaction with film structure; light interaction with film structure for optimal film readout (densitometry) sensitivity; range of absorbed dose measurements; dependence of film dose measurement response as a function of changing radiation energy; fractionation and dose rate effects on film measurement response; film response sensitivity to ambient factors; and stability of measured film response with time. EBT film was shown to have the following properties: near water equivalent atomic weight (Zeff); dynamic dose range of 10 -1-102 Gy; 3% change in optical density (OD) response for a single exposure level when exposed to radiation energies from (75-18,000) kV; and best digitized using transmission densitometry. XRQA film was shown to have: a Zeff of ˜25; a 12 fold increase in sensitivity at lower photon energies for a dynamic dose range of 10-3-100 Gy, a difference of 25% in OD response when comparing 120 kV to 320 kV, and best digitized using reflective densitometry. Both XRQA and EBT films were shown to have: a temporal stability (DeltaOD) of ˜1% for t > 24 hr post film exposure for up to ˜20 days; a change in dose response of ˜0.03 mGy hr-1 when exposed to fluorescent room lighting at standard room temperature and humidity levels; a negligible dose rate and fractionation effect when operated within the optimal dose ranges; and a light wavelength dependence with dose for film readout. The flat bed scanner was chosen as the primary film digitizer due to its availability, cost, OD range, functionality (transmission and reflection scanning), and digitization speed. As a cost verses functionality comparison, the intrinsic and operational limitations were determined for two flat bed scanners. The EPSON V700 and 10000XL exhibited equal spatial and OD accuracy. The combined precision of both the scanner light sources and CCD

  7. Development of radiochromic film for spatially quantitative dosimetric analysis of indirect ionizing radiation fields

    NASA Astrophysics Data System (ADS)

    Brady, Samuel Loren

    Two types of radiochromic films (RCF) were characterized for this work: EBT and XRQA film. Both films were investigated for: radiation interaction with film structure; light interaction with film structure for optimal film readout (densitometry) sensitivity; range of absorbed dose measurements; dependence of film dose measurement response as a function of changing radiation energy; fractionation and dose rate effects on film measurement response; film response sensitivity to ambient factors; and stability of measured film response with time. EBT film was shown to have the following properties: near water equivalent atomic weight (Zeff); dynamic dose range of 10 -1-102 Gy; 3% change in optical density (OD) response for a single exposure level when exposed to radiation energies from (75-18,000) kV; and best digitized using transmission densitometry. XRQA film was shown to have: a Zeff of ˜25; a 12 fold increase in sensitivity at lower photon energies for a dynamic dose range of 10-3-100 Gy, a difference of 25% in OD response when comparing 120 kV to 320 kV, and best digitized using reflective densitometry. Both XRQA and EBT films were shown to have: a temporal stability (DeltaOD) of ˜1% for t > 24 hr post film exposure for up to ˜20 days; a change in dose response of ˜0.03 mGy hr-1 when exposed to fluorescent room lighting at standard room temperature and humidity levels; a negligible dose rate and fractionation effect when operated within the optimal dose ranges; and a light wavelength dependence with dose for film readout. The flat bed scanner was chosen as the primary film digitizer due to its availability, cost, OD range, functionality (transmission and reflection scanning), and digitization speed. As a cost verses functionality comparison, the intrinsic and operational limitations were determined for two flat bed scanners. The EPSON V700 and 10000XL exhibited equal spatial and OD accuracy. The combined precision of both the scanner light sources and CCD

  8. SU-E-T-533: LET Dependence Correction of Radiochromic Films for Application in Low Energy Proton Irradiation

    SciTech Connect

    Reinhardt, S; Wuerl, M; Assmann, W; Parodi, K; Greubel, C; Wilkens, J; Hillbrand, M; Mairani, A

    2015-06-15

    Purpose: Many cell irradiation experiments with low-energy laser-driven ions rely on radiochromic films (RCF), because of their dose-rate independent response and superior spatial resolution. RCF dosimetry in low-energy ion beams requires a correction of the LET dependent film response. The relative efficiency (RE), the ratio of photon to proton dose that yields the same film darkening, is a measure for the film’s LET dependence. A direct way of RE determination is RCF irradiation with low-energy mono-energetic protons and hence, well-defined LET. However, RE is usually determined using high energy proton depth dose measurements where RE corrections require knowledge of the average LET in each depth, which can be either track (tLET) or dose (dLET) averaged. The appropriate LET concept has to be applied to allow a proper film response correction. Methods: Radiochromic EBT2 and EBT3 films were irradiated in clinical photon and proton beams. For each depth of the 200 MeV proton depth dose curve, tLET and dLET were calculated by special user routines from the Monte Carlo code FLUKA. Additional irradiations with mono-energetic low energy protons (4–20 MeV) serve as reference for the RE determination. Results: The difference of dLET and tLET increases with depth, with the dLET being almost twice as large as the tLET for the maximum depth. The comparison with mono-energetic measurements shows a good agreement of the RE for the dLET concept, while a considerably steeper drop in RE is observed when applying the tLET. Conclusion: RCF can be used as reference dosimeter for biomedical experiments with low-energy proton beams if appropriate LET corrections are applied. When using depth dose measurements from clinical proton accelerators for these corrections, the concept of dLET has to be applied. Acknowledgement: This work was funded by the DFG Cluster of Excellence ‘Munich-Centre for Advanced Photonics’ (MAP). This work was funded by the DFG Cluster of Excellence

  9. SU-E-T-276: Radiochromic Film Dosimetry: Solving the Lateral Response Puzzle

    SciTech Connect

    Lewis, D; Chan, M

    2014-06-01

    Purpose: A known factor affecting the accuracy of radiochromic film dosimetry is the lateral response artifact induced by off-center placement of film on flatbed scanners. This work reports a practical solution to eliminate such artifacts for IMRT dose QA. Methods: EBT3 film calibration strips (3.5×32cm{sup 2}) were exposed at a depth of 5cm on a Varian Trilogy to a 40×40cm{sup 2} open field at six doses between 120 and 900cGy using 6MV photons. A sheet of film was similarly exposed with a large IMRT field. Together with a strip of unexposed film from the same lot the films were digitized at different lateral positions on an Epson 10000XL scanner. The calibration strips covered nearly the full width of the scanner window. Calibration and response data were used to generate the IMRT dose map using multi-channel dosimetry. The scanner response was determined as a function of lateral position of the scanned film. The response at any lateral position L is related to the response at the center, C, of the scanner by Response(C,D) = aL+bL*Response(L,D) where D is dose and the coefficients aL and bL are constant for each lateral location. The coefficients aL and bL were determined by measuring films exposed to different doses at the center of the scanner and various lateral positions. Results: Applying this relationship to raw calibration responses, the values at any lateral position can be corrected to an equivalent response as if that film was located centrally. Our study found that calibration curves at the different lateral positions are correlated by a simple two-point re-scaling and thereby the correction could be made. Conclusion: The work reported elaborates on the process and demonstrates improvements in radiochromic film dosimetry using this simple procedure to eliminate the lateral response artifact. Acknowledgements: Supported in part by a grant from Ashland Inc. D Lewis is an employee of Ashland Inc., the manufacturer of radiochromic film; M Chan is

  10. SU-E-T-188: Film Dosimetry Verification of Monte Carlo Generated Electron Treatment Plans

    SciTech Connect

    Enright, S; Asprinio, A; Lu, L

    2014-06-01

    Purpose: The purpose of this study was to compare dose distributions from film measurements to Monte Carlo generated electron treatment plans. Irradiation with electrons offers the advantages of dose uniformity in the target volume and of minimizing the dose to deeper healthy tissue. Using the Monte Carlo algorithm will improve dose accuracy in regions with heterogeneities and irregular surfaces. Methods: Dose distributions from GafChromic{sup ™} EBT3 films were compared to dose distributions from the Electron Monte Carlo algorithm in the Eclipse{sup ™} radiotherapy treatment planning system. These measurements were obtained for 6MeV, 9MeV and 12MeV electrons at two depths. All phantoms studied were imported into Eclipse by CT scan. A 1 cm thick solid water template with holes for bonelike and lung-like plugs was used. Different configurations were used with the different plugs inserted into the holes. Configurations with solid-water plugs stacked on top of one another were also used to create an irregular surface. Results: The dose distributions measured from the film agreed with those from the Electron Monte Carlo treatment plan. Accuracy of Electron Monte Carlo algorithm was also compared to that of Pencil Beam. Dose distributions from Monte Carlo had much higher pass rates than distributions from Pencil Beam when compared to the film. The pass rate for Monte Carlo was in the 80%–99% range, where the pass rate for Pencil Beam was as low as 10.76%. Conclusion: The dose distribution from Monte Carlo agreed with the measured dose from the film. When compared to the Pencil Beam algorithm, pass rates for Monte Carlo were much higher. Monte Carlo should be used over Pencil Beam for regions with heterogeneities and irregular surfaces.

  11. Temperature and hydration effects on absorbance spectra and radiation sensitivity of a radiochromic medium

    SciTech Connect

    Rink, Alexandra; Lewis, David F.; Varma, Sangya; Vitkin, I. Alex; Jaffray, David A.

    2008-10-15

    The effects of temperature on real time changes in optical density ({Delta}OD) of GAFCHROMIC EBT film were investigated. The spectral peak of maximum change in absorbance ({lambda}{sub max}) was shown to downshift linearly when the temperature of the film was increased from 22 to 38 degree sign C. The {Delta}OD values were also shown to decrease linearly with temperature, and this decrease could not be attributed to the shift in {lambda}{sub max}. A compensation scheme using {lambda}{sub max} and a temperature-dependent correction factor was investigated, but provided limited improvement. Part of the reason may be the fluctuations in hydration of the active component, which were found to affect both position of absorbance peaks and the sensitivity of the film. To test the effect of hydration, laminated and unlaminated films were desiccated. This shifted both the major and minor absorbance peaks in the opposite direction to the change observed with temperature. The desiccated film also exhibited reduced sensitivity to ionizing radiation. Rehydration of the desiccated films did not reverse the effects, but rather gave rise to another form of the polymer with absorbance maxima upshifted further 20 nm. Hence, the spectral characteristics and sensitivity of the film can be dependent on its history, potentially complicating both real-time and conventional radiation dosimetry.

  12. SU-E-T-516: Measurement of the Absorbed Dose Rate in Water Under Reference Conditions in a CyberKnife Unit

    SciTech Connect

    Aragon-Martinez, N; Hernandez-Guzman, A; Gomez-Munoz, A; Massillon-JL, G

    2014-06-01

    Purpose: This paper aims to measure the absorbed-dose-rate in a CyberKnife unit reference-field (6cm diameter) using three ionization chambers (IC) following the new IAEA/AAPM formalism and Gafchromic film (MD-V3-55 and EBT3) protocol according to our work reported previously. Methods: The absorbed-dose-rates were measured at 90cm and 70cm SSD in a 10cmx10cm field and at 70cm SSD in a 5.4cmx5.4cm equivalent to 6cm diameter field using a linac Varian iX. All measurements were performed at 10cm depth in water. The correction factors that account for the difference between the IC response on the reference field and the CyberKnife reference field, k-(Q-msr,Q)^(f-msr,f-ref), were evaluated and Gafchromic film were calibrated using the results obtained above. Under the CyberKnife reference conditions, the factors were used to measure the absorbed-dose-rate with IC according to the new formalism and the calibrated film was irradiated in water. The film calibration curve was used to evaluate the absorbed-dose-rate in the CyberKnife unit. Results: Difference up to 2.56% is observed between dose-rate measured with IC in the reference 10cmx10cm field, depending where the chamber was calibrated, which was not reflected in the correction factor k-(Q-msr,Q)^(f-msr,f-ref ) where variations of ~0.15%-0.5% were obtained. Within measurements uncertainties, maximum difference of 1.8% on the absorbed-dose-rate in the CyberKnife reference field is observed between all IC and the films Conclusion: Absorbed-dose-rate to water was measured in a CyberKnife reference field with acceptable accuracy (combined uncertainties ~1.32%-1.73%, k=1) using three IC and films. The MD-V3-55 film as well as the new IAEA/AAPM formalism can be considered as a suitable dosimetric method to measure absorbed-dose-rate to water in small and non-standard CyberKnife fields used in clinical treatments However, the EBT3 film is not appropriated due to the high uncertainty provided (combined uncertainty ~9%, k=1

  13. Monte Carlo evaluation of the effect of inhomogeneities on dose calculation for low energy photons intra-operative radiation therapy in pelvic area.

    PubMed

    Chiavassa, Sophie; Buge, François; Hervé, Chloé; Delpon, Gregory; Rigaud, Jérome; Lisbona, Albert; Supiot, Sthéphane

    2015-12-01

    The aim of this study was to evaluate the effect of inhomogeneities on dose calculation for low energy photons intra-operative radiation therapy (IORT) in pelvic area. A GATE Monte Carlo model of the INTRABEAM® was adapted for the study. Simulations were performed in the CT scan of a cadaver considering a homogeneous segmentation (water) and an inhomogeneous segmentation (5 tissues from ICRU44). Measurements were performed in the cadaver using EBT3 Gafchromic® films. Impact of inhomogeneities on dose calculation in cadaver was 6% for soft tissues and greater than 300% for bone tissues. EBT3 measurements showed a better agreement with calculation for inhomogeneous media. However, dose discrepancy in soft tissues led to a sub-millimeter (0.65 mm) shift in the effective point dose in depth. Except for bone tissues, the effect of inhomogeneities on dose calculation for low energy photons intra-operative radiation therapy in pelvic area was not significant for the studied anatomy.

  14. Film Credits

    ERIC Educational Resources Information Center

    Borja, Rhea R.

    2006-01-01

    With the advent of easy-to-use digital technology, schools are responding to the interests of their media-savvy students by offering more courses in filmmaking. In this article, the author features different films produced by students. Among other things, she discusses the students' growing interest in filmmaking.

  15. Black Films and Film-Makers.

    ERIC Educational Resources Information Center

    Patterson, Lindsay, Ed.

    The development of black films and the attitudes of the film industry toward black films and black actors are some of the topics examined in this anthology of essays. Section 1, "Nigger to Supernigger," contains such articles as "The Death of Rastus: Negroes in American Films" by Thomas R. Cripps and "Folk Values in a New Medium" by Alain Locke…

  16. Comparison of film measurements and Monte Carlo simulations of dose delivered with very high-energy electron beams in a polystyrene phantom

    SciTech Connect

    Bazalova-Carter, Magdalena; Liu, Michael; Palma, Bianey; Koong, Albert C.; Maxim, Peter G. E-mail: BWLoo@Stanford.edu; Loo, Billy W. E-mail: BWLoo@Stanford.edu; Dunning, Michael; McCormick, Doug; Hemsing, Erik; Nelson, Janice; Jobe, Keith; Colby, Eric; Tantawi, Sami; Dolgashev, Valery

    2015-04-15

    Purpose: To measure radiation dose in a water-equivalent medium from very high-energy electron (VHEE) beams and make comparisons to Monte Carlo (MC) simulation results. Methods: Dose in a polystyrene phantom delivered by an experimental VHEE beam line was measured with Gafchromic films for three 50 MeV and two 70 MeV Gaussian beams of 4.0–6.9 mm FWHM and compared to corresponding MC-simulated dose distributions. MC dose in the polystyrene phantom was calculated with the EGSnrc/BEAMnrc and DOSXYZnrc codes based on the experimental setup. Additionally, the effect of 2% beam energy measurement uncertainty and possible non-zero beam angular spread on MC dose distributions was evaluated. Results: MC simulated percentage depth dose (PDD) curves agreed with measurements within 4% for all beam sizes at both 50 and 70 MeV VHEE beams. Central axis PDD at 8 cm depth ranged from 14% to 19% for the 5.4–6.9 mm 50 MeV beams and it ranged from 14% to 18% for the 4.0–4.5 mm 70 MeV beams. MC simulated relative beam profiles of regularly shaped Gaussian beams evaluated at depths of 0.64 to 7.46 cm agreed with measurements to within 5%. A 2% beam energy uncertainty and 0.286° beam angular spread corresponded to a maximum 3.0% and 3.8% difference in depth dose curves of the 50 and 70 MeV electron beams, respectively. Absolute dose differences between MC simulations and film measurements of regularly shaped Gaussian beams were between 10% and 42%. Conclusions: The authors demonstrate that relative dose distributions for VHEE beams of 50–70 MeV can be measured with Gafchromic films and modeled with Monte Carlo simulations to an accuracy of 5%. The reported absolute dose differences likely caused by imperfect beam steering and subsequent charge loss revealed the importance of accurate VHEE beam control and diagnostics.

  17. Reference dosimetry during diagnostic CT examination using XR-QA radiochromic film model

    SciTech Connect

    Boivin, Jonathan; Tomic, Nada; Fadlallah, Bassam; DeBlois, Francois; Devic, Slobodan

    2011-09-15

    Purpose: The authors applied 2D reference dosimetry protocol for dose measurements using XR-QA radiochromic film model during diagnostic computed tomography (CT) examinations carried out on patients and humanoid Rando phantom. Methods: Response of XR-QA model GAFCHROMIC film reference dosimetry system was calibrated in terms of Air-Kerma in air. Four most commonly used CT protocols were selected on their CT scanner (GE Lightspeed VCT 64), covering three anatomical sites (head, chest, and abdomen). For each protocol, 25 patients ongoing planned diagnostic CT examination were recruited. Surface dose was measured using four or eight film strips taped on patients' skin and on Rando phantom. Film pieces were scanned prior to and after irradiation using Epson Expression 10000XL document scanner. Optical reflectance of the unexposed film piece was subtracted from exposed one to obtain final net reflectance change, which is subsequently converted to dose using previously established calibration curves. Results: The authors' measurements show that body skin dose variation has a sinusoidal pattern along the scanning axis due to the helical movement of the x-ray tube, and a comb pattern for head dose measurements due to its axial movement. Results show that the mean skin dose at anterior position for patients is (51 {+-} 6) mGy, (29 {+-} 11) mGy, (45 {+-} 13) mGy and (38 {+-} 20) mGy for head, abdomen, angio Abdomen, and chest and abdomen protocol (UP position), respectively. The obtained experimental dose length products (DLP) show higher values than CT based DLP taken from the scanner console for body protocols, but lower values for the head protocol. Internal dose measurements inside the phantom's head indicate nonuniformity of dose distribution within scanned volume. Conclusions: In this work, the authors applied an Air-Kerma in air based radiochromic film reference dosimetry protocol for in vivo skin dose measurements. In this work, they employed green channel extracted

  18. Film and History.

    ERIC Educational Resources Information Center

    Schaber, Robin L.

    2002-01-01

    Provides an annotated bibliography of Web sites that focus on using film to teach history. Includes Web sites in five areas: (1) film and education; (2) history of cinema; (3) film and history resources; (4) film and women; and (5) film organizations. (CMK)

  19. Film: An Introduction.

    ERIC Educational Resources Information Center

    Fell, John L.

    "Understanding Film," the opening section of this book, discusses perceptions of and responses to film and the way in which experiences with and knowledge of other media affect film viewing. The second section, "Film Elements," analyzes the basic elements of film: the use of space and time, the impact of editing, sound and color, and the effects…

  20. Characterization of a 2.5 MV inline portal imaging beam.

    PubMed

    Grafe, James L; Owen, Jennifer; Villarreal-Barajas, J Eduardo; Khan, Rao F H

    2016-01-01

    A new megavoltage (MV) energy was recently introduced on Varian TrueBeam linear accelerators for imaging applications. This work describes the experimental characterization of a 2.5 MV inline portal imaging beam for commissioning, routine clinical use, and quality assurance purposes. The beam quality of the 2.5 MV beam was determined by measuring a percent depth dose, PDD, in water phantom for 10 × 10 cm2 field at source-to-surface distance 100 cm with a CC13 ion chamber, plane parallel Markus chamber, and GafChromic EBT3 film. Absolute dosimetric output calibration of the beam was performed using a traceable calibrated ionization chamber, following the AAPM Task Group 51 procedure. EBT3 film measurements were also performed to measure entrance dose. The output stability of the imaging beam was monitored for five months. Coincidence of 2.5 MV imaging beam with 6 MV therapy beam was verified with hidden-target cubic phantom. Image quality was studied using the Leeds and QC3 phantom. The depth of maximum dose, dmax, and percent dose at 10 cm depth were, respectively, 5.7 mm and 51.7% for CC13, 6.1 mm and 51.9% for Markus chamber, and 5.1 mm and 51.9% for EBT3 film. The 2.5 MV beam quality is slightly inferior to that of a 60Co teletherapy beam; however, an estimated kQ of 1.00 was used for output calibration purposes. The beam output was found to be stable to within 1% over a five-month period. The relative entrance dose as measured with EBT3 films was 63%, compared to 23% for a clinical 6 MV beam for a 10 × 10 cm2 field. Overall coincidence of the 2.5 MV imaging beam with the 6 MV clinical therapy beam was within 0.2 mm. Image quality results for two com-monly used imaging phantoms were superior for the 2.5 MV beam when compared to the conventional 6 MV beam. The results from measurements on two TrueBeam accelerators show that 2.5 MV imaging beam is slightly softer than a therapeutic 60Co beam, it provides superior image quality than a 6 MV therapy beam, and has

  1. Computer-aided analysis of star shot films for high-accuracy radiation therapy treatment units

    NASA Astrophysics Data System (ADS)

    Depuydt, Tom; Penne, Rudi; Verellen, Dirk; Hrbacek, Jan; Lang, Stephanie; Leysen, Katrien; Vandevondel, Iwein; Poels, Kenneth; Reynders, Truus; Gevaert, Thierry; Duchateau, Michael; Tournel, Koen; Boussaer, Marlies; Cosentino, Dorian; Garibaldi, Cristina; Solberg, Timothy; De Ridder, Mark

    2012-05-01

    As mechanical stability of radiation therapy treatment devices has gone beyond sub-millimeter levels, there is a rising demand for simple yet highly accurate measurement techniques to support the routine quality control of these devices. A combination of using high-resolution radiosensitive film and computer-aided analysis could provide an answer. One generally known technique is the acquisition of star shot films to determine the mechanical stability of rotations of gantries and the therapeutic beam. With computer-aided analysis, mechanical performance can be quantified as a radiation isocenter radius size. In this work, computer-aided analysis of star shot film is further refined by applying an analytical solution for the smallest intersecting circle problem, in contrast to the gradient optimization approaches used until today. An algorithm is presented and subjected to a performance test using two different types of radiosensitive film, the Kodak EDR2 radiographic film and the ISP EBT2 radiochromic film. Artificial star shots with a priori known radiation isocenter size are used to determine the systematic errors introduced by the digitization of the film and the computer analysis. The estimated uncertainty on the isocenter size measurement with the presented technique was 0.04 mm (2σ) and 0.06 mm (2σ) for radiographic and radiochromic films, respectively. As an application of the technique, a study was conducted to compare the mechanical stability of O-ring gantry systems with C-arm-based gantries. In total ten systems of five different institutions were included in this study and star shots were acquired for gantry, collimator, ring, couch rotations and gantry wobble. It was not possible to draw general conclusions about differences in mechanical performance between O-ring and C-arm gantry systems, mainly due to differences in the beam-MLC alignment procedure accuracy. Nevertheless, the best performing O-ring system in this study, a BrainLab/MHI Vero system

  2. Ferroelectric ultrathin perovskite films

    DOEpatents

    Rappe, Andrew M; Kolpak, Alexie Michelle

    2013-12-10

    Disclosed herein are perovskite ferroelectric thin-film. Also disclosed are methods of controlling the properties of ferroelectric thin films. These films can be used in a variety materials and devices, such as catalysts and storage media, respectively.

  3. Dosimetric performance and array assessment of plastic scintillation detectors for stereotactic radiosurgery quality assurance

    SciTech Connect

    Gagnon, Jean-Christophe; Theriault, Dany; Guillot, Mathieu; Archambault, Louis; Beddar, Sam; Gingras, Luc; Beaulieu, Luc

    2012-01-15

    Purpose: To compare the performance of plastic scintillation detectors (PSD) for quality assurance (QA) in stereotactic radiosurgery conditions to a microion-chamber (IC), Gafchromic EBT2 films, 60 008 shielded photon diode (SD) and unshielded diodes (UD), and assess a new 2D crosshair array prototype adapted to small field dosimetry. Methods: The PSD consists of a 1 mm diameter by 1 mm long scintillating fiber (BCF-60, Saint-Gobain, Inc.) coupled to a polymethyl-methacrylate optical fiber (Eska premier, Mitsubishi Rayon Co., Ltd., Tokyo, Japan). Output factors (S{sub c,p}) for apertures used in radiosurgery ranging from 4 to 40 mm in diameter have been measured. The PSD crosshair array (PSDCA) is a water equivalent device made up of 49 PSDs contained in a 1.63 cm radius area. Dose profiles measurements were taken for radiosurgery fields using the PSDCA and were compared to other dosimeters. Moreover, a typical stereotactic radiosurgery treatment using four noncoplanar arcs was delivered on a spherical phantom in which UD, IC, or PSD was placed. Using the Xknife planning system (Integra Radionics Burlington, MA), 15 Gy was prescribed at the isocenter, where each detector was positioned. Results: Output Factors measured by the PSD have a mean difference of 1.3% with Gafchromic EBT2 when normalized to a 10 x 10 cm{sup 2} field, and 1.0% when compared with UD measurements normalized to the 35 mm diameter cone. Dose profiles taken with the PSD crosshair array agreed with other single detectors dose profiles in spite of the presence of the 49 PSDs. Gamma values comparing 1D dose profiles obtained with PSD crosshair array with Gafchromic EBT2 and UD measured profiles shows 98.3% and 100.0%, respectively, of detector passing the gamma acceptance criteria of 0.3 mm and 2%. The dose measured by the PSD for a complete stereotactic radiosurgery treatment is comparable to the planned dose corrected for its SD-based S{sub c,p} within 1.4% and 0.7% for 5 and 35 mm diameter cone

  4. TU-F-BRE-08: Significant Variations in Measured Small Cone Output Factor for FFF Beams

    SciTech Connect

    Sudhyadhom, A; Ma, L; Kirby, N

    2014-06-15

    Purpose: To evaluate the measurement accuracy of several dosimeters for small cone output factors in two SRS/SBRT dedicated systems with Flattening Filter Free (FFF) beams: a Varian TrueBeam STx (TB) and an Accuray CyberKnife VSI (CK). Output factors (OFs) were measured for both machines and for CK, compared against a Monte Carlo model. Methods: Dose measurements were taken using three different FFF beams (TB 6XFFF, TB 10XFFF, and CK 6XFFF). Three commonly used types of dosimeters were examined in this work: a micro-ion chamber (Exradin A16), two shielded diodes (PTW TN60008 and PTW TN60017), and radiochromic film (Gafchromic EBT2). Measured OFs from these dosimeters were compared with each other and OFs measured with an Exradin W1 scintillator. Monte Carlo determined correction factors for the CK beam for the micro-ion chamber and diodes were applied to the respective OF measurements and compared against scintillator measured OFs corrected for volume averaging. Results: OFs measured for the smallest fields using the micro-ion chamber, diodes, scintillator, and film varied substantially (with up to a 16% difference between dosimeters). Micro-ion chamber and film OF measurements were up to 9% and 10%, respectively, lower than scintillator measurements for the smallest fields. OF measurements by diode were up to 6% greater than scintillator measurements for the smallest fields. With correction factors, the micro-ion chamber and diode measured OFs showed good agreement with scintillator measured OFs for the CK 6XFFF beam (within 3% and 1.5%, respectively). Conclusion: Uncorrected small field OFs vary significantly with dosimeter. The accuracy of scintillator measurements for small field OFs may be greater than the other dosimeters studied in this work (when uncorrected). Measurements involving EBT2 film may Result in lower accuracy for smaller fields (less than 10mm). Care should be taken in the choice of the dosimeter used for small field OF measurements.

  5. [Films: China and Japan].

    ERIC Educational Resources Information Center

    Gumport, Roberta H.

    The history of filmmaking in China and Japan and film usage in teaching are considered in this document. Pointing out how films describe historical context and culture, the document also describes various techniques of film making. Films in China were heavily influenced by western models and have tended to be tools of the power structure, as…

  6. A Festival of Films.

    ERIC Educational Resources Information Center

    National Association for the Education of Young Children, Washington, DC.

    This catalogue consists of an alphabetical listing of more than 200 films, each with an annotation including a brief description of the film, intended audience, and length of film (most running from about 10 to 30 minutes). Titles were selected by Film Preview Committees of the National Association for the Education of Young Children. A list of…

  7. Carbon thin film thermometry

    NASA Technical Reports Server (NTRS)

    Collier, R. S.; Sparks, L. L.; Strobridge, T. R.

    1973-01-01

    The work concerning carbon thin film thermometry is reported. Optimum film deposition parameters were sought on an empirical basis for maximum stability of the films. One hundred films were fabricated for use at the Marshall Space Flight Center; 10 of these films were given a precise quasi-continuous calibration of temperature vs. resistance with 22 intervals between 5 and 80 K using primary platinum and germanium thermometers. Sensitivity curves were established and the remaining 90 films were given a three point calibration and fitted to the established sensitivity curves. Hydrogen gas-liquid discrimination set points are given for each film.

  8. RAYS: a geometrical optics code for EBT

    SciTech Connect

    Batchelor, D.B.; Goldfinger, R.C.

    1982-04-01

    The theory, structure, and operation of the code are described. Mathematical details of equilibrium subroutiones for slab, bumpy torus, and tokamak plasma geometry are presented. Wave dispersion and absorption subroutines are presented for frequencies ranging from ion cyclotron frequency to electron cyclotron frequency. Graphics postprocessors for RAYS output data are also described.

  9. Minimum-B mirrors plus EBT principles

    SciTech Connect

    Yoshikawa, S.

    1983-08-01

    Electrons are heated at the minimum-B location(s) created by the multiple field and the toroidal field. Resulting hot electrons can assist plasma confinement by (i) providing mirror, (ii) creating azimuthally symmetric toroidal confinement, or (iii) creating a modified bumpy torus.

  10. Contact radiotherapy using a 50 kV X-ray system: Evaluation of relative dose distribution with the Monte Carlo code PENELOPE and comparison with measurements

    NASA Astrophysics Data System (ADS)

    Croce, Olivier; Hachem, Sabet; Franchisseur, Eric; Marcié, Serge; Gérard, Jean-Pierre; Bordy, Jean-Marc

    2012-06-01

    This paper presents a dosimetric study concerning the system named "Papillon 50" used in the department of radiotherapy of the Centre Antoine-Lacassagne, Nice, France. The machine provides a 50 kVp X-ray beam, currently used to treat rectal cancers. The system can be mounted with various applicators of different diameters or shapes. These applicators can be fixed over the main rod tube of the unit in order to deliver the prescribed absorbed dose into the tumor with an optimal distribution. We have analyzed depth dose curves and dose profiles for the naked tube and for a set of three applicators. Dose measurements were made with an ionization chamber (PTW type 23342) and Gafchromic films (EBT2). We have also compared the measurements with simulations performed using the Monte Carlo code PENELOPE. Simulations were performed with a detailed geometrical description of the experimental setup and with enough statistics. Results of simulations are made in accordance with experimental measurements and provide an accurate evaluation of the dose delivered. The depths of the 50% isodose in water for the various applicators are 4.0, 6.0, 6.6 and 7.1 mm. The Monte Carlo PENELOPE simulations are in accordance with the measurements for a 50 kV X-ray system. Simulations are able to confirm the measurements provided by Gafchromic films or ionization chambers. Results also demonstrate that Monte Carlo simulations could be helpful to validate the future applicators designed for other localizations such as breast or skin cancers. Furthermore, Monte Carlo simulations could be a reliable alternative for a rapid evaluation of the dose delivered by such a system that uses multiple designs of applicators.

  11. Monte Carlo simulations and radiation dosimetry measurements of peripherally applied HDR 192Ir breast brachytherapy D-shaped applicators.

    PubMed

    Yang, Yun; Rivard, Mark J

    2009-03-01

    Conformal dose coverage for accelerated partial breast irradiation or radiotherapy boost can be obtained with AccuBoost D-shaped brachytherapy applicators using a flattened surface positioned near the patient. Three D-shaped applicators (D45/D53/D60) were dosimetrically characterized using Monte Carlo methods (MCNP5), air ionization chambers (Farmer and Markus), and radiochromic film (GafChromic EBT) in polystyrene and ICRU 44 breast tissue. HDR 192Ir source dwell times were either constant or optimized to improve skin dose uniformity. Scatter dose decreased as depth decreased. 10 mm beyond the applicator aperture, dose reductions of 90% and 51% were observed at depths of 0 and 30 mm, respectively. Similarly, planar dose uniformity improved as depth decreased and was also due to scatter and applicator geometry. Dose uniformity inside the applicator aperture was approximately 11% and 15% for all three applicators at the skin and 30 mm deep, respectively. Depth dose measurements in polystyrene using ion chamber and radiochromic film agreed with Monte Carlo results within 2%. Discrepancies between film and Monte Carlo dose profiles at 30 mm depth were within 1%.

  12. Toward acquiring comprehensive radiosurgery field commissioning data using the PRESAGE®/ optical-CT 3D dosimetry system

    NASA Astrophysics Data System (ADS)

    Clift, Corey; Thomas, Andrew; Adamovics, John; Chang, Zheng; Das, Indra; Oldham, Mark

    2010-03-01

    Achieving accurate small field dosimetry is challenging. This study investigates the utility of a radiochromic plastic PRESAGE® read with optical-CT for the acquisition of radiosurgery field commissioning data from a Novalis Tx system with a high-definition multileaf collimator (HDMLC). Total scatter factors (Sc, p), beam profiles, and penumbrae were measured for five different radiosurgery fields (5, 10, 20, 30 and 40 mm) using a commercially available optical-CT scanner (OCTOPUS, MGS Research). The percent depth dose (PDD), beam profile and penumbra of the 10 mm field were also measured using a higher resolution in-house prototype CCD-based scanner. Gafchromic EBT® film was used for independent verification. Measurements of Sc, p made with PRESAGE® and film agreed with mini-ion chamber commissioning data to within 4% for every field (range 0.2-3.6% for PRESAGE®, and 1.6-3.6% for EBT). PDD, beam profile and penumbra measurements made with the two PRESAGE®/optical-CT systems and film showed good agreement with the high-resolution diode commissioning measurements with a competitive resolution (0.5 mm pixels). The in-house prototype optical-CT scanner allowed much finer resolution compared with previous applications of PRESAGE®. The advantages of the PRESAGE® system for small field dosimetry include 3D measurements, negligible volume averaging, directional insensitivity, an absence of beam perturbations, energy and dose rate independence.

  13. The Educational Film Industry

    ERIC Educational Resources Information Center

    Tortora, Vincent R.; Schillaci, Peter

    1975-01-01

    Increased dialog is needed among educational film producers, distributors, and consumers in order to be sure that what is being produced meets educators' needs and also to help solve the financial problems of the film industry. (LS)

  14. Film as Film; Understanding and Judging Movies.

    ERIC Educational Resources Information Center

    Perkins, V. F.

    The criteria for judging movies which are presented here are based on the belief that film criticism becomes rational, if not "objective", when it displays and inspects the nature of its evidence and the bases of its arguments. The author dissents from the view of early film theorists that montage is the essence of cinema, and that cinema is to be…

  15. Literature and Film.

    ERIC Educational Resources Information Center

    Richardson, Robert

    The differences, similarities, and common goals of film and literature, as well as the ways in which each form and its associated criticism is able to illuminate the other, are discussed in this book. Individual chapters are "Literature and Film,""Literary Origins and Backgrounds of the Film,""Griffith and Eisenstein: The Uses of Literature in…

  16. Film Resources on Japan.

    ERIC Educational Resources Information Center

    Michigan Univ., Ann Arbor. Audio-Visual Education Center.

    Sixteen millimeter motion pictures dealing with Japan are listed alphabetically by title and annotated. Length of film, whether color or black and white, and name of producer or distributor is given for each, and a subject index is provided. Films produced before 1960, "sponsored" films, and 35 mm filmstrips are listed without annotations. A list…

  17. Using Folktale Films.

    ERIC Educational Resources Information Center

    Fuchs, Merrill Lee; Gaffney, Maureen

    1982-01-01

    A model user's guide for the film, "The Frog King or Faithful Henry," introduces media specialists and educators to the range of possibilities for developing different activities for different objectives and age levels from a single film. An introductory article provides a synopsis of the film, rationale for its choice as a model, a discussion of…

  18. Health Careers Film Guide.

    ERIC Educational Resources Information Center

    National Institutes of Health (DHEW), Bethesda, MD. Bureau of Health Manpower Education.

    This document, which represents a survey of the entire health career film field, was designed to provide information for people interested in a health career. The guide indicates that a major criteria for film selection was recency; however, some older films that give a fairly accurate image of a profession were included, with some emphasis given…

  19. Marine Science Film Catalogue.

    ERIC Educational Resources Information Center

    Chapman, Frank L.

    Forty-eight motion picture films and filmstrips in the field of marine science are catalogued in this booklet. Following the alphabetical index, one page is devoted to each film indicating its type, producer, recommended grade level, running time, and presence of color and/or sound. A summary of film content, possible uses, and outstanding…

  20. Introduction to Film Making.

    ERIC Educational Resources Information Center

    Davis, Robert E.

    This booklet is intended for teachers who are now teaching units in film production as part of a program in communication or who wish to begin work with filmmaking in such a program. The first section is intended to serve as a brief introduction to film theory, while a major portion of the rest of the booklet is devoted to film projects which may…

  1. Australian Film Studies.

    ERIC Educational Resources Information Center

    Breen, Myles P.

    Although Australia had a vigorous film industry in the silent film era, it was stifled in the 1930s when United States and British interests bought up the Australian distribution channels and closed down the indigenous industry. However, the industry and film study have undergone a renaissance since the advent of the Labor government in 1972,…

  2. Focus on Shakespearean Films.

    ERIC Educational Resources Information Center

    Eckert, Charles W., Ed.

    This is an anthology of reviews and critical pieces of the significant and available Shakespearean films made between 1935 and 1966. Included are three general essays on Shakespearean film by Ian Johnson, Henri Lemaitre, and Geoffrey Reeves. The specific films and their reviewers are: A Midsummer's Night Dream (1935) Allardyce Nicoll and Richard…

  3. The Language of Film.

    ERIC Educational Resources Information Center

    Whitaker, Rod

    This book, designed for the film maker, critic, and serious filmgoer, explores elements of filmic expression from the creative and perceptual points of view. Chapters (1) trace the linguistic and mechanical development of film, (2) discuss the contributions of image and sound to film content, (3) suggest the contributions of editing and montage,…

  4. 99 Films on Drugs.

    ERIC Educational Resources Information Center

    Weber, David O., Ed.

    This catalog describes and evaluates 16-millimeter films about various aspects of drug use. Among the subjects covered by the 99 films are the composition and effects of different drugs, reasons why people use drugs, life in the drug culture, the problem of law enforcement, and various means of dealing with drug users. Each film is synopsized. Two…

  5. Thick Film Interference.

    ERIC Educational Resources Information Center

    Trefil, James

    1983-01-01

    Discusses why interference effects cannot be seen with a thick film, starting with a review of the origin of interference patterns in thin films. Considers properties of materials in films, properties of the light source, and the nature of light. (JN)

  6. Getting into Film.

    ERIC Educational Resources Information Center

    London, Mel

    This book describes the various aspects of the film industry and the many jobs related to filmmaking, stressing that no "formula" exists for finding a successful career in the film industry. Chapters provide information on production, writing for film, cinematography, editing, music, sound, animation and graphics, acting and modeling, the "unsung…

  7. Validation of a precision radiochromic film dosimetry system for quantitative two-dimensional imaging of acute exposure dose distributions.

    PubMed

    Dempsey, J F; Low, D A; Mutic, S; Markman, J; Kirov, A S; Nussbaum, G H; Williamson, J F

    2000-10-01

    We present an evaluation of the precision and accuracy of image-based radiochromic film (RCF) dosimetry performed using a commercial RCF product (Gafchromic MD-55-2, Nuclear Associates, Inc.) and a commercial high-spatial resolution (100 microm pixel size) He-Ne scanning-laser film-digitizer (Personal Densitometer, Molecular Dynamics, Inc.) as an optical density (OD) imaging system. The precision and accuracy of this dosimetry system are evaluated by performing RCF imaging dosimetry in well characterized conformal external beam and brachytherapy high dose-rate (HDR) radiation fields. Benchmarking of image-based RCF dosimetry is necessary due to many potential errors inherent to RCF dosimetry including: a temperature-dependent time evolution of RCF dose response; nonuniform response of RCF; and optical-polarization artifacts. In addition, laser-densitometer imaging artifacts can produce systematic OD measurement errors as large as 35% in the presence of high OD gradients. We present a RCF exposure and readout protocol that was developed for the accurate dosimetry of high dose rate (HDR) radiation sources. This protocol follows and expands upon the guidelines set forth by the American Association of Physicists in Medicine (AAPM) Task Group 55 report. Particular attention is focused on the OD imaging system, a scanning-laser film digitizer, modified to eliminate OD artifacts that were not addressed in the AAPM Task Group 55 report. RCF precision using this technique was evaluated with films given uniform 6 MV x-ray doses between 1 and 200 Gy. RCF absolute dose accuracy using this technique was evaluated by comparing RCF measurements to small volume ionization chamber measurements for conformal external-beam sources and an experimentally validated Monte Carlo photon-transport simulation code for a 192Ir brachytherapy source. Pixel-to-pixel standard deviations of uniformly irradiated films were less than 1% for doses between 10 and 150 Gy; between 1% and 5% for lower

  8. SU-E-T-231: Measurements of Gold Nanoparticle-Mediated Proton Dose Enhancement Due to Particle-Induced X-Ray Emission and Activation Products Using Radiochromic Films and CdTe Detector

    SciTech Connect

    Cho, J; Cho, S; Manohar, N; Krishnan, S

    2014-06-01

    Purpose: There have been several reports of enhanced cell-killing and tumor regression when tumor cells and mouse tumors were loaded with gold nanoparticles (GNPs) prior to proton irradiation. While particle-induced xray emission (PIXE), Auger electrons, secondary electrons, free radicals, and biological effects have been suggested as potential mechanisms responsible for the observed GNP-mediated dose enhancement/radiosensitization, there is a lack of quantitative analysis regarding the contribution from each mechanism. Here, we report our experimental effort to quantify some of these effects. Methods: 5-cm-long cylindrical plastic vials were filled with 1.8 mL of either water or water mixed with cylindrical GNPs at the same gold concentration (0.3 mg Au/g) as used in previous animal studies. A piece of EBT2 radiochromic film (30-µm active-layer sandwiched between 80/175-µm outer-layers) was inserted along the long axis of each vial and used to measure dose enhancement due to PIXE from GNPs. Vials were placed at center-of-modulation (COM) and 3-cm up-/down-stream from COM and irradiated with 5 different doses (2–10 Gy) using 10-cm-SOBP 160-MeV protons. After irradiation, films were cleaned and read to determine the delivered dose. A vial containing spherical GNPs (20 mg Au/g) was also irradiated, and gamma-rays from activation products were measured using a cadmium-telluride (CdTe) detector. Results: Film measurements showed no significant dose enhancement beyond the experimental uncertainty (∼2%). There was a detectable activation product from GNPs, but it appeared to contribute to dose enhancement minimally (<0.01%). Conclusion: Considering the composition of EBT2 film, it can be inferred that gold characteristic x-rays from PIXE and their secondary electrons make insignificant contribution to dose enhancement. The current investigation also suggests negligible dose enhancement due to activation products. Thus, previously-reported GNP-mediated proton dose

  9. Pyrolyzed thin film carbon

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor)

    2010-01-01

    A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.

  10. Chronicles of foam films.

    PubMed

    Gochev, G; Platikanov, D; Miller, R

    2016-07-01

    The history of the scientific research on foam films, traditionally known as soap films, dates back to as early as the late 17th century when Boyle and Hooke paid special attention to the colours of soap bubbles. Their inspiration was transferred to Newton, who began systematic study of the science of foam films. Over the next centuries, a number of scientists dealt with the open questions of the drainage, stability and thickness of foam films. The significant contributions of Plateau and Gibbs in the middle/late 19th century are particularly recognized. After the "colours" method of Newton, Reinold and Rücker as well as Johhonnot developed optical methods for measuring the thickness of the thinner "non-colour" films (first order black) that are still in use today. At the beginning of the 20th century, various aspects of the foam film science were elucidated by the works of Dewar and Perrin and later by Mysels. Undoubtedly, the introduction of the disjoining pressure by Derjaguin and the manifestation of the DLVO theory in describing the film stability are considered as milestones in the theoretical development of foam films. The study of foam films gained momentum with the introduction of the microscopic foam film methodology by Scheludko and Exerowa, which is widely used today. This historical perspective serves as a guide through the chronological development of knowledge on foam films achieved over several centuries.

  11. Chronicles of foam films.

    PubMed

    Gochev, G; Platikanov, D; Miller, R

    2016-07-01

    The history of the scientific research on foam films, traditionally known as soap films, dates back to as early as the late 17th century when Boyle and Hooke paid special attention to the colours of soap bubbles. Their inspiration was transferred to Newton, who began systematic study of the science of foam films. Over the next centuries, a number of scientists dealt with the open questions of the drainage, stability and thickness of foam films. The significant contributions of Plateau and Gibbs in the middle/late 19th century are particularly recognized. After the "colours" method of Newton, Reinold and Rücker as well as Johhonnot developed optical methods for measuring the thickness of the thinner "non-colour" films (first order black) that are still in use today. At the beginning of the 20th century, various aspects of the foam film science were elucidated by the works of Dewar and Perrin and later by Mysels. Undoubtedly, the introduction of the disjoining pressure by Derjaguin and the manifestation of the DLVO theory in describing the film stability are considered as milestones in the theoretical development of foam films. The study of foam films gained momentum with the introduction of the microscopic foam film methodology by Scheludko and Exerowa, which is widely used today. This historical perspective serves as a guide through the chronological development of knowledge on foam films achieved over several centuries. PMID:26361708

  12. Thin film composite actuators

    NASA Astrophysics Data System (ADS)

    Su, Quanmin; Kim, Taesung; Zheng, Yun; Wuttig, Manfred R.

    1995-05-01

    The mechanical properties of Ni50Ti50 deposited on Si substrates were studied focussing on the interaction of the film and substrate. This interaction determines the transformation characteristics through interface accommodation and mechanical constraints exerted by the substrate stiffness. Substrate stiffness, controlled by the film/substrate thickness ratio, was found to have a substantial influence on the output energy of the film/substrate composite. A switch type composite based on this knowledge was fabricated and tested. The thermo-mechanical properties of Terfenol-D thin films deposited on Si substrates were studied by static and dynamic measurements of film/substrate composite cantilevers. The Curie transition, (Delta) E effect and mechanical damping of the film were measured simultaneously. The stress in the film was controlled by annealing below the recrystallization temperature and determined to vary from -500 MPa, compression, in as deposited films to +480 MPa, tension, in annealed films. The Curie temperature shifts from 80 degree(s)C to 140 degree(s)C as the tension increases while the structure of the film remains amorphous. The stress change induced by annealing also drastically effects the film's damping characteristics. The (Delta) E effect of the amorphous material, about 20%, was used to estimate the magnetostriction, (lambda) s approximately equals 4 (DOT) 10-3.

  13. Ceramic Composite Thin Films

    NASA Technical Reports Server (NTRS)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  14. SU-E-CAMPUS-T-05: Preliminary Results On a 2D Dosimetry System Based On the Optically Stimulated Luminescence of Al2O3

    SciTech Connect

    Ahmed, M; Eller, S; Yukihara, E; Schnell, E; Ahmad, S; Akselrod, M; Hanson, O

    2014-06-15

    Purpose: To develop a precise 2D dose mapping technique based on the optically stimulated luminescence (OSL) from Al{sub 2}O{sub 3} films for medical applications. Methods: A 2D laser scanning reader was developed using fast F{sup +}-center (lifetime of <7 ns) and slow F-center (lifetime of 35 ms) OSL emission from newly developed Al{sub 2}O{sub 3} films (Landauer Inc.). An algorithm was developed to correct images for both material and system properties. Since greater contribution of the F??-center emission in the recorded signal increases the readout efficiency and robustness of image corrections, Al{sub 2}O{sub 3}:C,Mg film samples are being investigated in addition to Al{sub 2}O{sub 3}:C samples. Preliminary investigations include exposure of the films to a 6 MV photon beam at 10 cm depth in solid water phantom with an SSD of 100 cm, using a 10 cm × 10 cm flat field or a 4 cm × 4 cm field with a 60° wedge filter. Kodak EDR2 radiographic film and EBT2 Gafchromic film were also exposed for comparison. Results: The results indicate that the algorithm is able to correct images and calculate 2D dose. For the wedge field irradiation, the calculated dose at the center of the field was 0.9 Gy for Al{sub 2}O{sub 3}:C and 0.87 Gy for Al{sub 2}O{sub 3}:C,Mg, whereas, the delivered dose was 0.95 Gy. A good qualitative agreement of the dose profiles was obtained between the OSL films and EDR2 and EBT2 films. Laboratory tests using a beta source suggest that a large dynamic range (10{sup −2}−10{sup 2} Gy) can be achieved using this technique. Conclusion: A 2D dosimetry system and an in-house image correction algorithm were developed for 2D film dosimetry in medical applications. The system is in the preliminary stage of development, but the data demonstrates the feasibility of this approach. This work was supported by Landauer, Inc.

  15. Coating of plasma polymerized film

    NASA Technical Reports Server (NTRS)

    Morita, S.; Ishibashi, S.

    1980-01-01

    Plasma polymerized thin film coating and the use of other coatings is suggested for passivation film, thin film used for conducting light, and solid body lubrication film of dielectrics of ultra insulators for electrical conduction, electron accessories, etc. The special features of flow discharge development and the polymerized film growth mechanism are discussed.

  16. Documentary Elements in Early Films.

    ERIC Educational Resources Information Center

    Sanderson, Richard A.

    Focusing on documentary elements, this study examines the film content and film techniques of 681 motion pictures produced in the United States prior to 1904. Analysis of films by type, subject matter, and trends in subject matter shows that one-third of the early films are documentary in type and three-fourths of the films use subject matter of a…

  17. Acrylonitrile Butadiene Styrene (ABS) plastic based low cost tissue equivalent phantom for verification dosimetry in IMRT.

    PubMed

    Kumar, Rajesh; Sharma, S D; Deshpande, Sudesh; Ghadi, Yogesh; Shaiju, V S; Amols, H I; Mayya, Y S

    2009-12-17

    A novel IMRT phantom was designed and fabricated using Acrylonitrile Butadiene Styrene (ABS) plastic. Physical properties of ABS plastic related to radiation interaction and dosimetry were compared with commonly available phantom materials for dose measurements in radiotherapy. The ABS IMRT phantom has provisions to hold various types of detectors such as ion chambers, radiographic/radiochromic films, TLDs, MOSFETs, and gel dosimeters. The measurements related to pre-treatment dose verification in IMRT of carcinoma prostate were carried out using ABS and Scanditronics-Wellhoffer RW3 IMRT phantoms for five different cases. Point dose data were acquired using ionization chamber and TLD discs while Gafchromic EBT and radiographic EDR2 films were used for generating 2-D dose distributions. Treatment planning system (TPS) calculated and measured doses in ABS plastic and RW3 IMRT phantom were in agreement within +/-2%. The dose values at a point in a given patient acquired using ABS and RW3 phantoms were found comparable within 1%. Fluence maps and dose distributions of these patients generated by TPS and measured in ABS IMRT phantom were also found comparable both numerically and spatially. This study indicates that ABS plastic IMRT phantom is a tissue equivalent phantom and dosimetrically it is similar to solid/plastic water IMRT phantoms. Though this material is demonstrated for IMRT dose verification but it can be used as a tissue equivalent phantom material for other dosimetry purposes in radiotherapy.

  18. A novel technique for measuring the low-dose envelope of pencil-beam scanning spot profiles

    NASA Astrophysics Data System (ADS)

    Lin, Liyong; Ainsley, Christopher G.; Mertens, Thierry; De Wilde, Olivier; Talla, Patrick T.; McDonough, James E.

    2013-06-01

    To investigate the profile measurement capabilities of an IBA-Dosimetry scintillation detector and to assess its feasibility for determining the low-intensity tails of pencil-beam scanning spots, the responses of the scintillation detector and Gafchromic EBT2 film to a 115 MeV proton spot were measured in-air at the isocenter. Pairs of irradiations were made: one lower-level irradiation insufficient to cause saturation, and one higher-level irradiation which deliberately saturated the central region of the spot, but provided magnification of the tails. By employing the pair/magnification technique, agreement between the film and scintillation detector measurements of the spot profile can be extended from 4% of the central spot dose down to 0.01%. Gamma analysis between these measurements shows 95% and 99% agreement within a ±9 cm bound using criteria of 3 mm/3% and 5 mm/5%, respectively. Above 4%, our 115 MeV proton spot can be well-described by Gaussian function; below 4%, non-Gaussian, diamond-shaped tails predominate.

  19. Renaissance of the Film.

    ERIC Educational Resources Information Center

    Bellone, Julius, Ed.

    The post-World War II period was one of the liveliest in the history of the cinema. This is a collection of 33 critical articles on some of the best films of the perd. Most of the essays explicate the themes and symbols of the films. The essays deal with these films: "The Apu Trilogy,""L'Avventura,""Balthazar,""Blow-Up,""Bonnie and Clyde," Citizen…

  20. Clinical careers film.

    PubMed

    2015-09-01

    Those interested in developing clinical academic careers might be interested in a short animated film by Health Education England (HEE) and the National Institute for Health Research. The three-minute film, a frame from which is shown below, describes the sort of opportunities that are on offer to all professionals as part of the HEE's clinical academic careers framework. You can view the film on YouTube at tinyurl.com/pelb95c. PMID:26309005

  1. On the Use of Optically Stimulated Luminescent Dosimeter for Surface Dose Measurement during Radiotherapy

    PubMed Central

    Yusof, Fasihah Hanum; Ung, Ngie Min; Wong, Jeannie Hsiu Ding; Jong, Wei Loong; Ath, Vannyat; Phua, Vincent Chee Ee; Heng, Siew Ping; Ng, Kwan Hoong

    2015-01-01

    This study was carried out to investigate the suitability of using the optically stimulated luminescence dosimeter (OSLD) in measuring surface dose during radiotherapy. The water equivalent depth (WED) of the OSLD was first determined by comparing the surface dose measured using the OSLD with the percentage depth dose at the buildup region measured using a Markus ionization chamber. Surface doses were measured on a solid water phantom using the OSLD and compared against the Markus ionization chamber and Gafchromic EBT3 film measurements. The effect of incident beam angles on surface dose was also studied. The OSLD was subsequently used to measure surface dose during tangential breast radiotherapy treatments in a phantom study and in the clinical measurement of 10 patients. Surface dose to the treated breast or chest wall, and on the contralateral breast were measured. The WED of the OSLD was found to be at 0.4 mm. For surface dose measurement on a solid water phantom, the Markus ionization chamber measured 15.95% for 6 MV photon beam and 12.64% for 10 MV photon beam followed by EBT3 film (23.79% and 17.14%) and OSLD (37.77% and 25.38%). Surface dose increased with the increase of the incident beam angle. For phantom and patient breast surface dose measurement, the response of the OSLD was higher than EBT3 film. The in-vivo measurements were also compared with the treatment planning system predicted dose. The OSLD measured higher dose values compared to dose at the surface (Hp(0.0)) by a factor of 2.37 for 6 MV and 2.01 for 10 MV photon beams, respectively. The measurement of absorbed dose at the skin depth of 0.4 mm by the OSLD can still be a useful tool to assess radiation effects on the skin dermis layer. This knowledge can be used to prevent and manage potential acute skin reaction and late skin toxicity from radiotherapy treatments. PMID:26052690

  2. A respiratory compensating system: design and performance evaluation.

    PubMed

    Chuang, Ho-Chiao; Huang, Ding-Yang; Tien, Der-Chi; Wu, Ren-Hong; Hsu, Chung-Hsien

    2014-05-08

    This study proposes a respiratory compensating system which is mounted on the top of the treatment couch for reverse motion, opposite from the direction of the targets (diaphragm and hemostatic clip), in order to offset organ displacement generated by respiratory motion. Traditionally, in the treatment of cancer patients, doctors must increase the field size for radiation therapy of tumors because organs move with respiratory motion, which causes radiation-induced inflammation on the normal tissues (organ at risk (OAR)) while killing cancer cells, and thereby reducing the patient's quality of life. This study uses a strain gauge as a respiratory signal capture device to obtain abdomen respiratory signals, a proposed respiratory simulation system (RSS) and respiratory compensating system to experiment how to offset the organ displacement caused by respiratory movement and compensation effect. This study verifies the effect of the respiratory compensating system in offsetting the target displacement using two methods. The first method uses linac (medical linear accelerator) to irradiate a 300 cGy dose on the EBT film (GAFCHROMIC EBT film). The second method uses a strain gauge to capture the patients' respiratory signals, while using fluoroscopy to observe in vivo targets, such as a diaphragm, to enable the respiratory compensating system to offset the displacements of targets in superior-inferior (SI) direction. Testing results show that the RSS position error is approximately 0.45 ~ 1.42 mm, while the respiratory compensating system position error is approximately 0.48 ~ 1.42 mm. From the EBT film profiles based on different input to the RSS, the results suggest that when the input respiratory signals of RSS are sine wave signals, the average dose (%) in the target area is improved by 1.4% ~ 24.4%, and improved in the 95% isodose area by 15.3% ~ 76.9% after compensation. If the respiratory signals input into the RSS respiratory signals are actual human respiratory

  3. Protective overcoating of films

    NASA Technical Reports Server (NTRS)

    Maas, K. A.

    1972-01-01

    Kodak Film Type SO-212 was emulsion overcoated with gelatin and lacquer to evaluate the feasibility of application of the coatings, any image degradation, and the relative protection offered against abrasion. Evaluated were: Eastman motion picture film lacquer Type 485, water solutions of Eastman purified Calfskin gelatin, and experimental Eastman gelatin stripping film of 4 and 6 microns. Conclusions reached were: (1) All coatings can be applied with relative ease with the only limitation being that of equipment. (2) None of the coatings degrade the processed image. (3) All of the coatings provide protection to the emulsion. These conclusions apply to any film which may be considered for overcoating.

  4. SU-E-J-101: Retroactive Calculation of TLD and Film Dose in Anthropomorphic Phantom as Assessment of Updated TPS Performance

    SciTech Connect

    Alkhatib, H; Oves, S

    2014-06-01

    Purpose: To demonstrate a quick and comprehensive method verifying the accuracy of the updated dose model by recalculating dose distribution in an anthropomorphic phantom with a new version of the TPS and comparing the results to measured values. Methods: CT images and IMRT plan of an RPC anthropomorphic head phantom, previously calculated by Pinnacle 9.0, was re-computed using Pinnacle 9.2 and 9.6. The dosimeters within the phantom include four TLD capsules representing a primary PTV, two TLD capsules representing a secondary PTV, and two TLD capsules representing an organ at risk. Also included were three sheets of Gafchromic film. Performance of the updated TPS version was assessed by recalculating point doses and dose profiles corresponding to TLD and film position respectively and then comparing the results to reported values by the RPC. Results: Comparing calculated doses to reported measured doses from the RPC yielded an average disagreement of 1.48%, 2.04% and 2.10% for versions 9.0, 9.2, 9.6 respectively. Computed doses points all meet the RPC's passing criteria with the exception of the point representing the superior organ at risk in version 9.6. However, qualitative analysis of the recalculated dose profiles showed improved agreement with those of the RPC, especially in the penumbra region. Conclusion: This work has demonstrated the calculation results of Pinnacle 9.2 and 9.6 vs 9.0 version. Additionally, this study illustrates a method for the user to gain confidence upgrade to a newer version of the treatment planning system.

  5. SU-E-T-160: Evaluation of Accuracy for Target Margin Size Obtained From CBCT On Lung SBRT Based On Film Dosimetry

    SciTech Connect

    Lee, S; Lee, M; Kim, M; Suh, T; Park, J; Park, S

    2014-06-01

    Purpose: To analysis delivered dose on target using gafchromic films for evaluating accuracy of target margin size obtained from cone beam computed tomography (CBCT) during lung stereotactic body radiation therapy (SBRT) Methods: The phantom consists of measurement part and driving part. The motor of Quasar motion phantom (Modus Medical Devices Inc, London, ON, Canada) was used for driving part and we developed measurement part which consist of cork cylindrical body and acrylic target with radiochromic film inserted into central and both ends of acrylic target. In this study lung SBRT cases through both four dimensional computed tomography (4DCT) and CBCT were selected. Target contouring including margin based on 4DCT is defined with a 1 cm margin around gross tumor volume (GTV) in all directions except for inferior direction. The moving range in inferior direction was larger than other directions thus, including 2 cm margin. In case of CBCT, the margin means blurring of target on CBCT images. This study was compared margin size determined through 4DCT and that of based on CBCT and we also evaluated dose profile and the length of margin in superior-inferior direction on CBCT compared with 4DCT. Results: The length of target including margin was 2.48 cm (based on CBCT) and 2.66 cm (based on 4DCT), respectively in superior-inferior direction. The difference of delivered dose on target between two margins was only within 1%. Conclusions: This study has shown the feasibility of determining target margin using CBCT for delivering more accurate prescription dose to lung cancer.

  6. Microfilm--Which Film Type, Which Application?

    ERIC Educational Resources Information Center

    Dodson, Suzanne Cates

    1985-01-01

    Report on characteristics of different kinds of microfilm available indicates proper film for specific needs. Silver halide and nonsilver films, diazo film, vesicular film, reaction of films to light, effect of heat and humidity on films, film susceptibility to scratching, and potential longevity of film types are covered. (35 references) (EJS)

  7. Thin film calorimetry of polymer films

    NASA Astrophysics Data System (ADS)

    Zhang, Wenhua; Rafailovich, Miriam; Sokolov, Jonathan; Salamon, William

    2000-03-01

    Polystryene and polymethylmethacrylate films for thicknesses ranging from 50nm to 500nm using a direct calorimetric technique (Lai et al, App. Phys. Lett. 67, p9(1995)). Samples were deposited on Ni foils(2-2.5um) and placed in a high vacuum oven. Calibrated heat pulses were input to the polymer films by current pulses to the Ni substrate and temperature changes were determined from the change in Ni resistance. Pulses producing temperature jumps of 3-8K were used and signal averaging over pulses reduced noise levels enough to identify glass transitions down to 50nm. Molecular weight dependence of thick films Tg was used as a temperature calibration.

  8. Thin-film forces in pseudoemulsion films

    SciTech Connect

    Bergeron, V.; Radke, C.J. |

    1991-06-01

    Use of foam for enhanced oil recovery (EOR) has shown recent success in steam-flooding field applications. Foam can also provide an effective barrier against gas coning in thin oil zones. Both of these applications stem from the unique mobility-control properties a stable foam possesses when it exists in porous media. Unfortunately, oil has a major destabilizing effect on foam. Therefore, it is important for EOR applications to understand how oil destroys foam. Studies all indicate that stabilization of the pseudoemulsion film is critical to maintain foam stability in the presence of oil. Hence, to aid in design of surfactant formulations for foam insensitivity to oil the authors pursue direct measurement of the thin-film or disjoining forces that stabilize pseudoemulsion films. Experimental procedures and preliminary results are described.

  9. Thin-film coatings

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1980-01-01

    Thin, adherent, high density films are discussed with respect to their application in two plasma physics techniques (ion plating and sputtering). The operation of each technique is described as well as what surfaces can be coated, and what kind of materials can be applied. The effects of these films on the mechanical properties of solid surfaces are also discussed.

  10. Literature and Film.

    ERIC Educational Resources Information Center

    Ross, Nigel J.

    1991-01-01

    The teaching of modern literature using film versions of the works studied is examined, and a special course that was organized around this concept is described. Results of the course are discussed, and suggestions are made for how to use film in general literature courses and other contexts. (12 references) (JL)

  11. On Teaching Ethnographic Film

    ERIC Educational Resources Information Center

    Clarfield, Geoffrey

    2013-01-01

    The author of this article, a developmental anthropologist, illustrates how the instructor can use ethnographic films to enhance the study of anthropology and override notions about the scope and efficacy of Western intervention in the Third World, provided the instructor places such films in their proper historical and cultural context. He…

  12. Film and the Humanities.

    ERIC Educational Resources Information Center

    O'Connor, John E., Ed.

    This report on a conference, which brought together representatives of various humanistic disciplines to explore the cross-disciplinary appeal of film study as well as the use of film in stimulating scholarship and teaching, includes a narrative summary of the day's conversations and issues raised, as well as of reprints of articles that suggest…

  13. Elements of Film.

    ERIC Educational Resources Information Center

    Bobker, Lee R.

    A film is the successful combination of two distinct groups of elements: (1) the technical elements by which the film is made (camera, lighting, sound and editing) and (2) the esthetic elements that transform the craft into an art. This book attempts to combine the study of these elements by providing technical information about the process of…

  14. Authors on Film.

    ERIC Educational Resources Information Center

    Geduld, Harry M., Ed.

    Different authors' attitudes toward film are revealed through five different sections of this book: (1) articles, essays, and reviews pertaining to the silent cinema and the transition to sound; (2) general statements on the film medium or filmmakers and their messages; (3) essays dealing with the problems, involvements, and reflections of the…

  15. Thick film hydrogen sensor

    DOEpatents

    Hoffheins, Barbara S.; Lauf, Robert J.

    1995-01-01

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  16. Stabilized chromium oxide film

    DOEpatents

    Garwin, Edward L.; Nyaiesh, Ali R.

    1988-01-01

    Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150.ANG. are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

  17. Thick film hydrogen sensor

    DOEpatents

    Hoffheins, B.S.; Lauf, R.J.

    1995-09-19

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors. 8 figs.

  18. Film Study Hang Ups.

    ERIC Educational Resources Information Center

    Grenier, Charles F.

    1969-01-01

    The interest and delight which students find in film should be preserved from a teacher's excessive zeal to analyze and explain. As the beauty of poetry is frequently diminished through exhaustive analyses of similes, rhyme schemes, and other technical devices, the value of film to high school students can be weakened through too great an emphasis…

  19. Creative Film-Making.

    ERIC Educational Resources Information Center

    Smallman, Kirk

    The fundamentals of motion picture photography are introduced with a physiological explanation for the illusion of motion in a film. Film stock formats and emulsions, camera features, and lights are listed and described. Various techniques of exposure control are illustrated in terms of their effects. Photographing action with a stationary or a…

  20. Film Canister Science

    ERIC Educational Resources Information Center

    Ferstl, Andrew; Schneider, Jamie L.

    2007-01-01

    Opaque film canisters are readily available, cheap, and useful for scientific inquiry in the classroom. They can also be surprisingly versatile and useful as a tool for stimulating scientific inquiry. In this article, the authors describe inquiry activities using film canisters for preservice teachers, including a "black box" activity and several…

  1. Protolytic carbon film technology

    SciTech Connect

    Renschler, C.L.; White, C.A.

    1996-04-01

    This paper presents a technique for the deposition of polyacrylonitrile (PAN) on virtually any surface allowing carbon film formation with only the caveat that the substrate must withstand carbonization temperatures of at least 600 degrees centigrade. The influence of processing conditions upon the structure and properties of the carbonized film is discussed. Electrical conductivity, microstructure, and morphology control are also described.

  2. Filming for Television.

    ERIC Educational Resources Information Center

    Englander, A. Arthur; Petzold, Paul

    Film makers, professional or amateur, will find in this volume an extensive discussion of the adaptation of film technique to television work, of the art of the camera operator, and of the productive relationships between people, organization, and hardware. Chapters include "The Beginnings," an overview of the interrelationship between roles in…

  3. Stabilized chromium oxide film

    DOEpatents

    Nyaiesh, A.R.; Garwin, E.L.

    1986-08-04

    Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150A are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

  4. Dental Training Films.

    ERIC Educational Resources Information Center

    Veterans Administration Medical Center, Washington, DC.

    This dental training films catalog is organized into two sections. Section I is a category listing of the films by number and title, indexed according to generalized headings; categories are as follow: anatomy, articulator systems, complete dentures, dental assisting, dental laboratory technology, dental materials, dental office emergencies,…

  5. FAA Film Catalog.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    Some 75 films from the U.S. Department of Transportation's Federal Aviation Administration are listed in this catalog. Topics dealt with include aerodynamics, airports, aviation history and careers, flying clubs, navigation and weather. Most of the films are 16mm sound and color productions. Filmstrips requiring a 35mm projector and phonograph or…

  6. Abstract Film and Beyond.

    ERIC Educational Resources Information Center

    Le Grice, Malcolm

    A theoretical and historical account of the main preoccupations of makers of abstract films is presented in this book. The book's scope includes discussion of nonrepresentational forms as well as examination of experiments in the manipulation of time in films. The ten chapters discuss the following topics: art and cinematography, the first…

  7. Bursting of soap films

    NASA Astrophysics Data System (ADS)

    Chowdhury, Debashish; Stauffer, Dietrich

    1992-07-01

    Soap films consist of thin films of water in between two monolayers of amphiphilic molecules. Newton black films (NBFs) are the thinnest possible soap films. We have developed a microscopic model of NBFs; this model is a variant of the Widom model for microemulsions. By carrying out Monte Carlo simulations of this model, we have investigated the dependence of the lifetime of the NBFs on (a) the initial concentration of the amphiphilic molecules, (b) the temperature and (c) the bending rigidity of the constituent amphiphilic monolayers. We compare our results with the corresponding experimental observations and suggest further specific experiments. We establish that the “edge energy” of the model bilayer tends to stabilize the NBF; a similar mechanism leads to the well known phenomenon of “self-healing” of small enough holes in pierced vesicles. We also review the laws of growth of holes in soap films during rupture. Finally, we speculate on some other possible applications of our ideas.

  8. Selective inorganic thin films

    SciTech Connect

    Phillips, M.L.F.; Weisenbach, L.A.; Anderson, M.T.

    1995-05-01

    This project is developing inorganic thin films as membranes for gas separation applications, and as discriminating coatings for liquid-phase chemical sensors. Our goal is to synthesize these coatings with tailored porosity and surface chemistry on porous substrates and on acoustic and optical sensors. Molecular sieve films offer the possibility of performing separations involving hydrogen, air, and natural gas constituents at elevated temperatures with very high separation factors. We are focusing on improving permeability and molecular sieve properties of crystalline zeolitic membranes made by hydrothermally reacting layered multicomponent sol-gel films deposited on mesoporous substrates. We also used acoustic plate mode (APM) oscillator and surface plasmon resonance (SPR) sensor elements as substrates for sol-gel films, and have both used these modified sensors to determine physical properties of the films and have determined the sensitivity and selectivity of these sensors to aqueous chemical species.

  9. The National Film Registry: Acquiring Our Film Heritage.

    ERIC Educational Resources Information Center

    Ziegler, Roy A.

    The National Film Registry, which is primarily a designated list of films to be preserved by the Library of Congress, is also a valuable tool for selecting "films that are culturally, historically, and aesthetically significant." Following a brief discussion of the history and selection process of the National Film Registry, Southeast Missouri…

  10. Film Theory and Hugo Munsterberg's "The Film": A Psychological Study.

    ERIC Educational Resources Information Center

    Wicclair, Mark R.

    1978-01-01

    Hugo Munsterberg's "The Film: A Psychological Study" is one of the earliest essays in the area of film theory. Unfortunately, it has remained relatively unknown since its publication in 1916. The author discusses two concepts raised by Munsterberg: the contrast between films in the theatrical mode and films in the cinematic mode. (Author/RK)

  11. Chiral atomically thin films

    NASA Astrophysics Data System (ADS)

    Kim, Cheol-Joo; Sánchez-Castillo, A.; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm–1) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.

  12. Chiral atomically thin films

    NASA Astrophysics Data System (ADS)

    Kim, Cheol-Joo; Sánchez-Castillo, A.; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm-1) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.

  13. Dependence of film tension on the thickness of smectic films.

    PubMed

    Jaquet, R; Schneider, F

    2003-02-01

    The film tension tau of free standing S(A) films has been measured for films with thicknesses between 2 and 150 layers. There is a clear increase of tau with the thickness for very thin films and a nonlinear slower increase for high thickness. The nonlinearity depends on the amount of liquid crystal accessible to the meniscus of the film during the drawing process. Several models are discussed that describe these effects. PMID:12636700

  14. Discovery in Film, Book Two.

    ERIC Educational Resources Information Center

    Gordon, Malcolm W.

    Approximately 80 16 millimeter (16mm) short films are reviewed in this introduction and guide which attempts to be comprehensive in touching the major areas and styles of 16mm films now being produced. An attempt is made to describe as carefully as possible the style and content of each film and suggest ways in which the films might be used. Films…

  15. Film Scriptwriting: A Practical Manual.

    ERIC Educational Resources Information Center

    Swain, Dwight V.

    Dealing with both documentary and feature films, this book is a guide to using particular tools and procedures in developing ideas and concepts for writing film scripts. Part one deals with the factual, or documentary, film and discusses the proposal outline, film treatment, sequence outline, shooting script, and narration writing. Part two…

  16. The Art of the Film.

    ERIC Educational Resources Information Center

    Lindgren, Ernest

    The author prefaces his consideration of films as an art form with a discussion of the mechanics of filmmaking. He describes the division of talent on a movie set, details the history of the tools of filmmakers, and explains the production and reproduction of a film. The influence of film techniques on plot development in a fiction film is…

  17. Thin film hydrogen sensor

    DOEpatents

    Cheng, Y.T.; Poli, A.A.; Meltser, M.A.

    1999-03-23

    A thin film hydrogen sensor includes a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end. 5 figs.

  18. Negative birefringent polyimide films

    NASA Technical Reports Server (NTRS)

    Harris, Frank W. (Inventor); Cheng, Stephen Z. D. (Inventor)

    1994-01-01

    A negative birefringent film, useful in liquid crystal displays, and a method for controlling the negative birefringence of a polyimide film is disclosed which allows the matching of an application to a targeted amount of birefringence by controlling the degree of in-plane orientation of the polyimide by the selection of functional groups within both the diamine and dianhydride segments of the polyimide which affect the polyimide backbone chain rigidity, linearity, and symmetry. The higher the rigidity, linearity and symmetry of the polyimide backbone, the larger the value of the negative birefringence of the polyimide film.

  19. Thin film hydrogen sensor

    DOEpatents

    Cheng, Yang-Tse; Poli, Andrea A.; Meltser, Mark Alexander

    1999-01-01

    A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

  20. Biomimetic thin film synthesis

    SciTech Connect

    Graff, G.L.; Campbell, A.A.; Gordon, N.R.

    1995-05-01

    The purpose of this program is to develop a new process for forming thin film coatings and to demonstrate that the biomimetic thin film technology developed at PNL is useful for industrial applications. In the biomimetic process, mineral deposition from aqueous solution is controlled by organic functional groups attached to the underlying substrate surface. The coatings process is simple, benign, inexpensive, energy efficient, and particularly suited for temperature sensitive substrate materials (such as polymers). In addition, biomimetic thin films can be deposited uniformly on complex shaped and porous substrates providing a unique capability over more traditional line-of-sight methods.

  1. Amorphous diamond films

    DOEpatents

    Falabella, S.

    1998-06-09

    Amorphous diamond films having a significant reduction in intrinsic stress are prepared by biasing a substrate to be coated and depositing carbon ions thereon under controlled temperature conditions. 1 fig.

  2. Nanostructured thermoplastic polyimide films

    SciTech Connect

    Aglan, Heshmat

    2015-05-19

    Structured films containing multi-walled carbon nanotubes ("MWCNTs") have enhanced mechanical performance in terms of strength, fracture resistance, and creep recovery of polyimide ("PI") films. Preferably, the loadings of MWCNTs can be in the range of 0.1 wt % to 0.5 wt %. The strength of the new PI films dried at 60.degree. C. increased by 55% and 72% for 0.1 wt % MWCNT and 0.5 wt % MWCNT loadings, respectively, while the fracture resistance increased by 23% for the 0.1 wt % MWCNTs and then decreases at a loading of 0.5 wt % MWCNTs. The films can be advantageously be created by managing a corresponding shift in the annealing temperature at which the maximum strength occurs as the MWCNT loadings increase.

  3. Sprites on Film

    NASA Video Gallery

    Filmed at 10,000 frames per second by Japan's NHK television, movies like this of electromagnetic bursts called "sprites" will help scientists better understand how weather high in the atmosphere r...

  4. TAMPERPROOF FILM BADGE

    DOEpatents

    Kocher, L.F.

    1958-10-01

    A persornel dosimeter film badge made of plastic, with provision for a picture of the wearer and an internal slide containing photographic film that is sensitive to various radiations, is described. Four windows made of differing material selectively attenuate alpha, beta, gamma rays, and neutrons so as to distinguish the particular type of radiation the wearer was subjected to. In addition, a lead shield has the identification number of the wearer perforated thereon so as to identify the film after processing. An internal magnetically actuated latch securely locks the slide within the body, and may be withdrawn only upon the external application of two strong magnetic forces in order to insure that the wearer or other curious persons will not accidentally expose the film to visual light.

  5. Magnetron sputtered boron films

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1998-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence.

  6. Magnetron sputtered boron films

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1998-06-16

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence. 8 figs.

  7. Magnetoresistance of Au films

    DOE PAGESBeta

    Zhang, D. L.; Song, X. H.; Zhang, X.; Zhang, Xiaoguang

    2014-12-10

    Measurement of the magnetoresistance (MR) of Au films as a function of temperature and film thickness reveals a strong dependence on grain size distribution and clear violation of the Kohler s rule. Using a model of random resistor network, we show that this result can be explained if the MR arises entirely from inhomogeneity due to grain boundary scattering and thermal activation of grain boundary atoms.

  8. Multifunctional thin film surface

    DOEpatents

    Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.

    2015-10-13

    A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.

  9. Polymer film composite transducer

    DOEpatents

    Owen, Thomas E.

    2005-09-20

    A composite piezoelectric transducer, whose piezoeletric element is a "ribbon wound" film of piezolectric material. As the film is excited, it expands and contracts, which results in expansion and contraction of the diameter of the entire ribbon winding. This is accompanied by expansion and contraction of the thickness of the ribbon winding, such that the sound radiating plate may be placed on the side of the winding.

  10. Fast Arc Delivery for Stereotactic Body Radiotherapy of Vertebral and Lung Tumors

    SciTech Connect

    Ong, Chin Loon; Verbakel, Wilko F.A.R.; Dahele, Max; Cuijpers, Johan P.; Slotman, Ben J.; Senan, Suresh

    2012-05-01

    Purpose: Flattening filter-free (FFF) beams with higher dose rates and faster delivery are now clinically available. The purpose of this planning study was to compare optimized non-FFF and FFF RapidArc plans for stereotactic body radiotherapy (SBRT) and to validate the accuracy of fast arc delivery. Methods and Material: Ten patients with peripheral lung tumors and 10 with vertebral metastases were planned using RapidArc with a flattened 6-MV photon beam and a 10-MV FFF beam for fraction doses of 7.5-18 Gy. Dosimetry of the target and organs at risk (OAR), number of monitor units (MU), and beam delivery times were assessed. GafChromic EBT2 film measurements of FFF plans were performed to compare calculated and delivered dose distributions. Results: No major dosimetric differences were seen between the two delivery techniques. For lung SBRT plans, conformity indices and OAR doses were similar, although the average MU required were higher with FFF plans. For vertebral SBRT, FFF plans provided comparable PTV coverage, with no significant differences in OAR doses. Average beam delivery times were reduced by a factor of up to 2.5, with all FFF fractions deliverable within 4 min. Measured FFF plans showed high agreement with calculated plans, with more than 99% of the area within the region of interest fulfilling the acceptance criterion. Conclusion: The higher dose rate of FFF RapidArc reduces delivery times significantly, without compromising plan quality or accuracy of dose delivery.

  11. Dosimetric impact of interplay effect in lung IMRT and VMAT treatment using in-house dynamic thorax phantom

    NASA Astrophysics Data System (ADS)

    Mukhlisin; Pawiro, S. A.

    2016-03-01

    Tumor motion due to patient's respiratory is a significant problem in radiotherapy treatment of lung cancer. The purpose of this project is to study the interplay effect through dosimetry verification between the calculated and delivered dose, as well as the dosimetric impact of leaf interplay with breathing-induced tumor motion in IMRT and VMAT treatment. In this study, a dynamic thorax phantom was designed and constructed for dosimetry measurement. The phantom had a linear sinusoidal tumor motion toward superior-inferior direction with variation of amplitudes and periods. TLD-100 LiF:Mg,Ti and Gafchromic EBT2 film were used to measure dose in the midpoint target and the spinal cord. The IMRT and VMAT treatment had prescription dose of 200 cGy per fraction. The dosimetric impact due to interplay effect during IMRT and VMAT treatment were resulted in the range of 0.5% to -6.6% and 0.9% to -5.3% of target dose reduction, respectively. Meanwhile, mean dose deviation of spinal cord in IMRT and VMAT treatment were around 1.0% to -6.9% and 0.9% to -6.3%, respectively. The results showed that if respiratory management technique were not implemented, the presence of lung tumor motion during dose delivery in IMRT and VMAT treatment causes dose discrepancies inside tumor volume.

  12. Use of 3D printers to create a patient-specific 3D bolus for external beam therapy.

    PubMed

    Burleson, Sarah; Baker, Jamie; Hsia, An Ting; Xu, Zhigang

    2015-01-01

    The purpose of this paper is to demonstrate that an inexpensive 3D printer can be used to manufacture patient-specific bolus for external beam therapy, and to show we can accurately model this printed bolus in our treatment planning system for accurate treatment delivery. Percent depth-dose measurements and tissue maximum ratios were used to determine the characteristics of the printing materials, acrylonitrile butadiene styrene and polylactic acid, as bolus material with physical density of 1.04 and 1.2 g/cm3, and electron density of 3.38 × 10²³ electrons/cm3 and 3.80 × 10²³ electrons/ cm3, respectively. Dose plane comparisons using Gafchromic EBT2 film and the RANDO phantom were used to verify accurate treatment planning. We accurately modeled a printing material in Eclipse treatment planning system, assigning it a Hounsfield unit of 260. We were also able to verify accurate treatment planning using gamma analysis for dose plane comparisons. With gamma criteria of 5% dose difference and 2 mm DTA, we were able to have 86.5% points passing, and with gamma criteria of 5% dose difference and 3 mm DTA, we were able to have 95% points passing. We were able to create a patient-specific bolus using an inexpensive 3D printer and model it in our treatment planning system for accurate treatment delivery.

  13. Comparison of selected dose calculation algorithms in radiotherapy treatment planning for tissues with inhomogeneities

    NASA Astrophysics Data System (ADS)

    Woon, Y. L.; Heng, S. P.; Wong, J. H. D.; Ung, N. M.

    2016-03-01

    Inhomogeneity correction is recommended for accurate dose calculation in radiotherapy treatment planning since human body are highly inhomogeneous with the presence of bones and air cavities. However, each dose calculation algorithm has its own limitations. This study is to assess the accuracy of five algorithms that are currently implemented for treatment planning, including pencil beam convolution (PBC), superposition (SP), anisotropic analytical algorithm (AAA), Monte Carlo (MC) and Acuros XB (AXB). The calculated dose was compared with the measured dose using radiochromic film (Gafchromic EBT2) in inhomogeneous phantoms. In addition, the dosimetric impact of different algorithms on intensity modulated radiotherapy (IMRT) was studied for head and neck region. MC had the best agreement with the measured percentage depth dose (PDD) within the inhomogeneous region. This was followed by AXB, AAA, SP and PBC. For IMRT planning, MC algorithm is recommended for treatment planning in preference to PBC and SP. The MC and AXB algorithms were found to have better accuracy in terms of inhomogeneity correction and should be used for tumour volume within the proximity of inhomogeneous structures.

  14. Planning and delivery comparison of six linac-based stereotactic radiosurgery techniques

    NASA Astrophysics Data System (ADS)

    Thakur, Varun Singh

    This work presents planning and delivery comparison of linac-based SRS treatment techniques currently available for single lesion cranial SRS. In total, two dedicated SRS systems (Novalis Tx, Cyberknife) and a HI-ART TomoTherapy system with six different delivery techniques are evaluated. Four delivery techniques are evaluated on a Novalis Tx system: circular cones, dynamic conformal arcs (DCA), static non-coplanar intensity modulated radiotherapy (NCP-IMRT), and volumetric modulated arc therapy (RapidArc) techniques are compared with intensity modulation based helical Tomotherapy on the HI-ART Tomotherapy system and with non-isocentric, multiple overlapping based robotic radiosurgery using the CyberKnife system. Thirteen patients are retrospectively selected for the study. The target volumes of each patient are transferred to a CT scan of a Lucy phantom (Standard Imaging Inc., Middleton, WI, USA) designed for end-to-end SRS QA. In order to evaluate the plans, several indices scoring the conformality, homogeneity and gradients in the plan are calculated and compared for each of the plans. Finally, to check the clinical deliverability of the plans and the delivery accuracy of different systems, a few targets are delivered on each system. A comparison between planned dose on treatment planning system and dose delivered on Gafchromic EBT film (ISP, Wayne, New Jersey, USA) is carried out by comparing dose beam profiles, isodose lines and by calculating gamma index.

  15. Dosimetry of a Small-Animal Irradiation Model using a 6 MV Linear Accelerator

    SciTech Connect

    Fitch, F. Moran; Martinez-Davalos, A.; Garcia-Garduno, O. A.

    2010-12-07

    A custom made rat-like phantom was used to measure dose distributions using a 6 MV linear accelerator. The phantom has air cavities that simulate the lungs and cylindrical inserts that simulate the backbone. The calculated dose distributions were obtained with the BrainScan v.5.31 TPS software. For the irradiation two cases were considered: (a) near the region where the phantom has two air cavities that simulate the lungs, and (b) with an entirely uniform phantom. The treatment plan consisted of two circular cone arcs that imparted a 500 cGy dose to a simulated lesion in the backbone. We measured dose distributions using EBT2 GafChromic film and an Epson Perfection V750 scanner working in transmission mode. Vertical and horizontal profiles, isodose curves from 50 to 450 cGy, dose and distance to agreement (DTA) histograms and Gamma index were obtained to compare the dose distributions using DoseLab v4.11. As a result, these calculations show very good agreement between calculated and measured dose distribution in both cases. With a 2% 2 mm criteria 100% of the points pass the Gamma test for the uniform case, while 98.9% of the points do it for the lungs case.

  16. Glass beads and Ge-doped optical fibres as thermoluminescence dosimeters for small field photon dosimetry

    NASA Astrophysics Data System (ADS)

    Jafari, S. M.; Alalawi, A. I.; Hussein, M.; Alsaleh, W.; Najem, M. A.; Hugtenburg, R. P.; Bradley, D. A.; Spyrou, N. M.; Clark, C. H.; Nisbet, A.

    2014-11-01

    An investigation has been made of glass beads and optical fibres as novel dosimeters for small-field photon radiation therapy dosimetry. Commercially available glass beads of largest dimension 1.5 mm and GeO2-doped SiO2 optical fibres of 5 mm length and 120 µm diameter were characterized as thermoluminescence dosimeters. Results were compared against Monte-Carlo simulations with BEAMnrc/DOSXYZnrc, EBT3 Gafchromic film, and a high-resolution 2D-array of liquid-filled ionization chambers. Measurements included relative output factors and dose profiles for square-field sizes of 1, 2, 3, 4, and 10 cm. A customized Solid-Water® phantom was employed, and the beads and fibres were placed at defined positions along the longitudinal axis to allow accurate beam profile measurement. Output factors and the beam profile parameters were compared against those calculated by BEAMnrc/DOSXYZnrc. The output factors and field width measurements were found to be in agreement with reference measurements to within better than 3.5% for all field sizes down to 2 cm2 for both dosimetric systems, with the beads showing a discrepancy of no more than 2.8% for all field sizes. The results confirm the potential of the beads and fibres as thermoluminescent dosimeters for use in small photon radiation field sizes.

  17. Glass beads and Ge-doped optical fibres as thermoluminescence dosimeters for small field photon dosimetry.

    PubMed

    Jafari, S M; Alalawi, A I; Hussein, M; Alsaleh, W; Najem, M A; Hugtenburg, R P; Bradley, D A; Spyrou, N M; Clark, C H; Nisbet, A

    2014-11-21

    An investigation has been made of glass beads and optical fibres as novel dosimeters for small-field photon radiation therapy dosimetry. Commercially available glass beads of largest dimension 1.5 mm and GeO2-doped SiO2 optical fibres of 5 mm length and 120 µm diameter were characterized as thermoluminescence dosimeters. Results were compared against Monte-Carlo simulations with BEAMnrc/DOSXYZnrc, EBT3 Gafchromic film, and a high-resolution 2D-array of liquid-filled ionization chambers. Measurements included relative output factors and dose profiles for square-field sizes of 1, 2, 3, 4, and 10 cm. A customized Solid-Water® phantom was employed, and the beads and fibres were placed at defined positions along the longitudinal axis to allow accurate beam profile measurement. Output factors and the beam profile parameters were compared against those calculated by BEAMnrc/DOSXYZnrc. The output factors and field width measurements were found to be in agreement with reference measurements to within better than 3.5% for all field sizes down to 2 cm2 for both dosimetric systems, with the beads showing a discrepancy of no more than 2.8% for all field sizes. The results confirm the potential of the beads and fibres as thermoluminescent dosimeters for use in small photon radiation field sizes.

  18. Capacitor film surface assessment studies

    NASA Astrophysics Data System (ADS)

    Galperin, I.; White, W.

    1985-02-01

    In the present investigation of the optical surface of the three widely used, biaxially oriented capacitor films, polypropylene, polyvinylidene fluoride, and polyester, with attention to film surface defects and thickness variation, the defects and their rate of occurrence proved traceable in terms of polymer structure, chemical grouping, and fabrication processing. Film thickness variation was small, yet differed for each film type. Film breakdown voltages have been determined, and alternative causes for the voltage values obtained are proposed. A reciprocal relation is noted between the film breakdown voltage and the dielectric constant.

  19. Epitaxial thin films

    DOEpatents

    Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan

    2006-04-25

    Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.

  20. Virus-PEDOT Biocomposite Films

    PubMed Central

    Donavan, Keith C.; Arter, Jessica A.

    2012-01-01

    Virus-poly(3,4-ethylenedioxythiophene) (virus-PEDOT) biocomposite films are prepared by electropolymerizing 3,4-ethylenedioxythiophene (EDOT) in aqueous electrolytes containing 12 mM LiClO4 and the bacteriophage M13. The concentration of virus in these solutions, [virus]soln, is varied from 3 nM to 15 nM. A quartz crystal microbalance is used to directly measure the total mass of the biocomposite film during its electrodeposition. In combination with a measurement of the electrodeposition charge, the mass of the virus incorporated into the film is calculated. These data show that concentration of the M13 within the electropolymerized film, [virus]film, increases linearly with [virus]soln. The incorporation of virus particles into the PEDOT film from solution is efficient, resulting in a concentration ratio: [virus]film:[virus]soln ≈450. Virus incorporation into the PEDOT causes roughening of the film topography that is observed using scanning electron microscopy and atomic force microscopy (AFM). The electrical conductivity of the virus-PEDOT film, measured perpendicular to the plane of the film using conductive tip AFM, decreases linearly with virus loading, from 270 μS/cm for pure PE-DOT films to 50 μS/cm for films containing 100 μM virus. The presence on the virus surface of displayed affinity peptides did not significantly influence the efficiency of incorporation into virus-PEDOT biocomposite films. PMID:22856875

  1. Sensitometric properties of radiographic films and film classification

    NASA Astrophysics Data System (ADS)

    Siidorow, A.

    An attempt was made to elucidate those film characteristics which affect the radiographic image quality and which could be used as the basis of film classification. A literary survey showed that it is apparently impossible to measure the most important film characteristics, i.e., graininess and granularity, in a reliable and simple way. An existing classification method based on a visual comparison of film graininess is recommended.

  2. Filming eugenics: teaching the history of eugenics through film.

    PubMed

    Ooten, Melissa; Trembanis, Sarah

    2007-01-01

    In teaching eugenics to undergraduate students and general public audiences, film should he considered as a provocative and fruitful medium that can generate important discussions about the intersections among eugenics, gender, class, race, and sexuality. This paper considers the use of two films, A Bill of Divorcement and The Lynchburg Story, as pedagogical tools for the history of eugenics. The authors provide background information on the films and suggestions for using the films to foster an active engagement with the historical eugenics movement.

  3. On the suitability of ultrathin detectors for absorbed dose assessment in the presence of high-density heterogeneities

    SciTech Connect

    Bueno, M. Duch, M. A.; Carrasco, P.; Jornet, N.; Muñoz-Montplet, C.

    2014-08-15

    Purpose: The aim of this study was to evaluate the suitability of several detectors for the determination of absorbed dose in bone. Methods: Three types of ultrathin LiF-based thermoluminescent dosimeters (TLDs)—two LiF:Mg,Cu,P-based (MCP-Ns and TLD-2000F) and a{sup 7}Li-enriched LiF:Mg,Ti-based (MTS-7s)—as well as EBT2 Gafchromic films were used to measure percentage depth-dose distributions (PDDs) in a water-equivalent phantom with a bone-equivalent heterogeneity for 6 and 18 MV and a set of field sizes ranging from 5×5 cm{sup 2} to 20×20 cm{sup 2}. MCP-Ns, TLD-2000F, MTS-7s, and EBT2 have active layers of 50, 20, 50, and 30 μm, respectively. Monte Carlo (MC) dose calculations (PENELOPE code) were used as the reference and helped to understand the experimental results and to evaluate the potential perturbation of the fluence in bone caused by the presence of the detectors. The energy dependence and linearity of the TLDs’ response was evaluated. Results: TLDs exhibited flat energy responses (within 2.5%) and linearity with dose (within 1.1%) within the range of interest for the selected beams. The results revealed that all considered detectors perturb the electron fluence with respect to the energy inside the bone-equivalent material. MCP-Ns and MTS-7s underestimated the absorbed dose in bone by 4%–5%. EBT2 exhibited comparable accuracy to MTS-7s and MCP-Ns. TLD-2000F was able to determine the dose within 2% accuracy. No dependence on the beam energy or field size was observed. The MC calculations showed that a50 μm thick detector can provide reliable dose estimations in bone regardless of whether it is made of LiF, water or EBT’s active layer material. Conclusions: TLD-2000F was found to be suitable for providing reliable absorbed dose measurements in the presence of bone for high-energy x-ray beams.

  4. A practical three-dimensional dosimetry system for radiation therapy.

    PubMed

    Guo, Pengyi; Adamovics, John; Oldham, Mark

    2006-10-01

    There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE) and a commercial optical computed tomography (CT) scanning system (OCTOPUS). PRESAGE is a transparent material with compelling properties for dosimetry, including insensitivity of the dose response to atmospheric exposure, a solid texture negating the need for an external container (reducing edge effects), and amenability to accurate optical CT scanning due to radiochromic optical contrast as opposed to light-scattering contrast. An evaluation of the performance and viability of the PRESAGE/OCTOPUS, combination for routine clinical 3D dosimetry is presented. The performance of the two components (scanner and dosimeter) was investigated separately prior to full system test. The optical CT scanner has a spatial resolution of < or = 1 mm, geometric accuracy within 1 mm, and high reconstruction linearity (with a R2 value of 0.9979 and a standard error of estimation of approximately 1%) relative to independent measurement. The overall performance of the PRESAGE/OCTOPUS system was evaluated with respect to a simple known 3D dose distribution, by comparison with GAFCHROMIC EBT film and the calculated dose from a commissioned planning system. The "measured" dose distribution in a cylindrical PRESAGE dosimeter (16 cm diameter and 11 cm height) was determined by optical-CT, using a filtered backprojection reconstruction algorithm. A three-way Gamma map comparison (4% dose difference and 4 mm distance to agreement), between the PRESAGE, EBT and calculated dose distributions, showed full agreement in measurable region of PRESAGE dosimeter (approximately 90% of radius). The EBT and PRESAGE distributions agreed

  5. A practical three-dimensional dosimetry system for radiation therapy.

    PubMed

    Guo, Pengyi; Adamovics, John; Oldham, Mark

    2006-10-01

    There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE) and a commercial optical computed tomography (CT) scanning system (OCTOPUS). PRESAGE is a transparent material with compelling properties for dosimetry, including insensitivity of the dose response to atmospheric exposure, a solid texture negating the need for an external container (reducing edge effects), and amenability to accurate optical CT scanning due to radiochromic optical contrast as opposed to light-scattering contrast. An evaluation of the performance and viability of the PRESAGE/OCTOPUS, combination for routine clinical 3D dosimetry is presented. The performance of the two components (scanner and dosimeter) was investigated separately prior to full system test. The optical CT scanner has a spatial resolution of < or = 1 mm, geometric accuracy within 1 mm, and high reconstruction linearity (with a R2 value of 0.9979 and a standard error of estimation of approximately 1%) relative to independent measurement. The overall performance of the PRESAGE/OCTOPUS system was evaluated with respect to a simple known 3D dose distribution, by comparison with GAFCHROMIC EBT film and the calculated dose from a commissioned planning system. The "measured" dose distribution in a cylindrical PRESAGE dosimeter (16 cm diameter and 11 cm height) was determined by optical-CT, using a filtered backprojection reconstruction algorithm. A three-way Gamma map comparison (4% dose difference and 4 mm distance to agreement), between the PRESAGE, EBT and calculated dose distributions, showed full agreement in measurable region of PRESAGE dosimeter (approximately 90% of radius). The EBT and PRESAGE distributions agreed

  6. A practical three-dimensional dosimetry system for radiation therapy

    SciTech Connect

    Guo Pengyi; Adamovics, John; Oldham, Mark

    2006-10-15

    There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE trade mark sign ) and a commercial optical computed tomography (CT) scanning system (OCTOPUS trade mark sign ). PRESAGE trade mark sign is a transparent material with compelling properties for dosimetry, including insensitivity of the dose response to atmospheric exposure, a solid texture negating the need for an external container (reducing edge effects), and amenability to accurate optical CT scanning due to radiochromic optical contrast as opposed to light-scattering contrast. An evaluation of the performance and viability of the PRESAGE trade mark sign /OCTOPUS, combination for routine clinical 3D dosimetry is presented. The performance of the two components (scanner and dosimeter) was investigated separately prior to full system test. The optical CT scanner has a spatial resolution of {<=}1 mm, geometric accuracy within 1 mm, and high reconstruction linearity (with a R{sup 2} value of 0.9979 and a standard error of estimation of {approx}1%) relative to independent measurement. The overall performance of the PRESAGE trade mark sign /OCTOPUS system was evaluated with respect to a simple known 3D dose distribution, by comparison with GAFCHROMIC[reg] EBT film and the calculated dose from a commissioned planning system. The 'measured' dose distribution in a cylindrical PRESAGE trade mark sign dosimeter (16 cm diameter and 11 cm height) was determined by optical-CT, using a filtered backprojection reconstruction algorithm. A three-way Gamma map comparison (4% dose difference and 4 mm distance to agreement), between the PRESAGE trade mark sign , EBT and calculated dose distributions, showed full

  7. From Written Film History to Visual Film History.

    ERIC Educational Resources Information Center

    Petric, Vladimir

    The poor quality of most university courses in film history is due to several factors, among them the fact that there is insufficient analytical documentation and direct cinematic illustration in existent written film histories. These histories examine films on a thematic level, offering noncinematic interpretation such as literary meaning, social…

  8. Depositing Adherent Ag Films On Ti Films On Alumina

    NASA Technical Reports Server (NTRS)

    Honecy, Frank S.

    1995-01-01

    Report discusses cleaning of ceramic (principally, alumina) substrates in preparation for sputter deposition of titanium intermediate films on substrates followed by sputter deposition of outer silver films. Principal intended application, substrates sliding parts in advanced high-temperature heat engines, and outer silver films serve as solid lubricants: lubricating properties described in "Solid Lubricant for Alumina" (LEW-15495).

  9. Thin films and uses

    DOEpatents

    Baskaran, Suresh; Graff, Gordon L.; Song, Lin

    1998-01-01

    The invention provides a method for synthesizing a titanium oxide-containing film comprising the following steps: (a) preparing an aqueous solution of a titanium chelate with a titanium molarity in the range of 0.01M to 0.6M. (b) immersing a substrate in the prepared solution, (c) decomposing the titanium chelate to deposit a film on the substrate. The titanium chelate maybe decomposed acid, base, temperature or other means. A preferred method provides for the deposit of adherent titanium oxide films from C2 to C5 hydroxy carboxylic acids. In another aspect the invention is a novel article of manufacture having a titanium coating which protects the substrate against ultraviolet damage. In another aspect the invention provides novel semipermeable gas separation membranes, and a method for producing them.

  10. Thin film photovoltaics

    SciTech Connect

    Zweibel, K; Ullal, H S

    1989-05-01

    Thin films are considered a potentially attractive technological approach to making cost-effective electricity by photovoltaics. Over the last twenty years, many have been investigated and some (cadmium telluride, copper indium diselenide, amorphous silicon) have become leading candidates for future large-scale commercialization. This paper surveys the past development of these key thin films and gives their status and future prospects. In all cases, significant progress toward cost-effective PV electricity has been made. If this progress continues, it appears that thin film PV could provide electricity that is competitive for summer daytime peaking power requirements by the middle of the 1990s; and electricity in a range that is competitive with fossil fuel costs (i.e., 6 cents/kilowatt-hour) should be available from PV around the turn of the century. 22 refs., 9 figs.

  11. A multilayer sonic film

    NASA Astrophysics Data System (ADS)

    Munteanu, L.; Chiroiu, V.; Sireteanu, T.; Dumitriu, D.

    2015-10-01

    A non-periodic multilayer film was analyzed to show that, despite its non-periodicity, the film exhibits full band-gaps and localized modes at its interfaces, as well as in the sonic composites. The film consists of alternating layers of two different materials that follow a triadic Cantor sequence. The Cantor structure shows extremely low thresholds for subharmonic generation of ultrasonic waves, compared with homogeneous and periodic structures. The coupling between the extended-mode (phonon) and the localized-mode (fracton) vibration regimes explains the generation of full band-gaps, for which there are no propagating Lamb waves. The large enhancement of the nonlinear interaction results from a more favorable frequency and spatial matching of coupled modes. A full band-gap that excludes Love waves is also analyzed.

  12. Photographic film image enhancement

    NASA Technical Reports Server (NTRS)

    Horner, J. L.

    1975-01-01

    A series of experiments were undertaken to assess the feasibility of defogging color film by the techniques of optical spatial filtering. A coherent optical processor was built using red, blue, and green laser light input and specially designed Fourier transformation lenses. An array of spatial filters was fabricated on black and white emulsion slides using the coherent optical processor. The technique was first applied to laboratory white light fogged film, and the results were successful. However, when the same technique was applied to some original Apollo X radiation fogged color negatives, the results showed no similar restoration. Examples of each experiment are presented and possible reasons for the lack of restoration in the Apollo films are discussed.

  13. Thin film interconnect processes

    NASA Astrophysics Data System (ADS)

    Malik, Farid

    Interconnects and associated photolithography and etching processes play a dominant role in the feature shrinkage of electronic devices. Most interconnects are fabricated by use of thin film processing techniques. Planarization of dielectrics and novel metal deposition methods are the focus of current investigations. Spin-on glass, polyimides, etch-back, bias-sputtered quartz, and plasma-enhanced conformal films are being used to obtain planarized dielectrics over which metal films can be reliably deposited. Recent trends have been towards chemical vapor depositions of metals and refractory metal silicides. Interconnects of the future will be used in conjunction with planarized dielectric layers. Reliability of devices will depend to a large extent on the quality of the interconnects.

  14. Thin film temperature sensor

    NASA Technical Reports Server (NTRS)

    Grant, H. P.; Przybyszewski, J. S.

    1980-01-01

    Thin film surface temperature sensors were developed. The sensors were made of platinum-platinum/10 percent rhodium thermocouples with associated thin film-to-lead wire connections and sputtered on aluminum oxide coated simulated turbine blades for testing. Tests included exposure to vibration, low velocity hydrocarbon hot gas flow to 1250 K, and furnace calibrations. Thermal electromotive force was typically two percent below standard type S thermocouples. Mean time to failure was 42 hours at a hot gas flow temperature of 1250 K and an average of 15 cycles to room temperature. Failures were mainly due to separation of the platinum thin film from the aluminum oxide surface. Several techniques to improve the adhesion of the platinum are discussed.

  15. Alternate film dielectric materials

    SciTech Connect

    Foster, J.C. . Neutron Devices Dept.); Harris, J.O.; Martinez, J.I. )

    1990-01-01

    This paper presents data on polymeric dielectric films evaluated to support the design of high-energy-density capacitors. Evaluated materials include polycarbonate (two sources), polyphenylene sulfide, polyvinylidene fluoride, polyethermide (three sources), polyimide (four sources), polyethersulfone, and polyetherether ketone. A polyester was evaluated as the control material since many of our prior designs utilized this dielectric. The film evaluations were based on dielectric constant and dissipation factor variation as a function of temperature from {minus}55{degree}C to 300{degree}C, as well as dielectric breakdown strength. Additionally, film/foil capacitors in a dry, wrap-and-fill configuration were fabricated and tested to determine insulation resistance, breakdown voltage, and radiation hardness. Results will be presented for all the evaluations based on the several criteria. 7 refs., 4 figs., 4 tabs.

  16. SU-E-T-384: Experimental Verification of a Monte Carlo Linear Accelerator Model Using a Radiochromic Film Stack Dosimeter

    SciTech Connect

    McCaw, T; Culberson, W; DeWerd, L

    2014-06-01

    Purpose: To experimentally verify a Monte Carlo (MC) linear accelerator model for the simulation of intensity-modulated radiation therapy (IMRT) treatments of moving targets. Methods: A Varian Clinac™ 21EX linear accelerator was modeled using the EGSnrc user code BEAMnrc. The mean energy, radial-intensity distribution, and divergence of the electron beam incident on the bremsstrahlung target were adjusted to achieve agreement between simulated and measured percentage-depth-dose and transverse field profiles for a 6 MV beam. A seven-field step-and-shoot IMRT lung procedure was prepared using Varian Eclipse™ treatment planning software. The plan was delivered using a Clinac™ 21EX linear accelerator and measured with a Gafchromic™ EBT2 film stack dosimeter (FSD) in two separate static geometries: within a cylindrical water-equivalent-plastic phantom and within an anthropomorphic chest phantom. Two measurements were completed in each setup. The dose distribution for each geometry was simulated using the EGSnrc user code DOSXYZnrc. MC geometries of the treatment couch, cylindrical phantom, and chest phantom were developed by thresholding CT data sets using MATLAB™. The FSD was modeled as water. The measured and simulated dose distributions were normalized to the median dose within the FSD. Results: Using an electron beam with a mean energy of 6.05 MeV, a Gaussian radial-intensity distribution with a full width at half maximum of 1.5 mm, and a divergence of 0°, the measured and simulated dose profiles agree within 1.75% and 1 mm. Measured and simulated dose distributions within both the cylindrical and chest phantoms agree within 3% over 94% of the FSD volume. The overall uncertainty in the FSD measurements is 3.1% (k=1). Conclusion: MC simulations agree with FSD measurements within measurement uncertainty, thereby verifying the accuracy of the linear accelerator model for the simulation of IMRT treatments of static geometries. The experimental verification

  17. Thin films for material engineering

    NASA Astrophysics Data System (ADS)

    Wasa, Kiyotaka

    2016-07-01

    Thin films are defined as two-dimensional materials formed by condensing one by one atomic/molecular/ionic species of matter in contrast to bulk three-dimensional sintered ceramics. They are grown through atomic collisional chemical reaction on a substrate surface. Thin film growth processes are fascinating for developing innovative exotic materials. On the basis of my long research on sputtering deposition, this paper firstly describes the kinetic energy effect of sputtered adatoms on thin film growth and discusses on a possibility of room-temperature growth of cubic diamond crystallites and the perovskite thin films of binary compound PbTiO3. Secondly, high-performance sputtered ferroelectric thin films with extraordinary excellent crystallinity compatible with MBE deposited thin films are described in relation to a possible application for thin-film MEMS. Finally, the present thin-film technologies are discussed in terms of a future material science and engineering.

  18. The Nuclear Debate in Film

    ERIC Educational Resources Information Center

    Dowling, John

    1977-01-01

    Provides a nuclear film bibliography grouped into the areas of: building and using the bomb; living with the bomb; and living with nuclear power. These films are for mature high school students and older. (MLH)

  19. Holographic analysis of thin films

    NASA Technical Reports Server (NTRS)

    Norden, B. N.; Williams, J. R.

    1970-01-01

    Technique for monitoring deposition of films on surfaces, in place on a real-time basis, reads both the thickness and the uniformity of the deposited film. Holograms are produced from both reflected and transmitted light on one plate.

  20. Foundation for Film and Science

    ERIC Educational Resources Information Center

    van der Veen, G.

    1976-01-01

    Provides a comprehensive discussion on the Stichting Film en Wetenschap, SFW (Foundation for Film and Science), in Utrecht. Various aspects of the use of audio-visual aids in university teaching are looked at in detail. (Editor/RK)

  1. Thin film solar cell workshop

    NASA Technical Reports Server (NTRS)

    Armstrong, Joe; Jeffrey, Frank

    1993-01-01

    A summation of responses to questions posed to the thin-film solar cell workshop and the ensuing discussion is provided. Participants in the workshop included photovoltaic manufacturers (both thin film and crystalline), cell performance investigators, and consumers.

  2. Thin film ceramic thermocouples

    NASA Technical Reports Server (NTRS)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  3. Thin film photovoltaic device

    DOEpatents

    Catalano, Anthony W.; Bhushan, Manjul

    1982-01-01

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.

  4. Current Film Periodicals in English. Revised Edition.

    ERIC Educational Resources Information Center

    Reilly, Adam, Comp.

    This bibliography of about 200 periodicals dealing with film covers several types of magazine: scholarly journals on film aesthetics, like "The Film Journal"; news notes for movie fans, like "Film Nut News"; magazines which cover films as well as the other arts, like "Cue" and "After Dark"; film education periodicals, like "Media and Methods";…

  5. Filming in decontamination by mopping

    SciTech Connect

    Rankin, W.N.; Toole, P.A.

    1993-09-28

    Technical assistance was provided High Level Waste Engineering in the investigation and prevention of filming during decontamination by mopping. After mopping operations in a Tank Farm application, a film of the cleaning agent sometimes remained on the surface being cleaned which interfered with monitoring to detect the presence of radioactive material. Scoping tests were conducted to investigate filming characteristics of two cleaning materials. In addition, rinsing test were conducted to demonstrate how filming can be prevented.

  6. NMR characterization of thin films

    DOEpatents

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  7. NMR characterization of thin films

    DOEpatents

    Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  8. Dual clearance squeeze film damper

    NASA Technical Reports Server (NTRS)

    Fleming, D. P. (Inventor)

    1985-01-01

    A dual clearance hydrodynamic liquid squeeze film damper for a gas turbine engine is described. Under normal operating conditions, the device functions as a conventional squeeze film damper, using only one of its oil films. When an unbalance reaches abusive levels, as may occur with a blade loss or foreign object damage, a second, larger clearance film becomes active, controlling vibration amplitudes in a near optimum manner until the engine can be safely shut down and repaired.

  9. Film Images of the Negro.

    ERIC Educational Resources Information Center

    Manchel, Frank

    1967-01-01

    Educators can help students recognize the value of the motion picture as a social influence by exposing them to film stereotyping and the effect of this distortion on society. A historical study of the film image of the Negro will show him emerging from a humorous, fearful, "perverted" character in early films to "an unfortunate member of society"…

  10. Radical Pedagogy, Prison, and Film

    ERIC Educational Resources Information Center

    O'Neill, Dierdre

    2015-01-01

    This article explores the work of The Inside Film project. Inside Film works with a specific group of people (prisoners and ex-prisoners) in a particular set of circumstances (in prison or on parole) exploring how film making can be used within prison education or with people who have been to prison as a means of fostering a critical engagement…

  11. Longevity Of Dry Film Lubricants

    NASA Technical Reports Server (NTRS)

    Kannel, J. W.; Stockwell, R. D.

    1993-01-01

    Report describes evaluation of dry film lubricants candidate for use in rotary joints of proposed Space Station. Study included experiments and theoretical analyses focused on longevity of sputtered molybdenum disulfide films and ion-plated lead films under conditions partially simulating rolling contact.

  12. SU-E-T-446: Evaluation of the Dosimetric Properties of a Diode Detector to Proton Radiosurgery

    SciTech Connect

    Teran, A; McAuley, G; Slater, J M; Slater, J D; Wroe, A

    2014-06-01

    Purpose: To test the PTW PR60020 proton dosimetry diode in radiation fields relevant to proton radiosurgery applications and evaluate its suitability as a high resolution, real time dosimetry device. Methods: Data was collected using our standard nominal radiosurgery energies of 126 MeV and 155 MeV through a single stage scattering system, corresponding to a range of 9.7 and 15 cm in water respectively. Various beam modulations were tested as part of this study. Depth dose and beam profile measurements were completed with the PTW PR60020 dosimetry diode with comparative measurements using a PTW Markus ionization chamber and EBT2 Gafchromic film. Monte Carlo simulations were also completed for comparison. Results: The single 1 mm{sup 2} by 20 μm thick sensitive volume allowed for high spatial resolution measurements while maintaining sufficient sensitive volume to ensure that measurements could be completed without excessive beam delivery. Depth dose profiles exhibited negligible LET dependence which typically impacts film and other solid state dosimetry devices, while beam ranges measured with the PTW diode were within 1 mm of ion chamber data. In an edge on arrangement beam profiles were also measured within 0.5 mm full-width at half-maximum at various depths as compared to film and simulation data. Conclusion: The PTW PR60020 proved to be a very useful radiation metrology apparatus for proton radiosurgery applications. Its waterproof and rugged construction allowed for easy deployment in phantoms or water tanks that are commonly used in proton radiosurgery QA. Dosimetrically, the diode exhibited negligible LET dependence as a function of depth, while in edge on arrangement to the incident proton beam it facilitated the measurement of beam profiles with a spatial resolution comparable to both Monte Carlo and film measurements. This project was sponsored in part by funding from the Department of Defense (DOD# W81XWH-BAA-10-1)

  13. SU-E-T-104: Development of 3 Dimensional Dosimetry System for Gamma Knife

    SciTech Connect

    Yoon, K; Kwak, J; Cho, B; Lee, D; Ahn, S

    2014-06-01

    Purpose: The aim of this study was to develop a new 3 dimensional dosimetry system to verify the dosimetric accuracy of Leksell Gamma Knife-Perfexion™ (LGK) (Elekta, Norcross, GA). Methods: We designed and manufactured a lightweight dosimetry instrument to be equipped with the head frame to LGK. It consists of a head phantom, a scintillator, a CCD camera and a step motor. The 10×10 cm2 sheet of Gd2O3;Tb phosphor or Gafchromic EBT3 film was located at the center of the 16 cm diameter hemispherical PMMA, the head phantom. The additional backscatter compensating material of 1 cm thick PMMA plate was placed downstream of the phosphor sheet. The backscatter plate was transparent for scintillation lights to reach the CCD camera with 1200×1200 pixels by 5.2 um pitch. With This equipment, 300 images with 0.2 mm of slice gap were acquired under three collimator setups (4mm, 8mm and 16mm), respectively. The 2D projected doses from 3D distributions were compared with the exposured film dose. Results: As all doses normalized by the maximum dose value in 16 mm setup, the relative differences between the equipment dose and film dose were 0.2% for 4mm collimator and 0.5% for 8mm. The acquisition of 300 images by the equipment took less than 3 minutes. Conclusion: The new equipment was verified to be a good substitute to radiochromic film, with which required more time and resources. Especially, the new methods was considered to provide much convenient and faster solution in the 3D dose acquisition for LGK.

  14. Dosimetric perturbation from cloth and paper gowns for total skin electron irradiation.

    PubMed

    Steinman, James P; Hopkins, Shane L; Wang, Iris Z

    2013-01-01

    Traditionally, total skin electron patients remove all clothing for treatment. It is generally assumed that this is best for the treatment of superficial skin lesions out of concern clothing may significantly perturb dose. We investigate the dosimetric effect of patient gowns and determine the necessity of treating patients naked. Using GAFCHROMIC EBT2 film, dose to a cylindrical phantom was measured with cloth, paper, and tri-layer cloth gowns, compared to no covering. A 6 MeV electron beam with spoiler accessory was used at ~ 4 meters source-to-skin distance. The gantry was angled at 248° and 292°. The phantom was rotated at -60°, 0°, and 60° relative to the beam's central axis, simulating the Stanford technique. This was also repeated for films sandwiched between the phantom's discs. Using a Markus chamber, the effect of air gaps of 0 to 5 cm in cloth and paper gowns was measured. The water equivalent attenuation of the gowns was determined through transmission studies. Compared to no covering, films placed on the phantom surface revealed an average increase of 0.8% in dose for cloth, 1.8% for tri-layered cloth, and 0.7% for paper. Films sandwiched within the phantom showed only slight shift of the percent depth-dose curves. Markus chamber readings revealed 1.4% for tri-layered cloth, and < 0.2% for single layer cloth or paper. Air gaps appeared to have a minimal effect. Transmission measurements found that one layer of cloth is equal to 0.2mm of solid water. Cloth and paper gowns appear to slightly increase the dose to the skin, but will not introduce any significant dose perturbation (<1%). Gowns having folds and extra layers will have a small additional perturbation (<2%). To minimize perturbation, one should smooth out any folds or remove any pockets that form extra layers on the gown.

  15. Methods for producing complex films, and films produced thereby

    DOEpatents

    Duty, Chad E.; Bennett, Charlee J. C.; Moon, Ji -Won; Phelps, Tommy J.; Blue, Craig A.; Dai, Quanqin; Hu, Michael Z.; Ivanov, Ilia N.; Jellison, Jr., Gerald E.; Love, Lonnie J.; Ott, Ronald D.; Parish, Chad M.; Walker, Steven

    2015-11-24

    A method for producing a film, the method comprising melting a layer of precursor particles on a substrate until at least a portion of the melted particles are planarized and merged to produce the film. The invention is also directed to a method for producing a photovoltaic film, the method comprising depositing particles having a photovoltaic or other property onto a substrate, and affixing the particles to the substrate, wherein the particles may or may not be subsequently melted. Also described herein are films produced by these methods, methods for producing a patterned film on a substrate, and methods for producing a multilayer structure.

  16. Paradoxes in Film Ratings

    ERIC Educational Resources Information Center

    Moore, Thomas L.

    2006-01-01

    The author selected a simple random sample of 100 movies from the "Movie and Video Guide" (1996), by Leonard Maltin. The author's intent was to obtain some basic information on the population of roughly 19,000 movies through a small sample. The "Movie and Video Guide" by Leonard Maltin is an annual ratings guide to movies. While not all films ever…

  17. Film, Radio, and Television.

    ERIC Educational Resources Information Center

    Hardesty, Carolyn, Ed.

    1990-01-01

    This journal issue covers the history of film, radio, and television in Iowa. The first article, "When Pictures and Sound Came to Iowa," summarizes the origin of movies and radio and their early beginnings in Iowa. Using old photographs and measurement charts, the viewing, reading, and listening habits of young people in 1950 and 1958 are…

  18. Films on Deafness.

    ERIC Educational Resources Information Center

    Parlato, Salvatore J., Jr., Comp.

    This filmography on deafness, which contains summaries of 192 16mm films arranged in alphabetical order by title, covers a wide variety of topics as evidenced by the categorical title index: communication, the nature of deafness, detection and measurement of deafness, education and training, multi-handicaps, and noise pollution. Running time, date…

  19. Soap Films and Bubbles.

    ERIC Educational Resources Information Center

    Rice, Karen

    1986-01-01

    Develops and explains a format for a workshop which focuses on soap films and bubbles. The plan consists of: a discussion to uncover what children know about bubbles; explanations of the demonstration equipment; the presentation itself; the assembly of the workshop kit; and time to play with the bubbles. (ML)

  20. Museums With Film Programs.

    ERIC Educational Resources Information Center

    Melton, Hollis, Comp.

    Selectively listed by state are the names and addresses of museums in the U.S., Canada, and Puerto Rico which feature film programs as part of their regular activities. The list, acknowledged to be less than complete, includes some natural history and science museums, some anthropology museums, and state and county historical societies. The…

  1. Rating Films on TV.

    ERIC Educational Resources Information Center

    Herman, Ginette; Leyens, Jacques-Philippe

    1977-01-01

    An analysis of the film viewing habits of Belgian television viewers reveals that movies with advisories regarding sex and violence are watched more than the movies without them. However, movies with qualifications tend to be judged less interesting than movies without qualifications. (JMF)

  2. Films in Depth.

    ERIC Educational Resources Information Center

    Schrievogel, Paul A.; Prete, Anthony T.

    Bound in a slipcover rather than in signatures, this "book" is made up of thirteen separately bound booklets. The first booklet is an introduction to the use of film in the classroom both in teaching the filmic art and in increasing the visual literacy of students on the high school and early college levels. The twelve other booklets each treat a…

  3. Thin film photovoltaic cell

    DOEpatents

    Meakin, John D.; Bragagnolo, Julio

    1982-01-01

    A thin film photovoltaic cell having a transparent electrical contact and an opaque electrical contact with a pair of semiconductors therebetween includes utilizing one of the electrical contacts as a substrate and wherein the inner surface thereof is modified by microroughening while being macro-planar.

  4. Surrealism and Film.

    ERIC Educational Resources Information Center

    Matthews, J. H.

    This book is a critical, genre study of surrealist films including a general discussion of the backgrounds, influences, and overall traits of surrealism as a mode of artistic response to an absurdist world. Citing the impetus of Jacques Vache and Andre Breton as the originators of surrealism, the work expands upon the themes of fractured realism…

  5. Bond percolation in films

    NASA Astrophysics Data System (ADS)

    Korneta, W.; Pytel, Z.

    1988-04-01

    Bond percolation in films with simple cubic structure is considered. It is assumed that the probability of a bond being present between nearest-neighbor sites depends on the distances to surfaces. Based on the relation between the Potts model and the bond percolation model, and using the mean-field approximation, the phase diagram and profiles of the percolation probability have been obtained.

  6. A Film Canister Colorimeter.

    ERIC Educational Resources Information Center

    Gordon, James; James, Alan; Harman, Stephanie; Weiss, Kristen

    2002-01-01

    A low-cost, low-tech colorimeter was constructed from a film canister. The student-constructed colorimeter was used to show the Beer-Lambert relationship between absorbance and concentration and to calculate the value of the molar absorptivity for permanganate at the wavelength emission maximum for an LED. Makes comparisons between this instrument…

  7. Film: The Creative Eye.

    ERIC Educational Resources Information Center

    Sohn, David A.

    Short films are often experimental in nature. They can place aspects of the environment which are usually unnoticed in such a way as to sharpen our observations of the world, and "create a new awareness, a fuller sense of life and being." Based on the premise that visual literacy is becoming increasingly important, this book describes several…

  8. Diamond films: Historical perspective

    SciTech Connect

    Messier, R.

    1993-01-01

    This section is a compilation of notes and published international articles about the development of methods of depositing diamond films. Vapor deposition articles are included from American, Russian, and Japanese publications. The international competition to develop new deposition methodologies is stressed. The current status of chemical vapor deposition of diamond is assessed.

  9. Intercultural Training with Films

    ERIC Educational Resources Information Center

    Roell, Christine

    2010-01-01

    Films are a great medium to use not only to practice English, but also to facilitate intercultural learning. Today English is a global language spoken by people from many countries and cultural backgrounds. Since culture greatly impacts communication, it is helpful for teachers to introduce lessons and activities that reveal how different…

  10. Healing Capillary Films

    NASA Astrophysics Data System (ADS)

    Zheng, Zhong; Fontelos, Marco; Shin, Sangwoo; Stone, Howard

    2015-11-01

    We study the dynamics of a healing viscous thin film driven by surface tension, i.e., the inward spreading of a film to fill a ``hole'' in a thin film. A fourth-order nonlinear partial differential equation is obtained to characterize the time evolution of the film thickness and the novel part of study is then to seek self-similar solutions of the second kind. In this way, we are able to obtain a self-similar solution that describes the interface shape, with the scaling exponent determined by solving a nonlinear eigenvalue problem. The self-similar solution is then compared with the full numerical solution of the partial differential equation, and we observe good agreement. Laboratory experiments have also been conducted using various silicone oils, and the time evolution of the front location and the interface shape can be obtained. A comparison between the theoretical predictions and the experimental observations produces good agreement in both the front location and the interface shape.

  11. Thin film mechanics

    NASA Astrophysics Data System (ADS)

    Cooper, Ryan C.

    This doctoral thesis details the methods of determining mechanical properties of two classes of novel thin films suspended two-dimensional crystals and electron beam irradiated microfilms of polydimethylsiloxane (PDMS). Thin films are used in a variety of surface coatings to alter the opto-electronic properties or increase the wear or corrosion resistance and are ideal for micro- and nanoelectromechanical system fabrication. One of the challenges in fabricating thin films is the introduction of strains which can arise due to application techniques, geometrical conformation, or other spurious conditions. Chapters 2-4 focus on two dimensional materials. This is the intrinsic limit of thin films-being constrained to one atomic or molecular unit of thickness. These materials have mechanical, electrical, and optical properties ideal for micro- and nanoelectromechanical systems with truly novel device functionality. As such, the breadth of applications that can benefit from a treatise on two dimensional film mechanics is reason enough for exploration. This study explores the anomylously high strength of two dimensional materials. Furthermore, this work also aims to bridge four main gaps in the understanding of material science: bridging the gap between ab initio calculations and finite element analysis, bridging the gap between ab initio calculations and experimental results, nanoscale to microscale, and microscale to mesoscale. A nonlinear elasticity model is used to determine the necessary elastic constants to define the strain-energy density function for finite strain. Then, ab initio calculations-density functional theory-is used to calculate the nonlinear elastic response. Chapter 2 focuses on validating this methodology with atomic force microscope nanoindentation on molybdenum disulfide. Chapter 3 explores the convergence criteria of three density functional theory solvers to further verify the numerical calculations. Chapter 4 then uses this model to investigate

  12. Films: 1971/72 Catalog of Films, Film Loops and Filmstrips for Schools, Colleges and Libraries.

    ERIC Educational Resources Information Center

    Learning Corp. of America, New York, NY.

    The films in this catalog are available for sale or rent from Learning Corporation of America. For elementary grades, films are available for use in the language arts and social studies classes. For junior and senior high, college, and adult courses, films are listed for instruction in art, music, and dance; environmental studies; United States…

  13. Thin-film optical initiator

    DOEpatents

    Erickson, Kenneth L.

    2001-01-01

    A thin-film optical initiator having an inert, transparent substrate, a reactive thin film, which can be either an explosive or a pyrotechnic, and a reflective thin film. The resultant thin-film optical initiator system also comprises a fiber-optic cable connected to a low-energy laser source, an output charge, and an initiator housing. The reactive thin film, which may contain very thin embedded layers or be a co-deposit of a light-absorbing material such as carbon, absorbs the incident laser light, is volumetrically heated, and explodes against the output charge, imparting about 5 to 20 times more energy than in the incident laser pulse.

  14. Orientation filtering for crystalline films

    DOEpatents

    Smith, H.I.; Atwater, H.A.; Thompson, C.V.; Geis, M.W.

    1986-12-30

    A substrate is coated with a film to be recrystallized. A pattern of crystallization barriers is created in the film, for example, by etching voids in the film. An encapsulation layer is generally applied to protect the film, fill the voids and otherwise enhance a recrystallization process. Recrystallization is carried out such that certain orientations pass preferentially through the barrier, generally as a result of growth-velocity anisotropy. The result is a film of a specific predetermined crystallographic orientation, a range of orientations or a set of discrete orientations. 7 figs.

  15. Orientation filtering for crystalline films

    DOEpatents

    Smith, Henry I.; Atwater, Harry A.; Thompson, Carl V.; Geis, Michael W.

    1986-12-30

    A substrate is coated with a film to be recrystallized. A pattern of crystallization barriers is created in the film, for example, by etching voids in the film. An encapsulation layer is generally applied to protect the film, fill the voids and otherwise enhance a recrystallization process. Recrystallization is carried out such that certain orientations pass preferentially through the barrier, generally as a result of growth-velocity anisotropy. The result is a film of a specific predetermined crystallographic orientation, a range of orientations or a set of discrete orientations.

  16. [Spectral emissivity of thin films].

    PubMed

    Zhong, D

    2001-02-01

    In this paper, the contribution of multiple reflections in thin film to the spectral emissivity of thin films of low absorption is discussed. The expression of emissivity of thin films derived here is related to the thin film thickness d and the optical constants n(lambda) and k(lambda). It is shown that in the special case d-->infinity the emissivity of thin films is equivalent to that of the bulk material. Realistic numerical and more precise general numerical results for the dependence of the emissivity on d, n(lambda) and k(lambda) are given.

  17. Process to form mesostructured films

    DOEpatents

    Brinker, C. Jeffrey; Anderson, Mark T.; Ganguli, Rahul; Lu, Yunfeng

    1999-01-01

    This invention comprises a method to form a family of supported films film with pore size in the approximate range 0.8-20 nm exhibiting highly ordered microstructures and porosity derived from an ordered micellar or liquid-crystalline organic-inorganic precursor structure that forms during film deposition. Optically transparent, 100-500-nm thick films exhibiting a unique range of microstructures and uni-modal pore sizes are formed in seconds in a continuous coating operation. Applications of these films include sensors, membranes, low dielectric constant interlayers, anti-reflective coatings, and optical hosts.

  18. Professor Camillo Negro's Neuropathological Films.

    PubMed

    Chiò, Adriano; Gianetto, Claudia; Dagna, Stella

    2016-01-01

    Camillo Negro, Professor in Neurology at the University of Torino, was a pioneer of scientific film. From 1906 to 1908, with the help of his assistant Giuseppe Roasenda and in collaboration with Roberto Omegna, one of the most experienced cinematographers in Italy, he filmed some of his patients for scientific and educational purposes. During the war years, he continued his scientific film project at the Military Hospital in Torino, filming shell-shocked soldiers. In autumn 2011, the Museo Nazionale del Cinema, in partnership with the Faculty of Neurosciences of the University of Torino, presented a new critical edition of the neuropathological films directed by Negro. The Museum's collection also includes 16 mm footage probably filmed in 1930 by Doctor Fedele Negro, Camillo's son. One of these films is devoted to celebrating the effects of the so-called "Bulgarian cure" on Parkinson's disease. PMID:26684422

  19. Thin film superconductor magnetic bearings

    DOEpatents

    Weinberger, Bernard R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  20. Method for making carbon films

    SciTech Connect

    Tan, M.X.

    1999-07-29

    A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area ([approx equal]1000 m[sup 2] /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160 C for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750 C in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750--850 C for between 1--6 hours. 2 figs.

  1. Professor Camillo Negro's Neuropathological Films.

    PubMed

    Chiò, Adriano; Gianetto, Claudia; Dagna, Stella

    2016-01-01

    Camillo Negro, Professor in Neurology at the University of Torino, was a pioneer of scientific film. From 1906 to 1908, with the help of his assistant Giuseppe Roasenda and in collaboration with Roberto Omegna, one of the most experienced cinematographers in Italy, he filmed some of his patients for scientific and educational purposes. During the war years, he continued his scientific film project at the Military Hospital in Torino, filming shell-shocked soldiers. In autumn 2011, the Museo Nazionale del Cinema, in partnership with the Faculty of Neurosciences of the University of Torino, presented a new critical edition of the neuropathological films directed by Negro. The Museum's collection also includes 16 mm footage probably filmed in 1930 by Doctor Fedele Negro, Camillo's son. One of these films is devoted to celebrating the effects of the so-called "Bulgarian cure" on Parkinson's disease.

  2. Method for making carbon films

    DOEpatents

    Tan, Ming X.

    1999-01-01

    A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area (.apprxeq.1000 m.sup.2 /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160.degree. C. for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750.degree. C. in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750-850.degree. C. for between 1-6 hours.

  3. Host thin films incorporating nanoparticles

    NASA Astrophysics Data System (ADS)

    Qureshi, Uzma

    The focus of this research project was the investigation of the functional properties of thin films that incorporate a secondary nanoparticulate phase. In particular to assess if the secondary nanoparticulate material enhanced a functional property of the coating on glass. In order to achieve this, new thin film deposition methods were developed, namely use of nanopowder precursors, an aerosol assisted transport technique and an aerosol into atmospheric pressure chemical vapour deposition system. Aerosol assisted chemical vapour deposition (AACVD) was used to deposit 8 series of thin films on glass. Five different nanoparticles silver, gold, ceria, tungsten oxide and zinc oxide were tested and shown to successfully deposit thin films incorporating nanoparticles within a host matrix. Silver nanoparticles were synthesised and doped within a titania film by AACVD. This improved solar control properties. A unique aerosol assisted chemical vapour deposition (AACVD) into atmospheric pressure chemical vapour deposition (APCVD) system was used to deposit films of Au nanoparticles and thin films of gold nanoparticles incorporated within a host titania matrix. Incorporation of high refractive index contrast metal oxide particles within a host film altered the film colour. The key goal was to test the potential of nanopowder forms and transfer the suspended nanopowder via an aerosol to a substrate in order to deposit a thin film. Discrete tungsten oxide nanoparticles or ceria nanoparticles within a titanium dioxide thin film enhanced the self-cleaning and photo-induced super-hydrophilicity. The nanopowder precursor study was extended by deposition of zinc oxide thin films incorporating Au nanoparticles and also ZnO films deposited from a ZnO nanopowder precursor. Incorporation of Au nanoparticles within a VO: host matrix improved the thermochromic response, optical and colour properties. Composite VC/TiC and Au nanoparticle/V02/Ti02 thin films displayed three useful

  4. "Contact" of nanoscale stiff films.

    PubMed

    Yang, Fut K; Zhang, Wei; Han, Yougun; Yoffe, Serge; Cho, Yungchi; Zhao, Boxin

    2012-06-26

    We investigated the contact behaviors of a nanoscopic stiff thin film bonded to a compliant substrate and derived an analytical solution for determining the elastic modulus of thin films. Microscopic contact deformations of the gold and polydopamine thin films (<200 nm) coated on polydimethylsiloxane elastomers were measured by indenting a soft tip and analyzed in the framework of the classical plate theory and Johnson-Kendall-Roberts (JKR) contact mechanics. The analysis of this thin film contact mechanics focused on the bending and stretching resistance of thin films and is fundamentally different from conventional indentation measurements where the focus is on the fracture and compression of the films. The analytical solution of the elastic modulus of nanoscopic thin films was validated experimentally using 50 and 100 nm gold thin films coated on polydimethylsiloxane elastomers. The technical application of this analysis was further demonstrated by measuring the elastic modulus of thin films of polydopamine, a recently discovered biomimetic universal coating material. Furthermore, the method presented here is able to quantify the contact behaviors of nanoscopic thin films, effectively providing fundamental design parameters, the elastic modulus, and the work of adhesion, crucial for transferring them effectively into practical applications. PMID:22616836

  5. Rupture of vertical soap films

    NASA Astrophysics Data System (ADS)

    Rio, Emmanuelle

    2014-11-01

    Soap films are ephemeral and fragile objects. They tend to thin under gravity, which gives rise to the fascinating variations of colors at their interfaces but leads systematically to rupture. Even a child can create, manipulate and admire soap films and bubbles. Nevertheless, the reason why it suddenly bursts remains a mystery although the soap chosen to stabilize the film as well as the humidity of the air seem very important. One difficulty to study the rupture of vertical soap films is to control the initial solution. To avoid this problem we choose to study the rupture during the generation of the film at a controlled velocity. We have built an experiment, in which we measure the maximum length of the film together with its lifetime. The generation of the film is due to the presence of a gradient of surface concentration of surfactants at the liquid/air interface. This leads to a Marangoni force directed toward the top of the film. The film is expected to burst only when its weight is not balanced anymore by this force. We will show that this leads to the surprising result that the thicker films have shorter lifetimes than the thinner ones. It is thus the ability of the interface to sustain a surface concentration gradient of surfactants which controls its stability.

  6. Biomimetic thin film deposition

    SciTech Connect

    Rieke, P.R.; Graff, G.E.; Campbell, A.A.; Bunker, B.C.; Baskaran, S.; Song, L.; Tarasevich, B.J.; Fryxell, G.E.

    1995-09-01

    Biological mineral deposition for the formation of bone, mollusk shell and other hard tissues provides materials scientists with illustrative materials processing strategies. This presentation will review the key features of biomineralization and how these features can be of technical importance. We have adapted existing knowledge of biomineralization to develop a unique method of depositing inorganic thin films and coating. Our approach to thin film deposition is to modify substrate surfaces to imitate the proteins found in nature that are responsible for controlling mineral deposition. These biomimetic surfaces control the nucleation and growth of the mineral from a supersaturated aqueous solution. This has many processing advantages including simple processing equipment, environmentally benign reagents, uniform coating of highly complex shapes, and enhanced adherence of coating. Many different types of metal oxide, hydroxide, sulfide and phosphate materials with useful mechanical, optical, electronic and biomedical properties can be deposited.

  7. Freely floating smectic films.

    PubMed

    May, Kathrin; Harth, Kirsten; Trittel, Torsten; Stannarius, Ralf

    2014-05-19

    We have investigated the dynamics of freely floating smectic bubbles using high-speed optical imaging. Bubbles in the size range from a few hundred micrometers to several centimeters were prepared from collapsing catenoids. They represent ideal model systems for the study of thin-film fluid dynamics under well-controlled conditions. Owing to the internal smectic layer structure, the bubbles combine features of both soap films and vesicles in their unique shape dynamics. From a strongly elongated initial shape after pinch-off, they relax towards the spherical equilibrium, first by a slow redistribution of the smectic layers, and finally by weak, damped shape oscillations. In addition, we describe the rupture of freely floating smectic bubbles, and the formation and stability of smectic filaments. PMID:24692347

  8. Advanced thin film thermocouples

    NASA Technical Reports Server (NTRS)

    Kreider, K. G.; Semancik, S.; Olson, C.

    1984-01-01

    The fabrication, materials characterization, and performance of thin film platinum rhodium thermocouples on gas turbine alloys was investigated. The materials chosen for the study were the turbine blade alloy systems MAR M200+Hf with NiCoCrAlY and FeCrAlY coatings, and vane alloy systems MAR M509 with FeCrAlY. Research was focussed on making improvements in the problem areas of coating substrate stability, adhesion, and insulation reliability and durability. Diffusion profiles between the substrate and coating with and without barrier coatings of Al2O3 are reported. The relationships between fabrication parameters of thermal oxidation and sputtering of the insulator and its characterization and performance are described. The best thin film thermocouples were fabricated with the NiCoCrAlY coatings which were thermally oxidized and sputter coated with Al2O3.

  9. Magnetoresistance of Au films

    SciTech Connect

    Zhang, D. L. Song, X. H.; Zhang, X.; Zhang, X.-G.

    2014-12-14

    Classical magnetoresistance (MR) in nonmagnetic metals are conventionally understood in terms of the Kohler rule, with violation usually viewed as anomalous electron transport, in particular, as evidence of non-Fermi liquid behavior. Measurement of the MR of Au films as a function of temperature and film thickness reveals a strong dependence on grain size distribution and clear violation of the Kohler rule. Using a model of random resistor network, we show that this result can be explained if the MR arises entirely from inhomogeneity due to grain boundary scattering and thermal activation of grain boundary atoms. Consequently, the Kohler rule should not be used to distinguish normal and anomalous electron transport in solids.

  10. Freely floating smectic films.

    PubMed

    May, Kathrin; Harth, Kirsten; Trittel, Torsten; Stannarius, Ralf

    2014-05-19

    We have investigated the dynamics of freely floating smectic bubbles using high-speed optical imaging. Bubbles in the size range from a few hundred micrometers to several centimeters were prepared from collapsing catenoids. They represent ideal model systems for the study of thin-film fluid dynamics under well-controlled conditions. Owing to the internal smectic layer structure, the bubbles combine features of both soap films and vesicles in their unique shape dynamics. From a strongly elongated initial shape after pinch-off, they relax towards the spherical equilibrium, first by a slow redistribution of the smectic layers, and finally by weak, damped shape oscillations. In addition, we describe the rupture of freely floating smectic bubbles, and the formation and stability of smectic filaments.

  11. SU-E-T-112: Dose Distribution of Praseodymium-142 Microspheres in Microcapillary Using Radiochromic Film Dosimetry and Applications in Hepatocellular Carcinoma Microsphere Brachytherapy

    SciTech Connect

    Ferreira, M; Rasmussen, K; Jung, J

    2014-06-01

    Purpose: This work verified simulations of beta-minus emitter Praseodymium-142 (Pr-142) for microsphere brachytherapy by performing absolute dose measurements for Pr 142 microspheres in a microcapillary as a simplified model for a single blood vessel for the treatment of Hepatocellular Carcinoma (HCC). Methods: Pr-142 microspheres (mass: 0.169g, average diameter: 29.7±3.9μm) were activated by thermal neutron activation at the University of Missouri Research Reactor. Experimental setup consisted of a microsphere solution (initial activity 36.6mCi in 0.1ml of sterile water) within a glass microcapillary (internal and external diameter: 305μm and 453μm, respectively) placed for 51h in a custom made Gammex Solid Water™ phantom. GAFCHROMIC™ EBT2 film calibrated with a 6MeV electron beam was used to access the dose fall-off of microspheres. The microcapillary was modeled in MCNPX2.6 in order to compare with experiments. Results: The radial dose fall-off on the transverse plane due to scatter and attenuation in the solid water phantom was analyzed using ImageJ for both film and MCNPX2.6 simulations. Isodose analysis showed close agreement among the methods used, i.e. measurements and simulations agree within 3.9% for doses below 1600cGy. Experimental and simulated doses obtained at 0.5 cm radially from the source were 1547cGy and 1610cGy respectively. Discrepancies for points close to the microcapillary surface were observed between MCNPX2.6 and measurements due to film saturation for high doses. Dose due to Pr-142 3.7% gamma emission was below the threshold of detection for the film. Conclusion: A detailed dosimetric study was performed for Pr-142 glass microspheres within a single microcapillary. MCNPX2.6 simulations were verified by means of direct measurement. Based on these results, Pr-142 appears to be a viable choice of radionuclide for treating HCC.

  12. Nonlinear optical thin films

    NASA Technical Reports Server (NTRS)

    Leslie, Thomas M.

    1993-01-01

    A focused approach to development and evaluation of organic polymer films for use in optoelectronics is presented. The issues and challenges that are addressed include: (1) material synthesis, purification, and the tailoring of the material properties; (2) deposition of uniform thin films by a variety of methods; (3) characterization of material physical properties (thermal, electrical, optical, and electro-optical); and (4) device fabrication and testing. Photonic materials, devices, and systems were identified as critical technology areas by the Department of Commerce and the Department of Defense. This approach offers strong integration of basic material issues through engineering applications by the development of materials that can be exploited as the active unit in a variety of polymeric thin film devices. Improved materials were developed with unprecedented purity and stability. The absorptive properties can be tailored and controlled to provide significant improvement in propagation losses and nonlinear performance. Furthermore, the materials were incorporated into polymers that are highly compatible with fabrication and patterning processes for integrated optical devices and circuits. By simultaneously addressing the issues of materials development and characterization, keeping device design and fabrication in mind, many obstacles were overcome for implementation of these polymeric materials and devices into systems. We intend to considerably improve the upper use temperature, poling stability, and compatibility with silicon based devices. The principal device application that was targeted is a linear electro-optic modulation etalon. Organic polymers need to be properly designed and coupled with existing integrated circuit technology to create new photonic devices for optical communication, image processing, other laser applications such as harmonic generation, and eventually optical computing. The progression from microscopic sample to a suitable film

  13. [Therapy through film].

    PubMed

    Nicli, Pierrette

    2012-01-01

    For psychiatric patients, playing the role of their life, producing a film, editing it and presenting it to the public with the support of a group made up of patients and caregivers is a real form of self-distancing, a type of therapy. The video group from the Saint Ouen day hospital has been carrying out this creative and therapeutic work for several years. Screenings and exchanges between care centres are regularly organised.

  14. SU-E-CAMPUS-J-01: TG142 Complied Comprehensive Commissioning and Quality Assurance Procedure for Respiratory Gating

    SciTech Connect

    Woods, K; Rong, Y; Weldon, M; Gupta, N

    2014-06-15

    Purpose: To develop and establish a comprehensive gating commissioning and quality assurance procedure in compliance with TG142. Methods: Quality assurance tests on three Varian LINACs included beam output and energy constancy, calibration of surrogate, as well as phase and amplitude gating temporal accuracy. A diode array (MapCHECK 2) and film (Gafchromic EBT2) were used to measure the temporal accuracy of phase and amplitude gating windows. A motion simulation device (MotionSim) was used to simulate respiratory motion for both detectors. An end-to-end test was also performed on all three machines. The overall accuracy and uncertainty was analyzed and compared. Results: The end-to-end test using an anthropomorphic lung phantom (CIRS) results in an OSL dose difference reading within 5% (within measurement uncertainty) for both phase and amplitude gated treatment. Film results showed < 1% agreement between profiles for gated delivery and predicted dose. The diode array demonstrated an 80% passing rate for gamma criteria of 2%/0.2 mm, which results in a 111 msec temporal accuracy. However, the diode array is limited by its spatial resolution of measurements, due to its 7.07 mm diode spacing. Film provided higher measuring resolution, thus demonstrated a temporal accuracy of <100 msec. Conclusion: Results showed consistent respiratory gating stability and accuracy. MapCHECK 2 may not be sufficient for the temporal accuracy test in the respiratory gating treatment in order to meet the corresponding tolerance in TG142. One would need to decrease respiratory motion speed from the surrogate or tighten the gating window in order to be within tolerance of 100 msec temporal accuracy per TG-142. The end-to-end test offers insight to the overall accuracy and uncertainties with a gated protocol. Compared to static delivery, respiratory motion increases the overall uncertainty of treatment delivery from 3% to 5% dose difference.

  15. Determination of surface dose rate of indigenous (32)P patch brachytherapy source by experimental and Monte Carlo methods.

    PubMed

    Kumar, Sudhir; Srinivasan, P; Sharma, S D; Saxena, Sanjay Kumar; Bakshi, A K; Dash, Ashutosh; Babu, D A R; Sharma, D N

    2015-09-01

    Isotope production and Application Division of Bhabha Atomic Research Center developed (32)P patch sources for treatment of superficial tumors. Surface dose rate of a newly developed (32)P patch source of nominal diameter 25 mm was measured experimentally using standard extrapolation ionization chamber and Gafchromic EBT film. Monte Carlo model of the (32)P patch source along with the extrapolation chamber was also developed to estimate the surface dose rates from these sources. The surface dose rates to tissue (cGy/min) measured using extrapolation chamber and radiochromic films are 82.03±4.18 (k=2) and 79.13±2.53 (k=2) respectively. The two values of the surface dose rates measured using the two independent experimental methods are in good agreement to each other within a variation of 3.5%. The surface dose rate to tissue (cGy/min) estimated using the MCNP Monte Carlo code works out to be 77.78±1.16 (k=2). The maximum deviation between the surface dose rates to tissue obtained by Monte Carlo and the extrapolation chamber method is 5.2% whereas the difference between the surface dose rates obtained by radiochromic film measurement and the Monte Carlo simulation is 1.7%. The three values of the surface dose rates of the (32)P patch source obtained by three independent methods are in good agreement to one another within the uncertainties associated with their measurements and calculation. This work has demonstrated that MCNP based electron transport simulations are accurate enough for determining the dosimetry parameters of the indigenously developed (32)P patch sources for contact brachytherapy applications.

  16. SU-E-T-604: Penumbra Characteristics of a New InCiseâ„¢ Multileaf Collimator of CyberKnife M6â„¢ System

    SciTech Connect

    Hwang, M; Jang, S; Ozhasoglu, C; Lalonde, R; Heron, D; Huq, M

    2015-06-15

    Purpose: The InCise™ Multileaf Collimator (MLC) of CyberKnife M6™ System has been released recently. The purpose of this study was to explore the dosimetric characteristics of the new MLC. In particular, the penumbra characteristics of MLC fields at varying locations are evaluated. Methods: EBT3-based film measurements were performed with varying MLC fields ranging from 7.5 mm to 27.5 mm. Seventeen regions of interests (ROIs) were identified for irradiation. These are regions located at the central area (denoted as reference field), at the left/right edge areas of reference open field, at an intermediate location between central and edge area. Single beam treatment plans were designed by using the MultiPlan and was delivered using the Blue Phantom. Gafchromic films were irradiated at 1.5 cm depth in the Blue Phantom and analyzed using the Film Pro software. Variation of maximum dose, penumbra of MLC-defined fields, and symmetry/flatness were calculated as a function of locations of MLC fields. Results: The InCise™ MLC System showed relatively consistent dose distribution and penumbra size with varying locations of MLC fields. The measured maximum dose varied within 5 % at different locations compared to that at the central location and agreed with the calculated data well within 2%. The measured penumbrae were in the range of 2.9 mm and 3.7 mm and were relatively consistent regardless of locations. However, dose profiles in the out-of-field and in-field regions varied with locations and field sizes. Strong variation was seen for all fields located at 55 mm away from the central field. The MLC leakage map showed that the leakage is dependent on position. Conclusion: The size of penumbra and normalized maximum dose for MLC-defined fields were consistent in different regions of MLC. However, dose profiles in the out-field region varied with locations and field sizes.

  17. Accuracy and sensitivity of four-dimensional dose calculation to systematic motion variability in stereotatic body radiotherapy (SBRT) for lung cancer.

    PubMed

    Chan, Mark K H; Kwong, Dora L W; Ng, Sherry C Y; Tong, Anthony S M; Tam, Eric K W

    2012-11-08

    The dynamic movement of radiation beam in real-time tumor tracking may cause overdosing to critical organs surrounding the target. The primary objective of this study was to verify the accuracy of the 4D planning module incorporated in CyberKnife treatment planning system. The secondary objective was to evaluate the error that may occur in the case of a systematic change of motion pattern. Measurements were made using a rigid thorax phantom. Target motion was simulated with two waveforms (sin and cos4) of different amplitude and frequency. Inversely optimized dose distributions were calculated in the CyberKnife treatment planning system using the 4D Monte Carlo dose calculation algorithm. Each plan was delivered to the phantom assuming (1) reproducible target motion,and (2) systematic change of target motion pattern. The accuracy of 4D dose calculation algorithm was assessed using GAFCHROMIC EBT2 films based on 5%/3 mm γ criteria. Treatment plans were considered acceptable if the percentage of pixels passing the 5%/3 mm γ criteria was greater than 90%. The mean percentages of pixels passing were 95% for the target and 91% for the static off-target structure, respectively, with reproducible target motion. When systematic changes of the motion pattern were introduced during treatment delivery, the mean percentages of pixels passing decreased significantly in the off-target films (48%; p < 0.05), but did not change significantly in the target films (92%; p = 0.324) compared to results of reproducible target motion. These results suggest that the accuracy of 4D dose calculation, particularly in off-target stationary structure, is strongly tied to the reproducibility of target motion and that the solutions of 4D planning do not reflect the clinical nature of nonreproducible target motion generally.

  18. Evaluation of the dosimetric accuracy for a couch-based tracking system (CBTS)

    NASA Astrophysics Data System (ADS)

    Chang, Kyung Hwan; Lee, Suk; Kim, Kwang Hyeon; Shim, Jang Bo; Yang, Dae Sik; Park, Young Je; Yoon, Won Sup; Kim, Chul Yong; Cao, Yuanjie

    2016-07-01

    In this study, the geometric and dosimetric accuracy of an in-house-developed couch-based tracking system (CBTS) was investigated using both film and in-house-developed polymer gel dosimeters. We evaluated the 1D and the 2D motion accuracies of our couch system by using Gafchromic EBT film. For the 1D test, the couch system was moved 5, 10, and 20 mm in the X, Y, and Z directions, respectively. Meanwhile, for the 2D test, it was moved along the XY, YZ, and ZX directions. We compared the profiles, full widths at half maximum (FWHMs), and penumbras between the static and the tracking fields. For the 3D test, we quantitatively compared the dose distribution between the static and the tracking fields by using the polymer gel dosimeter when it was simultaneously moved in the XYZ directions. We confirmed that the film was moved according to motion amplitudes of 5, 10, and 20 mm in the X, Y, and Z directions, respectively, in the 1D and 2D motion tests. The value of the FWHM of the static field and the three tracking fields were 51.88, 53.28, 57.67, and 64.43 mm, respectively. Two types of penumbras became wider with increasing amplitudes compared to the static field. For the 3D test, the dose distribution of the XYZ tracking field was qualitatively larger than that of the static field. We conclude that this CBTS has the potential for pre-clinical applications in adaptive radiation therapy.

  19. Evaluation of superficial dosimetry between treatment planning system and measurement for several breast cancer treatment techniques

    SciTech Connect

    Akino, Yuichi; Das, Indra J.; Bartlett, Gregory K.; Zhang Hualin; Thompson, Elizabeth; Zook, Jennifer E.

    2013-01-15

    Purpose: Dosimetric accuracy in radiation treatment of breast cancer is critical for the evaluation of cosmetic outcomes and survival. It is often considered that treatment planning systems (TPS) may not be able to provide accurate dosimetry in the buildup region. This was investigated in various treatment techniques such as tangential wedges, field-in-field (FF), electronic compensator (eComp), and intensity-modulated radiotherapy (IMRT). Methods: Under Institutional Review Board (IRB) exemption, radiotherapy treatment plans of 111 cases were retrospectively analyzed. The distance between skin surface and 95% isodose line was measured. For measurements, Gafchromic EBT2 films were used on a humanoid unsliced phantom. Multiple layers of variable thickness of superflab bolus were placed on the breast phantom and CT scanned for planning. Treatment plans were generated using four techniques with two different grid sizes (1 Multiplication-Sign 1 and 2.5 Multiplication-Sign 2.5 mm{sup 2}) to provide optimum dose distribution. Films were placed at different depths and exposed with the selected techniques. A calibration curve for dose versus pixel values was also generated on the same day as the phantom measurement was conducted. The DICOM RT image, dose, and plan data were imported to the in-house software. On axial plane of CT slices, curves were drawn at the position where EBT2 films were placed, and the dose profiles on the lines were acquired. The calculated and measured dose profiles were separated by check points which were marked on the films before irradiation. The segments of calculated profiles were stretched to match their resolutions to that of film dosimetry. Results: On review of treatment plans, the distance between skin and 95% prescribed dose was up to 8 mm for plans of 27 patients. The film measurement revealed that the medial region of phantom surface received a mere 45%-50% of prescribed dose. For wedges, FF, and eComp techniques, region around the

  20. Sound for Film: Audio Education for Filmmakers.

    ERIC Educational Resources Information Center

    Lazar, Wanda

    1998-01-01

    Identifies the specific, unique, and important elements of audio education required by film professionals. Presents a model unit to be included in a film studies program, either as a separate course or as part of a film production or introduction to film course. Offers a model syllabus for such a course or unit on sound in film. (SR)

  1. FOREIGN LANGUAGE FILMS IN LOUISIANA DEPOSITORIES.

    ERIC Educational Resources Information Center

    BABINEAUX, AUDREY

    THIS MANUAL IS AN ANNOTATED LIST OF 16-MILLIMETER EDUCATIONAL FOREIGN LANGUAGE FILMS (BOTH LINGUISTIC AND CULTURAL) WHICH WERE PURCHASED WITH STATE AND FEDERAL FUNDS AND PLACED IN LOUISIANA'S NINE FILM LIBRARIES. FILMS ARE ARRANGED ALPHABETICALLY BY LANGUAGES. FILMS IN THE TARGET LANGUAGE ARE LISTED SEPARATELY FROM FILMS WITH ENGLISH NARRATION. A…

  2. How Reviews Affect Film Interest and Evaluation.

    ERIC Educational Resources Information Center

    Wyatt, Robert O.; Badger, David P.

    A study examined the effects of published film reviews on viewers' interest in and evaluation of the reviewed film. In the film interest experiment, 89 undergraduate students were randomly assigned positive, mixed, or negative reviews of a British film. The control group received a review of a different film. Subjects were asked to read the…

  3. Short Films for Physics Teaching, A Catalog.

    ERIC Educational Resources Information Center

    Bluestone, Barbara Z.; Roth, Richard F.

    This annotated film catalog is a product of the Conference on Single Concept Films in College Physics Teaching sponsored by the Commission on College Physics. Both 8mm and 16mm single concept films are listed for physics and related disciplines. The catalog includes commercial, noncommercial, and foreign films. However, the film coverage was…

  4. 7 CFR 2902.27 - Films.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Films. 2902.27 Section 2902.27 Agriculture... Films. (a) Definition. (1) Products that are used in packaging, wrappings, linings, and other similar applications. (2) Films for which preferred procurement applies are: (i) Semi-durable films. Films that...

  5. Fracture characteristics of balloon films

    NASA Technical Reports Server (NTRS)

    Portanova, Marc A.

    1989-01-01

    An attempt was made to determine the failure modes of high altitude scientific balloons through an investigation of the fracture characteristics of the thin polyethylene films. Two films were the subject of the evaluation, Winzen Int.'s Stratafilm SF-85 and Raven Industries' Astro-E. Research began with an investigation of the film's cold brittleness point and it's effect on the ultimate strength and elasticity of the polyethylene film. A series of preliminary investigations were conducted to develop an understanding of the material characteristics. The primary focus of this investigation was on the notch sensitivity of the films. Simple stress strain tests were also conducted to enable analysis employing fracture toughness parameters. Studies were conducted on both film types at 23 C (room temperature), -60 C, -90 C, and -120 C.

  6. Films on the arms race

    SciTech Connect

    Dowling, J.

    1983-01-01

    Films convey the historical perspectives, the biographical stories, the insights of the participants, and the horror of nuclear war - far better than can any physicist. While films are not very efficient for covering details, derivation, or numbers, they can not be beaten in showing what really happens in a nuclear explosion, in getting across general concepts, in illustrating the parameters of a problem, and the problem itself. Most importantly, films and TV can reach the people who must be informed about these issues if we are to resolve the problems. The author points out how films can contribute to an understanding of the issues of the arms race and nuclear war, with references to specific films. An annotated bibliography of 37 films is then presented.

  7. Polydiacetylene Films Prepared in Microgravity

    NASA Technical Reports Server (NTRS)

    Carswell, William E.; Paley, Mark S.; Frazier, Donald O.; Naumann, Robert J.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    A diffusive/kinetic rate equation was developed for the growth of polydiacetylene films from solution and compared with a microgravity experiment. The model takes into account both the kinetics of thin film growth and the diffusive transport limitations inherent to microgravity. In order to apply this model, measurements of the density and the ultraviolet extinction coefficient of the films, as well as of the diffusion coefficient of the monomer/solvent system, were made. The thin films grown in microgravity were predicted by the model to grow to a thickness of 0.148 micron, versus 0.150 micron for the ground control films. The flight films grew to 0.102 micron.

  8. Evaluation of the dosimetric properties of a diode detector for small field proton radiosurgery.

    PubMed

    McAuley, Grant A; Teran, Anthony V; Slater, Jerry D; Slater, James M; Wroe, Andrew J

    2015-11-08

    The small fields and sharp gradients typically encountered in proton radiosurgery require high spatial resolution dosimetric measurements, especially below 1-2 cm diameters. Radiochromic film provides high resolution, but requires postprocessing and special handling. Promising alternatives are diode detectors with small sensitive volumes (SV) that are capable of high resolution and real-time dose acquisition. In this study we evaluated the PTW PR60020 proton dosimetry diode using radiation fields and beam energies relevant to radiosurgery applications. Energies of 127 and 157 MeV (9.7 to 15 cm range) and initial diameters of 8, 10, 12, and 20mm were delivered using single-stage scattering and four modulations (0, 15, 30, and 60mm) to a water tank in our treatment room. Depth dose and beam profile data were compared with PTW Markus N23343 ionization chamber, EBT2 Gafchromic film, and Monte Carlo simulations. Transverse dose profiles were measured using the diode in "edge-on" orientation or EBT2 film. Diode response was linear with respect to dose, uniform with dose rate, and showed an orientation-dependent (i.e., beam parallel to, or perpendicular to, detector axis) response of less than 1%. Diodevs. Markus depth-dose profiles, as well as Markus relative dose ratio vs. simulated dose-weighted average lineal energy plots, suggest that any LET-dependent diode response is negligible from particle entrance up to the very distal portion of the SOBP for the energies tested. Finally, while not possible with the ionization chamber due to partial volume effects, accurate diode depth-dose measurements of 8, 10, and 12 mm diameter beams were obtained compared to Monte Carlo simulations. Because of the small SV that allows measurements without partial volume effects and the capability of submillimeter resolution (in edge-on orientation) that is crucial for small fields and high-dose gradients (e.g., penumbra, distal edge), as well as negligible LET dependence over nearly the

  9. Diamond films for laser hardening

    NASA Technical Reports Server (NTRS)

    Albin, S.; Watkins, L.; Ravi, K.; Yokota, S.

    1989-01-01

    Laser-damage experiments were performed on free-standing polycrystalline diamond films prepared by plasma-enhanced CVD. The high laser-induced stress resistance found for this material makes it useful for thin-film coatings for laser optics. Results for diamond-coated silicon substrates demonstrate the enhanced damage threshold imparted by diamond thin-film coatings to materials susceptible to laser damage.

  10. Nanoporous glass films on liquids.

    PubMed

    Zuber, Kamil; Evans, Drew; Murphy, Peter

    2014-01-01

    Glass-like thin films are used in many applications as dielectric layers, barrier coatings, abrasion-resistant films, and/or transparent films. We report the first direct application of such materials to liquid substrates using a plasma-deposition process at atmospheric pressure. The study demonstrates the broader utilization of these materials, for example, as robust membranes for water harvesting or drug delivery.

  11. Polycrystalline thin film photovoltaic technology

    SciTech Connect

    Ullal, H.S.; Zweibel, K.; Mitchell, R.L.; Noufi, R.

    1991-03-01

    Low-cost, high-efficiency thin-film modules are an exciting photovoltaic technology option for generating cost-effective electricity in 1995 and beyond. In this paper we review the significant technical progress made in the following thin films: copper indium diselenide, cadmium telluride, and polycrystalline thin silicon films. Also, the recent US DOE/SERI initiative to commercialize these emerging technologies is discussed. 6 refs., 9 figs.

  12. Frequency mixer having ferromagnetic film

    DOEpatents

    Khitun, Alexander; Roshchin, Igor V.; Galatsis, Kosmas; Bao, Mingqiang; Wang, Kang L.

    2016-03-29

    A frequency conversion device, which may include a radiofrequency (RF) mixer device, includes a substrate and a ferromagnetic film disposed over a surface of the substrate. An insulator is disposed over the ferromagnetic film and at least one microstrip antenna is disposed over the insulator. The ferromagnetic film provides a non-linear response to the frequency conversion device. The frequency conversion device may be used for signal mixing and amplification. The frequency conversion device may also be used in data encryption applications.

  13. Communicating Science: Lessons from Film.

    PubMed

    Berlin, Heather A

    2016-04-01

    Films engage us visually, aurally, viscerally, and emotionally. Incorporating science themes into films has the potential to open up new audiences to scientific ideas, pique their interests, and inspire them to engage in a broader discussion of the science itself. Here, I discuss several narrative techniques and strategies employed in film to effectively engage the audience around science themes, which may be useful tools for scientists looking to become better communicators.

  14. How to Read a Film: The Art, Technology, Language, History and Theory of Film and Media.

    ERIC Educational Resources Information Center

    Monaco, James

    This book discusses film as a narrative technique directly comparable to expression in prose narrative, in painting, and in music; it presents an overview of film as technology, the language of film and television, the history of film in America, Europe, and Asia, and the growth of film criticism. Chapters include "Film As an Art,""Technology:…

  15. Process to form mesostructured films

    DOEpatents

    Brinker, C.J.; Anderson, M.T.; Ganguli, R.; Lu, Y.F.

    1999-01-12

    This invention comprises a method to form a family of supported films with pore size in the approximate range 0.8-20 nm exhibiting highly ordered microstructures and porosity derived from an ordered micellar or liquid-crystalline organic-inorganic precursor structure that forms during film deposition. Optically transparent, 100-500-nm thick films exhibiting a unique range of microstructures and uni-modal pore sizes are formed in seconds in a continuous coating operation. Applications of these films include sensors, membranes, low dielectric constant interlayers, anti-reflective coatings, and optical hosts. 12 figs.

  16. Evaluation of the Blood Film.

    PubMed

    Campbell, Terry W

    2015-09-01

    Evaluation of hemic cell morphology in stained blood film may be the most important part of the hematologic evaluation of exotic animals. The blood film provides important information regarding red blood cell abnormalities, such as changes in cell shape and color, presence of inclusions, and, in the case of lower vertebrates, changes in the position of the cell nucleus. Stained blood film also provides information about changes in leukocyte numbers and morphology, and shows important hemic features of mammalian platelets and the thrombocytes of lower vertebrates. The blood film is needed in the detection and identification of blood parasites.

  17. Film Review. Films for Use in Professional Courses.

    ERIC Educational Resources Information Center

    Graham, Mike, Ed.

    This book contains a detailed review of over ninety films in the professional preparation of teachers. It is one of eight publications which have been produced by the Science Teacher Education Project. Some of the films have become integral parts of the learning experiences which college and university people have prepared and others are…

  18. The Environment Film Review. A Critical Guide to Ecology Films.

    ERIC Educational Resources Information Center

    Environment Information Center, New York, NY.

    Critical reviews of more than 600 environmental films selected from a field of several thousand are contained in this reference guide. Designed to provide a comprehensive selection of films covering all aspects of environmental affairs, from air pollution to wildlife, the guide is primarily user-oriented. It consists of two parts: a Review…

  19. "Kuleshov on Film": A Spectator-Centered Film Theory.

    ERIC Educational Resources Information Center

    Curran, Trisha

    This paper describes some of the theories of cinematography of Soviet film theorist and filmmaker Lev Kuleshov. It points out that for him, film was communication portraying people's activities emanating from the environment. It explains that he was especially interested in audience response, particularly that of the proletariat, and that he felt…

  20. Protective Film Moves Aside

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Relatively warmer daytime temperatures on Mars have allowed the biobarrier -- a shiny, protective film -- to peel away a little more from the robotic arm of NASA's Phoenix Mars Lander.

    This image shows the spacecraft's robotic arm in its stowed configuration, with the biobarrier unpeeled on landing day, or Sol (Martian day) 0, and the lander's first full day on Mars, Sol 1.

    The 'elbow' of the arm can be seen at the top center of the picture, and the biobarrier is the shiny film seen to the left of the arm.

    The biobarrier is an extra precaution to protect Mars from contamination with any bacteria from Earth. While the whole spacecraft was decontaminated through cleaning, filters and heat, the robotic arm was given additional protection because it is the only spacecraft part that will directly touch the ice below the surface of Mars.

    Before the arm was heated, it was sealed in the biobarrier, which is made of a trademarked film called Tedlar that holds up to baking like a turkey-basting bag. This ensures that any new bacterial spores that might have appeared during the final steps before launch and during the journey to Mars will not contact the robotic arm.

    After Phoenix landed, springs were used to pop back the barrier, giving it room to deploy.

    These images were taken on May 25, 2008 and May 26, 2008 by the spacecraft's Surface Stereo Imager.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  1. Radiation grafting on natural films

    NASA Astrophysics Data System (ADS)

    Lacroix, M.; Khan, R.; Senna, M.; Sharmin, N.; Salmieri, S.; Safrany, A.

    2014-01-01

    Different methods of polymer grafting using gamma irradiation are reported in the present study for the preparation of newly functionalized biodegradable films, and some important properties related to their mechanical and barrier properties are described. Biodegradable films composed of zein and poly(vinyl alcohol) (PVA) were gamma-irradiated in presence of different ratios of acrylic acid (AAc) monomer for compatibilization purpose. Resulting grafted films (zein/PVA-g-AAc) had their puncture strength (PS=37-40 N mm-1) and puncture deformation (PD=6.5-9.8 mm) improved for 30% and 50% PVA in blend, with 5% AAc under 20 kGy. Methylcellulose (MC)-based films were irradiated in the presence of 2-hydroxyethyl methacrylate (HEMA) or silane, in order to determine the effect of monomer grafting on the mechanical properties of films. It was found that grafted films (MC-g-HEMA and MC-g-silane) using 35% monomer performed higher mechanical properties with PS values of 282-296 N mm-1 and PD of 5.0-5.5 mm under 10 kGy. Compatibilized polycaprolactone (PCL)/chitosan composites were developed via grafting silane in chitosan films. Resulting trilayer grafted composite film (PCL/chitosan-g-silane/PCL) presented superior tensile strength (TS=22 MPa) via possible improvement of interfacial adhesion (PCL/chitosan) when using 25% silane under 10 kGy. Finally, MC-based films containing crystalline nanocellulose (CNC) as a filling agent were prepared and irradiated in presence of trimethylolpropane trimethacrylate (TMPTMA) as a grafted plasticizer. Grafted films (MC-g-TMPTMA) presented superior mechanical properties with a TS of 47.9 MPa and a tensile modulus (TM) of 1792 MPa, possibly due to high yield formation of radicals to promote TMPTMA grafting during irradiation. The addition of CNC led to an additional improvement of the barrier properties, with a significant 25% reduction of water vapor permeability (WVP) of grafted films.

  2. Generation and verification of QFix kVue Calypso-compatible couch top model for a dedicated stereotactic linear accelerator with FFF beams.

    PubMed

    Gardner, Stephen J; Gulam, Misbah; Song, Kwang; Li, Haisen; Huang, Yimei; Zhao, Bo; Qin, Yujiao; Snyder, Karen; Kim, Jinkoo; Gordon, James; Chetty, Indrin J; Wen, Ning

    2015-01-01

    This study details the generation, verification, and implementation of a treatment planning system (TPS) couch top model for patient support system used in conjunction with a dedicated stereotactic linear accelerator. Couch top model was created within the TPS using CT simulation images of the kVue Calpyso-compatible couchtop (with rails). Verification measurements were compared to TPS dose prediction for different energies (6 MV FFF and 10 MV FFF) and rail configurations (rails in and rails out) using: 1) central axis point-dose measurements with pinpoint chamber in water-equivalent phantom at 42 gantry angles for various field sizes (2 × 2 cm², 4 × 4 cm², 10 × 10 cm²); and 2) Gafchromic EBT3 film parallel to beam in acrylic slab to assess changes in surface and percent depth doses in PA geometry. To assess sensitivity of delivered dose to variations in patient lateral position, measurements at central axis using the pinpoint chamber geometry were taken at lateral couch displacements of 2, 5, and 10 mm for 6 MV FFF. The maximum percent difference for point-dose measurements was 3.24% (6 MV FFF) and 2.30% (10 MV FFF). The average percent difference for point-dose measurements was less than 1.10% for all beam energies and rail geometries. The maximum percent difference between calculated and measured dose can be as large as 13.0% if no couch model is used for dose calculation. The presence of the couch structures also impacts surface dose and PDD, which was evaluated with Gafchromic film measurements. The upstream shift in the depth of dose maximum (dmax) was found to be 10.5 mm for 6 MV FFF and 5.5 mm for 10 MV FFF for 'Rails In' configuration. Transmission of the treatment beam through the couch results in an increase in surface dose (absolute percentage) of approximately 50% for both photon energies (6 MV FFF and 10MV FFF). The largest sensitivity to lateral shifts occurred at the lateral boundary of the rail structures. The mean magnitude (standard

  3. Generation and verification of QFix kVue Calypso-compatible couch top model for a dedicated stereotactic linear accelerator with FFF beams.

    PubMed

    Gardner, Stephen J; Gulam, Misbah; Song, Kwang; Li, Haisen; Huang, Yimei; Zhao, Bo; Qin, Yujiao; Snyder, Karen; Kim, Jinkoo; Gordon, James; Chetty, Indrin J; Wen, Ning

    2015-01-01

    This study details the generation, verification, and implementation of a treatment planning system (TPS) couch top model for patient support system used in conjunction with a dedicated stereotactic linear accelerator. Couch top model was created within the TPS using CT simulation images of the kVue Calpyso-compatible couchtop (with rails). Verification measurements were compared to TPS dose prediction for different energies (6 MV FFF and 10 MV FFF) and rail configurations (rails in and rails out) using: 1) central axis point-dose measurements with pinpoint chamber in water-equivalent phantom at 42 gantry angles for various field sizes (2 × 2 cm², 4 × 4 cm², 10 × 10 cm²); and 2) Gafchromic EBT3 film parallel to beam in acrylic slab to assess changes in surface and percent depth doses in PA geometry. To assess sensitivity of delivered dose to variations in patient lateral position, measurements at central axis using the pinpoint chamber geometry were taken at lateral couch displacements of 2, 5, and 10 mm for 6 MV FFF. The maximum percent difference for point-dose measurements was 3.24% (6 MV FFF) and 2.30% (10 MV FFF). The average percent difference for point-dose measurements was less than 1.10% for all beam energies and rail geometries. The maximum percent difference between calculated and measured dose can be as large as 13.0% if no couch model is used for dose calculation. The presence of the couch structures also impacts surface dose and PDD, which was evaluated with Gafchromic film measurements. The upstream shift in the depth of dose maximum (dmax) was found to be 10.5 mm for 6 MV FFF and 5.5 mm for 10 MV FFF for 'Rails In' configuration. Transmission of the treatment beam through the couch results in an increase in surface dose (absolute percentage) of approximately 50% for both photon energies (6 MV FFF and 10MV FFF). The largest sensitivity to lateral shifts occurred at the lateral boundary of the rail structures. The mean magnitude (standard

  4. Sensitivity and variability of Presage dosimeter formulations in sheet form with application to SBRT and SRS QA

    SciTech Connect

    Dumas, Michael; Rakowski, Joseph T.

    2015-12-15

    Purpose: To measure sensitivity and stability of the Presage dosimeter in sheet form for various chemical concentrations over a range of clinical photon energies and examine its use for stereotactic body radiation therapy (SBRT) and stereotactic radiosurgery (SRS) QA. Methods: Presage polymer dosimeters were formulated to investigate and optimize their sensitivity and stability. The dosimeter is composed of clear polyurethane base, leucomalachite green (LMG) reporting dye, and bromoform radical initiator in 0.9–1.0 mm thick sheets. The chemicals are mixed together for 2 min, cast in an aluminum mold, and left to cure at 60 psi for a minimum of two days. Dosimeter response was characterized at energies Co-60, 6 MV, 10 MV flattening-filter free, 15 MV, 50 kVp (mean 19.2 keV), and Ir-192. The dosimeters were scanned by a Microtek Scanmaker i800 at 300 dpi, 2{sup 16} bit depth per color channel. Red component images were analyzed with ImageJ and RIT. SBRT QA was done with gamma analysis tolerances of 2% and 2 mm DTA. Results: The sensitivity of the Presage dosimeter increased with increasing concentration of bromoform. Addition of tin catalyst decreased curing time and had negligible effect on sensitivity. LMG concentration should be at least as high as the bromoform, with ideal concentration being 2% wt. Gamma Knife SRS QA measurements of relative output and profile widths were within 2% of manufacturer’s values validated at commissioning, except the 4 mm collimator relative output which was within 3%. The gamma pass rate of Presage with SBRT was 73.7%, compared to 93.1% for EBT2 Gafchromic film. Conclusions: The Presage dosimeter in sheet form was capable of detecting radiation over all tested photon energies and chemical concentrations. The best sensitivity and photostability of the dosimeter were achieved with 2.5% wt. LMG and 8.2% wt. bromoform. Scanner used should not emit any UV radiation as it will expose the dosimeter, as with the Epson 10000 XL scanner

  5. Carbonaceous film coating

    DOEpatents

    Maya, L.

    1988-04-27

    A method of making a carbonaceous film comprising heating tris(1,3,2-benzodiazaborolo)borazine or dodecahydro tris(1,3,2)diazaborine(1,2-a:1'2'-c:1''2''-e)borazine in an inert atmosphere in the presence of a substrate to a temperature at which the borazine compound decomposes, and the decomposition products deposit onto the substrate to form a thin, tenacious, highly reflective conductive coating having a narrow band gap which is susceptible of modification and a relatively low coefficient of friction.

  6. Carbonaceous film coating

    DOEpatents

    Maya, Leon

    1989-01-01

    A method of making a carbonaceous film comprising heating tris(1,3,2-benzodiazaborolo)borazine or dodecahydro tris[1,3,2]diazaborine[1,2-a:1'2'-c:1"2"-e]borazine in an inert atmosphere in the presence of a substrate to a temperature at which the borazine compound decomposes, and the decomposition products deposit onto the substrate to form a thin, tenacious, highly reflective conductive coating having a narrow band gap which is susceptible of modification and a relatively low coefficient of friction.

  7. Thin film hydrogen sensor

    DOEpatents

    Lauf, Robert J.; Hoffheins, Barbara S.; Fleming, Pamela H.

    1994-01-01

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

  8. Thin film magnetism

    SciTech Connect

    Bader, S.D. )

    1990-06-01

    New developments in thin-film magnetism are reviewed with an emphasis on the ultrathin regime. The scope includes relatively simple metallic systems in overlayer, sandwich, and superlattice configurations. Sample fabrication, characterization, and magnetic measurement techniques are outlined by highlighting some of the more modern experimental innovations. Current issues and advances that demonstrate the symbiotic relationship between experiment and theory are then examined, including the surface magnetic anisotropy, the two-dimensional critical behavior, the creation of metastable phases via epitaxy, and phenomena associated with coupled magnetic layers. The review ends with a brief account of the impact of the various contemporary developments on the applications area.

  9. Electrical initiation of an energetic nanolaminate film

    DOEpatents

    Tringe, Joseph W.; Gash, Alexander E.; Barbee, Jr., Troy W.

    2010-03-30

    A heating apparatus comprising an energetic nanolaminate film that produces heat when initiated, a power source that provides an electric current, and a control that initiates the energetic nanolaminate film by directing the electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature. Also a method of heating comprising providing an energetic nanolaminate film that produces heat when initiated, and initiating the energetic nanolaminate film by directing an electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature.

  10. Predicting Film Genres with Implicit Ideals

    PubMed Central

    Olney, Andrew McGregor

    2013-01-01

    We present a new approach to defining film genre based on implicit ideals. When viewers rate the likability of a film, they indirectly express their ideal of what a film should be. Across six studies we investigate the category structure that emerges from likability ratings and the category structure that emerges from the features of film. We further compare these data-driven category structures with human annotated film genres. We conclude that film genres are structured more around ideals than around features of film. This finding lends experimental support to the notion that film genres are set of shifting, fuzzy, and highly contextualized psychological categories. PMID:23423823

  11. Liquid film demonstration experiment Skylab SL-4

    NASA Technical Reports Server (NTRS)

    Darbro, W.

    1975-01-01

    The liquid film demonstration experiment performed on Skylab 4 by Astronaut Gerald Carr, which involved the construction of water and soap films by boundary expansion and inertia, is discussed. Results include a 1-ml globule of water expanded into a 7-cm-diameter film as well as complex film structures produced by inertia whose lifetimes are longer in the low-g environment. Also discussed are 1-g acceleration experiments in which the unprovoked rupture of films was photographed and film lifetimes of stationary and rotated soap films were compared. Finally, there is a mathematical discussion regarding minimal surfaces, an isoperimetric problem, and liquid films.

  12. Beryllium thin films for resistor applications

    NASA Technical Reports Server (NTRS)

    Fiet, O.

    1972-01-01

    Beryllium thin films have a protective oxidation resistant property at high temperature and high recrystallization temperature. However, the experimental film has very low temperature coefficient of resistance.

  13. Predicting film genres with implicit ideals.

    PubMed

    Olney, Andrew McGregor

    2012-01-01

    We present a new approach to defining film genre based on implicit ideals. When viewers rate the likability of a film, they indirectly express their ideal of what a film should be. Across six studies we investigate the category structure that emerges from likability ratings and the category structure that emerges from the features of film. We further compare these data-driven category structures with human annotated film genres. We conclude that film genres are structured more around ideals than around features of film. This finding lends experimental support to the notion that film genres are set of shifting, fuzzy, and highly contextualized psychological categories.

  14. Fire resistant films for aircraft applications

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.

    1983-01-01

    Alternative sandwich panel decorative films were investigated as replacements for the polyvinyl fluoride currently used in aircraft interiors. Candidate films were studied for flammability, smoke emission, toxic gas emission, flame spread, and suitability as a printing surface for the decorative acrylic ink system. Several of the candidate films tested were flame modified polyvinyl fluoride, polyvinylidene fluoride, polyimide, polyamide, polysulfone, polyphenylsulfone, polyethersulfone, polybenzimidazole, polycarbonate, polyparabanic acid, polyphosphazene, polyetheretherketon, and polyester. The films were evaluated as pure films only, films silk-screened with an acrylic ink, and films adhered to a phenolic fiberglass substrate. Films which exhibited the highest fire resistant properties included PEEK polyetheretherketon, Aramid polyamide, and ISO-BPE polyester.

  15. The Uses of Film Extracts.

    ERIC Educational Resources Information Center

    Powell, David

    1967-01-01

    The use of film extracts, either alone or with the whole feature, encourages students to concentrate on a limited number of learning objectives, whereas a full-length film frequently gives rise to confusion and vague generalizations on the part of students. Extracts can be used to illustrate screen language, the style of the director, the history…

  16. Film Study: A Resource Guide.

    ERIC Educational Resources Information Center

    Manchel, Frank

    This resource guide describes six popular approaches to the study of the cinema and provides a practical analysis of selected books, materials, and information about motion picture rentals. Highlighting this extensive survey of film studies are the annotated, critical bibliographies and filmographies of significant books, articles and films by and…

  17. Nonfiction Film; A Critical History.

    ERIC Educational Resources Information Center

    Barsam, Richard Meran

    In this survey history of the documentary or nonfiction cinema, major emphasis is placed upon John Grierson and the British documentary movement as exemplary of the factual films with goals of social improvement and on Robert Flaherty, whose movement stressed poetic or humanistic nonfiction film treatment. Newsreels and current trends in…

  18. Thin film atomic hydrogen detectors

    NASA Technical Reports Server (NTRS)

    Gruber, C. L.

    1977-01-01

    Thin film and bead thermistor atomic surface recombination hydrogen detectors were investigated both experimentally and theoretically. Devices were constructed on a thin Mylar film substrate. Using suitable Wheatstone bridge techniques sensitivities of 80 microvolts/2x10 to the 13th power atoms/sec are attainable with response time constants on the order of 5 seconds.

  19. Teaching the Holocaust through Film.

    ERIC Educational Resources Information Center

    Michalczyk, John J.

    The use of Holocaust-related films and Holocaust survivors as classroom resources is analyzed. The perspective and function of four film genres are outlined as follows. Newsreels, made by the Nazis to chronicle their "progress," provide powerful raw footage of the concentration camp experience. Documentaries, generally made by Allied sources after…

  20. Cinemabilia; Catalogue of Film Literature.

    ERIC Educational Resources Information Center

    Cinemabilia, New York, NY.

    The catalog lists and briefly annotates more than 3,500 current, second-hand, and out-of-print books about film that are available from Cinemabilia, New York City. The catalog is divided into 37 categories. The section on special genre lists works on horror, science fiction, Westerns, and Tarzan films, ranging from "Drums of Fu-Manchu" to "Movie…

  1. Black Male Images in Films

    ERIC Educational Resources Information Center

    Ward, Francis

    1974-01-01

    Argues that the "super" image of the black male in films served three essential purposes: it gave blacks whatever therapy they needed from films; it had hot box office appeal; and it kept white in control of the images blacks have had of themselves. (Author/JM)

  2. Thin films: Past, present, future

    SciTech Connect

    Zweibel, K

    1995-04-01

    This report describes the characteristics of the thin film photovoltaic modules necessary for an acceptable rate of return for rural areas and underdeveloped countries. The topics of the paper include a development of goals of cost and performance for an acceptable PV system, a review of current technologies for meeting these goals, issues and opportunities in thin film technologies.

  3. The Public Library Film Redefined.

    ERIC Educational Resources Information Center

    Peltier, Euclid

    1978-01-01

    An historical discussion of three types of film--teaching, information, and entertainment--is presented. The numbers of films in each category, especially the last, which includes the animated, unnarrated, iconographic, underground, and avant-garde, has grown substantially. Libraries have quickly accepted all except the revolutionary philosophies…

  4. Teaching Film Animation to Children.

    ERIC Educational Resources Information Center

    Andersen, Yvonne

    Under the author's direction, students from 5 to 18 years old have been making prize-winning animated films. In this guide intended for any adult who wishes to teach film animation, she describes and illustrates the techniques she has developed in her seven years of experience teaching animation to children in a workshop setting. All essential…

  5. Symbolism in the Feature Film.

    ERIC Educational Resources Information Center

    Bakony, Edward

    A study of symbolism in feature films reveals how the symbolism employed by film makers can serve as a bridge between feeling and thought, and between aesthetics and cognition. What individuals read from and learn through a symbol varies with what they bring to it. The filmmaker's symbolims must be universal and not private. However, symbolism in…

  6. The Thin Oil Film Equation

    NASA Technical Reports Server (NTRS)

    Brown, James L.; Naughton, Jonathan W.

    1999-01-01

    A thin film of oil on a surface responds primarily to the wall shear stress generated on that surface by a three-dimensional flow. The oil film is also subject to wall pressure gradients, surface tension effects and gravity. The partial differential equation governing the oil film flow is shown to be related to Burgers' equation. Analytical and numerical methods for solving the thin oil film equation are presented. A direct numerical solver is developed where the wall shear stress variation on the surface is known and which solves for the oil film thickness spatial and time variation on the surface. An inverse numerical solver is also developed where the oil film thickness spatial variation over the surface at two discrete times is known and which solves for the wall shear stress variation over the test surface. A One-Time-Level inverse solver is also demonstrated. The inverse numerical solver provides a mathematically rigorous basis for an improved form of a wall shear stress instrument suitable for application to complex three-dimensional flows. To demonstrate the complexity of flows for which these oil film methods are now suitable, extensive examination is accomplished for these analytical and numerical methods as applied to a thin oil film in the vicinity of a three-dimensional saddle of separation.

  7. Thin film ion conducting coating

    DOEpatents

    Goldner, Ronald B.; Haas, Terry; Wong, Kwok-Keung; Seward, George

    1989-01-01

    Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

  8. Metal oxide films on metal

    DOEpatents

    Wu, Xin D.; Tiwari, Prabhat

    1995-01-01

    A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

  9. Chitosan in nanostructured thin films.

    PubMed

    Pavinatto, Felippe J; Caseli, Luciano; Oliveira, Osvaldo N

    2010-08-01

    This review paper brings an overview of the use of chitosans in nanostructured films produced with the Langmuir-Blodgett (LB) or the electrostatic layer-by-layer (LbL) techniques, with emphasis on their possible applications. From a survey in the literature one may identify three main types of study with chitosan in nanostructured films. First, the interaction between chitosans and phospholipid Langmuir monolayers has been investigated for probing the mechanisms of chitosan action in their biological applications, with the monolayers serving as cell membrane models. In the second type, chitosan serves as a matrix for immobilization of biomolecules in LB as well as in LbL films, for which chitosan is suitable to help preserve the bioactivity of such biomolecules for long periods of time even in dry, solid films. An important application of these chitosan-containing films is in sensing and biosensing. The third type of study involves exploiting the mechanical and biocompatibility properties of chitosan in producing films with enhanced properties, for example, for tissue engineering. It is emphasized that chitosans have been proven excellent building blocks to produce films with controlled molecular architecture, allowing for synergy between distinct materials. We also discuss the prospects of the field, following a critical review of the latest developments in nanostructured chitosan films. PMID:20590156

  10. Deformation of an asymmetric film

    NASA Astrophysics Data System (ADS)

    Geng, Jun; Selinger, Jonathan

    2010-03-01

    Recent experiments have investigated shape changes of polymer films induced by asymmetric swelling by a chemical vapor. Inspired by recent work on the shaping of elastic sheets by non-Euclidean metrics [1,2], we represent the effect of chemical vapors by a change in the target metric tensor. In this problem, unlike Refs. [1,2], the target metric is asymmetric between the two sides of the film. Changing this metric induces a curvature of the film, which may be Gaussian curvature into a sphere or mean curvature into a cylinder. We calculate the elastic energy for each of these shapes, and show that the sphere is favored for films smaller than a critical size, which depends on the film thickness, while the cylinder is favored for larger films. We compare the formalism for asymmetric films with previous theoretical work on symmetric films, and compare the predictions with experimental results. [4pt] [1] Y. Klein, E. Efrati, and E. Sharon, Science 315, 1116 (2007).[0pt] [2] E. Efrati, E. Sharon, and R. Kupferman, J. Mech. Phys. Solids 57, 762 (2009).

  11. Latino Film and Video Images.

    ERIC Educational Resources Information Center

    Vazquez, Blanca, Ed.

    1990-01-01

    This theme issue of the "Centro Bulletin" examines media stereotypes of Latinos and presents examples of alternatives. "From Assimilation to Annihilation: Puerto Rican Images in U.S. Films" (R. Perez) traces the representation of Puerto Ricans from the early days of television to the films of the 1970s. "The Latino 'Boom' in Hollywood" (C. Fusco)…

  12. Films and the English Class.

    ERIC Educational Resources Information Center

    Donelson, Kenneth, Ed.

    1971-01-01

    The importance of film in the English classroom and its vitality in the English curriculum are discussed. Articles that comprise this issue of the bulletin are: The Trouble with Film Teaching by James E. Cutts; "You Ain't Heard Nothin' Yet" or Send Your Students to the Flicks Tonight by Bob Haskett; It's the Reel Thing: The Verite of Cinema Is…

  13. System for measuring film thickness

    DOEpatents

    Batishko, Charles R.; Kirihara, Leslie J.; Peters, Timothy J.; Rasmussen, Donald E.

    1990-01-01

    A system for determining the thicknesses of thin films of materials exhibiting fluorescence in response to exposure to excitation energy from a suitable source of such energy. A section of film is illuminated with a fixed level of excitation energy from a source such as an argon ion laser emitting blue-green light. The amount of fluorescent light produced by the film over a limited area within the section so illuminated is then measured using a detector such as a photomultiplier tube. Since the amount of fluorescent light produced is a function of the thicknesses of thin films, the thickness of a specific film can be determined by comparing the intensity of fluorescent light produced by this film with the intensity of light produced by similar films of known thicknesses in response to the same amount of excitation energy. The preferred embodiment of the invention uses fiber optic probes in measuring the thicknesses of oil films on the operational components of machinery which are ordinarily obscured from view.

  14. Automatic marker for photographic film

    NASA Technical Reports Server (NTRS)

    Gabbard, N. M.; Surrency, W. M.

    1974-01-01

    Commercially-produced wire-marking machine is modified to title or mark film rolls automatically. Machine is used with film drive mechanism which is powered with variable-speed, 28-volt dc motor. Up to 40 frames per minute can be marked, reducing time and cost of process.

  15. Uses for Free Film Cans

    ERIC Educational Resources Information Center

    Batoff, Mitchell E.; Harmen, Jerry

    1973-01-01

    Describes multiple uses of empty film cans for equipping an elementary school science classroom. Instructional units in which film cans may be useful include buoyancy, mobiles, growing seeds, peas and particles, rocks and minerals, structures, field studies, sound, balancing, electricity, pedulums, chemical change, and optics, light, color. (PS)

  16. Liquid-film electron stripper

    DOEpatents

    Gavin, Basil F.

    1986-01-01

    An improved liquid-film electron stripper particularly for high intensity heavy ion beams which produces constant regenerated, stable, free-standing liquid films having an adjustable thickness between 0.3 to 0.05 microns. The improved electron stripper is basically composed of at least one high speed, rotating disc with a very sharp, precision-like, ground edge on one said of the disc's periphery and with a highly polished, flat, radial surface adjacent the sharp edge. A fine stream of liquid, such as oil, impinges at a 90.degree. angle adjacent the disc's sharp outer edge. Film terminators, located at a selected distance from the disc perimeter are positioned approximately perpendicular to the film. The terminators support, shape, and stretch the film and are arranged to assist in the prevention of liquid droplet formation by directing the collected film to a reservoir below without breaking or interfering with the film. One embodiment utilizes two rotating discs and associated terminators, with the discs rotating so as to form films in opposite directions, and with the second disc being located down beam-line relative to the first disc.

  17. Selective inorganic thin films

    SciTech Connect

    Phillips, M.L.F.; Pohl, P.I.; Brinker, C.J.

    1997-04-01

    Separating light gases using membranes is a technology area for which there exists opportunities for significant energy savings. Examples of industrial needs for gas separation include hydrogen recovery, natural gas purification, and dehydration. A membrane capable of separating H{sub 2} from other gases at high temperatures could recover hydrogen from refinery waste streams, and facilitate catalytic dehydrogenation and the water gas shift (CO + H{sub 2}O {yields} H{sub 2} + CO{sub 2}) reaction. Natural gas purification requires separating CH{sub 4} from mixtures with CO{sub 2}, H{sub 2}S, H{sub 2}O, and higher alkanes. A dehydrating membrane would remove water vapor from gas streams in which water is a byproduct or a contaminant, such as refrigeration systems. Molecular sieve films offer the possibility of performing separations involving hydrogen, natural gas constituents, and water vapor at elevated temperatures with very high separation factors. It is in applications such as these that the authors expect inorganic molecular sieve membranes to compete most effectively with current gas separation technologies. Cryogenic separations are very energy intensive. Polymer membranes do not have the thermal stability appropriate for high temperature hydrogen recovery, and tend to swell in the presence of hydrocarbon natural gas constituents. The authors goal is to develop a family of microporous oxide films that offer permeability and selectivity exceeding those of polymer membranes, allowing gas membranes to compete with cryogenic and adsorption technologies for large-scale gas separation applications.

  18. Soap film gas flowmeter

    SciTech Connect

    Lalin, H.S.; Bermudez, J.E.; Fleming, W.T.

    1987-09-08

    A soap film gas flowmeter is described comprising: a flow tube having a hollow body with opposite open ends through which a soap film is propelled and a first closed chamber housing a soap solution. It also includes means for supporting the flow tube in a substantially vertical position with the open bottom end of the flow tube disposed in the first chamber above the soap solution; a second closed chamber into which the open top end of the flow tube extends and gas inlet means for introducing gas into the first chamber at a flow rate to be measured using the flowmeters. A gas exit means is included for discharging the gas introduced into the first chamber through the second chamber. Plus there are means for generating a single soap bubble from the soap solution substantially at the bottom end of the flow tube and a relatively large opening in the flowtube for providing an open passageway for inlet gas to pass through the flowtube when the bottom open end of the flowtube is covered by the soap solution.

  19. Film Fabrication Technologies at NREL

    NASA Technical Reports Server (NTRS)

    Mcconnell, Robert D.

    1993-01-01

    The National Renewable Energy Laboratory (NREL) has extensive capabilities for fabricating a variety of high-technology films. Much of the in-house work in NREL's large photovoltaics (PV) program involves the fabrication of multiple thin-film semiconducting layers constituting a thin-film PV device. NREL's smaller program in superconductivity focuses on the fabrication of superconducting films on long, flexible tape substrates. This paper focuses on four of NREL's in-house research groups and their film fabrication techniques, developed for a variety of elements, alloys, and compounds to be deposited on a variety of substrates. As is the case for many national laboratories, NREL's technology transfer efforts are focusing on Cooperative Research and Development Agreements (CRADA's) between NREL researchers and private industry researchers.

  20. Anode film formation and control

    DOEpatents

    Koski, O.; Marschman, S.C.

    1990-05-01

    A protective film is created about the anode within a cryolite-based electrolyte during electrolytic production of aluminum from alumina. The film functions to minimize corrosion of the anode by the cryolitic electrolyte and thereby extend the life of the anode. Various operating parameters of the electrolytic process are controlled to maintain the protective film about the anode in a protective state throughout the electrolytic reduction of alumina. Such parameters include electrolyte temperature, electrolyte ratio, current density, and Al[sub 2]O[sub 3] concentration. An apparatus is also disclosed to enable identification of the onset of anode corrosion due to disruption of the film to provide real time information regarding the state of the film. 3 figs.

  1. Anode film formation and control

    DOEpatents

    Koski, Oscar; Marschman, Steven C.

    1990-01-01

    A protective film is created about the anode within a cryolite-based electrolyte during electrolytic production of aluminum from alumina. The film function to minimize corrosion of the anode by the cryolitic electrolyte and thereby extend the life of the anode. Various operating parameters of the electrolytic process are controlled to maintain the protective film about the anode in a protective state throughout the electrolytic reduction of alumina. Such parameters include electrolyte temperature, electrolyte ratio, current density, and Al.sub.2 O.sub.3 concentration. An apparatus is also disclosed to enable identification of the onset of anode corrosion due to disruption of the film to provide real time information regarding the state of the film.

  2. A new radiochromic dosimeter film

    NASA Astrophysics Data System (ADS)

    Sidney, L. N.; Lynch, D. C.; Willet, P. S.

    By employing acid-sensitive leuco dyes in a chlorine-containing polymer matrix, a new radiochromic dosimeter film has been developed for gamma, electron beam, and ultraviolet radiation. These dosimeter films undergo a color change from colorless to royal blue, red fuchsia, or black, depending on dye selection, and have been characterized using a visible spectrophotometer over an absorbed dose range of 1 to 100 kGy. The primary features of the film are improved color stability before and after irradiation, whether stored in the dark or under artificial lights, and improved moisture resistance. The effects of absorbed dose, dose rate, and storage conditions on dosimeter performance are discussed. The dosimeter material may be produced as a free film or coated onto a transparent substrate and optionally backed with adhesive. Potential applications for these materials include gamma sterilization indicator films for food and medical products, electron beam dosimeters, and in-line radiation monitors for electron beam and ultraviolet processing.

  3. Stimuli-responsive polymer films.

    PubMed

    Zhai, Lei

    2013-09-01

    Stimuli-responsive polymer films undergo interesting structural and property changes upon external stimuli. Their applications have extended from smart coatings to controlled drug release, smart windows, self-repair and other fields. This tutorial review summarizes non-covalent bonding, reversible reactions and responsive molecules that have played important roles in creating stimuli-responsive systems, and presents the recent development of three types of responsive polymer systems: layer-by-layer polymer multilayer films, polymer brushes, and self-repairing polymer films, with a discussion of their response mechanism. Future research efforts include comprehensive understanding of the response mechanism, producing polymer systems with controlled response properties regarding single or multiple external signals, combining polymer film fabrication with nanotechnology, improving the stability of polymer films on substrates, and evaluating the toxicity of the degradation products. PMID:23749141

  4. Recent beam probe measurements on EBT, TMX, and RENTOR

    SciTech Connect

    Hickok, R L

    1980-06-01

    It is noted that beam probe systems can provide accurate, reliable measurments of plasma space potential and nf(T/sub e/). Over some temperature range, at least, it should be possible to separate n and T/sub e/ by measuring the multiple ionization reaction products. It is also an ideal diagnostic for studying fluctuations since it provides a simultaneous measurement of phi and nf(T/sub e/) from the same point in the plasma and the measurements are continuous in time. Measurements can be made quasi-continuously in space by rapidly sweeping the beam. By using more than one detector it should be possible to make measurements simultaneously at two different observation points in the plasma.

  5. EBT-P gamma-ray-shielding analysis

    SciTech Connect

    Gohar, Y.

    1983-01-01

    First, a one-dimensional scoping study was performed for the gamma-ray shield of the ELMO Bumpy Torus proof-of-principle device to define appropriate shielding material and determine the required shielding thickness. The dose-equivalent results are analyzed as a function of the radiation-shield thickness for different shielding options. A sensitivity analysis for the pessimistic case is given. The recommended shielding option based on the performance and cost is discussed. Next, a three-dimensional scoping study for the coil shield was performed for four different shielding options to define the heat load for each component and check the compliance with the design criterion of 10 watts maximum heat load per coil from the gamma-ray sources. Also, a detailed biological-dose survey was performed which included: (a) the dose equivalent inside and outside the building, (b) the dose equivalent from the two mazes of the building, and (c) the skyshine contribution to the dose equivalent.

  6. Laser damage threshold of diamond films

    NASA Technical Reports Server (NTRS)

    Albin, Sacharia; Cropper, Andre D.; Watkins, Linwood C.; Byvik, Charles E.; Buoncristiani, A. Martin

    1989-01-01

    The possibility that diamond films may inhibit laser-induced damage to optical components in laser systems films was investigated by measuring laser damage thresholds of free-standing diamond film windows, diamond films deposited on silicon substrates, and bare silicon substrate. Polycrystalline diamond films were deposited using a dc plasma-enhanced CVD process. It was found that free-standing diamond films had the highest laser damage threshold at 1064 nm. For a diamond film of 630 nm, the damage threshold was found to be 7 J/sq cm, as compared to a damage threshold of 4.5 J/sq cm for bare silicon, and a low value of 1.5 J/sq cm for the film/substrate combination. The damage mechanism is considered to involve melting or dielectric breakdown induced by laser radiation. The low value of the film/substrate combination is attributed to film stress and conditions of film deposition.

  7. Flow fields in soap films: Relating viscosity and film thickness

    NASA Astrophysics Data System (ADS)

    Prasad, V.; Weeks, Eric R.

    2009-08-01

    We follow the diffusive motion of colloidal particles in soap films with varying h/d , where h is the thickness of the film and d is the diameter of the particles. The hydrodynamics of these films are determined by looking at the correlated motion of pairs of particles as a function of separation R . The Trapeznikov approximation [A. A. Trapeznikov, Proceedings of the 2nd International Congress on Surface Activity (Butterworths, London, 1957), p. 242] is used to model soap films as an effective two-dimensional (2D) fluid in contact with bulk air phases. The flow fields determined from correlated particle motions show excellent agreement with what is expected for the theory of 2D fluids for all our films where 0.6≤h/d≤14.3 , with the 2D shear viscosity matching that predicted by Trapeznikov. However, the parameters of these flow fields change markedly for thick films (h/d>7±3) . Our results indicate that three-dimensional effects become important for these thicker films, despite the flow fields still having a 2D character.

  8. Marvin: an anatomical phantom for dosimetric evaluation of complex radiotherapy of the head and neck

    NASA Astrophysics Data System (ADS)

    Aitkenhead, A. H.; Rowbottom, C. G.; Mackay, R. I.

    2013-10-01

    We report on the design of Marvin, a Model Anatomy for Radiotherapy Verification and audit In the head and Neck and present results demonstrating its use in the development of the Elekta volumetric modulated arc therapy (VMAT) technique at the Christie, and in the audit of TomoTherapy and Varian RapidArc at other institutions. The geometry of Marvin was generated from CT datasets of eight male and female patients lying in the treatment position, with removable inhomogeneities modelling the sinuses and mandible. A modular system allows the phantom to be used with a range of detectors, with the locations of the modules being based on an analysis of a range of typical treatment plans (27 in total) which were mapped onto the phantom geometry. Results demonstrate the use of Gafchromic EBT2/EBT3 film for measurement of relative dose in a plane through the target and organs-at-risk, and the use of a small-volume ionization chamber for measurement of absolute dose in the target and spinal cord. Measurements made during the development of the head and neck VMAT protocol at the Christie quantified the improvement in plan delivery resulting from the installation of the Elekta Integrity upgrade (which permits an effectively continuously variable dose rate), with plans delivered before and after the upgrade having 88.5 ± 9.4% and 98.0 ± 2.2% respectively of points passing a gamma analysis (at 4%, 4 mm, global). Audits of TomoTherapy and Varian RapidArc neck techniques at other institutions showed a similar quality of plan delivery as for post-Integrity Elekta VMAT: film measurements for both techniques had >99% of points passing a gamma analysis at the clinical criteria of 4%, 4 mm, global, and >95% of points passing at tighter criteria of 3%, 3 mm, global; and absolute dose measurements in the PTV and spinal cord were within 1.5% and 3.5% of the planned doses respectively for both techniques. The results demonstrate that Marvin is an efficient and effective means of

  9. SU-C-213-02: Characterizing 3D Printing in the Fabrication of Variable Density Phantoms

    SciTech Connect

    Madamesila, J; McGeachy, P; Villarreal-Barajas, J; Khan, R

    2015-06-15

    Purpose: In this work, we present characterization, process flow, quality control and application of 3D fabricated low density phantoms for radiotherapy quality assurance. Methods: A Rostock delta 3D printer using polystyrene filament of diameter 1.75 mm was used to print geometric volumes of 2×2×1 cm{sup 3} of varying densities. The variable densities of 0.1 to 0.75 g/cm {sup 3} were created by modulating the infill. A computed tomography (CT) scan was performed to establish an infill-density calibration curve as well as characterize the quality of the print such as uniformity and the infill pattern. The time required to print these volumes was also recorded. Using the calibration, two low density cones (0.19, 0.52 g/cm{sup 3}) were printed and benchmarked against commercially available phantoms. The dosimetric validation of the low density scaling of Anisotropic Analytical Algorithm (AAA) was performed by using a 0.5 g/cm{sup 3} slab of 10×10×2.4 cm{sup 3} with EBT3 GafChromic film. The gamma analysis at 3%/3mm criteria were compared for the measured and computed dose planes. Results: Analysis of the volume of air pockets in the infill resulted in a reasonable uniformity for densities 0.4 to 0.75 g/cm{sup 3}. Printed phantoms with densities below 0.4 g/cm{sup 3} exhibited a higher ratio of air to polystyrene resulting in large non-uniformity. Compared to the commercial inserts, good agreement was observed only for the printed 0.52 g/cm{sup 3} cone. Dosimetric comparison for a printed low density volume placed in-between layers of solid water resulted in >95% gamma agreement between AAA calculated dose planes and measured EBT3 films for a 6MV 5×5 cm{sup 2} clinical beam. The comparison showed disagreement in the penumbra region. Conclusion: In conclusion, 3D printing technology opens the door to desktop fabrication of variable density phantoms at economical prices in an efficient manner for the quality assurance needs of a small clinic.

  10. Measurement of effects of nasal and facial shields on delivered radiation dose for superficial x-ray treatments

    NASA Astrophysics Data System (ADS)

    Yu, Peter K. N.; Butson, Martin J.

    2013-03-01

    Kilovoltage x-ray beams are used for the treatment of facial cancers when located on the patient's skin or subcutaneous tissue. This is of course due to the sharp depth dose characteristics of these beams delivering much lower doses at depth, than high energy x-ray beams. When treatment is performed, lead shields are often used within the nasal passage, or behind the lips and ears. These shields affect the backscattering patterns of the x-ray beams producing perturbations to upstream dose thus reducing delivered dose to the tumour. Experimental results using radiochromic films have shown that up to 10.5% ± 1.9% reduction in tumour dose can occur for field sizes less than 5 cm circle diameter for x-ray beams of 50 to 150 kVp. These results were confirmed using EGSnrc Monte Carlo techniques. Clinically more than 70% of treatments used fields of diameters less than 3 cm where the reductions were up to 6% ± 1.3%. Using a 1 cm diameter field, which can be used for skin cancer treatment on the nose, reductions up to 2.5% ± 1.3% were seen. Thus corrections need to be applied for dose calculations when underlying lead shields are used clinically in kilovoltage x-rays. The size of the reduction was also found to be dependent on the depth of the shield which will normally clinically vary from approximately 0.5 cm for nasal shields or behind eye lobes and up to approximately 1 cm for lips or cheek areas. We recommend that clinics utilize data for corrections to delivered dose in kilovoltage x-ray beams when lead shields are used in nasal passages, behind lips or behind ears for dose reduction. This can be easily and accurately measured with EBT2 Gafchromic film.

  11. SU-E-T-469: A Practical Approach for the Determination of Small Field Output Factors Using Published Monte Carlo Derived Correction Factors

    SciTech Connect

    Calderon, E; Siergiej, D

    2014-06-01

    Purpose: Output factor determination for small fields (less than 20 mm) presents significant challenges due to ion chamber volume averaging and diode over-response. Measured output factor values between detectors are known to have large deviations as field sizes are decreased. No set standard to resolve this difference in measurement exists. We observed differences between measured output factors of up to 14% using two different detectors. Published Monte Carlo derived correction factors were used to address this challenge and decrease the output factor deviation between detectors. Methods: Output factors for Elekta's linac-based stereotactic cone system were measured using the EDGE detector (Sun Nuclear) and the A16 ion chamber (Standard Imaging). Measurements conditions were 100 cm SSD (source to surface distance) and 1.5 cm depth. Output factors were first normalized to a 10.4 cm × 10.4 cm field size using a daisy-chaining technique to minimize the dependence of field size on detector response. An equation expressing the relation between published Monte Carlo correction factors as a function of field size for each detector was derived. The measured output factors were then multiplied by the calculated correction factors. EBT3 gafchromic film dosimetry was used to independently validate the corrected output factors. Results: Without correction, the deviation in output factors between the EDGE and A16 detectors ranged from 1.3 to 14.8%, depending on cone size. After applying the calculated correction factors, this deviation fell to 0 to 3.4%. Output factors determined with film agree within 3.5% of the corrected output factors. Conclusion: We present a practical approach to applying published Monte Carlo derived correction factors to measured small field output factors for the EDGE and A16 detectors. Using this method, we were able to decrease the percent deviation between both detectors from 14.8% to 3.4% agreement.

  12. Dosimetry Formalism and Implementation of a Homogenous Irradiation Protocol to Improve the Accuracy of Small Animal Whole-Body Irradiation Using a 137Cs Irradiator.

    PubMed

    Brodin, N Patrik; Chen, Yong; Yaparpalvi, Ravindra; Guha, Chandan; Tomé, Wolfgang A

    2016-02-01

    Shielded Cs irradiators are routinely used in pre-clinical radiation research to perform in vitro or in vivo investigations. Without appropriate dosimetry and irradiation protocols in place, there can be large uncertainty in the delivered dose of radiation between irradiated subjects that could lead to inaccurate and possibly misleading results. Here, a dosimetric evaluation of the JL Shepard Mark I-68A Cs irradiator and an irradiation technique for whole-body irradiation of small animals that allows one to limit the between subject variation in delivered dose to ±3% are provided. Mathematical simulation techniques and Gafchromic EBT film were used to describe the region within the irradiation cavity with homogeneous dose distribution (100% ± 5%), the dosimetric impact of varying source-to-subject distance, and the variation in attenuation thickness due to turntable rotation. Furthermore, an irradiation protocol and dosimetry formalism that allows calculation of irradiation time for whole-body irradiation of small animals is proposed that is designed to ensure a more consistent dose delivery between irradiated subjects. To compare this protocol with the conventional irradiation protocol suggested by the vendor, high-resolution film dosimetry measurements evaluating the dose difference between irradiation subjects and the dose distribution throughout subjects was performed using phantoms resembling small animals. Based on these results, there can be considerable variation in the delivered dose of > ± 5% using the conventional irradiation protocol for whole-body irradiation doses below 5 Gy. Using the proposed irradiation protocol this variability can be reduced to within ±3% and the dosimetry formalism allows for more accurate calculation of the irradiation time in relation to the intended prescription dose. PMID:26710162

  13. Technical Report: TG-142 compliant and comprehensive quality assurance tests for respiratory gating

    SciTech Connect

    Woods, Kyle; Rong, Yi

    2015-11-15

    Purpose: To develop and establish a comprehensive gating commissioning and quality assurance procedure in compliance with TG-142. Methods: Eight Varian TrueBeam Linacs were used for this study. Gating commissioning included an end-to-end test and baseline establishment. The end-to-end test was performed using a CIRS dynamic thoracic phantom with a moving cylinder inside the lung, which was used for carrying both optically simulated luminescence detectors (OSLDs) and Gafchromic EBT2 films while the target is moving, for a point dose check and 2D profile check. In addition, baselines were established for beam-on temporal delay and calibration of the surrogate, for both megavoltage (MV) and kilovoltage (kV) beams. A motion simulation device (MotionSim) was used to provide periodic motion on a platform, in synchronizing with a surrogate motion. The overall accuracy and uncertainties were analyzed and compared. Results: The OSLD readings were within 5% compared to the planned dose (within measurement uncertainty) for both phase and amplitude gated deliveries. Film results showed less than 3% agreement to the predicted dose with a standard sinusoid motion. The gate-on temporal accuracy was averaged at 139 ± 10 ms for MV beams and 92 ± 11 ms for kV beams. The temporal delay of the surrogate motion depends on the motion speed and was averaged at 54.6 ± 3.1 ms for slow, 24.9 ± 2.9 ms for intermediate, and 23.0 ± 20.1 ms for fast speed. Conclusions: A comprehensive gating commissioning procedure was introduced for verifying the output accuracy and establishing the temporal accuracy baselines with respiratory gating. The baselines are needed for routine quality assurance tests, as suggested by TG-142.

  14. SU-E-T-115: Dose Perturbation Study of Self-Expandable Metal and Polyester Esophageal Stents in Proton Therapy Beams

    SciTech Connect

    Lee, S; Li, Z; Jalaj, S; McGaw, C; B K, John; J S, Scolapio; J C, Munoz

    2014-06-01

    Purpose: This work investigates dose perturbations due to Self-expandable metal and polyester esophageal stents undergoing proton radiotherapy for esophageal cancer. Methods: Five commercially available esophageal stents made of nitinol (Evolution, Wallflex and Ultraflex), stainless steel (Z-Stent) and polyester (Polyflex) were tested. Radiochromic film (GafChromic EBT3 film, Ashland, Covington, KY) wrapped around a stent and a 12cc syringe was irradiated with 2CGE (Cobalt Gray Equivalent) of proton beam in a custom fabricated acrylic phantom. An air-hollow syringe simulates the esophagus. Results: The Z-stent created the largest dose perturbations ranges from -14.5% to 6.1% due to the steel composition. The WallFlex, Evolution and Ultraflex stents produced the dose perturbation ranges of (−9.2%∼8.6%), (−6.8%∼5.7%) and (−6.2%∼6.2%), respectively. The PolyFlex stent contains the radiopaque tungsten markers located top, middle and bottom portions. When the focal cold spots induced by the markers were excluded in the analysis, the dose perturbation range was changed from (−11.6%∼6.4%) to (−0.6%∼5.0%). Conclusion: The magnitude of dose perturbation is related to material of a metallic stent. The non-metallic stent such as PolyFlex shows relatively lower dose perturbation than metallic stents except a radiopaque marker region. Overall Evolution and Ultraflex stent appear to be less dose perturbations. The largest dose perturbations (cold spots) were located at both edges of stents in distal area for the single proton beam irradiation study. The analysis of more than two proton beam which is more typical clinical beam arrangement would be necessary to minimize the doe perturbation effect in proton ratiotherapy.

  15. A Novel Device for Intravaginal Electronic Brachytherapy

    SciTech Connect

    Schneider, Frank Fuchs, Holger; Lorenz, Friedlieb; Steil, Volker; Ziglio, Francesco; Kraus-Tiefenbacher, Uta; Lohr, Frank; Wenz, Frederik

    2009-07-15

    Purpose: Postoperative intravaginal brachytherapy for endometrial carcinoma is usually performed with {sup 192}Ir high-dose rate (HDR) afterloading. A potential alternative is treatment with a broadband 50kV X-ray point source, the advantage being its low energy and the consequential steep dose gradient. The aim of this study was to create and evaluate a homogeneous cylindrical energy deposition around a newly designed vaginal applicator. Methods and Materials: To create constant isodose layers along the cylindrical plastic vaginal applicator, the source (INTRABEAM system) was moved in steps of 17-19.5 mm outward from the tip of the applicator. Irradiation for a predetermined time was performed at each position. The axial shift was established by a stepping mechanism that was mounted on a table support. The total dose/dose distribution was determined using film dosimetry (Gafchromic EBT) in a 'solid water' phantom. The films were evaluated with Mathematica 5.2 and OmniPro-I'mRT 1.6. The results (dose D0/D5/D10 in 0/5/10 mm tissue depth) were compared with an {sup 192}Ir HDR afterloading plan for multiple sampling points around the applicator. Results: Three different dose distributions with lengths of 3.9-7.3 cm were created. The irradiation time based on the delivery of 5/7 Gy to a 5 mm tissue depth was 19/26 min to 27/38 min. D0/D5/D10 was 150%/100%/67% for electronic brachytherapy and 140%/100%/74% for the afterloading technique. The deviation for repeated measurements in the phantom was <7%. Conclusions: It is possible to create a homogeneous cylindrical dose distribution, similar to {sup 192}Ir HDR afterloading, through the superimposition of multiple spherical dose distributions by stepping a kilovolt point source.

  16. Polyimide Aerogel Thin Films

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann; Guo, Haiquan

    2012-01-01

    Polyimide aerogels have been crosslinked through multifunctional amines. This invention builds on "Polyimide Aerogels With Three-Dimensional Cross-Linked Structure," and may be considered as a continuation of that invention, which results in a polyimide aerogel with a flexible, formable form. Gels formed from polyamic acid solutions, end-capped with anhydrides, and cross-linked with the multifunctional amines, are chemically imidized and dried using supercritical CO2 extraction to give aerogels having density around 0.1 to 0.3 g/cubic cm. The aerogels are 80 to 95% porous, and have high surface areas (200 to 600 sq m/g) and low thermal conductivity (as low as 14 mW/m-K at room temperature). Notably, the cross-linked polyimide aerogels have higher modulus than polymer-reinforced silica aerogels of similar density, and can be fabricated as both monoliths and thin films.

  17. Digital film library implementation

    NASA Astrophysics Data System (ADS)

    Kishore, Sheel; Khalsa, Satjeet S.; Seshadri, Sridhar B.; Arenson, Ronald L.

    1991-07-01

    The Radiology Department at the University of Pennsylvania is in the process of clinically testing its PACS implementation. The PACS implementation has been built around a Vortech Image Archival and Retrieval System (IARS) with a 140-platter optical jukebox. The Vortech IARS provides archival services only. A set of software modules have been developed in-house that allow the system to function as a digital film library. The current implementation allows connectivity to a RIS (DECrad), supports the routing of images to two intensive care units, and allows image acquisition from a Du Pont FD2000 laser scanner and two GE SIGNA MR units. All process-to-process communication follows the ACR/NEMA 2.0 protocol. The proposed folder extensions to ACR/NEMA 2.0 are being utilized for sending information to the display nodes. The system has been running clinically for about three months. Details of the design, implementation, and functionality of the PACS are presented.

  18. Ferromagnetic thin films

    DOEpatents

    Krishnan, Kannan M.

    1994-01-01

    A ferromagnetic .delta.-Mn.sub.1-x Ga.sub.x thin film having perpendicular anisotropy is described which comprises: (a) a GaAs substrate, (b) a layer of undoped GaAs overlying said substrate and bonded thereto having a thickness ranging from about 50 to about 100 nanometers, (c) a layer of .delta.-Mn.sub.1-x Ga.sub.x overlying said layer of undoped GaAs and bonded thereto having a thickness ranging from about 20 to about 30 nanometers, and (d) a layer of GaAs overlying said layer of .delta.-Mn.sub.1-x Ga.sub.x and bonded thereto having a thickness ranging from about 2 to about 5 nanometers, wherein x is 0.4 .+-.0.05.

  19. Ferromagnetic thin films

    DOEpatents

    Krishnan, K.M.

    1994-12-20

    A ferromagnetic [delta]-Mn[sub 1[minus]x]Ga[sub x] thin film having perpendicular anisotropy is described which comprises: (a) a GaAs substrate, (b) a layer of undoped GaAs overlying said substrate and bonded thereto having a thickness ranging from about 50 to about 100 nanometers, (c) a layer of [delta]-Mn[sub 1[minus]x]Ga[sub x] overlying said layer of undoped GaAs and bonded thereto having a thickness ranging from about 20 to about 30 nanometers, and (d) a layer of GaAs overlying said layer of [delta]-Mn[sub 1[minus]x]Ga[sub x] and bonded thereto having a thickness ranging from about 2 to about 5 nanometers, wherein x is 0.4[+-]0.05. 7 figures.

  20. Thin film hydrogen sensor

    DOEpatents

    Lauf, R.J.; Hoffheins, B.S.; Fleming, P.H.

    1994-11-22

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed. 6 figs.