Sample records for gaim global assimilation

  1. USC/JPL GAIM: A Real-Time Global Ionospheric Data Assimilation Model

    NASA Astrophysics Data System (ADS)

    Mandrake, L.; Wilson, B. D.; Hajj, G.; Wang, C.; Pi, X. `; Iijima, B.

    2004-12-01

    We are in the midst of a revolution in ionospheric remote sensing driven by the illuminating powers of ground and space-based GPS receivers, new UV remote sensing satellites, and the advent of data assimilation techniques for space weather. The University of Southern Califronia (USC) and the Jet Propulsion Laboratory (JPL) have jointly developed a Global Assimilative Ionospheric Model (GAIM) to monitor space weather, study storm effects, and provide ionospheric calibration for DoD customers and NASA flight projects. GAIM is a physics-based 3D data assimilation model that uses both 4DVAR and Kalman filter techniques to solve for the ion & electron density state and key drivers such as equatorial electrodynamics, neutral winds, and production terms. GAIM accepts as input ground GPS TEC data from 900+ sites, occultation links from CHAMP, SAC-C, IOX, and the coming COSMIC constellation, UV limb and nadir scans from the TIMED and DMSP satellites, and in situ data from a variety of satellites (C/NOFS & DMSP). GAIM can ingest multiple data sources in real time, updates the 3D electron density grid every 5 minutes, and solves for improved drivers every 1-2 hours. GAIM density retrievals have been validated by comparisons to vertical TEC measurements from TOPEX & JASON, slant TEC measurements from independent GPS sites, density profiles from ionosondes & incoherent scatter radars, and alternative tomographic retrievals. Daily USC/JPL GAIM runs have been operational since March 2003 using 100-200 ground GPS sites as input and TOPEX/JASON and ionosondes for daily validation. A prototype real-time GAIM system has been running since May 2004. RT GAIM ingests TEC data from 77+ streaming GPS sites every 5 minutes, adds more TEC for better global coverage every hour from hourly GPS sites, and updates the ionospheric state every 5 minutes using the Kalman filter. We plan to add TEC links from COSMIC occultations and UV radiance data from the DMSP satellites, when they become

  2. JPL/USC GAIM: Using COSMIC Occultations in a Real-Time Global Ionospheric Data Assimilation Model

    NASA Astrophysics Data System (ADS)

    Mandrake, L.; Komjathy, A.; Wilson, B. D.; Pi, X.; Hajj, G.; Iijima, B.; Wang, C.

    2006-12-01

    We are in the midst of a revolution in ionospheric remote sensing driven by the illuminating powers of ground and space-based GPS receivers, new UV remote sensing satellites, and the advent of data assimilation techniques for space weather. In particular, the COSMIC 6-satellite constellation launched in April 2006. COSMIC will provide unprecedented global coverage of GPS occultations (~5000 per day), each of which yields electron density information with unprecedented ~1 km vertical resolution. Calibrated measurements of ionospheric delay (total electron content or TEC) suitable for input into assimilation models will be available in near real-time (NRT) from the COSMIC project with a latency of 30 to 120 minutes. Similarly, NRT TEC data are available from two worldwide NRT networks of ground GPS receivers (~75 5-minute sites and ~125 more hourly sites, operated by JPL and others). The combined NRT ground and space-based GPS datasets provide a new opportunity to more accurately specify the 3-dimensional ionospheric density with a time lag of only 15 to 120 minutes. With the addition of the vertically-resolved NRT occultation data, the retrieved profile shapes will model the hour-to-hour ionospheric "weather" much more accurately. The University of Southern California (USC) and the Jet Propulsion Laboratory (JPL) have jointly developed a real-time Global Assimilative Ionospheric Model (GAIM) to monitor space weather, study storm effects, and provide ionospheric calibration for DoD customers and NASA flight projects. JPL/USC GAIM is a physics- based 3D data assimilation model that uses both 4DVAR and Kalman filter techniques to solve for the ion & electron density state and key drivers such as equatorial electrodynamics, neutral winds, and production terms. Daily (delayed) GAIM runs can accept as input ground GPS TEC data from 1000+ sites, occultation links from CHAMP, SAC-C, and the COSMIC constellation, UV limb and nadir scans from the TIMED and DMSP satellites

  3. JPL/USC GAIM: Validating COSMIC and Ground-Based GPS Assimilation Results to Estimate Ionospheric Electron Densities

    NASA Astrophysics Data System (ADS)

    Komjathy, A.; Wilson, B.; Akopian, V.; Pi, X.; Mannucci, A.; Wang, C.

    2008-12-01

    We seem to be in the midst of a revolution in ionospheric remote sensing driven by the abundance of ground and space-based GPS receivers, new UV remote sensing satellites, and the advent of data assimilation techniques for space weather. In particular, the COSMIC 6-satellite constellation was launched in April 2006. COSMIC now provides unprecedented global coverage of GPS occultations measurements, each of which yields electron density information with unprecedented ~1 km vertical resolution. Calibrated measurements of ionospheric delay (total electron content or TEC) suitable for input into assimilation models is currently made available in near real-time (NRT) from the COSMIC with a latency of 30 to 120 minutes. The University of Southern California (USC) and the Jet Propulsion Laboratory (JPL) have jointly developed a real-time Global Assimilative Ionospheric Model (GAIM) to monitor space weather, study storm effects, and provide ionospheric calibration for DoD customers and NASA flight projects. JPL/USC GAIM is a physics- based 3D data assimilation model that uses both 4DVAR and Kalman filter techniques to solve for the ion and electron density state and key drivers such as equatorial electrodynamics, neutral winds, and production terms. Daily (delayed) GAIM runs can accept as input ground GPS TEC data from 1200+ sites, occultation links from CHAMP, SAC-C, and the COSMIC constellation, UV limb and nadir scans from the TIMED and DMSP satellites, and in situ data from a variety of satellites (DMSP and C/NOFS). Real-Time GAIM (RTGAIM) ingests multiple data sources in real time, updates the 3D electron density grid every 5 minutes, and solves for improved drivers every 1-2 hours. Since our forward physics model and the adjoint model were expressly designed for data assimilation and computational efficiency, all of this can be accomplished on a single dual- processor Unix workstation. Customers are currently evaluating the accuracy of JPL/USC GAIM 'nowcasts' for ray

  4. Recent Advances in Ionospheric Modeling Using the USU GAIM Data Assimilation Models

    NASA Astrophysics Data System (ADS)

    Scherliess, L.; Thompson, D. C.; Schunk, R. W.

    2009-12-01

    The ionospheric plasma distribution at low and mid latitudes has been shown to display both a background state (climatology) and a disturbed state (weather). Ionospheric climatology has been successfully modeled, but ionospheric weather has been much more difficult to model because the ionosphere can vary significantly on an hour-by-hour basis. Unfortunately, ionospheric weather can have detrimental effects on several human activities and systems, including high-frequency communications, over-the-horizon radars, and survey and navigation systems using Global Positioning System (GPS) satellites. As shown by meteorologists and oceanographers, the most reliable weather models are physics-based, data-driven models that use Kalman filter or other data assimilation techniques. Since the state of a medium (ocean, lower atmosphere, ionosphere) is driven by complex and frequently nonlinear internal and external processes, it is not possible to accurately specify all of the drivers and initial conditions of the medium. Therefore physics-based models alone cannot provide reliable specifications and forecasts. In an effort to better understand the ionosphere and to mitigate its adverse effects on military and civilian operations, specification and forecast models are being developed that use state-of-the-art data assimilation techniques. Over the past decade, Utah State University (USU) has developed two data assimilation models for the ionosphere as part of the USU Global Assimilation of Ionospheric Measurements (GAIM) program and one of these models has been implemented at the Air Force Weather Agency for operational use. The USU-GAIM models are also being used for scientific studies, and this should lead to a dramatic advance in our understanding of ionospheric physics; similar to what occurred in meteorology and oceanography after the introduction of data assimilation models in those fields. Both USU-GAIM models are capable of assimilating data from a variety of data

  5. Ionospheric Simulation System for Satellite Observations and Global Assimilative Modeling Experiments (ISOGAME)

    NASA Technical Reports Server (NTRS)

    Pi, Xiaoqing; Mannucci, Anthony J.; Verkhoglyadova, Olga P.; Stephens, Philip; Wilson, Brian D.; Akopian, Vardan; Komjathy, Attila; Lijima, Byron A.

    2013-01-01

    ISOGAME is designed and developed to assess quantitatively the impact of new observation systems on the capability of imaging and modeling the ionosphere. With ISOGAME, one can perform observation system simulation experiments (OSSEs). A typical OSSE using ISOGAME would involve: (1) simulating various ionospheric conditions on global scales; (2) simulating ionospheric measurements made from a constellation of low-Earth-orbiters (LEOs), particularly Global Navigation Satellite System (GNSS) radio occultation data, and from ground-based global GNSS networks; (3) conducting ionospheric data assimilation experiments with the Global Assimilative Ionospheric Model (GAIM); and (4) analyzing modeling results with visualization tools. ISOGAME can provide quantitative assessment of the accuracy of assimilative modeling with the interested observation system. Other observation systems besides those based on GNSS are also possible to analyze. The system is composed of a suite of software that combines the GAIM, including a 4D first-principles ionospheric model and data assimilation modules, an Internal Reference Ionosphere (IRI) model that has been developed by international ionospheric research communities, observation simulator, visualization software, and orbit design, simulation, and optimization software. The core GAIM model used in ISOGAME is based on the GAIM++ code (written in C++) that includes a new high-fidelity geomagnetic field representation (multi-dipole). New visualization tools and analysis algorithms for the OSSEs are now part of ISOGAME.

  6. Validation of a Global Ionospheric Data Assimilation Model

    NASA Astrophysics Data System (ADS)

    Wilson, B.; Hajj, G.; Wang, C.; Pi, X.; Rosen, I.

    2003-04-01

    As the number of ground and space-based receivers tracking the global positioning system (GPS) steadily increases, and the quantity of other ionospheric remote sensing data such as measurements of airglow also increases, it is becoming possible to monitor changes in the ionosphere continuously and on a global scale with unprecedented accuracy and reliability. However, in order to make effective use of such a large volume of data for both ionospheric specification and forecast, it is important to develop a data- driven ionospheric model that is consistent with the underlying physical principles governing ionosphere dynamics. A fully 3-dimensional Global Assimilative Ionosphere Model (GAIM) is currently being developed by a joint University of Southern California and Jet Propulsion Laboratory team. GAIM uses a first-principles ionospheric physics model (“forward” model) and Kalman filtering and 4DVAR techniques to not only solve for densities on a 3D grid but also estimate key driving forces which are inputs to the theoretical model, such as the ExB drift, neutral wind, and production terms. The driving forces are estimated using an “adjoint equation” to compute the required partial derivatives, thereby greatly reducing the computational demands compared to other techniques. For estimation of the grid densities, GAIM uses an approximate Kalman filter implementation in which the portions of the covariance matrix that are retained (the off-diagonal elements) are determined by assumed but physical correlation lengths in the ionosphere. By selecting how sparse or full the covariance matrix is over repeated Kalman filter runs, one can fully investigate the tradeoff between estimation accuracy and computational speed. Although GAIM will ultimately use multiple datatypes and many data sources, we have performed a first study of quantitative accuracy by ingesting GPS-derived TEC observations from ground and space-based receivers and nighttime UV radiance data from

  7. Verification of Global Assimilation of Ionospheric Measurements Gauss Markov (GAIM-GM) Model Forecast Accuracy

    DTIC Science & Technology

    2011-09-01

    m b e r o f O cc u rr e n ce s 50 ( a ) Kp 0-3 (b) Kp 4-9 Figure 25. Scatter plot of...dependent physics based model that uses the Ionospheric Forecast Model ( IFM ) as a background model upon which perturbations are imposed via a Kalman filter...vertical output resolution as the IFM . GAIM-GM can also be run in a regional mode with a finer resolution (Scherliess et al., 2006). GAIM-GM is

  8. Continued Development and Validation of the USU GAIM Models

    DTIC Science & Technology

    2010-08-01

    Markov data assimilation model (GAIM-GM) uses a physics-based model of the ionosphere ( IFM ) and a Kalman filter as a basis for assimilating a diverse... a data assimilation model of the ionosphere that is based on the Ionosphere Forecast Model ( IFM ) (Schunk, 1988; Sojka, 1989; Schunk et al., 1997...Monograph 181, (ed. R M . Kitner. A . J. Coster, T. Fuller-Rowell, A J. Mannucci, M . Mendill, and R. Heelis), pp. 35-49, AGU. Washington, DC, 2008

  9. Assimilative modeling of low latitude ionosphere

    NASA Technical Reports Server (NTRS)

    Pi, Xiaoqing; Wang, Chunining; Hajj, George A.; Rosen, I. Gary; Wilson, Brian D.; Mannucci, Anthony J.

    2004-01-01

    In this paper we present an observation system simulation experiment for modeling low-latitude ionosphere using a 3-dimensional (3-D) global assimilative ionospheric model (GAIM). The experiment is conducted to test the effectiveness of GAIM with a 4-D variational approach (4DVAR) in estimation of the ExB drift and thermospheric wind in the magnetic meridional planes simultaneously for all longitude or local time sectors. The operational Global Positioning System (GPS) satellites and the ground-based global GPS receiver network of the International GPS Service are used in the experiment as the data assimilation source. 'The optimization of the ionospheric state (electron density) modeling is performed through a nonlinear least-squares minimization process that adjusts the dynamical forces to reduce the difference between the modeled and observed slant total electron content in the entire modeled region. The present experiment for multiple force estimations reinforces our previous assessment made through single driver estimations conducted for the ExB drift only.

  10. Data assimilation of ground GPG total electron content into a physics-based ionosheric model by use of the Kalman filter

    NASA Technical Reports Server (NTRS)

    Hajj, G. A.; Wilson, B. D.; Wang, C.; Pi, X.; Rosen, I. G.

    2004-01-01

    A three-dimensional (3-D) Global Assimilative Ionospheric Model (GAIM) is currently being developed by a joint University of Southern California and Jet Propulsion Laboratory (JPL) team. To estimate the electron density on a global grid, GAIM uses a first-principles ionospheric physics model and the Kalman filter as one of its possible estimation techniques.

  11. Earth system modelling: a GAIM perspective

    NASA Astrophysics Data System (ADS)

    Prentice, C.

    2003-04-01

    For over a decade the IGBP Task Force on Global Analysis, Integration (formerly Interepretation) and Modelling (GAIM) has facilitated international, interdisciplinary research. The focus has been development, comparison and evaluation of models describing Earth system components, especially terrestrial and ocean carbon cycling and atmospheric transport. GAIM also sponsored the BIOME 6000 project, which produced snapshots of world vegetation patterns for the last glacial maximum (LGM) and mid-Holocene, and experiments in coupled atmosphere-biosphere modelling that used these results. The most successful achievements have brought together modellers and data experts so that model comparisons could be made “with open eyes”. The need to bring together different communities (such as data experts and modellers; ecologists and atmospheric scientists; economists and ecologists...) only increases, and is a major rationale for the continuation of GAIM. GAIM has recently set out 23 overarching questions which could define future directions in Earth system science. Many have a “human dimension”, reflecting the fact that the societal context is poorly defined. Natural scientists often appeal to societal reasons to study global change, but typically don’t incorporate human science perspectives in their research strategies. Other questions have a “physical dimension” as biogeochemistry, atmospheric chemistry and physical climate science merge. As IGBP II begins, GAIM faces the challenge of tackling large gaps in our knowledge of how the coupled Earth system works, with and without human interfence. On the natural science side, the Vostok ice-core record dramatically illustrates our current state of ignorance. Vostok established that the Earth system’s response to orbital forcing is characterized by strong non-linear interactions between atmospheric greenhouse-gas and aerosol constituents and climate. The problem is that we don’t understand most of these

  12. Data Impact of the DMSP F18 SSULI UV Data on the Operational GAIM Model

    NASA Astrophysics Data System (ADS)

    Dandenault, P. B.; Metzler, C. A.; Nicholas, A. C.; Coker, C.; Budzien, S. A.; Chua, D. H.; Finne, T. T.; Dymond, K.; Walker, P. W.; Schunk, R. W.; Scherliess, L.; Gardner, L. C.

    2011-12-01

    The Naval Research Laboratory (NRL) has developed five ultraviolet remote sensing instruments for the United States Air Force (USAF) Defense Meteorological Satellite Program (DMSP). The DMSP satellites are launched in a near-polar, sun-synchronous orbit at an altitude of approximately 830 km. Each Special Sensor Ultraviolet Limb Imager (SSULI) instrument measures vertical profiles of the natural airglow radiation from atoms, molecules and ions in the upper atmosphere and ionosphere by viewing the earth's limb within a tangent altitude range of approximately 50 km to 750 km. Limb observations are made from the extreme ultraviolet (EUV) to the far ultraviolet (FUV) over the wavelength range of 80 nm to 170 nm, with 1.8 nm resolution. Data products from SSULI observations include nightglow and dayglow Sensor Data Records (SDRs), as well as Environmental Data Records (EDRs) which contain vertical profiles of electron (Ne) densities, N2, O2, O, O+, and Temperature, hmF2, NmF2 and vertical Total Electron Content (TEC). On October 18, 2009, the third SSULI sensor launched from Vandenberg Air Force Base aboard the DMSP F18 spacecraft. The Calibration and Validation of the F18 instrument has completed and the SSULI program is scheduled to go operational at the Air Force Weather Agency (AFWA) in Fall 2011. The SSULI F18 data are ingested by the Global Assimilation of Ionospheric Measurements (GAIM) space weather model, which was developed by Utah State University and has been used operationally at AFWA since February 2006. A brief overview of the SSULI F18 SDR data assimilation process with GAIM is provided and the impact of the SSULI 1356 Å emission on the GAIM model is examined for spring and summer 2011 nightside data in the low-latitude region.

  13. Spacebuoy: A University Nanosat Space Weather Mission (III)

    DTIC Science & Technology

    2013-10-11

    ionospheric forecasting models; specifically the operational Global Assimilation of Ionospheric Measurements (GAIM) model currently used by the Air Force... ionospheric forecasting models; specifically the operational Global Assimilation of Ionospheric Measurements (GAIM) model currently used by the Air...Mission Objectives • Provide critical space weather data for use in ionospheric forecasting efforts, particularly assimilated data used in the GAIM

  14. Studies to Improve the Science in the GAIM - Full Physics Model

    DTIC Science & Technology

    2014-01-01

    Hromsco, J. J., Sensitivity of IFM /GAIM-GM Model to High Cadence Kp and F10.7 Input, Utah State University/Air Force Institute of Technology, M . S ...Institute of Technology, M . S . Thesis; March, 2011. Nava, O. A ., Analysis of plasma bubble signatures in the ionosphere, Utah State University/Air...Force Institute of Technology, M . S . Thesis; March, 2011. Scherliess, L., R. W. Schunk and D. C. Thompson, Data assimilation models: A ’new’ tool for

  15. Ionospheric Simulation System for Satellite Observations and Global Assimilative Model Experiments - ISOGAME

    NASA Technical Reports Server (NTRS)

    Pi, Xiaoqing; Mannucci, Anthony J.; Verkhoglyadova, Olga; Stephens, Philip; Iijima, Bryron A.

    2013-01-01

    Modeling and imaging the Earth's ionosphere as well as understanding its structures, inhomogeneities, and disturbances is a key part of NASA's Heliophysics Directorate science roadmap. This invention provides a design tool for scientific missions focused on the ionosphere. It is a scientifically important and technologically challenging task to assess the impact of a new observation system quantitatively on our capability of imaging and modeling the ionosphere. This question is often raised whenever a new satellite system is proposed, a new type of data is emerging, or a new modeling technique is developed. The proposed constellation would be part of a new observation system with more low-Earth orbiters tracking more radio occultation signals broadcast by Global Navigation Satellite System (GNSS) than those offered by the current GPS and COSMIC observation system. A simulation system was developed to fulfill this task. The system is composed of a suite of software that combines the Global Assimilative Ionospheric Model (GAIM) including first-principles and empirical ionospheric models, a multiple- dipole geomagnetic field model, data assimilation modules, observation simulator, visualization software, and orbit design, simulation, and optimization software.

  16. GNSS-Based Space Weather Systems Including COSMIC Ionospheric Measurements

    NASA Technical Reports Server (NTRS)

    Komjathy, Attila; Mandrake, Lukas; Wilson, Brian; Iijima, Byron; Pi, Xiaoqing; Hajj, George; Mannucci, Anthony J.

    2006-01-01

    The presentation outline includes University Corporation for Atmospheric Research (UCAR) and Jet Propulsion Laboratory (JPL) product comparisons, assimilating ground-based global positioning satellites (GPS) and COSMIC into JPL/University of Southern California (USC) Global Assimilative Ionospheric Model (GAIM), and JPL/USC GAIM validation. The discussion of comparisons examines Abel profiles and calibrated TEC. The JPL/USC GAIM validation uses Arecibo ISR, Jason-2 VTEC, and Abel profiles.

  17. Ionospheric Storm Reconstructions with a Multimodel Ensemble Prdiction System (MEPS) of Data Assimilation Models: Mid and Low Latitude Dynamics

    NASA Astrophysics Data System (ADS)

    Schunk, R. W.; Scherliess, L.; Eccles, V.; Gardner, L. C.; Sojka, J. J.; Zhu, L.; Pi, X.; Mannucci, A. J.; Komjathy, A.; Wang, C.; Rosen, G.

    2016-12-01

    As part of the NASA-NSF Space Weather Modeling Collaboration, we created a Multimodel Ensemble Prediction System (MEPS) for the Ionosphere-Thermosphere-Electrodynamics system that is based on Data Assimilation (DA) models. MEPS is composed of seven physics-based data assimilation models that cover the globe. Ensemble modeling can be conducted for the mid-low latitude ionosphere using the four GAIM data assimilation models, including the Gauss Markov (GM), Full Physics (FP), Band Limited (BL) and 4DVAR DA models. These models can assimilate Total Electron Content (TEC) from a constellation of satellites, bottom-side electron density profiles from digisondes, in situ plasma densities, occultation data and ultraviolet emissions. The four GAIM models were run for the March 16-17, 2013, geomagnetic storm period with the same data, but we also systematically added new data types and re-ran the GAIM models to see how the different data types affected the GAIM results, with the emphasis on elucidating differences in the underlying ionospheric dynamics and thermospheric coupling. Also, for each scenario the outputs from the four GAIM models were used to produce an ensemble mean for TEC, NmF2, and hmF2. A simple average of the models was used in the ensemble averaging to see if there was an improvement of the ensemble average over the individual models. For the scenarios considered, the ensemble average yielded better specifications than the individual GAIM models. The model differences and averages, and the consequent differences in ionosphere-thermosphere coupling and dynamics will be discussed.

  18. Utah State University Global Assimilation of Ionospheric Measurements Gauss-Markov Kalman filter model of the ionosphere: Model description and validation

    NASA Astrophysics Data System (ADS)

    Scherliess, L.; Schunk, R. W.; Sojka, J. J.; Thompson, D. C.; Zhu, L.

    2006-11-01

    The Utah State University Gauss-Markov Kalman Filter (GMKF) was developed as part of the Global Assimilation of Ionospheric Measurements (GAIM) program. The GMKF uses a physics-based model of the ionosphere and a Gauss-Markov Kalman filter as a basis for assimilating a diverse set of real-time (or near real-time) observations. The physics-based model is the Ionospheric Forecast Model (IFM), which accounts for five ion species and covers the E region, F region, and the topside from 90 to 1400 km altitude. Within the GMKF, the IFM derived ionospheric densities constitute a background density field on which perturbations are superimposed based on the available data and their errors. In the current configuration, the GMKF assimilates slant total electron content (TEC) from a variable number of global positioning satellite (GPS) ground sites, bottomside electron density (Ne) profiles from a variable number of ionosondes, in situ Ne from four Defense Meteorological Satellite Program (DMSP) satellites, and nighttime line-of-sight ultraviolet (UV) radiances measured by satellites. To test the GMKF for real-time operations and to validate its ionospheric density specifications, we have tested the model performance for a variety of geophysical conditions. During these model runs various combination of data types and data quantities were assimilated. To simulate real-time operations, the model ran continuously and automatically and produced three-dimensional global electron density distributions in 15 min increments. In this paper we will describe the Gauss-Markov Kalman filter model and present results of our validation study, with an emphasis on comparisons with independent observations.

  19. Regional 3-D ionospheric electron density specification on the basis of data assimilation of ground-based GNSS and radio occultation data

    NASA Astrophysics Data System (ADS)

    Aa, Ercha; Liu, Siqing; Huang, Wengeng; Shi, Liqin; Gong, Jiancun; Chen, Yanhong; Shen, Hua; Li, Jianyong

    2016-06-01

    In this paper, a regional 3-D ionospheric electron density specification over China and adjacent areas (70°E-140°E in longitude, 15°N-55°N in latitude, and 100-900 km in altitude) is developed on the basis of data assimilation technique. The International Reference Ionosphere (IRI) is used as a background model, and a three-dimensional variational technique is used to assimilate both the ground-based Global Navigation Satellite System (GNSS) observations from the Crustal Movement Observation Network of China (CMONOC) and International GNSS Service (IGS) and the ionospheric radio occultation (RO) data from FORMOSAT-3/COSMIC (F3/C) satellites. The regional 3-D gridded ionospheric electron densities can be generated with temporal resolution of 5 min in universal time, horizontal resolution of 2° × 2° in latitude and longitude, and vertical resolution of 20 km between 100 and 500 km and 50 km between 500 and 900 km. The data assimilation results are validated through extensive comparison with several sources of electron density information, including (1) ionospheric total electron content (TEC); (2) Abel-retrieved F3/C electron density profiles (EDPs); (3) ionosonde foF2 and bottomside EDPs; and (4) the Utah State University Global Assimilation of Ionospheric Measurements (USU-GAIM) under both geomagnetic quiet and disturbed conditions. The validation results show that the data assimilation procedure pushes the climatological IRI model toward the observation, and a general accuracy improvement of 15-30% can be expected. Thecomparisons also indicate that the data assimilation results are more close to the Center for Orbit Determination of Europe (CODE) TEC and Madrigal TEC products than USU-GAIM. These initial results might demonstrate the effectiveness of the data assimilation technique in improving specification of local ionospheric morphology.

  20. Operational Space Weather Models: Trials, Tribulations and Rewards

    NASA Astrophysics Data System (ADS)

    Schunk, R. W.; Scherliess, L.; Sojka, J. J.; Thompson, D. C.; Zhu, L.

    2009-12-01

    There are many empirical, physics-based, and data assimilation models that can probably be used for space weather applications and the models cover the entire domain from the surface of the Sun to the Earth’s surface. At Utah State University we developed two physics-based data assimilation models of the terrestrial ionosphere as part of a program called Global Assimilation of Ionospheric Measurements (GAIM). One of the data assimilation models is now in operational use at the Air Force Weather Agency (AFWA) in Omaha, Nebraska. This model is a Gauss-Markov Kalman Filter (GAIM-GM) model, and it uses a physics-based model of the ionosphere and a Kalman filter as a basis for assimilating a diverse set of real-time (or near real-time) measurements. The physics-based model is the Ionosphere Forecast Model (IFM), which is global and covers the E-region, F-region, and topside ionosphere from 90 to 1400 km. It takes account of five ion species (NO+, O2+, N2+, O+, H+), but the main output of the model is a 3-dimensional electron density distribution at user specified times. The second data assimilation model uses a physics-based Ionosphere-Plasmasphere Model (IPM) and an ensemble Kalman filter technique as a basis for assimilating a diverse set of real-time (or near real-time) measurements. This Full Physics model (GAIM-FP) is global, covers the altitude range from 90 to 30,000 km, includes six ions (NO+, O2+, N2+, O+, H+, He+), and calculates the self-consistent ionospheric drivers (electric fields and neutral winds). The GAIM-FP model is scheduled for delivery in 2012. Both of these GAIM models assimilate bottom-side Ne profiles from a variable number of ionosondes, slant TEC from a variable number of ground GPS/TEC stations, in situ Ne from four DMSP satellites, line-of-sight UV emissions measured by satellites, and occultation data. Quality control algorithms for all of the data types are provided as an integral part of the GAIM models and these models take account of

  1. Investigating GAIM-GM’s Capability to Sense Ionospheric Irregularities via Walker Satellite Constellations

    DTIC Science & Technology

    2015-03-26

    aligned along the Earth’s geomagnetic equator [9]. Nava’s method was analyzed under the research of Fenton , who investigated GAIM-GM’s capability to handle...the plasma bubbles without additional inputs. Fenton determined that GAIM-GM handled the evolution of the plasma bubbles poorly [2]. With the results...0 0 2 2 .3 0 Z . 66 Bibliography 1. Space Environment Corporation. Ionospheric Forecast Model Version 4.4a, 2002. 2. Kenneth Fenton . Assessment of

  2. Multi-Scale Ionospheric Responses to the St. Patrick's Day Storm (2015) Studied Using a Multimodel Ensemble Prediction System and GPS Data

    NASA Astrophysics Data System (ADS)

    Pi, X.; Butala, M.; Vergados, P.; Mannucci, A. J.; Komjathy, A.; Wang, C.; Rosen, G.; Schunk, R. W.; Scherliess, L.; Eccles, V.; Gardner, L. C.; Sojka, J. J.; Zhu, L.

    2015-12-01

    Under the U.S. NASA and NSF collaborative space weather modeling initiative, a Multimodel Ensemble Prediction System (MEPS) for ionosphere-thermosphere-electrodynamics is being developed. The system includes several Global Assimilative Ionospheric Models (GAIMs) developed by the investigators from Utah State University, Jet Propulsion Laboratory, and University of Southern California. In this study, four GAIMs are applied to a study of ionospheric response to the 17 March 2015 St. Patrick's Day storm. It is the most severe geomagnetic storm in the current solar cycle so far. The daily planetary magnetic Ap index and magnetic Kp, Dst, as well as AE indices reached their very high values, i.e., 108, 8, -202 nT, and 2269 nT, respectively. In the assimilative modeling, GPS data from hundreds of globally-distributed ground stations and a number of COSMIC satellites are assimilated into GAIMs to reproduce ionospheric 3-D volume densities and 2-D total electron content (TEC) during the severe storm. Evolution of strong, latitudinally-dependent, and hemispherically asymmetric ionospheric disturbances is revealed through the assimilative modeling. Using the same GPS data, Global Maps of Ionospheric Irregularities and Scintillation (GMIIS) have also been produced. Comparisons of the modeled large-scale ionospheric disturbances and measured small-scale ionospheric irregularities offer additional insight into the M-I-T coupling processes in different regions during varying storm phases. This presentation will provide a picture of distinguished multi-scale ionospheric response to the coronal mass ejection (CME) event during the major geomagnetic storm.

  3. Integrated Modeling of the Battlespace Environment

    DTIC Science & Technology

    2010-10-01

    Office of Counsel.Code 1008.3 ADOR/Director NCST E. R. Franchi , 7000 Public Affairs (Unclassified/ Unlimited Only). Code 7030 4 Division, Code...ESMF: the Hakamada- Akasofu-Fry version 2 (HAFv2) solar wind model and the global assimilation of ionospheric mea- surements (GAIM1) forecast...ground-truth measurements for comparison with the solar wind predictions. Global Assimilation of Ionospheric Measurements The GAIMv2.3 effort

  4. A Global Carbon Assimilation System using a modified EnKF assimilation method

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Zheng, X.; Chen, Z.; Dan, B.; Chen, J. M.; Yi, X.; Wang, L.; Wu, G.

    2014-10-01

    A Global Carbon Assimilation System based on Ensemble Kalman filter (GCAS-EK) is developed for assimilating atmospheric CO2 abundance data into an ecosystem model to simultaneously estimate the surface carbon fluxes and atmospheric CO2 distribution. This assimilation approach is based on the ensemble Kalman filter (EnKF), but with several new developments, including using analysis states to iteratively estimate ensemble forecast errors, and a maximum likelihood estimation of the inflation factors of the forecast and observation errors. The proposed assimilation approach is tested in observing system simulation experiments and then used to estimate the terrestrial ecosystem carbon fluxes and atmospheric CO2 distributions from 2002 to 2008. The results showed that this assimilation approach can effectively reduce the biases and uncertainties of the carbon fluxes simulated by the ecosystem model.

  5. Comparison between assimilated and non-assimilated experiments of the MACCii global reanalysis near surface ozone

    NASA Astrophysics Data System (ADS)

    Tsikerdekis, Athanasios; Katragou, Eleni; Zanis, Prodromos; Melas, Dimitrios; Eskes, Henk; Flemming, Johannes; Huijnen, Vincent; Inness, Antje; Kapsomenakis, Ioannis; Schultz, Martin; Stein, Olaf; Zerefos, Christos

    2014-05-01

    In this work we evaluate near surface ozone concentrations of the MACCii global reanalysis using measurements from the EMEP and AIRBASE database. The eight-year long reanalysis of atmospheric composition data covering the period 2003-2010 was constructed as part of the FP7-funded Monitoring Atmospheric Composition and Climate project by assimilating satellite data into a global model and data assimilation system (Inness et al., 2013). The study mainly focuses in the differences between the assimilated and the non-assimilated experiments and aims to identify and quantify any improvements achieved by adding data assimilation to the system. Results are analyzed in eight European sub-regions and region-specific Taylor plots illustrate the evaluation and the overall predictive skill of each experiment. The diurnal and annual cycles of near surface ozone are evaluated for both experiments. Furthermore ozone exposure indices for crop growth (AOT40), human health (SOMO35) and the number of days that 8-hour ozone averages exceeded 60ppb and 90ppb have been calculated for each station based on both observed and simulated data. Results indicate mostly improvement of the assimilated experiment with respect to the high near surface ozone concentrations, the diurnal cycle and range and the bias in comparison to the non-assimilated experiment. The limitations of the comparison between assimilated and non-assimilated experiments for near surface ozone are also discussed.

  6. The Global Observing System in the Assimilation Context

    NASA Technical Reports Server (NTRS)

    Reinecker, Michele M.; Gelaro, R.; Pawson, S.; Reichle, R.; McCarty, W.

    2011-01-01

    Weather and climate analyses and predictions all rely on the global observing system. However, the observing system, whether atmosphere, ocean, or land surface, yields a diverse set of incomplete observations of the different components of Earth s environment. Data assimilation systems are essential to synthesize the wide diversity of in situ and remotely sensed observations into four-dimensional state estimates by combining the various observations with model-based estimates. Assimilation, or associated tools and products, are also useful in providing guidance for the evolution of the observing system of the future. This paper provides a brief overview of the global observing system and information gleaned through assimilation tools, and presents some evaluations of observing system gaps and issues.

  7. Application of Observed Precipitation in NCEP Global and Regional Data Assimilation Systems, Including Reanalysis and Land Data Assimilation

    NASA Astrophysics Data System (ADS)

    Mitchell, K. E.

    2006-12-01

    The Environmental Modeling Center (EMC) of the National Centers for Environmental Prediction (NCEP) applies several different analyses of observed precipitation in both the data assimilation and validation components of NCEP's global and regional numerical weather and climate prediction/analysis systems (including in NCEP global and regional reanalysis). This invited talk will survey these data assimilation and validation applications and methodologies, as well as the temporal frequency, spatial domains, spatial resolution, data sources, data density and data quality control in the precipitation analyses that are applied. Some of the precipitation analyses applied by EMC are produced by NCEP's Climate Prediction Center (CPC), while others are produced by the River Forecast Centers (RFCs) of the National Weather Service (NWS), or by automated algorithms of the NWS WSR-88D Radar Product Generator (RPG). Depending on the specific type of application in data assimilation or model forecast validation, the temporal resolution of the precipitation analyses may be hourly, daily, or pentad (5-day) and the domain may be global, continental U.S. (CONUS), or Mexico. The data sources for precipitation include ground-based gauge observations, radar-based estimates, and satellite-based estimates. The precipitation analyses over the CONUS are analyses of either hourly, daily or monthly totals of precipitation, and they are of two distinct types: gauge-only or primarily radar-estimated. The gauge-only CONUS analysis of daily precipitation utilizes an orographic-adjustment technique (based on the well-known PRISM precipitation climatology of Oregon State University) developed by the NWS Office of Hydrologic Development (OHD). The primary NCEP global precipitation analysis is the pentad CPC Merged Analysis of Precipitation (CMAP), which blends both gauge observations and satellite estimates. The presentation will include a brief comparison between the CMAP analysis and other global

  8. The Global Ocean Data Assimilation Experiment (GODAE)

    NASA Astrophysics Data System (ADS)

    Le Traon, P.; Smith, N.

    The Global Ocean Data Assimilation Experiment (GODAE) will conduct its main demonstration phase from 2003 to 2005. From 2003 to 2005, operational and research institutions from Australia, Japan, United States, United Kingdom, France and Norway will be performing global oceanic data assimilation and ocean forecast in order to provide regular and comprehensive descriptions of ocean fields such as temperature, salinity and currents at high temporal and spatial resolution. A central objective of GODAE is to provide an integrated description that combines remote sensing data, in-situ data and models through data assimilation. Climate and seasonal forecasting, navy applications, marine safety, fisheries, the offshore industry and management of shelf/coastal areas are among the expected beneficiaries of GODAE. The integrated description of the ocean that GODAE will provide will also be highly beneficial to the research community. An overview of GODAE will be given; we will detail the GODAE objectives and strategy and the way it is implemented as an international experiment. Results from first pre-operational or prototype systems will finally be shown.

  9. The Effects of Chlorophyll Assimilation on Carbon Fluxes in a Global Biogeochemical Model. [Technical Report Series on Global Modeling and Data Assimilation

    NASA Technical Reports Server (NTRS)

    Koster, Randal D. (Editor); Rousseaux, Cecile Severine; Gregg, Watson W.

    2014-01-01

    In this paper, we investigated whether the assimilation of remotely-sensed chlorophyll data can improve the estimates of air-sea carbon dioxide fluxes (FCO2). Using a global, established biogeochemical model (NASA Ocean Biogeochemical Model, NOBM) for the period 2003-2010, we found that the global FCO2 values produced in the free-run and after assimilation were within -0.6 mol C m(sup -2) y(sup -1) of the observations. The effect of satellite chlorophyll assimilation was assessed in 12 major oceanographic regions. The region with the highest bias was the North Atlantic. Here the model underestimated the fluxes by 1.4 mol C m(sup -2) y(sup -1) whereas all the other regions were within 1 mol C m(sup -2) y(sup -1) of the data. The FCO2 values were not strongly impacted by the assimilation, and the uncertainty in FCO2 was not decreased, despite the decrease in the uncertainty in chlorophyll concentration. Chlorophyll concentrations were within approximately 25% of the database in 7 out of the 12 regions, and the assimilation improved the chlorophyll concentration in the regions with the highest bias by 10-20%. These results suggest that the assimilation of chlorophyll data does not considerably improve FCO2 estimates and that other components of the carbon cycle play a role that could further improve our FCO2 estimates.

  10. Global isotope metabolomics reveals adaptive strategies for nitrogen assimilation

    DOE PAGES

    Kurczy, Michael E.; Forsberg, Erica M.; Thorgersen, Michael P.; ...

    2016-04-05

    Nitrogen cycling is a microbial metabolic process essential for global ecological/agricultural balance. To investigate the link between the well-established ammonium and the alternative nitrate assimilation metabolic pathways, global isotope metabolomics was employed to examine three nitrate reducing bacteria using 15NO 3 as a nitrogen source. In contrast to a control ( Pseudomonas stutzeri RCH2), the results show that two of the isolates from Oak Ridge, Tennessee ( Pseudomonas N2A2 and N2E2) utilize nitrate and ammonia for assimilation concurrently with differential labeling observed across multiple classes of metabolites including amino acids and nucleotides. The data reveal that the N2A2 and N2E2more » strains conserve nitrogen-containing metabolites, indicating that the nitrate assimilation pathway is a conservation mechanism for the assimilation of nitrogen. Co-utilization of nitrate and ammonia is likely an adaption to manage higher levels of nitrite since the denitrification pathways utilized by the N2A2 and N2E2 strains from the Oak Ridge site are predisposed to the accumulation of the toxic nitrite. In conclusion, the use of global isotope metabolomics allowed for this adaptive strategy to be investigated, which would otherwise not have been possible to decipher.« less

  11. Global isotope metabolomics reveals adaptive strategies for nitrogen assimilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurczy, Michael E.; Forsberg, Erica M.; Thorgersen, Michael P.

    Nitrogen cycling is a microbial metabolic process essential for global ecological/agricultural balance. To investigate the link between the well-established ammonium and the alternative nitrate assimilation metabolic pathways, global isotope metabolomics was employed to examine three nitrate reducing bacteria using 15NO 3 as a nitrogen source. In contrast to a control ( Pseudomonas stutzeri RCH2), the results show that two of the isolates from Oak Ridge, Tennessee ( Pseudomonas N2A2 and N2E2) utilize nitrate and ammonia for assimilation concurrently with differential labeling observed across multiple classes of metabolites including amino acids and nucleotides. The data reveal that the N2A2 and N2E2more » strains conserve nitrogen-containing metabolites, indicating that the nitrate assimilation pathway is a conservation mechanism for the assimilation of nitrogen. Co-utilization of nitrate and ammonia is likely an adaption to manage higher levels of nitrite since the denitrification pathways utilized by the N2A2 and N2E2 strains from the Oak Ridge site are predisposed to the accumulation of the toxic nitrite. In conclusion, the use of global isotope metabolomics allowed for this adaptive strategy to be investigated, which would otherwise not have been possible to decipher.« less

  12. A Global Data Assimilation System for Atmospheric Aerosol

    NASA Technical Reports Server (NTRS)

    daSilva, Arlindo

    1999-01-01

    We will give an overview of an aerosol data assimilation system which combines advances in remote sensing of atmospheric aerosols, aerosol modeling and data assimilation methodology to produce high spatial and temporal resolution 3D aerosol fields. Initially, the Goddard Aerosol Assimilation System (GAAS) will assimilate TOMS, AVHRR and AERONET observations; later we will include MODIS and MISR. This data assimilation capability will allows us to integrate complementing aerosol observations from these platforms, enabling the development of an assimilated aerosol climatology as well as a global aerosol forecasting system in support of field campaigns. Furthermore, this system provides an interactive retrieval framework for each aerosol observing satellites, in particular TOMS and AVHRR. The Goddard Aerosol Assimilation System (GAAS) takes advantage of recent advances in constituent data assimilation at DAO, including flow dependent parameterizations of error covariances and the proper consideration of model bias. For its prognostic transport model, GAAS will utilize the Goddard Ozone, Chemistry, Aerosol, Radiation and Transport (GOCART) model developed at NASA/GSFC Codes 916 and 910.3. GOCART includes the Lin-Rood flux-form, semi-Langrangian transport model with parameterized aerosol chemistry and physical processes for absorbing (dust and black carbon) and non-absorbing aerosols (sulfate and organic carbon). Observations and model fields are combined using a constituent version of DAO's Physical-space Statistical Analysis System (PSAS), including its adaptive quality control system. In this talk we describe the main components of this assimilation system and present preliminary results obtained by assimilating TOMS data.

  13. Prediction Activities at NASA's Global Modeling and Assimilation Office

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried

    2010-01-01

    The Global Modeling and Assimilation Office (GMAO) is a core NASA resource for the development and use of satellite observations through the integrating tools of models and assimilation systems. Global ocean, atmosphere and land surface models are developed as components of assimilation and forecast systems that are used for addressing the weather and climate research questions identified in NASA's science mission. In fact, the GMAO is actively engaged in addressing one of NASA's science mission s key questions concerning how well transient climate variations can be understood and predicted. At weather time scales the GMAO is developing ultra-high resolution global climate models capable of resolving high impact weather systems such as hurricanes. The ability to resolve the detailed characteristics of weather systems within a global framework greatly facilitates addressing fundamental questions concerning the link between weather and climate variability. At sub-seasonal time scales, the GMAO is engaged in research and development to improve the use of land information (especially soil moisture), and in the improved representation and initialization of various sub-seasonal atmospheric variability (such as the MJO) that evolves on time scales longer than weather and involves exchanges with both the land and ocean The GMAO has a long history of development for advancing the seasonal-to-interannual (S-I) prediction problem using an older version of the coupled atmosphere-ocean general circulation model (AOGCM). This includes the development of an Ensemble Kalman Filter (EnKF) to facilitate the multivariate assimilation of ocean surface altimetry, and an EnKF developed for the highly inhomogeneous nature of the errors in land surface models, as well as the multivariate assimilation needed to take advantage of surface soil moisture and snow observations. The importance of decadal variability, especially that associated with long-term droughts is well recognized by the

  14. Effects of data assimilation on the global aerosol key optical properties simulations

    NASA Astrophysics Data System (ADS)

    Yin, Xiaomei; Dai, Tie; Schutgens, Nick A. J.; Goto, Daisuke; Nakajima, Teruyuki; Shi, Guangyu

    2016-09-01

    We present the one month results of global aerosol optical properties for April 2006, using the Spectral Radiation Transport Model for Aerosol Species (SPRINTARS) coupled with the Non-hydrostatic ICosahedral Atmospheric Model (NICAM), by assimilating Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) with Local Ensemble Transform Kalman Filter (LETKF). The simulated AOD, Ångström Exponent (AE) and single scattering albedo (SSA) are validated by independent Aerosol Robotic Network (AERONET) observations over the global sites. The data assimilation has the strongest positive effect on the AOD simulation and slight positive influences on the AE and SSA simulations. For the time-averaged globally spatial distribution, the data assimilation increases the model skill score (S) of AOD, AE, and SSA from 0.55, 0.92, and 0.75 to 0.79, 0.94, and 0.80, respectively. Over the North Africa (NAF) and Middle East region where the aerosol composition is simple (mainly dust), the simulated AODs are best improved by the data assimilation, indicating the assimilation correctly modifies the wrong dust burdens caused by the uncertainties of the dust emission parameterization. Assimilation also improves the simulation of the temporal variations of the aerosol optical properties over the AERONET sites, with improved S at 60 (62%), 45 (55%) and 11 (50%) of 97, 82 and 22 sites for AOD, AE and SSA. By analyzing AOD and AE at five selected sites with best S improvement, this study further indicates that the assimilation can reproduce short duration events and ratios between fine and coarse aerosols more accurately.

  15. Assimilation of SeaWiFS Ocean Chlorophyll Data into a Three-Dimensional Global Ocean Model

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.

    2005-01-01

    Assimilation of satellite ocean color data is a relatively new phenomenon in ocean sciences. However, with routine observations from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), launched in late 1997, and now with new data from the Moderate Resolution Imaging Spectroradometer (MODIS) Aqua, there is increasing interest in ocean color data assimilation. Here SeaWiFS chlorophyll data were assimilated with an established thre-dimentional global ocean model. The assimilation improved estimates of hlorophyll and primary production relative to a free-run (no assimilation) model. This represents the first attempt at ocean color data assimilation using NASA satellites in a global model. The results suggest the potential of assimilation of satellite ocean chlorophyll data for improving models.

  16. Low Frequency Oscillations in Assimilated Global Datasets Using TRMM Rainfall Observations

    NASA Technical Reports Server (NTRS)

    Tao, Li; Yang, Song; Zhang, Zhan; Hou, Arthur; Olson, William S.

    2004-01-01

    Global datasets for the period May-August 1998 from the Goddard Earth Observing System (GEOS) data assimilation system (DAS) with/without assimilated Tropical Rainfall Measuring Mission (TRMM) precipitation are analyzed against European Center for Medium-Range Weather Forecast (ECMWF) output, NOAA observed outgoing longwave radiation (OLR) data, and TRMM measured rainfall. The purpose of this study is to investigate the representation of the Madden-Julian Oscillation (MJO) in GEOS assimilated global datasets, noting the impact of TRMM observed rainfall on the MJO in GEOS data assimilations. A space-time analysis of the OLR data indicates that the observed OLR exhibits a spectral maximum for eastward-propagating wavenumber 1-3 disturbances with periods of 20-60 days in the 0deg-30degN latitude band. The assimilated OLR has a similar feature but with a smaller magnitude. However, OLR spectra from assimilations including TRMM rainfall data show better agreement with observed OLR spectra than spectra from assimilations without TRMM rainfall. Similar results are found for wavenumber 4-6 disturbances. There is a spectral peak for eastward-propagating wavenumber 4-6 disturbances with periods of 20-40 days near the equator, while for westward-moving disturbances, a spectral peak is noted for periods of 30-50 days near 25degN. To isolate the MJO, a 30-50 day band filter is selected for this study. It was found that the eastward-propagating waves from the band-filtered observed OLR between 10degs- 10degN are located in the eastern hemisphere. Similar patterns are evident in surface rainfall and the 850 hPa wind field. Assimilation of TRMM-observed rainfall reveals more distinct MJO features in the analysis than without rainfall assimilation. Similar analyses are also conducted over the Indian summer monsoon and East Asia summer monsoon regions, where the MJO is strongly related to the summer monsoon active-break patterns.

  17. Does Ocean Color Data Assimilation Improve Estimates of Global Ocean Inorganic Carbon?

    NASA Technical Reports Server (NTRS)

    Gregg, Watson

    2012-01-01

    Ocean color data assimilation has been shown to dramatically improve chlorophyll abundances and distributions globally and regionally in the oceans. Chlorophyll is a proxy for phytoplankton biomass (which is explicitly defined in a model), and is related to the inorganic carbon cycle through the interactions of the organic carbon (particulate and dissolved) and through primary production where inorganic carbon is directly taken out of the system. Does ocean color data assimilation, whose effects on estimates of chlorophyll are demonstrable, trickle through the simulated ocean carbon system to produce improved estimates of inorganic carbon? Our emphasis here is dissolved inorganic carbon, pC02, and the air-sea flux. We use a sequential data assimilation method that assimilates chlorophyll directly and indirectly changes nutrient concentrations in a multi-variate approach. The results are decidedly mixed. Dissolved organic carbon estimates from the assimilation model are not meaningfully different from free-run, or unassimilated results, and comparisons with in situ data are similar. pC02 estimates are generally worse after data assimilation, with global estimates diverging 6.4% from in situ data, while free-run estimates are only 4.7% higher. Basin correlations are, however, slightly improved: r increase from 0.78 to 0.79, and slope closer to unity at 0.94 compared to 0.86. In contrast, air-sea flux of C02 is noticeably improved after data assimilation. Global differences decline from -0.635 mol/m2/y (stronger model sink from the atmosphere) to -0.202 mol/m2/y. Basin correlations are slightly improved from r=O.77 to r=0.78, with slope closer to unity (from 0.93 to 0.99). The Equatorial Atlantic appears as a slight sink in the free-run, but is correctly represented as a moderate source in the assimilation model. However, the assimilation model shows the Antarctic to be a source, rather than a modest sink and the North Indian basin is represented incorrectly as a sink

  18. Improving Assimilated Global Climate Data Using TRMM and SSM/I Rainfall and Moisture Data

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Zhang, Sara Q.; daSilva, Arlindo M.; Olson, William S.

    1999-01-01

    Current global analyses contain significant errors in primary hydrological fields such as precipitation, evaporation, and related cloud and moisture in the tropics. Work has been underway at NASA's Data Assimilation Office to explore the use of TRMM and SSM/I-derived rainfall and total precipitable water (TPW) data in global data assimilation to directly constrain these hydrological parameters. We found that assimilating these data types improves not only the precipitation and moisture estimates but also key climate parameters directly linked to convection such as the outgoing longwave radiation, clouds, and the large-scale circulation in the tropics. We will present results showing that assimilating TRMM and SSM/I 6-hour averaged rain rates and TPW estimates significantly reduces the state-dependent systematic errors in assimilated products. Specifically, rainfall assimilation improves cloud and latent heating distributions, which, in turn, improves the cloudy-sky radiation and the large-scale circulation, while TPW assimilation reduces moisture biases to improve radiation in clear-sky regions. Rainfall and TPW assimilation also improves tropical forecasts beyond 1 day.

  19. Global, real-time ionosphere specification for end-user communication and navigation products

    NASA Astrophysics Data System (ADS)

    Tobiska, W.; Carlson, H. C.; Schunk, R. W.; Thompson, D. C.; Sojka, J. J.; Scherliess, L.; Zhu, L.; Gardner, L. C.

    2010-12-01

    Space weather’s effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun’s photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The Utah State University (USU) Space Weather Center (SWC) is a developer and producer of commercial space weather applications. A key system-level component for providing timely information about the effects of space weather is the Global Assimilation of Ionospheric Measurements (GAIM) system. GAIM, operated by SWC, improves real-time communication and navigation systems by continuously ingesting up to 10,000 slant TEC measurements every 15-minutes from approximately 500 stations. Using a Kalman filter, the background output from the physics-based Ionosphere Forecast Model (IFM) is adjusted to more accurately represent the actual ionosphere. An improved ionosphere leads to more useful derivative products. For example, SWC runs operational code, using GAIM, to calculate and report the global radio high frequency (HF) signal strengths for 24 world cities. This product is updated every 15 minutes at http://spaceweather.usu.edu and used by amateur radio operators. SWC also developed and provides through Apple iTunes the widely used real-time space weather iPhone app called SpaceWx for public space weather education. SpaceWx displays the real-time solar, heliosphere, magnetosphere, thermosphere, and ionosphere drivers to changes in the total electron content, for example. This smart phone app is tip of the “iceberg” of automated systems that provide space weather data; it permits instant understanding of the environment surrounding Earth as it dynamically changes. SpaceWx depends upon a distributed network that connects satellite and ground-based data streams with algorithms to quickly process the measurements into geophysical data, incorporate those

  20. Sensitivity of IFM/GAIM-GM Model to High-cadence Kp and F10.7 Input

    DTIC Science & Technology

    2014-03-27

    2014 DISTRIBUTION STATEMENT A . APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED AFIT-ENP-14- M -17 SENSITIVITY OF IFM ...and is not subject to copyright protection in the United States. AFIT-ENP-14- M -17 SENSITIVITY OF IFM /GAIM-GM MODEL TO...observed data and ingests it into the IFM background ionosphere, which is highly dependent on Kp and F10.7. The Air Force Weather Agency typically uses a

  1. Scalar and Vector Spherical Harmonics for Assimilation of Global Datasets in the Ionosphere and Thermosphere

    NASA Astrophysics Data System (ADS)

    Miladinovich, D.; Datta-Barua, S.; Bust, G. S.; Ramirez, U.

    2017-12-01

    Understanding physical processes during storm time in the ionosphere-thermosphere (IT) system is limited, in part, due to the inability to obtain accurate estimates of IT states on a global scale. One reason for this inability is the sparsity of spatially distributed high quality data sets. Data assimilation is showing promise toward enabling global estimates by blending high quality observational data sets with established climate models. We are continuing development of an algorithm called Estimating Model Parameters for Ionospheric Reverse Engineering (EMPIRE) to enable assimilation of global datasets for storm time estimates of IT drivers. EMPIRE is a data assimilation algorithm that uses a Kalman filtering routine to ingest model and observational data. The EMPIRE algorithm is based on spherical harmonics which provide a spherically symmetric, smooth, continuous, and orthonormal set of basis functions suitable for a spherical domain such as Earth's IT region (200-600 km altitude). Once the basis function coefficients are determined, the newly fitted function represents the disagreement between observational measurements and models. We apply spherical harmonics to study the March 17, 2015 storm. Data sources include Fabry-Perot interferometer neutral wind measurements and global Ionospheric Data Assimilation 4 Dimensional (IDA4D) assimilated total electron content (TEC). Models include Weimer 2000 electric potential, International Geomagnetic Reference Field (IGRF) magnetic field, and Horizontal Wind Model 2014 (HWM14) neutral winds. We present the EMPIRE assimilation results of Earth's electric potential and thermospheric winds. We also compare EMPIRE storm time E cross B ion drift estimates to measured drifts produced from the Super Dual Auroral Radar Network (SuperDARN) and Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) measurement datasets. The analysis from these results will enable the generation of globally assimilated

  2. Improving Assimilated Global Data Sets using TMI Rainfall and Columnar Moisture Observations

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Zhang, Sara Q.; daSilva, Arlindo M.; Olson, William S.

    1999-01-01

    A global analysis that optimally combine observations from diverse sources with physical models of atmospheric and land processes can provide a comprehensive description of the climate systems. Currently, such data products contain significant errors in primary hydrological fields such as precipitation and evaporation, especially in the tropics. In this study, we show that assimilating precipitation and total precipitable water (TPW) retrievals derived from the TRMM Microwave Imager (TMI) improves not only the hydrological cycle but also key climate parameters such as clouds, radiation, and the large-scale circulation produced by the Goddard Earth Observing System (GEOS) data assimilation system (DAS). In particular, assimilating TMI rain improves clouds and radiation in areas of active convection, as well as the latent heating distribution and the large-scale motion field in the tropics, while assimilating TMI TPW heating distribution and the large-scale motion field in the tropics, while assimilating TMI TPW retrievals leads to reduced moisture biases and improved radiative fluxes in clear-sky regions. The improved analysis also improves short-range forecasts in the tropics. Ensemble forecasts initialized with the GEOS analysis incorporating TMI rain rates and TPW yield smaller biases in tropical precipitation forecasts beyond 1 day and better 500 hPa geopotential height forecasts up to 5 days. Results of this study demonstrate the potential of using high-quality space-borne rainfall and moisture observations to improve the quality of assimilated global data for climate analysis and weather forecasting applications

  3. Global assimilation of X Project Loon stratospheric balloon observations

    NASA Astrophysics Data System (ADS)

    Coy, L.; Schoeberl, M. R.; Pawson, S.; Candido, S.; Carver, R. W.

    2017-12-01

    Project Loon has an overall goal of providing worldwide internet coverage using a network of long-duration super-pressure balloons. Beginning in 2013, Loon has launched over 1600 balloons from multiple tropical and middle latitude locations. These GPS tracked balloon trajectories provide lower stratospheric wind information over the oceans and remote land areas where traditional radiosonde soundings are sparse, thus providing unique coverage of lower stratospheric winds. To fully investigate these Loon winds we: 1) compare the Loon winds to winds produced by a global data assimilation system (DAS: NASA GEOS) and 2) assimilate the Loon winds into the same comprehensive DAS. Results show that in middle latitudes the Loon winds and DAS winds agree well and assimilating the Loon winds have only a small impact on short-term forecasting of the Loon winds, however, in the tropics the loon winds and DAS winds often disagree substantially (8 m/s or more in magnitude) and in these cases assimilating the loon winds significantly improves the forecast of the loon winds. By highlighting cases where the Loon and DAS winds differ, these results can lead to improved understanding of stratospheric winds, especially in the tropics.

  4. Global Assimilation of X Project Loon Stratospheric Balloon Observations

    NASA Technical Reports Server (NTRS)

    Coy, Lawrence; Schoeberl, Mark R.; Pawson, Steven; Candido, Salvatore; Carver, Robert W.

    2017-01-01

    Project Loon has an overall goal of providing worldwide internet coverage using a network of long-duration super-pressure balloons. Beginning in 2013, Loon has launched over 1600 balloons from multiple tropical and middle latitude locations. These GPS tracked balloon trajectories provide lower stratospheric wind information over the oceans and remote land areas where traditional radiosonde soundings are sparse, thus providing unique coverage of lower stratospheric winds. To fully investigate these Loon winds we: 1) compare the Loon winds to winds produced by a global data assimilation system (DAS: NASA GEOS) and 2) assimilate the Loon winds into the same comprehensive DAS. Results show that in middle latitudes the Loon winds and DAS winds agree well and assimilating the Loon winds have only a small impact on short-term forecasting of the Loon winds, however, in the tropics the loon winds and DAS winds often disagree substantially (8 m/s or more in magnitude) and in these cases assimilating the loon winds significantly improves the forecast of the loon winds. By highlighting cases where the Loon and DAS winds differ, these results can lead to improved understanding of stratospheric winds, especially in the tropics.

  5. Longitudinal Variations of Low-Latitude Ionospheric Irregularities during the 2015 St. Patrick's Day Storm

    NASA Astrophysics Data System (ADS)

    Pi, X.; Vergados, P.

    2017-12-01

    GPS data from more than 2000 globally distributed ground-based stations are processed to generate Global Map of Ionospheric Irregularities and Scintillation (GMIIS) at 5-minite cadence for the 2015 St. Patrick's Day Storm. The time sequence of GMIIS provides global snapshots of evolving ionospheric irregularities that are helpful in investigations of small-scale ionospheric perturbations globally. Such data from selected stations at longitudes distributed around the globe are also analyzed to investigate longitudinal variations of low-latitude ionospheric irregularities (LLII) during the storm. Prior to the storm day, The GPS data show typical seasonal (March equinox) activities of LLII during evening hours in different longitude regions, i.e., active in American through Asian longitudes but relatively inactive in the Pacific sector. The data also reveal dramatic changes in LLII during the storm main phase (17 March 2015) and recovery phase (18-19 March 2015). While remaining inactive in the Pacific region, LLII have gone through complicated variations in the longitude regions of high scintillation season. The variations include active, weakened or suppressed, or post-midnight triggering during the storm main phase and recovery phase depending on specific longitude. To understand possible responsible causes of these variations in different longitudes, the Global Assimilative Ionospheric Model (GAIM) is used to reproduce ambient ionospheric state and its disturbances. For this storm study, GAIM assimilates GPS data from about 650 globally distributed stations and from spaceborne receivers onboard the COSMIC satellites. The global assimilative modeling enables us to investigate the changes of the equatorial ionospheric anomaly (EIA) and corresponding ionospheric dynamical processes in the concerned longitudes. This presentation will combine pictures of small- and large-scale ionospheric perturbations and attempt to obtain insight into mechanisms that drive LLII

  6. The OSSE Framework at the NASA Global Modeling and Assimilation Office (GMAO)

    NASA Astrophysics Data System (ADS)

    Moradi, I.; Prive, N.; McCarty, W.; Errico, R. M.; Gelaro, R.

    2017-12-01

    This abstract summarizes the OSSE framework developed at the Global Modeling and Assimilation Office at the National Aeronautics and Space Administration (NASA/GMAO). Some of the OSSE techniques developed at GMAO including simulation of realistic observations, e.g., adding errors to simulated observations, are now widely used by the community to evaluate the impact of new observations on the weather forecasts. This talk presents some of the recent progresses and challenges in simulating realistic observations, radiative transfer modeling support for the GMAO OSSE activities, assimilation of OSSE observations into data assimilation systems, and evaluating the impact of simulated observations on the forecast skills.

  7. The OSSE Framework at the NASA Global Modeling and Assimilation Office (GMAO)

    NASA Technical Reports Server (NTRS)

    Moradi, Isaac; Prive, Nikki; McCarty, Will; Errico, Ronald M.; Gelaro, Ron

    2017-01-01

    This abstract summarizes the OSSE framework developed at the Global Modeling and Assimilation Office at the National Aeronautics and Space Administration (NASA/GMAO). Some of the OSSE techniques developed at GMAO including simulation of realistic observations, e.g., adding errors to simulated observations, are now widely used by the community to evaluate the impact of new observations on the weather forecasts. This talk presents some of the recent progresses and challenges in simulating realistic observations, radiative transfer modeling support for the GMAO OSSE activities, assimilation of OSSE observations into data assimilation systems, and evaluating the impact of simulated observations on the forecast skills.

  8. Chemical OSSEs in Global Modeling and Assimilation Office (GMAO)

    NASA Technical Reports Server (NTRS)

    Pawson, Steven

    2008-01-01

    This presentation will summarize ongoing 'chemical observing system simulation experiment (OSSE)' work in the Global Modeling and Assimilation Office (GMAO). Weather OSSEs are being studied in detail, with a 'nature run' based on the European Centre for Medium-Range Weather Forecasts (ECMWF) model that can be sampled by a synthesized suite of satellites that reproduces present-day observations. Chemical OSSEs are based largely on the carbon-cycle project and aim to study (1) how well we can reproduce the observed carbon distribution with the Atmospheric Infrared Sounder (AIRS) and Orbiting Carbon Observatory (OCO) sensors and (2) with what accuracy can we deduce surface sources and sinks of carbon species in an assimilation system.

  9. Assimilation of global versus local data sets into a regional model of the Gulf Stream system. 1. Data effectiveness

    NASA Astrophysics Data System (ADS)

    Malanotte-Rizzoli, Paola; Young, Roberta E.

    1995-12-01

    The primary objective of this paper is to assess the relative effectiveness of data sets with different space coverage and time resolution when they are assimilated into an ocean circulation model. We focus on obtaining realistic numerical simulations of the Gulf Stream system typically of the order of 3-month duration by constructing a "synthetic" ocean simultaneously consistent with the model dynamics and the observations. The model used is the Semispectral Primitive Equation Model. The data sets are the "global" Optimal Thermal Interpolation Scheme (OTIS) 3 of the Fleet Numerical Oceanography Center providing temperature and salinity fields with global coverage and with bi-weekly frequency, and the localized measurements, mostly of current velocities, from the central and eastern array moorings of the Synoptic Ocean Prediction (SYNOP) program, with daily frequency but with a very small spatial coverage. We use a suboptimal assimilation technique ("nudging"). Even though this technique has already been used in idealized data assimilation studies, to our knowledge this is the first study in which the effectiveness of nudging is tested by assimilating real observations of the interior temperature and salinity fields. This is also the first work in which a systematic assimilation is carried out of the localized, high-quality SYNOP data sets in numerical experiments longer than 1-2 weeks, that is, not aimed to forecasting. We assimilate (1) the global OTIS 3 alone, (2) the local SYNOP observations alone, and (3) both OTIS 3 and SYNOP observations. We assess the success of the assimilations with quantitative measures of performance, both on the global and local scale. The results can be summarized as follows. The intermittent assimilation of the global OTIS 3 is necessary to keep the model "on track" over 3-month simulations on the global scale. As OTIS 3 is assimilated at every model grid point, a "gentle" weight must be prescribed to it so as not to overconstrain

  10. Global 3-D ionospheric electron density reanalysis based on multisource data assimilation

    NASA Astrophysics Data System (ADS)

    Yue, Xinan; Schreiner, William S.; Kuo, Ying-Hwa; Hunt, Douglas C.; Wang, Wenbin; Solomon, Stanley C.; Burns, Alan G.; Bilitza, Dieter; Liu, Jann-Yenq; Wan, Weixing; Wickert, Jens

    2012-09-01

    We report preliminary results of a global 3-D ionospheric electron density reanalysis demonstration study during 2002-2011 based on multisource data assimilation. The monthly global ionospheric electron density reanalysis has been done by assimilating the quiet days ionospheric data into a data assimilation model constructed using the International Reference Ionosphere (IRI) 2007 model and a Kalman filter technique. These data include global navigation satellite system (GNSS) observations of ionospheric total electron content (TEC) from ground-based stations, ionospheric radio occultations by CHAMP, GRACE, COSMIC, SAC-C, Metop-A, and the TerraSAR-X satellites, and Jason-1 and 2 altimeter TEC measurements. The output of the reanalysis are 3-D gridded ionospheric electron densities with temporal and spatial resolutions of 1 h in universal time, 5° in latitude, 10° in longitude, and ˜30 km in altitude. The climatological features of the reanalysis results, such as solar activity dependence, seasonal variations, and the global morphology of the ionosphere, agree well with those in the empirical models and observations. The global electron content derived from the international GNSS service global ionospheric maps, the observed electron density profiles from the Poker Flat Incoherent Scatter Radar during 2007-2010, and foF2 observed by the global ionosonde network during 2002-2011 are used to validate the reanalysis method. All comparisons show that the reanalysis have smaller deviations and biases than the IRI-2007 predictions. Especially after April 2006 when the six COSMIC satellites were launched, the reanalysis shows significant improvement over the IRI predictions. The obvious overestimation of the low-latitude ionospheric F region densities by the IRI model during the 23/24 solar minimum is corrected well by the reanalysis. The potential application and improvements of the reanalysis are also discussed.

  11. Sulfate and Pb-210 Simulated in a Global Model Using Assimilated Meteorological Fields

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Rood, Richard; Lin, S.-J.; Jacob, Daniel; Muller, Jean-Francois

    1999-01-01

    This report presents the results of distributions of tropospheric sulfate, Pb-210 and their precursors from a global 3-D model. This model is driven by assimilated meteorological fields generated by the Goddard Data Assimilation Office. Model results are compared with observations from surface sites and from multiplatform field campaigns of Pacific Exploratory Missions (PEM) and Advanced Composition Explorer (ACE). The model generally captures the seasonal variation of sulfate at the surface sites, and reproduces well the short-term in-situ observations. We will discuss the roles of various processes contributing to the sulfate levels in the troposphere, and the roles of sulfate aerosol in regional and global radiative forcing.

  12. Empirical approach for estimating the ExB velocity from VTEC map

    NASA Astrophysics Data System (ADS)

    Ao, Xi

    For the development of wireless communication, the Earth's ionosphere is very critical. A Matlab program is designed to improve the techniques for monitoring and forecasting the conditions of the Earth's ionosphere. The work in this thesis aims to modeling of the dependency between the equatorial anomaly gap (EAP) in the Earth's ionosphere and the crucial driver, ExB velocity, of the Earth's ionosphere. In this thesis, we review the mathematics of the model in the eleventh generation of the International Geomagnetic Reference Field (IGRF) and an enhancement version of Global Assimilative Ionospheric Model (GAIM), GAIM++ Model. We then use the IGRF Model and a Vertical Total Electron Content (VTEC) map from GAIM++ Model to determine the EAP in the Earth's ionosphere. Then, by changing the main parameters, the 10.7cm solar radio flux (F10.7) and the planetary geomagnetic activity index (AP), we compare the different value of the EAP in the Earth's ionosphere and the ExB velocity of the Earth's ionosphere. At last, we demonstrate that the program can be effective in determining the dependency between the EAP in the Earth's ionosphere and the ExB velocity of the Earth's ionosphere.

  13. Method and Early Results of Applying the Global Land Data Assimilation System (GLDAS) in the Third Global Reanalysis of NCEP

    NASA Astrophysics Data System (ADS)

    Meng, J.; Mitchell, K.; Wei, H.; Yang, R.; Kumar, S.; Geiger, J.; Xie, P.

    2008-05-01

    Over the past several years, the Environmental Modeling Center (EMC) of the National Centers for Environmental Prediction (NCEP) of the U.S. National Weather Service has developed a Global Land Data Assimilation System (GLDAS). For its computational infrastructure, the GLDAS applies the NASA Land Information System (LIS), developed by the Hydrological Science Branch of NASA Goddard Space Flight Center. The land model utilized in the NCEP GLDAS is the NCEP Noah Land Surface Model (Noah LSM). This presentation will 1) describe how the GLDAS component has been included in the development of NCEP's third global reanalysis (with special attention to the input sources of global precipitation), and 2) will present results from the GLDAS component of pilot tests of the new NCEP global reanalysis. Unlike NCEP's past two global reanalysis projects, this new NCEP global reanalysis includes both a global land data assimilation system (GLDAS) and a global ocean data assimilation system (GODAS). The new global reanalysis will span 30-years (1979-2008) and will include a companion realtime operational component. The atmospheric, ocean, and land states of this global reanalysis will provide the initial conditions for NCEP's 3rd- generation global coupled Climate Forecast System (CFS). NCEP is now preparing to launch a 28-year seasonal reforecast project with its new CFS, to provide the reforecast foundation for operational NCEP seasonal climate forecasts using the new CFS. Together, the new global reanalysis and companion CFS reforecasts constitute what NCEP calls the Climate Forecast System Reanalysis and Reforecast (CFSRR) project. Compared to the previous two generations of NCEP global reanalysis, the hallmark of the GLDAS component of CFSRR is GLDAS use of global analyses of observed precipitation to drive the land surface component of the reanalysis (rather than the typical reanalysis approach of using precipitation from the assimilating background atmospheric model

  14. The New Era in Operational Forecasting

    NASA Astrophysics Data System (ADS)

    Tobiska, W.; Schunk, R. W.; Sojka, J. J.; Carlson, H. C.; Gardner, L. C.; Scherliess, L.; Zhu, L.; Eccles, J. V.; Rice, D. D.; Bouwer, D.; Bailey, J. J.; Knipp, D. J.; Blake, J. B.; Rex, J.; Fuschino, R.; Mertens, C. J.; Gersey, B.; Wilkins, R.; Atwell, W.

    2012-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere, thermosphere, and even troposphere are key regions that are affected. The Utah State University (USU) Space Weather Center (SWC) and Space Environment Technologies (SET) are developing and producing commercial space weather applications. Key systems for providing timely information about the effects of space weather are SWC's Global Assimilation of Ionospheric Measurements (GAIM) system, SET's Magnetosphere Alert and Prediction System (MAPS), and SET's Automated Radiation Measurements for Aviation Safety (ARMAS) system. GAIM, operated by SWC, improves real-time communication and navigation systems by continuously ingesting up to 10,000 slant TEC measurements every 15-minutes from approximately 500 stations. Ionosonde data from several dozen global stations is ingested every 15 minutes to improve the vertical profiles within GAIM. These operational runs enable the reporting of global radio high frequency (HF) signal strengths and near vertical incidence skywave (NVIS) maps used by amateur radio operators and emergency responders via the http://q-upnow.com website. MAPS provides a forecast Dst index out to 6 days through the data-driven Anemomilos algorithm. Anemomilos uses observational proxies for the magnitude, location, and velocity of solar ejecta events. This forecast index is used by satellite operations to characterize upcoming geomagnetic storms, for example. ARMAS is demonstrating a prototype flight of microdosimeters on aircraft to capture the "weather" of the radiation environment for air-crew and passenger safety. It assimilates real-time radiation dose and dose rate data into the global NAIRAS radiation system to correct the global climatology for more accurate radiation fields along flight tracks. This team

  15. Assimilation of TOPEX/Poseidon altimeter data into a global ocean circulation model: How good are the results?

    NASA Astrophysics Data System (ADS)

    Fukumori, Ichiro; Raghunath, Ramanujam; Fu, Lee-Lueng; Chao, Yi

    1999-11-01

    The feasibility of assimilating satellite altimetry data into a global ocean general circulation model is studied. Three years of TOPEX/Poseidon data are analyzed using a global, three-dimensional, nonlinear primitive equation model. The assimilation's success is examined by analyzing its consistency and reliability measured by formal error estimates with respect to independent measurements. Improvements in model solution are demonstrated, in particular, properties not directly measured. Comparisons are performed with sea level measured by tide gauges, subsurface temperatures and currents from moorings, and bottom pressure measurements. Model representation errors dictate what can and cannot be resolved by assimilation, and its identification is emphasized.

  16. A 15-year global biogeochemical reanalysis with ocean colour data assimilation

    NASA Astrophysics Data System (ADS)

    Ford, David; Barciela, Rosa

    2013-04-01

    A continuous global time-series of remotely sensed ocean colour observations is available from 1997 to the present day. However coverage is incomplete, and limited to the sea surface. Models are therefore required to provide full spatial coverage, and to investigate the relationships between physical and biological variables and the carbon cycle. Data assimilation can then be used to constrain models to fit the observations, thereby combining the advantages of both sources of information. As part of the European Space Agency's Climate Change Initiative (ESA-CCI), we assimilate chlorophyll concentration derived from ocean colour observations into a coupled physical-biogeochemical model. The data assimilation scheme (Hemmings et al., 2008, J. Mar. Res.; Ford et al., 2012, Ocean Sci.) uses the information from the observations to update all biological and carbon cycle state variables within the model. Global daily reanalyses have been produced, with and without assimilation of merged ocean colour data provided by GlobColour, for the period September 1997 to August 2012. The assimilation has been shown to significantly improve the model's representation of chlorophyll concentration, at the surface and at depth. Furthermore, there is evidence of improvement to the representation of pCO2, nutrients and zooplankton concentration compared to in situ observations. We use the results to quantify recent seasonal and inter-annual variability in variables including chlorophyll concentration, air-sea CO2 flux and alkalinity. In particular, we explore the impact of physical drivers such as the El Niño Southern Oscillation (ENSO) on the model's representation of chlorophyll and the carbon cycle, and the pros and cons of the model reanalyses compared to observation-based climatologies. Furthermore, we perform a comparison between the GlobColour product and an initial version of a new merged product being developed as part of the ESA-CCI. Equivalent year-long hindcasts are

  17. Comparison of global sst analyses for atmospheric data assimilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phoebus, P.A.; Cummings, J.A.

    1995-03-17

    Traditionally, atmospheric models were executed using a climatological estimate of the sea surface temperature (SST) to define the marine boundary layer. More recently, particularly since the deployment of remote sensing instruments and the advent of multichannel SST observations atmospheric models have been improved by using more timely estimates of the actual state of the ocean. Typically, some type of objective analysis is performed using the data from satellites along with ship, buoy, and bathythermograph observations, and perhaps even climatology, to produce a weekly or daily analysis of global SST. Some of the earlier efforts to produce real-time global temperature analysesmore » have been described by Clancy and Pollak (1983) and Reynolds (1988). However, just as new techniques have been developed for atmospheric data assimilation, improvements have been made to ocean data assimilation systems as well. In 1988, the U.S. Navy`s Fleet Numerical Meteorology and Oceanography Center (FNMOC) implemented a global three-dimensional ocean temperature analysis that was based on the optimum interpolation methodology (Clancy et al., 1990). This system, the Optimum Thermal Interpolation System (OTIS 1.0), was initially distributed on a 2.50 resolution grid, and was later modified to generate fields on a 1.250 grid (OTIS 1.1; Clancy et al., 1992). Other optimum interpolation-based analyses (OTIS 3.0) were developed by FNMOC to perform high-resolution three-dimensional ocean thermal analyses in areas with strong frontal gradients and clearly defined water mass characteristics.« less

  18. Technical report series on global modeling and data assimilation. Volume 6: A multiyear assimilation with the GEOS-1 system: Overview and results

    NASA Technical Reports Server (NTRS)

    Suarez, Max J. (Editor); Schubert, Siegfried; Rood, Richard; Park, Chung-Kyu; Wu, Chung-Yu; Kondratyeva, Yelena; Molod, Andrea; Takacs, Lawrence; Seablom, Michael; Higgins, Wayne

    1995-01-01

    The Data Assimilation Office (DAO) at Goddard Space Flight Center has produced a multiyear global assimilated data set with version 1 of the Goddard Earth Observing System Data Assimilation System (GEOS-1 DAS). One of the main goals of this project, in addition to benchmarking the GEOS-1 system, was to produce a research quality data set suitable for the study of short-term climate variability. The output, which is global and gridded, includes all prognostic fields and a large number of diagnostic quantities such as precipitation, latent heating, and surface fluxes. Output is provided four times daily with selected quantities available eight times per day. Information about the observations input to the GEOS-1 DAS is provided in terms of maps of spatial coverage, bar graphs of data counts, and tables of all time periods with significant data gaps. The purpose of this document is to serve as a users' guide to NASA's first multiyear assimilated data set and to provide an early look at the quality of the output. Documentation is provided on all the data archives, including sample read programs and methods of data access. Extensive comparisons are made with the corresponding operational European Center for Medium-Range Weather Forecasts analyses, as well as various in situ and satellite observations. This document is also intended to alert users of the data about potential limitations of assimilated data, in general, and the GEOS-1 data, in particular. Results are presented for the period March 1985-February 1990.

  19. Decadal Prediction Efforts in GMAO (Global Modeling and Assimilation Office)

    NASA Technical Reports Server (NTRS)

    Rienecker, Michele M.; Suarez, Max; Schubert, Siegfried

    2010-01-01

    The Global Modeling and Assimilation Office (GMAO) plans to use our GEOS-5 atmosphere-ocean general circulation model (AOGCM) to explore issues associated with predictability on decadal time scales and to contribute to the decadal prediction project that is part ofCMIP5. The GEOS-5 AOGCM is comprised of the GEOS-5 AGCM with the Catchment Land Surface Model, coupled to GFDL's MOM, version 4. We have assimilation systems for both the atmosphere and ocean. For our climate prediction efforts, the atmosphere will be initialized from the GEOS-5 Modem Era Retrospective-analysis for Research and Applications (MERRA), available from 1979 to present at 112 resolution, and from 1948 to present at 2 resolution. The ocean assimilation is conducted within the coupled model framework, using the MERRA as a constraint for both the atmosphere and the ocean. The decadal prediction experiments will be conducted with a 1 atmosphere and a 112 ocean. Some initial results will be presented, focusing on initialization aspects of the GEOS-5 system.

  20. Global Soil Moisture Estimation through a Coupled CLM4-RTM-DART Land Data Assimilation System

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Yang, Z. L.; Hoar, T. J.

    2016-12-01

    Very few frameworks exist that estimate global-scale soil moisture through microwave land data assimilation (DA). Toward this goal, we have developed such a framework by linking the Community Land Model version 4 (CLM4) and a microwave radiative transfer model (RTM) with the Data Assimilation Research Testbed (DART). The deterministic Ensemble Adjustment Kalman Filter (EAKF) within the DART is utilized to estimate global multi-layer soil moisture by assimilating brightness temperature observations from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E). A 40-member of Community Atmosphere Model version 4 (CAM4) reanalysis is adopted to drive CLM4 simulations. Spatial-specific time-invariant microwave parameters are pre-calibrated to minimize uncertainties in RTM. Besides, various methods are designed in consideration of computational efficiency. A series of experiments are conducted to quantify the DA sensitivity to microwave parameters, choice of assimilated observations, and different CLM4 updating schemes. Evaluation results indicate that the newly established CLM4-RTM-DART framework improves the open-loop CLM4 simulated soil moisture. Pre-calibrated microwave parameters, rather than their default values, can ensure a more robust global-scale performance. In addition, updating near-surface soil moisture is capable of improving soil moisture in deeper layers, while simultaneously updating multi-layer soil moisture fails to obtain intended improvements. We will show in this presentation the architecture of the CLM4-RTM-DART system and the evaluations on AMSR-E DA. Preliminary results on multi-sensor DA that integrates various satellite observations including GRACE, MODIS, and AMSR-E will also be presented. ReferenceZhao, L., Z.-L. Yang, and T. J. Hoar, 2016. Global Soil Moisture Estimation by Assimilating AMSR-E Brightness Temperatures in a Coupled CLM4-RTM-DART System. Journal of Hydrometeorology, DOI: 10.1175/JHM-D-15-0218.1.

  1. Obtaining Global Picture From Single Point Observations by Combining Data Assimilation and Machine Learning Tools

    NASA Astrophysics Data System (ADS)

    Shprits, Y.; Zhelavskaya, I. S.; Kellerman, A. C.; Spasojevic, M.; Kondrashov, D. A.; Ghil, M.; Aseev, N.; Castillo Tibocha, A. M.; Cervantes Villa, J. S.; Kletzing, C.; Kurth, W. S.

    2017-12-01

    Increasing volume of satellite measurements requires deployment of new tools that can utilize such vast amount of data. Satellite measurements are usually limited to a single location in space, which complicates the data analysis geared towards reproducing the global state of the space environment. In this study we show how measurements can be combined by means of data assimilation and how machine learning can help analyze large amounts of data and can help develop global models that are trained on single point measurement. Data Assimilation: Manual analysis of the satellite measurements is a challenging task, while automated analysis is complicated by the fact that measurements are given at various locations in space, have different instrumental errors, and often vary by orders of magnitude. We show results of the long term reanalysis of radiation belt measurements along with fully operational real-time predictions using data assimilative VERB code. Machine Learning: We present application of the machine learning tools for the analysis of NASA Van Allen Probes upper-hybrid frequency measurements. Using the obtained data set we train a new global predictive neural network. The results for the Van Allen Probes based neural network are compared with historical IMAGE satellite observations. We also show examples of predictions of geomagnetic indices using neural networks. Combination of machine learning and data assimilation: We discuss how data assimilation tools and machine learning tools can be combine so that physics-based insight into the dynamics of the particular system can be combined with empirical knowledge of it's non-linear behavior.

  2. Synthesis and Assimilation Systems - Essential Adjuncts to the Global Ocean Observing System

    NASA Technical Reports Server (NTRS)

    Rienecker, Michele M.; Balmaseda, Magdalena; Awaji, Toshiyuki; Barnier, Bernard; Behringer, David; Bell, Mike; Bourassa, Mark; Brasseur, Pierre; Breivik, Lars-Anders; Carton, James; hide

    2009-01-01

    Ocean assimilation systems synthesize diverse in situ and satellite data streams into four-dimensional state estimates by combining the various observations with the model. Assimilation is particularly important for the ocean where subsurface observations, even today, are sparse and intermittent compared with the scales needed to represent ocean variability and where satellites only sense the surface. Developments in assimilation and in the observing system have advanced our understanding and prediction of ocean variations at mesoscale and climate scales. Use of these systems for assessing the observing system helps identify the strengths of each observation type. Results indicate that the ocean remains under-sampled and that further improvements in the observing system are needed. Prospects for future advances lie in improved models and better estimates of error statistics for both models and observations. Future developments will be increasingly towards consistent analyses across components of the Earth system. However, even today ocean synthesis and assimilation systems are providing products that are useful for many applications and should be considered an integral part of the global ocean observing and information system.

  3. Assessment of Global Forecast Ocean Assimilation Model (FOAM) using new satellite SST data

    NASA Astrophysics Data System (ADS)

    Ascione Kenov, Isabella; Sykes, Peter; Fiedler, Emma; McConnell, Niall; Ryan, Andrew; Maksymczuk, Jan

    2016-04-01

    There is an increased demand for accurate ocean weather information for applications in the field of marine safety and navigation, water quality, offshore commercial operations, monitoring of oil spills and pollutants, among others. The Met Office, UK, provides ocean forecasts to customers from governmental, commercial and ecological sectors using the Global Forecast Ocean Assimilation Model (FOAM), an operational modelling system which covers the global ocean and runs daily, using the NEMO (Nucleus for European Modelling of the Ocean) ocean model with horizontal resolution of 1/4° and 75 vertical levels. The system assimilates salinity and temperature profiles, sea surface temperature (SST), sea surface height (SSH), and sea ice concentration observations on a daily basis. In this study, the FOAM system is updated to assimilate Advanced Microwave Scanning Radiometer 2 (AMSR2) and the Spinning Enhanced Visible and Infrared Imager (SEVIRI) SST data. Model results from one month trials are assessed against observations using verification tools which provide a quantitative description of model performance and error, based on statistical metrics, including mean error, root mean square error (RMSE), correlation coefficient, and Taylor diagrams. A series of hindcast experiments is used to run the FOAM system with AMSR2 and SEVIRI SST data, using a control run for comparison. Results show that all trials perform well on the global ocean and that largest SST mean errors were found in the Southern hemisphere. The geographic distribution of the model error for SST and temperature profiles are discussed using statistical metrics evaluated over sub-regions of the global ocean.

  4. Comparison of Two Global Ocean Reanalyses, NRL Global Ocean Forecast System (GOFS) and U. Maryland Simple Ocean Data Assimilation (SODA)

    NASA Astrophysics Data System (ADS)

    Richman, J. G.; Shriver, J. F.; Metzger, E. J.; Hogan, P. J.; Smedstad, O. M.

    2017-12-01

    The Oceanography Division of the Naval Research Laboratory recently completed a 23-year (1993-2015) coupled ocean-sea ice reanalysis forced by NCEP CFS reanalysis fluxes. The reanalysis uses the Global Ocean Forecast System (GOFS) framework of the HYbrid Coordinate Ocean Model (HYCOM) and the Los Alamos Community Ice CodE (CICE) and the Navy Coupled Ocean Data Assimilation 3D Var system (NCODA). The ocean model has 41 layers and an equatorial resolution of 0.08° (8.8 km) on a tri-polar grid with the sea ice model on the same grid that reduces to 3.5 km at the North Pole. Sea surface temperature (SST), sea surface height (SSH) and temperature-salinity profile data are assimilated into the ocean every day. The SSH anomalies are converted into synthetic profiles of temperature and salinity prior to assimilation. Incremental analysis updating of geostrophically balanced increments is performed over a 6-hour insertion window. Sea ice concentration is assimilated into the sea ice model every day. Following the lead of the Ocean Reanalysis Intercomparison Project (ORA-IP), the monthly mean upper ocean heat and salt content from the surface to 300 m, 700m and 1500 m, the mixed layer depth, the depth of the 20°C isotherm, the steric sea surface height and the Atlantic Meridional Overturning Circulation for the GOFS reanalysis and the Simple Ocean Data Assimilation (SODA 3.3.1) eddy-permitting reanalysis have been compared on a global uniform 0.5° grid. The differences between the two ocean reanalyses in heat and salt content increase with increasing integration depth. Globally, GOFS trends to be colder than SODA at all depth. Warming trends are observed at all depths over the 23 year period. The correlation of the upper ocean heat content is significant above 700 m. Prior to 2004, differences in the data assimilated lead to larger biases. The GOFS reanalysis assimilates SSH as profile data, while SODA doesn't. Large differences are found in the Western Boundary Currents

  5. Performance and Evaluation of the Global Modeling and Assimilation Office Observing System Simulation Experiment

    NASA Technical Reports Server (NTRS)

    Prive, Nikki; Errico, R. M.; Carvalho, D.

    2018-01-01

    The National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASA/GMAO) has spent more than a decade developing and implementing a global Observing System Simulation Experiment framework for use in evaluting both new observation types as well as the behavior of data assimilation systems. The NASA/GMAO OSSE has constantly evolved to relect changes in the Gridpoint Statistical Interpolation data assimiation system, the Global Earth Observing System model, version 5 (GEOS-5), and the real world observational network. Software and observational datasets for the GMAO OSSE are publicly available, along with a technical report. Substantial modifications have recently been made to the NASA/GMAO OSSE framework, including the character of synthetic observation errors, new instrument types, and more sophisticated atmospheric wind vectors. These improvements will be described, along with the overall performance of the current OSSE. Lessons learned from investigations into correlated errors and model error will be discussed.

  6. Simultaneous shape repulsion and global assimilation in the perception of aspect ratio

    PubMed Central

    Sweeny, Timothy D.; Grabowecky, Marcia; Suzuki, Satoru

    2012-01-01

    Although local interactions involving orientation and spatial frequency are well understood, less is known about spatial interactions involving higher level pattern features. We examined interactive coding of aspect ratio, a prevalent two-dimensional feature. We measured perception of two simultaneously flashed ellipses by randomly post-cueing one of them and having observers indicate its aspect ratio. Aspect ratios interacted in two ways. One manifested as an aspect-ratio-repulsion effect. For example, when a slightly tall ellipse and a taller ellipse were simultaneously flashed, the less tall ellipse appeared flatter and the taller ellipse appeared even taller. This repulsive interaction was long range, occurring even when the ellipses were presented in different visual hemifields. The other interaction manifested as a global assimilation effect. An ellipse appeared taller when it was a part of a global vertical organization than when it was a part of a global horizontal organization. The repulsion and assimilation effects temporally dissociated as the former slightly strengthened, and the latter disappeared when the ellipse-to-mask stimulus onset asynchrony was increased from 40 to 140 ms. These results are consistent with the idea that shape perception emerges from rapid lateral and hierarchical neural interactions. PMID:21248223

  7. Ocean Data Assimilation Systems for GODAE

    DTIC Science & Technology

    2009-09-01

    we describe some of the ocean data assimilation systems that have been developed within the Global Ocean Data Assimilation Experiment (GODAE...assimilation systems in the post-GODAF. time period beyond 2008. 15. SUBJECT TERMS Global Ocean Data Assimilation Experiment, ARGO, subsurface...E. R. Franchi , 7000 Public Affairs (Unclassified/ Unlimited Only), Code 703o 4 yj ?>-* i o’ 1. Release of this paper is approved. 2. To the

  8. Ionosphere-related products for communication and navigation

    NASA Astrophysics Data System (ADS)

    Tobiska, W.; Schunk, R. W.; Sojka, J. J.; Carlson, H. C.; Gardner, L. C.; Scherliess, L.; Zhu, L.

    2011-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The Utah State University (USU) Space Weather Center (SWC) is developing and producing commercial space weather applications. A key system-level component for providing timely information about the effects of space weather is the Global Assimilation of Ionospheric Measurements (GAIM) system. GAIM, operated by SWC, improves real-time communication and navigation systems by continuously ingesting up to 10,000 slant TEC measurements every 15-minutes from approximately 500 stations. Ionosonde data from several dozen global stations is ingested every 15 minutes to improve the vertical profiles within GAIM. The global, CONUS, Europe, Asia, South America, and other regional sectors are run with a 15-minute cadence. These operational runs enable SWC to calculate and report the global radio high frequency (HF) signal strengths and near vertical incidence skywave (NVIS) maps used by amateur radio operators and emergency responders, especially during the Japan Great Earthquake and tsunami recovery period. SWC has established its first fully commercial enterprise called Q-up as a result of this activity. GPS uncertainty maps are produced by SWC to improve single-frequency GPS applications. SWC also provides the space weather smartphone app called SpaceWx for iPhone, iPad, iPod, and Android for professional users and public space weather education. SpaceWx displays the real-time solar, heliosphere, magnetosphere, thermosphere, and ionosphere drivers to changes in the total electron content, for example, as well as global NVIS maps. We describe upcoming improvements for moving space weather information through automated systems into final derivative products.

  9. Global Real-Time Nowcasting of Ionosphere with Giro-Driven Assimilative IRI

    NASA Astrophysics Data System (ADS)

    Galkin, I. A.; Reinisch, B. W.; Huang, X. A.; Vesnin, A.; Bilitza, D.; Song, P.

    2014-12-01

    Real-time prediction of the ionosphere beyond its quiet-time median behavior has proved to be a great challenge: low-latency sensor data streams are scarce, and early comparisons conducted within the CEDAR ETI Assessment framework showed that, on average, the assimilative physics-based models perform on par with the long-term empirical predictions. This rather surprising result led to the formation of the Real-Time Task Force of the International Reference Ionosphere (IRI) science team in 2011, with a simple objective to develop a method for correcting the IRI long-term climatology definitions on the fly, i.e., in near real-time, using suitable observations. Three years later, a pilot version of the IRI-based Real-Time Assimilative Model "IRTAM" started its continuous operations at the Global Ionosphere Radio Observatory (GIRO) Data Center, using online feeds from the ionosondes contributing data to GIRO. The IRTAM version 0.1B builds and publishes every 15-minutes an updated "global weather" map of the peak density and height in the ionosphere, as well as a map of deviations from the classic IRI climate. Incidentally, the IRTAM verification and validation efforts shed light on the forecasting capabilities of the assimilative IRI extension, even though it has not yet involved external activity indicators. At the core of the assimilative computations, a Non-linear Error Compensation Technique for Associative Restoration (NECTAR) seeks agreement between IRI prediction and the 24-hour history of latest observations at GIRO sensor sites to produce the one map frame. The NECTAR first evaluates the diurnal harmonics of the observed deviations from the IRI climatology at each GIRO site to then independently compute the spatial maps for each diurnal harmonic. Thus obtained "corrective" coefficients of the spatial-diurnal expansion are added to the original IRI set of coefficients to obtain the IRTAM specification. We are intrigued by the IRTAM capability to glean

  10. Technical Report Series on Global Modeling and Data Assimilation, Volume 43. MERRA-2; Initial Evaluation of the Climate

    NASA Technical Reports Server (NTRS)

    Koster, Randal D. (Editor); Bosilovich, Michael G.; Akella, Santha; Lawrence, Coy; Cullather, Richard; Draper, Clara; Gelaro, Ronald; Kovach, Robin; Liu, Qing; Molod, Andrea; hide

    2015-01-01

    The years since the introduction of MERRA have seen numerous advances in the GEOS-5 Data Assimilation System as well as a substantial decrease in the number of observations that can be assimilated into the MERRA system. To allow continued data processing into the future, and to take advantage of several important innovations that could improve system performance, a decision was made to produce MERRA-2, an updated retrospective analysis of the full modern satellite era. One of the many advances in MERRA-2 is a constraint on the global dry mass balance; this allows the global changes in water by the analysis increment to be near zero, thereby minimizing abrupt global interannual variations due to changes in the observing system. In addition, MERRA-2 includes the assimilation of interactive aerosols into the system, a feature of the Earth system absent from previous reanalyses. Also, in an effort to improve land surface hydrology, observations-corrected precipitation forcing is used instead of model-generated precipitation. Overall, MERRA-2 takes advantage of numerous updates to the global modeling and data assimilation system. In this document, we summarize an initial evaluation of the climate in MERRA-2, from the surface to the stratosphere and from the tropics to the poles. Strengths and weaknesses of the MERRA-2 climate are accordingly emphasized.

  11. Assimilation of TOPEX/POSEIDON Altimeter Data into a Global Ocean Circulation Model: Are the Results Any Good?

    NASA Technical Reports Server (NTRS)

    Fukumori, I.; Fu, L. L.; Chao, Y.

    1998-01-01

    The feasibility of assimilating satellite altimetry data into a global ocean general ocean general circulation model is studied. Three years of TOPEX/POSEIDON data is analyzed using a global, three-dimensional, nonlinear primitive equation model.

  12. Global SWOT Data Assimilation of River Hydrodynamic Model; the Twin Simulation Test of CaMa-Flood

    NASA Astrophysics Data System (ADS)

    Ikeshima, D.; Yamazaki, D.; Kanae, S.

    2016-12-01

    CaMa-Flood is a global scale model for simulating hydrodynamics in large scale rivers. It can simulate river hydrodynamics such as river discharge, flooded area, water depth and so on by inputting water runoff derived from land surface model. Recently many improvements at parameters or terrestrial data are under process to enhance the reproducibility of true natural phenomena. However, there are still some errors between nature and simulated result due to uncertainties in each model. SWOT (Surface water and Ocean Topography) is a satellite, which is going to be launched in 2021, can measure open water surface elevation. SWOT observed data can be used to calibrate hydrodynamics model at river flow forecasting and is expected to improve model's accuracy. Combining observation data into model to calibrate is called data assimilation. In this research, we developed data-assimilated river flow simulation system in global scale, using CaMa-Flood as river hydrodynamics model and simulated SWOT as observation data. Generally at data assimilation, calibrating "model value" with "observation value" makes "assimilated value". However, the observed data of SWOT satellite will not be available until its launch in 2021. Instead, we simulated the SWOT observed data using CaMa-Flood. Putting "pure input" into CaMa-Flood produce "true water storage". Extracting actual daily swath of SWOT from "true water storage" made simulated observation. For "model value", we made "disturbed water storage" by putting "noise disturbed input" to CaMa-Flood. Since both "model value" and "observation value" are made by same model, we named this twin simulation. At twin simulation, simulated observation of "true water storage" is combined with "disturbed water storage" to make "assimilated value". As the data assimilation method, we used ensemble Kalman filter. If "assimilated value" is closer to "true water storage" than "disturbed water storage", the data assimilation can be marked effective. Also

  13. Global Modeling and Assimilation Office Annual Report and Research Highlights 2011-2012

    NASA Technical Reports Server (NTRS)

    Rienecker, Michele M.

    2012-01-01

    Over the last year, the Global Modeling and Assimilation Office (GMAO) has continued to advance our GEOS-5-based systems, updating products for both weather and climate applications. We contributed hindcasts and forecasts to the National Multi-Model Ensemble (NMME) of seasonal forecasts and the suite of decadal predictions to the Coupled Model Intercomparison Project (CMIP5).

  14. Testing a Coupled Global-limited-area Data Assimilation System using Observations from the 2004 Pacific Typhoon Season

    NASA Astrophysics Data System (ADS)

    Holt, C. R.; Szunyogh, I.; Gyarmati, G.; Hoffman, R. N.; Leidner, M.

    2011-12-01

    Tropical cyclone (TC) track and intensity forecasts have improved in recent years due to increased model resolution, improved data assimilation, and the rapid increase in the number of routinely assimilated observations over oceans. The data assimilation approach that has received the most attention in recent years is Ensemble Kalman Filtering (EnKF). The most attractive feature of the EnKF is that it uses a fully flow-dependent estimate of the error statistics, which can have important benefits for the analysis of rapidly developing TCs. We implement the Local Ensemble Transform Kalman Filter algorithm, a vari- ation of the EnKF, on a reduced-resolution version of the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) model and the NCEP Regional Spectral Model (RSM) to build a coupled global-limited area anal- ysis/forecast system. This is the first time, to our knowledge, that such a system is used for the analysis and forecast of tropical cyclones. We use data from summer 2004 to study eight tropical cyclones in the Northwest Pacific. The benchmark data sets that we use to assess the performance of our system are the NCEP Reanalysis and the NCEP Operational GFS analyses from 2004. These benchmark analyses were both obtained by the Statistical Spectral Interpolation, which was the operational data assimilation system of NCEP in 2004. The GFS Operational analysis assimilated a large number of satellite radiance observations in addition to the observations assimilated in our system. All analyses are verified against the Joint Typhoon Warning Center Best Track data set. The errors are calculated for the position and intensity of the TCs. The global component of the ensemble-based system shows improvement in po- sition analysis over the NCEP Reanalysis, but shows no significant difference from the NCEP operational analysis for most of the storm tracks. The regional com- ponent of our system improves position analysis over all the global

  15. Statistical Properties of Global Precipitation in the NCEP GFS Model and TMPA Observations for Data Assimilation

    NASA Technical Reports Server (NTRS)

    Lien, Guo-Yuan; Kalnay, Eugenia; Miyoshi, Takemasa; Huffman, George J.

    2016-01-01

    Assimilation of satellite precipitation data into numerical models presents several difficulties, with two of the most important being the non-Gaussian error distributions associated with precipitation, and large model and observation errors. As a result, improving the model forecast beyond a few hours by assimilating precipitation has been found to be difficult. To identify the challenges and propose practical solutions to assimilation of precipitation, statistics are calculated for global precipitation in a low-resolution NCEP Global Forecast System (GFS) model and the TRMM Multisatellite Precipitation Analysis (TMPA). The samples are constructed using the same model with the same forecast period, observation variables, and resolution as in the follow-on GFSTMPA precipitation assimilation experiments presented in the companion paper.The statistical results indicate that the T62 and T126 GFS models generally have positive bias in precipitation compared to the TMPA observations, and that the simulation of the marine stratocumulus precipitation is not realistic in the T62 GFS model. It is necessary to apply to precipitation either the commonly used logarithm transformation or the newly proposed Gaussian transformation to obtain a better relationship between the model and observational precipitation. When the Gaussian transformations are separately applied to the model and observational precipitation, they serve as a bias correction that corrects the amplitude-dependent biases. In addition, using a spatially andor temporally averaged precipitation variable, such as the 6-h accumulated precipitation, should be advantageous for precipitation assimilation.

  16. Data Assimilation using Artificial Neural Networks for the global FSU atmospheric model

    NASA Astrophysics Data System (ADS)

    Cintra, Rosangela; Cocke, Steven; Campos Velho, Haroldo

    2015-04-01

    Data assimilation is the process by which measurements and model predictions are combined to obtain an accurate representation of the state of the modeled system. Uncertainty is the characteristic of the atmosphere, coupled with inevitable inadequacies in observations and computer models and increase errors in weather forecasts. Data assimilation is a technique to generate an initial condition to a weather or climate forecasts. This paper shows the results of a data assimilation technique using artificial neural networks (ANN) to obtain the initial condition to the atmospheric general circulation model (AGCM) for the Florida State University in USA. The Local Ensemble Transform Kalman filter (LETKF) is implemented with Florida State University Global Spectral Model (FSUGSM). The ANN data assimilation is made to emulate the initial condition from LETKF to run the FSUGSM. LETKF is a version of Kalman filter with Monte-Carlo ensembles of short-term forecasts to solve the data assimilation problem. The model FSUGSM is a multilevel (27 vertical levels) spectral primitive equation model with a vertical sigma coordinate. All variables are expanded horizontally in a truncated series of spherical harmonic functions (at resolution T63) and a transform technique is applied to calculate the physical processes in real space. The LETKF data assimilation experiments are based in synthetic observations data (surface pressure, absolute temperature, zonal component wind, meridional component wind and humidity). For the ANN data assimilation scheme, we use Multilayer Perceptron (MLP-DA) with supervised training algorithm where ANN receives input vectors with their corresponding response or target output from LETKF scheme. An automatic tool that finds the optimal representation to these ANNs configures the MLP-DA in this experiment. After the training process, the scheme MLP-DA is seen as a function of data assimilation where the inputs are observations and a short-range forecast to

  17. Overview of Chinese GRAPES Data Assimilation System

    NASA Astrophysics Data System (ADS)

    Liu, Yan

    2017-04-01

    The development of data assimilation system of Global and Regional Assimilation and Prediction System (GRAPES in short) which is Chinese new generation operational numerical weather prediction system completed in recent years is reviewed in this paper, including the design scheme and main characteristics. GRAPES adopts the variational approach with stresses at application of various remote sensing observational data. Its development path is from three dimensional to four dimensional assimilation. It may be implemented with limited area or global configurations. The three dimensional variational data assimilation systems have been operational in the national and a few of regional meteorological centers. The global four dimensional assimilation system is in pre-operational experiments, and will be upgraded. After a brief introduction to the GRAPES data assimilation system, results of a series of validations of GRAPES analyses against the observation data and analyses derived from other operational NWP center to assess its performance are presented.

  18. LDAS-Monde: Global scale satellite driven Land Data Assimilation System based on SURFEX modelling platform

    NASA Astrophysics Data System (ADS)

    Munier, Simon; Albergel, Clément; Leroux, Delphine; Calvet, Jean-Christophe

    2017-04-01

    In the past decades, large efforts have been made to improve our understanding of the dynamics of the terrestrial water cycle, including vertical and horizontal water fluxes as well as water stored in the biosphere. The soil water content is closely related to the development of the vegetation, which is in turn closely related to the water and energy exchanges with the atmosphere (through evapotranspiration) as well as to carbon fluxes. Land Surface Models (LSMs) are usually designed to represent biogeophysical variables, such as Surface and Root Zone Soil Moisture (SSM, RZSM) or Leaf Area Index (LAI), in order to simulate water, energy and carbon fluxes at the interface between land and atmosphere. With the recent increase of satellite missions and derived products, LSMs can benefit from Earth Observations via Data Assimilation systems to improve their representation of different biogeophysical variables. This study, which is part of the eartH2Observe European project (http://www.earth2observe.eu), presents LDAS-Monde, a global Land Data Assimilation System using an implementation of the Simplified Extended Kalman Filter (SEKF) in the Météo-France's modelling platform (SURFEX). SURFEX is based on the coupling of the multilayer, CO2-responsive version of the Interactions Between Soil, Biosphere, and Atmosphere model (ISBA) coupled with Météo-France's version of the Total Runoff Integrating Pathways continental hydrological system (CTRIP). Two global operational datasets derived from satellite observations are assimilated simultaneously: (i) SSM from the ESA Climate Change Initiative and (ii) LAI from the Copernicus Global Land Service project. Atmospheric forcing used in SURFEX are derived from the ERA-Interim reanalysis and corrected from GPCC precipitations. The simulations are conducted at the global scale at a 1 degree spatial resolution over the period 2000-2014. An analysis of the model sensitivity to the assimilated observations is performed over

  19. Impact of Assimilation on Heavy Rainfall Simulations Using WRF Model: Sensitivity of Assimilation Results to Background Error Statistics

    NASA Astrophysics Data System (ADS)

    Rakesh, V.; Kantharao, B.

    2017-03-01

    Data assimilation is considered as one of the effective tools for improving forecast skill of mesoscale models. However, for optimum utilization and effective assimilation of observations, many factors need to be taken into account while designing data assimilation methodology. One of the critical components that determines the amount and propagation observation information into the analysis, is model background error statistics (BES). The objective of this study is to quantify how BES in data assimilation impacts on simulation of heavy rainfall events over a southern state in India, Karnataka. Simulations of 40 heavy rainfall events were carried out using Weather Research and Forecasting Model with and without data assimilation. The assimilation experiments were conducted using global and regional BES while the experiment with no assimilation was used as the baseline for assessing the impact of data assimilation. The simulated rainfall is verified against high-resolution rain-gage observations over Karnataka. Statistical evaluation using several accuracy and skill measures shows that data assimilation has improved the heavy rainfall simulation. Our results showed that the experiment using regional BES outperformed the one which used global BES. Critical thermo-dynamic variables conducive for heavy rainfall like convective available potential energy simulated using regional BES is more realistic compared to global BES. It is pointed out that these results have important practical implications in design of forecast platforms while decision-making during extreme weather events

  20. An Initial Assessment of the Impact of CYGNSS Ocean Surface Wind Assimilation on Navy Global and Mesoscale Numerical Weather Prediction

    NASA Astrophysics Data System (ADS)

    Baker, N. L.; Tsu, J.; Swadley, S. D.

    2017-12-01

    We assess the impact of assimilation of CYclone Global Navigation Satellite System (CYGNSS) ocean surface winds observations into the NAVGEM[i] global and COAMPS®[ii] mesoscale numerical weather prediction (NWP) systems. Both NAVGEM and COAMPS® used the NRL 4DVar assimilation system NAVDAS-AR[iii]. Long term monitoring of the NAVGEM Forecast Sensitivity Observation Impact (FSOI) indicates that the forecast error reduction for ocean surface wind vectors (ASCAT and WindSat) are significantly larger than for SSMIS wind speed observations. These differences are larger than can be explained by simply two pieces of information (for wind vectors) versus one (wind speed). To help understand these results, we conducted a series of Observing System Experiments (OSEs) to compare the assimilation of ASCAT wind vectors with the equivalent (computed) ASCAT wind speed observations. We found that wind vector assimilation was typically 3 times more effective at reducing the NAVGEM forecast error, with a higher percentage of beneficial observations. These results suggested that 4DVar, in the absence of an additional nonlinear outer loop, has limited ability to modify the analysis wind direction. We examined several strategies for assimilating CYGNSS ocean surface wind speed observations. In the first approach, we assimilated CYGNSS as wind speed observations, following the same methodology used for SSMIS winds. The next two approaches converted CYGNSS wind speed to wind vectors, using NAVGEM sea level pressure fields (following Holton, 1979), and using NAVGEM 10-m wind fields with the AER Variational Analysis Method. Finally, we compared these methods to CYGNSS wind speed assimilation using multiple outer loops with NAVGEM Hybrid 4DVar. Results support the earlier studies suggesting that NAVDAS-AR wind speed assimilation is sub-optimal. We present detailed results from multi-month NAVGEM assimilation runs along with case studies using COAMPS®. Comparisons include the fit of

  1. Assimilation of Satellite Ozone Observations

    NASA Technical Reports Server (NTRS)

    Stajner, I.; Winslow, N.; Wargan, K.; Hayashi, H.; Pawson, S.; Rood, R.

    2003-01-01

    This talk will discuss assimilation of ozone data from satellite-borne instruments. Satellite observations of ozone total columns and profiles have been measured by a series of Total Ozone Mapping Spectrometer (TOMS), Solar Backscatter Ultraviolet (SBUV) instruments, and more recently by the Global Ozone Monitoring Experiment. Additional profile data are provided by instruments on NASA's Upper Atmosphere Research Satellite and by occultation instruments on other platforms. Instruments on Envisat' and future EOS Aura satellite will supply even more comprehensive data about the ozone distribution. Satellite data contain a wealth of information, but they do not provide synoptic global maps of ozone fields. These maps can be obtained through assimilation of satellite data into global chemistry and transport models. In the ozone system at NASA's Data Assimilation Office (DAO) any combination of TOMS, SBUV, and Microwave Limb sounder (MLS) data can be assimilated. We found that the addition of MLS to SBUV and TOMS data in the system helps to constrain the ozone distribution, especially in the polar night region and in the tropics. The assimilated ozone distribution in the troposphere and lower stratosphere is sensitive also to finer changes in the SBUV and TOMS data selection and to changes in error covariance models. All results are established by comparisons of assimilated ozone with independent profiles from ozone sondes and occultation instruments.

  2. Data Analysis of the Floating Potential Measurement Unit aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Barjatya, Aroh; Swenson, Charles M.; Thompson, Donald C.; Wright, Kenneth H., Jr.

    2009-01-01

    We present data from the Floating Potential Measurement Unit (FPMU), that is deployed on the starboard (S1) truss of the International Space Station. The FPMU is a suite of instruments capable of redundant measurements of various plasma parameters. The instrument suite consists of: a Floating Potential Probe, a Wide-sweeping spherical Langmuir probe, a Narrow-sweeping cylindrical Langmuir Probe, and a Plasma Impedance Probe. This paper gives a brief overview of the instrumentation and the received data quality, and then presents the algorithm used to reduce I-V curves to plasma parameters. Several hours of data is presented from August 5th, 2006 and March 3rd, 2007. The FPMU derived plasma density and temperatures are compared with the International Reference Ionosphere (IRI) and USU-Global Assimilation of Ionospheric Measurement (USU-GAIM) models. Our results show that the derived in-situ density matches the USU-GAIM model better than the IRI, and the derived in-situ temperatures are comparable to the average temperatures given by the IRI.

  3. UV Remote Sensing Data Products - Turning Data Into Knowledge

    NASA Astrophysics Data System (ADS)

    Weiss, M.; Paxton, L.; Schaefer, R. K.; Comberiate, J.; Hsieh, S. W.; Romeo, G.; Wolven, B. C.; Zhang, Y.

    2013-12-01

    The DMSP/SSUSI instruments have been taking UV images of the upper atmosphere for more than a decade. Each of the SSUSI instruments takes complete global UV images on a daily basis. Although this scientific data is very valuable, it is not actionable information. Perhaps the simplest use of SSUSI data is the assimilation of radiances into the GAIM ionospheric forecast model; even then, the data must be massaged to get it into a GAIM-ingestable form. We describe a development effort funded by the DMSP program and the Air Force Weather Agency to turn the raw data into actionable information in the form of SSUSI environmental data parameters and other derived information. We will describe current nowcasts, forecasts, and other related actionable information (e.g. auroral oval forecasts) that is currently generated by the SSUSI ground processing system for AFWA, and also concepts we have for future tools (e.g., geomagnetic storm alerts, scintillation forecasts, HF radio propagation information, auroral radar clutter) to turn more of the SSUSI dataset into actionable knowledge.

  4. AIRS Impact on the Analysis and Forecast Track of Tropical Cyclone Nargis in a Global Data Assimilation and Forecasting System

    NASA Technical Reports Server (NTRS)

    Reale, O.; Lau, W.K.; Susskind, J.; Brin, E.; Liu, E.; Riishojgaard, L. P.; Rosenburg, R.; Fuentes, M.

    2009-01-01

    Tropical cyclones in the northern Indian Ocean pose serious challenges to operational weather forecasting systems, partly due to their shorter lifespan and more erratic track, compared to those in the Atlantic and the Pacific. Moreover, the automated analyses of cyclones over the northern Indian Ocean, produced by operational global data assimilation systems (DASs), are generally of inferior quality than in other basins. In this work it is shown that the assimilation of Atmospheric Infrared Sounder (AIRS) temperature retrievals under partial cloudy conditions can significantly impact the representation of the cyclone Nargis (which caused devastating loss of life in Myanmar in May 2008) in a global DAS. Forecasts produced from these improved analyses by a global model produce substantially smaller track errors. The impact of the assimilation of clear-sky radiances on the same DAS and forecasting system is positive, but smaller than the one obtained by ingestion of AIRS retrievals, possibly due to poorer coverage.

  5. Coupled Data Assimilation in Navy ESPC

    NASA Astrophysics Data System (ADS)

    Barron, C. N.; Spence, P. L.; Frolov, S.; Rowley, C. D.; Bishop, C. H.; Wei, M.; Ruston, B.; Smedstad, O. M.

    2017-12-01

    Data assimilation under global coupled Earth System Prediction Capability (ESPC) presents significantly greater challenges than data assimilation in forecast models of a single earth system like the ocean and atmosphere. In forecasts of a single component, data assimilation has broad flexibility in adjusting boundary conditions to reduce forecast errors; coupled ESPC requires consistent simultaneous adjustment of multiple components within the earth system: air, ocean, ice, and others. Data assimilation uses error covariances to express how to consistently adjust model conditions in response to differences between forecasts and observations; in coupled ESPC, these covariances must extend from air to ice to ocean such that changes within one fluid are appropriately balanced with corresponding adjustments in the other components. We show several algorithmic solutions that allow us to resolve these challenges. Specifically, we introduce the interface solver method that augments existing stand-alone systems for ocean and atmosphere by allowing them to be influenced by relevant measurements from the coupled fluid. Plans are outlined for implementing coupled data assimilation within ESPC for the Navy's global coupled model. Preliminary results show the impact of assimilating SST-sensitive radiances in the atmospheric model and first results of hybrid DA in a 1/12 degree model of the global ocean.

  6. Variational Assimilation of Global Microwave Rainfall Retrievals: Physical and Dynamical Impact on GEOS Analyses and Forecasts

    NASA Technical Reports Server (NTRS)

    Lin, Xin; Zhang, Sara Q.; Hou, Arthur Y.

    2006-01-01

    Global microwave rainfall retrievals from a 5-satellite constellation, including TMI from TRMM, SSWI from DMSP F13, F14 and F15, and AMSR-E from EOS-AQUA, are assimilated into the NASA Goddard Earth Observing System (GEOS) Data Assimilation System (DAS) using a 1-D variational continuous assimilation (VCA) algorithm. The physical and dynamical impact of rainfall assimilation on GEOS analyses and forecasts is examined at various temporal and spatial scales. This study demonstrates that the 1-D VCA algorithm, which was originally developed and evaluated for rainfall assimilations over tropical oceans, can effectively assimilate satellite microwave rainfall retrievals and improve GEOS analyses over both the Tropics and the extratropics where the atmospheric processes are dominated by different large-scale dynamics and moist physics, and also over the land, where rainfall estimates from passive microwave radiometers are believed to be less accurate. Results show that rainfall assimilation renders the GEOS analysis physically and dynamically more consistent with the observed precipitation at the monthly-mean and 6-hour time scales. Over regions where the model precipitation tends to misbehave in distinctly different rainy regimes, the 1-D VCA algorithm, by compensating for errors in the model s moist time-tendency in a 6-h analysis window, is able to bring the rainfall analysis closer to the observed. The radiation and cloud fields also tend to be in better agreement with independent satellite observations in the rainfall-assimilation m especially over regions where rainfall analyses indicate large improvements. Assimilation experiments with and without rainfall data for a midlatitude frontal system clearly indicates that the GEOS analysis is improved through changes in the thermodynamic and dynamic fields that respond to the rainfall assimilation. The synoptic structures of temperature, moisture, winds, divergence, and vertical motion, as well as vorticity are more

  7. Impact of TRMM and SSM/I Rainfall Assimilation on Global Analysis and QPF

    NASA Technical Reports Server (NTRS)

    Hou, Arthur; Zhang, Sara; Reale, Oreste

    2002-01-01

    Evaluation of QPF skills requires quantitatively accurate precipitation analyses. We show that assimilation of surface rain rates derived from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager and Special Sensor Microwave/Imager (SSM/I) improves quantitative precipitation estimates (QPE) and many aspects of global analyses. Short-range forecasts initialized with analyses with satellite rainfall data generally yield significantly higher QPF threat scores and better storm track predictions. These results were obtained using a variational procedure that minimizes the difference between the observed and model rain rates by correcting the moist physics tendency of the forecast model over a 6h assimilation window. In two case studies of Hurricanes Bonnie and Floyd, synoptic analysis shows that this procedure produces initial conditions with better-defined tropical storm features and stronger precipitation intensity associated with the storm.

  8. Exploring New Pathways in Precipitation Assimilation

    NASA Technical Reports Server (NTRS)

    Hou, Arthur; Zhang, Sara Q.

    2004-01-01

    Precipitation assimilation poses a special challenge in that the forward model for rain in a global forecast system is based on parameterized physics, which can have large systematic errors that must be rectified to use precipitation data effectively within a standard statistical analysis framework. We examine some key issues in precipitation assimilation and describe several exploratory studies in assimilating rainfall and latent heating information in NASA's global data assimilation systems using the forecast model as a weak constraint. We present results from two research activities. The first is the assimilation of surface rainfall data using a time-continuous variational assimilation based on a column model of the full moist physics. The second is the assimilation of convective and stratiform latent heating retrievals from microwave sensors using a variational technique with physical parameters in the moist physics schemes as a control variable. We will show the impact of assimilating these data on analyses and forecasts. Among the lessons learned are (1) that the time-continuous application of moisture/temperature tendency corrections to mitigate model deficiencies offers an effective strategy for assimilating precipitation information, and (2) that the model prognostic variables must be allowed to directly respond to an improved rain and latent heating field within an analysis cycle to reap the full benefit of assimilating precipitation information. of microwave radiances versus retrieval information in raining areas, and initial efforts in developing ensemble techniques such as Kalman filter/smoother for precipitation assimilation. Looking to the future, we discuss new research directions including the assimilation

  9. Assimilation of Global Radar Backscatter and Radiometer Brightness Temperature Observations to Improve Soil Moisture and Land Evaporation Estimates

    NASA Technical Reports Server (NTRS)

    Lievens, H.; Martens, B.; Verhoest, N. E. C.; Hahn, S.; Reichle, R. H.; Miralles, D. G.

    2017-01-01

    Active radar backscatter (s?) observations from the Advanced Scatterometer (ASCAT) and passive radiometer brightness temperature (TB) observations from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated either individually or jointly into the Global Land Evaporation Amsterdam Model (GLEAM) to improve its simulations of soil moisture and land evaporation. To enable s? and TB assimilation, GLEAM is coupled to the Water Cloud Model and the L-band Microwave Emission from the Biosphere (L-MEB) model. The innovations, i.e. differences between observations and simulations, are mapped onto the model soil moisture states through an Ensemble Kalman Filter. The validation of surface (0-10 cm) soil moisture simulations over the period 2010-2014 against in situ measurements from the International Soil Moisture Network (ISMN) shows that assimilating s? or TB alone improves the average correlation of seasonal anomalies (Ran) from 0.514 to 0.547 and 0.548, respectively. The joint assimilation further improves Ran to 0.559. Associated enhancements in daily evaporative flux simulations by GLEAM are validated based on measurements from 22 FLUXNET stations. Again, the singular assimilation improves Ran from 0.502 to 0.536 and 0.533, respectively for s? and TB, whereas the best performance is observed for the joint assimilation (Ran = 0.546). These results demonstrate the complementary value of assimilating radar backscatter observations together with brightness temperatures for improving estimates of hydrological variables, as their joint assimilation outperforms the assimilation of each observation type separately.

  10. Variational data assimilation with a semi-Lagrangian semi-implicit global shallow-water equation model and its adjoint

    NASA Technical Reports Server (NTRS)

    Li, Y.; Navon, I. M.; Courtier, P.; Gauthier, P.

    1993-01-01

    An adjoint model is developed for variational data assimilation using the 2D semi-Lagrangian semi-implicit (SLSI) shallow-water equation global model of Bates et al. with special attention being paid to the linearization of the interpolation routines. It is demonstrated that with larger time steps the limit of the validity of the tangent linear model will be curtailed due to the interpolations, especially in regions where sharp gradients in the interpolated variables coupled with strong advective wind occur, a synoptic situation common in the high latitudes. This effect is particularly evident near the pole in the Northern Hemisphere during the winter season. Variational data assimilation experiments of 'identical twin' type with observations available only at the end of the assimilation period perform well with this adjoint model. It is confirmed that the computational efficiency of the semi-Lagrangian scheme is preserved during the minimization process, related to the variational data assimilation procedure.

  11. Global Modeling of Tropospheric Chemistry with Assimilated Meteorology: Model Description and Evaluation

    NASA Technical Reports Server (NTRS)

    Bey, Isabelle; Jacob, Daniel J.; Yantosca, Robert M.; Logan, Jennifer A.; Field, Brendan D.; Fiore, Arlene M.; Li, Qin-Bin; Liu, Hong-Yu; Mickley, Loretta J.; Schultz, Martin G.

    2001-01-01

    We present a first description and evaluation of GEOS-CHEM, a global three-dimensional (3-D) model of tropospheric chemistry driven by assimilated meteorological observations from the Goddard Earth Observing System (GEOS) of the NASA Data Assimilation Office (DAO). The model is applied to a 1-year simulation of tropospheric ozone-NOx-hydrocarbon chemistry for 1994, and is evaluated with observations both for 1994 and for other years. It reproduces usually to within 10 ppb the concentrations of ozone observed from the worldwide ozonesonde data network. It simulates correctly the seasonal phases and amplitudes of ozone concentrations for different regions and altitudes, but tends to underestimate the seasonal amplitude at northern midlatitudes. Observed concentrations of NO and peroxyacetylnitrate (PAN) observed in aircraft campaigns are generally reproduced to within a factor of 2 and often much better. Concentrations of HNO3 in the remote troposphere are overestimated typically by a factor of 2-3, a common problem in global models that may reflect a combination of insufficient precipitation scavenging and gas-aerosol partitioning not resolved by the model. The model yields an atmospheric lifetime of methylchloroform (proxy for global OH) of 5.1 years, as compared to a best estimate from observations of 5.5 plus or minus 0.8 years, and simulates H2O2 concentrations observed from aircraft with significant regional disagreements but no global bias. The OH concentrations are approximately 20% higher than in our previous global 3-D model which included an UV-absorbing aerosol. Concentrations of CO tend to be underestimated by the model, often by 10-30 ppb, which could reflect a combination of excessive OH (a 20% decrease in model OH could be accommodated by the methylchloroform constraint) and an underestimate of CO sources (particularly biogenic). The model underestimates observed acetone concentrations over the South Pacific in fall by a factor of 3; a missing source

  12. Global Assessment of the SMAP Level-4 Soil Moisture Product Using Assimilation Diagnostics

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf; Liu, Qing; De Lannoy, Gabrielle; Crow, Wade; Kimball, John; Koster, Randy; Ardizzone, Joe

    2018-01-01

    The Soil Moisture Active Passive (SMAP) mission Level-4 Soil Moisture (L4_SM) product provides 3-hourly, 9-km resolution, global estimates of surface (0-5 cm) and root-zone (0-100 cm) soil moisture and related land surface variables from 31 March 2015 to present with approx. 2.5-day latency. The ensemble-based L4_SM algorithm assimilates SMAP brightness temperature (Tb) observations into the Catchment land surface model. This study describes the spatially distributed L4_SM analysis and assesses the observation-minus-forecast (O-F) Tb residuals and the soil moisture and temperature analysis increments. Owing to the climatological rescaling of the Tb observations prior to assimilation, the analysis is essentially unbiased, with global mean values of approx. 0.37 K for the O-F Tb residuals and practically zero for the soil moisture and temperature increments. There are, however, modest regional (absolute) biases in the O-F residuals (under approx. 3 K), the soil moisture increments (under approx. 0.01 cu m/cu m), and the surface soil temperature increments (under approx. 1 K). Typical instantaneous values are approx. 6 K for O-F residuals, approx. 0.01 (approx. 0.003) cu m/cu m for surface (root-zone) soil moisture increments, and approx. 0.6 K for surface soil temperature increments. The O-F diagnostics indicate that the actual errors in the system are overestimated in deserts and densely vegetated regions and underestimated in agricultural regions and transition zones between dry and wet climates. The O-F auto-correlations suggest that the SMAP observations are used efficiently in western North America, the Sahel, and Australia, but not in many forested regions and the high northern latitudes. A case study in Australia demonstrates that assimilating SMAP observations successfully corrects short-term errors in the L4_SM rainfall forcing.

  13. From Low Altitude to High Altitude: Assimilating SAMPEX Data in Global Radiation Belt Models by Quantifying Precipitation and Loss

    NASA Astrophysics Data System (ADS)

    Tu, W.; Reeves, G. D.; Cunningham, G.; Selesnick, R. S.; Li, X.; Looper, M. D.

    2012-12-01

    Since its launch in 1992, SAMPEX has been continuously providing measurements of radiation belt electrons at low altitude, which are not only ideal for the direct quantification of the electron precipitation loss in the radiation belt, but also provide data coverage in a critical region for global radiation belt data assimilation models. However, quantitatively combining high-altitude and low-earth-orbit (LEO) measurements on the same L-shell is challenging because LEO measurements typically contain a dynamic mixture of trapped and precipitating populations. Specifically, the electrons measured by SAMPEX can be distinguished as trapped, quasi-trapped (in the drift loss cone), and precipitating (in the bounce loss cone). To simulate the low-altitude electron distribution observed by SAMPEX/PET, a drift-diffusion model has been developed that includes the effects of azimuthal drift and pitch angle diffusion. The simulation provides direct quantification of the rates and variations of electron loss to the atmosphere, a direct input to our Dynamic Radiation Environment Assimilation Model (DREAM) as the electron loss lifetimes. The current DREAM uses data assimilation to combine a 1D radial diffusion model with observational data of radiation belt electrons. In order to implement the mixed electron measurements from SAMPEX into DREAM, we need to map the SAMPEX data from low altitude to high altitudes. To perform the mapping, we will first examine the well-known 'global coherence' of radiation belt electrons by comparing SAMPEX electron fluxes with the energetic electron data from LANL GEO and GPS spacecraft. If the correlation is good, we can directly map the SAMPEX fluxes to high altitudes based on the global coherence; if not, we will use the derived pitch angle distribution from the drift-diffusion model to map up the field and test the mapping by comparing to the high-altitude flux measurements. Then the globally mapped electron fluxes can be assimilated into DREAM

  14. Improvement of aerosol optical properties modeling over Eastern Asia with MODIS AOD assimilation in a global non-hydrostatic icosahedral aerosol transport model.

    PubMed

    Dai, Tie; Schutgens, Nick A J; Goto, Daisuke; Shi, Guangyu; Nakajima, Teruyuki

    2014-12-01

    A new global aerosol assimilation system adopting a more complex icosahedral grid configuration is developed. Sensitivity tests for the assimilation system are performed utilizing satellite retrieved aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS), and the results over Eastern Asia are analyzed. The assimilated results are validated through independent Aerosol Robotic Network (AERONET) observations. Our results reveal that the ensemble and local patch sizes have little effect on the assimilation performance, whereas the ensemble perturbation method has the largest effect. Assimilation leads to significantly positive effect on the simulated AOD field, improving agreement with all of the 12 AERONET sites over the Eastern Asia based on both the correlation coefficient and the root mean square difference (assimilation efficiency). Meanwhile, better agreement of the Ångström Exponent (AE) field is achieved for 8 of the 12 sites due to the assimilation of AOD only. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Modeling Global Ocean Biogeochemistry With Physical Data Assimilation: A Pragmatic Solution to the Equatorial Instability

    NASA Astrophysics Data System (ADS)

    Park, Jong-Yeon; Stock, Charles A.; Yang, Xiaosong; Dunne, John P.; Rosati, Anthony; John, Jasmin; Zhang, Shaoqing

    2018-03-01

    Reliable estimates of historical and current biogeochemistry are essential for understanding past ecosystem variability and predicting future changes. Efforts to translate improved physical ocean state estimates into improved biogeochemical estimates, however, are hindered by high biogeochemical sensitivity to transient momentum imbalances that arise during physical data assimilation. Most notably, the breakdown of geostrophic constraints on data assimilation in equatorial regions can lead to spurious upwelling, resulting in excessive equatorial productivity and biogeochemical fluxes. This hampers efforts to understand and predict the biogeochemical consequences of El Niño and La Niña. We develop a strategy to robustly integrate an ocean biogeochemical model with an ensemble coupled-climate data assimilation system used for seasonal to decadal global climate prediction. Addressing spurious vertical velocities requires two steps. First, we find that tightening constraints on atmospheric data assimilation maintains a better equatorial wind stress and pressure gradient balance. This reduces spurious vertical velocities, but those remaining still produce substantial biogeochemical biases. The remainder is addressed by imposing stricter fidelity to model dynamics over data constraints near the equator. We determine an optimal choice of model-data weights that removed spurious biogeochemical signals while benefitting from off-equatorial constraints that still substantially improve equatorial physical ocean simulations. Compared to the unconstrained control run, the optimally constrained model reduces equatorial biogeochemical biases and markedly improves the equatorial subsurface nitrate concentrations and hypoxic area. The pragmatic approach described herein offers a means of advancing earth system prediction in parallel with continued data assimilation advances aimed at fully considering equatorial data constraints.

  16. Real-time Assimilation of Altimeter Derived Synthetic Profiles Into a Global version of the Naval Research Laboratory's Coastal Ocean Model (NCOM)

    NASA Astrophysics Data System (ADS)

    Rhodes, R. C.; Barron, C. N.; Fox, D. N.; Smedstad, L. F.

    2001-12-01

    A global implementation of the Navy Coastal Ocean Model (NCOM), developed by the Naval Research Laboratory (NRL) at Stennis Space Center is currently running in real-time and is planned for transition to the Naval Oceanographic Office (NAVOCEANO) in 2002. The model encompasses the open ocean to 5 m depth on a curvilinear global model grid with 1/8 degree grid spacing at 45N, extending from 80 S to a complete arctic cap with grid singularities mapped into Canada and Russia. Vertically, the model employs 41 sigma-z levels with sigma in the upper-ocean and coastal regions and z in the deeper ocean. The Navy Operational Global Atmospheric Prediction System (NOGAPS) provides 6-hourly wind stresses and heat fluxes for forcing, while the operational Modular Ocean Data Assimilation System (MODAS) provides the background climatology and tools for data pre-processing. Operationally available sea surface temperature (SST) and altimetry (SSH) data are assimilated into the NAVOCEANO global 1/8 degree MODAS 2-D analysis and the 1/16 degree Navy Layered Ocean Model (NLOM) to provide analyses and forecasts of SSH and SST. The 2-D SSH and SST nowcast fields are used as input to the MODAS synthetic climatology database to yield three-dimensional fields of synthetic temperature and salinity for assimilation into global NCOM. The synthetic profiles are weighted higher at depth in the assimilation process to allow the numerical model to properly develop the mixed-layer structure driven by the real-time atmospheric forcing. Global NCOM nowcasts and forecasts provide a valuable resource for rapid response to the varied and often unpredictable operational requests for 3-dimensional fields of ocean temperature, salinity, and currents. In some cases, the resolution of the global product is sufficient for guidance. In cases requiring higher resolution, the global product offers a quick overview of local circulation and provides initial and boundary conditions for higher resolution coastal

  17. Assimilation of MLS and OMI Ozone Data

    NASA Technical Reports Server (NTRS)

    Stajner, I.; Wargan, K.; Chang, L.-P.; Hayashi, H.; Pawson, S.; Froidevaux, L.; Livesey, N.

    2005-01-01

    Ozone data from Aura Microwave Limb Sounder (MLS) and Ozone Monitoring Instrument (OMI) were assimilated into the ozone model at NASA's Global Modeling and Assimilation Office (GMAO). This assimilation produces ozone fields that are superior to those from the operational GMAO assimilation of Solar Backscatter Ultraviolet (SBUV/2) instrument data. Assimilation of Aura data improves the representation of the "ozone hole" and the agreement with independent Stratospheric Aerosol and Gas Experiment (SAGE) III and ozone sonde data. Ozone in the lower stratosphere is captured better: mean state, vertical gradients, spatial and temporal variability are all improved. Inclusion of OMI and MLS data together, or separately, in the assimilation system provides a way of checking how consistent OMI and MLS data are with each other, and with the ozone model. We found that differences between OMI total ozone column data and model forecasts decrease after MLS data are assimilated. This indicates that MLS stratospheric ozone profiles are consistent with OMI total ozone columns. The evaluation of error characteristics of OMI and MLS ozone will continue as data from newer versions of retrievals becomes available. We report on the initial step in obtaining global assimilated ozone fields that combine measurements from different Aura instruments, the ozone model at the GMAO, and their respective error characteristics. We plan to use assimilated ozone fields in estimation of tropospheric ozone. We also plan to investigate impacts of assimilated ozone fields on numerical weather prediction through their use in radiative models and in the assimilation of infrared nadir radiance data from NASA's Advanced Infrared Sounder (AIRS).

  18. The Impact of the Assimilation of Aquarius Sea Surface Salinity Data in the GEOS Ocean Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Vernieres, Guillaume Rene Jean; Kovach, Robin M.; Keppenne, Christian L.; Akella, Santharam; Brucker, Ludovic; Dinnat, Emmanuel Phillippe

    2014-01-01

    Ocean salinity and temperature differences drive thermohaline circulations. These properties also play a key role in the ocean-atmosphere coupling. With the availability of L-band space-borne observations, it becomes possible to provide global scale sea surface salinity (SSS) distribution. This study analyzes globally the along-track (Level 2) Aquarius SSS retrievals obtained using both passive and active L-band observations. Aquarius alongtrack retrieved SSS are assimilated into the ocean data assimilation component of Version 5 of the Goddard Earth Observing System (GEOS-5) assimilation and forecast model. We present a methodology to correct the large biases and errors apparent in Version 2.0 of the Aquarius SSS retrieval algorithm and map the observed Aquarius SSS retrieval into the ocean models bulk salinity in the topmost layer. The impact of the assimilation of the corrected SSS on the salinity analysis is evaluated by comparisons with insitu salinity observations from Argo. The results show a significant reduction of the global biases and RMS of observations-minus-forecast differences at in-situ locations. The most striking results are found in the tropics and southern latitudes. Our results highlight the complementary role and problems that arise during the assimilation of salinity information from in-situ (Argo) and space-borne surface (SSS) observations

  19. Global Gridded Data from the Goddard Earth Observing System Data Assimilation System (GEOS-DAS)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Goddard Earth Observing System Data Assimilation System (GEOS-DAS) timeseries is a globally gridded atmospheric data set for use in climate research. This near real-time data set is produced by the Data Assimilation Office (DAO) at the NASA Goddard Space Flight Center in direct support of the operational EOS instrument product generation from the Terra (12/1999 launch), Aqua (05/2002 launch) and Aura (01/2004 launch) spacecrafts. The data is archived in the EOS Core System (ECS) at the Goddard Earth Sciences Data and Information Services Center/Distributed Active Archive Center (GES DISC DAAC). The data is only a selection of the products available from the GEOS-DAS. The data is organized chronologically in timeseries format to facilitate the computation of statistics. GEOS-DAS data will be available for the time period January 1, 2000, through present.

  20. Understanding the Global Water and Energy Cycle Through Assimilation of Precipitation-Related Observations: Lessons from TRMM and Prospects for GPM

    NASA Technical Reports Server (NTRS)

    Hou, Arthur; Zhang, Sara; daSilva, Arlindo; Li, Frank; Atlas, Robert (Technical Monitor)

    2002-01-01

    Understanding the Earth's climate and how it responds to climate perturbations relies on what we know about how atmospheric moisture, clouds, latent heating, and the large-scale circulation vary with changing climatic conditions. The physical process that links these key climate elements is precipitation. Improving the fidelity of precipitation-related fields in global analyses is essential for gaining a better understanding of the global water and energy cycle. In recent years, research and operational use of precipitation observations derived from microwave sensors such as the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager and Special Sensor Microwave/Imager (SSM/I) have shown the tremendous potential of using these data to improve global modeling, data assimilation, and numerical weather prediction. We will give an overview of the benefits of assimilating TRMM and SSM/I rain rates and discuss developmental strategies for using space-based rainfall and rainfall-related observations to improve forecast models and climate datasets in preparation for the proposed multi-national Global Precipitation Mission (GPM).

  1. On the assimilation of absolute geodetic dynamic topography in a global ocean model: impact on the deep ocean state

    NASA Astrophysics Data System (ADS)

    Androsov, Alexey; Nerger, Lars; Schnur, Reiner; Schröter, Jens; Albertella, Alberta; Rummel, Reiner; Savcenko, Roman; Bosch, Wolfgang; Skachko, Sergey; Danilov, Sergey

    2018-05-01

    General ocean circulation models are not perfect. Forced with observed atmospheric fluxes they gradually drift away from measured distributions of temperature and salinity. We suggest data assimilation of absolute dynamical ocean topography (DOT) observed from space geodetic missions as an option to reduce these differences. Sea surface information of DOT is transferred into the deep ocean by defining the analysed ocean state as a weighted average of an ensemble of fully consistent model solutions using an error-subspace ensemble Kalman filter technique. Success of the technique is demonstrated by assimilation into a global configuration of the ocean circulation model FESOM over 1 year. The dynamic ocean topography data are obtained from a combination of multi-satellite altimetry and geoid measurements. The assimilation result is assessed using independent temperature and salinity analysis derived from profiling buoys of the AGRO float data set. The largest impact of the assimilation occurs at the first few analysis steps where both the model ocean topography and the steric height (i.e. temperature and salinity) are improved. The continued data assimilation over 1 year further improves the model state gradually. Deep ocean fields quickly adjust in a sustained manner: A model forecast initialized from the model state estimated by the data assimilation after only 1 month shows that improvements induced by the data assimilation remain in the model state for a long time. Even after 11 months, the modelled ocean topography and temperature fields show smaller errors than the model forecast without any data assimilation.

  2. Global carbon assimilation system using a local ensemble Kalman filter with multiple ecosystem models

    NASA Astrophysics Data System (ADS)

    Zhang, Shupeng; Yi, Xue; Zheng, Xiaogu; Chen, Zhuoqi; Dan, Bo; Zhang, Xuanze

    2014-11-01

    In this paper, a global carbon assimilation system (GCAS) is developed for optimizing the global land surface carbon flux at 1° resolution using multiple ecosystem models. In GCAS, three ecosystem models, Boreal Ecosystem Productivity Simulator, Carnegie-Ames-Stanford Approach, and Community Atmosphere Biosphere Land Exchange, produce the prior fluxes, and an atmospheric transport model, Model for OZone And Related chemical Tracers, is used to calculate atmospheric CO2 concentrations resulting from these prior fluxes. A local ensemble Kalman filter is developed to assimilate atmospheric CO2 data observed at 92 stations to optimize the carbon flux for six land regions, and the Bayesian model averaging method is implemented in GCAS to calculate the weighted average of the optimized fluxes based on individual ecosystem models. The weights for the models are found according to the closeness of their forecasted CO2 concentration to observation. Results of this study show that the model weights vary in time and space, allowing for an optimum utilization of different strengths of different ecosystem models. It is also demonstrated that spatial localization is an effective technique to avoid spurious optimization results for regions that are not well constrained by the atmospheric data. Based on the multimodel optimized flux from GCAS, we found that the average global terrestrial carbon sink over the 2002-2008 period is 2.97 ± 1.1 PgC yr-1, and the sinks are 0.88 ± 0.52, 0.27 ± 0.33, 0.67 ± 0.39, 0.90 ± 0.68, 0.21 ± 0.31, and 0.04 ± 0.08 PgC yr-1 for the North America, South America, Africa, Eurasia, Tropical Asia, and Australia, respectively. This multimodel GCAS can be used to improve global carbon cycle estimation.

  3. Development of an OSSE Framework for a Global Atmospheric Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Gelaro, Ronald; Errico, Ronald M.; Prive, N.

    2012-01-01

    Observing system simulation experiments (OSSEs) are powerful tools for estimating the usefulness of various configurations of envisioned observing systems and data assimilation techniques. Their utility stems from their being conducted in an entirely simulated context, utilizing simulated observations having simulated errors and drawn from a simulation of the earth's environment. Observations are generated by applying physically based algorithms to the simulated state, such as performed during data assimilation or using other appropriate algorithms. Adding realistic instrument plus representativeness errors, including their biases and correlations, can be critical for obtaining realistic assessments of the impact of a proposed observing system or analysis technique. If estimates of the expected accuracy of proposed observations are realistic, then the OSSE can be also used to learn how best to utilize the new information, accelerating its transition to operations once the real data are available. As with any inferences from simulations, however, it is first imperative that some baseline OSSEs are performed and well validated against corresponding results obtained with a real observing system. This talk provides an overview of, and highlights critical issues related to, the development of an OSSE framework for the tropospheric weather prediction component of the NASA GEOS-5 global atmospheric data assimilation system. The framework includes all existing observations having significant impact on short-term forecast skill. Its validity has been carefully assessed using a range of metrics that can be evaluated in both the OSSE and real contexts, including adjoint-based estimates of observation impact. A preliminary application to the Aeolus Doppler wind lidar mission, scheduled for launch by the European Space Agency in 2014, has also been investigated.

  4. AIRS Impact on Analysis and Forecast of an Extreme Rainfall Event (Indus River Valley 2010) with a Global Data Assimilation and Forecast System

    NASA Technical Reports Server (NTRS)

    Reale, O.; Lau, W. K.; Susskind, J.; Rosenberg, R.

    2011-01-01

    A set of data assimilation and forecast experiments are performed with the NASA Global data assimilation and forecast system GEOS-5, to compare the impact of different approaches towards assimilation of Advanced Infrared Spectrometer (AIRS) data on the precipitation analysis and forecast skill. The event chosen is an extreme rainfall episode which occurred in late July 11 2010 in Pakistan, causing massive floods along the Indus River Valley. Results show that the assimilation of quality-controlled AIRS temperature retrievals obtained under partly cloudy conditions produce better precipitation analyses, and substantially better 7-day forecasts, than assimilation of clear-sky radiances. The improvement of precipitation forecast skill up to 7 day is very significant in the tropics, and is caused by an improved representation, attributed to cloudy retrieval assimilation, of two contributing mechanisms: the low-level moisture advection, and the concentration of moisture over the area in the days preceding the precipitation peak.

  5. Global heating distributions for January 1979 calculated from GLA assimilated and simulated model-based datasets

    NASA Technical Reports Server (NTRS)

    Schaack, Todd K.; Lenzen, Allen J.; Johnson, Donald R.

    1991-01-01

    This study surveys the large-scale distribution of heating for January 1979 obtained from five sources of information. Through intercomparison of these distributions, with emphasis on satellite-derived information, an investigation is conducted into the global distribution of atmospheric heating and the impact of observations on the diagnostic estimates of heating derived from assimilated datasets. The results indicate a substantial impact of satellite information on diagnostic estimates of heating in regions where there is a scarcity of conventional observations. The addition of satellite data provides information on the atmosphere's temperature and wind structure that is important for estimation of the global distribution of heating and energy exchange.

  6. Description of atmospheric conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)

    NASA Astrophysics Data System (ADS)

    Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antiči'C, T.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Badescu, A. M.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; Benzvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caccianiga, B.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos Diaz, J.; Chudoba, J.; Clay, R. W.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Domenico, M.; de Donato, C.; de Jong, S. J.; de La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; de Mitri, I.; de Souza, V.; de Vries, K. D.; Del Peral, L.; Del Río, M.; Deligny, O.; Dembinski, H.; Dhital, N.; di Giulio, C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Fajardo Tapia, I.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gouffon, P.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lahurd, D.; Latronico, L.; Lauer, R.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mi'Canovi'C, S.; Micheletti, M. I.; Minaya, I. A.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-D'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Sima, O.; 'Smiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Tavera Ruiz, C. G.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Varela, E.; Vargascárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.

    2012-04-01

    Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargüe and averaged monthly models, the utility of the GDAS data is shown.

  7. Description of Atmospheric Conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abreu, P.; /Lisbon, IST; Aglietta, M.

    2012-01-01

    Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargue and averaged monthly models, the utility of the GDAS data is shown.

  8. All-Sky Microwave Imager Data Assimilation at NASA GMAO

    NASA Technical Reports Server (NTRS)

    Kim, Min-Jeong; Jin, Jianjun; El Akkraoui, Amal; McCarty, Will; Todling, Ricardo; Gu, Wei; Gelaro, Ron

    2017-01-01

    Efforts in all-sky satellite data assimilation at the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center have been focused on the development of GSI configurations to assimilate all-sky data from microwave imagers such as the GPM Microwave Imager (GMI) and Global Change Observation Mission-Water (GCOM-W) Advanced Microwave Scanning Radiometer 2 (AMSR-2). Electromagnetic characteristics associated with their wavelengths allow microwave imager data to be relatively transparent to atmospheric gases and thin ice clouds, and highly sensitive to precipitation. Therefore, GMAOs all-sky data assimilation efforts are primarily focused on utilizing these data in precipitating regions. The all-sky framework being tested at GMAO employs the GSI in a hybrid 4D-EnVar configuration of the Goddard Earth Observing System (GEOS) data assimilation system, which will be included in the next formal update of GEOS. This article provides an overview of the development of all-sky radiance assimilation in GEOS, including some performance metrics. In addition, various projects underway at GMAO designed to enhance the all-sky implementation will be introduced.

  9. Information flow in an atmospheric model and data assimilation

    NASA Astrophysics Data System (ADS)

    Yoon, Young-noh

    2011-12-01

    Weather forecasting consists of two processes, model integration and analysis (data assimilation). During the model integration, the state estimate produced by the analysis evolves to the next cycle time according to the atmospheric model to become the background estimate. The analysis then produces a new state estimate by combining the background state estimate with new observations, and the cycle repeats. In an ensemble Kalman filter, the probability distribution of the state estimate is represented by an ensemble of sample states, and the covariance matrix is calculated using the ensemble of sample states. We perform numerical experiments on toy atmospheric models introduced by Lorenz in 2005 to study the information flow in an atmospheric model in conjunction with ensemble Kalman filtering for data assimilation. This dissertation consists of two parts. The first part of this dissertation is about the propagation of information and the use of localization in ensemble Kalman filtering. If we can perform data assimilation locally by considering the observations and the state variables only near each grid point, then we can reduce the number of ensemble members necessary to cover the probability distribution of the state estimate, reducing the computational cost for the data assimilation and the model integration. Several localized versions of the ensemble Kalman filter have been proposed. Although tests applying such schemes have proven them to be extremely promising, a full basic understanding of the rationale and limitations of localization is currently lacking. We address these issues and elucidate the role played by chaotic wave dynamics in the propagation of information and the resulting impact on forecasts. The second part of this dissertation is about ensemble regional data assimilation using joint states. Assuming that we have a global model and a regional model of higher accuracy defined in a subregion inside the global region, we propose a data

  10. Assimilating All-Sky GPM Microwave Imager(GMI) Radiance Data in NASA GEOS-5 System for Global Cloud and Precipitation Analyses

    NASA Astrophysics Data System (ADS)

    Kim, M. J.; Jin, J.; McCarty, W.; Todling, R.; Holdaway, D. R.; Gelaro, R.

    2014-12-01

    The NASA Global Modeling and Assimilation Office (GMAO) works to maximize the impact of satellite observations in the analysis and prediction of climate and weather through integrated Earth system modeling and data assimilation. To achieve this goal, the GMAO undertakes model and assimilation development, generates products to support NASA instrument teams and the NASA Earth science program. Currently Atmospheric Data Assimilation System (ADAS) in the Goddard Earth Observing System Model, Version 5(GEOS-5) system combines millions of observations and short-term forecasts to determine the best estimate, or analysis, of the instantaneous atmospheric state. However, ADAS has been geared towards utilization of observations in clear sky conditions and the majority of satellite channel data affected by clouds are discarded. Microwave imager data from satellites can be a significant source of information for clouds and precipitation but the data are presently underutilized, as only surface rain rates from the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI) are assimilated with small weight assigned in the analysis process. As clouds and precipitation often occur in regions with high forecast sensitivity, improvements in the temperature, moisture, wind and cloud analysis of these regions are likely to contribute to significant gains in numerical weather prediction accuracy. This presentation is intended to give an overview of GMAO's recent progress in assimilating the all-sky GPM Microwave Imager (GMI) radiance data in GEOS-5 system. This includes development of various new components to assimilate cloud and precipitation affected data in addition to data in clear sky condition. New observation operators, quality controls, moisture control variables, observation and background error models, and a methodology to incorporate the linearlized moisture physics in the assimilation system are described. In addition preliminary results showing impacts of

  11. The Impact of Prior Biosphere Models in the Inversion of Global Terrestrial CO2 Fluxes by Assimilating OCO-2 Retrievals

    NASA Technical Reports Server (NTRS)

    Philip, Sajeev; Johnson, Matthew S.

    2018-01-01

    Atmospheric mixing ratios of carbon dioxide (CO2) are largely controlled by anthropogenic emissions and biospheric fluxes. The processes controlling terrestrial biosphere-atmosphere carbon exchange are currently not fully understood, resulting in terrestrial biospheric models having significant differences in the quantification of biospheric CO2 fluxes. Atmospheric transport models assimilating measured (in situ or space-borne) CO2 concentrations to estimate "top-down" fluxes, generally use these biospheric CO2 fluxes as a priori information. Most of the flux inversion estimates result in substantially different spatio-temporal posteriori estimates of regional and global biospheric CO2 fluxes. The Orbiting Carbon Observatory 2 (OCO-2) satellite mission dedicated to accurately measure column CO2 (XCO2) allows for an improved understanding of global biospheric CO2 fluxes. OCO-2 provides much-needed CO2 observations in data-limited regions facilitating better global and regional estimates of "top-down" CO2 fluxes through inversion model simulations. The specific objectives of our research are to: 1) conduct GEOS-Chem 4D-Var assimilation of OCO-2 observations, using several state-of-the-science biospheric CO2 flux models as a priori information, to better constrain terrestrial CO2 fluxes, and 2) quantify the impact of different biospheric model prior fluxes on OCO-2-assimilated a posteriori CO2 flux estimates. Here we present our assessment of the importance of these a priori fluxes by conducting Observing System Simulation Experiments (OSSE) using simulated OCO-2 observations with known "true" fluxes.

  12. Initializing carbon cycle predictions from the Community Land Model by assimilating global biomass observations

    NASA Astrophysics Data System (ADS)

    Fox, A. M.; Hoar, T. J.; Smith, W. K.; Moore, D. J.

    2017-12-01

    The locations and longevity of terrestrial carbon sinks remain uncertain, however it is clear that in order to predict long-term climate changes the role of the biosphere in surface energy and carbon balance must be understood and incorporated into earth system models (ESMs). Aboveground biomass, the amount of carbon stored in vegetation, is a key component of the terrestrial carbon cycle, representing the balance of uptake through gross primary productivity (GPP), losses from respiration, senescence and mortality over hundreds of years. The best predictions of current and future land-atmosphere fluxes are likely from the integration of process-based knowledge contained in models and information from observations of changes in carbon stocks using data assimilation (DA). By exploiting long times series, it is possible to accurately detect variability and change in carbon cycle dynamics through monitoring ecosystem states, for example biomass derived from vegetation optical depth (VOD), and use this information to initialize models before making predictions. To make maximum use of information about the current state of global ecosystems when using models we have developed a system that combines the Community Land Model (CLM) with the Data Assimilation Research Testbed (DART), a community tool for ensemble DA. This DA system is highly innovative in its complexity, completeness and capabilities. Here we described a series of activities, using both Observation System Simulation Experiments (OSSEs) and real observations, that have allowed us to quantify the potential impact of assimilating VOD data into CLM-DART on future land-atmosphere fluxes. VOD data are particularly suitable to use in this activity due to their long temporal coverage and appropriate scale when combined with CLM, but their absolute values rely on many assumptions. Therefore, we have had to assess the implications of the VOD retrieval algorithms, with an emphasis on detecting uncertainty due to

  13. Data Assimilation Results from PLASMON

    NASA Astrophysics Data System (ADS)

    Jorgensen, A. M.; Lichtenberger, J.; Duffy, J.; Friedel, R. H.; Clilverd, M.; Heilig, B.; Vellante, M.; Manninen, J. K.; Raita, T.; Rodger, C. J.; Collier, A.; Reda, J.; Holzworth, R. H.; Ober, D. M.; Boudouridis, A.; Zesta, E.; Chi, P. J.

    2013-12-01

    VLF and magnetometer observations can be used to remotely sense the plasmasphere. VLF whistler waves can be used to measure the electron density and magnetic Field Line Resonance (FLR) measurements can be used to measure the mass density. In principle it is then possible to remotely map the plasmasphere with a network of ground-based stations which are also less expensive and more permanent than satellites. The PLASMON project, funded by the EU FP-7 program, is in the process of doing just this. A large number of ground-based observations will be input into a data assimilative framework which models the plasmasphere structure and dynamics. The data assimilation framework combines the Ensemble Kalman Filter with the Dynamic Global Core Plasma Model. In this presentation we will describe the plasmasphere model, the data assimilation approach that we have taken, PLASMON data and data assimilation results for specific events.

  14. A global carbon assimilation system based on a dual optimization method

    NASA Astrophysics Data System (ADS)

    Zheng, H.; Li, Y.; Chen, J. M.; Wang, T.; Huang, Q.; Huang, W. X.; Li, S. M.; Yuan, W. P.; Zheng, X.; Zhang, S. P.; Chen, Z. Q.; Jiang, F.

    2014-10-01

    Ecological models are effective tools to simulate the distribution of global carbon sources and sinks. However, these models often suffer from substantial biases due to inaccurate simulations of complex ecological processes. We introduce a set of scaling factors (parameters) to an ecological model on the basis of plant functional type (PFT) and latitudes. A global carbon assimilation system (GCAS-DOM) is developed by employing a Dual Optimization Method (DOM) to invert the time-dependent ecological model parameter state and the net carbon flux state simultaneously. We use GCAS-DOM to estimate the global distribution of the CO2 flux on 1° ×1° grid cells for the period from 2000 to 2007. Results show that land and ocean absorb -3.69 ± 0.49 Pg C year-1 and -1.91 ± 0.16 Pg C year-1, respectively. North America, Europe and China contribut -0.96 ± 0.15 Pg C year-1, -0.42 ± 0.08 Pg C year-1 and -0.21 ± 0.28 Pg C year-1, respectively. The uncertainties in the flux after optimization by GCAS-DOM have been remarkably reduced by more than 60%. Through parameter optimization, GCAS-DOM can provide improved estimates of the carbon flux for each PFT. Coniferous forest (-0.97 ± 0.27 Pg C year-1) is the largest contributor to the global carbon sink. Fluxes of once-dominant deciduous forest generated by BEPS is reduced to -0.79 ± 0.22 Pg C year-1, being the third largest carbon sink.

  15. A global carbon assimilation system based on a dual optimization method

    NASA Astrophysics Data System (ADS)

    Zheng, H.; Li, Y.; Chen, J. M.; Wang, T.; Huang, Q.; Huang, W. X.; Wang, L. H.; Li, S. M.; Yuan, W. P.; Zheng, X.; Zhang, S. P.; Chen, Z. Q.; Jiang, F.

    2015-02-01

    Ecological models are effective tools for simulating the distribution of global carbon sources and sinks. However, these models often suffer from substantial biases due to inaccurate simulations of complex ecological processes. We introduce a set of scaling factors (parameters) to an ecological model on the basis of plant functional type (PFT) and latitudes. A global carbon assimilation system (GCAS-DOM) is developed by employing a dual optimization method (DOM) to invert the time-dependent ecological model parameter state and the net carbon flux state simultaneously. We use GCAS-DOM to estimate the global distribution of the CO2 flux on 1° × 1° grid cells for the period from 2001 to 2007. Results show that land and ocean absorb -3.63 ± 0.50 and -1.82 ± 0.16 Pg C yr-1, respectively. North America, Europe and China contribute -0.98 ± 0.15, -0.42 ± 0.08 and -0.20 ± 0.29 Pg C yr-1, respectively. The uncertainties in the flux after optimization by GCAS-DOM have been remarkably reduced by more than 60%. Through parameter optimization, GCAS-DOM can provide improved estimates of the carbon flux for each PFT. Coniferous forest (-0.97 ± 0.27 Pg C yr-1) is the largest contributor to the global carbon sink. Fluxes of once-dominant deciduous forest generated by the Boreal Ecosystems Productivity Simulator (BEPS) are reduced to -0.78 ± 0.23 Pg C yr-1, the third largest carbon sink.

  16. Assimilation of GNSS radio occultation observations in GRAPES

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Xue, J.

    2014-07-01

    This paper reviews the development of the global navigation satellite system (GNSS) radio occultation (RO) observations assimilation in the Global/Regional Assimilation and PrEdiction System (GRAPES) of China Meteorological Administration, including the choice of data to assimilate, the data quality control, the observation operator, the tuning of observation error, and the results of the observation impact experiments. The results indicate that RO data have a significantly positive effect on analysis and forecast at all ranges in GRAPES not only in the Southern Hemisphere where conventional observations are lacking but also in the Northern Hemisphere where data are rich. It is noted that a relatively simple assimilation and forecast system in which only the conventional and RO observation are assimilated still has analysis and forecast skill even after nine months integration, and the analysis difference between both hemispheres is gradually reduced with height when compared with NCEP (National Centers for Enviromental Prediction) analysis. Finally, as a result of the new onboard payload of the Chinese FengYun-3 (FY-3) satellites, the research status of the RO of FY-3 satellites is also presented.

  17. Tropospheric and stratospheric ozone from assimilation of Aura data

    NASA Technical Reports Server (NTRS)

    Stajner, I.; Wargan, K.; Chang, L.-P.; Hayashi, H.; Pawwson, S.; Froidevaux, L.; Livesey, N.; Bhartia, P. K.

    2006-01-01

    Ozone is an atmospheric trace gas with multiple impacts on the environment. Global ozone fields are needed for air quality predictions, estimation of the ultraviolet radiation reaching the surface, climate-radiation studies, and may also have an impact on longer-term weather predictions. We estimate global ozone fields in the stratosphere and troposphere by combining the data from EOS Aura satellite with an ozone model using data assimilation. Ozone exhibits a large temporal variability in the lower stratosphere. Our previous work showed that assimilation of satellite data from limb-sounding geometry helps constrain ozone profiles in that region. We assimilated ozone data from the Aura Microwave Limb Sounder (MLS) and the Ozone Monitoring Instrument (OMI) into the ozone system at NASA's Global Modeling and Assimilation Office (GMAO). Ozone is transported within a general circulation model (GCM) which includes parameterizations for stratospheric photochemistry, tropospheric chemistry, and a simple scheme for heterogeneous ozone loss. The focus of this study is on the representation of ozone in the lower stratosphere and tropospheric ozone columns. We plan to extend studies of tropospheric ozone distribution through assimilation of ozone data from the Tropospheric Emission Spectrometer (TES). Comparisons with ozone sondes and occultation data show that assimilation of Aura data reproduces ozone gradients and variability in the lower stratosphere well. We proceed by separating the contributions to temporal changes in the ozone field into those that are due to the model and those that are due to the assimilation of Aura data. The impacts of Aura data are illustrated and their role in the representation of ozone variability in the lower stratosphere and troposphere is shown.

  18. Heat balance statistics derived from four-dimensional assimilations with a global circulation model

    NASA Technical Reports Server (NTRS)

    Schubert, S. D.; Herman, G. F.

    1981-01-01

    The reported investigation was conducted to develop a reliable procedure for obtaining the diabatic and vertical terms required for atmospheric heat balance studies. The method developed employs a four-dimensional assimilation mode in connection with the general circulation model of NASA's Goddard Laboratory for Atmospheric Sciences. The initial analysis was conducted with data obtained in connection with the 1976 Data Systems Test. On the basis of the results of the investigation, it appears possible to use the model's observationally constrained diagnostics to provide estimates of the global distribution of virtually all of the quantities which are needed to compute the atmosphere's heat and energy balance.

  19. Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments

    NASA Astrophysics Data System (ADS)

    van Peet, Jacob C. A.; van der A, Ronald J.; Kelder, Hennie M.; Levelt, Pieternel F.

    2018-02-01

    A three-dimensional global ozone distribution has been derived from assimilation of ozone profiles that were observed by satellites. By simultaneous assimilation of ozone profiles retrieved from the nadir looking satellite instruments Global Ozone Monitoring Experiment 2 (GOME-2) and Ozone Monitoring Instrument (OMI), which measure the atmosphere at different times of the day, the quality of the derived atmospheric ozone field has been improved. The assimilation is using an extended Kalman filter in which chemical transport model TM5 has been used for the forecast. The combined assimilation of both GOME-2 and OMI improves upon the assimilation results of a single sensor. The new assimilation system has been demonstrated by processing 4 years of data from 2008 to 2011. Validation of the assimilation output by comparison with sondes shows that biases vary between -5 and +10 % between the surface and 100 hPa. The biases for the combined assimilation vary between -3 and +3 % in the region between 100 and 10 hPa where GOME-2 and OMI are most sensitive. This is a strong improvement compared to direct retrievals of ozone profiles from satellite observations.

  20. The Global Modeling and Assimilation Office (GMAO) 4d-Var and its Adjoint-based Tools

    NASA Technical Reports Server (NTRS)

    Todling, Ricardo; Tremolet, Yannick

    2008-01-01

    The fifth generation of the Goddard Earth Observing System (GEOS-5) Data Assimilation System (DAS) is a 3d-var system that uses the Grid-point Statistical Interpolation (GSI) system developed in collaboration with NCEP, and a general circulation model developed at Goddard, that includes the finite-volume hydrodynamics of GEOS-4 wrapped in the Earth System Modeling Framework and physical packages tuned to provide a reliable hydrological cycle for the integration of the Modern Era Retrospective-analysis for Research and Applications (MERRA). This MERRA system is essentially complete and the next generation GEOS is under intense development. A prototype next generation system is now complete and has been producing preliminary results. This prototype system replaces the GSI-based Incremental Analysis Update procedure with a GSI-based 4d-var which uses the adjoint of the finite-volume hydrodynamics of GEOS-4 together with a vertical diffusing scheme for simplified physics. As part of this development we have kept the GEOS-5 IAU procedure as an option and have added the capability to experiment with a First Guess at the Appropriate Time (FGAT) procedure, thus allowing for at least three modes of running the data assimilation experiments. The prototype system is a large extension of GEOS-5 as it also includes various adjoint-based tools, namely, a forecast sensitivity tool, a singular vector tool, and an observation impact tool, that combines the model sensitivity tool with a GSI-based adjoint tool. These features bring the global data assimilation effort at Goddard up to date with technologies used in data assimilation systems at major meteorological centers elsewhere. Various aspects of the next generation GEOS will be discussed during the presentation at the Workshop, and preliminary results will illustrate the discussion.

  1. Indices and Dynamics of Global Hydroclimate Over the Past Millennium from Data Assimilation

    NASA Astrophysics Data System (ADS)

    Steiger, N. J.; Smerdon, J. E.

    2017-12-01

    Reconstructions based on data assimilation (DA) are at the forefront of model-data syntheses in that such reconstructions optimally fuse proxy data with climate models. DA-based paleoclimate reconstructions have the benefit of being physically-consistent across the reconstructed climate variables and are capable of providing dynamical information about past climate phenomena. Here we use a new implementation of DA, that includes updated proxy system models and climate model bias correction procedures, to reconstruct global hydroclimate on seasonal and annual timescales over the last millennium. This new global hydroclimate product includes reconstructions of the Palmer Drought Severity Index, the Standardized Precipitation Evapotranspiration Index, and global surface temperature along with dynamical variables including the Nino 3.4 index, the latitudinal location of the intertropical convergence zone, and an index of the Atlantic Multidecadal Oscillation. Here we present a validation of the reconstruction product and also elucidate the causes of severe drought in North America and in equatorial Africa. Specifically, we explore the connection between droughts in North America and modes of ocean variability in the Pacific and Atlantic oceans. We also link drought over equatorial Africa to shifts of the intertropical convergence zone and modes of ocean variability.

  2. Global Soil Moisture Estimation from L-Band Satellite Data: The Impact of Radiative Transfer Modeling in Assimilation and Retrieval Systems

    NASA Technical Reports Server (NTRS)

    De Lannoy, Gabrielle; Reichle, Rolf; Gruber, Alexander; Bechtold, Michel; Quets, Jan; Vrugt, Jasper; Wigneron, Jean-Pierre

    2018-01-01

    The SMOS and SMAP missions have collected a wealth of global L-band Brightness temperature (Tb) observations. The retrieval of surface Soil moisture estimates, and the estimation of other geophysical Variables, such as root-zone soil moisture and temperature, via data Assimilation into land surface models largely depends on accurate Radiative transfer modeling (RTM). This presentation will focus on various configuration aspects of the RTM (i) for the inversion of SMOS Tb to surface soil moisture, and (ii) for the forward modeling as part of a SMOS Tb data assimilation System to estimate a consistent set of geophysical land surface Variables, using the GEOS-5 Catchment Land Surface Model.

  3. Development Of A Data Assimilation Capability For RAPID

    NASA Astrophysics Data System (ADS)

    Emery, C. M.; David, C. H.; Turmon, M.; Hobbs, J.; Allen, G. H.; Famiglietti, J. S.

    2017-12-01

    The global decline of in situ observations associated with the increasing ability to monitor surface water from space motivates the creation of data assimilation algorithms that merge computer models and space-based observations to produce consistent estimates of terrestrial hydrology that fill the spatiotemporal gaps in observations. RAPID is a routing model based on the Muskingum method that is capable of estimating river streamflow over large scales with a relatively short computing time. This model only requires limited inputs: a reach-based river network, and lateral surface and subsurface flow into the rivers. The relatively simple model physics imply that RAPID simulations could be significantly improved by including a data assimilation capability. Here we present the early developments of such data assimilation approach into RAPID. Given the linear and matrix-based structure of the model, we chose to apply a direct Kalman filter, hence allowing for the preservation of high computational speed. We correct the simulated streamflows by assimilating streamflow observations and our early results demonstrate the feasibility of the approach. Additionally, the use of in situ gauges at continental scales motivates the application of our new data assimilation scheme to altimetry measurements from existing (e.g. EnviSat, Jason 2) and upcoming satellite missions (e.g. SWOT), and ultimately apply the scheme globally.

  4. Ensemble-Based Assimilation of Aerosol Observations in GEOS-5

    NASA Technical Reports Server (NTRS)

    Buchard, V.; Da Silva, A.

    2016-01-01

    MERRA-2 is the latest Aerosol Reanalysis produced at NASA's Global Modeling Assimilation Office (GMAO) from 1979 to present. This reanalysis is based on a version of the GEOS-5 model radiatively coupled to GOCART aerosols and includes assimilation of bias corrected Aerosol Optical Depth (AOD) from AVHRR over ocean, MODIS sensors on both Terra and Aqua satellites, MISR over bright surfaces and AERONET data. In order to assimilate lidar profiles of aerosols, we are updating the aerosol component of our assimilation system to an Ensemble Kalman Filter (EnKF) type of scheme using ensembles generated routinely by the meteorological assimilation. Following the work performed with the first NASA's aerosol reanalysis (MERRAero), we first validate the vertical structure of MERRA-2 aerosol assimilated fields using CALIOP data over regions of particular interest during 2008.

  5. Empowering Geoscience with Improved Data Assimilation Using the Data Assimilation Research Testbed "Manhattan" Release.

    NASA Astrophysics Data System (ADS)

    Raeder, K.; Hoar, T. J.; Anderson, J. L.; Collins, N.; Hendricks, J.; Kershaw, H.; Ha, S.; Snyder, C.; Skamarock, W. C.; Mizzi, A. P.; Liu, H.; Liu, J.; Pedatella, N. M.; Karspeck, A. R.; Karol, S. I.; Bitz, C. M.; Zhang, Y.

    2017-12-01

    The capabilities of the Data Assimilation Research Testbed (DART) at NCAR have been significantly expanded with the recent "Manhattan" release. DART is an ensemble Kalman filter based suite of tools, which enables researchers to use data assimilation (DA) without first becoming DA experts. Highlights: significant improvement in efficient ensemble DA for very large models on thousands of processors, direct read and write of model state files in parallel, more control of the DA output for finer-grained analysis, new model interfaces which are useful to a variety of geophysical researchers, new observation forward operators and the ability to use precomputed forward operators from the forecast model. The new model interfaces and example applications include the following: MPAS-A; Model for Prediction Across Scales - Atmosphere is a global, nonhydrostatic, variable-resolution mesh atmospheric model, which facilitates multi-scale analysis and forecasting. The absence of distinct subdomains eliminates problems associated with subdomain boundaries. It demonstrates the ability to consistently produce higher-quality analyses than coarse, uniform meshes do. WRF-Chem; Weather Research and Forecasting + (MOZART) Chemistry model assimilates observations from FRAPPÉ (Front Range Air Pollution and Photochemistry Experiment). WACCM-X; Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension assimilates observations of electron density to investigate sudden stratospheric warming. CESM (weakly) coupled assimilation; NCAR's Community Earth System Model is used for assimilation of atmospheric and oceanic observations into their respective components using coupled atmosphere+land+ocean+sea+ice forecasts. CESM2.0; Assimilation in the atmospheric component (CAM, WACCM) of the newly released version is supported. This version contains new and extensively updated components and software environment. CICE; Los Alamos sea ice model (in CESM) is used to assimilate

  6. Evaluation of the tropical variability from the Beijing Climate Center's real-time operational global Ocean Data Assimilation System

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Chen, Mengyan; Zhuang, Wei; Xu, Fanghua; Zheng, Fei; Wu, Tongwen; Wang, Xin

    2016-02-01

    The second-generation Global Ocean Data Assimilation System of the Beijing Climate Center (BCC GODAS2.0) has been run daily in a pre-operational mode. It spans the period 1990 to the present day. The goal of this paper is to introduce the main components and to evaluate BCC GODAS2.0 for the user community. BCC GODAS2.0 consists of an observational data preprocess, ocean data quality control system, a three-dimensional variational (3DVAR) data assimilation, and global ocean circulation model [Modular Ocean Model 4 (MOM4)]. MOM4 is driven by six-hourly fluxes from the National Centers for Environmental Prediction. Satellite altimetry data, SST, and in-situ temperature and salinity data are assimilated in real time. The monthly results from the BCC GODAS2.0 reanalysis are compared and assessed with observations for 1990-2011. The climatology of the mixed layer depth of BCC GODAS2.0 is generally in agreement with that ofWorld Ocean Atlas 2001. The modeled sea level variations in the tropical Pacific are consistent with observations from satellite altimetry on interannual to decadal time scales. Performances in predicting variations in the SST using BCC GODAS2.0 are evaluated. The standard deviation of the SST in BCC GODAS2.0 agrees well with observations in the tropical Pacific. BCC GODAS2.0 is able to capture the main features of El Ni˜no Modoki I and Modoki II, which have different impacts on rainfall in southern China. In addition, the relationships between the Indian Ocean and the two types of El Ni˜no Modoki are also reproduced.

  7. The GEOS Ozone Data Assimilation System: Specification of Error Statistics

    NASA Technical Reports Server (NTRS)

    Stajner, Ivanka; Riishojgaard, Lars Peter; Rood, Richard B.

    2000-01-01

    A global three-dimensional ozone data assimilation system has been developed at the Data Assimilation Office of the NASA/Goddard Space Flight Center. The Total Ozone Mapping Spectrometer (TOMS) total ozone and the Solar Backscatter Ultraviolet (SBUV) or (SBUV/2) partial ozone profile observations are assimilated. The assimilation, into an off-line ozone transport model, is done using the global Physical-space Statistical Analysis Scheme (PSAS). This system became operational in December 1999. A detailed description of the statistical analysis scheme, and in particular, the forecast and observation error covariance models is given. A new global anisotropic horizontal forecast error correlation model accounts for a varying distribution of observations with latitude. Correlations are largest in the zonal direction in the tropics where data is sparse. Forecast error variance model is proportional to the ozone field. The forecast error covariance parameters were determined by maximum likelihood estimation. The error covariance models are validated using x squared statistics. The analyzed ozone fields in the winter 1992 are validated against independent observations from ozone sondes and HALOE. There is better than 10% agreement between mean Halogen Occultation Experiment (HALOE) and analysis fields between 70 and 0.2 hPa. The global root-mean-square (RMS) difference between TOMS observed and forecast values is less than 4%. The global RMS difference between SBUV observed and analyzed ozone between 50 and 3 hPa is less than 15%.

  8. Estimating the global terrestrial hydrologic cycle through modeling, remote sensing, and data assimilation

    NASA Astrophysics Data System (ADS)

    Pan, Ming; Troy, Tara; Sahoo, Alok; Sheffield, Justin; Wood, Eric

    2010-05-01

    Documentation of the water cycle and its evolution over time is a primary scientific goal of the Global Energy and Water Cycle Experiment (GEWEX) and fundamental to assessing global change impacts. In developed countries, observation systems that include in-situ, remote sensing and modeled data can provide long-term, consistent and generally high quality datasets of water cycle variables. The export of these technologies to less developed regions has been rare, but it is these regions where information on water availability and change is probably most needed in the face of regional environmental change due to climate, land use and water management. In these data sparse regions, in situ data alone are insufficient to develop a comprehensive picture of how the water cycle is changing, and strategies that merge in-situ, model and satellite observations within a framework that results in consistent water cycle records is essential. Such an approach is envisaged by the Global Earth Observing System of Systems (GOESS), but has yet to be applied. The goal of this study is to quantify the variation and changes in the global water cycle over the past 50 years. We evaluate the global water cycle using a variety of independent large-scale datasets of hydrologic variables that are used to bridge the gap between sparse in-situ observations, including remote-sensing based retrievals, observation-forced hydrologic modeling, and weather model reanalyses. A data assimilation framework that blends these disparate sources of information together in a consistent fashion with attention to budget closure is applied to make best estimates of the global water cycle and its variation. The framework consists of a constrained Kalman filter applied to the water budget equation. With imperfect estimates of the water budget components, the equation additionally has an error residual term that is redistributed across the budget components using error statistics, which are estimated from the

  9. Evaluation of the Global Land Data Assimilation System (GLDAS) air temperature data products

    USGS Publications Warehouse

    Ji, Lei; Senay, Gabriel B.; Verdin, James P.

    2015-01-01

    There is a high demand for agrohydrologic models to use gridded near-surface air temperature data as the model input for estimating regional and global water budgets and cycles. The Global Land Data Assimilation System (GLDAS) developed by combining simulation models with observations provides a long-term gridded meteorological dataset at the global scale. However, the GLDAS air temperature products have not been comprehensively evaluated, although the accuracy of the products was assessed in limited areas. In this study, the daily 0.25° resolution GLDAS air temperature data are compared with two reference datasets: 1) 1-km-resolution gridded Daymet data (2002 and 2010) for the conterminous United States and 2) global meteorological observations (2000–11) archived from the Global Historical Climatology Network (GHCN). The comparison of the GLDAS datasets with the GHCN datasets, including 13 511 weather stations, indicates a fairly high accuracy of the GLDAS data for daily temperature. The quality of the GLDAS air temperature data, however, is not always consistent in different regions of the world; for example, some areas in Africa and South America show relatively low accuracy. Spatial and temporal analyses reveal a high agreement between GLDAS and Daymet daily air temperature datasets, although spatial details in high mountainous areas are not sufficiently estimated by the GLDAS data. The evaluation of the GLDAS data demonstrates that the air temperature estimates are generally accurate, but caution should be taken when the data are used in mountainous areas or places with sparse weather stations.

  10. SMAP Data Assimilation at the GMAO

    NASA Technical Reports Server (NTRS)

    Reichle, R.; De Lannoy, G.; Liu, Q.; Ardizzone, J.

    2016-01-01

    The NASA Soil Moisture Active Passive (SMAP) mission has been providing L-band (1.4 GHz) passive microwave brightness temperature (Tb) observations since April 2015. These observations are sensitive to surface(0-5 cm) soil moisture. Several of the key applications targeted by SMAP, however, require knowledge of deeper-layer, root zone (0-100 cm) soil moisture, which is not directly measured by SMAP. The NASA Global Modeling and Assimilation Office (GMAO) contributes to SMAP by providing Level 4 data, including the Level 4 Surface and Root Zone Soil Moisture(L4_SM) product, which is based on the assimilation of SMAP Tb observations in the ensemble-based NASA GEOS-5 land surface data assimilation system. The L4_SM product offers global data every three hours at 9 km resolution, thereby interpolating and extrapolating the coarser- scale (40 km) SMAP observations in time and in space (both horizontally and vertically). Since October 31, 2015, beta-version L4_SM data have been available to the public from the National Snow and Ice Data Center for the period March 31, 2015, to near present, with a mean latency of approx. 2.5 days.

  11. Technical Report Series on Global Modeling and Data Assimilation. Volume 13; Interannual Variability and Potential Predictability in Reanalysis Products

    NASA Technical Reports Server (NTRS)

    Min, Wei; Schubert, Siegfried D.; Suarez, Max J. (Editor)

    1997-01-01

    The Data Assimilation Office (DAO) at Goddard Space Flight Center and the National Center for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) have produced multi-year global assimilations of historical data employing fixed analysis systems. These "reanalysis" products are ideally suited for studying short-term climatic variations. The availability of multiple reanalysis products also provides the opportunity to examine the uncertainty in the reanalysis data. The purpose of this document is to provide an updated estimate of seasonal and interannual variability based on the DAO and NCEP/NCAR reanalyses for the 15-year period 1980-1995. Intercomparisons of the seasonal means and their interannual variations are presented for a variety of prognostic and diagnostic fields. In addition, atmospheric potential predictability is re-examined employing selected DAO reanalysis variables.

  12. Estimating Evapotranspiration with Land Data Assimilation Systems

    NASA Technical Reports Server (NTRS)

    Peters-Lidard, C. D.; Kumar, S. V.; Mocko, D. M.; Tian, Y.

    2011-01-01

    Advancements in both land surface models (LSM) and land surface data assimilation, especially over the last decade, have substantially advanced the ability of land data assimilation systems (LDAS) to estimate evapotranspiration (ET). This article provides a historical perspective on international LSM intercomparison efforts and the development of LDAS systems, both of which have improved LSM ET skill. In addition, an assessment of ET estimates for current LDAS systems is provided along with current research that demonstrates improvement in LSM ET estimates due to assimilating satellite-based soil moisture products. Using the Ensemble Kalman Filter in the Land Information System, we assimilate both NASA and Land Parameter Retrieval Model (LPRM) soil moisture products into the Noah LSM Version 3.2 with the North American LDAS phase 2 (NLDAS-2) forcing to mimic the NLDAS-2 configuration. Through comparisons with two global reference ET products, one based on interpolated flux tower data and one from a new satellite ET algorithm, over the NLDAS2 domain, we demonstrate improvement in ET estimates only when assimilating the LPRM soil moisture product.

  13. Assimilation of satellite color observations in a coupled ocean GCM-ecosystem model

    NASA Technical Reports Server (NTRS)

    Sarmiento, Jorge L.

    1992-01-01

    Monthly average coastal zone color scanner (CZCS) estimates of chlorophyll concentration were assimilated into an ocean global circulation model(GCM) containing a simple model of the pelagic ecosystem. The assimilation was performed in the simplest possible manner, to allow the assessment of whether there were major problems with the ecosystem model or with the assimilation procedure. The current ecosystem model performed well in some regions, but failed in others to assimilate chlorophyll estimates without disrupting important ecosystem properties. This experiment gave insight into those properties of the ecosystem model that must be changed to allow data assimilation to be generally successful, while raising other important issues about the assimilation procedure.

  14. Land Surface Data Assimilation

    NASA Astrophysics Data System (ADS)

    Houser, P. R.

    2012-12-01

    Information about land surface water, energy and carbon conditions is of critical importance to real-world applications such as agricultural production, water resource management, flood prediction, water supply, weather and climate forecasting, and environmental preservation. While ground-based observational networks are improving, the only practical way to observe these land surface states on continental to global scales is via satellites. Remote sensing can make spatially comprehensive measurements of various components of the terrestrial system, but it cannot provide information on the entire system (e.g. evaporation), and the observations represent only an instant in time. Land surface process models may be used to predict temporal and spatial terrestrial dynamics, but these predictions are often poor, due to model initialization, parameter and forcing, and physics errors. Therefore, an attractive prospect is to combine the strengths of land surface models and observations (and minimize the weaknesses) to provide a superior terrestrial state estimate. This is the goal of land surface data assimilation. Data Assimilation combines observations into a dynamical model, using the model's equations to provide time continuity and coupling between the estimated fields. Land surface data assimilation aims to utilize both our land surface process knowledge, as embodied in a land surface model, and information that can be gained from observations. Both model predictions and observations are imperfect and we wish to use both synergistically to obtain a more accurate result. Moreover, both contain different kinds of information, that when used together, provide an accuracy level that cannot be obtained individually. Model biases can be mitigated using a complementary calibration and parameterization process. Limited point measurements are often used to calibrate the model(s) and validate the assimilation results. This presentation will provide a brief background on land

  15. Assimilation of Quality Controlled AIRS Temperature Profiles using the NCEP GFS

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste; Iredell, Lena; Rosenberg, Robert

    2013-01-01

    We have previously conducted a number of data assimilation experiments using AIRS Version-5 quality controlled temperature profiles as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The data assimilation and forecast system we used was the Goddard Earth Observing System Model , Version-5 (GEOS-5) Data Assimilation System (DAS), which represents a combination of the NASA GEOS-5 forecast model with the National Centers for Environmental Prediction (NCEP) operational Grid Point Statistical Interpolation (GSI) global analysis scheme. All analyses and forecasts were run at a 0.5deg x 0.625deg spatial resolution. Data assimilation experiments were conducted in four different seasons, each in a different year. Three different sets of data assimilation experiments were run during each time period: Control; AIRS T(p); and AIRS Radiance. In the "Control" analysis, all the data used operationally by NCEP was assimilated, but no AIRS data was assimilated. Radiances from the Aqua AMSU-A instrument were also assimilated operationally by NCEP and are included in the "Control". The AIRS Radiance assimilation adds AIRS observed radiance observations for a select set of channels to the data set being assimilated, as done operationally by NCEP. In the AIRS T(p) assimilation, all information used in the Control was assimilated as well as Quality Controlled AIRS Version-5 temperature profiles, i.e., AIRS T(p) information was substituted for AIRS radiance information. The AIRS Version-5 temperature profiles were presented to the GSI analysis as rawinsonde profiles, assimilated down to a case-by-case appropriate pressure level p(sub best) determined using the Quality Control procedure. Version-5 also determines case-by-case, level-by-level error estimates of the temperature profiles, which were used as the uncertainty of each temperature measurement. These experiments using GEOS-5 have shown that forecasts

  16. Customer-oriented Data Formats and Services for Global Land Data Assimilation System (GLDAS) Products at the NASA GES DISC

    NASA Technical Reports Server (NTRS)

    Fang, Hongliang; Beaudoing, Hiroko; Rodell, Matthew; Teng, BIll; Vollmer, Bruce

    2008-01-01

    The Global Land Data Assimilation System (GLDAS) is generating a series of land surface state (e.g., soil moisture and surface temperature) and flux (e.g., evaporation and sensible heat flux) products simulated by four land surface Models (CLM, Mosaic, Noah and VIC). These products are now accessible at the Hydrology Data and Information Services Center (HDISC), a component of NASA Goddard Earth Sciences Data and Information Services Center (GESDISC).

  17. Optimization of Terrestrial Ecosystem Model Parameters Using Atmospheric CO2 Concentration Data With the Global Carbon Assimilation System (GCAS)

    NASA Astrophysics Data System (ADS)

    Chen, Zhuoqi; Chen, Jing M.; Zhang, Shupeng; Zheng, Xiaogu; Ju, Weiming; Mo, Gang; Lu, Xiaoliang

    2017-12-01

    The Global Carbon Assimilation System that assimilates ground-based atmospheric CO2 data is used to estimate several key parameters in a terrestrial ecosystem model for the purpose of improving carbon cycle simulation. The optimized parameters are the leaf maximum carboxylation rate at 25°C (Vmax25), the temperature sensitivity of ecosystem respiration (Q10), and the soil carbon pool size. The optimization is performed at the global scale at 1° resolution for the period from 2002 to 2008. The results indicate that vegetation from tropical zones has lower Vmax25 values than vegetation in temperate regions. Relatively high values of Q10 are derived over high/midlatitude regions. Both Vmax25 and Q10 exhibit pronounced seasonal variations at middle-high latitudes. The maxima in Vmax25 occur during growing seasons, while the minima appear during nongrowing seasons. Q10 values decrease with increasing temperature. The seasonal variabilities of Vmax25 and Q10 are larger at higher latitudes. Optimized Vmax25 and Q10 show little seasonal variabilities at tropical regions. The seasonal variabilities of Vmax25 are consistent with the variabilities of LAI for evergreen conifers and broadleaf evergreen forests. Variations in leaf nitrogen and leaf chlorophyll contents may partly explain the variations in Vmax25. The spatial distribution of the total soil carbon pool size after optimization is compared favorably with the gridded Global Soil Data Set for Earth System. The results also suggest that atmospheric CO2 data are a source of information that can be tapped to gain spatially and temporally meaningful information for key ecosystem parameters that are representative at the regional and global scales.

  18. Optimization of terrestrial ecosystem model parameters using atmospheric CO2 concentration data with a global carbon assimilation system (GCAS)

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Chen, J.; Zhang, S.; Zheng, X.; Shangguan, W.

    2016-12-01

    A global carbon assimilation system (GCAS) that assimilates ground-based atmospheric CO2 data is used to estimate several key parameters in a terrestrial ecosystem model for the purpose of improving carbon cycle simulation. The optimized parameters are the leaf maximum carboxylation rate at 25° (Vmax25 ), the temperature sensitivity of ecosystem respiration (Q10), and the soil carbon pool size. The optimization is performed at the global scale at 1°resolution for the period from 2002 to 2008. Optimized multi-year average Vmax25 values range from 49 to 51 μmol m-2 s-1 over most regions of world. Vegetation from tropical zones has relatively lower values than vegetation in temperate regions. Optimized multi-year average Q10 values varied from 1.95 to 2.05 over most regions of the world. Relatively high values of Q10 are derived over high/mid latitude regions. Both Vmax25 and Q10 exhibit pronounced seasonal variations at mid-high latitudes. The maximum in occurs during the growing season, while the minima appear during non-growing seasons. Q10 values decreases with increasing temperature. The seasonal variabilities of and Q10 are larger at higher latitudes with tropical or low latitude regions showing little seasonal variabilities.

  19. An Overview of Atmospheric Composition OSSE Activities at NASA's Global Modeling and Assimilation Office

    NASA Technical Reports Server (NTRS)

    daSilva, Arlinda

    2012-01-01

    A model-based Observing System Simulation Experiment (OSSE) is a framework for numerical experimentation in which observables are simulated from fields generated by an earth system model, including a parameterized description of observational error characteristics. Simulated observations can be used for sampling studies, quantifying errors in analysis or retrieval algorithms, and ultimately being a planning tool for designing new observing missions. While this framework has traditionally been used to assess the impact of observations on numerical weather prediction, it has a much broader applicability, in particular to aerosols and chemical constituents. In this talk we will give a general overview of Observing System Simulation Experiments (OSSE) activities at NASA's Global Modeling and Assimilation Office, with focus on its emerging atmospheric composition component.

  20. Multi-RTM-based Radiance Assimilation to Improve Snow Estimates

    NASA Astrophysics Data System (ADS)

    Kwon, Y.; Zhao, L.; Hoar, T. J.; Yang, Z. L.; Toure, A. M.

    2015-12-01

    Data assimilation of microwave brightness temperature (TB) observations (i.e., radiance assimilation (RA)) has been proven to improve snowpack characterization at relatively small scales. However, large-scale applications of RA require a considerable amount of further efforts. Our objective in this study is to explore global-scale snow RA. In a RA scheme, a radiative transfer model (RTM) is an observational operator predicting TB; therefore, the quality of the assimilation results may strongly depend upon the RTM used as well as the land surface model (LSM). Several existing RTMs show different sensitivities to snowpack properties and thus they simulate significantly different TB. At the global scale, snow physical properties vary widely with local climate conditions. No single RTM has been shown to be able to accurately reproduce the observed TB for such a wide range of snow conditions. In this study, therefore, we hypothesize that snow estimates using a microwave RA scheme can be improved through the use of multiple RTMs (i.e., multi-RTM-based approaches). As a first step, here we use two snowpack RTMs, i.e., the Dense Media Radiative Transfer-Multi Layers model (DMRT-ML) and the Microwave Emission Model for Layered Snowpacks (MEMLS). The Community Land Model version 4 (CLM4) is used to simulate snow dynamics. The assimilation process is conducted by the Data Assimilation Research Testbed (DART), which is a community facility developed by the National Center for Atmospheric Research (NCAR) for ensemble-based data assimilation studies. In the RA experiments, the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) TB at 18.7 and 36.5 GHz vertical polarization channels are assimilated into the RA system using the ensemble adjustment Kalman filter. The results are evaluated using the Canadian Meteorological Centre (CMC) daily snow depth, the Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover fraction, and in-situ snowpack and river

  1. Impact of GPM Rainrate Data Assimilation on Simulation of Hurricane Harvey (2017)

    NASA Technical Reports Server (NTRS)

    Li, Xuanli; Srikishen, Jayanthi; Zavodsky, Bradley; Mecikalski, John

    2018-01-01

    Built upon Tropical Rainfall Measuring Mission (TRMM) legacy for next-generation global observation of rain and snow. The GPM was launched in February 2014 with Dual-frequency Precipitation Radar (DPR) and GPM Microwave Imager (GMI) onboard. The GPM has a broad global coverage approximately 70deg S -70deg N with a swath of 245/125-km for the Ka (35.5 GHz)/Ku (13.6 GHz) band radar, and 850-km for the 13-channel GMI. GPM also features better retrievals for heavy, moderate, and light rain and snowfall To develop methodology to assimilate GPM surface precipitation data with Grid-point Statistical Interpolation (GSI) data assimilation system and WRF ARW model To investigate the potential and the value of utilizing GPM observation into NWP for operational environment The GPM rain rate data has been successfully assimilated using the GSI rain data assimilation package. Impacts of rain rate data have been found in temperature and moisture fields of initial conditions. 2.Assimilation of either GPM IMERG or GPROF rain product produces significant improvement in precipitation amount and structure for Hurricane Harvey (2017) forecast. Since IMERG data is available half-hourly, further forecast improvement is expected with continuous assimilation of IMERG data

  2. Air Quality Activities in the Global Modeling and Assimilation Office

    NASA Technical Reports Server (NTRS)

    Pawson, Steven

    2016-01-01

    GMAO's mission is to enhance the use of NASA's satellite observations in weather and climate modeling. This presentation will be discussing GMAO's mission, value of data assimilation, and some relevant (available) GMAO data products.

  3. Application of an Ensemble Smoother to Precipitation Assimilation

    NASA Technical Reports Server (NTRS)

    Zhang, Sara; Zupanski, Dusanka; Hou, Arthur; Zupanski, Milija

    2008-01-01

    Assimilation of precipitation in a global modeling system poses a special challenge in that the observation operators for precipitation processes are highly nonlinear. In the variational approach, substantial development work and model simplifications are required to include precipitation-related physical processes in the tangent linear model and its adjoint. An ensemble based data assimilation algorithm "Maximum Likelihood Ensemble Smoother (MLES)" has been developed to explore the ensemble representation of the precipitation observation operator with nonlinear convection and large-scale moist physics. An ensemble assimilation system based on the NASA GEOS-5 GCM has been constructed to assimilate satellite precipitation data within the MLES framework. The configuration of the smoother takes the time dimension into account for the relationship between state variables and observable rainfall. The full nonlinear forward model ensembles are used to represent components involving the observation operator and its transpose. Several assimilation experiments using satellite precipitation observations have been carried out to investigate the effectiveness of the ensemble representation of the nonlinear observation operator and the data impact of assimilating rain retrievals from the TMI and SSM/I sensors. Preliminary results show that this ensemble assimilation approach is capable of extracting information from nonlinear observations to improve the analysis and forecast if ensemble size is adequate, and a suitable localization scheme is applied. In addition to a dynamically consistent precipitation analysis, the assimilation system produces a statistical estimate of the analysis uncertainty.

  4. Global Gross Primary Productivity for 2015 Inferred from OCO-2 SIF and a Carbon-Cycle Data Assimilation System

    NASA Astrophysics Data System (ADS)

    Norton, A.; Rayner, P. J.; Scholze, M.; Koffi, E. N. D.

    2016-12-01

    The intercomparison study CMIP5 among other studies (e.g. Bodman et al., 2013) has shown that the land carbon flux contributes significantly to the uncertainty in projections of future CO2 concentration and climate (Friedlingstein et al., 2014)). The main challenge lies in disaggregating the relatively well-known net land carbon flux into its component fluxes, gross primary production (GPP) and respiration. Model simulations of these processes disagree considerably, and accurate observations of photosynthetic activity have proved a hindrance. Here we build upon the Carbon Cycle Data Assimilation System (CCDAS) (Rayner et al., 2005) to constrain estimates of one of these uncertain fluxes, GPP, using satellite observations of Solar Induced Fluorescence (SIF). SIF has considerable benefits over other proxy observations as it tracks not just the presence of vegetation but actual photosynthetic activity (Walther et al., 2016; Yang et al., 2015). To combine these observations with process-based simulations of GPP we have coupled the model SCOPE with the CCDAS model BETHY. This provides a mechanistic relationship between SIF and GPP, and the means to constrain the processes relevant to SIF and GPP via model parameters in a data assimilation system. We ingest SIF observations from NASA's Orbiting Carbon Observatory 2 (OCO-2) for 2015 into the data assimilation system to constrain estimates of GPP in space and time, while allowing for explicit consideration of uncertainties in parameters and observations. Here we present first results of the assimilation with SIF. Preliminary results indicate a constraint on global annual GPP of at least 75% when using SIF observations, reducing the uncertainty to < 3 PgC yr-1. A large portion of the constraint is propagated via parameters that describe leaf phenology. These results help to bring together state-of-the-art observations and model to improve understanding and predictive capability of GPP.

  5. Assimilation of Remotely Sensed Leaf Area Index into the Community Land Model with Explicit Carbon and Nitrogen Components using Data Assimilation Research Testbed

    NASA Astrophysics Data System (ADS)

    Ling, X.; Fu, C.; Yang, Z. L.; Guo, W.

    2017-12-01

    Information of the spatial and temporal patterns of leaf area index (LAI) is crucial to understand the exchanges of momentum, carbon, energy, and water between the terrestrial ecosystem and the atmosphere, while both in-situ observation and model simulation usually show distinct deficiency in terms of LAI coverage and value. Land data assimilation, combined with observation and simulation together, is a promising way to provide variable estimation. The Data Assimilation Research Testbed (DART) developed and maintained by the National Centre for Atmospheric Research (NCAR) provides a powerful tool to facilitate the combination of assimilation algorithms, models, and real (as well as synthetic) observations to better understanding of all three. Here we systematically investigated the effects of data assimilation on improving LAI simulation based on NCAR Community Land Model with the prognostic carbon-nitrogen option (CLM4CN) linked with DART using the deterministic Ensemble Adjustment Kalman Filter (EAKF). Random 40-member atmospheric forcing was used to drive the CLM4CN with or without LAI assimilation. The Global Land Surface Satellite LAI data (GLASS LAI) LAI is assimilated into the CLM4CN at a frequency of 8 days, and LAI (and leaf carbon / nitrogen) are adjusted at each time step. The results show that assimilating remotely sensed LAI into the CLM4CN is an effective method for improving model performance. In detail, the CLM4-CN simulated LAI systematically overestimates global LAI, especially in low latitude with the largest bias of 5 m2/m2. While if updating both LAI and leaf carbon and leaf nitrogen simultaneously during assimilation, the analyzed LAI can be corrected, especially in low latitude regions with the bias controlled around ±1 m2/m2. Analyzed LAI could also represent the seasonal variation except for the Southern Temperate (23°S-90°S). The obviously improved regions located in the center of Africa, Amazon, the South of Eurasia, the northeast of

  6. Improving 7-Day Forecast Skill by Assimilation of Retrieved AIRS Temperature Profiles

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Rosenberg, Bob

    2016-01-01

    We conducted a new set of Data Assimilation Experiments covering the period January 1 to February 29, 2016 using the GEOS-5 DAS. Our experiments assimilate all data used operationally by GMAO (Control) with some modifications. Significant improvement in Global and Southern Hemisphere Extra-tropical 7-day forecast skill was obtained when: We assimilated AIRS Quality Controlled temperature profiles in place of observed AIRS radiances, and also did not assimilate CrISATMS radiances, nor did we assimilate radiosonde temperature profiles or aircraft temperatures. This new methodology did not improve or degrade 7-day Northern Hemispheric Extra-tropical forecast skill. We are conducting experiments aimed at further improving of Northern Hemisphere Extra-tropical forecast skill.

  7. Tropospheric Ozone from Assimilation of Aura Data using Different Definitions of the Tropopause

    NASA Technical Reports Server (NTRS)

    Stajner, Ivanka; Wargan, K.; Chang, L.-P.; Hayashi, H.; Pawson, S.; Pawson, Steven; Livesey, N.; Bhartia, P. K.

    2006-01-01

    Ozone data from Aura OMI and MLS instruments were assimilated into the general circulation model (GCM) constrained by assimilated meteorological fields from the Global Modeling and Assimilation Office at NASA Goddard. Properties of tropospheric ozone and their sensitivity to the definition of the tropopause are investigated. Three definitions of the tropopause are considered: (1) dynamical (using potential vorticity and potential temperature), (2) using temperature lapse rate, and (3) using a fixed ozone value. Comparisons of the tropospheric ozone columns using these tropopause definitions will be presented and evaluated against coincident profiles from ozone sondes. Assimilated ozone profiles are used to identify possible tropopause folding events, which are important for stratosphere-troposphere exchange. Each profile is searched for multiple levels at which ozone attains the value typical of the troposphere-stratosphere transition in order to identify possible tropopause folds. Constrained by the dynamics from a global model and by assimilation of Aura ozone data every 3-hours, this data set provides an opportunity to study ozone evolution in the upper troposphere and lower stratosphere with high temporal resolution.

  8. A reanalysis of ozone on Mars from assimilation of SPICAM observations

    NASA Astrophysics Data System (ADS)

    Holmes, James A.; Lewis, Stephen R.; Patel, Manish R.; Lefèvre, Franck

    2018-03-01

    We have assimilated for the first time SPICAM retrievals of total ozone into a Martian global circulation model to provide a global reanalysis of the ozone cycle. Disagreement in total ozone between model prediction and assimilation is observed between 45°S-10°S from LS = 135-180° and at northern polar (60°N-90°N) latitudes during northern fall (LS = 150-195°). Large percentage differences in total ozone at northern fall polar latitudes identified through the assimilation process are linked with excessive northward transport of water vapour west of Tharsis and over Arabia Terra. Modelling biases in water vapour can also explain the underestimation of total ozone between 45°S-10°S from LS = 135-180°. Heterogeneous uptake of odd hydrogen radicals are unable to explain the outstanding underestimation of northern polar total ozone in late northern fall. Assimilation of total ozone retrievals results in alterations of the modelled spatial distribution of ozone in the southern polar winter high altitude ozone layer. This illustrates the potential use of assimilation methods in constraining total ozone where SPICAM cannot observe, in a region where total ozone is especially important for potential investigations of the polar dynamics.

  9. Model Parameter Estimation Using Ensemble Data Assimilation: A Case with the Nonhydrostatic Icosahedral Atmospheric Model NICAM and the Global Satellite Mapping of Precipitation Data

    NASA Astrophysics Data System (ADS)

    Kotsuki, Shunji; Terasaki, Koji; Yashiro, Hasashi; Tomita, Hirofumi; Satoh, Masaki; Miyoshi, Takemasa

    2017-04-01

    This study aims to improve precipitation forecasts from numerical weather prediction (NWP) models through effective use of satellite-derived precipitation data. Kotsuki et al. (2016, JGR-A) successfully improved the precipitation forecasts by assimilating the Japan Aerospace eXploration Agency (JAXA)'s Global Satellite Mapping of Precipitation (GSMaP) data into the Nonhydrostatic Icosahedral Atmospheric Model (NICAM) at 112-km horizontal resolution. Kotsuki et al. mitigated the non-Gaussianity of the precipitation variables by the Gaussian transform method for observed and forecasted precipitation using the previous 30-day precipitation data. This study extends the previous study by Kotsuki et al. and explores an online estimation of model parameters using ensemble data assimilation. We choose two globally-uniform parameters, one is the cloud-to-rain auto-conversion parameter of the Berry's scheme for large scale condensation and the other is the relative humidity threshold of the Arakawa-Schubert cumulus parameterization scheme. We perform the online-estimation of the two model parameters with an ensemble transform Kalman filter by assimilating the GSMaP precipitation data. The estimated parameters improve the analyzed and forecasted mixing ratio in the lower troposphere. Therefore, the parameter estimation would be a useful technique to improve the NWP models and their forecasts. This presentation will include the most recent progress up to the time of the symposium.

  10. Assimilation of MODIS Snow Cover Through the Data Assimilation Research Testbed and the Community Land Model Version 4

    NASA Technical Reports Server (NTRS)

    Zhang, Yong-Fei; Hoar, Tim J.; Yang, Zong-Liang; Anderson, Jeffrey L.; Toure, Ally M.; Rodell, Matthew

    2014-01-01

    To improve snowpack estimates in Community Land Model version 4 (CLM4), the Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover fraction (SCF) was assimilated into the Community Land Model version 4 (CLM4) via the Data Assimilation Research Testbed (DART). The interface between CLM4 and DART is a flexible, extensible approach to land surface data assimilation. This data assimilation system has a large ensemble (80-member) atmospheric forcing that facilitates ensemble-based land data assimilation. We use 40 randomly chosen forcing members to drive 40 CLM members as a compromise between computational cost and the data assimilation performance. The localization distance, a parameter in DART, was tuned to optimize the data assimilation performance at the global scale. Snow water equivalent (SWE) and snow depth are adjusted via the ensemble adjustment Kalman filter, particularly in regions with large SCF variability. The root-mean-square error of the forecast SCF against MODIS SCF is largely reduced. In DJF (December-January-February), the discrepancy between MODIS and CLM4 is broadly ameliorated in the lower-middle latitudes (2345N). Only minimal modifications are made in the higher-middle (4566N) and high latitudes, part of which is due to the agreement between model and observation when snow cover is nearly 100. In some regions it also reveals that CLM4-modeled snow cover lacks heterogeneous features compared to MODIS. In MAM (March-April-May), adjustments to snowmove poleward mainly due to the northward movement of the snowline (i.e., where largest SCF uncertainty is and SCF assimilation has the greatest impact). The effectiveness of data assimilation also varies with vegetation types, with mixed performance over forest regions and consistently good performance over grass, which can partly be explained by the linearity of the relationship between SCF and SWE in the model ensembles. The updated snow depth was compared to the Canadian Meteorological

  11. Improved large-scale hydrological modelling through the assimilation of streamflow and downscaled satellite soil moisture observations.

    NASA Astrophysics Data System (ADS)

    López López, Patricia; Wanders, Niko; Sutanudjaja, Edwin; Renzullo, Luigi; Sterk, Geert; Schellekens, Jaap; Bierkens, Marc

    2015-04-01

    The coarse spatial resolution of global hydrological models (typically > 0.25o) often limits their ability to resolve key water balance processes for many river basins and thus compromises their suitability for water resources management, especially when compared to locally-tunes river models. A possible solution to the problem may be to drive the coarse resolution models with high-resolution meteorological data as well as to assimilate ground-based and remotely-sensed observations of key water cycle variables. While this would improve the modelling resolution of the global model, the impact of prediction accuracy remains largely an open question. In this study we investigated the impact that assimilating streamflow and satellite soil moisture observations have on global hydrological model estimation, driven by coarse- and high-resolution meteorological observations, for the Murrumbidgee river basin in Australia. The PCR-GLOBWB global hydrological model is forced with downscaled global climatological data (from 0.5o downscaled to 0.1o resolution) obtained from the WATCH Forcing Data (WFDEI) and local high resolution gauging station based gridded datasets (0.05o), sourced from the Australian Bureau of Meteorology. Downscaled satellite derived soil moisture (from 0.5o downscaled to 0.1o resolution) from AMSR-E and streamflow observations collected from 25 gauging stations are assimilated using an ensemble Kalman filter. Several scenarios are analysed to explore the added value of data assimilation considering both local and global climatological data. Results show that the assimilation of streamflow observations result in the largest improvement of the model estimates. The joint assimilation of both streamflow and downscaled soil moisture observations leads to further improved in streamflow simulations (10% reduction in RMSE), mainly in the headwater catchments (up to 10,000 km2). Results also show that the added contribution of data assimilation, for both soil

  12. Evaluating Model Performance of an Ensemble-based Chemical Data Assimilation System During INTEX-B Field Mission

    NASA Technical Reports Server (NTRS)

    Arellano, A. F., Jr.; Raeder, K.; Anderson, J. L.; Hess, P. G.; Emmons, L. K.; Edwards, D. P.; Pfister, G. G.; Campos, T. L.; Sachse, G. W.

    2007-01-01

    We present a global chemical data assimilation system using a global atmosphere model, the Community Atmosphere Model (CAM3) with simplified chemistry and the Data Assimilation Research Testbed (DART) assimilation package. DART is a community software facility for assimilation studies using the ensemble Kalman filter approach. Here, we apply the assimilation system to constrain global tropospheric carbon monoxide (CO) by assimilating meteorological observations of temperature and horizontal wind velocity and satellite CO retrievals from the Measurement of Pollution in the Troposphere (MOPITT) satellite instrument. We verify the system performance using independent CO observations taken on board the NSFINCAR C-130 and NASA DC-8 aircrafts during the April 2006 part of the Intercontinental Chemical Transport Experiment (INTEX-B). Our evaluations show that MOPITT data assimilation provides significant improvements in terms of capturing the observed CO variability relative to no MOPITT assimilation (i.e. the correlation improves from 0.62 to 0.71, significant at 99% confidence). The assimilation provides evidence of median CO loading of about 150 ppbv at 700 hPa over the NE Pacific during April 2006. This is marginally higher than the modeled CO with no MOPITT assimilation (-140 ppbv). Our ensemble-based estimates of model uncertainty also show model overprediction over the source region (i.e. China) and underprediction over the NE Pacific, suggesting model errors that cannot be readily explained by emissions alone. These results have important implications for improving regional chemical forecasts and for inverse modeling of CO sources and further demonstrate the utility of the assimilation system in comparing non-coincident measurements, e.g. comparing satellite retrievals of CO with in-situ aircraft measurements. The work described above also brought to light several short-comings of the data assimilation approach for CO profiles. Because of the limited vertical

  13. Improving Forecast Skill by Assimilation of AIRS Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste

    2010-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU-A are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The AIRS Version 5 retrieval algorithm, is now being used operationally at the Goddard DISC in the routine generation of geophysical parameters derived from AIRS/AMSU data. A major innovation in Version 5 is the ability to generate case-by-case level-by-level error estimates delta T(p) for retrieved quantities and the use of these error estimates for Quality Control. We conducted a number of data assimilation experiments using the NASA GEOS-5 Data Assimilation System as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The model was run at a horizontal resolution of 0.5 deg. latitude X 0.67 deg longitude with 72 vertical levels. These experiments were run during four different seasons, each using a different year. The AIRS temperature profiles were presented to the GEOS-5 analysis as rawinsonde profiles, and the profile error estimates delta (p) were used as the uncertainty for each measurement in the data assimilation process. We compared forecasts analyses generated from the analyses done by assimilation of AIRS temperature profiles with three different sets of thresholds; Standard, Medium, and Tight. Assimilation of Quality Controlled AIRS temperature profiles significantly improve 5-7 day forecast skill compared to that obtained without the benefit of AIRS data in all of the cases studied. In addition, assimilation of Quality Controlled AIRS temperature soundings performs better than assimilation of AIRS observed radiances. Based on the experiments shown, Tight Quality Control of AIRS temperature profile performs best

  14. The Global Structure of UTLS Ozone in GEOS-5: A Multi-Year Assimilation of EOS Aura Data

    NASA Technical Reports Server (NTRS)

    Wargan, Krzysztof; Pawson, Steven; Olsen, Mark A.; Witte, Jacquelyn C.; Douglass, Anne R.; Ziemke, Jerald R.; Strahan, Susan E.; Nielsen, J. Eric

    2015-01-01

    Eight years of ozone measurements retrieved from the Ozone Monitoring Instrument (OMI) and the Microwave Limb Sounder, both on the EOS Aura satellite, have been assimilated into the Goddard Earth Observing System version 5 (GEOS-5) data assimilation system. This study thoroughly evaluates this assimilated product, highlighting its potential for science. The impact of observations on the GEOS-5 system is explored by examining the spatial distribution of the observation-minus-forecast statistics. Independent data are used for product validation. The correlation coefficient of the lower-stratospheric ozone column with ozonesondes is 0.99 and the bias is 0.5%, indicating the success of the assimilation in reproducing the ozone variability in that layer. The upper-tropospheric assimilated ozone column is about 10% lower than the ozonesonde column but the correlation is still high (0.87). The assimilation is shown to realistically capture the sharp cross-tropopause gradient in ozone mixing ratio. Occurrence of transport-driven low ozone laminae in the assimilation system is similar to that obtained from the High Resolution Dynamics Limb Sounder (HIRDLS) above the 400 K potential temperature surface but the assimilation produces fewer laminae than seen by HIRDLS below that surface. Although the assimilation produces 5 - 8 fewer occurrences per day (up to approximately 20%) during the three years of HIRDLS data, the interannual variability is captured correctly. This data-driven assimilated product is complementary to ozone fields generated from chemistry and transport models. Applications include study of the radiative forcing by ozone and tracer transport near the tropopause.

  15. Remote sensing data assimilation for a prognostic phenology model

    Treesearch

    R. Stockli; T. Rutishauser; D. Dragoni; J. O' Keefe; P. E. Thornton; M. Jolly; L. Lu; A. S. Denning

    2008-01-01

    Predicting the global carbon and water cycle requires a realistic representation of vegetation phenology in climate models. However most prognostic phenology models are not yet suited for global applications, and diagnostic satellite data can be uncertain and lack predictive power. We present a framework for data assimilation of Fraction of Photosynthetically Active...

  16. The Ensemble Space Weather Modeling System (eSWMS): Status, Capabilities and Challenges

    NASA Astrophysics Data System (ADS)

    Fry, C. D.; Eccles, J. V.; Reich, J. P.

    2010-12-01

    Marking a milestone in space weather forecasting, the Space Weather Modeling System (SWMS) successfully completed validation testing in advance of operational testing at Air Force Weather Agency’s primary space weather production center. This is the first coupling of stand-alone, physics-based space weather models that are currently in operations at AFWA supporting the warfighter. Significant development effort went into ensuring the component models were portable and scalable while maintaining consistent results across diverse high performance computing platforms. Coupling was accomplished under the Earth System Modeling Framework (ESMF). The coupled space weather models are the Hakamada-Akasofu-Fry version 2 (HAFv2) solar wind model and GAIM1, the ionospheric forecast component of the Global Assimilation of Ionospheric Measurements (GAIM) model. The SWMS was developed by team members from AFWA, Explorations Physics International, Inc. (EXPI) and Space Environment Corporation (SEC). The successful development of the SWMS provides new capabilities beyond enabling extended lead-time, data-driven ionospheric forecasts. These include ingesting diverse data sets at higher resolution, incorporating denser computational grids at finer time steps, and performing probability-based ensemble forecasts. Work of the SWMS development team now focuses on implementing the ensemble-based probability forecast capability by feeding multiple scenarios of 5 days of solar wind forecasts to the GAIM1 model based on the variation of the input fields to the HAFv2 model. The ensemble SWMS (eSWMS) will provide the most-likely space weather scenario with uncertainty estimates for important forecast fields. The eSWMS will allow DoD mission planners to consider the effects of space weather on their systems with more advance warning than is currently possible. The payoff is enhanced, tailored support to the warfighter with improved capabilities, such as point-to-point HF propagation forecasts

  17. Correcting Biases in a lower resolution global circulation model with data assimilation

    NASA Astrophysics Data System (ADS)

    Canter, Martin; Barth, Alexander

    2016-04-01

    With this work, we aim at developping a new method of bias correction using data assimilation. This method is based on the stochastic forcing of a model to correct bias. First, through a preliminary run, we estimate the bias of the model and its possible sources. Then, we establish a forcing term which is directly added inside the model's equations. We create an ensemble of runs and consider the forcing term as a control variable during the assimilation of observations. We then use this analysed forcing term to correct the bias of the model. Since the forcing is added inside the model, it acts as a source term, unlike external forcings such as wind. This procedure has been developed and successfully tested with a twin experiment on a Lorenz 95 model. It is currently being applied and tested on the sea ice ocean NEMO LIM model, which is used in the PredAntar project. NEMO LIM is a global and low resolution (2 degrees) coupled model (hydrodynamic model and sea ice model) with long time steps allowing simulations over several decades. Due to its low resolution, the model is subject to bias in area where strong currents are present. We aim at correcting this bias by using perturbed current fields from higher resolution models and randomly generated perturbations. The random perturbations need to be constrained in order to respect the physical properties of the ocean, and not create unwanted phenomena. To construct those random perturbations, we first create a random field with the Diva tool (Data-Interpolating Variational Analysis). Using a cost function, this tool penalizes abrupt variations in the field, while using a custom correlation length. It also decouples disconnected areas based on topography. Then, we filter the field to smoothen it and remove small scale variations. We use this field as a random stream function, and take its derivatives to get zonal and meridional velocity fields. We also constrain the stream function along the coasts in order not to have

  18. Technical Report Series on Global Modeling and Data Assimilation. Volume 14; A Comparison of GEOS Assimilated Data with FIFE Observations

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Suarez, Max J. (Editor); Schubert, Siegfried D.

    1998-01-01

    First ISLSCP Field Experiment (FIFE) observations have been used to validate the near-surface proper- ties of various versions of the Goddard Earth Observing System (GEOS) Data Assimilation System. The site- averaged FIFE data set extends from May 1987 through November 1989, allowing the investigation of several time scales, including the annual cycle, daily means and diurnal cycles. Furthermore, the development of the daytime convective planetary boundary layer is presented for several days. Monthly variations of the surface energy budget during the summer of 1988 demonstrate the affect of the prescribed surface soil wetness boundary conditions. GEOS data comes from the first frozen version of the assimilation system (GEOS-1 DAS) and two experimental versions of GEOS (v. 2.0 and 2.1) with substantially greater vertical resolution and other changes that influence the boundary layer. This report provides a baseline for future versions of the GEOS data assimilation system that will incorporate a state-of-the-art land surface parameterization. Several suggestions are proposed to improve the generality of future comparisons. These include the use of more diverse field experiment observations and an estimate of gridpoint heterogeneity from the new land surface parameterization.

  19. Global Specification of the Post-Sunset Equatorial Ionization Anomaly

    NASA Astrophysics Data System (ADS)

    Coker, C.; Dandenault, P. B.; Dymond, K.; Budzien, S. A.; Nicholas, A. C.; Chua, D. H.; McDonald, S. E.; Metzler, C. A.; Walker, P. W.; Scherliess, L.; Schunk, R. W.; Gardner, L. C.; Zhu, L.

    2012-12-01

    The Special Sensor Ultraviolet Limb Imager (SSULI) on the Defense Meteorological Satellite Program (DMSP) is used to specify the post-sunset Equatorial Ionization Anomaly. Ultraviolet emission profiles of 135.6 nm and 91.1 nm emissions from O++ e recombination are measured in successive altitude scans along the orbit of the satellite. The overlapping sample geometry provides for a high resolution reconstruction of the ionosphere in altitude and latitude for each pass of the satellite. Emission profiles are ingested by the Global Assimilation of Ionospheric Measurements (GAIM) space weather model, which was developed by Utah State University and is run operationally at the Air Force Weather Agency (AFWA). The resulting specification of the equatorial ionosphere reveals significant variability in the postsunset anomaly, which is reflective of the driving space weather processes, namely, electric fields and neutral winds. Significant longitudinal and day-to-day variability in the magnitude (or even existence) of the post-sunset anomaly reveal the influence of atmospheric tides and waves as well as geomagnetic disturbances on the pre-reversal enhancement of the electric field. Significant asymmetry between anomaly crests reveals the influence of atmospheric tides and waves on meridional neutral winds. A neutral wind parallel to the magnetic field line pushes plasma up (or down) the field lines, which raises (or lowers) the altitude of the crests and modifies the horizontal location and magnitude of the crests. The variability in the post-sunset anomaly is one of the largest sources of error in ionospheric specification models. The SSULI instrument provides critical data towards the reduction of this specification error and the determination of key driver parameters used in ionospheric forecasting. Acknowledgements: This research was supported by the USAF Space and Missile Systems Center (SMC), the Naval Research Laboratory (NRL) Base Program, and the Office of Naval

  20. Technical report series on global modeling and data assimilation. Volume 4: Documentation of the Goddard Earth Observing System (GEOS) data assimilation system, version 1

    NASA Technical Reports Server (NTRS)

    Suarez, Max J. (Editor); Pfaendtner, James; Bloom, Stephen; Lamich, David; Seablom, Michael; Sienkiewicz, Meta; Stobie, James; Dasilva, Arlindo

    1995-01-01

    This report describes the analysis component of the Goddard Earth Observing System, Data Assimilation System, Version 1 (GEOS-1 DAS). The general features of the data assimilation system are outlined, followed by a thorough description of the statistical interpolation algorithm, including specification of error covariances and quality control of observations. We conclude with a discussion of the current status of development of the GEOS data assimilation system. The main components of GEOS-1 DAS are an atmospheric general circulation model and an Optimal Interpolation algorithm. The system is cycled using the Incremental Analysis Update (IAU) technique in which analysis increments are introduced as time independent forcing terms in a forecast model integration. The system is capable of producing dynamically balanced states without the explicit use of initialization, as well as a time-continuous representation of non- observables such as precipitation and radiational fluxes. This version of the data assimilation system was used in the five-year reanalysis project completed in April 1994 by Goddard's Data Assimilation Office (DAO) Data from this reanalysis are available from the Goddard Distributed Active Center (DAAC), which is part of NASA's Earth Observing System Data and Information System (EOSDIS). For information on how to obtain these data sets, contact the Goddard DAAC at (301) 286-3209, EMAIL daac@gsfc.nasa.gov.

  1. Modeling and Assimilating Ocean Color Radiances

    NASA Technical Reports Server (NTRS)

    Gregg, Watson

    2012-01-01

    Radiances are the source of information from ocean color sensors to produce estimates of biological and geochemical constituents. They potentially provide information on various other aspects of global biological and chemical systems, and there is considerable work involved in deriving new information from these signals. Each derived product, however, contains errors that are derived from the application of the radiances, above and beyond the radiance errors. A global biogeochemical model with an explicit spectral radiative transfer model is used to investigate the potential of assimilating radiances. The results indicate gaps in our understanding of radiative processes in the oceans and their relationships with biogeochemical variables. Most important, detritus optical properties are not well characterized and produce important effects of the simulated radiances. Specifically, there does not appear to be a relationship between detrital biomass and its optical properties, as there is for chlorophyll. Approximations are necessary to get beyond this problem. In this reprt we will discuss the challenges in modeling and assimilation water-leaving radiances and the prospects for improving our understanding of biogeochemical process by utilizing these signals.

  2. Assimilative and non-assimilative color spreading in the watercolor configuration.

    PubMed

    Kimura, Eiji; Kuroki, Mikako

    2014-01-01

    A colored line flanking a darker contour will appear to spread its color onto an area enclosed by the line (watercolor effect). The watercolor effect has been characterized as an assimilative effect, but non-assimilative color spreading has also been demonstrated in the same spatial configuration; e.g., when a black inner contour (IC) is paired with a blue outer contour (OC), yellow color spreading can be observed. To elucidate visual mechanisms underlying these different color spreading effects, this study investigated the effects of luminance ratio between the double contours on the induced color by systematically manipulating the IC and the OC luminance (Experiment 1) as well as the background luminance (Experiment 2). The results showed that the luminance conditions suitable for assimilative and non-assimilative color spreading were nearly opposite. When the Weber contrast of the IC to the background luminance (IC contrast) was smaller in size than that of the OC (OC contrast), the induced color became similar to the IC color (assimilative spreading). In contrast, when the OC contrast was smaller than or equal to the IC contrast, the induced color became yellow (non-assimilative spreading). Extending these findings, Experiment 3 showed that bilateral color spreading, i.e., assimilative spreading on one side and non-assimilative spreading on the other side, can also be observed in the watercolor configuration. These results suggest that the assimilative and the non-assimilative spreading were mediated by different visual mechanisms. The properties of the assimilative spreading are consistent with the model proposed to account for neon color spreading (Grossberg and Mingolla, 1985) and extended for the watercolor effect (Pinna and Grossberg, 2005). However, the present results suggest that additional mechanisms are needed to account for the non-assimilative color spreading.

  3. An Update on Experimental Climate Prediction and Analysis Products Being Developed at NASA's Global Modeling and Assimilation Office

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried

    2011-01-01

    The Global Modeling and Assimilation Office at NASA's Goddard Space Flight Center is developing a number of experimental prediction and analysis products suitable for research and applications. The prediction products include a large suite of subseasonal and seasonal hindcasts and forecasts (as a contribution to the US National MME), a suite of decadal (10-year) hindcasts (as a contribution to the IPCC decadal prediction project), and a series of large ensemble and high resolution simulations of selected extreme events, including the 2010 Russian and 2011 US heat waves. The analysis products include an experimental atlas of climate (in particular drought) and weather extremes. This talk will provide an update on those activities, and discuss recent efforts by WCRP to leverage off these and similar efforts at other institutions throughout the world to develop an experimental global drought early warning system.

  4. Data Assimilation in the ADAPT Photospheric Flux Transport Model

    DOE PAGES

    Hickmann, Kyle S.; Godinez, Humberto C.; Henney, Carl J.; ...

    2015-03-17

    Global maps of the solar photospheric magnetic flux are fundamental drivers for simulations of the corona and solar wind and therefore are important predictors of geoeffective events. However, observations of the solar photosphere are only made intermittently over approximately half of the solar surface. The Air Force Data Assimilative Photospheric Flux Transport (ADAPT) model uses localized ensemble Kalman filtering techniques to adjust a set of photospheric simulations to agree with the available observations. At the same time, this information is propagated to areas of the simulation that have not been observed. ADAPT implements a local ensemble transform Kalman filter (LETKF)more » to accomplish data assimilation, allowing the covariance structure of the flux-transport model to influence assimilation of photosphere observations while eliminating spurious correlations between ensemble members arising from a limited ensemble size. We give a detailed account of the implementation of the LETKF into ADAPT. Advantages of the LETKF scheme over previously implemented assimilation methods are highlighted.« less

  5. Implementation of a global-scale operational data assimilation system for satellite-based soil moisture retrievals

    NASA Astrophysics Data System (ADS)

    Bolten, J.; Crow, W.; Zhan, X.; Reynolds, C.

    2008-08-01

    Timely and accurate monitoring of global weather anomalies and drought conditions is essential for assessing global crop conditions. Soil moisture observations are particularly important for crop yield fluctuations provided by the US Department of Agriculture (USDA) Production Estimation and Crop Assessment Division (PECAD). The current system utilized by PECAD estimates soil moisture from a 2-layer water balance model based on precipitation and temperature data from World Meteorological Organization (WMO) and US Air Force Weather Agency (AFWA). The accuracy of this system is highly dependent on the data sources used; particularly the accuracy, consistency, and spatial and temporal coverage of the land and climatic data input into the models. However, many regions of the globe lack observations at the temporal and spatial resolutions required by PECAD. This study incorporates NASA's soil moisture remote sensing product provided by the EOS Advanced Microwave Scanning Radiometer (AMSR-E) into the U.S. Department of Agriculture Crop Assessment and Data Retrieval (CADRE) decision support system. A quasi-global-scale operational data assimilation system has been designed and implemented to provide CADRE a daily product of integrated AMSR-E soil moisture observations with the PECAD two-layer soil moisture model forecasts. A methodology of the system design and a brief evaluation of the system performance over the Conterminous United States (CONUS) is presented.

  6. Assimilation of SBUV Version 8 Radiances into the GEOS Ozone DAS

    NASA Technical Reports Server (NTRS)

    Mueller, Martin D.; Stajner, Ivanka; Bhartia, Pawan K.

    2004-01-01

    In operational weather forecasting, the assimilation of brightness temperatures from satellite sounders, instead of assimilation of 1D-retrievals has become increasingly common practice over the last two decades. Compared to these systems, assimilation of trace gases is still at a relatively early stage of development, and efforts to directly assimilate radiances instead of retrieved products have just begun a few years ago, partially because it requires much more computation power due to the employment of a radiative transport forward model (FM). This paper will focus on a method to assimilate SBUV/2 radiances (albedos) into the Global Earth Observation System Ozone Data Assimilation Scheme (GEOS-03DAS). While SBUV-type instruments cannot compete with newer sensors in terms of spectral and horizontal resolution, they feature a continuous data record back to 1978, which makes them very valuable for trend studies. Assimilation can help spreading their ground coverage over the whole globe, as has been previously demonstrated with the GEOS-03DAS using SBUV Version 6 ozone profiles. Now, the DAS has been updated to use the newly released SBUV Version 8 data. We will compare pre]lmlnarv results of SBUV radiance assimilation with the assimilation of retrieved ozone profiles, discuss methods to deal with the increased computational load, and try to assess the error characteristics and future potential of the new approach.

  7. Continental scale data assimilation of discharge and its effect on flow predictions

    NASA Astrophysics Data System (ADS)

    Weerts, Albrecht; Schellekens, Jaap; van Dijk, Albert

    2017-04-01

    Floods are the most frequent of natural disasters, affecting millions of people across the globe every year. The anticipation and forecasting of floods at the global scale is crucial to preparing for severe events and providing early awareness where local flood models and warning services may not exist (Emmerton et al., 2016). Current global flood forecasting system heavily rely on forecast forcing (precipitation, temperature, reference potential evaporation) to derive initial state estimates of the hydrological model for the next forecast (e.g. by glueing the first day of subsequent forecast as proxy for the historical observed forcing). It is clear that this approach is not perfect and that data assimilation can help to overcome some of the weaknesses of this approach. So far most hydrologic da studies have focused mostly on catchment scale. Here we conduct a da experiment by assimilating multiple streamflow observations across the contiguous united states (CONUS) and Europe into a global hydrological model (W3RA) and run with and without localization method using OpenDA in the global flood forecasting information system (GLOFFIS). It is shown that assimilation of streamflow holds considerable potential for improving global scale flood forecasting (improving NSE scores from 0 to 0.7 and beyond). Weakness in the model (e.g. structural problems and missing processes) and forcing that influence the performance will be highlighted.

  8. Usefulness of Wave Data Assimilation to the WAVE WATCH III Modeling System

    NASA Astrophysics Data System (ADS)

    Choi, J. K.; Dykes, J. D.; Yaremchuk, M.; Wittmann, P.

    2017-12-01

    In-situ and remote-sensed wave data are more abundant currently than in years past, with excellent accuracy at global scales. Forecast skill of the WAVE WATCH III model is improved by assimilation of these measurements and they are also useful for model validation and calibration. It has been known that the impact of assimilation in wind-sea conditions is not large, but spectra that result in large swell with long term propagation are identified and assimilated, the improved accuracy of the initial conditions improve the long-term forecasts. The Navy's assimilation method started with the simple Optimal Interpolation (OI) method. Operationally, Fleet Numerical Meteorology and Oceanography Center uses the sequential 2DVar scheme, but a new approach has been tested based on an adjoint-free method to variational assimilation in WAVE WATCH III. We will present the status of wave data assimilation into the WAVE WATCH III numerical model and upcoming development of this new adjoint-free variational approach.

  9. Surface Hydrology in Global River Basins in the Off-Line Land-Surface GEOS Assimilation (OLGA) System

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Yang, Runhua; Houser, Paul R.

    1998-01-01

    Land surface hydrology for the Off-line Land-surface GEOS Analysis (OLGA) system and Goddard Earth Observing System (GEOS-1) Data Assimilation System (DAS) has been examined using a river routing model. The GEOS-1 DAS land-surface parameterization is very simple, using an energy balance prediction of surface temperature and prescribed soil water. OLGA uses near-surface atmospheric data from the GEOS-1 DAS to drive a more comprehensive parameterization of the land-surface physics. The two global systems are evaluated using a global river routing model. The river routing model uses climatologic surface runoff from each system to simulate the river discharge from global river basins, which can be compared to climatologic river discharge. Due to the soil hydrology, the OLGA system shows a general improvement in the simulation of river discharge compared to the GEOS-1 DAS. Snowmelt processes included in OLGA also have a positive effect on the annual cycle of river discharge and source runoff. Preliminary tests of a coupled land-atmosphere model indicate improvements to the hydrologic cycle compared to the uncoupled system. The river routing model has provided a useful tool in the evaluation of the GCM hydrologic cycle, and has helped quantify the influence of the more advanced land surface model.

  10. Use of MODIS Cloud Top Pressure to Improve Assimilation Yields of AIRS Radiances in GSI

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Srikishen, Jayanthi

    2014-01-01

    Improvements to global and regional numerical weather prediction have been demonstrated through assimilation of data from NASA's Atmospheric Infrared Sounder (AIRS). Current operational data assimilation systems use AIRS radiances, but impact on regional forecasts has been much smaller than for global forecasts. Previously, it has been shown that cloud top designation associated with quality control procedures within the Gridpoint Statistical Interpolation (GSI) system used operationally by a number of Joint Center for Satellite Data Assimilation (JCSDA) partners may not provide the best representation of cloud top pressure (CTP). Because this designated CTP determines which channels are cloud-free and, thus, available for assimilation, ensuring the most accurate representation of this value is imperative to obtaining the greatest impact from satellite radiances. This paper examines the assimilation of hyperspectral sounder data used in operational numerical weather prediction by comparing analysis increments and numerical forecasts generated using operational techniques with a research technique that swaps CTP from the Moderate-resolution Imaging Spectroradiometer (MODIS) for the value of CTP calculated from the radiances within GSI.

  11. Global sensitivity analysis, probabilistic calibration, and predictive assessment for the data assimilation linked ecosystem carbon model

    DOE PAGES

    Safta, C.; Ricciuto, Daniel M.; Sargsyan, Khachik; ...

    2015-07-01

    In this paper we propose a probabilistic framework for an uncertainty quantification (UQ) study of a carbon cycle model and focus on the comparison between steady-state and transient simulation setups. A global sensitivity analysis (GSA) study indicates the parameters and parameter couplings that are important at different times of the year for quantities of interest (QoIs) obtained with the data assimilation linked ecosystem carbon (DALEC) model. We then employ a Bayesian approach and a statistical model error term to calibrate the parameters of DALEC using net ecosystem exchange (NEE) observations at the Harvard Forest site. The calibration results are employedmore » in the second part of the paper to assess the predictive skill of the model via posterior predictive checks.« less

  12. The Mars Analysis Correction Data Assimilation (MACDA): A reference atmospheric reanalysis

    NASA Astrophysics Data System (ADS)

    Montabone, Luca; Read, Peter; Lewis, Stephen; Steele, Liam; Holmes, James; Valeanu, Alexandru

    2016-07-01

    The Mars Analysis Correction Data Assimilation (MACDA) dataset version 1.0 contains the reanalysis of fundamental atmospheric and surface variables for the planet Mars covering a period of about three Martian years (late MY 24 to early MY 27). This has been produced by data assimilation of retrieved thermal profiles and column dust optical depths from NASA's Mars Global Surveyor/Thermal Emission Spectrometer (MGS/TES), which have been assimilated into a Mars global climate model (MGCM) using the Analysis Correction scheme developed at the UK Meteorological Office. The MACDA v1.0 reanalysis is publicly available, and the NetCDF files can be downloaded from the archive at the Centre for Environmental Data Analysis/British Atmospheric Data Centre (CEDA/BADC). The variables included in the dataset can be visualised using an ad-hoc graphical user interface (the "MACDA Plotter") at the following URL: http://macdap.physics.ox.ac.uk/ MACDA is an ongoing collaborative project, and work is currently undertaken to produce version 2.0 of the Mars atmospheric reanalysis. One of the key improvements is the extension of the reanalysis period to nine martian years (MY 24 through MY 32), with the assimilation of NASA's Mars Reconnaissance Orbiter/Mars Climate Sounder (MRO/MCS) retrievals of thermal and dust opacity profiles. MACDA 2.0 is also going to be based on an improved version of the underlying MGCM and an updated scheme to fully assimilate (radiative active) tracers, such as dust and water ice.

  13. Global Analysis, Interpretation and Modelling: An Earth Systems Modelling Program

    NASA Technical Reports Server (NTRS)

    Moore, Berrien, III; Sahagian, Dork

    1997-01-01

    The Goal of the GAIM is: To advance the study of the coupled dynamics of the Earth system using as tools both data and models; to develop a strategy for the rapid development, evaluation, and application of comprehensive prognostic models of the Global Biogeochemical Subsystem which could eventually be linked with models of the Physical-Climate Subsystem; to propose, promote, and facilitate experiments with existing models or by linking subcomponent models, especially those associated with IGBP Core Projects and with WCRP efforts. Such experiments would be focused upon resolving interface issues and questions associated with developing an understanding of the prognostic behavior of key processes; to clarify key scientific issues facing the development of Global Biogeochemical Models and the coupling of these models to General Circulation Models; to assist the Intergovernmental Panel on Climate Change (IPCC) process by conducting timely studies that focus upon elucidating important unresolved scientific issues associated with the changing biogeochemical cycles of the planet and upon the role of the biosphere in the physical-climate subsystem, particularly its role in the global hydrological cycle; and to advise the SC-IGBP on progress in developing comprehensive Global Biogeochemical Models and to maintain scientific liaison with the WCRP Steering Group on Global Climate Modelling.

  14. Implementation of a GPS-RO data processing system for the KIAPS-LETKF data assimilation system

    NASA Astrophysics Data System (ADS)

    Kwon, H.; Kang, J.-S.; Jo, Y.; Kang, J. H.

    2014-11-01

    The Korea Institute of Atmospheric Prediction Systems (KIAPS) has been developing a new global numerical weather prediction model and an advanced data assimilation system. As part of the KIAPS Package for Observation Processing (KPOP) system for data assimilation, preprocessing and quality control modules for bending angle measurements of global positioning system radio occultation (GPS-RO) data have been implemented and examined. GPS-RO data processing system is composed of several steps for checking observation locations, missing values, physical values for Earth radius of curvature, and geoid undulation. An observation-minus-background check is implemented by use of a one-dimensional observational bending angle operator and tangent point drift is also considered in the quality control process. We have tested GPS-RO observations utilized by the Korean Meteorological Administration (KMA) within KPOP, based on both the KMA global model and the National Center for Atmospheric Research (NCAR) Community Atmosphere Model-Spectral Element (CAM-SE) as a model background. Background fields from the CAM-SE model are incorporated for the preparation of assimilation experiments with the KIAPS-LETKF data assimilation system, which has been successfully implemented to a cubed-sphere model with fully unstructured quadrilateral meshes. As a result of data processing, the bending angle departure statistics between observation and background shows significant improvement. Also, the first experiment in assimilating GPS-RO bending angle resulting from KPOP within KIAPS-LETKF shows encouraging results.

  15. Technical Report Series on Global Modeling and Data Assimilation. Volume 7: Proceedings of the Workshop on the GEOS-1 Five-year Assimilation

    NASA Technical Reports Server (NTRS)

    Suarez, Max J. (Editor); Schubert, Siegfried; Rood, Richard

    1995-01-01

    The primary objective of the three-day workshop on results from the Data Assimilation Office (DAO) five-year assimilation was to provide timely feedback from the data users concerning the strengths and weaknesses of version 1 of the Goddard Earth Observing System (GEOS-1) assimilated products. A second objective was to assess user satisfaction with the current methods of data access and retrieval. There were a total of 49 presentations, with about half (23) of the presentations from scientists from outside of Goddard. The first two days were devoted to applications of data: studies of the energy diagnostics, precipitation and diabatic heating, hydrological modeling and moisture transport, cloud forcing and validation, various aspects of intraseasonal, seasonal, and interannual variability, ocean wind stress applications, and validation of surface fluxes. The last day included talks from the National Meteorological Center (NMC), the National Center for Atmospheric Research (NCAR), the Center for Ocean-Land-Atmosphere Studies (COLA), the United States Navy, and the European Center for Medium Range Weather Forecasts (ECMWF).

  16. DART: Tools and Support for Ensemble Data Assimilation Research, Operations, and Education

    NASA Astrophysics Data System (ADS)

    Hoar, T. J.; Anderson, J. L.; Collins, N.; Raeder, K.; Kershaw, H.; Romine, G. S.; Mizzi, A. P.; Chatterjee, A.; Karspeck, A. R.; Zarzycki, C. M.; Ha, S. Y.; Barre, J.; Gaubert, B.

    2014-12-01

    The Data Assimilation Research Testbed (DART) is a community facility for ensemble data assimilation developed and supported by the National Center for Atmospheric Research. DART provides a comprehensive suite of software, documentation, examples and tutorials that can be used for ensemble data assimilation research, operations, and education. Scientists and software engineers from the Data Assimilation Research Section at NCAR are available to actively support DART users who want to use existing DART products or develop their own new applications. Current DART users range from university professors teaching data assimilation, to individual graduate students working with simple models, through national laboratories doing operational prediction with large state-of-the-art models. DART runs efficiently on many computational platforms ranging from laptops through thousands of cores on the newest supercomputers. This poster focuses on several recent research activities using DART with geophysical models. First, DART is being used with the Community Atmosphere Model Spectral Element (CAM-SE) and Model for Prediction Across Scales (MPAS) global atmospheric models that support locally enhanced grid resolution. Initial results from ensemble assimilation with both models are presented. DART is also being used to produce ensemble analyses of atmospheric tracers, in particular CO, in both the global CAM-Chem model and the regional Weather Research and Forecast with chemistry (WRF-Chem) model by assimilating observations from the Measurements of Pollution in the Troposphere (MOPITT) and Infrared Atmospheric Sounding Interferometer (IASI) instruments. Results from ensemble analyses in both models are presented. An interface between DART and the Community Atmosphere Biosphere Land Exchange (CABLE) model has been completed and ensemble land surface analyses with DART/CABLE will be discussed. Finally, an update on ensemble analyses in the fully-coupled Community Earth System (CESM

  17. Naming game with biased assimilation over adaptive networks

    NASA Astrophysics Data System (ADS)

    Fu, Guiyuan; Zhang, Weidong

    2018-01-01

    The dynamics of two-word naming game incorporating the influence of biased assimilation over adaptive network is investigated in this paper. Firstly an extended naming game with biased assimilation (NGBA) is proposed. The hearer in NGBA accepts the received information in a biased manner, where he may refuse to accept the conveyed word from the speaker with a predefined probability, if the conveyed word is different from his current memory. Secondly, the adaptive network is formulated by rewiring the links. Theoretical analysis is developed to show that the population in NGBA will eventually reach global consensus on either A or B. Numerical simulation results show that the larger strength of biased assimilation on both words, the slower convergence speed, while larger strength of biased assimilation on only one word can slightly accelerate the convergence; larger population size can make the rate of convergence slower to a large extent when it increases from a relatively small size, while such effect becomes minor when the population size is large; the behavior of adaptively reconnecting the existing links can greatly accelerate the rate of convergence especially on the sparse connected network.

  18. Extraction of wind and temperature information from hybrid 4D-Var assimilation of stratospheric ozone using NAVGEM

    NASA Astrophysics Data System (ADS)

    Allen, Douglas R.; Hoppel, Karl W.; Kuhl, David D.

    2018-03-01

    Extraction of wind and temperature information from stratospheric ozone assimilation is examined within the context of the Navy Global Environmental Model (NAVGEM) hybrid 4-D variational assimilation (4D-Var) data assimilation (DA) system. Ozone can improve the wind and temperature through two different DA mechanisms: (1) through the flow-of-the-day ensemble background error covariance that is blended together with the static background error covariance and (2) via the ozone continuity equation in the tangent linear model and adjoint used for minimizing the cost function. All experiments assimilate actual conventional data in order to maintain a similar realistic troposphere. In the stratosphere, the experiments assimilate simulated ozone and/or radiance observations in various combinations. The simulated observations are constructed for a case study based on a 16-day cycling truth experiment (TE), which is an analysis with no stratospheric observations. The impact of ozone on the analysis is evaluated by comparing the experiments to the TE for the last 6 days, allowing for a 10-day spin-up. Ozone assimilation benefits the wind and temperature when data are of sufficient quality and frequency. For example, assimilation of perfect (no applied error) global hourly ozone data constrains the stratospheric wind and temperature to within ˜ 2 m s-1 and ˜ 1 K. This demonstrates that there is dynamical information in the ozone distribution that can potentially be used to improve the stratosphere. This is particularly important for the tropics, where radiance observations have difficulty constraining wind due to breakdown of geostrophic balance. Global ozone assimilation provides the largest benefit when the hybrid blending coefficient is an intermediate value (0.5 was used in this study), rather than 0.0 (no ensemble background error covariance) or 1.0 (no static background error covariance), which is consistent with other hybrid DA studies. When perfect global

  19. Satellite Sounder Data Assimilation for Improving Alaska Region Weather Forecast

    NASA Technical Reports Server (NTRS)

    Zhu, Jiang; Stevens, E.; Zavodsky, B. T.; Zhang, X.; Heinrichs, T.; Broderson, D.

    2014-01-01

    Data assimilation has been demonstrated very useful in improving both global and regional numerical weather prediction. Alaska has very coarser surface observation sites. On the other hand, it gets much more satellite overpass than lower 48 states. How to utilize satellite data to improve numerical prediction is one of hot topics among weather forecast community in Alaska. The Geographic Information Network of Alaska (GINA) at University of Alaska is conducting study on satellite data assimilation for WRF model. AIRS/CRIS sounder profile data are used to assimilate the initial condition for the customized regional WRF model (GINA-WRF model). Normalized standard deviation, RMSE, and correlation statistic analysis methods are applied to analyze one case of 48 hours forecasts and one month of 24-hour forecasts in order to evaluate the improvement of regional numerical model from Data assimilation. The final goal of the research is to provide improved real-time short-time forecast for Alaska regions.

  20. Joint Assimilation of SMOS Brightness Temperature and GRACE Terrestrial Water Storage Observations for Improved Soil Moisture Estimation

    NASA Technical Reports Server (NTRS)

    Girotto, Manuela; Reichle, Rolf H.; De Lannoy, Gabrielle J. M.; Rodell, Matthew

    2017-01-01

    Observations from recent soil moisture missions (e.g. SMOS) have been used in innovative data assimilation studies to provide global high spatial (i.e. 40 km) and temporal resolution (i.e. 3-days) soil moisture profile estimates from microwave brightness temperature observations. In contrast with microwave-based satellite missions that are only sensitive to near-surface soil moisture (0 - 5 cm), the Gravity Recovery and Climate Experiment (GRACE) mission provides accurate measurements of the entire vertically integrated terrestrial water storage column but, it is characterized by low spatial (i.e. 150,000 km2) and temporal (i.e. monthly) resolutions. Data assimilation studies have shown that GRACE-TWS primarily affects (in absolute terms) deeper moisture storages (i.e., groundwater). This work hypothesizes that unprecedented soil water profile accuracy can be obtained through the joint assimilation of GRACE terrestrial water storage and SMOS brightness temperature observations. A particular challenge of the joint assimilation is the use of the two different types of measurements that are relevant for hydrologic processes representing different temporal and spatial scales. The performance of the joint assimilation strongly depends on the chosen assimilation methods, measurement and model error spatial structures. The optimization of the assimilation technique constitutes a fundamental step toward a multi-variate multi-resolution integrative assimilation system aiming to improve our understanding of the global terrestrial water cycle.

  1. Joint assimilation of SMOS brightness temperature and GRACE terrestrial water storage observations for improved soil moisture estimation

    NASA Astrophysics Data System (ADS)

    Girotto, M.; Reichle, R. H.; De Lannoy, G.; Rodell, M.

    2017-12-01

    Observations from recent soil moisture missions (e.g. SMOS) have been used in innovative data assimilation studies to provide global high spatial (i.e. 40 km) and temporal resolution (i.e. 3-days) soil moisture profile estimates from microwave brightness temperature observations. In contrast with microwave-based satellite missions that are only sensitive to near-surface soil moisture (0-5 cm), the Gravity Recovery and Climate Experiment (GRACE) mission provides accurate measurements of the entire vertically integrated terrestrial water storage column but, it is characterized by low spatial (i.e. 150,000 km2) and temporal (i.e. monthly) resolutions. Data assimilation studies have shown that GRACE-TWS primarily affects (in absolute terms) deeper moisture storages (i.e., groundwater). This work hypothesizes that unprecedented soil water profile accuracy can be obtained through the joint assimilation of GRACE terrestrial water storage and SMOS brightness temperature observations. A particular challenge of the joint assimilation is the use of the two different types of measurements that are relevant for hydrologic processes representing different temporal and spatial scales. The performance of the joint assimilation strongly depends on the chosen assimilation methods, measurement and model error spatial structures. The optimization of the assimilation technique constitutes a fundamental step toward a multi-variate multi-resolution integrative assimilation system aiming to improve our understanding of the global terrestrial water cycle.

  2. Substrate and environmental controls on microbial assimilation of soil organic carbon: a framework for Earth System Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xiaofeng; Schimel, Joshua; Thornton, Peter E

    2014-01-01

    Microbial assimilation of soil organic carbon is one of the fundamental processes of global carbon cycling and it determines the magnitude of microbial biomass in soils. Mechanistic understanding of microbial assimilation of soil organic carbon and its controls is important for to improve Earth system models ability to simulate carbon-climate feedbacks. Although microbial assimilation of soil organic carbon is broadly considered to be an important parameter, it really comprises two separate physiological processes: one-time assimilation efficiency and time-dependent microbial maintenance energy. Representing of these two mechanisms is crucial to more accurately simulate carbon cycling in soils. In this study, amore » simple modeling framework was developed to evaluate the substrate and environmental controls on microbial assimilation of soil organic carbon using a new term: microbial annual active period (the length of microbes remaining active in one year). Substrate quality has a positive effect on microbial assimilation of soil organic carbon: higher substrate quality (lower C:N ratio) leads to higher ratio of microbial carbon to soil organic carbon and vice versa. Increases in microbial annual active period from zero stimulate microbial assimilation of soil organic carbon; however, when microbial annual active period is longer than an optimal threshold, increasing this period decreases microbial biomass. The simulated ratios of soil microbial biomass to soil organic carbon are reasonably consistent with a recently compiled global dataset at the biome-level. The modeling framework of microbial assimilation of soil organic carbon and its controls developed in this study offers an applicable ways to incorporate microbial contributions to the carbon cycling into Earth system models for simulating carbon-climate feedbacks and to explain global patterns of microbial biomass.« less

  3. Regional Data Assimilation Using a Stretched-Grid Approach and Ensemble Calculations

    NASA Technical Reports Server (NTRS)

    Fox-Rabinovitz, M. S.; Takacs, L. L.; Govindaraju, R. C.; Atlas, Robert (Technical Monitor)

    2002-01-01

    The global variable resolution stretched grid (SG) version of the Goddard Earth Observing System (GEOS) Data Assimilation System (DAS) incorporating the GEOS SG-GCM (Fox-Rabinovitz 2000, Fox-Rabinovitz et al. 2001a,b), has been developed and tested as an efficient tool for producing regional analyses and diagnostics with enhanced mesoscale resolution. The major area of interest with enhanced regional resolution used in different SG-DAS experiments includes a rectangle over the U.S. with 50 or 60 km horizontal resolution. The analyses and diagnostics are produced for all mandatory levels from the surface to 0.2 hPa. The assimilated regional mesoscale products are consistent with global scale circulation characteristics due to using the SG-approach. Both the stretched grid and basic uniform grid DASs use the same amount of global grid-points and are compared in terms of regional product quality.

  4. The Impact of AMSR-E Soil Moisture Assimilation on Evapotranspiration Estimation

    NASA Technical Reports Server (NTRS)

    Peters-Lidard, Christa D.; Kumar, Sujay; Mocko, David; Tian, Yudong

    2012-01-01

    An assessment ofETestimates for current LDAS systems is provided along with current research that demonstrates improvement in LSM ET estimates due to assimilating satellite-based soil moisture products. Using the Ensemble Kalman Filter in the Land Information System, we assimilate both NASA and Land Parameter Retrieval Model (LPRM) soil moisture products into the Noah LSM Version 3.2 with the North American LDAS phase 2 CNLDAS-2) forcing to mimic the NLDAS-2 configuration. Through comparisons with two global reference ET products, one based on interpolated flux tower data and one from a new satellite ET algorithm, over the NLDAS2 domain, we demonstrate improvement in ET estimates only when assimilating the LPRM soil moisture product.

  5. Terminator field-aligned current system: A new finding from model-assimilated data set (MADS)

    NASA Astrophysics Data System (ADS)

    Zhu, L.; Schunk, R. W.; Scherliess, L.; Sojka, J. J.; Gardner, L. C.; Eccles, J. V.; Rice, D.

    2013-12-01

    Physics-based data assimilation models have been recognized by the space science community as the most accurate approach to specify and forecast the space weather of the solar-terrestrial environment. The model-assimilated data sets (MADS) produced by these models constitute an internally consistent time series of global three-dimensional fields whose accuracy can be estimated. Because of its internal consistency of physics and completeness of descriptions on the status of global systems, the MADS has also been a powerful tool to identify the systematic errors in measurements, reveal the missing physics in physical models, and discover the important dynamical physical processes that are inadequately observed or missed by measurements due to observational limitations. In the past years, we developed a data assimilation model for the high-latitude ionospheric plasma dynamics and electrodynamics. With a set of physical models, an ensemble Kalman filter, and the ingestion of data from multiple observations, the data assimilation model can produce a self-consistent time-series of the complete descriptions of the global high-latitude ionosphere, which includes the convection electric field, horizontal and field-aligned currents, conductivity, as well as 3-D plasma densities and temperatures, In this presentation, we will show a new field-aligned current system discovered from the analysis of the MADS produced by our data assimilation model. This new current system appears and develops near the ionospheric terminator. The dynamical features of this current system will be described and its connection to the active role of the ionosphere in the M-I coupling will be discussed.

  6. Implementation of a GPS-RO data processing system for the KIAPS-LETKF data assimilation system

    NASA Astrophysics Data System (ADS)

    Kwon, H.; Kang, J.-S.; Jo, Y.; Kang, J. H.

    2015-03-01

    The Korea Institute of Atmospheric Prediction Systems (KIAPS) has been developing a new global numerical weather prediction model and an advanced data assimilation system. As part of the KIAPS package for observation processing (KPOP) system for data assimilation, preprocessing, and quality control modules for bending-angle measurements of global positioning system radio occultation (GPS-RO) data have been implemented and examined. The GPS-RO data processing system is composed of several steps for checking observation locations, missing values, physical values for Earth radius of curvature, and geoid undulation. An observation-minus-background check is implemented by use of a one-dimensional observational bending-angle operator, and tangent point drift is also considered in the quality control process. We have tested GPS-RO observations utilized by the Korean Meteorological Administration (KMA) within KPOP, based on both the KMA global model and the National Center for Atmospheric Research Community Atmosphere Model with Spectral Element dynamical core (CAM-SE) as a model background. Background fields from the CAM-SE model are incorporated for the preparation of assimilation experiments with the KIAPS local ensemble transform Kalman filter (LETKF) data assimilation system, which has been successfully implemented to a cubed-sphere model with unstructured quadrilateral meshes. As a result of data processing, the bending-angle departure statistics between observation and background show significant improvement. Also, the first experiment in assimilating GPS-RO bending angle from KPOP within KIAPS-LETKF shows encouraging results.

  7. GPS=A Good Candidate for Data Assimilation?

    NASA Technical Reports Server (NTRS)

    Poli, P.; Joiner, J.; Kursinski, R.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Global Positioning System (GPS) enables positioning anywhere about our planet. The microwave signals sent by the 24 transmitters are sensitive to the atmosphere. Using the radio occultation technique, it is possible to perform soundings, with a Low Earth Orbiter (700 km) GPS receiver. The insensitiveness to clouds and aerosols, the relatively high vertical resolution (1.5 km), the self-calibration and stability of the GPS make it a priori a potentially good observing system candidate for data assimilation. A low-computing cost simple method to retrieve both temperature and humidity will be presented. Comparisons with radiosonde show the capability of the GPS to resolve the tropopause. Options for using GPS for data assimilation and remaining issues will be discussed.

  8. Regional Precipitation Forecast with Atmospheric InfraRed Sounder (AIRS) Profile Assimilation

    NASA Technical Reports Server (NTRS)

    Chou, S.-H.; Zavodsky, B. T.; Jedloved, G. J.

    2010-01-01

    Advanced technology in hyperspectral sensors such as the Atmospheric InfraRed Sounder (AIRS; Aumann et al. 2003) on NASA's polar orbiting Aqua satellite retrieve higher vertical resolution thermodynamic profiles than their predecessors due to increased spectral resolution. Although these capabilities do not replace the robust vertical resolution provided by radiosondes, they can serve as a complement to radiosondes in both space and time. These retrieved soundings can have a significant impact on weather forecasts if properly assimilated into prediction models. Several recent studies have evaluated the performance of specific operational weather forecast models when AIRS data are included in the assimilation process. LeMarshall et al. (2006) concluded that AIRS radiances significantly improved 500 hPa anomaly correlations in medium-range forecasts of the Global Forecast System (GFS) model. McCarty et al. (2009) demonstrated similar forecast improvement in 0-48 hour forecasts in an offline version of the operational North American Mesoscale (NAM) model when AIRS radiances were assimilated at the regional scale. Reale et al. (2008) showed improvements to Northern Hemisphere 500 hPa height anomaly correlations in NASA's Goddard Earth Observing System Model, Version 5 (GEOS-5) global system with the inclusion of partly cloudy AIRS temperature profiles. Singh et al. (2008) assimilated AIRS temperature and moisture profiles into a regional modeling system for a study of a heavy rainfall event during the summer monsoon season in Mumbai, India. This paper describes an approach to assimilate AIRS temperature and moisture profiles into a regional configuration of the Advanced Research Weather Research and Forecasting (WRF-ARW) model using its three-dimensional variational (3DVAR) assimilation system (WRF-Var; Barker et al. 2004). Section 2 describes the AIRS instrument and how the quality indicators are used to intelligently select the highest-quality data for assimilation

  9. Forward-looking Assimilation of MODIS-derived Snow Covered Area into a Land Surface Model

    NASA Technical Reports Server (NTRS)

    Zaitchik, Benjamin F.; Rodell, Matthew

    2008-01-01

    Snow cover over land has a significant impact on the surface radiation budget, turbulent energy fluxes to the atmosphere, and local hydrological fluxes. For this reason, inaccuracies in the representation of snow covered area (SCA) within a land surface model (LSM) can lead to substantial errors in both offline and coupled simulations. Data assimilation algorithms have the potential to address this problem. However, the assimilation of SCA observations is complicated by an information deficit in the observation SCA indicates only the presence or absence of snow, and not snow volume and by the fact that assimilated SCA observations can introduce inconsistencies with atmospheric forcing data, leading to non-physical artifacts in the local water balance. In this paper we present a novel assimilation algorithm that introduces MODIS SCA observations to the Noah LSM in global, uncoupled simulations. The algorithm utilizes observations from up to 72 hours ahead of the model simulation in order to correct against emerging errors in the simulation of snow cover while preserving the local hydrologic balance. This is accomplished by using future snow observations to adjust air temperature and, when necessary, precipitation within the LSM. In global, offline integrations, this new assimilation algorithm provided improved simulation of SCA and snow water equivalent relative to open loop integrations and integrations that used an earlier SCA assimilation algorithm. These improvements, in turn, influenced the simulation of surface water and energy fluxes both during the snow season and, in some regions, on into the following spring.

  10. Verification and Validation of a Navy ESPC Hindcast with Loosely Coupled Data Assimilation

    NASA Astrophysics Data System (ADS)

    Metzger, E. J.; Barton, N. P.; Smedstad, O. M.; Ruston, B. C.; Wallcraft, A. J.; Whitcomb, T. R.; Ridout, J. A.; Franklin, D. S.; Zamudio, L.; Posey, P. G.; Reynolds, C. A.; Phelps, M.

    2016-12-01

    The US Navy is developing an Earth System Prediction Capability (ESPC) to provide global environmental information to meet Navy and Department of Defense (DoD) operations and planning needs from the upper atmosphere to under the sea. It will be a fully coupled global atmosphere/ocean/ice/wave/land prediction system providing daily deterministic forecasts out to 16 days at high horizontal and vertical resolution, and daily probabilistic forecasts out to 45 days at lower resolution. The system will run at the Navy DoD Supercomputing Resource Center with an initial operational capability scheduled for the end of FY18 and the final operational capability scheduled for FY22. The individual model and data assimilation components include: atmosphere - NAVy Global Environmental Model (NAVGEM) and Naval Research Laboratory (NRL) Atmospheric Variational Data Assimilation System - Accelerated Representer (NAVDAS-AR); ocean - HYbrid Coordinate Ocean Model (HYCOM) and Navy Coupled Ocean Data Assimilation (NCODA); ice - Community Ice CodE (CICE) and NCODA; WAVEWATCH III™ and NCODA; and land - NAVGEM Land Surface Model (LSM). Currently, NAVGEM/HYCOM/CICE are three-way coupled and each model component is cycling with its respective assimilation scheme. The assimilation systems do not communicate with each other, but future plans call for these to be coupled as well. NAVGEM runs with a 6-hour update cycle while HYCOM/CICE run with a 24-hour update cycle. The T359L50 NAVGEM/0.08° HYCOM/0.08° CICE system has been integrated in hindcast mode and verification/validation metrics have been computed against unassimilated observations and against stand-alone versions of NAVGEM and HYCOM/CICE. This presentation will focus on typical operational diagnostics for atmosphere, ocean, and ice analyses including 500 hPa atmospheric height anomalies, low-level winds, temperature/salinity ocean depth profiles, ocean acoustical proxies, sea ice edge, and sea ice drift. Overall, the global coupled

  11. A study on assimilating potential vorticity data

    NASA Astrophysics Data System (ADS)

    Li, Yong; Ménard, Richard; Riishøjgaard, Lars Peter; Cohn, Stephen E.; Rood, Richard B.

    1998-08-01

    The correlation that exists between the potential vorticity (PV) field and the distribution of chemical tracers such as ozone suggests the possibility of using tracer observations as proxy PV data in atmospheric data assimilation systems. Especially in the stratosphere, there are plentiful tracer observations but a general lack of reliable wind observations, and the correlation is most pronounced. The issue investigated in this study is how model dynamics would respond to the assimilation of PV data. First, numerical experiments of identical-twin type were conducted with a simple univariate nuding algorithm and a global shallow water model based on PV and divergence (PV-D model). All model fields are successfully reconstructed through the insertion of complete PV data alone if an appropriate value for the nudging coefficient is used. A simple linear analysis suggests that slow modes are recovered rapidly, at a rate nearly independent of spatial scale. In a more realistic experiment, appropriately scaled total ozone data from the NIMBUS-7 TOMS instrument were assimilated as proxy PV data into the PV-D model over a 10-day period. The resulting model PV field matches the observed total ozone field relatively well on large spatial scales, and the PV, geopotential and divergence fields are dynamically consistent. These results indicate the potential usefulness that tracer observations, as proxy PV data, may offer in a data assimilation system.

  12. Why Is Rainfall Error Analysis Requisite for Data Assimilation and Climate Modeling?

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Zhang, Sara Q.

    2004-01-01

    Given the large temporal and spatial variability of precipitation processes, errors in rainfall observations are difficult to quantify yet crucial to making effective use of rainfall data for improving atmospheric analysis, weather forecasting, and climate modeling. We highlight the need for developing a quantitative understanding of systematic and random errors in precipitation observations by examining explicit examples of how each type of errors can affect forecasts and analyses in global data assimilation. We characterize the error information needed from the precipitation measurement community and how it may be used to improve data usage within the general framework of analysis techniques, as well as accuracy requirements from the perspective of climate modeling and global data assimilation.

  13. Efforts in assimilating Indian satellite data in the NGFS and monitoring of their quality

    NASA Astrophysics Data System (ADS)

    Prasad, V. S.; Singh, Sanjeev Kumar

    2016-05-01

    Megha-Tropiques (MT) is an Indo-French Joint Satellite Mission, launched on 12 October 2011. MT-SAPHIR is a sounding instrument with 6 channels near the absorption band of water vapor at 183 GHz, for studying the water cycle and energy exchanges in the tropics. The main objective of this mission is to understand the life cycle of convective systems that influence the tropical weather and climate and their role in associated energy and moisture budget of the atmosphere in tropical regions. India also has a prestigious space programme and has launched the INSAT-3D satellite on 26 July 2013 which has an atmospheric sounder for the first time along with improved VHRR imager. NCMRWF (National Centre for Medium Range Weather Forecasting) is regularly receiving these new datasets and also making changes to its Global Data Assimilation Forecasting (GDAF) system from time-to-time to assimilate these new datasets. A well planned strategy involving various steps such as monitoring of data quality, development of observation operator and quality control procedures, and finally then studying its impact on forecasts is developed to include new observations in global data analysis system. By employing this strategy observations having positive impact on forecast quality such as MT-SAPHIR, and INSAT-3D Clear Sky Radiance (CSR) products are identified and being assimilated in the Global Data Assimilation and Forecasting (GDAF) system.

  14. Development of KIAPS Observation Processing Package for Data Assimilation System

    NASA Astrophysics Data System (ADS)

    Kang, Jeon-Ho; Chun, Hyoung-Wook; Lee, Sihye; Han, Hyun-Jun; Ha, Su-Jin

    2015-04-01

    The Korea Institute of Atmospheric Prediction Systems (KIAPS) was founded in 2011 by the Korea Meteorological Administration (KMA) to develop Korea's own global Numerical Weather Prediction (NWP) system as nine year (2011-2019) project. Data assimilation team at KIAPS has been developing the observation processing system (KIAPS Package for Observation Processing: KPOP) to provide optimal observations to the data assimilation system for the KIAPS Global Model (KIAPS Integrated Model - Spectral Element method based on HOMME: KIM-SH). Currently, the KPOP is capable of processing the satellite radiance data (AMSU-A, IASI), GPS Radio Occultation (GPS-RO), AIRCRAFT (AMDAR, AIREP, and etc…), and synoptic observation (SONDE and SURFACE). KPOP adopted Radiative Transfer for TOVS version 10 (RTTOV_v10) to get brightness temperature (TB) for each channel at top of the atmosphere (TOA), and Radio Occultation Processing Package (ROPP) 1-dimensional forward module to get bending angle (BA) at each tangent point. The observation data are obtained from the KMA which has been composited with BUFR format to be converted with ODB that are used for operational data assimilation and monitoring at the KMA. The Unified Model (UM), Community Atmosphere - Spectral Element (CAM-SE) and KIM-SH model outputs are used for the bias correction (BC) and quality control (QC) of the observations, respectively. KPOP provides radiance and RO data for Local Ensemble Transform Kalman Filter (LETKF) and also provides SONDE, SURFACE and AIRCRAFT data for Three-Dimensional Variational Assimilation (3DVAR). We are expecting all of the observation type which processed in KPOP could be combined with both of the data assimilation method as soon as possible. The preliminary results from each observation type will be introduced with the current development status of the KPOP.

  15. Improved Impact of Atmospheric Infrared Sounder (AIRS) Radiance Assimilation in Numerical Weather Prediction

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Chou, Shih-Hung; Jedlovec, Gary

    2012-01-01

    Improvements to global and regional numerical weather prediction (NWP) have been demonstrated through assimilation of data from NASA s Atmospheric Infrared Sounder (AIRS). Current operational data assimilation systems use AIRS radiances, but impact on regional forecasts has been much smaller than for global forecasts. Retrieved profiles from AIRS contain much of the information that is contained in the radiances and may be able to reveal reasons for this reduced impact. Assimilating AIRS retrieved profiles in an identical analysis configuration to the radiances, tracking the quantity and quality of the assimilated data in each technique, and examining analysis increments and forecast impact from each data type can yield clues as to the reasons for the reduced impact. By doing this with regional scale models individual synoptic features (and the impact of AIRS on these features) can be more easily tracked. This project examines the assimilation of hyperspectral sounder data used in operational numerical weather prediction by comparing operational techniques used for AIRS radiances and research techniques used for AIRS retrieved profiles. Parallel versions of a configuration of the Weather Research and Forecasting (WRF) model with Gridpoint Statistical Interpolation (GSI) that mimics the analysis methodology, domain, and observational datasets for the regional North American Mesoscale (NAM) model run at the National Centers for Environmental Prediction (NCEP)/Environmental Modeling Center (EMC) are run to examine the impact of each type of AIRS data set. The first configuration will assimilate the AIRS radiance data along with other conventional and satellite data using techniques implemented within the operational system; the second configuration will assimilate AIRS retrieved profiles instead of AIRS radiances in the same manner. Preliminary results of this study will be presented and focus on the analysis impact of the radiances and profiles for selected cases.

  16. Improved water balance component estimates through joint assimilation of GRACE water storage and SMOS soil moisture retrievals

    NASA Astrophysics Data System (ADS)

    Tian, Siyuan; Tregoning, Paul; Renzullo, Luigi J.; van Dijk, Albert I. J. M.; Walker, Jeffrey P.; Pauwels, Valentijn R. N.; Allgeyer, Sébastien

    2017-03-01

    The accuracy of global water balance estimates is limited by the lack of observations at large scale and the uncertainties of model simulations. Global retrievals of terrestrial water storage (TWS) change and soil moisture (SM) from satellites provide an opportunity to improve model estimates through data assimilation. However, combining these two data sets is challenging due to the disparity in temporal and spatial resolution at both vertical and horizontal scale. For the first time, TWS observations from the Gravity Recovery and Climate Experiment (GRACE) and near-surface SM observations from the Soil Moisture and Ocean Salinity (SMOS) were jointly assimilated into a water balance model using the Ensemble Kalman Smoother from January 2010 to December 2013 for the Australian continent. The performance of joint assimilation was assessed against open-loop model simulations and the assimilation of either GRACE TWS anomalies or SMOS SM alone. The SMOS-only assimilation improved SM estimates but reduced the accuracy of groundwater and TWS estimates. The GRACE-only assimilation improved groundwater estimates but did not always produce accurate estimates of SM. The joint assimilation typically led to more accurate water storage profile estimates with improved surface SM, root-zone SM, and groundwater estimates against in situ observations. The assimilation successfully downscaled GRACE-derived integrated water storage horizontally and vertically into individual water stores at the same spatial scale as the model and SMOS, and partitioned monthly averaged TWS into daily estimates. These results demonstrate that satellite TWS and SM measurements can be jointly assimilated to produce improved water balance component estimates.

  17. Global analyses of water vapor, cloud and precipitation derived from a diagnostic assimilation of SSM/I geophysical retrievals

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Cohen, Charles

    1990-01-01

    An analytical approach is described for diagnostically assimilating moisture data from Special Sensor Microwave Imager (SSM/I) into a global analysis of water vapor, cloud content, and precipitation. In this method, 3D fields of wind and temperature values taken from ECMWF gridded analysis are used to drive moisture conservation equations with parameterized microphysical treatment of vapor, liquid, and ice; the evolving field of water vapor is periodically updated or constrained by SSM/I retrievals of precipitable water. Initial results indicate that this diagnostic model can produce realistic large-scale fields of cloud and precipitation. The resulting water vapor analyses agree well with SSM/I and have an additional advantage of being synoptic.

  18. Impact of Flow-Dependent Error Correlations and Tropospheric Chemistry on Assimilated Ozone

    NASA Technical Reports Server (NTRS)

    Wargan, K.; Stajner, I.; Hayashi, H.; Pawson, S.; Jones, D. B. A.

    2003-01-01

    The presentation compares different versions of a global three-dimensional ozone data assimilation system developed at NASA's Data Assimilation Office. The Solar Backscatter Ultraviolet/2 (SBUV/2) total and partial ozone column retrievals are the sole data assimilated in all of the experiments presented. We study the impact of changing the forecast error covariance model from a version assuming static correlations with a one that captures a short-term Lagrangian evolution of those correlations. This is further combined with a study of the impact of neglecting the tropospheric ozone production, loss and dry deposition rates, which are obtained from the Harvard GEOS-CHEM model. We compare statistical characteristics of the assimilated data and the results of validation against independent observations, obtained from WMO balloon-borne sondes and the Polar Ozone and Aerosol Measurement (POAM) III instrument. Experiments show that allowing forecast error correlations to evolve with the flow results in positive impact on assimilated ozone within the regions where data were not assimilated, particularly at high latitudes in both hemispheres. On the other hand, the main sensitivity to tropospheric chemistry is in the Tropics and sub-Tropics. The best agreement between the assimilated ozone and the in-situ sonde data is in the experiment using both flow-dependent error covariances and tropospheric chemistry.

  19. Current Status and Challenges of Atmospheric Data Assimilation

    NASA Astrophysics Data System (ADS)

    Atlas, R. M.; Gelaro, R.

    2016-12-01

    The issues of modern atmospheric data assimilation are fairly simple to comprehend but difficult to address, involving the combination of literally billions of model variables and tens of millions of observations daily. In addition to traditional meteorological variables such as wind, temperature pressure and humidity, model state vectors are being expanded to include explicit representation of precipitation, clouds, aerosols and atmospheric trace gases. At the same time, model resolutions are approaching single-kilometer scales globally and new observation types have error characteristics that are increasingly non-Gaussian. This talk describes the current status and challenges of atmospheric data assimilation, including an overview of current methodologies, the difficulty of estimating error statistics, and progress toward coupled earth system analyses.

  20. Impact of Satellite Atmospheric Motion Vectors In the GMAO GEOS-5 Global Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Gelaro, Ronald; Merkova, Dagmar

    2012-01-01

    The WMO and THORPEX co-sponsored fifth Workshop on the Impact of Various Observing Systems on Numerical Weather Prediction will be organized by the Expert Team on the Evolution of the Global Observing System in Sedona, Arizona, United States, from 22 to 25 May 2012. Participants are expected to come from all the major NWP centres which are active in the area of impact studies. The workshop will be conducted in English. As for the first four workshops it is planned to produce a workshop report to be published as a WMO Technical Report that will include the papers submitted by the participants. The previous four workshops in this series took place in Geneva {April 1997), Toulouse (March 2000), Alpbach (March 2004) and Geneva (May 2008). Results from Observing System Experiments (OSEs), both with global and regional aspects were presented and conclusions were drawn concerning the contributions of the various components of the observing system to the large scale forecast skill at short and medium range (Workshop Proceedings were published as WMO World Weather Watch Technical Reports TD No. 868, 1034, 1228 and 1450). Since then, some significant changes and developments have affected the global observing system and more efforts have been devoted to meso-scale observing and assimilation systems. There has also been a trend toward using techniques other than OSEs to document data impact, such as adjoint-based sensitivity to observations or ensemble-based sensitivity. Field experiments have been carried out, in particular through the THORPEX project, and the use of targeted data has been assessed.

  1. A storm-time plasmasphere evolution study using data assimilation

    NASA Astrophysics Data System (ADS)

    Nikoukar, R.; Bust, G. S.; Bishop, R. L.; Coster, A. J.; Lemon, C.; Turner, D. L.; Roeder, J. L.

    2017-12-01

    In this work, we study the evolution of the Earth's plasmasphere during geomagnetic active periods using the Plasmasphere Data Assimilation (PDA) model. The total electron content (TEC) measurements from an extensive network of global ground-based GPS receivers as well as GPS receivers on-board Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) satellites and Communications/Navigation Outage Forecasting System (C/NOFS) satellite are ingested into the model. Global Core Plasma model, which is an empirical plasmasphere model, is utilized as the background model. Based on the 3D-VAR optimization, the PDA assimilative model benefits from incorporation of regularization techniques to prevent non-physical altitudinal variation in density estimates due to the limited-angle observational geometry. This work focuses on the plasmapause location, plasmasphere erosion time scales and refilling rates during the main and recovery phases of geomagnetic storms as estimated from the PDA 3-dimensional global maps of electron density in the ionosphere/plasmasphere. The comparison between the PDA results with in-situ density measurements from THEMIS and Van Allen Probes, and the RCM-E first-principle model will be also presented.

  2. Current and future data assimilation development in the Copernicus Atmosphere Monitoring Service

    NASA Astrophysics Data System (ADS)

    Engelen, R. J.; Ades, M.; Agusti-panareda, A.; Flemming, J.; Inness, A.; Kipling, Z.; Parrington, M.; Peuch, V. H.

    2017-12-01

    The European Copernicus Atmosphere Monitoring Service (CAMS) operationally provides daily forecasts of global atmospheric composition and regional air quality. The global forecasting system is using ECMWF's Integrated Forecasting System (IFS), which is used for numerical weather prediction and which has been extended with modules for atmospheric chemistry, aerosols and greenhouse gases. The system assimilates observations from more than 60 satellite sensors to constrain both the meteorology and the atmospheric composition species. While an operational forecasting system needs to be robust and reliable, it also needs to stay state-of-the-art to provide the best possible forecasts. Continuous development is therefore an important component of the CAMS systems. We will present on-going efforts on improving the 4D-Var data assimilation system, such as using ensemble data assimilation to improve the background error covariances and more accurate use of satellite observations. We will also outline plans for including emissions in the daily CAMS analyses, which is an area where research activities have a large potential to feed into operational applications.

  3. Satellite Sounder Data Assimilation for Improving Alaska Region Weather Forecast

    NASA Technical Reports Server (NTRS)

    Zhu, Jiang; Stevens, E.; Zhang, X.; Zavodsky, B. T.; Heinrichs, T.; Broderson, D.

    2014-01-01

    A case study and monthly statistical analysis using sounder data assimilation to improve the Alaska regional weather forecast model are presented. Weather forecast in Alaska faces challenges as well as opportunities. Alaska has a large land with multiple types of topography and coastal area. Weather forecast models must be finely tuned in order to accurately predict weather in Alaska. Being in the high-latitudes provides Alaska greater coverage of polar orbiting satellites for integration into forecasting models than the lower 48. Forecasting marine low stratus clouds is critical to the Alaska aviation and oil industry and is the current focus of the case study. NASA AIRS/CrIS sounder profiles data are used to do data assimilation for the Alaska regional weather forecast model to improve Arctic marine stratus clouds forecast. Choosing physical options for the WRF model is discussed. Preprocess of AIRS/CrIS sounder data for data assimilation is described. Local observation data, satellite data, and global data assimilation data are used to verify and/or evaluate the forecast results by the MET tools Model Evaluation Tools (MET).

  4. Data Assimilation Cycling for Weather Analysis

    NASA Technical Reports Server (NTRS)

    Tran, Nam; Li, Yongzuo; Fitzpatrick, Patrick

    2008-01-01

    This software package runs the atmospheric model MM5 in data assimilation cycling mode to produce an optimized weather analysis, including the ability to insert or adjust a hurricane vortex. The program runs MM5 through a cycle of short forecasts every three hours where the vortex is adjusted to match the observed hurricane location and storm intensity. This technique adjusts the surrounding environment so that the proper steering current and environmental shear are achieved. MM5cycle uses a Cressman analysis to blend observation into model fields to get a more accurate weather analysis. Quality control of observations is also done in every cycle to remove bad data that may contaminate the analysis. This technique can assimilate and propagate data in time from intermittent and infrequent observations while maintaining the atmospheric field in a dynamically balanced state. The software consists of a C-shell script (MM5cycle.driver) and three FORTRAN programs (splitMM5files.F, comRegrid.F, and insert_vortex.F), and are contained in the pre-processor component of MM5 called "Regridder." The model is first initialized with data from a global model such as the Global Forecast System (GFS), which also provides lateral boundary conditions. These data are separated into single-time files using splitMM5.F. The hurricane vortex is then bogussed in the correct location and with the correct wind field using insert_vortex.F. The modified initial and boundary conditions are then recombined into the model fields using comRegrid.F. The model then makes a three-hour forecast. The three-hour forecast data from MM5 now become the analysis for the next short forecast run, where the vortex will again be adjusted. The process repeats itself until the desired time of analysis is achieved. This code can also assimilate observations if desired.

  5. Thermospheric Data Assimilation

    DTIC Science & Technology

    2016-05-05

    forecasting longer than 3 days. Furthermore, validation of assimilation analyses with independent CHAMP mass density observations confirms that the...approach developed in this project. 15. SUBJECT TERMS Data assimilation, Ensemble forecasting , Thermosphere-ionosphere coupled data assimilation...Neutral mass density specification and forecasting , 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 6 19a. NAME

  6. Ocean Spectral Data Assimilation Without Background Error Covariance Matrix

    DTIC Science & Technology

    2016-01-01

    float data (Chu et al. 2007 ), and 97 temporal and spatial variability of the global upper ocean heat content (Chu 2011) from the data 98 of the Global...Melnichenko OV, Wells NC ( 2007 ) Long baroclinic Rossby waves in the 558 tropical North Atlantic observed from profiling floats. J Geophys Res...Hall, J, Harrison D.E. and Stammer , D., Eds., ESA Publication WPP-610 306. 611 612 Tang Y, Kleeman R (2004) SST assimilation experiments in a

  7. Assimilation of GPM GMI Rainfall Product with WRF GSI

    NASA Technical Reports Server (NTRS)

    Li, Xuanli; Mecikalski, John; Zavodsky, Bradley

    2015-01-01

    The Global Precipitation Measurement (GPM) is an international mission to provide next-generation observations of rain and snow worldwide. The GPM built on Tropical Rainfall Measuring Mission (TRMM) legacy, while the core observatory will extend the observations to higher latitudes. The GPM observations can help advance our understanding of precipitation microphysics and storm structures. Launched on February 27th, 2014, the GPM core observatory is carrying advanced instruments that can be used to quantify when, where, and how much it rains or snows around the world. Therefore, the use of GPM data in numerical modeling work is a new area and will have a broad impact in both research and operational communities. The goal of this research is to examine the methodology of assimilation of the GPM retrieved products. The data assimilation system used in this study is the community Gridpoint Statistical Interpolation (GSI) system for the Weather Research and Forecasting (WRF) model developed by the Development Testbed Center (DTC). The community GSI system runs in independently environment, yet works functionally equivalent to operational centers. With collaboration with the NASA Short-term Prediction Research and Transition (SPoRT) Center, this research explores regional assimilation of the GPM products with case studies. Our presentation will highlight our recent effort on the assimilation of the GPM product 2AGPROFGMI, the retrieved Microwave Imager (GMI) rainfall rate data for initializing a real convective storm. WRF model simulations and storm scale data assimilation experiments will be examined, emphasizing both model initialization and short-term forecast of precipitation fields and processes. In addition, discussion will be provided on the development of enhanced assimilation procedures in the GSI system with respect to other GPM products. Further details of the methodology of data assimilation, preliminary result and test on the impact of GPM data and the

  8. Reviews and syntheses: Systematic Earth observations for use in terrestrial carbon cycle data assimilation systems

    NASA Astrophysics Data System (ADS)

    Scholze, Marko; Buchwitz, Michael; Dorigo, Wouter; Guanter, Luis; Quegan, Shaun

    2017-07-01

    The global carbon cycle is an important component of the Earth system and it interacts with the hydrology, energy and nutrient cycles as well as ecosystem dynamics. A better understanding of the global carbon cycle is required for improved projections of climate change including corresponding changes in water and food resources and for the verification of measures to reduce anthropogenic greenhouse gas emissions. An improved understanding of the carbon cycle can be achieved by data assimilation systems, which integrate observations relevant to the carbon cycle into coupled carbon, water, energy and nutrient models. Hence, the ingredients for such systems are a carbon cycle model, an algorithm for the assimilation and systematic and well error-characterised observations relevant to the carbon cycle. Relevant observations for assimilation include various in situ measurements in the atmosphere (e.g. concentrations of CO2 and other gases) and on land (e.g. fluxes of carbon water and energy, carbon stocks) as well as remote sensing observations (e.g. atmospheric composition, vegetation and surface properties).We briefly review the different existing data assimilation techniques and contrast them to model benchmarking and evaluation efforts (which also rely on observations). A common requirement for all assimilation techniques is a full description of the observational data properties. Uncertainty estimates of the observations are as important as the observations themselves because they similarly determine the outcome of such assimilation systems. Hence, this article reviews the requirements of data assimilation systems on observations and provides a non-exhaustive overview of current observations and their uncertainties for use in terrestrial carbon cycle data assimilation. We report on progress since the review of model-data synthesis in terrestrial carbon observations by Raupach et al.(2005), emphasising the rapid advance in relevant space-based observations.

  9. Impact of Assimilated and Interactive Aerosol on Tropical Cyclogenesis

    NASA Technical Reports Server (NTRS)

    Reale, O.; Lau, K. M.; daSilva, A.; Matsui, T.

    2014-01-01

    This article investigates the impact 3 of Saharan dust on the development of tropical cyclones in the Atlantic. A global data assimilation and forecast system, the NASA GEOS-5, is used to assimilate all satellite and conventional data sets used operationally for numerical weather prediction. In addition, this new GEOS-5 version includes assimilation of aerosol optical depth from the Moderate Resolution Imaging Spectroradiometer (MODIS). The analysis so obtained comprises atmospheric quantities and a realistic 3-d aerosol and cloud distribution, consistent with the meteorology and validated against Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat data. These improved analyses are used to initialize GEOS-5 forecasts, explicitly accounting for aerosol direct radiative effects and their impact on the atmospheric dynamics. Parallel simulations with/without aerosol radiative effects show that effects of dust on static stability increase with time, becoming highly significant after day 5 and producing an environment less favorable to tropical cyclogenesis.

  10. New Developments in the Data Assimilation Research Testbed

    NASA Astrophysics Data System (ADS)

    Hoar, T. J.; Anderson, J. L.; Raeder, K.; Karspeck, A. R.; Romine, G.; Liu, H.; Collins, N.

    2011-12-01

    NCAR's Data Assimilation Research Testbed (DART) is a community facility that provides ensemble data assimilation tools for geophysical applications. DART works with an expanding set of models and a wide range of conventional and novel observations, and provides a variety of assimilation algorithms and diagnostic tools. The Kodiak release of DART became available in July 2011 and includes more than 20 major feature enhancements, support for 24 models, support for (at least) 14 observation formats, expanded documentation and diagnostic tools, and 12 new utilities. A few examples of research projects that demonstrate the effectiveness and flexibility of the DART are described. The Community Atmosphere Model (CAM) and DART assimilated all the observations that were used in the NCEP/NCAR Reanalysis to produce a global, 6-hourly, 80-member ensemble reanalysis for 1998 through the present. The dataset is ideal for research applications that would benefit from an ensemble of equally-likely atmospheric states that are consistent with observations. Individual ensemble members may be used as a "data atmosphere" in any Community Earth System Model (CESM) experiment. The CESM interfaces for the Parallel Ocean Program (POP) and the Community Land Model (CLM) also support multiple instances, allowing data assimilation experiments exploiting unique atmospheric forcing for each POP or CLM model instance. A multi-year DART ocean assimilation has been completed and provides valuable insight into the successes and challenges of oceanic data assimilation. The DART/CLM research focuses on snow cover fraction and snow depth. The Weather Research and Forecasting (WRF) model was used with DART to perform a real-time CONUS domain mesoscale ensemble analysis with continuous cycling for 47 days. A member was selected once daily for high-resolution convective forecasts supporting a test phase of the Deep Convective Clouds and Chemistry experiment and the Storm Prediction Center spring

  11. Assessment of Data Assimilation with the Prototype High Resolution Rapid Refresh for Alaska (HRRRAK)

    NASA Technical Reports Server (NTRS)

    Harrison, Kayla; Morton, Don; Zavodsky, Brad; Chou, Shih

    2012-01-01

    The Arctic Region Supercomputing Center has been running a quasi-operational prototype of a High Resolution Rapid Refresh for Alaska (HRRRAK) at 3km resolution, initialized by the 13km Rapid Refresh (RR). Although the RR assimilates a broad range of observations into its analyses, experiments with the HRRRAK suggest that there may be added value in assimilating observations into the 3km initial conditions, downscaled from the 13km RR analyses. The NASA Short-term Prediction Research and Transition (SPoRT) group has been using assimilated data from the Atmospheric Infrared Sounder (AIRS) in WRF and WRF-Var simulations since 2004 with promising results. The sounder is aboard NASA s Aqua satellite, and provides vertical profiles of temperature and humidity. The Gridpoint Statistical Interpolation (GSI) system is then used to assimilate these vertical profiles into WRF forecasts. In this work, we assess the use of AIRS data in combination with other global data assimilation products on non-assimilated HRRRAK case studies. Two separate weather events will be assessed to qualitatively and quantitatively assess the impacts of AIRS data on HRRRAK forecasts.

  12. Supporting Operational Data Assimilation Capabilities to the Research Community

    NASA Astrophysics Data System (ADS)

    Shao, H.; Hu, M.; Stark, D. R.; Zhou, C.; Beck, J.; Ge, G.

    2017-12-01

    The Developmental Testbed Center (DTC), in partnership with the National Centers for Environmental Prediction (NCEP) and other operational and research institutions, provides operational data assimilation capabilities to the research community and helps transition research advances to operations. The primary data assimilation system supported currently by the DTC is the Gridpoint Statistical Interpolation (GSI) system and the National Oceanic and Atmospheric Administration (NOAA) Ensemble Kalman Filter (EnKF) system. GSI is a variational based system being used for daily operations at NOAA, NCEP, the National Aeronautics and Space Administration, and other operational agencies. Recently, GSI has evolved into a four-dimensional EnVar system. Since 2009, the DTC has been releasing the GSI code to the research community annually and providing user support. In addition to GSI, the DTC, in 2015, began supporting the ensemble based EnKF data assimilation system. EnKF shares the observation operator with GSI and therefore, just as GSI, can assimilate both conventional and non-conventional data (e.g., satellite radiance). Currently, EnKF is being implemented as part of the GSI based hybrid EnVar system for NCEP Global Forecast System operations. This paper will summarize the current code management and support framework for these two systems. Following that is a description of available community services and facilities. Also presented is the pathway for researchers to contribute their development to the daily operations of these data assimilation systems.

  13. The Impact of Withholding Observations from TOMS or SBUV Instruments on the GEOS Ozone Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Stajner, Ovanka; Riishojgaard, Lars Peter; Rood, Richard B.

    2000-01-01

    In a data assimilation system (DAS), model forecast atmospheric fields, observations and their respective statistics are combined in an attempt to produce the best estimate of these fields. Ozone observations from two instruments are assimilated in the Goddard Earth Observing System (GEOS) ozone DAS: the Total Ozone Mapping Spectrometer (TOMS) and the Solar Backscatter Ultraviolet (SBUV) instrument. The assimilated observations are complementary; TOMS provides a global daily coverage of total column ozone, without profile information, while SBUV measures ozone profiles and total column ozone at nadir only. The purpose of this paper is to examine the performance of the ozone assimilation system in the absence of observations from one of the instruments as it can happen in the event of a failure of an instrument or when there are problems with an instrument for a limited time. Our primary concern is for the performance of the GEOS ozone DAS when it is used in the operational mode to provide near real time analyzed ozone fields in support of instruments on the Terra satellite. In addition, we are planning to produce a longer term ozone record by assimilating historical data. We want to quantify the differences in the assimilated ozone fields that are caused by the changes in the TOMS or SBUV observing network. Our primary interest is in long term and large scale features visible in global statistics of analysis fields, such as differences in the zonal mean of assimilated ozone fields or comparisons with independent observations, While some drifts in assimilated fields occur immediately, after assimilating just one day of different observations, the others develop slowly over several months. Thus, we are also interested in the length of time, which is determined from time series, that is needed for significant changes to take place.

  14. Contribution Of The SWOT Mission To Large-Scale Hydrological Modeling Using Data Assimilation

    NASA Astrophysics Data System (ADS)

    Emery, C. M.; Biancamaria, S.; Boone, A. A.; Ricci, S. M.; Rochoux, M. C.; Garambois, P. A.; Paris, A.; Calmant, S.

    2016-12-01

    The purpose of this work is to improve water fluxes estimation on the continental surfaces, at interanual and interseasonal scale (from few years to decennial time period). More specifically, it studies contribution of the incoming SWOT satellite mission to improve hydrology model at global scale, and using the land surface model ISBA-TRIP. This model corresponds to the continental component of the CNRM (French meteorological research center)'s climatic model. This study explores the potential of satellite data to correct either input parameters of the river routing scheme TRIP or its state variables. To do so, a data assimilation platform (using an Ensemble Kalman Filter, EnKF) has been implemented to assimilate SWOT virtual observations as well as discharges estimated from real nadir altimetry data. A series of twin experiments is used to test and validate the parameter estimation module of the platform. SWOT virtual-observations of water heights along SWOT tracks (with a 10 cm white noise model error) are assimilated to correct the river routing model parameters. To begin with, we chose to focus exclusively on the river manning coefficient, with the possibility to easily extend to other parameters such as the river widths. First results show that the platform is able to recover the "true" Manning distribution assimilating SWOT-like water heights. The error on the coefficients goes from 35 % before assimilation to 9 % after four SWOT orbit repeat period of 21 days. In the state estimation mode, daily assimilation cycles are realized to correct TRIP river water storage initial state by assimilating ENVISAT-based discharge. Those observations are derived from ENVISAT water elevation measures, using rating curves from the MGB-IPH hydrological model (calibrated over the Amazon using in situ gages discharge). Using such kind of observation allows going beyond idealized twin experiments and also to test contribution of a remotely-sensed discharge product, which could

  15. Improving Estimates and Forecasts of Lake Carbon Pools and Fluxes Using Data Assimilation

    NASA Astrophysics Data System (ADS)

    Zwart, J. A.; Hararuk, O.; Prairie, Y.; Solomon, C.; Jones, S.

    2017-12-01

    Lakes are biogeochemical hotspots on the landscape, contributing significantly to the global carbon cycle despite their small areal coverage. Observations and models of lake carbon pools and fluxes are rarely explicitly combined through data assimilation despite significant use of this technique in other fields with great success. Data assimilation adds value to both observations and models by constraining models with observations of the system and by leveraging knowledge of the system formalized by the model to objectively fill information gaps. In this analysis, we highlight the utility of data assimilation in lake carbon cycling research by using the Ensemble Kalman Filter to combine simple lake carbon models with observations of lake carbon pools. We demonstrate the use of data assimilation to improve a model's representation of lake carbon dynamics, to reduce uncertainty in estimates of lake carbon pools and fluxes, and to improve the accuracy of carbon pool size estimates relative to estimates derived from observations alone. Data assimilation techniques should be embraced as valuable tools for lake biogeochemists interested in learning about ecosystem dynamics and forecasting ecosystem states and processes.

  16. Bias Correction for Assimilation of Retrieved AIRS Profiles of Temperature and Humidity

    NASA Technical Reports Server (NTRS)

    Blankenship, Clay; Zavodsky, Brad; Blackwell, William

    2014-01-01

    Atmospheric Infrared Sounder (AIRS) is a hyperspectral radiometer aboard NASA's Aqua satellite designed to measure atmospheric profiles of temperature and humidity. AIRS retrievals are assimilated into the Weather Research and Forecasting (WRF) model over the North Pacific for some cases involving "atmospheric rivers". These events bring a large flux of water vapor to the west coast of North America and often lead to extreme precipitation in the coastal mountain ranges. An advantage of assimilating retrievals rather than radiances is that information in partly cloudy fields of view can be used. Two different Level 2 AIRS retrieval products are compared: the Version 6 AIRS Science Team standard retrievals and a neural net retrieval from MIT. Before assimilation, a bias correction is applied to adjust each layer of retrieved temperature and humidity so the layer mean values agree with a short-term model climatology. WRF runs assimilating each of the products are compared against each other and against a control run with no assimilation. This paper will describe the bias correction technique and results from forecasts evaluated by validation against a Total Precipitable Water (TPW) product from CIRA and against Global Forecast System (GFS) analyses.

  17. Implementation of Coupled Skin Temperature Analysis and Bias Correction in a Global Atmospheric Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Radakovich, Jon; Bosilovich, M.; Chern, Jiun-dar; daSilva, Arlindo

    2004-01-01

    The NASA/NCAR Finite Volume GCM (fvGCM) with the NCAR CLM (Community Land Model) version 2.0 was integrated into the NASA/GMAO Finite Volume Data Assimilation System (fvDAS). A new method was developed for coupled skin temperature assimilation and bias correction where the analysis increment and bias correction term is passed into the CLM2 and considered a forcing term in the solution to the energy balance. For our purposes, the fvDAS CLM2 was run at 1 deg. x 1.25 deg. horizontal resolution with 55 vertical levels. We assimilate the ISCCP-DX (30 km resolution) surface temperature product. The atmospheric analysis was performed 6-hourly, while the skin temperature analysis was performed 3-hourly. The bias correction term, which was updated at the analysis times, was added to the skin temperature tendency equation at every timestep. In this presentation, we focus on the validation of the surface energy budget at the in situ reference sites for the Coordinated Enhanced Observation Period (CEOP). We will concentrate on sites that include independent skin temperature measurements and complete energy budget observations for the month of July 2001. In addition, MODIS skin temperature will be used for validation. Several assimilations were conducted and preliminary results will be presented.

  18. Assimilation for skin SST in the NASA GEOS atmospheric data assimilation system.

    PubMed

    Akella, Santha; Todling, Ricardo; Suarez, Max

    2017-01-01

    The present article describes the sea surface temperature (SST) developments implemented in the Goddard Earth Observing System, Version 5 (GEOS-5) Atmospheric Data Assimilation System (ADAS). These are enhancements that contribute to the development of an atmosphere-ocean coupled data assimilation system using GEOS. In the current quasi-operational GEOS-ADAS, the SST is a boundary condition prescribed based on the OSTIA product, therefore SST and skin SST (Ts) are identical. This work modifies the GEOS-ADAS Ts by modeling and assimilating near sea surface sensitive satellite infrared (IR) observations. The atmosphere-ocean interface layer of the GEOS atmospheric general circulation model (AGCM) is updated to include near surface diurnal warming and cool-skin effects. The GEOS analysis system is also updated to directly assimilate SST-relevant Advanced Very High Resolution Radiometer (AVHRR) radiance observations. Data assimilation experiments designed to evaluate the Ts modification in GEOS-ADAS show improvements in the assimilation of radiance observations that extends beyond the thermal IR bands of AVHRR. In particular, many channels of hyperspectral sensors, such as those of the Atmospheric Infrared Sounder (AIRS), and Infrared Atmospheric Sounding Interferometer (IASI) are also better assimilated. We also obtained improved fit to withheld, in-situ buoy measurement of near-surface SST. Evaluation of forecast skill scores show marginal to neutral benefit from the modified Ts.

  19. Assimilation for skin SST in the NASA GEOS atmospheric data assimilation system

    PubMed Central

    Akella, Santha; Todling, Ricardo; Suarez, Max

    2018-01-01

    The present article describes the sea surface temperature (SST) developments implemented in the Goddard Earth Observing System, Version 5 (GEOS-5) Atmospheric Data Assimilation System (ADAS). These are enhancements that contribute to the development of an atmosphere-ocean coupled data assimilation system using GEOS. In the current quasi-operational GEOS-ADAS, the SST is a boundary condition prescribed based on the OSTIA product, therefore SST and skin SST (Ts) are identical. This work modifies the GEOS-ADAS Ts by modeling and assimilating near sea surface sensitive satellite infrared (IR) observations. The atmosphere-ocean interface layer of the GEOS atmospheric general circulation model (AGCM) is updated to include near surface diurnal warming and cool-skin effects. The GEOS analysis system is also updated to directly assimilate SST-relevant Advanced Very High Resolution Radiometer (AVHRR) radiance observations. Data assimilation experiments designed to evaluate the Ts modification in GEOS-ADAS show improvements in the assimilation of radiance observations that extends beyond the thermal IR bands of AVHRR. In particular, many channels of hyperspectral sensors, such as those of the Atmospheric Infrared Sounder (AIRS), and Infrared Atmospheric Sounding Interferometer (IASI) are also better assimilated. We also obtained improved fit to withheld, in-situ buoy measurement of near-surface SST. Evaluation of forecast skill scores show marginal to neutral benefit from the modified Ts. PMID:29628531

  20. Assimilation for Skin SST in the NASA GEOS Atmospheric Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Akella, Santha; Todling, Ricardo; Suarez, Max

    2017-01-01

    The present article describes the sea surface temperature (SST) developments implemented in the Goddard Earth Observing System, Version 5 (GEOS) Atmospheric Data Assimilation System (ADAS). These are enhancements that contribute to the development of an atmosphere-ocean coupled data assimilation system using GEOS. In the current quasi-operational GEOS-ADAS, the SST is a boundary condition prescribed based on the OSTIA product, therefore SST and skin SST (Ts) are identical. This work modifies the GEOS-ADAS Ts by modelling and assimilating near sea surface sensitive satellite infrared (IR) observations. The atmosphere-ocean interface layer of the GEOS atmospheric general circulation model (AGCM) is updated to include near-surface diurnal warming and cool-skin effects. The GEOS analysis system is also updated to directly assimilate SST-relevant Advanced Very High Resolution Radiometer (AVHRR) radiance observations. Data assimilation experiments designed to evaluate the Ts modification in GEOS-ADAS show improvements in the assimilation of radiance observations that extend beyond the thermal infrared bands of AVHRR. In particular, many channels of hyperspectral sensors, such as those of the Atmospheric Infrared Sounder (AIRS), and Infrared Atmospheric Sounding Interferometer (IASI) are also better assimilated. We also obtained improved fit to withheld insitu buoy measurement of near-surface SST. Evaluation of forecast skill scores show neutral to marginal benefit from the modified Ts.

  1. Towards the Operational Ensemble-based Data Assimilation System for the Wave Field at the National Weather Service

    NASA Astrophysics Data System (ADS)

    Flampouris, Stylianos; Penny, Steve; Alves, Henrique

    2017-04-01

    The National Centers for Environmental Prediction (NCEP) of the National Oceanic and Atmospheric Administration (NOAA) provides the operational wave forecast for the US National Weather Service (NWS). Given the continuous efforts to improve forecast, NCEP is developing an ensemble-based data assimilation system, based on the local ensemble transform Kalman filter (LETKF), the existing operational global wave ensemble system (GWES) and on satellite and in-situ observations. While the LETKF was designed for atmospheric applications (Hunt et al 2007), and has been adapted for several ocean models (e.g. Penny 2016), this is the first time applied for oceanic waves assimilation. This new wave assimilation system provides a global estimation of the surface sea state and its approximate uncertainty. It achieves this by analyzing the 21-member ensemble of the significant wave height provided by GWES every 6h. Observations from four altimeters and all the available in-situ measurements are used in this analysis. The analysis of the significant wave height is used for initializing the next forecasting cycle; the data assimilation system is currently being tested for operational use.

  2. A Unified Data Assimilation Strategy for Regional Coupled Atmosphere-Ocean Prediction Systems

    NASA Astrophysics Data System (ADS)

    Xie, Lian; Liu, Bin; Zhang, Fuqing; Weng, Yonghui

    2014-05-01

    coupled air-sea modelling system, but also nudging the large-scale environmental flow in the regional model towards global model forecasts are of increasing necessity. In this presentation, we will outline a strategy for an integrated approach in air-sea coupled data assimilation and discuss its benefits and feasibility from incremental results for select historical hurricane cases.

  3. Evaluation and Assimilation of Cloud Cleared Radiances for AIRS in GEOS-5

    NASA Technical Reports Server (NTRS)

    Liu, Hui-chun

    2008-01-01

    The use of clear (cloud-free) channels for AIRS in GEOS-5 had shown positive impact on forecast skills in both hemispheres. However, improvements in forecast skills due to the assimilation of AIRS data are less impressive since the number of assimilated channels from AIRS is much larger than that from other Infrared sounders such as HIRS-3 onboard NOAA 15-17 satellites. This limitation of AIRS radiance data to improve the forecast skill is mainly due to the fact that channels capable of peaking below clouds are not used in the assimilation and yet those have highest vertical resolving capability of AIRS instrument are concentrated in the lower troposphere. On average, the percentage of AIRS footprints completely clear for all channels is less than 10%. The percentage of assimilated AIRS channel radiances however ranges from 100% for channels peaking in the upper stratosphere, above the cloud, to no more that 5% in the lower atmosphere due to cloud contamination. Our current ability to model and predict clouds accurately in global model, and to fully characterize and parameterize optical properties of cloud particles in radiative transfer model are the two major obstacles prohibiting us to use cloudy radiance directly in the assimilation. To further improve forecast skill using AIRS data, we ought to use the channels peaking below the clouds in the troposphere, which can be accomplished by assimilating cloud-cleared radiance. The cloud-cleared radiance data for AIRS used in this study were obtained from optimal cloud clearing procedures developed by researchers at CIMSS of University of Wisconsin at Madison to retrieve clear column radiances for all AIRS channels by collocating multi-band MODIS IR clear radiance observations with the AIRS cloudy radiances on a single footprint basis. Two adjacent AIRS cloudy footprints are used to retrieve one AIRS cloud-cleared radiance spectrum and no background information (first guess) is needed. To assimilate the cloud

  4. Data assimilation of GNSS zenith total delays from a Nordic processing centre

    NASA Astrophysics Data System (ADS)

    Lindskog, Magnus; Ridal, Martin; Thorsteinsson, Sigurdur; Ning, Tong

    2017-11-01

    Atmospheric moisture-related information estimated from Global Navigation Satellite System (GNSS) ground-based receiver stations by the Nordic GNSS Analysis Centre (NGAA) have been used within a state-of-the-art kilometre-scale numerical weather prediction system. Different processing techniques have been implemented to derive the moisture-related GNSS information in the form of zenith total delays (ZTDs) and these are described and compared. In addition full-scale data assimilation and modelling experiments have been carried out to investigate the impact of utilizing moisture-related GNSS data from the NGAA processing centre on a numerical weather prediction (NWP) model initial state and on the ensuing forecast quality. The sensitivity of results to aspects of the data processing, station density, bias-correction and data assimilation have been investigated. Results show benefits to forecast quality when using GNSS ZTD as an additional observation type. The results also show a sensitivity to thinning distance applied for GNSS ZTD observations but not to modifications to the number of predictors used in the variational bias correction applied. In addition, it is demonstrated that the assimilation of GNSS ZTD can benefit from more general data assimilation enhancements and that there is an interaction of GNSS ZTD with other types of observations used in the data assimilation. Future plans include further investigation of optimal thinning distances and application of more advanced data assimilation techniques.

  5. Retrieval Assimilation and Modeling of Atmospheric Water Vapor from Ground- and Space-Based GPS Networks: Investigation of the Global and Regional Hydrological Cycles

    NASA Technical Reports Server (NTRS)

    Dickey, Jean O.

    1999-01-01

    Uncertainty over the response of the atmospheric hydrological cycle (particularly the distribution of water vapor and cloudiness) to anthropogenic forcing is a primary source of doubt in current estimates of global climate sensitivity, which raises severe difficulties in evaluating its likely societal impact. Fortunately, a variety of advanced techniques and sensors are beginning to shed new light on the atmospheric hydrological cycle. One of the most promising makes use of the sensitivity of the Global Positioning System (GPS) to the thermodynamic state, and in particular the water vapor content, of the atmosphere through which the radio signals propagate. Our strategy to derive the maximum benefit for hydrological studies from the rapidly increasing GPS data stream will proceed in three stages: (1) systematically analyze and archive quality-controlled retrievals using state-of-the-art techniques; (2) employ both currently available and innovative assimilation procedures to incorporate these determinations into advanced regional and global atmospheric models and assess their effects; and (3) apply the results to investigate selected scientific issues of relevance to regional and global hydrological studies. An archive of GPS-based estimation of total zenith delay (TZD) data and water vapor where applicable has been established with expanded automated quality control. The accuracy of the GPS estimates is being monitored; the investigation of systematic errors is ongoing using comparisons with water vapor radiometers. Meteorological packages have been implemented. The accuracy and utilization of the TZD estimates has been improved by implementing a troposphere gradient model. GPS-based gradients have been validated as real atmospheric moisture gradients, establishing a link between the estimated gradients and the passage of weather fronts. We have developed a generalized ray tracing inversion scheme that can be used to analyze occultation data acquired from space

  6. Comparison of different assimilation schemes in an operational assimilation system with Ensemble Kalman Filter

    NASA Astrophysics Data System (ADS)

    Yan, Yajing; Barth, Alexander; Beckers, Jean-Marie; Candille, Guillem; Brankart, Jean-Michel; Brasseur, Pierre

    2016-04-01

    In this paper, four assimilation schemes, including an intermittent assimilation scheme (INT) and three incremental assimilation schemes (IAU 0, IAU 50 and IAU 100), are compared in the same assimilation experiments with a realistic eddy permitting primitive equation model of the North Atlantic Ocean using the Ensemble Kalman Filter. The three IAU schemes differ from each other in the position of the increment update window that has the same size as the assimilation window. 0, 50 and 100 correspond to the degree of superposition of the increment update window on the current assimilation window. Sea surface height, sea surface temperature, and temperature profiles at depth collected between January and December 2005 are assimilated. Sixty ensemble members are generated by adding realistic noise to the forcing parameters related to the temperature. The ensemble is diagnosed and validated by comparison between the ensemble spread and the model/observation difference, as well as by rank histogram before the assimilation experiments The relevance of each assimilation scheme is evaluated through analyses on thermohaline variables and the current velocities. The results of the assimilation are assessed according to both deterministic and probabilistic metrics with independent/semi-independent observations. For deterministic validation, the ensemble means, together with the ensemble spreads are compared to the observations, in order to diagnose the ensemble distribution properties in a deterministic way. For probabilistic validation, the continuous ranked probability score (CRPS) is used to evaluate the ensemble forecast system according to reliability and resolution. The reliability is further decomposed into bias and dispersion by the reduced centered random variable (RCRV) score in order to investigate the reliability properties of the ensemble forecast system.

  7. Use of MODIS Cloud Top Pressure to Improve Assimilation Yields of AIRS Radiances in GSI

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Srikishen, Jayanthi

    2014-01-01

    Radiances from hyperspectral sounders such as the Atmospheric Infrared Sounder (AIRS) are routinely assimilated both globally and regionally in operational numerical weather prediction (NWP) systems using the Gridpoint Statistical Interpolation (GSI) data assimilation system. However, only thinned, cloud-free radiances from a 281-channel subset are used, so the overall percentage of these observations that are assimilated is somewhere on the order of 5%. Cloud checks are performed within GSI to determine which channels peak above cloud top; inaccuracies may lead to less assimilated radiances or introduction of biases from cloud-contaminated radiances.Relatively large footprint from AIRS may not optimally represent small-scale cloud features that might be better resolved by higher-resolution imagers like the Moderate Resolution Imaging Spectroradiometer (MODIS). Objective of this project is to "swap" the MODIS-derived cloud top pressure (CTP) for that designated by the AIRS-only quality control within GSI to test the hypothesis that better representation of cloud features will result in higher assimilated radiance yields and improved forecasts.

  8. Evaluation of the Impact of AIRS Radiance and Profile Data Assimilation in Partly Cloudy Regions

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Srikishen, Jayanthi; Jedlovec, Gary

    2013-01-01

    Improvements to global and regional numerical weather prediction have been demonstrated through assimilation of data from NASA s Atmospheric Infrared Sounder (AIRS). Current operational data assimilation systems use AIRS radiances, but impact on regional forecasts has been much smaller than for global forecasts. Retrieved profiles from AIRS contain much of the information that is contained in the radiances and may be able to reveal reasons for this reduced impact. Assimilating AIRS retrieved profiles in an identical analysis configuration to the radiances, tracking the quantity and quality of the assimilated data in each technique, and examining analysis increments and forecast impact from each data type can yield clues as to the reasons for the reduced impact. By doing this with regional scale models individual synoptic features (and the impact of AIRS on these features) can be more easily tracked. This project examines the assimilation of hyperspectral sounder data used in operational numerical weather prediction by comparing operational techniques used for AIRS radiances and research techniques used for AIRS retrieved profiles. Parallel versions of a configuration of the Weather Research and Forecasting (WRF) model with Gridpoint Statistical Interpolation (GSI) are run to examine the impact AIRS radiances and retrieved profiles. Statistical evaluation of a long-term series of forecast runs will be compared along with preliminary results of in-depth investigations for select case comparing the analysis increments in partly cloudy regions and short-term forecast impacts.

  9. Leaf nitrogen assimilation and partitioning differ among subtropical forest plants in response to canopy addition of nitrogen treatments

    Treesearch

    Nan Liu; Shuhua Wu; Qinfeng Guo; Jiaxin Wang; Ce Cao; Jun Wang

    2018-01-01

    Global increases in nitrogen deposition may alter forest structure and function by interferingwith plant nitrogen metabolism (e.g., assimilation and partitioning) and subsequent carbon assimilation, but it is unclear how these responses to nitrogen deposition differ among species. In this study, we conducted a 2-year experiment to investigate the effects of canopy...

  10. Preliminary Results from an Assimilation of TOMS Aerosol Observations Into the GOCART Model

    NASA Technical Reports Server (NTRS)

    daSilva, Arlindo; Weaver, Clark J.; Ginoux, Paul; Torres, Omar; Einaudi, Franco (Technical Monitor)

    2000-01-01

    At NASA Goddard we are developing a global aerosol data assimilation system that combines advances in remote sensing and modeling of atmospheric aerosols. The goal is to provide high resolution, 3-D aerosol distributions to the research community. Our first step is to develop a simple assimilation system for Saharan mineral aerosol. The Goddard Chemistry and Aerosol Radiation model (GOCART) provides accurate 3-D mineral aerosol size distributions that compare well with TOMS satellite observations. Surface, mobilization, wet and dry deposition, convective and long-range transport are all driven by assimilated fields from the Goddard Earth Observing System Data Assimilation System, GEOS-DAS. Our version of GOCART transports sizes from.08-10 microns and only simulates Saharan dust. TOMS radiance observations in the ultra violet provide information on the mineral and carbonaceous aerosol fields. We use two main observables in this study: the TOMS aerosol index (AI) which is directly related to the ratio of the 340 and 380 radiances and the 380 radiance. These are sensitive to the aerosol optical thickness, the single scattering albedo and the height of the aerosol layer. The Goddard Aerosol Assimilation System (GAAS) uses the Data Assimilation Office's Physical-space Statistical Analysis System (PSAS) to combine TOMS observations and GOCART model first guess fields. At this initial phase we only assimilate observations into the the GOCART model over regions of Africa and the Atlantic where mineral aerosols dominant and carbonaceous aerosols are minimal, Our preliminary results during summer show that the assimilation with TOMS data modifies both the aerosol mass loading and the single scattering albedo. Assimilated aerosol fields will be compared with assimilated aerosol fields from GOCART and AERONET observations over Cape Verde.

  11. Efficient Methods to Assimilate Satellite Retrievals Based on Information Content. Part 2; Suboptimal Retrieval Assimilation

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Dee, D. P.

    1998-01-01

    One of the outstanding problems in data assimilation has been and continues to be how best to utilize satellite data while balancing the tradeoff between accuracy and computational cost. A number of weather prediction centers have recently achieved remarkable success in improving their forecast skill by changing the method by which satellite data are assimilated into the forecast model from the traditional approach of assimilating retrievals to the direct assimilation of radiances in a variational framework. The operational implementation of such a substantial change in methodology involves a great number of technical details, e.g., pertaining to quality control procedures, systematic error correction techniques, and tuning of the statistical parameters in the analysis algorithm. Although there are clear theoretical advantages to the direct radiance assimilation approach, it is not obvious at all to what extent the improvements that have been obtained so far can be attributed to the change in methodology, or to various technical aspects of the implementation. The issue is of interest because retrieval assimilation retains many practical and logistical advantages which may become even more significant in the near future when increasingly high-volume data sources become available. The central question we address here is: how much improvement can we expect from assimilating radiances rather than retrievals, all other things being equal? We compare the two approaches in a simplified one-dimensional theoretical framework, in which problems related to quality control and systematic error correction are conveniently absent. By assuming a perfect radiative transfer model and perfect knowledge of radiance and background error covariances, we are able to formulate a nonlinear local error analysis for each assimilation method. Direct radiance assimilation is optimal in this idealized context, while the traditional method of assimilating retrievals is suboptimal because it

  12. Global Pattern of Potential Evaporation Calculated from the Penman-Monteith Equation Using Satellite and Assimilated Data

    NASA Technical Reports Server (NTRS)

    Choudhury, Bhaskar J.

    1997-01-01

    Potential evaporation (E(0)) has been found to be useful in many practical applications and in research for setting a reference level for actual evaporation. All previous estimates of regional or global E(0) are based upon empirical formulae using climatologic meteorologic measurements at isolated stations (i.e., point data). However, the Penman-Monteith equation provides a physically based approach for computing E(0), and by comparing 20 different methods of estimating E(0), Jensen et al. (1990) showed that the Penman-Monteith equation provides the most accurate estimate of monthly E(0) from well-watered grass or alfalfa. In the present study, monthly total E(0) for 24 months (January 1987 to December 1988) was calculated from the Penman-Monteith equation, with prescribed albedo of 0.23 and surface resistance of 70 s/m, which are considered to be representative of actively growing well-watered grass covering the ground. These calculations have been done using spatially representative data derived from satellite observations and data assimilation results. Satellite observations were used to obtain solar radiation, fractional cloud cover, air temperature, and vapor pressure, while four-dimensional data assimilation results were used to calculate the aerodynamic resistance. Meteorologic data derived from satellite observations were compared with the surface measurements to provide a measure of accuracy. The accuracy of the calculated E(0) values was assessed by comparing with lysimeter observations for evaporation from well-watered grass at 35 widely distributed locations, while recognizing that the period of present calculations was not concurrent with the lysimeter measurements and the spatial scales of these measurements and calculations are vastly different. These comparisons suggest that the error in the calculated E(0) values may not be exceeded, on average, 20% for any month or location, but are more likely to be about 15%. These uncertainties are difficult to

  13. Observability of global rivers with future SWOT observations

    NASA Astrophysics Data System (ADS)

    Fisher, Colby; Pan, Ming; Wood, Eric

    2017-04-01

    The Surface Water and Ocean Topography (SWOT) mission is designed to provide global observations of water surface elevation and slope from which river discharge can be estimated using a data assimilation system. This mission will provide increased spatial and temporal coverage compared to current altimeters, with an expected accuracy for water level elevations of 10 cm on rivers greater than 100 m wide. Within the 21-day repeat cycle, a river reach will be observed 2-4 times on average. Due to the relationship between the basin orientation and the orbit, these observations are not evenly distributed in time, which will impact the derived discharge values. There is, then, a need for a better understanding of how the mission will observe global river basins. In this study, we investigate how SWOT will observe global river basins and how the temporal and spatial sampling impacts the discharge estimated from assimilation. SWOT observations can be assimilated using the Inverse Streamflow Routing (ISR) model of Pan and Wood [2013] with a fixed interval Kalman smoother. Previous work has shown that the ISR assimilation method can be used to reproduce the spatial and temporal dynamics of discharge within many global basins: however, this performance was strongly impacted by the spatial and temporal availability of discharge observations. In this study, we apply the ISR method to 32 global basins with different geometries and crossing patterns for the future orbit, assimilating theoretical SWOT-retrieved "gauges". Results show that the model performance varies significantly across basins and is driven by the orientation, flow distance, and travel time in each. Based on these properties, we quantify the "observability" of each basin and relate this to the performance of the assimilation. Applying this metric globally to a large variety of basins we can gain a better understanding of the impact that SWOT observations may have across basin scales. By determining the

  14. Simulations of Tropospheric NO2 by the Global Modeling Initiative (GMI) Model Utilizing Assimilated and Forecast Meteorological Fields: Comparison to Ozone Monitoring Instrument (OMI) Measurements

    NASA Technical Reports Server (NTRS)

    Rodriquez, J. M.; Yoshida, Y.; Duncan, B. N.; Bucsela, E. J.; Gleason, J. F.; Allen, D.; Pickering, K. E.

    2007-01-01

    We present simulations of the tropospheric composition for the years 2004 and 2005, carried out by the GMI Combined Stratosphere-Troposphere (Combo) model, at a resolution of 2degx2.5deg. The model includes a new parameterization of lightning sources of NO(x) which is coupled to the cloud mass fluxes in the adopted meteorological fields. These simulations use two different sets of input meteorological fields: a)late-look assimilated fields from the Global Modeling and Assimilation Office (GMAO), GEOS-4 system and b) 12-hour forecast fields initialized with the assimilated data. Comparison of the forecast to the assimilated fields indicates that the forecast fields exhibit less vigorous convection, and yield tropical precipitation fields in better agreement with observations. Since these simulations include a complete representation of the stratosphere, they provide realistic stratosphere-tropospheric fluxes of O3 and NO(y). Furthermore, the stratospheric contribution to total columns of different troposheric species can be subtracted in a consistent fashion, and the lightning production of NO(y) will depend on the adopted meteorological field. We concentrate here on the simulated tropospheric columns of NO2, and compare them to observations by the OM1 instrument for the years 2004 and 2005. The comparison is used to address these questions: a) is there a significant difference in the agreement/disagreement between simulations for these two different meteorological fields, and if so, what causes these differences?; b) how do the simulations compare to OMI observations, and does this comparison indicate an improvement in simulations with the forecast fields? c) what are the implications of these simulations for our understanding of the NO2 emissions over continental polluted regions?

  15. Continental scale data assimilation of discharge and its effect on flow predictions across the contiguous US (CONUS)

    NASA Astrophysics Data System (ADS)

    Weerts, A.; Schellekens, J.; van Dijk, A.; Molenaar, R.

    2016-12-01

    Floods are the most frequent of natural disasters, affecting millions of people across the globe every year. The anticipation and forecasting of floods at the global scale is crucial to preparing for severe events and providing early awareness where local flood models and warning services may not exist (Emmerton et al., 2016). Current global flood forecasting system heavily rely on forecast forcing (precipitation, temperature, reference potential evaporation) to derive initial state estimates of the hydrological model for the next forecast (e.g. by glueing the first day of subsequent forecast as proxy for the historical observed forcing). It is clear that this approach is not perfect and that data assimilation can help to overcome some of the weaknesses of this approach. So far most hydrologic da studies have focused mostly on catchment scale. Here we conduct a da experiment by assimilating multiple streamflow observations across the contiguous united states (CONUS) into a global hydrological model (W3RA) and run with and without localization method using OpenDA in the global flood forecasting information system (GLOFFIS). It is shown that assimilation of streamflow holds considerable potential for improving global scale flood forecasting (improving NSE scores from 0 to 0.7 and beyond). Weakness in the model (e.g. structural problems and missing processes) and forcing that influence the performance will be highlighted.

  16. High Resolution Land Surface Modeling with the next generation Land Data Assimilation Systems

    NASA Astrophysics Data System (ADS)

    Kumar, S. V.; Eylander, J.; Peters-Lidard, C.

    2005-12-01

    Knowledge of land surface processes is important to many real-world applications such as agricultural production, water resources management, and flood predication. The Air Force Weather Agency (AFWA) has provided the USDA and other customers global soil moisture and temperature data for the past 30 years using the agrometeorological data assimilation model (now called AGRMET), merging atmospheric data. Further, accurate initialization of land surface conditions has been shown to greatly influence and improve weather forecast model and seasonal-to-interannual climate predictions. The AFWA AGRMET model exploits real time precipitation observations and analyses, global forecast model and satellite data to generate global estimates of soil moisture, soil temperature and other land surface states at 48km spatial resolution. However, to truly address the land surface initialization and climate prediction problem, and to mitigate the errors introduced by the differences in spatial scales of models, representations of land surface conditions need to be developed at the same fine scales such as that of cloud resolving models. NASA's Goddard Space Flight Center has developed an offline land data assimilation system known as the Land Information System (LIS) capable of modeling land atmosphere interactions at spatial resolutions as fine as 1km. LIS provides a software architecture that integrates the use of the state of the art land surface models, data assimilation techniques, and high performance computing and data management tools. LIS also employs many high resolution surface parameters such as the NASA Earth Observing System (EOS)-era products. In this study we describe the development of a next generation high resolution land surface modeling and data assimilation system, combining the capabilities of LIS and AGRMET. We investigate the influence of high resolution land surface data and observations on the land surface conditions by comparing with the operational AGRMET

  17. Data Synthesis and Data Assimilation at Global Change Experiments and Fluxnet Toward Improving Land Process Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yiqi

    The project was conducted during the period from 7/1/2012 to 6/30/2017 with three major tasks: (1) data synthesis and development of data assimilation (DA) techniques to constrain modeled ecosystem feedback to climate change; (2) applications of DA techniques to improve process models at different scales from ecosystem to regions and the globe; and 3) improvements of modeling soil carbon (C) dynamics by land surface models. During this period, we have synthesized published data from soil incubation experiments (e.g., Chen et al., 2016; Xu et al., 2016; Feng et al., 2016), global change experiments (e.g., Li et al., 2013; Shi etmore » al., 2015, 2016; Liang et al., 2016) and fluxnet (e.g., Niu et al., 2012., Xia et al., 2015; Li et al., 2016). These data have been organized into multiple data products and have been used to identify general mechanisms and estimate parameters for model improvement. We used the data sets that we collected and the DA techniques to improve model performance of both ecosystem models and global land models. The objectives are: 1) to improve model simulations of litter and soil carbon storage (e.g., Schädel et al., 2013; Hararuk and Luo, 2014; Hararuk et al., 2014; Liang et al., 2015); 2) to explore the effects of CO 2, warming and precipitation on ecosystem processes (e.g., van Groenigen et al., 2014; Shi et al., 2015, 2016; Feng et al., 2017); and 3) to estimate parameters variability in different ecosystems (e.g., Li et al., 2016). We developed a traceability framework, which was based on matrix approaches and decomposed the modeled steady-state terrestrial ecosystem carbon storage capacity into four can trace the difference in ecosystem carbon storage capacity among different biomes to four traceable components: net primary productivity (NPP), baseline C residence times, environmental scalars and climate forcing (Xia et al., 2013). With this framework, we can diagnose the differences in modeled carbon storage across ecosystems

  18. Improving terrestrial evaporation estimates over continental Australia through assimilation of SMOS soil moisture

    NASA Astrophysics Data System (ADS)

    Martens, B.; Miralles, D.; Lievens, H.; Fernández-Prieto, D.; Verhoest, N. E. C.

    2016-06-01

    Terrestrial evaporation is an essential variable in the climate system that links the water, energy and carbon cycles over land. Despite this crucial importance, it remains one of the most uncertain components of the hydrological cycle, mainly due to known difficulties to model the constraints imposed by land water availability on terrestrial evaporation. The main objective of this study is to assimilate satellite soil moisture observations from the Soil Moisture and Ocean Salinity (SMOS) mission into an existing evaporation model. Our over-arching goal is to find an optimal use of satellite soil moisture that can help to improve our understanding of evaporation at continental scales. To this end, the Global Land Evaporation Amsterdam Model (GLEAM) is used to simulate evaporation fields over continental Australia for the period September 2010-December 2013. SMOS soil moisture observations are assimilated using a Newtonian Nudging algorithm in a series of experiments. Model estimates of surface soil moisture and evaporation are validated against soil moisture probe and eddy-covariance measurements, respectively. Finally, an analogous experiment in which Advanced Microwave Scanning Radiometer (AMSR-E) soil moisture is assimilated (instead of SMOS) allows to perform a relative assessment of the quality of both satellite soil moisture products. Results indicate that the modelled soil moisture from GLEAM can be improved through the assimilation of SMOS soil moisture: the average correlation coefficient between in situ measurements and the modelled soil moisture over the complete sample of stations increased from 0.68 to 0.71 and a statistical significant increase in the correlations is achieved for 17 out of the 25 individual stations. Our results also suggest a higher accuracy of the ascending SMOS data compared to the descending data, and overall higher quality of SMOS compared to AMSR-E retrievals over Australia. On the other hand, the effect of soil moisture data

  19. Remote sensing of ocean surface currents: a review of what is being observed and what is being assimilated

    NASA Astrophysics Data System (ADS)

    Isern-Fontanet, Jordi; Ballabrera-Poy, Joaquim; Turiel, Antonio; García-Ladona, Emilio

    2017-10-01

    Ocean currents play a key role in Earth's climate - they impact almost any process taking place in the ocean and are of major importance for navigation and human activities at sea. Nevertheless, their observation and forecasting are still difficult. First, no observing system is able to provide direct measurements of global ocean currents on synoptic scales. Consequently, it has been necessary to use sea surface height and sea surface temperature measurements and refer to dynamical frameworks to derive the velocity field. Second, the assimilation of the velocity field into numerical models of ocean circulation is difficult mainly due to lack of data. Recent experiments that assimilate coastal-based radar data have shown that ocean currents will contribute to increasing the forecast skill of surface currents, but require application in multidata assimilation approaches to better identify the thermohaline structure of the ocean. In this paper we review the current knowledge in these fields and provide a global and systematic view of the technologies to retrieve ocean velocities in the upper ocean and the available approaches to assimilate this information into ocean models.

  20. Evaluation of a Soil Moisture Data Assimilation System Over West Africa

    NASA Astrophysics Data System (ADS)

    Bolten, J. D.; Crow, W.; Zhan, X.; Jackson, T.; Reynolds, C.

    2009-05-01

    A crucial requirement of global crop yield forecasts by the U.S. Department of Agriculture (USDA) International Production Assessment Division (IPAD) is the regional characterization of surface and sub-surface soil moisture. However, due to the spatial heterogeneity and dynamic nature of precipitation events and resulting soil moisture, accurate estimation of regional land surface-atmosphere interactions based sparse ground measurements is difficult. IPAD estimates global soil moisture using daily estimates of minimum and maximum temperature and precipitation applied to a modified Palmer two-layer soil moisture model which calculates the daily amount of soil moisture withdrawn by evapotranspiration and replenished by precipitation. We attempt to improve upon the existing system by applying an Ensemble Kalman filter (EnKF) data assimilation system to integrate surface soil moisture retrievals from the NASA Advanced Microwave Scanning Radiometer (AMSR-E) into the USDA soil moisture model. This work aims at evaluating the utility of merging satellite-retrieved soil moisture estimates with the IPAD two-layer soil moisture model used within the DBMS. We present a quantitative analysis of the assimilated soil moisture product over West Africa (9°N- 20°N; 20°W-20°E). This region contains many key agricultural areas and has a high agro- meteorological gradient from desert and semi-arid vegetation in the North, to grassland, trees and crops in the South, thus providing an ideal location for evaluating the assimilated soil moisture product over multiple land cover types and conditions. A data denial experimental approach is utilized to isolate the added utility of integrating remotely-sensed soil moisture by comparing assimilated soil moisture results obtained using (relatively) low-quality precipitation products obtained from real-time satellite imagery to baseline model runs forced with higher quality rainfall. An analysis of root-zone anomalies for each model

  1. A study of regional-scale aerosol assimilation using a Stretch-NICAM

    NASA Astrophysics Data System (ADS)

    Misawa, S.; Dai, T.; Schutgens, N.; Nakajima, T.

    2013-12-01

    Although aerosol is considered to be harmful to human health and it became a social issue, aerosol models and emission inventories include large uncertainties. In recent studies, data assimilation is applied to aerosol simulation to get more accurate aerosol field and emission inventory. Most of these studies, however, are carried out only on global scale, and there are only a few researches about regional scale aerosol assimilation. In this study, we have created and verified an aerosol assimilation system on regional scale, in hopes to reduce an error associated with the aerosol emission inventory. Our aerosol assimilation system has been developed using an atmospheric climate model, NICAM (Non-hydrostaric ICosahedral Atmospheric Model; Satoh et al., 2008) with a stretch grid system and coupled with an aerosol transport model, SPRINTARS (Takemura et al., 2000). Also, this assimilation system is based on local ensemble transform Kalman filter (LETKF). To validate this system, we used a simulated observational data by adding some artificial errors to the surface aerosol fields constructed by Stretch-NICAM-SPRINTARS. We also included a small perturbation in original emission inventory. This assimilation with modified observational data and emission inventory was performed in Kanto-plane region around Tokyo, Japan, and the result indicates the system reducing a relative error of aerosol concentration by 20%. Furthermore, we examined a sensitivity of the aerosol assimilation system by varying the number of total ensemble (5, 10 and 15 ensembles) and local patch (domain) size (radius of 50km, 100km and 200km), both of which are the tuning parameters in LETKF. The result of the assimilation with different ensemble number 5, 10 and 15 shows that the larger the number of ensemble is, the smaller the relative error become. This is consistent with ensemble Kalman filter theory and imply that this assimilation system works properly. Also we found that assimilation system

  2. A Wavelet based Suboptimal Kalman Filter for Assimilation of Stratospheric Chemical Tracer Observations

    NASA Technical Reports Server (NTRS)

    Tangborn, Andrew; Auger, Ludovic

    2003-01-01

    A suboptimal Kalman filter system which evolves error covariances in terms of a truncated set of wavelet coefficients has been developed for the assimilation of chemical tracer observations of CH4. This scheme projects the discretized covariance propagation equations and covariance matrix onto an orthogonal set of compactly supported wavelets. Wavelet representation is localized in both location and scale, which allows for efficient representation of the inherently anisotropic structure of the error covariances. The truncation is carried out in such a way that the resolution of the error covariance is reduced only in the zonal direction, where gradients are smaller. Assimilation experiments which last 24 days, and used different degrees of truncation were carried out. These reduced the covariance size by 90, 97 and 99 % and the computational cost of covariance propagation by 80, 93 and 96 % respectively. The difference in both error covariance and the tracer field between the truncated and full systems over this period were found to be not growing in the first case, and growing relatively slowly in the later two cases. The largest errors in the tracer fields were found to occur in regions of largest zonal gradients in the constituent field. This results indicate that propagation of error covariances for a global two-dimensional data assimilation system are currently feasible. Recommendations for further reduction in computational cost are made with the goal of extending this technique to three-dimensional global assimilation systems.

  3. High-Efficiency High-Resolution Global Model Developments at the NASA Goddard Data Assimilation Office

    NASA Technical Reports Server (NTRS)

    Lin, Shian-Jiann; Atlas, Robert (Technical Monitor)

    2002-01-01

    The Data Assimilation Office (DAO) has been developing a new generation of ultra-high resolution General Circulation Model (GCM) that is suitable for 4-D data assimilation, numerical weather predictions, and climate simulations. These three applications have conflicting requirements. For 4-D data assimilation and weather predictions, it is highly desirable to run the model at the highest possible spatial resolution (e.g., 55 km or finer) so as to be able to resolve and predict socially and economically important weather phenomena such as tropical cyclones, hurricanes, and severe winter storms. For climate change applications, the model simulations need to be carried out for decades, if not centuries. To reduce uncertainty in climate change assessments, the next generation model would also need to be run at a fine enough spatial resolution that can at least marginally simulate the effects of intense tropical cyclones. Scientific problems (e.g., parameterization of subgrid scale moist processes) aside, all three areas of application require the model's computational performance to be dramatically improved as compared to the previous generation. In this talk, I will present the current and future developments of the "finite-volume dynamical core" at the Data Assimilation Office. This dynamical core applies modem monotonicity preserving algorithms and is genuinely conservative by construction, not by an ad hoc fixer. The "discretization" of the conservation laws is purely local, which is clearly advantageous for resolving sharp gradient flow features. In addition, the local nature of the finite-volume discretization also has a significant advantage on distributed memory parallel computers. Together with a unique vertically Lagrangian control volume discretization that essentially reduces the dimension of the computational problem from three to two, the finite-volume dynamical core is very efficient, particularly at high resolutions. I will also present the

  4. High-Efficiency High-Resolution Global Model Developments at the NASA Goddard Data Assimilation Office

    NASA Technical Reports Server (NTRS)

    Lin, Shian-Jiann; Atlas, Robert (Technical Monitor)

    2002-01-01

    The Data Assimilation Office (DAO) has been developing a new generation of ultra-high resolution General Circulation Model (GCM) that is suitable for 4-D data assimilation, numerical weather predictions, and climate simulations. These three applications have conflicting requirements. For 4-D data assimilation and weather predictions, it is highly desirable to run the model at the highest possible spatial resolution (e.g., 55 kin or finer) so as to be able to resolve and predict socially and economically important weather phenomena such as tropical cyclones, hurricanes, and severe winter storms. For climate change applications, the model simulations need to be carried out for decades, if not centuries. To reduce uncertainty in climate change assessments, the next generation model would also need to be run at a fine enough spatial resolution that can at least marginally simulate the effects of intense tropical cyclones. Scientific problems (e.g., parameterization of subgrid scale moist processes) aside, all three areas of application require the model's computational performance to be dramatically improved as compared to the previous generation. In this talk, I will present the current and future developments of the "finite-volume dynamical core" at the Data Assimilation Office. This dynamical core applies modem monotonicity preserving algorithms and is genuinely conservative by construction, not by an ad hoc fixer. The "discretization" of the conservation laws is purely local, which is clearly advantageous for resolving sharp gradient flow features. In addition, the local nature of the finite-volume discretization also has a significant advantage on distributed memory parallel computers. Together with a unique vertically Lagrangian control volume discretization that essentially reduces the dimension of the computational problem from three to two, the finite-volume dynamical core is very efficient, particularly at high resolutions. I will also present the

  5. Description and verification of a U.S. Naval Research Lab's loosely coupled data assimilation system for the Navy's Earth System Model

    NASA Astrophysics Data System (ADS)

    Barton, N. P.; Metzger, E. J.; Smedstad, O. M.; Ruston, B. C.; Wallcraft, A. J.; Whitcomb, T.; Ridout, J. A.; Zamudio, L.; Posey, P.; Reynolds, C. A.; Richman, J. G.; Phelps, M.

    2017-12-01

    The Naval Research Laboratory is developing an Earth System Model (NESM) to provide global environmental information to meet Navy and Department of Defense (DoD) operations and planning needs from the upper atmosphere to under the sea. This system consists of a global atmosphere, ocean, ice, wave, and land prediction models and the individual models include: atmosphere - NAVy Global Environmental Model (NAVGEM); ocean - HYbrid Coordinate Ocean Model (HYCOM); sea ice - Community Ice CodE (CICE); WAVEWATCH III™; and land - NAVGEM Land Surface Model (LSM). Data assimilation is currently loosely coupled between the atmosphere component using a 6-hour update cycle in the Naval Research Laboratory (NRL) Atmospheric Variational Data Assimilation System - Accelerated Representer (NAVDAS-AR) and the ocean/ice components using a 24-hour update cycle in the Navy Coupled Ocean Data Assimilation (NCODA) with 3 hours of incremental updating. This presentation will describe the US Navy's coupled forecast model, the loosely coupled data assimilation, and compare results against stand-alone atmosphere and ocean/ice models. In particular, we will focus on the unique aspects of this modeling system, which includes an eddy resolving ocean model and challenges associated with different update-windows and solvers for the data assimilation in the atmosphere and ocean. Results will focus on typical operational diagnostics for atmosphere, ocean, and ice analyses including 500 hPa atmospheric height anomalies, low-level winds, temperature/salinity ocean depth profiles, ocean acoustical proxies, sea ice edge, and sea ice drift. Overall, the global coupled system is performing with comparable skill to the stand-alone systems.

  6. Middle Atmospheric Transport Properties of Assimilated Datasets

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Rood, Richard

    1999-01-01

    One of the most compelling reasons for performing data assimilation in the middle atmosphere is to obtain global, balanced datasets for studies of trace gas transport and chemistry. This is a major motivation behind the Goddard Earth observation System-Data Assimilation System (GEOS-DAS). Previous studies have shown that while this and other data assimilation systems can generally obtain good estimates of the extratropical rotational velocity field, the divergent part of the dynamical field is deficient; this impacts the "residual circulation" and leads to spurious trace gas transport on seasonal and interannual timescales. These problems are impacted by the quality and the method of use of the observational data and by deficiencies in the atmospheric general circulation model. Whichever the cause at any place and time, the "solution" is to introduce non-physical forcing terms into the system (the so-called incremental analysis updates); these can directly (thermal) or indirectly (mechanical) affect the residual circulation. This paper will illustrate how the divergent circulation is affected by deficiencies in both observations and models. Theoretical considerations will be illustrated with examples from the GEOS-DAS and from simplified numerical experiments. These are designed to isolate known problems, such as the inability of models to sustain a quasi-biennial oscillation and sparse observational constraints on tropical dynamics, or radiative inconsistencies in the presence of volcanic aerosols.

  7. Middle Atmosphere Transport Properties of Assimilated Datasets

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Rood, Richard

    1999-01-01

    One of the most compelling reasons for performing data assimilation in the middle atmosphere is to obtain global, balanced datasets for studies of trace gas transport and chemistry. This is a major motivation behind the Goddard Earth observation System-Data Assimilation System (GEOS-DAS). Previous studies have shown that while this and other data assimilation systems can generally obtain good estimates of the extratropical rotational velocity field, the divergent part of the dynamical field is deficient; this impacts the "residual circulation" and leads to spurious trace gas transport on seasonal and interannual timescales. These problems are impacted by the quality and the method of use of the observational data and by deficiencies in the atmospheric general circulation model. Whichever the cause at any place and time, the "solution" is to introduce non-physical forcing terms into the system (the so-called incremental analysis updates); these can directly (thermal) or indirectly (mechanical) affect the residual circulation. This paper will illustrate how the divergent circulation is affected by deficiencies in both observations and models. Theoretical considerations will be illustrated with examples from the GEOS-DAS and from simplified numerical experiments. These are designed to isolate known problems, such as the inability of models to sustain a quasi-biennial oscillation and sparse observational constraints on tropical dynamics, or radiative inconsistencies in the presence of volcanic aerosols.

  8. Improving GEOS-5 seven day forecast skill by assimilation of quality controlled AIRS temperature profiles

    NASA Astrophysics Data System (ADS)

    Susskind, J.; Rosenberg, R. I.

    2016-12-01

    The GEOS-5 Data Assimilation System (DAS) generates a global analysis every six hours by combining the previous six hour forecast for that time period with contemporaneous observations. These observations include in-situ observations as well as those taken by satellite borne instruments, such as AIRS/AMSU on EOS Aqua and CrIS/ATMS on S-NPP. Operational data assimilation methodology assimilates observed channel radiances Ri for IR sounding instruments such as AIRS and CrIS, but only for those channels i in a given scene whose radiances are thought to be unaffected by clouds. A limitation of this approach is that radiances in most tropospheric sounding channels are affected by clouds under partial cloud cover conditions, which occurs most of the time. The AIRS Science Team Version-6 retrieval algorithm generates cloud cleared radiances (CCR's) for each channel in a given scene, which represent the radiances AIRS would have observed if the scene were cloud free, and then uses them to determine quality controlled (QC'd) temperature profiles T(p) under all cloud conditions. There are potential advantages to assimilate either AIRS QC'd CCR's or QC'd T(p) instead of Ri in that the spatial coverage of observations is greater under partial cloud cover. We tested these two alternate data assimilation approaches by running three parallel data assimilation experiments over different time periods using GEOS-5. Experiment 1 assimilated all observations as done operationally, Experiment 2 assimilated QC'd values of AIRS CCRs in place of AIRS radiances, and Experiment 3 assimilated QC'd values of T(p) in place of observed radiances. Assimilation of QC'd AIRS T(p) resulted in significant improvement in seven day forecast skill compared to assimilation of CCR's or assimilation of observed radiances, especially in the Southern Hemisphere Extra-tropics.

  9. The LysR-type transcription factor PacR is a global regulator of photosynthetic carbon assimilation in Anabaena.

    PubMed

    Picossi, Silvia; Flores, Enrique; Herrero, Antonia

    2015-09-01

    Cyanobacteria perform water-splitting photosynthesis and are important primary producers impacting the carbon and nitrogen cycles at global scale. They fix CO2 through ribulose-bisphosphate carboxylase/oxygenase (RuBisCo) and have evolved a distinct CO2 concentrating mechanism (CCM) that builds high CO2 concentrations in the vicinity of RuBisCo favouring its carboxylase activity. Filamentous cyanobacteria such as Anabaena fix CO2 in photosynthetic vegetative cells, which donate photosynthate to heterocysts that rely on a heterotrophic metabolism to fix N2 . CCM elements are induced in response to inorganic carbon limitation, a cue that exposes the photosynthetic apparatus to photodamage by over-reduction. An Anabaena mutant lacking the LysR-type transcription factor All3953 grew poorly and dies under high light. The rbcL operon encoding RuBisCo was induced upon carbon limitation in the wild type but not in the mutant. ChIP-Seq analysis was used to globally identify All3953 targets under carbon limitation. Targets include, besides rbcL, genes encoding CCM elements, photorespiratory pathway- photosystem- and electron transport-related components, and factors, including flavodiiron proteins, with a demonstrated or putative function in photoprotection. Quantitative reverse transcription polymerase chain reaction analysis of selected All3953 targets showed regulation in the wild type but not in the mutant. All3953 (PacR) is a global regulator of carbon assimilation in an oxygenic photoautotroph. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. EMPIRE and pyenda: Two ensemble-based data assimilation systems written in Fortran and Python

    NASA Astrophysics Data System (ADS)

    Geppert, Gernot; Browne, Phil; van Leeuwen, Peter Jan; Merker, Claire

    2017-04-01

    We present and compare the features of two ensemble-based data assimilation frameworks, EMPIRE and pyenda. Both frameworks allow to couple models to the assimilation codes using the Message Passing Interface (MPI), leading to extremely efficient and fast coupling between models and the data-assimilation codes. The Fortran-based system EMPIRE (Employing Message Passing Interface for Researching Ensembles) is optimized for parallel, high-performance computing. It currently includes a suite of data assimilation algorithms including variants of the ensemble Kalman and several the particle filters. EMPIRE is targeted at models of all kinds of complexity and has been coupled to several geoscience models, eg. the Lorenz-63 model, a barotropic vorticity model, the general circulation model HadCM3, the ocean model NEMO, and the land-surface model JULES. The Python-based system pyenda (Python Ensemble Data Assimilation) allows Fortran- and Python-based models to be used for data assimilation. Models can be coupled either using MPI or by using a Python interface. Using Python allows quick prototyping and pyenda is aimed at small to medium scale models. pyenda currently includes variants of the ensemble Kalman filter and has been coupled to the Lorenz-63 model, an advection-based precipitation nowcasting scheme, and the dynamic global vegetation model JSBACH.

  11. Optimal Spectral Decomposition (OSD) for Ocean Data Assimilation

    DTIC Science & Technology

    2015-01-01

    tropical North Atlantic from the Argo float data (Chu et al. 2007 ), and temporal and spatial variability of global upper-ocean heat content (Chu 2011...O. V. Melnichenko, and N. C. Wells, 2007 : Long baro- clinic Rossby waves in the tropical North Atlantic observed fromprofiling floats. J...Harrison, and D. Stammer , D., Eds., Vol. 2, ESA Publ. WPP- 306, doi:10.5270/OceanObs09.cwp.86. Tang, Y., and R. Kleeman, 2004: SST assimilation

  12. Assimilation of MODIS and VIIRS AOD to improve aerosols forecasts with FV3-GOCART

    NASA Astrophysics Data System (ADS)

    Pagowski, M.

    2017-12-01

    In 2016 NOAA chose the FV3 dynamical core as a basis for its future global modeling system. We present an implementation of aerosol module in the FV3 model and its assimilation framework. The parameterization of aerosols is based on the GOCART scheme. The assimilation methodology relies on hybrid 3D-Var and EnKF methods. Aerosol observations include aerosol optical depth at 550 nm from VIIRS satellite. Results and evaluation of the system against independent observations and NASA's MERRA-2 is shown.

  13. Reconstruction of Historical Weather by Assimilating Old Weather Diary Data

    NASA Astrophysics Data System (ADS)

    Neluwala, P.; Yoshimura, K.; Toride, K.; Hirano, J.; Ichino, M.; Okazaki, A.

    2017-12-01

    Climate can control not only human life style but also other living beings. It is important to investigate historical climate to understand the current and future climates. Information about daily weather can give a better understanding of past life on earth. Long-term weather influences crop calendar as well as the development of civilizations. Unfortunately, existing reconstructed daily weather data are limited to 1850s due to the availability of instrumental data. The climate data prior to that are derived from proxy materials (e.g., tree-ring width, ice core isotopes, etc.) which are either in annual or decadal scale. However, there are many historical documents which contain information about weather such as personal diaries. In Japan, around 20 diaries in average during the 16th - 19th centuries have been collected and converted into a digitized form. As such, diary data exist in many other countries. This study aims to reconstruct historical daily weather during the 18th and 19th centuries using personal daily diaries which have analogue weather descriptions such as `cloudy' or `sunny'. A recent study has shown the possibility of assimilating coarse weather data using idealized experiments. We further extend this study by assimilating modern weather descriptions similar to diary data in recent periods. The Global Spectral model (GSM) of National Centers for Environmental Prediction (NCEP) is used to reconstruct weather with the Local Ensemble Kalman filter (LETKF). Descriptive data are first converted to model variables such as total cloud cover (TCC), solar radiation and precipitation using empirical relationships. Those variables are then assimilated on a daily basis after adding random errors to consider the uncertainty of actual diary data. The assimilation of downward short wave solar radiation using weather descriptions improves RMSE from 64.3 w/m2 to 33.0 w/m2 and correlation coefficient (R) from 0.5 to 0.8 compared with the case without any

  14. A Comparison of Methods for a Priori Bias Correction in Soil Moisture Data Assimilation

    NASA Technical Reports Server (NTRS)

    Kumar, Sujay V.; Reichle, Rolf H.; Harrison, Kenneth W.; Peters-Lidard, Christa D.; Yatheendradas, Soni; Santanello, Joseph A.

    2011-01-01

    Data assimilation is being increasingly used to merge remotely sensed land surface variables such as soil moisture, snow and skin temperature with estimates from land models. Its success, however, depends on unbiased model predictions and unbiased observations. Here, a suite of continental-scale, synthetic soil moisture assimilation experiments is used to compare two approaches that address typical biases in soil moisture prior to data assimilation: (i) parameter estimation to calibrate the land model to the climatology of the soil moisture observations, and (ii) scaling of the observations to the model s soil moisture climatology. To enable this research, an optimization infrastructure was added to the NASA Land Information System (LIS) that includes gradient-based optimization methods and global, heuristic search algorithms. The land model calibration eliminates the bias but does not necessarily result in more realistic model parameters. Nevertheless, the experiments confirm that model calibration yields assimilation estimates of surface and root zone soil moisture that are as skillful as those obtained through scaling of the observations to the model s climatology. Analysis of innovation diagnostics underlines the importance of addressing bias in soil moisture assimilation and confirms that both approaches adequately address the issue.

  15. Skin Temperature Analysis and Bias Correction in a Coupled Land-Atmosphere Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Radakovich, Jon D.; daSilva, Arlindo; Todling, Ricardo; Verter, Frances

    2006-01-01

    In an initial investigation, remotely sensed surface temperature is assimilated into a coupled atmosphere/land global data assimilation system, with explicit accounting for biases in the model state. In this scheme, an incremental bias correction term is introduced in the model's surface energy budget. In its simplest form, the algorithm estimates and corrects a constant time mean bias for each gridpoint; additional benefits are attained with a refined version of the algorithm which allows for a correction of the mean diurnal cycle. The method is validated against the assimilated observations, as well as independent near-surface air temperature observations. In many regions, not accounting for the diurnal cycle of bias caused degradation of the diurnal amplitude of background model air temperature. Energy fluxes collected through the Coordinated Enhanced Observing Period (CEOP) are used to more closely inspect the surface energy budget. In general, sensible heat flux is improved with the surface temperature assimilation, and two stations show a reduction of bias by as much as 30 Wm(sup -2) Rondonia station in Amazonia, the Bowen ratio changes direction in an improvement related to the temperature assimilation. However, at many stations the monthly latent heat flux bias is slightly increased. These results show the impact of univariate assimilation of surface temperature observations on the surface energy budget, and suggest the need for multivariate land data assimilation. The results also show the need for independent validation data, especially flux stations in varied climate regimes.

  16. Assimilation of Ocean-Color Plankton Functional Types to Improve Marine Ecosystem Simulations

    NASA Astrophysics Data System (ADS)

    Ciavatta, S.; Brewin, R. J. W.; Skákala, J.; Polimene, L.; de Mora, L.; Artioli, Y.; Allen, J. I.

    2018-02-01

    We assimilated phytoplankton functional types (PFTs) derived from ocean color into a marine ecosystem model, to improve the simulation of biogeochemical indicators and emerging properties in a shelf sea. Error-characterized chlorophyll concentrations of four PFTs (diatoms, dinoflagellates, nanoplankton, and picoplankton), as well as total chlorophyll for comparison, were assimilated into a physical-biogeochemical model of the North East Atlantic, applying a localized Ensemble Kalman filter. The reanalysis simulations spanned the years 1998-2003. The skill of the reference and reanalysis simulations in estimating ocean color and in situ biogeochemical data were compared by using robust statistics. The reanalysis outperformed both the reference and the assimilation of total chlorophyll in estimating the ocean-color PFTs (except nanoplankton), as well as the not-assimilated total chlorophyll, leading the model to simulate better the plankton community structure. Crucially, the reanalysis improved the estimates of not-assimilated in situ data of PFTs, as well as of phosphate and pCO2, impacting the simulation of the air-sea carbon flux. However, the reanalysis increased further the model overestimation of nitrate, in spite of increases in plankton nitrate uptake. The method proposed here is easily adaptable for use with other ecosystem models that simulate PFTs, for, e.g., reanalysis of carbon fluxes in the global ocean and for operational forecasts of biogeochemical indicators in shelf-sea ecosystems.

  17. Data Assimilation and Adjusted Spherical Harmonic Model of VTEC Map over Thailand

    NASA Astrophysics Data System (ADS)

    Klinngam, Somjai; Maruyama, Takashi; Tsugawa, Takuya; Ishii, Mamoru; Supnithi, Pornchai; Chiablaem, Athiwat

    2016-07-01

    The global navigation satellite system (GNSS) and high frequency (HF) communication are vulnerable to the ionospheric irregularities, especially when the signal travels through the low-latitude region and around the magnetic equator known as equatorial ionization anomaly (EIA) region. In order to study the ionospheric effects to the communications performance in this region, the regional map of the observed total electron content (TEC) can show the characteristic and irregularities of the ionosphere. In this work, we develop the two-dimensional (2D) map of vertical TEC (VTEC) over Thailand using the adjusted spherical harmonic model (ASHM) and the data assimilation technique. We calculate the VTEC from the receiver independent exchange (RINEX) files recorded by the dual-frequency global positioning system (GPS) receivers on July 8th, 2012 (quiet day) at 12 stations around Thailand: 0° to 25°E and 95°N to 110°N. These stations are managed by Department of Public Works and Town & Country Planning (DPT), Thailand, and the South East Asia Low-latitude ionospheric Network (SEALION) project operated by National Institute of Information and Communications Technology (NICT), Japan, and King Mongkut's Institute of Technology Ladkrabang (KMITL). We compute the median observed VTEC (OBS-VTEC) in the grids with the spatial resolution of 2.5°x5° in latitude and longitude and time resolution of 2 hours. We assimilate the OBS-VTEC with the estimated VTEC from the International Reference Ionosphere model (IRI-VTEC) as well as the ionosphere map exchange (IONEX) files provided by the International GNSS Service (IGS-VTEC). The results show that the estimation of the 15-degree ASHM can be improved when both of IRI-VTEC and IGS-VTEC are weighted by the latitude-dependent factors before assimilating with the OBS-VTEC. However, the IRI-VTEC assimilation can improve the ASHM estimation more than the IGS-VTEC assimilation. Acknowledgment: This work is partially funded by the

  18. Specification and Prediction of the Radiation Environment Using Data Assimilative VERB code

    NASA Astrophysics Data System (ADS)

    Shprits, Yuri; Kellerman, Adam

    2016-07-01

    We discuss how data assimilation can be used for the reconstruction of long-term evolution, bench-marking of the physics based codes and used to improve the now-casting and focusing of the radiation belts and ring current. We also discuss advanced data assimilation methods such as parameter estimation and smoothing. We present a number of data assimilation applications using the VERB 3D code. The 3D data assimilative VERB allows us to blend together data from GOES, RBSP A and RBSP B. 1) Model with data assimilation allows us to propagate data to different pitch angles, energies, and L-shells and blends them together with the physics-based VERB code in an optimal way. We illustrate how to use this capability for the analysis of the previous events and for obtaining a global and statistical view of the system. 2) The model predictions strongly depend on initial conditions that are set up for the model. Therefore, the model is as good as the initial conditions that it uses. To produce the best possible initial conditions, data from different sources (GOES, RBSP A, B, our empirical model predictions based on ACE) are all blended together in an optimal way by means of data assimilation, as described above. The resulting initial conditions do not have gaps. This allows us to make more accurate predictions. Real-time prediction framework operating on our website, based on GOES, RBSP A, B and ACE data, and 3D VERB, is presented and discussed.

  19. Simulating PACE Global Ocean Radiances

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Rousseaux, Cecile S.

    2017-01-01

    The NASA PACE mission is a hyper-spectral radiometer planned for launch in the next decade. It is intended to provide new information on ocean biogeochemical constituents by parsing the details of high resolution spectral absorption and scattering. It is the first of its kind for global applications and as such, poses challenges for design and operation. To support pre-launch mission development and assess on-orbit capabilities, the NASA Global Modeling and Assimilation Office has developed a dynamic simulation of global water-leaving radiances, using an ocean model containing multiple ocean phytoplankton groups, particulate detritus, particulate inorganic carbon (PIC), and chromophoric dissolved organic carbon (CDOC) along with optical absorption and scattering processes at 1 nm spectral resolution. The purpose here is to assess the skill of the dynamic model and derived global radiances. Global bias, uncertainty, and correlation are derived using available modern satellite radiances at moderate spectral resolution. Total chlorophyll, PIC, and the absorption coefficient of CDOC (aCDOC), are simultaneously assimilated to improve the fidelity of the optical constituent fields. A 5-year simulation showed statistically significant (P < 0.05) comparisons of chlorophyll (r = 0.869), PIC (r = 0.868), and a CDOC (r =0.890) with satellite data. Additionally, diatoms (r = 0.890), cyanobacteria (r = 0.732), and coccolithophores (r = 0.716) were significantly correlated with in situ data. Global assimilated distributions of optical constituents were coupled with a radiative transfer model (Ocean-Atmosphere Spectral Irradiance Model, OASIM) to estimate normalized water-leaving radiances at 1 nm for the spectral range 250-800 nm. These unassimilated radiances were within 0.074 mW/sq cm/micron/sr of MODIS-Aqua radiances at 412, 443, 488, 531, 547, and 667 nm. This difference represented a bias of 10.4% (model low). A mean correlation of 0.706 (P < 0.05) was found with global

  20. Simulating PACE Global Ocean Radiances

    PubMed Central

    Gregg, Watson W.; Rousseaux, Cécile S.

    2017-01-01

    The NASA PACE mission is a hyper-spectral radiometer planned for launch in the next decade. It is intended to provide new information on ocean biogeochemical constituents by parsing the details of high resolution spectral absorption and scattering. It is the first of its kind for global applications and as such, poses challenges for design and operation. To support pre-launch mission development and assess on-orbit capabilities, the NASA Global Modeling and Assimilation Office has developed a dynamic simulation of global water-leaving radiances, using an ocean model containing multiple ocean phytoplankton groups, particulate detritus, particulate inorganic carbon (PIC), and chromophoric dissolved organic carbon (CDOC) along with optical absorption and scattering processes at 1 nm spectral resolution. The purpose here is to assess the skill of the dynamic model and derived global radiances. Global bias, uncertainty, and correlation are derived using available modern satellite radiances at moderate spectral resolution. Total chlorophyll, PIC, and the absorption coefficient of CDOC (aCDOC), are simultaneously assimilated to improve the fidelity of the optical constituent fields. A 5-year simulation showed statistically significant (P <0.05) comparisons of chlorophyll (r = 0.869), PIC (r = 0.868), and aCDOC (r = 0.890) with satellite data. Additionally, diatoms (r = 0.890), cyanobacteria (r = 0.732), and coccolithophores (r = 0.716) were significantly correlated with in situ data. Global assimilated distributions of optical constituents were coupled with a radiative transfer model (Ocean-Atmosphere Spectral Irradiance Model, OASIM) to estimate normalized water-leaving radiances at 1 nm for the spectral range 250–800 nm. These unassimilated radiances were within −0.074 mW cm−2 μm1 sr−1 of MODIS-Aqua radiances at 412, 443, 488, 531, 547, and 667 nm. This difference represented a bias of −10.4% (model low). A mean correlation of 0.706 (P < 0.05) was found with

  1. Data Assimilation at FLUXNET to Improve Models towards Ecological Forecasting (Invited)

    NASA Astrophysics Data System (ADS)

    Luo, Y.

    2009-12-01

    Dramatically increased volumes of data from observational and experimental networks such as FLUXNET call for transformation of ecological research to increase its emphasis on quantitative forecasting. Ecological forecasting will also meet the societal need to develop better strategies for natural resource management in a world of ongoing global change. Traditionally, ecological forecasting has been based on process-based models, informed by data in largely ad hoc ways. Although most ecological models incorporate some representation of mechanistic processes, today’s ecological models are generally not adequate to quantify real-world dynamics and provide reliable forecasts with accompanying estimates of uncertainty. A key tool to improve ecological forecasting is data assimilation, which uses data to inform initial conditions and to help constrain a model during simulation to yield results that approximate reality as closely as possible. In an era with dramatically increased availability of data from observational and experimental networks, data assimilation is a key technique that helps convert the raw data into ecologically meaningful products so as to accelerate our understanding of ecological processes, test ecological theory, forecast changes in ecological services, and better serve the society. This talk will use examples to illustrate how data from FLUXNET have been assimilated with process-based models to improve estimates of model parameters and state variables; to quantify uncertainties in ecological forecasting arising from observations, models and their interactions; and to evaluate information contributions of data and model toward short- and long-term forecasting of ecosystem responses to global change.

  2. Global Scale Atmospheric Processes Research Program Review

    NASA Technical Reports Server (NTRS)

    Worley, B. A. (Editor); Peslen, C. A. (Editor)

    1984-01-01

    Global modeling; satellite data assimilation and initialization; simulation of future observing systems; model and observed energetics; dynamics of planetary waves; First Global Atmospheric Research Program Global Experiment (FGGE) diagnosis studies; and National Research Council Research Associateship Program are discussed.

  3. Assimilation of Radio Occultation Data From the Chinese Fengyun Meterological Satellite at GRAPES

    NASA Astrophysics Data System (ADS)

    LIU, Y.

    2016-12-01

    GNOS (GNSS Occultation Sounder) is a new radio occultation payload onboard the Chinese FY-3 series satellites, which probes the Earth's neutral atmosphere and the ionosphere. GNOS is capable of tracking the signals of both the Beidou (the Chinese navigation satellite system) and the GPS navigation satellite systems. The first FY-3C satellite with GNOS launch on 23 September 2013 successfully, and has more than 500 RO events daily, including approximately 400 GPS and 100 Beidou RO events. In this paper the data quality from FY3C GNOS, including GPS and Beidou radio accultation data, will be presented. The impact experiments of assimilating GNOS radio accultation refractivity profiles in GRAPES (Global and Regional Assimilation Prediction System) a new generation numerical model system of China Meteorological Administration, are also presented. Results show that the lowest probing height of 90% GNOS profile can reach 4KM away from the surface. The bias of GNOS refractivity profiles compared to reanalysis and radiosonde data is greater than those of COSMIC and GRAS, but after data quality control the standard deviation of GNOS refractivity is approximately 2%. The results of the GNOS assimilation experiments show that GNOS data can improve the analysis in the upper troposphere and lower stratosphere, particularly in the southern hemisphere and the ocean, which produce the neutral and positive impacts in GRAPES assimilation system. The combined impact of assimilating both GPS and Beidou GNOS radio occultation is greater than assimilating either instrument individually.

  4. The Global Precipitation Mission

    NASA Technical Reports Server (NTRS)

    Braun, Scott; Kummerow, Christian

    2000-01-01

    The Global Precipitation Mission (GPM), expected to begin around 2006, is a follow-up to the Tropical Rainfall Measuring Mission (TRMM). Unlike TRMM, which primarily samples the tropics, GPM will sample both the tropics and mid-latitudes. The primary, or core, satellite will be a single, enhanced TRMM satellite that can quantify the 3-D spatial distributions of precipitation and its associated latent heat release. The core satellite will be complemented by a constellation of very small and inexpensive drones with passive microwave instruments that will sample the rainfall with sufficient frequency to be not only of climate interest, but also have local, short-term impacts by providing global rainfall coverage at approx. 3 h intervals. The data is expected to have substantial impact upon quantitative precipitation estimation/forecasting and data assimilation into global and mesoscale numerical models. Based upon previous studies of rainfall data assimilation, GPM is expected to lead to significant improvements in forecasts of extratropical and tropical cyclones. For example, GPM rainfall data can provide improved initialization of frontal systems over the Pacific and Atlantic Oceans. The purpose of this talk is to provide information about GPM to the USWRP (U.S. Weather Research Program) community and to discuss impacts on quantitative precipitation estimation/forecasting and data assimilation.

  5. The Mars Analysis Correction Data Assimilation (MACDA): A reference atmospheric reanalysis

    NASA Astrophysics Data System (ADS)

    Montabone, Luca; Lewis, Stephen R.; Steele, Liam J.; Holmes, James; Read, Peter L.; Valeanu, Alexandru; Smith, Michael D.; Kass, David; Kleinboehl, Armin; LMD Team, MGS/TES Team, MRO/MCS Team

    2016-10-01

    The Mars Analysis Correction Data Assimilation (MACDA) dataset version 1.0 contains the reanalysis of fundamental atmospheric and surface variables for the planet Mars covering a period of about three Martian years (late MY 24 to early MY 27). This four-dimensional dataset has been produced by data assimilation of retrieved thermal profiles and column dust optical depths from NASA's Mars Global Surveyor/Thermal Emission Spectrometer (MGS/TES), which have been assimilated into a Mars global climate model (MGCM) using the Analysis Correction scheme developed at the UK Meteorological Office.The MACDA v1.0 reanalysis is publicly available, and the NetCDF files can be downloaded from the archive at the Centre for Environmental Data Analysis/British Atmospheric Data Centre (CEDA/BADC). The variables included in the dataset can be visualised using an ad-hoc graphical user interface (the "MACDA Plotter") located at the following URL: http://macdap.physics.ox.ac.uk/The first paper about MACDA reanalysis of TES retrievals appeared in 2006, although the acronym MACDA was not yet used at that time. Ten years later, MACDA v1.0 has been used by several researchers worldwide and has contributed to the advancement of the knowledge about the martian atmosphere in critical areas such as the radiative impact of water ice clouds, the solsticial pause in baroclinic wave activity, and the climatology and dynamics of polar vortices, to cite only a few. It is therefore timely to review the scientific results obtained by using such Mars reference atmospheric reanalysis, in order to understand what priorities the user community should focus on in the next decade.MACDA is an ongoing collaborative project, and work funded by NASA MDAP Programme is currently undertaken to produce version 2.0 of the Mars atmospheric reanalysis. One of the key improvements is the extension of the reanalysis period to nine martian years (MY 24 through MY 32), with the assimilation of NASA's Mars Reconnaissance

  6. Further Exploring the Potential for Assimilation of Unmanned Aircraft Observations to Benefit Hurricane Analyses and Forecasts

    NASA Technical Reports Server (NTRS)

    Sippel, Jason A.; Zhang, Fuqing; Weng, Yonghui; Braun, Scott A.; Cecil, Daniel J.

    2015-01-01

    This study explores the potential of assimilating data from multiple instruments onboard high-altitude, long-endurance unmanned aircraft to improve hurricane analyses and forecasts. A recent study found a significant positive impact on analyses and forecasts of Hurricane Karl when an ensemble Kalman filter was used to assimilate data from the High-altitude Imaging Wind and Rain Airborne Profiler (HIWRAP), a new Doppler radar onboard the NASA Global Hawk (GH) unmanned airborne system. The GH can also carry other useful instruments, including dropsondes and the Hurricane Imaging Radiometer (HIRAD), which is a new radiometer that estimates large swaths of wind speeds and rainfall at the ocean surface. The primary finding is that simultaneously assimilating data from HIWRAP and the other GH-compatible instruments results in further analysis and forecast improvement for Karl. The greatest improvement comes when HIWRAP, HIRAD, and dropsonde data are simultaneously assimilated.

  7. Atlantic Tropical Cyclogenetic Processes during SOP-3 NAMMA in the GEOS-5 Global Data Assimilation and Forecast System

    NASA Technical Reports Server (NTRS)

    Reale, Oreste; Lau, William K.; Kim, Kyu-Myong; Brin, Eugenia

    2009-01-01

    This article investigates the role of the Saharan Air Layer (SAL) in tropical cyclogenetic processes associated with a non-developing and a developing African easterly wave observed during the Special Observation Period (SOP-3) phase of the 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA). The two waves are chosen because both interact heavily with Saharan air. A global data assimilation and forecast system, the NASA GEOS-5, is being run to produce a set of high-quality global analyses, inclusive of all observations used operationally but with denser satellite information. In particular, following previous works by the same Authors, the quality-controlled data from the Atmospheric Infrared Sounder (AIRS) used to produce these analyses have a better coverage than the one adopted by operational centers. From these improved analyses, two sets of 31 5-day high resolution forecasts, at horizontal resolutions of both half and quarter degrees, are produced. Results show that very steep moisture gradients are associated with the SAL in forecasts and analyses even at great distance from the Sahara. In addition, a thermal dipole (warm above, cool below) is present in the non-developing case. Moderate Resolution Imaging Spectroradiometer (MODIS) show that aerosol optical thickness is higher in the non-developing case. Altogether, results suggest that radiative effect of dust may play some role in producing a thermal structure less favorable to cyclogenesis. Results also indicate that only global horizontal resolutions on the order of 20-30 kilometers can capture the large-scale transport and the fine thermal structure of the SAL, inclusive of the sharp moisture gradients, reproducing the effect of tropical cyclone suppression which has been hypothesized by previous authors from observational and regional modeling perspectives. These effects cannot be fully represented at lower resolutions. Global resolution of a quarter of a degree is a minimum critical threshold

  8. Carbon and nitrogen assimilation in deep subseafloor microbial cells.

    PubMed

    Morono, Yuki; Terada, Takeshi; Nishizawa, Manabu; Ito, Motoo; Hillion, François; Takahata, Naoto; Sano, Yuji; Inagaki, Fumio

    2011-11-08

    Remarkable numbers of microbial cells have been observed in global shallow to deep subseafloor sediments. Accumulating evidence indicates that deep and ancient sediments harbor living microbial life, where the flux of nutrients and energy are extremely low. However, their physiology and energy requirements remain largely unknown. We used stable isotope tracer incubation and nanometer-scale secondary ion MS to investigate the dynamics of carbon and nitrogen assimilation activities in individual microbial cells from 219-m-deep lower Pleistocene (460,000 y old) sediments from the northwestern Pacific off the Shimokita Peninsula of Japan. Sediment samples were incubated in vitro with (13)C- and/or (15)N-labeled glucose, pyruvate, acetate, bicarbonate, methane, ammonium, and amino acids. Significant incorporation of (13)C and/or (15)N and growth occurred in response to glucose, pyruvate, and amino acids (∼76% of total cells), whereas acetate and bicarbonate were incorporated without fostering growth. Among those substrates, a maximum substrate assimilation rate was observed at 67 × 10(-18) mol/cell per d with bicarbonate. Neither carbon assimilation nor growth was evident in response to methane. The atomic ratios between nitrogen incorporated from ammonium and the total cellular nitrogen consistently exceeded the ratios of carbon, suggesting that subseafloor microbes preferentially require nitrogen assimilation for the recovery in vitro. Our results showed that the most deeply buried subseafloor sedimentary microbes maintain potentials for metabolic activities and that growth is generally limited by energy but not by the availability of C and N compounds.

  9. Carbon and nitrogen assimilation in deep subseafloor microbial cells

    PubMed Central

    Morono, Yuki; Terada, Takeshi; Nishizawa, Manabu; Ito, Motoo; Hillion, François; Takahata, Naoto; Sano, Yuji; Inagaki, Fumio

    2011-01-01

    Remarkable numbers of microbial cells have been observed in global shallow to deep subseafloor sediments. Accumulating evidence indicates that deep and ancient sediments harbor living microbial life, where the flux of nutrients and energy are extremely low. However, their physiology and energy requirements remain largely unknown. We used stable isotope tracer incubation and nanometer-scale secondary ion MS to investigate the dynamics of carbon and nitrogen assimilation activities in individual microbial cells from 219-m-deep lower Pleistocene (460,000 y old) sediments from the northwestern Pacific off the Shimokita Peninsula of Japan. Sediment samples were incubated in vitro with 13C- and/or 15N-labeled glucose, pyruvate, acetate, bicarbonate, methane, ammonium, and amino acids. Significant incorporation of 13C and/or 15N and growth occurred in response to glucose, pyruvate, and amino acids (∼76% of total cells), whereas acetate and bicarbonate were incorporated without fostering growth. Among those substrates, a maximum substrate assimilation rate was observed at 67 × 10−18 mol/cell per d with bicarbonate. Neither carbon assimilation nor growth was evident in response to methane. The atomic ratios between nitrogen incorporated from ammonium and the total cellular nitrogen consistently exceeded the ratios of carbon, suggesting that subseafloor microbes preferentially require nitrogen assimilation for the recovery in vitro. Our results showed that the most deeply buried subseafloor sedimentary microbes maintain potentials for metabolic activities and that growth is generally limited by energy but not by the availability of C and N compounds. PMID:21987801

  10. The Climate Signal in Regional Moisture Fluxes: A Comparison of Three Global Data Assimilation Products

    NASA Technical Reports Server (NTRS)

    Min, Wei; Schubert, Siegfried D.

    1997-01-01

    differences in magnitude of about 25%. The reanalysis products, in particular, show good agreement in depicting the different roles of the mean flow and transients during the flood and drought periods. Differences between the three products in the other two regions exceed 100% reflecting differences in the low level jets and the large scale circulation patterns. The operational product tends to have locally larger amplitude convergence fields which average out in area-mean budgets: this appears to be at least in part due to errors in the surface pressure fields and aliasing from the higher resolution of the original ECMWF fields. On average, the reanalysis products show higher coherence with each other than with the operational product in the estimates of interannual variability. This result is less clear in the Indian monsoon region where differences in the input observations appears to be an important factor. The agreement in the anomalous convergence patterns is, however, still rather poor even over relatively data dense regions such as the United States Great Plains. These differences are attributed to deficiencies in the assimilating GCM's representations of the planetary boundary layer and orography, and a global observing system incapable of resolving the highly confined low level winds associated with the climate anomalies.

  11. Assimilation of SMOS Retrieved Soil Moisture into the Land Information System

    NASA Technical Reports Server (NTRS)

    Blankenship, Clay B.; Case, Jonathan L.; Zavodsky, Bradley T.

    2014-01-01

    Soil moisture is a crucial variable for weather prediction because of its influence on evaporation and surface heat fluxes. It is also of critical importance for drought and flood monitoring and prediction and for public health applications such as monitoring vector-borne diseases. Land surface modeling benefits greatly from regular updates with soil moisture observations via data assimilation. Satellite remote sensing is the only practical observation type for this purpose in most areas due to its worldwide coverage. The newest operational satellite sensor for soil moisture is the Microwave Imaging Radiometer using Aperture Synthesis (MIRAS) instrument aboard the Soil Moisture and Ocean Salinity (SMOS) satellite. The NASA Short-term Prediction Research and Transition Center (SPoRT) has implemented the assimilation of SMOS soil moisture observations into the NASA Land Information System (LIS), an integrated modeling and data assimilation software platform. We present results from assimilating SMOS observations into the Noah 3.2 land surface model within LIS. The SMOS MIRAS is an L-band radiometer launched by the European Space Agency in 2009, from which we assimilate Level 2 retrievals [1] into LIS-Noah. The measurements are sensitive to soil moisture concentration in roughly the top 2.5 cm of soil. The retrievals have a target volumetric accuracy of 4% at a resolution of 35-50 km. Sensitivity is reduced where precipitation, snowcover, frozen soil, or dense vegetation is present. Due to the satellite's polar orbit, the instrument achieves global coverage twice daily at most mid- and low-latitude locations, with only small gaps between swaths.

  12. Improving Soil Moisture Estimation through the Joint Assimilation of SMOS and GRACE Satellite Observations

    NASA Technical Reports Server (NTRS)

    Girotto, Manuela

    2018-01-01

    Observations from recent soil moisture dedicated missions (e.g. SMOS or SMAP) have been used in innovative data assimilation studies to provide global high spatial (i.e., approximately10-40 km) and temporal resolution (i.e., daily) soil moisture profile estimates from microwave brightness temperature observations. These missions are only sensitive to near-surface soil moisture 0-5 cm). In contrast, the Gravity Recovery and Climate Experiment (GRACE) mission provides accurate measurements of the entire vertically integrated terrestrial water storage (TWS) column but, it is characterized by low spatial (i.e., 150,000 km2) and temporal (i.e., monthly) resolutions. Data assimilation studies have shown that GRACE-TWS primarily affects (in absolute terms) deeper moisture storages (i.e., groundwater). In this presentation I will review benefits and drawbacks associated to the assimilation of both types of observations. In particular, I will illustrate the benefits and drawbacks of their joint assimilation for the purpose of improving the entire profile of soil moisture (i.e., surface and deeper water storages).

  13. Multi-site assimilation of a terrestrial biosphere model (BETHY) using satellite derived soil moisture data

    NASA Astrophysics Data System (ADS)

    Wu, Mousong; Sholze, Marko

    2017-04-01

    We investigated the importance of soil moisture data on assimilation of a terrestrial biosphere model (BETHY) for a long time period from 2010 to 2015. Totally, 101 parameters related to carbon turnover, soil respiration, as well as soil texture were selected for optimization within a carbon cycle data assimilation system (CCDAS). Soil moisture data from Soil Moisture and Ocean Salinity (SMOS) product was derived for 10 sites representing different plant function types (PFTs) as well as different climate zones. Uncertainty of SMOS soil moisture data was also estimated using triple collocation analysis (TCA) method by comparing with ASCAT dataset and BETHY forward simulation results. Assimilation of soil moisture to the system improved soil moisture as well as net primary productivity(NPP) and net ecosystem productivity (NEP) when compared with soil moisture derived from in-situ measurements and fluxnet datasets. Parameter uncertainties were largely reduced relatively to prior values. Using SMOS soil moisture data for assimilation of a terrestrial biosphere model proved to be an efficient approach in reducing uncertainty in ecosystem fluxes simulation. It could be further used in regional an global assimilation work to constrain carbon dioxide concentration simulation by combining with other sources of measurements.

  14. Assimilation of Precipitation Measurement Missions Microwave Radiance Observations With GEOS-5

    NASA Technical Reports Server (NTRS)

    Jin, Jianjun; Kim, Min-Jeong; McCarty, Will; Akella, Santha; Gu, Wei

    2015-01-01

    The Global Precipitation Mission (GPM) Core Observatory satellite was launched in February, 2014. The GPM Microwave Imager (GMI) is a conically scanning radiometer measuring 13 channels ranging from 10 to 183 GHz and sampling between 65 S 65 N. This instrument is a successor to the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI), which has observed 9 channels at frequencies ranging 10 to 85 GHz between 40 S 40 N since 1997. This presentation outlines the base procedures developed to assimilate GMI and TMI radiances in clear-sky conditions, including quality control methods, thinning decisions, and the estimation of, observation errors. This presentation also shows the impact of these observations when they are incorporated into the GEOS-5 atmospheric data assimilation system.

  15. The HYCOM (HYbrid Coordinate Ocean Model) Data Assimilative System

    DTIC Science & Technology

    2007-06-01

    Systems Inc., Stennis Space Center. MS, USA d SHOM/CMO, Toulouse. France € Los Alamos National Laboratory, Los Alamos, NM. USA Received 1 October 2004...Global Ocean Data Assimilation ’U. of Miami, NRL, Los Alamos, NOAA/NCEP, NOAA/AOML, Experiment (GODAE). GODAE is a coordinated inter- NOAA/PMEL, PSI...of Miami, the Naval all three approaches and the optimal distribution is Research Laboratory (NRL), and the Los Alamos chosen at every time step. The

  16. Dynamic Responses of the Earth's Outer Core to Assimilation of Observed Geomagnetic Secular Variation

    NASA Technical Reports Server (NTRS)

    Kuang, Weijia; Tangborn, Andrew

    2014-01-01

    Assimilation of surface geomagnetic observations and geodynamo models has advanced very quickly in recent years. However, compared to advanced data assimilation systems in meteorology, geomagnetic data assimilation (GDAS) is still in an early stage. Among many challenges ranging from data to models is the disparity between the short observation records and the long time scales of the core dynamics. To better utilize available observational information, we have made an effort in this study to directly assimilate the Gauss coefficients of both the core field and its secular variation (SV) obtained via global geomagnetic field modeling, aiming at understanding the dynamical responses of the core fluid to these additional observational constraints. Our studies show that the SV assimilation helps significantly to shorten the dynamo model spin-up process. The flow beneath the core-mantle boundary (CMB) responds significantly to the observed field and its SV. The strongest responses occur in the relatively small scale flow (of the degrees L is approx. 30 in spherical harmonic expansions). This part of the flow includes the axisymmetric toroidal flow (of order m = 0) and non-axisymmetric poloidal flow with m (is) greater than 5. These responses can be used to better understand the core flow and, in particular, to improve accuracies of predicting geomagnetic variability in future.

  17. The Computational Complexity, Parallel Scalability, and Performance of Atmospheric Data Assimilation Algorithms

    NASA Technical Reports Server (NTRS)

    Lyster, Peter M.; Guo, J.; Clune, T.; Larson, J. W.; Atlas, Robert (Technical Monitor)

    2001-01-01

    The computational complexity of algorithms for Four Dimensional Data Assimilation (4DDA) at NASA's Data Assimilation Office (DAO) is discussed. In 4DDA, observations are assimilated with the output of a dynamical model to generate best-estimates of the states of the system. It is thus a mapping problem, whereby scattered observations are converted into regular accurate maps of wind, temperature, moisture and other variables. The DAO is developing and using 4DDA algorithms that provide these datasets, or analyses, in support of Earth System Science research. Two large-scale algorithms are discussed. The first approach, the Goddard Earth Observing System Data Assimilation System (GEOS DAS), uses an atmospheric general circulation model (GCM) and an observation-space based analysis system, the Physical-space Statistical Analysis System (PSAS). GEOS DAS is very similar to global meteorological weather forecasting data assimilation systems, but is used at NASA for climate research. Systems of this size typically run at between 1 and 20 gigaflop/s. The second approach, the Kalman filter, uses a more consistent algorithm to determine the forecast error covariance matrix than does GEOS DAS. For atmospheric assimilation, the gridded dynamical fields typically have More than 10(exp 6) variables, therefore the full error covariance matrix may be in excess of a teraword. For the Kalman filter this problem can easily scale to petaflop/s proportions. We discuss the computational complexity of GEOS DAS and our implementation of the Kalman filter. We also discuss and quantify some of the technical issues and limitations in developing efficient, in terms of wall clock time, and scalable parallel implementations of the algorithms.

  18. Toward the assimilation of biogeochemical data in the CMEMS BIOMER coupled physical-biogeochemical operational system

    NASA Astrophysics Data System (ADS)

    Lamouroux, Julien; Testut, Charles-Emmanuel; Lellouche, Jean-Michel; Perruche, Coralie; Paul, Julien

    2017-04-01

    The operational production of data-assimilated biogeochemical state of the ocean is one of the challenging core projects of the Copernicus Marine Environment Monitoring Service. In that framework - and with the April 2018 CMEMS V4 release as a target - Mercator Ocean is in charge of improving the realism of its global ¼° BIOMER coupled physical-biogeochemical (NEMO/PISCES) simulations, analyses and re-analyses, and to develop an effective capacity to routinely estimate the biogeochemical state of the ocean, through the implementation of biogeochemical data assimilation. Primary objectives are to enhance the time representation of the seasonal cycle in the real time and reanalysis systems, and to provide a better control of the production in the equatorial regions. The assimilation of BGC data will rely on a simplified version of the SEEK filter, where the error statistics do not evolve with the model dynamics. The associated forecast error covariances are based on the statistics of a collection of 3D ocean state anomalies. The anomalies are computed from a multi-year numerical experiment (free run without assimilation) with respect to a running mean in order to estimate the 7-day scale error on the ocean state at a given period of the year. These forecast error covariances rely thus on a fixed-basis seasonally variable ensemble of anomalies. This methodology, which is currently implemented in the "blue" component of the CMEMS operational forecast system, is now under adaptation to be applied to the biogeochemical part of the operational system. Regarding observations - and as a first step - the system shall rely on the CMEMS GlobColour Global Ocean surface chlorophyll concentration products, delivered in NRT. The objective of this poster is to provide a detailed overview of the implementation of the aforementioned data assimilation methodology in the CMEMS BIOMER forecasting system. Focus shall be put on (1) the assessment of the capabilities of this data

  19. Evaluation of the Impact of Atmospheric Infrared Sounder (AIRS) Radiance and Profile Data Assimilation in Partly Cloudy Regions

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Srikishen, Jayanthi; Jedlovec, Gary

    2013-01-01

    Improvements to global and regional numerical weather prediction have been demonstrated through assimilation of data from NASA s Atmospheric Infrared Sounder (AIRS). Current operational data assimilation systems use AIRS radiances, but impact on regional forecasts has been much smaller than for global forecasts. Retrieved profiles from AIRS contain much of the information that is contained in the radiances and may be able to reveal reasons for this reduced impact. Assimilating AIRS retrieved profiles in an identical analysis configuration to the radiances, tracking the quantity and quality of the assimilated data in each technique, and examining analysis increments and forecast impact from each data type can yield clues as to the reasons for the reduced impact. By doing this with regional scale models individual synoptic features (and the impact of AIRS on these features) can be more easily tracked. This project examines the assimilation of hyperspectral sounder data used in operational numerical weather prediction by comparing operational techniques used for AIRS radiances and research techniques used for AIRS retrieved profiles. Parallel versions of a configuration of the Weather Research and Forecasting (WRF) model with Gridpoint Statistical Interpolation (GSI) are run to examine the impact AIRS radiances and retrieved profiles. Statistical evaluation of 6 weeks of forecast runs will be compared along with preliminary results of in-depth investigations for select case comparing the analysis increments in partly cloudy regions and short-term forecast impacts.

  20. Modeling ionospheric pre-reversal enhancement and plasma bubble growth rate using data assimilation

    NASA Astrophysics Data System (ADS)

    Rajesh, P. K.; Lin, C. C. H.; Chen, C. H.; Matsuo, T.

    2017-12-01

    We report that assimilating total electron content (TEC) into a coupled thermosphere-ionosphere model by using the ensemble Kalman filter results in improved specification and forecast of eastward pre-reversal enhancement (PRE) electric field (E-field). Through data assimilation, the ionospheric plasma density, thermospheric winds, temperature and compositions are adjusted simultaneously. The improvement of dusk-side PRE E-field over the prior state is achieved primarily by intensification of eastward neutral wind. The improved E-field promotes a stronger plasma fountain and deepens the equatorial trough. As a result, the horizontal gradients of Pedersen conductivity and eastward wind are increased due to greater zonal electron density gradient and smaller ion drag at dusk, respectively. Such modifications provide preferable conditions and obtain a strengthened PRE magnitude closer to the observation. The adjustment of PRE E-field is enabled through self-consistent thermosphere and ionosphere coupling processes captured in the model. The assimilative outputs are further utilized to calculate the flux tube integrated Rayleigh-Taylor instability growth rate during March 2015 for investigation of global plasma bubble occurrence. Significant improvements in the calculated growth rates could be achieved because of the improved update of zonal electric field in the data assimilation forecast. The results suggest that realistic estimate or prediction of plasma bubble occurrence could be feasible by taking advantage of the data assimilation approach adopted in this work.

  1. Optimality in Data Assimilation

    NASA Astrophysics Data System (ADS)

    Nearing, Grey; Yatheendradas, Soni

    2016-04-01

    It costs a lot more to develop and launch an earth-observing satellite than it does to build a data assimilation system. As such, we propose that it is important to understand the efficiency of our assimilation algorithms at extracting information from remote sensing retrievals. To address this, we propose that it is necessary to adopt completely general definition of "optimality" that explicitly acknowledges all differences between the parametric constraints of our assimilation algorithm (e.g., Gaussianity, partial linearity, Markovian updates) and the true nature of the environmetnal system and observing system. In fact, it is not only possible, but incredibly straightforward, to measure the optimality (in this more general sense) of any data assimilation algorithm as applied to any intended model or natural system. We measure the information content of remote sensing data conditional on the fact that we are already running a model and then measure the actual information extracted by data assimilation. The ratio of the two is an efficiency metric, and optimality is defined as occurring when the data assimilation algorithm is perfectly efficient at extracting information from the retrievals. We measure the information content of the remote sensing data in a way that, unlike triple collocation, does not rely on any a priori presumed relationship (e.g., linear) between the retrieval and the ground truth, however, like triple-collocation, is insensitive to the spatial mismatch between point-based measurements and grid-scale retrievals. This theory and method is therefore suitable for use with both dense and sparse validation networks. Additionally, the method we propose is *constructive* in the sense that it provides guidance on how to improve data assimilation systems. All data assimilation strategies can be reduced to approximations of Bayes' law, and we measure the fractions of total information loss that are due to individual assumptions or approximations in the

  2. Global Land Data Assimilation System (GLDAS) Products from NASA Hydrology Data and Information Services Center (HDISC)

    NASA Technical Reports Server (NTRS)

    Fang, Hongliang; Hrubiak, Patricia; Kato, Hiroko; Rodell, Matthew; Teng, William L.; Vollmer, Bruce E.

    2008-01-01

    The Global Land Data Assimilation System (GLDAS) is generating a series of land surface state (e.g., soil moisture and surface temperature) and flux (e.g., evaporation and sensible heat flux) products simulated by four land surface models (CLM, Mosaic, Noah and VIC). These products are now accessible at the Hydrology Data and Information Services Center (HDISC), a component of the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). Current data holdings include a set of 1.0 degree resolution data products from the four models, covering 1979 to the present; and a 0.25 degree data product from the Noah model, covering 2000 to the present. The products are in Gridded Binary (GRIB) format and can be accessed through a number of interfaces. New data formats (e.g., netCDF), temporal averaging and spatial subsetting will be available in the future. The HDISC has the capability to support more hydrology data products and more advanced analysis tools. The goal is to develop HDISC as a data and services portal that supports weather and climate forecast, and water and energy cycle research.

  3. Assessing the impacts of assimilating IASI and MOPITT CO retrievals using CESM-CAM-chem and DART

    NASA Astrophysics Data System (ADS)

    Barré, Jérôme; Gaubert, Benjamin; Arellano, Avelino F. J.; Worden, Helen M.; Edwards, David P.; Deeter, Merritt N.; Anderson, Jeffrey L.; Raeder, Kevin; Collins, Nancy; Tilmes, Simone; Francis, Gene; Clerbaux, Cathy; Emmons, Louisa K.; Pfister, Gabriele G.; Coheur, Pierre-François; Hurtmans, Daniel

    2015-10-01

    We show the results and evaluation with independent measurements from assimilating both MOPITT (Measurements Of Pollution In The Troposphere) and IASI (Infrared Atmospheric Sounding Interferometer) retrieved profiles into the Community Earth System Model (CESM). We used the Data Assimilation Research Testbed ensemble Kalman filter technique, with the full atmospheric chemistry CESM component Community Atmospheric Model with Chemistry. We first discuss the methodology and evaluation of the current data assimilation system with coupled meteorology and chemistry data assimilation. The different capabilities of MOPITT and IASI retrievals are highlighted, with particular attention to instrument vertical sensitivity and coverage and how these impact the analyses. MOPITT and IASI CO retrievals mostly constrain the CO fields close to the main anthropogenic, biogenic, and biomass burning CO sources. In the case of IASI CO assimilation, we also observe constraints on CO far from the sources. During the simulation time period (June and July 2008), CO assimilation of both instruments strongly improves the atmospheric CO state as compared to independent observations, with the higher spatial coverage of IASI providing better results on the global scale. However, the enhanced sensitivity of multispectral MOPITT observations to near surface CO over the main source regions provides synergistic effects at regional scales.

  4. Quasi-static ensemble variational data assimilation: a theoretical and numerical study with the iterative ensemble Kalman smoother

    NASA Astrophysics Data System (ADS)

    Fillion, Anthony; Bocquet, Marc; Gratton, Serge

    2018-04-01

    The analysis in nonlinear variational data assimilation is the solution of a non-quadratic minimization. Thus, the analysis efficiency relies on its ability to locate a global minimum of the cost function. If this minimization uses a Gauss-Newton (GN) method, it is critical for the starting point to be in the attraction basin of a global minimum. Otherwise the method may converge to a local extremum, which degrades the analysis. With chaotic models, the number of local extrema often increases with the temporal extent of the data assimilation window, making the former condition harder to satisfy. This is unfortunate because the assimilation performance also increases with this temporal extent. However, a quasi-static (QS) minimization may overcome these local extrema. It accomplishes this by gradually injecting the observations in the cost function. This method was introduced by Pires et al. (1996) in a 4D-Var context. We generalize this approach to four-dimensional strong-constraint nonlinear ensemble variational (EnVar) methods, which are based on both a nonlinear variational analysis and the propagation of dynamical error statistics via an ensemble. This forces one to consider the cost function minimizations in the broader context of cycled data assimilation algorithms. We adapt this QS approach to the iterative ensemble Kalman smoother (IEnKS), an exemplar of nonlinear deterministic four-dimensional EnVar methods. Using low-order models, we quantify the positive impact of the QS approach on the IEnKS, especially for long data assimilation windows. We also examine the computational cost of QS implementations and suggest cheaper algorithms.

  5. Continuing Themes in Assimilation Through Education.

    ERIC Educational Resources Information Center

    Strouse, Joan

    1987-01-01

    Discusses assimilation and adaptation of immigrants in the United States. Summarizes major sociological theories on assimilation. Focuses on schools as instruments of assimilation that attempt to force Anglo-conformity upon students. The refugee student's perceptions of his or her problems and opportunities are discussed. (PS)

  6. Mathematical foundations of hybrid data assimilation from a synchronization perspective

    NASA Astrophysics Data System (ADS)

    Penny, Stephen G.

    2017-12-01

    The state-of-the-art data assimilation methods used today in operational weather prediction centers around the world can be classified as generalized one-way coupled impulsive synchronization. This classification permits the investigation of hybrid data assimilation methods, which combine dynamic error estimates of the system state with long time-averaged (climatological) error estimates, from a synchronization perspective. Illustrative results show how dynamically informed formulations of the coupling matrix (via an Ensemble Kalman Filter, EnKF) can lead to synchronization when observing networks are sparse and how hybrid methods can lead to synchronization when those dynamic formulations are inadequate (due to small ensemble sizes). A large-scale application with a global ocean general circulation model is also presented. Results indicate that the hybrid methods also have useful applications in generalized synchronization, in particular, for correcting systematic model errors.

  7. Mathematical foundations of hybrid data assimilation from a synchronization perspective.

    PubMed

    Penny, Stephen G

    2017-12-01

    The state-of-the-art data assimilation methods used today in operational weather prediction centers around the world can be classified as generalized one-way coupled impulsive synchronization. This classification permits the investigation of hybrid data assimilation methods, which combine dynamic error estimates of the system state with long time-averaged (climatological) error estimates, from a synchronization perspective. Illustrative results show how dynamically informed formulations of the coupling matrix (via an Ensemble Kalman Filter, EnKF) can lead to synchronization when observing networks are sparse and how hybrid methods can lead to synchronization when those dynamic formulations are inadequate (due to small ensemble sizes). A large-scale application with a global ocean general circulation model is also presented. Results indicate that the hybrid methods also have useful applications in generalized synchronization, in particular, for correcting systematic model errors.

  8. Paleo Data Assimilation of Pseudo-Tree-Ring-Width Chronologies in a Climate Model

    NASA Astrophysics Data System (ADS)

    Fallah Hassanabadi, B.; Acevedo, W.; Reich, S.; Cubasch, U.

    2016-12-01

    Using the Time-Averaged Ensemble Kalman Filter (EnKF) and a forward model, we assimilate the pseudo Tree-Ring-Width (TRW) chronologies into an Atmospheric Global Circulation model. This study investigates several aspects of Paleo-Data Assimilation (PDA) within a perfect-model set-up: (i) we test the performance of several forward operators in the framework of a PDA-based climate reconstruction, (ii) compare the PDA-based simulations' skill against the free ensemble runs and (iii) inverstigate the skill of the "online" (with cycling) DA and the "off-line" (no-cycling) DA. In our experiments, the "online" (with cycling) PDA approach did not outperform the "off-line" (no-cycling) one, despite its considerable additional implementation complexity. On the other hand, it was observed that the error reduction achieved by assimilating a particular pseudo-TRW chronology is modulated by the strength of the yearly internal variability of the model at the chronology site. This result might help the dendrochronology community to optimize their sampling efforts.

  9. Ozone data assimilation with GEOS-Chem: a comparison between 3-D-Var, 4-D-Var, and suboptimal Kalman filter approaches

    NASA Astrophysics Data System (ADS)

    Singh, K.; Sandu, A.; Bowman, K. W.; Parrington, M.; Jones, D. B. A.; Lee, M.

    2011-08-01

    Chemistry transport models determine the evolving chemical state of the atmosphere by solving the fundamental equations that govern physical and chemical transformations subject to initial conditions of the atmospheric state and surface boundary conditions, e.g., surface emissions. The development of data assimilation techniques synthesize model predictions with measurements in a rigorous mathematical framework that provides observational constraints on these conditions. Two families of data assimilation methods are currently widely used: variational and Kalman filter (KF). The variational approach is based on control theory and formulates data assimilation as a minimization problem of a cost functional that measures the model-observations mismatch. The Kalman filter approach is rooted in statistical estimation theory and provides the analysis covariance together with the best state estimate. Suboptimal Kalman filters employ different approximations of the covariances in order to make the computations feasible with large models. Each family of methods has both merits and drawbacks. This paper compares several data assimilation methods used for global chemical data assimilation. Specifically, we evaluate data assimilation approaches for improving estimates of the summertime global tropospheric ozone distribution in August 2006 based on ozone observations from the NASA Tropospheric Emission Spectrometer and the GEOS-Chem chemistry transport model. The resulting analyses are compared against independent ozonesonde measurements to assess the effectiveness of each assimilation method. All assimilation methods provide notable improvements over the free model simulations, which differ from the ozonesonde measurements by about 20 % (below 200 hPa). Four dimensional variational data assimilation with window lengths between five days and two weeks is the most accurate method, with mean differences between analysis profiles and ozonesonde measurements of 1-5 %. Two sequential

  10. Data Assimilation for Applied Meteorology

    NASA Astrophysics Data System (ADS)

    Haupt, S. E.

    2012-12-01

    Although atmospheric models provide a best estimate of the future state of the atmosphere, due to sensitivity to initial condition, it is difficult to predict the precise future state. For applied problems, however, users often depend on having accurate knowledge of that future state. To improve prediction of a particular realization of an evolving flow field requires knowledge of the current state of that field and assimilation of local observations into the model. This talk will consider how dynamic assimilation can help address the concerns of users of atmospheric forecasts. First, we will look at the value of assimilation for the renewable energy industry. If the industry decision makers can have confidence in the wind and solar power forecasts, they can build their power allocations around the expected renewable resource, saving money for the ratepayers as well as reducing carbon emissions. We will assess the value to that industry of assimilating local real-time observations into the model forecasts and the value that is provided. The value of the forecasts with assimilation is important on both short (several hour) to medium range (within two days). A second application will be atmospheric transport and dispersion problems. In particular, we will look at assimilation of concentration data into a prediction model. An interesting aspect of this problem is that the dynamics are a one-way coupled system, with the fluid dynamic equations affecting the concentration equation, but not vice versa. So when the observations are of the concentration, one must infer the fluid dynamics. This one-way coupled system presents a challenge: one must first infer the changes in the flow field from observations of the contaminant, then assimilate that to recover both the advecting flow and information on the subgrid processes that provide the mixing. To accomplish such assimilation requires a robust method to match the observed contaminant field to that modeled. One approach is

  11. Towards a Comprehensive Dynamic-chemistry Assimilation for Eos-Chem: Plans and Status in NASA's Data Assimilation Office

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Lin, Shian-Jiann; Rood, Richard B.; Stajner, Ivanka; Nebuda, Sharon; Nielsen, J. Eric; Douglass, Anne R.

    2000-01-01

    In order to support the EOS-Chem project, a comprehensive assimilation package for the coupled chemical-dynamical system is being developed by the Data Assimilation Office at NASA GSFC. This involves development of a coupled chemistry/meteorology model and of data assimilation techniques for trace species and meteorology. The model is being developed using the flux-form semi-Lagrangian dynamical core of Lin and Rood, the physical parameterizations from the NCAR Community Climate Model, and atmospheric chemistry modules from the Atmospheric Chemistry and Dynamics branch at NASA GSFC. To date the following results have been obtained: (i) multi-annual simulations with the dynamics-radiation model show the credibility of the package for atmospheric simulations; (ii) initial simulations including a limited number of middle atmospheric trace gases reveal the realistic nature of transport mechanisms, although there is still a need for some improvements. Samples of these results will be shown. A meteorological assimilation system is currently being constructed using the model; this will form the basis for the proposed meteorological/chemical assimilation package. The latter part of the presentation will focus on areas targeted for development in the near and far terms, with the objective of Providing a comprehensive assimilation package for the EOS-Chem science experiment. The first stage will target ozone assimilation. The plans also encompass a reanalysis (ReSTS) for the 1991-1995 period, which includes the Mt. Pinatubo eruption and the time when a large number of UARS observations were available. One of the most challenging aspects of future developments will be to couple theoretical advances in tracer assimilation with the practical considerations of a real environment and eventually a near-real-time assimilation system.

  12. Regional Climate Simulation and Data Assimilation with Variable-Resolution GCMs

    NASA Technical Reports Server (NTRS)

    Fox-Rabinovitz, Michael S.

    2002-01-01

    Variable resolution GCMs using a global stretched grid (SG) with enhanced regional resolution over one or multiple areas of interest represents a viable new approach to regional climateklimate change and data assimilation studies and applications. The multiple areas of interest, at least one within each global quadrant, include the major global mountains and major global monsoonal circulations over North America, South America, India-China, and Australia. They also can include the polar domains, and the European and African regions. The SG-approach provides an efficient regional downscaling to mesoscales, and it is an ideal tool for representing consistent interactions of globaYlarge- and regionallmeso- scales while preserving the high quality of global circulation. Basically, the SG-GCM simulations are no different from those of the traditional uniform-grid GCM simulations besides using a variable-resolution grid. Several existing SG-GCMs developed by major centers and groups are briefly described. The major discussion is based on the GEOS (Goddard Earth Observing System) SG-GCM regional climate simulations.

  13. New drought indices from the assimilation of satellite data

    NASA Astrophysics Data System (ADS)

    Calvet, Jean-Christophe; Barbu, Alina; Fairbairn, David

    2016-04-01

    The current agricultural drought indicators produced by Meteo-France are derived from digital simulations of soil moisture produced by the SURFEX modelling platform. In the framework of the IMAGINES European project, a research was conducted in order to assess the impact on the monitoring of agricultural droughts of the integration of satellite data into SURFEX. A data assimilation system was implemented to this end. It provides simulations of the biomass and leaf area index of straw cereals and grasslands over France. It is shown that these simulations can be improved through the assimilation of satellite products distributed in near-real-time by the Copernicus Global Land service (http://land.copernicus.eu/global/). Reference in situ observations of the agricultural yields show that using satellite data, a significant correlation between the maximum annual above-ground biomass simulated by SURFEX and the agricultural yield at the scale of administrative units (départements) can be achieved. Without satellite data, very low correlations are observed. It is also shown that new 10-day drought indicators, complementary to soil moisture, can be derived from the leaf area index and from the above-ground biomass of vegetation. These demonstration drought monitoring products for the 2008-2013 period are freely available on the project web site (http://fp7-imagines.eu/) for 45 administrative units for cereals and for 48 administrative units for grasslands.

  14. Methodological Developments in Geophysical Assimilation Modeling

    NASA Astrophysics Data System (ADS)

    Christakos, George

    2005-06-01

    This work presents recent methodological developments in geophysical assimilation research. We revisit the meaning of the term "solution" of a mathematical model representing a geophysical system, and we examine its operational formulations. We argue that an assimilation solution based on epistemic cognition (which assumes that the model describes incomplete knowledge about nature and focuses on conceptual mechanisms of scientific thinking) could lead to more realistic representations of the geophysical situation than a conventional ontologic assimilation solution (which assumes that the model describes nature as is and focuses on form manipulations). Conceptually, the two approaches are fundamentally different. Unlike the reasoning structure of conventional assimilation modeling that is based mainly on ad hoc technical schemes, the epistemic cognition approach is based on teleologic criteria and stochastic adaptation principles. In this way some key ideas are introduced that could open new areas of geophysical assimilation to detailed understanding in an integrated manner. A knowledge synthesis framework can provide the rational means for assimilating a variety of knowledge bases (general and site specific) that are relevant to the geophysical system of interest. Epistemic cognition-based assimilation techniques can produce a realistic representation of the geophysical system, provide a rigorous assessment of the uncertainty sources, and generate informative predictions across space-time. The mathematics of epistemic assimilation involves a powerful and versatile spatiotemporal random field theory that imposes no restriction on the shape of the probability distributions or the form of the predictors (non-Gaussian distributions, multiple-point statistics, and nonlinear models are automatically incorporated) and accounts rigorously for the uncertainty features of the geophysical system. In the epistemic cognition context the assimilation concept may be used to

  15. Coupled assimilation for an intermediated coupled ENSO prediction model

    NASA Astrophysics Data System (ADS)

    Zheng, Fei; Zhu, Jiang

    2010-10-01

    The value of coupled assimilation is discussed using an intermediate coupled model in which the wind stress is the only atmospheric state which is slavery to model sea surface temperature (SST). In the coupled assimilation analysis, based on the coupled wind-ocean state covariance calculated from the coupled state ensemble, the ocean state is adjusted by assimilating wind data using the ensemble Kalman filter. As revealed by a series of assimilation experiments using simulated observations, the coupled assimilation of wind observations yields better results than the assimilation of SST observations. Specifically, the coupled assimilation of wind observations can help to improve the accuracy of the surface and subsurface currents because the correlation between the wind and ocean currents is stronger than that between SST and ocean currents in the equatorial Pacific. Thus, the coupled assimilation of wind data can decrease the initial condition errors in the surface/subsurface currents that can significantly contribute to SST forecast errors. The value of the coupled assimilation of wind observations is further demonstrated by comparing the prediction skills of three 12-year (1997-2008) hindcast experiments initialized by the ocean-only assimilation scheme that assimilates SST observations, the coupled assimilation scheme that assimilates wind observations, and a nudging scheme that nudges the observed wind stress data, respectively. The prediction skills of two assimilation schemes are significantly better than those of the nudging scheme. The prediction skills of assimilating wind observations are better than assimilating SST observations. Assimilating wind observations for the 2007/2008 La Niña event triggers better predictions, while assimilating SST observations fails to provide an early warning for that event.

  16. Regime-dependence of Impacts of Radar Rainfall Data Assimilation

    NASA Astrophysics Data System (ADS)

    Craig, G. C.; Keil, C.

    2009-04-01

    Experience from the first operational trials of assimilation of radar data in kilometre scale numerical weather prediction models (operating without cumulus parameterisation) shows that the positive impact of the radar data on convective precipitation forecasts typically decay within a few hours, although certain cases show much longer impacts. Here the impact time of radar data assimilation is related to characteristics of the meteorological environment. This QPF uncertainty is investigated using an ensemble of 10 forecasts at 2.8 km horizontal resolution based on different initial and boundary conditions from a global forecast ensemble. Control forecasts are compared with forecasts where radar reflectivity data is assimilated using latent heat nudging. Examination of different cases of convection in southern Germany suggests that the forecasts can be separated into two regimes using a convective timescale. Short impact times are associated with short convective timescales that are characteristic of equilibrium convection. In this regime the statistical properties of the convection are constrained by the large-scale forcing, and effects of the radar data are lost within a few hours as the convection rapidly returns to equilibrium. When the convective timescale is large (non-equilibrium conditions), the impact of the radar data is longer since convective systems are triggered by the latent heat nudging and are able to persist for many hours in the very unstable conditions present in these cases.

  17. Using Data Assimilation Methods of Prediction of Solar Activity

    NASA Technical Reports Server (NTRS)

    Kitiashvili, Irina N.; Collins, Nancy S.

    2017-01-01

    The variable solar magnetic activity known as the 11-year solar cycle has the longest history of solar observations. These cycles dramatically affect conditions in the heliosphere and the Earth's space environment. Our current understanding of the physical processes that make up global solar dynamics and the dynamo that generates the magnetic fields is sketchy, resulting in unrealistic descriptions in theoretical and numerical models of the solar cycles. The absence of long-term observations of solar interior dynamics and photospheric magnetic fields hinders development of accurate dynamo models and their calibration. In such situations, mathematical data assimilation methods provide an optimal approach for combining the available observational data and their uncertainties with theoretical models in order to estimate the state of the solar dynamo and predict future cycles. In this presentation, we will discuss the implementation and performance of an Ensemble Kalman Filter data assimilation method based on the Parker migratory dynamo model, complemented by the equation of magnetic helicity conservation and long-term sunspot data series. This approach has allowed us to reproduce the general properties of solar cycles and has already demonstrated a good predictive capability for the current cycle, 24. We will discuss further development of this approach, which includes a more sophisticated dynamo model, synoptic magnetogram data, and employs the DART Data Assimilation Research Testbed.

  18. User's Guide - WRF Lightning Assimilation

    EPA Pesticide Factsheets

    This document describes how to run WRF with the lightning assimilation technique described in Heath et al. (2016). The assimilation method uses gridded lightning data to trigger and suppress sub-grid deep convection in Kain-Fritsch.

  19. Insights on the impact of systematic model errors on data assimilation performance in changing catchments

    NASA Astrophysics Data System (ADS)

    Pathiraja, S.; Anghileri, D.; Burlando, P.; Sharma, A.; Marshall, L.; Moradkhani, H.

    2018-03-01

    The global prevalence of rapid and extensive land use change necessitates hydrologic modelling methodologies capable of handling non-stationarity. This is particularly true in the context of Hydrologic Forecasting using Data Assimilation. Data Assimilation has been shown to dramatically improve forecast skill in hydrologic and meteorological applications, although such improvements are conditional on using bias-free observations and model simulations. A hydrologic model calibrated to a particular set of land cover conditions has the potential to produce biased simulations when the catchment is disturbed. This paper sheds new light on the impacts of bias or systematic errors in hydrologic data assimilation, in the context of forecasting in catchments with changing land surface conditions and a model calibrated to pre-change conditions. We posit that in such cases, the impact of systematic model errors on assimilation or forecast quality is dependent on the inherent prediction uncertainty that persists even in pre-change conditions. Through experiments on a range of catchments, we develop a conceptual relationship between total prediction uncertainty and the impacts of land cover changes on the hydrologic regime to demonstrate how forecast quality is affected when using state estimation Data Assimilation with no modifications to account for land cover changes. This work shows that systematic model errors as a result of changing or changed catchment conditions do not always necessitate adjustments to the modelling or assimilation methodology, for instance through re-calibration of the hydrologic model, time varying model parameters or revised offline/online bias estimation.

  20. The role of data assimilation in maximizing the utility of geospace observations (Invited)

    NASA Astrophysics Data System (ADS)

    Matsuo, T.

    2013-12-01

    Data assimilation can facilitate maximizing the utility of existing geospace observations by offering an ultimate marriage of inductive (data-driven) and deductive (first-principles based) approaches to addressing critical questions in space weather. Assimilative approaches that incorporate dynamical models are, in particular, capable of making a diverse set of observations consistent with physical processes included in a first-principles model, and allowing unobserved physical states to be inferred from observations. These points will be demonstrated in the context of the application of an ensemble Kalman filter (EnKF) to a thermosphere and ionosphere general circulation model. An important attribute of this approach is that the feedback between plasma and neutral variables is self-consistently treated both in the forecast model as well as in the assimilation scheme. This takes advantage of the intimate coupling between the thermosphere and ionosphere described in general circulation models to enable the inference of unobserved thermospheric states from the relatively plentiful observations of the ionosphere. Given the ever-growing infrastructure for the global navigation satellite system, this is indeed a promising prospect for geospace data assimilation. In principle, similar approaches can be applied to any geospace observing systems to extract more geophysical information from a given set of observations than would otherwise be possible.

  1. Atlantic Tropical Cyclogenetic Processes During SOP-3 NAMMA in the GEOS-5 Global Data Assimilation and Forecast System

    NASA Technical Reports Server (NTRS)

    Reale, Oreste; Lau, William K.; Kim, Kyu-Myong; Brin, Eugenia

    2009-01-01

    This article investigates the role of the Saharan air layer (SAL) in tropical cyclogenetic processes associated with a nondeveloping and a developing African easterly wave observed during the Special Observation Period (SOP-3) phase of the 2006 NASA African. Monsoon Multidisciplinary Analyses (NAMMA). The two waves are chosen because they both interact heavily with Saharan air. A glottal data assimilation and forecast system, the NASA Goddard Earth Observing System. version 5 (GEOS-5), is being run to produce a set of high-9 uality global analyses, inclusive of all observations used operationally but with additional satellite information. In particular, following previous works by the same authors, the duality-controlled data from the Atmospheric Infrared Sounder (AIRS) used to produce these analyses have a better coverage than the one adopted by operational centers. From these improved analyses, two sets of 31 five-day high-resolution forecasts, at horizontal resolutions of both half and quarter degrees, are produced. Results indicate that very steep moisture gradients are associated with the SAL in forecasts and analyses, even at great distances from their source over the Sahara. In addition, a thermal dipole in the vertiieat (warm above, cool below) is present in the nondeveloping case. The Moderate Resolution Imaging Spoctroradiometer (MODIS) aboard NASA's Terra and Aqua satellites shows that aerosol optical thickness, indicative of more dust as opposed to other factors, is higher in the nondeveloping case. Altogether, results suggest that the radiative effect of dust may play some role in producing a thermal structure less favorable to cyclogenesis. Results also indicate that only global horizontal resolutions on the order of 20-30 km can capture the large-scale transport and the tine thermal structure of the SAL, inclusive of the sharp moisture gradients, reproducing the effect of tropical cyclone suppression that has been hypothesized by previous authors

  2. Inferring Land Surface Model Parameters for the Assimilation of Satellite-Based L-Band Brightness Temperature Observations into a Soil Moisture Analysis System

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.

    2012-01-01

    The Soil Moisture and Ocean Salinity (SMOS) satellite mission provides global measurements of L-band brightness temperatures at horizontal and vertical polarization and a variety of incidence angles that are sensitive to moisture and temperature conditions in the top few centimeters of the soil. These L-band observations can therefore be assimilated into a land surface model to obtain surface and root zone soil moisture estimates. As part of the observation operator, such an assimilation system requires a radiative transfer model (RTM) that converts geophysical fields (including soil moisture and soil temperature) into modeled L-band brightness temperatures. At the global scale, the RTM parameters and the climatological soil moisture conditions are still poorly known. Using look-up tables from the literature to estimate the RTM parameters usually results in modeled L-band brightness temperatures that are strongly biased against the SMOS observations, with biases varying regionally and seasonally. Such biases must be addressed within the land data assimilation system. In this presentation, the estimation of the RTM parameters is discussed for the NASA GEOS-5 land data assimilation system, which is based on the ensemble Kalman filter (EnKF) and the Catchment land surface model. In the GEOS-5 land data assimilation system, soil moisture and brightness temperature biases are addressed in three stages. First, the global soil properties and soil hydraulic parameters that are used in the Catchment model were revised to minimize the bias in the modeled soil moisture, as verified against available in situ soil moisture measurements. Second, key parameters of the "tau-omega" RTM were calibrated prior to data assimilation using an objective function that minimizes the climatological differences between the modeled L-band brightness temperatures and the corresponding SMOS observations. Calibrated parameters include soil roughness parameters, vegetation structure parameters

  3. Application of data assimilation methods for analysis and integration of observed and modeled Arctic Sea ice motions

    NASA Astrophysics Data System (ADS)

    Meier, Walter Neil

    This thesis demonstrates the applicability of data assimilation methods to improve observed and modeled ice motion fields and to demonstrate the effects of assimilated motion on Arctic processes important to the global climate and of practical concern to human activities. Ice motions derived from 85 GHz and 37 GHz SSM/I imagery and estimated from two-dimensional dynamic-thermodynamic sea ice models are compared to buoy observations. Mean error, error standard deviation, and correlation with buoys are computed for the model domain. SSM/I motions generally have a lower bias, but higher error standard deviations and lower correlation with buoys than model motions. There are notable variations in the statistics depending on the region of the Arctic, season, and ice characteristics. Assimilation methods are investigated and blending and optimal interpolation strategies are implemented. Blending assimilation improves error statistics slightly, but the effect of the assimilation is reduced due to noise in the SSM/I motions and is thus not an effective method to improve ice motion estimates. However, optimal interpolation assimilation reduces motion errors by 25--30% over modeled motions and 40--45% over SSM/I motions. Optimal interpolation assimilation is beneficial in all regions, seasons and ice conditions, and is particularly effective in regimes where modeled and SSM/I errors are high. Assimilation alters annual average motion fields. Modeled ice products of ice thickness, ice divergence, Fram Strait ice volume export, transport across the Arctic and interannual basin averages are also influenced by assimilated motions. Assimilation improves estimates of pollutant transport and corrects synoptic-scale errors in the motion fields caused by incorrect forcings or errors in model physics. The portability of the optimal interpolation assimilation method is demonstrated by implementing the strategy in an ice thickness distribution (ITD) model. This research presents an

  4. Variational Continuous Assimilation of TMI and SSM/I Rain Rates: Impact on GEOS-3 Hurricane Analyses and Forecasts

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Zhang, Sara Q.; Reale, Oreste

    2003-01-01

    We describe a variational continuous assimilation (VCA) algorithm for assimilating tropical rainfall data using moisture and temperature tendency corrections as the control variable to offset model deficiencies. For rainfall assimilation, model errors are of special concern since model-predicted precipitation is based on parameterized moist physics, which can have substantial systematic errors. This study examines whether a VCA scheme using the forecast model as a weak constraint offers an effective pathway to precipitation assimilation. The particular scheme we exarnine employs a '1+1' dimension precipitation observation operator based on a 6-h integration of a column model of moist physics from the Goddard Earth Observing System (GEOS) global data assimilation system DAS). In earlier studies, we tested a simplified version of this scheme and obtained improved monthly-mean analyses and better short-range forecast skills. This paper describes the full implementation ofthe 1+1D VCA scheme using background and observation error statistics, and examines how it may improve GEOS analyses and forecasts of prominent tropical weather systems such as hurricanes. Parallel assimilation experiments with and without rainfall data for Hurricanes Bonnie and Floyd show that assimilating 6-h TMI and SSM/I surfice rain rates leads to more realistic storm features in the analysis, which, in turn, provide better initial conditions for 5-day storm track prediction and precipitation forecast. These results provide evidence that addressing model deficiencies in moisture tendency may be crucial to making effective use of precipitation information in data assimilation.

  5. Technical Report Series on Global Modeling and Data Assimilation. Volume 40; Soil Moisture Active Passive (SMAP) Project Assessment Report for the Beta-Release L4_SM Data Product

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Reichle, Rolf H.; De Lannoy, Gabrielle J. M.; Liu, Qing; Colliander, Andreas; Conaty, Austin; Jackson, Thomas; Kimball, John

    2015-01-01

    During the post-launch SMAP calibration and validation (Cal/Val) phase there are two objectives for each science data product team: 1) calibrate, verify, and improve the performance of the science algorithm, and 2) validate the accuracy of the science data product as specified in the science requirements and according to the Cal/Val schedule. This report provides an assessment of the SMAP Level 4 Surface and Root Zone Soil Moisture Passive (L4_SM) product specifically for the product's public beta release scheduled for 30 October 2015. The primary objective of the beta release is to allow users to familiarize themselves with the data product before the validated product becomes available. The beta release also allows users to conduct their own assessment of the data and to provide feedback to the L4_SM science data product team. The assessment of the L4_SM data product includes comparisons of SMAP L4_SM soil moisture estimates with in situ soil moisture observations from core validation sites and sparse networks. The assessment further includes a global evaluation of the internal diagnostics from the ensemble-based data assimilation system that is used to generate the L4_SM product. This evaluation focuses on the statistics of the observation-minus-forecast (O-F) residuals and the analysis increments. Together, the core validation site comparisons and the statistics of the assimilation diagnostics are considered primary validation methodologies for the L4_SM product. Comparisons against in situ measurements from regional-scale sparse networks are considered a secondary validation methodology because such in situ measurements are subject to upscaling errors from the point-scale to the grid cell scale of the data product. Based on the limited set of core validation sites, the assessment presented here meets the criteria established by the Committee on Earth Observing Satellites for Stage 1 validation and supports the beta release of the data. The validation against

  6. Advances in Global Adjoint Tomography - Data Assimilation and Inversion Strategy

    NASA Astrophysics Data System (ADS)

    Ruan, Y.; Lei, W.; Lefebvre, M. P.; Modrak, R. T.; Smith, J. A.; Bozdag, E.; Tromp, J.

    2016-12-01

    Seismic tomography provides the most direct way to understand Earth's interior by imaging elastic heterogeneity, anisotropy and anelasticity. Resolving thefine structure of these properties requires accurate simulations of seismic wave propagation in complex 3-D Earth models. On the supercomputer "Titan" at Oak Ridge National Laboratory, we are employing a spectral-element method (Komatitsch & Tromp 1999, 2002) in combination with an adjoint method (Tromp et al., 2005) to accurately calculate theoretical seismograms and Frechet derivatives. Using 253 carefully selected events, Bozdag et al. (2016) iteratively determined a transversely isotropic earth model (GLAD_M15) using 15 preconditioned conjugate-gradient iterations. To obtain higher resolution images of the mantle, we have expanded our database to more than 4,220 Mw5.0-7.0 events occurred between 1995 and 2014. Instead of using the entire database all at once, we choose to draw subsets of about 1,000 events from our database for each iteration to achieve a faster convergence rate with limited computing resources. To provide good coverage of deep structures, we selected approximately 700 deep and intermedia earthquakes and 300 shallow events to start a new iteration. We reinverted the CMT solutions of these events in the latest model, and recalculated synthetic seismograms. Using the synthetics as reference seismograms, we selected time windows that show good agreement with data and make measurements within the windows. From the measurements we further assess the overall quality of each event and station, and exclude bad measurements base upon certain criteria. So far, with very conservative criteria, we have assimilated more than 8.0 million windows from 1,000 earthquakes in three period bands for the new iteration. For subsequent iterations, we will change the period bands and window selecting criteria to include more window. In the inversion, dense array data (e.g., USArray) usually dominate model updates

  7. Assimilation of Gridded GRACE Terrestrial Water Storage Estimates in the North American Land Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Kumar, Sujay V.; Zaitchik, Benjamin F.; Peters-Lidard, Christa D.; Rodell, Matthew; Reichle, Rolf; Li, Bailing; Jasinski, Michael; Mocko, David; Getirana, Augusto; De Lannoy, Gabrielle; hide

    2016-01-01

    The objective of the North American Land Data Assimilation System (NLDAS) is to provide best available estimates of near-surface meteorological conditions and soil hydrological status for the continental United States. To support the ongoing efforts to develop data assimilation (DA) capabilities for NLDAS, the results of Gravity Recovery and Climate Experiment (GRACE) DA implemented in a manner consistent with NLDAS development are presented. Following previous work, GRACE terrestrial water storage (TWS) anomaly estimates are assimilated into the NASA Catchment land surface model using an ensemble smoother. In contrast to many earlier GRACE DA studies, a gridded GRACE TWS product is assimilated, spatially distributed GRACE error estimates are accounted for, and the impact that GRACE scaling factors have on assimilation is evaluated. Comparisons with quality-controlled in situ observations indicate that GRACE DA has a positive impact on the simulation of unconfined groundwater variability across the majority of the eastern United States and on the simulation of surface and root zone soil moisture across the country. Smaller improvements are seen in the simulation of snow depth, and the impact of GRACE DA on simulated river discharge and evapotranspiration is regionally variable. The use of GRACE scaling factors during assimilation improved DA results in the western United States but led to small degradations in the eastern United States. The study also found comparable performance between the use of gridded and basin averaged GRACE observations in assimilation. Finally, the evaluations presented in the paper indicate that GRACE DA can be helpful in improving the representation of droughts.

  8. Comparison of Flow-Dependent and Static Error Correlation Models in the DAO Ozone Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Wargan, K.; Stajner, I.; Pawson, S.

    2003-01-01

    In a data assimilation system the forecast error covariance matrix governs the way in which the data information is spread throughout the model grid. Implementation of a correct method of assigning covariances is expected to have an impact on the analysis results. The simplest models assume that correlations are constant in time and isotropic or nearly isotropic. In such models the analysis depends on the dynamics only through assumed error standard deviations. In applications to atmospheric tracer data assimilation this may lead to inaccuracies, especially in regions with strong wind shears or high gradient of potential vorticity, as well as in areas where no data are available. In order to overcome this problem we have developed a flow-dependent covariance model that is based on short term evolution of error correlations. The presentation compares performance of a static and a flow-dependent model applied to a global three- dimensional ozone data assimilation system developed at NASA s Data Assimilation Office. We will present some results of validation against WMO balloon-borne sondes and the Polar Ozone and Aerosol Measurement (POAM) III instrument. Experiments show that allowing forecast error correlations to evolve with the flow results in positive impact on assimilated ozone within the regions where data were not assimilated, particularly at high latitudes in both hemispheres and in the troposphere. We will also discuss statistical characteristics of both models; in particular we will argue that including evolution of error correlations leads to stronger internal consistency of a data assimilation ,

  9. A preliminary experiment for the long-term regional reanalysis over Japan assimilating conventional observations with NHM-LETKF

    NASA Astrophysics Data System (ADS)

    Fukui, Shin; Iwasaki, Toshiki; Saito, Kazuo; Seko, Hiromu; Kunii, Masaru

    2016-04-01

    Several long-term global reanalyses have been produced by major operational centres and have contributed to the advance of weather and climate researches considerably. Although the horizontal resolutions of these global reanalyses are getting higher partly due to the development of computing technology, they are still too coarse to reproduce local circulations and precipitation realistically. To solve this problem, dynamical downscaling is often employed. However, the forcing from lateral boundaries only cannot necessarily control the inner fields especially in long-term dynamical downscaling. Regional reanalysis is expected to overcome the difficulty. To maintain the long-term consistency of the analysis quality, it is better to assimilate only the conventional observations that are available in long period. To confirm the effectiveness of the regional reanalysis, some assimilation experiments are performed. In the experiments, only conventional observations (SYNOP, SHIP, BUOY, TEMP, PILOT, TC-Bogus) are assimilated with the NHM-LETKF system, which consists of the nonhydrostatic model (NHM) of the Japan Meteorological Agency (JMA) and the local ensemble transform Kalman filter (LETKF). The horizontal resolution is 25 km and the domain covers Japan and its surroundings. Japanese 55-year reanalysis (JRA-55) is adopted as the initial and lateral boundary conditions for the NHM-LETKF forecast-analysis cycles. The ensemble size is 10. The experimental period is August 2014 as a representative of warm season for the region. The results are verified against the JMA's operational Meso-scale Analysis, which is produced with assimilating observation data including various remote sensing observations using a 4D-Var scheme, and compared with those of the simple dynamical downscaling experiment without data assimilation. Effects of implementation of lateral boundary perturbations derived from an EOF analysis of JRA-55 over the targeted domain are also examined. The comparison

  10. Skill Assessment in Ocean Biological Data Assimilation

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Friedrichs, Marjorie A. M.; Robinson, Allan R.; Rose, Kenneth A.; Schlitzer, Reiner; Thompson, Keith R.; Doney, Scott C.

    2008-01-01

    There is growing recognition that rigorous skill assessment is required to understand the ability of ocean biological models to represent ocean processes and distributions. Statistical analysis of model results with observations represents the most quantitative form of skill assessment, and this principle serves as well for data assimilation models. However, skill assessment for data assimilation requires special consideration. This is because there are three sets of information in the free-run model, data, and the assimilation model, which uses Data assimilation information from both the flee-run model and the data. Intercom parison of results among the three sets of information is important and useful for assessment, but is not conclusive since the three information sets are intertwined. An independent data set is necessary for an objective determination. Other useful measures of ocean biological data assimilation assessment include responses of unassimilated variables to the data assimilation, performance outside the prescribed region/time of interest, forecasting, and trend analysis. Examples of each approach from the literature are provided. A comprehensive list of ocean biological data assimilation and their applications of skill assessment, in both ecosystem/biogeochemical and fisheries efforts, is summarized.

  11. Aerosol Data Assimilation at GMAO

    NASA Technical Reports Server (NTRS)

    da Silva, Arlindo M.; Buchard, Virginie

    2017-01-01

    This presentation presents an overview of the aerosol data assimilation work performed at GMAO. The GMAO Forward Processing system and the biomass burning emissions from QFED are first presented. Then, the current assimilation of Aerosol Optical Depth (AOD), performed by means of the analysis splitting method is briefly described, followed by some results on the quality control of observations using a Neural Network trained using AERONET AOD. Some applications are shown such as the Mount Pinatubo eruption in 1991 using the MERRA-2 aerosol dataset. Finally preliminary results on the EnKF implementation for aerosol assimilation are presented.

  12. A Global Rapid Integrated Monitoring System for Water Cycle and Water Resource Assessment (Global-RIMS)

    NASA Technical Reports Server (NTRS)

    Roads, John; Voeroesmarty, Charles

    2005-01-01

    The main focus of our work was to solidify underlying data sets, the data processing tools and the modeling environment needed to perform a series of long-term global and regional hydrological simulations leading eventually to routine hydrometeorological predictions. A water and energy budget synthesis was developed for the Mississippi River Basin (Roads et al. 2003), in order to understand better what kinds of errors exist in current hydrometeorological data sets. This study is now being extended globally with a larger number of observations and model based data sets under the new NASA NEWS program. A global comparison of a number of precipitation data sets was subsequently carried out (Fekete et al. 2004) in which it was further shown that reanalysis precipitation has substantial problems, which subsequently led us to the development of a precipitation assimilation effort (Nunes and Roads 2005). We believe that with current levels of model skill in predicting precipitation that precipitation assimilation is necessary to get the appropriate land surface forcing.

  13. Diagnostics of sources of tropospheric ozone using data assimilation during the KORUS-AQ campaign

    NASA Astrophysics Data System (ADS)

    Gaubert, B.; Emmons, L. K.; Miyazaki, K.; Buchholz, R. R.; Tang, W.; Arellano, A. F., Jr.; Tilmes, S.; Barré, J.; Worden, H. M.; Raeder, K.; Anderson, J. L.; Edwards, D. P.

    2017-12-01

    Atmospheric oxidative capacity plays a crucial role in the fate of greenhouse gases and air pollutants as well as in the formation of secondary pollutants such as tropospheric ozone. The attribution of sources of tropospheric ozone is a difficult task because of biases in input parameters and forcings such as emissions and meteorology in addition to errors in chemical schemes. We assimilate satellite remote sensing observations of ozone precursors such as carbon monoxide (CO) and nitrogen dioxide (NO2) in the global coupled chemistry-transport model: Community Atmosphere Model with Chemistry (CAM-Chem). The assimilation is completed using an Ensemble Adjustment Kalman Filter (EAKF) in the Data Assimilation Research Testbed (DART) framework which allows estimates of unobserved parameters and potential constraints on secondary pollutants and emissions. The ensemble will be constructed using perturbations in chemical kinetics, different emission fields and by assimilating meteorological observations to fully assess uncertainties in the chemical fields of targeted species. We present a set of tools such as emission tags (CO and propane), combined with diagnostic analysis of chemical regimes and perturbation of emissions ratios to estimate a regional budget of primary and secondary pollutants in East Asia and their sensitivity to data assimilation. This study benefits from the large set of aircraft and ozonesonde in-situ observations from the Korea-United States Air Quality (KORUS-AQ) campaign that occurred in South Korea in May-June 2016.

  14. A Variable-Resolution Stretched-Grid General Circulation Model and Data Assimilation System with Multiple Areas of Interest: Studying the Anomalous Regional Climate Events of 1998

    NASA Technical Reports Server (NTRS)

    Fox-Rabinovitz, Michael S.; Takacs, Lawrence; Govindaraju, Ravi C.; Atlas, Robert (Technical Monitor)

    2002-01-01

    The new stretched-grid design with multiple (four) areas of interest, one at each global quadrant, is implemented into both a stretched-grid GCM (general circulation model) and a stretched-grid data assimilation system (DAS). The four areas of interest include: the U.S./Northern Mexico, the El Nino area/Central South America, India/China, and the Eastern Indian Ocean/Australia. Both the stretched-grid GCM and DAS annual (November 1997 through December 1998) integrations are performed with 50 km regional resolution. The efficient regional down-scaling to mesoscales is obtained for each of the four areas of interest while the consistent interactions between regional and global scales and the high quality of global circulation, are preserved. This is the advantage of the stretched-grid approach. The global variable resolution DAS incorporating the stretched-grid GCM has been developed and tested as an efficient tool for producing regional analyses and diagnostics with enhanced mesoscale resolution. The anomalous regional climate events of 1998 that occurred over the U.S., Mexico, South America, China, India, African Sahel, and Australia are investigated in both simulation and data assimilation modes. Tree assimilated products are also used, along with gauge precipitation data, for validating the simulation results. The obtained results show that the stretched-grid GCM and DAS are capable of producing realistic high quality simulated and assimilated products at mesoscale resolution for regional climate studies and applications.

  15. On retrodictions of global mantle flow with assimilated surface velocities

    NASA Astrophysics Data System (ADS)

    Colli, Lorenzo; Bunge, Hans-Peter; Schuberth, Bernhard S. A.

    2016-04-01

    Modeling past states of Earth's mantle and relating them to geologic observations such as continental-scale uplift and subsidence is an effective method for testing mantle convection models. However, mantle convection is chaotic and two identical mantle models initialized with slightly different temperature fields diverge exponentially in time until they become uncorrelated, thus limiting retrodictions (i.e., reconstructions of past states of Earth's mantle obtained using present information) to the recent past. We show with 3-D spherical mantle convection models that retrodictions of mantle flow can be extended significantly if knowledge of the surface velocity field is available. Assimilating surface velocities produces in some cases negative Lyapunov times (i.e., e-folding times), implying that even a severely perturbed initial condition may evolve toward the reference state. A history of the surface velocity field for Earth can be obtained from past plate motion reconstructions for time periods of a mantle overturn, suggesting that mantle flow can be reconstructed over comparable times.

  16. On retrodictions of global mantle flow with assimilated surface velocities

    NASA Astrophysics Data System (ADS)

    Colli, Lorenzo; Bunge, Hans-Peter; Schuberth, Bernhard S. A.

    2015-10-01

    Modeling past states of Earth's mantle and relating them to geologic observations such as continental-scale uplift and subsidence is an effective method for testing mantle convection models. However, mantle convection is chaotic and two identical mantle models initialized with slightly different temperature fields diverge exponentially in time until they become uncorrelated, thus limiting retrodictions (i.e., reconstructions of past states of Earth's mantle obtained using present information) to the recent past. We show with 3-D spherical mantle convection models that retrodictions of mantle flow can be extended significantly if knowledge of the surface velocity field is available. Assimilating surface velocities produces in some cases negative Lyapunov times (i.e., e-folding times), implying that even a severely perturbed initial condition may evolve toward the reference state. A history of the surface velocity field for Earth can be obtained from past plate motion reconstructions for time periods of a mantle overturn, suggesting that mantle flow can be reconstructed over comparable times.

  17. Tropopause sharpening by data assimilation

    NASA Astrophysics Data System (ADS)

    Pilch Kedzierski, R.; Neef, L.; Matthes, K.

    2016-08-01

    Data assimilation was recently suggested to smooth out the sharp gradients that characterize the tropopause inversion layer (TIL) in systems that did not assimilate TIL-resolving observations. We investigate whether this effect is present in the ERA-Interim reanalysis and the European Centre for Medium-Range Weather Forecasts (ECMWF) operational forecast system (which assimilate high-resolution observations) by analyzing the 4D-Var increments and how the TIL is represented in their data assimilation systems. For comparison, we also diagnose the TIL from high-resolution GPS radio occultation temperature profiles from the COSMIC satellite mission, degraded to the same vertical resolution as ERA-Interim and ECMWF operational analyses. Our results show that more recent reanalysis and forecast systems improve the representation of the TIL, updating the earlier hypothesis. However, the TIL in ERA-Interim and ECMWF operational analyses is still weaker and farther away from the tropopause than GPS radio occultation observations of the same vertical resolution.

  18. Assimilation of river altimetry data for effective bed elevation and roughness coefficient

    NASA Astrophysics Data System (ADS)

    Brêda, João Paulo L. F.; Paiva, Rodrigo C. D.; Bravo, Juan Martin; Passaia, Otávio

    2017-04-01

    Hydrodynamic models of large rivers are important prediction tools of river discharge, height and floods. However, these techniques still carry considerable errors; part of them related to parameters uncertainties related to river bathymetry and roughness coefficient. Data from recent spatial altimetry missions offers an opportunity to reduce parameters uncertainty through inverse methods. This study aims to develop and access different methods of altimetry data assimilation to improve river bottom levels and Manning roughness estimations in a 1-D hydrodynamic model. The case study was a 1,100 km reach of the Madeira River, a tributary of the Amazon. The tested assimilation methods are direct insertion, linear interpolation, SCE-UA global optimization algorithm and a Kalman Filter adaptation. The Kalman Filter method is composed by new physically based covariance functions developed from steady-flow and backwater equations. It is accessed the benefits of altimetry missions with different spatio-temporal resolutions, such as ICESAT-1, Envisat and Jason 2. Level time series of 5 gauging stations and 5 GPS river height profiles are used to assess and validate the assimilation methods. Finally, the potential of future missions are discussed, such as ICESAT-2 and SWOT satellites.

  19. DATA ASSIMILATION APPROACH FOR FORECAST OF SOLAR ACTIVITY CYCLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitiashvili, Irina N., E-mail: irina.n.kitiashvili@nasa.gov

    Numerous attempts to predict future solar cycles are mostly based on empirical relations derived from observations of previous cycles, and they yield a wide range of predicted strengths and durations of the cycles. Results obtained with current dynamo models also deviate strongly from each other, thus raising questions about criteria to quantify the reliability of such predictions. The primary difficulties in modeling future solar activity are shortcomings of both the dynamo models and observations that do not allow us to determine the current and past states of the global solar magnetic structure and its dynamics. Data assimilation is a relativelymore » new approach to develop physics-based predictions and estimate their uncertainties in situations where the physical properties of a system are not well-known. This paper presents an application of the ensemble Kalman filter method for modeling and prediction of solar cycles through use of a low-order nonlinear dynamo model that includes the essential physics and can describe general properties of the sunspot cycles. Despite the simplicity of this model, the data assimilation approach provides reasonable estimates for the strengths of future solar cycles. In particular, the prediction of Cycle 24 calculated and published in 2008 is so far holding up quite well. In this paper, I will present my first attempt to predict Cycle 25 using the data assimilation approach, and discuss the uncertainties of that prediction.« less

  20. Morphodynamic data assimilation used to understand changing coasts

    USGS Publications Warehouse

    Plant, Nathaniel G.; Long, Joseph W.

    2015-01-01

    Morphodynamic data assimilation blends observations with model predictions and comes in many forms, including linear regression, Kalman filter, brute-force parameter estimation, variational assimilation, and Bayesian analysis. Importantly, data assimilation can be used to identify sources of prediction errors that lead to improved fundamental understanding. Overall, models incorporating data assimilation yield better information to the people who must make decisions impacting safety and wellbeing in coastal regions that experience hazards due to storms, sea-level rise, and erosion. We present examples of data assimilation associated with morphologic change. We conclude that enough morphodynamic predictive capability is available now to be useful to people, and that we will increase our understanding and the level of detail of our predictions through assimilation of observations and numerical-statistical models.

  1. Oregon Washington Coastal Ocean Forecast System: Real-time Modeling and Data Assimilation

    NASA Astrophysics Data System (ADS)

    Erofeeva, S.; Kurapov, A. L.; Pasmans, I.

    2016-02-01

    Three-day forecasts of ocean currents, temperature and salinity along the Oregon and Washington coasts are produced daily by a numerical ROMS-based ocean circulation model. NAM is used to derive atmospheric forcing for the model. Fresh water discharge from Columbia River, Fraser River, and small rivers in Puget Sound are included. The forecast is constrained by open boundary conditions derived from the global Navy HYCOM model and once in 3 days assimilation of recent data, including HF radar surface currents, sea surface temperature from the GOES satellite, and SSH from several satellite altimetry missions. 4-dimensional variational data assimilation is implemented in 3-day time windows using the tangent linear and adjoint codes developed at OSU. The system is semi-autonomous - all the data, including NAM and HYCOM fields are automatically updated, and daily operational forecast is automatically initiated. The pre-assimilation data quality control and post-assimilation forecast quality control require the operator's involvement. The daily forecast and 60 days of hindcast fields are available for public on opendap. As part of the system model validation plots to various satellites and SEAGLIDER are also automatically updated and available on the web (http://ingria.coas.oregonstate.edu/rtdavow/). Lessons learned in this pilot real-time coastal ocean forecasting project help develop and test metrics for forecast skill assessment for the West Coast Operational Forecast System (WCOFS), currently at testing and development phase at the National Oceanic and Atmospheric Administration (NOAA).

  2. Patterns and Variability in Global Ocean Chlorophyll: Satellite Observations and Modeling

    NASA Technical Reports Server (NTRS)

    Gregg, Watson

    2004-01-01

    Recent analyses of SeaWiFS data have shown that global ocean chlorophyll has increased more than 4% since 1998. The North Pacific ocean basin has increased nearly 19%. These trend analyses follow earlier results showing decadal declines in global ocean chlorophyll and primary production. To understand the causes of these changes and trends we have applied the newly developed NASA Ocean Biogeochemical Assimilation Model (OBAM), which is driven in mechanistic fashion by surface winds, sea surface temperature, atmospheric iron deposition, sea ice, and surface irradiance. The model utilizes chlorophyll from SeaWiFS in a daily assimilation. The model has in place many of the climatic variables that can be expected to produce the changes observed in SeaWiFS data. This enables us to diagnose the model performance, the assimilation performance, and possible causes for the increase in chlorophyll. A full discussion of the changes and trends, possible causes, modeling approaches, and data assimilation will be the focus of the seminar.

  3. A short note on the assimilation of collocated and concurrent GPS and ionosonde data into the Electron Density Assimilative Model

    NASA Astrophysics Data System (ADS)

    Angling, M. J.; Jackson-Booth, N. K.

    2011-12-01

    The Electron Density Assimilative Model (EDAM) has been developed to provide real-time characterizations of the ionosphere by assimilating diverse data sets into a background model. Techniques have been developed to assimilate virtual height ionogram traces rather than relying on true height inversions. A test assimilation has been conducted using both GPS and ionosonde data as input. Postassimilation analysis shows that foF2 residuals can be degraded when only GPS data are assimilated. It has also been demonstrated that by using both data types it is possible to have low total electron content and foF2 residuals and that this is achieved by modifying the ionospheric slab thickness.

  4. Assessing the Impact of Pre-gpm Microwave Precipitation Observations in the Goddard WRF Ensemble Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Chambon, Philippe; Zhang, Sara Q.; Hou, Arthur Y.; Zupanski, Milija; Cheung, Samson

    2013-01-01

    The forthcoming Global Precipitation Measurement (GPM) Mission will provide next generation precipitation observations from a constellation of satellites. Since precipitation by nature has large variability and low predictability at cloud-resolving scales, the impact of precipitation data on the skills of mesoscale numerical weather prediction (NWP) is largely affected by the characterization of background and observation errors and the representation of nonlinear cloud/precipitation physics in an NWP data assimilation system. We present a data impact study on the assimilation of precipitation-affected microwave (MW) radiances from a pre-GPM satellite constellation using the Goddard WRF Ensemble Data Assimilation System (Goddard WRF-EDAS). A series of assimilation experiments are carried out in a Weather Research Forecast (WRF) model domain of 9 km resolution in western Europe. Sensitivities to observation error specifications, background error covariance estimated from ensemble forecasts with different ensemble sizes, and MW channel selections are examined through single-observation assimilation experiments. An empirical bias correction for precipitation-affected MW radiances is developed based on the statistics of radiance innovations in rainy areas. The data impact is assessed by full data assimilation cycling experiments for a storm event that occurred in France in September 2010. Results show that the assimilation of MW precipitation observations from a satellite constellation mimicking GPM has a positive impact on the accumulated rain forecasts verified with surface radar rain estimates. The case-study on a convective storm also reveals that the accuracy of ensemble-based background error covariance is limited by sampling errors and model errors such as precipitation displacement and unresolved convective scale instability.

  5. Terrestrial cross-calibrated assimilation of various datasources

    NASA Astrophysics Data System (ADS)

    Groß, André; Müller, Richard; Schömer, Elmar; Trentmann, Jörg

    2014-05-01

    We introduce a novel software tool, ANACLIM, for the efficient assimilation of multiple two-dimensional data sets using a variational approach. We consider a single objective function in two spatial coordinates with higher derivatives. This function measures the deviation of the input data from the target data set. By using the Euler-Lagrange formalism the minimization of this objective function can be transformed into a sparse system of linear equations, which can be efficiently solved by a conjugate gradient solver on a desktop workstation. The objective function allows for a series of physically-motivated constraints. The user can control the relative global weights, as well as the individual weight of each constraint on a per-grid-point level. The different constraints are realized as separate terms of the objective function: One similarity term for each input data set and two additional smoothness terms, penalizing high gradient and curvature values. ANACLIM is designed to combine similarity and smoothness operators easily and to choose different solvers. We performed a series of benchmarks to calibrate and verify our solution. We use, for example, terrestrial stations of BSRN and GEBA for the solar incoming flux and AERONET stations for aerosol optical depth. First results show that the combination of these data sources gain a significant benefit against the input datasets with our approach. ANACLIM also includes a region growing algorithm for the assimilation of ground based data. The region growing algorithm computes the maximum area around a station that represents the station data. The regions are grown under several constraints like the homogeneity of the area. The resulting dataset is then used within the assimilation process. Verification is performed by cross-validation. The method and validation results will be presented and discussed.

  6. Preliminary Results from an Assimilation of Saharan Dust Using TOMS Radiances and the GOCART Model

    NASA Technical Reports Server (NTRS)

    Weaver, C. J.; daSilva, Arlindo; Ginoux, Paul; Torres, Omar; Einaudi, Franco (Technical Monitor)

    2000-01-01

    At NASA Goddard we are developing a global aerosol data assimilation system that combines advances in remote sensing and modeling of atmospheric aerosols. The goal is to provide high resolution, 3-D aerosol distributions to the research community. Our first step is to develop a simple assimilation system for Saharan mineral aerosol. The Goddard Chemistry and Aerosol Radiation model (GOCART) provides accurate 3-D mineral aerosol size distributions. Surface mobilization, wet and dry deposition, convective and long-range transport are all driven by assimilated fields from the Goddard Earth Observing System Data Assimilation System, GEOS-DAS. Our version of GOCART transports sizes from .08-10 microns and only simulates Saharan dust. We draw the assimilation to two observables in this study: the TOMS aerosol index (Al) which is directly related to the ratio of the 340 and 380 radiances and the 380 radiance alone. The forward model that simulates the observables requires the aerosol optical thickness, the single scattering albedo and the height of the aerosol layer from the GOCART fields. The forward model also requires a refractive index for the dust. We test three index values to see which best fits the TOMS observables. These are 1) for Saharan dust reported by Patterson, 2) for a mixture of Saharan dust and a highly reflective material (sea salt or sulfate) and 3) for pure illite. The assimilation works best assuming either pure illite or the dust mixture. Our assimilation cycle first determines values of the aerosol index (Al) and the radiance at 380 nm based on the GOCART aerosol fields. Differences between the observed and GOCART model calculated Al and 380 nm radiance are first analyzed horizontally using the Physical-space Statistical Analysis System (PSAS). A quasi-Newton iteration is then performed to produce analyzed 3D aerosol fields according to parameterized background and observation error covariances. We only assimilate observations into the the GOCART

  7. Impact of assimilating GOES imager clear-sky radiance with a rapid refresh assimilation system for convection-permitting forecast over Mexico

    NASA Astrophysics Data System (ADS)

    Yang, Chun; Liu, Zhiquan; Gao, Feng; Childs, Peter P.; Min, Jinzhong

    2017-05-01

    The Geostationary Operational Environmental Satellite (GOES) imager data could provide a continuous image of the evolutionary pattern of severe weather phenomena with its high spatial and temporal resolution. The capability to assimilate the GOES imager radiances has been developed within the Weather Research and Forecasting model's data assimilation system. Compared to the benchmark experiment with no GOES imager data, the impact of assimilating GOES imager radiances on the analysis and forecast of convective process over Mexico in 7-10 March 2016 was assessed through analysis/forecast cycling experiments using rapid refresh assimilation system with hybrid-3DEnVar scheme. With GOES imager radiance assimilation, better analyses were obtained in terms of the humidity, temperature, and simulated water vapor channel brightness temperature distribution. Positive forecast impacts from assimilating GOES imager radiance were seen when verified against the Tropospheric Airborne Meteorological Data Reporting observation, GOES imager observation, and Mexico station precipitation data.

  8. Sampling, feasibility, and priors in data assimilation

    DOE PAGES

    Tu, Xuemin; Morzfeld, Matthias; Miller, Robert N.; ...

    2016-03-01

    Importance sampling algorithms are discussed in detail, with an emphasis on implicit sampling, and applied to data assimilation via particle filters. Implicit sampling makes it possible to use the data to find high-probability samples at relatively low cost, making the assimilation more efficient. A new analysis of the feasibility of data assimilation is presented, showing in detail why feasibility depends on the Frobenius norm of the covariance matrix of the noise and not on the number of variables. A discussion of the convergence of particular particle filters follows. A major open problem in numerical data assimilation is the determination ofmore » appropriate priors, a progress report on recent work on this problem is given. The analysis highlights the need for a careful attention both to the data and to the physics in data assimilation problems.« less

  9. A Global Perspective: NASA's Prediction of Worldwide Energy Resources (POWER) Project

    NASA Technical Reports Server (NTRS)

    Zhang, Taiping; Stackhouse, Paul W., Jr.; Chandler, William S.; Hoell, James M.; Westberg, David; Whitlock, Charles H.

    2007-01-01

    The Prediction of the Worldwide Energy Resources (POWER) Project, initiated under the NASA Science Mission Directorate Applied Science Energy Management Program, synthesizes and analyzes data on a global scale that are invaluable to the renewable energy industries, especially to the solar and wind energy sectors. The POWER project derives its data primarily from NASA's World Climate Research Programme (WCRP)/Global Energy and Water cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project (Version 2.9) and the Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) assimilation model (Version 4). The latest development of the NASA POWER Project and its plans for the future are presented in this paper.

  10. Towards SWOT data assimilation for hydrology : automatic calibration of global flow routing model parameters in the Amazon basin

    NASA Astrophysics Data System (ADS)

    Mouffe, M.; Getirana, A.; Ricci, S. M.; Lion, C.; Biancamaria, S.; Boone, A.; Mognard, N. M.; Rogel, P.

    2011-12-01

    The Surface Water and Ocean Topography (SWOT) mission is a swath mapping radar interferometer that will provide global measurements of water surface elevation (WSE). The revisit time depends upon latitude and varies from two (low latitudes) to ten (high latitudes) per 22-day orbit repeat period. The high resolution and the global coverage of the SWOT data open the way for new hydrology studies. Here, the aim is to investigate the use of virtually generated SWOT data to improve discharge simulation using data assimilation techniques. In the framework of the SWOT virtual mission (VM), this study presents the first results of the automatic calibration of a global flow routing (GFR) scheme using SWOT VM measurements for the Amazon basin. The Hydrological Modeling and Analysis Platform (HyMAP) is used along with the MOCOM-UA multi-criteria global optimization algorithm. HyMAP has a 0.25-degree spatial resolution and runs at the daily time step to simulate discharge, water levels and floodplains. The surface runoff and baseflow drainage derived from the Interactions Sol-Biosphère-Atmosphère (ISBA) model are used as inputs for HyMAP. Previous works showed that the use of ENVISAT data enables the reduction of the uncertainty on some of the hydrological model parameters, such as river width and depth, Manning roughness coefficient and groundwater time delay. In the framework of the SWOT preparation work, the automatic calibration procedure was applied using SWOT VM measurements. For this Observing System Experiment (OSE), the synthetical data were obtained applying an instrument simulator (representing realistic SWOT errors) for one hydrological year to HYMAP simulated WSE using a "true" set of parameters. Only pixels representing rivers larger than 100 meters within the Amazon basin are considered to produce SWOT VM measurements. The automatic calibration procedure leads to the estimation of optimal parametersminimizing objective functions that formulate the difference

  11. Development of an eddy-resolving reanalysis using the 1/12° global HYbrid Coordinate Ocean Model and the Navy Coupled Ocean Data Assimilation Scheme

    NASA Astrophysics Data System (ADS)

    Allard, Richard; Metzger, E. Joseph; Broome, Robert; Franklin, Deborah; Smedstad, Ole Martin; Wallcraft, Alan

    2013-04-01

    Multiple international agencies have performed atmospheric reanalyses using static dynamical models and assimilation schemes while ingesting all available quality controlled observational data. Some are clearly aimed at climate time scales while others focus on the more recent time period in which assimilated satellite data are used to constrain the system. Typically these are performed at horizontal and vertical resolutions that are coarser than the existing operational atmospheric prediction system. Multiple agencies have also performed ocean reanalyses using some of the atmospheric forcing products described above. However, only a few are eddy-permitting and none are capable of resolving oceanic mesoscale features (eddies and current meanders) across the entire globe. To fill this void, the Naval Research Laboratory is performing an eddy-resolving 1993-2010 ocean reanalysis using the 1/12° global HYbrid Coordinate Ocean Model (HYCOM) that employs the Navy Coupled Ocean Data Assimilation (NCODA) scheme. A 1/12° global HYCOM/NCODA prediction system has been running in real-time at the Naval Oceanographic Office (NAVOCEANO) since 22 December 2006. It has undergone operational testing and will become an operational product by early 2013. It is capable of nowcasting and forecasting the oceanic "weather" which includes the 3D ocean temperature, salinity and current structure, the surface mixed layer, and the location of mesoscale features such as eddies, meandering currents and fronts. The system has a mid-latitude resolution of ~7 km and employs 32 hybrid vertical coordinate surfaces. Compared to traditional isopycnal coordinate models, the hybrid vertical coordinate extends the geographic range of applicability toward shallow coastal seas and the unstratified parts of the world ocean. HYCOM contains a built-in thermodynamic ice model, where ice grows and melts due to heat flux and sea surface temperature (SST) changes, but it does not contain advanced rheological

  12. Assimilating GRACE terrestrial water storage data into a conceptual hydrology model for the River Rhine

    NASA Astrophysics Data System (ADS)

    Widiastuti, E.; Steele-Dunne, S. C.; Gunter, B.; Weerts, A.; van de Giesen, N.

    2009-12-01

    Terrestrial water storage (TWS) is a key component of the terrestrial and global hydrological cycles, and plays a major role in the Earth’s climate. The Gravity Recovery and Climate Experiment (GRACE) twin satellite mission provided the first space-based dataset of TWS variations, albeit with coarse resolution and limited accuracy. Here, we examine the value of assimilating GRACE observations into a well-calibrated conceptual hydrology model of the Rhine river basin. In this study, the ensemble Kalman filter (EnKF) and smoother (EnKS) were applied to assimilate the GRACE TWS variation data into the HBV-96 rainfall run-off model, from February 2003 to December 2006. Two GRACE datasets were used, the DMT-1 models produced at TU Delft, and the CSR-RL04 models produced by UT-Austin . Each center uses its own data processing and filtering methods, yielding two different estimates of TWS variations and therefore two sets of assimilated TWS estimates. To validate the results, the model estimated discharge after the data assimilation was compared with measured discharge at several stations. As expected, the updated TWS was generally somewhere between the modeled and observed TWS in both experiments and the variance was also lower than both the prior error covariance and the assumed GRACE observation error. However, the impact on the discharge was found to depend heavily on the assimilation strategy used, in particular on how the TWS increments were applied to the individual storage terms of the hydrology model.

  13. An Observing System Simulation Experiment of assimilating leaf area index and soil moisture over cropland

    NASA Astrophysics Data System (ADS)

    Lafont, Sebastien; Barbu, Alina; Calvet, Jean-Christophe

    2013-04-01

    A Land Data Assimilation System (LDAS) is an off-line data assimilation system featuring uncoupled land surface model which is driven by observation-based atmospheric forcing. In this study the experiments were conducted with a surface externalized (SURFEX) modelling platform developed at Météo-France. It encompasses the land surface model ISBA-A-gs that simulates photosynthesis and plant growth. The photosynthetic activity depends on the vegetation types. The input soil and vegetation parameters are provided by the ECOCLIMAP II global database which assigns the ecosystem classes in several plant functional types as grassland, crops, deciduous forest and coniferous forest. New versions of the model have been recently developed in order to better describe the agricultural plant functional types. We present a set of observing system simulation experiments (OSSE) which asses leaf area index (LAI) and soil moisture assimilation for improving the land surface estimates in a controlled synthetic environment. Synthetic data were assimilated into ISBA-A-gs using an Extended Kalman Filter (EKF). This allows for an understanding of model responses to an augmentation of the number of crop types and different parameters associated to this modification. In addition, the interactions between uncertainties in the model and in the observations were investigated. This study represents the first step of a process that envisages the extension of LDAS to the new versions of the ISBA-A-gs model in order to assimilate remote sensing observations.

  14. Recent Trends in Global Ocean Chlorophyll

    NASA Technical Reports Server (NTRS)

    Gregg, Watson; Casey, Nancy

    2004-01-01

    Recent analyses of SeaWiFS data have shown that global ocean chlorophyll has increased more than 5% since 1998. The North Pacific ocean basin has increased nearly 19%. To understand the causes of these trends we have applied the newly developed NASA Ocean Biogeochemical Assimilation Model (OBAM), which is driven in mechanistic fashion by surface winds, sea surface temperature, atmospheric iron deposition, sea ice, and surface irradiance. The mode1 utilizes chlorophyll from SeaWiFS in a daily assimilation. The model has in place many of the climatic variables that can be expected to produce the changes observed in SeaWiFS data. Ths enables us to diagnose the model performance, the assimilation performance, and possible causes for the increase in chlorophyll.

  15. Assessment of Two Types of Observations (SATWND and GPSRO) for the Operational Global 4DVAR System

    NASA Astrophysics Data System (ADS)

    Leng, H.

    2017-12-01

    The performance of a data assimilation system is significantly dependent on the quality and quantity of observations assimilated. In these years, more and more satellite observations have been applied in many operational assimilation systems. In this paper, the assessment of satellite-derived winds (SATWND) and GPS radio occultation (GPSRO) bending angles has been performed using a range of diagnostics. The main positive impacts are made when satellite-derived cloud data (GOES cloud data and MODIS cloud data) is assimilated, but benefit is hardly obtained from GPSRO data in the Operational Global 4DVAR System. In a full system configuration, the assimilation of satellite-derived observations is globally beneficial on the analysis, and the benefit can be well propagated into the forecast. The assimilation of the GPSRO observations has a slightly positive impact in the Tropics, but is neutral in the Northern Hemisphere and in the Southern Hemisphere. To assess the synergies of satellite-derived observations with other types of observation, experiments assimilating satellite-derived data and AMSU-A and AMSU-B observations were run. The results show that the analysis increments structure is not modified when AMSU-A and AMSU-B observations are also assimilated. This suggests that the impact of satellite-derived observations is not limited by the large impact of satellite radiance observations.

  16. Assimilation of pseudo-tree-ring-width observations into an atmospheric general circulation model

    NASA Astrophysics Data System (ADS)

    Acevedo, Walter; Fallah, Bijan; Reich, Sebastian; Cubasch, Ulrich

    2017-05-01

    Paleoclimate data assimilation (DA) is a promising technique to systematically combine the information from climate model simulations and proxy records. Here, we investigate the assimilation of tree-ring-width (TRW) chronologies into an atmospheric global climate model using ensemble Kalman filter (EnKF) techniques and a process-based tree-growth forward model as an observation operator. Our results, within a perfect-model experiment setting, indicate that the "online DA" approach did not outperform the "off-line" one, despite its considerable additional implementation complexity. On the other hand, it was observed that the nonlinear response of tree growth to surface temperature and soil moisture does deteriorate the operation of the time-averaged EnKF methodology. Moreover, for the first time we show that this skill loss appears significantly sensitive to the structure of the growth rate function, used to represent the principle of limiting factors (PLF) within the forward model. In general, our experiments showed that the error reduction achieved by assimilating pseudo-TRW chronologies is modulated by the magnitude of the yearly internal variability in the model. This result might help the dendrochronology community to optimize their sampling efforts.

  17. Assimilation of the AVISO Altimetry Data into the Ocean Dynamics Model with a High Spatial Resolution Using Ensemble Optimal Interpolation (EnOI)

    NASA Astrophysics Data System (ADS)

    Kaurkin, M. N.; Ibrayev, R. A.; Belyaev, K. P.

    2018-01-01

    A parallel realization of the Ensemble Optimal Interpolation (EnOI) data assimilation (DA) method in conjunction with the eddy-resolving global circulation model is implemented. The results of DA experiments in the North Atlantic with the assimilation of the Archiving, Validation and Interpretation of Satellite Oceanographic (AVISO) data from the Jason-1 satellite are analyzed. The results of simulation are compared with the independent temperature and salinity data from the ARGO drifters.

  18. Assimilation of Altimeter Data into a Quasigeostrophic Model of the Gulf Stream System. Part 2; Assimilation Results

    NASA Technical Reports Server (NTRS)

    Capotondi, Antonietta; Holland, William R.; Malanotte-Rizzoli, Paola

    1995-01-01

    The improvement in the climatological behavior of a numerical model as a consequence of the assimilation of surface data is investigated. The model used for this study is a quasigeostrophic (QG) model of the Gulf Stream region. The data that have been assimilated are maps of sea surface height that have been obtained as the superposition of sea surface height variability deduced from the Geosat altimeter measurements and a mean field constructed from historical hydrographic data. The method used for assimilating the data is the nudging technique. Nudging has been implemented in such a way as to achieve a high degree of convergence of the surface model fields toward the observations. Comparisons of the assimilation results with available in situ observations show a significant improvement in the degree of realism of the climatological model behavior, with respect to the model in which no data are assimilated. The remaining discrepancies in the model mean circulation seem to be mainly associated with deficiencies in the mean component of the surface data that are assimilated. On the other hand, the possibility of building into the model more realistic eddy characteristics through the assimilation of the surface eddy field proves very successful in driving components of the mean model circulation that are in relatively good agreement with the available observations. Comparisons with current meter time series during a time period partially overlapping the Geosat mission show that the model is able to 'correctly' extrapolate the instantaneous surface eddy signals to depths of approximately 1500 m. The correlation coefficient between current meter and model time series varies from values close to 0.7 in the top 1500 m to values as low as 0.1-0.2 in the deep ocean.

  19. Land Data Assimilation of Satellite-Based Soil Moisture Products Using the Land Information System Over the NLDAS Domain

    NASA Technical Reports Server (NTRS)

    Mocko, David M.; Kumar, S. V.; Peters-Lidard, C. D.; Tian, Y.

    2011-01-01

    This presentation will include results from data assimilation simulations using the NASA-developed Land Information System (LIS). Using the ensemble Kalman filter in LIS, two satellite-based soil moisture products from the AMSR-E instrument were assimilated, one a NASA-based product and the other from the Land Parameter Retrieval Model (LPRM). The domain and land-surface forcing data from these simulations were from the North American Land Data Assimilation System Phase-2, over the period 2002-2008. The Noah land-surface model, version 3.2, was used during the simulations. Changes to estimates of land surface states, such as soil moisture, as well as changes to simulated runoff/streamflow will be presented. Comparisons over the NLDAS domain will also be made to two global reference evapotranspiration (ET) products, one an interpolated product based on FLUXNET tower data and the other a satellite- based algorithm from the MODIS instrument. Results of an improvement metric show that assimilating the LPRM product improved simulated ET estimates while the NASA-based soil moisture product did not.

  20. Evaluation of a Soil Moisture Data Assimilation System Over the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Bolten, J. D.; Crow, W. T.; Zhan, X.; Reynolds, C. A.; Jackson, T. J.

    2008-12-01

    A data assimilation system has been designed to integrate surface soil moisture estimates from the EOS Advanced Microwave Scanning Radiometer (AMSR-E) with an online soil moisture model used by the USDA Foreign Agriculture Service for global crop estimation. USDA's International Production Assessment Division (IPAD) of the Office of Global Analysis (OGA) ingests global soil moisture within a Crop Assessment Data Retrieval and Evaluation (CADRE) Decision Support System (DSS) to provide nowcasts of crop conditions and agricultural-drought. This information is primarily used to derive mid-season crop yield estimates for the improvement of foreign market access for U.S. agricultural products. The CADRE is forced by daily meteorological observations (precipitation and temperature) provided by the Air Force Weather Agency (AFWA) and World Meteorological Organization (WMO). The integration of AMSR-E observations into the two-layer soil moisture model employed by IPAD can potentially enhance the reliability of the CADRE soil moisture estimates due to AMSR-E's improved repeat time and greater spatial coverage. Assimilation of the AMSR-E soil moisture estimates is accomplished using a 1-D Ensemble Kalman filter (EnKF) at daily time steps. A diagnostic calibration of the filter is performed using innovation statistics by accurately weighting the filter observation and modeling errors for three ranges of vegetation biomass density estimated using historical data from the Advanced Very High Resolution Radiometer (AVHRR). Assessment of the AMSR-E assimilation has been completed for a five year duration over the conterminous United States. To evaluate the ability of the filter to compensate for incorrect precipitation forcing into the model, a data denial approach is employed by comparing soil moisture results obtained from separate model simulations forced with precipitation products of varying uncertainty. An analysis of surface and root-zone anomalies is presented for each

  1. Assimilation of Stratospheric Meteorological and Constituent Observations: A Review

    NASA Technical Reports Server (NTRS)

    Rood, Richard B.; Pawson, Steven

    2004-01-01

    This talk reviews the assimilation of meteorological and constituent observations of the stratosphere. The first efforts to assimilate observations into stratospheric models were during the early 1980s, and a number of research studies followed during the next decade. Since the launch of the Upper Atmospheric Research Satellite (UARS) in 1991, model-assimilated data sets of the stratospheric meteorological state have been routinely available. These assimilated data sets were critical in bringing together observations from the different instruments on UARS as well as linking UARS observations to measurements from other platforms. Using trajectory-mapping techniques, meteorological assimilation analyses are, now, widely used in the analysis of constituent observations and have increased the level of quantitative study of stratospheric chemistry and transport. During the 1990s the use of winds and temperatures from assimilated data sets became standard for offline chemistry and transport modeling. variability in middle latitudes. The transport experiments, however, reveal a set of shortcomings that become obvious as systematic errors are integrated over time. Generally, the tropics are not well represented, mixing between the tropics and middle latitudes is overestimated, and the residual circulation is not accurate. These shortcomings reveal underlying fundamental challenges related to bias and noise. Current studies using model simulation and data assimilation in controlled experimentation are highlighting the issues that must be addressed if assimilated data sets are to be convincingly used to study interannual variability and decadal change. observations. The primary focus has been on stratospheric ozone, but there are efforts that investigate a suite of reactive chemical constituents. Recent progress in ozone assimilation shows the potential of assimilation to contribute to the validation of ozone observations and, ultimately, the retrieval of ozone profiles from

  2. Therapist activities preceding setbacks in the assimilation process.

    PubMed

    Gabalda, Isabel Caro; Stiles, William B; Pérez Ruiz, Sergio

    2016-11-01

    This study examined the therapist activities immediately preceding assimilation setbacks in the treatment of a good-outcome client treated with linguistic therapy of evaluation (LTE). Setbacks (N = 105) were defined as decreases of one or more assimilation stages from one passage to the next dealing with the same theme. The therapist activities immediately preceding those setbacks were classified using two kinds of codes: (a) therapist interventions and (b) positions the therapist took toward the client's internal voices. Preceding setbacks to early assimilation stages, where the problem was unformulated, the therapist was more often actively listening, and the setbacks were more often attributable to pushing a theme beyond the client's working zone. Preceding setbacks to later assimilation stages, where the problem was at least formulated, the therapist was more likely to be directing clients to consider alternatives, following the LTE agenda, and setbacks were more often attributable to the client following these directives shifting attention to less assimilated (but nevertheless formulated) aspects of the problem. At least in this case, setbacks followed systematically different therapist activities depending on the problem's stage of assimilation. Possible implications for the assimilation model's account of setbacks and for practice are discussed.

  3. A data assimilation system combining CryoSat-2 data and hydrodynamic river models

    NASA Astrophysics Data System (ADS)

    Schneider, Raphael; Ridler, Marc-Etienne; Godiksen, Peter Nygaard; Madsen, Henrik; Bauer-Gottwein, Peter

    2018-02-01

    There are numerous hydrologic studies using satellite altimetry data from repeat-orbit missions such as Envisat or Jason over rivers. This study is one of the first examples for the combination of altimetry from drifting-ground track satellite missions, namely CryoSat-2, with a river model. CryoSat-2 SARIn Level 2 data is used to improve a 1D hydrodynamic model of the Brahmaputra River in South Asia, which is based on the Saint-Venant equations for unsteady flow and set up in the MIKE HYDRO River software. After calibration of discharge and water level the hydrodynamic model can accurately and bias-free represent the spatio-temporal variations of water levels. A data assimilation framework has been developed and linked with the model. It is a flexible framework that can assimilate water level data which are arbitrarily distributed in time and space. The setup has been used to assimilate CryoSat-2 water level observations over the Assam valley for the years 2010-2015, using an Ensemble Transform Kalman Filter (ETKF). Performance improvement in terms of discharge forecasting skill was then evaluated. For experiments with synthetic CryoSat-2 data the continuous ranked probability score (CRPS) was improved by up to 32%, whilst for experiments assimilating real data it could be improved by up to 10%. The developed methods are expected to be transferable to other rivers and altimeter missions. The model setup and calibration is based almost entirely on globally available remote sensing data.

  4. Constraining a land-surface model with multiple observations by application of the MPI-Carbon Cycle Data Assimilation System V1.0

    NASA Astrophysics Data System (ADS)

    Schürmann, Gregor J.; Kaminski, Thomas; Köstler, Christoph; Carvalhais, Nuno; Voßbeck, Michael; Kattge, Jens; Giering, Ralf; Rödenbeck, Christian; Heimann, Martin; Zaehle, Sönke

    2016-09-01

    We describe the Max Planck Institute Carbon Cycle Data Assimilation System (MPI-CCDAS) built around the tangent-linear version of the JSBACH land-surface scheme, which is part of the MPI-Earth System Model v1. The simulated phenology and net land carbon balance were constrained by globally distributed observations of the fraction of absorbed photosynthetically active radiation (FAPAR, using the TIP-FAPAR product) and atmospheric CO2 at a global set of monitoring stations for the years 2005 to 2009. When constrained by FAPAR observations alone, the system successfully, and computationally efficiently, improved simulated growing-season average FAPAR, as well as its seasonality in the northern extra-tropics. When constrained by atmospheric CO2 observations alone, global net and gross carbon fluxes were improved, despite a tendency of the system to underestimate tropical productivity. Assimilating both data streams jointly allowed the MPI-CCDAS to match both observations (TIP-FAPAR and atmospheric CO2) equally well as the single data stream assimilation cases, thereby increasing the overall appropriateness of the simulated biosphere dynamics and underlying parameter values. Our study thus demonstrates the value of multiple-data-stream assimilation for the simulation of terrestrial biosphere dynamics. It further highlights the potential role of remote sensing data, here the TIP-FAPAR product, in stabilising the strongly underdetermined atmospheric inversion problem posed by atmospheric transport and CO2 observations alone. Notwithstanding these advances, the constraint of the observations on regional gross and net CO2 flux patterns on the MPI-CCDAS is limited through the coarse-scale parametrisation of the biosphere model. We expect improvement through a refined initialisation strategy and inclusion of further biosphere observations as constraints.

  5. CATS Version 2 Aerosol Feature Detection and Applications for Data Assimilation

    NASA Technical Reports Server (NTRS)

    Nowottnick, E. P.; Yorks, J. E.; Selmer, P. A.; Palm, S. P.; Hlavka, D. L.; Pauly, R. M.; Ozog, S.; McGill, M. J.; Da Silva, A.

    2017-01-01

    The Cloud Aerosol Transport System (CATS) lidar has been operating onboard the International Space Station (ISS) since February 2015 and provides vertical observations of clouds and aerosols using total attenuated backscatter and depolarization measurements. From February March 2015, CATS operated in Mode 1, providing backscatter and depolarization measurements at 532 and 1064 nm. CATS began operation in Mode 2 in March 2015, providing backscatter and depolarization measurements at 1064 nm and has continued to operate to the present in this mode. CATS level 2 products are derived from these measurements, including feature detection, cloud aerosol discrimination, cloud and aerosol typing, and optical properties of cloud and aerosol layers. Here, we present changes to our level 2 algorithms, which were aimed at reducing several biases in our version 1 level 2 data products. These changes will be incorporated into our upcoming version 2 level 2 data release in summer 2017. Additionally, owing to the near real time (NRT) data downlinking capabilities of the ISS, CATS provides expedited NRT data products within 6 hours of observation time. This capability provides a unique opportunity for supporting field campaigns and for developing data assimilation techniques to improve simulated cloud and aerosol vertical distributions in models. We additionally present preliminary work toward assimilating CATS observations into the NASA Goddard Earth Observing System version 5 (GEOS-5) global atmospheric model and data assimilation system.

  6. Adding Four- Dimensional Data Assimilation (aka grid ...

    EPA Pesticide Factsheets

    Adding four-dimensional data assimilation (a.k.a. grid nudging) to MPAS.The U.S. Environmental Protection Agency is investigating the use of MPAS as the meteorological driver for its next-generation air quality model. To function as such, MPAS needs to operate in a diagnostic mode in much the same manner as the current meteorological driver, the Weather Research and Forecasting (WRF) model. The WRF operates in diagnostic mode using Four-Dimensional Data Assimilation, also known as "grid nudging". MPAS version 4.0 has been modified with the addition of an FDDA routine to the standard physics drivers to nudge the state variables for wind, temperature and water vapor towards MPAS initialization fields defined at 6-hour intervals from GFS-derived data. The results to be shown demonstrate the ability to constrain MPAS simulations to known historical conditions and thus provide the U.S. EPA with a practical meteorological driver for global-scale air quality simulations. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use bo

  7. A simple lightning assimilation technique for improving ...

    EPA Pesticide Factsheets

    Convective rainfall is often a large source of error in retrospective modeling applications. In particular, positive rainfall biases commonly exist during summer months due to overactive convective parameterizations. In this study, lightning assimilation was applied in the Kain-Fritsch (KF) convective scheme to improve retrospective simulations using the Weather Research and Forecasting (WRF) model. The assimilation method has a straightforward approach: force KF deep convection where lightning is observed and, optionally, suppress deep convection where lightning is absent. WRF simulations were made with and without lightning assimilation over the continental United States for July 2012, July 2013, and January 2013. The simulations were evaluated against NCEP stage-IV precipitation data and MADIS near-surface meteorological observations. In general, the use of lightning assimilation considerably improves the simulation of summertime rainfall. For example, the July 2012 monthly averaged bias of 6 h accumulated rainfall is reduced from 0.54 to 0.07 mm and the spatial correlation is increased from 0.21 to 0.43 when lightning assimilation is used. Statistical measures of near-surface meteorological variables also are improved. Consistent improvements also are seen for the July 2013 case. These results suggest that this lightning assimilation technique has the potential to substantially improve simulation of warm-season rainfall in retrospective WRF applications. The

  8. A Simple Lightning Assimilation Technique For Improving ...

    EPA Pesticide Factsheets

    Convective rainfall is often a large source of error in retrospective modeling applications. In particular, positive rainfall biases commonly exist during summer months due to overactive convective parameterizations. In this study, lightning assimilation was applied in the Kain-Fritsch (KF) convective scheme to improve retrospective simulations using the Weather Research and Forecasting (WRF) model. The assimilation method has a straightforward approach: Force KF deep convection where lightning is observed and, optionally, suppress deep convection where lightning is absent. WRF simulations were made with and without lightning assimilation over the continental United States for July 2012, July 2013, and January 2013. The simulations were evaluated against NCEP stage-IV precipitation data and MADIS near-surface meteorological observations. In general, the use of lightning assimilation considerably improves the simulation of summertime rainfall. For example, the July 2012 monthly-averaged bias of 6-h accumulated rainfall is reduced from 0.54 mm to 0.07 mm and the spatial correlation is increased from 0.21 to 0.43 when lightning assimilation is used. Statistical measures of near-surface meteorological variables also are improved. Consistent improvements also are seen for the July 2013 case. These results suggest that this lightning assimilation technique has the potential to substantially improve simulation of warm-season rainfall in retrospective WRF appli

  9. Assimilation of all-weather GMI and ATMS observations into HWRF

    NASA Astrophysics Data System (ADS)

    Moradi, I.; Evans, F.; McCarty, W.; Marks, F.; Eriksson, P.

    2017-12-01

    We propose a novel Bayesian Monte Carlo Integration (BMCI) technique to retrieve the profiles of temperature, water vapor, and cloud liquid/ice water content from microwave cloudy measurements in the presence of TCs. These retrievals then can either be directly used by meteorologists to analyze the structure of TCs or be assimilated to provide accurate initial conditions for the NWP models. The technique is applied to the data from the Advanced Technology Microwave Sounder (ATMS) onboard Suomi National Polar-orbiting Partnership (NPP) and Global Precipitation Measurement (GPM) Microwave Imager (GMI).

  10. Background Error Covariance Estimation Using Information from a Single Model Trajectory with Application to Ocean Data Assimilation

    NASA Technical Reports Server (NTRS)

    Keppenne, Christian L.; Rienecker, Michele; Kovach, Robin M.; Vernieres, Guillaume

    2014-01-01

    An attractive property of ensemble data assimilation methods is that they provide flow dependent background error covariance estimates which can be used to update fields of observed variables as well as fields of unobserved model variables. Two methods to estimate background error covariances are introduced which share the above property with ensemble data assimilation methods but do not involve the integration of multiple model trajectories. Instead, all the necessary covariance information is obtained from a single model integration. The Space Adaptive Forecast error Estimation (SAFE) algorithm estimates error covariances from the spatial distribution of model variables within a single state vector. The Flow Adaptive error Statistics from a Time series (FAST) method constructs an ensemble sampled from a moving window along a model trajectory.SAFE and FAST are applied to the assimilation of Argo temperature profiles into version 4.1 of the Modular Ocean Model (MOM4.1) coupled to the GEOS-5 atmospheric model and to the CICE sea ice model. The results are validated against unassimilated Argo salinity data. They show that SAFE and FAST are competitive with the ensemble optimal interpolation (EnOI) used by the Global Modeling and Assimilation Office (GMAO) to produce its ocean analysis. Because of their reduced cost, SAFE and FAST hold promise for high-resolution data assimilation applications.

  11. Experimenting with the GMAO 4D Data Assimilation

    NASA Technical Reports Server (NTRS)

    Todling, R.; El Akkraoui, A.; Errico, R. M.; Guo, J.; Kim, J.; Kliest, D.; Parrish, D. F.; Suarez, M.; Trayanov, A.; Tremolet, Yannick; hide

    2012-01-01

    The Global Modeling and Assimilation Office (GMAO) has been working to promote its prototype four-dimensional variational (4DVAR) system to a version that can be exercised at operationally desirable configurations. Beyond a general circulation model (GeM) and an analysis system, traditional 4DV AR requires availability of tangent linear (TL) and adjoint (AD) models of the corresponding GeM. The GMAO prototype 4DVAR uses the finite-volume-based GEOS GeM and the Grid-point Statistical Interpolation (GSI) system for the first two, and TL and AD models derived ITom an early version of the finite-volume hydrodynamics that is scientifically equivalent to the present GEOS nonlinear GeM but computationally rather outdated. Specifically, the TL and AD models hydrodynamics uses a simple (I-dimensional) latitudinal MPI domain decomposition, which has consequent low scalability and prevents the prototype 4DV AR ITom being used in realistic applications. In the near future, GMAO will be upgrading its operational GEOS GCM (and assimilation system) to use a cubed-sphere-based hydrodynamics. This versions of the dynamics scales to thousands of processes and has led to a decision to re-derive the TL and AD models for this more modern dynamics, thus taking advantage of a two-dimensional MPI decomposition and improved scalability properties. With the aid of the Transformation of Algorithms in FORTRAN (l'AF) automatic adjoint generation tool and some hand-coding, a version of the cubed-sphere-based TL and AD models, with a simplified vertical diffusion scheme, is now available, enabling multiple configurations of standard implementations of 4DV AR in GEOS. Concurrent to this development, collaboration with the National Centers for Environmental Prediction (NCEP) and the Earth System Research Laboratory (ESRL) has allowed GMAO to implement a hybrid-ensemble capability within the GEOS data assimilation system. Both 3Dand 4D-ensemble capabilities are presently available thus allowing

  12. Culture Training: Validation Evidence for the Culture Assimilator.

    ERIC Educational Resources Information Center

    Mitchell, Terence R.; And Others

    The culture assimilator, a programed self-instructional approach to culture training, is described and a series of laboratory experiments and field studies validating the culture assimilator are reviewed. These studies show that the culture assimilator is an effective method of decreasing some of the stress experienced when one works with people…

  13. Insights about data assimilation frameworks for integrating GRACE with hydrological models

    NASA Astrophysics Data System (ADS)

    Schumacher, Maike; Kusche, Jürgen; Van Dijk, Albert I. J. M.; Döll, Petra; Schuh, Wolf-Dieter

    2016-04-01

    Improving the understanding of changes in the water cycle represents a challenging objective that requires merging information from various disciplines. Debates exist on selecting an appropriate assimilation technique to integrate GRACE-derived terrestrial water storage changes (TWSC) into hydrological models in order to downscale and disaggregate GRACE TWSC, overcome model limitations, and improve monitoring and forecast skills. Yet, the effect of the specific data assimilation technique in conjunction with ill-conditioning, colored noise, resolution mismatch between GRACE and model, and other complications is still unclear. Due to its simplicity, ensemble Kalman filters or smoothers (EnKF/S) are often applied. In this study, we show that modification of the filter approach might open new avenues to improve the integration process. Particularly, we discuss an improved calibration and data assimilation (C/DA) framework (Schumacher et al., 2016), which is based on the EnKF and was extended by the square root analysis scheme (SQRA) and the singular evolutive interpolated Kalman (SEIK) filter. In addition, we discuss an off-line data blending approach (Van Dijk et al., 2014) that offers the chance to merge multi-model ensembles with GRACE observations. The investigations include: (i) a theoretical comparison, focusing on similarities and differences of the conceptual formulation of the filter algorithms, (ii) a practical comparison, for which the approaches were applied to an ensemble of runs of the WaterGAP Global Hydrology Model (WGHM), as well as (iii) an impact assessment of the GRACE error structure on C/DA results. First, a synthetic experiment over the Mississippi River Basin (USA) was used to gain insights about the C/DA set-up before applying it to real data. The results indicated promising performances when considering alternative methods, e.g. applying the SEIK algorithm improved the correlation coefficient and root mean square error (RMSE) of TWSC by 0

  14. El Nino and the Global Ocean Observing System

    NASA Technical Reports Server (NTRS)

    Halpern, David

    1999-01-01

    Until a decade ago, an often-quoted expression in oceanography is that very few observations are recorded throughout the ocean. Now, the sentiment is no longer valid in the uppermost 10% of the tropical Pacific Ocean nor at the surface of the global ocean. One of the remarkable legacies of the 1985-1994 Tropical Oceans Global Atmosphere (TOGA) Program is an in situ marine meteorological and upper oceanographic measurement array throughout the equatorial Pacific to monitor the development and maintenance of El Nino episodes. The TOGA Observing System, which initially consisted of moored- and drifting-buoy arrays, a network of commercial ships, and coastal and island stations, now includes a constellation of satellites and data-assimilating models to simulate subsurface oceanographic conditions. The El Nino and La Nina tropical Pacific Ocean observing system represents the initial phase of an integrated global ocean observing system. Remarkable improvements have been made in ocean model simulation of subsurface currents, but some problems persist. For example, the simulation of the South Equatorial Current (SEC) remains an important challenge in the 2S-2N Pacific equatorial wave guide. During El Nino the SEC at the equator is reduced and sometimes the direction is reversed, becoming eastward. Both conditions allow warm water stored in the western Pacific to invade the eastern region, creating an El Nino episode. Assimilation of data is a tenet of faith to correct simulation errors caused by deficiencies in surface fluxes (especially wind stress) and parameterizations of subgrid-scale physical processes. In the first of two numerical experiments, the Pacific SEC was simulated with and without assimilation of subsurface temperature data. Along the equator, a very weak SEC occurred throughout the eastern Pacific, independent of assimilation of data. However, as displayed in the diagram, in the western Pacific there was no satisfactory agreement between the two

  15. Considerations for Using Hybrid Ensemble-Variational Data Assimilation in NASA-GMAO's Next Reanalysis System

    NASA Technical Reports Server (NTRS)

    El Akkraoui, Amal; Todling, Ricardo

    2017-01-01

    The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) is the latest reanalysis produced by GMAO, and provides global data spanning the period 1980-present. The atmospheric data assimilation component of MERRA-2 used a 3D-Var scheme, which was operational at the time of its design. Since then, a Hybrid 3D-Var, then a Hybrid 4D-EnVar were implemented, adding an ensemble component to the data assimilation scheme. In this work, we will be examining the benefits of using hybrid ensemble flow-dependent covariances to represent errors and uncertainties in historic periods. Specifically, periods of pre- and post-satellites, as well as periods of active tropical cyclone seasons. Finally, we will also be exploring the use of adaptive localization scales.

  16. A case study of GWE satellite data impact on GLA assimilation analyses of two ocean cyclones

    NASA Technical Reports Server (NTRS)

    Gallimore, R. G.; Johnson, D. R.

    1986-01-01

    The effects of the Global Weather Experiment (GWE) data obtained on January 18-20, 1979 on Goddard Laboratory for Atmospheres assimilation analyses of simultaneous cyclones in the western Pacific and Atlantic oceans are examined. The ability of satellite data within assimilation models to determine the baroclinic structures of developing extratropical cyclones is evaluated. The impact of the satellite data on the amplitude and phase of the temperature structure within the storm domain, potential energy, and baroclinic growth rate is studied. The GWE data are compared with Data Systems Test results. It is noted that it is necessary to characterize satellite effects on the baroclinic structure of cyclone waves which degrade numerical weather predictions of cyclogenesis.

  17. Emulator-assisted data assimilation in complex models

    NASA Astrophysics Data System (ADS)

    Margvelashvili, Nugzar Yu; Herzfeld, Mike; Rizwi, Farhan; Mongin, Mathieu; Baird, Mark E.; Jones, Emlyn; Schaffelke, Britta; King, Edward; Schroeder, Thomas

    2016-09-01

    Emulators are surrogates of complex models that run orders of magnitude faster than the original model. The utility of emulators for the data assimilation into ocean models is still not well understood. High complexity of ocean models translates into high uncertainty of the corresponding emulators which may undermine the quality of the assimilation schemes based on such emulators. Numerical experiments with a chaotic Lorenz-95 model are conducted to illustrate this point and suggest a strategy to alleviate this problem through the localization of the emulation and data assimilation procedures. Insights gained through these experiments are used to design and implement data assimilation scenario for a 3D fine-resolution sediment transport model of the Great Barrier Reef (GBR), Australia.

  18. Surface Temperature Assimilation in Land Surface Models

    NASA Technical Reports Server (NTRS)

    Lakshmi, Venkataraman

    1997-01-01

    This paper examines the utilization of surface temperature as a variable to be assimilated in offline land surface hydrological models. Comparisons between the model computed and satellite observed surface temperatures have been carried out. The assimilation of surface temperature is carried out twice a day (corresponding to the AM and PM overpass of the NOAA10) over the Red- Arkansas basin in the Southwestern United States (31 deg 50 min N - 36 deg N, 94 deg 30 min W - 104 deg 30 min W) for a period of one year (August 1987 to July 1988). The effect of assimilation is to reduce the difference between the surface soil moisture computed for the precipitation and/or shortwave radiation perturbed case and the unperturbed case compared to no assimilation.

  19. Surface Temperature Assimilation in Land Surface Models

    NASA Technical Reports Server (NTRS)

    Lakshmi, Venkataraman

    1999-01-01

    This paper examines the utilization of surface temperature as a variable to be assimilated in offline land surface hydrological models. Comparisons between the model computed and satellite observed surface temperatures have been carried out. The assimilation of surface temperature is carried out twice a day (corresponding to the AM and PM overpass of the NOAA10) over the Red-Arkansas basin in the Southwestern United States (31 degs 50 sec N - 36 degrees N, 94 degrees 30 seconds W - 104 degrees 3 seconds W) for a period of one year (August 1987 to July 1988). The effect of assimilation is to reduce the difference between the surface soil moisture computed for the precipitation and/or shortwave radiation perturbed case and the unperturbed case compared to no assimilation.

  20. A Dynamic Approach to Addressing Observation-Minus-Forecast Mean Differences in a Land Surface Skin Temperature Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Draper, Clara; Reichle, Rolf; De Lannoy, Gabrielle; Scarino, Benjamin

    2015-01-01

    In land data assimilation, bias in the observation-minus-forecast (O-F) residuals is typically removed from the observations prior to assimilation by rescaling the observations to have the same long-term mean (and higher-order moments) as the corresponding model forecasts. Such observation rescaling approaches require a long record of observed and forecast estimates, and an assumption that the O-F mean differences are stationary. A two-stage observation bias and state estimation filter is presented, as an alternative to observation rescaling that does not require a long data record or assume stationary O-F mean differences. The two-stage filter removes dynamic (nonstationary) estimates of the seasonal scale O-F mean difference from the assimilated observations, allowing the assimilation to correct the model for synoptic-scale errors without adverse effects from observation biases. The two-stage filter is demonstrated by assimilating geostationary skin temperature (Tsk) observations into the Catchment land surface model. Global maps of the O-F mean differences are presented, and the two-stage filter is evaluated for one year over the Americas. The two-stage filter effectively removed the Tsk O-F mean differences, for example the GOES-West O-F mean difference at 21:00 UTC was reduced from 5.1 K for a bias-blind assimilation to 0.3 K. Compared to independent in situ and remotely sensed Tsk observations, the two-stage assimilation reduced the unbiased Root Mean Square Difference (ubRMSD) of the modeled Tsk by 10 of the open-loop values.

  1. Comparison of Surface Ground Temperature from Satellite Observations and the Off-Line Land Surface GEOS Assimilation System

    NASA Technical Reports Server (NTRS)

    Yang, R.; Houser, P.; Joiner, J.

    1998-01-01

    The surface ground temperature (Tg) is an important meteorological variable, because it represents an integrated thermal state of the land surface determined by a complex surface energy budget. Furthermore, Tg affects both the surface sensible and latent heat fluxes. Through these fluxes. the surface budget is coupled with the atmosphere above. Accurate Tg data are useful for estimating the surface radiation budget and fluxes, as well as soil moisture. Tg is not included in conventional synoptical weather station reports. Currently, satellites provide Tg estimates globally. It is necessary to carefully consider appropriate methods of using these satellite data in a data assimilation system. Recently, an Off-line Land surface GEOS Assimilation (OLGA) system was implemented at the Data Assimilation Office at NASA-GSFC. One of the goals of OLGA is to assimilate satellite-derived Tg data. Prior to the Tg assimilation, a thorough investigation of satellite- and model-derived Tg, including error estimates, is required. In this study we examine the Tg from the n Project (ISCCP DI) data and the OLGA simulations. The ISCCP data used here are 3-hourly DI data (2.5x2.5 degree resolution) for 1992 summer months (June, July, and August) and winter months (January and February). The model Tg for the same periods were generated by OLGA. The forcing data for this OLGA 1992 simulation were generated from the GEOS-1 Data Assimilation System (DAS) at Data Assimilation Office NASA-GSFC. We examine the discrepancies between ISCCP and OLGA Tg with a focus on its spatial and temporal characteristics, particularly on the diurnal cycle. The error statistics in both data sets, including bias, will be estimated. The impact of surface properties, including vegetation cover and type, topography, etc, on the discrepancies will be addressed.

  2. Global Land Data Assimilation System (GLDAS) Products, Services and Application from NASA Hydrology Data and Information Services Center (HDISC)

    NASA Technical Reports Server (NTRS)

    Fang, Hongliang; Beaudoing, Hiroko K.; Rodell, matthew; Teng, William L.; Vollmer, Bruce E.

    2009-01-01

    The Global Land Data Assimilation System (GLDAS) is generating a series of land surface state (e.g., soil moisture and surface temperature) and flux (e.g., evaporation and sensible heat flux) products simulated by four land surface models (CLM, Mosaic, Noah and VIC). These products are now accessible at the Hydrology Data and Information Services Center (HDISC), a component of the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). Current data holdings include a set of 1.0 degree resolution data products from the four models, covering 1979 to the present; and a 0.25 degree data product from the Noah model, covering 2000 to the present. The products are in Gridded Binary (GRIB) format and can be accessed through a number of interfaces. Users can search the products through keywords and perform on-the-fly spatial and parameter subsetting and format conversion of selected data. More advanced visualization, access and analysis capabilities will be available in the future. The long term GLDAS data are used to develop climatology of water cycle components and to explore the teleconnections of droughts and pluvial.

  3. Global trends in ocean phytoplankton: a new assessment using revised ocean colour data.

    PubMed

    Gregg, Watson W; Rousseaux, Cécile S; Franz, Bryan A

    2017-01-01

    A recent revision of the NASA global ocean colour record shows changes in global ocean chlorophyll trends. This new 18-year time series now includes three global satellite sensors, the Sea-viewing Wide Field of view Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS-Aqua), and Visible Infrared Imaging Radiometer Suite (VIIRS). The major changes are radiometric drift correction, a new algorithm for chlorophyll, and a new sensor VIIRS. The new satellite data record shows no significant trend in global annual median chlorophyll from 1998 to 2015, in contrast to a statistically significant negative trend from 1998 to 2012 in the previous version. When revised satellite data are assimilated into a global ocean biogeochemical model, no trend is observed in global annual median chlorophyll. This is consistent with previous findings for the 1998-2012 time period using the previous processing version and only two sensors (SeaWiFS and MODIS). Detecting trends in ocean chlorophyll with satellites is sensitive to data processing options and radiometric drift correction. The assimilation of these data, however, reduces sensitivity to algorithms and radiometry, as well as the addition of a new sensor. This suggests the assimilation model has skill in detecting trends in global ocean colour. Using the assimilation model, spatial distributions of significant trends for the 18-year record (1998-2015) show recent decadal changes. Most notable are the North and Equatorial Indian Oceans basins, which exhibit a striking decline in chlorophyll. It is exemplified by declines in diatoms and chlorophytes, which in the model are large and intermediate size phytoplankton. This decline is partially compensated by significant increases in cyanobacteria, which represent very small phytoplankton. This suggests the beginning of a shift in phytoplankton composition in these tropical and subtropical Indian basins.

  4. Use of remote-sensing reflectance to constrain a data assimilating marine biogeochemical model of the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Jones, Emlyn M.; Baird, Mark E.; Mongin, Mathieu; Parslow, John; Skerratt, Jenny; Lovell, Jenny; Margvelashvili, Nugzar; Matear, Richard J.; Wild-Allen, Karen; Robson, Barbara; Rizwi, Farhan; Oke, Peter; King, Edward; Schroeder, Thomas; Steven, Andy; Taylor, John

    2016-12-01

    Skillful marine biogeochemical (BGC) models are required to understand a range of coastal and global phenomena such as changes in nitrogen and carbon cycles. The refinement of BGC models through the assimilation of variables calculated from observed in-water inherent optical properties (IOPs), such as phytoplankton absorption, is problematic. Empirically derived relationships between IOPs and variables such as chlorophyll-a concentration (Chl a), total suspended solids (TSS) and coloured dissolved organic matter (CDOM) have been shown to have errors that can exceed 100 % of the observed quantity. These errors are greatest in shallow coastal regions, such as the Great Barrier Reef (GBR), due to the additional signal from bottom reflectance. Rather than assimilate quantities calculated using IOP algorithms, this study demonstrates the advantages of assimilating quantities calculated directly from the less error-prone satellite remote-sensing reflectance (RSR). To assimilate the observed RSR, we use an in-water optical model to produce an equivalent simulated RSR and calculate the mismatch between the observed and simulated quantities to constrain the BGC model with a deterministic ensemble Kalman filter (DEnKF). The traditional assumption that simulated surface Chl a is equivalent to the remotely sensed OC3M estimate of Chl a resulted in a forecast error of approximately 75 %. We show this error can be halved by instead using simulated RSR to constrain the model via the assimilation system. When the analysis and forecast fields from the RSR-based assimilation system are compared with the non-assimilating model, a comparison against independent in situ observations of Chl a, TSS and dissolved inorganic nutrients (NO3, NH4 and DIP) showed that errors are reduced by up to 90 %. In all cases, the assimilation system improves the simulation compared to the non-assimilating model. Our approach allows for the incorporation of vast quantities of remote-sensing observations

  5. Multi-parametric variational data assimilation for hydrological forecasting

    NASA Astrophysics Data System (ADS)

    Alvarado-Montero, R.; Schwanenberg, D.; Krahe, P.; Helmke, P.; Klein, B.

    2017-12-01

    Ensemble forecasting is increasingly applied in flow forecasting systems to provide users with a better understanding of forecast uncertainty and consequently to take better-informed decisions. A common practice in probabilistic streamflow forecasting is to force deterministic hydrological model with an ensemble of numerical weather predictions. This approach aims at the representation of meteorological uncertainty but neglects uncertainty of the hydrological model as well as its initial conditions. Complementary approaches use probabilistic data assimilation techniques to receive a variety of initial states or represent model uncertainty by model pools instead of single deterministic models. This paper introduces a novel approach that extends a variational data assimilation based on Moving Horizon Estimation to enable the assimilation of observations into multi-parametric model pools. It results in a probabilistic estimate of initial model states that takes into account the parametric model uncertainty in the data assimilation. The assimilation technique is applied to the uppermost area of River Main in Germany. We use different parametric pools, each of them with five parameter sets, to assimilate streamflow data, as well as remotely sensed data from the H-SAF project. We assess the impact of the assimilation in the lead time performance of perfect forecasts (i.e. observed data as forcing variables) as well as deterministic and probabilistic forecasts from ECMWF. The multi-parametric assimilation shows an improvement of up to 23% for CRPS performance and approximately 20% in Brier Skill Scores with respect to the deterministic approach. It also improves the skill of the forecast in terms of rank histogram and produces a narrower ensemble spread.

  6. Impact of SMOS soil moisture data assimilation on NCEP-GFS forecasts

    NASA Astrophysics Data System (ADS)

    Zhan, X.; Zheng, W.; Meng, J.; Dong, J.; Ek, M.

    2012-04-01

    Soil moisture is one of the few critical land surface state variables that have long memory to impact the exchanges of water, energy and carbon between the land surface and atmosphere. Accurate information about soil moisture status is thus required for numerical weather, seasonal climate and hydrological forecast as well as for agricultural production forecasts, water management and many other water related economic or social activities. Since the successful launch of ESA's soil moisture ocean salinity (SMOS) mission in November 2009, about 2 years of soil moisture retrievals has been collected. SMOS is believed to be the currently best satellite sensors for soil moisture remote sensing. Therefore, it becomes interesting to examine how the collected SMOS soil moisture data are compared with other satellite-sensed soil moisture retrievals (such as NASA's Advanced Microwave Scanning Radiometer -AMSR-E and EUMETSAT's Advanced Scatterometer - ASCAT)), in situ soil moisture measurements, and how these data sets impact numerical weather prediction models such as the Global Forecast System of NOAA-NCEP. This study implements the Ensemble Kalman filter in GFS to assimilate the AMSR-E, ASCAT and SMOS soil moisture observations after a quantitative assessment of their error rate based on in situ measurements from ground networks around contiguous United States. in situ soil moisture measurements from ground networks (such as USDA Soil Climate Analysis network - SCAN and NOAA's U.S. Climate Reference Network -USCRN) are used to evaluate the GFS soil moisture simulations (analysis). The benefits and uncertainties of assimilating the satellite data products in GFS are examined by comparing the GFS forecasts of surface temperature and rainfall with and without the assimilations. From these examinations, the advantages of SMOS soil moisture data products over other satellite soil moisture data sets will be evaluated. The next step toward operationally assimilating soil moisture

  7. Update on the NASA GEOS-5 Aerosol Forecasting and Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Colarco, Peter; da Silva, Arlindo; Aquila, Valentina; Bian, Huisheng; Buchard, Virginie; Castellanos, Patricia; Darmenov, Anton; Follette-Cook, Melanie; Govindaraju, Ravi; Keller, Christoph; hide

    2017-01-01

    GEOS-5 is the Goddard Earth Observing System model. GEOS-5 is maintained by the NASA Global Modeling and Assimilation Office. Core development is within GMAO,Goddard Atmospheric Chemistry and Dynamics Laboratory, and with external partners. Primary GEOS-5 functions: Earth system model for studying climate variability and change, provide research quality reanalyses for supporting NASA instrument teams and scientific community, provide near-real time forecasts of meteorology,aerosols, and other atmospheric constituents to support NASA airborne campaigns.

  8. Assimilation of the Microwave Limb Sounder Radiances

    NASA Technical Reports Server (NTRS)

    Wargan, K.; Read, W.; Livesey, N.; Wagner, P.; Nguyen. H.; Pawson, S.

    2012-01-01

    It has been shown that the assimilation of limb-sounder data can significantly improve the representation of ozone in NASA's GEOS Data Assimilation Systems (GEOS-DAS), particularly in the stratosphere. The studies conducted so far utilized retrieved data from the MIPAS, POAM, ILAS and EOS Microwave Limb Sounder (EOS MLS) instruments. Direct assimilation of the radiance data can be seen as the natural next step to those studies. The motivation behind working with radiances is twofold. First, retrieval algorithms use a priori data which are either climatological or are obtained from previous analyses. This introduces additional uncertainty and, in some cases, may lead to "self-contamination"- when the a priori is taken from the same assimilation system in which subsequently ingests the retrieved observations. Second, radiances can be available in near real time thus providing an opportunity for operational assimilation, which could help improve the use of infrared radiance instruments from operational satellite instruments. In this presentation we summarize our ongoing work on an implementation of the assimilation of EOS MLS radiances into the GEOS-5 DAS. This work focuses on assimilation of band 7 brightness temperatures which are sensitive to ozone. Our implementation uses the MLS Callable Forward Model developed by the MLS team at NASA JPL as the observation operator. We will describe our approach and recent results which are not yet final. In particular, we will demonstrate that this approach has a potential to improve the vertical structure of ozone in the lower tropical stratosphere as compared with the retrieved MLS product. We will discuss the computational efficiency of this implementation.

  9. Chromatic assimilation unaffected by perceived depth of inducing light.

    PubMed

    Shevell, Steven K; Cao, Dingcai

    2004-01-01

    Chromatic assimilation is a shift toward the color of nearby light. Several studies conclude that a neural process contributes to assimilation but the neural locus remains in question. Some studies posit a peripheral process, such as retinal receptive-field organization, while others claim the neural mechanism follows depth perception, figure/ground segregation, or perceptual grouping. The experiments here tested whether assimilation depends on a neural process that follows stereoscopic depth perception. By introducing binocular disparity, the test field judged in color was made to appear in a different depth plane than the light that induced assimilation. The chromaticity and spatial frequency of the inducing light, and the chromaticity of the test light, were varied. Chromatic assimilation was found with all inducing-light sizes and chromaticities, but the magnitude of assimilation did not depend on the perceived relative depth planes of the test and inducing fields. We found no evidence to support the view that chromatic assimilation depends on a neural process that follows binocular combination of the two eyes' signals.

  10. Advances in Global Adjoint Tomography -- Massive Data Assimilation

    NASA Astrophysics Data System (ADS)

    Ruan, Y.; Lei, W.; Bozdag, E.; Lefebvre, M. P.; Smith, J. A.; Krischer, L.; Tromp, J.

    2015-12-01

    Azimuthal anisotropy and anelasticity are key to understanding a myriad of processes in Earth's interior. Resolving these properties requires accurate simulations of seismic wave propagation in complex 3-D Earth models and an iterative inversion strategy. In the wake of successes in regional studies(e.g., Chen et al., 2007; Tape et al., 2009, 2010; Fichtner et al., 2009, 2010; Chen et al.,2010; Zhu et al., 2012, 2013; Chen et al., 2015), we are employing adjoint tomography based on a spectral-element method (Komatitsch & Tromp 1999, 2002) on a global scale using the supercomputer ''Titan'' at Oak Ridge National Laboratory. After 15 iterations, we have obtained a high-resolution transversely isotropic Earth model (M15) using traveltime data from 253 earthquakes. To obtain higher resolution images of the emerging new features and to prepare the inversion for azimuthal anisotropy and anelasticity, we expanded the original dataset with approximately 4,220 additional global earthquakes (Mw5.5-7.0) --occurring between 1995 and 2014-- and downloaded 300-minute-long time series for all available data archived at the IRIS Data Management Center, ORFEUS, and F-net. Ocean Bottom Seismograph data from the last decade are also included to maximize data coverage. In order to handle the huge dataset and solve the I/O bottleneck in global adjoint tomography, we implemented a python-based parallel data processing workflow based on the newly developed Adaptable Seismic Data Format (ASDF). With the help of the data selection tool MUSTANG developed by IRIS, we cleaned our dataset and assembled event-based ASDF files for parallel processing. We have started Centroid Moment Tensors (CMT) inversions for all 4,220 earthquakes with the latest model M15, and selected high-quality data for measurement. We will statistically investigate each channel using synthetic seismograms calculated in M15 for updated CMTs and identify problematic channels. In addition to data screening, we also modified

  11. Recent assimilation developments of FOAM the Met Office ocean forecast system

    NASA Astrophysics Data System (ADS)

    Lea, Daniel; Martin, Matthew; Waters, Jennifer; Mirouze, Isabelle; While, James; King, Robert

    2015-04-01

    FOAM is the Met Office's operational ocean forecasting system. This system comprises a range of models from a 1/4 degree resolution global to 1/12 degree resolution regional models and shelf seas models at 7 km resolution. The system is made up of the ocean model NEMO (Nucleus for European Modeling of the Ocean), the Los Alomos sea ice model CICE and the NEMOVAR assimilation run in 3D-VAR FGAT mode. Work is ongoing to transition to both a higher resolution global ocean model at 1/12 degrees and to run FOAM in coupled models. The FOAM system generally performs well. One area of concern however is the performance in the tropics where spurious oscillations and excessive vertical velocity gradients are found after assimilation. NEMOVAR includes a balance operator which in the extra-tropics uses geostrophic balance to produce velocity increments which balance the density increments applied. In the tropics, however, the main balance is between the pressure gradients produced by the density gradient and the applied wind stress. A scheme is presented which aims to maintain this balance when increments are applied. Another issue in FOAM is that there are sometimes persistent temperature and salinity errors which are not effectively corrected by the assimilation. The standard NEMOVAR has a single correlation length scale based on the local Rossby radius. This means that observations in the extra tropics have influence on the model only on short length-scales. In order to maximise the information extracted from the observations and to correct large scale model biases a multiple correlation length-scale scheme has been developed. This includes a larger length scale which spreads observation information further. Various refinements of the scheme are also explored including reducing the longer length scale component at the edge of the sea ice and in areas with high potential vorticity gradients. A related scheme which varies the correlation length scale in the shelf seas is also

  12. Variational assimilation of VAS data into the mass model

    NASA Technical Reports Server (NTRS)

    Cram, J. M.; Kaplan, M. L.

    1984-01-01

    Experiments are reported in which VAS data at 1200, 1500, and 1800 GMT 20 July 1981 were assimilated using both the adiabatic and full physics version of the Mesoscale Atmospheric Simulation System (MASS). A nonassimilation forecast is compared with forecasts assimilating temperature gradients only and forecasts assimilating both temperature and humidity gradients. The effects of successive vs single assimilations are also examined. It is noted that the greatest improvements to the forecast resulted when the VAS data resolved the mesoscale structure of the temperature and relative humidity fields. When this structure was assimilated into MASS, the ensuing simulations more clearly defined a mesoscale structure in the developing instabilities.

  13. The Race Race: Assimilation in America

    ERIC Educational Resources Information Center

    Balis, Andrea; Aman, Michael

    2013-01-01

    Can race and assimilation be taught? Interdisciplinary pedagogy provides a methodology, context, and use of nontraditional texts culled from American cultural history such as from, theater and historical texts. This approach and these texts prove useful for an examination of race and assimilation in America. The paper describes a course that while…

  14. Inferring the unobserved chemical state of the atmosphere: idealized data assimilation experiments

    NASA Astrophysics Data System (ADS)

    Knote, C. J.; Barré, J.; Eckl, M.; Hornbrook, R. S.; Wiedinmyer, C.; Emmons, L. K.; Orlando, J. J.; Tyndall, G. S.; Arellano, A. F.

    2015-12-01

    Chemical data assimilation in numerical models of the atmosphere is a venture into uncharted territory, into a world populated by a vast zoo of chemical compounds with strongly non-linear interactions. Commonly assimilated observations exist for only a selected few of those key gas phase compounds (CO, O3, NO2), and assimilating those in models assuming linearity begs the question of: To what extent we can infer the remainder to create a new state of the atmosphere that is chemically sound and optimal? In our work we present the first systematic investigation of sensitivities that exist between chemical compounds under varying ambient conditions in order to inform scientists on the potential pitfalls when assimilating single/few chemical compounds into complex 3D chemistry transport models. In order to do this, we developed a box-modeling tool (BOXMOX) based on the Kinetic PreProcessor (KPP, http://people.cs.vt.edu/~asandu/Software/Kpp/) in which we can conduct simulations with a suite of 'mechanisms', sets of differential equations describing atmospheric photochemistry. The box modeling approach allows us to sample a large variety of atmospheric conditions (urban, rural, biogenically dominated, biomass burning plumes) to capture the range of chemical conditions that typically exist in the atmosphere. Included in our suite are 'lumped' mechanisms typically used in regional and global chemistry transport models (MOZART, RACM, RADM2, SAPRC99, CB05, CBMZ) as well as the Master Chemical Mechanism (MCM, U. Leeds). We will use an Observing System Simulation Experiment approach with the MCM prediction as 'nature' or 'true' state, assimilating idealized synthetic observations (from MCM) into the different ‚lumped' mechanisms under various environments. Two approaches to estimate the sensitivity of the chemical system will be compared: 1) adjoint: using Jacobians computed by KPP and 2) ensemble: by perturbing emissions, temperature, photolysis rates, entrainment, etc., in

  15. Establishment and analysis of High-Resolution Assimilation Dataset of water-energy cycle over China

    NASA Astrophysics Data System (ADS)

    Wen, Xiaohang; Liao, Xiaohan; Dong, Wenjie; Yuan, Wenping

    2015-04-01

    For better prediction and understanding of water-energy exchange process and land-atmospheric interaction, the in-situ observed meteorological data which were acquired from China Meteorological Administration (CMA) were assimilated in the Weather Research and Forecasting (WRF) model and the monthly Green Vegetation Coverage (GVF) data, which was calculated by the Normalized Difference Vegetation Index (NDVI) of Earth Observing System Moderate-Resolution Imaging Spectroradiometer (EOS-MODIS), Digital Elevation Model (DEM) data of the Shuttle Radar Topography Mission (SRTM) system were also integrated in the WRF model over China. Further, the High-Resolution Assimilation Dataset of water-energy cycle over China (HRADC) was produced by WRF model. This dataset include 25 km horizontal resolution near surface meteorological data such as air temperature, humidity, ground temperature, and pressure at 19 levels, soil temperature and soil moisture at 4 levels, green vegetation coverage, latent heat flux, sensible heat flux, and ground heat flux for 3 hours. In this study, we 1) briefly introduce the cycling 3D-Var assimilation method; 2) Compare results of meteorological elements such as 2 m temperature, precipitation and ground temperature generated by the HRADC with the gridded observation data from CMA, and Global Land Data Assimilation System (GLDAS) output data from National Aeronautics and Space Administration (NASA). It is found that the results of 2 m temperature were improved compared with the control simulation and has effectively reproduced the observed patterns, and the simulated results of ground temperature, 0-10 cm soil temperature and specific humidity were as much closer to GLDAS outputs. Root mean square errors are reduced in assimilation run than control run, and the assimilation run of ground temperature, 0-10 cm soil temperature, radiation and surface fluxes were agreed well with the GLDAS outputs over China. The HRADC could be used in further research

  16. Streamflow forecasting and data assimilation: bias in precipitation, soil moisture states, and groundwater fluxes.

    NASA Astrophysics Data System (ADS)

    McCreight, J. L.; Gochis, D. J.; Hoar, T.; Dugger, A. L.; Yu, W.

    2014-12-01

    Uncertainty in precipitation forcing, soil moisture states, and model groundwater fluxes are first-order sources of error in streamflow forecasting. While near-surface estimates of soil moisture are now available from satellite, very few soil moisture observations below 5 cm depth or groundwater discharge estimates are available for operational forecasting. Radar precipitation estimates are subject to large biases, particularly during extreme events (e.g. Steiner et al., 2010) and their correction is not typically available in real-time. Streamflow data, however, are readily available in near-real-time and can be assimilated operationally to help constrain uncertainty in these uncertain states and improve streamflow forecasts. We examine the ability of streamflow observations to diagnose bias in the three most uncertain variables: precipitation forcing, soil moisture states, and groundwater fluxes. We investigate strategies for their subsequent bias correction. These include spinup and calibration strategies with and without the use of data assimilation and the determination of the proper spinup timescales. Global and spatially distributed multipliers on the uncertain states included in the assimilation state vector (e.g. Seo et al., 2003) will also be evaluated. We examine real cases and observing system simulation experiments for both normal and extreme rainfall events. One of our test cases considers the Colorado Front Range flood of September 2013 where the range of disagreement amongst five precipitation estimates spanned a factor of five with only one exhibiting appreciable positive bias (Gochis et al, submitted). Our experiments are conducted using the WRF-Hydro model with the NoahMP land surface component and the data assimilation research testbed (DART). A variety of ensemble data assimilation approaches (filters) are considered. ReferencesGochis, DJ, et al. "The Great Colorado Flood of September 2013" BAMS (Submitted 4-7-14). Seo, DJ, V Koren, and N

  17. Using Data Assimilation Diagnostics to Assess the SMAP Level-4 Soil Moisture Product

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf; Liu, Qing; De Lannoy, Gabrielle; Crow, Wade; Kimball, John; Koster, Randy; Ardizzone, Joe

    2018-01-01

    The Soil Moisture Active Passive (SMAP) mission Level-4 Soil Moisture (L4_SM) product provides 3-hourly, 9-km resolution, global estimates of surface (0-5 cm) and root-zone (0-100 cm) soil moisture and related land surface variables from 31 March 2015 to present with approx.2.5-day latency. The ensemble-based L4_SM algorithm assimilates SMAP brightness temperature (Tb) observations into the Catchment land surface model. This study describes the spatially distributed L4_SM analysis and assesses the observation-minus-forecast (O-F) Tb residuals and the soil moisture and temperature analysis increments. Owing to the climatological rescaling of the Tb observations prior to assimilation, the analysis is essentially unbiased, with global mean values of approx. 0.37 K for the O-F Tb residuals and practically zero for the soil moisture and temperature increments. There are, however, modest regional (absolute) biases in the O-F residuals (under approx. 3 K), the soil moisture increments (under approx. 0.01 cu m/cu m), and the surface soil temperature increments (under approx. 1 K). Typical instantaneous values are approx. 6 K for O-F residuals, approx. 0.01 (approx. 0.003) cu m/cu m for surface (root-zone) soil moisture increments, and approx. 0.6 K for surface soil temperature increments. The O-F diagnostics indicate that the actual errors in the system are overestimated in deserts and densely vegetated regions and underestimated in agricultural regions and transition zones between dry and wet climates. The O-F auto-correlations suggest that the SMAP observations are used efficiently in western North America, the Sahel, and Australia, but not in many forested regions and the high northern latitudes. A case study in Australia demonstrates that assimilating SMAP observations successfully corrects short-term errors in the L4_SM rainfall forcing.

  18. Assimilation of Satellite Sea Surface Salinity Fields: Validating Ocean Analyses and Identifying Errors in Surface Buoyancy Fluxes

    NASA Astrophysics Data System (ADS)

    Mehra, A.; Nadiga, S.; Bayler, E. J.; Behringer, D.

    2014-12-01

    Recently available satellite sea-surface salinity (SSS) fields provide an important new global data stream for assimilation into ocean forecast systems. In this study, we present results from assimilating satellite SSS fields from NASA's Aquarius mission into the National Oceanic and Atmospheric Administration's (NOAA) operational Modular Ocean Model version 4 (MOM4), the oceanic component of NOAA's operational seasonal-interannual Climate Forecast System (CFS). Experiments on the sensitivity of the ocean's overall state to different relaxation time periods were run to evaluate the importance of assimilating high-frequency (daily to mesoscale) and low-frequency (seasonal) SSS variability. Aquarius SSS data (Aquarius Data Processing System (ADPS) version 3.0), mapped daily fields at 1-degree spatial resolution, were used. Four model simulations were started from the same initial ocean condition and forced with NOAA's daily Climate Forecast System Reanalysis (CFSR) fluxes, using a relaxation technique to assimilate daily satellite sea surface temperature (SST) fields and selected SSS fields, where, except as noted, a 30-day relaxation period is used. The simulations are: (1) WOAMC, the reference case and similar to the operational setup, assimilating monthly climatological SSS from the 2009 NOAA World Ocean Atlas; (2) AQ_D, assimilating daily Aquarius SSS; (3) AQ_M, assimilating monthly Aquarius SSS; and (4) AQ_D10, assimilating daily Aquarius SSS, but using a 10-day relaxation period. The analysis focuses on the tropical Pacific Ocean, where the salinity dynamics are intense and dominated by El Niño interannual variability in the cold tongue region and by high-frequency precipitation events in the western Pacific warm pool region. To assess the robustness of results and conclusions, we also examine the results for the tropical Atlantic and Indian Oceans. Preliminary validation studies are conducted using observations, such as satellite sea-surface height (SSH

  19. Thermal coefficients of technology assimilation by natural systems

    NASA Technical Reports Server (NTRS)

    Mueller, R. F.

    1971-01-01

    Estimates of thermal coefficients of the rates of technology assimilation processes was made. Consideration of such processes as vegetation and soil recovery and pollution assimilation indicates that these processes proceed ten to several hundred times more slowly in earth's cold regions than in temperate regions. It was suggested that these differential assimilation rates are important data in planning for technological expansion in Arctic regions.

  20. A preliminary study of the impact of the ERS 1 C band scatterometer wind data on the European Centre for Medium-Range Weather Forecasts global data assimilation system

    NASA Technical Reports Server (NTRS)

    Hoffman, Ross N.

    1993-01-01

    A preliminary assessment of the impact of the ERS 1 scatterometer wind data on the current European Centre for Medium-Range Weather Forecasts analysis and forecast system has been carried out. Although the scatterometer data results in changes to the analyses and forecasts, there is no consistent improvement or degradation. Our results are based on comparing analyses and forecasts from assimilation cycles. The two sets of analyses are very similar except for the low level wind fields over the ocean. Impacts on the analyzed wind fields are greater over the southern ocean, where other data are scarce. For the most part the mass field increments are too small to balance the wind increments. The effect of the nonlinear normal mode initialization on the analysis differences is quite small, but we observe that the differences tend to wash out in the subsequent 6-hour forecast. In the Northern Hemisphere, analysis differences are very small, except directly at the scatterometer locations. Forecast comparisons reveal large differences in the Southern Hemisphere after 72 hours. Notable differences in the Northern Hemisphere do not appear until late in the forecast. Overall, however, the Southern Hemisphere impacts are neutral. The experiments described are preliminary in several respects. We expect these data to ultimately prove useful for global data assimilation.

  1. Ecohydrological drought monitoring and prediction using a land data assimilation system

    NASA Astrophysics Data System (ADS)

    Sawada, Y.; Koike, T.

    2017-12-01

    Despite the importance of the ecological and agricultural aspects of severe droughts, few drought monitor and prediction systems can forecast the deficit of vegetation growth. To address this issue, we have developed a land data assimilation system (LDAS) which can simultaneously simulate soil moisture and vegetation dynamics. By assimilating satellite-observed passive microwave brightness temperature, which is sensitive to both surface soil moisture and vegetation water content, we can significantly improve the skill of a land surface model to simulate surface soil moisture, root zone soil moisture, and leaf area index (LAI). We run this LDAS to generate a global ecohydrological land surface reanalysis product. In this presentation, we will demonstrate how useful this new reanalysis product is to monitor and analyze the historical mega-droughts. In addition, using the analyses of soil moistures and LAI as initial conditions, we can forecast the ecological and hydrological conditions in the middle of droughts. We will present our recent effort to develop a near real time ecohydrological drought monitoring and prediction system in Africa by combining the LDAS and the atmospheric seasonal prediction.

  2. The Crc global regulator inhibits the Pseudomonas putida pWW0 toluene/xylene assimilation pathway by repressing the translation of regulatory and structural genes.

    PubMed

    Moreno, Renata; Fonseca, Pilar; Rojo, Fernando

    2010-08-06

    In Pseudomonas putida, the expression of the pWW0 plasmid genes for the toluene/xylene assimilation pathway (the TOL pathway) is subject to complex regulation in response to environmental and physiological signals. This includes strong inhibition via catabolite repression, elicited by the carbon sources that the cells prefer to hydrocarbons. The Crc protein, a global regulator that controls carbon flow in pseudomonads, has an important role in this inhibition. Crc is a translational repressor that regulates the TOL genes, but how it does this has remained unknown. This study reports that Crc binds to sites located at the translation initiation regions of the mRNAs coding for XylR and XylS, two specific transcription activators of the TOL genes. Unexpectedly, eight additional Crc binding sites were found overlapping the translation initiation sites of genes coding for several enzymes of the pathway, all encoded within two polycistronic mRNAs. Evidence is provided supporting the idea that these sites are functional. This implies that Crc can differentially modulate the expression of particular genes within polycistronic mRNAs. It is proposed that Crc controls TOL genes in two ways. First, Crc inhibits the translation of the XylR and XylS regulators, thereby reducing the transcription of all TOL pathway genes. Second, Crc inhibits the translation of specific structural genes of the pathway, acting mainly on proteins involved in the first steps of toluene assimilation. This ensures a rapid inhibitory response that reduces the expression of the toluene/xylene degradation proteins when preferred carbon sources become available.

  3. High-Resolution Assimilation of GRACE Terrestrial Water Storage Observations to Represent Local-Scale Water Table Depths

    NASA Astrophysics Data System (ADS)

    Stampoulis, D.; Reager, J. T., II; David, C. H.; Famiglietti, J. S.; Andreadis, K.

    2017-12-01

    Despite the numerous advances in hydrologic modeling and improvements in Land Surface Models, an accurate representation of the water table depth (WTD) still does not exist. Data assimilation of observations of the joint NASA and DLR mission, Gravity Recovery and Climate Experiment (GRACE) leads to statistically significant improvements in the accuracy of hydrologic models, ultimately resulting in more reliable estimates of water storage. However, the usually shallow groundwater compartment of the models presents a problem with GRACE assimilation techniques, as these satellite observations account for much deeper aquifers. To improve the accuracy of groundwater estimates and allow the representation of the WTD at fine spatial scales we implemented a novel approach that enables a large-scale data integration system to assimilate GRACE data. This was achieved by augmenting the Variable Infiltration Capacity (VIC) hydrologic model, which is the core component of the Regional Hydrologic Extremes Assessment System (RHEAS), a high-resolution modeling framework developed at the Jet Propulsion Laboratory (JPL) for hydrologic modeling and data assimilation. The model has insufficient subsurface characterization and therefore, to reproduce groundwater variability not only in shallow depths but also in deep aquifers, as well as to allow GRACE assimilation, a fourth soil layer of varying depth ( 1000 meters) was added in VIC as the bottom layer. To initialize a water table in the model we used gridded global WTD data at 1 km resolution which were spatially aggregated to match the model's resolution. Simulations were then performed to test the augmented model's ability to capture seasonal and inter-annual trends of groundwater. The 4-layer version of VIC was run with and without assimilating GRACE Total Water Storage anomalies (TWSA) over the Central Valley in California. This is the first-ever assimilation of GRACE TWSA for the determination of realistic water table depths, at

  4. Accelerating assimilation development for new observing systems using EFSO

    NASA Astrophysics Data System (ADS)

    Lien, Guo-Yuan; Hotta, Daisuke; Kalnay, Eugenia; Miyoshi, Takemasa; Chen, Tse-Chun

    2018-03-01

    To successfully assimilate data from a new observing system, it is necessary to develop appropriate data selection strategies, assimilating only the generally useful data. This development work is usually done by trial and error using observing system experiments (OSEs), which are very time and resource consuming. This study proposes a new, efficient methodology to accelerate the development using ensemble forecast sensitivity to observations (EFSO). First, non-cycled assimilation of the new observation data is conducted to compute EFSO diagnostics for each observation within a large sample. Second, the average EFSO conditionally sampled in terms of various factors is computed. Third, potential data selection criteria are designed based on the non-cycled EFSO statistics, and tested in cycled OSEs to verify the actual assimilation impact. The usefulness of this method is demonstrated with the assimilation of satellite precipitation data. It is shown that the EFSO-based method can efficiently suggest data selection criteria that significantly improve the assimilation results.

  5. Carbon Monoxide Data Assimilation for Atmospheric Composition and Climate Science: Evaluating Performance with Current and Future Observations

    NASA Astrophysics Data System (ADS)

    Barre, J.; Edwards, D. P.; Gaubert, B.; Worden, H. M.; Arellano, A. F.; Anderson, J. L.

    2015-12-01

    Current satellite observations of tropospheric composition made from low Earth orbit provide at best one or two measurements each day at any given location. Comparisons of Terra/MOPITT carbon monoxide (CO) and IASI/Metop CO observation assimilations will be presented. We use the DART Ensemble Adjustment Kalman Filter to assimilate observations in the CAM-Chem global chemistry-climate model. Data assimilation impacts due to both different instrument capabilities (i.e. vertical sensitivity and global coverage) will be discussed. Coverage is global but sparse, often with large uncertainties in individual measurements that limit examination of local and regional atmospheric composition over short time periods. This has hindered the operational uptake of these data for monitoring air quality and population exposure, and for initializing and evaluating chemical weather forecasts. By the end of the current decade there are planned geostationary Earth orbit (GEO) satellite missions for atmospheric composition over North America, East Asia and Europe with additional missions proposed. Together, these present the possibility of a constellation of geostationary platforms to achieve continuous time-resolved high-density observations of continental domains for mapping pollutant sources and variability on diurnal and local scales. We describe Observing System Simulation Experiments (OSSEs) to evaluate the contributions of these GEO missions to improve knowledge of near-surface air pollution due to intercontinental long-range transport and quantify chemical precursor emissions. Our approach uses an efficient computational method to sample a high-resolution global GEOS-5 chemistry Nature Run over each geographical region of the GEO constellation. The demonstration carbon monoxide (CO) observation simulator, which will be expanded to other chemical pollutants, currently produces multispectral retrievals (MOPITT-like) and captures realistic scene-dependent variation in measurement

  6. Atlas Assimilation Patterns in Different Types of Adult Craniocervical Junction Malformations.

    PubMed

    Ferreira, Edson Dener Zandonadi; Botelho, Ricardo Vieira

    2015-11-01

    This is a cross-sectional analysis of resonance magnetic images of 111 patients with craniocervical malformations and those of normal subjects. To test the hypothesis that atlas assimilation is associated with basilar invagination (BI) and atlas's anterior arch assimilation is associated with craniocervical instability and type I BI. Atlas assimilation is the most common malformation in the craniocervical junction. This condition has been associated with craniocervical instability and BI in isolated cases. We evaluated midline Magnetic Resonance Images (MRIs) (and/or CT scans) from patients with craniocervical junction malformation and normal subjects. The patients were separated into 3 groups: Chiari type I malformation, BI type I, and type II. The atlas assimilations were classified according to their embryological origins as follows: posterior, anterior, and both arches assimilation. We studied the craniometric values of 111 subjects, 78 with craniocervical junction malformation and 33 without malformations. Of the 78 malformations, 51 patients had Chiari type I and 27 had BI, of whom 10 presented with type I and 17 with type II BI. In the Chiari group, 41 showed no assimilation of the atlas. In the type I BI group, all patients presented with anterior arch assimilation, either in isolation or associated with assimilation of the posterior arch. 63% of the patients with type II BI presented with posterior arch assimilation, either in isolation or associated with anterior arch assimilation. In the control group, no patients had atlas assimilation. Anterior atlas assimilation leads to type I BI. Posterior atlas assimilation more frequently leads to type II BI. Separation in terms of anterior versus posterior atlas assimilation reflects a more accurate understanding of the clinical and embryological differences in craniocervical junction malformations. N/A.

  7. Assimilation of atmospheric methane products into the MACC-II system: from SCIAMACHY to TANSO and IASI

    NASA Astrophysics Data System (ADS)

    Massart, S.; Agusti-Panareda, A.; Aben, I.; Butz, A.; Chevallier, F.; Crevosier, C.; Engelen, R.; Frankenberg, C.; Hasekamp, O.

    2014-06-01

    The Monitoring Atmospheric Composition and Climate Interim Implementation (MACC-II) delayed-mode (DM) system has been producing an atmospheric methane (CH4) analysis 6 months behind real time since June 2009. This analysis used to rely on the assimilation of the CH4 product from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument onboard Envisat. Recently the Laboratoire de Météorologie Dynamique (LMD) CH4 products from the Infrared Atmospheric Sounding Interferometer (IASI) and the SRON Netherlands Institute for Space Research CH4 products from the Thermal And Near-infrared Sensor for carbon Observation (TANSO) were added to the DM system. With the loss of Envisat in April 2012, the DM system now has to rely on the assimilation of methane data from TANSO and IASI. This paper documents the impact of this change in the observing system on the methane tropospheric analysis. It is based on four experiments: one free run and three analyses from respectively the assimilation of SCIAMACHY, TANSO and a combination of TANSO and IASI CH4 products in the MACC-II system. The period between December 2010 and April 2012 is studied. The SCIAMACHY experiment globally underestimates the tropospheric methane by 35 part per billion (ppb) compared to the HIAPER Pole-to-Pole Observations (HIPPO) data and by 28 ppb compared the Total Carbon Column Observing Network (TCCON) data, while the free run presents an underestimation of 5 ppb and 1 ppb against the same HIPPO and TCCON data, respectively. The assimilated TANSO product changed in October 2011 from version v.1 to version v.2.0. The analysis of version v.1 globally underestimates the tropospheric methane by 18 ppb compared to the HIPPO data and by 15 ppb compared to the TCCON data. In contrast, the analysis of version v.2.0 globally overestimates the column by 3 ppb. When the high density IASI data are added in the tropical region between 30° N and 30° S, their impact is mainly

  8. Variational Assimilation of GOME Total-Column Ozone Satellite Data in a 2D Latitude-Longitude Tracer-Transport Model.

    NASA Astrophysics Data System (ADS)

    Eskes, H. J.; Piters, A. J. M.; Levelt, P. F.; Allaart, M. A. F.; Kelder, H. M.

    1999-10-01

    A four-dimensional data-assimilation method is described to derive synoptic ozone fields from total-column ozone satellite measurements. The ozone columns are advected by a 2D tracer-transport model, using ECMWF wind fields at a single pressure level. Special attention is paid to the modeling of the forecast error covariance and quality control. The temporal and spatial dependence of the forecast error is taken into account, resulting in a global error field at any instant in time that provides a local estimate of the accuracy of the assimilated field. The authors discuss the advantages of the 4D-variational (4D-Var) approach over sequential assimilation schemes. One of the attractive features of the 4D-Var technique is its ability to incorporate measurements at later times t > t0 in the analysis at time t0, in a way consistent with the time evolution as described by the model. This significantly improves the offline analyzed ozone fields.

  9. Technical Report Series on Global Modeling and Data Assimilation. Volume 20; The Climate of the FVCCM-3 Model

    NASA Technical Reports Server (NTRS)

    Suarez, Max J. (Editor); Chang, Yehui; Schubert, Siegfried D.; Lin, Shian-Jiann; Nebuda, Sharon; Shen, Bo-Wen

    2001-01-01

    This document describes the climate of version 1 of the NASA-NCAR model developed at the Data Assimilation Office (DAO). The model consists of a new finite-volume dynamical core and an implementation of the NCAR climate community model (CCM-3) physical parameterizations. The version of the model examined here was integrated at a resolution of 2 degrees latitude by 2.5 degrees longitude and 32 levels. The results are based on assimilation that was forced with observed sea surface temperature and sea ice for the period 1979-1995, and are compared with NCEP/NCAR reanalyses and various other observational data sets. The results include an assessment of seasonal means, subseasonal transients including the Madden Julian Oscillation, and interannual variability. The quantities include zonal and meridional winds, temperature, specific humidity, geopotential height, stream function, velocity potential, precipitation, sea level pressure, and cloud radiative forcing.

  10. Assimilating solar-induced chlorophyll fluorescence into the terrestrial biosphere model BETHY-SCOPE v1.0: model description and information content

    NASA Astrophysics Data System (ADS)

    Norton, Alexander J.; Rayner, Peter J.; Koffi, Ernest N.; Scholze, Marko

    2018-04-01

    The synthesis of model and observational information using data assimilation can improve our understanding of the terrestrial carbon cycle, a key component of the Earth's climate-carbon system. Here we provide a data assimilation framework for combining observations of solar-induced chlorophyll fluorescence (SIF) and a process-based model to improve estimates of terrestrial carbon uptake or gross primary production (GPP). We then quantify and assess the constraint SIF provides on the uncertainty in global GPP through model process parameters in an error propagation study. By incorporating 1 year of SIF observations from the GOSAT satellite, we find that the parametric uncertainty in global annual GPP is reduced by 73 % from ±19.0 to ±5.2 Pg C yr-1. This improvement is achieved through strong constraint of leaf growth processes and weak to moderate constraint of physiological parameters. We also find that the inclusion of uncertainty in shortwave down-radiation forcing has a net-zero effect on uncertainty in GPP when incorporated into the SIF assimilation framework. This study demonstrates the powerful capacity of SIF to reduce uncertainties in process-based model estimates of GPP and the potential for improving our predictive capability of this uncertain carbon flux.

  11. The Estimation Theory Framework of Data Assimilation

    NASA Technical Reports Server (NTRS)

    Cohn, S.; Atlas, Robert (Technical Monitor)

    2002-01-01

    Lecture 1. The Estimation Theory Framework of Data Assimilation: 1. The basic framework: dynamical and observation models; 2. Assumptions and approximations; 3. The filtering, smoothing, and prediction problems; 4. Discrete Kalman filter and smoother algorithms; and 5. Example: A retrospective data assimilation system

  12. Assimilation of seasonal chlorophyll and nutrient data into an adjoint three-dimensional ocean carbon cycle model: Sensitivity analysis and ecosystem parameter optimization

    NASA Astrophysics Data System (ADS)

    Tjiputra, Jerry F.; Polzin, Dierk; Winguth, Arne M. E.

    2007-03-01

    An adjoint method is applied to a three-dimensional global ocean biogeochemical cycle model to optimize the ecosystem parameters on the basis of SeaWiFS surface chlorophyll observation. We showed with identical twin experiments that the model simulated chlorophyll concentration is sensitive to perturbation of phytoplankton and zooplankton exudation, herbivore egestion as fecal pellets, zooplankton grazing, and the assimilation efficiency parameters. The assimilation of SeaWiFS chlorophyll data significantly improved the prediction of chlorophyll concentration, especially in the high-latitude regions. Experiments that considered regional variations of parameters yielded a high seasonal variance of ecosystem parameters in the high latitudes, but a low variance in the tropical regions. These experiments indicate that the adjoint model is, despite the many uncertainties, generally capable to optimize sensitive parameters and carbon fluxes in the euphotic zone. The best fit regional parameters predict a global net primary production of 36 Pg C yr-1, which lies within the range suggested by Antoine et al. (1996). Additional constraints of nutrient data from the World Ocean Atlas showed further reduction in the model-data misfit and that assimilation with extensive data sets is necessary.

  13. Multi-Scale Hydrometeorological Modeling, Land Data Assimilation and Parameter Estimation with the Land Information System

    NASA Technical Reports Server (NTRS)

    Peters-Lidard, Christa D.

    2011-01-01

    The Land Information System (LIS; http://lis.gsfc.nasa.gov) is a flexible land surface modeling framework that has been developed with the goal of integrating satellite-and ground-based observational data products and advanced land surface modeling techniques to produce optimal fields of land surface states and fluxes. As such, LIS represents a step towards the next generation land component of an integrated Earth system model. In recognition of LIS object-oriented software design, use and impact in the land surface and hydrometeorological modeling community, the LIS software was selected as a co-winner of NASA?s 2005 Software of the Year award.LIS facilitates the integration of observations from Earth-observing systems and predictions and forecasts from Earth System and Earth science models into the decision-making processes of partnering agency and national organizations. Due to its flexible software design, LIS can serve both as a Problem Solving Environment (PSE) for hydrologic research to enable accurate global water and energy cycle predictions, and as a Decision Support System (DSS) to generate useful information for application areas including disaster management, water resources management, agricultural management, numerical weather prediction, air quality and military mobility assessment. LIS has e volved from two earlier efforts -- North American Land Data Assimilation System (NLDAS) and Global Land Data Assimilation System (GLDAS) that focused primarily on improving numerical weather prediction skills by improving the characterization of the land surface conditions. Both of GLDAS and NLDAS now use specific configurations of the LIS software in their current implementations.In addition, LIS was recently transitioned into operations at the US Air Force Weather Agency (AFWA) to ultimately replace their Agricultural Meteorology (AGRMET) system, and is also used routinely by NOAA's National Centers for Environmental Prediction (NCEP)/Environmental Modeling

  14. Assimilation of Unusual Carbon Compounds

    NASA Astrophysics Data System (ADS)

    Middelhoven, Wouter J.

    Yeast taxa traditionally are distinguished by growth tests on several sugars and organic acids. During the last decades it became apparent that many yeast species assimilate a much greater variety of naturally occurring carbon compounds as sole source of carbon and energy. These abilities are indicative of a greater role of yeasts in the carbon cycle than previously assumed. Especially in acidic soils and other habitats, yeasts may play a role in the degradation of carbon compounds. Such compounds include purines like uric acid and adenine, aliphatic amines, diamines and hydroxyamines, phenolics and other benzene compounds and polysaccharides. Assimilation of purines and amines is a feature of many ascomycetes and basidiomycetes. However, benzene compounds are degraded by only a few ascomycetous yeasts (e.g. the Stephanoascus/ Blastobotrys clade and black yeastlike fungi) but by many basidiomycetes, e.g. Filobasidiales, Trichosporonales, red yeasts producing ballistoconidia and related species, but not by Tremellales. Assimilation of polysaccharides is wide-spread among basidiomycetes

  15. New Space Weather Systems Under Development and Their Contribution to Space Weather Management

    NASA Astrophysics Data System (ADS)

    Tobiska, W.; Bouwer, D.; Schunk, R.; Garrett, H.; Mertens, C.; Bowman, B.

    2008-12-01

    There have been notable successes during the past decade in the development of operational space environment systems. Examples include the Magnetospheric Specification Model (MSM) of the Earth's magnetosphere, 2000; SOLAR2000 (S2K) solar spectral irradiances, 2001; High Accuracy Satellite Drag Model (HASDM) neutral atmosphere densities, 2004; Global Assimilation of Ionospheric Measurements (GAIM) ionosphere specification, 2006; Hakamada-Akasofu-Fry (HAF) solar wind parameters, 2007; Communication Alert and Prediction System (CAPS) ionosphere, high frequency radio, and scintillation S4 index prediction, 2008; and GEO Alert and Prediction System (GAPS) geosynchronous environment satellite charging specification and forecast, 2008. Operational systems that are in active operational implementation include the Jacchia-Bowman 2006/2008 (JB2006/2008) neutral atmosphere, 2009, and the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) aviation radiation model using the Radiation Alert and Prediction System (RAPS), 2010. U.S. national agency and commercial assets will soon reach a state where specification and prediction will become ubiquitous and where coordinated management of the space environment and space weather will become a necessity. We describe the status of the CAPS, GAPS, RAPS, and JB2008 operational development. We additionally discuss the conditions that are laying the groundwork for space weather management and estimate the unfilled needs as we move beyond specification and prediction efforts.

  16. Improving Weather Forecasts Through Reduced Precision Data Assimilation

    NASA Astrophysics Data System (ADS)

    Hatfield, Samuel; Düben, Peter; Palmer, Tim

    2017-04-01

    We present a new approach for improving the efficiency of data assimilation, by trading numerical precision for computational speed. Future supercomputers will allow a greater choice of precision, so that models can use a level of precision that is commensurate with the model uncertainty. Previous studies have already indicated that the quality of climate and weather forecasts is not significantly degraded when using a precision less than double precision [1,2], but so far these studies have not considered data assimilation. Data assimilation is inherently uncertain due to the use of relatively long assimilation windows, noisy observations and imperfect models. Thus, the larger rounding errors incurred from reducing precision may be within the tolerance of the system. Lower precision arithmetic is cheaper, and so by reducing precision in ensemble data assimilation, we can redistribute computational resources towards, for example, a larger ensemble size. Because larger ensembles provide a better estimate of the underlying distribution and are less reliant on covariance inflation and localisation, lowering precision could actually allow us to improve the accuracy of weather forecasts. We will present results on how lowering numerical precision affects the performance of an ensemble data assimilation system, consisting of the Lorenz '96 toy atmospheric model and the ensemble square root filter. We run the system at half precision (using an emulation tool), and compare the results with simulations at single and double precision. We estimate that half precision assimilation with a larger ensemble can reduce assimilation error by 30%, with respect to double precision assimilation with a smaller ensemble, for no extra computational cost. This results in around half a day extra of skillful weather forecasts, if the error-doubling characteristics of the Lorenz '96 model are mapped to those of the real atmosphere. Additionally, we investigate the sensitivity of these results

  17. A regional ionospheric TEC mapping technique over China and adjacent areas on the basis of data assimilation

    NASA Astrophysics Data System (ADS)

    Aa, Ercha; Huang, Wengeng; Yu, Shimei; Liu, Siqing; Shi, Liqin; Gong, Jiancun; Chen, Yanhong; Shen, Hua

    2015-06-01

    In this paper, a regional total electron content (TEC) mapping technique over China and adjacent areas (70°E-140°E and 15°N-55°N) is developed on the basis of a Kalman filter data assimilation scheme driven by Global Navigation Satellite Systems (GNSS) data from the Crustal Movement Observation Network of China and International GNSS Service. The regional TEC maps can be generated accordingly with the spatial and temporal resolution being 1°×1° and 5 min, respectively. The accuracy and quality of the TEC mapping technique have been validated through the comparison with GNSS observations, the International Reference Ionosphere model values, the global ionosphere maps from Center for Orbit Determination of Europe, and the Massachusetts Institute of Technology Automated Processing of GPS TEC data from Madrigal database. The verification results indicate that great systematic improvements can be obtained when data are assimilated into the background model, which demonstrates the effectiveness of this technique in providing accurate regional specification of the ionospheric TEC over China and adjacent areas.

  18. Assimilation of SMOS brightness temperatures in the ECMWF EKF for the analysis of soil moisture

    NASA Astrophysics Data System (ADS)

    Munoz-Sabater, Joaquin

    2012-07-01

    Since November 2nd 2009, the European Centre for Medium-Range Weather Forecasts (ECMWF) has being monitoring, in Near Real Time (NRT), L-band brightness temperatures measured by the Soil Moisture and Ocean Salinity (SMOS) satellite mission of the European Space Agency (ESA). The main objective of the monitoring suite for SMOS data is to systematically monitor the difference between SMOS observed brightness temperatures and the corresponding model equivalent simulated by the Community Microwave Emission Model (CMEM), the so-called first guess departures. This is a crucial step, as first guess departures is the quantity used in the analysis. The ultimate goal is to investigate how the assimilation of SMOS brightness temperatures over land improves the weather forecast skill, through a more accurate initialization of the global soil moisture state. In this presentation, some significant results from the activities preparing for the assimilation of SMOS data are shown. Among these activities, an effective data thinning strategy, a practical approach to reduce noise from the observed brightness temperatures and a bias correction scheme are of special interest. Firstly, SMOS data needs to be significantly thinned as the data volume delivered for a single orbit is too large for the current operational capabilities in any Numerical Weather Prediction system. Different thinning strategies have been analysed and tested. The most suitable one is the assimilation of SMOS brightness temperatures which match the ECMWF T511 (~40 km) reduced Gaussian Grid. Secondly, SMOS observational noise is reduced significantly by averaging the data in angular bins. In addition, this methodology contributes to further thinning of the SMOS data before the analysis. Finally, a bias correction scheme based on a CDF matching is applied to the observations to ensure an unbiased dataset ready for assimilation in the ECMWF surface analysis system. The current ECMWF operational soil moisture analysis

  19. Evaluation of Assimilative SST Forecasts in the Okinawa Trough and Gulf of Mexico

    DTIC Science & Technology

    2012-12-06

    Ruth H. Preller, 7300 Socurily, Code -- 1231 Office of 1008.3 ADOR/Director NCST E. R. Franchi , 7000 Public Affairs (Unclassified/ Unlimited Only...E. R. Franchi , 7000 Pubii<: Aifaini iiJneia5s;ii$(iF. · - Unlimited Only), Code 7030•4 0 ·-5 -J·z_...operational global ocean model GOFS 2.6. The SST level 2 data assimilated in these studies is provided by NAVOCEANO and introduced into NCODA via its OCNQC

  20. Multiscale Data Assimilation for Large-Eddy Simulations

    NASA Astrophysics Data System (ADS)

    Li, Z.; Cheng, X.; Gustafson, W. I., Jr.; Xiao, H.; Vogelmann, A. M.; Endo, S.; Toto, T.

    2017-12-01

    Large-eddy simulation (LES) is a powerful tool for understanding atmospheric turbulence, boundary layer physics and cloud development, and there is a great need for developing data assimilation methodologies that can constrain LES models. The U.S. Department of Energy Atmospheric Radiation Measurement (ARM) User Facility has been developing the capability to routinely generate ensembles of LES. The LES ARM Symbiotic Simulation and Observation (LASSO) project (https://www.arm.gov/capabilities/modeling/lasso) is generating simulations for shallow convection days at the ARM Southern Great Plains site in Oklahoma. One of major objectives of LASSO is to develop the capability to observationally constrain LES using a hierarchy of ARM observations. We have implemented a multiscale data assimilation (MSDA) scheme, which allows data assimilation to be implemented separately for distinct spatial scales, so that the localized observations can be effectively assimilated to constrain the mesoscale fields in the LES area of about 15 km in width. The MSDA analysis is used to produce forcing data that drive LES. With such LES workflow we have examined 13 days with shallow convection selected from the period May-August 2016. We will describe the implementation of MSDA, present LES results, and address challenges and opportunities for applying data assimilation to LES studies.

  1. The GEOS-5 Data Assimilation System-Documentation of Versions 5.0.1, 5.1.0, and 5.2.0

    NASA Technical Reports Server (NTRS)

    Suarez, Max J.; Rienecker, M. M.; Todling, R.; Bacmeister, J.; Takacs, L.; Liu, H. C.; Gu, W.; Sienkiewicz, M.; Koster, R. D.; Gelaro, R.; hide

    2008-01-01

    This report documents the GEOS-5 global atmospheric model and data assimilation system (DAS), including the versions 5.0.1, 5.1.0, and 5.2.0, which have been implemented in products distributed for use by various NASA instrument team algorithms and ultimately for the Modem Era Retrospective analysis for Research and Applications (MERRA). The DAS is the integration of the GEOS-5 atmospheric model with the Gridpoint Statistical Interpolation (GSI) Analysis, a joint analysis system developed by the NOAA/National Centers for Environmental Prediction and the NASA/Global Modeling and Assimilation Office. The primary performance drivers for the GEOS DAS are temperature and moisture fields suitable for the EOS instrument teams, wind fields for the transport studies of the stratospheric and tropospheric chemistry communities, and climate-quality analyses to support studies of the hydrological cycle through MERRA. The GEOS-5 atmospheric model has been approved for open source release and is available from: http://opensource.gsfc.nasa.gov/projects/GEOS-5/GEOS-5.php.

  2. Results of the Simulation and Assimilation of Doppler Wind Lidar Observations in Preparation for European Space Agency's Aeolus Mission

    NASA Technical Reports Server (NTRS)

    McCarty, Will

    2011-01-01

    With the launch of the European Space Agency's Aeolus Mission in 2013, direct spaceborne measurements of vertical wind profiles are imminent via Doppler wind lidar technology. Part of the preparedness for such missions is the development of the proper data assimilation methodology for handling such observations. Since no heritage measurements exist in space, the Joint Observing System Simulation Experiment (Joint OSSE) framework has been utilized to generate a realistic proxy dataset as a precursor to flight. These data are being used for the development of the Gridpoint Statistical Interpolation (GSI) data assimilation system utilized at a number of centers through the United States including the Global Modeling and Assimilation Office (GMAO) at NASA/Goddard Space Flight Center and at the National Centers for Environmental Prediction (NOAA/NWS/NCEP) as an activity through the Joint Center for Satellite Data Assimilation. An update of this ongoing effort will be presented, including the methodology of proxy data generation, the limitations of the proxy data, the handling of line-of-sight wind measurements within the GSI, and the impact on both analyses and forecasts with the addition of the new data type.

  3. Assimilation of passive and active CCI soil moisture products into hydrological modelling: an intercomparison study in Europe

    NASA Astrophysics Data System (ADS)

    Maggioni, V.; Massari, C.; Camici, S.; Brocca, L.; Marchesini, I.

    2017-12-01

    Soil moisture (SM) is a key variable in rainfall-runoff partitioning since it acts on the main hydrological processes taking part within a catchment. Modeling SM is often a difficult task due to its large variability at different temporal and spatial scales. Ground soil moisture measurements are a valuable tool for improving runoff prediction but are often limited and suffer from spatial representativeness issues. Remotely sensed observations offer a new source of data able to cope the latter issues thus opening new possibilities for improving flood simulations worldwide. Today, several different SM products are available at increased accuracy with respect to the past. Some interesting products are those derived from the Climate Change Initiative (CCI) which offer the most complete and most consistent global SM data record based on active and passive microwave sensors.Thanks to the combination of multiple sensors within an active, a passive and an active+passive products, the CCI SM is expected to provide a significant benefit for the improvement of rainfall-runoff simulations through data assimilation. However, previous studies have shown that the success of the assimilation is not only related to the accuracy of the observations but also to the specific climate and the catchment physical and hydrological characteristics as well as to many necessary choices related to the assimilation technique. These choices along with the type of SM observations (i.e. passive or active) might play an important role for the success or the failure of the assimilation exercise which is not still clear. In this study, based on a large dataset of catchments covering large part of the Europe, we assimilated satellite SM observations from the passive and the active CCI SM products into Modello Idrologico Semiditribuito in Continuo (MISDc, Brocca et al. 2011). Rainfall and temperature data were collected from the European Climate Assessment & Dataset (E-OBS) while discharge data were

  4. Toward a multivariate reanalysis of the North Atlantic ocean biogeochemistry during 1998-2006 based on the assimilation of SeaWiFS chlorophyll data

    NASA Astrophysics Data System (ADS)

    Fontana, C.; Brasseur, P.; Brankart, J.-M.

    2012-04-01

    Today, the routine assimilation of satellite data into operational models of the ocean circulation is mature enough to enable the production of global reanalyses describing the ocean circulation variability during the past decades. The expansion of the "reanalysis" concept from ocean physics to biogeochemistry is a timely challenge that motivates the present study. The objective of this paper is to investigate the potential benefits of assimilating satellite-estimated chlorophyll data into a basin-scale three-dimensional coupled physical-biogeochemical model of the North-Atlantic. The aim is on one hand to improve forecasts of ocean biogeochemical properties and on the other hand to define a methodology for producing data-driven climatologies based on coupled physical-biogeochemical modelling. A simplified variant of the Kalman filter is used to assimilate ocean color data during a 9 year-long period. In this frame, two experiences are carried out, with and without anamorphic transformations of the state vector variables. Data assimilation efficiency is assessed with respect to the assimilated data set, the nitrate World Ocean Atlas database and a derived climatology. Along the simulation period, the non-linear assimilation scheme clearly improves the surface chlorophyll concentrations analysis and forecast, especially in the North Atlantic bloom region. Nitrate concentration forecasts are also improved thanks to the assimilation of ocean color data while this improvement is limited to the upper layer of the water column, in agreement with recent related litterature. This feature is explained by the weak correlation taken into account by the assimilation between surface phytoplankton and nitrate concentration deeper than 50 m. The assessement of the non-linear assimilation experiments indicates that the proposed methodology provides the skeleton of an assimilative system suitable for reanalysing the ocean biogeochemistry based on ocean color data.

  5. Toward a multivariate reanalysis of the North Atlantic Ocean biogeochemistry during 1998-2006 based on the assimilation of SeaWiFS chlorophyll data

    NASA Astrophysics Data System (ADS)

    Fontana, C.; Brasseur, P.; Brankart, J.-M.

    2013-01-01

    Today, the routine assimilation of satellite data into operational models of ocean circulation is mature enough to enable the production of global reanalyses describing the ocean circulation variability during the past decades. The expansion of the "reanalysis" concept from ocean physics to biogeochemistry is a timely challenge that motivates the present study. The objective of this paper is to investigate the potential benefits of assimilating satellite-estimated chlorophyll data into a basin-scale three-dimensional coupled physical-biogeochemical model of the North Atlantic. The aim is on the one hand to improve forecasts of ocean biogeochemical properties and on the other hand to define a methodology for producing data-driven climatologies based on coupled physical-biogeochemical modeling. A simplified variant of the Kalman filter is used to assimilate ocean color data during a 9-year period. In this frame, two experiments are carried out, with and without anamorphic transformations of the state vector variables. Data assimilation efficiency is assessed with respect to the assimilated data set, nitrate of the World Ocean Atlas database and a derived climatology. Along the simulation period, the non-linear assimilation scheme clearly improves the surface analysis and forecast chlorophyll concentrations, especially in the North Atlantic bloom region. Nitrate concentration forecasts are also improved thanks to the assimilation of ocean color data while this improvement is limited to the upper layer of the water column, in agreement with recent related literature. This feature is explained by the weak correlation taken into account by the assimilation between surface phytoplankton and nitrate concentrations deeper than 50 meters. The assessment of the non-linear assimilation experiments indicates that the proposed methodology provides the skeleton of an assimilative system suitable for reanalyzing the ocean biogeochemistry based on ocean color data.

  6. Global phenotypic and genomic comparison of two Saccharomyces cerevisiae wine strains reveals a novel role of the sulfur assimilation pathway in adaptation at low temperature fermentations.

    PubMed

    García-Ríos, Estéfani; López-Malo, María; Guillamón, José Manuel

    2014-12-03

    The wine industry needs better-adapted yeasts to grow at low temperature because it is interested in fermenting at low temperature to improve wine aroma. Elucidating the response to cold in Saccharomyces cerevisiae is of paramount importance for the selection or genetic improvement of wine strains. We followed a global approach by comparing transcriptomic, proteomic and genomic changes in two commercial wine strains, which showed clear differences in their growth and fermentation capacity at low temperature. These strains were selected according to the maximum growth rate in a synthetic grape must during miniaturized batch cultures at different temperatures. The fitness differences of the selected strains were corroborated by directly competing during fermentations at optimum and low temperatures. The up-regulation of the genes of the sulfur assimilation pathway and glutathione biosynthesis suggested a crucial role in better performance at low temperature. The presence of some metabolites of these pathways, such as S-Adenosilmethionine (SAM) and glutathione, counteracted the differences in growth rate at low temperature in both strains. Generally, the proteomic and genomic changes observed in both strains also supported the importance of these metabolic pathways in adaptation at low temperature. This work reveals a novel role of the sulfur assimilation pathway in adaptation at low temperature. We propose that a greater activation of this metabolic route enhances the synthesis of key metabolites, such as glutathione, whose protective effects can contribute to improve the fermentation process.

  7. The impact of different background errors in the assimilation of satellite radiances and in-situ observational data using WRFDA for three rainfall events over Iran

    NASA Astrophysics Data System (ADS)

    Zakeri, Zeinab; Azadi, Majid; Ghader, Sarmad

    2018-01-01

    Satellite radiances and in-situ observations are assimilated through Weather Research and Forecasting Data Assimilation (WRFDA) system into Advanced Research WRF (ARW) model over Iran and its neighboring area. Domain specific background error based on x and y components of wind speed (UV) control variables is calculated for WRFDA system and some sensitivity experiments are carried out to compare the impact of global background error and the domain specific background errors, both on the precipitation and 2-m temperature forecasts over Iran. Three precipitation events that occurred over the country during January, September and October 2014 are simulated in three different experiments and the results for precipitation and 2-m temperature are verified against the verifying surface observations. Results show that using domain specific background error improves 2-m temperature and 24-h accumulated precipitation forecasts consistently, while global background error may even degrade the forecasts compared to the experiments without data assimilation. The improvement in 2-m temperature is more evident during the first forecast hours and decreases significantly as the forecast length increases.

  8. Assimilation of enterprise technology upgrades: a factor-based study

    NASA Astrophysics Data System (ADS)

    Claybaugh, Craig C.; Ramamurthy, Keshavamurthy; Haseman, William D.

    2017-02-01

    The purpose of this study is to gain a better understanding of the differences in the propensity of firms to initiate and commit to the assimilation of an enterprise technology upgrade. A research model is proposed that examines the influences that four technological and four organisational factors have on predicting assimilation of a technology upgrade. Results show that firms with a greater propensity to assimilate the new enterprise resource planning (ERP) version have a higher assessment of relative advantage, IS technical competence, and the strategic role of IS relative to those firms with a lower propensity to assimilate a new ERP version.

  9. FUSION++: A New Data Assimilative Model for Electron Density Forecasting

    NASA Astrophysics Data System (ADS)

    Bust, G. S.; Comberiate, J.; Paxton, L. J.; Kelly, M.; Datta-Barua, S.

    2014-12-01

    There is a continuing need within the operational space weather community, both civilian and military, for accurate, robust data assimilative specifications and forecasts of the global electron density field, as well as derived RF application product specifications and forecasts obtained from the electron density field. The spatial scales of interest range from a hundred to a few thousand kilometers horizontally (synoptic large scale structuring) and meters to kilometers (small scale structuring that cause scintillations). RF space weather applications affected by electron density variability on these scales include navigation, communication and geo-location of RF frequencies ranging from 100's of Hz to GHz. For many of these applications, the necessary forecast time periods range from nowcasts to 1-3 hours. For more "mission planning" applications, necessary forecast times can range from hours to days. In this paper we present a new ionosphere-thermosphere (IT) specification and forecast model being developed at JHU/APL based upon the well-known data assimilation algorithms Ionospheric Data Assimilation Four Dimensional (IDA4D) and Estimating Model Parameters from Ionospheric Reverse Engineering (EMPIRE). This new forecast model, "Forward Update Simple IONosphere model Plus IDA4D Plus EMPIRE (FUSION++), ingests data from observations related to electron density, winds, electric fields and neutral composition and provides improved specification and forecast of electron density. In addition, the new model provides improved specification of winds, electric fields and composition. We will present a short overview and derivation of the methodology behind FUSION++, some preliminary results using real observational sources, example derived RF application products such as HF bi-static propagation, and initial comparisons with independent data sources for validation.

  10. Assimilative domain proficiency and performance in chemistry coursework

    NASA Astrophysics Data System (ADS)

    Byrnes, Scott William

    The assimilation and synthesis of knowledge is essential for students to be successful in chemistry, yet not all students synthesize knowledge as intended. The study used the Learning Preference Checklist to classify students into one of three learning modalities -- visual, auditory, or kinesthetic (VAK). It also used the Kolb Learning Style Inventory (KLSI), which utilizes four learning domains - Converging, Accommodating, Diverging, and Assimilating - to explain the students' maturation process by showing shift from any domain towards the Assimilating domain. A shift approaching this domain was considered as improvement in the assimilation and synthesis of knowledge. This pre-experimental one-group pretest-posttest study was used to test the hypothesis that modifying a high school chemistry curriculum to accentuate a student's learning preference would result in a shift towards the Assimilative domain on the KLSI and if there was a correlation between the improvement in student learning and a shift towards the KLSI Assimilating domain. Forty-two high school students were issued the VAK and provided with differentiated instruction via homologous cooperative learning groups. Pre- and post-KLSI and chemistry concepts tests were administered. T test analyses showed no significant shift towards the Assimilating domain. Further Pearson's r analyses showed no significant correlation between the KLSI and exam scores. This study contributes to social change by providing empirical evidence related to the effectiveness infusing learning styles into the science curriculum and the integration of the KLSI to monitor cognitive development as tools in raising standardized test scores and enhancing academic achievement. Results from the study can also inform future research into learning styles through their incorporation into the science curriculum.

  11. Ten years of multiple data stream assimilation with the ORCHIDEE land surface model to improve regional to global simulated carbon budgets: synthesis and perspectives on directions for the future

    NASA Astrophysics Data System (ADS)

    Peylin, P. P.; Bacour, C.; MacBean, N.; Maignan, F.; Bastrikov, V.; Chevallier, F.

    2017-12-01

    Predicting the fate of carbon stocks and their sensitivity to climate change and land use/management strongly relies on our ability to accurately model net and gross carbon fluxes. However, simulated carbon and water fluxes remain subject to large uncertainties, partly because of unknown or poorly calibrated parameters. Over the past ten years, the carbon cycle data assimilation system at the Laboratoire des Sciences du Climat et de l'Environnement has investigated the benefit of assimilating multiple carbon cycle data streams into the ORCHIDEE LSM, the land surface component of the Institut Pierre Simon Laplace Earth System Model. These datasets have included FLUXNET eddy covariance data (net CO2 flux and latent heat flux) to constrain hourly to seasonal time-scale carbon cycle processes, remote sensing of the vegetation activity (MODIS NDVI) to constrain the leaf phenology, biomass data to constrain "slow" (yearly to decadal) processes of carbon allocation, and atmospheric CO2 concentrations to provide overall large scale constraints on the land carbon sink. Furthermore, we have investigated technical issues related to multiple data stream assimilation and choice of optimization algorithm. This has provided a wide-ranging perspective on the challenges we face in constraining model parameters and thus better quantifying, and reducing, model uncertainty in projections of the future global carbon sink. We review our past studies in terms of the impact of the optimization on key characteristics of the carbon cycle, e.g. the partition of the northern latitudes vs tropical land carbon sink, and compare to the classic atmospheric flux inversion approach. Throughout, we discuss our work in context of the abovementioned challenges, and propose solutions for the community going forward, including the potential of new observations such as atmospheric COS concentrations and satellite-derived Solar Induced Fluorescence to constrain the gross carbon fluxes of the ORCHIDEE

  12. Data assimilation of non-conventional observations using GEOS-R flash lightning: 1D+4D-VAR approach vs. assimilation of images (Invited)

    NASA Astrophysics Data System (ADS)

    Navon, M. I.; Stefanescu, R.

    2013-12-01

    Previous assimilation of lightning used nudging approaches. We develop three approaches namely, 3D-VAR WRFDA and1D+nD-VAR (n=3,4) WRFDA . The present research uses Convective Available Potential Energy (CAPE) as a proxy between lightning data and model variables. To test performance of aforementioned schemes, we assess quality of resulting analysis and forecasts of precipitation compared to those from a control experiment and verify them against NCEP stage IV precipitation. Results demonstrate that assimilating lightning observations improves precipitation statistics during the assimilation window and for 3-7 h thereafter. The 1D+4D-VAR approach yielded the best performance significantly improving precipitation rmse errors by 25% and 27.5%,compared to control during the assimilation window for two tornadic test cases. Finally we propose a new approach to assimilate 2-D images of lightning flashes based on pixel intensity, mitigating dimensionality by a reduced order method.

  13. Understanding nitrate assimilation and its regulation in microalgae

    PubMed Central

    Sanz-Luque, Emanuel; Chamizo-Ampudia, Alejandro; Llamas, Angel; Galvan, Aurora; Fernandez, Emilio

    2015-01-01

    Nitrate assimilation is a key process for nitrogen (N) acquisition in green microalgae. Among Chlorophyte algae, Chlamydomonas reinhardtii has resulted to be a good model system to unravel important facts of this process, and has provided important insights for agriculturally relevant plants. In this work, the recent findings on nitrate transport, nitrate reduction and the regulation of nitrate assimilation are presented in this and several other algae. Latest data have shown nitric oxide (NO) as an important signal molecule in the transcriptional and posttranslational regulation of nitrate reductase and inorganic N transport. Participation of regulatory genes and proteins in positive and negative signaling of the pathway and the mechanisms involved in the regulation of nitrate assimilation, as well as those involved in Molybdenum cofactor synthesis required to nitrate assimilation, are critically reviewed. PMID:26579149

  14. The NERC Data Assimilation Research Centre and Envisat

    NASA Astrophysics Data System (ADS)

    LAHOZ, W. A.

    2001-12-01

    The NERC Data Assimilation Research Centre (DARC), a Centre of Excellence in Earth Observation, has been recently set up in the UK. DARC is a distributed centre, with participation from the universities of Reading, Oxford, Cambridge and Edinburgh, and the Rutherford Appleton Laboratory. It has strong links with the UK Met Office, and with European data assimilation groups. One of the remits of DARC is the exploitation of research satellite data (e.g. from ESA's Envisat, due to be launched in November 2001). This presentation will describe the participation of DARC in the Envisat programme. This participation involves: (1) the calibration/validation of Envisat data using an NWP assimilation system, and (2) the production of 4-d quality-controlled datasets of temperature, ozone and water vapour from Envisat using an NWP assimilation system.

  15. Nitrogen Assimilation in Escherichia coli: Putting Molecular Data into a Systems Perspective

    PubMed Central

    van Heeswijk, Wally C.; Westerhoff, Hans V.

    2013-01-01

    SUMMARY We present a comprehensive overview of the hierarchical network of intracellular processes revolving around central nitrogen metabolism in Escherichia coli. The hierarchy intertwines transport, metabolism, signaling leading to posttranslational modification, and transcription. The protein components of the network include an ammonium transporter (AmtB), a glutamine transporter (GlnHPQ), two ammonium assimilation pathways (glutamine synthetase [GS]-glutamate synthase [glutamine 2-oxoglutarate amidotransferase {GOGAT}] and glutamate dehydrogenase [GDH]), the two bifunctional enzymes adenylyl transferase/adenylyl-removing enzyme (ATase) and uridylyl transferase/uridylyl-removing enzyme (UTase), the two trimeric signal transduction proteins (GlnB and GlnK), the two-component regulatory system composed of the histidine protein kinase nitrogen regulator II (NRII) and the response nitrogen regulator I (NRI), three global transcriptional regulators called nitrogen assimilation control (Nac) protein, leucine-responsive regulatory protein (Lrp), and cyclic AMP (cAMP) receptor protein (Crp), the glutaminases, and the nitrogen-phosphotransferase system. First, the structural and molecular knowledge on these proteins is reviewed. Thereafter, the activities of the components as they engage together in transport, metabolism, signal transduction, and transcription and their regulation are discussed. Next, old and new molecular data and physiological data are put into a common perspective on integral cellular functioning, especially with the aim of resolving counterintuitive or paradoxical processes featured in nitrogen assimilation. Finally, we articulate what still remains to be discovered and what general lessons can be learned from the vast amounts of data that are available now. PMID:24296575

  16. The dynamic radiation environment assimilation model (DREAM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reeves, Geoffrey D; Koller, Josef; Tokar, Robert L

    2010-01-01

    The Dynamic Radiation Environment Assimilation Model (DREAM) is a 3-year effort sponsored by the US Department of Energy to provide global, retrospective, or real-time specification of the natural and potential nuclear radiation environments. The DREAM model uses Kalman filtering techniques that combine the strengths of new physical models of the radiation belts with electron observations from long-term satellite systems such as GPS and geosynchronous systems. DREAM includes a physics model for the production and long-term evolution of artificial radiation belts from high altitude nuclear explosions. DREAM has been validated against satellites in arbitrary orbits and consistently produces more accurate resultsmore » than existing models. Tools for user-specific applications and graphical displays are in beta testing and a real-time version of DREAM has been in continuous operation since November 2009.« less

  17. Data Assimilation Experiments using Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2008-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AlRS data. Version 5 contains accurate case-by-case error estimates for most derived products, which are also used for quality control. We have conducted forecast impact experiments assimilating AlRS quality controlled temperature profiles using the NASA GEOS-5 data assimilation system, consisting of the NCEP GSI analysis coupled with the NASA FVGCM. Assimilation of quality controlled temperature profiles resulted in significantly improved forecast skill in both the Northern Hemisphere and Southern Hemisphere Extra-Tropics, compared to that obtained from analyses obtained when all data used operationally by NCEP except for AlRS data is assimilated. Experiments using different Quality Control thresholds for assimilation of AlRS temperature retrievals showed that a medium quality control threshold performed better than a tighter threshold, which provided better overall sounding accuracy; or a looser threshold, which provided better spatial coverage of accepted soundings. We are conducting more experiments to further optimize this balance of spatial coverage and sounding accuracy from the data assimilation perspective. In all cases, temperature soundings were assimilated well below cloud level in partially cloudy cases. The positive impact of assimilating AlRS derived atmospheric temperatures all but vanished when only AIRS stratospheric temperatures were assimilated. Forecast skill resulting from assimilation of AlRS radiances uncontaminated by clouds, instead of AlRS temperature soundings, was only slightly better than that resulting from assimilation of only stratospheric AlRS temperatures. This reduction in forecast skill is most likely the result of significant loss of tropospheric information when only AIRS radiances unaffected by clouds are used in the data assimilation process.

  18. Benefits and Pitfalls of GRACE Terrestrial Water Storage Data Assimilation

    NASA Technical Reports Server (NTRS)

    Girotto, Manuela

    2018-01-01

    Satellite observations of terrestrial water storage (TWS) from the Gravity Recovery and Climate Experiment (GRACE) mission have a coarse resolution in time (monthly) and space (roughly 150,000 sq km at midlatitudes) and vertically integrate all water storage components over land, including soil moisture and groundwater. Nonetheless, data assimilation can be used to horizontally downscale and vertically partition GRACE-TWS observations. This presentation illustrates some of the benefits and drawbacks of assimilating TWS observations from GRACE into a land surface model over the continental United States and India. The assimilation scheme yields improved skill metrics for groundwater compared to the no-assimilation simulations. A smaller impact is seen for surface and root-zone soil moisture. Further, GRACE observes TWS depletion associated with anthropogenic groundwater extraction. Results from the assimilation emphasize the importance of representing anthropogenic processes in land surface modeling and data assimilation systems.

  19. Regulation of nitrate assimilation in cyanobacteria.

    PubMed

    Ohashi, Yoshitake; Shi, Wei; Takatani, Nobuyuki; Aichi, Makiko; Maeda, Shin-ichi; Watanabe, Satoru; Yoshikawa, Hirofumi; Omata, Tatsuo

    2011-02-01

    Nitrate assimilation by cyanobacteria is inhibited by the presence of ammonium in the growth medium. Both nitrate uptake and transcription of the nitrate assimilatory genes are regulated. The major intracellular signal for the regulation is, however, not ammonium or glutamine, but 2-oxoglutarate (2-OG), whose concentration changes according to the change in cellular C/N balance. When nitrogen is limiting growth, accumulation of 2-OG activates the transcription factor NtcA to induce transcription of the nitrate assimilation genes. Ammonium inhibits transcription by quickly depleting the 2-OG pool through its metabolism via the glutamine synthetase/glutamate synthase cycle. The P(II) protein inhibits the ABC-type nitrate transporter, and also nitrate reductase in some strains, by an unknown mechanism(s) when the cellular 2-OG level is low. Upon nitrogen limitation, 2-OG binds to P(II) to prevent the protein from inhibiting nitrate assimilation. A pathway-specific transcriptional regulator NtcB activates the nitrate assimilation genes in response to nitrite, either added to the medium or generated intracellularly by nitrate reduction. It plays an important role in selective activation of the nitrate assimilation pathway during growth under a limited supply of nitrate. P(II) was recently shown to regulate the activity of NtcA negatively by binding to PipX, a small coactivator protein of NtcA. On the basis of accumulating genome information from a variety of cyanobacteria and the molecular genetic data obtained from the representative strains, common features and group- or species-specific characteristics of the response of cyanobacteria to nitrogen is summarized and discussed in terms of ecophysiological significance.

  20. Global Ocean Prediction with the HYbrid Coordinate Ocean Model, HYCOM

    NASA Astrophysics Data System (ADS)

    Chassignet, E.

    A broad partnership of institutions is collaborating in developing and demonstrating the performance and application of eddy-resolving, real-time global and Atlantic ocean prediction systems using the the HYbrid Coordinate Ocean Model (HYCOM). These systems will be transitioned for operational use by both the U.S. Navy at the Naval Oceanographic Office (NAVOCEANO), Stennis Space Center, MS, and the Fleet Numerical Meteorology and Oceanography Centre (FNMOC), Monterey, CA, and by NOAA at the National Centers for Environmental Prediction (NCEP), Washington, D.C. These systems will run efficiently on a variety of massively parallel computers and will include sophisticated data assimilation techniques for assimilation of satellite altimeter sea surface height and sea surface temperature as well as in situ temperature, salinity, and float displacement. The Partnership addresses the Global Ocean Data Assimilation Experiment (GODAE) goals of three-dimensional (3D) depiction of the ocean state at fine resolution in real-time and provision of boundary conditions for coastal and regional models. An overview of the effort will be presented.

  1. Implicit assimilation for marine ecological models

    NASA Astrophysics Data System (ADS)

    Weir, B.; Miller, R.; Spitz, Y. H.

    2012-12-01

    We use a new data assimilation method to estimate the parameters of a marine ecological model. At a given point in the ocean, the estimated values of the parameters determine the behaviors of the modeled planktonic groups, and thus indicate which species are dominant. To begin, we assimilate in situ observations, e.g., the Bermuda Atlantic Time-series Study, the Hawaii Ocean Time-series, and Ocean Weather Station Papa. From there, we estimate the parameters at surrounding points in space based on satellite observations of ocean color. Given the variation of the estimated parameters, we divide the ocean into regions meant to represent distinct ecosystems. An important feature of the data assimilation approach is that it refines the confidence limits of the optimal Gaussian approximation to the distribution of the parameters. This enables us to determine the ecological divisions with greater accuracy.

  2. On the role of perception in shaping phonological assimilation rules.

    PubMed

    Hura, S L; Lindblom, B; Diehl, R L

    1992-01-01

    Assimilation of nasals to the place of articulation of following consonants is a common and natural process among the world's languages. Recent phonological theory attributes this naturalness to the postulated geometry of articulatory features and the notion of spreading (McCarthy, 1988). Others view assimilation as a result of perception (Ohala, 1990), or as perceptually tolerated articulatory simplification (Kohler, 1990). Kohler notes that certain consonant classes (such as nasals and stops) are more likely than other classes (such as fricatives) to undergo place assimilation to a following consonant. To explain this pattern, he proposes that assimilation tends not to occur when the members of a consonant class are relatively distinctive perceptually, such that their articulatory reduction would be particularly salient. This explanation, of course, presupposes that the stops and nasals which undergo place assimilation are less distinctive than fricatives, which tend not to assimilate. We report experimental results that confirm Kohler's perceptual assumption: In the context of a following word initial stop, fricatives were less confusable than nasals or unreleased stops. We conclude, in agreement with Ohala and Kohler, that perceptual factors are likely to shape phonological assimilation rules.

  3. Ring Current Pressure Estimation withRAM-SCB using Data Assimilation and VanAllen Probe Flux Data

    NASA Astrophysics Data System (ADS)

    Godinez, H. C.; Yu, Y.; Henderson, M. G.; Larsen, B.; Jordanova, V.

    2015-12-01

    Capturing and subsequently modeling the influence of tail plasma injections on the inner magnetosphere is particularly important for understanding the formation and evolution of Earth's ring current. In this study, the ring current distribution is estimated with the Ring Current-Atmosphere Interactions Model with Self-Consistent Magnetic field (RAM-SCB) using, for the first time, data assimilation techniques and particle flux data from the Van Allen Probes. The state of the ring current within the RAM-SCB is corrected via an ensemble based data assimilation technique by using proton flux from one of the Van Allen Probes, to capture the enhancement of ring current following an isolated substorm event on July 18 2013. The results show significant improvement in the estimation of the ring current particle distributions in the RAM-SCB model, leading to better agreement with observations. This newly implemented data assimilation technique in the global modeling of the ring current thus provides a promising tool to better characterize the effect of substorm injections in the near-Earth regions. The work is part of the Space Hazards Induced near Earth by Large, Dynamic Storms (SHIELDS) project in Los Alamos National Laboratory.

  4. Short-Term Retrospective Land Data Assimilation Schemes

    NASA Technical Reports Server (NTRS)

    Houser, P. R.; Cosgrove, B. A.; Entin, J. K.; Lettenmaier, D.; ODonnell, G.; Mitchell, K.; Marshall, C.; Lohmann, D.; Schaake, J. C.; Duan, Q.; hide

    2000-01-01

    Subsurface moisture and temperature and snow/ice stores exhibit persistence on various time scales that has important implications for the extended prediction of climatic and hydrologic extremes. Hence, to improve their specification of the land surface, many numerical weather prediction (NWP) centers have incorporated complex land surface schemes in their forecast models. However, because land storages are integrated states, errors in NWP forcing accumulates in these stores, which leads to incorrect surface water and energy partitioning. This has motivated the development of Land Data Assimilation Schemes (LDAS) that can be used to constrain NWP surface storages. An LDAS is an uncoupled land surface scheme that is forced primarily by observations, and is therefore less affected by NWP forcing biases. The implementation of an LDAS also provides the opportunity to correct the model's trajectory using remotely-sensed observations of soil temperature, soil moisture, and snow using data assimilation methods. The inclusion of data assimilation in LDAS will greatly increase its predictive capacity, as well as provide high-quality land surface assimilated data.

  5. SMOS brightness temperature assimilation into the Community Land Model

    NASA Astrophysics Data System (ADS)

    Rains, Dominik; Han, Xujun; Lievens, Hans; Montzka, Carsten; Verhoest, Niko E. C.

    2017-11-01

    SMOS (Soil Moisture and Ocean Salinity mission) brightness temperatures at a single incident angle are assimilated into the Community Land Model (CLM) across Australia to improve soil moisture simulations. Therefore, the data assimilation system DasPy is coupled to the local ensemble transform Kalman filter (LETKF) as well as to the Community Microwave Emission Model (CMEM). Brightness temperature climatologies are precomputed to enable the assimilation of brightness temperature anomalies, making use of 6 years of SMOS data (2010-2015). Mean correlation R with in situ measurements increases moderately from 0.61 to 0.68 (11 %) for upper soil layers if the root zone is included in the updates. A reduced improvement of 5 % is achieved if the assimilation is restricted to the upper soil layers. Root-zone simulations improve by 7 % when updating both the top layers and root zone, and by 4 % when only updating the top layers. Mean increments and increment standard deviations are compared for the experiments. The long-term assimilation impact is analysed by looking at a set of quantiles computed for soil moisture at each grid cell. Within hydrological monitoring systems, extreme dry or wet conditions are often defined via their relative occurrence, adding great importance to assimilation-induced quantile changes. Although still being limited now, longer L-band radiometer time series will become available and make model output improved by assimilating such data that are more usable for extreme event statistics.

  6. A Real-Time Assimilative Model for IRI

    NASA Astrophysics Data System (ADS)

    Reinisch, B. W.; Huang, X.; Galkin, I.; Bilitza, D.

    2012-04-01

    Ionospheric models are mostly unable to correctly predict the effects of space weather events and atmospheric disturbances on the ionosphere. This is especially true for the International Reference Ionosphere (IRI) which by design is a monthly median (climatological) model [Bilitza et al., 2011]. We propose a Real-Time Assimilative Model "RTAM" for IRI that is ingesting, initially, the available real-time Digisonde GIRO [Reinisch and Galkin, 2011] data streams: foF2/hmF2, MUF3000F2, foF1/hmF1, and foE/hmF2 [Galkin et al., 2011]. Deviations of these characteristics, especially foF2, from the monthly median values are the main cause for errors in the IRI model prediction. The assimilative modeling will provide a high-resolution, global picture of the ionospheric response to various short-term events observed during periods of storm activity or the impact of gravity waves coupling the ionosphere to the lower atmosphere, including timelines of the vertical restructuring of the plasma distribution. GIRO currently provides reliable real-time data from 42 stations at a cadence of 15 min or 5 min. The number of stations is rapidly growing and is likely to soon be complemented by satellite borne topside sounders. IRI uses the characteristics predictions based on CCIR/URSI maps of coefficients. The diurnal variation of the foF2 characteristic, for example, is presented by the Fourier series Σ6 foF 2(T, φ,λ,χ) = a0(φ,λ,χ)+ (an(φ,λ,χ)cosnT + bn(φ,λ,χ)sin nT), n=1 where T is Universal Time in hours, and φ, λ, χ are the geographic latitude, longitude, and modified dip latitude, respectively. The coefficients an are in turn expanded as functions φ, λ, χ resulting in a set of 24 global maps of 988 coefficients each, one for each month of the year and for two levels of solar activity, R12=10 and 100, where R12 is the 12-month running-mean of the monthly sunspot number Rm (2*12*988 = 23,712 coefficients in all) [ITU-R, 2011]. For a given point in time, 988

  7. Impact of advanced technology microwave sounder data in the NCMRWF 4D-VAR data assimilation system

    NASA Astrophysics Data System (ADS)

    Rani, S. Indira; Srinivas, D.; Mallick, Swapan; George, John P.

    2016-05-01

    This study demonstrates the added benefits of assimilating the Advanced Technology Microwave Sounder (ATMS) radiances from the Suomi-NPP satellite in the NCMRWF Unified Model (NCUM). ATMS is a cross-track scanning microwave radiometer inherited the legacy of two very successful instrument namely, Advanced Microwave Sounding Unit-A (AMSU-A) and Microwave Humidity Sounder (MHS). ATMS has 22 channels: 11 temperature sounding channels around 50-60 GHz oxygen band and 6 moisture sounding channels around the 183GHz water vapour band in addition to 5 channels sensitive to the surface in clear conditions, or to water vapour, rain, and cloud when conditions are not clear (at 23, 31, 50, 51 and 89 GHz). Before operational assimilation of any new observation by NWP centres it is standard practice to assess data quality with respect to NWP model background (short-forecast) fields. Quality of all channels is estimated against the model background and the biases are computed and compared against that from the similar observations. The impact of the ATMS data on global analyses and forecasts is tested by adding the ATMS data in the NCUM Observation Processing system (OPS) and 4D-Var variational assimilation (VAR) system. This paper also discusses the pre-operational numerical experiments conducted to assess the impact of ATMS radiances in the NCUM assimilation system. It is noted that the performance of ATMS is stable and it contributes to the performance of the model, complimenting observations from other instruments.

  8. The Met Office Coupled Atmosphere/Land/Ocean/Sea-Ice Data Assimilation System

    NASA Astrophysics Data System (ADS)

    Lea, Daniel; Mirouze, Isabelle; King, Robert; Martin, Matthew; Hines, Adrian

    2015-04-01

    The Met Office has developed a weakly-coupled data assimilation (DA) system using the global coupled model HadGEM3 (Hadley Centre Global Environment Model, version 3). At present the analysis from separate ocean and atmosphere DA systems are combined to produced coupled forecasts. The aim of coupled DA is to produce a more consistent analysis for coupled forecasts which may lead to less initialisation shock and improved forecast performance. The HadGEM3 coupled model combines the atmospheric model UM (Unified Model) at 60 km horizontal resolution on 85 vertical levels, the ocean model NEMO (Nucleus for European Modelling of the Ocean) at 25 km (at the equator) horizontal resolution on 75 vertical levels, and the sea-ice model CICE at the same resolution as NEMO. The atmosphere and the ocean/sea-ice fields are coupled every 1-hour using the OASIS coupler. The coupled model is corrected using two separate 6-hour window data assimilation systems: a 4D-Var for the atmosphere with associated soil moisture content nudging and snow analysis schemes on the one hand, and a 3D-Var FGAT for the ocean and sea-ice on the other hand. The background information in the DA systems comes from a previous 6-hour forecast of the coupled model. To isolate the impact of the coupled DA, 13-month experiments have been carried out, including 1) a full atmosphere/land/ocean/sea-ice coupled DA run, 2) an atmosphere-only run forced by OSTIA SSTs and sea-ice with atmosphere and land DA, and 3) an ocean-only run forced by atmospheric fields from run 2 with ocean and sea-ice DA. In addition, 5-day and 10-day forecast runs, have been produced from initial conditions generated by either run 1 or a combination of runs 2 and 3. The different results have been compared to each other and, whenever possible, to other references such as the Met Office atmosphere and ocean operational analyses or the OSTIA SST data. The performance of the coupled DA is similar to the existing separate ocean and atmosphere

  9. Can Assimilation of Satellite Ozone Data Contribute to the Understanding of the Lower Stratospheric Ozone?

    NASA Technical Reports Server (NTRS)

    Stajner, I.; Wargan, K.; Pawson, S.; Hayashi, H.; Chang, L.-P.; Rood, R.

    2004-01-01

    We study the quality of lower stratospheric ozone fields from a three- dimensional global ozone assimilation system. Ozone in this region is important for the forcing of climate, but its global distribution is not fully known because of its large temporal and vertical variability. Modeled fields often have biases due to the inaccurate representation of transport processes in this region with strong gradients. Accurate ozonesonde or satellite occultation measurements have very limited coverage. Nadir measurements, such as those from the Solar Backscatter Ultraviolet/2 (SBUV/2) instrument that provide wide latitudinal coverage, lack the vertical resolution needed to represent sharp vertical features. Limb measurements, such as those from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), provide a finer vertical resolution. We show that assimilation of MIPAS data in addition to SBUV/2 data leads to better estimates of ozone in comparison with independent high quality satellite, aircraft, and ozone sonde measurements. Other modifications to the statistical analysis that have an impact on the lower stratospheric ozone will be mentioned: error covariance modeling and data selection. Direct and indirect impacts of transport and chemistry models will be discussed. Implications for multi-year analyses and short-tern prediction will be addressed.

  10. Assimilation of Passive and Active Microwave Soil Moisture Retrievals

    NASA Technical Reports Server (NTRS)

    Draper, C. S.; Reichle, R. H.; DeLannoy, G. J. M.; Liu, Q.

    2012-01-01

    Root-zone soil moisture is an important control over the partition of land surface energy and moisture, and the assimilation of remotely sensed near-surface soil moisture has been shown to improve model profile soil moisture [1]. To date, efforts to assimilate remotely sensed near-surface soil moisture at large scales have focused on soil moisture derived from the passive microwave Advanced Microwave Scanning Radiometer (AMSR-E) and the active Advanced Scatterometer (ASCAT; together with its predecessor on the European Remote Sensing satellites (ERS. The assimilation of passive and active microwave soil moisture observations has not yet been directly compared, and so this study compares the impact of assimilating ASCAT and AMSR-E soil moisture data, both separately and together. Since the soil moisture retrieval skill from active and passive microwave data is thought to differ according to surface characteristics [2], the impact of each assimilation on the model soil moisture skill is assessed according to land cover type, by comparison to in situ soil moisture observations.

  11. Assimilating Eulerian and Lagrangian data in traffic-flow models

    NASA Astrophysics Data System (ADS)

    Xia, Chao; Cochrane, Courtney; DeGuire, Joseph; Fan, Gaoyang; Holmes, Emma; McGuirl, Melissa; Murphy, Patrick; Palmer, Jenna; Carter, Paul; Slivinski, Laura; Sandstede, Björn

    2017-05-01

    Data assimilation of traffic flow remains a challenging problem. One difficulty is that data come from different sources ranging from stationary sensors and camera data to GPS and cell phone data from moving cars. Sensors and cameras give information about traffic density, while GPS data provide information about the positions and velocities of individual cars. Previous methods for assimilating Lagrangian data collected from individual cars relied on specific properties of the underlying computational model or its reformulation in Lagrangian coordinates. These approaches make it hard to assimilate both Eulerian density and Lagrangian positional data simultaneously. In this paper, we propose an alternative approach that allows us to assimilate both Eulerian and Lagrangian data. We show that the proposed algorithm is accurate and works well in different traffic scenarios and regardless of whether ensemble Kalman or particle filters are used. We also show that the algorithm is capable of estimating parameters and assimilating real traffic observations and synthetic observations obtained from microscopic models.

  12. Calibration of a rainfall-runoff hydrological model and flood simulation using data assimilation

    NASA Astrophysics Data System (ADS)

    Piacentini, A.; Ricci, S. M.; Thual, O.; Coustau, M.; Marchandise, A.

    2010-12-01

    velocity travel before the flood peak. These optimal values are used for a new simulation of the event in forecast mode (under the assumption of perfect rain-fall). On both catchments, it was shown over a significant number of flood events, that the data assimilation procedure improves the flood peak forecast. The improvement is globally more important for the Gardon d'Anduze catchment where the flood events are stronger. The peak can be forecasted up to 36 hours head of time assimilating very few observations (up to 4) during the rise of the water level. For multiple peaks events, the assimilation of the observations from the first peak leads to a significant improvement of the second peak simulation. It was also shown that the flood rise is often faster in reality than it is represented by the model. In this case and when the flood peak is under estimated in the simulation, the use of the first observations can be misleading for the data assimilation algorithm. The careful estimation of the observation and background error variances enabled the satisfying use of the data assimilation in these complex cases even though it does not allow the model error correction.

  13. The use of satellite data assimilation methods in regional NWP for solar irradiance forecasting

    NASA Astrophysics Data System (ADS)

    Kurzrock, Frederik; Cros, Sylvain; Chane-Ming, Fabrice; Potthast, Roland; Linguet, Laurent; Sébastien, Nicolas

    2016-04-01

    As an intermittent energy source, the injection of solar power into electricity grids requires irradiance forecasting in order to ensure grid stability. On time scales of more than six hours ahead, numerical weather prediction (NWP) is recognized as the most appropriate solution. However, the current representation of clouds in NWP models is not sufficiently precise for an accurate forecast of solar irradiance at ground level. Dynamical downscaling does not necessarily increase the quality of irradiance forecasts. Furthermore, incorrectly simulated cloud evolution is often the cause of inaccurate atmospheric analyses. In non-interconnected tropical areas, the large amplitudes of solar irradiance variability provide abundant solar yield but present significant problems for grid safety. Irradiance forecasting is particularly important for solar power stakeholders in these regions where PV electricity penetration is increasing. At the same time, NWP is markedly more challenging in tropic areas than in mid-latitudes due to the special characteristics of tropical homogeneous convective air masses. Numerous data assimilation methods and strategies have evolved and been applied to a large variety of global and regional NWP models in the recent decades. Assimilating data from geostationary meteorological satellites is an appropriate approach. Indeed, models converting radiances measured by satellites into cloud properties already exist. Moreover, data are available at high temporal frequencies, which enable a pertinent cloud cover evolution modelling for solar energy forecasts. In this work, we present a survey of different approaches which aim at improving cloud cover forecasts using the assimilation of geostationary meteorological satellite data into regional NWP models. Various approaches have been applied to a variety of models and satellites and in different regions of the world. Current methods focus on the assimilation of cloud-top information, derived from infrared

  14. Multi-year assimilation of IASI and MLS ozone retrievals: variability of tropospheric ozone over the tropics in response to ENSO

    NASA Astrophysics Data System (ADS)

    Peiro, Hélène; Emili, Emanuele; Cariolle, Daniel; Barret, Brice; Le Flochmoën, Eric

    2018-05-01

    The Infrared Atmospheric Sounder Instrument (IASI) allows global coverage with very high spatial resolution and its measurements are promising for long-term ozone monitoring. In this study, Microwave Limb Sounder (MLS) O3 profiles and IASI O3 partial columns (1013.25-345 hPa) are assimilated in a chemistry transport model to produce 6-hourly analyses of tropospheric ozone for 6 years (2008-2013). We have compared and evaluated the IASI-MLS analysis and the MLS analysis to assess the added value of IASI measurements. The global chemical transport model MOCAGE (MOdèle de Chimie Atmosphérique à Grande Echelle) has been used with a linear ozone chemistry scheme and meteorological forcing fields from ERA-Interim (ECMWF global reanalysis) with a horizontal resolution of 2° × 2° and 60 vertical levels. The MLS and IASI O3 retrievals have been assimilated with a 4-D variational algorithm to constrain stratospheric and tropospheric ozone respectively. The ozone analyses are validated against ozone soundings and tropospheric column ozone (TCO) from the OMI-MLS residual method. In addition, an Ozone ENSO Index (OEI) is computed from the analysis to validate the TCO variability during the ENSO events. We show that the assimilation of IASI reproduces the variability of tropospheric ozone well during the period under study. The variability deduced from the IASI-MLS analysis and the OMI-MLS measurements are similar for the period of study. The IASI-MLS analysis can reproduce the extreme oscillation of tropospheric ozone caused by ENSO events over the tropical Pacific Ocean, although a correction is required to reduce a constant bias present in the IASI-MLS analysis.

  15. Scalable and balanced dynamic hybrid data assimilation

    NASA Astrophysics Data System (ADS)

    Kauranne, Tuomo; Amour, Idrissa; Gunia, Martin; Kallio, Kari; Lepistö, Ahti; Koponen, Sampsa

    2017-04-01

    Scalability of complex weather forecasting suites is dependent on the technical tools available for implementing highly parallel computational kernels, but to an equally large extent also on the dependence patterns between various components of the suite, such as observation processing, data assimilation and the forecast model. Scalability is a particular challenge for 4D variational assimilation methods that necessarily couple the forecast model into the assimilation process and subject this combination to an inherently serial quasi-Newton minimization process. Ensemble based assimilation methods are naturally more parallel, but large models force ensemble sizes to be small and that results in poor assimilation accuracy, somewhat akin to shooting with a shotgun in a million-dimensional space. The Variational Ensemble Kalman Filter (VEnKF) is an ensemble method that can attain the accuracy of 4D variational data assimilation with a small ensemble size. It achieves this by processing a Gaussian approximation of the current error covariance distribution, instead of a set of ensemble members, analogously to the Extended Kalman Filter EKF. Ensemble members are re-sampled every time a new set of observations is processed from a new approximation of that Gaussian distribution which makes VEnKF a dynamic assimilation method. After this a smoothing step is applied that turns VEnKF into a dynamic Variational Ensemble Kalman Smoother VEnKS. In this smoothing step, the same process is iterated with frequent re-sampling of the ensemble but now using past iterations as surrogate observations until the end result is a smooth and balanced model trajectory. In principle, VEnKF could suffer from similar scalability issues as 4D-Var. However, this can be avoided by isolating the forecast model completely from the minimization process by implementing the latter as a wrapper code whose only link to the model is calling for many parallel and totally independent model runs, all of them

  16. Impact of glider data assimilation on the Monterey Bay model

    NASA Astrophysics Data System (ADS)

    Shulman, Igor; Rowley, Clark; Anderson, Stephanie; DeRada, Sergio; Kindle, John; Martin, Paul; Doyle, James; Cummings, James; Ramp, Steve; Chavez, Francisco; Fratantoni, David; Davis, Russ

    2009-02-01

    Glider observations were essential components of the observational program in the Autonomous Ocean Sampling Network (AOSN-II) experiment in the Monterey Bay area during summer of 2003. This paper is focused on the impact of the assimilation of glider temperature and salinity observations on the Navy Coastal Ocean Model (NCOM) predictions of surface and subsurface properties. The modeling system consists of an implementation of the NCOM model using a curvilinear, orthogonal grid with 1-4 km resolution, with finest resolution around the bay. The model receives open boundary conditions from a regional (9 km resolution) NCOM implementation for the California Current System, and surface fluxes from the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) atmospheric model at 3 km resolution. The data assimilation component of the system is a version of the Navy Coupled Ocean Data Assimilation (NCODA) system, which is used for assimilation of the glider data into the NCOM model of the Monterey Bay area. The NCODA is a fully 3D multivariate optimum interpolation system that produces simultaneous analyses of temperature, salinity, geopotential, and vector velocity. Assimilation of glider data improves the surface temperature at the mooring locations for the NCOM model hindcast and nowcasts, and for the short-range (1-1.5 days) forecasts. It is shown that it is critical to have accurate atmospheric forcing for more extended forecasts. Assimilation of glider data provided better agreement with independent observations (for example, with aircraft measured SSTs) of the model-predicted and observed spatial distributions of surface temperature and salinity. Mooring observations of subsurface temperature and salinity show sharp changes in the thermocline and halocline depths during transitions from upwelling to relaxation and vice versa. The non-assimilative run also shows these transitions in subsurface temperature; but they are not as well defined. For salinity, the

  17. Leaf nitrogen assimilation and partitioning differ among subtropical forest plants in response to canopy addition of nitrogen treatments.

    PubMed

    Liu, Nan; Wu, Shuhua; Guo, Qinfeng; Wang, Jiaxin; Cao, Ce; Wang, Jun

    2018-05-12

    Global increases in nitrogen deposition may alter forest structure and function by interfering with plant nitrogen metabolism (e.g., assimilation and partitioning) and subsequent carbon assimilation, but it is unclear how these responses to nitrogen deposition differ among species. In this study, we conducted a 2-year experiment to investigate the effects of canopy addition of nitrogen (CAN) on leaf nitrogen assimilation and partitioning in three subtropical forest plants (Castanea henryi, Ardisia quinquegona, and Blastus cochinchinensis). We hypothesized that responses of leaf nitrogen assimilation and partitioning to CAN differ among subtropical forest plants. CAN increased leaf nitrate reductase (NR) activity, and leaf nitrogen and chlorophyll contents but reduced leaf maximum photosynthetic rate (A max ), photosynthetic nitrogen use efficiency (PNUE), ribulose-1,5-bisphosphate carboxylase (Rubisco) activity, and metabolic protein content of an overstory tree species C. henryi. In an understory tree A. quinquegona, CAN increased NR activity and glutamine synthetase activity and therefore increased metabolic protein synthesis (e.g., Rubisco) in leaves. In the shrub B. cochinchinensis, CAN increased A max , PNUE, Rubisco content, metabolic protein content, and Rubisco activity in leaves. Leaf nitrogen assimilation and partitioning results indicated that A. quinquegona and B. cochinchinensis may better acclimate to CAN than C. henryi and that the acclimation mechanism differs among the species. Results from this study suggest that long-term elevated atmospheric nitrogen deposition has contributed to the ongoing transformation of subtropical forests into communities dominated by small trees and shrubs. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Combined acid rain and lanthanum pollution and its potential ecological risk for nitrogen assimilation in soybean seedling roots.

    PubMed

    Zhang, Fan; Cheng, Mengzhu; Sun, Zhaoguo; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2017-12-01

    Rare earth elements (REEs) are used in various fields, resulting in their accumulation in the environment. This accumulation has affected the survival and distribution of crops in various ways. Acid rain is a serious global environmental problem. The combined effects on crops from these two types of pollution have been reported, but the effects on crop root nitrogen assimilation are rarely known. To explore the impact of combined contamination from these two pollutants on crop nitrogen assimilation, the soybean seedlings were treated with simulated environmental pollution from acid rain and a representative rare earth ion, lanthanum ion (La 3+ ), then the indexes related to plant nitrogen assimilation process in roots were determined. The results showed that combined treatment with pH 4.5 acid rain and 0.08 mM La 3+ promoted nitrogen assimilation synergistically, while the other combined treatments all showed inhibitory effects. Moreover, acid rain aggravated the inhibitory effect of 1.20 or 0.40 mM La 3+ on nitrogen assimilation in soybean seedling roots. Thus, the effects of acid rain and La 3+ on crops depended on the combination levels of acid rain intensity and La 3+ concentration. Acid rain increases the bioavailability of La 3+ , and the combined effects of these two pollutants were more serious than that of either pollutant alone. These results provide new evidence in favor of limiting overuse of REEs in agriculture. This work also provides a new framework for ecological risk assessment of combined acid rain and REEs pollution on soybean crops. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Ensemble Data Assimilation Without Ensembles: Methodology and Application to Ocean Data Assimilation

    NASA Technical Reports Server (NTRS)

    Keppenne, Christian L.; Rienecker, Michele M.; Kovach, Robin M.; Vernieres, Guillaume

    2013-01-01

    Two methods to estimate background error covariances for data assimilation are introduced. While both share properties with the ensemble Kalman filter (EnKF), they differ from it in that they do not require the integration of multiple model trajectories. Instead, all the necessary covariance information is obtained from a single model integration. The first method is referred-to as SAFE (Space Adaptive Forecast error Estimation) because it estimates error covariances from the spatial distribution of model variables within a single state vector. It can thus be thought of as sampling an ensemble in space. The second method, named FAST (Flow Adaptive error Statistics from a Time series), constructs an ensemble sampled from a moving window along a model trajectory. The underlying assumption in these methods is that forecast errors in data assimilation are primarily phase errors in space and/or time.

  20. Paleoclimate reconstruction through Bayesian data assimilation

    NASA Astrophysics Data System (ADS)

    Fer, I.; Raiho, A.; Rollinson, C.; Dietze, M.

    2017-12-01

    Methods of paleoclimate reconstruction from plant-based proxy data rely on assumptions of static vegetation-climate link which is often established between modern climate and vegetation. This approach might result in biased climate constructions as it does not account for vegetation dynamics. Predictive tools such as process-based dynamic vegetation models (DVM) and their Bayesian inversion could be used to construct the link between plant-based proxy data and palaeoclimate more realistically. In other words, given the proxy data, it is possible to infer the climate that could result in that particular vegetation composition, by comparing the DVM outputs to the proxy data within a Bayesian state data assimilation framework. In this study, using fossil pollen data from five sites across the northern hardwood region of the US, we assimilate fractional composition and aboveground biomass into dynamic vegetation models, LINKAGES, LPJ-GUESS and ED2. To do this, starting from 4 Global Climate Model outputs, we generate an ensemble of downscaled meteorological drivers for the period 850-2015. Then, as a first pass, we weigh these ensembles based on their fidelity with independent paleoclimate proxies. Next, we run the models with this ensemble of drivers, and comparing the ensemble model output to the vegetation data, adjust the model state estimates towards the data. At each iteration, we also reweight the climate values that make the model and data consistent, producing a reconstructed climate time-series dataset. We validated the method using present-day datasets, as well as a synthetic dataset, and then assessed the consistency of results across ecosystem models. Our method allows the combination of multiple data types to reconstruct the paleoclimate, with associated uncertainty estimates, based on ecophysiological and ecological processes rather than phenomenological correlations with proxy data.

  1. Development of WRF-CO2 4DVAR Data Assimilation System

    NASA Astrophysics Data System (ADS)

    Zheng, T.; French, N. H. F.

    2016-12-01

    Four dimensional variational (4DVar) assimilation systems have been widely used for CO2 inverse modeling at global scale. At regional scale, however, 4DVar assimilation systems have been lacking. At present, most regional CO2 inverse models use Lagrangian particle backward trajectory tools to compute influence function in an analytical/synthesis framework. To provide a 4DVar based alternative, we developed WRF-CO2 4DVAR based on Weather Research and Forecasting (WRF), its chemistry extension (WRF-Chem), and its data assimilation system (WRFDA/WRFPLUS). Different from WRFDA, WRF-CO2 4DVAR does not optimize meteorology initial condition, instead it solves for the optimized CO2 surface fluxes (sources/sink) constrained by atmospheric CO2 observations. Based on WRFPLUS, we developed tangent linear and adjoint code for CO2 emission, advection, vertical mixing in boundary layer, and convective transport. Furthermore, we implemented an incremental algorithm to solve for optimized CO2 emission scaling factors by iteratively minimizing the cost function in a Bayes framework. The model sensitivity (of atmospheric CO2 with respect to emission scaling factor) calculated by tangent linear and adjoint model agrees well with that calculated by finite difference, indicating the validity of the newly developed code. The effectiveness of WRF-CO2 4DVar for inverse modeling is tested using forward-model generated pseudo-observation data in two experiments: first-guess CO2 fluxes has a 50% overestimation in the first case and 50% underestimation in the second. In both cases, WRF-CO2 4DVar reduces cost function to less than 10-4 of its initial values in less than 20 iterations and successfully recovers the true values of emission scaling factors. We expect future applications of WRF-CO2 4DVar with satellite observations will provide insights for CO2 regional inverse modeling, including the impacts of model transport error in vertical mixing.

  2. Lifetime Segmented Assimilation Trajectories and Health Outcomes in Latino and Other Community Residents

    PubMed Central

    Marsiglia, Flavio F.; Kulis, Stephen; Kellison, Joshua G.

    2010-01-01

    Objectives. Under an ecodevelopmental framework, we examined lifetime segmented assimilation trajectories (diverging assimilation pathways influenced by prior life conditions) and related them to quality-of-life indicators in a diverse sample of 258 men in the Pheonix, AZ, metropolitan area. Methods. We used a growth mixture model analysis of lifetime changes in socioeconomic status, and used acculturation to identify distinct lifetime segmented assimilation trajectory groups, which we compared on life satisfaction, exercise, and dietary behaviors. We hypothesized that lifetime assimilation change toward mainstream American culture (upward assimilation) would be associated with favorable health outcomes, and downward assimilation change with unfavorable health outcomes. Results. A growth mixture model latent class analysis identified 4 distinct assimilation trajectory groups. In partial support of the study hypotheses, the extreme upward assimilation trajectory group (the most successful of the assimilation pathways) exhibited the highest life satisfaction and the lowest frequency of unhealthy food consumption. Conclusions. Upward segmented assimilation is associated in adulthood with certain positive health outcomes. This may be the first study to model upward and downward lifetime segmented assimilation trajectories, and to associate these with life satisfaction, exercise, and dietary behaviors. PMID:20167890

  3. Assimilation of GRACE Terrestrial Water Storage Data into a Land Surface Model

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; Zaitchik, Benjamin F.; Rodell, Matt

    2008-01-01

    The NASA Gravity Recovery and Climate Experiment (GRACE) system of satellites provides observations of large-scale, monthly terrestrial water storage (TWS) changes. In. this presentation we describe a land data assimilation system that ingests GRACE observations and show that the assimilation improves estimates of water storage and fluxes, as evaluated against independent measurements. The ensemble-based land data assimilation system uses a Kalman smoother approach along with the NASA Catchment Land Surface Model (CLSM). We assimilated GRACE-derived TWS anomalies for each of the four major sub-basins of the Mississippi into the Catchment Land Surface Model (CLSM). Compared with the open-loop (no assimilation) CLSM simulation, assimilation estimates of groundwater variability exhibited enhanced skill with respect to measured groundwater. Assimilation also significantly increased the correlation between simulated TWS and gauged river flow for all four sub-basins and for the Mississippi River basin itself. In addition, model performance was evaluated for watersheds smaller than the scale of GRACE observations, in the majority of cases, GRACE assimilation led to increased correlation between TWS estimates and gauged river flow, indicating that data assimilation has considerable potential to downscale GRACE data for hydrological applications. We will also describe how the output from the GRACE land data assimilation system is now being prepared for use in the North American Drought Monitor.

  4. A hybrid variational ensemble data assimilation for the HIgh Resolution Limited Area Model (HIRLAM)

    NASA Astrophysics Data System (ADS)

    Gustafsson, N.; Bojarova, J.; Vignes, O.

    2014-02-01

    A hybrid variational ensemble data assimilation has been developed on top of the HIRLAM variational data assimilation. It provides the possibility of applying a flow-dependent background error covariance model during the data assimilation at the same time as full rank characteristics of the variational data assimilation are preserved. The hybrid formulation is based on an augmentation of the assimilation control variable with localised weights to be assigned to a set of ensemble member perturbations (deviations from the ensemble mean). The flow-dependency of the hybrid assimilation is demonstrated in single simulated observation impact studies and the improved performance of the hybrid assimilation in comparison with pure 3-dimensional variational as well as pure ensemble assimilation is also proven in real observation assimilation experiments. The performance of the hybrid assimilation is comparable to the performance of the 4-dimensional variational data assimilation. The sensitivity to various parameters of the hybrid assimilation scheme and the sensitivity to the applied ensemble generation techniques are also examined. In particular, the inclusion of ensemble perturbations with a lagged validity time has been examined with encouraging results.

  5. Disconfirmed hedonic expectations produce perceptual contrast, not assimilation.

    PubMed

    Zellner, Debra A; Strickhouser, Dinah; Tornow, Carina E

    2004-01-01

    In studies of hedonic ratings, contrast is the usual result when expectations about test stimuli are produced through the presentation of context stimuli, whereas assimilation is the usual result when expectations about test stimuli are produced through labeling, advertising, or the relaying of information to the subject about the test stimuli. Both procedures produce expectations that are subsequently violated, but the outcomes are different. The present studies demonstrate that both assimilation and contrast can occur even when expectations are produced by verbal labels and the degree of violation of the expectation is held constant. One factor determining whether assimilation or contrast occurs appears to be the certainty of the expectation. Expectations that convey certainty are produced by methods that lead to social influence on subjects' ratings, producing assimilation. When social influence is not a factor and subjects give judgments influenced only by the perceived hedonic value of the stimulus, contrast is the result.

  6. Production of long-term global water vapor and liquid water data set using ultra-fast methods to assimilate multi-satellite and radiosonde observations

    NASA Technical Reports Server (NTRS)

    Vonderhaar, T. H.; Reinke, Donald L.; Randel, David L.; Stephens, Graeme L.; Combs, Cynthia L.; Greenwald, Thomas J.; Ringerud, Mark A.; Wittmeyer, Ian L.

    1993-01-01

    During the next decade, many programs and experiments under the Global Energy and Water Cycle Experiment (GEWEX) will utilize present day and future data sets to improve our understanding of the role of moisture in climate, and its interaction with other variables such as clouds and radiation. An important element of GEWEX will be the GEWEX Water Vapor Project (GVaP), which will eventually initiate a routine, real-time assimilation of the highest quality, global water vapor data sets including information gained from future data collection systems, both ground and space based. The comprehensive global water vapor data set being produced by METSAT Inc. uses a combination of ground-based radiosonde data, and infrared and microwave satellite retrievals. This data is needed to provide the desired foundation from which future GEWEX-related research, such as GVaP, can build. The first year of this project was designed to use a combination of the best available atmospheric moisture data including: radiosonde (balloon/acft/rocket), HIRS/MSU (TOVS) retrievals, and SSM/I retrievals, to produce a one-year, global, high resolution data set of integrated column water vapor (precipitable water) with a horizontal resolution of 1 degree, and a temporal resolution of one day. The time period of this pilot product was to be det3ermined by the availability of all the input data sets. January 1988 through December 1988 were selected. In addition, a sample of vertically integrated liquid water content (LWC) was to be produced with the same temporal and spatial parameters. This sample was to be produced over ocean areas only. Three main steps are followed to produce a merged water vapor and liquid water product. Input data from Radiosondes, TOVS, and SSMI/I is quality checked in steps one and two. Processing is done in step two to generate individual total column water vapor and liquid water data sets. The third step, and final processing task, involves merging the individual output

  7. Advances in Assimilation of Satellite-Based Passive Microwave Observations for Soil-Moisture Estimation

    NASA Technical Reports Server (NTRS)

    De Lannoy, Gabrielle J. M.; Pauwels, Valentijn; Reichle, Rolf H.; Draper, Clara; Koster, Randy; Liu, Qing

    2012-01-01

    Satellite-based microwave measurements have long shown potential to provide global information about soil moisture. The European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS, [1]) mission as well as the future National Aeronautics and Space Administration (NASA) Soil Moisture Active and Passive (SMAP, [2]) mission measure passive microwave emission at L-band frequencies, at a relatively coarse (40 km) spatial resolution. In addition, SMAP will measure active microwave signals at a higher spatial resolution (3 km). These new L-band missions have a greater sensing depth (of -5cm) compared with past and present C- and X-band microwave sensors. ESA currently also disseminates retrievals of SMOS surface soil moisture that are derived from SMOS brightness temperature observations and ancillary data. In this research, we address two major challenges with the assimilation of recent/future satellite-based microwave measurements: (i) assimilation of soil moisture retrievals versus brightness temperatures for surface and root-zone soil moisture estimation and (ii) scale-mismatches between satellite observations, models and in situ validation data.

  8. Assimilation of sea ice concentration data in the Arctic via DART/CICE5 in the CESM1

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Bitz, C. M.; Anderson, J. L.; Collins, N.; Hendricks, J.; Hoar, T. J.; Raeder, K.

    2016-12-01

    Arctic sea ice cover has been experiencing significant reduction in the past few decades. Climate models predict that the Arctic Ocean may be ice-free in late summer within a few decades. Better sea ice prediction is crucial for regional and global climate prediction that are vital to human activities such as maritime shipping and subsistence hunting, as well as wildlife protection as animals face habitat loss. The physical processes involved with the persistence and re-emergence of sea ice cover are found to extend the predictability of sea ice concentration (SIC) and thickness at the regional scale up to several years. This motivates us to investigate sea ice predictability stemming from initial values of the sea ice cover. Data assimilation is a useful technique to combine observations and model forecasts to reconstruct the states of sea ice in the past and provide more accurate initial conditions for sea ice prediction. This work links the most recent version of the Los Alamos sea ice model (CICE5) within the Community Earth System Model version 1.5 (CESM1.5) and the Data Assimilation Research Testbed (DART). The linked DART/CICE5 is ideal to assimilate multi-scale and multivariate sea ice observations using an ensemble Kalman filter (EnKF). The study is focused on the assimilation of SIC data that impact SIC, sea ice thickness, and snow thickness. The ensemble sea ice model states are constructed by introducing uncertainties in atmospheric forcing and key model parameters. The ensemble atmospheric forcing is a reanalysis product generated with DART and the Community Atmosphere Model (CAM). We also perturb two model parameters that are found to contribute significantly to the model uncertainty in previous studies. This study applies perfect model observing system simulation experiments (OSSEs) to investigate data assimilation algorithms and post-processing methods. One of the ensemble members of a CICE5 free run is chosen as the truth. Daily synthetic

  9. Towards Improved High-Resolution Land Surface Hydrologic Reanalysis Using a Physically-Based Hydrologic Model and Data Assimilation

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Davis, K. J.; Zhang, F.; Duffy, C.; Yu, X.

    2014-12-01

    A coupled physically based land surface hydrologic model, Flux-PIHM, has been developed by incorporating a land surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Flux-PIHM has been implemented and manually calibrated at the Shale Hills watershed (0.08 km2) in central Pennsylvania. Model predictions of discharge, point soil moisture, point water table depth, sensible and latent heat fluxes, and soil temperature show good agreement with observations. When calibrated only using discharge, and soil moisture and water table depth at one point, Flux-PIHM is able to resolve the observed 101 m scale soil moisture pattern at the Shale Hills watershed when an appropriate map of soil hydraulic properties is provided. A Flux-PIHM data assimilation system has been developed by incorporating EnKF for model parameter and state estimation. Both synthetic and real data assimilation experiments have been performed at the Shale Hills watershed. Synthetic experiment results show that the data assimilation system is able to simultaneously provide accurate estimates of multiple parameters. In the real data experiment, the EnKF estimated parameters and manually calibrated parameters yield similar model performances, but the EnKF method significantly decreases the time and labor required for calibration. The data requirements for accurate Flux-PIHM parameter estimation via data assimilation using synthetic observations have been tested. Results show that by assimilating only in situ outlet discharge, soil water content at one point, and the land surface temperature averaged over the whole watershed, the data assimilation system can provide an accurate representation of watershed hydrology. Observations of these key variables are available with national and even global spatial coverage (e.g., MODIS surface temperature, SMAP soil moisture, and the USGS gauging stations). National atmospheric reanalysis

  10. Data assimilation experiment of precipitable water vapor observed by a hyper-dense GNSS receiver network using a nested NHM-LETKF system

    NASA Astrophysics Data System (ADS)

    Oigawa, Masanori; Tsuda, Toshitaka; Seko, Hiromu; Shoji, Yoshinori; Realini, Eugenio

    2018-05-01

    We studied the assimilation of high-resolution precipitable water vapor (PWV) data derived from a hyper-dense global navigation satellite system network around Uji city, Kyoto, Japan, which had a mean inter-station distance of about 1.7 km. We focused on a heavy rainfall event that occurred on August 13-14, 2012, around Uji city. We employed a local ensemble transform Kalman filter as the data assimilation method. The inhomogeneity of the observed PWV increased on a scale of less than 10 km in advance of the actual rainfall detected by the rain gauge. Zenith wet delay data observed by the Uji network showed that the characteristic length scale of water vapor distribution during the rainfall ranged from 1.9 to 3.5 km. It is suggested that the assimilation of PWV data with high horizontal resolution (a few km) improves the forecast accuracy. We conducted the assimilation experiment of high-resolution PWV data, using both small horizontal localization radii and a conventional horizontal localization radius. We repeated the sensitivity experiment, changing the mean horizontal spacing of the PWV data from 1.7 to 8.0 km. When the horizontal spacing of assimilated PWV data was decreased from 8.0 to 3.5 km, the accuracy of the simulated hourly rainfall amount worsened in the experiment that used the conventional localization radius for the assimilation of PWV. In contrast, the accuracy of hourly rainfall amounts improved when we applied small horizontal localization radii. In the experiment that used the small horizontal localization radii, the accuracy of the hourly rainfall amount was most improved when the horizontal resolution of the assimilated PWV data was 3.5 km. The optimum spatial resolution of PWV data was related to the characteristic length scale of water vapor variability.[Figure not available: see fulltext.

  11. Impact of TRMM and SSM/I-derived Precipitation and Moisture Data on the GEOS Global Analysis

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Zhang, Sara Q.; daSilva, Arlindo M.; Olson, William S.

    1999-01-01

    Current global analyses contain significant errors in primary hydrological fields such as precipitation, evaporation, and related cloud and moisture in the tropics. The Data Assimilation Office at NASA's Goddard Space Flight Center has been exploring the use of space-based rainfall and total precipitable water (TPW) estimates to constrain these hydrological parameters in the Goddard Earth Observing System (GEOS) global data assimilation system. We present results showing that assimilating the 6-hour averaged rain rates and TPW estimates from the Tropical Rainfall Measuring Mission (TRMM) and Special Sensor Microwave/Imager (SSM/I) instruments improves not only the precipitation and moisture estimates but also reduce state-dependent systematic errors in key climate parameters directly linked to convection such as the outgoing longwave radiation, clouds, and the large-scale circulation. The improved analysis also improves short-range forecasts beyond 1 day, but the impact is relatively modest compared with improvements in the time-averaged analysis. The study shows that, in the presence of biases and other errors of the forecast model, improving the short-range forecast is not necessarily prerequisite for improving the assimilation as a climate data set. The full impact of a given type of observation on the assimilated data set should not be measured solely in terms of forecast skills.

  12. Development of an aerosol assimilation/forecasting system with Himawari-8 aerosol products

    NASA Astrophysics Data System (ADS)

    Maki, T.; Yumimoto, K.; Tanaka, T. Y.; Yoshida, M.; Kikuchi, M.; Nagao, T. M.; Murakami, H.; Ogi, A.; Sekiyama, T. T.

    2016-12-01

    A new generation geostationary meteorological satellite (GMS), Himawari-8, was launched on 7 October 2014 and became operational on 7 July 2015. Himawari-8 is equipped with more advanced multispectral imager (Advanced Himawari Imager; AHI) ahead of other planned GMSs (e.g., GEOS-R). The AHI has 16 observational bands including three visible lights (i.e. RGB) with high spatial (0.5-2 km) and temporal (every 10 minutes full-disk images) resolutions, and provides about 50 times more data than previous GMSs. It is attractive characteristics for aerosol study that the visible and near-infrared observational bands allow us to obtain full-disk maps of aerosol optical properties (i.e., aerosol optical thickness (AOT) and ångström exponent) with unprecedented temporal resolution. Meteorological Research Institute (MRI)/JMA and Japan Aerospace Exploration Agency (JAXA) have been developing an aerosol assimilation/forecasting system with a global aerosol transport model (MASINGAR mk-2), 2 dimensional variational (2D-Var) method, and the Himawari-8 AOTs. Forecasting results are quantitatively validated by AOTs measured by AERONET and PM2.5 concentrations obtained by in-situ stations. Figure 1 shows model-predicted and satellite-observed AOTs during the 2016 Siberian wildfire. Upper and lower panels exhibit maps of AOT at analysis time (0000 UTC on May 18, 2016) and 27-hour forecast time (03 UTC on May 19, 2016), respectively. The 27-hour forecasted AOT starting with the analyzed initial condition (Figure 1f) successfully predicts heavy smokes covering the northern part of Japan, which forecast without assimilation (Figure 1e) failed to reproduces. Figure 1: Horizontal distribution of observed and forecasted AOTs at 0000 UTC 18 May, 2016 (analysis time; upper panels) and 0300 UTC 19 May, 2016 (18-h forecast from the analysis time; lower panel). (a, d) observed AOT from Himawari-8, (b, e) forecasted AOT without assimilation, and (c, f) forecast AOT with assimilation.

  13. Data Assimilation Techniques for Ionospheric Reference Scenarios - project overview and first results

    NASA Astrophysics Data System (ADS)

    Gerzen, Tatjana; Mainul Hoque, M.; Wilken, Volker; Minkwitz, David; Schlüter, Stefan

    2015-04-01

    The European Geostationary Navigation Overlay Service (EGNOS) is the European Satellite Based Augmentation Service (SBAS) that provides value added services, in particular to Safety of Live (SoL) users of the Global Navigation Satellite Systems (GNSS). In the frame of the European GNSS Evolution Programme (EGEP), ESA has launched several activities, which are aiming to support the design, development and qualification of the future operational EGNOS infrastructure and associated services. The ionosphere is the part of the upper Earth's atmosphere between about 50 km and 1000 km above the Earth's surface, which contains sufficient free electrons to cause strong impact on radio signal propagation. Therefore, treatment of the ionosphere is a critical issue to guarantee the EGNOS system performance. In order to conduct the EGNOS end-to-end performance simulations and to assure the capability for maintaining integrity of the EGNOS system especially during ionospheric storm conditions, Ionospheric Reference Scenarios (IRSs) are introduced by ESA. The project Data Assimilation Techniques for Ionospheric Reference Scenarios (DAIS) - aims to generate improved EGNOS IRSs by combining space borne and ground based GNSS observations. The main focus of this project is to demonstrate that ionospheric radio occultation (IRO) measurements can significantly contribute to fill data gaps in GNSS ground networks (particularly in Africa and over the oceans) when generating the IRSs. The primary tasks are the calculation and validation of time series of IRSs (i.e. TEC maps) by a 3D assimilation approach that combines IRO and ground based GNSS measurements with an ionospheric background model in an optimal way. In the first phase of the project we selected appropriate test periods, one presenting perturbed and the other one - nominal ionospheric conditions, collected and filtered the corresponding data. We defined and developed an applicable technique for the 3D assimilation and applied

  14. Assimilation of NUCAPS Retrieved Profiles in GSI for Unique Forecasting Applications

    NASA Technical Reports Server (NTRS)

    Berndt, Emily Beth; Zavodsky, Bradley; Srikishen, Jayanthi; Blankenship, Clay

    2015-01-01

    Hyperspectral IR profiles can be assimilated in GSI as a separate observation other than radiosondes with only changes to tables in the fix directory. Assimilation of profiles does produce changes to analysis fields and evidenced by: Innovations larger than +/-2.0 K are present and represent where individual profiles impact the final temperature analysis.The updated temperature analysis is colder behind the cold front and warmer in the warm sector. The updated moisture analysis is modified more in the low levels and tends to be drier than the original model background Analysis of model output shows: Differences relative to 13-km RAP analyses are smaller when profiles are assimilated with NUCAPS errors. CAPE is under-forecasted when assimilating NUCAPS profiles, which could be problematic for severe weather forecasting Refining the assimilation technique to incorporate an error covariance matrix and creating a separate GSI module to assimilate satellite profiles may improve results.

  15. Assimilation of LAI time-series in crop production models

    NASA Astrophysics Data System (ADS)

    Kooistra, Lammert; Rijk, Bert; Nannes, Louis

    2014-05-01

    Agriculture is worldwide a large consumer of freshwater, nutrients and land. Spatial explicit agricultural management activities (e.g., fertilization, irrigation) could significantly improve efficiency in resource use. In previous studies and operational applications, remote sensing has shown to be a powerful method for spatio-temporal monitoring of actual crop status. As a next step, yield forecasting by assimilating remote sensing based plant variables in crop production models would improve agricultural decision support both at the farm and field level. In this study we investigated the potential of remote sensing based Leaf Area Index (LAI) time-series assimilated in the crop production model LINTUL to improve yield forecasting at field level. The effect of assimilation method and amount of assimilated observations was evaluated. The LINTUL-3 crop production model was calibrated and validated for a potato crop on two experimental fields in the south of the Netherlands. A range of data sources (e.g., in-situ soil moisture and weather sensors, destructive crop measurements) was used for calibration of the model for the experimental field in 2010. LAI from cropscan field radiometer measurements and actual LAI measured with the LAI-2000 instrument were used as input for the LAI time-series. The LAI time-series were assimilated in the LINTUL model and validated for a second experimental field on which potatoes were grown in 2011. Yield in 2011 was simulated with an R2 of 0.82 when compared with field measured yield. Furthermore, we analysed the potential of assimilation of LAI into the LINTUL-3 model through the 'updating' assimilation technique. The deviation between measured and simulated yield decreased from 9371 kg/ha to 8729 kg/ha when assimilating weekly LAI measurements in the LINTUL model over the season of 2011. LINTUL-3 furthermore shows the main growth reducing factors, which are useful for farm decision support. The combination of crop models and sensor

  16. Lessons Learned from Assimilating Altimeter Data into a Coupled General Circulation Model with the GMAO Augmented Ensemble Kalman Filter

    NASA Technical Reports Server (NTRS)

    Keppenne, Christian; Vernieres, Guillaume; Rienecker, Michele; Jacob, Jossy; Kovach, Robin

    2011-01-01

    Satellite altimetry measurements have provided global, evenly distributed observations of the ocean surface since 1993. However, the difficulties introduced by the presence of model biases and the requirement that data assimilation systems extrapolate the sea surface height (SSH) information to the subsurface in order to estimate the temperature, salinity and currents make it difficult to optimally exploit these measurements. This talk investigates the potential of the altimetry data assimilation once the biases are accounted for with an ad hoc bias estimation scheme. Either steady-state or state-dependent multivariate background-error covariances from an ensemble of model integrations are used to address the problem of extrapolating the information to the sub-surface. The GMAO ocean data assimilation system applied to an ensemble of coupled model instances using the GEOS-5 AGCM coupled to MOM4 is used in the investigation. To model the background error covariances, the system relies on a hybrid ensemble approach in which a small number of dynamically evolved model trajectories is augmented on the one hand with past instances of the state vector along each trajectory and, on the other, with a steady state ensemble of error estimates from a time series of short-term model forecasts. A state-dependent adaptive error-covariance localization and inflation algorithm controls how the SSH information is extrapolated to the sub-surface. A two-step predictor corrector approach is used to assimilate future information. Independent (not-assimilated) temperature and salinity observations from Argo floats are used to validate the assimilation. A two-step projection method in which the system first calculates a SSH increment and then projects this increment vertically onto the temperature, salt and current fields is found to be most effective in reconstructing the sub-surface information. The performance of the system in reconstructing the sub-surface fields is particularly

  17. Torque Balances on the Taylor Cylinders in the Geomagnetic Data Assimilation

    NASA Astrophysics Data System (ADS)

    Kuang, W.; Tangborn, A.

    2004-05-01

    In this presentation we report on our continuing effort in geomagnetic data assimilation, aiming at understanding and predicting geomagnetic secular variation on decadal time scales. In particular, we focus on the effect of the torque balances on the cylindrical surfaces in the core co-axial with the Earth's rotation axis (the Taylor cylinders) on the time evolution of assimilated solutions. We use our MoSST core dynamics model and observed geomagnetic field at the Earth's surface derived via Comprehensive Field Model (CFM) for the geomagnetic data assimilation. In our earlier studies, a model solution is selected randomly from our numerical database. It is then assimilated with the observations such that the poloidal field possesses the same field tomography on the core-mantel boundary (CMB) continued downward from surface observations. This tomography change is assumed to be effective through out the outer core. While this approach allows rapid convergence between model solutions and the observations, it also generates sever numerical instabilities: the delicate balance between weak fluid inertia and the magnetic torques on the Taylor cylinders are completely altered. Consequently, the assimilated solution diverges quickly (in approximately 10% of the magnetic free-decay time in the core). To improve the assimilation, we propose a partial penetration of the assimilation from the CMB: The full-scale modification at the CMB decreases linearly and vanish at an interior radius ra. We shall examine from our assimilation tests possible relationships between the convergence rate of the model solutions to observations and the cut-off radius ra. A better assimilation shall serve our nudging tests in near future.

  18. Biomass burning source characterization requirements in air quality models with and without data assimilation: challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Hyer, E. J.; Zhang, J. L.; Reid, J. S.; Curtis, C. A.; Westphal, D. L.

    2007-12-01

    Quantitative models of the transport and evolution of atmospheric pollution have graduated from the laboratory to become a part of the operational activity of forecast centers. Scientists studying the composition and variability of the atmosphere put great efforts into developing methods for accurately specifying sources of pollution, including natural and anthropogenic biomass burning. These methods must be adapted for use in operational contexts, which impose additional strictures on input data and methods. First, only input data sources available in near real-time are suitable for use in operational applications. Second, operational applications must make use of redundant data sources whenever possible. This is a shift in philosophy: in a research context, the most accurate and complete data set will be used, whereas in an operational context, the system must be designed with maximum redundancy. The goal in an operational context is to produce, to the extent possible, consistent and timely output, given sometimes inconsistent inputs. The Naval Aerosol Analysis and Prediction System (NAAPS), a global operational aerosol analysis and forecast system, recently began incorporating assimilation of satellite-derived aerosol optical depth. Assimilation of satellite AOD retrievals has dramatically improved aerosol analyses and forecasts from this system. The use of aerosol data assimilation also changes the strategy for improving the smoke source function. The absolute magnitude of emissions events can be refined through feedback from the data assimilation system, both in real- time operations and in post-processing analysis of data assimilation results. In terms of the aerosol source functions, the largest gains in model performance are now to be gained by reducing data latency and minimizing missed detections. In this presentation, recent model development work on the Fire Locating and Monitoring of Burning Emissions (FLAMBE) system that provides smoke aerosol

  19. Aerosol Observability and Predictability: From Research to Operations for Chemical Weather Forecasting. Lagrangian Displacement Ensembles for Aerosol Data Assimilation

    NASA Technical Reports Server (NTRS)

    da Silva, Arlindo

    2010-01-01

    A challenge common to many constituent data assimilation applications is the fact that one observes a much smaller fraction of the phase space that one wishes to estimate. For example, remotely sensed estimates of the column average concentrations are available, while one is faced with the problem of estimating 3D concentrations for initializing a prognostic model. This problem is exacerbated in the case of aerosols because the observable Aerosol Optical Depth (AOD) is not only a column integrated quantity, but it also sums over a large number of species (dust, sea-salt, carbonaceous and sulfate aerosols. An aerosol transport model when driven by high-resolution, state-of-the-art analysis of meteorological fields and realistic emissions can produce skillful forecasts even when no aerosol data is assimilated. The main task of aerosol data assimilation is to address the bias arising from inaccurate emissions, and Lagrangian misplacement of plumes induced by errors in the driving meteorological fields. As long as one decouples the meteorological and aerosol assimilation as we do here, the classic baroclinic growth of error is no longer the main order of business. We will describe an aerosol data assimilation scheme in which the analysis update step is conducted in observation space, using an adaptive maximum-likelihood scheme for estimating background errors in AOD space. This scheme includes e explicit sequential bias estimation as in Dee and da Silva. Unlikely existing aerosol data assimilation schemes we do not obtain analysis increments of the 3D concentrations by scaling the background profiles. Instead we explore the Lagrangian characteristics of the problem for generating local displacement ensembles. These high-resolution state-dependent ensembles are then used to parameterize the background errors and generate 3D aerosol increments. The algorithm has computational complexity running at a resolution of 1/4 degree, globally. We will present the result of

  20. Towards a satellite driven land surface model using SURFEX modelling platform Offline Data Assimilation: an assessment of the method over Europe and the Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Albergel, Clément; Munier, Simon; Leroux, Delphine; Fairbairn, David; Dorigo, Wouter; Decharme, Bertrand; Calvet, Jean-Christophe

    2017-04-01

    Modelling platforms including Land Surface Models (LSMs), forced by gridded atmospheric variables and coupled to river routing models are necessary to increase our understanding of the terrestrial water cycle. These LSMs need to simulate biogeophysical variables like Surface and Root Zone Soil Moisture (SSM, RZSM), Leaf Area Index (LAI) in a way that is fully consistent with the representation of surface/energy fluxes and river discharge simulations. Global SSM and LAI products are now operationally available from spaceborne instruments and they can be used to constrain LSMs through Data Assimilation (DA) techniques. In this study, an offline data assimilation system implemented in Météo-France's modelling platform (SURFEX) is tested over Europe and the Mediterranean basin to increase prediction accuracy for land surface variables. The resulting Land Data Assimilation System (LDAS) makes use of a simplified Extended Kalman Filter (SEKF). It is able to ingests information from satellite derived (i) SSM from the latest version of the ESA Climate Change Initiative as well as (ii) LAI from the Copernicus GLS project to constrain the multilayer, CO2-responsive version of the Interactions Between Soil, Biosphere, and Atmosphere model (ISBA) coupled with Météo-France's version of the Total Runoff Integrating Pathways continental hydrological system (ISBA-CTRIP). ERA-Interim observations based atmospheric forcing with precipitations corrected from Global Precipitation Climatology Centre observations (GPCC) is used to force ISBA-CTRIP at a resolution of 0.5 degree over 2000-2015. The model sensitivity to the assimilated observations is presented and a set of statistical diagnostics used to evaluate the impact of assimilating SSM and LAI on different model biogeophysical variables are provided. It is demonstrated that the assimilation scheme works effectively. The SEKF is able to extract useful information from the data signal at the grid scale and distribute the RZSM

  1. (The effects at ozone on CO sub 2 assimilation by bean plants)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norby, R.J.

    The traveler participated in ongoing laboratory experiments on the effects of ozone on Co{sub 2} assimilation by bean plants, providing advice on experimental procedures, assistance with data analysis, and access to current literature. He presented a seminar in which the importance of research on elevated CO{sub 2} and global climate change was emphasized because these are areas of major emphasis at Oak Ridge National Laboratory in which international collaboration would be especially beneficial. The most promising area for future collaboration was identified as the integration of experimental research with a tree growth model developed at Tartu University.

  2. Joint Center for Satellite Data Assimilation Overview and Research Activities

    NASA Astrophysics Data System (ADS)

    Auligne, T.

    2017-12-01

    In 2001 NOAA/NESDIS, NOAA/NWS, NOAA/OAR, and NASA, subsequently joined by the US Navy and Air Force, came together to form the Joint Center for Satellite Data Assimilation (JCSDA) for the common purpose of accelerating the use of satellite data in environmental numerical prediction modeling by developing, using, and anticipating advances in numerical modeling, satellite-based remote sensing, and data assimilation methods. The primary focus was to bring these advances together to improve operational numerical model-based forecasting, under the premise that these partners have common technical and logistical challenges assimilating satellite observations into their modeling enterprises that could be better addressed through cooperative action and/or common solutions. Over the last 15 years, the JCSDA has made and continues to make major contributions to operational assimilation of satellite data. The JCSDA is a multi-agency U.S. government-owned-and-operated organization that was conceived as a venue for the several agencies NOAA, NASA, USAF and USN to collaborate on advancing the development and operational use of satellite observations into numerical model-based environmental analysis and forecasting. The primary mission of the JCSDA is to "accelerate and improve the quantitative use of research and operational satellite data in weather, ocean, climate and environmental analysis and prediction systems." This mission is fulfilled through directed research targeting the following key science objectives: Improved radiative transfer modeling; new instrument assimilation; assimilation of humidity, clouds, and precipitation observations; assimilation of land surface observations; assimilation of ocean surface observations; atmospheric composition; and chemistry and aerosols. The goal of this presentation is to briefly introduce the JCSDA's mission and vision, and to describe recent research activities across various JCSDA partners.

  3. Carbon assimilation and transfer through kelp forests in the NE Atlantic is diminished under a warmer ocean climate.

    PubMed

    Pessarrodona, Albert; Moore, Pippa J; Sayer, Martin D J; Smale, Dan A

    2018-06-03

    Global climate change is affecting carbon cycling by driving changes in primary productivity and rates of carbon fixation, release and storage within Earth's vegetated systems. There is, however, limited understanding of how carbon flow between donor and recipient habitats will respond to climatic changes. Macroalgal-dominated habitats, such as kelp forests, are gaining recognition as important carbon donors within coastal carbon cycles, yet rates of carbon assimilation and transfer through these habitats are poorly resolved. Here, we investigated the likely impacts of ocean warming on coastal carbon cycling by quantifying rates of carbon assimilation and transfer in Laminaria hyperborea kelp forests-one of the most extensive coastal vegetated habitat types in the NE Atlantic-along a latitudinal temperature gradient. Kelp forests within warm climatic regimes assimilated, on average, more than three times less carbon and donated less than half the amount of particulate carbon compared to those from cold regimes. These patterns were not related to variability in other environmental parameters. Across their wider geographical distribution, plants exhibited reduced sizes toward their warm-water equatorward range edge, further suggesting that carbon flow is reduced under warmer climates. Overall, we estimated that Laminaria hyperborea forests stored ~11.49 Tg C in living biomass and released particulate carbon at a rate of ~5.71 Tg C year -1 . This estimated flow of carbon was markedly higher than reported values for most other marine and terrestrial vegetated habitat types in Europe. Together, our observations suggest that continued warming will diminish the amount of carbon that is assimilated and transported through temperate kelp forests in NE Atlantic, with potential consequences for the coastal carbon cycle. Our findings underline the need to consider climate-driven changes in the capacity of ecosystems to fix and donate carbon when assessing the impacts of

  4. High Performance Hydrometeorological Modeling, Land Data Assimilation and Parameter Estimation with the Land Information System at NASA/GSFC

    NASA Astrophysics Data System (ADS)

    Peters-Lidard, C. D.; Kumar, S. V.; Santanello, J. A.; Tian, Y.; Rodell, M.; Mocko, D.; Reichle, R.

    2008-12-01

    The Land Information System (LIS; http://lis.gsfc.nasa.gov; Kumar et al., 2006; Peters-Lidard et al., 2007) is a flexible land surface modeling framework that has been developed with the goal of integrating satellite- and ground-based observational data products and advanced land surface modeling techniques to produce optimal fields of land surface states and fluxes. The LIS software was the co-winner of NASA's 2005 Software of the Year award. LIS facilitates the integration of observations from Earth-observing systems and predictions and forecasts from Earth System and Earth science models into the decision-making processes of partnering agency and national organizations. Due to its flexible software design, LIS can serve both as a Problem Solving Environment (PSE) for hydrologic research to enable accurate global water and energy cycle predictions, and as a Decision Support System (DSS) to generate useful information for application areas including disaster management, water resources management, agricultural management, numerical weather prediction, air quality and military mobility assessment. LIS has evolved from two earlier efforts - North American Land Data Assimilation System (NLDAS; Mitchell et al. 2004) and Global Land Data Assimilation System (GLDAS; Rodell et al. 2004) that focused primarily on improving numerical weather prediction skills by improving the characterization of the land surface conditions. Both of these systems, now use specific configurations of the LIS software in their current implementations. LIS not only consolidates the capabilities of these two systems, but also enables a much larger variety of configurations with respect to horizontal spatial resolution, input datasets and choice of land surface model through 'plugins'. In addition to these capabilities, LIS has also been demonstrated for parameter estimation (Peters-Lidard et al., 2008; Santanello et al., 2007) and data assimilation (Kumar et al., 2008). Examples and case studies

  5. Yeast identification: reassessment of assimilation tests as sole universal identifiers.

    PubMed

    Spencer, J; Rawling, S; Stratford, M; Steels, H; Novodvorska, M; Archer, D B; Chandra, S

    2011-11-01

    To assess whether assimilation tests in isolation remain a valid method of identification of yeasts, when applied to a wide range of environmental and spoilage isolates. Seventy-one yeast strains were isolated from a soft drinks factory. These were identified using assimilation tests and by D1/D2 rDNA sequencing. When compared to sequencing, assimilation test identifications (MicroLog™) were 18·3% correct, a further 14·1% correct within the genus and 67·6% were incorrectly identified. The majority of the latter could be attributed to the rise in newly reported yeast species. Assimilation tests alone are unreliable as a universal means of yeast identification, because of numerous new species, variability of strains and increasing coincidence of assimilation profiles. Assimilation tests still have a useful role in the identification of common species, such as the majority of clinical isolates. It is probable, based on these results, that many yeast identifications reported in older literature are incorrect. This emphasizes the crucial need for accurate identification in present and future publications. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  6. Global and regional ecosystem modeling: comparison of model outputs and field measurements

    NASA Astrophysics Data System (ADS)

    Olson, R. J.; Hibbard, K.

    2003-04-01

    The Ecosystem Model-Data Intercomparison (EMDI) Workshops provide a venue for global ecosystem modeling groups to compare model outputs against measurements of net primary productivity (NPP). The objective of EMDI Workshops is to evaluate model performance relative to observations in order to improve confidence in global model projections terrestrial carbon cycling. The questions addressed by EMDI include: How does the simulated NPP compare with the field data across biome and environmental gradients? How sensitive are models to site-specific climate? Does additional mechanistic detail in models result in a better match with field measurements? How useful are the measures of NPP for evaluating model predictions? How well do models represent regional patterns of NPP? Initial EMDI results showed general agreement between model predictions and field measurements but with obvious differences that indicated areas for potential data and model improvement. The effort was built on the development and compilation of complete and consistent databases for model initialization and comparison. Database development improves the data as well as models; however, there is a need to incorporate additional observations and model outputs (LAI, hydrology, etc.) for comprehensive analyses of biogeochemical processes and their relationships to ecosystem structure and function. EMDI initialization and NPP data sets are available from the Oak Ridge National Laboratory Distributed Active Archive Center http://www.daac.ornl.gov/. Acknowledgements: This work was partially supported by the International Geosphere-Biosphere Programme - Data and Information System (IGBP-DIS); the IGBP-Global Analysis, Interpretation and Modelling Task Force (GAIM); the National Center for Ecological Analysis and Synthesis (NCEAS); and the National Aeronautics and Space Administration (NASA) Terrestrial Ecosystem Program. Oak Ridge National Laboratory is managed by UT-Battelle LLC for the U.S. Department of

  7. 4D Hybrid Ensemble-Variational Data Assimilation for the NCEP GFS: Outer Loops and Variable Transforms

    NASA Astrophysics Data System (ADS)

    Kleist, D. T.; Ide, K.; Mahajan, R.; Thomas, C.

    2014-12-01

    The use of hybrid error covariance models has become quite popular for numerical weather prediction (NWP). One such method for incorporating localized covariances from an ensemble within the variational framework utilizes an augmented control variable (EnVar), and has been implemented in the operational NCEP data assimilation system (GSI). By taking the existing 3D EnVar algorithm in GSI and allowing for four-dimensional ensemble perturbations, coupled with the 4DVAR infrastructure already in place, a 4D EnVar capability has been developed. The 4D EnVar algorithm has a few attractive qualities relative to 4DVAR, including the lack of need for tangent-linear and adjoint model as well as reduced computational cost. Preliminary results using real observations have been encouraging, showing forecast improvements nearly as large as were found in moving from 3DVAR to hybrid 3D EnVar. 4D EnVar is the method of choice for the next generation assimilation system for use with the operational NCEP global model, the global forecast system (GFS). The use of an outer-loop has long been the method of choice for 4DVar data assimilation to help address nonlinearity. An outer loop involves the re-running of the (deterministic) background forecast from the updated initial condition at the beginning of the assimilation window, and proceeding with another inner loop minimization. Within 4D EnVar, a similar procedure can be adopted since the solver evaluates a 4D analysis increment throughout the window, consistent with the valid times of the 4D ensemble perturbations. In this procedure, the ensemble perturbations are kept fixed and centered about the updated background state. This is analogous to the quasi-outer loop idea developed for the EnKF. Here, we present results for both toy model and real NWP systems demonstrating the impact from incorporating outer loops to address nonlinearity within the 4D EnVar context. The appropriate amplitudes for observation and background error

  8. Sequential assimilation of satellite-derived vegetation and soil moisture products using SURFEX_v8.0: LDAS-Monde assessment over the Euro-Mediterranean area

    NASA Astrophysics Data System (ADS)

    Albergel, Clément; Munier, Simon; Leroux, Delphine Jennifer; Dewaele, Hélène; Fairbairn, David; Lavinia Barbu, Alina; Gelati, Emiliano; Dorigo, Wouter; Faroux, Stéphanie; Meurey, Catherine; Le Moigne, Patrick; Decharme, Bertrand; Mahfouf, Jean-Francois; Calvet, Jean-Christophe

    2017-10-01

    In this study, a global land data assimilation system (LDAS-Monde) is applied over Europe and the Mediterranean basin to increase monitoring accuracy for land surface variables. LDAS-Monde is able to ingest information from satellite-derived surface soil moisture (SSM) and leaf area index (LAI) observations to constrain the interactions between soil-biosphere-atmosphere (ISBA, Interactions between Soil, Biosphere and Atmosphere) land surface model (LSM) coupled with the CNRM (Centre National de Recherches Météorologiques) version of the Total Runoff Integrating Pathways (ISBA-CTRIP) continental hydrological system. It makes use of the CO2-responsive version of ISBA which models leaf-scale physiological processes and plant growth. Transfer of water and heat in the soil rely on a multilayer diffusion scheme. SSM and LAI observations are assimilated using a simplified extended Kalman filter (SEKF), which uses finite differences from perturbed simulations to generate flow dependence between the observations and the model control variables. The latter include LAI and seven layers of soil (from 1 to 100 cm depth). A sensitivity test of the Jacobians over 2000-2012 exhibits effects related to both depth and season. It also suggests that observations of both LAI and SSM have an impact on the different control variables. From the assimilation of SSM, the LDAS is more effective in modifying soil moisture (SM) from the top layers of soil, as model sensitivity to SSM decreases with depth and has almost no impact from 60 cm downwards. From the assimilation of LAI, a strong impact on LAI itself is found. The LAI assimilation impact is more pronounced in SM layers that contain the highest fraction of roots (from 10 to 60 cm). The assimilation is more efficient in summer and autumn than in winter and spring. Results shows that the LDAS works well constraining the model to the observations and that stronger corrections are applied to LAI than to SM. A comprehensive evaluation of

  9. Multi-Scale Hydrometeorological Modeling, Land Data Assimilation and Parameter Estimation with the Land Information System

    NASA Technical Reports Server (NTRS)

    Peters-Lidard, Christa D.; Kumar, Sujay V.; Santanello, Joseph A., Jr.; Reichle, Rolf H.

    2009-01-01

    The Land Information System (LIS; http://lis.gsfc.nasa.gov; Kumar et al., 2006; Peters- Lidard et al.,2007) is a flexible land surface modeling framework that has been developed with the goal of integrating satellite- and ground-based observational data products and advanced land surface modeling techniques to produce optimal fields of land surface states and fluxes. As such, LIS represents a step towards the next generation land component of an integrated Earth system model. In recognition of LIS object-oriented software design, use and impact in the land surface and hydrometeorological modeling community, the LIS software was selected ase co-winner of NASA's 2005 Software of the Year award. LIS facilitates the integration of observations from Earth-observing systems and predictions and forecasts from Earth System and Earth science models into the decision-making processes of partnering agency and national organizations. Due to its flexible software design, LIS can serve both as a Problem Solving Environment (PSE) for hydrologic research to enable accurate global water and energy cycle predictions, and as a Decision Support System (DSS) to generate useful information for application areas including disaster management, water resources management, agricultural management, numerical weather prediction, air quality and military mobility assessment. LIS has evolved from two earlier efforts North American Land Data Assimilation System (NLDAS; Mitchell et al. 2004) and Global Land Data Assimilation System (GLDAS; Rodell al. 2004) that focused primarily on improving numerical weather prediction skills by improving the characterization of the land surface conditions. Both of GLDAS and NLDAS now use specific configurations of the LIS software in their current implementations. In addition, LIS was recently transitioned into operations at the US Air Force Weather Agency (AFWA) to ultimately replace their Agricultural Meteorology (AGRMET) system, and is also used routinely by

  10. Parallel Climate Data Assimilation PSAS Package

    NASA Technical Reports Server (NTRS)

    Ding, Hong Q.; Chan, Clara; Gennery, Donald B.; Ferraro, Robert D.

    1996-01-01

    We have designed and implemented a set of highly efficient and highly scalable algorithms for an unstructured computational package, the PSAS data assimilation package, as demonstrated by detailed performance analysis of systematic runs on up to 512node Intel Paragon. The equation solver achieves a sustained 18 Gflops performance. As the results, we achieved an unprecedented 100-fold solution time reduction on the Intel Paragon parallel platform over the Cray C90. This not only meets and exceeds the DAO time requirements, but also significantly enlarges the window of exploration in climate data assimilations.

  11. Detection of Natural Hazards Generated TEC Perturbations and Related New Applications

    NASA Astrophysics Data System (ADS)

    Komjathy, A.; Yang, Y.; Langley, R. B.

    2013-12-01

    Natural hazards, including earthquakes, volcanic eruptions, and tsunamis, have been significant threats to humans throughout recorded history. The Global Positioning System satellites have become primary sensors to measure signatures associated with such natural hazards. These signatures typically include GPS-derived seismic deformation measurements, co-seismic vertical displacements, and real-time GPS-derived ocean buoy positioning estimates. Another way to use GPS observables is to compute the ionospheric total electron content (TEC) to measure and monitor post-seismic ionospheric disturbances caused by earthquakes, volcanic eruptions, and tsunamis. Research at the University of New Brunswick (UNB) laid the foundations to model the three-dimensional ionosphere at NASA's Jet Propulsion Laboratory by ingesting ground- and space-based GPS measurements into the state-of-the-art Global Assimilative Ionosphere Modeling (GAIM) software. As an outcome of the UNB and NASA research, new and innovative GPS applications have been invented including the use of ionospheric measurements to detect tiny fluctuations in the GPS signals between the spacecraft and GPS receivers caused by natural hazards occurring on or near the Earth's surface. This continuing research is expected to provide early warning for tsunamis, earthquakes, volcanic eruptions, and meteor impacts, for example, using GPS and other global navigation satellite systems. We will demonstrate new and upcoming applications including recent natural hazards and artificial explosions that generated TEC perturbations to perform state-of-the-art imaging and modeling of earthquakes, tsunamis and meteor impacts. By studying the propagation properties of ionospheric perturbations generated by natural hazards along with applying sophisticated first-principles physics-based modeling, we are on track to develop new technologies that can potentially save human lives and minimize property damage.

  12. A Milestone in Commercial Space Weather: USTAR Center for Space Weather

    NASA Astrophysics Data System (ADS)

    Tobiska, W.; Schunk, R. W.; Sojka, J. J.; Thompson, D. C.; Scherliess, L.; Zhu, L.; Gardner, L. C.

    2009-12-01

    As of 2009, Utah State University (USU) hosts a new organization to develop commercial space weather applications using funding that has been provided by the State of Utah’s Utah Science Technology and Research (USTAR) initiative. The USTAR Center for Space Weather (UCSW) is located on the USU campus in Logan, Utah and is developing innovative applications for mitigating adverse space weather effects in technological systems. Space weather’s effects upon the near-Earth environment are due to dynamic changes in the Sun’s photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The UCSW has developed products for users of systems that are affected by space weather-driven ionospheric changes. For example, on September 1, 2009 USCW released, in conjunction with Space Environment Technologies, the world’s first real-time space weather via an iPhone app. Space WX displays the real-time, current global ionosphere total electron content along with its space weather drivers; it is available through the Apple iTunes store and is used around the planet. The Global Assimilation of Ionospheric Measurements (GAIM) system is now being run operationally in real-time at UCSW with the continuous ingestion of hundreds of global data streams to dramatically improve the ionosphere’s characterization. We discuss not only funding and technical advances that have led to current products but also describe the direction for UCSW that includes partnering opportunities for moving commercial space weather into fully automated specification and forecasting over the next half decade.

  13. DART: New Research Using Ensemble Data Assimilation in Geophysical Models

    NASA Astrophysics Data System (ADS)

    Hoar, T. J.; Raeder, K.

    2015-12-01

    The Data Assimilation Research Testbed (DART) is a community facilityfor ensemble data assimilation developed and supported by the NationalCenter for Atmospheric Research. DART provides a comprehensive suite of software, documentation, and tutorials that can be used for ensemble data assimilation research, operations, and education. Scientists and software engineers at NCAR are available to support DART users who want to use existing DART products or develop their own applications. Current DART users range from university professors teaching data assimilation, to individual graduate students working with simple models, through national laboratories doing operational prediction with large state-of-the-art models. DART runs efficiently on many computational platforms ranging from laptops through thousands of cores on the newest supercomputers.This poster focuses on several recent research activities using DART with geophysical models.Using CAM/DART to understand whether OCO-2 Total Precipitable Water observations can be useful in numerical weather prediction.Impacts of the synergistic use of Infra-red CO retrievals (MOPITT, IASI) in CAM-CHEM/DART assimilations.Assimilation and Analysis of Observations of Amazonian Biomass Burning Emissions by MOPITT (aerosol optical depth), MODIS (carbon monoxide) and MISR (plume height).Long term evaluation of the chemical response of MOPITT-CO assimilation in CAM-CHEM/DART OSSEs for satellite planning and emission inversion capabilities.Improved forward observation operators for land models that have multiple land use/land cover segments in a single grid cell,Simulating mesoscale convective systems (MCSs) using a variable resolution, unstructured grid in the Model for Prediction Across Scales (MPAS) and DART.The mesoscale WRF+DART system generated an ensemble of year-long, real-time initializations of a convection allowing model over the United States.Constraining WACCM with observations in the tropical band (30S-30N) using DART

  14. Towards Year-round Estimation of Terrestrial Water Storage over Snow-Covered Terrain via Multi-sensor Assimilation of GRACE/GRACE-FO and AMSR-E/AMSR-2.

    NASA Astrophysics Data System (ADS)

    Wang, J.; Xue, Y.; Forman, B. A.; Girotto, M.; Reichle, R. H.

    2017-12-01

    The Gravity and Recovery Climate Experiment (GRACE) has revolutionized large-scale remote sensing of the Earth's terrestrial hydrologic cycle and has provided an unprecedented observational constraint for global land surface models. However, the coarse-scale (in space and time), vertically-integrated measure of terrestrial water storage (TWS) limits GRACE's applicability to smaller scale hydrologic applications. In order to enhance model-based estimates of TWS while effectively adding resolution (in space and time) to the coarse-scale TWS retrievals, a multi-variate, multi-sensor data assimilation framework is presented here that simultaneously assimilates gravimetric retrievals of TWS in conjunction with passive microwave (PMW) brightness temperature (Tb) observations over snow-covered terrain. The framework uses the NASA Catchment Land Surface Model (Catchment) and an ensemble Kalman filter (EnKF). A synthetic assimilation experiment is presented for the Volga river basin in Russia. The skill of the output from the assimilation of synthetic observations is compared with that of model estimates generated without the benefit of assimilating the synthetic observations. It is shown that the EnKF framework improves modeled estimates of TWS, snow depth, and snow mass (a.k.a. snow water equivalent). The data assimilation routine produces a conditioned (updated) estimate that is more accurate and contains less uncertainty during both the snow accumulation phase of the snow season as well as during the snow ablation season.

  15. Multi-Model Ensemble Approaches to Data Assimilation Using the 4D-Local Ensemble Transform Kalman Filter

    DTIC Science & Technology

    2013-09-30

    accuracy of the analysis . Root mean square difference ( RMSD ) is much smaller for RIP than for either Simple Ocean Data Assimilation or Incremental... Analysis Update globally for temperature as well as salinity. Regionally the same results were found, with only one exception in which the salinity RMSD ...short-term forecast using a numerical model with the observations taken within the forecast time window. The resulting state is the so-called “ analysis

  16. Torque Balances on the Taylor Cylinders in the Geomagnetic Data Assimilation

    NASA Technical Reports Server (NTRS)

    Kuang, Weijia; Tangborn, Andrew

    2004-01-01

    In this presentation we report on our continuing effort in geomagnetic data assimilation, aiming at understanding and predicting geomagnetic secular variation on decadal time scales. In particular, we focus on the effect of the torque balances on the cylindrical surfaces in the core co-axial with the Earth's rotation axis (the Taylor cylinders) on the time evolution of assimilated solutions. We use our MoSST core dynamics,model and observed geomagnetic field at the Earth's surface derived via Comprehensive Field Model (CFM) for the geomagnetic data assimilation. In our earlier studies, a model solution is selected randomly from our numerical database. It is then assimilated with the observations such that the poloidal field possesses the same field tomography on the core-mantel boundary (CMB) continued downward from surface observations. This tomography change is assumed to be effective through out the outer core. While this approach allows rapid convergence between model solutions and the observations, it also generates sevee numerical instabilities: the delicate balance between weak fluid inertia and the magnetic torques on the Taylor cylinders are completely altered. Consequently, the assimilated solution diverges quickly (in approximately 10% of the magnetic free-decay time in the core). To improve the assimilation, we propose a partial penetration of the assimilation from the CMB: The full-scale modification at the CMB decreases linearly and vanish at an interior radius r(sub a). We shall examine from our assimilation tests possible relationships between the convergence rate of the model solutions to observations and the cut-off radius r(sub a). A better assimilation shall serve our nudging tests in near future.

  17. Examples of data assimilation in mesoscale models

    NASA Technical Reports Server (NTRS)

    Carr, Fred; Zack, John; Schmidt, Jerry; Snook, John; Benjamin, Stan; Stauffer, David

    1993-01-01

    The keynote address was the problem of physical initialization of mesoscale models. The classic purpose of physical or diabatic initialization is to reduce or eliminate the spin-up error caused by the lack, at the initial time, of the fully developed vertical circulations required to support regions of large rainfall rates. However, even if a model has no spin-up problem, imposition of observed moisture and heating rate information during assimilation can improve quantitative precipitation forecasts, especially early in the forecast. The two key issues in physical initialization are the choice of assimilating technique and sources of hydrologic/hydrometeor data. Another example of data assimilation in mesoscale models was presented in a series of meso-beta scale model experiments with and 11 km version of the MASS model designed to investigate the sensitivity of convective initiation forced by thermally direct circulations resulting from differential surface heating to four dimensional assimilation of surface and radar data. The results of these simulations underscore the need to accurately initialize and simulate grid and sub-grid scale clouds in meso- beta scale models. The status of the application of the CSU-RAMS mesoscale model by the NOAA Forecast Systems Lab for producing real-time forecasts with 10-60 km mesh resolutions over (4000 km)(exp 2) domains for use by the aviation community was reported. Either MAPS or LAPS model data are used to initialize the RAMS model on a 12-h cycle. The use of MAPS (Mesoscale Analysis and Prediction System) model was discussed. Also discussed was the mesobeta-scale data assimilation using a triply-nested nonhydrostatic version of the MM5 model.

  18. Discharge estimation in ungauged basins through variational data assimilation : The potential of the SWOT mission.

    NASA Astrophysics Data System (ADS)

    Oubanas, H.; Gejadze, I.; Malaterre, P. O.; Durand, M. T.; Wei, R.; Frasson, R. P. M.; Domeneghetti, A.

    2017-12-01

    This work investigates the estimation of river discharge from simulated observations of the forthcoming Surface Water and Ocean Topography (SWOT) mission, to be launched in 2021, using a variant of the standard variational data assimilation method `4D-Var'. The hydrology SWOT simulator, developed at the Jet Propulsion Laboratory (JPL) has been used to simulate the expected performance of the KaRIn instrument onboard the satellite, producing synthetic SWOT observations of height and width, at each satellite overpass. SWOT data products were synthesized at the spatial scale of 200 m along the river centerline. Using a 1.5D full Saint-Venant hydraulic model, variational data assimilation simultaneously estimates the inflow discharge, river bathymetry and bed roughness. The proposed method has been designed for an application to fully ungauged basins; therefore, the prior information is derived from the SWOT observations only and the globally available ancillary information. Two reaches of the Po and Sacramento Rivers of about 130 km and 150 km, respectively, have been considered in this study. Discharge was successfully recovered at the overpass time with a relative-root-mean-square error of 16% and 12.3% for the Po and Sacramento Rivers, respectively. The estimates of the bed level and the roughness coefficient demonstrate a local improvement; however they may not provide reliable global information of the river bathymetry and roughness.

  19. Ensemble streamflow assimilation with the National Water Model.

    NASA Astrophysics Data System (ADS)

    Rafieeinasab, A.; McCreight, J. L.; Noh, S.; Seo, D. J.; Gochis, D.

    2017-12-01

    Through case studies of flooding across the US, we compare the performance of the National Water Model (NWM) data assimilation (DA) scheme to that of a newly implemented ensemble Kalman filter approach. The NOAA National Water Model (NWM) is an operational implementation of the community WRF-Hydro modeling system. As of August 2016, the NWM forecasts of distributed hydrologic states and fluxes (including soil moisture, snowpack, ET, and ponded water) over the contiguous United States have been publicly disseminated by the National Center for Environmental Prediction (NCEP) . It also provides streamflow forecasts at more than 2.7 million river reaches up to 30 days in advance. The NWM employs a nudging scheme to assimilate more than 6,000 USGS streamflow observations and provide initial conditions for its forecasts. A problem with nudging is how the forecasts relax quickly to open-loop bias in the forecast. This has been partially addressed by an experimental bias correction approach which was found to have issues with phase errors during flooding events. In this work, we present an ensemble streamflow data assimilation approach combining new channel-only capabilities of the NWM and HydroDART (a coupling of the offline WRF-Hydro model and NCAR's Data Assimilation Research Testbed; DART). Our approach focuses on the single model state of discharge and incorporates error distributions on channel-influxes (overland and groundwater) in the assimilation via an ensemble Kalman filter (EnKF). In order to avoid filter degeneracy associated with a limited number of ensemble at large scale, DART's covariance inflation (Anderson, 2009) and localization capabilities are implemented and evaluated. The current NWM data assimilation scheme is compared to preliminary results from the EnKF application for several flooding case studies across the US.

  20. Improving Forecast Skill by Assimilation of Quality-controlled AIRS Temperature Retrievals under Partially Cloudy Conditions

    NASA Technical Reports Server (NTRS)

    Reale, O.; Susskind, J.; Rosenberg, R.; Brin, E.; Riishojgaard, L.; Liu, E.; Terry, J.; Jusem, J. C.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) Atmospheric Infrared Sounder (AIRS) on board the Aqua satellite has been long recognized as an important contributor towards the improvement of weather forecasts. At this time only a small fraction of the total data produced by AIRS is being used by operational weather systems. In fact, in addition to effects of thinning and quality control, the only AIRS data assimilated are radiance observations of channels unaffected by clouds. Observations in mid-lower tropospheric sounding AIRS channels are assimilated primarily under completely clear-sky conditions, thus imposing a very severe limitation on the horizontal distribution of the AIRS-derived information. In this work it is shown that the ability to derive accurate temperature profiles from AIRS observations in partially cloud-contaminated areas can be utilized to further improve the impact of AIRS observations in a global model and forecasting system. The analyses produced by assimilating AIRS temperature profiles obtained under partial cloud cover result in a substantially colder representation of the northern hemisphere lower midtroposphere at higher latitudes. This temperature difference has a strong impact, through hydrostatic adjustment, in the midtropospheric geopotential heights, which causes a different representation of the polar vortex especially over northeastern Siberia and Alaska. The AIRS-induced anomaly propagates through the model's dynamics producing improved 5-day forecasts.

  1. Assimilation of neural network soil moisture in land surface models

    NASA Astrophysics Data System (ADS)

    Rodriguez-Fernandez, Nemesio; de Rosnay, Patricia; Albergel, Clement; Aires, Filipe; Prigent, Catherine; Kerr, Yann; Richaume, Philippe; Muñoz-Sabater, Joaquin; Drusch, Matthias

    2017-04-01

    In this study a set of land surface data assimilation (DA) experiments making use of satellite derived soil moisture (SM) are presented. These experiments have two objectives: (1) to test the information content of satellite remote sensing of soil moisture for numerical weather prediction (NWP) models, and (2) to test a simplified assimilation of these data through the use of a Neural Network (NN) retrieval. Advanced Scatterometer (ASCAT) and Soil Moisture and Ocean Salinity (SMOS) data were used. The SMOS soil moisture dataset was obtained specifically for this project training a NN using SMOS brightness temperatures as input and using as reference for the training European Centre for Medium-Range Weather Forecasts (ECMWF) H-TESSEL SM fields. In this way, the SMOS NN SM dataset has a similar climatology to that of the model and it does not present a global bias with respect to the model. The DA experiments are computed using a surface-only Land Data Assimilation System (so-LDAS) based on the HTESSEL land surface model. This system is very computationally efficient and allows to perform long surface assimilation experiments (one whole year, 2012). SMOS NN SM DA experiments are compared to ASCAT SM DA experiments. In both cases, experiments with and without 2 m air temperature and relative humidity DA are discussed using different observation errors for the ASCAT and SMOS datasets. Seasonal, geographical and soil-depth-related differences between the results of those experiments are presented and discussed. The different SM analysed fields are evaluated against a large number of in situ measurements of SM. On average, the SM analysis gives in general similar results to the model open loop with no assimilation even if significant differences can be seen for specific sites with in situ measurements. The sensitivity to observation errors to the SM dataset slightly differs depending on the networks of in situ measurements, however it is relatively low for the tests

  2. A new GNSS-enabled floating device as a means for retrieving river bathymetry by assimilation into a hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Hostache, R.; Matgen, P.; Giustarini, L.

    2012-04-01

    Hydrodynamic models form an important component in flood forecasting systems. Model predictions with reduced uncertainty critically depend on the availability of detailed information about floodplain topography and riverbed bathymetry. While digital elevation models with varying spatial resolutions and accuracy levels are readily available at a global scale and can be used to infer floodplain geometry, bathymetric data is often not available and ground surveys are time and resource intensive. In this general context, our study aims at evaluating the hydrometric value of the Global Navigation Satellite System (GNSS) for bathymetry retrieval. Integrated with satellite telecommunication systems, drifting or anchored floaters equipped with navigation systems such as GPS and Galileo, enable the quasi-continuous measurement and near real-time transmission of water levels and flow velocities, virtually from any point in the world. The presented study investigates the potential of assimilating GNSS-derived water level measurements into a hydraulic model in order to estimate river bathymetry. First, an ensemble of possible bathymetries and roughness parameters was randomly generated using a Monte-Carlo sampling approach. Next, water level measurements provided by a drifting GNSS-equipped buoy were assimilated into a hydrodynamic model using as input a recorded discharge hydrograph and as geometry the generated bathymetry ensemble. Synthetic experiments were carried out with a one-dimensional hydraulic model implemented over a 19 km reach of the Alzette River. A Particle Filter was used as an assimilation algorithm for integrating observation data into the hydraulic model. The synthetic observation, simulating the data obtained from GNSS measurements, was generated using a perturbed forward run of the hydrodynamic model using the true bathymetry (ground survey). The scenario adopted in the data assimilation experiment assumed that during a flood event, a buoy was launched

  3. A simple nudging scheme to assimilate ASCAT soil moisture data in the WRF model

    NASA Astrophysics Data System (ADS)

    Capecchi, V.; Gozzini, B.

    2012-04-01

    The present work shows results obtained in a numerical experiment using the WRF (Weather and Research Forecasting, www.wrf-model.org) model. A control run where soil moisture is constrained by GFS global analysis is compared with a test run where soil moisture analysis is obtained via a simple nudging scheme using ASCAT data. The basic idea of the assimilation scheme is to "nudge" the first level (0-10 cm below ground in NOAH model) of volumetric soil moisture of the first-guess (say θ(b,1) derived from global model) towards the ASCAT derived value (say ^θ A). The soil moisture analysis θ(a,1) is given by: { θ + K (^θA - θ ) l = 1 θ(a,1) = θ(b,l) (b,l) l > 1 (b,l) (1) where l is the model soil level. K is a constant scalar value that is user specified and in this study it is equal to 0.2 (same value as in similar studies). Soil moisture is critical for estimating latent and sensible heat fluxes as well as boundary layer structure. This parameter is, however, poorly assimilated in current global and regional numerical models since no extensive soil moisture observation network exists. Remote sensing technologies offer a synoptic view of the dynamics and spatial distribution of soil moisture with a frequent temporal coverage and with a horizontal resolution similar to mesoscale NWP model. Several studies have shown that measurements of normalized backscatter (surface soil wetness) from the Advanced Scatterometer (ASCAT) operating at microwave frequencies and boarded on the meteorological operational (Metop) satellite, offer quality information about surface soil moisture. Recently several studies deal with the implementation of simple assimilation procedures (nudging, Extended Kalman Filter, etc...) to integrate ASCAT data in NWP models. They found improvements in screen temperature predictions, particularly in areas such as North-America and in the Tropics, where it is strong the land-atmosphere coupling. The ECMWF (Newsletter No. 127) is currently

  4. Sensitivity of Assimilated Tropical Tropospheric Ozone to the Meteorological Analyses

    NASA Technical Reports Server (NTRS)

    Hayashi, Hiroo; Stajner, Ivanka; Pawson, Steven; Thompson, Anne M.

    2002-01-01

    Tropical tropospheric ozone fields from two different experiments performed with an off-line ozone assimilation system developed in NASA's Data Assimilation Office (DAO) are examined. Assimilated ozone fields from the two experiments are compared with the collocated ozone profiles from the Southern Hemispheric Additional Ozonesondes (SHADOZ) network. Results are presented for 1998. The ozone assimilation system includes a chemistry-transport model, which uses analyzed winds from the Goddard Earth Observing System (GEOS) Data Assimilation System (DAS). The two experiments use wind fields from different versions of GEOS DAS: an operational version of the GEOS-2 system and a prototype of the GEOS-4 system. While both versions of the DAS utilize the Physical-space Statistical Analysis System and use comparable observations, they use entirely different general circulation models and data insertion techniques. The shape of the annual-mean vertical profile of the assimilated ozone fields is sensitive to the meteorological analyses, with the GEOS-4-based ozone being closest to the observations. This indicates that the resolved transport in GEOS-4 is more realistic than in GEOS-2. Remaining uncertainties include quantification of the representation of sub-grid-scale processes in the transport calculations, which plays an important role in the locations and seasons where convection dominates the transport.

  5. Exploring coupled 4D-Var data assimilation using an idealised atmosphere-ocean model

    NASA Astrophysics Data System (ADS)

    Smith, Polly; Fowler, Alison; Lawless, Amos; Haines, Keith

    2014-05-01

    The successful application of data assimilation techniques to operational numerical weather prediction and ocean forecasting systems has led to an increased interest in their use for the initialisation of coupled atmosphere-ocean models in prediction on seasonal to decadal timescales. Coupled data assimilation presents a significant challenge but offers a long list of potential benefits including improved use of near-surface observations, reduction of initialisation shocks in coupled forecasts, and generation of a consistent system state for the initialisation of coupled forecasts across all timescales. In this work we explore some of the fundamental questions in the design of coupled data assimilation systems within the context of an idealised one-dimensional coupled atmosphere-ocean model. The system is based on the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS) atmosphere model and a K-Profile Parameterisation (KKP) mixed layer ocean model developed by the National Centre for Atmospheric Science (NCAS) climate group at the University of Reading. It employs a strong constraint incremental 4D-Var scheme and is designed to enable the effective exploration of various approaches to performing coupled model data assimilation whilst avoiding many of the issues associated with more complex models. Working with this simple framework enables a greater range and quantity of experiments to be performed. Here, we will describe the development of our simplified single-column coupled atmosphere-ocean 4D-Var assimilation system and present preliminary results from a series of identical twin experiments devised to investigate and compare the behaviour and sensitivities of different coupled data assimilation methodologies. This includes comparing fully and weakly coupled assimilations with uncoupled assimilation, investigating whether coupled assimilation can eliminate or lessen initialisation shock in coupled model forecasts, and

  6. Displacement data assimilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenthal, W. Steven; Venkataramani, Shankar; Mariano, Arthur J.

    We show that modifying a Bayesian data assimilation scheme by incorporating kinematically-consistent displacement corrections produces a scheme that is demonstrably better at estimating partially observed state vectors in a setting where feature information is important. While the displacement transformation is generic, here we implement it within an ensemble Kalman Filter framework and demonstrate its effectiveness in tracking stochastically perturbed vortices.

  7. Air Quality Modeling Using the NASA GEOS-5 Multispecies Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Keller, Christoph A.; Pawson, Steven; Wargan, Krzysztof; Weir, Brad

    2018-01-01

    The NASA Goddard Earth Observing System (GEOS) data assimilation system (DAS) has been expanded to include chemically reactive tropospheric trace gases including ozone (O3), nitrogen dioxide (NO2), and carbon monoxide (CO). This system combines model analyses from the GEOS-5 model with detailed atmospheric chemistry and observations from MLS (O3), OMI (O3 and NO2), and MOPITT (CO). We show results from a variety of assimilation test experiments, highlighting the improvements in the representation of model species concentrations by up to 50% compared to an assimilation-free control experiment. Taking into account the rapid chemical cycling of NO2 when applying the assimilation increments greatly improves assimilation skills for NO2 and provides large benefits for model concentrations near the surface. Analysis of the geospatial distribution of the assimilation increments suggest that the free-running model overestimates biomass burning emissions but underestimates lightning NOx emissions by 5-20%. We discuss the capability of the chemical data assimilation system to improve atmospheric composition forecasts through improved initial value and boundary condition inputs, particularly during air pollution events. We find that the current assimilation system meaningfully improves short-term forecasts (1-3 day). For longer-term forecasts more emphasis on updating the emissions instead of initial concentration fields is needed.

  8. Background Error Covariance Estimation using Information from a Single Model Trajectory with Application to Ocean Data Assimilation into the GEOS-5 Coupled Model

    NASA Technical Reports Server (NTRS)

    Keppenne, Christian L.; Rienecker, Michele M.; Kovach, Robin M.; Vernieres, Guillaume; Koster, Randal D. (Editor)

    2014-01-01

    An attractive property of ensemble data assimilation methods is that they provide flow dependent background error covariance estimates which can be used to update fields of observed variables as well as fields of unobserved model variables. Two methods to estimate background error covariances are introduced which share the above property with ensemble data assimilation methods but do not involve the integration of multiple model trajectories. Instead, all the necessary covariance information is obtained from a single model integration. The Space Adaptive Forecast error Estimation (SAFE) algorithm estimates error covariances from the spatial distribution of model variables within a single state vector. The Flow Adaptive error Statistics from a Time series (FAST) method constructs an ensemble sampled from a moving window along a model trajectory. SAFE and FAST are applied to the assimilation of Argo temperature profiles into version 4.1 of the Modular Ocean Model (MOM4.1) coupled to the GEOS-5 atmospheric model and to the CICE sea ice model. The results are validated against unassimilated Argo salinity data. They show that SAFE and FAST are competitive with the ensemble optimal interpolation (EnOI) used by the Global Modeling and Assimilation Office (GMAO) to produce its ocean analysis. Because of their reduced cost, SAFE and FAST hold promise for high-resolution data assimilation applications.

  9. Evaluation of tropical Pacific observing systems using NCEP and GFDL ocean data assimilation systems

    NASA Astrophysics Data System (ADS)

    Xue, Yan; Wen, Caihong; Yang, Xiaosong; Behringer, David; Kumar, Arun; Vecchi, Gabriel; Rosati, Anthony; Gudgel, Rich

    2017-08-01

    The TAO/TRITON array is the cornerstone of the tropical Pacific and ENSO observing system. Motivated by the recent rapid decline of the TAO/TRITON array, the potential utility of TAO/TRITON was assessed for ENSO monitoring and prediction. The analysis focused on the period when observations from Argo floats were also available. We coordinated observing system experiments (OSEs) using the global ocean data assimilation system (GODAS) from the National Centers for Environmental Prediction and the ensemble coupled data assimilation (ECDA) from the Geophysical Fluid Dynamics Laboratory for the period 2004-2011. Four OSE simulations were conducted with inclusion of different subsets of in situ profiles: all profiles (XBT, moorings, Argo), all except the moorings, all except the Argo and no profiles. For evaluation of the OSE simulations, we examined the mean bias, standard deviation difference, root-mean-square difference (RMSD) and anomaly correlation against observations and objective analyses. Without assimilation of in situ observations, both GODAS and ECDA had large mean biases and RMSD in all variables. Assimilation of all in situ data significantly reduced mean biases and RMSD in all variables except zonal current at the equator. For GODAS, the mooring data is critical in constraining temperature in the eastern and northwestern tropical Pacific, while for ECDA both the mooring and Argo data is needed in constraining temperature in the western tropical Pacific. The Argo data is critical in constraining temperature in off-equatorial regions for both GODAS and ECDA. For constraining salinity, sea surface height and surface current analysis, the influence of Argo data was more pronounced. In addition, the salinity data from the TRITON buoys played an important role in constraining salinity in the western Pacific. GODAS was more sensitive to withholding Argo data in off-equatorial regions than ECDA because it relied on local observations to correct model biases and

  10. Differing Daphnia magna assimilation efficiencies for terrestrial, bacterial, and algal carbon and fatty acids.

    PubMed

    Taipale, Sami J; Brett, Michael T; Hahn, Martin W; Martin-Creuzburg, Dominik; Yeung, Sean; Hiltunen, Minna; Strandberg, Ursula; Kankaala, Paula

    2014-02-01

    There is considerable interest in the pathways by which carbon and growth-limiting elemental and biochemical nutrients are supplied to upper trophic levels. Fatty acids and sterols are among the most important molecules transferred across the plant-animal interface of food webs. In lake ecosystems, in addition to phytoplankton, bacteria and terrestrial organic matter are potential trophic resources for zooplankton, especially in those receiving high terrestrial organic matter inputs. We therefore tested carbon, nitrogen, and fatty acid assimilation by the crustacean Daphnia magna when consuming these resources. We fed Daphnia with monospecific diets of high-quality (Cryptomonas marssonii) and intermediate-quality (Chlamydomonas sp. and Scenedesmus gracilis) phytoplankton species, two heterotrophic bacterial strains, and particles from the globally dispersed riparian grass, Phragmites australis, representing terrestrial particulate organic carbon (t-POC). We also fed Daphnia with various mixed diets, and compared Daphnia fatty acid, carbon, and nitrogen assimilation across treatments. Our results suggest that bacteria were nutritionally inadequate diets because they lacked sterols and polyunsaturated omega-3 and omega-6 (omega-3 and omega-6) fatty acids (PUFAs). However, Daphnia were able to effectively use carbon and nitrogen from Actinobacteria, if their basal needs for essential fatty acids and sterols were met by phytoplankton. In contrast to bacteria, t-POC contained sterols and omega-6 and omega-3 fatty acids, but only at 22%, 1.4%, and 0.2% of phytoplankton levels, respectively, which indicated that t-POC food quality was especially restricted with regard to omega-3 PUFAs. Our results also showed higher assimilation of carbon than fatty acids from t-POC and bacteria into Daphnia, based on stable-isotope and fatty acids analysis, respectively. A relatively high (>20%) assimilation of carbon and fatty acids from t-POC was observed only when the proportion of t

  11. Treatment of systematic errors in land data assimilation systems

    NASA Astrophysics Data System (ADS)

    Crow, W. T.; Yilmaz, M.

    2012-12-01

    Data assimilation systems are generally designed to minimize the influence of random error on the estimation of system states. Yet, experience with land data assimilation systems has also revealed the presence of large systematic differences between model-derived and remotely-sensed estimates of land surface states. Such differences are commonly resolved prior to data assimilation through implementation of a pre-processing rescaling step whereby observations are scaled (or non-linearly transformed) to somehow "match" comparable predictions made by an assimilation model. While the rationale for removing systematic differences in means (i.e., bias) between models and observations is well-established, relatively little theoretical guidance is currently available to determine the appropriate treatment of higher-order moments during rescaling. This talk presents a simple analytical argument to define an optimal linear-rescaling strategy for observations prior to their assimilation into a land surface model. While a technique based on triple collocation theory is shown to replicate this optimal strategy, commonly-applied rescaling techniques (e.g., so called "least-squares regression" and "variance matching" approaches) are shown to represent only sub-optimal approximations to it. Since the triple collocation approach is likely infeasible in many real-world circumstances, general advice for deciding between various feasible (yet sub-optimal) rescaling approaches will be presented with an emphasis of the implications of this work for the case of directly assimilating satellite radiances. While the bulk of the analysis will deal with linear rescaling techniques, its extension to nonlinear cases will also be discussed.

  12. Model Uncertainty Quantification Methods In Data Assimilation

    NASA Astrophysics Data System (ADS)

    Pathiraja, S. D.; Marshall, L. A.; Sharma, A.; Moradkhani, H.

    2017-12-01

    Data Assimilation involves utilising observations to improve model predictions in a seamless and statistically optimal fashion. Its applications are wide-ranging; from improving weather forecasts to tracking targets such as in the Apollo 11 mission. The use of Data Assimilation methods in high dimensional complex geophysical systems is an active area of research, where there exists many opportunities to enhance existing methodologies. One of the central challenges is in model uncertainty quantification; the outcome of any Data Assimilation study is strongly dependent on the uncertainties assigned to both observations and models. I focus on developing improved model uncertainty quantification methods that are applicable to challenging real world scenarios. These include developing methods for cases where the system states are only partially observed, where there is little prior knowledge of the model errors, and where the model error statistics are likely to be highly non-Gaussian.

  13. A joint data assimilation system (Tan-Tracker) to simultaneously estimate surface CO2 fluxes and 3-D atmospheric CO2 concentrations from observations

    NASA Astrophysics Data System (ADS)

    Tian, X.; Xie, Z.; Liu, Y.; Cai, Z.; Fu, Y.; Zhang, H.; Feng, L.

    2014-12-01

    We have developed a novel framework ("Tan-Tracker") for assimilating observations of atmospheric CO2 concentrations, based on the POD-based (proper orthogonal decomposition) ensemble four-dimensional variational data assimilation method (PODEn4DVar). The high flexibility and the high computational efficiency of the PODEn4DVar approach allow us to include both the atmospheric CO2 concentrations and the surface CO2 fluxes as part of the large state vector to be simultaneously estimated from assimilation of atmospheric CO2 observations. Compared to most modern top-down flux inversion approaches, where only surface fluxes are considered as control variables, one major advantage of our joint data assimilation system is that, in principle, no assumption on perfect transport models is needed. In addition, the possibility for Tan-Tracker to use a complete dynamic model to consistently describe the time evolution of CO2 surface fluxes (CFs) and the atmospheric CO2 concentrations represents a better use of observation information for recycling the analyses at each assimilation step in order to improve the forecasts for the following assimilations. An experimental Tan-Tracker system has been built based on a complete augmented dynamical model, where (1) the surface atmosphere CO2 exchanges are prescribed by using a persistent forecasting model for the scaling factors of the first-guess net CO2 surface fluxes and (2) the atmospheric CO2 transport is simulated by using the GEOS-Chem three-dimensional global chemistry transport model. Observing system simulation experiments (OSSEs) for assimilating synthetic in situ observations of surface CO2 concentrations are carefully designed to evaluate the effectiveness of the Tan-Tracker system. In particular, detailed comparisons are made with its simplified version (referred to as TT-S) with only CFs taken as the prognostic variables. It is found that our Tan-Tracker system is capable of outperforming TT-S with higher assimilation

  14. Assimilation of Satellite-Derived Skin Temperature Observations into Land Surface Models

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; Kumar, Sujay V.; Mahanama, P. P.; Koster, Randal D.; Liu, Q.

    2010-01-01

    Land surface (or "skin") temperature (LST) lies at the heart of the surface energy balance and is a key variable in weather and climate models. Here we assimilate LST retrievals from the International Satellite Cloud Climatology Project (ISCCP) into the Noah and Catchment (CLSM) land surface models using an ensemble-based, off-line land data assimilation system. LST is described very differently in the two models. A priori scaling and dynamic bias estimation approaches are applied because satellite and model LST typically exhibit different mean values and variability. Performance is measured against 27 months of in situ measurements from the Coordinated Energy and Water Cycle Observations Project at 48 stations. LST estimates from Noah and CLSM without data assimilation ("open loop") are comparable to each other and superior to that of ISCCP retrievals. For LST, RMSE values are 4.9 K (CLSM), 5.6 K (Noah), and 7.6 K (ISCCP), and anomaly correlation coefficients (R) are 0.62 (CLSM), 0.61 (Noah), and 0.52 (ISCCP). Assimilation of ISCCP retrievals provides modest yet statistically significant improvements (over open loop) of up to 0.7 K in RMSE and 0.05 in anomaly R. The skill of surface turbulent flux estimates from the assimilation integrations is essentially identical to the corresponding open loop skill. Noah assimilation estimates of ground heat flux, however, can be significantly worse than open loop estimates. Provided the assimilation system is properly adapted to each land model, the benefits from the assimilation of LST retrievals are comparable for both models.

  15. A hybrid modeling with data assimilation to evaluate human exposure level

    NASA Astrophysics Data System (ADS)

    Koo, Y. S.; Cheong, H. K.; Choi, D.; Kim, A. L.; Yun, H. Y.

    2015-12-01

    Exposure models are designed to better represent human contact with PM (Particulate Matter) and other air pollutants such as CO, SO2, O3, and NO2. The exposure concentrations of the air pollutants to human are determined by global and regional long range transport of global and regional scales from Europe and China as well as local emissions from urban and road vehicle sources. To assess the exposure level in detail, the multiple scale influence from background to local sources should be considered. A hybrid air quality modeling methodology combing a grid-based chemical transport model with a local plume dispersion model was used to provide spatially and temporally resolved air quality concentration for human exposure levels in Korea. In the hybrid modeling approach, concentrations from a grid-based chemical transport model and a local plume dispersion model are added to provide contributions from photochemical interactions, long-range (regional) transport and local-scale dispersion. The CAMx (Comprehensive Air quality Model with Extensions was used for the background concentrations from anthropogenic and natural emissions in East Asia including Korea while the road dispersion by vehicle emission was calculated by CALPUFF model. The total exposure level of the pollutants was finally assessed by summing the background and road contributions. In the hybrid modeling, the data assimilation method based on the optimal interpolation was applied to overcome the discrepancies between the model predicted concentrations and observations. The air quality data from the air quality monitoring stations in Korea. The spatial resolution of the hybrid model was 50m for the Seoul Metropolitan Ares. This example clearly demonstrates that the exposure level could be estimated to the fine scale for the exposure assessment by using the hybrid modeling approach with data assimilation.

  16. Application of multi-constituent satellite data assimilation for KORUS-AQ

    NASA Astrophysics Data System (ADS)

    Miyazaki, K.; Sekiya, T.; Fu, D.; Bowman, K. W.; Kulawik, S. S.; Walker, T.; Takigawa, M.; Ogochi, K.; Gaubert, B.; Barré, J.; Emmons, L. K.

    2017-12-01

    Comprehensive tropospheric maps of multi-constituent fields at 1.1 degree resolution, provided by an assimilation of multiple satellite measurements of O3, CO, NO2, and HNO3 from multiple satellite (OMI, GOME-2, MOPITT, MLS, and AIRS) using an ensemble Kalman filter, are used to study variations in tropospheric composition over east Asia during KORUS-AQ. Assimilated model results for both direct ozone assimilations and assimilations of ozone precursors (NOx and CO) were compared to DC-8 aircraft observations, with significant improvements in model/aircraft comparisons for ozone (the negative model bias was reduced by up to 80 %), CO (by up to 90 %), OH (by up to 40 %), and NOx seen in both approaches. Corrections made to the precursor emissions (i.e., surface NOx and CO emissions), especially over eastern and central China and over South Korea, were important in reducing the negative bias of O3 and CO over South Korea. We obtained additional bias reductions from assimilation of multispectral retrievals of tropospheric ozone profiles from AIRS and OMI, especially for the middle troposphere ozone. Improved agreements with the ground-based measurements at remote sites over South Korea and western Japan suggest that the representation of long-range transport of polluted air is improved by data assimilation, as a result of the optimization of precursor emissions, mainly over China. The higher estimated NOx, by 60-90 % over South Korea and by 20-40 % over eastern China compared to bottom-up inventories, suggests an important underestimation of anthropogenic sources in the emission inventories in these areas. Additional bias reductions were obtained by assimilating the multispectral retrievals, especially for the middle troposphere O3. In the future, assimilating datasets from a new constellation of low Earth orbiting sounders (e.g., IASI, AIRS, CrIS, Sentinel-5p (TROPOMI), and Sentinel-5) and geostationary satellites (Sentinel-4, GEMS, and TEMPO) will provide more

  17. A critical review on the improvement of photosynthetic carbon assimilation in C3 plants using genetic engineering.

    PubMed

    Ruan, Cheng-Jiang; Shao, Hong-Bo; Teixeira da Silva, Jaime A

    2012-03-01

    Global warming is one of the most serious challenges facing us today. It may be linked to the increase in atmospheric CO2 and other greenhouse gases (GHGs), leading to a rise in sea level, notable shifts in ecosystems, and in the frequency and intensity of wild fires. There is a strong interest in stabilizing the atmospheric concentration of CO2 and other GHGs by decreasing carbon emission and/or increasing carbon sequestration. Biotic sequestration is an important and effective strategy to mitigate the effects of rising atmospheric CO2 concentrations by increasing carbon sequestration and storage capacity of ecosystems using plant photosynthesis and by decreasing carbon emission using biofuel rather than fossil fuel. Improvement of photosynthetic carbon assimilation, using transgenic engineering, potentially provides a set of available and effective tools for enhancing plant carbon sequestration. In this review, firstly different biological methods of CO2 assimilation in C3, C4 and CAM plants are introduced and three types of C4 pathways which have high photosynthetic performance and have evolved as CO2 pumps are briefly summarized. Then (i) the improvement of photosynthetic carbon assimilation of C3 plants by transgenic engineering using non-C4 genes, and (ii) the overexpression of individual or multiple C4 cycle photosynthetic genes (PEPC, PPDK, PCK, NADP-ME and NADP-MDH) in transgenic C3 plants (e.g. tobacco, potato, rice and Arabidopsis) are highlighted. Some transgenic C3 plants (e.g. tobacco, rice and Arabidopsis) overexpressing the FBP/SBPase, ictB and cytochrome c6 genes showed positive effects on photosynthetic efficiency and growth characteristics. However, over the last 28 years, efforts to overexpress individual, double or multiple C4 enzymes in C3 plants like tobacco, potato, rice, and Arabidopsis have produced mixed results that do not confirm or eliminate the possibility of improving photosynthesis of C3 plants by this approach. Finally, a prospect

  18. Climate Data Assimilation on a Massively Parallel Supercomputer

    NASA Technical Reports Server (NTRS)

    Ding, Hong Q.; Ferraro, Robert D.

    1996-01-01

    We have designed and implemented a set of highly efficient and highly scalable algorithms for an unstructured computational package, the PSAS data assimilation package, as demonstrated by detailed performance analysis of systematic runs on up to 512-nodes of an Intel Paragon. The preconditioned Conjugate Gradient solver achieves a sustained 18 Gflops performance. Consequently, we achieve an unprecedented 100-fold reduction in time to solution on the Intel Paragon over a single head of a Cray C90. This not only exceeds the daily performance requirement of the Data Assimilation Office at NASA's Goddard Space Flight Center, but also makes it possible to explore much larger and challenging data assimilation problems which are unthinkable on a traditional computer platform such as the Cray C90.

  19. Polar motion excitation analysis due to global continental water redistribution

    NASA Astrophysics Data System (ADS)

    Fernandez, L.; Schuh, H.

    2006-10-01

    We present the results obtained when studying the hydrological excitation of the Earth‘s wobble due to global redistribution of continental water storage. This work was performed in two steps. First, we computed the hydrological angular momentum (HAM) time series based on the global hydrological model LaD (Land Dynamics model) for the period 1980 till 2004. Then, we compared the effectiveness of this excitation by analysing the residuals of the geodetic time series after removing atmospheric and oceanic contributions with the respective hydrological ones. The emphasis was put on low frequency variations. We also present a comparison of HAM time series from LaD with respect to that one from a global model based on the assimilated soil moisture and snow accumulation data from NCEP/NCAR (The National Center for Environmental Prediction/The National Center for Atmospheric Research) reanalysis. Finally, we evaluate the performance of LaD model in closing the polar motion budget at seasonal periods in comparison with the NCEP and the Land Data Assimilation System (LDAS) models.

  20. Satellite Data Assimilation within KIAPS-LETKF system

    NASA Astrophysics Data System (ADS)

    Jo, Y.; Lee, S., Sr.; Cho, K.

    2016-12-01

    Korea Institute of Atmospheric Prediction Systems (KIAPS) has been developing an ensemble data assimilation system using four-dimensional local ensemble transform kalman filter (LETKF; Hunt et al., 2007) within KIAPS Integrated Model (KIM), referred to as "KIAPS-LETKF". KIAPS-LETKF system was successfully evaluated with various Observing System Simulation Experiments (OSSEs) with NCAR Community Atmospheric Model - Spectral Element (Kang et al., 2013), which has fully unstructured quadrilateral meshes based on the cubed-sphere grid as the same grid system of KIM. Recently, assimilation of real observations has been conducted within the KIAPS-LETKF system with four-dimensional covariance functions over the 6-hr assimilation window. Then, conventional (e.g., sonde, aircraft, and surface) and satellite (e.g., AMSU-A, IASI, GPS-RO, and AMV) observations have been provided by the KIAPS Package for Observation Processing (KPOP). Wind speed prediction was found most beneficial due to ingestion of AMV and for the temperature prediction the improvement in assimilation is mostly due to ingestion of AMSU-A and IASI. However, some degradation in the simulation of the GPS-RO is presented in the upper stratosphere, even though GPS-RO leads positive impacts on the analysis and forecasts. We plan to test the bias correction method and several vertical localization strategies for radiance observations to improve analysis and forecast impacts.