Science.gov

Sample records for gag facilitates hiv-1

  1. The Clathrin Adaptor Complex AP-1 Binds HIV-1 and MLV Gag and Facilitates Their Budding

    PubMed Central

    Camus, Grégory; Segura-Morales, Carolina; Molle, Dorothee; Lopez-Vergès, Sandra; Begon-Pescia, Christina; Cazevieille, Chantal; Schu, Peter; Bertrand, Edouard

    2007-01-01

    Retroviral assembly is driven by Gag, and nascent viral particles escape cells by recruiting the machinery that forms intralumenal vesicles of multivesicular bodies. In this study, we show that the clathrin adaptor complex AP-1 is involved in retroviral release. The absence of AP-1μ obtained by genetic knock-out or by RNA interference reduces budding of murine leukemia virus (MLV) and HIV-1, leading to a delay of viral propagation in cell culture. In contrast, overexpression of AP-1μ enhances release of HIV-1 Gag. We show that the AP-1 complex facilitates retroviral budding through a direct interaction between the matrix and AP-1μ. Less MLV Gag is found associated with late endosomes in cells lacking AP-1, and our results suggest that AP-1 and AP-3 could function on the same pathway that leads to Gag release. In addition, we find that AP-1 interacts with Tsg101 and Nedd4.1, two cellular proteins known to be involved in HIV-1 and MLV budding. We propose that AP-1 promotes Gag release by transporting it to intracellular sites of active budding, and/or by facilitating its interactions with other cellular partners. PMID:17538020

  2. The phosphorylation of HIV-1 Gag by atypical protein kinase C facilitates viral infectivity by promoting Vpr incorporation into virions

    PubMed Central

    2014-01-01

    Background Human immunodeficiency virus type 1 (HIV-1) Gag is the main structural protein that mediates the assembly and release of virus-like particles (VLPs) from an infected cell membrane. The Gag C-terminal p6 domain contains short sequence motifs that facilitate virus release from the plasma membrane and mediate incorporation of the viral Vpr protein. Gag p6 has also been found to be phosphorylated during HIV-1 infection and this event may affect virus replication. However, the kinase that directs the phosphorylation of Gag p6 toward virus replication remains to be identified. In our present study, we identified this kinase using a proteomic approach and further delineate its role in HIV-1 replication. Results A proteomic approach was designed to systematically identify human protein kinases that potently interact with HIV-1 Gag and successfully identified 22 candidates. Among this panel, atypical protein kinase C (aPKC) was found to phosphorylate HIV-1 Gag p6. Subsequent LC-MS/MS and immunoblotting analysis with a phospho-specific antibody confirmed both in vitro and in vivo that aPKC phosphorylates HIV-1 Gag at Ser487. Computer-assisted structural modeling and a subsequent cell-based assay revealed that this phosphorylation event is necessary for the interaction between Gag and Vpr and results in the incorporation of Vpr into virions. Moreover, the inhibition of aPKC activity reduced the Vpr levels in virions and impaired HIV-1 infectivity of human primary macrophages. Conclusion Our current results indicate for the first time that HIV-1 Gag phosphorylation on Ser487 is mediated by aPKC and that this kinase may regulate the incorporation of Vpr into HIV-1 virions and thereby supports virus infectivity. Furthermore, aPKC inhibition efficiently suppresses HIV-1 infectivity in macrophages. aPKC may therefore be an intriguing therapeutic target for HIV-1 infection. PMID:24447338

  3. HIV-1 Nef promotes the localization of Gag to the cell membrane and facilitates viral cell-to-cell transfer

    PubMed Central

    2013-01-01

    Background Newly synthesized HIV-1 particles assemble at the plasma membrane of infected cells, before being released as free virions or being transferred through direct cell-to-cell contacts to neighboring cells. Localization of HIV-1 Gag precursor at the cell membrane is necessary and sufficient to trigger viral assembly, whereas the GagPol precursor is additionally required to generate a fully matured virion. HIV-1 Nef is an accessory protein that optimizes viral replication through partly defined mechanisms. Whether Nef modulates Gag and/or GagPol localization and assembly at the membrane and facilitates viral cell-to-cell transfer has not been extensively characterized so far. Results We report that Nef increases the total amount of Gag proteins present in infected cells, and promotes Gag localization at the cell membrane. Moreover, the processing of p55 into p24 is improved in the presence of Nef. We also examined the effect of Nef during HIV-1 cell-to-cell transfer. We show that without Nef, viral transfer through direct contacts between infected cells and target cells is impaired. With a nef-deleted virus, the number of HIV-1 positive target cells after a short 2h co-culture is reduced, and viral material transferred to uninfected cells is less matured. At later time points, this defect is associated with a reduction in the productive infection of new target cells. Conclusions Our results highlight a previously unappreciated role of Nef during the viral replication cycle. Nef promotes HIV-1 Gag membrane localization and processing, and facilitates viral cell-to-cell transfer. PMID:23899341

  4. Abrogation of contaminating RNA activity in HIV-1 Gag VLPs

    PubMed Central

    2011-01-01

    Background HIV-1 Gag virus like particles (VLPs) used as candidate vaccines are regarded as inert particles as they contain no replicative nucleic acid, although they do encapsidate cellular RNAs. During HIV-1 Gag VLP production in baculovirus-based expression systems, VLPs incorporate the baculovirus Gp64 envelope glycoprotein, which facilitates their entry into mammalian cells. This suggests that HIV-1 Gag VLPs produced using this system facilitate uptake and subsequent expression of encapsidated RNA in mammalian cells - an unfavourable characteristic for a vaccine. Methods HIV-1 Gag VLPs encapsidating reporter chloramphenicol acetyl transferase (CAT) RNA, were made in insect cells using the baculovirus expression system. The presence of Gp64 on the VLPs was verified by western blotting and RT-PCR used to detect and quantitate encapsidated CAT RNA. VLP samples were heated to inactivate CAT RNA. Unheated and heated VLPs incubated with selected mammalian cell lines and cell lysates tested for the presence of CAT protein by ELISA. Mice were inoculated with heated and unheated VLPs using a DNA prime VLP boost regimen. Results HIV-1 Gag VLPs produced had significantly high levels of Gp64 (~1650 Gp64 molecules/VLP) on their surfaces. The amount of encapsidated CAT RNA/μg Gag VLPs ranged between 0.1 to 7 ng. CAT protein was detected in 3 of the 4 mammalian cell lines incubated with VLPs. Incubation with heated VLPs resulted in BHK-21 and HeLa cell lysates showing reduced CAT protein levels compared with unheated VLPs and HEK-293 cells. Mice inoculated with a DNA prime VLP boost regimen developed Gag CD8 and CD4 T cell responses to GagCAT VLPs which also boosted a primary DNA response. Heating VLPs did not abrogate these immune responses but enhanced the Gag CD4 T cell responses by two-fold. Conclusions Baculovirus-produced HIV-1 Gag VLPs encapsidating CAT RNA were taken up by selected mammalian cell lines. The presence of CAT protein indicates that encapsidated RNA was

  5. Global changes in the RNA binding specificity of HIV-1 Gag regulate virion genesis

    PubMed Central

    Kutluay, Sebla B.; Zang, Trinity; Blanco-Melo, Daniel; Powell, Chelsea; Jannain, David; Errando, Manel; Bieniasz, Paul D.

    2014-01-01

    Summary The HIV-1 Gag protein orchestrates all steps of virion genesis, including membrane targeting and RNA recruitment into virions. Using crosslinking-immunoprecipitation (CLIP) sequencing, we uncover several dramatic changes in the RNA binding properties of Gag that occur during virion genesis, coincident with membrane binding, multimerization and proteolytic maturation. Prior to assembly, and after virion assembly and maturation, the nucleocapsid domain of Gag preferentially binds to psi and Rev Response elements in the viral genome, and GU-rich mRNA sequences. However, during virion genesis, this specificity transiently changes in a manner that facilitates genome packaging; nucleocapsid binds to many sites on the HIV-1 genome and to mRNA sequences with a HIV-1-like, A-rich nucleotide composition. Additionally, we find that the matrix domain of Gag binds almost exclusively to specific tRNAs in the cytosol, and this association regulates Gag binding to cellular membranes. PMID:25416948

  6. Global changes in the RNA binding specificity of HIV-1 gag regulate virion genesis.

    PubMed

    Kutluay, Sebla B; Zang, Trinity; Blanco-Melo, Daniel; Powell, Chelsea; Jannain, David; Errando, Manel; Bieniasz, Paul D

    2014-11-20

    The HIV-1 Gag protein orchestrates all steps of virion genesis, including membrane targeting and RNA recruitment into virions. Using crosslinking-immunoprecipitation (CLIP) sequencing, we uncover several dramatic changes in the RNA-binding properties of Gag that occur during virion genesis, coincident with membrane binding, multimerization, and proteolytic maturation. Prior to assembly, and after virion assembly and maturation, the nucleocapsid domain of Gag preferentially binds to psi and Rev Response elements in the viral genome, and GU-rich mRNA sequences. However, during virion genesis, this specificity transiently changes in a manner that facilitates genome packaging; nucleocapsid binds to many sites on the HIV-1 genome and to mRNA sequences with a HIV-1-like, A-rich nucleotide composition. Additionally, we find that the matrix domain of Gag binds almost exclusively to specific tRNAs in the cytosol, and this association regulates Gag binding to cellular membranes.

  7. Citron kinase enhances ubiquitination of HIV-1 Gag protein and intracellular HIV-1 budding.

    PubMed

    Ding, Jiwei; Zhao, Jianyuan; Sun, Lei; Mi, Zeyun; Cen, Shan

    2016-09-01

    Assembly and budding of human immunodeficiency virus type 1 (HIV-1) particles is a complex process involving a number of host proteins. We have previously reported that the RhoA effector citron kinase enhances HIV-1 production. However, the underlying mechanism is not clear. In this study, we found that citron kinase interacted with HIV-1 Gag protein via its zinc finger and leucine zipper domains. Electron microscopy analysis revealed that citron kinase induced viral particle assembly in multivesicular bodies (MVBs). Citron kinase enhanced ubiquitination of HIV-1 Gag protein. Knockdown of Nedd4L, a member of the HECT ubiquitin E3 ligase family, partly decreased the ability of citron kinase to enhance HIV-1 production and reduced ubiquitination of HIV-1 Gag. Interestingly, the function of citron kinase to promote HIV-1 budding was severely impaired when endogenous ALIX was knocked down. Overexpression of the AAA-type ATPase VPS4 eliminated citron-kinase-mediated enhancement of HIV-1 production. Our results suggest that citron kinase interacts with HIV-1 Gag and enhances HIV-1 production by promoting Gag ubiquitination and inducing viral release via the MVB pathway. PMID:27339686

  8. Solution Properties of Murine Leukemia Virus Gag Protein: Differences from HIV-1 Gag

    SciTech Connect

    Datta, Siddhartha A.K.; Zuo, Xiaobing; Clark, Patrick K.; Campbell, Stephen J.; Wang, Yun-Xing; Rein, Alan

    2012-05-09

    Immature retrovirus particles are assembled from the multidomain Gag protein. In these particles, the Gag proteins are arranged radially as elongated rods. We have previously characterized the properties of HIV-1 Gag in solution. In the absence of nucleic acid, HIV-1 Gag displays moderately weak interprotein interactions, existing in monomer-dimer equilibrium. Neutron scattering and hydrodynamic studies suggest that the protein is compact, and biochemical studies indicate that the two ends can approach close in three-dimensional space, implying the need for a significant conformational change during assembly. We now describe the properties of the Gag protein of Moloney murine leukemia virus (MLV), a gammaretrovirus. We found that this protein is very different from HIV-1 Gag: it has much weaker protein-protein interaction and is predominantly monomeric in solution. This has allowed us to study the protein by small-angle X-ray scattering and to build a low-resolution molecular envelope for the protein. We found that MLV Gag is extended in solution, with an axial ratio of {approx}7, comparable to its dimensions in immature particles. Mutational analysis suggests that runs of prolines in its matrix and p12 domains and the highly charged stretch at the C terminus of its capsid domain all contribute to this extended conformation. These differences between MLV Gag and HIV-1 Gag and their implications for retroviral assembly are discussed.

  9. N6-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression

    PubMed Central

    Tirumuru, Nagaraja; Zhao, Boxuan Simen; Lu, Wuxun; Lu, Zhike; He, Chuan; Wu, Li

    2016-01-01

    The internal N6-methyladenosine (m6A) methylation of eukaryotic nuclear RNA controls post-transcriptional gene expression, which is regulated by methyltransferases (writers), demethylases (erasers), and m6A-binding proteins (readers) in cells. The YTH domain family proteins (YTHDF1–3) bind to m6A-modified cellular RNAs and affect RNA metabolism and processing. Here, we show that YTHDF1–3 proteins recognize m6A-modified HIV-1 RNA and inhibit HIV-1 infection in cell lines and primary CD4+ T-cells. We further mapped the YTHDF1–3 binding sites in HIV-1 RNA from infected cells. We found that the overexpression of YTHDF proteins in cells inhibited HIV-1 infection mainly by decreasing HIV-1 reverse transcription, while knockdown of YTHDF1–3 in cells had the opposite effects. Moreover, silencing the m6A writers decreased HIV-1 Gag protein expression in virus-producing cells, while silencing the m6A erasers increased Gag expression. Our findings suggest an important role of m6A modification of HIV-1 RNA in viral infection and HIV-1 protein synthesis. DOI: http://dx.doi.org/10.7554/eLife.15528.001 PMID:27371828

  10. N(6)-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression.

    PubMed

    Tirumuru, Nagaraja; Zhao, Boxuan Simen; Lu, Wuxun; Lu, Zhike; He, Chuan; Wu, Li

    2016-01-01

    The internal N(6)-methyladenosine (m(6)A) methylation of eukaryotic nuclear RNA controls post-transcriptional gene expression, which is regulated by methyltransferases (writers), demethylases (erasers), and m(6)A-binding proteins (readers) in cells. The YTH domain family proteins (YTHDF1-3) bind to m(6)A-modified cellular RNAs and affect RNA metabolism and processing. Here, we show that YTHDF1-3 proteins recognize m(6)A-modified HIV-1 RNA and inhibit HIV-1 infection in cell lines and primary CD4(+) T-cells. We further mapped the YTHDF1-3 binding sites in HIV-1 RNA from infected cells. We found that the overexpression of YTHDF proteins in cells inhibited HIV-1 infection mainly by decreasing HIV-1 reverse transcription, while knockdown of YTHDF1-3 in cells had the opposite effects. Moreover, silencing the m(6)A writers decreased HIV-1 Gag protein expression in virus-producing cells, while silencing the m(6)A erasers increased Gag expression. Our findings suggest an important role of m(6)A modification of HIV-1 RNA in viral infection and HIV-1 protein synthesis. PMID:27371828

  11. MicroRNA binding to the HIV-1 Gag protein inhibits Gag assembly and virus production

    PubMed Central

    Chen, Antony K.; Sengupta, Prabuddha; Waki, Kayoko; Van Engelenburg, Schuyler B.; Ochiya, Takahiro; Ablan, Sherimay D.; Freed, Eric O.; Lippincott-Schwartz, Jennifer

    2014-01-01

    MicroRNAs (miRNAs) are small, 18–22 nt long, noncoding RNAs that act as potent negative gene regulators in a variety of physiological and pathological processes. To repress gene expression, miRNAs are packaged into RNA-induced silencing complexes (RISCs) that target mRNAs for degradation and/or translational repression in a sequence-specific manner. Recently, miRNAs have been shown to also interact with proteins outside RISCs, impacting cellular processes through mechanisms not involving gene silencing. Here, we define a previously unappreciated activity of miRNAs in inhibiting RNA–protein interactions that in the context of HIV-1 biology blocks HIV virus budding and reduces virus infectivity. This occurs by miRNA binding to the nucleocapsid domain of the Gag protein, the main structural component of HIV-1 virions. The resulting miRNA–Gag complexes interfere with viral–RNA-mediated Gag assembly and viral budding at the plasma membrane, with imperfectly assembled Gag complexes endocytosed and delivered to lysosomes. The blockade of virus production by miRNA is reversed by adding the miRNA’s target mRNA and stimulated by depleting Argonaute-2, suggesting that when miRNAs are not mediating gene silencing, they can block HIV-1 production through disruption of Gag assembly on membranes. Overall, our findings have significant implications for understanding how cells modulate HIV-1 infection by miRNA expression and raise the possibility that miRNAs can function to disrupt RNA-mediated protein assembly processes in other cellular contexts. PMID:24938790

  12. Matrix Domain Modulates HIV-1 Gag's Nucleic Acid Chaperone Activity via Inositol Phosphate Binding ▿

    PubMed Central

    Jones, Christopher P.; Datta, Siddhartha A. K.; Rein, Alan; Rouzina, Ioulia; Musier-Forsyth, Karin

    2011-01-01

    Retroviruses replicate by reverse transcribing their single-stranded RNA genomes into double-stranded DNA using specific cellular tRNAs to prime cDNA synthesis. In HIV-1, human tRNA3Lys serves as the primer and is packaged into virions during assembly. The viral Gag protein is believed to chaperone tRNA3Lys placement onto the genomic RNA primer binding site; however, the timing and possible regulation of this event are currently unknown. Composed of the matrix (MA), capsid (CA), nucleocapsid (NC), and p6 domains, the multifunctional HIV-1 Gag polyprotein orchestrates the highly coordinated process of virion assembly, but the contribution of these domains to tRNA3Lys annealing is unclear. Here, we show that NC is absolutely essential for annealing and that the MA domain inhibits Gag's tRNA annealing capability. During assembly, MA specifically interacts with inositol phosphate (IP)-containing lipids in the plasma membrane (PM). Surprisingly, we find that IPs stimulate Gag-facilitated tRNA annealing but do not stimulate annealing in Gag variants lacking the MA domain or containing point mutations involved in PM binding. Moreover, we find that IPs prevent MA from binding to nucleic acids but have little effect on NC or Gag. We propose that Gag binds to RNA either with both NC and MA domains or with NC alone and that MA-IP interactions alter Gag's binding mode. We propose that MA's interactions with the PM trigger the switch between these two binding modes and stimulate Gag's chaperone function, which may be important for the regulation of events such as tRNA primer annealing. PMID:21123373

  13. RRE-dependent HIV-1 Env RNA effects on Gag protein expression, assembly and release

    SciTech Connect

    López, Claudia S.; Sloan, Rachel; Cylinder, Isabel; Kozak, Susan L.; Kabat, David; Barklis, Eric

    2014-08-15

    The HIV-1 Gag proteins are translated from the full-length HIV-1 viral RNA (vRNA), whereas the envelope (Env) protein is translated from incompletely spliced Env mRNAs. Nuclear export of vRNAs and Env mRNAs is mediated by the Rev accessory protein which binds to the rev-responsive element (RRE) present on these RNAs. Evidence has shown there is a direct or indirect interaction between the Gag protein, and the cytoplasmic tail (CT) of the Env protein. Our current work shows that env gene expression impacts HIV-1 Gag expression and function in two ways. At the protein level, full-length Env expression altered Gag protein expression, while Env CT-deletion proteins did not. At the RNA level, RRE-containing Env mRNA expression reduced Gag expression, processing, and virus particle release from cells. Our results support models in which Gag is influenced by the Env CT, and Env mRNAs compete with vRNAs for nuclear export. - Highlights: • At the protein level, full-length HIV-1 Env alters Gag protein expression. • HIV-1 Env RNA expression reduces Gag levels and virus release. • Env RNA effects on Gag are dependent on the RRE. • RRE-containing Env RNAs compete with vRNAs for nuclear export.

  14. Reconstitution of selective HIV-1 RNA packaging in vitro by membrane-bound Gag assemblies

    PubMed Central

    Carlson, Lars-Anders; Bai, Yun; Keane, Sarah C; Doudna, Jennifer A; Hurley, James H

    2016-01-01

    HIV-1 Gag selects and packages a dimeric, unspliced viral RNA in the context of a large excess of cytosolic human RNAs. As Gag assembles on the plasma membrane, the HIV-1 genome is enriched relative to cellular RNAs by an unknown mechanism. We used a minimal system consisting of purified RNAs, recombinant HIV-1 Gag and giant unilamellar vesicles to recapitulate the selective packaging of the 5’ untranslated region of the HIV-1 genome in the presence of excess competitor RNA. Mutations in the CA-CTD domain of Gag which subtly affect the self-assembly of Gag abrogated RNA selectivity. We further found that tRNA suppresses Gag membrane binding less when Gag has bound viral RNA. The ability of HIV-1 Gag to selectively package its RNA genome and its self-assembly on membranes are thus interdependent on one another. DOI: http://dx.doi.org/10.7554/eLife.14663.001 PMID:27343348

  15. Roles played by acidic lipids in HIV-1 Gag membrane binding.

    PubMed

    Olety, Balaji; Ono, Akira

    2014-11-26

    The MA domain mediates plasma membrane (PM) targeting of HIV-1 Gag, leading to particle assembly at the PM. The interaction between MA and acidic phospholipids, in addition to N-terminal myristoyl moiety, promotes Gag binding to lipid membranes. Among acidic phospholipids, PI(4,5)P2, a PM-specific phosphoinositide, is essential for proper HIV-1 Gag localization to the PM and efficient virus particle production. Recent studies further revealed that MA-bound RNA negatively regulates HIV-1 Gag membrane binding and that PI(4,5)P2 is necessary to overcome this RNA-imposed block. In this review, we will summarize the current understanding of Gag-membrane interactions and discuss potential roles played by acidic phospholipids.

  16. Complementation of human immunodeficiency virus (HIV-1) gag particle formation.

    PubMed

    Zhoa, Y; Jones, I M; Hockley, D J; Nermut, M V; Roy, P

    1994-03-01

    The human immunodeficiency virus gag precursor protein Pr55Gag exhibits the ability of particle assembly when expressed using recombinant baculoviruses. In order to delineate the sequences required for particle formation, two mutants of Gag (D1 and D2) were constructed in which 10 amino acids within the CA domain were deleted. Both mutants yielded stable high levels of Gag antigen following expression in Spodoptera frugiperda insect cells. Electron microscopy of sections through infected cells revealed that neither mutant was able to assemble particles although targeting of the protein to the plasma membrane still occurred. The Gag antigen that accumulated beneath the plasma membrane exhibited distinctive morphologies when compared to each other and to parental (Pr46Gag) particles. Particle assembly was rescued when S. frugiperda cells were coinfected with both AcD1 and AcD2 viruses, or with AcD1 and a carboxyl-terminal deletion of Gag (Pr41.5) which was previously shown not to form particles (J.B.M., D.J. Hockley, M.V. Nermot, and I.M. Jones, 1992, J. Gen. Virol. 73, 3079-3086). The genetic complementation of Gag-driven assembly is discussed.

  17. Visualization of HIV-1 Gag Binding to Giant Unilamellar Vesicle (GUV) Membranes.

    PubMed

    Olety, Balaji; Veatch, Sarah L; Ono, Akira

    2016-01-01

    The structural protein of HIV-1, Pr55(Gag) (or Gag), binds to the plasma membrane in cells during the virus assembly process. Membrane binding of Gag is an essential step for virus particle formation, since a defect in Gag membrane binding results in severe impairment of viral particle production. To gain mechanistic details of Gag-lipid membrane interactions, in vitro methods based on NMR, protein footprinting, surface plasmon resonance, liposome flotation centrifugation, or fluorescence lipid bead binding have been developed thus far. However, each of these in vitro methods has its limitations. To overcome some of these limitations and provide a complementary approach to the previously established methods, we developed an in vitro assay in which interactions between HIV-1 Gag and lipid membranes take place in a "cell-like" environment. In this assay, Gag binding to lipid membranes is visually analyzed using YFP-tagged Gag synthesized in a wheat germ-based in vitro translation system and GUVs prepared by an electroformation technique. Here we describe the background and the protocols to obtain myristoylated full-length Gag proteins and GUV membranes necessary for the assay and to detect Gag-GUV binding by microscopy. PMID:27500610

  18. Live-cell observation of cytosolic HIV-1 assembly onset reveals RNA-interacting Gag oligomers

    PubMed Central

    Hendrix, Jelle; Baumgärtel, Viola; Schrimpf, Waldemar; Ivanchenko, Sergey; Digman, Michelle A.; Gratton, Enrico; Kräusslich, Hans-Georg; Müller, Barbara

    2015-01-01

    Assembly of the Gag polyprotein into new viral particles in infected cells is a crucial step in the retroviral replication cycle. Currently, little is known about the onset of assembly in the cytosol. In this paper, we analyzed the cytosolic HIV-1 Gag fraction in real time in live cells using advanced fluctuation imaging methods and thereby provide detailed insights into the complex relationship between cytosolic Gag mobility, stoichiometry, and interactions. We show that Gag diffuses as a monomer on the subsecond timescale with severely reduced mobility. Reduction of mobility is associated with basic residues in its nucleocapsid (NC) domain, whereas capsid (CA) and matrix (MA) domains do not contribute significantly. Strikingly, another diffusive Gag species was observed on the seconds timescale that oligomerized in a concentration-dependent manner. Both NC- and CA-mediated interactions strongly assist this process. Our results reveal potential nucleation steps of cytosolic Gag fractions before membrane-assisted Gag assembly. PMID:26283800

  19. HIV-1 Gag shares a signature motif with annexin (Anx7), which is required for virus replication

    PubMed Central

    Srivastava, M.; Cartas, M.; Rizvi, T. A.; Singh, S. P.; Serio, D.; Kalyanaraman, V. S.; Pollard, H. B.; Srinivasan, A.

    1999-01-01

    Genetic and biochemical analyses of the Gag protein of HIV-1 indicate a crucial role for this protein in several functions related to viral replication, including viral assembly. It has been suggested that Gag may fulfill some of the functions by recruiting host cellular protein(s). In our effort to identify structural and functional homologies between Gag and cellular cytoskeletal and secretory proteins involved in transport, we observed that HIV-1 Gag contains a unique PGQM motif in the capsid region. This motif was initially noted in the regulatory domain of synexin the membrane fusion protein of Xenopus laevis. To evaluate the functional significance of the highly conserved PGQM motif, we introduced alanine (A) in place of individual residues of the PGQM and deleted the motif altogether in a Gag expression plasmid and in an HIV-1 proviral DNA. The proviral DNA containing mutations in the PGQM motif showed altered expression, assembly, and release of viral particles in comparison to parental (NL4-3) DNA. When tested in multiple- and single-round replication assays, the mutant viruses exhibited distinct replication phenotypes; the viruses containing the A for the G and Q residues failed to replicate, whereas A in place of the P and M residues did not inhibit viral replication. Deletion of the tetrapeptide also resulted in the inhibition of replication. These results suggest that the PGQM motif may play an important role in the infection process of HIV-1 by facilitating protein–protein interactions between viral and/or viral and cellular proteins. PMID:10077575

  20. HIV-1 Gag shares a signature motif with annexin (Anx7), which is required for virus replication.

    PubMed

    Srivastava, M; Cartas, M; Rizvi, T A; Singh, S P; Serio, D; Kalyanaraman, V S; Pollard, H B; Srinivasan, A

    1999-03-16

    Genetic and biochemical analyses of the Gag protein of HIV-1 indicate a crucial role for this protein in several functions related to viral replication, including viral assembly. It has been suggested that Gag may fulfill some of the functions by recruiting host cellular protein(s). In our effort to identify structural and functional homologies between Gag and cellular cytoskeletal and secretory proteins involved in transport, we observed that HIV-1 Gag contains a unique PGQM motif in the capsid region. This motif was initially noted in the regulatory domain of synexin the membrane fusion protein of Xenopus laevis. To evaluate the functional significance of the highly conserved PGQM motif, we introduced alanine (A) in place of individual residues of the PGQM and deleted the motif altogether in a Gag expression plasmid and in an HIV-1 proviral DNA. The proviral DNA containing mutations in the PGQM motif showed altered expression, assembly, and release of viral particles in comparison to parental (NL4-3) DNA. When tested in multiple- and single-round replication assays, the mutant viruses exhibited distinct replication phenotypes; the viruses containing the A for the G and Q residues failed to replicate, whereas A in place of the P and M residues did not inhibit viral replication. Deletion of the tetrapeptide also resulted in the inhibition of replication. These results suggest that the PGQM motif may play an important role in the infection process of HIV-1 by facilitating protein-protein interactions between viral and/or viral and cellular proteins.

  1. HIV-1 Nef-associated Factor 1 Enhances Viral Production by Interacting with CRM1 to Promote Nuclear Export of Unspliced HIV-1 gag mRNA.

    PubMed

    Ren, Xiao-Xin; Wang, Hai-Bo; Li, Chuan; Jiang, Jin-Feng; Xiong, Si-Dong; Jin, Xia; Wu, Li; Wang, Jian-Hua

    2016-02-26

    HIV-1 depends on host-cell-encoded factors to complete its life cycle. A comprehensive understanding of how HIV-1 manipulates host machineries during viral infection can facilitate the identification of host targets for antiviral drugs or gene therapy. The cellular protein Naf1 (HIV-1 Nef-associated factor 1) is a CRM1-dependent nucleo-cytoplasmic shuttling protein, and has been identified to regulate multiple receptor-mediated signal pathways in inflammation. The cytoplasm-located Naf1 can inhibit NF-κB activation through binding to A20, and the loss of Naf1 controlled NF-κB activation is associated with multiple autoimmune diseases. However, the effect of Naf1 on HIV-1 mRNA expression has not been characterized. In this study we found that the nucleus-located Naf1 could promote nuclear export of unspliced HIV-1 gag mRNA. We demonstrated that the association between Naf1 and CRM1 was required for this function as the inhibition or knockdown of CRM1 expression significantly impaired Naf1-promoted HIV-1 production. The mutation of Naf1 nuclear export signals (NESs) that account for CRM1 recruitment for nuclear export decreased Naf1 function. Additionally, the mutation of the nuclear localization signal (NLS) of Naf1 diminished its ability to promote HIV-1 production, demonstrating that the shuttling property of Naf1 is required for this function. Our results reveal a novel role of Naf1 in enhancing HIV-1 production, and provide a potential therapeutic target for controlling HIV-1 infection.

  2. HIV-1 RNA genome dimerizes on the plasma membrane in the presence of Gag protein.

    PubMed

    Chen, Jianbo; Rahman, Sheikh Abdul; Nikolaitchik, Olga A; Grunwald, David; Sardo, Luca; Burdick, Ryan C; Plisov, Sergey; Liang, Edward; Tai, Sheldon; Pathak, Vinay K; Hu, Wei-Shau

    2016-01-12

    Retroviruses package a dimeric genome comprising two copies of the viral RNA. Each RNA contains all of the genetic information for viral replication. Packaging a dimeric genome allows the recovery of genetic information from damaged RNA genomes during DNA synthesis and promotes frequent recombination to increase diversity in the viral population. Therefore, the strategy of packaging dimeric RNA affects viral replication and viral evolution. Although its biological importance is appreciated, very little is known about the genome dimerization process. HIV-1 RNA genomes dimerize before packaging into virions, and RNA interacts with the viral structural protein Gag in the cytoplasm. Thus, it is often hypothesized that RNAs dimerize in the cytoplasm and the RNA-Gag complex is transported to the plasma membrane for virus assembly. In this report, we tagged HIV-1 RNAs with fluorescent proteins, via interactions of RNA-binding proteins and motifs in the RNA genomes, and studied their behavior at the plasma membrane by using total internal reflection fluorescence microscopy. We showed that HIV-1 RNAs dimerize not in the cytoplasm but on the plasma membrane. Dynamic interactions occur among HIV-1 RNAs, and stabilization of the RNA dimer requires Gag protein. Dimerization often occurs at an early stage of the virus assembly process. Furthermore, the dimerization process is probably mediated by the interactions of two RNA-Gag complexes, rather than two RNAs. These findings advance the current understanding of HIV-1 assembly and reveal important insights into viral replication mechanisms.

  3. RRE-dependent HIV-1 Env RNA effects on Gag protein expression, assembly and release.

    PubMed

    López, Claudia S; Sloan, Rachel; Cylinder, Isabel; Kozak, Susan L; Kabat, David; Barklis, Eric

    2014-08-01

    The HIV-1 Gag proteins are translated from the full-length HIV-1 viral RNA (vRNA), whereas the envelope (Env) protein is translated from incompletely spliced Env mRNAs. Nuclear export of vRNAs and Env mRNAs is mediated by the Rev accessory protein which binds to the rev-responsive element (RRE) present on these RNAs. Evidence has shown there is a direct or indirect interaction between the Gag protein, and the cytoplasmic tail (CT) of the Env protein. Our current work shows that env gene expression impacts HIV-1 Gag expression and function in two ways. At the protein level, full-length Env expression altered Gag protein expression, while Env CT-deletion proteins did not. At the RNA level, RRE-containing Env mRNA expression reduced Gag expression, processing, and virus particle release from cells. Our results support models in which Gag is influenced by the Env CT, and Env mRNAs compete with vRNAs for nuclear export. PMID:24971705

  4. Interaction of HIV-1 Gag protein components with single DNA molecules

    NASA Astrophysics Data System (ADS)

    Cruceanu, Margareta; Gorelick, Robert J.; Williams, Mark C.

    2003-03-01

    The Gag protein of the HIV-1 retrovirus is cleaved into three major proteins as part of viral maturation: nucleocapsid (NC), capsid, and matrix. NC is the first of these proteins to be cleaved, and it is cleaved in three stages into NCp15, followed by NCp9, and finally NCp7. In this study, we use optical tweezers to investigate the capability of these NC proteins to alter the helix-coil transition of single DNA molecules. We have previously shown that the capability to alter the DNA helix-coil transition is an excellent probe of the nucleic acid chaperone activity of NC proteins, in which the secondary structure of nucleic acids is rearranged to facilitate reverse transcription. By examining the capability of NCp15, NCp9, and NCp7 to alter DNA stretching, the current studies will test the role of proteolytic cleavage of Gag in regulating the nucleic acid chaperone activity of NC. Whereas binding studies suggest that NCp9 and NCp15 bind more strongly to DNA than NCp7, our DNA stretching results indicate that these proteins all have similar effects on DNA stretching.

  5. Functional Equivalence of Retroviral MA Domains in Facilitating Psi RNA Binding Specificity by Gag

    PubMed Central

    Rye-McCurdy, Tiffiny; Olson, Erik D.; Liu, Shuohui; Binkley, Christiana; Reyes, Joshua-Paolo; Thompson, Brian R.; Flanagan, John M.; Parent, Leslie J.; Musier-Forsyth, Karin

    2016-01-01

    Retroviruses specifically package full-length, dimeric genomic RNA (gRNA) even in the presence of a vast excess of cellular RNA. The “psi” (Ψ) element within the 5′-untranslated region (5′UTR) of gRNA is critical for packaging through interaction with the nucleocapsid (NC) domain of Gag. However, in vitro Gag binding affinity for Ψ versus non-Ψ RNAs is not significantly different. Previous salt-titration binding assays revealed that human immunodeficiency virus type 1 (HIV-1) Gag bound to Ψ RNA with high specificity and relatively few charge interactions, whereas binding to non-Ψ RNA was less specific and involved more electrostatic interactions. The NC domain was critical for specific Ψ binding, but surprisingly, a Gag mutant lacking the matrix (MA) domain was less effective at discriminating Ψ from non-Ψ RNA. We now find that Rous sarcoma virus (RSV) Gag also effectively discriminates RSV Ψ from non-Ψ RNA in a MA-dependent manner. Interestingly, Gag chimeras, wherein the HIV-1 and RSV MA domains were swapped, maintained high binding specificity to cognate Ψ RNAs. Using Ψ RNA mutant constructs, determinants responsible for promoting high Gag binding specificity were identified in both systems. Taken together, these studies reveal the functional equivalence of HIV-1 and RSV MA domains in facilitating Ψ RNA selectivity by Gag, as well as Ψ elements that promote this selectivity. PMID:27657107

  6. Glutamic Acid Residues in HIV-1 p6 Regulate Virus Budding and Membrane Association of Gag

    PubMed Central

    Friedrich, Melanie; Setz, Christian; Hahn, Friedrich; Matthaei, Alina; Fraedrich, Kirsten; Rauch, Pia; Henklein, Petra; Traxdorf, Maximilian; Fossen, Torgils; Schubert, Ulrich

    2016-01-01

    The HIV-1 Gag p6 protein regulates the final abscission step of nascent virions from the cell membrane by the action of its two late (l-) domains, which recruit Tsg101 and ALIX, components of the ESCRT system. Even though p6 consists of only 52 amino acids, it is encoded by one of the most polymorphic regions of the HIV-1 gag gene and undergoes various posttranslational modifications including sumoylation, ubiquitination, and phosphorylation. In addition, it mediates the incorporation of the HIV-1 accessory protein Vpr into budding virions. Despite its small size, p6 exhibits an unusually high charge density. In this study, we show that mutation of the conserved glutamic acids within p6 increases the membrane association of Pr55 Gag followed by enhanced polyubiquitination and MHC-I antigen presentation of Gag-derived epitopes, possibly due to prolonged exposure to membrane bound E3 ligases. The replication capacity of the total glutamic acid mutant E0A was almost completely impaired, which was accompanied by defective virus release that could not be rescued by ALIX overexpression. Altogether, our data indicate that the glutamic acids within p6 contribute to the late steps of viral replication and may contribute to the interaction of Gag with the plasma membrane. PMID:27120610

  7. Immunological Characterization of Plant-Based HIV-1 Gag/Dgp41 Virus-Like Particles

    PubMed Central

    Kessans, Sarah A.; Linhart, Mark D.; Meador, Lydia R.; Kilbourne, Jacquelyn; Hogue, Brenda G.; Fromme, Petra; Matoba, Nobuyuki; Mor, Tsafrir S.

    2016-01-01

    It is widely anticipated that a prophylactic vaccine may be needed to control the HIV/AIDS epidemic worldwide. Despite over two decades of research, a vaccine against HIV-1 remains elusive, although a recent clinical trial has shown promising results. Recent studies have focused on highly conserved domains within HIV-1 such as the membrane proximal external region (MPER) of the envelope glycoprotein, gp41. MPER has been shown to play critical roles in mucosal transmission of HIV-1, though this peptide is poorly immunogenic on its own. Here we provide evidence that plant-produced HIV-1 enveloped virus-like particles (VLPs) consisting of Gag and a deconstructed form of gp41 comprising the MPER, transmembrane, and cytoplasmic domains (Dgp41) provides an effective platform to display MPER for use as an HIV vaccine candidate. Prime-boost strategies combining systemic and mucosal priming with systemic boosting using two different vaccine candidates (VLPs and CTB-MPR—a fusion of MPER and the B-subunit of cholera toxin) were investigated in BALB/c mice. Serum antibody responses against both the Gag and gp41 antigens were elicited when systemically primed with VLPs. These responses could be recalled following systemic boosting with VLPs. In addition, mucosal priming with VLPs allowed for a boosting response against Gag and gp41 when boosted with either candidate. Importantly, the VLPs also induced Gag-specific CD4 and CD8 T-cell responses. This report on the immunogenicity of plant-based Gag/Dgp41 VLPs may represent an important milestone on the road towards a broadly efficacious and inexpensive subunit vaccine against HIV-1. PMID:26986483

  8. Fundamental differences between the nucleic acid chaperone activities of HIV-1 nucleocapsid protein and Gag or Gag-derived proteins: Biological implications

    PubMed Central

    Wu, Tiyun; Datta, Siddhartha A.K.; Mitra, Mithun; Gorelick, Robert J.; Rein, Alan; Levin, Judith G.

    2010-01-01

    The HIV-1 Gag polyprotein precursor has multiple domains including nucleocapsid (NC). Although mature NC and NC embedded in Gag are nucleic acid chaperones (proteins that remodel nucleic acid structure), few studies include detailed analysis of the chaperone activity of partially processed Gag proteins and comparison with NC and Gag. Here we address this issue by using a reconstituted minus-strand transfer system. NC and NC-containing Gag proteins exhibited annealing and duplex destabilizing activities required for strand transfer. Surprisingly, unlike NC, with increasing concentrations, Gag proteins drastically inhibited the DNA elongation step. This result is consistent with “nucleic acid-driven multimerization” of Gag and the reported slow dissociation of Gag from bound nucleic acid, which prevent reverse transcriptase from traversing the template (“roadblock” mechanism). Our findings illustrate one reason why NC (and not Gag) has evolved as a critical cofactor in reverse transcription, a paradigm that might also extend to other retrovirus systems. PMID:20655566

  9. Involvement of the Rac1-IRSp53-Wave2-Arp2/3 Signaling Pathway in HIV-1 Gag Particle Release in CD4 T Cells

    PubMed Central

    Thomas, Audrey; Mariani-Floderer, Charlotte; López-Huertas, Maria Rosa; Gros, Nathalie; Hamard-Péron, Elise; Favard, Cyril; Ohlmann, Theophile; Alcamí, José

    2015-01-01

    facilitating Gag assembly and particle formation. Activated small Rho GTPases and effectors are regulators of actin dynamics and membrane remodeling. We thus studied the effects of the Rac1, Cdc42, and RhoA GTPases and their specific effectors on HIV-1 Gag membrane localization and viral particle release in T cells. Our results show that activated Rac1 and the IRSp53-Wave2-Arp2/3 signaling pathway are involved in Gag plasma membrane localization and viral particle production. This work uncovers a role for cortical actin through the activation of Rac1 and the IRSp53/Wave2 signaling pathway in HIV-1 particle formation in CD4 T lymphocytes. PMID:26018170

  10. An Essential Role of INI1/hSNF5 Chromatin Remodeling Protein in HIV-1 Posttranscriptional Events and Gag/Gag-Pol Stability

    PubMed Central

    La Porte, Annalena; Cano, Jennifer; Wu, Xuhong; Mitra, Doyel

    2016-01-01

    ABSTRACT INI1/hSNF5/SMARCB1/BAF47 is an HIV-specific integrase (IN)-binding protein that influences HIV-1 transcription and particle production. INI1 binds to SAP18 (Sin3a-associated protein, 18 kDa), and both INI1 and SAP18 are incorporated into HIV-1 virions. To determine the significance of INI1 and the INI1-SAP18 interaction during HIV-1 replication, we isolated a panel of SAP18-interaction-defective (SID)-INI1 mutants using a yeast reverse two-hybrid screen. The SID-INI1 mutants, which retained the ability to bind to IN, cMYC, and INI1 but were impaired for binding to SAP18, were tested for their effects on HIV-1 particle production. SID-INI1 dramatically reduced the intracellular Gag/Gag-Pol protein levels and, in addition, decreased viral particle production. The SID-INI1-mediated effects were less dramatic in trans complementation assays using IN deletion mutant viruses with Vpr-reverse transcriptase (RT)-IN. SID-INI1 did not inhibit long-terminal-repeat (LTR)-mediated transcription, but it marginally decreased the steady-state gag RNA levels, suggesting a posttranscriptional effect. Pulse-chase analysis indicated that in SID-INI1-expressing cells, the pr55Gag levels decreased rapidly. RNA interference analysis indicated that small hairpin RNA (shRNA)-mediated knockdown of INI1 reduced the intracellular Gag/Gag-Pol levels and further inhibited HIV-1 particle production. These results suggest that SID-INI1 mutants inhibit multiple stages of posttranscriptional events of HIV-1 replication, including intracellular Gag/Gag-Pol RNA and protein levels, which in turn inhibits assembly and particle production. Interfering INI1 leads to a decrease in particle production and Gag/Gag-Pol protein levels. Understanding the role of INI1 and SAP18 in HIV-1 replication is likely to provide novel insight into the stability of Gag/Gag-Pol, which may lead to the development of novel therapeutic strategies to inhibit HIV-1 late events. IMPORTANCE Significant gaps exist in our

  11. STRUCTURE AND STOICHIOMETRY OF TEMPLATE-DIRECTED RECOMBINANT HIV-1 GAG PARTICLES

    PubMed Central

    Goicochea, Nancy L.; Datta, Siddhartha A.K.; Ayaluru, Murali; Kao, Cheng; Rein, Alan; Dragnea, Bogdan

    2011-01-01

    Size polydispersity of immature human immunodeficiency virus type 1 particles represents a challenge for traditional methods of biological ultra-structural analysis. An in vitro model for immature HIV-1 particles constructed from recombinant Gag proteins lacking residues 16–99 and the p6 domain assembled around spherical nanoparticles functionalized with DNA. This template-directed assembly approach led to a significant reduction in size polydispersity and revealed previously unknown structural features of immature-like HIV-1 particles. Electron microscopy and image reconstruction of these particles suggest that the Gag shell formed from different protein regions which are connected by a “scar” – an extended defect connecting the edges of two continuous, regularly packed protein layers. Thus, instead of a holey protein array, the experimental model presented here appears to consist of a continuous array of ~5000 proteins enveloping the core, in which regular regions are separated by extended areas of disorder. PMID:21762807

  12. How HIV-1 Gag assembles in cells: putting together pieces of the puzzle

    PubMed Central

    Lingappa, Jaisri R; Reed, Jonathan C; Tanaka, Motoko; Chutiraka, Kasana; Robinson, Bridget A

    2014-01-01

    During the late stage of the viral life cycle, HIV-1 Gag assembles into a spherical immature capsid, and undergoes budding, release, and maturation. Here we review events involved in immature capsid assembly from the perspective of five different approaches used to study this process: mutational analysis, structural studies, assembly of purified recombinant Gag, assembly of newly-translated Gag in a cell-free system, and studies in cells using biochemical and imaging techniques. We summarize key findings obtained using each approach, point out where there is consensus, and highlight unanswered questions. Particular emphasis is placed on reconciling data suggesting that Gag assembles by two different paths, depending on the assembly environment. Specifically, in assembly systems that lack cellular proteins, high concentrations of Gag can spontaneously assemble using purified nucleic acid as a scaffold. However, in the more complex intracellular environment, barriers that limit self-assembly are present in the form of cellular proteins, organelles, host defenses, and the absence of free nucleic acid. To overcome these barriers and promote efficient immature capsid formation in an unfavorable environment, Gag appears to utilize an energy-dependent, host-catalyzed, pathway of assembly intermediates in cells. Overall, we show how data obtained using a variety of techniques has led to our current understanding of HIV assembly. PMID:25066606

  13. The Life-Cycle of the HIV-1 Gag-RNA Complex.

    PubMed

    Mailler, Elodie; Bernacchi, Serena; Marquet, Roland; Paillart, Jean-Christophe; Vivet-Boudou, Valérie; Smyth, Redmond P

    2016-01-01

    Human immunodeficiency virus type 1 (HIV-1) replication is a highly regulated process requiring the recruitment of viral and cellular components to the plasma membrane for assembly into infectious particles. This review highlights the recent process of understanding the selection of the genomic RNA (gRNA) by the viral Pr55(Gag) precursor polyprotein, and the processes leading to its incorporation into viral particles. PMID:27626439

  14. Structural Basis for Specific Membrane Targeting by the HIV-1 Gag Protein.

    NASA Astrophysics Data System (ADS)

    Summers, Michael F.

    2006-03-01

    In HIV-1 infected cells, newly synthesized retroviral Gag polyproteins are directed to specific cellular membranes where they assemble and bud to form immature virions. Membrane binding is mediated by Gag's matrix (MA) domain, a 132-residue polypeptide containing an N-terminal myristyl group that can adopt sequestered and exposed conformations. Membane specificity was recently shown to be regulated by phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P2), a cellular factor abundant in the inner leaflet of the plasma membrane (PM). We now show that phosphoinositides, including soluble analogs of PI(4,5)P2 with truncated lipids, bind HIV-1 MA and trigger myristate exposure. The phosphoinositol moiety and one of the fatty acid tails binds to a cleft on the surface of the protein. The other fatty acid chain of PI(4,5)P2 and the exposed myristyl group of MA bracket a conserved basic surface patch implicated in membrane binding. Our findings indicate that PI(4,5)P2 acts as both a trigger of the myristyl switch and as a membrane anchor, and suggest a structure-based mechanism for the specific targeting HIV-1 Gag to PI(4,5)P2-enriched membranes.

  15. Impact of HLA-B*81-associated mutations in HIV-1 Gag on viral replication capacity.

    PubMed

    Wright, Jaclyn K; Naidoo, Vanessa L; Brumme, Zabrina L; Prince, Jessica L; Claiborne, Daniel T; Goulder, Philip J R; Brockman, Mark A; Hunter, Eric; Ndung'u, Thumbi

    2012-03-01

    HIV-1 attenuation resulting from immune escape mutations selected in Gag may contribute to slower disease progression in HIV-1-infected individuals expressing certain HLA class I alleles. We previously showed that the protective allele HLA-B*81 and the HLA-B*81-selected Gag T186S mutation are strongly associated with a lower viral replication capacity of recombinant viruses encoding Gag-protease derived from individuals chronically infected with HIV-1 subtype C. In the present study, we directly tested the effect of this mutation on viral replication capacity. In addition, we investigated potential compensatory effects of various polymorphisms, including other HLA-B*81-associated mutations that significantly covary with the T186S mutation. Mutations were introduced into a reference subtype B backbone and into patient-derived subtype C sequences in subtype B and C backbones by site-directed mutagenesis. The exponential-phase growth of mutant and wild-type viruses was assayed by flow cytometry of a green fluorescent protein reporter T cell line or by measurement of HIV-1 reverse transcriptase activity in culture supernatants. Engineering of the T186S mutation alone into all patient-derived subtype C sequences failed to yield replication-competent viruses, while in the subtype B sequence, the T186S mutation resulted in impaired replication capacity. Only the T186S mutation in combination with the T190I mutation yielded replication-competent viruses for all virus backbones tested; however, these constructs replicated slower than the wild type, suggesting that only partial compensation is mediated by the T190I mutation. Constructs encoding the T186S mutation in combination with other putative compensatory mutations were attenuated or defective. These results suggest that the T186S mutation is deleterious to HIV-1 subtype C replication and likely requires complex compensatory pathways, which may contribute to the clinical benefit associated with HLA-B*81. PMID:22238317

  16. Crystallographic and Functional Analysis of the ESCRT-I /HIV-1 Gag PTAP Interaction

    SciTech Connect

    Im, Young Jun; Kuo, Lillian; Ren, Xuefeng; Burgos, Patricia V.; Zhao, Xue Zhi; Liu, Fa; Burke, Jr., Terrence R.; Bonifacino, Juan S.; Freed, Eric O.; Hurley, James H.

    2010-12-03

    Budding of HIV-1 requires the binding of the PTAP late domain of the Gag p6 protein to the UEV domain of the TSG101 subunit of ESCRT-I. The normal function of this motif in cells is in receptor downregulation. Here, we report the 1.41.6 {angstrom} structures of the human TSG101 UEV domain alone and with wild-type and mutant HIV-1 PTAP and Hrs PSAP nonapeptides. The hydroxyl of the Thr or Ser residue in the P(S/T)AP motif hydrogen bonds with the main chain of Asn69. Mutation of the Asn to Pro, blocking the main-chain amide, abrogates PTAP motif binding in vitro and blocks budding of HIV-1 from cells. N69P and other PTAP binding-deficient alleles of TSG101 did not rescue HIV-1 budding. However, the mutant alleles did rescue downregulation of endogenous EGF receptor. This demonstrates that the PSAP motif is not rate determining in EGF receptor downregulation under normal conditions.

  17. A Temporospatial Map That Defines Specific Steps at Which Critical Surfaces in the Gag MA and CA Domains Act during Immature HIV-1 Capsid Assembly in Cells

    PubMed Central

    Robinson, Bridget A.; Reed, Jonathan C.; Geary, Clair D.; Swain, J. Victor

    2014-01-01

    ABSTRACT During HIV-1 assembly, Gag polypeptides target to the plasma membrane, where they multimerize to form immature capsids that undergo budding and maturation. Previous mutational analyses identified residues within the Gag matrix (MA) and capsid (CA) domains that are required for immature capsid assembly, and structural studies showed that these residues are clustered on four exposed surfaces in Gag. Exactly when and where the three critical surfaces in CA function during assembly are not known. Here, we analyzed how mutations in these four critical surfaces affect the formation and stability of assembly intermediates in cells expressing the HIV-1 provirus. The resulting temporospatial map reveals that critical MA residues act during membrane targeting, residues in the C-terminal CA subdomain (CA-CTD) dimer interface are needed for the stability of the first membrane-bound assembly intermediate, CA-CTD base residues are necessary for progression past the first membrane-bound intermediate, and residues in the N-terminal CA subdomain (CA-NTD) stabilize the last membrane-bound intermediate. Importantly, we found that all four critical surfaces act while Gag is associated with the cellular facilitators of assembly ABCE1 and DDX6. When correlated with existing structural data, our findings suggest the following model: Gag dimerizes via the CA-CTD dimer interface just before or during membrane targeting, individual CA-CTD hexamers form soon after membrane targeting, and the CA-NTD hexameric lattice forms just prior to capsid release. This model adds an important new dimension to current structural models by proposing the potential order in which key contacts within the immature capsid lattice are made during assembly in cells. IMPORTANCE While much is known about the structure of the completed HIV-1 immature capsid and domains of its component Gag proteins, less is known about the sequence of events leading to formation of the HIV-1 immature capsid. Here we used

  18. Purification of HIV-1 gag virus-like particles and separation of other extracellular particles.

    PubMed

    Steppert, Petra; Burgstaller, Daniel; Klausberger, Miriam; Berger, Eva; Aguilar, Patricia Pereira; Schneider, Tobias A; Kramberger, Petra; Tover, Andres; Nöbauer, Katharina; Razzazi-Fazeli, Ebrahim; Jungbauer, Alois

    2016-07-15

    Enveloped virus-like particles (VLPs) are increasingly used as vaccines and immunotherapeutics. Frequently, very time consuming density gradient centrifugation techniques are used for purification of VLPs. However, the progress towards optimized large-scale VLP production increased the demand for fast, cost efficient and scale able purification processes. We developed a chromatographic procedure for purification of HIV-1 gag VLPs produced in CHO cells. The clarified and filtered cell culture supernatant was directly processed on an anion-exchange monolith. The majority of host cell impurities passed through the column, whereas the VLPs were eluted by a linear or step salt gradient; the major fraction of DNA was eluted prior to VLPs and particles in the range of 100-200nm in diameter could be separated into two fractions. The earlier eluted fraction was enriched with extracellular particles associated to exosomes or microvesicles, whereas the late eluting fractions contained the majority of most pure HIV-1 gag VLPs. DNA content in the exosome-containing fraction could not be reduced by Benzonase treatment which indicated that the DNA was encapsulated. Many exosome markers were identified by proteomic analysis in this fraction. We present a laboratory method that could serve as a basis for rapid downstream processing of enveloped VLPs. Up to 2000 doses, each containing 1×10(9) particles, could be processed with a 1mL monolith within 47min. The method compared to density gradient centrifugation has a 220-fold improvement in productivity. PMID:27286649

  19. Genetic Changes in HIV-1 Gag-Protease Associated with Protease Inhibitor-Based Therapy Failure in Pediatric Patients

    PubMed Central

    Giandhari, Jennifer; Basson, Adriaan E.; Coovadia, Ashraf; Kuhn, Louise; Abrams, Elaine J.; Strehlau, Renate; Morris, Lynn

    2015-01-01

    Abstract Studies have shown a low frequency of HIV-1 protease drug resistance mutations in patients failing protease inhibitor (PI)-based therapy. Recent studies have identified mutations in Gag as an alternate pathway for PI drug resistance in subtype B viruses. We therefore genotyped the Gag and protease genes from 20 HIV-1 subtype C-infected pediatric patients failing a PI-based regimen. Major protease resistance mutations (M46I, I54V, and V82A) were identified in eight (40%) patients, as well as Gag cleavage site (CS) mutations (at codons 373, 374, 378, 428, 431, 449, 451, and 453) in nine (45%) patients. Four of these Gag CS mutations occurred in the absence of major protease mutations at PI failure. In addition, amino acid changes were noted at Gag non-CS with some predicted to be under HLA/KIR immune-mediated pressure and/or drug selection pressure. Changes in Gag during PI failure therefore warrant further investigation of the Gag gene and its role in PI failure in HIV-1 subtype C infection. PMID:25919760

  20. Comparison of HIV-1 nef and gag Variations and Host HLA Characteristics as Determinants of Disease Progression among HIV-1 Vertically Infected Kenyan Children

    PubMed Central

    Saina, Matilda Chelimo; Bi, Xiuqiong; Lihana, Raphael; Lwembe, Raphael; Ishizaki, Azumi; Panikulam, Annie; Palakudy, Tresa; Musoke, Rachel; Owens, Mary; Songok, Elijah Maritim; Ichimura, Hiroshi

    2015-01-01

    Objectives Disease progression varies among HIV-1-infected individuals. The present study aimed to explore possible viral and host factors affecting disease progression in HIV-1-infected children. Methods Since 2000, 102 HIV-1 vertically-infected children have been followed-up in Kenya. Here we studied 29 children (15 male/14 female) who started antiretroviral treatment at <5 years of age (rapid progressors; RP), and 32 (17 male/15 female) who started at >10 years of age (slow progressors; SP). Sequence variations in the HIV-1 gag and nef genes and the HLA class I-related epitopes were compared between the two groups. Results Based on nef sequences, HIV-1 subtypes A1/D were detected in 62.5%/12.5% of RP and 66.7%/20% of SP, with no significant difference in subtype distribution between groups (p = 0.8). In the ten Nef functional domains, only the PxxP3 region showed significantly greater variation in RP (33.3%) than SP (7.7%, p = 0.048). Gag sequences did not significantly differ between groups. The reportedly protective HLA-A alleles, A*74:01, A*32:01 and A*26, were more commonly observed in SP (50.0%) than RP (11.1%, p = 0.010), whereas the reportedly disease-susceptible HLA-B*45:01 was more common in RP (33.3%) than SP (7.4%, p = 0.045). Compared to RP, SP showed a significantly higher median number of predicted HLA-B-related 12-mer epitopes in Nef (3 vs. 2, p = 0.037), HLA-B-related 11-mer epitopes in Gag (2 vs. 1, p = 0.029), and HLA-A-related 9-mer epitopes in Gag (4 vs. 1, p = 0.051). SP also had fewer HLA-C-related epitopes in Nef (median 4 vs. 5, p = 0.046) and HLA-C-related 11-mer epitopes in Gag (median 1 vs. 1.5, p = 0.044) than RP. Conclusions Compared to rapid progressors, slow progressors had more protective HLA-A alleles and more HLA-B-related epitopes in both the Nef and Gag proteins. These results suggest that the host factor HLA plays a stronger role in disease progression than the Nef and Gag sequence variations in HIV-1-infected Kenyan children

  1. Distinct binding interactions of HIV-1 Gag to Psi and non-Psi RNAs: implications for viral genomic RNA packaging.

    PubMed

    Webb, Joseph A; Jones, Christopher P; Parent, Leslie J; Rouzina, Ioulia; Musier-Forsyth, Karin

    2013-08-01

    Despite the vast excess of cellular RNAs, precisely two copies of viral genomic RNA (gRNA) are selectively packaged into new human immunodeficiency type 1 (HIV-1) particles via specific interactions between the HIV-1 Gag and the gRNA psi (ψ) packaging signal. Gag consists of the matrix (MA), capsid, nucleocapsid (NC), and p6 domains. Binding of the Gag NC domain to ψ is necessary for gRNA packaging, but the mechanism by which Gag selectively interacts with ψ is unclear. Here, we investigate the binding of NC and Gag variants to an RNA derived from ψ (Psi RNA), as well as to a non-ψ region (TARPolyA). Binding was measured as a function of salt to obtain the effective charge (Zeff) and nonelectrostatic (i.e., specific) component of binding, Kd(1M). Gag binds to Psi RNA with a dramatically reduced Kd(1M) and lower Zeff relative to TARPolyA. NC, GagΔMA, and a dimerization mutant of Gag bind TARPolyA with reduced Zeff relative to WT Gag. Mutations involving the NC zinc finger motifs of Gag or changes to the G-rich NC-binding regions of Psi RNA significantly reduce the nonelectrostatic component of binding, leading to an increase in Zeff. These results show that Gag interacts with gRNA using different binding modes; both the NC and MA domains are bound to RNA in the case of TARPolyA, whereas binding to Psi RNA involves only the NC domain. Taken together, these results suggest a novel mechanism for selective gRNA encapsidation.

  2. The Nucleocapsid Domain of Gag Is Dispensable for Actin Incorporation into HIV-1 and for Association of Viral Budding Sites with Cortical F-Actin

    PubMed Central

    Stauffer, Sarah; Rahman, Sheikh Abdul; de Marco, Alex; Carlson, Lars-Anders; Glass, Bärbel; Oberwinkler, Heike; Herold, Nikolas; Briggs, John A. G.; Müller, Barbara

    2014-01-01

    ABSTRACT Actin and actin-binding proteins are incorporated into HIV-1 particles, and F-actin has been suggested to bind the NC domain in HIV-1 Gag. Furthermore, F-actin has been frequently observed in the vicinity of HIV-1 budding sites by cryo-electron tomography (cET). Filamentous structures emanating from viral buds and suggested to correspond to actin filaments have been observed by atomic force microscopy. To determine whether the NC domain of Gag is required for actin association with viral buds and for actin incorporation into HIV-1, we performed comparative analyses of virus-like particles (VLPs) obtained by expression of wild-type HIV-1 Gag or a Gag variant where the entire NC domain had been replaced by a dimerizing leucine zipper [Gag(LZ)]. The latter protein yielded efficient production of VLPs with near-wild-type assembly kinetics and size and exhibited a regular immature Gag lattice. Typical HIV-1 budding sites were detected by using cET in cells expressing either Gag or Gag(LZ), and no difference was observed regarding the association of buds with the F-actin network. Furthermore, actin was equally incorporated into wild-type HIV-1 and Gag- or Gag(LZ)-derived VLPs, with less actin per particle observed than had been reported previously. Incorporation appeared to correlate with the relative intracellular actin concentration, suggesting an uptake of cytosol rather than a specific recruitment of actin. Thus, the NC domain in HIV-1 Gag does not appear to have a role in actin recruitment or actin incorporation into HIV-1 particles. IMPORTANCE HIV-1 particles bud from the plasma membrane, which is lined by a network of actin filaments. Actin was found to interact with the nucleocapsid domain of the viral structural protein Gag and is incorporated in significant amounts into HIV-1 particles, suggesting that it may play an active role in virus release. Using electron microscopy techniques, we previously observed bundles of actin filaments near HIV-1 buds

  3. Gag-Pol Transframe Domain p6* Is Essential for HIV-1 Protease-Mediated Virus Maturation

    PubMed Central

    Yu, Fu-Hsien; Chou, Ting-An; Liao, Wei-Hao; Huang, Kuo-Jung; Wang, Chin-Tien

    2015-01-01

    HIV-1 protease (PR) is encoded by pol, which is initially translated as a Pr160gag-pol polyprotein by a ribosomal frameshift event. Within Gag-Pol, truncated p6gag is replaced by a transframe domain (referred to as p6* or p6pol) located directly upstream of PR. p6* has been proposed as playing a role in modulating PR activation. Overlapping reading frames between p6* and p6gag present a challenge to researchers using genetic approaches to studying p6* biological functions. To determine the role of p6* in PR activation without affecting the gag reading frame, we constructed a series of Gag/Gag-Pol expression vectors by duplicating PR with or without p6* between PR pairs, and observed that PR duplication eliminated virus production due to significant Gag cleavage enhancement. This effect was mitigated when p6* was placed between the two PRs. Further, Gag cleavage enhancement was markedly reduced when either one of the two PRs was mutationally inactivated. Additional reduction in Gag cleavage efficiency was noted following the removal of p6* from between the two PRs. The insertion of a NC domain (wild-type or mutant) directly upstream of PR or p6*PR did not significantly improve Gag processing efficiency. With the exception of those containing p6* directly upstream of an active PR, all constructs were either noninfectious or weakly infectious. Our results suggest that (a) p6* is essential for triggering PR activation, (b) p6* has a role in preventing premature virus processing, and (c) the NC domain within Gag-Pol is not a major determinant of PR activation. PMID:26030443

  4. Activation of the inositol (1,4,5)-triphosphate calcium gate receptor is required for HIV-1 Gag release.

    PubMed

    Ehrlich, Lorna S; Medina, Gisselle N; Khan, Mahfuz B; Powell, Michael D; Mikoshiba, Katsuhiko; Carter, Carol A

    2010-07-01

    The structural precursor polyprotein, Gag, encoded by all retroviruses, including the human immunodeficiency virus type 1 (HIV-1), is necessary and sufficient for the assembly and release of particles that morphologically resemble immature virus particles. Previous studies have shown that the addition of Ca(2+) to cells expressing Gag enhances virus particle production. However, no specific cellular factor has been implicated as mediator of Ca(2+) provision. The inositol (1,4,5)-triphosphate receptor (IP3R) gates intracellular Ca(2+) stores. Following activation by binding of its ligand, IP3, it releases Ca(2+) from the stores. We demonstrate here that IP3R function is required for efficient release of HIV-1 virus particles. Depletion of IP3R by small interfering RNA, sequestration of its activating ligand by expression of a mutated fragment of IP3R that binds IP3 with very high affinity, or blocking formation of the ligand by inhibiting phospholipase C-mediated hydrolysis of the precursor, phosphatidylinositol-4,5-biphosphate, inhibited Gag particle release. These disruptions, as well as interference with ligand-receptor interaction using antibody targeted to the ligand-binding site on IP3R, blocked plasma membrane accumulation of Gag. These findings identify IP3R as a new determinant in HIV-1 trafficking during Gag assembly and introduce IP3R-regulated Ca(2+) signaling as a potential novel cofactor in viral particle release.

  5. Cyclophilin A as a potential genetic adjuvant to improve HIV-1 Gag DNA vaccine immunogenicity by eliciting broad and long-term Gag-specific cellular immunity in mice

    PubMed Central

    Hou, Jue; Zhang, Qicheng; Liu, Zheng; Wang, Shuhui; Li, Dan; Liu, Chang; Liu, Ying; Shao, Yiming

    2016-01-01

    Previous research has shown that host Cyclophilin A (CyPA) can promote dendritic cell maturation and the subsequent innate immune response when incorporated into an HIV-1 Gag protein to circumvent the resistance of dendritic cells to HIV-1 infection. This led us to hypothesize that CyPA may improve HIV-1 Gag-specific vaccine immunogenicity via binding with Gag antigen. The adjuvant effect of CyPA was evaluated using a DNA vaccine with single or dual expression cassettes. Mouse studies indicated that CyPA specifically and markedly promoted HIV-1 Gag-specific cellular immunity but not an HIV-1 Env-specific cellular response. The Gag/CyPA dual expression cassettes stimulated a greater Gag-specific cellular immune response, than Gag immunization alone. Furthermore, CyPA induced a broad Gag-specific T cell response and strong cellular immunity that lasted up to 5 months. In addition, CyPA skewed to cellular rather than humoral immunity. To investigate the mechanisms of the adjuvant effect, site-directed mutagenesis in CyPA, including active site residues H54Q and F60A resulted in mutants that were co-expressed with Gag in dual cassettes. The immune response to this vaccine was analyzed in vivo. Interestingly, the wild type CyPA markedly increased Gag cellular immunity, but the H54Q and F60A mutants drastically reduced CyPA adjuvant activation. Therefore, we suggest that the adjuvant effect of CyPA was based on Gag-CyPA-specific interactions. Herein, we report that Cyclophilin A can augment HIV-1 Gag-specific cellular immunity as a genetic adjuvant in multiplex DNA immunization strategies, and that activity of this adjuvant is specific, broad, long-term, and based on Gag-CyPA interaction. PMID:26305669

  6. Role of the HIV-1 Matrix Protein in Gag Intracellular Trafficking and Targeting to the Plasma Membrane for Virus Assembly

    PubMed Central

    Ghanam, Ruba H.; Samal, Alexandra B.; Fernandez, Timothy F.; Saad, Jamil S.

    2012-01-01

    Human immunodeficiency virus type-1 (HIV-1) encodes a polypeptide called Gag that is able to form virus-like particles in vitro in the absence of any cellular or viral constituents. During the late phase of the HIV-1 infection, Gag polyproteins are transported to the plasma membrane (PM) for assembly. In the past two decades, in vivo, in vitro, and structural studies have shown that Gag trafficking and targeting to the PM are orchestrated events that are dependent on multiple factors including cellular proteins and specific membrane lipids. The matrix (MA) domain of Gag has been the focus of these studies as it appears to be engaged in multiple intracellular interactions that are suggested to be critical for virus assembly and replication. The interaction between Gag and the PM is perhaps the most understood. It is now established that the ultimate localization of Gag on punctate sites on the PM is mediated by specific interactions between the MA domain of Gag and phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2], a minor lipid localized on the inner leaflet of the PM. Structure-based studies revealed that binding of PI(4,5)P2 to MA induces minor conformational changes, leading to exposure of the myristyl (myr) group. Exposure of the myr group is also triggered by binding of calmodulin, enhanced by factors that promote protein self-association like the capsid domain of Gag, and is modulated by pH. Despite the steady progress in defining both the viral and cellular determinants of retroviral assembly and release, Gag’s intracellular interactions and trafficking to its assembly sites in the infected cell are poorly understood. In this review, we summarize the current understanding of the structural and functional role of MA in HIV replication. PMID:22363329

  7. Dimerization of the SP1 Region of HIV-1 Gag Induces a Helical Conformation and Association into Helical Bundles: Implications for Particle Assembly

    PubMed Central

    Clark, Patrick K.; Fan, Lixin; Ma, Buyong; Harvin, Demetria P.; Sowder, Raymond C.; Nussinov, Ruth; Wang, Yun-Xing

    2015-01-01

    ABSTRACT HIV-1 immature particle (virus-like particle [VLP]) assembly is mediated largely by interactions between the capsid (CA) domains of Gag molecules but is facilitated by binding of the nucleocapsid (NC) domain to nucleic acid. We previously investigated the role of SP1, a “spacer” between CA and NC, in VLP assembly. We found that small changes in SP1 drastically disrupt assembly and that a peptide representing the sequence around the CA-SP1 junction is helical at high but not low concentrations. We suggested that by virtue of such a concentration-dependent change, this region could act as a molecular switch to activate HIV-1 Gag for VLP assembly. A leucine zipper domain can replace NC in Gag and still lead to the efficient assembly of VLPs. We find that SP1 mutants also disrupt assembly by these Gag-Zip proteins and have now studied a small fragment of this Gag-Zip protein, i.e., the CA-SP1 junction region fused to a leucine zipper. Dimerization of the zipper places SP1 at a high local concentration, even at low total concentrations. In this context, the CA-SP1 junction region spontaneously adopts a helical conformation, and the proteins associate into tetramers. Tetramerization requires residues from both CA and SP1. The data suggest that once this region becomes helical, its propensity to self-associate could contribute to Gag-Gag interactions and thus to particle assembly. There is complete congruence between CA/SP1 sequences that promote tetramerization when fused to zippers and those that permit the proper assembly of full-length Gag; thus, equivalent interactions apparently participate in VLP assembly and in SP1-Zip tetramerization. IMPORTANCE Assembly of HIV-1 Gag into virus-like particles (VLPs) appears to require an interaction with nucleic acid, but replacement of its principal nucleic acid-binding domain with a dimerizing leucine zipper domain leads to the assembly of RNA-free VLPs. It has not been clear how dimerization triggers assembly

  8. Contribution of Gag and Protease to HIV-1 Phenotypic Drug Resistance in Pediatric Patients Failing Protease Inhibitor-Based Therapy

    PubMed Central

    Giandhari, Jennifer; Basson, Adriaan E.; Sutherland, Katherine; Parry, Chris M.; Cane, Patricia A.; Coovadia, Ashraf; Kuhn, Louise; Hunt, Gillian

    2016-01-01

    Protease inhibitors (PIs) are used as a first-line regimen in HIV-1-infected children. Here we investigated the phenotypic consequences of amino acid changes in Gag and protease on lopinavir (LPV) and ritonavir (RTV) susceptibility among pediatric patients failing PI therapy. The Gag-protease from isolates from 20 HIV-1 subtype C-infected pediatric patients failing an LPV and/or RTV-based regimen was phenotyped using a nonreplicative in vitro assay. Changes in sensitivity to LPV and RTV relative to that of the matched baseline (pretherapy) sample were calculated. Gag and protease amino acid substitutions associated with PI failure were created in a reference clone by site-directed mutagenesis and assessed. Predicted phenotypes were determined using the Stanford drug resistance algorithm. Phenotypic resistance or reduced susceptibility to RTV and/or LPV was observed in isolates from 10 (50%) patients, all of whom had been treated with RTV. In most cases, this was associated with protease resistance mutations, but substitutions at Gag cleavage and noncleavage sites were also detected. Gag amino acid substitutions were also found in isolates from three patients with reduced drug susceptibilities who had wild-type protease. Site-directed mutagenesis confirmed that some amino acid changes in Gag contributed to PI resistance but only in the presence of major protease resistance-associated substitutions. The isolates from all patients who received LPV exclusively were phenotypically susceptible. Baseline isolates from the 20 patients showed a large (47-fold) range in the 50% effective concentration of LPV, which accounted for most of the discordance seen between the experimentally determined and the predicted phenotypes. Overall, the inclusion of the gag gene and the use of matched baseline samples provided a more comprehensive assessment of the effect of PI-induced amino acid changes on PI resistance. The lack of phenotypic resistance to LPV supports the continued use of

  9. Implications for Viral Capsid Assembly from Crystal Structures of HIV-1 Gag1-278 and CAN133-278

    SciTech Connect

    Kelly,B.; Howard, B.; Wang, H.; Robinson, H.; Sundquist, W.; Hill, C.

    2006-01-01

    Gag, the major structural protein of retroviruses such as HIV-1, comprises a series of domains connected by flexible linkers. These domains drive viral assembly by mediating multiple interactions between adjacent Gag molecules and by binding to viral genomic RNA and host cell membranes. Upon viral budding, Gag is processed by the viral protease to liberate distinct domains as separate proteins. The first two regions of Gag are MA, a membrane-binding module, and CA, which is a two-domain protein that makes important Gag-Gag interactions, forms the cone-shaped outer shell of the core (the capsid) in the mature HIV-1 particle, and makes an important interaction with the cellular protein cyclophilin A (CypA). Here, we report crystal structures of the mature CA N-terminal domain (CA{sup N}{sub 133-278}) and a MA-CA{sup N} fusion (Gag{sub 1-278}) at resolutions/R{sub free} values of 1.9 Angstroms/25.7% and 2.2 Angstroms/25.8%, respectively. Consistent with earlier studies, a comparison of these structures indicates that processing at the MA-CA junction causes CA to adopt an N-terminal {beta}-hairpin conformation that seems to be required for capsid morphology and viral infectivity. In contrast with an NMR study, structural overlap reveals only small relative displacements for helix 6, which is located between the {beta}-hairpin and the CypA-binding loop. These observations argue against the proposal that CypA binding is coupled with {beta}-hairpin formation and support an earlier surface plasmon resonance study, which concluded that {beta}-hairpin formation and CypA-binding are energetically independent events.

  10. Mapping the RNA binding sites for human immunodeficiency virus type-1 gag and NC proteins within the complete HIV-1 and -2 untranslated leader regions.

    PubMed Central

    Damgaard, C K; Dyhr-Mikkelsen, H; Kjems, J

    1998-01-01

    Encapsidation of HIV-1 genomic RNA is mediated by specific interactions between the RNA packaging signal and the Gag protein. During maturation of the virion, the Gag protein is processed into smaller fragments, including the nucleocapsid (NC) domain which remains associated with the viral genomic RNA. We have investigated the binding of glutathione- S -transferase (GST) Gag and NC fusion proteins from HIV-1, to the entire HIV-1 and -2 leader RNAencompassing the packaging signal. We have mapped the binding sites at conditions where only about two complexes are formed and find that GST-Gag and GST-NC fusion proteins bind specifically to discrete sites within the leader. Analysis of the HIV-1 leader indicated that GST-Gag strongly associates with the PSI stem-loop and to a lesser extent with regions near the primer binding site. GST-NC binds the same regions but with reversed preferences. The HIV-1 proteins also interact specifically with the 5'-leader of HIV-2 and the major site of interaction mapped to a stem-loop, with homology to the HIV-1 PSI stem-loop structure. The different specificities of Gag and NC may reflect functionally distinct roles in the viral replication, and suggest that the RNA binding specificity of NC is modulated by its structural context. PMID:9685481

  11. Certification assays for HIV-1-based vectors: frequent passage of gag sequences without evidence of replication-competent viruses.

    PubMed

    Sastry, Lakshmi; Xu, Yi; Johnson, Terry; Desai, Kunal; Rissing, David; Marsh, Jonathan; Cornetta, Kenneth

    2003-11-01

    A principal concern regarding the safety of HIV-1-based vectors is replication-competent lentivirus (RCL). We have developed two PCR assays for detecting RCL; the first detects recombination between gag regions in the transfer vector and the packaging construct (sensitivity of detection approximately 10-100 copies of target sequence). The second assay uses real-time PCR to detect vesicular stomatitis virus glycoprotein (VSVG) envelope DNA (sensitivity approximately 5-50 VSVG sequences). In an attempt to amplify any RCL, test vectors were used to transduce C8166 and 293 cells, which were then screened weekly for 3 weeks. Psi-gag recombinants were routinely detected (20 of 21 analyses) in four transductions using the RRL-CMV-GFP vector. In contrast, VSVG sequences were detected only once in 21 analyses. Interestingly, p24 levels (as measured by ELISA) were occasionally detectable after 3 weeks of culture. To determine if a true RCL was present, 21-day cell-free medium was used to transduce naïve cells. No evidence of psi-gag or VSVG transfer was detected, indicating that the recombination events were insufficient to reconstitute a true RCL. These findings have important implications for the design and safety of HIV-1-based vectors intended for clinical applications. PMID:14599817

  12. Interactions between Nef and AIP1 proliferate multivesicular bodies and facilitate egress of HIV-1

    PubMed Central

    Costa, Luciana J; Chen, Nan; Lopes, Adriana; Aguiar, Renato S; Tanuri, Amilcar; Plemenitas, Ana; Peterlin, B Matija

    2006-01-01

    Background Nef is an accessory protein of primate lentiviruses, HIV-1, HIV-2 and SIV. Besides removing CD4 and MHC class I from the surface and activating cellular signaling cascades, Nef also binds GagPol during late stages of the viral replicative cycle. In this report, we investigated further the ability of Nef to facilitate the replication of HIV-1. Results To this end, first the release of new viral particles was much lower in the absence of Nef in a T cell line. Since the same results were obtained in the absence of the viral envelope using pseudo-typed viruses, this phenomenon was independent of CD4 and enhanced infectivity. Next, we found that Nef not only possesses a consensus motif for but also binds AIP1 in vitro and in vivo. AIP1 is the critical intermediate in the formation of multivesicular bodies (MVBs), which play an important role in the budding and release of viruses from infected cells. Indeed, Nef proliferated MVBs in cells, but only when its AIP1-binding site was intact. Finally, these functions of Nef were reproduced in primary macrophages, where the wild type but not mutant Nef proteins led to increased release of new viral particles from infected cells. Conclusion We conclude that by binding GagPol and AIP1, Nef not only proliferates MVBs but also contributes to the egress of viral particles from infected cells. PMID:16764724

  13. Mucosal Immunization with Newcastle Disease Virus Vector Coexpressing HIV-1 Env and Gag Proteins Elicits Potent Serum, Mucosal, and Cellular Immune Responses That Protect against Vaccinia Virus Env and Gag Challenges

    PubMed Central

    Khattar, Sunil K.; Manoharan, Vinoth; Bhattarai, Bikash; LaBranche, Celia C.; Montefiori, David C.

    2015-01-01

    ABSTRACT Newcastle disease virus (NDV) avirulent strain LaSota was used to coexpress gp160 Env and p55 Gag from a single vector to enhance both Env-specific and Gag-specific immune responses. The optimal transcription position for both Env and Gag genes in the NDV genome was determined by generating recombinant NDV (rNDV)-Env-Gag (gp160 located between the P and M genes and Gag between the HN and L genes), rNDV-Gag-Env (Gag located between the P and M genes and gp160 between the HN and L genes), rNDV-Env/Gag (gp160 followed by Gag located between the P and M genes), and rNDV-Gag/Env (Gag followed by gp160 located between the P and M genes). All the recombinant viruses replicated at levels similar to those seen with parental NDV in embryonated chicken eggs and in chicken fibroblast cells. Both gp160 and Gag proteins were expressed at high levels in cell culture, with gp160 found to be incorporated into the envelope of NDV. The Gag and Env proteins expressed by all the recombinants except rNDV-Env-Gag self-assembled into human immunodeficiency virus type 1 (HIV-1) virus-like particles (VLPs). Immunization of guinea pigs by the intranasal route with these rNDVs produced long-lasting Env- and Gag-specific humoral immune responses. The Env-specific humoral and mucosal immune responses and Gag-specific humoral immune responses were higher in rNDV-Gag/Env and rNDV-Env/Gag than in the other recombinants. rNDV-Gag/Env and rNDV-Env/Gag were also more efficient in inducing cellular as well as protective immune responses to challenge with vaccinia viruses expressing HIV-1 Env and Gag in mice. These results suggest that vaccination with a single rNDV coexpressing Env and Gag represents a promising strategy to enhance immunogenicity and protective efficacy against HIV. PMID:26199332

  14. Immunization of HIV-1-Infected Persons With Autologous Dendritic Cells Transfected With mRNA Encoding HIV-1 Gag and Nef: Results of a Randomized, Placebo-Controlled Clinical Trial

    PubMed Central

    Kwon, Douglas S.; Macklin, Eric A.; Shopis, Janet R.; McLean, Anna P.; McBrine, Nicole; Flynn, Theresa; Peter, Lauren; Sbrolla, Amy; Kaufmann, Daniel E.; Porichis, Filippos; Walker, Bruce D.; Bhardwaj, Nina; Barouch, Dan H.; Kavanagh, Daniel G.

    2016-01-01

    Background: HIV-1 eradication may require reactivation of latent virus along with stimulation of HIV-1-specific immune responses to clear infected cells. Immunization with autologous dendritic cells (DCs) transfected with viral mRNA is a promising strategy for eliciting HIV-1-specific immune responses. We performed a randomized controlled clinical trial to evaluate the immunogenicity of this approach in HIV-1-infected persons on antiretroviral therapy. Methods: Fifteen participants were randomized 2:1 to receive intradermal immunization with HIV-1 Gag- and Nef-transfected DCs (vaccine) or mock-transfected DCs (placebo) at weeks 0, 2, 6, and 10. All participants also received DCs pulsed with keyhole limpet hemocyanin (KLH) to assess whether responses to a neo-antigen could be induced. Results: After immunization, there were no differences in interferon-gamma enzyme-linked immunospot responses to HIV-1 Gag or Nef in the vaccine or placebo group. CD4 proliferative responses to KLH increased 2.4-fold (P = 0.026) and CD8 proliferative responses to KLH increased 2.5-fold (P = 0.053) after vaccination. There were increases in CD4 proliferative responses to HIV-1 Gag (2.5-fold vs. baseline, 3.4-fold vs. placebo, P = 0.054) and HIV-1 Nef (2.3-fold vs. baseline, 6.3-fold vs. placebo, P = 0.009) among vaccine recipients, but these responses were short-lived. Conclusion: Immunization with DCs transfected with mRNA encoding HIV-1 Gag and Nef did not induce significant interferon-gamma enzyme-linked immunospot responses. There were increases in proliferative responses to HIV-1 antigens and to a neo-antigen, KLH, but the effects were transient. Dendritic cell vaccination should be optimized to elicit stronger and long-lasting immune responses for this strategy to be effective as an HIV-1 therapeutic vaccine. PMID:26379068

  15. Quantitative Effect of Suboptimal Codon Usage on Translational Efficiency of mRNA Encoding HIV-1 gag in Intact T Cells

    PubMed Central

    Ngumbela, Kholiswa C.; Ryan, Kieran P.; Sivamurthy, Rohini; Brockman, Mark A.; Gandhi, Rajesh T.; Bhardwaj, Nina; Kavanagh, Daniel G.

    2008-01-01

    Background The sequences of wild-isolate strains of Human Immunodeficiency Virus-1 (HIV-1) are characterized by low GC content and suboptimal codon usage. Codon optimization of DNA vectors can enhance protein expression both by enhancing translational efficiency, and by altering RNA stability and export. Although gag codon optimization is widely used in DNA vectors and experimental vaccines, the actual effect of altered codon usage on gag translational efficiency has not been quantified. Methodology and Principal Findings To quantify translational efficiency of gag mRNA in live T cells, we transfected Jurkat cells with increasing doses of capped, polyadenylated synthetic mRNA corresponding to wildtype or codon-optimized gag sequences, measured Gag production by quantitative ELISA and flow cytometry, and estimated the translational efficiency of each transcript as pg of Gag antigen produced per µg of input mRNA. We found that codon optimization yielded a small increase in gag translational efficiency (approximately 1.6 fold). In contrast when cells were transfected with DNA vectors requiring nuclear transcription and processing of gag mRNA, codon optimization resulted in a very large enhancement of Gag production. Conclusions We conclude that suboptimal codon usage by HIV-1 results in only a slight loss of gag translational efficiency per se, with the vast majority of enhancement in protein expression from DNA vectors due to altered processing and export of nuclear RNA. PMID:18523584

  16. HIV-1 Subtype C Mosaic Gag Expressed by BCG and MVA Elicits Persistent Effector T Cell Responses in a Prime-Boost Regimen in Mice

    PubMed Central

    Jongwe, Tsungai Ivai; Chapman, Ros; Douglass, Nicola; Chetty, Shivan; Chege, Gerald; Williamson, Anna-Lise

    2016-01-01

    Over 90% of HIV/AIDS positive individuals in sub-Saharan Africa are infected with highly heterogeneous HIV-1 subtype C (HIV-1C) viruses. One of the best ways to reduce the burden of this disease is the development of an affordable and effective prophylactic vaccine. Mosaic immunogens are computationally designed to overcome the hurdle of HIV diversity by maximizing the expression of potential T cell epitopes. Mycobacterium bovis BCG ΔpanCD auxotroph and modified vaccinia Ankara (MVA) vaccines expressing HIV-1C mosaic Gag (GagM) were tested in a prime-boost regimen to demonstrate immunogenicity in a mouse study. The BCG-GagM vaccine was stable and persisted 11.5 weeks post vaccination in BALB/c mice. Priming with BCG-GagM and boosting with MVA-GagM elicited higher Gag-specific IFN-γ ELISPOT responses than the BCG-GagM only and MVA-GagM only homologous vaccination regimens. The heterologous vaccination also generated a more balanced and persistent CD4+ and CD8+ T cell Gag-specific IFN-γ ELISPOT response with a predominant effector memory phenotype. A Th1 bias was induced by the vaccines as determined by the predominant secretion of IFN-γ, TNF-α, and IL-2. This study shows that a low dose of MVA (104 pfu) can effectively boost a BCG prime expressing the same mosaic immunogen, generating strong, cellular immune responses against Gag in mice. Our data warrants further evaluation in non-human primates. A low dose vaccine would be an advantage in the resource limited countries of sub-Saharan Africa and India (where the predominating virus is HIV-1 subtype C). PMID:27427967

  17. HIV-1 Subtype C Mosaic Gag Expressed by BCG and MVA Elicits Persistent Effector T Cell Responses in a Prime-Boost Regimen in Mice.

    PubMed

    Jongwe, Tsungai Ivai; Chapman, Ros; Douglass, Nicola; Chetty, Shivan; Chege, Gerald; Williamson, Anna-Lise

    2016-01-01

    Over 90% of HIV/AIDS positive individuals in sub-Saharan Africa are infected with highly heterogeneous HIV-1 subtype C (HIV-1C) viruses. One of the best ways to reduce the burden of this disease is the development of an affordable and effective prophylactic vaccine. Mosaic immunogens are computationally designed to overcome the hurdle of HIV diversity by maximizing the expression of potential T cell epitopes. Mycobacterium bovis BCG ΔpanCD auxotroph and modified vaccinia Ankara (MVA) vaccines expressing HIV-1C mosaic Gag (GagM) were tested in a prime-boost regimen to demonstrate immunogenicity in a mouse study. The BCG-GagM vaccine was stable and persisted 11.5 weeks post vaccination in BALB/c mice. Priming with BCG-GagM and boosting with MVA-GagM elicited higher Gag-specific IFN-γ ELISPOT responses than the BCG-GagM only and MVA-GagM only homologous vaccination regimens. The heterologous vaccination also generated a more balanced and persistent CD4+ and CD8+ T cell Gag-specific IFN-γ ELISPOT response with a predominant effector memory phenotype. A Th1 bias was induced by the vaccines as determined by the predominant secretion of IFN-γ, TNF-α, and IL-2. This study shows that a low dose of MVA (104 pfu) can effectively boost a BCG prime expressing the same mosaic immunogen, generating strong, cellular immune responses against Gag in mice. Our data warrants further evaluation in non-human primates. A low dose vaccine would be an advantage in the resource limited countries of sub-Saharan Africa and India (where the predominating virus is HIV-1 subtype C). PMID:27427967

  18. Differential Gag-Specific Polyfunctional T Cell Maturation Patterns in HIV-1 Elite Controllers

    PubMed Central

    Ferrando-Martínez, Sara; Casazza, Joseph P.; Leal, Manuel; Machmach, Kawthar; Muñoz-Fernández, Ma Ángeles; Viciana, Pompeyo; Koup, Richard A.

    2012-01-01

    A small fraction of HIV-infected individuals (<1%), referred to as elite controllers (EC), are able to maintain undetectable viral loads indefinitely without treatment. The role of the maturational phenotype of T cells in the control of HIV infection in these individuals is not well described. We compared the maturational and functional phenotypes of Gag-specific CD4 and CD8 T cells from EC, who maintain undetectable viral loads without treatment; relative controllers (RC), who maintain viral loads of <1,000 copies/ml without treatment; and noncontrollers (NC), who fail to control viral replication. EC maintained higher frequencies of HIV-specific CD4 T cells, less mature polyfunctional Gag-specific CD4 T cells (CD27+ CD57− CD45RO+), and Gag-specific polyfunctional CD4 T cells than those observed in NC. In EC, the frequency of polyfunctional Gag-specific CD8 T cells was higher than that observed in RC and NC. RC had a similar functional phenotype to that observed in NC, despite consistently lower viral loads. Finally, we found a direct correlation between the frequency of Gag-specific CD27+ CD57− CD45RO+ CD4+ T cells and the frequency of mature HIV-specific CD8 T cells. Altogether, our data suggest that immature Gag-specific interleukin-2 (IL-2)-producing CD4+ T cells may play an important role in spontaneous control of HIV viremia by effectively supporting HIV-specific CD8 T lymphocytes. This difference appears to differentiate EC from RC. PMID:22278254

  19. The Fitness Landscape of HIV-1 Gag: Advanced Modeling Approaches and Validation of Model Predictions by In Vitro Testing

    PubMed Central

    Omarjee, Saleha; Walker, Bruce D.; Chakraborty, Arup; Ndung'u, Thumbi

    2014-01-01

    Viral immune evasion by sequence variation is a major hindrance to HIV-1 vaccine design. To address this challenge, our group has developed a computational model, rooted in physics, that aims to predict the fitness landscape of HIV-1 proteins in order to design vaccine immunogens that lead to impaired viral fitness, thus blocking viable escape routes. Here, we advance the computational models to address previous limitations, and directly test model predictions against in vitro fitness measurements of HIV-1 strains containing multiple Gag mutations. We incorporated regularization into the model fitting procedure to address finite sampling. Further, we developed a model that accounts for the specific identity of mutant amino acids (Potts model), generalizing our previous approach (Ising model) that is unable to distinguish between different mutant amino acids. Gag mutation combinations (17 pairs, 1 triple and 25 single mutations within these) predicted to be either harmful to HIV-1 viability or fitness-neutral were introduced into HIV-1 NL4-3 by site-directed mutagenesis and replication capacities of these mutants were assayed in vitro. The predicted and measured fitness of the corresponding mutants for the original Ising model (r = −0.74, p = 3.6×10−6) are strongly correlated, and this was further strengthened in the regularized Ising model (r = −0.83, p = 3.7×10−12). Performance of the Potts model (r = −0.73, p = 9.7×10−9) was similar to that of the Ising model, indicating that the binary approximation is sufficient for capturing fitness effects of common mutants at sites of low amino acid diversity. However, we show that the Potts model is expected to improve predictive power for more variable proteins. Overall, our results support the ability of the computational models to robustly predict the relative fitness of mutant viral strains, and indicate the potential value of this approach for understanding viral immune evasion

  20. Vaccination with a Fusion Protein That Introduces HIV-1 Gag Antigen into a Multitrimer CD40L Construct Results in Enhanced CD8+ T Cell Responses and Protection from Viral Challenge by Vaccinia-Gag

    PubMed Central

    Gupta, Sachin; Termini, James M.; Raffa, Francesca N.; Williams, Cindi-Ann; Kornbluth, Richard S.

    2014-01-01

    CD40 ligand (CD40L, CD154) is a membrane protein that is important for the activation of dendritic cells (DCs) and DC-induced CD8+ T cell responses. To be active, CD40L must cluster CD40 receptors on responding cells. To produce a soluble form of CD40L that clusters CD40 receptors necessitates the use of a multitrimer construct. With this in mind, a tripartite fusion protein was made from surfactant protein D (SPD), HIV-1 Gag as a test antigen, and CD40L, where SPD serves as a scaffold for the multitrimer protein complex. This SPD-Gag-CD40L protein activated CD40-bearing cells and bone marrow-derived DCs in vitro. Compared to a plasmid for Gag antigen alone (pGag), DNA vaccination of mice with pSPD-Gag-CD40L induced an increased number of Gag-specific CD8+ T cells with increased avidity for major histocompatibility complex class I-restricted Gag peptide and improved vaccine-induced protection from challenge by vaccinia-Gag virus. The importance of the multitrimeric nature of the complex was shown using a plasmid lacking the N terminus of SPD that produced a single trimer fusion protein. This plasmid, pTrimer-Gag-CD40L, was only weakly active on CD40-bearing cells and did not elicit strong CD8+ T cell responses or improve protection from vaccinia-Gag challenge. An adenovirus 5 (Ad5) vaccine incorporating SPD-Gag-CD40L was much stronger than Ad5 expressing Gag alone (Ad5-Gag) and induced complete protection (i.e., sterilizing immunity) from vaccinia-Gag challenge. Overall, these results show the potential of a new vaccine design in which antigen is introduced into a construct that expresses a multitrimer soluble form of CD40L, leading to strongly protective CD8+ T cell responses. PMID:24227853

  1. Tail-interacting protein TIP47 is a connector between Gag and Env and is required for Env incorporation into HIV-1 virions

    PubMed Central

    Lopez-Vergès, Sandra; Camus, Grégory; Blot, Guillaume; Beauvoir, Roxane; Benarous, Richard; Berlioz-Torrent, Clarisse

    2006-01-01

    The presence of the envelope glycoprotein Env in HIV-1 virions is essential for infectivity. To date, the molecular mechanism by which Env is packaged into virions has been largely unknown. Here, we show that TIP47 (tail-interacting protein of 47 kDa), which has been shown to interact with Env, also binds the MA (matrix) domain of HIV-1 Gag protein and that these three proteins form a ternary complex. Mutations in Gag that abrogate interaction with TIP47 inhibit Env incorporation and virion infectivity as well as colocalization between Gag and Env. We also show that TIP47 silencing impairs Env incorporation and infectivity and abolishes coimmunoprecipitation of Gag with Env. In contrast, overexpression of TIP47 increases Env packaging. Last, we demonstrate that TIP47 can interact simultaneously with Env and Gag. Taken together, our results show that TIP47 is a cellular cofactor that plays an essential role in Env incorporation, allowing the encounter and the physical association between HIV-1 Gag and Env proteins during the viral assembly process. PMID:17003132

  2. Tail-interacting protein TIP47 is a connector between Gag and Env and is required for Env incorporation into HIV-1 virions.

    PubMed

    Lopez-Vergès, Sandra; Camus, Grégory; Blot, Guillaume; Beauvoir, Roxane; Benarous, Richard; Berlioz-Torrent, Clarisse

    2006-10-01

    The presence of the envelope glycoprotein Env in HIV-1 virions is essential for infectivity. To date, the molecular mechanism by which Env is packaged into virions has been largely unknown. Here, we show that TIP47 (tail-interacting protein of 47 kDa), which has been shown to interact with Env, also binds the MA (matrix) domain of HIV-1 Gag protein and that these three proteins form a ternary complex. Mutations in Gag that abrogate interaction with TIP47 inhibit Env incorporation and virion infectivity as well as colocalization between Gag and Env. We also show that TIP47 silencing impairs Env incorporation and infectivity and abolishes coimmunoprecipitation of Gag with Env. In contrast, overexpression of TIP47 increases Env packaging. Last, we demonstrate that TIP47 can interact simultaneously with Env and Gag. Taken together, our results show that TIP47 is a cellular cofactor that plays an essential role in Env incorporation, allowing the encounter and the physical association between HIV-1 Gag and Env proteins during the viral assembly process.

  3. Gag Induces the Coalescence of Clustered Lipid Rafts and Tetraspanin-Enriched Microdomains at HIV-1 Assembly Sites on the Plasma Membrane ▿

    PubMed Central

    Hogue, Ian B.; Grover, Jonathan R.; Soheilian, Ferri; Nagashima, Kunio; Ono, Akira

    2011-01-01

    The HIV-1 structural protein Gag associates with two types of plasma membrane microdomains, lipid rafts and tetraspanin-enriched microdomains (TEMs), both of which have been proposed to be platforms for HIV-1 assembly. However, a variety of studies have demonstrated that lipid rafts and TEMs are distinct microdomains in the absence of HIV-1 infection. To measure the impact of Gag on microdomain behaviors, we took advantage of two assays: an antibody-mediated copatching assay and a Förster resonance energy transfer (FRET) assay that measures the clustering of microdomain markers in live cells without antibody-mediated patching. We found that lipid rafts and TEMs copatched and clustered to a greater extent in the presence of membrane-bound Gag in both assays, suggesting that Gag induces the coalescence of lipid rafts and TEMs. Substitutions in membrane binding motifs of Gag revealed that, while Gag membrane binding is necessary to induce coalescence of lipid rafts and TEMs, either acylation of Gag or binding of phosphatidylinositol-(4,5)-bisphosphate is sufficient. Finally, a Gag derivative that is defective in inducing membrane curvature appeared less able to induce lipid raft and TEM coalescence. A higher-resolution analysis of assembly sites by correlative fluorescence and scanning electron microscopy showed that coalescence of clustered lipid rafts and TEMs occurs predominately at completed cell surface virus-like particles, whereas a transmembrane raft marker protein appeared to associate with punctate Gag fluorescence even in the absence of cell surface particles. Together, these results suggest that different membrane microdomain components are recruited in a stepwise manner during assembly. PMID:21813604

  4. Construction and Immunological Evaluation of Dual Cell Surface Display of HIV-1 Gag and Salmonella enterica Serovar Typhimurium FliC in Lactobacillus acidophilus for Vaccine Delivery

    PubMed Central

    Kajikawa, Akinobu; Zhang, Lin; Long, Julie; Nordone, Shila; Stoeker, Laura; LaVoy, Alora; Bumgardner, Sara; Klaenhammer, Todd

    2012-01-01

    Oral vaccines that elicit a mucosal immune response may be effective against human immunodeficiency virus type 1 (HIV-1) because its transmission occurs mainly at the mucosa. The aim of this study was to construct recombinant Lactobacillus for oral delivery of oral vaccines against HIV-1 and to evaluate their immunogenicity. A recombinant Lactobacillus acidophilus strain expressing the HIV-1 Gag on the bacterial cell surface was established by fusion with the signal peptide and anchor motif of a mucus binding protein (Mub) from L. acidophilus with or without coexpression of Salmonella enterica serovar Typhimurium flagellin (FliC) fused to a different Mub signal peptide and anchor. Using HEK293 cells engineered to express Toll-like receptor 5 (TLR5), the biological activity of FliC on the bacterial cell surfaces was determined. The surface-exposed flagellin retained its TLR5-stimulating activity, suggesting that the recombinant strain with Gag and FliC dual display might provide a different immunopotency than the strain expressing only Gag. The immunological properties of the recombinant strains were assessed by coculture with human myeloid dendritic cells (DCs). The heterologous antigens on the cell surface affected maturation and cytokine responses of DCs. Acquired immune responses were also investigated by intragastric immunization of mice. The enzyme-linked immunosorbent spot assay showed induction of gamma interferon-producing cells at local mucosa after immunization of mice with the Gag-producing strain. Meanwhile, the immunization with L. acidophilus displaying both Gag and FliC resulted in an increase of Gag-specific IgA-secreting cells. These results suggested that the Gag-displaying L. acidophilus elicited specific immune responses and the coexistence of FliC conferred an adjuvant effect on local IgA production. PMID:22761297

  5. Mutations of Conserved Residues in the Major Homology Region Arrest Assembling HIV-1 Gag as a Membrane-Targeted Intermediate Containing Genomic RNA and Cellular Proteins

    PubMed Central

    Tanaka, Motoko; Robinson, Bridget A.; Chutiraka, Kasana; Geary, Clair D.; Reed, Jonathan C.

    2015-01-01

    ABSTRACT The major homology region (MHR) is a highly conserved motif that is found within the Gag protein of all orthoretroviruses and some retrotransposons. While it is widely accepted that the MHR is critical for assembly of HIV-1 and other retroviruses, how the MHR functions and why it is so highly conserved are not understood. Moreover, consensus is lacking on when HIV-1 MHR residues function during assembly. Here, we first addressed previous conflicting reports by confirming that MHR deletion, like conserved MHR residue substitution, leads to a dramatic reduction in particle production in human and nonhuman primate cells expressing HIV-1 proviruses. Next, we used biochemical analyses and immunoelectron microscopy to demonstrate that conserved residues in the MHR are required after assembling Gag has associated with genomic RNA, recruited critical host factors involved in assembly, and targeted to the plasma membrane. The exact point of inhibition at the plasma membrane differed depending on the specific mutation, with one MHR mutant arrested as a membrane-associated intermediate that is stable upon high-salt treatment and other MHR mutants arrested as labile, membrane-associated intermediates. Finally, we observed the same assembly-defective phenotypes when the MHR deletion or conserved MHR residue substitutions were engineered into Gag from a subtype B, lab-adapted provirus or Gag from a subtype C primary isolate that was codon optimized. Together, our data support a model in which MHR residues act just after membrane targeting, with some MHR residues promoting stability and another promoting multimerization of the membrane-targeted assembling Gag oligomer. IMPORTANCE The retroviral Gag protein exhibits extensive amino acid sequence variation overall; however, one region of Gag, termed the major homology region, is conserved among all retroviruses and even some yeast retrotransposons, although the reason for this conservation remains poorly understood. Highly

  6. Photothermal Imaging and Measurement of Protein Shell Stoichiometry of Single HIV-1 Gag Virus-Like Nanoparticles

    PubMed Central

    Vieweger, Mario; Goicochea, Nancy; Koh, Eun Sohl; Dragnea, Bogdan

    2011-01-01

    Virus life stages often constitute a complex chain of events, difficult to track in-vivo and in real-time. Challenges are associated with spatial and time limitations of current probes: most viruses are smaller than the diffraction limit of optical microscopes while the entire time-scale of virus dynamics spans over 8 orders of magnitude. Thus, virus processes such as entry, disassembly, and egress have generally remained poorly understood. Here we discuss photothermal heterodyne imaging (PHI) as a possible alternative to fluorescence microscopy in the study of single virus-like nanoparticle (VNP) dynamics, with relevance in particular to virus uncoating. Being based on optical absorption rather than emission, PHI could potentially surpass some of the current limitations associated with fluorescent labels. As proof-of-principle, single VNPs self-assembled from 60 nm DNA-functionalized gold nanoparticles (DNA-Au NPs) encapsulated in a Gag protein shell of the Human immunodeficiency virus (HIV-1) were imaged and their photothermal response compared with DNA-Au NPs. For the first-time, the protein stoichiometry of a single virus-like particle was estimated by a method other than electron microscopy. PMID:21854038

  7. Evaluation of humoral, mucosal, and cellular immune responses following co-immunization of HIV-1 Gag and Env proteins expressed by Newcastle disease virus.

    PubMed

    Khattar, Sunil K; Palaniyandi, Senthilkumar; Samal, Sweety; LaBranche, Celia C; Montefiori, David C; Zhu, Xiaoping; Samal, Siba K

    2015-01-01

    The combination of multiple HIV antigens in a vaccine can broaden antiviral immune responses. In this study, we used NDV vaccine strain LaSota to generate rNDV (rLaSota/optGag) expressing human codon optimized p55 Gag protein of HIV-1. We examined the effect of co-immunization of rLaSota/optGag with rNDVs expressing different forms of Env protein gp160, gp120, gp140L [a version of gp140 that lacked cytoplasmic tail and contained complete membrane-proximal external region (MPER)] and gp140S (a version of gp140 that lacked cytoplasmic tail and distal half of MPER) on magnitude and breadth of humoral, mucosal and cellular immune responses in guinea pigs and mice. Our results showed that inclusion of rLaSota/optGag with rNDVs expressing different forms of Env HIV Gag did not affect the Env-specific humoral and mucosal immune responses in guinea pigs and that the potent immune responses generated against Env persisted for at least 13 weeks post immunization. The highest Env-specific humoral and mucosal immune responses were observed with gp140S+optGag group. The neutralizing antibody responses against HIV strains BaL.26 and MN.3 induced by gp140S+optGag and gp160+optGag were higher than those elicited by other groups. Inclusion of Gag with gp160, gp140S and gp140L enhanced the level of Env-specific IFN-γ-producing CD8(+) T cells in mice. Inclusion of Gag with gp160 and gp140L also resulted in increased Env-specific CD4(+) T cells. The level of Gag-specific CD8(+) and CD4(+) T cells was also enhanced in mice immunized with Gag along with gp140S and gp120. These results indicate lack of antigen interference in a vaccine containing rNDVs expressing Env and Gag proteins.

  8. Identification and Characterization of BMS-955176, a Second-Generation HIV-1 Maturation Inhibitor with Improved Potency, Antiviral Spectrum, and Gag Polymorphic Coverage

    PubMed Central

    Nowicka-Sans, Beata; Protack, Tricia; Lin, Zeyu; Li, Zhufang; Zhang, Sharon; Sun, Yongnian; Samanta, Himadri; Terry, Brian; Liu, Zheng; Chen, Yan; Sin, Ny; Sit, Sing-Yuen; Swidorski, Jacob J.; Chen, Jie; Venables, Brian L.; Healy, Matthew; Meanwell, Nicholas A.; Cockett, Mark; Hanumegowda, Umesh; Regueiro-Ren, Alicia; Krystal, Mark

    2016-01-01

    BMS-955176 is a second-generation human immunodeficiency virus type 1 (HIV-1) maturation inhibitor (MI). A first-generation MI, bevirimat, showed clinical efficacy in early-phase studies, but ∼50% of subjects had viruses with reduced susceptibility associated with naturally occurring polymorphisms in Gag near the site of MI action. MI potency was optimized using a panel of engineered reporter viruses containing site-directed polymorphic changes in Gag that reduce susceptibility to bevirimat (including V362I, V370A/M/Δ, and T371A/Δ), leading incrementally to the identification of BMS-955176. BMS-955176 exhibits potent activity (50% effective concentration [EC50], 3.9 ± 3.4 nM [mean ± standard deviation]) toward a library (n = 87) of gag/pr recombinant viruses representing 96.5% of subtype B polymorphic Gag diversity near the CA/SP1 cleavage site. BMS-955176 exhibited a median EC50 of 21 nM toward a library of subtype B clinical isolates assayed in peripheral blood mononuclear cells (PBMCs). Potent activity was maintained against a panel of reverse transcriptase, protease, and integrase inhibitor-resistant viruses, with EC50s similar to those for the wild-type virus. A 5.4-fold reduction in EC50 occurred in the presence of 40% human serum plus 27 mg/ml of human serum albumin (HSA), which corresponded well to an in vitro measurement of 86% human serum binding. Time-of-addition and pseudotype reporter virus studies confirm a mechanism of action for the compound that occurs late in the virus replication cycle. BMS-955176 inhibits HIV-1 protease cleavage at the CA/SP1 junction within Gag in virus-like particles (VLPs) and in HIV-1-infected cells, and it binds reversibly and with high affinity to assembled Gag in purified HIV-1 VLPs. Finally, in vitro combination studies showed no antagonistic interactions with representative antiretrovirals (ARVs) of other mechanistic classes. In conclusion, BMS-955176 is a second-generation MI with potent in vitro anti-HIV-1

  9. Phosphatidylinositol-(4,5)-Bisphosphate Acyl Chains Differentiate Membrane Binding of HIV-1 Gag from That of the Phospholipase Cδ1 Pleckstrin Homology Domain

    PubMed Central

    Olety, Balaji; Veatch, Sarah L.

    2015-01-01

    ABSTRACT HIV-1 Gag, which drives virion assembly, interacts with a plasma membrane (PM)-specific phosphoinositide, phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2]. While cellular acidic phospholipid-binding proteins/domains, such as the PI(4,5)P2-specific pleckstrin homology domain of phospholipase Cδ1 (PHPLCδ1), mediate headgroup-specific interactions with corresponding phospholipids, the exact nature of the Gag-PI(4,5)P2 interaction remains undetermined. In this study, we used giant unilamellar vesicles (GUVs) to examine how PI(4,5)P2 with unsaturated or saturated acyl chains affect membrane binding of PHPLCδ1 and Gag. Both unsaturated dioleoyl-PI(4,5)P2 [DO-PI(4,5)P2] and saturated dipalmitoyl-PI(4,5)P2 [DP-PI(4,5)P2] successfully recruited PHPLCδ1 to membranes of single-phase GUVs. In contrast, DO-PI(4,5)P2 but not DP-PI(4,5)P2 recruited Gag to GUVs, indicating that PI(4,5)P2 acyl chains contribute to stable membrane binding of Gag. GUVs containing PI(4,5)P2, cholesterol, and dipalmitoyl phosphatidylserine separated into two coexisting phases: one was a liquid phase, and the other appeared to be a phosphatidylserine-enriched gel phase. In these vesicles, the liquid phase recruited PHPLCδ1 regardless of PI(4,5)P2 acyl chains. Likewise, Gag bound to the liquid phase when PI(4,5)P2 had DO-acyl chains. DP-PI(4,5)P2-containing GUVs showed no detectable Gag binding to the liquid phase. Unexpectedly, however, DP-PI(4,5)P2 still promoted recruitment of Gag, but not PHPLCδ1, to the dipalmitoyl-phosphatidylserine-enriched gel phase of these GUVs. Altogether, these results revealed different roles for PI(4,5)P2 acyl chains in membrane binding of two PI(4,5)P2-binding proteins, Gag and PHPLCδ1. Notably, we observed that nonmyristylated Gag retains the preference for PI(4,5)P2 containing an unsaturated acyl chain over DP-PI(4,5)P2, suggesting that Gag sensitivity to PI(4,5)P2 acyl chain saturation is determined directly by the matrix-PI(4,5)P2 interaction, rather

  10. Live attenuated measles vaccine expressing HIV-1 Gag virus like particles covered with gp160DELTAV1V2 is strongly immunogenic

    SciTech Connect

    Guerbois, Mathilde; Moris, Arnaud; Combredet, Chantal; Najburg, Valerie; Ruffie, Claude; Fevrier, Michele; Cayet, Nadege; Brandler, Samantha; Schwartz, Olivier; Tangy, Frederic

    2009-05-25

    Although a live attenuated HIV vaccine is not currently considered for safety reasons, a strategy inducing both T cells and neutralizing antibodies to native assembled HIV-1 particles expressed by a replicating virus might mimic the advantageous characteristics of live attenuated vaccine. To this aim, we generated a live attenuated recombinant measles vaccine expressing HIV-1 Gag virus-like particles (VLPs) covered with gp160DELTAV1V2 Env protein. The measles-HIV virus replicated efficiently in cell culture and induced the intense budding of HIV particles covered with Env. In mice sensitive to MV infection, this recombinant vaccine stimulated high levels of cellular and humoral immunity to both MV and HIV with neutralizing activity. The measles-HIV virus infected human professional antigen-presenting cells, such as dendritic cells and B cells, and induced efficient presentation of HIV-1 epitopes and subsequent activation of human HIV-1 Gag-specific T cell clones. This candidate vaccine will be next tested in non-human primates. As a pediatric vaccine, it might protect children and adolescents simultaneously from measles and HIV.

  11. Expansion and diversification of virus-specific T cells following immunization of human immunodeficiency virus type 1 (HIV-1)-infected individuals with a recombinant modified vaccinia virus Ankara/HIV-1 Gag vaccine.

    PubMed

    Dorrell, Lucy; Yang, Hongbing; Ondondo, Beatrice; Dong, Tao; di Gleria, Kati; Suttill, Annie; Conlon, Christopher; Brown, Denise; Williams, Patricia; Bowness, Paul; Goonetilleke, Nilu; Rostron, Tim; Rowland-Jones, Sarah; Hanke, Tomás; McMichael, Andrew

    2006-05-01

    Affordable therapeutic strategies that induce sustained control of human immunodeficiency virus type 1 (HIV-1) replication and are tailored to the developing world are urgently needed. Since CD8(+) and CD4(+) T cells are crucial to HIV-1 control, stimulation of potent cellular responses by therapeutic vaccination might be exploited to reduce antiretroviral drug exposure. However, therapeutic vaccines tested to date have shown modest immunogenicity. In this study, we performed a comprehensive analysis of the changes in virus-specific CD8(+) and CD4(+) T-cell responses occurring after vaccination of 16 HIV-1-infected individuals with a recombinant modified vaccinia virus Ankara-vectored vaccine expressing the consensus HIV-1 clade A Gag p24/p17 sequences and multiple CD8(+) T-cell epitopes during highly active antiretroviral therapy. We observed significant amplification and broadening of CD8(+) and CD4(+) gamma interferon responses to vaccine-derived epitopes in the vaccinees, without rebound viremia, but not in two unvaccinated controls followed simultaneously. Vaccine-driven CD8(+) T-cell expansions were also detected by tetramer reactivity, predominantly in the CD45RA(-) CCR7(+) or CD45RA(-) CCR7(-) compartments, and persisted for at least 1 year. Expansion was associated with a marked but transient up-regulation of CD38 and perforin within days of vaccination. Gag-specific CD8(+) and CD4(+) T-cell proliferation also increased postvaccination. These data suggest that immunization with MVA.HIVA is a feasible strategy to enhance potentially protective T-cell responses in individuals with chronic HIV-1 infection.

  12. Intracellular interactions between APOBEC3G, RNA, and HIV-1 Gag: APOBEC3G multimerization is dependent on its association with RNA

    PubMed Central

    Friew, Yeshitila N; Boyko, Vitaly; Hu, Wei-Shau; Pathak, Vinay K

    2009-01-01

    Background Host restriction factor APOBEC3G (A3G) blocks human immunodeficiency virus type 1 (HIV-1) replication by G-to-A hypermutation, and by inhibiting DNA synthesis and provirus formation. Previous reports have suggested that A3G is a dimer and its virion incorporation is mediated through interactions with viral or nonviral RNAs and/or HIV-1 Gag. We have now employed a bimolecular fluorescence complementation assay (BiFC) to analyze the intracellular A3G-A3G, A3G-RNA, and A3G-Gag interactions in living cells by reconstitution of yellow fluorescent protein (YFP) from its N- or C-terminal fragments. Results The results obtained with catalytic domain 1 and 2 (CD1 and CD2) mutants indicate that A3G-A3G and A3G-Gag multimerization is dependent on an intact CD1 domain, which is required for RNA binding. A mutant HIV-1 Gag that exhibits reduced RNA binding also failed to reconstitute BiFC with wild-type A3G, indicating a requirement for both HIV-1 Gag and A3G to bind to RNA for their multimerization. Addition of a non-specific RNA binding peptide (P22) to the N-terminus of a CD1 mutant of A3G restored BiFC and virion incorporation, but failed to inhibit viral replication, indicating that the mutations in CD1 resulted in additional defects that interfere with A3G's antiviral activity. Conclusion These studies establish a robust BiFC assay for analysis of intracellular interactions of A3G with other macromolecules. The results indicate that in vivo A3G is a monomer that forms multimers upon binding to RNA. In addition, we observed weak interactions between wild-type A3G molecules and RNA binding-defective mutants of A3G, which could explain previously described protein-protein interactions between purified A3G molecules. PMID:19497112

  13. Nedd4-Mediated Increase in HIV-1 Gag and Env Proteins and Immunity following DNA-Vaccination of BALB/c Mice

    PubMed Central

    Lewis, Brad; Whitney, Stephen; Hudacik, Lauren; Galmin, Lindsey; Huaman, Maria Cecilia; Cristillo, Anthony D.

    2014-01-01

    The late assembly domain of many viruses is critical for budding. Within these domains, encoded in viral structural proteins, are the conserved motifs PTAP, PPxY and YPxL. These sequences are the key determinants for association of viral proteins with intracellular molecules such as Tsg101, Nedd4 and AIP1/ALIX. While roles for Tsg101 and AIP1/ALIX in HIV-1 budding have been well established, less is known about the role of Nedd4. Recent studies, however, have identified a function for Nedd4-like protein in HIV-1 release. In this study, we investigated post-transcriptional changes of Nedd4 following SHIVSF162P3 infection of rhesus macaques, its role on HIV-1 p24 and gp120 levels in vitro and its potential as an immune modulator in HIV vaccination of BALB/c mice. Increased Nedd4 protein levels were noted in both CD4+ and CD8+ T cells following SHIVSF162P3-infection of naïve macaques. Transient co-transfection studies in 293 cells with HXB2 and Nedd4 demonstrated a Nedd4-mediated increase in p24 and gp120 levels. This increase was found to be dependent on the Ca2+/calmodulin-regulated phospholipid binding C2 domain and not ubiquitin ligase activity or HIV LTR activity. Co-transfection of Nedd4 with plasmid DNA expressing Gag or Env was further shown to augment both intracellular and extracellular Gag or Env proteins. To assess the potential of Nedd4 as an immune modulator, BALB/c mice were immunized intramuscularly with plasmid DNA encoding HIV gag, env and Nedd4. Nedd4 co-administration was found to increase serum anti-p24 but not anti-gp120 antibodies. Nedd4 co-injection was found to have no affect on Gag- or Env-specific IFNγ but had a trend of increased Gag-specific IL-6, IL-17A and TNFα that was not seen following Env stimulation. Based on our initial findings, Nedd4-mediated changes in HIV protein levels and its potential use in HIV-1 vaccine development warrants further investigation. PMID:24614057

  14. A Conserved Target Site in HIV-1 Gag RNA is Accessible to Inhibition by Both an HDV Ribozyme and a Short Hairpin RNA

    PubMed Central

    Scarborough, Robert J; Lévesque, Michel V; Boudrias-Dalle, Etienne; Chute, Ian C; Daniels, Sylvanne M; Ouellette, Rodney J; Perreault, Jean-Pierre; Gatignol, Anne

    2014-01-01

    Antisense-based molecules targeting HIV-1 RNA have the potential to be used as part of gene or drug therapy to treat HIV-1 infection. In this study, HIV-1 RNA was screened to identify more conserved and accessible target sites for ribozymes based on the hepatitis delta virus motif. Using a quantitative screen for effects on HIV-1 production, we identified a ribozyme targeting a highly conserved site in the Gag coding sequence with improved inhibitory potential compared to our previously described candidates targeting the overlapping Tat/Rev coding sequence. We also demonstrate that this target site is highly accessible to short hairpin directed RNA interference, suggesting that it may be available for the binding of antisense RNAs with different modes of action. We provide evidence that this target site is structurally conserved in diverse viral strains and that it is sufficiently different from the human transcriptome to limit off-target effects from antisense therapies. We also show that the modified hepatitis delta virus ribozyme is more sensitive to a mismatch in its target site compared to the short hairpin RNA. Overall, our results validate the potential of a new target site in HIV-1 RNA to be used for the development of antisense therapies. PMID:25072692

  15. Host Genetic Determinants of T Cell Responses to the MRKAd5 HIV-1 gag/pol/nef Vaccine in the Step Trial

    PubMed Central

    Fellay, Jacques; Frahm, Nicole; Shianna, Kevin V.; Cirulli, Elizabeth T.; Casimiro, Danilo R.; Robertson, Michael N.; Haynes, Barton F.; Geraghty, Daniel E.; McElrath, M. Juliana

    2011-01-01

    Understanding how human genetic variation impacts individual response to immunogens is fundamental for rational vaccine development. To explore host mechanisms involved in cellular immune responses to the MRKAd5 human immunodeficiency virus type 1 (HIV-1) gag/pol/nef vaccine tested in the Step trial, we performed a genome-wide association study of determinants of HIV-specific T cell responses, measured by interferon γ enzyme-linked immunospot assays. No human genetic variant reached genome-wide significance, but polymorphisms located in the major histocompatibility complex (MHC) region showed the strongest association with response to the HIV-1 Gag protein: HLA-B alleles known to be associated with differences in HIV-1 control were responsible for these associations. The implication of the same HLA alleles in vaccine-induced cellular immunity and in natural immune control is of relevance for vaccine design. Furthermore, our results demonstrate the importance of considering the host immunogenetic background in the analysis of immune responses to T cell vaccines. PMID:21278214

  16. Gag-Protease Sequence Evolution Following Protease Inhibitor Monotherapy Treatment Failure in HIV-1 Viruses Circulating in East Africa.

    PubMed

    Sutherland, Katherine A; Goodall, Ruth L; McCormick, Adele; Kapaata, Anne; Lyagoba, Fred; Kaleebu, Pontiano; Thiltgen, Geant; Gilks, Charles F; Spyer, Moira; Kityo, Cissy; Pillay, Deenan; Dunn, David; Gupta, Ravindra K

    2015-10-01

    Around 2.5 million HIV-infected individuals failing first-line therapy qualify for boosted protease inhibitor (bPI)-based second-line therapy globally. Major resistance mutations are rarely present at treatment failure in patients receiving bPI and the determinants of failure in these patients remain unknown. There is evidence that Gag can impact PI susceptibility. Here, we have sequenced Gag-Protease before and following failure in 23 patients in the SARA trial infected with subtypes A, C, and D viruses. Before bPI, significant variation in Protease and Gag was observed at positions previously associated with PI exposure and resistance including Gag mutations L449P, S451N, and L453P and Protease K20I and L63P. Following PI failure, previously described mutations in Protease and Gag were observed, including those at the cleavage sites such as R361K and P453L. However, the emergence of clear genetic determinants of therapy failure across patients was not observed. Larger Gag sequence datasets will be required to comprehensively identify mutational correlates of bPI failure across subtypes. PMID:26258548

  17. A novel combined RNA-protein interaction analysis distinguishes HIV-1 Gag protein binding sites from structural change in the viral RNA leader.

    PubMed

    Kenyon, Julia C; Prestwood, Liam J; Lever, Andrew M L

    2015-01-01

    RNA-protein interactions govern many viral and host cell processes. Conventional 'footprinting' to examine RNA-protein complex formation often cannot distinguish between sites of RNA-protein interaction and sites of RNA structural remodelling. We have developed a novel technique combining photo crosslinking with RNA 2' hydroxyl reactivity ('SHAPE') that achieves rapid and hitherto unachievable resolution of both RNA structural changes and the sites of protein interaction within an RNA-protein complex. 'XL-SHAPE' was validated using well-characterized viral RNA-protein interactions: HIV-1 Tat/TAR and bacteriophage MS2 RNA/Coat Binding Protein. It was then used to map HIV-1 Gag protein interactions on 2D and 3D models of the viral RNA leader. Distinct Gag binding sites were identified on exposed RNA surfaces corresponding to regions identified by mutagenesis as important for genome packaging. This widely applicable technique has revealed a first view of the stoichiometry and structure of the initial complex formed when HIV captures its genome.

  18. A novel combined RNA-protein interaction analysis distinguishes HIV-1 Gag protein binding sites from structural change in the viral RNA leader

    PubMed Central

    Kenyon, Julia C.; Prestwood, Liam J.; Lever, Andrew M. L.

    2015-01-01

    RNA-protein interactions govern many viral and host cell processes. Conventional ‘footprinting’ to examine RNA-protein complex formation often cannot distinguish between sites of RNA-protein interaction and sites of RNA structural remodelling. We have developed a novel technique combining photo crosslinking with RNA 2′ hydroxyl reactivity (‘SHAPE’) that achieves rapid and hitherto unachievable resolution of both RNA structural changes and the sites of protein interaction within an RNA-protein complex. ‘XL-SHAPE’ was validated using well-characterized viral RNA-protein interactions: HIV-1 Tat/TAR and bacteriophage MS2 RNA/Coat Binding Protein. It was then used to map HIV-1 Gag protein interactions on 2D and 3D models of the viral RNA leader. Distinct Gag binding sites were identified on exposed RNA surfaces corresponding to regions identified by mutagenesis as important for genome packaging. This widely applicable technique has revealed a first view of the stoichiometry and structure of the initial complex formed when HIV captures its genome. PMID:26449409

  19. A novel combined RNA-protein interaction analysis distinguishes HIV-1 Gag protein binding sites from structural change in the viral RNA leader.

    PubMed

    Kenyon, Julia C; Prestwood, Liam J; Lever, Andrew M L

    2015-01-01

    RNA-protein interactions govern many viral and host cell processes. Conventional 'footprinting' to examine RNA-protein complex formation often cannot distinguish between sites of RNA-protein interaction and sites of RNA structural remodelling. We have developed a novel technique combining photo crosslinking with RNA 2' hydroxyl reactivity ('SHAPE') that achieves rapid and hitherto unachievable resolution of both RNA structural changes and the sites of protein interaction within an RNA-protein complex. 'XL-SHAPE' was validated using well-characterized viral RNA-protein interactions: HIV-1 Tat/TAR and bacteriophage MS2 RNA/Coat Binding Protein. It was then used to map HIV-1 Gag protein interactions on 2D and 3D models of the viral RNA leader. Distinct Gag binding sites were identified on exposed RNA surfaces corresponding to regions identified by mutagenesis as important for genome packaging. This widely applicable technique has revealed a first view of the stoichiometry and structure of the initial complex formed when HIV captures its genome. PMID:26449409

  20. Fusion of mature HIV-1 particles leads to complete release of a gag-GFP-based content marker and raises the intraviral pH.

    PubMed

    Padilla-Parra, Sergi; Marin, Mariana; Gahlaut, Nivriti; Suter, Rolf; Kondo, Naoyuki; Melikyan, Gregory B

    2013-01-01

    By imaging the release of a GFP-based viral content marker produced upon virus maturation, we have previously found that HIV-1 fuses with endosomes. In contrast, fusion at the cell surface did not progress beyond a lipid mixing stage (hemifusion). However, recent evidence suggesting that free GFP can be trapped within the mature HIV-1 capsid raises concerns that this content marker may not be released immediately after the formation of a fusion pore. To determine whether a significant portion of GFP is trapped in the mature capsid, we first permeabilized the viral membrane with saponin. The overwhelming majority of pseudoviruses fully released GFP while the remaining particles exhibited partial loss or no loss of content. The extent of GFP release correlated with HIV-1 maturation, implying that incomplete Gag processing, but not GFP entrapment by mature capsids, causes partial content release. Next, we designed a complementary assay for visualizing pore formation by monitoring the intraviral pH with an additional pH-sensitive fluorescent marker. The loss of GFP through saponin-mediated pores was associated with a concomitant increase in the intraviral pH due to equilibration with the pH of an external buffer. We next imaged single HIV-cell fusion and found that these events were manifested in a highly correlated loss of content and increase in the intraviral pH, as it equilibrated with the cytosolic pH. Fused or saponin-permeabilized pseudoviruses that partially lost GFP did not release the remaining content marker under conditions expected to promote the capsid dissociation. We were thus unable to detect significant entrapment of GFP by the mature HIV-1 capsid. Together, our results validate the use of the GFP-based content marker for imaging single virus fusion and inferring the sites of HIV-1 entry.

  1. Selection of an HLA-C*03:04-Restricted HIV-1 p24 Gag Sequence Variant Is Associated with Viral Escape from KIR2DL3+ Natural Killer Cells: Data from an Observational Cohort in South Africa

    PubMed Central

    Jimenez Cruz, Camilo A.; Garcia-Beltran, Wilfredo F.; Carlson, Jonathan M.; van Teijlingen, Nienke H.; Mann, Jaclyn K.; Jaggernath, Manjeetha; Kang, Seung-gu; Körner, Christian; Chung, Amy W.; Schafer, Jamie L.; Evans, David T.; Alter, Galit; Walker, Bruce D.; Goulder, Philip J.; Carrington, Mary; Hartmann, Pia; Pertel, Thomas; Zhou, Ruhong; Ndung’u, Thumbi; Altfeld, Marcus

    2015-01-01

    Background Viruses can evade immune surveillance, but the underlying mechanisms are insufficiently understood. Here, we sought to understand the mechanisms by which natural killer (NK) cells recognize HIV-1-infected cells and how this virus can evade NK-cell-mediated immune pressure. Methods and Findings Two sequence mutations in p24 Gag associated with the presence of specific KIR/HLA combined genotypes were identified in HIV-1 clade C viruses from a large cohort of infected, untreated individuals in South Africa (n = 392), suggesting viral escape from KIR+ NK cells through sequence variations within HLA class I—presented epitopes. One sequence polymorphism at position 303 of p24 Gag (TGag303V), selected for in infected individuals with both KIR2DL3 and HLA-C*03:04, enabled significantly better binding of the inhibitory KIR2DL3 receptor to HLA-C*03:04-expressing cells presenting this variant epitope compared to the wild-type epitope (wild-type mean 18.01 ± 10.45 standard deviation [SD] and variant mean 44.67 ± 14.42 SD, p = 0.002). Furthermore, activation of primary KIR2DL3+ NK cells from healthy donors in response to HLA-C*03:04+ target cells presenting the variant epitope was significantly reduced in comparison to cells presenting the wild-type sequence (wild-type mean 0.78 ± 0.07 standard error of the mean [SEM] and variant mean 0.63 ± 0.07 SEM, p = 0.012). Structural modeling and surface plasmon resonance of KIR/peptide/HLA interactions in the context of the different viral sequence variants studied supported these results. Future studies will be needed to assess processing and antigen presentation of the investigated HIV-1 epitope in natural infection, and the consequences for viral control. Conclusions These data provide novel insights into how viruses can evade NK cell immunity through the selection of mutations in HLA-presented epitopes that enhance binding to inhibitory NK cell receptors. Better understanding of the mechanisms by which HIV-1 evades

  2. Most env and gag subtype A HIV-1 viruses circulating in West and West Central Africa are similar to the prototype AG recombinant virus IBNG.

    PubMed

    Montavon, C; Toure-Kane, C; Liegeois, F; Mpoudi, E; Bourgeois, A; Vergne, L; Perret, J L; Boumah, A; Saman, E; Mboup, S; Delaporte, E; Peeters, M

    2000-04-15

    The genetic subtype was identified in gag and env of 219 HIV-1-positive samples collected in different African countries, 44 from Senegal, 55 from Cameroon, 82 from Gabon, and 38 from Djibouti. In total, 20 (9.1%) samples had discordant subtypes between gag and env, 6 of 44 (13.9%) in Senegal, 4 of 55 (7.2%) in Cameroon, 1 of 38 (2.6%) in Djibouti, and 10 of 82 (12.1%) in Gabon. Subtypes A and G were predominantly involved in the recombination events. Phylogenetic tree analysis of gag showed that an important number of the A sequences form a distinct subcluster with the AG-IBNG prototype strain (a complex A/G mosaic virus): 27 of 32 (84.3%) in Senegal, 12 of 17 (70.6%) in Nigeria, 24 of 39 (61.5%) in Cameroon, and 38 of 70 (54.3%) in Gabon. Full-length genome analysis of 3 and additional sequences in pol for 10 such strains confirmed that they have a similar complex A/G mosaic genomic structure. These data suggest that in West Africa, most probably between 60% and 84% of the subtype A viruses are recombinant AG-IBNG viruses. This finding has potential implications on future vaccine, diagnostic, and treatment strategies. The actual and future role of these viruses in the global pandemic must be monitored in all new molecular epidemiologic studies, a discrimination between subtype A and AG-IBNG-like viruses is necessary. PMID:10866228

  3. Broadening of the T-Cell Repertoire to HIV-1 Gag p24 by Vaccination of HLA-A2/DR Transgenic Mice with Overlapping Peptides in the CAF05 Adjuvant

    PubMed Central

    Korsholm, Karen S.; Karlsson, Ingrid; Tang, Sheila T.; Brandt, Lea; Agger, Else Marie; Aagaard, Claus; Andersen, Peter; Fomsgaard, Anders

    2013-01-01

    Induction of broad T-cell immune responses is regarded as critical for vaccines against the human immunodeficiency virus type 1 (HIV-1) which exhibit high diversity and, therefore, focus has been on inducing cytotoxic CD8 T-cell responses against the more conserved parts of the virus, such as the Gag protein. Herein, we have used the p24 protein which contains a range of conserved T-cell epitopes. We demonstrate that a vaccine of HIV-1 subtype B consensus group-specific antigen (Gag) p24 protein with the CD8-inducing liposomal cationic adjuvant formulation (CAF) 05, induces both CD4 and CD8 T-cell responses in CB6F1 mice. The adjuvanted vaccine also induced functional antigen-specific cytotoxicity in vivo. Furthermore, we found that when fragmenting the Gag p24 protein into overlapping Gag p24 peptides, a broader T-cell epitope specificity was induced in the humanized human leukocyte antigen (HLA)-A2/DR-transgenic mouse model. Thus, combining overlapping Gag p24 peptides with CAF05 appears to be a promising and simple strategy for inducing broader T-cell responses to multiple conserved epitopes which will be relevant for both prophylactic and therapeutic HIV-1 vaccines. PMID:23691069

  4. Availability of a diversely avid CD8+ T cell repertoire specific for the subdominant HLA-A2-restricted HIV-1 Gag p2419-27 epitope.

    PubMed

    Schaubert, Keri L; Price, David A; Frahm, Nicole; Li, Jinzhu; Ng, Hwee L; Joseph, Aviva; Paul, Elyse; Majumder, Biswanath; Ayyavoo, Velpandi; Gostick, Emma; Adams, Sharon; Marincola, Francesco M; Sewell, Andrew K; Altfeld, Marcus; Brenchley, Jason M; Douek, Daniel C; Yang, Otto O; Brander, Christian; Goldstein, Harris; Kan-Mitchell, June

    2007-06-15

    HLA-A2-restricted CTL responses to immunodominant HIV-1 epitopes do not appear to be very effective in the control of viral replication in vivo. In this study, we studied human CD8+ T cell responses to the subdominant HLA-A2-restricted epitope TV9 (Gag p24(19-27), TLNAWVKVV) to explore the possibility of increasing its immune recognition. We confirmed in a cohort of 313 patients, infected by clade B or clade C viruses, that TV9 is rarely recognized. Of interest, the functional sensitivity of the TV9 response can be relatively high. The potential T cell repertoires for TV9 and the characteristics of constituent clonotypes were assessed by ex vivo priming of circulating CD8+ T cells from healthy seronegative donors. TV9-specific CTLs capable of suppressing viral replication in vitro were readily generated, suggesting that the cognate T cell repertoire is not limiting. However, these cultures contained multiple discrete populations with a range of binding avidities for the TV9 tetramer and correspondingly distinct functional dependencies on the CD8 coreceptor. The lack of dominant clonotypes was not affected by the stage of maturation of the priming dendritic cells. Cultures primed by dendritic cells transduced to present endogenous TV9 were also incapable of clonal maturation. Thus, a diffuse TCR repertoire appeared to be an intrinsic characteristic of TV9-specific responses. These data indicate that subdominance is not a function of poor immunogenicity, cognate TCR repertoire availability, or the potential avidity properties thereof, but rather suggest that useful responses to this epitope are suppressed by competing CD8+ T cell populations during HIV-1 infection.

  5. Prokaryotic ribosomes recode the HIV-1 gag-pol-1 frameshift sequence by an E/P site post-translocation simultaneous slippage mechanism.

    PubMed Central

    Horsfield, J A; Wilson, D N; Mannering, S A; Adamski, F M; Tate, W P

    1995-01-01

    The mechanism favoured for -1 frameshifting at typical retroviral sites is a pre-translocation simultaneous slippage model. An alternative post-translocation mechanism would also generate the same protein sequence across the frameshift site and therefore in this study the strategic placement of a stop codon has been used to distinguish between the two mechanisms. A 26 base pair frameshift sequence from the HIV-1 gag-pol overlap has been modified to include a stop codon immediately 3' to the heptanucleotide frameshift signal, where it often occurs naturally in retroviral recoding sites. Stop codons at the 3'-end of the heptanucleotide sequence decreased the frame-shifting efficiency on prokaryote ribosomes and the recording event was further depressed when the levels of the release factors in vivo were increased. In the presence of elevated levels of a defective release factor 2, frameshifting efficiency in vivo was increased in the constructs containing the stop codons recognized specifically by that release factor. These results are consistent with the last six nucleotides of the heptanucleotide slippery sequence occupying the ribosomal E and P sites, rather than the P and A sites, with the next codon occupying the A site and therefore with a post-translocation rather than a pre-translocation -1 slippage model. Images PMID:7784201

  6. Fusion of Epstein-Barr virus nuclear antigen-1-derived glycine-alanine repeat to trans-dominant HIV-1 Gag increases inhibitory activities and survival of transduced cells in vivo.

    PubMed

    Hammer, Diana; Wild, Jens; Ludwig, Christine; Asbach, Benedikt; Notka, Frank; Wagner, Ralf

    2008-06-01

    Trans-dominant human immunodeficiency virus type 1 (HIV-1) Gag derivatives have been shown to efficiently inhibit late steps of HIV-1 replication in vitro by interfering with Gag precursor assembly, thus ranking among the interesting candidates for gene therapy approaches. However, efficient antiviral activities of corresponding transgenes are likely to be counteracted in particular by cell-mediated host immune responses toward the transgene-expressing cells. To decrease this potential immunogenicity, a 24-amino acid Gly-Ala (GA) stretch derived from Epstein-Barr virus nuclear antigen-1 (EBNA1) and known to overcome proteasomal degradation was fused to a trans-dominant Gag variant (sgD1). To determine the capacity of this fusion polypeptide to repress viral replication, PM-1 cells were transduced with sgD1 and GAsgD1 transgenes, using retroviral gene transfer. Challenge of stably transfected permissive cell lines with various viral strains indicated that N-terminal GA fusion even enhanced the inhibitory properties of sgD1. Further studies revealed that the GA stretch increased protein stability by blocking proteasomal degradation of Gag proteins. Immunization of BALB/c mice with a DNA vaccine vector expressing sgD1 induced substantial Gag-specific immune responses that were, however, clearly diminished in the presence of GA. Furthermore, recognition of cells expressing the GA-fused transgene by CD8(+) T cells was drastically reduced, both in vitro and in vivo, resulting in prolonged survival of the transduced cells in recipient mice.

  7. Replication competent molecular clones of HIV-1 expressing Renilla luciferase facilitate the analysis of antibody inhibition in PBMC.

    PubMed

    Edmonds, Tara G; Ding, Haitao; Yuan, Xing; Wei, Qing; Smith, Kendra S; Conway, Joan A; Wieczorek, Lindsay; Brown, Bruce; Polonis, Victoria; West, John T; Montefiori, David C; Kappes, John C; Ochsenbauer, Christina

    2010-12-01

    Effective vaccine development for human immunodeficiency virus type 1 (HIV-1) will require assays that ascertain the capacity of vaccine immunogens to elicit neutralizing antibodies (NAb) to diverse HIV-1 strains. To facilitate NAb assessment in peripheral blood mononuclear cell (PBMC)-based assays, we developed an assay-adaptable platform based on a Renilla luciferase (LucR) expressing HIV-1 proviral backbone. LucR was inserted into pNL4-3 DNA, preserving all viral open reading frames. The proviral genome was engineered to facilitate expression of diverse HIV-1 env sequences, allowing analysis in an isogenic background. The resulting Env-IMC-LucR viruses are infectious, and LucR is stably expressed over multiple replications in PBMC. HIV-1 neutralization, targeting TZM-bl cells, was highly correlative comparing virus (LucR) and cell (firefly luciferase) readouts. In PBMC, NAb activity can be analyzed either within a single or multiple cycles of replication. These results represent advancement toward a standardizable PBMC-based neutralization assay for assessing HIV-1 vaccine immunogen efficacy.

  8. Replication Competent Molecular Clones of HIV-1 Expressing Renilla Luciferase Facilitate the Analysis of Antibody Inhibition in PBMC

    PubMed Central

    Edmonds, Tara G.; Ding, Haitao; Yuan, Xing; Wei, Qing; Smith, Kendra S.; Conway, Joan A.; Wieczorek, Lindsay; Brown, Bruce; Polonis, Victoria; West, John T.; Montefiori, David C.; Kappes, John C.; Ochsenbauer, Christina

    2010-01-01

    Effective vaccine development for human immunodeficiency virus type 1 (HIV-1) will require assays that ascertain the capacity of vaccine immunogens to elicit neutralizing antibodies (NAb) to diverse HIV-1 strains. To facilitate NAb assessment in peripheral blood mononuclear cell (PBMC)-based assays, we developed an assay-adaptable platform based on a Renilla luciferase (LucR) expressing HIV-1 proviral backbone. LucR was inserted into pNL4-3 DNA, preserving all viral open reading frames. The proviral genome was engineered to facilitate expression of diverse HIV-1 env sequences, allowing analysis in an isogenic background. The resulting Env-IMC-LucR viruses are infectious, and LucR is stably expressed over multiple replications in PBMC. HIV-1 neutralization, targeting TZM-bl cells, was highly correlative comparing virus (LucR) and cell (firefly luciferase) readouts. In PBMC, NAb activity can be analyzed either within a single or multiple cycles of replication. These results represent advancement toward a standardizable PBMC-based neutralization assay for assessing HIV-1 vaccine immunogen efficacy. PMID:20863545

  9. Filamin A Protein Interacts with Human Immunodeficiency Virus Type 1 Gag Protein and Contributes to Productive Particle Assembly*

    PubMed Central

    Cooper, JoAnn; Liu, Ling; Woodruff, Elvin A.; Taylor, Harry E.; Goodwin, J. Shawn; D'Aquila, Richard T.; Spearman, Paul; Hildreth, James E. K.; Dong, Xinhong

    2011-01-01

    HIV-1 Gag precursor directs virus particle assembly and release. In a search for Gag-interacting proteins that are involved in late stages of the HIV-1 replication cycle, we performed yeast two-hybrid screening against a human cDNA library and identified the non-muscle actin filament cross-linking protein filamin A as a novel Gag binding partner. The 280-kDa filamin A regulates cortical actin network dynamics and participates in the anchoring of membrane proteins to the actin cytoskeleton. Recent studies have shown that filamin A facilitates HIV-1 cell-to-cell transmission by binding to HIV receptors and coreceptors and regulating their clustering on the target cell surface. Here we report a novel role for filamin A in HIV-1 Gag intracellular trafficking. We demonstrate that filamin A interacts with the capsid domain of HIV-1 Gag and that this interaction is involved in particle release in a productive manner. Disruption of this interaction eliminated Gag localization at the plasma membrane and induced Gag accumulation within internal compartments. Moreover, blocking clathrin-dependent endocytic pathways did not relieve the restriction to particle release induced by filamin A depletion. These results suggest that filamin A is involved in the distinct step of the Gag trafficking pathway. The discovery of the Gag-filamin A interaction may provide a new therapeutic target for the treatment of HIV infection. PMID:21705339

  10. Structure of an anti-HIV-1 hammerhead ribozyme complex with a 17-mer DNA substrate analog of HIV-1 gag RNA and a mechanism for the cleavage reaction: 750 MHz NMR and computer experiments

    NASA Technical Reports Server (NTRS)

    Ojha, R. P.; Dhingra, M. M.; Sarma, M. H.; Myer, Y. P.; Setlik, R. F.; Shibata, M.; Kazim, A. L.; Ornstein, R. L.; Rein, R.; Turner, C. J.; Sarma, R. H.

    1997-01-01

    between the anti HIV-1 gag ribozyme and its abortive DNA substrate manifests in the detection of a continuous track of A.T base pairs; this suggests that the interaction between the ribozyme and its DNA substrate is stronger than the one observed in the case of the free ribozyme where the bases in stem I and stem III regions interact strongly with the ribozyme core region (Sarma, R. H., et al. FEBS Letters 375, 317-23, 1995). The complex formation provides certain guidelines in the design of suitable therapeutic ribozymes. If the residues in the ribozyme stem regions interact with the conserved core, it may either prevent or interfere with the formation of a catalytically active tertiary structure.

  11. Structure of an anti-HIV-1 hammerhead ribozyme complex with a 17-mer DNA substrate analog of HIV-1 gag RNA and a mechanism for the cleavage reaction: 750 MHz NMR and computer experiments.

    PubMed

    Ojha, R P; Dhingra, M M; Sarma, M H; Myer, Y P; Setlik, R F; Shibata, M; Kazim, A L; Ornstein, R L; Rein, R; Turner, C J; Sarma, R H

    1997-10-01

    between the anti HIV-1 gag ribozyme and its abortive DNA substrate manifests in the detection of a continuous track of A.T base pairs; this suggests that the interaction between the ribozyme and its DNA substrate is stronger than the one observed in the case of the free ribozyme where the bases in stem I and stem III regions interact strongly with the ribozyme core region (Sarma, R. H., et al. FEBS Letters 375, 317-23, 1995). The complex formation provides certain guidelines in the design of suitable therapeutic ribozymes. If the residues in the ribozyme stem regions interact with the conserved core, it may either prevent or interfere with the formation of a catalytically active tertiary structure. PMID:9399149

  12. Post-translational intracellular trafficking determines the type of immune response elicited by DNA vaccines expressing Gag antigen of Human Immunodeficiency Virus Type 1 (HIV-1)

    PubMed Central

    Wallace, Aaron; West, Kim; Rothman, Alan L; Ennis, Francis A; Lu, Shan; Wang, Shixia

    2013-01-01

    In the current study, immune responses induced by Gag DNA vaccines with different designs were evaluated in Balb/C mice. The results demonstrated that the DNA vaccine with the full length wild type gag gene (Wt-Gag) mainly produced Gag antigens intracellularly and induced a higher level of cell-mediated immune (CMI) responses, as measured by IFN-gamma ELISPOT, intracellular cytokine staining (ICS), and cytotoxic T lymphocytes (CTL) assays against a dominant CD8+ T cell epitope (AMQMLKETI). In contrast, the addition of a tissue plasminogen activator (tPA) leader sequence significantly improved overall Gag protein expression/secretion and Gag-specific antibody responses; however, Gag-specific CMI responses were decreased. The mutation of zinc-finger motif changed Gag protein expression patterns and reduced the ability to generate both CMI and antibody responses against Gag. These findings indicate that the structure and post-translational processing of antigens expressed by DNA vaccines play a critical role in eliciting optimal antibody or CMI responses. PMID:23941868

  13. High frequency of transmitted HIV-1 Gag HLA class I-driven immune escape variants but minimal immune selection over the first year of clade C infection.

    PubMed

    Gounder, Kamini; Padayachi, Nagavelli; Mann, Jaclyn K; Radebe, Mopo; Mokgoro, Mammekwa; van der Stok, Mary; Mkhize, Lungile; Mncube, Zenele; Jaggernath, Manjeetha; Reddy, Tarylee; Walker, Bruce D; Ndung'u, Thumbi

    2015-01-01

    In chronic HIV infection, CD8+ T cell responses to Gag are associated with lower viral loads, but longitudinal studies of HLA-restricted CD8+ T cell-driven selection pressure in Gag from the time of acute infection are limited. In this study we examined Gag sequence evolution over the first year of infection in 22 patients identified prior to seroconversion. A total of 310 and 337 full-length Gag sequences from the earliest available samples (median = 14 days after infection [Fiebig stage I/II]) and at one-year post infection respectively were generated. Six of 22 (27%) individuals were infected with multiple variants. There was a trend towards early intra-patient viral sequence diversity correlating with viral load set point (p = 0.07, r = 0.39). At 14 days post infection, 59.7% of Gag CTL epitopes contained non-consensus polymorphisms and over half of these (35.3%) comprised of previously described CTL escape variants. Consensus and variant CTL epitope proportions were equally distributed irrespective of the selecting host HLA allele and most epitopes remained unchanged over 12 months post infection. These data suggest that intrapatient diversity during acute infection is an indicator of disease outcome. In this setting, there is a high rate of transmitted CTL escape variants and limited immune selection in Gag during the first year of infection. These data have relevance for vaccine strategies designed to elicit effective CD8+ T cell immune responses. PMID:25781986

  14. High Frequency of Transmitted HIV-1 Gag HLA Class I-Driven Immune Escape Variants but Minimal Immune Selection over the First Year of Clade C Infection

    PubMed Central

    Gounder, Kamini; Padayachi, Nagavelli; Mann, Jaclyn K.; Radebe, Mopo; Mokgoro, Mammekwa; van der Stok, Mary; Mkhize, Lungile; Mncube, Zenele; Jaggernath, Manjeetha; Reddy, Tarylee; Walker, Bruce D.; Ndung’u, Thumbi

    2015-01-01

    In chronic HIV infection, CD8+ T cell responses to Gag are associated with lower viral loads, but longitudinal studies of HLA-restricted CD8+ T cell-driven selection pressure in Gag from the time of acute infection are limited. In this study we examined Gag sequence evolution over the first year of infection in 22 patients identified prior to seroconversion. A total of 310 and 337 full-length Gag sequences from the earliest available samples (median = 14 days after infection [Fiebig stage I/II]) and at one-year post infection respectively were generated. Six of 22 (27%) individuals were infected with multiple variants. There was a trend towards early intra-patient viral sequence diversity correlating with viral load set point (p = 0.07, r = 0.39). At 14 days post infection, 59.7% of Gag CTL epitopes contained non-consensus polymorphisms and over half of these (35.3%) comprised of previously described CTL escape variants. Consensus and variant CTL epitope proportions were equally distributed irrespective of the selecting host HLA allele and most epitopes remained unchanged over 12 months post infection. These data suggest that intrapatient diversity during acute infection is an indicator of disease outcome. In this setting, there is a high rate of transmitted CTL escape variants and limited immune selection in Gag during the first year of infection. These data have relevance for vaccine strategies designed to elicit effective CD8+ T cell immune responses. PMID:25781986

  15. HIV-1 Gag p17 presented as virus-like particles on the E2 scaffold from Geobacillus stearothermophilus induces sustained humoral and cellular immune responses in the absence of IFN{gamma} production by CD4+ T cells

    SciTech Connect

    Caivano, Antonella; Doria-Rose, Nicole A.; Buelow, Benjamin; Sartorius, Rossella; Trovato, Maria; D'Apice, Luciana; Domingo, Gonzalo J.; Sutton, William F.; Haigwood, Nancy L.; De Berardinis, Piergiuseppe

    2010-11-25

    We have constructed stable virus-like particles displaying the HIV-1 Gag(p17) protein as an N-terminal fusion with an engineered protein domain from the Geobacillus stearothermophilus pyruvate dehydrogenase subunit E2. Mice immunized with the Gag(p17)-E2 60-mer scaffold particles mounted a strong and sustained antibody response. Antibodies directed to Gag(p17) were boosted significantly with additional immunizations, while anti-E2 responses reached a plateau. The isotype of the induced antibodies was biased towards IgG1, and the E2-primed CD4+ T cells did not secrete IFN{gamma}. Using transgenic mouse model systems, we demonstrated that CD8+ T cells primed with E2 particles were able to exert lytic activity and produce IFN{gamma}. These results show that the E2 scaffold represents a powerful vaccine delivery system for whole antigenic proteins or polyepitope engineered proteins, evoking antibody production and antigen specific CTL activity even in the absence of IFN{gamma}-producing CD4+ T cells.

  16. Recombination Enhances HIV-1 Envelope Diversity by Facilitating the Survival of Latent Genomic Fragments in the Plasma Virus Population.

    PubMed

    Immonen, Taina T; Conway, Jessica M; Romero-Severson, Ethan O; Perelson, Alan S; Leitner, Thomas

    2015-12-01

    HIV-1 is subject to immune pressure exerted by the host, giving variants that escape the immune response an advantage. Virus released from activated latent cells competes against variants that have continually evolved and adapted to host immune pressure. Nevertheless, there is increasing evidence that virus displaying a signal of latency survives in patient plasma despite having reduced fitness due to long-term immune memory. We investigated the survival of virus with latent envelope genomic fragments by simulating within-host HIV-1 sequence evolution and the cycling of viral lineages in and out of the latent reservoir. Our model incorporates a detailed mutation process including nucleotide substitution, recombination, latent reservoir dynamics, diversifying selection pressure driven by the immune response, and purifying selection pressure asserted by deleterious mutations. We evaluated the ability of our model to capture sequence evolution in vivo by comparing our simulated sequences to HIV-1 envelope sequence data from 16 HIV-infected untreated patients. Empirical sequence divergence and diversity measures were qualitatively and quantitatively similar to those of our simulated HIV-1 populations, suggesting that our model invokes realistic trends of HIV-1 genetic evolution. Moreover, reconstructed phylogenies of simulated and patient HIV-1 populations showed similar topological structures. Our simulation results suggest that recombination is a key mechanism facilitating the persistence of virus with latent envelope genomic fragments in the productively infected cell population. Recombination increased the survival probability of latent virus forms approximately 13-fold. Prevalence of virus with latent fragments in productively infected cells was observed in only 2% of simulations when we ignored recombination, while the proportion increased to 27% of simulations when we allowed recombination. We also found that the selection pressures exerted by different fitness

  17. Recombination enhances HIV-1 envelope diversity by facilitating the survival of latent genomic fragments in the plasma virus population

    SciTech Connect

    Immonen, Taina T.; Conway, Jessica M.; Romero-Severson, Ethan O.; Perelson, Alan S.; Leitner, Thomas; Kouyos, Roger Dimitri

    2015-12-22

    HIV-1 is subject to immune pressure exerted by the host, giving variants that escape the immune response an advantage. Virus released from activated latent cells competes against variants that have continually evolved and adapted to host immune pressure. Nevertheless, there is increasing evidence that virus displaying a signal of latency survives in patient plasma despite having reduced fitness due to long-term immune memory. We investigated the survival of virus with latent envelope genomic fragments by simulating within-host HIV-1 sequence evolution and the cycling of viral lineages in and out of the latent reservoir. Our model incorporates a detailed mutation process including nucleotide substitution, recombination, latent reservoir dynamics, diversifying selection pressure driven by the immune response, and purifying selection pressure asserted by deleterious mutations. We evaluated the ability of our model to capture sequence evolution in vivo by comparing our simulated sequences to HIV-1 envelope sequence data from 16 HIV-infected untreated patients. Empirical sequence divergence and diversity measures were qualitatively and quantitatively similar to those of our simulated HIV-1 populations, suggesting that our model invokes realistic trends of HIV-1 genetic evolution. Moreover, reconstructed phylogenies of simulated and patient HIV-1 populations showed similar topological structures. Our simulation results suggest that recombination is a key mechanism facilitating the persistence of virus with latent envelope genomic fragments in the productively infected cell population. Recombination increased the survival probability of latent virus forms approximately 13-fold. Prevalence of virus with latent fragments in productively infected cells was observed in only 2% of simulations when we ignored recombination, while the proportion increased to 27% of simulations when we allowed recombination. We also found that the selection pressures exerted by different fitness

  18. Structural features in the HIV-1 repeat region facilitate strand transfer during reverse transcription.

    PubMed Central

    Berkhout, B; Vastenhouw, N L; Klasens, B I; Huthoff, H

    2001-01-01

    Two obligatory DNA strand transfers take place during reverse transcription of a retroviral RNA genome. The first strand transfer is facilitated by terminal repeat (R) elements in the viral genome. This strand-transfer reaction depends on base pairing between the cDNA of the 5'R and the 3'R. There is accumulating evidence that retroviral R regions contain features other than sequence complementarity that stimulate this critical nucleic acid hybridization step. The R region of the human immunodeficiency virus type 1 (HIV-1) is relatively extended (97 nt) and encodes two well-conserved stem-loop structures, the TAR and poly(A) hairpins. The role of these motifs was studied in an in vitro strand-transfer assay with two separate templates, the 5'R donor and the 3'R acceptor, and mutants thereof. The results indicate that the upper part of the TAR hairpin structure in the 5'R donor is critical for efficient strand transfer. This seems to pose a paradox, as the 5'R template is degraded by RNase H before strand transfer occurs. We propose that it is not the RNA hairpin motif in the 5'R donor, but rather the antisense motif in the ssDNA copy, which can also fold a hairpin structure, that is critical for strand transfer. Mutation of the loop sequence in the TAR hairpin of the donor RNA, which is copied in the loop of the cDNA hairpin, reduces the transfer efficiency more than fivefold. It is proposed that the natural strand-transfer reaction is enhanced by interaction of the anti-TAR ssDNA hairpin with the TAR hairpin in the 3'R acceptor. Base pairing can occur between the complementary loops ("loop-loop kissing"), and strand transfer is completed by the subsequent formation of an extended RNA-cDNA duplex. PMID:11497429

  19. Virus Maturation as a Novel HIV-1 Therapeutic Target

    PubMed Central

    Adamson, Catherine S.; Salzwedel, Karl; Freed, Eric O.

    2009-01-01

    Development of novel therapeutic targets against HIV-1 is a high research priority due to the serious clinical consequences associated with acquisition of resistance to current antiretroviral drugs. The HIV-1 structural protein Gag represents a potential novel therapeutic target as it plays a central role in virus particle production, yet is not targeted by any of the currently approved antiretroviral drugs. The Gag polyprotein precursor multimerizes to form immature particles that bud from the infected cell. Concomitant with virus release, the Gag precursor undergoes proteolytic processing by the viral protease to generate the mature Gag proteins, which include capsid (CA). Once liberated from the Gag polyprotein precursor, CA molecules interact to reassemble into a condensed conical core, which organizes the viral RNA genome and several viral proteins to facilitate virus replication in the next round of infection. Correct Gag proteolytic processing and core assembly are therefore essential for virus infectivity. In this review, we discuss novel strategies to inhibit maturation by targeting proteolytic cleavage sites in Gag or CA-CA interactions required for core formation. The identification and development of lead maturation inhibitors are highlighted. PMID:19534569

  20. ADAR1 Facilitates HIV-1 Replication in Primary CD4+ T Cells

    PubMed Central

    van Hamme, John L.; Jansen, Machiel H.; van Dort, Karel A.; Vanderver, Adeline; Rice, Gillian I.; Crow, Yanick J.; Kootstra, Neeltje A.; Kuijpers, Taco W.

    2015-01-01

    Unlike resting CD4+ T cells, activated CD4+T cells are highly susceptible to infection of human immunodeficiency virus 1 (HIV-1). HIV-1 infects T cells and macrophages without activating the nucleic acid sensors and the anti-viral type I interferon response. Adenosine deaminase acting on RNA 1 (ADAR1) is an RNA editing enzyme that displays antiviral activity against several RNA viruses. Mutations in ADAR1 cause the autoimmune disorder Aicardi-Goutieères syndrome (AGS). This disease is characterized by an inappropriate activation of the interferon-stimulated gene response. Here we show that HIV-1 replication, in ADAR1-deficient CD4+T lymphocytes from AGS patients, is blocked at the level of protein translation. Furthermore, viral protein synthesis block is accompanied by an activation of interferon-stimulated genes. RNA silencing of ADAR1 in Jurkat cells also inhibited HIV-1 protein synthesis. Our data support that HIV-1 requires ADAR1 for efficient replication in human CD4+T cells. PMID:26629815

  1. Epitope-tagging approach to determine the stoichiometry of the structural and nonstructural proteins in the virus particles: amount of Vpr in relation to Gag in HIV-1.

    PubMed

    Singh, S P; Lai, D; Cartas, M; Serio, D; Murali, R; Kalyanaraman, V S; Srinivasan, A

    2000-03-15

    We used an epitope-tagging approach to determine the ratio of Gag (structural) to Vpr (nonstructural) in the virus particles directed by human immunodeficiency virus type 1. For this purpose, chimeric Gag and Vpr expression plasmids were constructed with the Flag epitope (DYKDDDDK), and the sequences corresponding to the chimeric protein were introduced into human immunodeficiency virus type 1 proviral DNA (NL4-3) to determine the ratio in the virus particles when these proteins are expressed in cis. In addition, NL4-3 DNA was modified to disrupt Vpr synthesis to determine the extent of incorporation of Vpr-FL when it is expressed in trans through a heterologous promoter. The analysis of virus particles generated by transfection of proviral DNA into RD cells indicated that (1) the ratio of Gag to Vpr in virus particles, when Vpr-FL is expressed in cis (in the context of proviral DNA), is in the range of 150-200:1 (14-18 molecules of Vpr per virion) and (2) the expression of Vpr-FL in trans showed efficient incorporation with a Gag to Vpr ratio of 5-7:1 (392-550 molecules of Vpr). These results suggest that the presence of the same epitope on different viral proteins may provide an accurate comparison of these proteins in the virus particles.

  2. Gag-Specific CD4 and CD8 T-Cell Proliferation in Adolescents and Young Adults with Perinatally Acquired HIV-1 Infection Is Associated with Ethnicity — The ANRS-EP38-IMMIP Study

    PubMed Central

    Le Chenadec, Jérôme; Scott-Algara, Daniel; Blanche, Stéphane; Didier, Céline; Montange, Thomas; Viard, Jean-Paul; Dollfus, Catherine; Avettand-Fenoel, Véronique; Rouzioux, Christine; Warszawski, Josiane; Buseyne, Florence

    2015-01-01

    The ANRS-EP38-IMMIP study aimed to provide a detailed assessment of the immune status of perinatally infected youths living in France. We studied Gag-specific CD4 and CD8 T-cell proliferation and the association between the proliferation of these cells, demographic factors and HIV disease history. We included 93 youths aged between 15 and 24 years who had been perinatally infected with HIV. Sixty-nine had undergone valid CFSE-based T-cell proliferation assays. Gag-specific proliferation of CD4 and CD8 T cells was detected in 12 (16%) and 30 (38%) patients, respectively. The Gag-specific proliferation of CD4 and CD8 T cells was more frequently observed in black patients than in patients from other ethnic groups (CD4: 32% vs. 4%, P = 0.001; CD8: 55% vs. 26%, P = 0.02). Among aviremic patients, the duration of viral suppression was shorter in CD8 responders than in CD8 nonresponders (medians: 54 vs. 20 months, P = 0.04). Among viremic patients, CD8 responders had significantly lower plasma HIV RNA levels than CD8 nonresponders (2.7 vs. 3.7 log10 HIV-RNA copies/ml, P = 0.02). In multivariate analyses including sex and HIV-1 subtype as covariables, Gag-specific CD4 T-cell proliferation was associated only with ethnicity, whereas Gag-specific CD8 T-cell proliferation was associated with both ethnicity and the duration of viral suppression. Both CD4 and CD8 responders reached their nadir CD4 T-cell percentages at younger ages than their nonresponder counterparts (6 vs. 8 years, P = 0.04 for both CD4 and CD8 T-cell proliferation). However, these associations were not significant in multivariate analysis. In conclusion, after at least 15 years of HIV infection, Gag-specific T-cell proliferation was found to be more frequent in black youths than in patients of other ethnic groups, despite all the patients being born in the same country, with similar access to care. PMID:26650393

  3. Production and simple purification of a protein encoded by part of the gag gene of HIV-1 in the Escherichia coli HB101F+ expression system inducible by lactose and isopropyl-beta-D-thiogalactopyranoside.

    PubMed

    Liska, V; Dyr, J E; Suttnar, J; Hirsch, I; Vonka, V

    1994-06-01

    The development of the Escherichia coli expression system, which was prepared by transferring the F' episome from strain 71/18 to a highly to a transformable F- strain HB101, is described. These new HB101 (F+) cells, which produced high levels of lac repressor, were capable of taking up lactose and grew under strict selection conditions. A relatively simple two-step purification of part of a protein (M(r) 27,000) encoded by the gag gene of HIV-1 in this expression system is described. The supernatant prepared by removal of cell debris was precipitated by 30% saturation of ammonium sulphate. The protein spectrum was characterized by gel electrophoresis, immunoblotting and ion-exchange titration curves. Optimum separation was achieved using a strong anion exchanger (Mono Q) at pH 8.0. The purified protein did not cross-react with antibodies to E. coli.

  4. Disseminated human immunodeficiency virus 1 (HIV-1) infection in SCID- hu mice after peripheral inoculation with HIV-1

    PubMed Central

    1994-01-01

    A small animal model that could be infected with human immunodeficiency virus 1 (HIV-1) after peripheral inoculation would greatly facilitate the study of the pathophysiology of acute HIV-1 infection. The utility of SCID mice implanted with human fetal thymus and liver (SCID-hu mice) for studying peripheral HIV-1 infection in vivo has been hampered by the requirement for direct intraimplant injection of HIV-1 and the continued restriction of the resultant HIV-1 infection to the human thymus and liver (hu-thy/liv) implant. This may have been due to the very low numbers of human T cells present in the SCID-hu mouse peripheral lymphoid compartment. Since the degree of the peripheral reconstitution of SCID-hu mice with human T cells may be a function of the hu-thy/liv implant size, we increased the quantity of hu-thy/liv tissue implanted under the renal capsule and implanted hu-thy/liv tissue under the capsules of both kidneys. This resulted in SCID-hu mice in which significant numbers of human T cells were detected in the peripheral blood, spleens, and lymph nodes. After intraimplant injection of HIV-1 into these modified SCID-hu mice, significant HIV-1 infection was detected by quantitative coculture not only in the hu- thy/liv implant, but also in the spleen and peripheral blood. This indicated that HIV-1 infection can spread from the thymus to the peripheral lymphoid compartment. More importantly, a similar degree of infection of the hu-thy/liv implant and peripheral lymphoid compartment occurred after peripheral intraperitoneal inoculation with HIV-1. Active viral replication was indicated by the detection of HIV-1 gag DNA, HIV-1 gag RNA, and spliced tat/rev RNA in the hu-thy/liv implants, peripheral blood mononuclear cells (PBMC), spleens, and lymph nodes of these HIV-1-infected SCID-hu mice. As a first step in using our modified SCID-hu mouse model to investigate the pathophysiological consequences of HIV-1 infection, the effect of HIV-1 infection on the

  5. Molecular mimicry of human tRNALys anti-codon domain by HIV-1 RNA genome facilitates tRNA primer annealing.

    PubMed

    Jones, Christopher P; Saadatmand, Jenan; Kleiman, Lawrence; Musier-Forsyth, Karin

    2013-02-01

    The primer for initiating reverse transcription in human immunodeficiency virus type 1 (HIV-1) is tRNA(Lys3). Host cell tRNA(Lys) is selectively packaged into HIV-1 through a specific interaction between the major tRNA(Lys)-binding protein, human lysyl-tRNA synthetase (hLysRS), and the viral proteins Gag and GagPol. Annealing of the tRNA primer onto the complementary primer-binding site (PBS) in viral RNA is mediated by the nucleocapsid domain of Gag. The mechanism by which tRNA(Lys3) is targeted to the PBS and released from hLysRS prior to annealing is unknown. Here, we show that hLysRS specifically binds to a tRNA anti-codon-like element (TLE) in the HIV-1 genome, which mimics the anti-codon loop of tRNA(Lys) and is located proximal to the PBS. Mutation of the U-rich sequence within the TLE attenuates binding of hLysRS in vitro and reduces the amount of annealed tRNA(Lys3) in virions. Thus, LysRS binds specifically to the TLE, which is part of a larger LysRS binding domain in the viral RNA that includes elements of the Psi packaging signal. Our results suggest that HIV-1 uses molecular mimicry of the anti-codon of tRNA(Lys) to increase the efficiency of tRNA(Lys3) annealing to viral RNA.

  6. CRISPR-Cas9 Can Inhibit HIV-1 Replication but NHEJ Repair Facilitates Virus Escape

    PubMed Central

    Wang, Gang; Zhao, Na; Berkhout, Ben; Das, Atze T

    2016-01-01

    Several recent studies demonstrated that the clustered regularly interspaced short palindromic repeats (CRISPR)-associated endonuclease Cas9 can be used for guide RNA (gRNA)-directed, sequence-specific cleavage of HIV proviral DNA in infected cells. We here demonstrate profound inhibition of HIV-1 replication by harnessing T cells with Cas9 and antiviral gRNAs. However, the virus rapidly and consistently escaped from this inhibition. Sequencing of the HIV-1 escape variants revealed nucleotide insertions, deletions, and substitutions around the Cas9/gRNA cleavage site that are typical for DNA repair by the nonhomologous end-joining pathway. We thus demonstrate the potency of CRISPR-Cas9 as an antiviral approach, but any therapeutic strategy should consider the viral escape implications. PMID:26796669

  7. Recombination enhances HIV-1 envelope diversity by facilitating the survival of latent genomic fragments in the plasma virus population

    DOE PAGES

    Immonen, Taina T.; Conway, Jessica M.; Romero-Severson, Ethan O.; Perelson, Alan S.; Leitner, Thomas; Kouyos, Roger Dimitri

    2015-12-22

    HIV-1 is subject to immune pressure exerted by the host, giving variants that escape the immune response an advantage. Virus released from activated latent cells competes against variants that have continually evolved and adapted to host immune pressure. Nevertheless, there is increasing evidence that virus displaying a signal of latency survives in patient plasma despite having reduced fitness due to long-term immune memory. We investigated the survival of virus with latent envelope genomic fragments by simulating within-host HIV-1 sequence evolution and the cycling of viral lineages in and out of the latent reservoir. Our model incorporates a detailed mutation processmore » including nucleotide substitution, recombination, latent reservoir dynamics, diversifying selection pressure driven by the immune response, and purifying selection pressure asserted by deleterious mutations. We evaluated the ability of our model to capture sequence evolution in vivo by comparing our simulated sequences to HIV-1 envelope sequence data from 16 HIV-infected untreated patients. Empirical sequence divergence and diversity measures were qualitatively and quantitatively similar to those of our simulated HIV-1 populations, suggesting that our model invokes realistic trends of HIV-1 genetic evolution. Moreover, reconstructed phylogenies of simulated and patient HIV-1 populations showed similar topological structures. Our simulation results suggest that recombination is a key mechanism facilitating the persistence of virus with latent envelope genomic fragments in the productively infected cell population. Recombination increased the survival probability of latent virus forms approximately 13-fold. Prevalence of virus with latent fragments in productively infected cells was observed in only 2% of simulations when we ignored recombination, while the proportion increased to 27% of simulations when we allowed recombination. We also found that the selection pressures exerted by different

  8. RNA helicase MOV10 functions as a co-factor of HIV-1 Rev to facilitate Rev/RRE-dependent nuclear export of viral mRNAs.

    PubMed

    Huang, Feng; Zhang, Junsong; Zhang, Yijun; Geng, Guannan; Liang, Juanran; Li, Yingniang; Chen, Jingliang; Liu, Chao; Zhang, Hui

    2015-12-01

    Human immunodeficiency virus type 1 (HIV-1) exploits multiple host factors during its replication. The REV/RRE-dependent nuclear export of unspliced/partially spliced viral transcripts needs the assistance of host proteins. Recent studies have shown that MOV10 overexpression inhibited HIV-1 replication at various steps. However, the endogenous MOV10 was required in certain step(s) of HIV-1 replication. In this report, we found that MOV10 potently enhances the nuclear export of viral mRNAs and subsequently increases the expression of Gag protein and other late products through affecting the Rev/RRE axis. The co-immunoprecipitation analysis indicated that MOV10 interacts with Rev in an RNA-independent manner. The DEAG-box of MOV10 was required for the enhancement of Rev/RRE-dependent nuclear export and the DEAG-box mutant showed a dominant-negative activity. Our data propose that HIV-1 utilizes the anti-viral factor MOV10 to function as a co-factor of Rev and demonstrate the complicated effects of MOV10 on HIV-1 life cycle.

  9. Imperfect DNA mirror repeats in the gag gene of HIV-1 (HXB2) identify key functional domains and coincide with protein structural elements in each of the mature proteins

    PubMed Central

    Lang, Dorothy M

    2007-01-01

    Background A DNA mirror repeat is a sequence segment delimited on the basis of its containing a center of symmetry on a single strand, e.g. 5'-GCATGGTACG-3'. It is most frequently described in association with a functionally significant site in a genomic sequence, and its occurrence is regarded as noteworthy, if not unusual. However, imperfect mirror repeats (IMRs) having ≥ 50% symmetry are common in the protein coding DNA of monomeric proteins and their distribution has been found to coincide with protein structural elements – helices, β sheets and turns. In this study, the distribution of IMRs is evaluated in a polyprotein – to determine whether IMRs may be related to the position or order of protein cleavage or other hierarchal aspects of protein function. The gag gene of HIV-1 [GenBank:K03455] was selected for the study because its protein motifs and structural components are well documented. Results There is a highly specific relationship between IMRs and structural and functional aspects of the Gag polyprotein. The five longest IMRs in the polyprotein translate a key functional segment in each of the five cleavage products. Throughout the protein, IMRs coincide with functionally significant segments of the protein. A detailed annotation of the protein, which combines structural, functional and IMR data illustrates these associations. There is a significant statistical correlation between the ends of IMRs and the ends of PSEs in each of the mature proteins. Weakly symmetric IMRs (≥ 33%) are related to cleavage positions and processes. Conclusion The frequency and distribution of IMRs in HIV-1 Gag indicates that DNA symmetry is a fundamental property of protein coding DNA and that different levels of symmetry are associated with different functional aspects of the gene and its protein. The interaction between IMRs and protein structure and function is precise and interwoven over the entire length of the polyprotein. The distribution of IMRs and their

  10. BioAfrica's HIV-1 proteomics resource: combining protein data with bioinformatics tools.

    PubMed

    Doherty, Ryan S; De Oliveira, Tulio; Seebregts, Chris; Danaviah, Sivapragashini; Gordon, Michelle; Cassol, Sharon

    2005-01-01

    Most Internet online resources for investigating HIV biology contain either bioinformatics tools, protein information or sequence data. The objective of this study was to develop a comprehensive online proteomics resource that integrates bioinformatics with the latest information on HIV-1 protein structure, gene expression, post-transcriptional/post-translational modification, functional activity, and protein-macromolecule interactions. The BioAfrica HIV-1 Proteomics Resource http://bioafrica.mrc.ac.za/proteomics/index.html is a website that contains detailed information about the HIV-1 proteome and protease cleavage sites, as well as data-mining tools that can be used to manipulate and query protein sequence data, a BLAST tool for initiating structural analyses of HIV-1 proteins, and a proteomics tools directory. The Proteome section contains extensive data on each of 19 HIV-1 proteins, including their functional properties, a sample analysis of HIV-1HXB2, structural models and links to other online resources. The HIV-1 Protease Cleavage Sites section provides information on the position, subtype variation and genetic evolution of Gag, Gag-Pol and Nef cleavage sites. The HIV-1 Protein Data-mining Tool includes a set of 27 group M (subtypes A through K) reference sequences that can be used to assess the influence of genetic variation on immunological and functional domains of the protein. The BLAST Structure Tool identifies proteins with similar, experimentally determined topologies, and the Tools Directory provides a categorized list of websites and relevant software programs. This combined database and software repository is designed to facilitate the capture, retrieval and analysis of HIV-1 protein data, and to convert it into clinically useful information relating to the pathogenesis, transmission and therapeutic response of different HIV-1 variants. The HIV-1 Proteomics Resource is readily accessible through the BioAfrica website at: http

  11. Recombination elevates the effective evolutionary rate and facilitates the establishment of HIV-1 infection in infants after mother-to-child transmission

    DOE PAGES

    Sanborn, Keri B.; Somasundaran, Mohan; Luzuriaga, Katherine; Leitner, Thomas K.

    2015-11-16

    Some previous studies have demonstrated that single HIV-1 genotypes are commonly transmitted from mother to child, but such analyses primarily used single samples from mother and child. It is possible that in a single sample, obtained early after infection, only the most replication competent virus is detected even when other forms may have been transmitted. Such forms may have advantages later in infection, and may thus be detected in follow-up samples. Furthermore, because HIV-1 frequently recombines, phylogenetic analyses that ignore recombination may miss transmission of multiple forms if they recombine after transmission. Moreover, recombination may facilitate adaptation, thus providing anmore » advantage in establishing infection. The effect of recombination on viral evolution in HIV-1 infected children has not been well defined.« less

  12. Recombination elevates the effective evolutionary rate and facilitates the establishment of HIV-1 infection in infants after mother-to-child transmission

    SciTech Connect

    Sanborn, Keri B.; Somasundaran, Mohan; Luzuriaga, Katherine; Leitner, Thomas K.

    2015-11-16

    Some previous studies have demonstrated that single HIV-1 genotypes are commonly transmitted from mother to child, but such analyses primarily used single samples from mother and child. It is possible that in a single sample, obtained early after infection, only the most replication competent virus is detected even when other forms may have been transmitted. Such forms may have advantages later in infection, and may thus be detected in follow-up samples. Furthermore, because HIV-1 frequently recombines, phylogenetic analyses that ignore recombination may miss transmission of multiple forms if they recombine after transmission. Moreover, recombination may facilitate adaptation, thus providing an advantage in establishing infection. The effect of recombination on viral evolution in HIV-1 infected children has not been well defined.

  13. HIV-1 Protease: Structure, Dynamics and Inhibition

    SciTech Connect

    Louis, John M.; Ishima, R.; Torchia, D.A.; Weber, Irene T.

    2008-06-03

    The HIV-1 protease is synthesized as part of a large Gag-Pol precursor protein. It is responsible for its own release from the precursor and the processing of the Gag and Gag-Pol polyproteins into the mature structural and functional proteins required for virus maturation. Because of its indispensable role, the mature HIV-1 protease dimer has proven to be a successful target for the development of antiviral agents. In the last 5 years, a major emphasis in protease research has been to improve inhibitor design and treatment regimens.

  14. Isotype Diversification of IgG Antibodies to HIV Gag Proteins as a Therapeutic Vaccination Strategy for HIV Infection.

    PubMed

    French, Martyn A; Abudulai, Laila N; Fernandez, Sonia

    2013-01-01

    The development of vaccines to treat and prevent human immunodeficiency virus (HIV) infection has been hampered by an incomplete understanding of "protective" immune responses against HIV. Natural control of HIV-1 infection is associated with T-cell responses against HIV-1 Gag proteins, particularly CD8⁺ T-cell responses restricted by "protective" HLA-B alleles, but other immune responses also contribute to immune control. These immune responses appear to include IgG antibodies to HIV-1 Gag proteins, interferon-a-dependant natural killer (NK) cell responses and plasmacytoid dendritic cell (pDC) responses. Here, it is proposed that isotype diversification of IgG antibodies against HIV-1 Gag proteins, to include IgG2, as well as IgG3 and IgG1 antibodies, will broaden the function of the antibody response and facilitate accessory cell responses against HIV-1 by NK cells and pDCs. We suggest that this should be investigated as a vaccination strategy for HIV-1 infection.

  15. Nef enhances HIV-1 infectivity via association with the virus assembly complex

    SciTech Connect

    Qi Mingli; Aiken, Christopher

    2008-04-10

    The HIV-1 accessory protein Nef enhances virus infectivity by facilitating an early post-entry step of infection. Nef acts in the virus producer cell, leading to a beneficial modification to HIV-1 particles. Nef itself is incorporated into HIV-1 particles, where it is cleaved by the viral protease during virion maturation. To probe the role of virion-associated Nef in HIV-1 infection, we generated a fusion protein consisting of the host protein cyclophilin A (CypA) linked to the amino terminus of Nef. The resulting CypA-Nef protein enhanced the infectivity of Nef-defective HIV-1 particles and was specifically incorporated into the virions via association with Gag during particle assembly. Pharmacologic or genetic inhibition of CypA-Nef binding to Gag prevented incorporation of CypA-Nef into virions and inhibited infectivity enhancement. Our results indicate that infectivity enhancement by Nef requires its association with a component of the assembling HIV-1 particle.

  16. Downregulation of human immunodeficiency virus type 1 Gag expression by a gp41 cytoplasmic domain fusion protein

    SciTech Connect

    Chan, W.-E.; Chen, Steve S.-L. . E-mail: schen@ibms.sinica.edu.tw

    2006-05-10

    The cytoplasmic domain of human immunodeficiency virus type 1 (HIV-1) envelope (Env) transmembrane protein gp41 interacts with the viral matrix MA protein, which facilitates incorporation of the trimeric Env complex into the virus. It is thus feasible to design an anti-HIV strategy targeting this interaction. We herein describe that Gag expression can be downregulated by a cytoplasmic domain fusion protein of the Env transmembrane protein, {beta}-galactosidase ({beta}-gal)/706-856, which contains the cytoplasmic tail of gp41 fused at the C terminus of Escherichia coli {beta}-gal. This mediator depleted intracellular Gag molecules in a dose-dependent manner. Sucrose gradient ultracentrifugation and confocal microscopy revealed that Gag and {beta}-gal/706-856 had stable interactions and formed aggregated complexes in perinuclear, intracellular sites. Pulse-chase and cycloheximide chase analyses demonstrated that this mediator enhanced unmyristylated Gag degradation. The results demonstrate a novel mode of HIV-1 Gag downregulation by directing Gag to an intracellular site via the interaction of Gag with a gp41 cytoplasmic domain fusion protein.

  17. NLRX1 Sequesters STING to Negatively Regulate the Interferon Response, Thereby Facilitating the Replication of HIV-1 and DNA Viruses.

    PubMed

    Guo, Haitao; König, Renate; Deng, Meng; Riess, Maximilian; Mo, Jinyao; Zhang, Lu; Petrucelli, Alex; Yoh, Sunnie M; Barefoot, Brice; Samo, Melissa; Sempowski, Gregory D; Zhang, Aiping; Colberg-Poley, Anamaris M; Feng, Hui; Lemon, Stanley M; Liu, Yong; Zhang, Yanping; Wen, Haitao; Zhang, Zhigang; Damania, Blossom; Tsao, Li-Chung; Wang, Qi; Su, Lishan; Duncan, Joseph A; Chanda, Sumit K; Ting, Jenny P-Y

    2016-04-13

    Understanding the negative regulators of antiviral immune responses will be critical for advancing immune-modulated antiviral strategies. NLRX1, an NLR protein that negatively regulates innate immunity, was previously identified in an unbiased siRNA screen as required for HIV infection. We find that NLRX1 depletion results in impaired nuclear import of HIV-1 DNA in human monocytic cells. Additionally, NLRX1 was observed to reduce type-I interferon (IFN-I) and cytokines in response to HIV-1 reverse-transcribed DNA. NLRX1 sequesters the DNA-sensing adaptor STING from interaction with TANK-binding kinase 1 (TBK1), which is a requisite for IFN-1 induction in response to DNA. NLRX1-deficient cells generate an amplified STING-dependent host response to cytosolic DNA, c-di-GMP, cGAMP, HIV-1, and DNA viruses. Accordingly, Nlrx1(-/-) mice infected with DNA viruses exhibit enhanced innate immunity and reduced viral load. Thus, NLRX1 is a negative regulator of the host innate immune response to HIV-1 and DNA viruses.

  18. Membrane Binding of HIV-1 Matrix Protein: Dependence on Bilayer Composition and Protein Lipidation

    PubMed Central

    Barros, Marilia; Nanda, Hirsh

    2016-01-01

    ABSTRACT By assembling in a protein lattice on the host's plasma membrane, the retroviral Gag polyprotein triggers formation of the viral protein/membrane shell. The MA domain of Gag employs multiple signals—electrostatic, hydrophobic, and lipid-specific—to bring the protein to the plasma membrane, thereby complementing protein-protein interactions, located in full-length Gag, in lattice formation. We report the interaction of myristoylated and unmyristoylated HIV-1 Gag MA domains with bilayers composed of purified lipid components to dissect these complex membrane signals and quantify their contributions to the overall interaction. Surface plasmon resonance on well-defined planar membrane models is used to quantify binding affinities and amounts of protein and yields free binding energy contributions, ΔG, of the various signals. Charge-charge interactions in the absence of the phosphatidylinositide PI(4,5)P2 attract the protein to acidic membrane surfaces, and myristoylation increases the affinity by a factor of 10; thus, our data do not provide evidence for a PI(4,5)P2 trigger of myristate exposure. Lipid-specific interactions with PI(4,5)P2, the major signal lipid in the inner plasma membrane, increase membrane attraction at a level similar to that of protein lipidation. While cholesterol does not directly engage in interactions, it augments protein affinity strongly by facilitating efficient myristate insertion and PI(4,5)P2 binding. We thus observe that the isolated MA protein, in the absence of protein-protein interaction conferred by the full-length Gag, binds the membrane with submicromolar affinities. IMPORTANCE Like other retroviral species, the Gag polyprotein of HIV-1 contains three major domains: the N-terminal, myristoylated MA domain that targets the protein to the plasma membrane of the host; a central capsid-forming domain; and the C-terminal, genome-binding nucleocapsid domain. These domains act in concert to condense Gag into a membrane

  19. HIV-1 transmission linkage in an HIV-1 prevention clinical trial

    SciTech Connect

    Leitner, Thomas; Campbell, Mary S; Mullins, James I; Hughes, James P; Wong, Kim G; Raugi, Dana N; Scrensen, Stefanie

    2009-01-01

    HIV-1 sequencing has been used extensively in epidemiologic and forensic studies to investigate patterns of HIV-1 transmission. However, the criteria for establishing genetic linkage between HIV-1 strains in HIV-1 prevention trials have not been formalized. The Partners in Prevention HSV/HIV Transmission Study (ClinicaITrials.gov NCT00194519) enrolled 3408 HIV-1 serodiscordant heterosexual African couples to determine the efficacy of genital herpes suppression with acyclovir in reducing HIV-1 transmission. The trial analysis required laboratory confirmation of HIV-1 linkage between enrolled partners in couples in which seroconversion occurred. Here we describe the process and results from HIV-1 sequencing studies used to perform transmission linkage determination in this clinical trial. Consensus Sanger sequencing of env (C2-V3-C3) and gag (p17-p24) genes was performed on plasma HIV-1 RNA from both partners within 3 months of seroconversion; env single molecule or pyrosequencing was also performed in some cases. For linkage, we required monophyletic clustering between HIV-1 sequences in the transmitting and seroconverting partners, and developed a Bayesian algorithm using genetic distances to evaluate the posterior probability of linkage of participants sequences. Adjudicators classified transmissions as linked, unlinked, or indeterminate. Among 151 seroconversion events, we found 108 (71.5%) linked, 40 (26.5%) unlinked, and 3 (2.0%) to have indeterminate transmissions. Nine (8.3%) were linked by consensus gag sequencing only and 8 (7.4%) required deep sequencing of env. In this first use of HIV-1 sequencing to establish endpoints in a large clinical trial, more than one-fourth of transmissions were unlinked to the enrolled partner, illustrating the relevance of these methods in the design of future HIV-1 prevention trials in serodiscordant couples. A hierarchy of sequencing techniques, analysis methods, and expert adjudication contributed to the linkage

  20. Hyperthermia Stimulates HIV-1 Replication

    PubMed Central

    Roesch, Ferdinand; Meziane, Oussama; Kula, Anna; Nisole, Sébastien; Porrot, Françoise; Anderson, Ian; Mammano, Fabrizio; Fassati, Ariberto; Marcello, Alessandro; Benkirane, Monsef; Schwartz, Olivier

    2012-01-01

    HIV-infected individuals may experience fever episodes. Fever is an elevation of the body temperature accompanied by inflammation. It is usually beneficial for the host through enhancement of immunological defenses. In cultures, transient non-physiological heat shock (42–45°C) and Heat Shock Proteins (HSPs) modulate HIV-1 replication, through poorly defined mechanisms. The effect of physiological hyperthermia (38–40°C) on HIV-1 infection has not been extensively investigated. Here, we show that culturing primary CD4+ T lymphocytes and cell lines at a fever-like temperature (39.5°C) increased the efficiency of HIV-1 replication by 2 to 7 fold. Hyperthermia did not facilitate viral entry nor reverse transcription, but increased Tat transactivation of the LTR viral promoter. Hyperthermia also boosted HIV-1 reactivation in a model of latently-infected cells. By imaging HIV-1 transcription, we further show that Hsp90 co-localized with actively transcribing provirus, and this phenomenon was enhanced at 39.5°C. The Hsp90 inhibitor 17-AAG abrogated the increase of HIV-1 replication in hyperthermic cells. Altogether, our results indicate that fever may directly stimulate HIV-1 replication, in a process involving Hsp90 and facilitation of Tat-mediated LTR activity. PMID:22807676

  1. [A new unique HIV-1 recombinant form detected in Belarus].

    PubMed

    Eremin, V F; Gasich, E L; Sosinovich, S V

    2012-01-01

    Republican Research-and-Practical Center for Epidemiology and Microbiology, Ministry of Health of Belarus, Minsk The paper presents data on the molecular genetic characteristics of a new HIV-1 recombinant form. The study has shown that the virus is referred to as HIV-1 subtype B in terms of the gag gene and HIV-1 subtype A in terms of the pol and env genes. At the same time the new isolate is closer, in terms of the gag gene, to the HIV-1 DQ207943 strain isolated in Georgia, in terms of the pol gene, to the HIV-1 AF413987.1 strain isolated in Ukraine and, in terms of the env gene to the HIV-1 AY500393 strain isolated in Russia. Thus, the described new HIV-1 recombinant form has the following structure: BgagApolAenv. The gag, pol, and env gene sequences from the new unique HIV-1 recombinant form have been registered in the international database EMBL/Genbank/DDBJ under accession numbers FR775442.1, FN995656.1, and FR775443.1.

  2. Transcription elongation regulator 1 (TCERG1) regulates competent RNA polymerase II-mediated elongation of HIV-1 transcription and facilitates efficient viral replication

    PubMed Central

    2013-01-01

    Background Control of RNA polymerase II (RNAPII) release from pausing has been proposed as a checkpoint mechanism to ensure optimal RNAPII activity, especially in large, highly regulated genes. HIV-1 gene expression is highly regulated at the level of elongation, which includes transcriptional pausing that is mediated by both viral and cellular factors. Here, we present evidence for a specific role of the elongation-related factor TCERG1 in regulating the extent of HIV-1 elongation and viral replication in vivo. Results We show that TCERG1 depletion diminishes the basal and viral Tat-activated transcription from the HIV-1 LTR. In support of a role for an elongation mechanism in the transcriptional control of HIV-1, we found that TCERG1 modifies the levels of pre-mRNAs generated at distal regions of HIV-1. Most importantly, TCERG1 directly affects the elongation rate of RNAPII transcription in vivo. Furthermore, our data demonstrate that TCERG1 regulates HIV-1 transcription by increasing the rate of RNAPII elongation through the phosphorylation of serine 2 within the carboxyl-terminal domain (CTD) of RNAPII and suggest a mechanism for the involvement of TCERG1 in relieving pausing. Finally, we show that TCERG1 is required for HIV-1 replication. Conclusions Our study reveals that TCERG1 regulates HIV-1 transcriptional elongation by increasing the elongation rate of RNAPII and phosphorylation of Ser 2 within the CTD. Based on our data, we propose a general mechanism for TCERG1 acting on genes that are regulated at the level of elongation by increasing the rate of RNAPII transcription through the phosphorylation of Ser2. In the case of HIV-1, our evidence provides the basis for further investigation of TCERG1 as a potential therapeutic target for the inhibition of HIV-1 replication PMID:24165037

  3. MAS NMR of HIV-1 protein assemblies

    NASA Astrophysics Data System (ADS)

    Suiter, Christopher L.; Quinn, Caitlin M.; Lu, Manman; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-04-01

    The negative global impact of the AIDS pandemic is well known. In this perspective article, the utility of magic angle spinning (MAS) NMR spectroscopy to answer pressing questions related to the structure and dynamics of HIV-1 protein assemblies is examined. In recent years, MAS NMR has undergone major technological developments enabling studies of large viral assemblies. We discuss some of these evolving methods and technologies and provide a perspective on the current state of MAS NMR as applied to the investigations into structure and dynamics of HIV-1 assemblies of CA capsid protein and of Gag maturation intermediates.

  4. Cytoplasmic Utilization of Human Immunodeficiency Virus Type 1 Genomic RNA Is Not Dependent on a Nuclear Interaction with Gag

    PubMed Central

    Hoffmann, Bianca; Ohs, Inga; Blissenbach, Maik; Brandt, Sabine; Tippler, Bettina; Grunwald, Thomas; Überla, Klaus

    2012-01-01

    In some retroviruses, such as Rous sarcoma virus and prototype foamy virus, Gag proteins are known to shuttle between the nucleus and the cytoplasm and are implicated in nuclear export of the viral genomic unspliced RNA (gRNA) for subsequent encapsidation. A similar function has been proposed for human immunodeficiency virus type 1 (HIV-1) Gag based on the identification of nuclear localization and export signals. However, the ability of HIV-1 Gag to transit through the nucleus has never been confirmed. In addition, the lentiviral Rev protein promotes efficient nuclear gRNA export, and previous reports indicate a cytoplasmic interaction between Gag and gRNA. Therefore, functional effects of HIV-1 Gag on gRNA and its usage were explored. Expression of gag in the absence of Rev was not able to increase cytoplasmic gRNA levels of subgenomic, proviral, or lentiviral vector constructs, and gene expression from genomic reporter plasmids could not be induced by Gag provided in trans. Furthermore, Gag lacking the reported nuclear localization and export signals was still able to mediate an efficient packaging process. Although small amounts of Gag were detectable in the nuclei of transfected cells, a Crm1-dependent nuclear export signal in Gag could not be confirmed. Thus, our study does not provide any evidence for a nuclear function of HIV-1 Gag. The encapsidation process of HIV-1 therefore clearly differs from that of Rous sarcoma virus and prototype foamy virus. PMID:22258250

  5. No-Go'ing Back: Co-opting RVB-2 to Control HIV-1 Gene Expression and Immune Response.

    PubMed

    Le Sage, Valerie; Cinti, Alessandro; Mouland, Andrew J

    2015-10-01

    Production of infectious HIV-1 particles requires viral envelope (Env) glycoprotein incorporation. Although, the precise mechanism remains elusive, interaction between Env and the matrix (MA) domain of Gag plays a central role. Work by Mu and colleagues demonstrates how the Env-MA interaction regulates gag mRNA stability and Gag expression levels. PMID:26342234

  6. M2BP inhibits HIV-1 virion production in a vimentin filaments-dependent manner

    PubMed Central

    Wang, Qin; Zhang, Xiaolin; Han, Yuling; Wang, Xinlu; Gao, Guangxia

    2016-01-01

    M2BP (also called 90K) is an interferon-stimulated gene product that is upregulated in HIV-1 infection. A recent study revealed that M2BP reduces the infectivity of HIV-1 by inhibiting the processing of the viral envelope protein. Here we report that in addition to reducing viral infectivity, M2BP inhibits HIV-1 virion production. We provide evidence showing that M2BP inhibits HIV-1 Gag trafficking to the plasma membrane in a vimentin-dependent manner. When vimentin filaments were collapsed by treating cells with acrylamide or by overexpression of a dominant-negative mutant of vimentin, M2BP inhibition of HIV-1 virion production was significantly relieved. We further show that M2BP interacts with both HIV-1 Gag and vimentin and thereby mediates their interactions. We propose that M2BP traps HIV-1 Gag to vimentin filaments to inhibit the transportation of HIV-1 Gag to the plasma membrane. These findings uncover a novel mechanism by which a host antiviral factor inhibits HIV-1 virion production. PMID:27604950

  7. M2BP inhibits HIV-1 virion production in a vimentin filaments-dependent manner.

    PubMed

    Wang, Qin; Zhang, Xiaolin; Han, Yuling; Wang, Xinlu; Gao, Guangxia

    2016-01-01

    M2BP (also called 90K) is an interferon-stimulated gene product that is upregulated in HIV-1 infection. A recent study revealed that M2BP reduces the infectivity of HIV-1 by inhibiting the processing of the viral envelope protein. Here we report that in addition to reducing viral infectivity, M2BP inhibits HIV-1 virion production. We provide evidence showing that M2BP inhibits HIV-1 Gag trafficking to the plasma membrane in a vimentin-dependent manner. When vimentin filaments were collapsed by treating cells with acrylamide or by overexpression of a dominant-negative mutant of vimentin, M2BP inhibition of HIV-1 virion production was significantly relieved. We further show that M2BP interacts with both HIV-1 Gag and vimentin and thereby mediates their interactions. We propose that M2BP traps HIV-1 Gag to vimentin filaments to inhibit the transportation of HIV-1 Gag to the plasma membrane. These findings uncover a novel mechanism by which a host antiviral factor inhibits HIV-1 virion production. PMID:27604950

  8. A Phase I Double Blind, Placebo-Controlled, Randomized Study of the Safety and Immunogenicity of an Adjuvanted HIV-1 Gag-Pol-Nef Fusion Protein and Adenovirus 35 Gag-RT-Int-Nef Vaccine in Healthy HIV-Uninfected African Adults

    PubMed Central

    Omosa-Manyonyi, Gloria; Mpendo, Juliet; Ruzagira, Eugene; Kilembe, William; Chomba, Elwyn; Roman, François; Bourguignon, Patricia; Koutsoukos, Marguerite; Collard, Alix; Voss, Gerald; Laufer, Dagna; Stevens, Gwynn; Hayes, Peter; Clark, Lorna; Cormier, Emmanuel; Dally, Len; Barin, Burc; Ackland, Jim; Syvertsen, Kristen; Zachariah, Devika; Anas, Kamaal; Sayeed, Eddy; Lombardo, Angela; Gilmour, Jill; Cox, Josephine; Fast, Patricia; Priddy, Frances

    2015-01-01

    Background Sequential prime-boost or co-administration of HIV vaccine candidates based on an adjuvanted clade B p24, RT, Nef, p17 fusion protein (F4/AS01) plus a non-replicating adenovirus 35 expressing clade A Gag, RT, Int and Nef (Ad35-GRIN) may lead to a unique immune profile, inducing both strong T-cell and antibody responses. Methods In a phase 1, double-blind, placebo-controlled trial, 146 healthy adult volunteers were randomized to one of four regimens: heterologous prime-boost with two doses of F4/AS01E or F4/AS01B followed by Ad35-GRIN; Ad35-GRIN followed by two doses of F4/AS01B; or three co-administrations of Ad35-GRIN and F4/AS01B. T cell and antibody responses were measured. Results The vaccines were generally well-tolerated, and did not cause serious adverse events. The response rate, by IFN-γ ELISPOT, was greater when Ad35-GRIN was the priming vaccine and in the co-administration groups. F4/AS01 induced CD4+ T-cells expressing primarily CD40L and IL2 +/- TNF-α, while Ad35-GRIN induced predominantly CD8+ T-cells expressing IFN-γ +/- IL2 or TNF-α. Viral inhibition was induced after Ad35-GRIN vaccination, regardless of the regimen. Strong F4-specific antibody responses were induced. Immune responses persisted at least a year after the last vaccination. The complementary response profiles, characteristic of each vaccine, were both expressed after co-administration. Conclusion Co-administration of an adjuvanted protein and an adenovirus vector showed an acceptable safety and reactogenicity profile and resulted in strong, multifunctional and complementary HIV-specific immune responses. Trial Registration ClinicalTrials.gov NCT01264445 PMID:25961283

  9. Incomplete APOBEC3G/F Neutralization by HIV-1 Vif Mutants Facilitates the Genetic Evolution from CCR5 to CXCR4 Usage

    PubMed Central

    Alteri, Claudia; Surdo, Matteo; Bellocchi, Maria Concetta; Saccomandi, Patrizia; Continenza, Fabio; Armenia, Daniele; Parrotta, Lucia; Carioti, Luca; Costa, Giosuè; Fourati, Slim; Di Santo, Fabiola; Scutari, Rossana; Barbaliscia, Silvia; Fedele, Valentina; Carta, Stefania; Balestra, Emanuela; Alcaro, Stefano; Marcelin, Anne Genevieve; Calvez, Vincent; Ceccherini-Silberstein, Francesca; Artese, Anna

    2015-01-01

    Incomplete APOBEC3G/F neutralization by a defective HIV-1Vif protein can promote genetic diversification by inducing G-to-A mutations in the HIV-1 genome. The HIV-1 Env V3 loop, critical for coreceptor usage, contains several putative APOBEC3G/F target sites. Here, we determined if APOBEC3G/F, in the presence of Vif-defective HIV-1 virus, can induce G-to-A mutations at V3 positions critical to modulation of CXCR4 usage. Peripheral blood mononuclear cells (PBMC) and monocyte-derived macrophages (MDM) from 2 HIV-1-negative donors were infected with CCR5-using 81.A-VifWT virus (i.e., with wild-type [WT] Vif protein), 81.A-VifE45G, or 81.A-VifK22E (known to incompletely/partially neutralize APOBEC3G/F). The rate of G-toA mutations was zero or extremely low in 81.A-VifWT- and 81.A-VifE45G-infected PBMC from both donors. Conversely, G-to-A enrichment was detected in 81.A-VifK22E-infected PBMC (prevalence ranging from 2.18% at 7 days postinfection [dpi] to 3.07% at 21 dpi in donor 1 and from 10.49% at 7 dpi to 8.69% at 21 dpi in donor 2). A similar scenario was found in MDM. G-to-A mutations occurred at 8 V3 positions, resulting in nonsynonymous amino acid substitutions. Of them, G24E and E25K strongly correlated with phenotypically/genotypically defined CXCR4-using viruses (P = 0.04 and 5.5e−7, respectively) and increased the CXCR4 N-terminal binding affinity for V3 (WT, −40.1 kcal/mol; G24E, −510 kcal/mol; E25K, −522 kcal/mol). The analysis of paired V3 and Vif DNA sequences from 84 HIV-1-infected patients showed that the presence of a Vif-defective virus correlated with CXCR4 usage in proviral DNA (P = 0.04). In conclusion, incomplete APOBEC3G/F neutralization by a single Vif amino acid substitution seeds a CXCR4-using proviral reservoir. This can have implications for the success of CCR5 antagonist-based therapy, as well as for the risk of disease progression. PMID:26055363

  10. Incomplete APOBEC3G/F Neutralization by HIV-1 Vif Mutants Facilitates the Genetic Evolution from CCR5 to CXCR4 Usage.

    PubMed

    Alteri, Claudia; Surdo, Matteo; Bellocchi, Maria Concetta; Saccomandi, Patrizia; Continenza, Fabio; Armenia, Daniele; Parrotta, Lucia; Carioti, Luca; Costa, Giosuè; Fourati, Slim; Di Santo, Fabiola; Scutari, Rossana; Barbaliscia, Silvia; Fedele, Valentina; Carta, Stefania; Balestra, Emanuela; Alcaro, Stefano; Marcelin, Anne Genevieve; Calvez, Vincent; Ceccherini-Silberstein, Francesca; Artese, Anna; Perno, Carlo Federico; Svicher, Valentina

    2015-08-01

    Incomplete APOBEC3G/F neutralization by a defective HIV-1Vif protein can promote genetic diversification by inducing G-to-A mutations in the HIV-1 genome. The HIV-1 Env V3 loop, critical for coreceptor usage, contains several putative APOBEC3G/F target sites. Here, we determined if APOBEC3G/F, in the presence of Vif-defective HIV-1 virus, can induce G-to-A mutations at V3 positions critical to modulation of CXCR4 usage. Peripheral blood mononuclear cells (PBMC) and monocyte-derived macrophages (MDM) from 2 HIV-1-negative donors were infected with CCR5-using 81.A-VifWT virus (i.e., with wild-type [WT] Vif protein), 81.A-VifE45G, or 81.A-VifK22E (known to incompletely/partially neutralize APOBEC3G/F). The rate of G-toA mutations was zero or extremely low in 81.A-VifWT- and 81.A-VifE45G-infected PBMC from both donors. Conversely, G-to-A enrichment was detected in 81.A-VifK22E-infected PBMC (prevalence ranging from 2.18% at 7 days postinfection [dpi] to 3.07% at 21 dpi in donor 1 and from 10.49% at 7 dpi to 8.69% at 21 dpi in donor 2). A similar scenario was found in MDM. G-to-A mutations occurred at 8 V3 positions, resulting in nonsynonymous amino acid substitutions. Of them, G24E and E25K strongly correlated with phenotypically/genotypically defined CXCR4-using viruses (P = 0.04 and 5.5e-7, respectively) and increased the CXCR4 N-terminal binding affinity for V3 (WT, -40.1 kcal/mol; G24E, -510 kcal/mol; E25K, -522 kcal/mol). The analysis of paired V3 and Vif DNA sequences from 84 HIV-1-infected patients showed that the presence of a Vif-defective virus correlated with CXCR4 usage in proviral DNA (P = 0.04). In conclusion, incomplete APOBEC3G/F neutralization by a single Vif amino acid substitution seeds a CXCR4-using proviral reservoir. This can have implications for the success of CCR5 antagonist-based therapy, as well as for the risk of disease progression.

  11. HIV-1 Vpr Abrogates the Effect of TSG101 Overexpression to Support Virus Release.

    PubMed

    Chutiwitoonchai, Nopporn; Siarot, Lowela; Takeda, Eri; Shioda, Tatsuo; Ueda, Motoki; Aida, Yoko

    2016-01-01

    HIV-1 budding requires interaction between Gag and cellular TSG101 to initiate viral particle assembly and release via the endosomal sorting complexes required for transport (ESCRT) pathway. However, some reports show that overexpression of TSG101 inhibits virus release by disruption of Gag targeting process. Since a HIV-1 accessory protein, Vpr binds to Gag p6 domain at the position close to the binding site for TSG101, whether Vpr implicates TSG101 overexpression effect has not been investigated. Here, we found that Vpr abrogates TSG101 overexpression effect to rescue viral production. Co-transfection of TSG101 and Gag with Vpr prevented TSG101-induced Gag accumulation in endosomes and lysosomes. In addition, Vpr rescued virus-like particle (VLP) production in a similar manner as a lysosomal inhibitor, Bafilomycin A1 indicating that Vpr inhibits TSG101-induced Gag downregulation via lysosomal pathway. Vpr and Gag interaction is required to counteract TSG101 overexpression effect since Vpr A30F mutant which is unable to interact with Gag and incorporate into virions, reduced ability to prevent Gag accumulation and to rescue VLP production. In addition, GST pull-down assays and Biacore analysis revealed that Vpr competed with TSG101 for Gag binding. These results indicate that Vpr overcomes the effects of TSG101 overexpression to support viral production by competing with TSG101 to bind Gag. PMID:27648839

  12. HIV-1 Vpr Abrogates the Effect of TSG101 Overexpression to Support Virus Release

    PubMed Central

    Chutiwitoonchai, Nopporn; Siarot, Lowela; Takeda, Eri; Shioda, Tatsuo; Ueda, Motoki; Aida, Yoko

    2016-01-01

    HIV-1 budding requires interaction between Gag and cellular TSG101 to initiate viral particle assembly and release via the endosomal sorting complexes required for transport (ESCRT) pathway. However, some reports show that overexpression of TSG101 inhibits virus release by disruption of Gag targeting process. Since a HIV-1 accessory protein, Vpr binds to Gag p6 domain at the position close to the binding site for TSG101, whether Vpr implicates TSG101 overexpression effect has not been investigated. Here, we found that Vpr abrogates TSG101 overexpression effect to rescue viral production. Co-transfection of TSG101 and Gag with Vpr prevented TSG101-induced Gag accumulation in endosomes and lysosomes. In addition, Vpr rescued virus-like particle (VLP) production in a similar manner as a lysosomal inhibitor, Bafilomycin A1 indicating that Vpr inhibits TSG101-induced Gag downregulation via lysosomal pathway. Vpr and Gag interaction is required to counteract TSG101 overexpression effect since Vpr A30F mutant which is unable to interact with Gag and incorporate into virions, reduced ability to prevent Gag accumulation and to rescue VLP production. In addition, GST pull-down assays and Biacore analysis revealed that Vpr competed with TSG101 for Gag binding. These results indicate that Vpr overcomes the effects of TSG101 overexpression to support viral production by competing with TSG101 to bind Gag. PMID:27648839

  13. An Alix fragment potently inhibits HIV-1 budding: characterization of binding to retroviral YPXL late domains.

    PubMed

    Munshi, Utpal M; Kim, Jaewon; Nagashima, Kunio; Hurley, James H; Freed, Eric O

    2007-02-01

    The retroviral structural protein, Gag, contains small peptide motifs known as late domains that promote efficient virus release from the infected cell. In addition to the well characterized PTAP late domain, the p6 region of HIV-1 Gag contains a binding site for the host cell protein Alix. To better understand the functional role of the Gag/Alix interaction, we overexpressed an Alix fragment composed of residues 364-716 (Alix 364-716) and examined the effect on release of wild type (WT) and Alix binding site mutant HIV-1. We observed that Alix 364-716 expression significantly inhibited WT virus release and Gag processing and that mutation of the Alix binding site largely relieved this inhibition. Furthermore, Alix 364-716 expression induced a severe defect on WT but not mutant particle morphology. Intriguingly, the impact of Alix 364-716 expression on HIV-1 release and Gag processing was markedly different from that induced by mutation of the Alix binding site in p6. The association of Alix 364-716 with HIV-1 and equine infectious anemia virus late domains was quantitatively evaluated by isothermal titration calorimetry and surface plasmon resonance techniques, and the effects of mutations in these viral sequences on Alix 364-716 binding was determined. This study identifies a novel Alix-derived dominant negative inhibitor of HIV-1 release and Gag processing and provides quantitative information on the interaction between Alix and viral late domains.

  14. Hydrodynamic and Membrane Binding Properties of Purified Rous Sarcoma Virus Gag Protein

    PubMed Central

    Nanda, Hirsh; Fang, Xianyang; Wen, Yi; Barros, Marilia; Wang, Yun-Xing; Rein, Alan; Vogt, Volker M.

    2015-01-01

    ABSTRACT Previously, no retroviral Gag protein has been highly purified in milligram quantities and in a biologically relevant and active form. We have purified Rous sarcoma virus (RSV) Gag protein and in parallel several truncation mutants of Gag and have studied their biophysical properties and membrane interactions in vitro. RSV Gag is unusual in that it is not naturally myristoylated. From its ability to assemble into virus-like particles in vitro, we infer that RSV Gag is biologically active. By size exclusion chromatography and small-angle X-ray scattering, Gag in solution appears extended and flexible, in contrast to previous reports on unmyristoylated HIV-1 Gag, which is compact. However, by neutron reflectometry measurements of RSV Gag bound to a supported bilayer, the protein appears to adopt a more compact, folded-over conformation. At physiological ionic strength, purified Gag binds strongly to liposomes containing acidic lipids. This interaction is stimulated by physiological levels of phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] and by cholesterol. However, unlike HIV-1 Gag, RSV Gag shows no sensitivity to acyl chain saturation. In contrast with full-length RSV Gag, the purified MA domain of Gag binds to liposomes only weakly. Similarly, both an N-terminally truncated version of Gag that is missing the MA domain and a C-terminally truncated version that is missing the NC domain bind only weakly. These results imply that NC contributes to membrane interaction in vitro, either by directly contacting acidic lipids or by promoting Gag multimerization. IMPORTANCE Retroviruses like HIV assemble at and bud from the plasma membrane of cells. Assembly requires the interaction between thousands of Gag molecules to form a lattice. Previous work indicated that lattice formation at the plasma membrane is influenced by the conformation of monomeric HIV. We have extended this work to the more tractable RSV Gag. Our results show that RSV Gag is highly flexible

  15. Identification of potent maturation inhibitors against HIV-1 clade C

    PubMed Central

    Timilsina, Uddhav; Ghimire, Dibya; Timalsina, Bivek; Nitz, Theodore J.; Wild, Carl T.; Freed, Eric O.; Gaur, Ritu

    2016-01-01

    Antiretroviral therapy has led to a profound improvement in the clinical care of HIV-infected patients. However, drug tolerability and the evolution of drug resistance have limited treatment options for many patients. Maturation inhibitors are a new class of antiretroviral agents for treatment of HIV-1. They act by interfering with the maturation of the virus by blocking the last step in Gag processing: the cleavage of the capsid-spacer peptide 1 (CA-SP1) intermediate to mature CA by the viral protease (PR). The first-in-class maturation inhibitor bevirimat (BVM) failed against a subset of HIV-1 isolates in clinical trials due to polymorphisms present in the CA-SP1 region of the Gag protein. Sequence analysis indicated that these polymorphisms are more common in non-clade B strains of HIV-1 such as HIV-1 clade C. Indeed, BVM was found to be ineffective against HIV-1 clade C molecular clones tested in this study. A number of BVM analogs were synthesized by chemical modifications at the C-28 position to improve its activity. The new BVM analogs displayed potent activity against HIV-1 clade B and C and also reduced infectivity of the virus. This study identifies novel and broadly active BVM analogs that may ultimately demonstrate efficacy in the clinic. PMID:27264714

  16. Psychoneuroimmunology and HIV-1.

    ERIC Educational Resources Information Center

    Antoni, Michael H.; And Others

    1990-01-01

    Presents evidence describing benefits of behavioral interventions such as aerobic exercise training on both psychological and immunological functioning among high risk human immunodeficiency virus-Type 1 (HIV-1) seronegative and very early stage seropositive homosexual men. HIV-1 infection is cast as chronic disease for which early…

  17. Quantitative HIV-1 proviral DNA detection: a multicentre analysis.

    PubMed

    De Rossi, Anita; Zanchetta, Marisa; Vitone, Francesca; Antonelli, Guido; Bagnarelli, Patrizia; Buonaguro, Luigi; Capobianchi, Maria Rosaria; Clementi, Massimo; Abbate, Isabella; Canducci, Filippo; Monachetti, Alessia; Riva, Elisabetta; Rozera, Gabriella; Scagnolari, Carolina; Tagliamonte, Maria; Re, Maria Carla

    2010-10-01

    Despite the widespread use of molecular biology techniques, standardized methods for the measurement of HIV-1 proviral DNA are currently lacking and several discordant results are still present in different studies. To assess the clinical meaning of the proviral DNA load, a study group comprising seven different laboratories was set up to standardize a HIV-1 proviral DNA quantification method able to assess the DNA proviral load of the most relevant circulating HIV-1 subtypes. Reference samples (24 cellular samples infected with HIV-1 clade B, and 40 samples of peripheral blood mononuclear cells containing different concentrations of plasmids expressing different HIV-1 clades) were distributed and tested blindly. All laboratories employed hTERT gene as housekeeping gene and primers within the gag gene to quantify different HIV-1 clades. Inter-laboratory results did not differ statistically but showed only minor variations concerning HIV-1 DNA amounts and different HIV clades, with a good agreement among the laboratories participating in the study. Since test standardization represents a key step for future application in clinical practice, further studies of the patients' samples are in progress to establish the real meaning and utility of the proviral DNA load for clinical management of HIV-1 infected patients. PMID:21213587

  18. On the Selective Packaging of Genomic RNA by HIV-1.

    PubMed

    Comas-Garcia, Mauricio; Davis, Sean R; Rein, Alan

    2016-01-01

    Like other retroviruses, human immunodeficiency virus type 1 (HIV-1) selectively packages genomic RNA (gRNA) during virus assembly. However, in the absence of the gRNA, cellular messenger RNAs (mRNAs) are packaged. While the gRNA is selected because of its cis-acting packaging signal, the mechanism of this selection is not understood. The affinity of Gag (the viral structural protein) for cellular RNAs at physiological ionic strength is not much higher than that for the gRNA. However, binding to the gRNA is more salt-resistant, implying that it has a higher non-electrostatic component. We have previously studied the spacer 1 (SP1) region of Gag and showed that it can undergo a concentration-dependent conformational transition. We proposed that this transition represents the first step in assembly, i.e., the conversion of Gag to an assembly-ready state. To explain selective packaging of gRNA, we suggest here that binding of Gag to gRNA, with its high non-electrostatic component, triggers this conversion more readily than binding to other RNAs; thus we predict that a Gag-gRNA complex will nucleate particle assembly more efficiently than other Gag-RNA complexes. New data shows that among cellular mRNAs, those with long 3'-untranslated regions (UTR) are selectively packaged. It seems plausible that the 3'-UTR, a stretch of RNA not occupied by ribosomes, offers a favorable binding site for Gag.

  19. Viral Evolution and Cytotoxic T Cell Restricted Selection in Acute Infant HIV-1 Infection.

    PubMed

    Garcia-Knight, Miguel A; Slyker, Jennifer; Payne, Barbara Lohman; Pond, Sergei L Kosakovsky; de Silva, Thushan I; Chohan, Bhavna; Khasimwa, Brian; Mbori-Ngacha, Dorothy; John-Stewart, Grace; Rowland-Jones, Sarah L; Esbjörnsson, Joakim

    2016-01-01

    Antiretroviral therapy-naive HIV-1 infected infants experience poor viral containment and rapid disease progression compared to adults. Viral factors (e.g. transmitted cytotoxic T- lymphocyte (CTL) escape mutations) or infant factors (e.g. reduced CTL functional capacity) may explain this observation. We assessed CTL functionality by analysing selection in CTL-targeted HIV-1 epitopes following perinatal infection. HIV-1 gag, pol and nef sequences were generated from a historical repository of longitudinal specimens from 19 vertically infected infants. Evolutionary rate and selection were estimated for each gene and in CTL-restricted and non-restricted epitopes. Evolutionary rate was higher in nef and gag vs. pol, and lower in infants with non-severe immunosuppression vs. severe immunosuppression across gag and nef. Selection pressure was stronger in infants with non-severe immunosuppression vs. severe immunosuppression across gag. The analysis also showed that infants with non-severe immunosuppression had stronger selection in CTL-restricted vs. non-restricted epitopes in gag and nef. Evidence of stronger CTL selection was absent in infants with severe immunosuppression. These data indicate that infant CTLs can exert selection pressure on gag and nef epitopes in early infection and that stronger selection across CTL epitopes is associated with favourable clinical outcomes. These results have implications for the development of paediatric HIV-1 vaccines. PMID:27403940

  20. Viral Evolution and Cytotoxic T Cell Restricted Selection in Acute Infant HIV-1 Infection

    PubMed Central

    Garcia-Knight, Miguel A.; Slyker, Jennifer; Payne, Barbara Lohman; Pond, Sergei L. Kosakovsky; de Silva, Thushan I.; Chohan, Bhavna; Khasimwa, Brian; Mbori-Ngacha, Dorothy; John-Stewart, Grace; Rowland-Jones, Sarah L.; Esbjörnsson, Joakim

    2016-01-01

    Antiretroviral therapy-naive HIV-1 infected infants experience poor viral containment and rapid disease progression compared to adults. Viral factors (e.g. transmitted cytotoxic T- lymphocyte (CTL) escape mutations) or infant factors (e.g. reduced CTL functional capacity) may explain this observation. We assessed CTL functionality by analysing selection in CTL-targeted HIV-1 epitopes following perinatal infection. HIV-1 gag, pol and nef sequences were generated from a historical repository of longitudinal specimens from 19 vertically infected infants. Evolutionary rate and selection were estimated for each gene and in CTL-restricted and non-restricted epitopes. Evolutionary rate was higher in nef and gag vs. pol, and lower in infants with non-severe immunosuppression vs. severe immunosuppression across gag and nef. Selection pressure was stronger in infants with non-severe immunosuppression vs. severe immunosuppression across gag. The analysis also showed that infants with non-severe immunosuppression had stronger selection in CTL-restricted vs. non-restricted epitopes in gag and nef. Evidence of stronger CTL selection was absent in infants with severe immunosuppression. These data indicate that infant CTLs can exert selection pressure on gag and nef epitopes in early infection and that stronger selection across CTL epitopes is associated with favourable clinical outcomes. These results have implications for the development of paediatric HIV-1 vaccines. PMID:27403940

  1. HIV-1 sub-type C chimaeric VLPs boost cellular immune responses in mice

    PubMed Central

    2010-01-01

    Several approaches have been explored to eradicate HIV; however, a multigene vaccine appears to be the best option, given their proven potential to elicit broad, effective responses in animal models. The Pr55Gag protein is an excellent vaccine candidate in its own right, given that it can assemble into large, enveloped, virus-like particles (VLPs) which are highly immunogenic, and can moreover be used as a scaffold for the presentation of other large non-structural HIV antigens. In this study, we evaluated the potential of two novel chimaeric HIV-1 Pr55Gag-based VLP constructs - C-terminal fusions with reverse transcriptase and a Tat::Nef fusion protein, designated GagRT and GagTN respectively - to enhance a cellular response in mice when used as boost components in two types of heterologous prime-boost vaccine strategies. A vaccine regimen consisting of a DNA prime and chimaeric HIV-1 VLP boosts in mice induced strong, broad cellular immune responses at an optimum dose of 100 ng VLPs. The enhanced cellular responses induced by the DNA prime-VLP boost were two- to three-fold greater than two DNA vaccinations. Moreover, a mixture of GagRT and GagTN VLPs also boosted antigen-specific CD8+ and CD4+ T-cell responses, while VLP vaccinations only induced predominantly robust Gag CD4+ T-cell responses. The results demonstrate the promising potential of these chimaeric VLPs as vaccine candidates against HIV-1. PMID:21087527

  2. The triple threat of HIV-1 protease inhibitors.

    PubMed

    Potempa, Marc; Lee, Sook-Kyung; Wolfenden, Richard; Swanstrom, Ronald

    2015-01-01

    Newly released human immunodeficiency virus type 1 (HIV-1) particles obligatorily undergo a maturation process to become infectious. The HIV-1 protease (PR) initiates this step, catalyzing the cleavage of the Gag and Gag-Pro-Pol structural polyproteins. Proper organization of the mature virus core requires that cleavage of these polyprotein substrates proceeds in a highly regulated, specific series of events. The vital role the HIV-1 PR plays in the viral life cycle has made it an extremely attractive target for inhibition and has accordingly fostered the development of a number of highly potent substrate-analog inhibitors. Though the PR inhibitors (PIs) inhibit only the HIV-1 PR, their effects manifest at multiple different stages in the life cycle due to the critical importance of the PR in preparing the virus for these subsequent events. Effectively, PIs masquerade as entry inhibitors, reverse transcription inhibitors, and potentially even inhibitors of post-reverse transcription steps. In this chapter, we review the triple threat of PIs: the intermolecular cooperativity in the form of a cooperative dose-response for inhibition in which the apparent potency increases with increasing inhibition; the pleiotropic effects of HIV-1 PR inhibition on entry, reverse transcription, and post-reverse transcription steps; and their potency as transition state analogs that have the potential for further improvement that could lead to an inability of the virus to evolve resistance in the context of single drug therapy. PMID:25778681

  3. CD4+ T Cell Targeting of Human Immunodeficiency Virus Type 1 (HIV-1) Peptide Sequences Present In Vivo during Chronic, Progressive HIV-1 Disease

    PubMed Central

    Boritz, Eli; Rapaport, Eric L.; Campbell, Thomas B.; Koeppe, John R.; Wilson, Cara C.

    2009-01-01

    We previously detected HIV-1 Gag-specific CD4+ T cells recognizing reference strain viral epitopes in subjects with progressive, chronic infection. To test whether these CD4+ T cells persist in vivo by failing to recognize autologous HIV-1 epitopes, we compared autologous plasma HIV-1 p24 nucleotide sequences with targeted HXB.2 strain Gag p24 CD4+ T cell epitopes in nine chronically-infected, untreated subjects. In five responding subjects, 10 of 26 HXB.2 strain p24 peptides targeted by CD4+ T cells exactly matched autologous plasma viral sequences. Four subjects with plasma viral loads >100,000 copies/mL had no measurable p24-specific CD4+ T cell responses despite carrying HIV-1 strains that matched HXB.2 sequences at predicted epitopes. These results show that HIV-1-specific CD4+ T cells can persist in chronic HIV-1 infection despite recognition of epitopes present in vivo. However, with high level in vivo HIV-1 replication, CD4+ T cells targeting autologous HIV-1 may be non-responsive or absent. PMID:17169395

  4. Bioorthogonal mimetics of palmitoyl-CoA and myristoyl-CoA and their subsequent isolation by click chemistry and characterization by mass spectrometry reveal novel acylated host-proteins modified by HIV-1 infection.

    PubMed

    Colquhoun, David R; Lyashkov, Alexey E; Ubaida Mohien, Ceereena; Aquino, Veronica N; Bullock, Brandon T; Dinglasan, Rhoel R; Agnew, Brian J; Graham, David R M

    2015-06-01

    Protein acylation plays a critical role in protein localization and function. Acylation is essential for human immunodeficiency virus 1 (HIV-1) assembly and budding of HIV-1 from the plasma membrane in lipid raft microdomains and is mediated by myristoylation of the Gag polyprotein and the copackaging of the envelope protein is facilitated by colocalization mediated by palmitoylation. Since the viral accessory protein NEF has been shown to alter the substrate specificity of myristoyl transferases, and alter cargo trafficking lipid rafts, we hypothesized that HIV-1 infection may alter protein acylation globally. To test this hypothesis, we labeled HIV-1 infected cells with biomimetics of acyl azides, which are incorporated in a manner analogous to natural acyl-Co-A. A terminal azide group allowed us to use a copper catalyzed click chemistry to conjugate the incorporated modifications to a number of substrates to carry out SDS-PAGE, fluorescence microscopy, and enrichment for LC-MS/MS. Using LC-MS/MS, we identified 103 and 174 proteins from the myristic and palmitic azide enrichments, with 27 and 45 proteins respectively that differentiated HIV-1 infected from uninfected cells. This approach has provided us with important insights into HIV-1 biology and is widely applicable to many virological systems.

  5. HIV-1 production is specifically associated with human NMT1 long form in human NMT isozymes.

    PubMed

    Takamune, Nobutoki; Gota, Kayoko; Misumi, Shogo; Tanaka, Kenzo; Okinaka, Shigetaka; Shoji, Shozo

    2008-02-01

    The N-myristoylation of the N-terminal of human immunodeficiency virus type-1 (HIV-1) Pr55(gag) by human N-myristoyltransferase (hNMT) is a prerequisite modification for HIV-1 production. hNMT consists of multiple isozymes encoded by hNMT1 and hNMT2. The hNMT1 isozyme consists of long, medium, and short forms. Here, we investigated which isozyme is crucial for HIV-1 production. Human embryonic kidney (HEK) 293 cells transfected with infectious HIV-1 vectors were used as models of HIV-1-infected cells in this study. The significant reduction in HIV-1 production and the failure of the specific localization of Pr55(gag) in a detergent-resistant membrane fraction were dependent on the knockdown of the different forms of the hNMT1 isozyme but not of the hNMT2 isozyme. Additionally, the coexpression of an inactive mutant hNMT1 isozyme, namely the hNMT1 long form (hNMT1(L)), but not that of other hNMT mutants resulted in a significant reduction in HIV-1 production. These results strongly suggest that HIV-1 production is specifically associated with hNMT1, particularly hNMT1(L), but not with hNMT2 in vivo, contributing to the understanding of a step in HIV-1 replication.

  6. Maturation-Induced Cloaking of Neutralization Epitopes on HIV-1 Particles

    PubMed Central

    Joyner, Amanda S.; Willis, Jordan R.; Crowe, James E.; Aiken, Christopher

    2011-01-01

    To become infectious, HIV-1 particles undergo a maturation process involving proteolytic cleavage of the Gag and Gag-Pol polyproteins. Immature particles contain a highly stable spherical Gag lattice and are impaired for fusion with target cells. The fusion impairment is relieved by truncation of the gp41 cytoplasmic tail (CT), indicating that an interaction between the immature viral core and gp41 within the particle represses HIV-1 fusion by an unknown mechanism. We hypothesized that the conformation of Env on the viral surface is regulated allosterically by interactions with the HIV-1 core during particle maturation. To test this, we quantified the binding of a panel of monoclonal antibodies to mature and immature HIV-1 particles by immunofluorescence imaging. Surprisingly, immature particles exhibited markedly enhanced binding of several gp41-specific antibodies, including two that recognize the membrane proximal external region (MPER) and neutralize diverse HIV-1 strains. Several of the differences in epitope exposure on mature and immature particles were abolished by truncation of the gp41 CT, thus linking the immature HIV-1 fusion defect with altered Env conformation. Our results suggest that perturbation of fusion-dependent Env conformational changes contributes to the impaired fusion of immature particles. Masking of neutralization-sensitive epitopes during particle maturation may contribute to HIV-1 immune evasion and has practical implications for vaccine strategies targeting the gp41 MPER. PMID:21931551

  7. HIV-1 Capsid: The Multifaceted Key Player in HIV-1 infection

    PubMed Central

    Campbell, Edward M.; Hope, Thomas J.

    2016-01-01

    In a mature, infectious HIV-1 virion, the viral genome is housed within a conical capsid core comprised of the viral capsid (CA) protein. The CA protein, and the structure into which it assembles, facilitate virtually every step of infection through a series of interactions with multiple host cell factors. This review describes our understanding of the interactions between the viral capsid core and several cellular factors that enable efficient HIV-1 genome replication, timely core disassembly, nuclear import and the integration of the viral genome into the genome of the target cell. We then discuss how elucidating these interactions can reveal new targets for therapeutic interactions against HIV-1. PMID:26179359

  8. Combination genetic therapy to inhibit HIV-1.

    PubMed

    Strayer, David S; Branco, Francisco; Landré, Julien; BouHamdan, Mohamad; Shaheen, Farida; Pomerantz, Roger J

    2002-01-01

    Compared with single agents, combination antilentiviral pharmacotherapy targets multiple HIV-1 functions simultaneously, maximizing efficacy and decreasing chances of escape mutations. Combination genetic therapy could theoretically enhance efficacy similarly, but delivery of even single genes to high percentages of hematopoietic cells or their derivatives has proven problematic. Because of their high efficiency of gene delivery, we tested recombinant SV40-derived vectors (rSV40s) for this purpose. We made six rSV40s, each carrying a different transgene that targeted a different lentiviral function. We tested the ability of these constructs, individually and in double and triple combinations, to protect SupT1 human T lymphoma cells from HIV-1 challenge. Single chain antibodies (SFv) against CXCR4 and against HIV-1 reverse transcriptase (RT) and integrase (IN) were used, as were polymeric TAR decoys (PolyTAR) and a dominant-negative mutant of HIV-1 Rev (RevM10). Immunostaining showed that virtually all doubly treated cells expressed both transgenes. All transgenes individually protected from HIV-1 but, except for anti-CXCR4 SFv, their effectiveness diminished as challenge doses increased from 40 through 2500 tissue culture infectious dose(50) (TCID(50))/10(6) cells. However, all combinations of transgenes protected target cells better than individual transgenes, even from the highest challenge doses. Thus, combination gene therapies may inhibit HIV-1 better than single agents, and rSV40s may facilitate delivery of multigene therapeutics.

  9. Cyclophilin A regulates HIV-1 infectivity, as demonstrated by gene targeting in human T cells

    PubMed Central

    Braaten, Douglas; Luban, Jeremy

    2001-01-01

    The human immunodeficiency virus type 1 (HIV-1) Gag polyprotein binds most members of the cyclophilin family of peptidyl-prolyl isomerases. Of 15 known human cyclophilins, cyclophilin A (CypA) has been the focus of investigation because it was detected in HIV-1 virions. To determine whether CypA promotes HIV-1 replication, we deleted the gene encoding CypA (PPIA) in human CD4+ T cells by homologous recombination. HIV-1 replication in PPIA–/– cells was decreased and not inhibited further by cyclosporin or gag mutations that disrupt Gag’s interaction with cyclophilins, indicating that no other cyclophilin family members promote HIV-1 replication. The defective replication phenotype was specific for wild-type HIV-1 since HIV-2/SIV isolates, as well as HIV-1 bearing a gag mutation that confers cyclosporin resistance, replicated the same in PPIA+/+ and PPIA–/– cells. Stable re-expression of CypA in PPIA–/– cells restored HIV-1 replication to an extent that correlated with steady-state levels of CypA. Finally, virions from PPIA–/– cells possessed no obvious biochemical abnormalities but were less infectious than virions from wild-type cells. These data formally demonstrate that CypA regulates the infectivity of HIV-1 virions. PMID:11250896

  10. Three-Dimensional Analysis of Budding Sites and Released Virus Suggests a Revised Model for HIV-1 Morphogenesis

    SciTech Connect

    Carlson, L.; Simon, M.; Briggs, J. A. G.; Glass, B.; Riches, J. D.; Johnson, M. C.; Muller, B.; Grunewald, K.; Krausslich, H.-G.

    2008-12-11

    Current models of HIV-1 morphogenesis hold that newly synthesized viral Gag polyproteins traffic to and assemble at the cell membrane into spherical protein shells. The resulting late-budding structure is thought to be released by the cellular ESCRT machinery severing the membrane tether connecting it to the producer cell. Using electron tomography and scanning transmission electron microscopy, we find that virions have a morphology and composition distinct from late-budding sites. Gag is arranged as a continuous but incomplete sphere in the released virion. In contrast, late-budding sites lacking functional ESCRT exhibited a nearly closed Gag sphere. The results lead us to propose that budding is initiated by Gag assembly, but is completed in an ESCRT-dependent manner before the Gag sphere is complete. This suggests that ESCRT functions early in HIV-1 release - akin to its role in vesicle formation - and is not restricted to severing the thin membrane tether.

  11. Chimeric gag-V3 virus-like particles of human immunodeficiency virus induce virus-neutralizing antibodies.

    PubMed Central

    Luo, L; Li, Y; Cannon, P M; Kim, S; Kang, C Y

    1992-01-01

    A 41-kDa unprocessed human immunodeficiency virus 2 (HIV-2) gag precursor protein that has a deletion of a portion of the viral protease assembles as virus-like particles by budding through the cytoplasmic membrane of recombinant baculovirus-infected insect cells. We have constructed six different combinations of chimeric genes by coupling the truncated HIV-2 gag gene to the neutralizing domain (V3) or the neutralizing and the CD4 binding domains (V3+CD4BD) of gp120 env gene sequences from HIV-1 or HIV-2. The env gene sequences were inserted either into the middle of the gag gene or at the 3' terminus of the gag gene. Virus-like particles were formed by chimeric gene products only when the env gene sequences were linked to the 3' terminus of the gag gene. Insertion of env gene sequence in the middle of the gag gene resulted in high-level chimeric gene expression but without the formation of virus-like particles. Three different chimeric genes [gag gene with HIV-1 V3 (1V3), gag gene with HIV-2 V3 (2V3), and gag gene with HIV-2 V3+CD4BD (2V3+CD4BD)] formed virus-like particles that were secreted into the cell culture medium. In contrast, the HIV-1 V3+CD4BD/HIV-2 gag construct did not form virus-like particles. The chimeric gag-env particles had spherical morphology and the size was slightly larger than that of the gag particles, but the chimeric particles were similar to the mature HIV particles. Western blot analysis showed that the gag-env chimeric proteins were recognized by antibodies in HIV-positive human serum and rabbit anti-gp120 serum. Rabbit anti-gag 1V3 and anti-gag 2V3 sera reacted with authentic gp120 of HIV-1 and HIV-2, respectively, and neutralized homologous HIV infectivity. Our results show that precursor gag protein has potential as a carrier for the presentation of foreign epitopes in good immunological context. The gag protein is highly immunogenic and has the ability to carry large foreign inserts; as such, it offers an attractive approach for

  12. Translational regulation of HIV-1 replication by HIV-1 Rev cellular cofactors Sam68, eIF5A, hRIP, and DDX3.

    PubMed

    Liu, Jinfeng; Henao-Mejia, Jorge; Liu, Hao; Zhao, Yingren; He, Johnny J

    2011-06-01

    Nuclear export and translation of HIV-1 RNA are two important posttranscriptional events for HIV-1 gene expression and replication. HIV-1 Rev functions to export unspliced and incompletely spliced HIV-1 RNA from the nucleus to the cytoplasm; it requires interaction with several cellular cofactors such as Sam68, eIF5A, hRIP, and DDX3. Meanwhile, some studies have also implicated Rev and some of its cofactors such as Sam68 in HIV-1 RNA translation. Thus, in this study, we aimed to characterize the potential function of all these four Rev cofactors in HIV-1 RNA translation. Ectopic expression, siRNA knockdown, and trans-complementation assays confirmed that all these cofactors were very important for HIV-1 gene expression and production through Rev and, accordingly, Rev-dependent reporter gene expression. Importantly, these studies revealed for the first time that each of these cofactors also regulated Rev-independent reporter gene expression. To directly determine the roles of these cofactors in HIV-1 RNA translation, we designed and synthesized a full-length capped HIV-1 RNA in vitro, transfected it into cells to bypass the RNA nuclear export step, and determined HIV-1 Gag expression from the cytoplasmic RNA in the cells that had ectopically expressed or siRNA knocked down cofactors. Gag expression was found to closely correlate with the expression levels of all these cofactors. Furthermore, we took advantage of a HIV-1 internal ribosomal entry site (IRES)-based bicistronic reporter gene assay and determined the effects of these cofactors on cap-independent IRES-mediated HIV-1 translation. The results showed that DDX3, eIF5A, and hRIP enhanced HIV-1 IRES-mediated translation, whereas Sam68 did not. Taken together, these results show that HIV-1 Rev cofactors Sam68, eIF5A, hRIP, and DDX3 also function in the translation of HIV-1 RNA and suggest that the regulatory mechanisms of HIV-1 RNA translation are likely different among these cofactors.

  13. SERINC3 and SERINC5 restrict HIV-1 infectivity and are counteracted by Nef

    PubMed Central

    Usami, Yoshiko; Wu, Yuanfei; Göttlinger, Heinrich G.

    2015-01-01

    HIV-1 Nef and the unrelated murine leukemia virus glycoGag strongly enhance the infectivity of HIV-1 virions produced in certain cell types in a clathrin-dependent manner. Here we show that Nef and glycoGag prevent the incorporation of the multipass transmembrane proteins SERINC3 and SERINC5 into HIV-1 virions to an extent that correlates with infectivity enhancement. Silencing of SERINC3 together with SERINC5 precisely phenocopied the effects of Nef and glycoGag on HIV-1 infectivities. The infectivity of nef-deficient virions increased more than 100-fold when produced in double-knockout human CD4+ T cells that lack both SERINC3 and SERINC5, and re-expression experiments confirmed that the absence of SERINC3 and SERINC5 accounted for the infectivity enhancement. Furthermore, SERINC3 and SERINC5 together restricted HIV-1 replication, and this restriction was evaded by Nef. SERINC3 and SERINC5 are highly expressed in primary human HIV-1 target cells, and inhibiting their downregulation by Nef is a potential strategy to combat HIV/AIDS. PMID:26416733

  14. Assessment of mucosal immunity to HIV-1.

    PubMed

    Jespers, Vicky; Harandi, Ali M; Hinkula, Jorma; Medaglini, Donata; Le Grand, Roger; Stahl-Hennig, Christiane; Bogers, Willy; El Habib, Raphaelle; Wegmann, Frank; Fraser, Carol; Cranage, Martin; Shattock, Robin J; Spetz, Anna-Lena

    2010-04-01

    A key gap in the development and evaluation of HIV-1 vaccines is insufficient knowledge with regard to sampling techniques and assessment of mucosal immune responses required for early prevention and inhibition of viral dissemination. In an attempt to start bridging this gap, the EUROPRISE network of scientists working on HIV-1 vaccine and microbicide research organized a workshop with the aim to review the types of mucosal responses/biomarkers currently measured in mucosal immunology and to define how the mucosal responses/biomarkers are measured and/or the assays and sampling methods used. The Workshop addressed two critical questions: first whether, with current knowledge, it would be possible to define a consensus set of mucosal sampling methods to facilitate cross-species comparisons and ensure standardized implementation in clinical trials; second to determine the remaining challenges (technical and logistical) and their possible solutions for assessing mucosal responses to HIV-1 vaccines. PMID:20370549

  15. Insights into the mechanisms of RNA secondary structure destabilization by the HIV-1 nucleocapsid protein.

    PubMed

    Belfetmi, Anissa; Zargarian, Loussiné; Tisné, Carine; Sleiman, Dona; Morellet, Nelly; Lescop, Ewen; Maskri, Ouerdia; René, Brigitte; Mély, Yves; Fossé, Philippe; Mauffret, Olivier

    2016-04-01

    The mature HIV-1 nucleocapsid protein NCp7 (NC) plays a key role in reverse transcription facilitating the two obligatory strand transfers. Several properties contribute to its efficient chaperon activity: preferential binding to single-stranded regions, nucleic acid aggregation, helix destabilization, and rapid dissociation from nucleic acids. However, little is known about the relationships between these different properties, which are complicated by the ability of the protein to recognize particular HIV-1 stem-loops, such as SL1, SL2, and SL3, with high affinity and without destabilizing them. These latter properties are important in the context of genome packaging, during which NC is part of the Gag precursor. We used NMR to investigate destabilization of the full-length TAR (trans activating response element) RNA by NC, which is involved in the first strand transfer step of reverse transcription. NC was used at a low protein:nucleotide (nt) ratio of 1:59 in these experiments. NMR data for the imino protons of TAR identified most of the base pairs destabilized by NC. These base pairs were adjacent to the loops in the upper part of the TAR hairpin rather than randomly distributed. Gel retardation assays showed that conversion from the initial TAR-cTAR complex to the fully annealed form occurred much more slowly at the 1:59 ratio than at the higher ratios classically used. Nevertheless, NC significantly accelerated the formation of the initial complex at a ratio of 1:59.

  16. The hunt for HIV-1 integrase inhibitors.

    PubMed

    Lataillade, Max; Kozal, Michael J

    2006-07-01

    Currently, there are three distinct mechanistic classes of antiretrovirals: inhibitors of the HIV- 1 reverse transcriptase and protease enzymes and inhibitors of HIV entry, including receptor and coreceptor binding and cell fusion. A new drug class that inhibits the HIV-1 integrase enzyme (IN) is in development and may soon be available in the clinic. IN is an attractive drug target because it is essential for a stable and productive HIV-1 infection and there is no mammalian homologue of IN. Inhibitors of integrase enzyme (INI) block the integration of viral double-stranded DNA into the host cell's chromosomal DNA. HIV-1 integration has many potential steps that can be inhibited and several new compounds that target specific integration steps have been identified by drug developers. Recently, two INIs, GS-9137 and MK-0518, demonstrated promising early clinical trial results and have been advanced into later stage trials. In this review, we describe how IN facilitates HIV-1 integration, the needed enzyme cofactors, and the resultant byproducts created during integration. Furthermore, we review the different INIs under development, their mechanism of actions, site of IN inhibition, potency, resistance patterns, and discuss the early clinical trial results.

  17. Interaction between the Human Immunodeficiency Virus Type 1 Gag Matrix Domain and Phosphatidylinositol-(4,5)-Bisphosphate Is Essential for Efficient Gag Membrane Binding▿

    PubMed Central

    Chukkapalli, Vineela; Hogue, Ian B.; Boyko, Vitaly; Hu, Wei-Shau; Ono, Akira

    2008-01-01

    Human immunodeficiency virus type 1 (HIV-1) particle assembly mediated by the viral structural protein Gag occurs predominantly on the plasma membrane (PM). Although it is known that the matrix (MA) domain of Gag plays a major role in PM localization, molecular mechanisms that determine the location of assembly remain to be elucidated. We observed previously that overexpression of polyphosphoinositide 5-phosphatase IV (5ptaseIV) that depletes PM phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] impairs virus particle production and redirects processed Gag to intracellular compartments. In this study, we examined the impact of PI(4,5)P2 depletion on the subcellular localization of the entire Gag population using Gag-fluorescent protein chimeras. Upon 5ptaseIV overexpression, in addition to perinuclear localization, Gag also showed a hazy cytosolic signal, suggesting that PI(4,5)P2 depletion impairs Gag membrane binding. Indeed, Gag was less membrane bound in PI(4,5)P2-depleted cells, as assessed by biochemical analysis. These observations are consistent with the hypothesis that Gag interacts with PI(4,5)P2. To examine a putative Gag interaction with PI(4,5)P2, we developed an in vitro binding assay using full-length myristoylated Gag and liposome-associated PI(4,5)P2. Using this assay, we observed that PI(4,5)P2 significantly enhances liposome binding of wild-type Gag. In contrast, a Gag derivative lacking MA did not require PI(4,5)P2 for efficient liposome binding. To analyze the involvement of MA in PI(4,5)P2 binding further, we examined MA basic amino acid substitution mutants. These mutants, previously shown to localize in perinuclear compartments, bound PI(4,5)P2-containing liposomes weakly. Altogether, these results indicate that HIV-1 Gag binds PI(4,5)P2 on the membrane and that the MA basic domain mediates this interaction. PMID:18094158

  18. HIV-1 MATRIX ORGANIZES AS A HEXAMER OF TRIMERS ON MEMBRANES CONTAINING PHOSPHATIDYLINOSITOL-(4,5)-BISPHOSPHATE

    PubMed Central

    Alfadhli, Ayna; Barklis, Robin Lid; Barklis, Eric

    2009-01-01

    The human immunodeficiency virus type 1 (HIV-1) matrix (MA) protein represents the N-terminal domain of the HIV-1 precursor Gag (PrGag) protein and carries an N-terminal myristate (Myr) group. HIV-1 MA fosters PrGag membrane binding, as well as assembly of envelope (Env) proteins into virus particles, and recent studies have shown that HIV-1 MA preferentially directs virus assembly at plasma membrane sites enriched in cholesterol and phosphatidylinositol-(4,5)-bisphosphate (PI[4,5]P2). To characterize the membrane binding of MA and PrGag proteins, we have examined how Myr-MA proteins, and proteins composed of Myr-MA and its neighbor Gag capsid (CA) protein associate on membranes containing cholesterol and PI[4,5]P2. Our results indicate that Myr-MA assembles as a hexamer of trimers on such membranes, and imply that MA trimers interconnect CA hexamer rings in immature virus particles. Our observations suggest a model for the organization of PrGag proteins, and for MA-Env protein interactions. PMID:19327811

  19. On the Selective Packaging of Genomic RNA by HIV-1.

    PubMed

    Comas-Garcia, Mauricio; Davis, Sean R; Rein, Alan

    2016-01-01

    Like other retroviruses, human immunodeficiency virus type 1 (HIV-1) selectively packages genomic RNA (gRNA) during virus assembly. However, in the absence of the gRNA, cellular messenger RNAs (mRNAs) are packaged. While the gRNA is selected because of its cis-acting packaging signal, the mechanism of this selection is not understood. The affinity of Gag (the viral structural protein) for cellular RNAs at physiological ionic strength is not much higher than that for the gRNA. However, binding to the gRNA is more salt-resistant, implying that it has a higher non-electrostatic component. We have previously studied the spacer 1 (SP1) region of Gag and showed that it can undergo a concentration-dependent conformational transition. We proposed that this transition represents the first step in assembly, i.e., the conversion of Gag to an assembly-ready state. To explain selective packaging of gRNA, we suggest here that binding of Gag to gRNA, with its high non-electrostatic component, triggers this conversion more readily than binding to other RNAs; thus we predict that a Gag-gRNA complex will nucleate particle assembly more efficiently than other Gag-RNA complexes. New data shows that among cellular mRNAs, those with long 3'-untranslated regions (UTR) are selectively packaged. It seems plausible that the 3'-UTR, a stretch of RNA not occupied by ribosomes, offers a favorable binding site for Gag. PMID:27626441

  20. Clustering and Mobility of HIV-1 Env at Viral Assembly Sites Predict Its Propensity To Induce Cell-Cell Fusion

    PubMed Central

    Roy, Nathan H.; Chan, Jany; Lambelé, Marie

    2013-01-01

    HIV-1 Env mediates virus attachment to and fusion with target cell membranes, and yet, while Env is still situated at the plasma membrane of the producer cell and before its incorporation into newly formed particles, Env already interacts with the viral receptor CD4 on target cells, thus enabling the formation of transient cell contacts that facilitate the transmission of viral particles. During this first encounter with the receptor, Env must not induce membrane fusion, as this would prevent the producer cell and the target cell from separating upon virus transmission, but how Env's fusion activity is controlled remains unclear. To gain a better understanding of the Env regulation that precedes viral transmission, we examined the nanoscale organization of Env at the surface of producer cells. Utilizing superresolution microscopy (stochastic optical reconstruction microscopy [STORM]) and fluorescence recovery after photobleaching (FRAP), we quantitatively assessed the clustering and dynamics of Env upon its arrival at the plasma membrane. We found that Gag assembly induced the aggregation of small Env clusters into larger domains and that these domains were completely immobile. Truncation of the cytoplasmic tail (CT) of Env abrogated Gag's ability to induce Env clustering and restored Env mobility at assembly sites, both of which correlated with increased Env-induced fusion of infected and uninfected cells. Hence, while Env trapping by Gag secures Env incorporation into viral particles, Env clustering and its sequestration at assembly sites likely also leads to the repression of its fusion function, and thus, by preventing the formation of syncytia, Gag helps to secure efficient transfer of viral particles to target cells. PMID:23637402

  1. Assessment of the antiviral capacity of primary natural killer cells by optimized in vitro quantification of HIV-1 replication.

    PubMed

    He, Xuan; Simoneau, Camille R; Granoff, Mitchell E; Lunemann, Sebastian; Dugast, Anne-Sophie; Shao, Yiming; Altfeld, Marcus; Körner, Christian

    2016-07-01

    Despite a growing number of studies investigating the impact of natural killer (NK) cells on HIV-1 pathogenesis, the exact mechanism by which NK cells recognize HIV-1-infected cells and exert immunological pressure on HIV-1 remains unknown. Previously several groups including ours have introduced autologous HIV-1-infected CD4(+) T cells as suitable target cells to study NK-cell function in response to HIV-1 infection in vitro. Here, we re-evaluated and optimized a standardized in vitro assay that allows assessing the antiviral capacity of NK cells. This includes the implementation of HIV-1 RNA copy numbers as readout for NK-cell-mediated inhibition of HIV-1 replication and the investigation of inter-assay variation in comparison to previous methods, such as HIV-1 p24 Gag production and frequency of p24(+) CD4(+) T cells. Furthermore, we investigated the possibility to hasten the duration of the assay and provide concepts for downstream applications. Autologous CD4(+) T cells and NK cells were obtained from peripheral blood of HIV-negative healthy individuals and were separately enriched through negative selection. CD4(+) T cells were infected with the HIV-1 strain JR-CSF at an MOI of 0.01. Infected CD4(+) T cells were then co-cultured with primary NK cells at various effector:target ratios for up to 14days. Supernatants obtained from media exchanged at days 4, 7, 11 and 14 were used for quantification of HIV-1 p24 Gag and HIV-1 RNA copy numbers. In addition, frequency of infected CD4(+) T cells was determined by flow cytometric detection of intracellular p24 Gag. The assay displayed minimal inter-assay variation when utilizing viral RNA quantification or p24 Gag concentration for the assessment of viral replication. Viral RNA quantification was more rigorous to display magnitude and kinetics of NK-cell-mediated inhibition of HIV-1 replication, longitudinally and between tested individuals. The results of this study demonstrate that NK-cell-mediated inhibition of

  2. HIV-1 Suppressive Sequences Are Modulated by Rev Transport of Unspliced RNA and Are Required for Efficient HIV-1 Production

    PubMed Central

    Noguchi, Kousei; Ishibashi, Keisuke; Miyokawa, Kaori; Hokari, Manami; Kanno, Tomoyuki; Hirano, Tomoya; Yamamoto, Norio; Takaku, Hiroshi

    2012-01-01

    The unspliced human immunodeficiency virus type 1 (HIV-1) RNAs are translated as Gag and Gag-Pol polyproteins or packaged as genomes into viral particles. Efficient translation is necessary before the transition to produce infective virions. The viral protein Rev exports all intron-containing viral RNAs; however, it also appears to enhance translation. Cellular microRNAs target cellular and viral mRNAs to silence their translation and enrich them at discrete cytoplasmic loci that overlap with the putative interim site of Gag and the genome. Here, we analyzed how Rev-mediated transport and the splicing status of the mRNA influenced the silencing status imposed by microRNA. Through identification and mutational analysis of the silencing sites in the HIV-1 genome, we elucidated the effect of silencing on virus production. Renilla luciferase mRNA, which contains a let-7 targeting site in its 3′ untranslated region, was mediated when it was transported by Rev and not spliced, but it was either not mediated when it was spliced even in a partial way or it was Rev-independent. The silencing sites in the pol and env-nef regions of the HIV-1 genome, which were repressed in T cells and other cell lines, were Drosha-dependent and could also be modulated by Rev in an unspliced state. Mutant viruses that contained genomic mutations that reflect alterations to show more derepressive effects in the 3′ untranslated region of the Renilla luciferase gene replicated more slowly than wild-type virus. These findings yield insights into the HIV-1 silencing sites that might allow the genome to avoid translational machinery and that might be utilized in coordinating virus production during initial virus replication. However, the function of Rev to modulate the silencing sites of unspliced RNAs would be advantageous for the efficient translation that is required to support protein production prior to viral packaging and particle production. PMID:23251516

  3. HIV-1 Nef responsiveness is determined by Env variable regions involved in trimer association and correlates with neutralization sensitivity.

    PubMed

    Usami, Yoshiko; Göttlinger, Heinrich

    2013-11-14

    HIV-1 Nef and the unrelated murine leukemia virus glycoGag similarly enhance the infectivity of HIV-1 virions. We now show that the effects of Nef and glycoGag are similarly determined by variable regions of HIV-1 gp120 that control Env trimer association and neutralization sensitivity. Whereas neutralization-sensitive X4-tropic Env proteins conferred high responsiveness to Nef and glycoGag, particles bearing neutralization-resistant R5-tropic Envs were considerably less affected. The profoundly different Nef/glycoGag responsiveness of a neutralization-resistant and a neutralization-sensitive R5-tropic Env could be switched by exchanging their gp120 V1/V2 regions, which also switches their neutralization sensitivity. Within V1/V2, the same determinants governed Nef/glycoGag responsiveness and neutralization sensitivity, indicating that these phenotypes are mechanistically linked. The V1/V2 and V3 regions, which form an apical trimer-association domain, together determined the Nef and glycoGag responsiveness of an X4-tropic Env. Our results suggest that Nef and glycoGag counteract the inactivation of Env spikes with relatively unstable apical trimer-association domains.

  4. Glutamate metabolism in HIV-1 infected macrophages: Role of HIV-1 Vpr.

    PubMed

    Datta, Prasun K; Deshmane, Satish; Khalili, Kamel; Merali, Salim; Gordon, John C; Fecchio, Chiara; Barrero, Carlos A

    2016-09-01

    HIV-1 infected macrophages play a significant role in the neuropathogenesis of AIDS. HIV-1 viral protein R (Vpr) not only facilitates HIV-1 infection but also contribute to long-lived persistence in macrophages. Our previous studies using SILAC-based proteomic analysis showed that the expression of critical metabolic enzymes in the glycolytic pathway and tricarboxylic acid (TCA) cycle were altered in response to Vpr expression in macrophages. We hypothesized that Vpr-induced modulation of glycolysis and TCA cycle regulates glutamate metabolism and release in HIV-1 infected macrophages. We assessed the amount of specific metabolites induced by Vpr and HIV-1 in macrophages at the intracellular and extracellular level in a time-dependent manner utilizing multiple reaction monitoring (MRM) targeted metabolomics. In addition, stable isotope-labeled glucose and an MRM targeted metabolomics assay were used to evaluate the de novo synthesis and release of glutamate in Vpr overexpressing macrophages and HIV-1 infected macrophages, throughout the metabolic flux of glycolytic pathway and TCA cycle activation. The metabolic flux studies demonstrated an increase in glucose uptake, glutamate release and accumulation of α-ketoglutarate (α-KG) and glutamine in the extracellular milieu in Vpr expressing and HIV-1 infected macrophages. Interestingly, glutamate pools and other intracellular intermediates (glucose-6-phosphate (G6P), fructose-6-phosphate (F6P), citrate, malate, α-KG, and glutamine) showed a decreased trend except for fumarate, in contrast to the glutamine accumulation observed in the extracellular space in Vpr overexpressing macrophages. Our studies demonstrate that dysregulation of mitochondrial glutamate metabolism induced by Vpr in HIV-1 infected macrophages commonly seen, may contribute to neurodegeneration via excitotoxic mechanisms in the context of NeuroAIDS. PMID:27245560

  5. Lentiviral vectors encoding human immunodeficiency virus type 1 (HIV-1)-specific T-cell receptor genes efficiently convert peripheral blood CD8 T lymphocytes into cytotoxic T lymphocytes with potent in vitro and in vivo HIV-1-specific inhibitory activity.

    PubMed

    Joseph, Aviva; Zheng, Jian Hua; Follenzi, Antonia; Dilorenzo, Teresa; Sango, Kaori; Hyman, Jaime; Chen, Ken; Piechocka-Trocha, Alicja; Brander, Christian; Hooijberg, Erik; Vignali, Dario A; Walker, Bruce D; Goldstein, Harris

    2008-03-01

    The human immunodeficiency virus type 1 (HIV-1)-specific CD8 cytotoxic T-lymphocyte (CTL) response plays a critical role in controlling HIV-1 replication. Augmenting this response should enhance control of HIV-1 replication and stabilize or improve the clinical course of the disease. Although cytomegalovirus (CMV) or Epstein-Barr virus (EBV) infection in immunocompromised patients can be treated by adoptive transfer of ex vivo-expanded CMV- or EBV-specific CTLs, adoptive transfer of ex vivo-expanded, autologous HIV-1-specific CTLs had minimal effects on HIV-1 replication, likely a consequence of the inherently compromised qualitative function of HIV-1-specific CTLs derived from HIV-1-infected individuals. We hypothesized that this limitation could be circumvented by using as an alternative source of HIV-1-specific CTLs, autologous peripheral CD8(+) T lymphocytes whose antigen specificity is redirected by transduction with lentiviral vectors encoding HIV-1-specific T-cell receptor (TCR) alpha and beta chains, an approach used successfully in cancer therapy. To efficiently convert peripheral CD8 lymphocytes into HIV-1-specific CTLs that potently suppress in vivo HIV-1 replication, we constructed lentiviral vectors encoding the HIV-1-specific TCR alpha and TCR beta chains cloned from a CTL clone specific for an HIV Gag epitope, SL9, as a single transcript linked with a self-cleaving peptide. We demonstrated that transduction with this lentiviral vector efficiently converted primary human CD8 lymphocytes into HIV-1-specific CTLs with potent in vitro and in vivo HIV-1-specific activity. Using lentiviral vectors encoding an HIV-1-specific TCR to transform peripheral CD8 lymphocytes into HIV-1-specific CTLs with defined specificities represents a new immunotherapeutic approach to augment the HIV-1-specific immunity of infected patients.

  6. An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation.

    PubMed

    Schur, Florian K M; Obr, Martin; Hagen, Wim J H; Wan, William; Jakobi, Arjen J; Kirkpatrick, Joanna M; Sachse, Carsten; Kräusslich, Hans-Georg; Briggs, John A G

    2016-07-29

    Immature HIV-1 assembles at and buds from the plasma membrane before proteolytic cleavage of the viral Gag polyprotein induces structural maturation. Maturation can be blocked by maturation inhibitors (MIs), thereby abolishing infectivity. The CA (capsid) and SP1 (spacer peptide 1) region of Gag is the key regulator of assembly and maturation and is the target of MIs. We applied optimized cryo-electron tomography and subtomogram averaging to resolve this region within assembled immature HIV-1 particles at 3.9 angstrom resolution and built an atomic model. The structure reveals a network of intra- and intermolecular interactions mediating immature HIV-1 assembly. The proteolytic cleavage site between CA and SP1 is inaccessible to protease. We suggest that MIs prevent CA-SP1 cleavage by stabilizing the structure, and MI resistance develops by destabilizing CA-SP1. PMID:27417497

  7. HIV-1 nucleocapsid protein localizes efficiently to the nucleus and nucleolus.

    PubMed

    Yu, Kyung Lee; Lee, Sun Hee; Lee, Eun Soo; You, Ji Chang

    2016-05-01

    The HIV-1 nucleocapsid (NC) is an essential viral protein containing two highly conserved retroviral-type zinc finger (ZF) motifs, which functions in multiple stages of the HIV-1 life cycle. Although a number of functions for NC either in its mature form or as a domain of Gag have been revealed, little is known about the intracellular localization of NC and, moreover, its role in Gag protein trafficking. Here, we have investigated various forms of HIV-1 NC protein for its cellular localization and found that the NC has a strong nuclear and nucleolar localization activity. The linker region, composed of a stretch of basic amino acids between the two ZF motifs, was necessary and sufficient for the activity.

  8. An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation.

    PubMed

    Schur, Florian K M; Obr, Martin; Hagen, Wim J H; Wan, William; Jakobi, Arjen J; Kirkpatrick, Joanna M; Sachse, Carsten; Kräusslich, Hans-Georg; Briggs, John A G

    2016-07-29

    Immature HIV-1 assembles at and buds from the plasma membrane before proteolytic cleavage of the viral Gag polyprotein induces structural maturation. Maturation can be blocked by maturation inhibitors (MIs), thereby abolishing infectivity. The CA (capsid) and SP1 (spacer peptide 1) region of Gag is the key regulator of assembly and maturation and is the target of MIs. We applied optimized cryo-electron tomography and subtomogram averaging to resolve this region within assembled immature HIV-1 particles at 3.9 angstrom resolution and built an atomic model. The structure reveals a network of intra- and intermolecular interactions mediating immature HIV-1 assembly. The proteolytic cleavage site between CA and SP1 is inaccessible to protease. We suggest that MIs prevent CA-SP1 cleavage by stabilizing the structure, and MI resistance develops by destabilizing CA-SP1.

  9. HIV-1 nucleocapsid protein localizes efficiently to the nucleus and nucleolus.

    PubMed

    Yu, Kyung Lee; Lee, Sun Hee; Lee, Eun Soo; You, Ji Chang

    2016-05-01

    The HIV-1 nucleocapsid (NC) is an essential viral protein containing two highly conserved retroviral-type zinc finger (ZF) motifs, which functions in multiple stages of the HIV-1 life cycle. Although a number of functions for NC either in its mature form or as a domain of Gag have been revealed, little is known about the intracellular localization of NC and, moreover, its role in Gag protein trafficking. Here, we have investigated various forms of HIV-1 NC protein for its cellular localization and found that the NC has a strong nuclear and nucleolar localization activity. The linker region, composed of a stretch of basic amino acids between the two ZF motifs, was necessary and sufficient for the activity. PMID:26967976

  10. Elucidation of the Molecular Mechanism Driving Duplication of the HIV-1 PTAP Late Domain

    PubMed Central

    Martins, Angelica N.; Waheed, Abdul A.; Ablan, Sherimay D.; Huang, Wei; Newton, Alicia; Petropoulos, Christos J.; Brindeiro, Rodrigo D. M.

    2015-01-01

    ABSTRACT HIV-1 uses cellular machinery to bud from infected cells. This cellular machinery is comprised of several multiprotein complexes known as endosomal sorting complexes required for transport (ESCRTs). A conserved late domain motif, Pro-Thr-Ala-Pro (PTAP), located in the p6 region of Gag (p6Gag), plays a central role in ESCRT recruitment to the site of virus budding. Previous studies have demonstrated that PTAP duplications are selected in HIV-1-infected patients during antiretroviral therapy; however, the consequences of these duplications for HIV-1 biology and drug resistance are unclear. To address these questions, we constructed viruses carrying a patient-derived PTAP duplication with and without drug resistance mutations in the viral protease. We evaluated the effect of the PTAP duplication on viral release efficiency, viral infectivity, replication capacity, drug susceptibility, and Gag processing. In the presence of protease inhibitors, we observed that the PTAP duplication in p6Gag significantly increased the infectivity and replication capacity of the virus compared to those of viruses bearing only resistance mutations in protease. Our biochemical analysis showed that the PTAP duplication, in combination with mutations in protease, enhances processing between the nucleocapsid and p6 domains of Gag, resulting in more complete Gag cleavage in the presence of protease inhibitors. These results demonstrate that duplication of the PTAP motif in p6Gag confers a selective advantage in viral replication by increasing Gag processing efficiency in the context of protease inhibitor treatment, thereby enhancing the drug resistance of the virus. These findings highlight the interconnected role of PTAP duplications and protease mutations in the development of resistance to antiretroviral therapy. IMPORTANCE Resistance to current drug therapy limits treatment options in many HIV-1-infected patients. Duplications in a Pro-Thr-Ala-Pro (PTAP) motif in the p6 domain of

  11. The roles of lipids and nucleic acids in HIV-1 assembly

    PubMed Central

    Alfadhli, Ayna; Barklis, Eric

    2014-01-01

    During HIV-1 assembly, precursor Gag (PrGag) proteins are delivered to plasma membrane (PM) assembly sites, where they are triggered to oligomerize and bud from cells as immature virus particles. The delivery and triggering processes are coordinated by the PrGag matrix (MA) and nucleocapsid (NC) domains. Targeting of PrGag proteins to membranes enriched in cholesterol and phosphatidylinositol-4,5-bisphosphate (PI[4,5]P2) is mediated by the MA domain, which also has been shown to bind both RNA and DNA. Evidence suggests that the nucleic-acid-binding function of MA serves to inhibit PrGag binding to inappropriate intracellular membranes, prior to delivery to the PM. At the PM, MA domains putatively trade RNA ligands for PI(4,5)P2 ligands, fostering high-affinity membrane binding. Triggering of oligomerization, budding, and virus particle release results when NC domains on adjacent PrGag proteins bind to viral RNA, leading to capsid (CA) domain oligomerization. This process leads to the assembly of immature virus shells in which hexamers of membrane-bound MA trimers appear to organize above interlinked CA hexamers. Here, we review the functions of retroviral MA proteins, with an emphasis on the nucleic-acid-binding capability of the HIV-1 MA protein, and its effects on membrane binding. PMID:24917853

  12. A Truncated Nef Peptide from SIVcpz Inhibits the Production of HIV-1 Infectious Progeny

    PubMed Central

    Sabino Cunha, Marcela; Lima Sampaio, Thatiane; Peterlin, B. Matija; Jesus da Costa, Luciana

    2016-01-01

    Nef proteins from all primate Lentiviruses, including the simian immunodeficiency virus of chimpanzees (SIVcpz), increase viral progeny infectivity. However, the function of Nef involved with the increase in viral infectivity is still not completely understood. Nonetheless, until now, studies investigating the functions of Nef from SIVcpz have been conducted in the context of the HIV-1 proviruses. In an attempt to investigate the role played by Nef during the replication cycle of an SIVcpz, a Nef-defective derivative was obtained from the SIVcpzWTGab2 clone by introducing a frame shift mutation at a unique restriction site within the nef sequence. This nef-deleted clone expresses an N-terminal 74-amino acid truncated peptide of Nef and was named SIVcpz-tNef. We found that the SIVcpz-tNef does not behave as a classic nef-deleted HIV-1 or simian immunodeficiency virus of macaques SIVmac. Markedly, SIVcpz-tNef progeny from both Hek-293T and Molt producer cells were completely non-infectious. Moreover, the loss in infectivity of SIVcpz-tNef correlated with the inhibition of Gag and GagPol processing. A marked accumulation of Gag and very low levels of reverse transcriptase were detected in viral lysates. Furthermore, these observations were reproduced once the tNef peptide was expressed in trans both in SIVcpzΔNef and HIV-1WT expressing cells, demonstrating that the truncated peptide is a dominant negative for viral processing and infectivity for both SIVcpz and HIV-1. We demonstrated that the truncated Nef peptide binds to GagPol outside the protease region and by doing so probably blocks processing of both GagPol and Gag precursors at a very early stage. This study demonstrates for the first time that naturally-occurring Nef peptides can potently block lentiviral processing and infectivity. PMID:27399760

  13. Protective efficacy of a global HIV-1 mosaic vaccine against heterologous SHIV challenges in rhesus monkeys.

    PubMed

    Barouch, Dan H; Stephenson, Kathryn E; Borducchi, Erica N; Smith, Kaitlin; Stanley, Kelly; McNally, Anna G; Liu, Jinyan; Abbink, Peter; Maxfield, Lori F; Seaman, Michael S; Dugast, Anne-Sophie; Alter, Galit; Ferguson, Melissa; Li, Wenjun; Earl, Patricia L; Moss, Bernard; Giorgi, Elena E; Szinger, James J; Eller, Leigh Anne; Billings, Erik A; Rao, Mangala; Tovanabutra, Sodsai; Sanders-Buell, Eric; Weijtens, Mo; Pau, Maria G; Schuitemaker, Hanneke; Robb, Merlin L; Kim, Jerome H; Korber, Bette T; Michael, Nelson L

    2013-10-24

    The global diversity of HIV-1 represents a critical challenge facing HIV-1 vaccine development. HIV-1 mosaic antigens are bioinformatically optimized immunogens designed for improved coverage of HIV-1 diversity. However, the protective efficacy of such global HIV-1 vaccine antigens has not previously been evaluated. Here, we demonstrate the capacity of bivalent HIV-1 mosaic antigens to protect rhesus monkeys against acquisition of infection following heterologous challenges with the difficult-to-neutralize simian-human immunodeficiency virus SHIV-SF162P3. Adenovirus/poxvirus and adenovirus/adenovirus vector-based vaccines expressing HIV-1 mosaic Env, Gag, and Pol afforded a significant reduction in the per-exposure acquisition risk following repetitive, intrarectal SHIV-SF162P3 challenges. Protection against acquisition of infection correlated with vaccine-elicited binding, neutralizing, and functional nonneutralizing antibodies, suggesting that the coordinated activity of multiple antibody functions may contribute to protection against difficult-to-neutralize viruses. These data demonstrate the protective efficacy of HIV-1 mosaic antigens and suggest a potential strategy for the development of a global HIV-1 vaccine. PAPERCLIP:

  14. Myristate Exposure in the HIV-1 Matrix Protein is Modulated by pH

    PubMed Central

    Fledderman, Emily L.; Fujii, Ken; Ghanam, Ruba H.; Waki, Kayoko; Prevelige, Peter E.; Freed, Eric O.; Saad, Jamil S.

    2010-01-01

    Human immunodeficiency virus type-1 (HIV-1) encodes a polypeptide called Gag that is capable of forming virus-like particles (VLPs) in vitro in the absence of other cellular or viral constituents. During the late phase of HIV-1 infection, Gag polyproteins are transported to the plasma membrane (PM) for assembly. A combination of in vivo, in vitro and structural studies have shown that Gag targeting and assembly on the PM are mediated by specific interactions between the myristoylated matrix (myr(+)MA) domain of Gag and phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P2). Exposure of the MA myristyl (myr) group is triggered by PI(4,5)P2 binding and is enhanced by factors that promote protein self-association. In the studies reported herein, we demonstrate that myr exposure in MA is modulated by pH. Our data show that deprotonation of the His89 imidazole ring in myr(+)MA destabilizes the salt bridge formed between His89(Hδ2) and Glu12(COO-), leading to tight sequestration of the myr group and a shift in the equilibrium from trimer to monomer. Furthermore, we show that oligomerization of a Gag-like construct containing matrix-capsid is also pH-dependent. Disruption of the His-Glu salt bridge by single amino acid substitutions greatly altered the myr-sequestered–myr-exposed equilibrium. In vivo intracellular localization data revealed that H89G mutation retargets Gag to intracellular compartments and severely inhibits virus production. Our findings reveal that the MA domain acts as a “pH sensor” in vitro, suggesting that the effect of pH on HIV-1 Gag targeting and binding to the PM warrants investigation. PMID:20886905

  15. The effect of glycosaminoglycans (GAGs) on amyloid aggregation and toxicity.

    PubMed

    Iannuzzi, Clara; Irace, Gaetano; Sirangelo, Ivana

    2015-02-02

    Amyloidosis is a protein folding disorder in which normally soluble proteins are deposited extracellularly as insoluble fibrils, impairing tissue structure and function. Charged polyelectrolytes such as glycosaminoglycans (GAGs) are frequently found associated with the proteinaceous deposits in tissues of patients affected by amyloid diseases. Experimental evidence indicate that they can play an active role in favoring amyloid fibril formation and stabilization. Binding of GAGs to amyloid fibrils occurs mainly through electrostatic interactions involving the negative polyelectrolyte charges and positively charged side chains residues of aggregating protein. Similarly to catalyst for reactions, GAGs favor aggregation, nucleation and amyloid fibril formation functioning as a structural templates for the self-assembly of highly cytotoxic oligomeric precursors, rich in β-sheets, into harmless amyloid fibrils. Moreover, the GAGs amyloid promoting activity can be facilitated through specific interactions via consensus binding sites between amyloid polypeptide and GAGs molecules. We review the effect of GAGs on amyloid deposition as well as proteins not strictly related to diseases. In addition, we consider the potential of the GAGs therapy in amyloidosis.

  16. Higher frequency of HIV-1-specific T cell immune responses in African American children vertically infected with HIV-1.

    PubMed

    Sharp, Elizabeth R; Barbour, Jason D; Karlsson, R Karl; Jordan, Kimberly A; Sandberg, Johan K; Wiznia, Andrew; Rosenberg, Michael G; Nixon, Douglas F

    2005-11-15

    The progression of human immunodeficiency virus (HIV) disease and plasma levels of HIV may differ between racial groups. We compared HIV-specific T cell responses between vertically HIV-1-infected Hispanic and African American children. Subjects were matched for sex, age, viral load, and CD4(+) cell count in 18 pairs; T cell responses were measured by cytokine-enhanced interferon- gamma assay. Peripheral blood mononuclear cells were stimulated with HIV consensus peptides from Gag, Nef, and Tat. The influence of ethnicity, sex, age, viral load, and CD4(+) cell count on T cell responses was determined through linear regression analyses. After adjustment for CD4(+) count, age, and log(10) viral load, African American children demonstrated significantly higher Gag responses (average, 486 spot-forming cells higher; P=.01) than Hispanic children; this was significantly driven by robust responses in African American girls near the age of puberty, many of whom carried the human leukocyte antigen class I B*58 allele.

  17. HIV-1 Capsid Stabilization Assay.

    PubMed

    Fricke, Thomas; Diaz-Griffero, Felipe

    2016-01-01

    The stability of the HIV-1 core in the cytoplasm is crucial for productive HIV-1 infection. Mutations that stabilize or destabilize the core showed defects in HIV-1 reverse transcription and infection. We developed a novel and simple assay to measure stability of in vitro-assembled HIV-1 CA-NC complexes. This assay allowed us to demonstrate that cytosolic extracts strongly stabilize the HIV-1 core (Fricke et al., J Virol 87:10587-10597, 2013). By using our novel assay, one can measure the ability of different drugs to modulate the stability of in vitro-assembled HIV-1 CA-NC complexes, such as PF74, CAP-1, IXN-053, cyclosporine A, Bi2, and the peptide CAI. We also found that purified CPSF6 (1-321) protein stabilizes in vitro-assembled HIV-1 CA-NC complexes (Fricke et al., J Virol 87:10587-10597, 2013). Here we describe in detail the use of this capsid stability assay. We believe that our assay can be a powerful tool to assess HIV-1 capsid stability in vitro.

  18. Curcumin inhibits HIV-1 by promoting Tat protein degradation

    PubMed Central

    Ali, Amjad; Banerjea, Akhil C.

    2016-01-01

    HIV-1 Tat is an intrinsically unfolded protein playing a pivotal role in viral replication by associating with TAR region of viral LTR. Unfolded proteins are degraded by 20S proteasome in an ubiquitin independent manner. Curcumin is known to activate 20S proteasome and promotes the degradation of intrinsically unfolded p53 tumor suppressor protein. Since HIV-1 Tat protein is largerly unfolded, we hypothesized that Tat may also be targeted through this pathway. Curcumin treated Tat transfected HEK-293T cells showed a dose and time dependent degradation of Tat protein. Contrary to this HIV-1 Gag which is a properly folded protein, remained unaffected with curcumin. Semi-quantitative RT-PCR analysis showed that curcumin treatment did not affect Tat gene transcription. Curcumin increased the rate of Tat protein degradation as shown by cycloheximide (CHX) chase assay. Degradation of the Tat protein is accomplished through proteasomal pathway as proteasomal inhibitor MG132 blocked Tat degradation. Curcumin also decreased Tat mediated LTR promoter transactivation and inhibited virus production from HIV-1 infected cells. Taken together our study reveals a novel observation that curcumin causes potent degradation of Tat which may be one of the major mechanisms behind its anti HIV activity. PMID:27283735

  19. Curcumin inhibits HIV-1 by promoting Tat protein degradation.

    PubMed

    Ali, Amjad; Banerjea, Akhil C

    2016-01-01

    HIV-1 Tat is an intrinsically unfolded protein playing a pivotal role in viral replication by associating with TAR region of viral LTR. Unfolded proteins are degraded by 20S proteasome in an ubiquitin independent manner. Curcumin is known to activate 20S proteasome and promotes the degradation of intrinsically unfolded p53 tumor suppressor protein. Since HIV-1 Tat protein is largerly unfolded, we hypothesized that Tat may also be targeted through this pathway. Curcumin treated Tat transfected HEK-293T cells showed a dose and time dependent degradation of Tat protein. Contrary to this HIV-1 Gag which is a properly folded protein, remained unaffected with curcumin. Semi-quantitative RT-PCR analysis showed that curcumin treatment did not affect Tat gene transcription. Curcumin increased the rate of Tat protein degradation as shown by cycloheximide (CHX) chase assay. Degradation of the Tat protein is accomplished through proteasomal pathway as proteasomal inhibitor MG132 blocked Tat degradation. Curcumin also decreased Tat mediated LTR promoter transactivation and inhibited virus production from HIV-1 infected cells. Taken together our study reveals a novel observation that curcumin causes potent degradation of Tat which may be one of the major mechanisms behind its anti HIV activity. PMID:27283735

  20. HIV-1 Vpr—a still “enigmatic multitasker”

    PubMed Central

    Guenzel, Carolin A.; Hérate, Cécile; Benichou, Serge

    2014-01-01

    Like other HIV-1 auxiliary proteins, Vpr is conserved within all the human (HIV-1, HIV-2) and simian (SIV) immunodeficiency viruses. However, Vpr and homologous HIV-2, and SIV Vpx are the only viral auxiliary proteins specifically incorporated into virus particles through direct interaction with the Gag precursor, indicating that this presence in the core of the mature virions is mainly required for optimal establishment of the early steps of the virus life cycle in the newly infected cell. In spite of its small size, a plethora of effects and functions have been attributed to Vpr, including induction of cell cycle arrest and apoptosis, modulation of the fidelity of reverse transcription, nuclear import of viral DNA in macrophages and other non-dividing cells, and transcriptional modulation of viral and host cell genes. Even if some more recent studies identified a few cellular targets that HIV-1 Vpr may utilize in order to perform its different tasks, the real role and functions of Vpr during the course of natural infection are still enigmatic. In this review, we will summarize the main reported functions of HIV-1 Vpr and their significance in the context of the viral life cycle. PMID:24744753

  1. Membrane Binding of the Rous Sarcoma Virus Gag Protein Is Cooperative and Dependent on the Spacer Peptide Assembly Domain

    PubMed Central

    Barros, Marilia; Jin, Danni; Lösche, Mathias; Vogt, Volker M.

    2015-01-01

    ABSTRACT The principles underlying membrane binding and assembly of retroviral Gag proteins into a lattice are understood. However, little is known about how these processes are related. Using purified Rous sarcoma virus Gag and Gag truncations, we studied the interrelation of Gag-Gag interaction and Gag-membrane interaction. Both by liposome binding and by surface plasmon resonance on a supported bilayer, Gag bound to membranes much more tightly than did matrix (MA), the isolated membrane binding domain. In principle, this difference could be explained either by protein-protein interactions leading to cooperativity in membrane binding or by the simultaneous interaction of the N-terminal MA and the C-terminal nucleocapsid (NC) of Gag with the bilayer, since both are highly basic. However, we found that NC was not required for strong membrane binding. Instead, the spacer peptide assembly domain (SPA), a putative 24-residue helical sequence comprising the 12-residue SP segment of Gag and overlapping the capsid (CA) C terminus and the NC N terminus, was required. SPA is known to be critical for proper assembly of the immature Gag lattice. A single amino acid mutation in SPA that abrogates assembly in vitro dramatically reduced binding of Gag to liposomes. In vivo, plasma membrane localization was dependent on SPA. Disulfide cross-linking based on ectopic Cys residues showed that the contacts between Gag proteins on the membrane are similar to the known contacts in virus-like particles. Taken together, we interpret these results to mean that Gag membrane interaction is cooperative in that it depends on the ability of Gag to multimerize. IMPORTANCE The retroviral structural protein Gag has three major domains. The N-terminal MA domain interacts directly with the plasma membrane (PM) of cells. The central CA domain, together with immediately adjoining sequences, facilitates the assembly of thousands of Gag molecules into a lattice. The C-terminal NC domain interacts with

  2. Specific immune response and pathological findings in BALB/c mice inoculated with recombinant BCG expressing HIV-1 antigen.

    PubMed

    Wiriyarat, Witthawat; Sukpanichnant, Sanya; Sittisombut, Nopporn; Balachandra, Kruavon; Promkhatkaew, Duanthanorm; Butraporn, Raywadee; Sutthent, Ruengpung; Boonlong, Jotika; Matsuo, Kazuhiro; Honda, Mitsuo; Warachit, Paijit; Puthavathana, Pilaipan

    2005-03-01

    Recombinant BCGs (rBCGs) containing extrachromosomal plasmids with different HIV-1 insert sequences: nef, env (V3J1 and E9Q), gag p17 or whole gag p55 were evaluated for their immunogenicity, safety and persistent infection in BALB/c mice. Animal injected with, rBCG-plJKV3J1, rBCG-pSO gag p17 or rBCG-pSO gag p55 could elicit lymphocyte proliferation as tested by specific HIV-1 peptides or protein antigen. Inoculation with various concentration of rBCG-pSO gag p55 generated satisfactory specific lymphocyte proliferation in dose escalation trials. The rBCG-pSO gag p55 recovered from spleen tissues at different time interval post-inoculation could express the HIV protein as determined by ELISA p24 antigen detection kit. This result indicated that the extrachromosomal plasmid was stable and capable to express Gag protein. It was also demonstrated that rBCGs did not cause serious pathological change in the inoculated animals. The present study suggested the role of BCG as a potential vehicle for using in HIV vaccine development.

  3. On the Selective Packaging of Genomic RNA by HIV-1

    PubMed Central

    Comas-Garcia, Mauricio; Davis, Sean R.; Rein, Alan

    2016-01-01

    Like other retroviruses, human immunodeficiency virus type 1 (HIV-1) selectively packages genomic RNA (gRNA) during virus assembly. However, in the absence of the gRNA, cellular messenger RNAs (mRNAs) are packaged. While the gRNA is selected because of its cis-acting packaging signal, the mechanism of this selection is not understood. The affinity of Gag (the viral structural protein) for cellular RNAs at physiological ionic strength is not much higher than that for the gRNA. However, binding to the gRNA is more salt-resistant, implying that it has a higher non-electrostatic component. We have previously studied the spacer 1 (SP1) region of Gag and showed that it can undergo a concentration-dependent conformational transition. We proposed that this transition represents the first step in assembly, i.e., the conversion of Gag to an assembly-ready state. To explain selective packaging of gRNA, we suggest here that binding of Gag to gRNA, with its high non-electrostatic component, triggers this conversion more readily than binding to other RNAs; thus we predict that a Gag–gRNA complex will nucleate particle assembly more efficiently than other Gag–RNA complexes. New data shows that among cellular mRNAs, those with long 3′-untranslated regions (UTR) are selectively packaged. It seems plausible that the 3′-UTR, a stretch of RNA not occupied by ribosomes, offers a favorable binding site for Gag. PMID:27626441

  4. HIV-1 Virus-Like Particles Produced by Stably Transfected Drosophila S2 Cells: a Desirable Vaccine Component

    PubMed Central

    Yang, Lifei; Song, Yufeng; Li, Xiaomin; Huang, Xiaoxing; Liu, Jingjing; Ding, Heng; Zhu, Ping

    2012-01-01

    The development of a successful vaccine against human immunodeficiency virus type 1 (HIV-1) likely requires immunogens that elicit both broadly neutralizing antibodies against envelope spikes and T cell responses that recognize multiple viral proteins. HIV-1 virus-like particles (VLP), because they display authentic envelope spikes on the particle surface, may be developed into such immunogens. However, in one way or the other current systems for HIV-1 VLP production have many limitations. To overcome these, in the present study we developed a novel strategy to produce HIV-1 VLP using stably transfected Drosophila S2 cells. We cotransfected S2 cells with plasmids encoding HIV-1 envelope, Gag, and Rev proteins and a selection marker. After stably transfected S2 clones were established, HIV-1 VLP and their immunogenicity in mice were carefully evaluated. Here, we report that HIV-1 envelope proteins are properly cleaved, glycosylated, and incorporated into VLP with Gag. The amount of VLP released into culture supernatants is comparable to those produced by insect cells infected with recombinant baculoviruses. Moreover, cryo-electron microscopy tomography revealed average 17 spikes per purified VLP, and antigenic epitopes on the spikes were recognized by the broadly neutralizing antibodies 2G12, b12, VRC01, and 4E10 but not by PG16. Finally, mice primed with DNA and boosted with VLP in the presence of CpG exhibited anti-envelope antibody responses, including ELISA-binding, neutralizing, antibody-dependent cell-mediated cytotoxicity and antibody-dependent cell-mediated viral inhibition, as well as envelope and Gag-specific CD8 T cell responses. Thus, we conclude that HIV-1 VLP produced by the S2 expression system has many desirable features to be developed into a vaccine component against HIV-1. PMID:22553333

  5. Human Immunodeficiency Virus Type 2 (HIV-2) Gag Is Trafficked in an AP-3 and AP-5 Dependent Manner

    PubMed Central

    Alford, Justine E.; Marongiu, Michela; Watkins, Gemma L.

    2016-01-01

    Although human immunodeficiency virus (HIV) types 1 and 2 are closely related lentiviruses with similar replication cycles, HIV-2 infection is associated with slower progression to AIDS, a higher proportion of long term non-progressors, and lower rates of transmission than HIV-1, likely as a consequence of a lower viral load during HIV-2 infection. A mechanistic explanation for the differential viral load remains unclear but knowledge of differences in particle production between HIV-1 and HIV-2 may help to shed light on this issue. In contrast to HIV-1, little is known about the assembly of HIV-2 particles, and the trafficking of HIV-2 Gag, the structural component of the virus, within cells. We have established that HIV-2 Gag accumulates in intracellular CD63 positive compartments, from which it may be delivered or recycled to the cell surface, or degraded. HIV-2 particle release was dependent on the adaptor protein complex AP-3 and the newly identified AP-5 complex, but much less so on AP-1. In contrast, HIV-1 particle release required AP-1 and AP-3, but not AP-5. AP-2, an essential component of clathrin-mediated endocytosis, which was previously shown to be inhibitory to HIV-1 particle release, had no effect on HIV-2. The differential requirement for adaptor protein complexes confirmed that HIV-1 and HIV-2 Gag have distinct cellular trafficking pathways, and that HIV-2 particles may be more susceptible to degradation prior to release. PMID:27392064

  6. HIV-1 adaptation to antigen processing results in population-level immune evasion and affects subtype diversification.

    PubMed

    Tenzer, Stefan; Crawford, Hayley; Pymm, Phillip; Gifford, Robert; Sreenu, Vattipally B; Weimershaus, Mirjana; de Oliveira, Tulio; Burgevin, Anne; Gerstoft, Jan; Akkad, Nadja; Lunn, Daniel; Fugger, Lars; Bell, John; Schild, Hansjörg; van Endert, Peter; Iversen, Astrid K N

    2014-04-24

    The recent HIV-1 vaccine failures highlight the need to better understand virus-host interactions. One key question is why CD8(+) T cell responses to two HIV-Gag regions are uniquely associated with delayed disease progression only in patients expressing a few rare HLA class I variants when these regions encode epitopes presented by ~30 more common HLA variants. By combining epitope processing and computational analyses of the two HIV subtypes responsible for ~60% of worldwide infections, we identified a hitherto unrecognized adaptation to the antigen-processing machinery through substitutions at subtype-specific motifs. Multiple HLA variants presenting epitopes situated next to a given subtype-specific motif drive selection at this subtype-specific position, and epitope abundances correlate inversely with the HLA frequency distribution in affected populations. This adaptation reflects the sum of intrapatient adaptations, is predictable, facilitates viral subtype diversification, and increases global HIV diversity. Because low epitope abundance is associated with infrequent and weak T cell responses, this most likely results in both population-level immune evasion and inadequate responses in most people vaccinated with natural HIV-1 sequence constructs. Our results suggest that artificial sequence modifications at subtype-specific positions in vitro could refocus and reverse the poor immunogenicity of HIV proteins.

  7. Balance between transmitted HLA preadapted and nonassociated polymorphisms is a major determinant of HIV-1 disease progression.

    PubMed

    Mónaco, Daniela C; Dilernia, Dario A; Fiore-Gartland, Andrew; Yu, Tianwei; Prince, Jessica L; Dennis, Kristine K; Qin, Kai; Schaefer, Malinda; Claiborne, Daniel T; Kilembe, William; Tang, Jianming; Price, Matt A; Farmer, Paul; Gilmour, Jill; Bansal, Anju; Allen, Susan; Goepfert, Paul; Hunter, Eric

    2016-09-19

    HIV-1 adapts to a new host through mutations that facilitate immune escape. Here, we evaluate the impact on viral control and disease progression of transmitted polymorphisms that were either preadapted to or nonassociated with the new host's HLA. In a cohort of 169 Zambian heterosexual transmission pairs, we found that almost one-third of possible HLA-linked target sites in the transmitted virus Gag protein are already adapted, and that this transmitted preadaptation significantly reduced early immune recognition of epitopes. Transmitted preadapted and nonassociated polymorphisms showed opposing effects on set-point VL and the balance between the two was significantly associated with higher set-point VLs in a multivariable model including other risk factors. Transmitted preadaptation was also significantly associated with faster CD4 decline (<350 cells/µl) and this association was stronger after accounting for nonassociated polymorphisms, which were linked with slower CD4 decline. Overall, the relative ratio of the two classes of polymorphisms was found to be the major determinant of CD4 decline in a multivariable model including other risk factors. This study reveals that, even before an immune response is mounted in the new host, the balance of these opposing factors can significantly influence the outcome of HIV-1 infection.

  8. Balance between transmitted HLA preadapted and nonassociated polymorphisms is a major determinant of HIV-1 disease progression.

    PubMed

    Mónaco, Daniela C; Dilernia, Dario A; Fiore-Gartland, Andrew; Yu, Tianwei; Prince, Jessica L; Dennis, Kristine K; Qin, Kai; Schaefer, Malinda; Claiborne, Daniel T; Kilembe, William; Tang, Jianming; Price, Matt A; Farmer, Paul; Gilmour, Jill; Bansal, Anju; Allen, Susan; Goepfert, Paul; Hunter, Eric

    2016-09-19

    HIV-1 adapts to a new host through mutations that facilitate immune escape. Here, we evaluate the impact on viral control and disease progression of transmitted polymorphisms that were either preadapted to or nonassociated with the new host's HLA. In a cohort of 169 Zambian heterosexual transmission pairs, we found that almost one-third of possible HLA-linked target sites in the transmitted virus Gag protein are already adapted, and that this transmitted preadaptation significantly reduced early immune recognition of epitopes. Transmitted preadapted and nonassociated polymorphisms showed opposing effects on set-point VL and the balance between the two was significantly associated with higher set-point VLs in a multivariable model including other risk factors. Transmitted preadaptation was also significantly associated with faster CD4 decline (<350 cells/µl) and this association was stronger after accounting for nonassociated polymorphisms, which were linked with slower CD4 decline. Overall, the relative ratio of the two classes of polymorphisms was found to be the major determinant of CD4 decline in a multivariable model including other risk factors. This study reveals that, even before an immune response is mounted in the new host, the balance of these opposing factors can significantly influence the outcome of HIV-1 infection. PMID:27551154

  9. A novel RealTime HIV-1 Qualitative assay for the detection of HIV-1 nucleic acids in dried blood spots and plasma.

    PubMed

    Huang, Shihai; Erickson, Brian; Mak, Wai Bing; Salituro, John; Abravaya, Klara

    2011-12-01

    Abbott RealTime HIV-1 Qualitative is an in vitro real-time PCR assay for detecting HIV-1 nucleic acids in human plasma and dried blood spots (DBS). The assay was designed to be used in diagnosis of HIV-1 infections in pediatric and adult patients, with an emphasis on the applicability in resource-limited settings. Use of DBS facilitates specimen collection from remote areas and transportation to testing laboratories. Small sample input requirement facilitates testing of specimens with limited collection volume. The Abbott RealTime HIV-1 Qualitative assay is capable of detecting HIV-1 group M subtypes A-H, group O and group N samples. HIV-1 virus concentrations detected with 95% probability were 80 copies/mL of plasma using the plasma protocol, and 2469 copies/mL of whole blood using the DBS protocol. The assay detected HIV-1 infection in 13 seroconversion panels an average 10.5 days earlier than an HIV-1 antibody test and 4.9 days earlier than a p24 antigen test. For specimens collected from 6 weeks to 18 months old infants born to HIV-1 positive mothers, assay results using both the DBS and plasma protocols agreed well with the Roche Amplicor HIV-1 DNA Test version 1.5 (95.5% agreement for DBS and 97.8% agreement for plasma).

  10. Cyclophilin B enhances HIV-1 infection.

    PubMed

    DeBoer, Jason; Madson, Christian J; Belshan, Michael

    2016-02-01

    Cyclophilin B (CypB) is a member of the immunophilin family and intracellular chaperone. It predominantly localizes to the ER, but also contains a nuclear localization signal and is secreted from cells. CypB has been shown to interact with the Gag protein of human immunodeficiency type 1 (HIV-1). Several proteomic and genetic studies identified it as a potential factor involved in HIV replication. Herein, we show that over-expression of CypB enhances HIV infection by increasing nuclear import of viral DNA. This enhancement was unaffected by cyclosporine treatment and requires the N-terminus of the protein. The N-terminus contains an ER leader sequence, putative nuclear localization signal, and is required for secretion. Deletion of the N-terminus resulted in mislocalization from the ER and suppression of HIV infection. Passive transfer experiments showed that secreted CypB did not impact HIV infection. Combined, these experiments show that intracellular CypB modulates a pathway of HIV nuclear import. PMID:26774171

  11. An HLA-C-restricted CD8+ cytotoxic T-lymphocyte clone recognizes a highly conserved epitope on human immunodeficiency virus type 1 gag.

    PubMed Central

    Littaua, R A; Oldstone, M B; Takeda, A; Debouck, C; Wong, J T; Tuazon, C U; Moss, B; Kievits, F; Ennis, F A

    1991-01-01

    A unique epitope on the gag protein of human immunodeficiency virus type 1 (HIV-1), located at amino acid 145 to 150, has been mapped by using a CD8+ cytotoxic T-lymphocyte (CTL) clone. This epitope is highly conserved among 18 HIV-1 strains. The HIV-1 gag-specific human leukocyte antigen (HLA) class I-restricted CD8+ CTL clone was generated from fresh peripheral blood mononuclear cells of an HIV-seropositive donor by stimulation with gamma-irradiated allogeneic peripheral blood mononuclear cells in the presence of an anti-CD3 monoclonal antibody and recombinant interleukin-2. This gag-specific CTL clone killed autologous target cells infected with a recombinant vaccinia virus containing the gag gene of HIV-1 and target cells pulsed with an authentic p24gag construct expressed in Escherichia coli. Fine specificity was determined by using a panel of overlapping 30-amino-acid-long synthetic peptides and subsequently using smaller peptides to precisely map the CTL domain on p24. The epitope is on a highly conserved region, and it overlaps with a major B-cell epitope of gag. This CD8+ T-cell epitope is restricted by HLA-Cw3, which has not been previously identified as a restricting element for human CTL responses. PMID:1712857

  12. Three-Dimensional Structural Characterization of HIV-1 Tethered to Human Cells

    PubMed Central

    Strauss, Joshua D.; Hammonds, Jason E.; Yi, Hong; Ding, Lingmei

    2015-01-01

    ABSTRACT Tetherin (BST2, CD317, or HM1.24) is a host cellular restriction factor that prevents the release of enveloped viruses by mechanically linking virions to the plasma membrane. The precise arrangement of tetherin molecules at the plasma membrane site of HIV-1 assembly, budding, and restriction is not well understood. To gain insight into the biophysical mechanism underlying tetherin-mediated restriction of HIV-1, we utilized cryo-electron tomography (cryo-ET) to directly visualize HIV-1 virus-like particles (VLPs) and virions tethered to human cells in three dimensions (3D). Rod-like densities that we refer to as tethers were seen connecting HIV-1 virions to each other and to the plasma membrane. Native immunogold labeling showed tetherin molecules located on HIV-1 VLPs and virions in positions similar to those of the densities observed by cryo-ET. The location of the tethers with respect to the ordered immature Gag lattice or mature conical core was random. However, tethers were not uniformly distributed on the viral membrane but rather formed clusters at sites of contact with the cell or other virions. Chains of tethered HIV-1 virions often were arranged in a linear fashion, primarily as single chains and, to a lesser degree, as branched chains. Distance measurements support the extended tetherin model, in which the coiled-coil ectodomains are oriented perpendicular with respect to the viral and plasma membranes. IMPORTANCE Tetherin is a cellular factor that restricts HIV-1 release by directly cross-linking the virus to the host cell plasma membrane. We used cryo-electron tomography to visualize HIV-1 tethered to human cells in 3D. We determined that tetherin-restricted HIV-1 virions were physically connected to each other or to the plasma membrane by filamentous tethers that resembled rods ∼15 nm in length, which is consistent with the extended tetherin model. In addition, we found the position of the tethers to be arbitrary relative to the ordered

  13. A Quantitative Approach to Evaluate the Impact of Fluorescent Labeling on Membrane-Bound HIV-Gag Assembly by Titration of Unlabeled Proteins.

    PubMed

    Gunzenhäuser, Julia; Wyss, Romain; Manley, Suliana

    2014-01-01

    The assembly process of the human immunodeficiency virus 1 (HIV-1) is driven by the viral polyprotein Gag. Fluorescence imaging of Gag protein fusions is widely performed and has revealed important information on viral assembly. Gag fusion proteins are commonly co-transfected with an unlabeled form of Gag to prevent labeling artifacts such as morphological defects and decreased infectivity. Although viral assembly is widely studied on individual cells, the efficiency of the co-transfection rescue has never been tested at the single cell level. Here, we first develop a methodology to quantify levels of unlabeled to labeled Gag in single cells using a fluorescent reporter protein for unlabeled Gag and fluorescence correlation spectroscopy. Using super-resolution imaging based on photoactivated localization microscopy (PALM) combined with molecular counting we then study the nanoscale morphology of Gag clusters as a function of unlabeled to labeled Gag ratios in single cells. We show that for a given co-transfection ratio, individual cells express a wide range of protein ratios, necessitating a quantitative read-out for the expression of unlabeled Gag. Further, we show that monomerically labeled Gag assembles into membrane-bound clusters that are morphologically indistinguishable from mixtures of unlabeled and labeled Gag.

  14. A Quantitative Approach to Evaluate the Impact of Fluorescent Labeling on Membrane-Bound HIV-Gag Assembly by Titration of Unlabeled Proteins

    PubMed Central

    Gunzenhäuser, Julia; Wyss, Romain; Manley, Suliana

    2014-01-01

    The assembly process of the human immunodeficiency virus 1 (HIV-1) is driven by the viral polyprotein Gag. Fluorescence imaging of Gag protein fusions is widely performed and has revealed important information on viral assembly. Gag fusion proteins are commonly co-transfected with an unlabeled form of Gag to prevent labeling artifacts such as morphological defects and decreased infectivity. Although viral assembly is widely studied on individual cells, the efficiency of the co-transfection rescue has never been tested at the single cell level. Here, we first develop a methodology to quantify levels of unlabeled to labeled Gag in single cells using a fluorescent reporter protein for unlabeled Gag and fluorescence correlation spectroscopy. Using super-resolution imaging based on photoactivated localization microscopy (PALM) combined with molecular counting we then study the nanoscale morphology of Gag clusters as a function of unlabeled to labeled Gag ratios in single cells. We show that for a given co-transfection ratio, individual cells express a wide range of protein ratios, necessitating a quantitative read-out for the expression of unlabeled Gag. Further, we show that monomerically labeled Gag assembles into membrane-bound clusters that are morphologically indistinguishable from mixtures of unlabeled and labeled Gag. PMID:25493438

  15. HIV-1 DNA predicts disease progression and post-treatment virological control.

    PubMed

    Williams, James P; Hurst, Jacob; Stöhr, Wolfgang; Robinson, Nicola; Brown, Helen; Fisher, Martin; Kinloch, Sabine; Cooper, David; Schechter, Mauro; Tambussi, Giuseppe; Fidler, Sarah; Carrington, Mary; Babiker, Abdel; Weber, Jonathan; Koelsch, Kersten K; Kelleher, Anthony D; Phillips, Rodney E; Frater, John

    2014-01-01

    In HIV-1 infection, a population of latently infected cells facilitates viral persistence despite antiretroviral therapy (ART). With the aim of identifying individuals in whom ART might induce a period of viraemic control on stopping therapy, we hypothesised that quantification of the pool of latently infected cells in primary HIV-1 infection (PHI) would predict clinical progression and viral replication following ART. We measured HIV-1 DNA in a highly characterised randomised population of individuals with PHI. We explored associations between HIV-1 DNA and immunological and virological markers of clinical progression, including viral rebound in those interrupting therapy. In multivariable analyses, HIV-1 DNA was more predictive of disease progression than plasma viral load and, at treatment interruption, predicted time to plasma virus rebound. HIV-1 DNA may help identify individuals who could safely interrupt ART in future HIV-1 eradication trials. PMID:25217531

  16. HIV-1 DNA predicts disease progression and post-treatment virological control.

    PubMed

    Williams, James P; Hurst, Jacob; Stöhr, Wolfgang; Robinson, Nicola; Brown, Helen; Fisher, Martin; Kinloch, Sabine; Cooper, David; Schechter, Mauro; Tambussi, Giuseppe; Fidler, Sarah; Carrington, Mary; Babiker, Abdel; Weber, Jonathan; Koelsch, Kersten K; Kelleher, Anthony D; Phillips, Rodney E; Frater, John

    2014-09-12

    In HIV-1 infection, a population of latently infected cells facilitates viral persistence despite antiretroviral therapy (ART). With the aim of identifying individuals in whom ART might induce a period of viraemic control on stopping therapy, we hypothesised that quantification of the pool of latently infected cells in primary HIV-1 infection (PHI) would predict clinical progression and viral replication following ART. We measured HIV-1 DNA in a highly characterised randomised population of individuals with PHI. We explored associations between HIV-1 DNA and immunological and virological markers of clinical progression, including viral rebound in those interrupting therapy. In multivariable analyses, HIV-1 DNA was more predictive of disease progression than plasma viral load and, at treatment interruption, predicted time to plasma virus rebound. HIV-1 DNA may help identify individuals who could safely interrupt ART in future HIV-1 eradication trials.

  17. Drug-Based Lead Discovery: The Novel Ablative Antiretroviral Profile of Deferiprone in HIV-1-Infected Cells and in HIV-Infected Treatment-Naive Subjects of a Double-Blind, Placebo-Controlled, Randomized Exploratory Trial

    PubMed Central

    Saxena, Deepti; Spino, Michael; Tricta, Fernando; Connelly, John; Cracchiolo, Bernadette M.; Hanauske, Axel-Rainer; D’Alliessi Gandolfi, Darlene; Mathews, Michael B.; Karn, Jonathan; Holland, Bart; Park, Myung Hee; Pe’ery, Tsafi; Palumbo, Paul E.; Hanauske-Abel, Hartmut M.

    2016-01-01

    cluster (‘polyproline’)-containing proteins, exemplified by Gag/p24, and facilitated by the excess of deoxyhypusine-containing eIF5A, releases the innate apoptotic defense of HIV-infected cells from viral blockade, thus depleting the cellular reservoir of HIV-1 DNA that drives breakthrough and rebound. Trial Registration: ClinicalTrial.gov NCT02191657 PMID:27191165

  18. Ectopic expression of anti-HIV-1 shRNAs protects CD8+ T cells modified with CD4ζ CAR from HIV-1 infection and alleviates impairment of cell proliferation

    PubMed Central

    Kamata, Masakazu; Kim, Patrick Y.; Ng, Hwee L.; Ringpis, Gene-Errol E.; Kranz, Emiko; Chan, Joshua; O'Connor, Sean; Yang, Otto O.; Chen, Irvin S.Y.

    2015-01-01

    Chimeric antigen receptors (CARs) are artificially engineered receptors that confer a desired specificity to immune effector T cells. As an HIV-1-specific CAR, CD4ζ CAR has been extensively tested in vitro as well as in clinical trials. T cells modified with this CAR mediated highly potent anti-HIV-1 activities in vitro and were well-tolerated in vivo, but exerted limited effects on viral load and reservoir size due to poor survival and/or functionality of the transduced cells in patients. We hypothesize that ectopic expression of CD4ζ on CD8+ T cells renders them susceptible to HIV-1 infection, resulting in poor survival of those cells. To test this possibility, highly purified CD8+ T cells were genetically modified with a CD4ζ-encoding lentiviral vector and infected with HIV-1. CD8+ T cells were vulnerable to HIV-1 infection upon expression of CD4ζ as evidenced by elevated levels of p24Gag in cells and culture supernatants. Concurrently, the number of CD4ζ-modified CD8+ T cells was reduced relative to control cells upon HIV-1 infection. To protect these cells from HIV-1 infection, we co-expressed two anti-HIV-1 shRNAs previously developed by our group together with CD4ζ. This combination vector was able to suppress HIV-1 infection without impairing HIV-1-dependent effector activities of CD4ζ. In addition, the number of CD4ζ-modified CD8+ T cells maintained similar levels to that of the control even under HIV-1 infection. These results suggest that protecting CD4ζ-modified CD8+ T cells from HIV-1 infection is required for prolonged HIV-1-specific immune surveillance. PMID:25998390

  19. Ectopic expression of anti-HIV-1 shRNAs protects CD8(+) T cells modified with CD4ζ CAR from HIV-1 infection and alleviates impairment of cell proliferation.

    PubMed

    Kamata, Masakazu; Kim, Patrick Y; Ng, Hwee L; Ringpis, Gene-Errol E; Kranz, Emiko; Chan, Joshua; O'Connor, Sean; Yang, Otto O; Chen, Irvin S Y

    2015-07-31

    Chimeric antigen receptors (CARs) are artificially engineered receptors that confer a desired specificity to immune effector T cells. As an HIV-1-specific CAR, CD4ζ CAR has been extensively tested in vitro as well as in clinical trials. T cells modified with this CAR mediated highly potent anti-HIV-1 activities in vitro and were well-tolerated in vivo, but exerted limited effects on viral load and reservoir size due to poor survival and/or functionality of the transduced cells in patients. We hypothesize that ectopic expression of CD4ζ on CD8(+) T cells renders them susceptible to HIV-1 infection, resulting in poor survival of those cells. To test this possibility, highly purified CD8(+) T cells were genetically modified with a CD4ζ-encoding lentiviral vector and infected with HIV-1. CD8(+) T cells were vulnerable to HIV-1 infection upon expression of CD4ζ as evidenced by elevated levels of p24(Gag) in cells and culture supernatants. Concurrently, the number of CD4ζ-modified CD8(+) T cells was reduced relative to control cells upon HIV-1 infection. To protect these cells from HIV-1 infection, we co-expressed two anti-HIV-1 shRNAs previously developed by our group together with CD4ζ. This combination vector was able to suppress HIV-1 infection without impairing HIV-1-dependent effector activities of CD4ζ. In addition, the number of CD4ζ-modified CD8(+) T cells maintained similar levels to that of the control even under HIV-1 infection. These results suggest that protecting CD4ζ-modified CD8(+) T cells from HIV-1 infection is required for prolonged HIV-1-specific immune surveillance. PMID:25998390

  20. Effective Cytotoxic T Lymphocyte Targeting of Persistent HIV-1 during Antiretroviral Therapy Requires Priming of Naive CD8+ T Cells

    PubMed Central

    Smith, Kellie N.; Mailliard, Robbie B.; Piazza, Paolo A.; Fischer, Will; Korber, Bette T.; Fecek, Ronald J.; Ratner, Deena; Gupta, Phalguni; Mullins, James I.

    2016-01-01

    ABSTRACT Curing HIV-1 infection will require elimination of persistent cellular reservoirs that harbor latent virus in the face of combination antiretroviral therapy (cART). Proposed immunotherapeutic strategies to cure HIV-1 infection include enhancing lysis of these infected cells by cytotoxic T lymphocytes (CTL). A major challenge in this strategy is overcoming viral immune escape variants that have evaded host immune control. Here we report that naive CD8+ T cells from chronic HIV-1-infected participants on long-term cART can be primed by dendritic cells (DC). These DC must be mature, produce high levels of interleukin 12p70 (IL-12p70), be responsive to CD40 ligand (CD40L), and be loaded with inactivated, autologous HIV-1. These DC-primed CD8+ T cell responders produced high levels of gamma interferon (IFN-γ) in response to a broad range of both conserved and variable regions of Gag and effectively killed CD4+ T cell targets that were either infected with the autologous latent reservoir-associated virus or loaded with autologous Gag peptides. In contrast, HIV-1-specific memory CD8+ T cells stimulated with autologous HIV-1-loaded DC produced IFN-γ in response to a narrow range of conserved and variable Gag peptides compared to the primed T cells and most notably, displayed significantly lower cytolytic function. Our findings highlight the need to selectively induce new HIV-1-specific CTL from naive precursors while avoiding activation of existing, dysfunctional memory T cells in potential curative immunotherapeutic strategies for HIV-1 infection. PMID:27247230

  1. Structure of the immature HIV-1 capsid in intact virus particles at 8.8 Å resolution

    NASA Astrophysics Data System (ADS)

    Schur, Florian K. M.; Hagen, Wim J. H.; Rumlová, Michaela; Ruml, Tomáš; Müller, Barbara; Kräusslich, Hans-Georg; Briggs, John A. G.

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) assembly proceeds in two stages. First, the 55 kilodalton viral Gag polyprotein assembles into a hexameric protein lattice at the plasma membrane of the infected cell, inducing budding and release of an immature particle. Second, Gag is cleaved by the viral protease, leading to internal rearrangement of the virus into the mature, infectious form. Immature and mature HIV-1 particles are heterogeneous in size and morphology, preventing high-resolution analysis of their protein arrangement in situ by conventional structural biology methods. Here we apply cryo-electron tomography and sub-tomogram averaging methods to resolve the structure of the capsid lattice within intact immature HIV-1 particles at subnanometre resolution, allowing unambiguous positioning of all α-helices. The resulting model reveals tertiary and quaternary structural interactions that mediate HIV-1 assembly. Strikingly, these interactions differ from those predicted by the current model based on in vitro-assembled arrays of Gag-derived proteins from Mason-Pfizer monkey virus. To validate this difference, we solve the structure of the capsid lattice within intact immature Mason-Pfizer monkey virus particles. Comparison with the immature HIV-1 structure reveals that retroviral capsid proteins, while having conserved tertiary structures, adopt different quaternary arrangements during virus assembly. The approach demonstrated here should be applicable to determine structures of other proteins at subnanometre resolution within heterogeneous environments.

  2. Development of a Novel Anti-HIV-1 Agent from within: Effect of Chimeric Vpr-Containing Protease Cleavage Site Residues on Virus Replication

    NASA Astrophysics Data System (ADS)

    Serio, D.; Rizvi, T. A.; Cartas, M.; Kalyanaraman, V. S.; Weber, I. T.; Koprowski, H.; Srinivasan, A.

    1997-04-01

    Effective antiviral agents will be of great value in controlling virus replication and delaying the onset of HIV-1-related disease symptoms. Current therapy involves the use of antiviral agents that target the enzymatic functions of the virus, resulting in the emergence of resistant viruses to these agents, thus lowering their effectiveness. To overcome this problem, we have considered the idea of developing novel agents from within HIV-1 as inhibitors of virus replication. The specificity of the Vpr protein for the HIV-1 virus particle makes it an attractive molecule for the development of antiviral agents targeting the events associated with virus maturation. We have generated chimeric Vpr proteins containing HIV-1-specific sequences added to the C terminus of Vpr. These sequences correspond to nine cleavage sites of the Gag and Gag-Pol precursors of HIV-1. The chimeric Vpr constructs were introduced into HIV-1 proviral DNA to assess their effect on virus infectivity using single- and multiple-round replication assays. The virus particles generated exhibited a variable replication pattern depending on the protease cleavage site used as a fusion partner. Interestingly, the chimeric Vpr containing the cleavage sequences from the junction of p24 and p2, 24/2, completely abolished virus infectivity. These results show that chimeric proteins generated from within HIV-1 have the ability to suppress HIV-1 replication and make ideal agents for gene therapy or intracellular immunization to treat HIV-1 infection.

  3. Development of a novel anti-HIV-1 agent from within: effect of chimeric Vpr-containing protease cleavage site residues on virus replication.

    PubMed

    Serio, D; Rizvi, T A; Cartas, M; Kalyanaraman, V S; Weber, I T; Koprowski, H; Srinivasan, A

    1997-04-01

    Effective antiviral agents will be of great value in controlling virus replication and delaying the onset of HIV-1-related disease symptoms. Current therapy involves the use of antiviral agents that target the enzymatic functions of the virus, resulting in the emergence of resistant viruses to these agents, thus lowering their effectiveness. To overcome this problem, we have considered the idea of developing novel agents from within HIV-1 as inhibitors of virus replication. The specificity of the Vpr protein for the HIV-1 virus particle makes it an attractive molecule for the development of antiviral agents targeting the events associated with virus maturation. We have generated chimeric Vpr proteins containing HIV-1-specific sequences added to the C terminus of Vpr. These sequences correspond to nine cleavage sites of the Gag and Gag-Pol precursors of HIV-1. The chimeric Vpr constructs were introduced into HIV-1 proviral DNA to assess their effect on virus infectivity using single- and multiple-round replication assays. The virus particles generated exhibited a variable replication pattern depending on the protease cleavage site used as a fusion partner. Interestingly, the chimeric Vpr containing the cleavage sequences from the junction of p24 and p2, 24/2, completely abolished virus infectivity. These results show that chimeric proteins generated from within HIV-1 have the ability to suppress HIV-1 replication and make ideal agents for gene therapy or intracellular immunization to treat HIV-1 infection.

  4. RNA and Nucleocapsid Are Dispensable for Mature HIV-1 Capsid Assembly

    PubMed Central

    Mattei, Simone; Flemming, Annica; Anders-Össwein, Maria; Kräusslich, Hans-Georg

    2015-01-01

    ABSTRACT Human immunodeficiency virus type 1 (HIV-1) is released from infected cells in an immature, noninfectious form in which the structural polyprotein Gag is arranged in a hexameric lattice, forming an incomplete spherical shell. Maturation to the infectious form is mediated by the viral protease, which cleaves Gag at five sites, releasing the CA (capsid) protein, which forms a conical capsid encasing the condensed RNA genome. The pathway of this structural rearrangement is currently not understood, and it is unclear how cone assembly is initiated. RNA represents an integral structural component of retroviruses, and the viral nucleoprotein core has previously been proposed to nucleate mature capsid assembly. We addressed this hypothesis by replacing the RNA-binding NC (nucleocapsid) domain of HIV-1 Gag and the adjacent spacer peptide 2 (SP2) by a leucine zipper (LZ) protein-protein interaction domain [Gag(LZ)] in the viral context. We found that Gag(LZ)-carrying virus [HIV(LZ)] was efficiently released and viral polyproteins were proteolytically processed, though with reduced efficiency. Cryo-electron tomography revealed that the particles lacked a condensed nucleoprotein and contained an increased proportion of aberrant core morphologies caused either by the absence of RNA or by altered Gag processing. Nevertheless, a significant proportion of HIV(LZ) particles contained mature capsids with the wild-type morphology. These results clearly demonstrate that the nucleoprotein complex is dispensable as a nucleator for mature HIV-1 capsid assembly in the viral context. IMPORTANCE Formation of a closed conical capsid encasing the viral RNA genome is essential for HIV-1 infectivity. It is currently unclear what viral components initiate and regulate the formation of the capsid during virus morphogenesis, but it has been proposed that the ribonucleoprotein complex plays a role. To test this, we prepared virus-like particles lacking the viral nucleocapsid protein and

  5. The Life-Cycle of the HIV-1 Gag–RNA Complex

    PubMed Central

    Mailler, Elodie; Bernacchi, Serena; Marquet, Roland; Paillart, Jean-Christophe; Vivet-Boudou, Valérie; Smyth, Redmond P.

    2016-01-01

    Human immunodeficiency virus type 1 (HIV-1) replication is a highly regulated process requiring the recruitment of viral and cellular components to the plasma membrane for assembly into infectious particles. This review highlights the recent process of understanding the selection of the genomic RNA (gRNA) by the viral Pr55Gag precursor polyprotein, and the processes leading to its incorporation into viral particles. PMID:27626439

  6. Enrichment of intersubtype HIV-1 recombinants in a dual infection system using HIV-1 strain-specific siRNAs

    PubMed Central

    2011-01-01

    env regions suggest that other mechanisms are at play. Conclusion These findings show that siRNAs can be used as an efficient in vitro tool for enriching recombinants, to facilitate further study on mechanisms of intersubytpe HIV-1 recombination, and to generate replication-competent intersubtype recombinant proteins with a breadth in HIV-1 diversity for future vaccine studies. PMID:21232148

  7. Engineering T Cells to Functionally Cure HIV-1 Infection.

    PubMed

    Leibman, Rachel S; Riley, James L

    2015-07-01

    Despite the ability of antiretroviral therapy to minimize human immunodeficiency virus type 1 (HIV-1) replication and increase the duration and quality of patients' lives, the health consequences and financial burden associated with the lifelong treatment regimen render a permanent cure highly attractive. Although T cells play an important role in controlling virus replication, they are themselves targets of HIV-mediated destruction. Direct genetic manipulation of T cells for adoptive cellular therapies could facilitate a functional cure by generating HIV-1-resistant cells, redirecting HIV-1-specific immune responses, or a combination of the two strategies. In contrast to a vaccine approach, which relies on the production and priming of HIV-1-specific lymphocytes within a patient's own body, adoptive T-cell therapy provides an opportunity to customize the therapeutic T cells prior to administration. However, at present, it is unclear how to best engineer T cells so that sustained control over HIV-1 replication can be achieved in the absence of antiretrovirals. This review focuses on T-cell gene-engineering and gene-editing strategies that have been performed in efforts to inhibit HIV-1 replication and highlights the requirements for a successful gene therapy-mediated functional cure.

  8. Quantitative Phosphoproteomics Reveals Extensive Cellular Reprogramming During HIV-1 Entry

    PubMed Central

    Wojcechowskyj, Jason A.; Didigu, Chuka A.; Lee, Jessica Y.; Parrish, Nicholas F.; Sinha, Rohini; Hahn, Beatrice H.; Bushman, Frederic D.; Jensen, Shane T.; Seeholzer, Steven H.; Doms, Robert W.

    2014-01-01

    SUMMARY Receptor engagement by HIV-1 during host cell entry activates signaling pathways that can reprogram the cell for optimal viral replication. To obtain a global view of the signaling events induced during HIV-1 entry, we conducted a quantitative phosphoproteomics screen of primary human CD4+ T cell after infection with an HIV-1 strain that engages the receptors CD4 and CXCR4. We quantified 1,757 phosphorylation sites with high stringency. The abundance of 239 phosphorylation sites from 175 genes, including several proteins in pathways known to be impacted by HIV-receptor binding, changed significantly within a minute after HIV-1 exposure. Several previously uncharacterized HIV-1 host factors were also identified and confirmed through RNAi depletion studies. Surprisingly, 5 serine/arginine-rich (SR)-proteins involved in mRNA splicing, including the splicing factor SRm300 (SRRM2) were differentially phosophorylated. Mechanistic studies with SRRM2 suggest that HIV-1 modulates host cell alternative splicing machinery during entry in order to facilitate virus replication and release. PMID:23684312

  9. Engineering T Cells to Functionally Cure HIV-1 Infection

    PubMed Central

    Leibman, Rachel S; Riley, James L

    2015-01-01

    Despite the ability of antiretroviral therapy to minimize human immunodeficiency virus type 1 (HIV-1) replication and increase the duration and quality of patients' lives, the health consequences and financial burden associated with the lifelong treatment regimen render a permanent cure highly attractive. Although T cells play an important role in controlling virus replication, they are themselves targets of HIV-mediated destruction. Direct genetic manipulation of T cells for adoptive cellular therapies could facilitate a functional cure by generating HIV-1–resistant cells, redirecting HIV-1–specific immune responses, or a combination of the two strategies. In contrast to a vaccine approach, which relies on the production and priming of HIV-1–specific lymphocytes within a patient's own body, adoptive T-cell therapy provides an opportunity to customize the therapeutic T cells prior to administration. However, at present, it is unclear how to best engineer T cells so that sustained control over HIV-1 replication can be achieved in the absence of antiretrovirals. This review focuses on T-cell gene-engineering and gene-editing strategies that have been performed in efforts to inhibit HIV-1 replication and highlights the requirements for a successful gene therapy–mediated functional cure. PMID:25896251

  10. Histone acetyltransferases regulate HIV-1 enhancer activity in vitro

    PubMed Central

    Sheridan, Philip L.; Mayall, Timothy P.; Verdin, Eric; Jones, Katherine A.

    1997-01-01

    Specific inhibitors of histone deacetylase, such as trichostatin A (TSA) and trapoxin (TPX), are potent inducers of HIV-1 transcription in latently infected T-cell lines. Activation of the integrated HIV-1 promoter is accompanied by the loss or rearrangement of a positioned nucleosome (nuc-1) near the viral RNA start site. Here we show that TSA strongly induces HIV-1 transcription on chromatin in vitro, concomitant with an enhancer factor-assisted increase in the level of acetylated histone H4. TSA treatment, however, did not detectably alter enhancer factor binding or the positioning of nuc-1 on the majority of the chromatin templates indicating that protein acetylation and chromatin remodeling may be limiting steps that occur only on transcriptionally competent templates, or that remodeling of nuc-1 requires additional factors. To assess the number of active chromatin templates in vitro, transcription was limited to a single round with low levels of the detergent Sarkosyl. Remarkably, HIV-1 transcription on chromatin was found to arise from a small number of active templates that can each support nearly 100 rounds of transcription, and TSA increased the number of active templates in each round. In contrast, transcription on naked DNA was limited to only a few rounds and was not responsive to TSA. We conclude that HIV-1 enhancer complexes greatly facilitate transcription reinitiation on chromatin in vitro, and act at a limiting step to promote the acetylation of histones or other transcription factors required for HIV-1 enhancer activity. PMID:9407026

  11. Temporal and spatial organization of ESCRT protein recruitment during HIV-1 budding

    PubMed Central

    Bleck, Marina; Itano, Michelle S.; Johnson, Daniel S.; Thomas, V. Kaye; North, Alison J.; Bieniasz, Paul D.; Simon, Sanford M.

    2014-01-01

    HIV-1 virions assemble at the plasma membrane of mammalian cells and recruit the endosomal sorting complex required for transport (ESCRT) machinery to enable particle release. However, little is known about the temporal and spatial organization of ESCRT protein recruitment. Using multiple-color live-cell total internal reflection fluorescence microscopy, we observed that the ESCRT-I protein Tsg101 is recruited together with Gag to the sites of HIV-1 assembly, whereas later-acting ESCRT proteins (Chmp4b and Vps4A) are recruited sequentially, once Gag assembly is completed. Chmp4b, a protein that is required to mediate particle scission, is recruited to HIV-1 assembly sites ∼10 s before the ATPase Vps4A. Using two-color superresolution imaging, we observed that the ESCRT machinery (Tsg101, Alix, and Chmp4b/c proteins) is positioned at the periphery of the nascent virions, with the Tsg101 assemblages positioned closer to the Gag assemblages than Alix, Chmp4b, or Chmp4c. These results are consistent with the notion that the ESCRT machinery is recruited transiently to the neck of the assembling particle and is thus present at the appropriate time and place to mediate fission between the nascent virus and the plasma membrane. PMID:25099357

  12. Temporal and spatial organization of ESCRT protein recruitment during HIV-1 budding.

    PubMed

    Bleck, Marina; Itano, Michelle S; Johnson, Daniel S; Thomas, V Kaye; North, Alison J; Bieniasz, Paul D; Simon, Sanford M

    2014-08-19

    HIV-1 virions assemble at the plasma membrane of mammalian cells and recruit the endosomal sorting complex required for transport (ESCRT) machinery to enable particle release. However, little is known about the temporal and spatial organization of ESCRT protein recruitment. Using multiple-color live-cell total internal reflection fluorescence microscopy, we observed that the ESCRT-I protein Tsg101 is recruited together with Gag to the sites of HIV-1 assembly, whereas later-acting ESCRT proteins (Chmp4b and Vps4A) are recruited sequentially, once Gag assembly is completed. Chmp4b, a protein that is required to mediate particle scission, is recruited to HIV-1 assembly sites ∼10 s before the ATPase Vps4A. Using two-color superresolution imaging, we observed that the ESCRT machinery (Tsg101, Alix, and Chmp4b/c proteins) is positioned at the periphery of the nascent virions, with the Tsg101 assemblages positioned closer to the Gag assemblages than Alix, Chmp4b, or Chmp4c. These results are consistent with the notion that the ESCRT machinery is recruited transiently to the neck of the assembling particle and is thus present at the appropriate time and place to mediate fission between the nascent virus and the plasma membrane. PMID:25099357

  13. Authentic HIV-1 integrase inhibitors

    PubMed Central

    Liao, Chenzhong; Marchand, Christophe; Burke, Terrence R; Pommier, Yves; Nicklaus, Marc C

    2010-01-01

    HIV-1 integrase (IN) is indispensable for HIV-1 replication and has become a validated target for developing anti-AIDS agents. In two decades of development of IN inhibition-based anti-HIV therapeutics, a significant number of compounds were identified as IN inhibitors, but only some of them showed antiviral activity. This article reviews a number of patented HIV-1 IN inhibitors, especially those that possess high selectivity for the strand transfer reaction. These compounds generally have a polar coplanar moiety, which is assumed to chelate two magnesium ions in the binding site. Resistance to those compounds, when given to patients, can develop as a result of IN mutations. We refer to those compounds as authentic IN inhibitors. Continued drug development has so far delivered one authentic IN inhibitor to the market (raltegravir in 2007). Current and future attention will be focused on the development of novel authentic IN inhibitors with the goal of overcoming viral resistance. PMID:21426159

  14. Loading dendritic cells with PLA-p24 nanoparticles or MVA expressing HIV genes induces HIV-1-specific T cell responses.

    PubMed

    Climent, Núria; Munier, Séverine; Piqué, Núria; García, Felipe; Pavot, Vincent; Primard, Charlotte; Casanova, Victor; Gatell, José María; Verrier, Bernard; Gallart, Teresa

    2014-10-29

    Since recent data suggest that nanoparticles and modified vaccinia ankara (MVA) vectors could play a pivotal role in HIV-1 therapeutics and vaccine design, in an ex vivo model of human monocyte-derived dendritic cells (MDDCs), we compared two different loading strategies with HIV-1 vaccine vehicles, either viral or synthetic derived. We used polylactic acid (PLA) colloidal biodegradable particles, coated with HIV Gag antigens (p24), and MVA expressing Gag (rMVA-gag and rMVA-gag/trans membrane) or Tat, Nef and Rev genes (rMVA tat+rev and rMVA nef). PLA-p24 captured by MDDCs from HIV-1 individuals induced a slight degree of MDDC maturation, cytokine and chemokine secretion and migration towards a gradient of CCL19 chemokine and highly increased HIV-specific CD8(+) T-cell proliferation compared with p24 alone. After complete maturation induction of PLA-p24-pulsed MDDCs, maximal migration towards a gradient of CCL19 chemokine and induction of HIV-specific T-cell proliferation (two-fold higher for CD4(+) than CD8(+)) and cytokine secretion (IFN-γ and IL-2) in the co-culture were observed. Upon exposure to MVA-gag, MDDCs produced cytokines and chemokines and maintained their capacity to migrate to a gradient of CCL19. MDDCs infected with MVA-gag and MVA-gag trans-membrane were able to induce HIV-specific CD8(+) proliferation and secretion of IFN-γ, IL-2, IL-6 and TNF-α. We conclude that both HIV antigens loading strategies (PLA-p24 nanoparticles or MVA expressing HIV genes) induce HIV-1-specific T-cell responses, which are able to kill autologous gag-expressing cells. Thus, they are plausible candidates for the development of anti-HIV vaccines.

  15. HIV-1 progression links with viral genetic variability and subtype, and patient's HLA type: analysis of a Nairobi-Kenyan cohort.

    PubMed

    Abidi, Syed Hani; Shahid, Aniqa; Lakhani, Laila S; Shah, Reena; Okinda, Nancy; Ojwang, Peter; Abbas, Farhat; Rowland-Jones, Sarah; Ali, Syed

    2014-02-01

    In a Nairobi-Kenyan cohort of 50 HIV-1 positive patients, we analysed the prevalence of HIV-1 subtypes and human leucocyte antigen (HLA) alleles. From this cohort, 33 patients were selected for the analysis of HIV-1 infection progression markers (i.e. CD4 cell counts and viral loads) and their association with HIV-1 genetic variability and subtype, and patient's HLA type. HIV-1 gag genetic variability, analysed using bioinformatics tools, showed an inverse relationship with CD4 cell count whereas with viral load that relationship was direct. Certain HLA types and viral subtypes were also found to associate with patients' viral load. Associations between disease parameters and the genetic makeup of the host and virus may be crucial in determining the outcome of HIV-1 infection. PMID:24142198

  16. Mutations in the Spacer Peptide and Adjoining Sequences in Rous Sarcoma Virus Gag Lead to Tubular Budding ▿

    PubMed Central

    Keller, Paul W.; Johnson, Marc C.; Vogt, Volker M.

    2008-01-01

    All orthoretroviruses encode a single structural protein, Gag, which is necessary and sufficient for the assembly and budding of enveloped virus-like particles from the cell. The Gag proteins of Rous sarcoma virus (RSV) and human immunodeficiency virus type 1 (HIV-1) contain a short spacer peptide (SP or SP1, respectively) separating the capsid (CA) and nucleocapsid (NC) domains. SP or SP1 and the residues immediately upstream are known to be critical for proper assembly. Using mutagenesis and electron microscopy analysis of insect cells or chicken cells overexpressing RSV Gag, we defined the SP assembly domain to include the last 8 residues of CA, all 12 residues of SP, and the first 4 residues of NC. Five- or two-amino acid glycine-rich insertions or substitutions in this critical region uniformly resulted in the budding of abnormal, long tubular particles. The equivalent SP1-containing HIV-1 Gag sequence was unable to functionally replace the RSV sequence in supporting normal RSV spherical assembly. According to secondary structure predictions, RSV and HIV-1 SP/SP1 and adjoining residues may form an alpha helix, and what is likely the functionally equivalent sequence in murine leukemia virus Gag has been inferred by mutational analysis to form an amphipathic alpha helix. However, our alanine insertion mutagenesis did not provide evidence for an amphipathic helix in RSV Gag. Taken together, these results define a short assembly domain between the folded portions of CA and NC, which is essential for formation of the immature Gag shell. PMID:18448521

  17. Stoichiometry of the antiviral protein APOBEC3G in HIV-1 virions.

    PubMed

    Xu, Hongzhan; Chertova, Elena; Chen, Jianbo; Ott, David E; Roser, James D; Hu, Wei-Shau; Pathak, Vinay K

    2007-04-10

    A host cytidine deaminase, APOBEC3G (A3G), inhibits replication of human immunodeficiency virus type 1 (HIV-1) by incorporating into virions in the absence of the virally encoded Vif protein (Deltavif virions), at least in part by causing G-to-A hypermutation. To gain insight into the antiretroviral function of A3G, we determined the quantities of A3G molecules that are incorporated in Deltavif virions. We combined three experimental approaches-reversed-phase high-pressure liquid chromatography (HPLC), scintillation proximity assay (SPA), and quantitative immunoblotting-to determine the molar ratio of A3G to HIV-1 capsid protein in Deltavif virions. Our studies revealed that the amount of the A3G incorporated into Deltavif virions was proportional to the level of its expression in the viral producing cells, and the ratio of the A3G to Gag in the Deltavif virions produced from activated human peripheral blood mononuclear cells (PBMC) was approximately 1:439. Based on previous estimates of the stoichiometry of HIV-1 Gag in virions (1400-5000), we conclude that approximately 7 (+/-4) molecules of A3G are incorporated into Deltavif virions produced from human PBMCs. These results indicate that virion incorporation of only a few molecules of A3G is sufficient to inhibit HIV-1 replication. PMID:17126871

  18. Cleavage of eIF4G by HIV-1 protease: effects on translation.

    PubMed

    Perales, Celia; Carrasco, Luis; Ventoso, Iván

    2003-01-01

    We have recently reported that HIV-1 protease (PR) cleaves the initiation factor of translation eIF4GI [Ventoso et al., Proc. Natl. Acad. Sci. USA 98 (2001) 12966-12971]. Here, we analyze the proteolytic activity of HIV-1 PR on eIF4GI and eIF4GII and its implications for the translation of mRNAs. HIV-1 PR efficiently cleaves eIF4GI, but not eIF4GII, in cell-free systems as well as in transfected mammalian cells. This specific proteolytic activity of the retroviral protease on eIF4GI was more selective than that observed with poliovirus 2A(pro). Despite the presence of an intact endogenous eIF4GII, cleavage of eIF4GI by HIV-1 PR was sufficient to impair drastically the translation of capped and uncapped mRNAs. In contrast, poliovirus IRES-driven translation was unaffected or even enhanced by HIV-1 PR after cleavage of eIF4GI. Further support for these in vitro results has been provided by the expression of HIV-1 PR in COS cells from a Gag-PR precursor. Our present findings suggest that eIF4GI intactness is necessary to maintain cap-dependent translation, not only in cell-free systems but also in mammalian cells.

  19. Longitudinal studies on maternal HIV-1 variants by biological phenotyping, sequence analysis and viral load.

    PubMed

    Renta, J Y; Cadilla, C L; Vega, M E; Hillyer, G V; Estrada, C; Jiménez, E; Abreu, E; Méndez, I; Gandía, J; Meléndez-Guerrero, L M

    1997-11-01

    In this study, the HIV-1 variant viruses from ten pregnant women and their infants were isolated and characterized longitudinally in order to determine the role that viral envelope (gp120-V3 loop) gene variation and viral tropism play in vertical transmission. Biological phenotyping of each HIV variant was accomplished by growth in MT-2, and macrophages from healthy and non-HIV-infected donors. Genetic characterization of the variants was accomplished by DNA sequence analysis. All the women enrolled in this study received ZDV therapy. Virus was cultured from eight out of ten env V3-PCR positive mothers. HIV-1 isolates were all non-syncitium inducing variants. None of the mothers were found to transmit HIV, as determined by DNA PCR and quantitative co-cultures on their infants which were seronegative for HIV-1 through one year after birth. Viral cultures from infant blood samples were negative and infants were all healthy. However, nested env V3-PCR detected proviral DNA in five out of ten infants. In contrast, conventional gag-PCR was negative in the same five infants. Sequences of the five maternal-infant pairs were different, suggesting unique infant HIV-1 variants. The three highest maternal viral load values corresponded to infants that were env V3-PCR positive. These results suggest that HIV-1 particles are transmitted from ZDV-treated mothers to infants. Infant follow up is recommended to determine if HIV-1 has been inhibited by the immune system of the infants.

  20. HIV-1 antiretroviral drug therapy.

    PubMed

    Arts, Eric J; Hazuda, Daria J

    2012-04-01

    The most significant advance in the medical management of HIV-1 infection has been the treatment of patients with antiviral drugs, which can suppress HIV-1 replication to undetectable levels. The discovery of HIV-1 as the causative agent of AIDS together with an ever-increasing understanding of the virus replication cycle have been instrumental in this effort by providing researchers with the knowledge and tools required to prosecute drug discovery efforts focused on targeted inhibition with specific pharmacological agents. To date, an arsenal of 24 Food and Drug Administration (FDA)-approved drugs are available for treatment of HIV-1 infections. These drugs are distributed into six distinct classes based on their molecular mechanism and resistance profiles: (1) nucleoside-analog reverse transcriptase inhibitors (NNRTIs), (2) non-nucleoside reverse transcriptase inhibitors (NNRTIs), (3) integrase inhibitors, (4) protease inhibitors (PIs), (5) fusion inhibitors, and (6) coreceptor antagonists. In this article, we will review the basic principles of antiretroviral drug therapy, the mode of drug action, and the factors leading to treatment failure (i.e., drug resistance).

  1. Antiviral agent based on the non-structural protein targeting the maturation process of HIV-1: expression and susceptibility of chimeric Vpr as a substrate for cleavage by HIV-1 protease.

    PubMed

    Serio, D; Singh, S P; Cartas, M A; Weber, I T; Harrison, R W; Louis, J M; Srinivasan, A

    2000-06-01

    The processing of precursor proteins (Gag and Gag-pol) by the viral protease is absolutely required in order to generate infectious particles. This prompted us to consider novel strategies that target viral maturation. Towards this end, we have engineered an HIV-1 virion associated protein, Vpr, to contain protease cleavage signal sequences from Gag and Gag-pol precursor proteins. We previously reported that virus particles derived from HIV-1 proviral DNA, encoding chimeric Vpr, showed a lack of infectivity, depending on the fusion partner. As an extension of that work, the potential of chimeric Vpr as a substrate for HIV-1 protease was tested utilizing an epitope-based assay. Chimeric Vpr molecules were modified such that the Flag epitope is removed following cleavage, thus allowing us to determine the efficiency of protease cleavage. Following incubation with the protease, the resultant products were analyzed by radioimmunoprecipitation using antibodies directed against the Flag epitope. Densitometric analysis of the autoradiograms showed processing to be both rapid and specific. Further, the analysis of virus particles containing chimeric Vpr by immunoblot showed reactivities to antibodies against the Flag epitope similar to the data observed in vitro. These results suggest that the pseudosubstrate approach may provide another avenue for developing antiviral agents.

  2. GB virus type C E2 protein inhibits human immunodeficiency virus type 1 Gag assembly by downregulating human ADP-ribosylation factor 1

    PubMed Central

    Wang, Chenliang; Timmons, Christine L.; Shao, Qiujia; Kinlock, Ballington L.; Turner, Tiffany M.; Iwamoto, Aikichi; Zhang, Hui; Liu, Huanliang; Liu, Bindong

    2015-01-01

    GB virus type C (GBV-C) glycoprotein E2 protein disrupts HIV-1 assembly and release by inhibiting Gag plasma membrane targeting, however the mechanism by which the GBV-C E2 inhibits Gag trafficking remains unclear. In the present study, we identified ADP-ribosylation factor 1 (ARF1) contributed to the inhibitory effect of GBV-C E2 on HIV-1 Gag membrane targeting. Expression of GBV-C E2 decreased ARF1 expression in a proteasomal degradation-dependent manner. The restoration of ARF1 expression rescued the HIV-1 Gag processing and membrane targeting defect imposed by GBV-C E2. In addition, GBV-C E2 expression also altered Golgi morphology and suppressed protein traffic through the secretory pathway, which are all consistent with a phenotype of disrupting the function of ARF1 protein. Thus, our results indicate that GBV-C E2 inhibits HIV-1 assembly and release by decreasing ARF1, and may provide insights regarding GBV-C E2's potential for a new therapeutic approach for treating HIV-1. PMID:26675377

  3. Neuroinflammation and Behavior in HIV-1 Transgenic Rats Exposed to Chronic Adolescent Stress

    PubMed Central

    Rowson, Sydney A.; Harrell, Constance S.; Bekhbat, Mandakh; Gangavelli, Apoorva; Wu, Matthew J.; Kelly, Sean D.; Reddy, Renuka; Neigh, Gretchen N.

    2016-01-01

    Highly active antiretroviral therapy (HAART) has improved prognosis for people living with HIV (PLWH) and dramatically reduced the incidence of AIDS. However, even when viral load is controlled, PLWH develop psychiatric and neurological disorders more frequently than those living without HIV. Adolescents with HIV are particularly susceptible to the development of psychiatric illnesses and neurocognitive impairments. While both psychiatric and neurocognitive disorders have been found to be exacerbated by stress, the extent to which chronic stress and HIV-1 viral proteins interact to impact behavior and relevant neuroinflammatory processes is unknown. Determination of the individual contributions of stress and HIV to neuropsychiatric disorders is heavily confounded in humans. In order to isolate the influence of HIV-1 proteins and chronic stress on behavior and neuroinflammation, we employed the HIV-1 transgenic (Tg) rat model, which expresses HIV-1 proteins with a gag and pol deletion, allowing for viral protein expression without viral replication. This Tg line has been characterized as a model of HAART-controlled HIV-1 infection due to the lack of viral replication but continued presence of HIV-1 proteins. We exposed male and female adolescent HIV-1 Tg rats to a mixed-modality chronic stress paradigm consisting of isolation, social defeat and restraint, and assessed behavior, cerebral vascularization, and neuroinflammatory endpoints. Stress, sex, and presence of the HIV-1 transgene impacted weight gain in adolescent rats. Female HIV-1 Tg rats showed decreases in central tendency during the light cycle in the open field regardless of stress exposure. Both male and female HIV-1 Tg rats exhibited decreased investigative behavior in the novel object recognition task, but no memory impairments. Adolescent stress had no effect on the tested behaviors. Microglia in female HIV-1 Tg rats exhibited a hyper-ramified structure, and gene expression of complement factor B was

  4. Neuroinflammation and Behavior in HIV-1 Transgenic Rats Exposed to Chronic Adolescent Stress.

    PubMed

    Rowson, Sydney A; Harrell, Constance S; Bekhbat, Mandakh; Gangavelli, Apoorva; Wu, Matthew J; Kelly, Sean D; Reddy, Renuka; Neigh, Gretchen N

    2016-01-01

    Highly active antiretroviral therapy (HAART) has improved prognosis for people living with HIV (PLWH) and dramatically reduced the incidence of AIDS. However, even when viral load is controlled, PLWH develop psychiatric and neurological disorders more frequently than those living without HIV. Adolescents with HIV are particularly susceptible to the development of psychiatric illnesses and neurocognitive impairments. While both psychiatric and neurocognitive disorders have been found to be exacerbated by stress, the extent to which chronic stress and HIV-1 viral proteins interact to impact behavior and relevant neuroinflammatory processes is unknown. Determination of the individual contributions of stress and HIV to neuropsychiatric disorders is heavily confounded in humans. In order to isolate the influence of HIV-1 proteins and chronic stress on behavior and neuroinflammation, we employed the HIV-1 transgenic (Tg) rat model, which expresses HIV-1 proteins with a gag and pol deletion, allowing for viral protein expression without viral replication. This Tg line has been characterized as a model of HAART-controlled HIV-1 infection due to the lack of viral replication but continued presence of HIV-1 proteins. We exposed male and female adolescent HIV-1 Tg rats to a mixed-modality chronic stress paradigm consisting of isolation, social defeat and restraint, and assessed behavior, cerebral vascularization, and neuroinflammatory endpoints. Stress, sex, and presence of the HIV-1 transgene impacted weight gain in adolescent rats. Female HIV-1 Tg rats showed decreases in central tendency during the light cycle in the open field regardless of stress exposure. Both male and female HIV-1 Tg rats exhibited decreased investigative behavior in the novel object recognition task, but no memory impairments. Adolescent stress had no effect on the tested behaviors. Microglia in female HIV-1 Tg rats exhibited a hyper-ramified structure, and gene expression of complement factor B was

  5. Ectopic expression of anti-HIV-1 shRNAs protects CD8{sup +} T cells modified with CD4ζ CAR from HIV-1 infection and alleviates impairment of cell proliferation

    SciTech Connect

    Kamata, Masakazu; Kim, Patrick Y.; Ng, Hwee L.; Ringpis, Gene-Errol E.; Kranz, Emiko; Chan, Joshua; O'Connor, Sean; Yang, Otto O.; Chen, Irvin S.Y.

    2015-07-31

    Chimeric antigen receptors (CARs) are artificially engineered receptors that confer a desired specificity to immune effector T cells. As an HIV-1-specific CAR, CD4ζ CAR has been extensively tested in vitro as well as in clinical trials. T cells modified with this CAR mediated highly potent anti-HIV-1 activities in vitro and were well-tolerated in vivo, but exerted limited effects on viral load and reservoir size due to poor survival and/or functionality of the transduced cells in patients. We hypothesize that ectopic expression of CD4ζ on CD8{sup +} T cells renders them susceptible to HIV-1 infection, resulting in poor survival of those cells. To test this possibility, highly purified CD8{sup +} T cells were genetically modified with a CD4ζ-encoding lentiviral vector and infected with HIV-1. CD8{sup +} T cells were vulnerable to HIV-1 infection upon expression of CD4ζ as evidenced by elevated levels of p24{sup Gag} in cells and culture supernatants. Concurrently, the number of CD4ζ-modified CD8{sup +} T cells was reduced relative to control cells upon HIV-1 infection. To protect these cells from HIV-1 infection, we co-expressed two anti-HIV-1 shRNAs previously developed by our group together with CD4ζ. This combination vector was able to suppress HIV-1 infection without impairing HIV-1-dependent effector activities of CD4ζ. In addition, the number of CD4ζ-modified CD8{sup +} T cells maintained similar levels to that of the control even under HIV-1 infection. These results suggest that protecting CD4ζ-modified CD8{sup +} T cells from HIV-1 infection is required for prolonged HIV-1-specific immune surveillance. - Highlights: • Ectopic expression of CD4ζ CAR in CD8{sup +} T cells renders them susceptible to HIV-1 infection. • Co-expression of two anti-HIV-1 shRNAs protects CD4ζ CAR-modified CD8{sup +} T cells from HIV-1 infection. • Protecting CD4ζ CAR-modified CD8{sup +} T cells from HIV-1 infection suppresses its cytopathic effect.

  6. Interaction of the phospholipid scramblase 1 with HIV-1 Tat results in the repression of Tat-dependent transcription

    SciTech Connect

    Kusano, Shuichi Eizuru, Yoshito

    2013-04-19

    Highlights: •PLSCR1 specifically interacted with HIV-1 Tat in vitro and in vivo. •PLSCR1 repressed Tat-dependent transactivation of the HIV-1 LTR. •Suppression of PLSCR1 expression enhanced the levels of HIV-1 transcripts. •PLSCR1 reduced the nuclear localization of Tat. -- Abstract: Human phospholipid scramblase 1 (PLSCR1) is an interferon (IFN)-stimulated gene and possesses an IFN-mediated antiviral function. We show here that PLSCR1 directly interacts with human immunodeficiency virus type-1 (HIV-1) Tat. This interaction occurs both in vitro and in vivo through amino acids 160–250 of PLSCR1. Overexpression of PLSCR1 efficiently represses the Tat-dependent transactivation of the HIV-1 long terminal repeat (LTR) and reduces the nuclear translocation of Tat. In addition, shRNA-mediated suppression of endogenous PLSCR1 expression enhances the levels of gag mRNA in an HIV-1-infected T-cell line. These findings indicate that PLSCR1 negatively regulates the Tat-dependent transactivation of the HIV-1 LTR during HIV-1 infection.

  7. Cell type specificity and structural determinants of IRES activity from the 5′ leaders of different HIV-1 transcripts

    PubMed Central

    Plank, Terra-Dawn M.; Whitehurst, James T.; Kieft, Jeffrey S.

    2013-01-01

    Internal ribosome entry site (IRES) RNAs are important regulators of gene expression, but their diverse molecular mechanisms remain partially understood. The HIV-1 gag transcript leader contains an IRES that may be a good model for understanding the function of many other IRESs. We investigated the possibility that this IRES’ function is linked to both the structure of the RNA and its cellular environment. We find that in the context of a bicistronic reporter construct, HIV-1 gag IRES’ activity is cell type-specific, with higher activity in T-cell culture systems that model the natural target cells for HIV-1 infection. This finding underscores how an IRES may be fine tuned to function in certain cells, perhaps owing to cell type-specific protein factors. Using RNA probing and mutagenesis, we demonstrate that the HIV-1 gag IRES does not use pre-folded RNA structure to drive function, a finding that gives insight into how conformationally dynamic IRESs operate. Furthermore, we find that a common exon drives IRES activity in a diverse set of alternatively spliced transcripts. We propose a mechanism in which a structurally plastic RNA element confers the ability to initiate translation internally, and activity from this common element is modulated by 3′ nucleotides added by alternative splicing. PMID:23661682

  8. Constitutively Active MAVS Inhibits HIV-1 Replication via Type I Interferon Secretion and Induction of HIV-1 Restriction Factors

    PubMed Central

    Gupta, Sachin; Termini, James M.; Issac, Biju; Guirado, Elizabeth; Stone, Geoffrey W.

    2016-01-01

    Type I interferon is known to inhibit HIV-1 replication through the induction of interferon stimulated genes (ISG), including a number of HIV-1 restriction factors. To better understand interferon-mediated HIV-1 restriction, we constructed a constitutively active form of the RIG-I adapter protein MAVS. Constitutive MAVS was generated by fusion of full length MAVS to a truncated form of the Epstein Barr virus protein LMP1 (ΔLMP1). Supernatant from ΔLMP1-MAVS-transfected 293T cells contained high levels of type I interferons and inhibited HIV replication in both TZM-bl and primary human CD4+ T cells. Supernatant from ΔLMP1-MAVS-transfected 293T cells also inhibited replication of VSV-G pseudotyped single cycle SIV in TZM-bl cells, suggesting restriction was post-entry and common to both HIV and SIV. Gene array analysis of ΔLMP1-MAVS-transfected 293T cells and trans-activated CD4+ T cells showed significant upregulation of ISG, including previously characterized HIV restriction factors Viperin, Tetherin, MxB, and ISG56. Interferon blockade studies implicated interferon-beta in this response. In addition to direct viral inhibition, ΔLMP1-MAVS markedly enhanced secretion of IFN-β and IL-12p70 by dendritic cells and the activation and maturation of dendritic cells. Based on this immunostimulatory activity, an adenoviral vector (Ad5) expressing ΔLMP1-MAVS was tested as a molecular adjuvant in an HIV vaccine mouse model. Ad5-Gag antigen combined with Ad5-ΔLMP1-MAVS enhanced control of vaccinia-gag replication in a mouse challenge model, with 4/5 animals showing undetectable virus following challenge. Overall, ΔLMP1-MAVS is a promising reagent to inhibit HIV-1 replication in infected tissues and enhance vaccine-mediated immune responses, while avoiding toxicity associated with systemic type I interferon administration. PMID:26849062

  9. Constitutively Active MAVS Inhibits HIV-1 Replication via Type I Interferon Secretion and Induction of HIV-1 Restriction Factors.

    PubMed

    Gupta, Sachin; Termini, James M; Issac, Biju; Guirado, Elizabeth; Stone, Geoffrey W

    2016-01-01

    Type I interferon is known to inhibit HIV-1 replication through the induction of interferon stimulated genes (ISG), including a number of HIV-1 restriction factors. To better understand interferon-mediated HIV-1 restriction, we constructed a constitutively active form of the RIG-I adapter protein MAVS. Constitutive MAVS was generated by fusion of full length MAVS to a truncated form of the Epstein Barr virus protein LMP1 (ΔLMP1). Supernatant from ΔLMP1-MAVS-transfected 293T cells contained high levels of type I interferons and inhibited HIV replication in both TZM-bl and primary human CD4+ T cells. Supernatant from ΔLMP1-MAVS-transfected 293T cells also inhibited replication of VSV-G pseudotyped single cycle SIV in TZM-bl cells, suggesting restriction was post-entry and common to both HIV and SIV. Gene array analysis of ΔLMP1-MAVS-transfected 293T cells and trans-activated CD4+ T cells showed significant upregulation of ISG, including previously characterized HIV restriction factors Viperin, Tetherin, MxB, and ISG56. Interferon blockade studies implicated interferon-beta in this response. In addition to direct viral inhibition, ΔLMP1-MAVS markedly enhanced secretion of IFN-β and IL-12p70 by dendritic cells and the activation and maturation of dendritic cells. Based on this immunostimulatory activity, an adenoviral vector (Ad5) expressing ΔLMP1-MAVS was tested as a molecular adjuvant in an HIV vaccine mouse model. Ad5-Gag antigen combined with Ad5-ΔLMP1-MAVS enhanced control of vaccinia-gag replication in a mouse challenge model, with 4/5 animals showing undetectable virus following challenge. Overall, ΔLMP1-MAVS is a promising reagent to inhibit HIV-1 replication in infected tissues and enhance vaccine-mediated immune responses, while avoiding toxicity associated with systemic type I interferon administration. PMID:26849062

  10. Memory CD4(+) T cells are the earliest detectable human immunodeficiency virus type 1 (HIV-1)-infected cells in the female genital mucosal tissue during HIV-1 transmission in an organ culture system.

    PubMed

    Gupta, Phalguni; Collins, Kelly B; Ratner, Deena; Watkins, Simon; Naus, Gregory J; Landers, Daniel V; Patterson, Bruce K

    2002-10-01

    The virologic and cellular factors that are involved in transmission of human immunodeficiency virus type 1 (HIV-1) across the female genital tissue are poorly understood. We have recently developed a human cervical tissue-derived organ culture model to study heterosexual transmission of HIV-1 that mimics the in vivo situation. Using this model we investigated the role of phenotypic characteristics of HIV-1 and identified the cell types that are first infected during transmission. Our data indicate that the cell-free R5 HIV-1 was more efficiently transmitted than cell-free X4 HIV-1. Cell-free and cell-associated HIV-1 had comparable transmission efficiency regardless of whether the virus was of R5 or X4 type. We have demonstrated that memory CD4(+) T cells and not Langerhans cells were the first HIV-1 RNA-positive cells detected at the epithelial-submucosal junction 6 h after virus exposure. Multicolor laser confocal microscopy demonstrated a globular distribution of HIV-1 gag-pol mRNA in the cytoplasm, and the distribution of CD4 and the CD45RO isoform was irregular on the cellular membrane. At 96 h postinoculation, in addition to memory CD4(+) T cells, HIV-1 RNA-positive Langerhans cells and macrophages were also detected. The identification of CD4(+) T cells in the tissue at 6 h was confirmed by flow cytometric simultaneous immunophenotyping and ultrasensitive fluorescence in situ hybridization assay on immune cells isolated from disaggregated tissue. Furthermore, PMPA [9-[2-(phosphonomethoxy)propyl] adenine], an antiretroviral compound, and UC781, a microbicide, inhibited HIV-1 transmission across the mucosa, indicating the utility of the organ culture to screen topical microbicides for their ability to block sexual transmission of HIV-1.

  11. Striking HIV-1 Entry by Targeting HIV-1 gp41. But, Where Should We Target?

    PubMed Central

    Teixeira, Cátia; Barbault, Florent; Couesnon, Thierry; Gomes, José R. B.; Gomes, Paula; Maurel, François

    2016-01-01

    HIV-1 gp41 facilitates the viral fusion through a conformational switch involving the association of three C-terminal helices along the conserved hydrophobic grooves of three N-terminal helices coiled-coil. The control of these structural rearrangements is thought to be central to HIV-1 entry and, therefore, different strategies of intervention are being developed. Herewith, we describe a procedure to simulate the folding of an HIV-1 gp41 simplified model. This procedure is based on the construction of plausible conformational pathways, which describe protein transition between non-fusogenic and fusogenic conformations. The calculation of the paths started with 100 molecular dynamics simulations of the non-fusogenic conformation, which were found to converge to different intermediate states. Those presenting defined criteria were selected for separate targeted molecular dynamics simulations, subjected to a force constant imposing a movement towards the gp41 fusogenic conformation. Despite significant diversity, a preferred sequence of events emerged when the simulations were analyzed in terms of the formation, breakage and evolution of the contacts. We pointed out 29 residues as the most relevant for the movement of gp41; also, 2696 possible interactions were reduced to only 48 major interactions, which reveals the efficiency of the method. The analysis of the evolution of the main interactions lead to the detection of four main behaviors for those contacts: stable, increasing, decreasing and repulsive interactions. Altogether, these results suggest a specific small cavity of the HIV-1 gp41 hydrophobic groove as the preferred target to small molecules. PMID:26785380

  12. Polypropylene Sulfide Nanoparticle p24 Vaccine Promotes Dendritic Cell-Mediated Specific Immune Responses against HIV-1.

    PubMed

    Caucheteux, Stephan M; Mitchell, John P; Ivory, Matthew O; Hirosue, Sachiko; Hakobyan, Svetlana; Dolton, Garry; Ladell, Kristin; Miners, Kelly; Price, David A; Kan-Mitchell, June; Sewell, Andrew K; Nestle, Frank; Moris, Arnaud; Karoo, Richard O; Birchall, James C; Swartz, Melody A; Hubbel, Jeffrey A; Blanchet, Fabien P; Piguet, Vincent

    2016-06-01

    Delivery of vaccine formulations into the dermis using antigen-coated microneedle patches is a promising and safe approach because of efficient antigen delivery and safety. We evaluated an intradermal vaccine using HIV-1 p24 Gag peptide-conjugated polypropylene sulfide nanoparticles to induce immunity against HIV-1. This peptide-conjugated polypropylene sulfide nanoparticle formulation did not accelerate the maturation of blood- or skin-derived subsets of dendritic cells, either generated in vitro or purified ex vivo, despite efficient uptake in the absence of adjuvant. Moreover, dendritic cell-mediated capture of particulate antigen in this form induced potent HIV-1-specific CD4(+) T-cell responses, as well as B-cell-mediated antibody production. Nanoparticle-based intradermal antigen delivery may therefore provide a new option in the global effort to develop an effective vaccine against HIV-1. PMID:26896775

  13. Sequence-specific interaction between HIV-1 matrix protein and viral genomic RNA revealed by in vitro genetic selection.

    PubMed Central

    Purohit, P; Dupont, S; Stevenson, M; Green, M R

    2001-01-01

    The human immunodeficiency virus type-1 matrix protein (HIV-1 MA) is a multifunctional structural protein synthesized as part of the Pr55 gag polyprotein. We have used in vitro genetic selection to identify an RNA consensus sequence that specifically interacts with MA (Kd = 5 x 10(-7) M). This 13-nt MA binding consensus sequence bears a high degree of homology (77%) to a region (nt 1433-1446) within the POL open reading frame of the HIV-1 genome (consensus sequence from 38 HIV-1 strains). Chemical interference experiments identified the nucleotides within the MA binding consensus sequence involved in direct contact with MA. We further demonstrate that this RNA-protein interaction is mediated through a stretch of basic amino acids within MA. Mutations that disrupt the interaction between MA and its RNA binding site within the HIV-1 genome resulted in a measurable decrease in viral replication. PMID:11345436

  14. Multiplexed next-generation sequencing and de novo assembly to obtain near full-length HIV-1 genome from plasma virus.

    PubMed

    Aralaguppe, Shambhu G; Siddik, Abu Bakar; Manickam, Ashokkumar; Ambikan, Anoop T; Kumar, Milner M; Fernandes, Sunjay Jude; Amogne, Wondwossen; Bangaruswamy, Dhinoth K; Hanna, Luke Elizabeth; Sonnerborg, Anders; Neogi, Ujjwal

    2016-10-01

    Analysing the HIV-1 near full-length genome (HIV-NFLG) facilitates new understanding into the diversity of virus population dynamics at individual or population level. In this study we developed a simple but high-throughput next generation sequencing (NGS) protocol for HIV-NFLG using clinical specimens and validated the method against an external quality control (EQC) panel. Clinical specimens (n=105) were obtained from three cohorts from two highly conserved HIV-1C epidemics (India and Ethiopia) and one diverse epidemic (Sweden). Additionally an EQC panel (n=10) was used to validate the protocol. HIV-NFLG was performed amplifying the HIV-genome (Gag-to-nef) in two fragments. NGS was performed using the Illumina HiSeq2500 after multiplexing 24 samples, followed by de novo assembly in Iterative Virus Assembler or VICUNA. Subtyping was carried out using several bioinformatics tools. Amplification of HIV-NFLG has 90% (95/105) success-rate in clinical specimens. NGS was successful in all clinical specimens (n=45) and EQA samples (n=10) attempted. The mean error for mutations for the EQC panel viruses were <1%. Subtyping identified two as A1C recombinant. Our results demonstrate the feasibility of a simple NGS-based HIV-NFLG that can potentially be used in the molecular surveillance for effective identification of subtypes and transmission clusters for operational public health intervention.

  15. The Use of an Alternative Extraoral Periapical Technique for Patients with Severe Gag Reflex

    PubMed Central

    e Silva, Mauro Henrique Chagas; Santos, Mariane Floriano Lopes; de Lima, Carolina Oliveira; Campos, Celso Neiva

    2016-01-01

    Gag reflex is a physiologic mechanism that promotes contraction of the muscles of the tongue and pharyngeal walls. Different factors, including intraoral radiographic films and sensors, may trigger this reflex. Patients with severe gag reflex may not be able to tolerate the presence of intraoral radiographic films or sensors during root canal therapy (RCT). This factor may prevent an appropriate intraoral radiograph, which is important in RCT. Different approaches have been used to facilitate dental procedures in patients suffering from severe gag reflex. The use of an extraoral radiographic technique is an alternative method to obtain working length confirmation in patients with severe gag reflex. In this report of 2 cases, the use of an extraoral radiographic technique as an alternative approach during RCT in patients with severe gag reflex associated with phobic behavior and trismus was successfully demonstrated. PMID:27547474

  16. The Use of an Alternative Extraoral Periapical Technique for Patients with Severe Gag Reflex.

    PubMed

    E Silva, Mauro Henrique Chagas; Coelho, Marcelo Santos; Santos, Mariane Floriano Lopes; de Lima, Carolina Oliveira; Campos, Celso Neiva

    2016-01-01

    Gag reflex is a physiologic mechanism that promotes contraction of the muscles of the tongue and pharyngeal walls. Different factors, including intraoral radiographic films and sensors, may trigger this reflex. Patients with severe gag reflex may not be able to tolerate the presence of intraoral radiographic films or sensors during root canal therapy (RCT). This factor may prevent an appropriate intraoral radiograph, which is important in RCT. Different approaches have been used to facilitate dental procedures in patients suffering from severe gag reflex. The use of an extraoral radiographic technique is an alternative method to obtain working length confirmation in patients with severe gag reflex. In this report of 2 cases, the use of an extraoral radiographic technique as an alternative approach during RCT in patients with severe gag reflex associated with phobic behavior and trismus was successfully demonstrated. PMID:27547474

  17. Curcumin derivatives as HIV-1 protease inhibitors

    SciTech Connect

    Sui, Z.; Li, J.; Craik, C.S.; Ortiz de Montellano, P.R.

    1993-12-31

    Curcumin, a non-toxic natural compound from Curcuma longa, has been found to be an HIV-1 protease inhibitor. Some of its derivatives were synthesized and their inhibitory activity against the HIV-1 protease was tested. Curcumin analogues containing boron enhanced the inhibitory activity. At least of the the synthesized compounds irreversibly inhibits the HIV-1 protease.

  18. Interplay between the alpharetroviral Gag protein and SR proteins SF2 and SC35 in the nucleus.

    PubMed

    Rice, Breanna L; Kaddis, Rebecca J; Stake, Matthew S; Lochmann, Timothy L; Parent, Leslie J

    2015-01-01

    Retroviruses are positive-sense, single-stranded RNA viruses that reverse transcribe their RNA genomes into double-stranded DNA for integration into the host cell chromosome. The integrated provirus is used as a template for the transcription of viral RNA. The full-length viral RNA can be used for the translation of the Gag and Gag-Pol structural proteins or as the genomic RNA (gRNA) for encapsidation into new virions by the Gag protein. The mechanism by which Gag selectively incorporates unspliced gRNA into virus particles is poorly understood. Although Gag was previously thought to localize exclusively to the cytoplasm and plasma membrane where particles are released, we found that the Gag protein of Rous sarcoma virus, an alpharetrovirus, undergoes transient nuclear trafficking. When the nuclear export signal of RSV Gag is mutated (Gag.L219A), the protein accumulates in discrete subnuclear foci reminiscent of nuclear bodies such as splicing speckles, paraspeckles, and PML bodies. In this report, we observed that RSV Gag.L219A foci appeared to be tethered in the nucleus, partially co-localizing with the splicing speckle components SC35 and SF2. Overexpression of SC35 increased the number of Gag.L219A nucleoplasmic foci, suggesting that SC35 may facilitate the formation of Gag foci. We previously reported that RSV Gag nuclear trafficking is required for efficient gRNA packaging. Together with the data presented herein, our findings raise the intriguing hypothesis that RSV Gag may co-opt splicing factors to localize near transcription sites. Because splicing occurs co-transcriptionally, we speculate that this mechanism could allow Gag to associate with unspliced viral RNA shortly after its transcription initiation in the nucleus, before the viral RNA can be spliced or exported from the nucleus as an mRNA template. PMID:26441864

  19. HIV-1 and Human PEG10 Frameshift Elements Are Functionally Distinct and Distinguished by Novel Small Molecule Modulators

    PubMed Central

    Sleebs, Brad E.; Lackovic, Kurt; Parisot, John P.; Moss, Rebecca M.; Crowe-McAuliffe, Caillan; Mathew, Suneeth F.; Edgar, Christina D.; Kleffmann, Torsten; Tate, Warren P.

    2015-01-01

    Frameshifting during translation of viral or in rare cases cellular mRNA results in the synthesis of proteins from two overlapping reading frames within the same mRNA. In HIV-1 the protease, reverse transcriptase, and integrase enzymes are in a second reading frame relative to the structural group-specific antigen (gag), and their synthesis is dependent upon frameshifting. This ensures that a strictly regulated ratio of structural proteins and enzymes, which is critical for HIV-1 replication and viral infectivity, is maintained during protein synthesis. The frameshift element in HIV-1 RNA is an attractive target for the development of a new class of anti HIV-1 drugs. However, a number of examples are now emerging of human genes using −1 frameshifting, such as PEG10 and CCR5. In this study we have compared the HIV-1 and PEG10 frameshift elements and shown they have distinct functional characteristics. Frameshifting occurs at several points within each element. Moreover, frameshift modulators that were isolated by high-throughput screening of a library of 114,000 lead-like compounds behaved differently with the PEG10 frameshift element. The most effective compounds affecting the HIV-1 element enhanced frameshifting by 2.5-fold at 10 μM in two different frameshift reporter assay systems. HIV-1 protease:gag protein ratio was affected by a similar amount in a specific assay of virally-infected cultured cell, but the modulation of frameshifting of the first-iteration compounds was not sufficient to show significant effects on viral infectivity. Importantly, two compounds did not affect frameshifting with the human PEG10 element, while one modestly inhibited rather than enhanced frameshifting at the human element. These studies indicate that frameshift elements have unique characteristics that may allow targeting of HIV-1 and of other viruses specifically for development of antiviral therapeutic molecules without effect on human genes like PEG10 that use the same

  20. Equine Infectious Anemia Virus Gag Assembly and Export Are Directed by Matrix Protein through trans-Golgi Networks and Cellular Vesicles

    PubMed Central

    Zhang, Zeli; Ma, Jian; Zhang, Xiang; Su, Chao; Yao, Qiu-Cheng

    2015-01-01

    ABSTRACT Gag intracellular assembly and export are very important processes for lentiviruses replication. Previous studies have demonstrated that equine infectious anemia virus (EIAV) matrix (MA) possesses distinct phosphoinositide affinity compared with HIV-1 MA and that phosphoinositide-mediated targeting to peripheral and internal membranes is a critical factor in EIAV assembly and release. In this study, we compared the cellular assembly sites of EIAV and HIV-1. We observed that the assembly of EIAV particles occurred on interior cellular membranes, while HIV-1 was targeted to the plasma membrane (PM) for assembly. Then, we determined that W7 and K9 in the EIAV MA N terminus were essential for Gag assembly and release but did not affect the cellular distribution of Gag. The replacement of EIAV MA with HIV-1 MA directed chimeric Gag to the PM but severely impaired Gag release. MA structural analysis indicated that the EIAV and HIV-1 MAs had similar spatial structures but that helix 1 of the EIAV MA was closer to loop 2. Further investigation indicated that EIAV Gag accumulated in the trans-Golgi network (TGN) but not the early and late endosomes. The 9 N-terminal amino acids of EIAV MA harbored the signal that directed Gag to the TGN membrane system. Additionally, we demonstrated that EIAV particles were transported to the extracellular space by the cellular vesicle system. This type of EIAV export was not associated with multivesicular bodies or microtubule depolymerization but could be inhibited by the actin-depolymerizing drug cytochalasin D, suggesting that dynamic actin depolymerization may be associated with EIAV production. IMPORTANCE In previous studies, EIAV Gag was reported to localize to both the cell interior and the plasma membrane. Here, we demonstrate that EIAV likely uses the TGN as the assembly site in contrast to HIV-1, which is targeted to the PM for assembly. These distinct assembly features are determined by the MA domain. We also identified

  1. A Generalized Entropy Measure of Within-Host Viral Diversity for Identifying Recent HIV-1 Infections.

    PubMed

    Wu, Julia Wei; Patterson-Lomba, Oscar; Novitsky, Vladimir; Pagano, Marcello

    2015-10-01

    There is a need for incidence assays that accurately estimate HIV incidence based on cross-sectional specimens. Viral diversity-based assays have shown promises but are not particularly accurate. We hypothesize that certain viral genetic regions are more predictive of recent infection than others and aim to improve assay accuracy by using classification algorithms that focus on highly informative regions (HIRs).We analyzed HIV gag sequences from a cohort in Botswana. Forty-two subjects newly infected by HIV-1 Subtype C were followed through 500 days post-seroconversion. Using sliding window analysis, we screened for genetic regions within gag that best differentiate recent versus chronic infections. We used both nonparametric and parametric approaches to evaluate the discriminatory abilities of sequence regions. Segmented Shannon Entropy measures of HIRs were aggregated to develop generalized entropy measures to improve prediction of recency. Using logistic regression as the basis for our classification algorithm, we evaluated the predictive power of these novel biomarkers and compared them with recently reported viral diversity measures using area under the curve (AUC) analysis.Change of diversity over time varied across different sequence regions within gag. We identified the top 50% of the most informative regions by both nonparametric and parametric approaches. In both cases, HIRs were in more variable regions of gag and less likely in the p24 coding region. Entropy measures based on HIRs outperformed previously reported viral-diversity-based biomarkers. These methods are better suited for population-level estimation of HIV recency.The patterns of diversification of certain regions within the gag gene are more predictive of recency of infection than others. We expect this result to apply in other HIV genetic regions as well. Focusing on these informative regions, our generalized entropy measure of viral diversity demonstrates the potential for improving

  2. A Single-Nucleotide Synonymous Mutation in the gag Gene Controlling Human Immunodeficiency Virus Type 1 Virion Production▿

    PubMed Central

    Hamano, Takaichi; Matsuo, Kazuhiro; Hibi, Yurina; Victoriano, Ann Florence B.; Takahashi, Naoko; Mabuchi, Yosio; Soji, Tsuyoshi; Irie, Shinji; Sawanpanyalert, Pathom; Yanai, Hideki; Hara, Takashi; Yamazaki, Shudo; Yamamoto, Naoki; Okamoto, Takashi

    2007-01-01

    Viral factors as well as host ones play major roles in the disease progression of human immunodeficiency virus type 1 (HIV-1) infection. We have examined cytotoxic T-lymphocyte activity and HIV-1 DNA PCR results of 312 high-risk seronegative drug users in northern Thailand and identified four seronegative cases positive for both assays. Furthermore, we have identified a synonymous mutation in nucleotide position 75 of the gag p17 gene (A426G) of HIV-1 that belongs to the CRF01_AE virus circulating in Thailand. The replication-competent HIV-1 clone containing the A426G mutation demonstrated a dramatic reduction of virion production and perturbation of viral morphogenesis without affecting viral protein synthesis in cells. PMID:17121798

  3. Regional Differences in Prevalence of HIV-1 Discordance in Africa and Enrollment of HIV-1 Discordant Couples into an HIV-1 Prevention Trial

    PubMed Central

    Lingappa, Jairam R.; Lambdin, Barrot; Bukusi, Elizabeth Ann; Ngure, Kenneth; Kavuma, Linda; Inambao, Mubiana; Kanweka, William; Allen, Susan; Kiarie, James N.; Makhema, Joseph; Were, Edwin; Manongi, Rachel; Coetzee, David; de Bruyn, Guy; Delany-Moretlwe, Sinead; Magaret, Amalia; Mugo, Nelly; Mujugira, Andrew; Ndase, Patrick; Celum, Connie

    2008-01-01

    Background Most HIV-1 transmission in Africa occurs among HIV-1-discordant couples (one partner HIV-1 infected and one uninfected) who are unaware of their discordant HIV-1 serostatus. Given the high HIV-1 incidence among HIV-1 discordant couples and to assess efficacy of interventions for reducing HIV-1 transmission, HIV-1 discordant couples represent a critical target population for HIV-1 prevention interventions and prevention trials. Substantial regional differences exist in HIV-1 prevalence in Africa, but regional differences in HIV-1 discordance among African couples, has not previously been reported. Methodology/Principal Findings The Partners in Prevention HSV-2/HIV-1 Transmission Trial (“Partners HSV-2 Study”), the first large HIV-1 prevention trial in Africa involving HIV-1 discordant couples, completed enrollment in May 2007. Partners HSV-2 Study recruitment data from 12 sites from East and Southern Africa were used to assess HIV-1 discordance among couples accessing couples HIV-1 counseling and testing, and to correlate with enrollment of HIV-1 discordant couples. HIV-1 discordance at Partners HSV-2 Study sites ranged from 8–31% of couples tested from the community. Across all study sites and, among all couples with one HIV-1 infected partner, almost half (49%) of couples were HIV-1 discordant. Site-specific monthly enrollment of HIV-1 discordant couples into the clinical trial was not directly associated with prevalence of HIV-1 discordance, but was modestly correlated with national HIV-1 counseling and testing rates and access to palliative care/basic health care (r = 0.74, p = 0.09). Conclusions/Significance HIV-1 discordant couples are a critical target for HIV-1 prevention in Africa. In addition to community prevalence of HIV-1 discordance, national infrastructure for HIV-1 testing and healthcare delivery and effective community outreach strategies impact recruitment of HIV-1 discordant couples into HIV-1 prevention trials. PMID

  4. Prevalence and magnitude of human immunodeficiency virus (HIV) type 1-specific lymphocyte responses in breast milk from HIV-1-seropositive women.

    PubMed

    Lohman, Barbara L; Slyker, Jennifer; Mbori-Ngacha, Dorothy; Bosire, Rose; Farquhar, Carey; Obimbo, Elizabeth; Otieno, Phelgona; Nduati, Ruth; Rowland-Jones, Sarah; John-Stewart, Grace

    2003-12-01

    Human immunodeficiency virus (HIV) type 1-specific cell-mediated immunity of breast milk may influence the likelihood of mother-to-child transmission of HIV-1 via breast-feeding. In breast-milk specimens collected during the first month postpartum from HIV-1-seropositive women in Nairobi, HIV-1 gag-specific cellular responses were detected in 17 (47%) of 36, and env-specific cellular responses were present in 20 (40%) of 50. Peripheral blood lymphocyte responses against either gag or env were detected in 35 (66%) of the 53 subjects, 18 (51%) of whom had positive gag or env responses in their breast milk. In paired analyses of blood and breast milk, the mean magnitude of responses to env or gag stimulation in breast milk was significantly higher than that in blood and remained higher in breast milk after normalization of responses according to CD8+ lymphocyte count. These results suggest that CD8+ lymphocytes present in breast milk have the capacity to recognize HIV-1-infected cells and may be selectively transported to breast milk to reduce either viral replication or transmission in breast milk.

  5. Pandemic HIV-1 Vpu overcomes intrinsic herd immunity mediated by tetherin.

    PubMed

    Iwami, Shingo; Sato, Kei; Morita, Satoru; Inaba, Hisashi; Kobayashi, Tomoko; Takeuchi, Junko S; Kimura, Yuichi; Misawa, Naoko; Ren, Fengrong; Iwasa, Yoh; Aihara, Kazuyuki; Koyanagi, Yoshio

    2015-07-17

    Among the four groups of HIV-1 (M, N, O, and P), HIV-1M alone is pandemic and has rapidly expanded across the world. However, why HIV-1M has caused a devastating pandemic while the other groups remain contained is unclear. Interestingly, only HIV-1M Vpu, a viral protein, can robustly counteract human tetherin, which tethers budding virions. Therefore, we hypothesize that this property of HIV-1M Vpu facilitates human-to-human viral transmission. Adopting a multilayered experimental-mathematical approach, we demonstrate that HIV-1M Vpu confers a 2.38-fold increase in the prevalence of HIV-1 transmission. When Vpu activity is lost, protected human populations emerge (i.e., intrinsic herd immunity develops) through the anti-viral effect of tetherin. We also reveal that all Vpus of transmitted/founder HIV-1M viruses maintain anti-tetherin activity. These findings indicate that tetherin plays the role of a host restriction factor, providing 'intrinsic herd immunity', whereas Vpu has evolved in HIV-1M as a tetherin antagonist.

  6. The RNA Binding Specificity of Human APOBEC3 Proteins Resembles That of HIV-1 Nucleocapsid.

    PubMed

    York, Ashley; Kutluay, Sebla B; Errando, Manel; Bieniasz, Paul D

    2016-08-01

    The APOBEC3 (A3) cytidine deaminases are antiretroviral proteins, whose targets include human immunodeficiency virus type-1 (HIV-1). Their incorporation into viral particles is critical for antiviral activity and is driven by interactions with the RNA molecules that are packaged into virions. However, it is unclear whether A3 proteins preferentially target RNA molecules that are destined to be packaged and if so, how. Using cross-linking immunoprecipitation sequencing (CLIP-seq), we determined the RNA binding preferences of the A3F, A3G and A3H proteins. We found that A3 proteins bind preferentially to RNA segments with particular properties, both in cells and in virions. Specifically, A3 proteins target RNA sequences that are G-rich and/or A-rich and are not scanned by ribosomes during translation. Comparative analyses of HIV-1 Gag, nucleocapsid (NC) and A3 RNA binding to HIV-1 RNA in cells and virions revealed the striking finding that A3 proteins partially mimic the RNA binding specificity of the HIV-1 NC protein. These findings suggest a model for A3 incorporation into HIV-1 virions in which an NC-like RNA binding specificity is determined by nucleotide composition rather than sequence. This model reconciles the promiscuity of A3 RNA binding that has been observed in previous studies with a presumed advantage that would accompany selective binding to RNAs that are destined to be packaged into virions. PMID:27541140

  7. The RNA Binding Specificity of Human APOBEC3 Proteins Resembles That of HIV-1 Nucleocapsid

    PubMed Central

    Errando, Manel; Bieniasz, Paul D.

    2016-01-01

    The APOBEC3 (A3) cytidine deaminases are antiretroviral proteins, whose targets include human immunodeficiency virus type-1 (HIV-1). Their incorporation into viral particles is critical for antiviral activity and is driven by interactions with the RNA molecules that are packaged into virions. However, it is unclear whether A3 proteins preferentially target RNA molecules that are destined to be packaged and if so, how. Using cross-linking immunoprecipitation sequencing (CLIP-seq), we determined the RNA binding preferences of the A3F, A3G and A3H proteins. We found that A3 proteins bind preferentially to RNA segments with particular properties, both in cells and in virions. Specifically, A3 proteins target RNA sequences that are G-rich and/or A-rich and are not scanned by ribosomes during translation. Comparative analyses of HIV-1 Gag, nucleocapsid (NC) and A3 RNA binding to HIV-1 RNA in cells and virions revealed the striking finding that A3 proteins partially mimic the RNA binding specificity of the HIV-1 NC protein. These findings suggest a model for A3 incorporation into HIV-1 virions in which an NC-like RNA binding specificity is determined by nucleotide composition rather than sequence. This model reconciles the promiscuity of A3 RNA binding that has been observed in previous studies with a presumed advantage that would accompany selective binding to RNAs that are destined to be packaged into virions. PMID:27541140

  8. Vaccine-elicited Human T Cells Recognizing Conserved Protein Regions Inhibit HIV-1

    PubMed Central

    Borthwick, Nicola; Ahmed, Tina; Ondondo, Beatrice; Hayes, Peter; Rose, Annie; Ebrahimsa, Umar; Hayton, Emma-Jo; Black, Antony; Bridgeman, Anne; Rosario, Maximillian; Hill, Adrian VS; Berrie, Eleanor; Moyle, Sarah; Frahm, Nicole; Cox, Josephine; Colloca, Stefano; Nicosia, Alfredo; Gilmour, Jill; McMichael, Andrew J; Dorrell, Lucy; Hanke, Tomáš

    2014-01-01

    Virus diversity and escape from immune responses are the biggest challenges to the development of an effective vaccine against HIV-1. We hypothesized that T-cell vaccines targeting the most conserved regions of the HIV-1 proteome, which are common to most variants and bear fitness costs when mutated, will generate effectors that efficiently recognize and kill virus-infected cells early enough after transmission to potentially impact on HIV-1 replication and will do so more efficiently than whole protein-based T-cell vaccines. Here, we describe the first-ever administration of conserved immunogen vaccines vectored using prime-boost regimens of DNA, simian adenovirus and modified vaccinia virus Ankara to uninfected UK volunteers. The vaccine induced high levels of effector T cells that recognized virus-infected autologous CD4+ cells and inhibited HIV-1 replication by up to 5.79 log10. The virus inhibition was mediated by both Gag- and Pol- specific effector CD8+ T cells targeting epitopes that are typically subdominant in natural infection. These results provide proof of concept for using a vaccine to target T cells at conserved epitopes, showing that these T cells can control HIV-1 replication in vitro. PMID:24166483

  9. Short communication: high natural polymorphism in the gag gene cleavage sites of non-B HIV type 1 isolates from Gabon.

    PubMed

    Liégeois, Florian; Reteno, Dorine Gaëlle Ikanga; Mouinga-Ondémé, Augustin; Sica, Jeanne; Rouet, François

    2013-08-01

    The main goal of the present study was to determine the frequency of substitutions in the cleavage sites (CS) of gag gene among non-B HIV-1 isolates from Gabon. Fifty plasma specimens, collected in 2010-2011, from HIV-1-infected patients failing first-line antiretroviral (ARV) regimens (constituted of two nucleoside reverse transcriptase inhibitors+one nonnucleoside reverse transcriptase inhibitor) (n=38) and from HIV-1-infected individuals untreated with ARV (n=12) were analyzed in the gag and gag-pol cleavage sites. Compared to HXB2 reference sequence, the total median number of substitutions in gag and gag-pol CS was 10 (range, 5-18). The cleavage site p2/NC was the most variable of the four gag CS with 100% (50/50) isolates carrying at least 1 substitution (range, 1-9). The two gag-pol TFP/p6pol and p6pol/PR CS sites were also highly variable (at least one substitution, 50/50, 100% in both cases). Substitutions at position G381 (p2/NC), L449 (p1/p6gag), and K444 (TFP/p6pol) were significantly more frequent in CRF02_AG strains, compared to other non-B strains (30.4% vs. 3.7%, p=0.03; 87.0% vs. 59.3%, p=0.03; and 91.3% vs. 59.3%, p=0.01, respectively). Other non-B subtypes were significantly more likely to harbor substitutions at position N487 (p6pol) (70.4%) than CRF02_AG (39.1%) (p=0.02). In Gabon, gag and gag-pol cleavage sites were highly polymorphic in protease inhibitor-naive patients harboring non-B HIV-1 strains. In sub-Saharan Africa, further studies are definitively required to better understand the impact of gag mutations among subjects receiving second-line LPV/r-containing regimens (monotherapy or triple combinations).

  10. Structured Observations Reveal Slow HIV-1 CTL Escape

    PubMed Central

    Roberts, Hannah E.; Hurst, Jacob; Robinson, Nicola; Brown, Helen; Flanagan, Peter; Vass, Laura; Fidler, Sarah; Weber, Jonathan; Babiker, Abdel; Phillips, Rodney E.; McLean, Angela R.; Frater, John

    2015-01-01

    The existence of viral variants that escape from the selection pressures imposed by cytotoxic T-lymphocytes (CTLs) in HIV-1 infection is well documented, but it is unclear when they arise, with reported measures of the time to escape in individuals ranging from days to years. A study of participants enrolled in the SPARTAC (Short Pulse Anti-Retroviral Therapy at HIV Seroconversion) clinical trial allowed direct observation of the evolution of CTL escape variants in 125 adults with primary HIV-1 infection observed for up to three years. Patient HLA-type, longitudinal CD8+ T-cell responses measured by IFN-γ ELISpot and longitudinal HIV-1 gag, pol, and nef sequence data were used to study the timing and prevalence of CTL escape in the participants whilst untreated. Results showed that sequence variation within CTL epitopes at the first time point (within six months of the estimated date of seroconversion) was consistent with most mutations being transmitted in the infecting viral strain rather than with escape arising within the first few weeks of infection. Escape arose throughout the first three years of infection, but slowly and steadily. Approximately one third of patients did not drive any new escape in an HLA-restricted epitope in just under two years. Patients driving several escape mutations during these two years were rare and the median and modal numbers of new escape events in each patient were one and zero respectively. Survival analysis of time to escape found that possession of a protective HLA type significantly reduced time to first escape in a patient (p = 0.01), and epitopes escaped faster in the face of a measurable CD8+ ELISpot response (p = 0.001). However, even in an HLA matched host who mounted a measurable, specific, CD8+ response the average time before the targeted epitope evolved an escape mutation was longer than two years. PMID:25642847

  11. Structured observations reveal slow HIV-1 CTL escape.

    PubMed

    Roberts, Hannah E; Hurst, Jacob; Robinson, Nicola; Brown, Helen; Flanagan, Peter; Vass, Laura; Fidler, Sarah; Weber, Jonathan; Babiker, Abdel; Phillips, Rodney E; McLean, Angela R; Frater, John

    2015-02-01

    The existence of viral variants that escape from the selection pressures imposed by cytotoxic T-lymphocytes (CTLs) in HIV-1 infection is well documented, but it is unclear when they arise, with reported measures of the time to escape in individuals ranging from days to years. A study of participants enrolled in the SPARTAC (Short Pulse Anti-Retroviral Therapy at HIV Seroconversion) clinical trial allowed direct observation of the evolution of CTL escape variants in 125 adults with primary HIV-1 infection observed for up to three years. Patient HLA-type, longitudinal CD8+ T-cell responses measured by IFN-γ ELISpot and longitudinal HIV-1 gag, pol, and nef sequence data were used to study the timing and prevalence of CTL escape in the participants whilst untreated. Results showed that sequence variation within CTL epitopes at the first time point (within six months of the estimated date of seroconversion) was consistent with most mutations being transmitted in the infecting viral strain rather than with escape arising within the first few weeks of infection. Escape arose throughout the first three years of infection, but slowly and steadily. Approximately one third of patients did not drive any new escape in an HLA-restricted epitope in just under two years. Patients driving several escape mutations during these two years were rare and the median and modal numbers of new escape events in each patient were one and zero respectively. Survival analysis of time to escape found that possession of a protective HLA type significantly reduced time to first escape in a patient (p = 0.01), and epitopes escaped faster in the face of a measurable CD8+ ELISpot response (p = 0.001). However, even in an HLA matched host who mounted a measurable, specific, CD8+ response the average time before the targeted epitope evolved an escape mutation was longer than two years.

  12. Genetic Analysis of HIV-1 Subtypes in Nairobi, Kenya

    PubMed Central

    Khoja, Suhail; Ojwang, Peter; Khan, Saeed; Okinda, Nancy; Harania, Reena; Ali, Syed

    2008-01-01

    Background Genetic analysis of a viral infection helps in following its spread in a given population, in tracking the routes of infection and, where applicable, in vaccine design. Additionally, sequence analysis of the viral genome provides information about patterns of genetic divergence that may have occurred during viral evolution. Objective In this study we have analyzed the subtypes of Human Immunodeficiency Virus -1 (HIV-1) circulating in a diverse sample population of Nairobi, Kenya. Methodology 69 blood samples were collected from a diverse subject population attending the Aga Khan University Hospital in Nairobi, Kenya. Total DNA was extracted from peripheral blood mononuclear cells (PBMCs), and used in a Polymerase Chain Reaction (PCR) to amplify the HIV gag gene. The PCR amplimers were partially sequenced, and alignment and phylogenetic analysis of these sequences was performed using the Los Alamos HIV Database. Results Blood samples from 69 HIV-1 infected subjects from varying ethnic backgrounds were analyzed. Sequence alignment and phylogenetic analysis showed 39 isolates to be subtype A, 13 subtype D, 7 subtype C, 3 subtype AD and CRF01_AE, 2 subtype G and 1 subtype AC and 1 AG. Deeper phylogenetic analysis revealed HIV subtype A sequences to be highly divergent as compared to subtypes D and C. Conclusion Our analysis indicates that HIV-1 subtypes in the Nairobi province of Kenya are dominated by a genetically diverse clade A. Additionally, the prevalence of highly divergent, complex subtypes, intersubtypes, and the recombinant forms indicates viral mixing in Kenyan population, possibly as a result of dual infections. PMID:18784834

  13. HIV-1 sequence evolution in vivo after superinfection with three viral strains

    PubMed Central

    Kozaczynska, Karolina; Cornelissen, Marion; Reiss, Peter; Zorgdrager, Fokla; van der Kuyl, Antoinette C

    2007-01-01

    With millions of people infected worldwide, the evolution of HIV-1 in vivo has been the subject of much research. Although recombinant viruses were detected early in the epidemic, evidence that HIV-1 dual infections really occurred came much later. Dual infected patients, consisting of coinfected (second infection before seroconversion) and superinfected (second infection after seroconversion) individuals, opened up a new area of HIV-1 evolution studies. Here, we describe the in-depth analysis of HIV-1 over time in a patient twice superinfected with HIV-1, first with a subtype B (B2) strain and then with CRF01_AE after initial infection with a subtype B (B1) strain. The nucleotide evolution of gag and env-V3 of the three strains followed a similar pattern: a very low substitution rate in the first 2–3 years of infection, with an increase in synonymous substitutions thereafter. Convergent evolution at the protein level was rare: only a single amino acid in a gag p24 epitope showed convergence in the subtype B strains. Reversal of CTL-epitope mutations were also rare, and did not converge. Recombinant viruses were observed between the two subtype B strains. Luciferase-assays suggested that the CRF01_AE long terminal repeat (LTR) constituted the strongest promoter, but this was not reflected in the plasma viral load. Specific real-time PCR assays based upon the env gene showed that strain B2 and CRF01_AE RNA was present in equal amounts, while levels of strain B1 were 100-fold lower. All three strains were detected in seminal plasma, suggesting that simultaneous transmission is possible. PMID:17716368

  14. Cellular immune correlates analysis of an HIV-1 preexposure prophylaxis trial

    PubMed Central

    Kuebler, Peter J.; Mehrotra, Megha L.; McConnell, J. Jeff; Holditch, Sara J.; Shaw, Brian I.; Tarosso, Leandro F.; Leadabrand, Kaitlyn S.; Milush, Jeffrey M.; York, Vanessa A.; Raposo, Rui André Saraiva; Cheng, Rex G.; Eriksson, Emily M.; McMahan, Vanessa; Glidden, David V.; Shiboski, Stephen; Grant, Robert M.; Nixon, Douglas F.; Kallás, Esper G.

    2015-01-01

    HIV-1–specific T-cell responses in exposed seronegative subjects suggest that a viral breach of the exposure site is more common than current transmission rates would suggest and that host immunity can extinguish subsequent infection foci. The Preexposure Prophylaxis Initiative (iPrEx) chemoprophylaxis trial provided an opportunity to rigorously investigate these responses in a case–control immunology study; 84 preinfection peripheral blood mononuclear cell samples from individuals enrolled in the iPrEx trial who later seroconverted were matched with 480 samples from enrolled subjects who remained seronegative from both the placebo and active treatment arms. T-cell responses to HIV-1 Gag, Protease, Integrase, Reverse Transcriptase, Vif, and Nef antigens were quantified for all subjects in an IFN-γ enzyme-linked immunospot (ELISpot) assay. IFN-γ responses varied in magnitude and frequency across subjects. A positive response was more prevalent in those who remained persistently HIV-1–negative for Gag (P = 0.007), Integrase (P < 0.001), Vif (P < 0.001), and Nef (P < 0.001). When correlated with outcomes in the iPrEx trial, Vif- and Integrase-specific T-cell responses were associated with reduced HIV-1 infection risk [hazard ratio (HR) = 0.36, 95% confidence interval (95% CI) = 0.19–0.66 and HR = 0.52, 95% CI = 0.28–0.96, respectively]. Antigen-specific responses were independent of emtricitabine/tenofovir disoproxil fumarate use. IFN-γ secretion in the ELISpot was confirmed using multiparametric flow cytometry and largely attributed to effector memory CD4+ or CD8+ T cells. Our results show that HIV-1–specific T-cell immunity can be detected in exposed but uninfected individuals and that these T-cell responses can differentiate individuals according to infection outcomes. PMID:26100867

  15. Continued Follow-Up of Phambili Phase 2b Randomized HIV-1 Vaccine Trial Participants Supports Increased HIV-1 Acquisition among Vaccinated Men

    PubMed Central

    Moodie, Zoe; Metch, Barbara; Bekker, Linda-Gail; Churchyard, Gavin; Nchabeleng, Maphoshane; Mlisana, Koleka; Laher, Fatima; Roux, Surita; Mngadi, Kathryn; Innes, Craig; Mathebula, Matsontso; Allen, Mary; Bentley, Carter; Gilbert, Peter B.; Robertson, Michael; Kublin, James; Corey, Lawrence; Gray, Glenda E.

    2015-01-01

    Background The Phase 2b double-blinded, randomized Phambili/HVTN 503 trial evaluated safety and efficacy of the MRK Ad5 gag/pol/nef subtype B HIV-1 preventive vaccine vs placebo in sexually active HIV-1 seronegative participants in South Africa. Enrollment and vaccinations stopped and participants were unblinded but continued follow-up when the Step study evaluating the same vaccine in the Americas, Caribbean, and Australia was unblinded for non-efficacy. Final Phambili analyses found more HIV-1 infections amongst vaccine than placebo recipients, impelling the HVTN 503-S recall study. Methods HVTN 503-S sought to enroll all 695 HIV-1 uninfected Phambili participants, provide HIV testing, risk reduction counseling, physical examination, risk behavior assessment and treatment assignment recall. After adding HVTN 503-S data, HIV-1 infection hazard ratios (HR vaccine vs. placebo) were estimated by Cox models. Results Of the 695 eligible, 465 (67%) enrolled with 230 from the vaccine group and 235 from the placebo group. 38% of the 184 Phambili dropouts were enrolled. Enrollment did not differ by treatment group, gender, or baseline HSV-2. With the additional 1286 person years of 503-S follow-up, the estimated HR over Phambili and HVTN 503-S follow-up was 1.52 (95% CI 1.08–2.15, p = 0.02, 82 vaccine/54 placebo infections). The HR was significant for men (HR = 2.75, 95% CI 1.49, 5.06, p = 0.001) but not for women (HR = 1.12, 95% CI 0.73, 1.72, p = 0.62). Conclusion The additional follow-up from HVTN 503-S supported the Phambili finding of increased HIV-1 acquisition among vaccinated men and strengthened the evidence of lack of vaccine effect among women. Trial Registration clinicaltrials.gov NCT00413725 SA National Health Research Database DOH-27-0207-1539 PMID:26368824

  16. Movements of HIV-1 genomic RNA-APOBEC3F complexes and PKR reveal cytoplasmic and nuclear PKR defenses and HIV-1 evasion strategies.

    PubMed

    Marin, Mariana; Golem, Sheetal; Kozak, Susan L; Kabat, David

    2016-02-01

    APOBEC3 cytidine deaminases and viral genomic RNA (gRNA) occur in virions, polysomes, and cytoplasmic granules, but have not been tracked together. Moreover, gRNA traffic is important, but the factors that move it into granules are unknown. Using in situ hybridization of transfected cells and protein synthesis inhibitors that drive mRNAs between locales, we observed APOBEC3F cotrafficking with gRNA without altering its movements. Whereas cells with little cytoplasmic gRNA were translationally active and accumulated Gag, suprathreshold amounts induced autophosphorylation of the cytoplasmic double-stranded RNA (dsRNA)-dependent protein kinase (PKR), causing eIF2α phosphorylation, protein synthesis suppression, and gRNA sequestration in stress granules. Additionally, we confirmed recent evidence that PKR is activated by chromosome-associated cellular dsRNAs after nuclear membranes disperse in prophase. By arresting cells in G2, HIV-1 blocks this mechanism for PKR activation and eIF2α phosphorylation. However, cytopathic membrane damage in CD4- and coreceptor-positive cultures infected with laboratory-adapted fusogenic HIV-1LAI eventually enabled PKR entry and activation in interphase nuclei. These results reveal multiple stages in the PKR-HIV-1 battleground that culminate in cell death. We discuss evidence suggesting that HIV-1s evolve in vivo to prevent or delay PKR activation by all these mechanisms. PMID:26626364

  17. HIV-1 nucleocapsid and ESCRT-component Tsg101 interplay prevents HIV from turning into a DNA-containing virus

    PubMed Central

    Chamontin, Célia; Rassam, Patrice; Ferrer, Mireia; Racine, Pierre-Jean; Neyret, Aymeric; Lainé, Sébastien; Milhiet, Pierre-Emmanuel; Mougel, Marylène

    2015-01-01

    HIV-1, the agent of the AIDS pandemic, is an RNA virus that reverse transcribes its RNA genome (gRNA) into DNA, shortly after its entry into cells. Within cells, retroviral assembly requires thousands of structural Gag proteins and two copies of gRNA as well as cellular factors, which converge to the plasma membrane in a finely regulated timeline. In this process, the nucleocapsid domain of Gag (GagNC) ensures gRNA selection and packaging into virions. Subsequent budding and virus release require the recruitment of the cellular ESCRT machinery. Interestingly, mutating GagNC results into the release of DNA-containing viruses, by promo-ting reverse transcription (RTion) prior to virus release, through an unknown mechanism. Therefore, we explored the biogenesis of these DNA-containing particles, combining live-cell total internal-reflection fluorescent microscopy, electron microscopy, trans-complementation assays and biochemical characterization of viral particles. Our results reveal that DNA virus production is the consequence of budding defects associated with Gag aggregation at the plasma membrane and deficiency in the recruitment of Tsg101, a key ESCRT-I component. Indeed, targeting Tsg101 to virus assembly sites restores budding, restricts RTion and favors RNA packaging into viruses. Altogether, our results highlight the role of GagNC in the spatiotemporal control of RTion, via an ESCRT-I-dependent mechanism. PMID:25488808

  18. GAGs and GAGs diseases: when pathophysiology supports the clinic.

    PubMed

    Costantini, Elisabetta; Lazzeri, Massimo; Porena, Massimo

    2013-01-01

    The urinary epithelium has been the subject of considerable interest and much research in recent years. What has radically changed in the last decade is the concept of what the bladder epithelium really is. It is currently no longer considered just a simple barrier and a non-specific defence against infections, and it has been recognized as a specialized tissue regulating complex bladder functions and playing a fundamental and active role in the pathogenesis of cystitis. Researchers have been focussing on the receptors and mediators that are active in the sub-epithelial layer, with the hope that understanding the role of the urothelium defect will offer the opportunity for new therapeutic strategies. On the surface of the urothelial umbrella-cells there is a thick layer of glycoproteins and proteoglycans, which together are called Glycosaminoglycans (GAGs). They constitute a hydrophilic mucosal coating and act as a barrier against solutes found in urine. In recent years they have received special attention because injury to Gags, due to different noxae, has been identified as the first step in the genesis of chronic inflammatory bladder diseases, such as recurrent urinary tract infections, chemical or radiation cystitis, interstitial cystitis and/or Bladder Pain Syndrome. Aim of this study is to define the importance of the urothelium starting from the anatomy and physiology of the bladder wall. Furthermore, we will underline the role of glycosaminoglycans, focusing both on their pathophysiological role in the principal bladder diseases and on the therapeutic aspects from the clinical point of view.

  19. Development of a novel anti-HIV-1 agent from within: Effect of chimeric Vpr-containing protease cleavage site residues on virus replication

    PubMed Central

    Serio, D.; Rizvi, T. A.; Cartas, M.; Kalyanaraman, V. S.; Weber, I. T.; Koprowski, H.; Srinivasan, A.

    1997-01-01

    Effective antiviral agents will be of great value in controlling virus replication and delaying the onset of HIV-1-related disease symptoms. Current therapy involves the use of antiviral agents that target the enzymatic functions of the virus, resulting in the emergence of resistant viruses to these agents, thus lowering their effectiveness. To overcome this problem, we have considered the idea of developing novel agents from within HIV-1 as inhibitors of virus replication. The specificity of the Vpr protein for the HIV-1 virus particle makes it an attractive molecule for the development of antiviral agents targeting the events associated with virus maturation. We have generated chimeric Vpr proteins containing HIV-1-specific sequences added to the C terminus of Vpr. These sequences correspond to nine cleavage sites of the Gag and Gag–Pol precursors of HIV-1. The chimeric Vpr constructs were introduced into HIV-1 proviral DNA to assess their effect on virus infectivity using single- and multiple-round replication assays. The virus particles generated exhibited a variable replication pattern depending on the protease cleavage site used as a fusion partner. Interestingly, the chimeric Vpr containing the cleavage sequences from the junction of p24 and p2, 24/2, completely abolished virus infectivity. These results show that chimeric proteins generated from within HIV-1 have the ability to suppress HIV-1 replication and make ideal agents for gene therapy or intracellular immunization to treat HIV-1 infection. PMID:9096396

  20. Effect of rAd5-Vector HIV-1 Preventive Vaccines on HIV-1 Acquisition: A Participant-Level Meta-Analysis of Randomized Trials

    PubMed Central

    Huang, Yunda; Follmann, Dean; Nason, Martha; Zhang, Lily; Huang, Ying; Mehrotra, Devan V.; Moodie, Zoe; Metch, Barbara; Janes, Holly; Keefer, Michael C.; Churchyard, Gavin; Robb, Merlin L.; Fast, Patricia E.; Duerr, Ann; McElrath, M. Juliana; Corey, Lawrence; Mascola, John R.; Graham, Barney S.; Sobieszczyk, Magdalena E.; Kublin, James G.; Robertson, Michael; Hammer, Scott M.; Gray, Glenda E.; Buchbinder, Susan P.; Gilbert, Peter B.

    2015-01-01

    Background Three phase 2b, double-blind, placebo-controlled, randomized efficacy trials have tested recombinant Adenovirus serotype-5 (rAd5)-vector preventive HIV-1 vaccines: MRKAd5 HIV-1 gag/pol/nef in Step and Phambili, and DNA/rAd5 HIV-1 env/gag/pol in HVTN505. Due to efficacy futility observed at the first interim analysis in Step and HVTN505, participants of all three studies were unblinded to their vaccination assignments during the study but continued follow–up. Rigorous meta-analysis can provide crucial information to advise the future utility of rAd5-vector vaccines. Methods We included participant-level data from all three efficacy trials, and three Phase 1–2 trials evaluating the HVTN505 vaccine regimen. We predefined two co-primary analysis cohorts for assessing the vaccine effect on HIV-1 acquisition. The modified-intention-to-treat (MITT) cohort included all randomly assigned participants HIV-1 uninfected at study entry, who received at least the first vaccine/placebo, and the Ad5 cohort included MITT participants who received at least one dose of rAd5-HIV vaccine or rAd5-placebo. Multivariable Cox regression models were used to estimate hazard ratios (HRs) of HIV-1 infection (vaccine vs. placebo) and evaluate HR variation across vaccine regimens, time since vaccination, and subgroups using interaction tests. Findings Results are similar for the MITT and Ad5 cohorts; we summarize MITT cohort results. Pooled across the efficacy trials, over all follow-up time 403 (n = 224 vaccine; n = 179 placebo) of 6266 MITT participants acquired HIV-1, with a non-significantly higher incidence in vaccine recipients (HR 1.21, 95% CI 0.99–1.48, P = 0.06). The HRs significantly differed by vaccine regimen (interaction P = 0.03; MRKAd5 HR 1.41, 95% CI 1.11–1.78, P = 0.005 vs. DNA/rAd5 HR 0.88, 95% CI 0.61–1.26, P = 0.48). Results were similar when including the Phase 1–2 trials. Exploratory analyses based on the efficacy trials supported that the MRKAd5

  1. Structural And Functional Studies of ALIX Interactions With YPXnL Late Domains of HIV-1 And EIAV

    SciTech Connect

    Zhai, Q.; Fisher, R.D.; Chung, H.-Y.; Myszka, D.G.; Sundquist, W.I.; Hill, C.P.

    2009-05-28

    Retrovirus budding requires short peptide motifs (late domains) located within the viral Gag protein that function by recruiting cellular factors. The YPX{sub n}L late domains of HIV and other lentiviruses recruit the protein ALIX (also known as AIP1), which also functions in vesicle formation at the multivesicular body and in the abscission stage of cytokinesis. Here, we report the crystal structures of ALIX in complex with the YPX{sub n}L late domains from HIV-1 and EIAV. The two distinct late domains bind at the same site on the ALIX V domain but adopt different conformations that allow them to make equivalent contacts. Binding studies and functional assays verified the importance of key interface residues and revealed that binding affinities are tuned by context-dependent effects. These results reveal how YPX{sub n}L late domains recruit ALIX to facilitate virus budding and how ALIX can bind YPX{sub n}L sequences with both n = 1 and n = 3.

  2. Rab27a controls HIV-1 assembly by regulating plasma membrane levels of phosphatidylinositol 4,5-bisphosphate

    PubMed Central

    Gerber, Pehuén Pereyra; Cabrini, Mercedes; Jancic, Carolina; Paoletti, Luciana; Banchio, Claudia; von Bilderling, Catalina; Sigaut, Lorena; Pietrasanta, Lía I.; Duette, Gabriel; Freed, Eric O.; de Saint Basile, Genevieve; Moita, Catarina Ferreira; Moita, Luis Ferreira; Amigorena, Sebastian; Benaroch, Philippe; Geffner, Jorge

    2015-01-01

    During the late stages of the HIV-1 replication cycle, the viral polyprotein Pr55Gag is recruited to the plasma membrane (PM), where it binds phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and directs HIV-1 assembly. We show that Rab27a controls the trafficking of late endosomes carrying phosphatidylinositol 4-kinase type 2 α (PI4KIIα) toward the PM of CD4+ T cells. Hence, Rab27a promotes high levels of PM phosphatidylinositol 4-phosphate and the localized production of PI(4,5)P2, therefore controlling Pr55Gag membrane association. Rab27a also controls PI(4,5)P2 levels at the virus-containing compartments of macrophages. By screening Rab27a effectors, we identified that Slp2a, Slp3, and Slac2b are required for the association of Pr55Gag with the PM and that Slp2a cooperates with Rab27a in the recruitment of PI4KIIα to the PM. We conclude that by directing the trafficking of PI4KIIα-positive endosomes toward the PM, Rab27a controls PI(4,5)P2 production and, consequently, HIV-1 replication. PMID:25940347

  3. Macrophages and HIV-1: An Unhealthy Constellation.

    PubMed

    Sattentau, Quentin J; Stevenson, Mario

    2016-03-01

    Lentiviruses have a long-documented association with macrophages. Abundant evidence exists for in vitro and, in a tissue-specific manner, in vivo infection of macrophages by the primate lentiviruses HIV-1 and SIV. However, macrophage contribution to aspects of HIV-1 and SIV pathogenesis, and their role in viral persistence in individuals on suppressive antiretroviral therapy, remains unclear. Here we discuss recent evidence implicating macrophages in HIV-1-mediated disease and highlight directions for further investigation.

  4. HIV-1 Adapts To Replicate in Cells Expressing Common Marmoset APOBEC3G and BST2

    PubMed Central

    Fernández-Oliva, Alberto; Finzi, Andrés; Haim, Hillel; Menéndez-Arias, Luis; Sodroski, Joseph

    2015-01-01

    ABSTRACT Previous studies have shown that a major block to HIV-1 replication in common marmosets operates at the level of viral entry and that this block can be overcome by adaptation of the virus in tissue-cultured cells. However, our current studies indicate that HIV-1 encounters additional postentry blocks in common marmoset peripheral blood mononuclear cells. Here, we show that the common marmoset APOBEC3G (A3G) and BST2 proteins block HIV-1 in cell cultures. Using a directed-evolution method that takes advantage of the natural ability of HIV-1 to mutate during replication, we have been able to overcome these blocks in tissue-cultured cells. In the adapted viruses, specific changes were observed in gag, vif, env, and nef. The contribution of these changes to virus replication in the presence of the A3G and BST2 restriction factors was studied. We found that certain amino acid changes in Vif and Env that arise during adaptation to marmoset A3G and BST2 allow the virus to replicate in the presence of these restriction factors. The changes in Vif reduce expression levels and encapsidation of marmoset APOBEC3G, while the changes in Env increase viral fitness and discretely favor cell-to-cell transmission of the virus, allowing viral escape from these restriction factors. IMPORTANCE HIV-1 can infect only humans and chimpanzees. The main reason for this narrow tropism is the presence in many species of dominant-acting factors, known as restriction factors, that block viral replication in a species-specific way. We have been exploring the blocks to HIV-1 in common marmosets, with the ultimate goal of developing a new animal model of HIV-1 infection in these monkeys. In this study, we observed that common marmoset APOBEC3G and BST2, two known restriction factors, are able to block HIV-1 in cell cultures. We have adapted HIV-1 to replicate in the presence of these restriction factors and have characterized the mechanisms of escape. These studies can help in the

  5. The p2 domain of human immunodeficiency virus type 1 Gag regulates sequential proteolytic processing and is required to produce fully infectious virions.

    PubMed Central

    Pettit, S C; Moody, M D; Wehbie, R S; Kaplan, A H; Nantermet, P V; Klein, C A; Swanstrom, R

    1994-01-01

    The proteolytic processing sites of the human immunodeficiency virus type 1 (HIV-1) Gag precursor are cleaved in a sequential manner by the viral protease. We investigated the factors that regulate sequential processing. When full-length Gag protein was digested with recombinant HIV-1 protease in vitro, four of the five major processing sites in Gag were cleaved at rates that differ by as much as 400-fold. Three of these four processing sites were cleaved independently of the others. The CA/p2 site, however, was cleaved approximately 20-fold faster when the adjacent downstream p2/NC site was blocked from cleavage or when the p2 domain of Gag was deleted. These results suggest that the presence of a C-terminal p2 tail on processing intermediates slows cleavage at the upstream CA/p2 site. We also found that lower pH selectively accelerated cleavage of the CA/p2 processing site in the full-length precursor and as a peptide primarily by a sequence-based mechanism rather than by a change in protein conformation. Deletion of the p2 domain of Gag results in released virions that are less infectious despite the presence of the processed final products of Gag. These findings suggest that the p2 domain of HIV-1 Gag regulates the rate of cleavage at the CA/p2 processing site during sequential processing in vitro and in infected cells and that p2 may function in the proper assembly of virions. Images PMID:7966591

  6. Stimulation of HIV-1 Replication in Immature Dendritic Cells in Contact with Primary CD4 T or B Lymphocytes ▿

    PubMed Central

    Holl, Vincent; Xu, Ke; Peressin, Maryse; Lederle, Alexandre; Biedma, Marina Elizabeth; Delaporte, Maryse; Decoville, Thomas; Schmidt, Sylvie; Laumond, Géraldine; Aubertin, Anne-Marie; Moog, Christiane

    2010-01-01

    Sexual transmission is the major route of HIV-1 infection worldwide. Dendritic cells (DCs) from the mucosal layers are considered to be the initial targets of HIV-1 and probably play a crucial role in HIV-1 transmission. We investigated the role of cell-to-cell contact between HIV-1-exposed immature DCs and various lymphocyte subsets in the stimulation of HIV-1 replication. We found that HIV-1 replication and production in DCs were substantially enhanced by the coculture of DCs with primary CD4 T or nonpermissive B lymphocytes but not with primary activated CD8 T lymphocytes or human transformed CD4 T lymphocytes. Most of the new virions released by cocultures of HIV-1-exposed immature DCs and primary B lymphocytes expressed the DC-specific marker CD1a and were infectious for both immature DCs and peripheral blood mononuclear cells (PBMCs). Cocultured DCs thus produced large numbers of infectious viral particles under these experimental conditions. The soluble factors present in the supernatants of the cocultures were not sufficient to enhance HIV-1 replication in DCs, for which cell-to-cell contact was required. The neutralizing monoclonal antibody IgG1b12 and polyclonal anti-HIV-1 sera efficiently blocked HIV-1 transfer to CD4 T lymphocytes but did not prevent the increase in viral replication in DCs. Neutralizing antibodies thus proved to be more efficient at blocking HIV-1 transfer than previously thought. Our findings show that HIV-1 exploits DC-lymphocyte cross talk to upregulate replication within the DC reservoir. We provide evidence for a novel mechanism that may facilitate HIV-1 replication and transmission. This mechanism may favor HIV-1 pathogenesis, immune evasion, and persistence. PMID:20147388

  7. Dendritic Cells from HIV Controllers Have Low Susceptibility to HIV-1 Infection In Vitro but High Capacity to Capture HIV-1 Particles.

    PubMed

    Hamimi, Chiraz; David, Annie; Versmisse, Pierre; Weiss, Laurence; Bruel, Timothée; Zucman, David; Appay, Victor; Moris, Arnaud; Ungeheuer, Marie-Noëlle; Lascoux-Combe, Caroline; Barré-Sinoussi, Françoise; Muller-Trutwin, Michaela; Boufassa, Faroudy; Lambotte, Olivier; Pancino, Gianfranco; Sáez-Cirión, Asier

    2016-01-01

    HIV controllers (HICs), rare HIV-1 infected individuals able to control viral replication without antiretroviral therapy, are characterized by an efficient polyfunctional and cytolytic HIV-specific CD8+ T cell response. The mechanisms underlying the induction and maintenance of such response in many HICs despite controlled viremia are not clear. Dendritic cells play a crucial role in the generation and reactivation of T cell responses but scarce information is available on those cells in HICs. We found that monocyte derived dendritic cells (MDDCs) from HICs are less permissive to HIV-1 infection than cells from healthy donors. In contrast MDDCs from HICs are particularly efficient at capturing HIV-1 particles when compared to cells from healthy donors or HIV-1 patients with suppressed viral load on antiretroviral treatment. MDDCs from HICs expressed on their surface high levels of syndecan-3, DC-SIGN and MMR, which could cooperate to facilitate HIV-1 capture. The combination of low susceptibility to HIV-1 infection but enhanced capacity to capture particles might allow MDDCs from HICs to preserve their function from the deleterious effect of infection while facilitating induction of HIV-specific CD8+ T cells by cross-presentation in a context of low viremia. PMID:27505169

  8. Dendritic Cells from HIV Controllers Have Low Susceptibility to HIV-1 Infection In Vitro but High Capacity to Capture HIV-1 Particles

    PubMed Central

    Hamimi, Chiraz; David, Annie; Versmisse, Pierre; Weiss, Laurence; Bruel, Timothée; Zucman, David; Appay, Victor; Moris, Arnaud; Ungeheuer, Marie-Noëlle; Lascoux-Combe, Caroline; Barré-Sinoussi, Françoise; Muller-Trutwin, Michaela; Boufassa, Faroudy; Lambotte, Olivier; Pancino, Gianfranco; Sáez-Cirión, Asier

    2016-01-01

    HIV controllers (HICs), rare HIV-1 infected individuals able to control viral replication without antiretroviral therapy, are characterized by an efficient polyfunctional and cytolytic HIV-specific CD8+ T cell response. The mechanisms underlying the induction and maintenance of such response in many HICs despite controlled viremia are not clear. Dendritic cells play a crucial role in the generation and reactivation of T cell responses but scarce information is available on those cells in HICs. We found that monocyte derived dendritic cells (MDDCs) from HICs are less permissive to HIV-1 infection than cells from healthy donors. In contrast MDDCs from HICs are particularly efficient at capturing HIV-1 particles when compared to cells from healthy donors or HIV-1 patients with suppressed viral load on antiretroviral treatment. MDDCs from HICs expressed on their surface high levels of syndecan-3, DC-SIGN and MMR, which could cooperate to facilitate HIV-1 capture. The combination of low susceptibility to HIV-1 infection but enhanced capacity to capture particles might allow MDDCs from HICs to preserve their function from the deleterious effect of infection while facilitating induction of HIV-specific CD8+ T cells by cross-presentation in a context of low viremia. PMID:27505169

  9. Immunological and pharmacological strategies to reactivate HIV-1 from latently infected cells: a possibility for HIV-1 paediatric patients?

    PubMed

    Martínez-Bonet, M; Clemente, M I; Serramía, M J; Moreno, S; Muñoz, E; Muñoz-Fernández, M A

    2015-07-01

    The limitations to establishing a viral reservoir facilitated by early cART in children could play a critical role in achieving natural control of viral replication upon discontinuation of cART, which could be defined as 'functional cure'. Viral reservoirs could provide a persistent source of recrudescent viraemia after withdrawal of cART, despite temporary remission of HIV-1 infection, as observed in the 'Mississippi baby'. Intensification of cART has been proposed as a strategy to control residual replication and to diminish the reservoirs. The effects of cART intensification with maraviroc persisted after discontinuation of the drug in HIV-1-infected adults. However, in HIV-1-infected children, the emergence of CXCR4-using variants occurs very early, and the use of CCR5 antagonists in these children as intensification therapy may not be the best alternative. New treatments to eradicate HIV-1 are focused on the activation of viral production from latently infected cells to purge and clear HIV-1 reservoirs. This strategy involves the use of a wide range of small molecules called latency-reversing agents (LRAs). Histone deacetylase inhibitors (HDACi) such as givinostat, belinostat and panobinostat, and class I-selective HDACis that include oxamflatin, NCH-51 and romidepsin, are the most advanced in clinical testing for HIV-1 LRAs. Panobinostat and romidepsin show an efficient reactivation profile in J89GFP cells, a lymphocyte HIV-1 latently infected cell line considered a relevant model to study post-integration HIV-1 latency and reactivation. Clinical trials with panobinostat and romidepsin have been performed in children with other pathologies and it could be reasonable to design a clinical trial using these drugs in combination with cART in HIV-1-infected children.

  10. Is acupuncturing effective in controlling the gag reflex during dental procedures? A review of literature

    PubMed Central

    Daneshkazemi, Alireza; Daneshkazemi, Pedram; Davoudi, Amin; Badrian, Hamid; Firouzabadi, Vahid Pourtalebi

    2016-01-01

    Traditional acupuncture has been introduced more than 2500 years ago which provides an alternative and complementary option during clinical practices. Its main mechanism is based on stimulating the nerves by altering the processes and perception of pain transmitters. It facilitates releasing natural pain relievers such as endorphins and serotonin. Its success for various dental procedures has been proved earlier. However, its effects on controlling the gag reflex seem to be overlooked. The gag reflex is recognized as a protective reaction for stopping the entrance of any foreign bodies into the oropharynx. Pronounced gag reflexes can have negative impacts on the quality of dental procedures. Many techniques have been suggested for managing this reflex and acupuncturing is one of those which seems to be overlooked recently. The aim of this paper is reviewing the published high-quality researches about the efficacy of this technique for eliminating the gag reflex during dental procedures. PMID:27212742

  11. Is acupuncturing effective in controlling the gag reflex during dental procedures? A review of literature.

    PubMed

    Daneshkazemi, Alireza; Daneshkazemi, Pedram; Davoudi, Amin; Badrian, Hamid; Firouzabadi, Vahid Pourtalebi

    2016-01-01

    Traditional acupuncture has been introduced more than 2500 years ago which provides an alternative and complementary option during clinical practices. Its main mechanism is based on stimulating the nerves by altering the processes and perception of pain transmitters. It facilitates releasing natural pain relievers such as endorphins and serotonin. Its success for various dental procedures has been proved earlier. However, its effects on controlling the gag reflex seem to be overlooked. The gag reflex is recognized as a protective reaction for stopping the entrance of any foreign bodies into the oropharynx. Pronounced gag reflexes can have negative impacts on the quality of dental procedures. Many techniques have been suggested for managing this reflex and acupuncturing is one of those which seems to be overlooked recently. The aim of this paper is reviewing the published high-quality researches about the efficacy of this technique for eliminating the gag reflex during dental procedures. PMID:27212742

  12. Immunization with HIV Gag targeted to dendritic cells followed by recombinant New York vaccinia virus induces robust T-cell immunity in nonhuman primates

    PubMed Central

    Flynn, Barbara J.; Kastenmüller, Kathrin; Wille-Reece, Ulrike; Tomaras, Georgia D.; Alam, Munir; Lindsay, Ross W.; Salazar, Andres M.; Perdiguero, Beatriz; Gomez, Carmen E.; Wagner, Ralf; Esteban, Mariano; Park, Chae G.; Trumpfheller, Christine; Keler, Tibor; Pantaleo, Giuseppe; Steinman, Ralph M.; Seder, Robert

    2011-01-01

    Protein vaccines, if rendered immunogenic, would facilitate vaccine development against HIV and other pathogens. We compared in nonhuman primates (NHPs) immune responses to HIV Gag p24 within 3G9 antibody to DEC205 (“DEC-HIV Gag p24”), an uptake receptor on dendritic cells, to nontargeted protein, with or without poly ICLC, a synthetic double stranded RNA, as adjuvant. Priming s.c. with 60 μg of both HIV Gag p24 vaccines elicited potent CD4+ T cells secreting IL-2, IFN-γ, and TNF-α, which also proliferated. The responses increased with each of three immunizations and recognized multiple Gag peptides. DEC-HIV Gag p24 showed better cross-priming for CD8+ T cells, whereas the avidity of anti-Gag antibodies was ∼10-fold higher with nontargeted Gag 24 protein. For both protein vaccines, poly ICLC was essential for T- and B-cell immunity. To determine whether adaptive responses could be further enhanced, animals were boosted with New York vaccinia virus (NYVAC)-HIV Gag/Pol/Nef. Gag-specific CD4+ and CD8+ T-cell responses increased markedly after priming with both protein vaccines and poly ICLC. These data reveal qualitative differences in antibody and T-cell responses to DEC-HIV Gag p24 and Gag p24 protein and show that prime boost with protein and adjuvant followed by NYVAC elicits potent cellular immunity. PMID:21467219

  13. SAMHD1 Limits HIV-1 Antigen Presentation by Monocyte-Derived Dendritic Cells

    PubMed Central

    Bruel, Timothée; Cardinaud, Sylvain; Porrot, Françoise; Prado, Julia G.; Moris, Arnaud

    2015-01-01

    ABSTRACT Monocyte-derived dendritic cells (MDDC) stimulate CD8+ cytotoxic T lymphocytes (CTL) by presenting endogenous and exogenous viral peptides via major histocompatibility complex class I (MHC-I) molecules. MDDC are poorly susceptible to HIV-1, in part due to the presence of SAMHD1, a cellular enzyme that depletes intracellular deoxynucleoside triphosphates (dNTPs) and degrades viral RNA. Vpx, an HIV-2/SIVsm protein absent from HIV-1, antagonizes SAMHD1 by inducing its degradation. The impact of SAMHD1 on the adaptive cellular immune response remains poorly characterized. Here, we asked whether SAMHD1 modulates MHC-I-restricted HIV-1 antigen presentation. Untreated MDDC or MDDC pretreated with Vpx were exposed to HIV-1, and antigen presentation was examined by monitoring the activation of an HIV-1 Gag-specific CTL clone. SAMHD1 depletion strongly enhanced productive infection of MDDC as well as endogenous HIV-1 antigen presentation. Time-lapse microscopy analysis demonstrated that in the absence of SAMHD1, the CTL rapidly killed infected MDDC. We also report that various transmitted/founder (T/F) HIV-1 strains poorly infected MDDC and, as a consequence, did not stimulate CTL. Vesicular stomatitis virus glycoprotein (VSV-G) pseudotyping of T/F alleviated a block in viral entry and induced antigen presentation only in the absence of SAMHD1. Furthermore, by using another CTL clone that mostly recognizes incoming HIV-1 antigens, we demonstrate that SAMHD1 does not influence exogenous viral antigen presentation. Altogether, our results demonstrate that the antiviral activity of SAMHD1 impacts antigen presentation by DC, highlighting the link that exists between restriction factors and adaptive immune responses. IMPORTANCE Upon viral infection, DC may present antigens derived from incoming viral material in the absence of productive infection of DC or from newly synthesized viral proteins. In the case of HIV, productive infection of DC is blocked at an early

  14. Human Immunodeficiency Virus Type 1 (HIV-1) Vpr Functions as an Immediate-Early Protein during HIV-1 Infection

    PubMed Central

    Hrimech, Mohammed; Yao, Xiao-Jian; Bachand, François; Rougeau, Nicole; Cohen, Éric A.

    1999-01-01

    Human immunodeficiency virus type 1 (HIV-1) Vpr is a virion-associated protein which facilitates HIV-1 infection of nondividing cells by contributing to the nuclear transport of the preintegration complex (PIC). Vpr was also shown to induce a cell cycle G2 arrest in infected proliferating cells that optimizes HIV-1 long terminal repeat (LTR)-directed gene expression and viral production. However, it is unclear whether this activity is mediated primarily early by virion-associated Vpr or alternatively late during infection when Vpr is de novo expressed. We report here that in the absence of de novo expression, virion-associated Vpr induces a transient G2 arrest that can subsequently lead to cell killing by apoptosis. Interestingly, the induction of both cell cycle G2 arrest and apoptosis by virion-associated Vpr requires viral entry but not viral replication, since reverse transcriptase and protease inhibitor treatments do not prevent these Vpr effects. These results raise the possibility that in vivo both infectious and noninfectious viruses contribute to the dysfunction and killing of CD4+ cells. In addition, our results reveal that virion-associated Vpr stimulates viral replication in proliferating cells after establishing a cell cycle G2 arrest by increasing LTR-directed gene expression. Importantly, this Vpr-mediated LTR activation appears to be a requirement for subsequent optimal Tat transactivation. Taken together, these results strongly suggest that in addition to participating in the HIV PIC nuclear transport in nondividing cells, virion-associated Vpr activates HIV-1 LTR-directed gene expression by manipulating the host cell cycle. From this, we conclude that Vpr functions as an immediate-early protein during HIV-1 infection. PMID:10196306

  15. GADD45 proteins inhibit HIV-1 replication through specific suppression of HIV-1 transcription.

    PubMed

    Liang, Zhibin; Liu, Ruikang; Zhang, Hui; Zhang, Suzhen; Hu, Xiaomei; Tan, Juan; Liang, Chen; Qiao, Wentao

    2016-06-01

    GADD45 proteins are a group of stress-induced proteins and participate in various cellular pathways including cell cycle regulation, cell survival and death, DNA repair and demethylation. It was recently shown that HIV-1 infection induces the expression of GADD45 proteins. However, the effect of GADD45 on HIV-1 replication has not been studied. Here, we report that overexpression of GADD45 proteins reduces HIV-1 production through suppressing transcription from the HIV-1 LTR promoter. This inhibitory effect is specific to HIV-1, since GADD45 proteins neither inhibit the LTR promoters from other retroviruses nor reduce the production of these viruses. Knockdown of endogenous GADD45 modestly activates HIV-1 in the J-Lat A72 latency cell line, which suggests GADD45 proteins might play a role in maintaining HIV-1 latency.

  16. Sulfonation Pathway Inhibitors Block Reactivation of Latent HIV-1

    PubMed Central

    Murry, Jeffrey P.; Godoy, Joseph; Mukim, Amey; Swann, Justine; Bruce, James W.; Ahlquist, Paul; Bosque, Alberto; Planelles, Vicente; Spina, Celsa A.; Young, John A. T.

    2015-01-01

    Long-lived pools of latently infected cells are a significant barrier to the development of a cure for HIV-1 infection. A better understanding of the mechanisms of reactivation from latency is needed to facilitate the development of novel therapies that address this problem. Here we show that chemical inhibitors of the sulfonation pathway prevent virus reactivation, both in latently infected J-Lat and U1 cell lines and in a primary human CD4+ T cell model of latency. In each of these models, sulfonation inhibitors decreased transcription initiation from the HIV-1 promoter. These inhibitors block transcription initiation at a step that lies downstream of nucleosome remodeling and affects RNA polymerase II recruitment to the viral promoter. These results suggest that the sulfonation pathway acts by a novel mechanism to regulate efficient virus transcription initiation during reactivation from latency, and further that augmentation of this pathway could be therapeutically useful. PMID:25310595

  17. Characterization of A Myristoylated, Monomeric HIV Gag Protein

    PubMed Central

    Dou, Jun; Wang, Jaang-Jiun; Chen, Xuemin; Li, Hua; Ding, Lingmei; Spearman, Paul

    2009-01-01

    The process of HIV assembly requires extensive homomultimerization of the Gag polyprotein on cellular membranes to generate the nascent particle bud. Here we generated a full-length, monomeric Gag polyprotein bearing mutations that eliminated multimerization in living cells as indicated by fluorescence resonance energy transfer (FRET). Monomeric Gag resembled non-myristoylated Gag in its weak membrane binding characteristics and lack of association with detergent-resistant membranes (DRMs or lipid rafts). Monomeric Gag failed to assemble virus-like particles, but was inefficiently rescued into particles by wildtype Gag through the influence of the matrix domain. The subcellular distribution of monomeric Gag was remarkably different than either non-myristoylated Gag or wildtype Gag. Monomeric Gag was found on intracellular membranes and at the plasma membrane, where it induced the formation of plasma membrane extensions and ruffles. This study indicates that monomeric Gag can traffic to assembly sites in the cell, where it interacts weakly with membranes. PMID:19285328

  18. Bayesian phylogeographic analyses clarify the origin of the HIV-1 subtype A variant circulating in former Soviet Union's countries.

    PubMed

    Díez-Fuertes, Francisco; Cabello, Marina; Thomson, Michael M

    2015-07-01

    The HIV-1 subtype A variant dominating the HIV-1 epidemics in former Soviet Union (FSU) countries (A(FSU)) represents one of the major clades of the HIV-1 pandemic. This variant was reported to have begun spreading among injecting drug users (IDUs) in the Ukrainian city of Odessa in late 1994. Two competing hypotheses have been proposed on the ancestral origin of the A(FSU) variant, locating it either in the Democratic Republic of Congo (DRC) or in the Republic of Guinea (RG). The studies supporting these hypotheses employed phylogenetic analyses to identify HIV-1 sequences collected outside FSU countries ancestrally related to A(FSU). A different approach, based on Bayesian phylogenetic inference and coalescent-based population genetics, has been employed here to elucidate the ancestry of this HIV-1 variant and to improve our knowledge on its spread in FSU countries. The analyses were carried out using env (C2-V3-C3) and p24(gag) fragments of the HIV-1 genome. The inferred migration for the HIV-1 A(FSU) variant revealed only one significantly supported migration pathway from Africa to Eastern Europe, supporting the hypothesis of its origin in the DRC and estimating the upper limit of the migration of the ancestral virus from Africa around 1970. The support for an origin in the RG was negligible. The results supported the main role of Odessa as the epicenter of the A(FSU) epidemic, dating the tMRCA of the A(FSU) variant around 1984, ten years before its explosive expansion among IDUs. The estimated origin of the AFSU subcluster responsible for the IDU outbreak was also located in Odessa, with the estimated tMRCA around 1993. Statistically supported migration routes from Odessa to other cities of Ukraine, Russia, Kazakhstan, Uzbekistan and Belarus were also inferred by the Bayesian phylogeographic analysis. These results shed new light on the origin and spread of the HIV-1 A(FSU) variant.

  19. Structural mechanisms underlying sequence-dependent variations in GAG affinities of decorin binding protein A, a Borrelia burgdorferi adhesin.

    PubMed

    Morgan, Ashli M; Wang, Xu

    2015-05-01

    Decorin-binding protein A (DBPA) is an important surface adhesin of the bacterium Borrelia burgdorferi, the causative agent of Lyme disease. DBPA facilitates the bacteria's colonization of human tissue by adhering to glycosaminoglycan (GAG), a sulfated polysaccharide. Interestingly, DBPA sequence variation among different strains of Borrelia spirochetes is high, resulting in significant differences in their GAG affinities. However, the structural mechanisms contributing to these differences are unknown. We determined the solution structures of DBPAs from strain N40 of B. burgdorferi and strain PBr of Borrelia garinii, two DBPA variants whose GAG affinities deviate significantly from strain B31, the best characterized version of DBPA. Our structures revealed that significant differences exist between PBr DBPA and B31/N40 DBPAs. In particular, the C-terminus of PBr DBPA, unlike C-termini from B31 and N40 DBPAs, is positioned away from the GAG-binding pocket and the linker between helices one and two of PBr DBPA is highly structured and retracted from the GAG-binding pocket. The repositioning of the C-terminus allowed the formation of an extra GAG-binding epitope in PBr DBPA and the retracted linker gave GAG ligands more access to the GAG-binding epitopes than other DBPAs. Characterization of GAG ligands' interactions with wild-type (WT) PBr and mutants confirmed the importance of the second major GAG-binding epitope and established the fact that the two epitopes are independent of one another and the new epitope is as important to GAG binding as the traditional epitope.

  20. HIV-1 DNA predicts disease progression and post-treatment virological control

    PubMed Central

    Williams, James P; Hurst, Jacob; Stöhr, Wolfgang; Robinson, Nicola; Brown, Helen; Fisher, Martin; Kinloch, Sabine; Cooper, David; Schechter, Mauro; Tambussi, Giuseppe; Fidler, Sarah; Carrington, Mary; Babiker, Abdel; Weber, Jonathan

    2014-01-01

    In HIV-1 infection, a population of latently infected cells facilitates viral persistence despite antiretroviral therapy (ART). With the aim of identifying individuals in whom ART might induce a period of viraemic control on stopping therapy, we hypothesised that quantification of the pool of latently infected cells in primary HIV-1 infection (PHI) would predict clinical progression and viral replication following ART. We measured HIV-1 DNA in a highly characterised randomised population of individuals with PHI. We explored associations between HIV-1 DNA and immunological and virological markers of clinical progression, including viral rebound in those interrupting therapy. In multivariable analyses, HIV-1 DNA was more predictive of disease progression than plasma viral load and, at treatment interruption, predicted time to plasma virus rebound. HIV-1 DNA may help identify individuals who could safely interrupt ART in future HIV-1 eradication trials. Clinical trial registration: ISRCTN76742797 and EudraCT2004-000446-20 DOI: http://dx.doi.org/10.7554/eLife.03821.001 PMID:25217531

  1. HIV-1 Entry and Trans-Infection of Astrocytes Involves CD81 Vesicles

    PubMed Central

    Gray, Lachlan R.; Turville, Stuart G.; HItchen, Tina L.; Cheng, Wan-Jung; Ellett, Anne M.; Salimi, Hamid; Roche, Michael J.; Wesselingh, Steve L.; Gorry, Paul R.; Churchill, Melissa J.

    2014-01-01

    Astrocytes are extensively infected with HIV-1 in vivo and play a significant role in the development of HIV-1-associated neurocognitive disorders. Despite their extensive infection, little is known about how astrocytes become infected, since they lack cell surface CD4 expression. In the present study, we investigated the fate of HIV-1 upon infection of astrocytes. Astrocytes were found to bind and harbor virus followed by biphasic decay, with HIV-1 detectable out to 72 hours. HIV-1 was observed to associate with CD81-lined vesicle structures. shRNA silencing of CD81 resulted in less cell-associated virus but no loss of co-localization between HIV-1 and CD81. Astrocytes supported trans-infection of HIV-1 to T-cells without de novo virus production, and the virus-containing compartment required 37°C to form, and was trypsin-resistant. The CD81 compartment observed herein, has been shown in other cell types to be a relatively protective compartment. Within astrocytes, this compartment may be actively involved in virus entry and/or spread. The ability of astrocytes to transfer virus, without de novo viral synthesis suggests they are capable of sequestering and protecting virus and thus, they could potentially facilitate viral dissemination in the CNS. PMID:24587404

  2. Epigenetics of μ-Opioid receptors: Intersection with HIV-1 infection of the Central Nervous System

    PubMed Central

    Regan, Patrick M.; Dave, Rajnish S.; Datta, Prasun K.; Khalili, Kamel

    2014-01-01

    The abuse of intravenous drugs, such as heroin, has become a major public health concern due to the increased risk of HIV-1 infection. Opioids such as heroin were originally identified and subsequently abused for their analgesic effects. However, many investigations have found additional effects of opioids, including regulation of the immune system. As such, chronic opioid abuse has been shown to promote HIV-1 pathogenesis and facilitate HIV-1-associated neurocognitive dysfunction. Clinical opioids, such as morphine and methadone, as well as illicit opioids, such as heroin, exert their effects primarily through interactions with the μ-opioid receptor (MOR). However, the mechanisms by which opioids enhance neurocognitive dysfunction through MOR-mediated signaling pathways are not completely understood. New findings in the regulation of MOR expression, particularly epigenetic and transcriptional regulation as well as alternative splicing, sheds new insights into possible mechanisms of HIV-1 and opiate synergy. In this review, we identify mechanisms regulating MOR expression and propose novel mechanisms by which opioids and HIV-1 may modulate this regulation. Additionally, we suggest that differential regulation of newly identified MOR isoforms by opioids and HIV-1 has functional consequence in enhancing HIV-1 neurocognitive dysfunction. PMID:22034138

  3. Cooperativity among Rev-Associated Nuclear Export Signals Regulates HIV-1 Gene Expression and Is a Determinant of Virus Species Tropism

    PubMed Central

    Aligeti, Mounavya; Behrens, Ryan T.; Pocock, Ginger M.; Schindelin, Johannes; Dietz, Christian; Eliceiri, Kevin W.; Swanson, Chad M.; Malim, Michael H.; Ahlquist, Paul

    2014-01-01

    ABSTRACT Murine cells exhibit a profound block to HIV-1 virion production that was recently mapped to a species-specific structural attribute of the murine version of the chromosomal region maintenance 1 (mCRM1) nuclear export receptor and rescued by the expression of human CRM1 (hCRM1). In human cells, the HIV-1 Rev protein recruits hCRM1 to intron-containing viral mRNAs encoding the Rev response element (RRE), thereby facilitating viral late gene expression. Here we exploited murine 3T3 fibroblasts as a gain-of-function system to study hCRM1's species-specific role in regulating Rev's effector functions. We show that Rev is rapidly exported from the nucleus by mCRM1 despite only weak contributions to HIV-1's posttranscriptional stages. Indeed, Rev preferentially accumulates in the cytoplasm of murine 3T3 cells with or without hCRM1 expression, in contrast to human HeLa cells, where Rev exhibits striking en masse transitions between the nuclear and cytoplasmic compartments. Efforts to bias Rev's trafficking either into or out of the nucleus revealed that Rev encoding a second CRM1 binding domain (Rev-2xNES) or Rev-dependent viral gag-pol mRNAs bearing tandem RREs (GP-2xRRE), rescue virus particle production in murine cells even in the absence of hCRM1. Combined, these results suggest a model wherein Rev-associated nuclear export signals cooperate to regulate the number or quality of CRM1's interactions with viral Rev/RRE ribonucleoprotein complexes in the nucleus. This mechanism regulates CRM1-dependent viral gene expression and is a determinant of HIV-1's capacity to produce virions in nonhuman cell types. IMPORTANCE Cells derived from mice and other nonhuman species exhibit profound blocks to HIV-1 replication. Here we elucidate a block to HIV-1 gene expression attributable to the murine version of the CRM1 (mCRM1) nuclear export receptor. In human cells, hCRM1 regulates the nuclear export of viral intron-containing mRNAs through the activity of the viral Rev

  4. HIV Type 1 (HIV-1) Proviral Reservoirs Decay Continuously Under Sustained Virologic Control in HIV-1–Infected Children Who Received Early Treatment

    PubMed Central

    Luzuriaga, Katherine; Tabak, Barbara; Garber, Manuel; Chen, Ya Hui; Ziemniak, Carrie; McManus, Margaret M.; Murray, Danielle; Strain, Matthew C.; Richman, Douglas D.; Chun, Tae-Wook; Cunningham, Coleen K.; Persaud, Deborah

    2014-01-01

    Background. Early initiation of combination antiretroviral therapy (cART) to human immunodeficiency virus type 1 (HIV-1)–infected infants controls HIV-1 replication and reduces mortality. Methods. Plasma viremia (lower limit of detection, <2 copies/mL), T-cell activation, HIV-1–specific immune responses, and the persistence of cells carrying replication-competent virus were quantified during long-term effective combination antiretroviral therapy (cART) in 4 perinatally HIV-1–infected youth who received treatment early (the ET group) and 4 who received treatment late (the LT group). Decay in peripheral blood mononuclear cell (PBMC) proviral DNA levels was also measured over time in the ET youth. Results. Plasma viremia was not detected in any ET youth but was detected in all LT youth (median, 8 copies/mL; P = .03). PBMC proviral load was significantly lower in ET youth (median, 7 copies per million PBMCs) than in LT youth (median, 181 copies; P = .03). Replication-competent virus was recovered from all LT youth but only 1 ET youth. Decay in proviral DNA was noted in all 4 ET youth in association with limited T-cell activation and with absent to minimal HIV-1–specific immune responses. Conclusions. Initiation of early effective cART during infancy significantly limits circulating levels of proviral and replication-competent HIV-1 and promotes continuous decay of viral reservoirs. Continued cART with reduction in HIV-1 reservoirs over time may facilitate HIV-1 eradication strategies. PMID:24850788

  5. HIV-1 RNA quantification in CRF02_AG HIV-1 infection: too easy to make mistakes.

    PubMed

    Tatarelli, Paola; Taramasso, Lucia; Di Biagio, Antonio; Sticchi, Laura; Nigro, Nicola; Barresi, Renata; Viscoli, Claudio; Bruzzone, Bianca

    2016-04-01

    The number of patients newly infected by HIV-1 non-B subtypes and circulating recombinant forms (CRFs) is increasing worldwide, including in the western countries. We report on a primary HIV-1 infection in a Caucasian patient. A routine quantitative assay (Nuclisens EasyQ HIV-1 2.0, BioMérieux SA) showed 6,700 HIV-1 RNA copies/ml. A combined antiretroviral therapy (cART) consistent with low baseline HIV-1 RNA was started. Few days later, the analysis performed with REGA HIV-1 Subtyping Tool - Version 3.0 attributed the HIV-1 sequence to the CRF02_AG recombinant form. Therefore, a second real-time PCR assay was performed, using the Versant HIV-1 RNA 1.0 Assay (kPCR) (Siemens HealthCare Diagnostics) which revealed a HIV-1 RNA of 230,000 copies/ml. Consequently, the ongoing cART was potentiated. This case suggests that the wide genetic variability of HIV-1 subtypes may affect the capability of the commonly used assays to detect and accurately quantify HIV-1 RNA in non-B subtypes and CRFs. In presence of CRFs different commercial HIV-1 RNA tests should be performed to find the most reliable for viral load quantification at the diagnosis, because it influences the choice of cART, and during the follow-up. Indeed, international guidelines for HIV-1 infection management suggest to monitor patient' HIV-RNA with the same assay over the course of treatment. As different commercial tests can be performed in the same laboratory with considerable difficulty, the laboratory should select an assay that is suitable not only for the more prevalent strain, but also for less frequent ones that, nevertheless, can occur. Then, knowing and investigating the spread of non-B strains has essential clinical and laboratory implications. PMID:27196556

  6. A putative HIV-1 subtype C/CRF11_cpx unique recombinant from South Africa.

    PubMed

    Bessong, Pascal Obong; Iweriebor, Benson

    2016-01-01

    The HIV epidemic in South Africa is overwhelmingly driven by HIV-1 subtype C viruses. The HIV gag, pol, env (C2-V5) and nef sequences of virus 08MB26ZA, obtained from a 47 year old woman, were studied by phylogenetic analysis, REGA and the jumping Profile Hidden Markov Model (jPHMM) tools. The pol gene was further analyzed for recombination by Simplot. The pol and env sequences were examined for genetic drug resistance mutations and predicted co-receptor usage respectively. There was agreement in the assignment of the gag sequence as pure HIV-1 subtype C by phylogenetic, REGA and jPHMM analyses. The pol sequence clustered with CRF11_cpx and in the J-clade by phylogenetic analysis; and to a CRF11_cpx/subtype C recombinant by REGA. The assignment of pol to CRF11_cpx and subtype C was confirmed by Simplot. The recombinant was of the R5 biotype, with no important drug resistance mutations in the pol region. The epidemiologic and biologic significance of the virus are unknown. The finding suggests that complex viruses are being introduced into South Africa with potential implications for diagnosis. This is apparently the first report from South Africa of a putative unique recombinant involving CRF11_cpx and subtype C genomes. PMID:27047711

  7. A putative HIV-1 subtype C/CRF11_cpx unique recombinant from South Africa.

    PubMed

    Bessong, Pascal Obong; Iweriebor, Benson

    2016-01-01

    The HIV epidemic in South Africa is overwhelmingly driven by HIV-1 subtype C viruses. The HIV gag, pol, env (C2-V5) and nef sequences of virus 08MB26ZA, obtained from a 47 year old woman, were studied by phylogenetic analysis, REGA and the jumping Profile Hidden Markov Model (jPHMM) tools. The pol gene was further analyzed for recombination by Simplot. The pol and env sequences were examined for genetic drug resistance mutations and predicted co-receptor usage respectively. There was agreement in the assignment of the gag sequence as pure HIV-1 subtype C by phylogenetic, REGA and jPHMM analyses. The pol sequence clustered with CRF11_cpx and in the J-clade by phylogenetic analysis; and to a CRF11_cpx/subtype C recombinant by REGA. The assignment of pol to CRF11_cpx and subtype C was confirmed by Simplot. The recombinant was of the R5 biotype, with no important drug resistance mutations in the pol region. The epidemiologic and biologic significance of the virus are unknown. The finding suggests that complex viruses are being introduced into South Africa with potential implications for diagnosis. This is apparently the first report from South Africa of a putative unique recombinant involving CRF11_cpx and subtype C genomes.

  8. Super-Resolution Imaging of ESCRT-Proteins at HIV-1 Assembly Sites

    PubMed Central

    Prescher, Jens; Baumgärtel, Viola; Ivanchenko, Sergey; Torrano, Adriano A.; Bräuchle, Christoph; Müller, Barbara; Lamb, Don C.

    2015-01-01

    or in the bud lumen. In the case of ALIX, a cloud of individual molecules surrounding the central clusters was often observed, which we attribute to ALIX molecules incorporated into the nascent HIV-1 Gag shell. Experiments performed using YFP-tagged Tsg101 led to an over 10-fold increase in ESCRT structures colocalizing with HIV-1 budding sites indicating an influence of the fusion protein tag on the function of the ESCRT protein. PMID:25710462

  9. HIV-1 Genetic Variability in Cuba and Implications for Transmission and Clinical Progression.

    PubMed

    Blanco, Madeline; Machado, Liuber Y; Díaz, Héctor; Ruiz, Nancy; Romay, Dania; Silva, Eladio

    2015-10-01

    INTRODUCTION Serological and molecular HIV-1 studies in Cuba have shown very low prevalence of seropositivity, but an increasing genetic diversity attributable to introduction of many HIV-1 variants from different areas, exchange of such variants among HIV-positive people with several coinciding routes of infection and other epidemiologic risk factors in the seropositive population. The high HIV-1 genetic variability observed in Cuba has possible implications for transmission and clinical progression. OBJECTIVE Study genetic variability for the HIV-1 env, gag and pol structural genes in Cuba; determine the prevalence of B and non-B subtypes according to epidemiologic and behavioral variables and determine whether a relationship exists between genetic variability and transmissibility, and between genetic variability and clinical disease progression in people living with HIV/AIDS. METHODS Using two molecular assays (heteroduplex mobility assay and nucleic acid sequencing), structural genes were characterized in 590 people with HIV-1 (480 men and 110 women), accounting for 3.4% of seropositive individuals in Cuba as of December 31, 2013. Nonrandom sampling, proportional to HIV prevalence by province, was conducted. Relationships between molecular results and viral factors, host characteristics, and patients' clinical, epidemiologic and behavioral variables were studied for molecular epidemiology, transmission, and progression analyses. RESULTS Molecular analysis of the three HIV-1 structural genes classified 297 samples as subtype B (50.3%), 269 as non-B subtypes (45.6%) and 24 were not typeable. Subtype B prevailed overall and in men, mainly in those who have sex with men. Non-B subtypes were prevalent in women and heterosexual men, showing multiple circulating variants and recombinant forms. Sexual transmission was the predominant form of infection for all. B and non-B subtypes were encountered throughout Cuba. No association was found between subtypes and

  10. Substance abuse, HIV-1 and hepatitis

    PubMed Central

    Parikh, Nirzari; Nonnemacher, Michael R.; Pirrone, Vanessa; Block, Timothy; Mehta, Anand; Wigdahl, Brian

    2013-01-01

    During the course of human immunodeficiency virus type 1 (HIV-1) disease, the virus has been shown to effectively escape the immune response with the subsequent establishment of latent viral reservoirs in specific cell populations within the peripheral blood (PB) and associated lymphoid tissues, bone marrow (BM), brain, and potentially other end organs. HIV-1, along with hepatitis B and C viruses (HBV and HCV), are known to share similar routes of transmission, including intravenous drug use, blood transfusions, sexual intercourse, and perinatal exposure. Substance abuse, including the use of opioids and cocaine, is a significant risk factor for exposure to HIV-1 and the development of acquired immune deficiency syndrome, as well as HBV and HCV exposure, infection, and disease. Thus, coinfection with HIV-1 and HBV or HCV is common and may be impacted by chronic substance abuse during the course of disease. HIV-1 impacts the natural course of HBV and HCV infection by accelerating the progression of HBV/HCV-associated liver disease toward end-stage cirrhosis and quantitative depletion of the CD4+ T-cell compartment. HBV or HCV coinfection with HIV-1 is also associated with increased mortality when compared to either infection alone. This review focuses on the impact of substance abuse and coinfection with HBV and HCV in the PB, BM, and brain on the HIV-1 pathogenic process as it relates to viral pathogenesis, disease progression, and the associated immune response during the course of this complex interplay. The impact of HIV-1 and substance abuse on hepatitis virus-induced disease is also a focal point. PMID:22973853

  11. Structural Basis for Broad and Potent Neutralization of HIV-1 by Antibody VRC01

    SciTech Connect

    Zhou, Tongqing; Georgiev, Ivelin; Wu, Xueling; Yang, Zhi-Yong; Dai, Kaifan; Finzi, Andrés; Kwon, Young Do; Scheid, Johannes F.; Shi, Wei; Xu, Ling; Yang, Yongping; Zhu, Jiang; Nussenzweig, Michel C.; Sodroski, Joseph; Shapiro, Lawrence; Nabel, Gary J.; Mascola, John R.; Kwong, Peter D.

    2010-08-26

    During HIV-1 infection, antibodies are generated against the region of the viral gp120 envelope glycoprotein that binds CD4, the primary receptor for HIV-1. Among these antibodies, VRC01 achieves broad neutralization of diverse viral strains. We determined the crystal structure of VRC01 in complex with a human immunodeficiency virus HIV-1 gp120 core. VRC01 partially mimics CD4 interaction with gp120. A shift from the CD4-defined orientation, however, focuses VRC01 onto the vulnerable site of initial CD4 attachment, allowing it to overcome the glycan and conformational masking that diminishes the neutralization potency of most CD4-binding-site antibodies. To achieve this recognition, VRC01 contacts gp120 mainly through immunoglobulin V-gene regions substantially altered from their genomic precursors. Partial receptor mimicry and extensive affinity maturation thus facilitate neutralization of HIV-1 by natural human antibodies.

  12. Long noncoding RNA NRON contributes to HIV-1 latency by specifically inducing tat protein degradation

    PubMed Central

    Li, Jun; Chen, Cancan; Ma, Xiancai; Geng, Guannan; Liu, Bingfeng; Zhang, Yijun; Zhang, Shaoyang; Zhong, Fudi; Liu, Chao; Yin, Yue; Cai, Weiping; Zhang, Hui

    2016-01-01

    Long noncoding RNAs (lncRNAs) play multiple key regulatory roles in various cellular pathways. However, their functions in HIV-1 latent infection remain largely unknown. Here we show that a lncRNA named NRON, which is highly expressed in resting CD4+ T lymphocytes, could be involved in HIV-1 latency by specifically inducing Tat protein degradation. Our results suggest that NRON lncRNA potently suppresses the viral transcription by decreasing the cellular abundance of viral transactivator protein Tat. NRON directly links Tat to the ubiquitin/proteasome components including CUL4B and PSMD11, thus facilitating Tat degradation. Depletion of NRON, especially in combination with a histone deacetylase (HDAC) inhibitor, significantly reactivates the viral production from the HIV-1-latently infected primary CD4+ T lymphocytes. Our data indicate that lncRNAs play a role in HIV-1 latency and their manipulation could be a novel approach for developing latency-reversing agents. PMID:27291871

  13. Drug-Eluting Fibers for HIV-1 Inhibition and Contraception

    PubMed Central

    Ball, Cameron; Krogstad, Emily; Chaowanachan, Thanyanan; Woodrow, Kim A.

    2012-01-01

    Multipurpose prevention technologies (MPTs) that simultaneously prevent sexually transmitted infections (STIs) and unintended pregnancy are a global health priority. Combining chemical and physical barriers offers the greatest potential to design effective MPTs, but integrating both functional modalities into a single device has been challenging. Here we show that drug-eluting fiber meshes designed for topical drug delivery can function as a combination chemical and physical barrier MPT. Using FDA-approved polymers, we fabricated nanofiber meshes with tunable fiber size and controlled degradation kinetics that facilitate simultaneous release of multiple agents against HIV-1, HSV-2, and sperm. We observed that drug-loaded meshes inhibited HIV-1 infection in vitro and physically obstructed sperm penetration. Furthermore, we report on a previously unknown activity of glycerol monolaurate (GML) to potently inhibit sperm motility and viability. The application of drug-eluting nanofibers for HIV-1 prevention and sperm inhibition may serve as an innovative platform technology for drug delivery to the lower female reproductive tract. PMID:23209601

  14. Influence of Host Gene Transcription Level and Orientation on HIV-1 Latency in a Primary-Cell Model▿

    PubMed Central

    Shan, Liang; Yang, Hung-Chih; Rabi, S. Alireza; Bravo, Hector C.; Shroff, Neeta S.; Irizarry, Rafael A.; Zhang, Hao; Margolick, Joseph B.; Siliciano, Janet D.; Siliciano, Robert F.

    2011-01-01

    Human immunodeficiency virus type 1 (HIV-1) establishes a latent reservoir in resting memory CD4+ T cells. This latent reservoir is a major barrier to the eradication of HIV-1 in infected individuals and is not affected by highly active antiretroviral therapy (HAART). Reactivation of latent HIV-1 is a possible strategy for elimination of this reservoir. The mechanisms with which latency is maintained are unclear. In the analysis of the regulation of HIV-1 gene expression, it is important to consider the nature of HIV-1 integration sites. In this study, we analyzed the integration and transcription of latent HIV-1 in a primary CD4+ T cell model of latency. The majority of integration sites in latently infected cells were in introns of transcription units. Serial analysis of gene expression (SAGE) demonstrated that more than 90% of those host genes harboring a latent integrated provirus were transcriptionally active, mostly at high levels. For latently infected cells, we observed a modest preference for integration in the same transcriptional orientation as the host gene (63.8% versus 36.2%). In contrast, this orientation preference was not observed in acutely infected or persistently infected cells. These results suggest that transcriptional interference may be one of the important factors in the establishment and maintenance of HIV-1 latency. Our findings suggest that disrupting the negative control of HIV-1 transcription by upstream host promoters could facilitate the reactivation of latent HIV-1 in some resting CD4+ T cells. PMID:21430059

  15. Exosomes: Implications in HIV-1 Pathogenesis

    PubMed Central

    Madison, Marisa N.; Okeoma, Chioma M.

    2015-01-01

    Exosomes are membranous nanovesicles of endocytic origin that carry host and pathogen derived genomic, proteomic, and lipid cargos. Exosomes are secreted by most cell types into the extracellular milieu and are subsequently internalized by recipient cells. Upon internalization, exosomes condition recipient cells by donating their cargos and/or activating various signal transduction pathways, consequently regulating physiological and pathophysiological processes. The role of exosomes in viral pathogenesis, especially human immunodeficiency virus type 1 [HIV-1] is beginning to unravel. Recent research reports suggest that exosomes from various sources play important but different roles in the pathogenesis of HIV-1. From these reports, it appears that the source of exosomes is the defining factor for the exosomal effect on HIV-1. In this review, we will describe how HIV-1 infection is modulated by exosomes and in turn how exosomes are targeted by HIV-1 factors. Finally, we will discuss potentially emerging therapeutic options based on exosomal cargos that may have promise in preventing HIV-1 transmission. PMID:26205405

  16. Exosomes: Implications in HIV-1 Pathogenesis.

    PubMed

    Madison, Marisa N; Okeoma, Chioma M

    2015-07-20

    Exosomes are membranous nanovesicles of endocytic origin that carry host and pathogen derived genomic, proteomic, and lipid cargos. Exosomes are secreted by most cell types into the extracellular milieu and are subsequently internalized by recipient cells. Upon internalization, exosomes condition recipient cells by donating their cargos and/or activating various signal transduction pathways, consequently regulating physiological and pathophysiological processes. The role of exosomes in viral pathogenesis, especially human immunodeficiency virus type 1 [HIV-1] is beginning to unravel. Recent research reports suggest that exosomes from various sources play important but different roles in the pathogenesis of HIV-1. From these reports, it appears that the source of exosomes is the defining factor for the exosomal effect on HIV-1. In this review, we will describe how HIV-1 infection is modulated by exosomes and in turn how exosomes are targeted by HIV-1 factors. Finally, we will discuss potentially emerging therapeutic options based on exosomal cargos that may have promise in preventing HIV-1 transmission.

  17. A Phylogenetic Survey on the Structure of the HIV-1 Leader RNA Domain That Encodes the Splice Donor Signal.

    PubMed

    Mueller, Nancy; Das, Atze T; Berkhout, Ben

    2016-01-01

    RNA splicing is a critical step in the human immunodeficiency virus type 1 (HIV-1) replication cycle because it controls the expression of the complex viral proteome. The major 5' splice site (5'ss) that is positioned in the untranslated leader of the HIV-1 RNA transcript is of particular interest because it is used for the production of the more than 40 differentially spliced subgenomic mRNAs. HIV-1 splicing needs to be balanced tightly to ensure the proper levels of all viral proteins, including the Gag-Pol proteins that are translated from the unspliced RNA. We previously presented evidence that the major 5'ss is regulated by a repressive local RNA structure, the splice donor (SD) hairpin, that masks the 11 nucleotides (nts) of the 5'ss signal for recognition by U1 small nuclear RNA (snRNA) of the spliceosome machinery. A strikingly different multiple-hairpin RNA conformation was recently proposed for this part of the HIV-1 leader RNA. We therefore inspected the sequence of natural HIV-1 isolates in search for support, in the form of base pair (bp) co-variations, for the different RNA conformations. PMID:27455303

  18. A Phylogenetic Survey on the Structure of the HIV-1 Leader RNA Domain That Encodes the Splice Donor Signal

    PubMed Central

    Mueller, Nancy; Das, Atze T.; Berkhout, Ben

    2016-01-01

    RNA splicing is a critical step in the human immunodeficiency virus type 1 (HIV-1) replication cycle because it controls the expression of the complex viral proteome. The major 5′ splice site (5′ss) that is positioned in the untranslated leader of the HIV-1 RNA transcript is of particular interest because it is used for the production of the more than 40 differentially spliced subgenomic mRNAs. HIV-1 splicing needs to be balanced tightly to ensure the proper levels of all viral proteins, including the Gag-Pol proteins that are translated from the unspliced RNA. We previously presented evidence that the major 5′ss is regulated by a repressive local RNA structure, the splice donor (SD) hairpin, that masks the 11 nucleotides (nts) of the 5′ss signal for recognition by U1 small nuclear RNA (snRNA) of the spliceosome machinery. A strikingly different multiple-hairpin RNA conformation was recently proposed for this part of the HIV-1 leader RNA. We therefore inspected the sequence of natural HIV-1 isolates in search for support, in the form of base pair (bp) co-variations, for the different RNA conformations. PMID:27455303

  19. A Phylogenetic Survey on the Structure of the HIV-1 Leader RNA Domain That Encodes the Splice Donor Signal.

    PubMed

    Mueller, Nancy; Das, Atze T; Berkhout, Ben

    2016-07-21

    RNA splicing is a critical step in the human immunodeficiency virus type 1 (HIV-1) replication cycle because it controls the expression of the complex viral proteome. The major 5' splice site (5'ss) that is positioned in the untranslated leader of the HIV-1 RNA transcript is of particular interest because it is used for the production of the more than 40 differentially spliced subgenomic mRNAs. HIV-1 splicing needs to be balanced tightly to ensure the proper levels of all viral proteins, including the Gag-Pol proteins that are translated from the unspliced RNA. We previously presented evidence that the major 5'ss is regulated by a repressive local RNA structure, the splice donor (SD) hairpin, that masks the 11 nucleotides (nts) of the 5'ss signal for recognition by U1 small nuclear RNA (snRNA) of the spliceosome machinery. A strikingly different multiple-hairpin RNA conformation was recently proposed for this part of the HIV-1 leader RNA. We therefore inspected the sequence of natural HIV-1 isolates in search for support, in the form of base pair (bp) co-variations, for the different RNA conformations.

  20. Nuclear trafficking of the HIV-1 pre-integration complex depends on the ADAM10 intracellular domain

    SciTech Connect

    Endsley, Mark A.; Somasunderam, Anoma D.; Li, Guangyu; Oezguen, Numan; Thiviyanathan, Varatharasa; Murray, James L.; Rubin, Donald H.; Hodge, Thomas W.; and others

    2014-04-15

    Previously, we showed that ADAM10 is necessary for HIV-1 replication in primary human macrophages and immortalized cell lines. Silencing ADAM10 expression interrupted the HIV-1 life cycle prior to nuclear translocation of viral cDNA. Furthermore, our data indicated that HIV-1 replication depends on the expression of ADAM15 and γ-secretase, which proteolytically processes ADAM10. Silencing ADAM15 or γ-secretase expression inhibits HIV-1 replication between reverse transcription and nuclear entry. Here, we show that ADAM10 expression also supports replication in CD4{sup +} T lymphocytes. The intracellular domain (ICD) of ADAM10 associates with the HIV-1 pre-integration complex (PIC) in the cytoplasm and immunoprecipitates and co-localizes with HIV-1 integrase, a key component of PIC. Taken together, our data support a model whereby ADAM15/γ-secretase processing of ADAM10 releases the ICD, which then incorporates into HIV-1 PIC to facilitate nuclear trafficking. Thus, these studies suggest ADAM10 as a novel therapeutic target for inhibiting HIV-1 prior to nuclear entry. - Highlights: • Nuclear trafficking of the HIV-1 pre-integration complex depends on ADAM10. • ADAM10 associates with HIV-1 integrase in the pre-integration complex. • HIV-1 replication depends on the expression of ADAM15 and γ-secretase. • Silencing ADAM15 or γ-secretase expression inhibits nuclear import of viral cDNA. • ADAM10 is important for HIV-1 replication in human macrophages and CD4{sup +} T lymphocytes.

  1. Human Mucosal Mast Cells Capture HIV-1 and Mediate Viral trans-Infection of CD4+ T Cells

    PubMed Central

    Jiang, Ai-Ping; Jiang, Jin-Feng; Wei, Ji-Fu; Guo, Ming-Gao; Qin, Yan; Guo, Qian-Qian; Ma, Li; Liu, Bao-Chi; Wang, Xiaolei; Veazey, Ronald S.

    2015-01-01

    ABSTRACT The gastrointestinal mucosa is the primary site where human immunodeficiency virus type 1 (HIV-1) invades, amplifies, and becomes persistently established, and cell-to-cell transmission of HIV-1 plays a pivotal role in mucosal viral dissemination. Mast cells are widely distributed in the gastrointestinal tract and are early targets for invasive pathogens, and they have been shown to have increased density in the genital mucosa in HIV-infected women. Intestinal mast cells express numerous pathogen-associated molecular patterns (PAMPs) and have been shown to combat various viral, parasitic, and bacterial infections. However, the role of mast cells in HIV-1 infection is poorly defined. In this study, we investigated their potential contributions to HIV-1 transmission. Mast cells isolated from gut mucosal tissues were found to express a variety of HIV-1 attachment factors (HAFs), such as DC-SIGN, heparan sulfate proteoglycan (HSPG), and α4β7 integrin, which mediate capture of HIV-1 on the cell surface. Intriguingly, following coculture with CD4+ T cells, mast cell surface-bound viruses were efficiently transferred to target T cells. Prior blocking with anti-HAF antibody or mannan before coculture impaired viral trans-infection. Cell-cell conjunctions formed between mast cells and T cells, to which viral particles were recruited, and these were required for efficient cell-to-cell HIV-1 transmission. Our results reveal a potential function of gut mucosal mast cells in HIV-1 dissemination in tissues. Strategies aimed at preventing viral capture and transfer mediated by mast cells could be beneficial in combating primary HIV-1 infection. IMPORTANCE In this study, we demonstrate the role of human mast cells isolated from mucosal tissues in mediating HIV-1 trans-infection of CD4+ T cells. This finding facilitates our understanding of HIV-1 mucosal infection and will benefit the development of strategies to combat primary HIV-1 dissemination. PMID:26719250

  2. Exercise and Human Immunodeficiency Virus (HIV-1) Infection

    NASA Technical Reports Server (NTRS)

    Lawless, DeSales; Jackson, Catherine G. R.; Greenleaf, John E.

    1995-01-01

    The human immune system is highly efficient and remarkably protective when functioning properly. Similar to other physiological systems, it functions best when the body is maintained with a balanced diet, sufficient rest and a moderately stress-free lifestyle. It can be disrupted by inappropriate drug use and extreme emotion or exertion. The functioning of normal or compromised immune systems can be enhanced by properly prescribed moderate exercise conditioning regimens in healthy people, and in some human immunodeficiency virus (HIV-1)-infected patients but not in others who unable to complete an interval training program. Regular exercise conditioning in healthy people reduces cardiovascular risk factors, increases stamina, facilitates bodyweight control, and reduces stress by engendering positive feelings of well-being. Certain types of cancer may also be suppressed by appropriate exercise conditioning. Various exercise regimens are being evaluated as adjunct treatments for medicated patients with the HIV-1 syndrome. Limited anecdotal evidence from patients suggests that moderate exercise conditioning is per se responsible for their survival well beyond expectancy. HIV-1-infected patients respond positively, both physiologically and psychologically, to moderate exercise conditioning. However, the effectiveness of any exercise treatment programme depends on its mode, frequency, intensity and duration when prescribed o complement the pathological condition of the patient. The effectiveness of exercise conditioning regimens in patients with HIV-1 infection is reviewed in this article. In addition, we discuss mechanisms and pathways, involving the interplay of psychological and physiological factors, through which the suppressed immune system can be enhanced. The immune modulators discussed are endogenous opioids, cytokines, neurotransmitters and other hormones. Exercise conditioning treatment appears to be more effective when combined with other stress management

  3. HIV-1 Genetic Diversity and Transmitted Drug Resistance Among Recently Infected Individuals at Men Who Have Sex with Men Sentinel Surveillance Points in Hebei Province, China.

    PubMed

    Lu, Xinli; Kang, Xianjiang; Chen, Suliang; Zhao, Hongru; Liu, Yongjian; Zhao, Cuiying; Zhang, Yuqi; Li, Jingyun; Cui, Ze; Wang, Xianfeng

    2015-10-01

    For this study, 50 HIV-1 plasma samples of recently infected men who have sex with men (MSM) were amplified and sequenced. Multiple subtypes were identified by phylogenetic analyses of HIV-1 gag, env, and pol gene regions, including CRF01_AE (56.0%), CRF07_BC (30.0%), subtype B (12.0%), and unique recombinant forms (URFs, 6.0%). CRF01_AE was the most frequent genotype in the epidemic. Three recombination patterns of URFs were identified: 01BC, 01B, and 01C. The rate of HIV-1 transmitted drug resistance (TDR) mutation (M46L) was 2.08% (1/48). URFs and TDR first identified in this study suggest that HIV-1 prevalence is more and more complicated, and HIV-1 drug-resistant strains have begun to spread among at risk populations in Hebei. Our findings can provide vital information for an efficient surveillance system and strategic HIV prevention and control measures in China by revealing the evolutionary status and HIV-1 TDR of HIV-1 strains among recently infected MSM in Hebei Province.

  4. HIV-1 Genetic Diversity and Transmitted Drug Resistance Among Recently Infected Individuals at Men Who Have Sex with Men Sentinel Surveillance Points in Hebei Province, China.

    PubMed

    Lu, Xinli; Kang, Xianjiang; Chen, Suliang; Zhao, Hongru; Liu, Yongjian; Zhao, Cuiying; Zhang, Yuqi; Li, Jingyun; Cui, Ze; Wang, Xianfeng

    2015-10-01

    For this study, 50 HIV-1 plasma samples of recently infected men who have sex with men (MSM) were amplified and sequenced. Multiple subtypes were identified by phylogenetic analyses of HIV-1 gag, env, and pol gene regions, including CRF01_AE (56.0%), CRF07_BC (30.0%), subtype B (12.0%), and unique recombinant forms (URFs, 6.0%). CRF01_AE was the most frequent genotype in the epidemic. Three recombination patterns of URFs were identified: 01BC, 01B, and 01C. The rate of HIV-1 transmitted drug resistance (TDR) mutation (M46L) was 2.08% (1/48). URFs and TDR first identified in this study suggest that HIV-1 prevalence is more and more complicated, and HIV-1 drug-resistant strains have begun to spread among at risk populations in Hebei. Our findings can provide vital information for an efficient surveillance system and strategic HIV prevention and control measures in China by revealing the evolutionary status and HIV-1 TDR of HIV-1 strains among recently infected MSM in Hebei Province. PMID:26200883

  5. Infants with late breast milk acquisition of HIV-1 generate interferon-gamma responses more rapidly than infants with early peripartum acquisition.

    PubMed

    Lohman-Payne, B; Slyker, J A; Richardson, B A; Farquhar, C; Majiwa, M; Maleche-Obimbo, E; Mbori-Ngacha, D; Overbaugh, J; Rowland-Jones, S; John-Stewart, G

    2009-06-01

    Infants infected with HIV-1 after the first month of life have a lower viral set-point and slower disease progression than infants infected before 1 month. We investigated the kinetics of HIV-1-specific CD8(+) T lymphocyte secretion of interferon (IFN)-gamma in infants infected before 1 month of life compared with those infected between months 1 and 12 (late infection). HIV-1 infection was assessed at birth and at months 1, 3, 6, 9 and 12 and timing of infection was determined by HIV-1 gag DNA from dried blood spots and verified by plasma HIV-1 RNA levels. HIV-1 peptide-specific IFN-gamma responses were measured by enzyme-linked immunospot at months 1, 3, 6, 9 and 12. Timing of development of IFN-gamma responses was compared using the log-rank test and Kaplan-Meier survival curves. Infants infected late developed HIV-1-specific CD8(+) T cell responses 2.8 months sooner than infants infected peripartum: 2.3 versus 5.1 months after HIV-1 infection (n = 52, P = 0.04). Late-infected infants had more focused epitope recognition than early-infected infants (median 1 versus 2 peptides, P = 0.03); however, there were no differences in the strength of IFN-gamma responses. In infants infected with HIV-1 after the first month of life, emergence of HIV-1-specific CD8(+) IFN-gamma responses is coincident with the decline in viral load, nearly identical to what is observed in adults and more rapid than in early-infected infants.

  6. Escherichia coli LysU is a potential surrogate for human lysyl tRNA synthetase in interactions with the C-terminal domain of HIV-1 capsid protein.

    PubMed

    Boonyalai, Nonlawat; Pullen, James R; Abdul Wahab, Mohd Firdaus; Wright, Michael; Miller, Andrew D

    2013-01-28

    Human lysyl-tRNA synthetase (hLysRS) is known to interact directly with human immunodeficiency virus type-1 (HIV-1) GagPol polyproteins, and both hLysRS with tRNA(Lys3) are selectively packaged into emerging HIV-1 viral particles. This packaging process appears to be mediated by contact between the motif 1 helix h7 of hLysRS and the C-terminal dimerization domain of the HIV-1 capsid protein (CA) segment of Gag or GagPol. Given similarities between hLysRS and Escherichia coli (E. coli) heat shock protein LysU, we investigate if LysU might be an hLysRS surrogate for interactions with Gag or GagPol proteins. We report on a series of studies involving three CA C-domains: CA(146) (intact domain), CA(151) (truncated domain), and CA(146)-M185A (M185A, CA dimer interface mutant). After confirming that LysU and CA(146) are dimeric whilst CA(151) and M185A remain monomeric, we use glutathione S-transferase (GST) pull-down assays to demonstrate the existence of specific interactions between LysU and all three CA-C domains. By means of (1)H-NMR titration experiments, we estimate K(d) values of 50 μM for the interaction between LysU and CA(146) or >500 μM for interactions between LysU and CA(151) or LysU and M185A. The reason for these binding affinity differences may be that interactions between LysU and CA(146) take place through dimer-dimer interactions resulting in a α(2)β(2) heterotetramer. LysU/CA-C protein interactions are weaker than those reported between hLysRS and the Gag, CA or CA(146) proteins, and hLysRS/Gag binding interactions have also been suggested to involve only αβ heterodimer formation. Nevertheless, we propose that LysU could act as a surrogate for hLysRS with respect to Gag and GagPol polyprotein interactions although arguably not sufficiently for LysU to act as an inhibitor of the HIV-1 life cycle without further adaptation or mutation. Potentially, LysU and/or LysU mutants could represent a new class of anti-HIV-1 therapeutic agent.

  7. Solution Structure of Calmodulin Bound to the Binding Domain of the HIV-1 Matrix Protein*

    PubMed Central

    Vlach, Jiri; Samal, Alexandra B.; Saad, Jamil S.

    2014-01-01

    Subcellular distribution of calmodulin (CaM) in human immunodeficiency virus type-1 (HIV-1)-infected cells is distinct from that observed in uninfected cells. CaM co-localizes and interacts with the HIV-1 Gag protein in the cytosol of infected cells. Although it has been shown that binding of Gag to CaM is mediated by the matrix (MA) domain, the structural details of this interaction are not known. We have recently shown that binding of CaM to MA induces a conformational change that triggers myristate exposure, and that the CaM-binding domain of MA is confined to a region spanning residues 8–43 (MA-(8–43)). Here, we present the NMR structure of CaM bound to MA-(8–43). Our data revealed that MA-(8–43), which contains a novel CaM-binding motif, binds to CaM in an antiparallel mode with the N-terminal helix (α1) anchored to the CaM C-terminal lobe, and the C-terminal helix (α2) of MA-(8–43) bound to the N-terminal lobe of CaM. The CaM protein preserves a semiextended conformation. Binding of MA-(8–43) to CaM is mediated by numerous hydrophobic interactions and stabilized by favorable electrostatic contacts. Our structural data are consistent with the findings that CaM induces unfolding of the MA protein to have access to helices α1 and α2. It is noteworthy that several MA residues involved in CaM binding have been previously implicated in membrane binding, envelope incorporation, and particle production. The present findings may ultimately help in identification of the functional role of CaM in HIV-1 replication. PMID:24500712

  8. Requirements for nucleocapsid-mediated regulation of reverse transcription during the late steps of HIV-1 assembly

    PubMed Central

    Racine, Pierre-Jean; Chamontin, Célia; de Rocquigny, Hugues; Bernacchi, Serena; Paillart, Jean-Christophe; Mougel, Marylène

    2016-01-01

    HIV-1 is a retrovirus replicating within cells by reverse transcribing its genomic RNA (gRNA) into DNA. Within cells, virus assembly requires the structural Gag proteins with few accessory proteins, notably the viral infectivity factor (Vif) and two copies of gRNA as well as cellular factors to converge to the plasma membrane. In this process, the nucleocapsid (NC) domain of Gag binds to the packaging signal of gRNA which consists of a series of stem-loops (SL1-SL3) ensuring gRNA selection and packaging into virions. Interestingly, mutating NC activates a late-occurring reverse transcription (RT) step in producer cells, leading to the release of DNA-containing HIV-1 particles. In order to decipher the molecular mechanism regulating this late RT, we explored the role of several key partners of NC, such as Vif, gRNA and the cellular cytidine deaminase APOBEC3G that restricts HIV-1 infection by targeting the RT. By studying combinations of deletions of these putative players, we revealed that NC, SL1-SL3 and in lesser extent Vif, but not APOBEC3G, interplay regulates the late RT. PMID:27273064

  9. Requirements for nucleocapsid-mediated regulation of reverse transcription during the late steps of HIV-1 assembly.

    PubMed

    Racine, Pierre-Jean; Chamontin, Célia; de Rocquigny, Hugues; Bernacchi, Serena; Paillart, Jean-Christophe; Mougel, Marylène

    2016-01-01

    HIV-1 is a retrovirus replicating within cells by reverse transcribing its genomic RNA (gRNA) into DNA. Within cells, virus assembly requires the structural Gag proteins with few accessory proteins, notably the viral infectivity factor (Vif) and two copies of gRNA as well as cellular factors to converge to the plasma membrane. In this process, the nucleocapsid (NC) domain of Gag binds to the packaging signal of gRNA which consists of a series of stem-loops (SL1-SL3) ensuring gRNA selection and packaging into virions. Interestingly, mutating NC activates a late-occurring reverse transcription (RT) step in producer cells, leading to the release of DNA-containing HIV-1 particles. In order to decipher the molecular mechanism regulating this late RT, we explored the role of several key partners of NC, such as Vif, gRNA and the cellular cytidine deaminase APOBEC3G that restricts HIV-1 infection by targeting the RT. By studying combinations of deletions of these putative players, we revealed that NC, SL1-SL3 and in lesser extent Vif, but not APOBEC3G, interplay regulates the late RT. PMID:27273064

  10. Development of a high-throughput detection system for HIV-1 using real-time NASBA based on molecular beacons

    NASA Astrophysics Data System (ADS)

    van Beuningen, Rinie; Marras, Salvatore A.; Kramer, Fred R.; Oosterlaken, Tom; Weusten, Jos; Borst, G.; van de Wiel, Paul

    2001-04-01

    HIV-1 viral load assays require accuracy and sensitivity at low RNA levels with the capability to detect all subtypes. Furthermore, the assay should be easy to perform and fast to be useful for routine diagnostics. In order to meet these demands we have combined isothermal NASBA amplification with molecular beacon probes for real-time detection and quantitation of HIV-1 RNA. Quantitation is based on co-amplification of the HIV-1 RNA in the clinical sample and a synthetic calibrator RNA which is amplified by the same primer set but detected with a differently labeled molecular beacon. The entire procedure is simple and analysis of 48 samples requires less than 1» hours with minimal hands-on time. A fluorescent plate reader is used for real-time detection and isothermal amplification. The linearity and precision of the assay was determined with the VQC HIV-1 type B standard of the Central Laboratory of the Dutch Red Cross Blood Banks, The Netherlands. Sensitivity was shown to be 50 copies per ml (cps/ml). The average assay precision was 0,19 log10 over a range of 100-300,000 cps/ml tested at nine concentrations. The linearity of dilution series of 15 cultured HIV-1 gag clades A-H was shown. The specificity was 100% on non HIV-1 samples HIV-2, HTLV-1 and HTLV-2. The assay robustness in terms of valid results was 99%. In conclusion, the new real-time NASBA assay meets state-of-the-art HIV-1 viral load performance requirements combined with a high level of user convenience.

  11. HIV-1 infection in Juba, southern Sudan.

    PubMed

    McCarthy, M C; Khalid, I O; El Tigani, A

    1995-05-01

    Thirty years of civil war in the Sudan have resulted in the isolation of the southern provinces which border Central and East Africa. Consequently, little is known about the epidemiology of HIV-1 infection in this region. To estimate the prevalence of HIV-1 infection in southern Sudan and the risk factors associated with disease transmission, a seroepidemiologic survey was conducted in the township of Juba. Study subjects invited to participate in this study included medical outpatients, inpatients hospitalized for active tuberculosis, and female prostitutes. A total of 401 subjects participated in the study. HIV-1 infection was confirmed in 25 subjects. The prevalence of HIV-1 infection was 19% (8/42) among tuberculosis patients, 16% (8/50) among prostitutes, and 3% (9/309) among outpatients. A significantly higher prevalence of HIV-1 infection was found among female prostitutes when compared to female outpatients: 16% (8/50) vs. 2% (4/178), P < 0.001. Correspondingly, the prevalence of seropositives was significantly higher among male outpatients reporting a history of sexual relations with prostitutes during the prior 10 years compared to male outpatients denying relations with prostitutes: 14% (5/37) vs. 0% (0/94), P = 0.0011. A history of a sexually transmitted disease (STD) was also associated with HIV-1 infection among male outpatients. The findings of this study indicate that HIV-1 infection is highly prevalent in southern Sudan and that prostitutes and their sexual partners represent a major reservoir of HIV infection in this population. This epidemiologic pattern resembles that seen in the African nations neighboring southern Sudan.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Envelope gene evolution and HIV-1 neuropathogenesis

    PubMed Central

    Vázquez-Santiago, Fabián J.; Rivera-Amill, Vanessa

    2016-01-01

    In the era of combined antiretroviral therapy (cART), HIV-associated neurocognitive disorders (HAND) account for 40 to 56% of all HIV+ cases. During the acute stage of HIV-1 infection (<6 months), the virus invades and replicates within the central nervous system (CNS). Compared to peripheral tissues, the local CNS cell population expresses distinct levels of chemokine receptors, which levels exert selective pressure on the invading virus. HIV-1 envelope (env) sequences recovered from the brains and cerebrospinal fluid (CSF) of neurocognitively impaired HIV+ subjects often display higher nucleotide variability as compared to non-impaired HIV+ subjects. Specifically, env evolution provides HIV-1 with the strategies to evade host immune response, to reduce chemokine receptor dependence, to increase co-receptor binding efficiency, and to potentiate neurotoxicity. The evolution of env within the CNS leads to changes that may result in the emergence of novel isolates with neurotoxic and neurovirulent features. However, whether specific factors of HIV-1 evolution lead to the emergence of neurovirulent and neurotropic isolates remains ill-defined. HIV-1 env evolution is an ongoing phenomenon that occurs independently of neurological and neurocognitive disease severity; thus HIV env evolution may play a pivotal and reciprocal role in the etiology of HAND. Despite the use of cART, the reactivation of latent viral reservoirs represents a clinical challenge because of the replenishment of the viral pool that may subsequently lead to persistent infection. Therefore, gaining a more complete understanding of how HIV-1 env evolves over the course of the disease should be considered for the development of future therapies aimed at controlling CNS burden, diminishing persistent viremia, and eradicating viral reservoirs. Here we review the current literature on the role of HIV-1 env evolution in the setting of HAND disease progression and on the impact of cART on the dynamics of

  13. Specific Elimination of Latently HIV-1 Infected Cells Using HIV-1 Protease-Sensitive Toxin Nanocapsules

    PubMed Central

    Wen, Jing; Yan, Ming; Liu, Yang; Li, Jie; Xie, Yiming; Lu, Yunfeng; Kamata, Masakazu; Chen, Irvin S. Y.

    2016-01-01

    Anti-retroviral drugs suppress HIV-1 plasma viremia to undetectable levels; however, latent HIV-1 persists in reservoirs within HIV-1-infected patients. The silent provirus can be activated through the use of drugs, including protein kinase C activators and histone deacetylase inhibitors. This “shock” approach is then followed by “kill” of the producing cells either through direct HIV-1-induced cell death or natural immune mechanisms. However, these mechanisms are relatively slow and effectiveness is unclear. Here, we develop an approach to specifically target and kill cells that are activated early in the process of virus production. We utilize a novel nanocapsule technology whereby the ricin A chain is encapsulated in an inactive form within a polymer shell. Specificity for release of the ricin A toxin is conferred by peptide crosslinkers that are sensitive to cleavage by HIV-1 protease. By using well-established latent infection models, J-Lat and U1 cells, we demonstrate that only within an HIV-1-producing cell expressing functional HIV-1 protease will the nanocapsule release its ricin A cargo, shutting down viral and cellular protein synthesis, and ultimately leading to rapid death of the producer cell. Thus, we provide proof of principle for a novel technology to kill HIV-1-producing cells without effects on non-target cells. PMID:27049645

  14. Specific Elimination of Latently HIV-1 Infected Cells Using HIV-1 Protease-Sensitive Toxin Nanocapsules.

    PubMed

    Wen, Jing; Yan, Ming; Liu, Yang; Li, Jie; Xie, Yiming; Lu, Yunfeng; Kamata, Masakazu; Chen, Irvin S Y

    2016-01-01

    Anti-retroviral drugs suppress HIV-1 plasma viremia to undetectable levels; however, latent HIV-1 persists in reservoirs within HIV-1-infected patients. The silent provirus can be activated through the use of drugs, including protein kinase C activators and histone deacetylase inhibitors. This "shock" approach is then followed by "kill" of the producing cells either through direct HIV-1-induced cell death or natural immune mechanisms. However, these mechanisms are relatively slow and effectiveness is unclear. Here, we develop an approach to specifically target and kill cells that are activated early in the process of virus production. We utilize a novel nanocapsule technology whereby the ricin A chain is encapsulated in an inactive form within a polymer shell. Specificity for release of the ricin A toxin is conferred by peptide crosslinkers that are sensitive to cleavage by HIV-1 protease. By using well-established latent infection models, J-Lat and U1 cells, we demonstrate that only within an HIV-1-producing cell expressing functional HIV-1 protease will the nanocapsule release its ricin A cargo, shutting down viral and cellular protein synthesis, and ultimately leading to rapid death of the producer cell. Thus, we provide proof of principle for a novel technology to kill HIV-1-producing cells without effects on non-target cells.

  15. Specific Elimination of Latently HIV-1 Infected Cells Using HIV-1 Protease-Sensitive Toxin Nanocapsules.

    PubMed

    Wen, Jing; Yan, Ming; Liu, Yang; Li, Jie; Xie, Yiming; Lu, Yunfeng; Kamata, Masakazu; Chen, Irvin S Y

    2016-01-01

    Anti-retroviral drugs suppress HIV-1 plasma viremia to undetectable levels; however, latent HIV-1 persists in reservoirs within HIV-1-infected patients. The silent provirus can be activated through the use of drugs, including protein kinase C activators and histone deacetylase inhibitors. This "shock" approach is then followed by "kill" of the producing cells either through direct HIV-1-induced cell death or natural immune mechanisms. However, these mechanisms are relatively slow and effectiveness is unclear. Here, we develop an approach to specifically target and kill cells that are activated early in the process of virus production. We utilize a novel nanocapsule technology whereby the ricin A chain is encapsulated in an inactive form within a polymer shell. Specificity for release of the ricin A toxin is conferred by peptide crosslinkers that are sensitive to cleavage by HIV-1 protease. By using well-established latent infection models, J-Lat and U1 cells, we demonstrate that only within an HIV-1-producing cell expressing functional HIV-1 protease will the nanocapsule release its ricin A cargo, shutting down viral and cellular protein synthesis, and ultimately leading to rapid death of the producer cell. Thus, we provide proof of principle for a novel technology to kill HIV-1-producing cells without effects on non-target cells. PMID:27049645

  16. Herpes simplex virus type-2 stimulates HIV-1 replication in cervical tissues: implications for HIV-1 transmission and efficacy of anti-HIV-1 microbicides.

    PubMed

    Rollenhagen, C; Lathrop, M J; Macura, S L; Doncel, G F; Asin, S N

    2014-09-01

    Herpes Simplex virus Type-2 (HSV-2) increases the risk of HIV-1 acquisition, yet the mechanism for this viral pathogen to regulate the susceptibility of the cervicovaginal mucosa to HIV-1 is virtually unknown. Using ex vivo human ectocervical tissue models, we report greater levels of HIV-1 reverse transcription, DNA integration, RNA expression, and virions release in HIV-1/HSV-2 co-infected tissues compared with HIV-1 only infected tissues (P<0.05). Enhanced HIV-1 replication was associated with increased CD4, CCR5, and CD38 transcription (P<0.05) and increased number of CD4(+)/CCR5(+)/CD38(+) T cells in HIV-1/HSV-2 co-infected tissues compared with tissues infected with HIV-1 alone. Tenofovir (TFV) 1% gel, the leading microbicide candidate, demonstrated only partial protection against HIV-1, when applied vaginally before and after sexual intercourse. It is possible that mucosal inflammation, in particular that induced by HSV-2 infection, may have decreased TFV efficacy. HSV-2 upregulated the number of HIV-1-infected cells and elevated the concentration of TFV needed to decrease HIV-1 infection. Similarly, only high concentrations of TFV inhibited HSV-2 replication in HIV-1/HSV-2-infected tissues. Thus, HSV-2 co-infection and mucosal immune cell activation should be taken into consideration when designing preventative strategies for sexual transmission of HIV-1.

  17. HIV-1 Genetic Variability and Clinical Implications

    PubMed Central

    Santoro, Maria Mercedes; Perno, Carlo Federico

    2013-01-01

    Despite advances in antiretroviral therapy that have revolutionized HIV disease management, effective control of the HIV infection pandemic remains elusive. Beyond the classic non-B endemic areas, HIV-1 non-B subtype infections are sharply increasing in previous subtype B homogeneous areas such as Europe and North America. As already known, several studies have shown that, among non-B subtypes, subtypes C and D were found to be more aggressive in terms of disease progression. Luckily, the response to antiretrovirals against HIV-1 seems to be similar among different subtypes, but these results are mainly based on small or poorly designed studies. On the other hand, differences in rates of acquisition of resistance among non-B subtypes are already being observed. This different propensity, beyond the type of treatment regimens used, as well as access to viral load testing in non-B endemic areas seems to be due to HIV-1 clade specific peculiarities. Indeed, some non-B subtypes are proved to be more prone to develop resistance compared to B subtype. This phenomenon can be related to the presence of subtype-specific polymorphisms, different codon usage, and/or subtype-specific RNA templates. This review aims to provide a complete picture of HIV-1 genetic diversity and its implications for HIV-1 disease spread, effectiveness of therapies, and drug resistance development. PMID:23844315

  18. Restriction Factors in HIV-1 Disease Progression.

    PubMed

    Merindol, Natacha; Berthoux, Lionel

    2015-01-01

    About 35 million people worldwide were living with HIV-1 at the end of 2013 and over 25 million have already died of AIDS. AIDS patients show high variability in the speed of disease progression in the absence of treatment. While certain immunological traits have been shown to correlate with accelerated or slowed progression in some subjects, including slow progressors, factors controlling HIV-1 replication and disease kinetics remain largely enigmatic. The importance of T lymphocytes and of protective HLA-alleles is undeniable, but not sufficient to explain every attenuated phenotype. A thorough understanding of HIV-1 infection control in these patient subsets may help the development of novel strategies for treatment and prevention. Restriction factors are type I interferon-induced specialized cellular proteins that block viruses at different steps of their life cycle. TRIM5α, Mx2/MxB, TRIM22/Staf50, SAMHD1, p21/CDKN1, tetherin/BST2/CD137, APOBEC3G and APOBEC3F have all been proposed to inhibit HIV-1, often with gene variant- or cellular context-specificity. Recent evidence highlights their possible implication in AIDS disease progression. In this review, we depict their restrictive activity against HIV-1 and recapitulate the latest data on their potential role in vivo, in both normal and slow progressors.

  19. Inhibition of HIV-1 Replication in Human Monocyte-Derived Macrophages by Parasite Trypanosoma cruzi

    PubMed Central

    Andreani, Guadalupe; Celentano, Ana M.; Solana, María E.; Cazorla, Silvia I.; Malchiodi, Emilio L.; Martínez Peralta, Liliana A.; Dolcini, Guillermina L.

    2009-01-01

    Background Cells of monocyte/macrophage lineage are one of the major targets of HIV-1 infection and serve as reservoirs for viral persistence in vivo. These cells are also the target of the protozoa Trypanosoma cruzi, the causative agent of Chagas disease, being one of the most important endemic protozoonoses in Latin America. It has been demonstrated in vitro that co-infection with other pathogens can modulate HIV replication. However, no studies at cellular level have suggested an interaction between T. cruzi and HIV-1 to date. Methodology/Principal Findings By using a fully replicative wild-type virus, our study showed that T. cruzi inhibits HIV-1 antigen production by nearly 100% (p<0.001) in monocyte-derived macrophages (MDM). In different infection schemes with luciferase-reporter VSV-G or BaL pseudotyped HIV-1 and trypomastigotes, T. cruzi induced a significant reduction of luciferase level for both pseudotypes in all the infection schemes (p<0.001), T. cruzi-HIV (>99%) being stronger than HIV-T. cruzi (∼90% for BaL and ∼85% for VSV-G) infection. In MDM with established HIV-1 infection, T. cruzi significantly inhibited luciferate activity (p<0.01). By quantifying R-U5 and U5-gag transcripts by real time PCR, our study showed the expression of both transcripts significantly diminished in the presence of trypomastigotes (p<0.05). Thus, T. cruzi inhibits viral post-integration steps, early post-entry steps and entry into MDM. Trypomastigotes also caused a ∼60-70% decrease of surface CCR5 expression on MDM. Multiplication of T. cruzi inside the MDM does not seem to be required for inhibiting HIV-1 replication since soluble factors secreted by trypomastigotes have shown similar effects. Moreover, the major parasite antigen cruzipain, which is secreted by the trypomastigote form, was able to inhibit viral production in MDM over 90% (p<0.01). Conclusions/Significance Our study showed that T. cruzi inhibits HIV-1 replication at several replication stages in

  20. Structural Determinants for the Selective Anti-HIV-1 Activity of the All-β Alternative Conformer of XCL1

    PubMed Central

    Guzzo, Christina; Fox, Jamie C.; Miao, Huiyi; Volkman, Brian F.

    2015-01-01

    ABSTRACT HIV-1 replication is regulated in vivo by a complex network of cytokines and chemokines. XCL1/lymphotactin, a unique metamorphic chemokine, was recently identified as a broad-spectrum endogenous HIV-1 inhibitor that blocks viral entry via direct interaction with the gp120 envelope glycoprotein. HIV-1 inhibition by XCL1 requires access to the alternative all-β conformation, which interacts with glycosaminoglycans (GAGs) but not with the specific XCL1 receptor, XCR1. To investigate the structural determinants of the HIV-inhibitory function of XCL1, we performed a detailed structure-function analysis of a stabilized all-β variant, XCL1 W55D. Individual alanine substitutions of two basic residues within the 40s' loop, K42 and R43, abrogated the ability of XCL1 to bind to the viral envelope and block HIV-1 infection; moreover, a loss of HIV-inhibitory function, albeit less marked, was seen upon individual mutation of three additional basic residues: R18, R35, and K46. In contrast, mutation of K42 to arginine did not cause any loss of function, suggesting that the interaction with gp120 is primarily electrostatic in nature. Strikingly, four of these five residues cluster to form a large (∼350 Å2) positively charged surface in the all-β XCL1 conformation, whereas they are dissociated in the classic chemokine fold, which is inactive against HIV-1, providing a structural basis for the selective antiviral activity of the alternatively folded XCL1. Furthermore, we observed that changes to the N-terminal domain, which is proximal to the cluster of putative HIV-1 gp120-interacting residues, also affect the antiviral activity of XCL1. Interestingly, the complement of residues involved in HIV-1 blockade is partially overlapping, but distinct from those involved in the GAG-binding function of XCL1. These data identify key structural determinants of anti-HIV activity in XCL1, providing new templates for the development of HIV-1 entry inhibitors. IMPORTANCE The host

  1. Detection of HIV type 1 gag-specific CD4(+) T cell responses in acutely infected infants.

    PubMed

    Ramduth, Danni; Thobakgale, Christina F; Mkhwanazi, Nompumelelo P; De Pierres, Chantal; Reddy, Sharon; van der Stok, Mary; Mncube, Zenele; Mphatswe, Wendy; Blanckenberg, Natasha; Cengimbo, Ayanda; Prendergast, Andrew; Tudor-Williams, Gareth; Dong, Krista; Jeena, Prakash; Coovadia, Hoosen M; Day, Cheryl L; Kiepiela, Photini; Goulder, Philip J R; Walker, Bruce D

    2008-02-01

    Multiple HIV-1-specific cytokine and proliferative responses by CD4(+) T cells have not been studied in acutely infected infants. Using an intracellular cytokine staining assay, 34 untreated clade C HIV-1-infected infants (2-102 days old) were assessed for IFN-gamma, 28/34 for IL-2, and 26/34 for TNF-alpha responses to all HIV-1 proteins. Responses were detected in 29%, 36%, and 15% of infants, respectively. Twelve of the original 34 infants were then studied longitudinally for 14 months to determine the effect of viral load on IFN-gamma Gag-specific responses: seven infants were treated for 1 year, stopped treatment, and resumed when CD4% was < 20 and five infants were treated only when the CD4% was <20. Following treatment cessation, there was an immediate increase in viral load followed by an increase in the magnitude of CD4(+) Gag-specific responses. Despite this, the majority of infants (54%) had to restart treatment by 24 months of age, indicating that the immune responses were antigen driven but not associated with protection. Among untreated infants HIV-specific CD4(+) responses were detected sporadically indicating a dysfunctional immune response in the face of constant exposure to high levels of viremia. PMID:18284325

  2. Cyclophilin A stabilizes the HIV-1 capsid through a novel non-canonical binding site

    PubMed Central

    Liu, Chuang; Perilla, Juan R.; Ning, Jiying; Lu, Manman; Hou, Guangjin; Ramalho, Ruben; Himes, Benjamin A.; Zhao, Gongpu; Bedwell, Gregory J.; Byeon, In-Ja; Ahn, Jinwoo; Gronenborn, Angela M.; Prevelige, Peter E.; Rousso, Itay; Aiken, Christopher; Polenova, Tatyana; Schulten, Klaus; Zhang, Peijun

    2016-01-01

    The host cell factor cyclophilin A (CypA) interacts directly with the HIV-1 capsid and regulates viral infectivity. Although the crystal structure of CypA in complex with the N-terminal domain of the HIV-1 capsid protein (CA) has been known for nearly two decades, how CypA interacts with the viral capsid and modulates HIV-1 infectivity remains unclear. We determined the cryoEM structure of CypA in complex with the assembled HIV-1 capsid at 8-Å resolution. The structure exhibits a distinct CypA-binding pattern in which CypA selectively bridges the two CA hexamers along the direction of highest curvature. EM-guided all-atom molecular dynamics simulations and solid-state NMR further reveal that the CypA-binding pattern is achieved by single-CypA molecules simultaneously interacting with two CA subunits, in different hexamers, through a previously uncharacterized non-canonical interface. These results provide new insights into how CypA stabilizes the HIV-1 capsid and is recruited to facilitate HIV-1 infection. PMID:26940118

  3. Cyclophilin A stabilizes the HIV-1 capsid through a novel non-canonical binding site

    NASA Astrophysics Data System (ADS)

    Liu, Chuang; Perilla, Juan R.; Ning, Jiying; Lu, Manman; Hou, Guangjin; Ramalho, Ruben; Himes, Benjamin A.; Zhao, Gongpu; Bedwell, Gregory J.; Byeon, In-Ja; Ahn, Jinwoo; Gronenborn, Angela M.; Prevelige, Peter E.; Rousso, Itay; Aiken, Christopher; Polenova, Tatyana; Schulten, Klaus; Zhang, Peijun

    2016-03-01

    The host cell factor cyclophilin A (CypA) interacts directly with the HIV-1 capsid and regulates viral infectivity. Although the crystal structure of CypA in complex with the N-terminal domain of the HIV-1 capsid protein (CA) has been known for nearly two decades, how CypA interacts with the viral capsid and modulates HIV-1 infectivity remains unclear. We determined the cryoEM structure of CypA in complex with the assembled HIV-1 capsid at 8-Å resolution. The structure exhibits a distinct CypA-binding pattern in which CypA selectively bridges the two CA hexamers along the direction of highest curvature. EM-guided all-atom molecular dynamics simulations and solid-state NMR further reveal that the CypA-binding pattern is achieved by single-CypA molecules simultaneously interacting with two CA subunits, in different hexamers, through a previously uncharacterized non-canonical interface. These results provide new insights into how CypA stabilizes the HIV-1 capsid and is recruited to facilitate HIV-1 infection.

  4. Population genomics of intrapatient HIV-1 evolution.

    PubMed

    Zanini, Fabio; Brodin, Johanna; Thebo, Lina; Lanz, Christa; Bratt, Göran; Albert, Jan; Neher, Richard A

    2015-01-01

    Many microbial populations rapidly adapt to changing environments with multiple variants competing for survival. To quantify such complex evolutionary dynamics in vivo, time resolved and genome wide data including rare variants are essential. We performed whole-genome deep sequencing of HIV-1 populations in 9 untreated patients, with 6-12 longitudinal samples per patient spanning 5-8 years of infection. The data can be accessed and explored via an interactive web application. We show that patterns of minor diversity are reproducible between patients and mirror global HIV-1 diversity, suggesting a universal landscape of fitness costs that control diversity. Reversions towards the ancestral HIV-1 sequence are observed throughout infection and account for almost one third of all sequence changes. Reversion rates depend strongly on conservation. Frequent recombination limits linkage disequilibrium to about 100 bp in most of the genome, but strong hitch-hiking due to short range linkage limits diversity. PMID:26652000

  5. Population genomics of intrapatient HIV-1 evolution.

    PubMed

    Zanini, Fabio; Brodin, Johanna; Thebo, Lina; Lanz, Christa; Bratt, Göran; Albert, Jan; Neher, Richard A

    2015-01-01

    Many microbial populations rapidly adapt to changing environments with multiple variants competing for survival. To quantify such complex evolutionary dynamics in vivo, time resolved and genome wide data including rare variants are essential. We performed whole-genome deep sequencing of HIV-1 populations in 9 untreated patients, with 6-12 longitudinal samples per patient spanning 5-8 years of infection. The data can be accessed and explored via an interactive web application. We show that patterns of minor diversity are reproducible between patients and mirror global HIV-1 diversity, suggesting a universal landscape of fitness costs that control diversity. Reversions towards the ancestral HIV-1 sequence are observed throughout infection and account for almost one third of all sequence changes. Reversion rates depend strongly on conservation. Frequent recombination limits linkage disequilibrium to about 100 bp in most of the genome, but strong hitch-hiking due to short range linkage limits diversity.

  6. Characterization of T cell responses to cryptic epitopes in recipients of a noncodon-optimized HIV-1 vaccine

    PubMed Central

    Bet, Anne; Sterret, Sarah; Sato, Alicia; Bansal, Anju; Goepfert, Paul A.

    2013-01-01

    Introduction Cryptic epitopes (CE) can be encoded by any of the 5 alternate reading frames (ARF, 2 sense and 3 antisense) of a known gene. While CE responses are commonly detected during HIV-1 infection, it is not known whether these responses are induced following vaccination. Methods Using a bioinformatic approach, we determined that vaccines with codon-optimized HIV inserts significantly skewed CE sequences and are not likely to induce cross-reactive responses to natural HIV CE. We then evaluated the CE- and protein-specific T-cell responses using Gag, Pol and ARF peptide pools among participants immunized with a noncodon-optimized vaccine regimen of two pGA2/JS7 DNA primes followed by two MVA/HIV62 Gag-Pol-Env vector boosts or four saline injections. Results Vaccinees had significantly more IFN-γ ELISpot responses toward Gag (p= 0.003) but not Pol protein than placebo recipients. However, CE-specific T-cell responses were low in magnitude and their frequencies did not differ significantly between vaccine and placebo recipients. Additionally, most positive CE responses could not be mapped to individual peptides. After expanding responses in a cultured assay, however, the frequency and median magnitude of responses to ARF peptides was significantly greater in vaccinees (p<0.0001), indicating CE-specific T cell responses are present but below an ex vivo assay’s limit of detection. Conclusions Our data demonstrates that HIV-1 vaccines currently in clinical trials are poorly immunogenic with regards to CE-specific T cell responses. Therefore, the context of HIV-1 immunogens may need to be modified as a comprehensive strategy to broaden vaccine-induced T cell responses. PMID:24442221

  7. Novel vaccine vectors for HIV-1

    PubMed Central

    Picker, Louis J.

    2014-01-01

    The ultimate solution to the global HIV-1 epidemic will probably require the development of a safe and effective vaccine. Multiple vaccine platforms have been evaluated in both preclinical and clinical trials, but, given the disappointing results of the clinical efficacy studies so far, novel vaccine approaches are needed. In this Opinion article, we discuss the scientific basis and clinical potential of novel adenovirus and cytomegalovirus vaccine vectors for HIV-1 as two contrasting, but potentially complementary, vector approaches. Both of these vector platforms have demonstrated partial protection against stringent simian immunodeficiency virus challenges in rhesus monkeys using different immunological mechanisms. PMID:25296195

  8. Quantifying susceptibility of CD4+ stem memory T-cells to infection by laboratory adapted and clinical HIV-1 strains.

    PubMed

    Flynn, Jacqueline K; Paukovics, Geza; Cashin, Kieran; Borm, Katharina; Ellett, Anne; Roche, Michael; Jakobsen, Martin R; Churchill, Melissa J; Gorry, Paul R

    2014-02-10

    CD4+ T cells are principal targets for human immunodeficiency virus type 1 (HIV-1) infection. CD4+ T cell subsets are heterogeneous cell populations, divided by functional and phenotypic differences into naïve and memory T cells. The memory CD4+ T cells are further segregated into central, effector and transitional memory cell subsets by functional, phenotypic and homeostatic characteristics. Defining the distribution of HIV-1 infection in different T cell subsets is important, as this can play a role in determining the size and composition of the viral reservoir. Both central memory and transitional memory CD4+ T cells have been described as long-lived viral reservoirs for HIV. Recently, the newly described stem memory T cell subset has also been implicated as a long-lived HIV reservoir. Using green fluorescent protein (GFP) reporter strains of HIV-1 and multi parameter flow cytometry, we developed an assay to simultaneously quantify the susceptibility of stem memory (TSCM), central memory, effector memory, transitional memory and naïve CD4+ T cell subsets, to HIV-1 infection in vitro. We show that TSCM are susceptible to infection with laboratory adapted and clinical HIV-1 strains. Our system facilitates the quantitation of HIV-1 infection in alternative T cell subsets by CCR5- and CXCR4-using viruses across different HIV-1 subtypes, and will be useful for studies of HIV-1 pathogenesis and viral reservoirs.

  9. Quantifying Susceptibility of CD4+ Stem Memory T-Cells to Infection by Laboratory Adapted and Clinical HIV-1 Strains

    PubMed Central

    Flynn, Jacqueline K.; Paukovics, Geza; Cashin, Kieran; Borm, Katharina; Ellett, Anne; Roche, Michael; Jakobsen, Martin R.; Churchill, Melissa J.; Gorry, Paul R.

    2014-01-01

    CD4+ T cells are principal targets for human immunodeficiency virus type 1 (HIV-1) infection. CD4+ T cell subsets are heterogeneous cell populations, divided by functional and phenotypic differences into naïve and memory T cells. The memory CD4+ T cells are further segregated into central, effector and transitional memory cell subsets by functional, phenotypic and homeostatic characteristics. Defining the distribution of HIV-1 infection in different T cell subsets is important, as this can play a role in determining the size and composition of the viral reservoir. Both central memory and transitional memory CD4+ T cells have been described as long-lived viral reservoirs for HIV. Recently, the newly described stem memory T cell subset has also been implicated as a long-lived HIV reservoir. Using green fluorescent protein (GFP) reporter strains of HIV-1 and multi parameter flow cytometry, we developed an assay to simultaneously quantify the susceptibility of stem memory (TSCM), central memory, effector memory, transitional memory and naïve CD4+ T cell subsets, to HIV-1 infection in vitro. We show that TSCM are susceptible to infection with laboratory adapted and clinical HIV-1 strains. Our system facilitates the quantitation of HIV-1 infection in alternative T cell subsets by CCR5- and CXCR4-using viruses across different HIV-1 subtypes, and will be useful for studies of HIV-1 pathogenesis and viral reservoirs. PMID:24517971

  10. Cobalamin inhibition of HIV-1 integrase and integration of HIV-1 DNA into cellular DNA.

    PubMed

    Weinberg, J B; Shugars, D C; Sherman, P A; Sauls, D L; Fyfe, J A

    1998-05-19

    Our prior studies showed that certain cobalamins inhibit productive HIV-1 infection of primary cultures of blood lymphocytes and monocytes. We demonstrate here that this antiviral activity may be mediated by an inhibition of HIV-1 integrase, an enzyme required for productive infection. Purified recombinant HIV-1 integrase activity was inhibited in vitro by hydroxocobalamin (OH-Cbl), methylcobalamin (Me-Cbl), adenosylcobalamin (Ado-Cbl), and dicyanocobinamide (CN2-Cbi) with IC50 values of approximately 17, 17, 17, and 4 microM, respectively. The agents inhibited HIV-1 infection of cultured monocytes (IC50 values for OH-Cbl, Me-Cbl, Ado-Cbl, and CN2-Cbi of 6, 7, 4, and 1 microM, respectively) and of cultured lymphocytes (IC50 values of 60, 50, 60, and 11 microM, respectively). Experiments using cultured monocytes or lymphocytes demonstrated that OH-Cbl inhibited integration of HIV-1 DNA into cellular DNA. Thus, cobalamins and cobinamides represent novel inhibitors of HIV-1 integrase. These or related agents may be useful as anti-viral treatments that target HIV-1 integrase. PMID:9610370

  11. First-in-Human Evaluation of the Safety and Immunogenicity of a Recombinant Vesicular Stomatitis Virus Human Immunodeficiency Virus-1 gag Vaccine (HVTN 090)

    PubMed Central

    Fuchs, Jonathan D.; Frank, Ian; Elizaga, Marnie L.; Allen, Mary; Frahm, Nicole; Kochar, Nidhi; Li, Sue; Edupuganti, Srilatha; Kalams, Spyros A.; Tomaras, Georgia D.; Sheets, Rebecca; Pensiero, Michael; Tremblay, Marc A.; Higgins, Terry J.; Latham, Theresa; Egan, Michael A.; Clarke, David K.; Eldridge, John H.

    2015-01-01

    Background. We report the first-in-human safety and immunogenicity evaluation of a highly attenuated, replication-competent recombinant vesicular stomatitis virus (rVSV) human immunodeficiency virus (HIV)-1 vaccine. Methods. Sixty healthy, HIV-1-uninfected adults were enrolled in a randomized, double-blinded, placebo-controlled dose-escalation study. Groups of 12 participants received rVSV HIV-1 gag vaccine at 5 dose levels (4.6 × 103 to 3.4 × 107 particle forming units) (N = 10/group) or placebo (N = 2/group), delivered intramuscularly as bilateral injections at 0 and 2 months. Safety monitoring included VSV cultures from blood, urine, saliva, and swabs of oral lesions. Vesicular stomatitis virus-neutralizing antibodies, T-cell immunogenicity, and HIV-1 specific binding antibodies were assessed. Results. Local and systemic reactogenicity symptoms were mild to moderate and increased with dose. No severe reactogenicity or product-related serious adverse events were reported, and all rVSV cultures were negative. All vaccine recipients became seropositive for VSV after 2 vaccinations. gag-specific T-cell responses were detected in 63% of participants by interferon-γ enzyme-linked immunospot at the highest dose post boost. Conclusions. An attenuated replication-competent rVSV gag vaccine has an acceptable safety profile in healthy adults. This rVSV vector is a promising new vaccine platform for the development of vaccines to combat HIV-1 and other serious human diseases. PMID:26199949

  12. Efficient Interaction of HIV-1 with Purified Dendritic Cells via Multiple Chemokine Coreceptors

    PubMed Central

    Granelli-Piperno, Angela; Moser, Bernhard; Pope, Melissa; Chen, Dongling; Wei, Yang; Isdell, Frank; O'Doherty, Una; Paxton, William; Koup, Richard; Mojsov, Svetlana; Bhardwaj, Nina; Clark-Lewis, Ian; Baggiolini, Marco; Steinman, Ralph M.

    1996-01-01

    HIV-1 actively replicates in dendritic cell (DC)-T cell cocultures, but it has been difficult to demonstrate substantial infection of purified mature DCs. We now find that HIV-1 begins reverse transcription much more efficiently in DCs than T cells, even though T cells have higher levels of CD4 and gp120 binding. DCs isolated from skin or from blood precursors behave similarly. Several M-tropic strains and the T-tropic strain IIIB enter DCs efficiently, as assessed by the progressive formation of the early products of reverse transcription after a 90-min virus pulse at 37°C. However, few late gag-containing sequences are detected, so that active viral replication does not occur. The formation of these early transcripts seems to follow entry of HIV-1, rather than binding of virions that contain viral DNA. Early transcripts are scarce if DCs are exposed to virus on ice for 4 h, or for 90 min at 37°C, conditions which allow virus binding. Also the early transcripts once formed are insensitive to trypsin. The entry of a M-tropic isolates is blocked by the chemokine RANTES, and the entry of IIIB by SDF-1. RANTES interacts with CCR5 and SDF-1 with CXCR4 receptors. Entry of M-tropic but not T-tropic virus is ablated in DCs from individuals who lack a functional CCR5 receptor. DCs express more CCR5 and CXCR4 mRNA than T cells. Therefore, while HIV-1 does not replicate efficiently in mature DCs, viral entry can be active and can be blocked by chemokines that act on known receptors for M- and T-tropic virus. PMID:8976200

  13. Transmission of single and multiple viral variants in primary HIV-1 subtype C infection.

    PubMed

    Novitsky, Vladimir; Wang, Rui; Margolin, Lauren; Baca, Jeannie; Rossenkhan, Raabya; Moyo, Sikhulile; van Widenfelt, Erik; Essex, M

    2011-02-09

    To address whether sequences of viral gag and env quasispecies collected during the early post-acute period can be utilized to determine multiplicity of transmitted HIV's, recently developed approaches for analysis of viral evolution in acute HIV-1 infection [1,2] were applied. Specifically, phylogenetic reconstruction, inter- and intra-patient distribution of maximum and mean genetic distances, analysis of Poisson fitness, shape of highlighter plots, recombination analysis, and estimation of time to the most recent common ancestor (tMRCA) were utilized for resolving multiplicity of HIV-1 transmission in a set of viral quasispecies collected within 50 days post-seroconversion (p/s) in 25 HIV-infected individuals with estimated time of seroconversion. The decision on multiplicity of HIV infection was made based on the model's fit with, or failure to explain, the observed extent of viral sequence heterogeneity. The initial analysis was based on phylogeny, inter-patient distribution of maximum and mean distances, and Poisson fitness, and was able to resolve multiplicity of HIV transmission in 20 of 25 (80%) cases. Additional analysis involved distribution of individual viral distances, highlighter plots, recombination analysis, and estimation of tMRCA, and resolved 4 of the 5 remaining cases. Overall, transmission of a single viral variant was identified in 16 of 25 (64%) cases, and transmission of multiple variants was evident in 8 of 25 (32%) cases. In one case multiplicity of HIV-1 transmission could not be determined. In primary HIV-1 subtype C infection, samples collected within 50 days p/s and analyzed by a single-genome amplification/sequencing technique can provide reliable identification of transmission multiplicity in 24 of 25 (96%) cases. Observed transmission frequency of a single viral variant and multiple viral variants were within the ranges of 64% to 68%, and 32% to 36%, respectively.

  14. Incorporation of 12-methoxydodecanoate into the human immunodeficiency virus 1 gag polyprotein precursor inhibits its proteolytic processing and virus production in a chronically infected human lymphoid cell line

    SciTech Connect

    Bryant, M.L.; Ratner, L.; Duronio, R.J.; Gordon, J.I. ); Kishore, N.S. ); Devadas, B.; Adams, S.P. )

    1991-03-15

    Covalent linkage of myristate (tetradecanoate; 14:0) to the NH{sub 2}-terminal glycine residue of the human immunodeficiency virus 1 (HIV-1) 55-kDa gag polyprotein precursor (Pr55{sup gag}) is necessary for its proteolytic processing and viral assembly. The authors have shown recently that several analogs of myristate in which a methylene group is replaced by a single oxygen or sulfur atom are substrates for Saccharomyces cerevisiae and mammalian myristoyl-CoA:protein N-myristoyltransferase despite their reduced hydrophobicity. To examine the mechanism of their antiviral effects, they performed labeling studies with two analogs, 12-methoxydodecanoate (13-oxamyristate; 13-OxaMyr) and 5-octyloxypentanoate (6-oxamyristate; 6-OxaMyr), the former being much more effective than the latter in blocking virus production. ({sup 3}H)Myristate and ({sup 3}H)13-OxaMyr were incorporated into Pr55{sup gag} with comparable efficiency when it was coexpressed with S. cerevisiae NMT in Escherichia coli. Unlike AZT, the analog is able to inhibit virus production (up to 70%) in chronically infected H9 cells. Moreover, the inhibitory effect lasts 6-8 days. These results suggest that (i) its mechanism of action is distinct from that of AZT and involves a late step in virus assembly; (ii) the analog may allow reduction in the dose of AZT required to affect viral replication; and (iii) combinations of analog and HIV-1 protease inhibitors may have synergistic effects on the processing of Pr55{sup gag}.

  15. Safety and Immunogenicity Study of Multiclade HIV-1 Adenoviral Vector Vaccine Alone or as Boost following a Multiclade HIV-1 DNA Vaccine in Africa

    PubMed Central

    Allen, Susan; Than, Soe; Adams, Elizabeth M.; Graham, Barney S.; Koup, Richard A.; Bailer, Robert T.; Smith, Carol; Dally, Len; Tarragona-Fiol, Tony; Bergin, Philip J.; Hayes, Peter; Ho, Martin; Loughran, Kelley; Komaroff, Wendy; Stevens, Gwynneth; Thomson, Helen; Boaz, Mark J.; Cox, Josephine H.; Schmidt, Claudia; Gilmour, Jill; Nabel, Gary J.; Fast, Patricia

    2010-01-01

    Background We conducted a double-blind, randomized, placebo-controlled Phase I study of a recombinant replication-defective adenovirus type 5 (rAd5) vector expressing HIV-1 Gag and Pol from subtype B and Env from subtypes A, B and C, given alone or as boost following a DNA plasmid vaccine expressing the same HIV-1 proteins plus Nef, in 114 healthy HIV-uninfected African adults. Methodology/Principal Findings Volunteers were randomized to 4 groups receiving the rAd5 vaccine intramuscularly at dosage levels of 1×1010 or 1×1011 particle units (PU) either alone or as boost following 3 injections of the DNA vaccine given at 4 mg/dose intramuscularly by needle-free injection using Biojector® 2000. Safety and immunogenicity were evaluated for 12 months. Both vaccines were well-tolerated. Overall, 62% and 86% of vaccine recipients in the rAd5 alone and DNA prime - rAd5 boost groups, respectively, responded to the HIV-1 proteins by an interferon-gamma (IFN-γ) ELISPOT. The frequency of immune responses was independent of rAd5 dosage levels. The highest frequency of responses after rAd5 alone was detected at 6 weeks; after DNA prime - rAd5 boost, at 6 months (end of study). At baseline, neutralizing antibodies against Ad5 were present in 81% of volunteers; the distribution was similar across the 4 groups. Pre-existing immunity to Ad5 did not appear to have a significant impact on reactogenicity or immune response rates to HIV antigens by IFN-γ ELISPOT. Binding antibodies against Env were detected in up to 100% recipients of DNA prime - rAd5 boost. One volunteer acquired HIV infection after the study ended, two years after receipt of rAd5 alone. Conclusions/Significance The HIV-1 rAd5 vaccine, either alone or as a boost following HIV-1 DNA vaccine, was well-tolerated and immunogenic in African adults. DNA priming increased the frequency and magnitude of cellular and humoral immune responses, but there was no effect of rAd5 dosage on immunogenicity endpoints. Trial

  16. Random mutagenesis MAPPIT analysis identifies binding sites for Vif and Gag in both cytidine deaminase domains of Apobec3G.

    PubMed

    Uyttendaele, Isabel; Lavens, Delphine; Catteeuw, Dominiek; Lemmens, Irma; Bovijn, Celia; Tavernier, Jan; Peelman, Frank

    2012-01-01

    The mammalian two-hybrid system MAPPIT allows the detection of protein-protein interactions in intact human cells. We developed a random mutagenesis screening strategy based on MAPPIT to detect mutations that disrupt the interaction of one protein with multiple protein interactors simultaneously. The strategy was used to detect residues of the human cytidine deaminase Apobec3G that are important for its homodimerization and its interaction with the HIV-1 Gag and Vif proteins. The strategy is able to identify the previously described head-to-head homodimerization interface in the N-terminal domain of Apobec3G. Our analysis further detects two new potential interaction surfaces in the N-and C-terminal domain of Apobec3G for interaction with Vif and Gag or for Apobec3G dimerization. PMID:22970171

  17. Random Mutagenesis MAPPIT Analysis Identifies Binding Sites for Vif and Gag in Both Cytidine Deaminase Domains of Apobec3G

    PubMed Central

    Uyttendaele, Isabel; Lavens, Delphine; Catteeuw, Dominiek; Lemmens, Irma; Bovijn, Celia

    2012-01-01

    The mammalian two-hybrid system MAPPIT allows the detection of protein-protein interactions in intact human cells. We developed a random mutagenesis screening strategy based on MAPPIT to detect mutations that disrupt the interaction of one protein with multiple protein interactors simultanously. The strategy was used to detect residues of the human cytidine deaminase Apobec3G that are important for its homodimerization and its interaction with the HIV-1 Gag and Vif proteins. The strategy is able to identify the previously described head-to-head homodimerization interface in the N-terminal domain of Apobec3G. Our analysis further detects two new potential interaction surfaces in the N-and C-terminal domain of Apobec3G for interaction with Vif and Gag or for Apobec3G dimerization. PMID:22970171

  18. HIV-1 transcription and latency: an update

    PubMed Central

    2013-01-01

    Combination antiretroviral therapy, despite being potent and life-prolonging, is not curative and does not eradicate HIV-1 infection since interruption of treatment inevitably results in a rapid rebound of viremia. Reactivation of latently infected cells harboring transcriptionally silent but replication-competent proviruses is a potential source of persistent residual viremia in cART-treated patients. Although multiple reservoirs may exist, the persistence of resting CD4+ T cells carrying a latent infection represents a major barrier to eradication. In this review, we will discuss the latest reports on the molecular mechanisms that may regulate HIV-1 latency at the transcriptional level, including transcriptional interference, the role of cellular factors, chromatin organization and epigenetic modifications, the viral Tat trans-activator and its cellular cofactors. Since latency mechanisms may also operate at the post-transcriptional level, we will consider inhibition of nuclear RNA export and inhibition of translation by microRNAs as potential barriers to HIV-1 gene expression. Finally, we will review the therapeutic approaches and clinical studies aimed at achieving either a sterilizing cure or a functional cure of HIV-1 infection, with a special emphasis on the most recent pharmacological strategies to reactivate the latent viruses and decrease the pool of viral reservoirs. PMID:23803414

  19. Reconstituting the epidemic history of mono lineage of HIV-1 CRF01_AE in Guizhou province, Southern China.

    PubMed

    Zeng, Haiyan; Sun, Binlian; Li, Lingnuo; Li, Yanpeng; Liu, Yong; Xiao, Yao; Jiang, Yan; Yang, Rongge

    2014-08-01

    Guizhou province, located between border provinces and Central province of China, plays a crucial role in the transmission of HIV-1, implying it is important to monitor the epidemic of HIV-1 in this region. Available HIV-1 infected patients' plasma (n=78) were collected from Tongren city, Eastern Guizhou. Full-length gag, partial pol and env gene sequences were amplified and analyzed using phylogenetic, recombinant and Bayesian molecular clock approaches. Phylogenetic and recombinant analyses showed that CRF01_AE predominated among injecting drug users and heterosexuals in Tongren city with 85.9% proportion, it was followed by B' (5.1%), CRF07_BC (3.8%), CRF08_BC (3.8%), and B (1.3%). Moreover, 98.5% of CRF01_AE strains belonged to the distinct lineage CRF01_AE-v previously found in Guangxi province. To infer the most probable origin of CRF01_AE-v in Guizhou province, we download all available full length of CRF01_AE gag, pol and env gene region sequences from China in Los Alamos HIV sequence database. Phylodynamic and phylogeographic analyses revealed that the expanding CRF01_AE-v epidemic in Guizhou province was the result of local epidemic driven by multiple independent introductions of CRF01_AE-v strains from Guangxi province in early 2000s. High prevalence of CRF01_AE in Guizhou province may bridge the epidemic to Central China. It provides a new insight for the understanding of HIV-1 epidemic in Guizhou province and makes the evolutionary history of CRF01_AE in China more intact.

  20. Molecular Dating of HIV-1 Subtype C from Bangladesh

    PubMed Central

    Bontell, Irene; Sarker, Md. Safiullah; Rahman, Mustafizur; Afrad, Mokibul Hassan; Sönnerborg, Anders; Azim, Tasnim

    2013-01-01

    Bangladesh has an overall low HIV prevalence of <0.1% in the general population and <1% among key affected populations, but it is one of few Asian countries that has yet to reverse the epidemic. In order to do this, it is important to understand the transmission dynamics in this country. The aim of this study was to investigate the phylogenetic relationships of HIV-1 subtype C strains from Bangladesh and related strains from other countries, and thereby clarify when and from where subtype C was introduced in the country and how it subsequently spread within Bangladesh. The phylogenetic analysis included 118 Bangladeshi gag sequences and 128 sequences from other countries and was performed using the BEAST package. Our analysis revealed that the vast majority of Bangladeshi sequences (97/118, 82%) fall into a large regional cluster of samples from Bangladesh, India, China and Myanmar, which dates back to the early 1960’s. Following its establishment in the region, this strain has entered Bangladesh multiple times from around 1975 and onwards, but extensive in-country transmission could only be detected among drug users and not through sexual transmission. In addition, there have been multiple (at least ten) introductions of subtype C to Bangladesh from outside this region, but no extensive spread could be detected for any of these. Since many HIV-infections remain undetected while asymptomatic, the true extent of the transmission of each strain remains unknown, especially among hard to reach groups such as clients of sex workers and returning migrants with families. PMID:24223905

  1. Molecular dating of HIV-1 subtype C from Bangladesh.

    PubMed

    Bontell, Irene; Sarker, Md Safiullah; Rahman, Mustafizur; Afrad, Mokibul Hassan; Sönnerborg, Anders; Azim, Tasnim

    2013-01-01

    Bangladesh has an overall low HIV prevalence of <0.1% in the general population and <1% among key affected populations, but it is one of few Asian countries that has yet to reverse the epidemic. In order to do this, it is important to understand the transmission dynamics in this country. The aim of this study was to investigate the phylogenetic relationships of HIV-1 subtype C strains from Bangladesh and related strains from other countries, and thereby clarify when and from where subtype C was introduced in the country and how it subsequently spread within Bangladesh. The phylogenetic analysis included 118 Bangladeshi gag sequences and 128 sequences from other countries and was performed using the BEAST package. Our analysis revealed that the vast majority of Bangladeshi sequences (97/118, 82%) fall into a large regional cluster of samples from Bangladesh, India, China and Myanmar, which dates back to the early 1960's. Following its establishment in the region, this strain has entered Bangladesh multiple times from around 1975 and onwards, but extensive in-country transmission could only be detected among drug users and not through sexual transmission. In addition, there have been multiple (at least ten) introductions of subtype C to Bangladesh from outside this region, but no extensive spread could be detected for any of these. Since many HIV-infections remain undetected while asymptomatic, the true extent of the transmission of each strain remains unknown, especially among hard to reach groups such as clients of sex workers and returning migrants with families.

  2. The HIV epidemic in the Amazon Basin is driven by prototypic and recombinant HIV-1 subtypes B and F.

    PubMed

    Vicente, A C; Otsuki, K; Silva, N B; Castilho, M C; Barros, F S; Pieniazek, D; Hu, D; Rayfield, M A; Bretas, G; Tanuri, A

    2000-04-01

    This paper describes genetic subtypes of HIV-1 found in blood samples from 31 HIV-1-infected people who visited the Counseling and Testing AIDS Center of Instituto de Medicina Tropical in Manaus, Brazil. Manaus, the main city in Brazil's Amazon Basin, is also the closest urban connection for more than 100,000 Indians living in the rain forests of this region. Although to date there is no evidence of increased incidence of HIV-1 infection among the indigenous population, our understanding of both the prevalence and nature of the epidemic in the region as a whole is limited. From the 31 samples analyzed by C2V3 sequencing, we found almost equal proportions of HIV-1 strains belonging to subtype B (n = 16; 51.6%) and subtype F (n = 15; 48.4%), a finding that differs from results from previous studies conducted in urban areas of southeastern Brazil. We also observed the presence of the GWGR amino-acid sequence in the critical tetra-peptide crown of the env V3 loop in the HIV-1 subtype B samples analyzed. Among these samples, we also found 14 mosaic genomes (45.16%) in which different combinations of subtypes B, C, and F were identified between the p24 gag, pro, and env regions. Our data support the hypothesis that the Amazonian HIV-1 infections linked to the urban epidemic in southeastern Brazil. The genetic diversity and the prevalence of mosaic genomes among the isolates in our study confirm an integral role of recombination in the complex Brazilian epidemic.

  3. High degree of concordance between flow cytometry and geno2pheno methods for HIV-1 tropism determination in proviral DNA.

    PubMed

    Torres, Alex José Leite; Brígido, Luis Fernando de Macedo; Abrahão, Marcos Herculano Nunes; Angelo, Ana Luiza Dias; de Jesus Ferreira, Gilcivaldo; Coelho, Luana Portes; Ferreira, João Leandro; Jorge, Célia Regina Mayoral Pedroso; Netto, Eduardo Martins; Brites, Carlos

    2015-01-01

    Use of CCR5 antagonists requires previous viral tropism determination. The available methods have high cost, are time-consuming, or require highly trained personnel, and sophisticated equipment. We compared a flow cytometry-based tropism assay with geno2pheno method to determine HIV-1 tropism in AIDS patients, in Bahia, Brazil. We tested peripheral blood mononuclear cells of 102 AIDS patients under antiretroviral therapy by using a cytometry-based tropism assay and geno2pheno assay. Cellular membrane receptors were identified by using CXCR4, CCR5 and CD4 monoclonal antibodies, while detection of cytoplasmic mRNAs for gag and pol HIV regions was achieved by using a labeled probe. Genotypic identification of X4 and R5 tropic viruses was attempted by geno2pheno algorithm. There was a high degree of concordance between cytometry-based tropism assay and geno2pheno algorithm in determination of HIV-1 tropism. Cytometry-based tropism assay demonstrated higher sensitivity and specificity in comparison to geno2pheno, which was used as a gold-standard. One sample could not be amplified by geno2pheno method, but was classified as duotropic by cytometry-based tropism assay. We did not find any association between CD4+ count or plasma HIV-1 RNA viral load and tropism results. The overall performances of cytometry-based tropism assay and geno2pheno assay were almost identical in determination of HIV-1 tropism.

  4. HIV-1 therapy with monoclonal antibody 3BNC117 elicits host immune responses against HIV-1.

    PubMed

    Schoofs, Till; Klein, Florian; Braunschweig, Malte; Kreider, Edward F; Feldmann, Anna; Nogueira, Lilian; Oliveira, Thiago; Lorenzi, Julio C C; Parrish, Erica H; Learn, Gerald H; West, Anthony P; Bjorkman, Pamela J; Schlesinger, Sarah J; Seaman, Michael S; Czartoski, Julie; McElrath, M Juliana; Pfeifer, Nico; Hahn, Beatrice H; Caskey, Marina; Nussenzweig, Michel C

    2016-05-20

    3BNC117 is a broad and potent neutralizing antibody to HIV-1 that targets the CD4 binding site on the viral envelope spike. When administered passively, this antibody can prevent infection in animal models and suppress viremia in HIV-1-infected individuals. Here we report that HIV-1 immunotherapy with a single injection of 3BNC117 affects host antibody responses in viremic individuals. In comparison to untreated controls that showed little change in their neutralizing activity over a 6-month period, 3BNC117 infusion significantly improved neutralizing responses to heterologous tier 2 viruses in nearly all study participants. We conclude that 3BNC117-mediated immunotherapy enhances host humoral immunity to HIV-1. PMID:27199429

  5. Enhanced clearance of HIV-1-infected cells by broadly neutralizing antibodies against HIV-1 in vivo.

    PubMed

    Lu, Ching-Lan; Murakowski, Dariusz K; Bournazos, Stylianos; Schoofs, Till; Sarkar, Debolina; Halper-Stromberg, Ariel; Horwitz, Joshua A; Nogueira, Lilian; Golijanin, Jovana; Gazumyan, Anna; Ravetch, Jeffrey V; Caskey, Marina; Chakraborty, Arup K; Nussenzweig, Michel C

    2016-05-20

    Antiretroviral drugs and antibodies limit HIV-1 infection by interfering with the viral life cycle. In addition, antibodies also have the potential to guide host immune effector cells to kill HIV-1-infected cells. Examination of the kinetics of HIV-1 suppression in infected individuals by passively administered 3BNC117, a broadly neutralizing antibody, suggested that the effects of the antibody are not limited to free viral clearance and blocking new infection but also include acceleration of infected cell clearance. Consistent with these observations, we find that broadly neutralizing antibodies can target CD4(+) T cells infected with patient viruses and can decrease their in vivo half-lives by a mechanism that requires Fcγ receptor engagement in a humanized mouse model. The results indicate that passive immunotherapy can accelerate elimination of HIV-1-infected cells. PMID:27199430

  6. Molecular Epidemiology of HIV-1 Infection among Men who Have Sex with Men in Taiwan in 2012

    PubMed Central

    Huang, Szu-Wei; Wang, Sheng-Fan; Cowó, Ángel E.; Chen, Marcelo; Lin, Yu-Ting; Hung, Chun-Po; Chen, Yi-Hsien; Yang, Jyh-Yuan; Tang, Hung-Jen; Chen, Yi-Ming Arthur

    2015-01-01

    The number of men who have sex with men (MSM) infected with HIV-1 in Taiwan has increased rapidly in the past few years. The goal of this study was to conduct a molecular epidemiological study of HIV-1 infection among MSM in Taiwan to identify risk factors for intervention. Voluntary counseling program and anonymous testing were provided to patrons at 1 gay bar, 7 night clubs and 3 gay saunas in Taipei and New Taipei Cities in 2012. HIV-1 subtypes were determined using gag subtype-specific PCR and phylogenetic analysis by env sequences. Recent HIV-1 infection was determined using LAg-Avidity EIA. In-depth interviews and questionnaires were used to identify risk factors. The prevalence and incidence of HIV-1 among MSM in Taiwan were 4.38% (53/1,208) and 3.29 per 100 person-years, respectively. Of 49 cases genotyped, 48 (97.9%) were infected with subtype B and 1 with CRF01_AE (2%). Phylogenetic analysis of 46 HIV-1 strains showed that 25 (54.4%) subtype B strains formed 9 clusters with each other or with other local strains. The CRF01_AE case clustered with a reference strain from a Thai blood donor with bootstrap value of 99. Multivariate logistic regression analysis showed that risk factors associated with HIV-1 infection included use of oil-based solution as lubricant (vs. saliva or water-based lubricants, OR= 4.23; p <0.001); exclusively receptive role (vs. insertive role, OR= 9.69; p <0.001); versatile role (vs. insertive role, OR= 6.45; p= 0.003); oral sex (vs. insertive role, OR= 11.93; p= 0.044); times of sexual contact per week (2-3 vs. zero per week, OR= 3.41; p= 0.021); illegal drug use (OR= 4.12; p <0.001); and history of sexually transmitted diseases (OR= 3.65; p= 0.002). In conclusion, there was no new HIV-1 subtype or circulating recombinant form responsible for the increase of HIV-1 among MSM in Taiwan in 2012. Misuse of oil-based solution as lubricant is a new risk factor identified among MSM in Taiwan. The Taiwan’s Centers for Disease Control has

  7. Molecular Epidemiology of HIV-1 Infection among Men who Have Sex with Men in Taiwan in 2012.

    PubMed

    Huang, Szu-Wei; Wang, Sheng-Fan; Cowó, Ángel E; Chen, Marcelo; Lin, Yu-Ting; Hung, Chun-Po; Chen, Yi-Hsien; Yang, Jyh-Yuan; Tang, Hung-Jen; Chen, Yi-Ming Arthur

    2015-01-01

    The number of men who have sex with men (MSM) infected with HIV-1 in Taiwan has increased rapidly in the past few years. The goal of this study was to conduct a molecular epidemiological study of HIV-1 infection among MSM in Taiwan to identify risk factors for intervention. Voluntary counseling program and anonymous testing were provided to patrons at 1 gay bar, 7 night clubs and 3 gay saunas in Taipei and New Taipei Cities in 2012. HIV-1 subtypes were determined using gag subtype-specific PCR and phylogenetic analysis by env sequences. Recent HIV-1 infection was determined using LAg-Avidity EIA. In-depth interviews and questionnaires were used to identify risk factors. The prevalence and incidence of HIV-1 among MSM in Taiwan were 4.38% (53/1,208) and 3.29 per 100 person-years, respectively. Of 49 cases genotyped, 48 (97.9%) were infected with subtype B and 1 with CRF01_AE (2%). Phylogenetic analysis of 46 HIV-1 strains showed that 25 (54.4%) subtype B strains formed 9 clusters with each other or with other local strains. The CRF01_AE case clustered with a reference strain from a Thai blood donor with bootstrap value of 99. Multivariate logistic regression analysis showed that risk factors associated with HIV-1 infection included use of oil-based solution as lubricant (vs. saliva or water-based lubricants, OR= 4.23; p <0.001); exclusively receptive role (vs. insertive role, OR= 9.69; p <0.001); versatile role (vs. insertive role, OR= 6.45; p= 0.003); oral sex (vs. insertive role, OR= 11.93; p= 0.044); times of sexual contact per week (2-3 vs. zero per week, OR= 3.41; p= 0.021); illegal drug use (OR= 4.12; p <0.001); and history of sexually transmitted diseases (OR= 3.65; p= 0.002). In conclusion, there was no new HIV-1 subtype or circulating recombinant form responsible for the increase of HIV-1 among MSM in Taiwan in 2012. Misuse of oil-based solution as lubricant is a new risk factor identified among MSM in Taiwan. The Taiwan's Centers for Disease Control has

  8. Molecular Epidemiology of HIV-1 Infection among Men who Have Sex with Men in Taiwan in 2012.

    PubMed

    Huang, Szu-Wei; Wang, Sheng-Fan; Cowó, Ángel E; Chen, Marcelo; Lin, Yu-Ting; Hung, Chun-Po; Chen, Yi-Hsien; Yang, Jyh-Yuan; Tang, Hung-Jen; Chen, Yi-Ming Arthur

    2015-01-01

    The number of men who have sex with men (MSM) infected with HIV-1 in Taiwan has increased rapidly in the past few years. The goal of this study was to conduct a molecular epidemiological study of HIV-1 infection among MSM in Taiwan to identify risk factors for intervention. Voluntary counseling program and anonymous testing were provided to patrons at 1 gay bar, 7 night clubs and 3 gay saunas in Taipei and New Taipei Cities in 2012. HIV-1 subtypes were determined using gag subtype-specific PCR and phylogenetic analysis by env sequences. Recent HIV-1 infection was determined using LAg-Avidity EIA. In-depth interviews and questionnaires were used to identify risk factors. The prevalence and incidence of HIV-1 among MSM in Taiwan were 4.38% (53/1,208) and 3.29 per 100 person-years, respectively. Of 49 cases genotyped, 48 (97.9%) were infected with subtype B and 1 with CRF01_AE (2%). Phylogenetic analysis of 46 HIV-1 strains showed that 25 (54.4%) subtype B strains formed 9 clusters with each other or with other local strains. The CRF01_AE case clustered with a reference strain from a Thai blood donor with bootstrap value of 99. Multivariate logistic regression analysis showed that risk factors associated with HIV-1 infection included use of oil-based solution as lubricant (vs. saliva or water-based lubricants, OR= 4.23; p <0.001); exclusively receptive role (vs. insertive role, OR= 9.69; p <0.001); versatile role (vs. insertive role, OR= 6.45; p= 0.003); oral sex (vs. insertive role, OR= 11.93; p= 0.044); times of sexual contact per week (2-3 vs. zero per week, OR= 3.41; p= 0.021); illegal drug use (OR= 4.12; p <0.001); and history of sexually transmitted diseases (OR= 3.65; p= 0.002). In conclusion, there was no new HIV-1 subtype or circulating recombinant form responsible for the increase of HIV-1 among MSM in Taiwan in 2012. Misuse of oil-based solution as lubricant is a new risk factor identified among MSM in Taiwan. The Taiwan's Centers for Disease Control has

  9. Placental Hofbauer cells assemble and sequester HIV-1 in tetraspanin-positive compartments that are accessible to broadly neutralizing antibodies

    PubMed Central

    Johnson, Erica L; Chu, Hin; Byrareddy, Siddappa Nagadenahalli; Spearman, Paul; Chakraborty, Rana

    2015-01-01

    Introduction Within monocyte-derived macrophages, HIV-1 accumulates in intracellular virus-containing compartments (VCCs) that are inaccessible to the external environment, which implicate these cells as latently infected HIV-1 reservoirs. During mother-to-child transmission of HIV-1, human placental macrophages (Hofbauer cells (HCs)) are viral targets, and have been shown to be infected in vivo and sustain low levels of viral replication in vitro; however, the risk of in utero transmission is less than 7%. The role of these primary macrophages as viral reservoirs is largely undefined. The objective of this study is to define potential sites of viral assembly, accumulation and neutralization in HCs given the pivotal role of the placenta in preventing HIV-1 infection in the mother-infant dyad. Methods Term placentae from 20 HIV-1 seronegative women were obtained following caesarian section. VCCs were evaluated by 3D confocal and electron microscopy. Colocalization R values (Pearson's correlation) were quantified with colocalization module of Volocity 5.2.1. Replication kinetics and neutralization studies were evaluated using p24 ELISA. Results We demonstrate that primary HCs assemble and sequester HIV-1BaL in intracellular VCCs, which are enriched in endosomal/lysosomal markers, including CD9, CD81, CD63 and LAMP-1. Following infection, we observed HIV-1 accumulation in potentially acidic compartments, which stained intensely with Lysotracker-Red. Remarkably, these compartments are readily accessible via the cell surface and can be targeted by exogenously applied small molecules and HIV-1-specific broadly neutralizing antibodies. In addition, broadly neutralizing antibodies (4E10 and VRC01) limited viral replication by HIV-1-infected HCs, which may be mediated by FcγRI. Conclusions These findings suggest that placental HCs possess intrinsic adaptations facilitating unique sequestration of HIV-1, and may serve as a protective viral reservoir to permit viral

  10. Progesterone augments cell susceptibility to HIV-1 and HIV-1/HSV-2 co-infections.

    PubMed

    Ragupathy, Viswanath; Xue, Wang; Tan, Ji; Devadas, Krishnakumar; Gao, Yamei; Hewlett, Indira

    2016-10-01

    In human immunodeficiency virus type 1 (HIV-1)-infected women, oral or injectable progesterone containing contraceptive pills may enhance HIV-1 acquisition in vivo, and the mechanism by which this occurs is not fully understood. In developing countries, Herpes simplex virus type-2 (HSV-2) co-infection has been shown to be a risk for increase of HIV-1 acquisition and, if co-infected women use progesterone pills, infections may increase several fold. In this study, we used an in vitro cell culture system to study the effects of progesterone on HIV-1 replication and to explore the molecular mechanism of progesterone effects on infected cells. In our in vitro model, CEMss cells (lymphoblastoid cell line) were infected with either HIV-1 alone or co-infected with HSV-2. HIV-1 viral load was measured with and without sex hormone treatment. Progesterone-treated cells showed an increase in HIV-1 viral load (1411.2 pg/mL) compared with cells without progesterone treatment (993.1 pg/mL). Increased cell death was noted with HSV-2 co-infection and in progesterone-treated cells. Similar observations were noted in peripheral blood mononuclear cells (PBMC) cells derived from three female donors. Progesterone-treated cells also showed reduced antiviral efficacy. Inflammatory cytokines and associations with biomarkers of disease progression were explored. Progesterone upregulated inflammatory cytokines and chemokines conversely and downregulated anti-apoptotic Bcl-2 expression. Nuclear protein analysis by electrophoretic mobility shift assay showed the association of progesterone with progesterone response element (PRE), which may lead to downregulation of Bcl-2. These data indicate that progesterone treatment enhances HIV-1 replication in infected cells and co-infection with HSV-2 may further fuel this process. PMID:27538988

  11. HIV-1 Tat interacts with LIS1 protein

    PubMed Central

    Epie, Nicolas; Ammosova, Tatyana; Sapir, Tamar; Voloshin, Yaroslav; Lane, William S; Turner, Willie; Reiner, Orly; Nekhai, Sergei

    2005-01-01

    Background HIV-1 Tat activates transcription of HIV-1 viral genes by inducing phosphorylation of the C-terminal domain (CTD) of RNA polymerase II (RNAPII). Tat can also disturb cellular metabolism by inhibiting proliferation of antigen-specific T lymphocytes and by inducing cellular apoptosis. Tat-induced apoptosis of T-cells is attributed, in part, to the distortion of microtubules polymerization. LIS1 is a microtubule-associated protein that facilitates microtubule polymerization. Results We identified here LIS1 as a Tat-interacting protein during extensive biochemical fractionation of T-cell extracts. We found several proteins to co-purify with a Tat-associated RNAPII CTD kinase activity including LIS1, CDK7, cyclin H, and MAT1. Tat interacted with LIS1 but not with CDK7, cyclin H or MAT1 in vitro. LIS1 also co-immunoprecipitated with Tat expressed in HeLa cells. Further, LIS1 interacted with Tat in a yeast two-hybrid system. Conclusion Our results indicate that Tat interacts with LIS1 in vitro and in vivo and that this interaction might contribute to the effect of Tat on microtubule formation. PMID:15698475

  12. Correlates of HIV-1 seropositivity among young men in Thailand.

    PubMed

    Sirisopana, N; Torugsa, K; Mason, C J; Markowitz, L E; Jugsudee, A; Supapongse, T; Chuenchitra, C; Michael, R A; Burke, D S; Singharaj, P; Johnson, A E; McNeil, J G; McCutchan, F E; Carr, J K

    1996-04-15

    Geographic and demographic correlates of risk for HIV-1 seropositivity were studied in 120,216 young men selected by lottery for service in the Royal Thai Army (RTA). The study population consisted of men selected between November 1991 and May 1993. Venous blood was collected at induction, and a brief demographic questionnaire was administered. HIV-1 seropositivity was established by Western blot confirmation of duplicate reactive ELISAs. Geographic variable provided the strongest correlate of risk, clearly distinguishing residents of the upper north, Bangkok, and the central region from the northeast. Overall 12.2% of men from the upper north were HIV-positive. Men who had lived in rural areas were at less risk in most regions of the country, but had equal risk in the upper north. Unmarried men and those with less education were at higher risk throughout the country. These data provide valuable information on the prevalence of HIV infection in one segment of the general population. Continued surveillance of this group will facilitate evaluation of Thailand's response to the epidemic.

  13. Intra-spike crosslinking overcomes antibody evasion by HIV-1.

    PubMed

    Galimidi, Rachel P; Klein, Joshua S; Politzer, Maria S; Bai, Shiyu; Seaman, Michael S; Nussenzweig, Michel C; West, Anthony P; Bjorkman, Pamela J

    2015-01-29

    Antibodies developed during HIV-1 infection lose efficacy as the viral spike mutates. We postulated that anti-HIV-1 antibodies primarily bind monovalently because HIV's low spike density impedes bivalent binding through inter-spike crosslinking, and the spike structure prohibits bivalent binding through intra-spike crosslinking. Monovalent binding reduces avidity and potency, thus expanding the range of mutations permitting antibody evasion. To test this idea, we engineered antibody-based molecules capable of bivalent binding through intra-spike crosslinking. We used DNA as a "molecular ruler" to measure intra-epitope distances on virion-bound spikes and construct intra-spike crosslinking molecules. Optimal bivalent reagents exhibited up to 2.5 orders of magnitude increased potency (>100-fold average increases across virus panels) and identified conformational states of virion-bound spikes. The demonstration that intra-spike crosslinking lowers the concentration of antibodies required for neutralization supports the hypothesis that low spike densities facilitate antibody evasion and the use of molecules capable of intra-spike crosslinking for therapy or passive protection. PMID:25635457

  14. Gene loss and adaptation to hominids underlie the ancient origin of HIV-1.

    PubMed

    Etienne, Lucie; Hahn, Beatrice H; Sharp, Paul M; Matsen, Frederick A; Emerman, Michael

    2013-07-17

    HIV-1 resulted from cross-species transmission of SIVcpz, a simian immunodeficiency virus that naturally infects chimpanzees. SIVcpz, in turn, is a recombinant between two SIV lineages from Old World monkeys. Lentiviral interspecies transmissions are partly driven by the evolution and capacity of viral accessory genes, such as vpx, vpr, and vif, to antagonize host antiviral factors, such as SAMHD1 and the APOBEC3 proteins. We show that vpx, which in other lentiviruses antagonizes SAMHD1, was deleted during the creation of SIVcpz. This genomic deletion resulted in the reconstruction of the overlapping vif gene by "overprinting," creating a unique vif that overlaps in its 3' end with the vpr gene and can antagonize hominid APOBEC3s. Moreover, passage of SIVs through chimpanzees facilitated the subsequent adaptation of HIV-1 to humans. Thus, HIV-1 originated through a series of gene loss and adaptation events that generated its chimpanzee precursor and lowered the species barrier to human infection.

  15. Development of a nucleic acid sequence-based amplification assay that uses gag-based molecular beacons to distinguish between human immunodeficiency virus type 1 subtype C and C' infections in Ethiopia.

    PubMed

    Ayele, Workenesh; Pollakis, Georgios; Abebe, Almaz; Fisseha, Bitew; Tegbaru, Belete; Tesfaye, Girma; Mengistu, Yohannes; Wolday, Dawit; van Gemen, Bob; Goudsmit, Jaap; Dorigo-Zetsma, Wendelien; de Baar, Michel P

    2004-04-01

    A gag-based molecular beacon assay utilizing real-time nucleic acid sequence-based amplification technology has been developed to differentiate between the two genetic subclusters of human immunodeficiency virus type 1 (HIV-1) subtype C (C and C') circulating in Ethiopia. Of 41 samples, 36 could be classified as C or C' by sequencing of the gag gene. All 36 isolates were correctly identified by the gag beacon test. Three isolates with genomes that were recombinant in gag were unambiguously typed as belonging to the C' subcluster. Further analysis revealed that these contained the most sequence homology with a reference subcluster C' sequence in the target region of the beacon and hence were correct for the analyzed region. For one sample, sequencing and gag molecular beacon results did not match, while another isolate could not be detected at all by the beacon assay. Overall, high levels of sensitivity and specificity were achieved for both beacons (90.5% sensitivity and 100% specificity for the C beacon and 100% sensitivity and 95.2% specificity for the C' beacon). The availability of a diagnostic test which can quickly and reliably discriminate between C and C' HIV-1 infections in Ethiopia is an important first step toward studying their respective biological characteristics. As the assay is specific to the Ethiopian HIV-1 subtype C epidemic, it will contribute to characterizing the circulating viruses in this population, thereby generating the information necessary for the development of a potential efficacious HIV-1 vaccine appropriate for the Ethiopian context.

  16. Tyrosine-sulfated V2 peptides inhibit HIV-1 infection via coreceptor mimicry.

    PubMed

    Cimbro, Raffaello; Peterson, Francis C; Liu, Qingbo; Guzzo, Christina; Zhang, Peng; Miao, Huiyi; Van Ryk, Donald; Ambroggio, Xavier; Hurt, Darrell E; De Gioia, Luca; Volkman, Brian F; Dolan, Michael A; Lusso, Paolo

    2016-08-01

    Tyrosine sulfation is a post-translational modification that facilitates protein-protein interaction. Two sulfated tyrosines (Tys173 and Tys177) were recently identified within the second variable (V2) loop of the major HIV-1 envelope glycoprotein, gp120, and shown to contribute to stabilizing the intramolecular interaction between V2 and the third variable (V3) loop. Here, we report that tyrosine-sulfated peptides derived from V2 act as structural and functional mimics of the CCR5 N-terminus and potently block HIV-1 infection. Nuclear magnetic and surface plasmon resonance analyses indicate that a tyrosine-sulfated V2 peptide (pV2α-Tys) adopts a CCR5-like helical conformation and directly interacts with gp120 in a CD4-dependent fashion, competing with a CCR5 N-terminal peptide. Sulfated V2 mimics, but not their non-sulfated counterparts, inhibit HIV-1 entry and fusion by preventing coreceptor utilization, with the highly conserved C-terminal sulfotyrosine, Tys177, playing a dominant role. Unlike CCR5 N-terminal peptides, V2 mimics inhibit a broad range of HIV-1 strains irrespective of their coreceptor tropism, highlighting the overall structural conservation of the coreceptor-binding site in gp120. These results document the use of receptor mimicry by a retrovirus to occlude a key neutralization target site and provide leads for the design of therapeutic strategies against HIV-1. PMID:27389109

  17. Cross-subtype detection of HIV-1 using reverse transcription and recombinase polymerase amplification.

    PubMed

    Lillis, Lorraine; Lehman, Dara A; Siverson, Joshua B; Weis, Julie; Cantera, Jason; Parker, Mathew; Piepenburg, Olaf; Overbaugh, Julie; Boyle, David S

    2016-04-01

    A low complexity diagnostic test that rapidly and reliably detects HIV infection in infants at the point of care could facilitate early treatment, improving outcomes. However, many infant HIV diagnostics can only be performed in laboratory settings. Recombinase polymerase amplification (RPA) is an isothermal amplification technology that can rapidly amplify proviral DNA from multiple subtypes of HIV-1 in under twenty minutes without complex equipment. In this study we added reverse transcription (RT) to RPA to allow detection of both HIV-1 RNA and DNA. We show that this RT-RPA HIV-1 assay has a limit of detection of 10-30 copies of an exact sequence matched DNA or RNA, respectively. In addition, at 100 copies of RNA or DNA, the assay detected 171 of 175 (97.7%) sequence variants that represent all the major subtypes and recombinant forms of HIV-1 Groups M and O. This data suggests that the application of RT-RPA for the combined detection of HIV-1 viral RNA and proviral DNA may prove a highly sensitive tool for rapid and accurate diagnosis of infant HIV. PMID:26821087

  18. Cross-subtype detection of HIV-1 using reverse transcription and recombinase polymerase amplification.

    PubMed

    Lillis, Lorraine; Lehman, Dara A; Siverson, Joshua B; Weis, Julie; Cantera, Jason; Parker, Mathew; Piepenburg, Olaf; Overbaugh, Julie; Boyle, David S

    2016-04-01

    A low complexity diagnostic test that rapidly and reliably detects HIV infection in infants at the point of care could facilitate early treatment, improving outcomes. However, many infant HIV diagnostics can only be performed in laboratory settings. Recombinase polymerase amplification (RPA) is an isothermal amplification technology that can rapidly amplify proviral DNA from multiple subtypes of HIV-1 in under twenty minutes without complex equipment. In this study we added reverse transcription (RT) to RPA to allow detection of both HIV-1 RNA and DNA. We show that this RT-RPA HIV-1 assay has a limit of detection of 10-30 copies of an exact sequence matched DNA or RNA, respectively. In addition, at 100 copies of RNA or DNA, the assay detected 171 of 175 (97.7%) sequence variants that represent all the major subtypes and recombinant forms of HIV-1 Groups M and O. This data suggests that the application of RT-RPA for the combined detection of HIV-1 viral RNA and proviral DNA may prove a highly sensitive tool for rapid and accurate diagnosis of infant HIV.

  19. Specific zinc-finger architecture required for HIV-1 nucleocapsid protein's nucleic acid chaperone function

    PubMed Central

    Williams, Mark C.; Gorelick, Robert J.; Musier-Forsyth, Karin

    2002-01-01

    The nucleocapsid protein (NC) of HIV type 1 (HIV-1) is a nucleic acid chaperone that facilitates the rearrangement of nucleic acid secondary structure during reverse transcription. HIV-1 NC contains two CCHC-type zinc binding domains. Here, we use optical tweezers to stretch single λ-DNA molecules through the helix-to-coil transition in the presence of wild-type and several mutant forms of HIV-1 NC with altered zinc-finger domains. Although all forms of NC lowered the cooperativity of the DNA helix–coil transition, subtle changes in the zinc-finger structures reduced NC's effect on the transition. The change in cooperativity of the DNA helix–coil transition correlates strongly with in vitro nucleic acid chaperone activity measurements and in vivo HIV-1 replication studies using the same NC mutants. Moreover, Moloney murine leukemia virus NC, which contains a single zinc finger, had little effect on transition cooperativity. These results suggest that a specific two-zinc-finger architecture is required to destabilize nucleic acids for optimal chaperone activity during reverse transcription in complex retroviruses such as HIV-1. PMID:12084921

  20. The Global Transmission Network of HIV-1

    PubMed Central

    Wertheim, Joel O.; Leigh Brown, Andrew J.; Hepler, N. Lance; Mehta, Sanjay R.; Richman, Douglas D.; Smith, Davey M.; Kosakovsky Pond, Sergei L.

    2014-01-01

    Human immunodeficiency virus type 1 (HIV-1) is pandemic, but its contemporary global transmission network has not been characterized. A better understanding of the properties and dynamics of this network is essential for surveillance, prevention, and eventual eradication of HIV. Here, we apply a simple and computationally efficient network-based approach to all publicly available HIV polymerase sequences in the global database, revealing a contemporary picture of the spread of HIV-1 within and between countries. This approach automatically recovered well-characterized transmission clusters and extended other clusters thought to be contained within a single country across international borders. In addition, previously undescribed transmission clusters were discovered. Together, these clusters represent all known modes of HIV transmission. The extent of international linkage revealed by our comprehensive approach demonstrates the need to consider the global diversity of HIV, even when describing local epidemics. Finally, the speed of this method allows for near-real-time surveillance of the pandemic's progression. PMID:24151309

  1. Latency: the hidden HIV-1 challenge

    PubMed Central

    Marcello, Alessandro

    2006-01-01

    Eradication of HIV-1 from an infected individual cannot be achieved by current regimens. Viral reservoirs established early during the infection remain unaffected by anti-retroviral therapy for a long time and are able to replenish systemic infection upon interruption of the treatment. Therapeutic targeting of viral latency will require a better understanding of the basic mechanisms underlying the establishment and long-term maintenance of HIV-1 in resting memory CD4 T cells, the most prominent reservoir of transcriptionally silent provirus. Since the molecular mechanisms that permit long term transcriptional control of proviral gene expression in these cells are still obscure, this review aims at summarizing the various aspects of the problem that need to be considered. In particular, this review will focus the attention on the control of transcription imposed by chromatin through various epigenetic mechanisms. Exploring the molecular details of viral latency will provide new insights for eventual future therapeutics that aim at viral eradication. PMID:16412247

  2. ESCRT machinery potentiates HIV-1 utilization of the PI(4,5)P(2)-PLC-IP3R-Ca(2+) signaling cascade.

    PubMed

    Ehrlich, Lorna S; Medina, Gisselle N; Carter, Carol A

    2011-10-21

    Human immunodeficiency virus type 1 (HIV-1) release efficiency is directed by late (L) domain motifs in the viral structural precursor polyprotein Gag, which serve as links to the ESCRT (endosomal sorting complex required for transport) machinery. Linkage is normally through binding of Tsg101, an ESCRT-1 component, to the P(7)TAP motif in the p6 region of Gag. In its absence, budding is directed by binding of Alix, an ESCRT adaptor protein, to the LY(36)PX(n)L motif in Gag. We recently showed that budding requires activation of the inositol 1,4,5-triphosphate receptor (IP3R), a protein that "gates" Ca(2+) release from intracellular stores, triggers Ca(2+) cell influx and thereby functions as a major regulator of Ca(2+) signaling. In the present study, we determined whether the L domain links Gag to Ca(2+) signaling machinery. Depletion of IP3R and inactivation of phospholipase C (PLC) inhibited budding whether or not Tsg101 was bound to Gag. PLC hydrolysis of phosphatidylinositol-(4,5)-bisphosphate generates inositol (1,4,5)-triphosphate, the ligand that activates IP3R. However, with Tsg101 bound, Gag release was independent of Gq-mediated activation of PLC, and budding was readily enhanced by pharmacological stimulation of PLC. Moreover, IP3R was redistributed to the cell periphery and cytosolic Ca(2+) was elevated, events indicative of induction of Ca(2+) signaling. The results suggest that L domain function, ESCRT machinery and Ca(2+) signaling are linked events in Gag release.

  3. Tertiary Element Interaction in HIV-1 TAR.

    PubMed

    Krawczyk, Konrad; Sim, Adelene Y L; Knapp, Bernhard; Deane, Charlotte M; Minary, Peter

    2016-09-26

    HIV-1 replication requires binding to occur between Trans-activation Response Element (TAR) RNA and the TAT protein. This TAR-TAT binding depends on the conformation of TAR, and therapeutic development has attempted to exploit this dynamic behavior. Here we simulate TAR dynamics in the context of mutations inhibiting TAR binding. We find that two tertiary elements, the apical loop and the bulge, can interact directly, and this interaction may be linked to the affinity of TAR for TAT. PMID:27500460

  4. Nanochemistry-based immunotherapy for HIV-1.

    PubMed

    Lori, F; Calarota, S A; Lisziewicz, J

    2007-01-01

    Highly active antiretroviral treatment (HAART), i.e. the combination of three or more drugs against human immunodeficiency virus type 1 (HIV-1), has greatly improved the clinical outcome of HIV-1-infected individuals. However, HAART is unable to reconstitute HIV-specific immunity and eradicate the virus. Several observations in primate models and in humans support the notion that cell-mediated immunity can control viral replication and slow disease progression. Thus, besides drugs, an immunotherapy that induces long-lasting HIV-specific T-cell responses could play a role in the treatment of HIV/AIDS. To induce such immune responses, DermaVir Patch has been developed. DermaVir consists of an HIV-1 antigen-encoding plasmid DNA that is chemically formulated in a nanoparticle. DermaVir is administered under a patch after a skin preparation that supports the delivery of the nanoparticle to Langerhans cells (LC). Epidermal LC trap and transport the nanomedicine to draining lymph nodes. While in transit, LC mature into dendritic cells (DC), which can efficiently present the DNA-encoded antigens to naïve T-cells for the induction of cellular immunity. Pre-clinical studies and Phase I clinical testing of DermaVir in HIV-1-infected individuals have demonstrated the safety and tolerability of DermaVir Patch. To further modulate cellular immunity, molecular adjuvants might be added into the nanoparticle. DermaVir Patch represents a new nanomedicine platform for immunotherapy of HIV/AIDS. In this review, the antiviral activity of DermaVir-induced cellular immunity is discussed. Furthermore, the action of some cytokines currently being tested as adjuvants are highlighted and the adjuvant effect of cytokine plasmid DNA included in the DermaVir nanoparticle is reviewed.

  5. Microplate-Based Assay for Identifying Small Molecules That Bind a Specific Intersubunit Interface within the Assembled HIV-1 Capsid

    PubMed Central

    Halambage, Upul D.; Wong, Jason P.; Melancon, Bruce J.; Lindsley, Craig W.

    2015-01-01

    Despite the availability of >30 effective drugs for managing HIV-1 infection, no current therapy is curative, and long-term management is challenging owing to the emergence and spread of drug-resistant mutants. Identification of drugs against novel HIV-1 targets would expand the current treatment options and help to control resistance. The highly conserved HIV-1 capsid protein represents an attractive target because of its multiple roles in replication of the virus. However, the low antiviral potencies of the reported HIV-1 capsid–targeting inhibitors render them unattractive for therapeutic development. To facilitate the identification of more-potent HIV-1 capsid inhibitors, we developed a scintillation proximity assay to screen for small molecules that target a biologically active and specific intersubunit interface in the HIV-1 capsid. The assay, which is based on competitive displacement of a known capsid-binding small-molecule inhibitor, exhibited a signal-to-noise ratio of >9 and a Z factor of >0.8. In a pilot screen of a chemical library containing 2,400 druglike compounds, we obtained a hit rate of 1.8%. This assay has properties that are suitable for screening large compound libraries to identify novel HIV-1 capsid ligands with antiviral activity. PMID:26077250

  6. The strength of the HIV-1 3' splice sites affects Rev function

    PubMed Central

    Kammler, Susanne; Otte, Marianne; Hauber, Ilona; Kjems, Jørgen; Hauber, Joachim; Schaal, Heiner

    2006-01-01

    Background The HIV-1 Rev protein is a key component in the early to late switch in HIV-1 splicing from early intronless (e.g. tat, rev) to late intron-containing Rev-dependent (e.g. gag, vif, env) transcripts. Previous results suggested that cis-acting sequences and inefficient 5' and 3' splice sites are a prerequisite for Rev function. However, we and other groups have shown that two of the HIV-1 5' splice sites, D1 and D4, are efficiently used in vitro and in vivo. Here, we focus on the efficiency of the HIV-1 3' splice sites taking into consideration to what extent their intrinsic efficiencies are modulated by their downstream cis-acting exonic sequences. Furthermore, we delineate their role in RNA stabilization and Rev function. Results In the presence of an efficient upstream 5' splice site the integrity of the 3' splice site is not essential for Rev function whereas an efficient 3' splice site impairs Rev function. The detrimental effect of a strong 3' splice site on the amount of Rev-dependent intron-containing HIV-1 glycoprotein coding (env) mRNA is not compensatable by weakening the strength of the upstream 5' splice site. Swapping the HIV-1 3' splice sites in an RRE-containing minigene, we found a 3' splice site usage which was variably dependent on the presence of the usual downstream exonic sequence. The most evident activation of 3' splice site usage by its usual downstream exonic sequence was observed for 3' splice site A1 which was turned from an intrinsic very weak 3' splice site into the most active 3' splice site, even abolishing Rev activity. Performing pull-down experiments with nuclear extracts of HeLa cells we identified a novel ASF/SF2-dependent exonic splicing enhancer (ESE) within HIV-1 exon 2 consisting of a heptameric sequence motif occurring twice (M1 and M2) within this short non-coding leader exon. Single point mutation of M1 within an infectious molecular clone is detrimental for HIV-1 exon 2 recognition without affecting Rev

  7. HIV-1 infection kinetics in tissue cultures.

    PubMed

    Spouge, J I; Shrager, R I; Dimitrov, D S

    1996-11-01

    Despite intensive experimental work on HIV-1, very little theoretical work has focused on HIV-1 spread in tissue culture. This article uses two systems of ordinary differential equations to model two modes of viral spread, cell-free virus and cell-to-cell contact. The two models produce remarkably similar qualitative results. Simulations using realistic parameter regimes showed that starting with a small fraction of cells infected, both cell-free viral spread and direct cell-to-cell transmission give an initial exponential phase of viral growth, followed by either a crash or a gradual decline, extinguishing the culture. Under some conditions, an oscillatory phase may precede the extinction. Some previous models of in vivo HIV-1 infection oscillate, but only in unrealistic parameter regimes. Experimental tissue infections sometimes display several sequential cycles of oscillation, however, so our models can at least mimic them qualitatively. Significantly, the models show that infective oscillations can be explained by infection dynamics; biological heterogeneity is not required. The models also display proportionality between infected cells and cell-free virus, which is reassuringly consistent with assumptions about the equivalence of several measures of viral load, except that the proportionality requires a relatively constant total cell concentration. Tissue culture parameter values can be determined from accurate, controlled experiments. Therefore, if verified, our models should make interpreting experimental data and extrapolating it to in vivo conditions sharper and more reliable.

  8. Progress in HIV-1 Vaccine Development

    PubMed Central

    Haynes, Barton F.; McElrath, M. Juliana

    2014-01-01

    Purpose of the Review In this review, examples of recent progress in HIV-1 vaccine research are discussed. Recent Findings New insights from the immune correlates analyses of the RV144 efficacy trial have accelerated vaccine development with leads to follow in non-human primate studies and improved vaccine designs. Several new vaccine vector approaches offer promise in exquisite control of acute infection and in improving the breadth of T cell responses. New targets of broadly neutralizing antibodies (BnAbs) have been elucidated, and improved understanding of how the human host controls BnAb development have emerged from BnAb knockin mice and from analyses of BnAb maturation and virus evolution in subjects followed from the time of HIV-1 transmission to BnAb induction. Summary Based on these observations, it is clear that development of a successful HIV-1 vaccine will require new vaccine approaches and iterative testing of immunogens in well-designed animal and human trials. PMID:23743722

  9. GAG BioScience GmbH.

    PubMed

    Melmer, Georg

    2003-11-01

    Completion of the human genome project led to an explosion in available genomic information. Single nucleotide polymorphisms (SNPs) have emerged as a versatile and powerful tool for genotyping almost all variant species. The unique technological platform developed by GAG BioScience is exclusively based on SNP detection and allows genotyping of up to 60,000 samples per day. An analysis robot, a mass spectrometer and a database form a practically self-controlled analysis and documentation system that achieves high-throughput rates of samples with absolute precision. By using a Laboratory Information and Management System, up to 150 million genotypes can be simultaneously retrieved and stored. In cooperation with a partner, GAG BioScience develops new and powerful tools for further data analysis.

  10. Nup153 and Nup98 bind the HIV-1 core and contribute to the early steps of HIV-1 replication

    SciTech Connect

    Di Nunzio, Francesca; Fricke, Thomas; Miccio, Annarita; Valle-Casuso, Jose Carlos; Perez, Patricio; Souque, Philippe; Rizzi, Ermanno; Severgnini, Marco; Mavilio, Fulvio; Charneau, Pierre; Diaz-Griffero, Felipe

    2013-05-25

    The early steps of HIV-1 replication involve the entry of HIV-1 into the nucleus, which is characterized by viral interactions with nuclear pore components. HIV-1 developed an evolutionary strategy to usurp the nuclear pore machinery and chromatin in order to integrate and efficiently express viral genes. In the current work, we studied the role of nucleoporins 153 and 98 (Nup153 and Nup98) in infection of human Jurkat lymphocytes by HIV-1. We showed that Nup153-depleted cells exhibited a defect in nuclear import, while depletion of Nup 98 caused a slight defect in HIV integration. To explore the biochemical viral determinants for the requirement of Nup153 and Nup98 during HIV-1 infection, we tested the ability of these nucleoporins to interact with HIV-1 cores. Our findings showed that both nucleoporins bind HIV-1 cores suggesting that this interaction is important for HIV-1 nuclear import and/or integration. Distribution analysis of integration sites in Nup153-depleted cells revealed a reduced tendency of HIV-1 to integrate in intragenic sites, which in part could account for the large infectivity defect observed in Nup153-depleted cells. Our work strongly supports a role for Nup153 in HIV-1 nuclear import and integration. - Highlights: ► We studied the role of Nup98 and Nup153 in HIV-1 infection. ► Nup98 binds the HIV-1 core and is involved in HIV-1 integration. ► Nup153 binds the HIV-1 core and is involved in HIV-1 nuclear import. ► Depletion of Nup153 decreased the integration of HIV-1 in transcriptionally active sites.

  11. HIV-1 Protease, Reverse Transcriptase, and Integrase Variation

    PubMed Central

    Sankaran, Kris; Varghese, Vici; Winters, Mark A.; Hurt, Christopher B.; Eron, Joseph J.; Parkin, Neil; Holmes, Susan P.; Holodniy, Mark; Shafer, Robert W.

    2016-01-01

    ABSTRACT HIV-1 protease (PR), reverse transcriptase (RT), and integrase (IN) variability presents a challenge to laboratories performing genotypic resistance testing. This challenge will grow with increased sequencing of samples enriched for proviral DNA such as dried blood spots and increased use of next-generation sequencing (NGS) to detect low-abundance HIV-1 variants. We analyzed PR and RT sequences from >100,000 individuals and IN sequences from >10,000 individuals to characterize variation at each amino acid position, identify mutations indicating APOBEC-mediated G-to-A editing, and identify mutations resulting from selective drug pressure. Forty-seven percent of PR, 37% of RT, and 34% of IN positions had one or more amino acid variants with a prevalence of ≥1%. Seventy percent of PR, 60% of RT, and 60% of IN positions had one or more variants with a prevalence of ≥0.1%. Overall 201 PR, 636 RT, and 346 IN variants had a prevalence of ≥0.1%. The median intersubtype prevalence ratios were 2.9-, 2.1-, and 1.9-fold for these PR, RT, and IN variants, respectively. Only 5.0% of PR, 3.7% of RT, and 2.0% of IN variants had a median intersubtype prevalence ratio of ≥10-fold. Variants at lower prevalences were more likely to differ biochemically and to be part of an electrophoretic mixture compared to high-prevalence variants. There were 209 mutations indicative of APOBEC-mediated G-to-A editing and 326 mutations nonpolymorphic treatment selected. Identification of viruses with a high number of APOBEC-associated mutations will facilitate the quality control of dried blood spot sequencing. Identifying sequences with a high proportion of rare mutations will facilitate the quality control of NGS. IMPORTANCE Most antiretroviral drugs target three HIV-1 proteins: PR, RT, and IN. These proteins are highly variable: many different amino acids can be present at the same position in viruses from different individuals. Some of the amino acid variants cause drug

  12. Extensive Genetic Diversity of HIV-1 in Incident and Prevalent Infections among Malaysian Blood Donors: Multiple Introductions of HIV-1 Genotypes from Highly Prevalent Countries

    PubMed Central

    Chow, Wei Zhen; Bon, Abdul Hamid; Keating, Sheila; Anderios, Fread; Halim, Hazwan Abdul; Takebe, Yutaka; Kamarulzaman, Adeeba; Busch, Michael P.; Tee, Kok Keng

    2016-01-01

    Transfusion-transmissible infections including HIV-1 continue to pose major risks for unsafe blood transfusions due to both window phase infections and divergent viruses that may not be detected by donor screening assays. Given the recent emergence of several HIV-1 circulating recombinant forms (CRFs) in high-risk populations in the Southeast Asia region, we investigated the genetic diversity of HIV-1 among the blood donors in Kuala Lumpur, Malaysia. A total of 211 HIV-positive plasma samples detected among 730,188 donations to the National Blood Centre between 2013 and 2014 were provided (90.5% male, median age: 27.0 years old). Recent or long-term infection status at the time of donation was determined using a limiting antigen avidity enzyme immunoassay (LAg-Avidity EIA). HIV-1 gag-pol genes were amplified and sequenced from residual plasma for 149 cases followed by genotype determination using phylogenetic and recombination analyses. Transmitted antiretroviral resistance mutations were not observed among the blood donors, among which 22.7% were classified as recent or incident infections. Major circulating HIV-1 genotypes determined by neighbour-joining phylogenetic inference included CRF01_AE at 40.9% (61/149), CRF33_01B at 21.5% (32/149), and subtype B at 10.1% (15/149). Newly-described CRFs including CRF54_01B circulated at 4.0%, CRF74_01B at 2.0%, and CRF53_01B and CRF48_01B at 0.7% each. Interestingly, unique HIV-1 genotypes including African subtype G (8.7%), CRF45_cpx (1.3%), CRF02_AG (0.7%) and CRF07_BC (0.7%) from China were detected for the first time in the country. A cluster of subtype G sequences formed a distinct founder sub-lineage within the African strains. In addition, 8.7% (13/149) of HIV-infected donors had unique recombinant forms (URFs) including CRF01_AE/B' (4.7%), B'/C (2.7%) and B'/G (1.3%) recombinants. Detailed analysis identified similar recombinant structures with shared parental strains among the B'/C and B'/G URFs, some of which

  13. Extensive Genetic Diversity of HIV-1 in Incident and Prevalent Infections among Malaysian Blood Donors: Multiple Introductions of HIV-1 Genotypes from Highly Prevalent Countries.

    PubMed

    Chow, Wei Zhen; Bon, Abdul Hamid; Keating, Sheila; Anderios, Fread; Halim, Hazwan Abdul; Takebe, Yutaka; Kamarulzaman, Adeeba; Busch, Michael P; Tee, Kok Keng

    2016-01-01

    Transfusion-transmissible infections including HIV-1 continue to pose major risks for unsafe blood transfusions due to both window phase infections and divergent viruses that may not be detected by donor screening assays. Given the recent emergence of several HIV-1 circulating recombinant forms (CRFs) in high-risk populations in the Southeast Asia region, we investigated the genetic diversity of HIV-1 among the blood donors in Kuala Lumpur, Malaysia. A total of 211 HIV-positive plasma samples detected among 730,188 donations to the National Blood Centre between 2013 and 2014 were provided (90.5% male, median age: 27.0 years old). Recent or long-term infection status at the time of donation was determined using a limiting antigen avidity enzyme immunoassay (LAg-Avidity EIA). HIV-1 gag-pol genes were amplified and sequenced from residual plasma for 149 cases followed by genotype determination using phylogenetic and recombination analyses. Transmitted antiretroviral resistance mutations were not observed among the blood donors, among which 22.7% were classified as recent or incident infections. Major circulating HIV-1 genotypes determined by neighbour-joining phylogenetic inference included CRF01_AE at 40.9% (61/149), CRF33_01B at 21.5% (32/149), and subtype B at 10.1% (15/149). Newly-described CRFs including CRF54_01B circulated at 4.0%, CRF74_01B at 2.0%, and CRF53_01B and CRF48_01B at 0.7% each. Interestingly, unique HIV-1 genotypes including African subtype G (8.7%), CRF45_cpx (1.3%), CRF02_AG (0.7%) and CRF07_BC (0.7%) from China were detected for the first time in the country. A cluster of subtype G sequences formed a distinct founder sub-lineage within the African strains. In addition, 8.7% (13/149) of HIV-infected donors had unique recombinant forms (URFs) including CRF01_AE/B' (4.7%), B'/C (2.7%) and B'/G (1.3%) recombinants. Detailed analysis identified similar recombinant structures with shared parental strains among the B'/C and B'/G URFs, some of which

  14. Suppression of HIV-1 Infectivity by Human Glioma Cells.

    PubMed

    Hoque, Sheikh Ariful; Tanaka, Atsushi; Islam, Salequl; Ahsan, Gias Uddin; Jinno-Oue, Atsushi; Hoshino, Hiroo

    2016-05-01

    HIV-1 infection to the central nervous system (CNS) is very common in AIDS patients. The predominant cell types infected in the brain are monocytes and macrophages, which are surrounded by several HIV-1-resistant cell types, such as astrocytes, oligodendrocytes, neurons, and microvascular cells. The effect of these HIV-1-resistant cells on HIV-1 infection is largely unknown. In this study, we examined the stability of HIV-1 cultured with several human glioblastoma cell lines, for example, NP-2, U87MG, T98G, and A172, to determine whether these HIV-1-resistant brain cells could enhance or suppress HIV-1 infection and thus modulate HIV-1 infection in the CNS. The HIV-1 titer was determined using the MAGIC-5A indicator cell line as well as naturally occurring CD4(+) T cells. We found that the stability of HIV-1 incubated with NP-2 or U87MG cells at 37°C was significantly shorter (half-life, 2.5-4 h) compared to that of HIV-1 incubated with T98G or A172 cells or in culture medium without cells (half-life, 8-18 h). The spent culture media (SCM) of NP-2 and U87MG cells had the ability to suppress both R5- and X4-HIV-1 infection by inhibiting HIV-1 attachment to target cells. This inhibitory effect was eliminated by the treatment of the SCM with chondroitinase ABC but not heparinase, suggesting that the inhibitory factor(s) secreted by NP-2 and U87MG cells was chiefly mediated by chondroitin sulfate (CS) or CS-like moiety. Thus, this study reveals that some but not all glioma cells secrete inhibitory molecules to HIV-1 infection that may contribute in lowering HIV-1 infection in the CNS in vivo. PMID:26650729

  15. Suppression of HIV-1 Infectivity by Human Glioma Cells.

    PubMed

    Hoque, Sheikh Ariful; Tanaka, Atsushi; Islam, Salequl; Ahsan, Gias Uddin; Jinno-Oue, Atsushi; Hoshino, Hiroo

    2016-05-01

    HIV-1 infection to the central nervous system (CNS) is very common in AIDS patients. The predominant cell types infected in the brain are monocytes and macrophages, which are surrounded by several HIV-1-resistant cell types, such as astrocytes, oligodendrocytes, neurons, and microvascular cells. The effect of these HIV-1-resistant cells on HIV-1 infection is largely unknown. In this study, we examined the stability of HIV-1 cultured with several human glioblastoma cell lines, for example, NP-2, U87MG, T98G, and A172, to determine whether these HIV-1-resistant brain cells could enhance or suppress HIV-1 infection and thus modulate HIV-1 infection in the CNS. The HIV-1 titer was determined using the MAGIC-5A indicator cell line as well as naturally occurring CD4(+) T cells. We found that the stability of HIV-1 incubated with NP-2 or U87MG cells at 37°C was significantly shorter (half-life, 2.5-4 h) compared to that of HIV-1 incubated with T98G or A172 cells or in culture medium without cells (half-life, 8-18 h). The spent culture media (SCM) of NP-2 and U87MG cells had the ability to suppress both R5- and X4-HIV-1 infection by inhibiting HIV-1 attachment to target cells. This inhibitory effect was eliminated by the treatment of the SCM with chondroitinase ABC but not heparinase, suggesting that the inhibitory factor(s) secreted by NP-2 and U87MG cells was chiefly mediated by chondroitin sulfate (CS) or CS-like moiety. Thus, this study reveals that some but not all glioma cells secrete inhibitory molecules to HIV-1 infection that may contribute in lowering HIV-1 infection in the CNS in vivo.

  16. Transgenic 4-1BBL-engineered vaccine stimulates potent Gag-specific therapeutic and long-term immunity via increased priming of CD44(+)CD62L(high) IL-7R(+) CTLs with up- and downregulation of anti- and pro-apoptosis genes.

    PubMed

    Wang, Rong; Freywald, Andrew; Chen, Yue; Xu, Jianqing; Tan, Xin; Xiang, Jim

    2015-07-01

    Human immunodeficiency virus type-1 (HIV-1)-specific dendritic cell (DC) vaccines have been used in clinical trials. However, they have been found to only induce some degree of immune responses in these studies. We previously demonstrated that the HIV-1 Gag-specific Gag-Texo vaccine stimulated Gag-specific effector CD8(+) cytotoxic T lymphocyte (CTL) responses, leading to completely protective, but very limited, therapeutic immunity. In this study, we constructed a recombinant adenoviral vector, adenovirus (AdV)4-1BBL, which expressed mouse 4-1BB ligand (4-1BBL), and generated transgenic 4-1BBL-engineered OVA-Texo/4-1BBL and Gag-Texo/4-1BBL vaccines by transfecting ovalbumin (OVA)-Texo and Gag-Texo cells with AdV4-1BBL, respectively. We demonstrate that the OVA-specific OVA-Texo/4-1BBL vaccine stimulates more efficient OVA-specific CTL responses (3.26%) compared to OVA-Texo-activated responses (1.98%) in wild-type C57BL/6 mice and the control OVA-Texo/Null vaccine without transgenic 4-1BBL expression, leading to enhanced therapeutic immunity against 6-day established OVA-expressing B16 melanoma BL6-10OVA cells. OVA-Texo/4-1BBL-stimulated CTLs, which have a CD44(+)CD62L(high) IL-7R(+) phenotype, are likely memory CTL precursors, demonstrating prolonged survival and enhanced differentiation into memory CTLs with functional recall responses and long-term immunity against BL6-10OVA melanoma. In addition, we demonstrate that OVA-Texo/4-1BBL-stimulated CTLs up- and downregulate the expression of anti-apoptosis (Bcl2l10, Naip1, Nol3, Pak7 and Tnfrsf11b) and pro-apoptosis (Casp12, Trp63 and Trp73) genes, respectively, by RT(2) Profiler PCR array analysis. Importantly, the Gag-specific Gag-Texo/4-1BBL vaccine also stimulates more efficient Gag-specific therapeutic and long-term immunity against HLA-A2/Gag-expressing B16 melanoma BL6-10Gag/A2 cells than the control Gag-Texo/Null vaccine in transgenic HLA-A2 mice. Taken together, our novel Gag-Texo/4-1BBL vaccine, which is

  17. Evolution of feline immunodeficiency virus Gag proteins.

    PubMed

    Burkala, Evan; Poss, Mary

    2007-10-01

    We evaluated the predicted biochemical properties of Gag proteins from a diverse group of feline immunodeficiency viruses (FIV) to determine how different evolutionary histories of virus and host have changed or constrained these important structural proteins. Our data are based on FIV sequences derived from domestic cat (FIVfca), cougar (FIVpco), and lions (FIVple). Analyses consisted of determining the selective forces acting at each position in the protein and the comparing predictions for secondary structure, charge, hydrophobicity and flexibility for matrix, capsid and nucleocapsid, and the C-terminal peptide, which comprise the Gag proteins. We demonstrate that differences among the FIV Gag proteins have largely arisen by neutral evolution, although many neutrally evolving regions have maintained biochemical features. Regions with predicted differences in biochemical features appear to involve intramolecular interactions and structural elements that undergo conformational changes during particle maturation. In contrast, the majority of sites involved in intermolecular contacts on the protein surface are constrained by purifying selection. There is also conservation of sites that interact with host proteins associated with cellular trafficking and particle budding. NC is the only protein with evidence of positive selection, two of which occur in the N-terminal region responsible for RNA binding and interaction with host proteins.

  18. Quantification of the epitope diversity of HIV-1-specific binding antibodies by peptide microarrays for global HIV-1 vaccine development

    DOE PAGES

    Stephenson, Kathryn E.; Neubauer, George H.; Reimer, Ulf; Pawlowski, Nikolaus; Knaute, Tobias; Zerweck, Johannes; Korber, Bette T.; Barouch, Dan H.

    2014-11-14

    An effective vaccine against human immunodeficiency virus type 1 (HIV-1) will have to provide protection against a vast array of different HIV-1 strains. Current methods to measure HIV-1-specific binding antibodies following immunization typically focus on determining the magnitude of antibody responses, but the epitope diversity of antibody responses has remained largely unexplored. Here we describe the development of a global HIV-1 peptide microarray that contains 6564 peptides from across the HIV-1 proteome and covers the majority of HIV-1 sequences in the Los Alamos National Laboratory global HIV-1 sequence database. Using this microarray, we quantified the magnitude, breadth, and depth ofmore » IgG binding to linear HIV-1 sequences in HIV-1-infected humans and HIV-1-vaccinated humans, rhesus monkeys and guinea pigs. The microarray measured potentially important differences in antibody epitope diversity, particularly regarding the depth of epitope variants recognized at each binding site. Our data suggest that the global HIV-1 peptide microarray may be a useful tool for both preclinical and clinical HIV-1 research.« less

  19. Quantification of the epitope diversity of HIV-1-specific binding antibodies by peptide microarrays for global HIV-1 vaccine development

    SciTech Connect

    Stephenson, Kathryn E.; Neubauer, George H.; Reimer, Ulf; Pawlowski, Nikolaus; Knaute, Tobias; Zerweck, Johannes; Korber, Bette T.; Barouch, Dan H.

    2014-11-14

    An effective vaccine against human immunodeficiency virus type 1 (HIV-1) will have to provide protection against a vast array of different HIV-1 strains. Current methods to measure HIV-1-specific binding antibodies following immunization typically focus on determining the magnitude of antibody responses, but the epitope diversity of antibody responses has remained largely unexplored. Here we describe the development of a global HIV-1 peptide microarray that contains 6564 peptides from across the HIV-1 proteome and covers the majority of HIV-1 sequences in the Los Alamos National Laboratory global HIV-1 sequence database. Using this microarray, we quantified the magnitude, breadth, and depth of IgG binding to linear HIV-1 sequences in HIV-1-infected humans and HIV-1-vaccinated humans, rhesus monkeys and guinea pigs. The microarray measured potentially important differences in antibody epitope diversity, particularly regarding the depth of epitope variants recognized at each binding site. Our data suggest that the global HIV-1 peptide microarray may be a useful tool for both preclinical and clinical HIV-1 research.

  20. HIV-1 prevalence in selected Tijuana sub-populations.

    PubMed Central

    Güereña-Burgueño, F; Benenson, A S; Sepúlveda-Amor, J

    1991-01-01

    To assess the prevalence of HIV-1 (human immunodeficiency virus) infection among high-risk populations in Tijuana, Mexico, HIV-1 antibody status was determined and information on risk behavior was obtained from 1,069 individuals in three high-risk groups. The prevalence of HIV-1 among 415 prostitutes was 0.5 percent; 410 prisoners, 1.2 percent; 233 homosexual/bisexual men, 11.6 percent; and 106 intravenous drug abusers, 1.9 percent. The potential for spread of HIV-1 exists in Tijuana despite the current relatively low seroprevalence of HIV-1. PMID:2014864

  1. HIV-1 phylogenetic analysis shows HIV-1 transits through the meninges to brain and peripheral tissues.

    PubMed

    Lamers, Susanna L; Gray, Rebecca R; Salemi, Marco; Huysentruyt, Leanne C; McGrath, Michael S

    2011-01-01

    Brain infection by the human immunodeficiency virus type 1 (HIV-1) has been investigated in many reports with a variety of conclusions concerning the time of entry and degree of viral compartmentalization. To address these diverse findings, we sequenced HIV-1 gp120 clones from a wide range of brain, peripheral and meningeal tissues from five patients who died from several HIV-1 associated disease pathologies. High-resolution phylogenetic analysis confirmed previous studies that showed a significant degree of compartmentalization in brain and peripheral tissue subpopulations. Some intermixing between the HIV-1 subpopulations was evident, especially in patients that died from pathologies other than HIV-associated dementia. Interestingly, the major tissue harboring virus from both the brain and peripheral tissues was the meninges. These results show that (1) HIV-1 is clearly capable of migrating out of the brain, (2) the meninges are the most likely primary transport tissues, and (3) infected brain macrophages comprise an important HIV reservoir during highly active antiretroviral therapy.

  2. Phenotypic Correlates of HIV-1 Macrophage Tropism

    PubMed Central

    Arrildt, Kathryn T.; LaBranche, Celia C.; Joseph, Sarah B.; Dukhovlinova, Elena N.; Graham, William D.; Ping, Li-Hua; Schnell, Gretja; Sturdevant, Christa B.; Kincer, Laura P.; Mallewa, Macpherson; Heyderman, Robert S.; Van Rie, Annelies; Cohen, Myron S.; Spudich, Serena; Price, Richard W.; Montefiori, David C.

    2015-01-01

    ABSTRACT HIV-1 is typically CCR5 using (R5) and T cell tropic (T-tropic), targeting memory CD4+ T cells throughout acute and chronic infections. However, viruses can expand into alternative cells types. Macrophage-tropic (M-tropic) HIV-1 variants have evolved to infect macrophages, which have only low levels of surface CD4. Most M-tropic variants have been isolated from the central nervous system during late-stage chronic infection. We used the HIV-1 env genes of well-defined, subject-matched M-tropic and T-tropic viruses to characterize the phenotypic features of the M-tropic Env protein. We found that, compared to T-tropic viruses, M-tropic viruses infect monocyte-derived macrophages (MDMs) on average 28-fold more efficiently, use low-density CD4 more efficiently, have increased sensitivity to soluble CD4 (sCD4), and show trends toward sensitivity to some CD4 binding site antibodies but no difference in sensitivity to antibodies targeting the CD4-bound conformation. M-tropic viruses also displayed a trend toward resistance to neutralization by monoclonal antibodies targeting the V1/V2 region of Env, suggesting subtle changes in Env protein conformation. The paired M- and T-tropic viruses did not differ in autologous serum neutralization, temperature sensitivity, entry kinetics, intrinsic infectivity, or Env protein incorporation. We also examined viruses with modestly increased CD4 usage. These variants have significant sensitivity to sCD4 and may represent evolutionary intermediates. CD4 usage is strongly correlated with infectivity of MDMs over a wide range of CD4 entry phenotypes. These data suggest that emergence of M-tropic HIV-1 includes multiple steps in which a phenotype of increased sensitivity to sCD4 and enhanced CD4 usage accompany subtle changes in Env conformation. IMPORTANCE HIV-1 typically replicates in CD4+ T cells. However, HIV-1 can evolve to infect macrophages, especially within the brain. Understanding how CCR5-using macrophage-tropic viruses

  3. A Chimeric HIV-1 gp120 Fused with Vaccinia Virus 14K (A27) Protein as an HIV Immunogen

    PubMed Central

    Vijayan, Aneesh; García-Arriaza, Juan; C. Raman, Suresh; Conesa, José Javier; Chichón, Francisco Javier; Santiago, César; Sorzano, Carlos Óscar S.; Carrascosa, José L.; Esteban, Mariano

    2015-01-01

    In the HIV vaccine field, there is a need to produce highly immunogenic forms of the Env protein with the capacity to trigger broad B and T-cell responses. Here, we report the generation and characterization of a chimeric HIV-1 gp120 protein (termed gp120-14K) by fusing gp120 from clade B with the vaccinia virus (VACV) 14K oligomeric protein (derived from A27L gene). Stable CHO cell lines expressing HIV-1 gp120-14K protein were generated and the protein purified was characterized by size exclusion chromatography, electron microscopy and binding to anti-Env antibodies. These approaches indicate that gp120-14K protein is oligomeric and reacts with a wide spectrum of HIV-1 neutralizing antibodies. Furthermore, in human monocyte-derived dendritic cells (moDCs), gp120-14K protein upregulates the levels of several proinflammatory cytokines and chemokines associated with Th1 innate immune responses (IL-1β, IFN-γ, IL-6, IL-8, IL-12, RANTES). Moreover, we showed in a murine model, that a heterologous prime/boost immunization protocol consisting of a DNA prime with a plasmid expressing gp120-14K protein followed by a boost with MVA-B [a recombinant modified vaccinia virus Ankara (MVA) expressing HIV-1 gp120, Gag, Pol and Nef antigens from clade B], generates stronger, more polyfunctional, and greater effector memory HIV-1-specific CD4+ and CD8+ T-cell immune responses, than immunization with DNA-gp120/MVA-B. The DNA/MVA protocol was superior to immunization with the combination of protein/MVA and the latter was superior to a prime/boost of MVA/MVA or protein/protein. In addition, these immunization protocols enhanced antibody responses against gp120 of the class IgG2a and IgG3, together favoring a Th1 humoral immune response. These results demonstrate that fusing HIV-1 gp120 with VACV 14K forms an oligomeric protein which is highly antigenic as it activates a Th1 innate immune response in human moDCs, and in vaccinated mice triggers polyfunctional HIV-1-specific adaptive

  4. In vivo SELEX of single-stranded domains in the HIV-1 leader RNA.

    PubMed

    van Bel, Nikki; Das, Atze T; Berkhout, Ben

    2014-02-01

    The 5' untranslated leader region of the human immunodeficiency virus type 1 (HIV-1) RNA genome is a strongly conserved sequence that encodes several regulatory motifs important for viral replication. Most of these motifs are exposed as hairpin structures, including the dimerization initiation signal (DIS), the major splice donor site (SD), and the packaging signal (Ψ), which are connected by short single-stranded regions. Mutational analysis revealed many functions of these hairpins, but only a few studies have focused on the single-stranded purine-rich sequences. Using the in vivo SELEX (systematic evolution of ligands by exponential enrichment) approach, we probed the sequence space in these regions that is compatible with efficient HIV-1 replication and analyzed the impact on the RNA secondary structure of the leader RNA. Our results show a strong sequence requirement for the DIS hairpin flanking regions. We postulate that these sequences are important for the binding of specific protein factors that support leader RNA-mediated functions. The sequence between the SD and Ψ hairpins seems to have a less prominent role, despite the strong conservation of the stretch of 5 A residues in natural isolates. We hypothesize that this may reflect the subtle evolutionary pressure on HIV-1 to acquire an A-rich RNA genome. In silico analyses indicate that sequences are avoided in all 3 single-stranded domains that affect the local or overall leader RNA folding. IMPORTANCE Many regulatory RNA sequences are clustered in the untranslated leader domain of the HIV-1 RNA genome. Several RNA hairpin structures in this domain have been proposed to fulfill specific roles, e.g., mediating RNA dimer formation to facilitate HIV-1 recombination. We now focus on the importance of a few well-conserved single-stranded sequences that connect these hairpins. We created libraries of HIV-1 variants in which these segments were randomized and selected the best-replicating variants. For two

  5. Raman spectroscopy of HIV-1 antigen and antibody

    NASA Astrophysics Data System (ADS)

    Zinin, Pavel V.; Hu, Ningjie; Kamemoto, Lori E.; Yu, Qigui; Misra, Anupam K.; Sharma, Shiv K.

    2011-05-01

    Raman spectra of anti-HIV-1 antibody, HIV-1 antigen (p24), and HIV-1 antibody-antigen complex have been measured in near-infrared and UV regions: 785 nm; 830 nm; and 244 nm laser excitations. The spectrum of the HIV-1 antigen was excited with an infrared laser and contains numerous Raman peaks. The most prominent peaks are broad bands at 1343, 1449, 1609 and 1655 cm-1, which are characteristic of the Raman spectra of biological cells. The UV Raman spectrum of the HIV-1 antigen has a completely different structure. It has two strong peaks at 1613 cm-1 and 1173 cm-1. The peak at 1613 cm-1 is associated with vibrations of the aromatic amino acids tyrosine (Tyr) and tryptophan (Try). The second strongest peak at 1173 cm-1 is associated with the vibration of Tyr. The Raman peak pattern of the HIV-1 antigen-antibody complex is very similar to that of the HIV-1 antigen. The only difference is that the peak at 1007 cm-1 of the Raman spectrum of the HIV-1 antigen-antibody complex is slightly enhanced compared to that of the HIV-1 antigen. This indicates that the peaks of the HIV-1 antigen dominate the Raman spectrum of the HIV-1 antigen-antibody complex.

  6. Short Communication: Neutralizing Antibodies in HIV-1-Infected Brazilian Individuals

    PubMed Central

    Morgado, Mariza Gonçalvez; Côrtes, Fernanda Heloise; Guimarães, Monick Lindermeyer; Mendonça-Lima, Leila; Pilotto, Jose Henrique; Grinsztejn, Beatriz; Veloso, Valdiléa Gonçalves; Bongertz, Vera

    2013-01-01

    Abstract Tests for the detection of the humoral immune response to HIV-1 have to be standardized and established, demanding regional efforts. For this purpose the neutralizing antibody (NAb) assay for HIV-1 in TZM-bl cells was introduced in Brazil. Twenty plasma samples from HIV-1-infected individuals were assayed: 10 progressors and 10 long-term nonprogressors. These were tested against eight env-pseudotyped viruses (psVs) in the TZM-bl NAb assay and against HIV-1 strain HTLV/IIIB (HIV-1 IIIB) in primary lymphocytes. Forty-four percent of the samples showed neutralizing titers for psVs and 55% for HIV-1 IIIB. Plasma from progressors showed a broader neutralization and a higher potency. The introduction of these reference reagents encourages the participation of Brazil in future comparative assessments of anti-HIV-1 antibodies. PMID:23145941

  7. Significant impact of non-B HIV-1 variants genetic diversity in Gabon on plasma HIV-1 RNA quantitation.

    PubMed

    Mouinga-Ondémé, Augustin; Mabika-Mabika, Arsène; Alalade, Patrick; Mongo, Arnaud Delis; Sica, Jeanne; Liégeois, Florian; Rouet, François

    2014-01-01

    Evaluations of HIV-1 RNA viral load assays are lacking in Central Africa. The main objective of our study was to assess the reliability of HIV-1 RNA results obtained with three different assays for samples collected in Gabon. A total of 137 plasma specimens were assessed for HIV-1 RNA using the Abbott RealTime HIV-1® and Nuclisens HIV-1 EasyQ® version 2.0 assays. It included HIV-1 non-B samples (n = 113) representing six subtypes, 10 CRFs and 18 URFs from patients infected with HIV-1 and treated with antiretrovirals that were found HIV-1 RNA positive (≥300 copies/ml) with the Generic HIV viral load® assay; and samples (n = 24) from untreated individuals infected with HIV-1 but showing undetectable (<300 copies/ml) results with the Biocentric kit. For samples found positive with the Generic HIV viral load® test, correlation coefficients obtained between the three techniques were relatively low (R = 0.65 between Generic HIV viral load® and Abbott RealTime HIV-1®, 0.50 between Generic HIV viral load® and Nuclisens HIV-1 EasyQ®, and 0.66 between Abbott RealTime HIV-1® and Nuclisens HIV-1 EasyQ®). Discrepancies by at least one log10 were obtained for 19.6%, 33.7%, and 20% of samples, respectively, irrespective of genotype. Most of samples (22/24) from untreated study patients, found negative with the Biocentric kit, were also found negative with the two other techniques. In Central Africa, HIV-1 genetic diversity remains challenging for viral load testing. Further studies are required in the same area to confirm the presence of HIV-1 strains that are not amplified with at least two different viral load assays.

  8. Development of hematopoietic stem cell based gene therapy for HIV-1 infection: considerations for proof of concept studies and translation to standard medical practice.

    PubMed

    DiGiusto, David L; Stan, Rodica; Krishnan, Amrita; Li, Haitang; Rossi, John J; Zaia, John A

    2013-11-22

    Over the past 15 years we have been investigating an alternative approach to treating HIV-1/AIDS, based on the creation of a disease-resistant immune system through transplantation of autologous, gene-modified (HIV-1-resistant) hematopoietic stem and progenitor cells (GM-HSPC). We propose that the expression of selected RNA-based HIV-1 inhibitors in the CD4+ cells derived from GM-HSPC will protect them from HIV-1 infection and results in a sufficient immune repertoire to control HIV-1 viremia resulting in a functional cure for HIV-1/AIDS. Additionally, it is possible that the subset of protected T cells will also be able to facilitate the immune-based elimination of latently infected cells if they can be activated to express viral antigens. Thus, a single dose of disease resistant GM-HSPC could provide an effective treatment for HIV-1+ patients who require (or desire) an alternative to lifelong antiretroviral chemotherapy. We describe herein the results from several pilot clinical studies in HIV-1 patients and our strategies to develop second generation vectors and clinical strategies for HIV-1+ patients with malignancy who require ablative chemotherapy as part of treatment and others without malignancy. The important issues related to stem cell source, patient selection, conditioning regimen and post-infusion correlative studies become increasingly complex and are discussed herein.

  9. Engineering and Characterization of a Fluorescent Native-Like HIV-1 Envelope Glycoprotein Trimer

    PubMed Central

    Sliepen, Kwinten; van Montfort, Thijs; Ozorowski, Gabriel; Pritchard, Laura K.; Crispin, Max; Ward, Andrew B.; Sanders, Rogier W.

    2015-01-01

    Generation of a stable, soluble mimic of the HIV-1 envelope glycoprotein (Env) trimer on the virion surface has been considered an important first step for developing a successful HIV-1 vaccine. Recently, a soluble native-like Env trimer (BG505 SOSIP.664) has been described. This protein has facilitated major advances in the HIV-1 vaccine field, since it was the first Env immunogen that induced consistent neutralizing antibodies against a neutralization-resistant (tier 2) virus. Moreover, BG505 SOSIP.664 enabled elucidation of the atomic resolution structure of the Env trimer and facilitated the isolation and characterization of new broadly neutralizing antibodies against HIV-1. Here, we designed and characterized the BG505 SOSIP.664 trimer fused to fluorescent superfolder GFP (sfGFP), a GFP variant that allows efficient folding (BG505 SOSIP.664-sfGFP). Despite the presence of the sfGFP, the Env protein largely retained its morphology, antigenicity, glycan composition, and thermostability. In addition, we show that BG505 SOSIP.664-sfGFP can be used for fluorescence-based assays, such as flow cytometry. PMID:26512709

  10. Structural and Molecular Determinants of Membrane Binding by the HIV-1 Matrix Protein.

    PubMed

    Mercredi, Peter Y; Bucca, Nadine; Loeliger, Burk; Gaines, Christy R; Mehta, Mansi; Bhargava, Pallavi; Tedbury, Philip R; Charlier, Landry; Floquet, Nicolas; Muriaux, Delphine; Favard, Cyril; Sanders, Charles R; Freed, Eric O; Marchant, Jan; Summers, Michael F

    2016-04-24

    Assembly of HIV-1 particles is initiated by the trafficking of viral Gag polyproteins from the cytoplasm to the plasma membrane, where they co-localize and bud to form immature particles. Membrane targeting is mediated by the N-terminally myristoylated matrix (MA) domain of Gag and is dependent on the plasma membrane marker phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. Recent studies revealed that PI(4,5)P2 molecules containing truncated acyl chains [tr-PI(4,5)P2] are capable of binding MA in an "extended lipid" conformation and promoting myristoyl exposure. Here we report that tr-PI(4,5)P2 molecules also readily bind to non-membrane proteins, including HIV-1 capsid, which prompted us to re-examine MA-PI(4,5)P2 interactions using native lipids and membrane mimetic liposomes and bicelles. Liposome binding trends observed using a recently developed NMR approach paralleled results of flotation assays, although the affinities measured under the equilibrium conditions of NMR experiments were significantly higher. Native PI(4,5)P2 enhanced MA binding to liposomes designed to mimic non-raft-like regions of the membrane, suggesting the possibility that binding of the protein to disordered domains may precede Gag association with, or nucleation of, rafts. Studies with bicelles revealed a subset of surface and myr-associated MA residues that are sensitive to native PI(4,5)P2, but cleft residues that interact with the 2'-acyl chains of tr-PI(4,5)P2 molecules in aqueous solution were insensitive to native PI(4,5)P2 in bicelles. Our findings call to question extended-lipid MA:membrane binding models, and instead support a model put forward from coarse-grained simulations indicating that binding is mediated predominantly by dynamic, electrostatic interactions between conserved basic residues of MA and multiple PI(4,5)P2 and phosphatidylserine molecules. PMID:26992353

  11. Structural and Molecular Determinants of Membrane Binding by the HIV-1 Matrix Protein.

    PubMed

    Mercredi, Peter Y; Bucca, Nadine; Loeliger, Burk; Gaines, Christy R; Mehta, Mansi; Bhargava, Pallavi; Tedbury, Philip R; Charlier, Landry; Floquet, Nicolas; Muriaux, Delphine; Favard, Cyril; Sanders, Charles R; Freed, Eric O; Marchant, Jan; Summers, Michael F

    2016-04-24

    Assembly of HIV-1 particles is initiated by the trafficking of viral Gag polyproteins from the cytoplasm to the plasma membrane, where they co-localize and bud to form immature particles. Membrane targeting is mediated by the N-terminally myristoylated matrix (MA) domain of Gag and is dependent on the plasma membrane marker phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. Recent studies revealed that PI(4,5)P2 molecules containing truncated acyl chains [tr-PI(4,5)P2] are capable of binding MA in an "extended lipid" conformation and promoting myristoyl exposure. Here we report that tr-PI(4,5)P2 molecules also readily bind to non-membrane proteins, including HIV-1 capsid, which prompted us to re-examine MA-PI(4,5)P2 interactions using native lipids and membrane mimetic liposomes and bicelles. Liposome binding trends observed using a recently developed NMR approach paralleled results of flotation assays, although the affinities measured under the equilibrium conditions of NMR experiments were significantly higher. Native PI(4,5)P2 enhanced MA binding to liposomes designed to mimic non-raft-like regions of the membrane, suggesting the possibility that binding of the protein to disordered domains may precede Gag association with, or nucleation of, rafts. Studies with bicelles revealed a subset of surface and myr-associated MA residues that are sensitive to native PI(4,5)P2, but cleft residues that interact with the 2'-acyl chains of tr-PI(4,5)P2 molecules in aqueous solution were insensitive to native PI(4,5)P2 in bicelles. Our findings call to question extended-lipid MA:membrane binding models, and instead support a model put forward from coarse-grained simulations indicating that binding is mediated predominantly by dynamic, electrostatic interactions between conserved basic residues of MA and multiple PI(4,5)P2 and phosphatidylserine molecules.

  12. Sensitive HIV-1 detection in a homogeneous solution based on an electrochemical molecular beacon coupled with a nafion-graphene composite film modified screen-printed carbon electrode.

    PubMed

    Li, Bo; Li, Zhengliang; Situ, Bo; Dai, Zong; Liu, Qinlan; Wang, Qian; Gu, Dayong; Zheng, Lei

    2014-02-15

    A novel electrochemical sensing assay for sensitive determination of HIV-1 in a homogeneous solution has been developed using an electrochemical molecular beacon combined with a nafion-graphene composite film modified screen-printed carbon electrode (nafion-graphene/SPCE). The electrochemical molecular beacon (CAs-MB), comprising a special recognition sequence for the conserved region of the HIV-1 gag gene and a pair of carminic acid molecules as a marker, can indicate the presence of the HIV-1 target by its on/off electrochemical signal behavior. It is suitable for direct, electrochemical determination of HIV-1, thereby simplifying the detection procedure and improving the signal-to-noise (S/N) ratio. To further improve the sensitivity, the nafion-graphene/SPCE was used to monitor changes in the CAs-MB, which has notable advantages, such as being ultrasensitive, inexpensive, and disposable. Under optimized conditions, the peak currents showed a linear relationship with the logarithm of target oligonucleotide concentrations ranging from 40 nM to 2.56 μM, with a detection limit of 5 nM (S/N=3). This sensing assay also displays a good stability, with a recovery of 88-106.8% and RSD<7% (n=5) in real serum samples. This work may lead to the development of an effective method for early point-of-care diagnosis of HIV-1 infection. PMID:24099877

  13. Sensitive HIV-1 detection in a homogeneous solution based on an electrochemical molecular beacon coupled with a nafion-graphene composite film modified screen-printed carbon electrode.

    PubMed

    Li, Bo; Li, Zhengliang; Situ, Bo; Dai, Zong; Liu, Qinlan; Wang, Qian; Gu, Dayong; Zheng, Lei

    2014-02-15

    A novel electrochemical sensing assay for sensitive determination of HIV-1 in a homogeneous solution has been developed using an electrochemical molecular beacon combined with a nafion-graphene composite film modified screen-printed carbon electrode (nafion-graphene/SPCE). The electrochemical molecular beacon (CAs-MB), comprising a special recognition sequence for the conserved region of the HIV-1 gag gene and a pair of carminic acid molecules as a marker, can indicate the presence of the HIV-1 target by its on/off electrochemical signal behavior. It is suitable for direct, electrochemical determination of HIV-1, thereby simplifying the detection procedure and improving the signal-to-noise (S/N) ratio. To further improve the sensitivity, the nafion-graphene/SPCE was used to monitor changes in the CAs-MB, which has notable advantages, such as being ultrasensitive, inexpensive, and disposable. Under optimized conditions, the peak currents showed a linear relationship with the logarithm of target oligonucleotide concentrations ranging from 40 nM to 2.56 μM, with a detection limit of 5 nM (S/N=3). This sensing assay also displays a good stability, with a recovery of 88-106.8% and RSD<7% (n=5) in real serum samples. This work may lead to the development of an effective method for early point-of-care diagnosis of HIV-1 infection.

  14. Structural domains within the HIV-1 mRNA and the ribosomal protein S25 influence cap-independent translation initiation.

    PubMed

    Carvajal, Felipe; Vallejos, Maricarmen; Walters, Beth; Contreras, Nataly; Hertz, Marla I; Olivares, Eduardo; Cáceres, Carlos J; Pino, Karla; Letelier, Alejandro; Thompson, Sunnie R; López-Lastra, Marcelo

    2016-07-01

    The 5' leader of the HIV-1 genomic RNA is a multifunctional region that folds into secondary/tertiary structures that regulate multiple processes during viral replication including translation initiation. In this work, we examine the internal ribosome entry site (IRES) located in the 5' leader that drives translation initiation of the viral Gag protein under conditions that hinder cap-dependent translation initiation. We show that activity of the HIV-1 IRES relies on ribosomal protein S25 (eS25). Additionally, a mechanistic and mutational analysis revealed that the HIV-1 IRES is modular in nature and that once the 40S ribosomal subunit is recruited to the IRES, translation initiates without the need of ribosome scanning. These findings elucidate a mechanism of initiation by the HIV-1 IRES whereby a number of highly structured sites present within the HIV-1 5' leader leads to the recruitment of the 40S subunit directly at the site of initiation of protein synthesis. PMID:27191820

  15. HIV-1 VACCINES. HIV-1 neutralizing antibodies induced by native-like envelope trimers.

    PubMed

    Sanders, Rogier W; van Gils, Marit J; Derking, Ronald; Sok, Devin; Ketas, Thomas J; Burger, Judith A; Ozorowski, Gabriel; Cupo, Albert; Simonich, Cassandra; Goo, Leslie; Arendt, Heather; Kim, Helen J; Lee, Jeong Hyun; Pugach, Pavel; Williams, Melissa; Debnath, Gargi; Moldt, Brian; van Breemen, Mariëlle J; Isik, Gözde; Medina-Ramírez, Max; Back, Jaap Willem; Koff, Wayne C; Julien, Jean-Philippe; Rakasz, Eva G; Seaman, Michael S; Guttman, Miklos; Lee, Kelly K; Klasse, Per Johan; LaBranche, Celia; Schief, William R; Wilson, Ian A; Overbaugh, Julie; Burton, Dennis R; Ward, Andrew B; Montefiori, David C; Dean, Hansi; Moore, John P

    2015-07-10

    A challenge for HIV-1 immunogen design is the difficulty of inducing neutralizing antibodies (NAbs) against neutralization-resistant (tier 2) viruses that dominate human transmissions. We show that a soluble recombinant HIV-1 envelope glycoprotein trimer that adopts a native conformation, BG505 SOSIP.664, induced NAbs potently against the sequence-matched tier 2 virus in rabbits and similar but weaker responses in macaques. The trimer also consistently induced cross-reactive NAbs against more sensitive (tier 1) viruses. Tier 2 NAbs recognized conformational epitopes that differed between animals and in some cases overlapped with those recognized by broadly neutralizing antibodies (bNAbs), whereas tier 1 responses targeted linear V3 epitopes. A second trimer, B41 SOSIP.664, also induced a strong autologous tier 2 NAb response in rabbits. Thus, native-like trimers represent a promising starting point for the development of HIV-1 vaccines aimed at inducing bNAbs.

  16. Human cytosolic extracts stabilize the HIV-1 core.

    PubMed

    Fricke, Thomas; Brandariz-Nuñez, Alberto; Wang, Xiaozhao; Smith, Amos B; Diaz-Griffero, Felipe

    2013-10-01

    The stability of the HIV-1 core in the cytoplasm is crucial for productive HIV-1 infection. Mutations that stabilize or destabilize the core showed defects on HIV-1 reverse transcription and infection. We developed a novel and simple assay to measure the stability of in vitro-assembled HIV-1 CA-NC complexes. The assay allowed us to demonstrate that cytosolic extracts strongly stabilize the HIV-1 core. Interestingly, stabilization of in vitro-assembled HIV-1 CA-NC complexes is not due solely to macromolecular crowding, suggesting the presence of specific cellular factors that stabilize the HIV-1 core. By using our novel assay, we measured the abilities of different drugs, such as PF74, CAP-1, IXN-053, cyclosporine, Bi2 (also known as BI-2), and the peptide CAI, to modulate the stability of in vitro-assembled HIV-1 CA-NC complexes. Interestingly, we found that PF74 and Bi2 strongly stabilized HIV-1 CA-NC complexes. On the other hand, the peptide CAI destabilized HIV-1 CA-NC complexes. We also found that purified cyclophilin A destabilizes in vitro-assembled HIV-1 CA-NC complexes in the presence of cellular extracts in a cyclosporine-sensitive manner. In agreement with previous observations using the fate-of-the-capsid assay, we also demonstrated the ability of recombinant CPSF6 to stabilize HIV-1 CA-NC complexes. Overall, our findings suggested that cellular extracts specifically stabilize the HIV-1 core. We believe that our assay can be a powerful tool to assess HIV-1 core stability in vitro.

  17. Relative Resistance of HLA-B to Downregulation by Naturally Occurring HIV-1 Nef Sequences

    PubMed Central

    Mahiti, Macdonald; Toyoda, Mako; Jia, Xiaofei; Kuang, Xiaomei T.; Mwimanzi, Francis; Mwimanzi, Philip; Walker, Bruce D.; Xiong, Yong; Brumme, Zabrina L.; Brockman, Mark A.

    2016-01-01

    ABSTRACT HIV-1 Nef binds to the cytoplasmic region of HLA-A and HLA-B and downregulates these molecules from the surface of virus-infected cells, thus evading immune detection by CD8+ T cells. Polymorphic residues within the HLA cytoplasmic region may affect Nef’s downregulation activity. However, the effects of HLA polymorphisms on recognition by primary Nef isolates remain elusive, as do the specific Nef regions responsible for downregulation of HLA-A versus HLA-B. Here, we examined 46 Nef clones isolated from chronically HIV-1 subtype B-infected subjects for their ability to downregulate various HLA-A, HLA-B, and HLA-C molecules on the surface of virus-infected cells. Overall, HLA-B exhibited greater resistance to Nef-mediated downregulation than HLA-A, regardless of the cell type examined. As expected, no Nef clone downregulated HLA-C. Importantly, the differential abilities of patient-derived Nef clones to downregulate HLA-A and HLA-B correlated inversely with the sensitivities of HIV-infected target cells to recognition by effector cells expressing an HIV-1 Gag-specific T cell receptor. Nef codon function analysis implicated amino acid variation at position 202 (Nef-202) in differentially affecting the ability to downregulate HLA-A and HLA-B, an observation that was subsequently confirmed by experiments using Nef mutants constructed by site-directed mutagenesis. The in silico and mutagenesis analyses further suggested that Nef-202 may interact with the C-terminal Cys-Lys-Val residues of HLA-A, which are absent in HLA-B. Taken together, the results show that natural polymorphisms within Nef modulate its interaction with natural polymorphisms in the HLA cytoplasmic tails, thereby affecting the efficiency of HLA downregulation and consequent recognition by HIV-specific T cells. These results thus extend our understanding of this complex pathway of retroviral immune evasion. PMID:26787826

  18. HIV-1 Recruits UPF1 but Excludes UPF2 to Promote Nucleocytoplasmic Export of the Genomic RNA

    PubMed Central

    Ajamian, Lara; Abel, Karen; Rao, Shringar; Vyboh, Kishanda; García-de-Gracia, Francisco; Soto-Rifo, Ricardo; Kulozik, Andreas E.; Gehring, Niels H.; Mouland, Andrew J.

    2015-01-01

    Unspliced, genomic HIV-1 RNA (vRNA) is a component of several ribonucleoprotein complexes (RNP) during the viral replication cycle. In earlier work, we demonstrated that the host upframeshift protein 1 (UPF1), a key factor in nonsense-mediated mRNA decay (NMD), colocalized and associated to the viral structural protein Gag during viral egress. In this work, we demonstrate a new function for UPF1 in the regulation of vRNA nuclear export. We establish that the nucleocytoplasmic shuttling of UPF1 is required for this function and demonstrate that UPF1 exists in two essential viral RNPs during the late phase of HIV-1 replication: the first, in a nuclear export RNP that contains Rev, CRM1, DDX3 and the nucleoporin p62, and the second, which excludes these nuclear export markers but contains Gag in the cytoplasm. Interestingly, we observed that both UPF2 and the long isoform of UPF3a, UPF3aL, but not the shorter isoforms UPF3aS and UPF3b, are excluded from the UPF1-Rev-CRM1-DDX3 complex as they are negative regulators of vRNA nuclear export. In silico protein-protein docking analyses suggest that Rev binds UPF1 in a region that overlaps the UPF2 binding site, thus explaining the exclusion of this negative regulatory factor by HIV-1 that is necessary for vRNA trafficking. This work uncovers a novel and unique regulatory circuit involving several UPF proteins that ultimately regulate vRNA nuclear export and trafficking. PMID:26492277

  19. HIV-1 Recruits UPF1 but Excludes UPF2 to Promote Nucleocytoplasmic Export of the Genomic RNA.

    PubMed

    Ajamian, Lara; Abel, Karen; Rao, Shringar; Vyboh, Kishanda; García-de-Gracia, Francisco; Soto-Rifo, Ricardo; Kulozik, Andreas E; Gehring, Niels H; Mouland, Andrew J

    2015-01-01

    Unspliced, genomic HIV-1 RNA (vRNA) is a component of several ribonucleoprotein complexes (RNP) during the viral replication cycle. In earlier work, we demonstrated that the host upframeshift protein 1 (UPF1), a key factor in nonsense-mediated mRNA decay (NMD), colocalized and associated to the viral structural protein Gag during viral egress. In this work, we demonstrate a new function for UPF1 in the regulation of vRNA nuclear export. OPEN ACCESS Biomolecules 2015, 5 2809 We establish that the nucleocytoplasmic shuttling of UPF1 is required for this function and demonstrate that UPF1 exists in two essential viral RNPs during the late phase of HIV-1 replication: the first, in a nuclear export RNP that contains Rev, CRM1, DDX3 and the nucleoporin p62, and the second, which excludes these nuclear export markers but contains Gag in the cytoplasm. Interestingly, we observed that both UPF2 and the long isoform of UPF3a, UPF3aL, but not the shorter isoforms UPF3aS and UPF3b, are excluded from the UPF1-Rev-CRM1-DDX3 complex as they are negative regulators of vRNA nuclear export. In silico protein-protein docking analyses suggest that Rev binds UPF1 in a region that overlaps the UPF2 binding site, thus explaining the exclusion of this negative regulatory factor by HIV-1 that is necessary for vRNA trafficking. This work uncovers a novel and unique regulatory circuit involving several UPF proteins that ultimately regulate vRNA nuclear export and trafficking. PMID:26492277

  20. Crystallization studies on HIV-1 reverse transcriptase

    NASA Astrophysics Data System (ADS)

    Lloyd, Lesley F.; Brick, Peter; Blow, David M.; Mei-Zhen, Lou

    1992-08-01

    HIV-1 reverse transcriptase has been crystallized in a variety of forms. Various ligands used for co-crystallization are described and the results presented. All of these crystals showed disorder when examined in the X-ray beam. The best diffraction currently achieved has been approximately 7A˚. The possible reasons for crystal disorder are discussed. An example of another protein, car☐ypeptidase G 2, which initially yielded non-diffracting crystals, is used to illustrate the value of applying random or incomplete factorial screens to sample wider parameter space for conditions to grow well-ordered crystals.

  1. Rigidity analysis of HIV-1 protease

    NASA Astrophysics Data System (ADS)

    Heal, J. W.; Wells, S. A.; Jimenez-Roldan, E.; Freedman, R. F.; Römer, R. A.

    2011-03-01

    We present a rigidity analysis on a large number of X-ray crystal structures of the enzyme HIV-1 protease using the 'pebble game' algorithm of the software FIRST. We find that although the rigidity profile remains similar across a comprehensive set of high resolution structures, the profile changes significantly in the presence of an inhibitor. Our study shows that the action of the inhibitors is to restrict the flexibility of the β-hairpin flaps which allow access to the active site. The results are discussed in the context of full molecular dynamics simulations as well as data from NMR experiments.

  2. An empiric risk scoring tool for identifying high-risk heterosexual HIV-1 serodiscordant couples for targeted HIV-1 prevention

    PubMed Central

    KAHLE, Erin M.; HUGHES, James P.; LINGAPPA, Jairam R.; JOHN-STEWART, Grace; CELUM, Connie; NAKKU-JOLOBA, Edith; NJUGUNA, Stella; MUGO, Nelly; BUKUSI, Elizabeth; MANONGI, Rachel; BAETEN, Jared M.

    2012-01-01

    Background and objectives Heterosexual HIV-1 serodiscordant couples are increasingly recognized as an important source of new HIV-1 infections in sub-Saharan Africa. A simple risk assessment tool could be useful for identifying couples at highest risk for HIV-1 transmission. Methods Using data from three prospective studies of HIV-1 serodiscordant couples from seven African countries and standard methods for development of clinical prediction rules, we derived and validated a risk scoring tool developed from multivariate modeling and composed of key predictors for HIV-1 risk that could be measured in standard research and clinical settings. Results The final risk score included age of the HIV-1 uninfected partner, married and/or cohabiting partnership, number of children, unprotected sex, uncircumcised male HIV-1 uninfected partner, and plasma HIV-1 RNA in the HIV-1 infected partner. The maximum risk score was 12, scores ≥5 were associated with an annual HIV-1 incidence of >3%, and couples with a score ≥6 accounted for only 28% of the population but 67% of HIV-1 transmissions. The area under the curve for predictive ability of the score was 0.74 (95% CI 0.70–0.78). Internal and external validation showed similar predictive ability of the risk score, even when plasma viral load was excluded from the risk score. Conclusions A discrete combination of clinical and behavioral characteristics defines highest-risk HIV-1 serodiscordant couples. Discriminating highest-risk couples for HIV-1 prevention programs and clinical trials using a validated risk score could improve research efficiency and maximize the impact of prevention strategies for reducing HIV-1 transmission. PMID:23187945

  3. Nef Decreases HIV-1 Sensitivity to Neutralizing Antibodies that Target the Membrane-proximal External Region of TMgp41

    PubMed Central

    Lai, Rachel P.J.; Yan, Jin; Heeney, Jonathan; McClure, Myra O.; Göttlinger, Heinrich; Luban, Jeremy; Pizzato, Massimo

    2011-01-01

    Primate lentivirus nef is required for sustained virus replication in vivo and accelerated progression to AIDS. While exploring the mechanism by which Nef increases the infectivity of cell-free virions, we investigated a functional link between Nef and Env. Since we failed to detect an effect of Nef on the quantity of virion-associated Env, we searched for qualitative changes by examining whether Nef alters HIV-1 sensitivity to agents that target distinct features of Env. Nef conferred as much as 50-fold resistance to 2F5 and 4E10, two potent neutralizing monoclonal antibodies (nAbs) that target the membrane proximal external region (MPER) of TMgp41. In contrast, Nef had no effect on HIV-1 neutralization by MPER-specific nAb Z13e1, by the peptide inhibitor T20, nor by a panel of nAbs and other reagents targeting gp120. Resistance to neutralization by 2F5 and 4E10 was observed with Nef from a diverse range of HIV-1 and SIV isolates, as well as with HIV-1 virions bearing Env from CCR5- and CXCR4-tropic viruses, clade B and C viruses, or primary isolates. Functional analysis of a panel of Nef mutants revealed that this activity requires Nef myristoylation but that it is genetically separable from other Nef functions such as the ability to enhance virus infectivity and to downregulate CD4. Glycosylated-Gag from MoMLV substituted for Nef in conferring resistance to 2F5 and 4E10, indicating that this activity is conserved in a retrovirus that does not encode Nef. Given the reported membrane-dependence of MPER-recognition by 2F5 and 4E10, in contrast to the membrane-independence of Z13e1, the data here is consistent with a model in which Nef alters MPER recognition in the context of the virion membrane. Indeed, Nef and Glycosylated-Gag decreased the efficiency of virion capture by 2F5 and 4E10, but not by other nAbs. These studies demonstrate that Nef protects lentiviruses from one of the most broadly-acting classes of neutralizing antibodies. This newly discovered

  4. High Degree of HIV-1 Group M (HIV-1M) Genetic Diversity within Circulating Recombinant Forms: Insight into the Early Events of HIV-1M Evolution

    PubMed Central

    2015-01-01

    ABSTRACT The existence of various highly divergent HIV-1 lineages and of recombination-derived sequence tracts of indeterminate origin within established circulating recombinant forms (CRFs) strongly suggests that HIV-1 group M (HIV-1M) diversity is not fully represented under the current classification system. Here we used a fully exploratory screen for recombination on a set of 480 near-full-length genomes representing the full known diversity of HIV-1M. We decomposed recombinant sequences into their constituent parts and then used maximum-likelihood phylogenetic analyses of this mostly recombination-free data set to identify rare divergent sequence lineages that fall outside the major named HIV-1M taxonomic groupings. We found that many of the sequence fragments occurring within CRFs (including CRF04_cpx, CRF06_cpx, CRF11_cpx, CRF18_cpx, CRF25_cpx, CRF27_cpx, and CRF49_cpx) are in fact likely derived from divergent unclassified parental lineages that may predate the current subtypes, even though they are presently identified as derived from currently defined HIV-1M subtypes. Our evidence suggests that some of these CRFs are descended predominantly from what were or are major previously unidentified HIV-1M lineages that were likely epidemiologically relevant during the early stages of the HIV-1M epidemic. The restriction of these divergent lineages to the Congo basin suggests that they were less infectious and/or simply not present at the time and place of the initial migratory wave that triggered the global epidemic. IMPORTANCE HIV-1 group M (HIV-1M) likely spread to the rest of the world from the Congo basin in the mid-1900s (N. R. Faria et al., Science 346:56–61, 2014, http://dx.doi.org/10.1126/science.1256739) and is today the principal cause of the AIDS pandemic. Here, we show that large sequence fragments from several HIV-1M circulating recombinant forms (CRFs) are derived from divergent parental lineages that cannot reasonably be classified within the

  5. Use of a rapid and simple method to extract proviral DNA in the identification of HIV-1 by PCR.

    PubMed

    Tagliaferro, L; Corbelli, M; Maietta, G; Pellegrino, V; Pignatelli, P

    1995-07-01

    DNA extraction is a critical step in PCR analysis and is closely related to its sensitivity. Traditional methods, based on phenol-chloroform extraction, require more time and the use of toxic reagents. GeneReleaser (Bio Ventures Inc.) is a commercial product which releases DNA from whole blood, cell cultures, bacterial colonies and the like. Cells lysis and DNA extraction are accomplished directly in the amplification tube on a thermocycler. We used GeneReleaser in the identification of HIV-1 proviral DNA by PCR on whole blood samples. All samples arrived at our laboratory for HIV-1 detection were treated with two different procedures. The classical one was based on the lysis of separated lymphocytes by proteinase K, while the other consisted in DNA extraction by GeneReleaser from 5 microliters of whole blood in sodium citrate. All samples were amplified for HIV-1 GAG region; to prevent carry-over contamination Uracil N-glycosylase (UNG) sterilization was performed. Amplified sequences were revealed using the DEIA commercial system (Sorin Biomedica, Italy). To verify the suitability both of cell lysates and GeneReleaser DNA-extracted samples for PCR, we amplified a specific sequence of HLA-DQ-alpha gene. Initial data indicate that this new method might reduce the performance time of PCR (DNA extraction time was around 15 minutes) and improve PCR sensitivity.

  6. Fucoidans as Potential Inhibitors of HIV-1

    PubMed Central

    Prokofjeva, Maria M.; Imbs, Tatyana I.; Shevchenko, Natalya M.; Spirin, Pavel V.; Horn, Stefan; Fehse, Boris; Zvyagintseva, Tatyana N.; Prassolov, Vladimir S.

    2013-01-01

    The antiviral activity of different structure fucoidans (α-l-fucans and galactofucans) was studied using two model viral systems based on a lentiviral vectors and a replication competent Moloney murine leukemia virus (Mo-MuLV). It was found that investigated fucoidans have no cytotoxic effects on Jurkat and SC-1cell at the concentration range of 0.001–100 µg/mL. Fucoidans with different efficiency suppressed transduction of Jurkat cell line by pseudo-HIV-1 particles carrying the envelope protein of HIV-1 and infection of SC-1 cells by Mo-MuLV. According to our data, all natural fucoidans can be considered as potential anti-HIV agents regardless of their carbohydrate backbone and degree of sulfating, since their activity is shown at low concentrations (0.001–0.05 µg/mL). High molecular weight fucoidans isolated from Saccharina cichorioides (1.3-α-l-fucan), and S. japonica (galactofucan) were the most effective inhibitors. PMID:23966033

  7. Fucoidans as potential inhibitors of HIV-1.

    PubMed

    Prokofjeva, Maria M; Imbs, Tatyana I; Shevchenko, Natalya M; Spirin, Pavel V; Horn, Stefan; Fehse, Boris; Zvyagintseva, Tatyana N; Prassolov, Vladimir S

    2013-08-19

    The antiviral activity of different structure fucoidans (α-l-fucans and galactofucans) was studied using two model viral systems based on a lentiviral vectors and a replication competent Moloney murine leukemia virus (Mo-MuLV). It was found that investigated fucoidans have no cytotoxic effects on Jurkat and SC-1cell at the concentration range of 0.001-100 µg/mL. Fucoidans with different efficiency suppressed transduction of Jurkat cell line by pseudo-HIV-1 particles carrying the envelope protein of HIV-1 and infection of SC-1 cells by Mo-MuLV. According to our data, all natural fucoidans can be considered as potential anti-HIV agents regardless of their carbohydrate backbone and degree of sulfating, since their activity is shown at low concentrations (0.001-0.05 µg/mL). High molecular weight fucoidans isolated from Saccharina cichorioides (1.3-α-l-fucan), and S. japonica (galactofucan) were the most effective inhibitors.

  8. Molecular Mechanisms Linking High Dose Medroxyprogesterone with HIV-1 Risk

    PubMed Central

    Irvin, Susan C.; Herold, Betsy C.

    2015-01-01

    Background Epidemiological studies suggest that medroxyprogesterone acetate (MPA) may increase the risk of HIV-1. The current studies were designed to identify potential underlying biological mechanisms. Methods Human vaginal epithelial (VK2/E6E7), peripheral blood mononuclear (PBMC), and polarized endometrial (HEC-1-A) cells were treated with a range of concentrations of MPA (0.015-150 μg/ml) and the impact on gene expression, protein secretion, and HIV infection was evaluated. Results Treatment of VK2/E6E7 cells with high doses (>15μg/ml] of MPA significantly upregulated proinflammatory cytokines, which resulted in a significant increase in HIV p24 levels secreted by latently infected U1 cells following exposure to culture supernatants harvested from MPA compared to mock-treated cells. MPA also increased syndecan expression by VK2/E6E7 cells and cells treated with 15 μg/ml of MPA bound and transferred more HIV-1 to T cells compared to mock-treated cells. Moreover, MPA treatment of epithelial cells and PBMC significantly decreased cell proliferation resulting in disruption of the epithelial barrier and decreased cytokine responses to phytohaemagglutinin, respectively. Conclusion We identified several molecular mechanisms that could contribute to an association between DMPA and HIV including proinflammatory cytokine and chemokine responses that could activate the HIV promoter and recruit immune targets, increased expression of syndecans to facilitate the transfer of virus from epithelial to immune cells and decreased cell proliferation. The latter could impede the ability to maintain an effective epithelial barrier and adversely impact immune cell function. However, these responses were observed primarily following exposure to high (15-150 μg/ml) MPA concentrations. Clinical correlation is needed to determine whether the prolonged MPA exposure associated with contraception activates these mechanisms in vivo. PMID:25798593

  9. Purinergic Receptors: Key Mediators of HIV-1 Infection and Inflammation

    PubMed Central

    Swartz, Talia H.; Dubyak, George R.; Chen, Benjamin K.

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) causes a chronic infection that afflicts more than 30 million individuals worldwide. While the infection can be suppressed with potent antiretroviral therapies, individuals infected with HIV-1 have elevated levels of inflammation as indicated by increased T cell activation, soluble biomarkers, and associated morbidity and mortality. A single mechanism linking HIV-1 pathogenesis to this inflammation has yet to be identified. Purinergic receptors are known to mediate inflammation and have been shown to be required for HIV-1 infection at the level of HIV-1 membrane fusion. Here, we review the literature on the role of purinergic receptors in HIV-1 infection and associated inflammation and describe a role for these receptors as potential therapeutic targets. PMID:26635799

  10. Interactions between nattokinase and heparin/GAGs.

    PubMed

    Zhang, Fuming; Zhang, Jianhua; Linhardt, Robert J

    2015-12-01

    Nattokinase (NK) is a serine protease extracted from a traditional Japanese food called natto. Due to its strong fibrinolytic and thrombolytic activity, NK is regarded as a valuable dietary supplement or nutraceutical for the oral thrombolytic therapy. In addition, NK has been investigated for some other medical applications including treatment of hypertension, Alzheimer's disease, and vitreoretinal disorders. The most widely used clinical anticoagulants are heparin and low molecular weight heparins. The interactions between heparin and proteins modulate diverse patho-physiological processes and heparin modifies the activity of serine proteases. Indeed, heparin plays important roles in almost all of NK's potential therapeutically applications. The current report relies on surface plasmon resonance spectroscopy to examine NK interacting with heparin as well as other glycosaminoglycans (GAGs). These studies showed that NK is a heparin binding protein with an affinity of ~250 nM. Examination with differently sized heparin oligosaccharides indicated that the interaction between NK and heparin is chain-length dependent and the minimum size for heparin binding is a hexasaccharide. Studies using chemically modifi